1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 309 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 310 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 311 return aff; 312 } 313 314 /* 315 ** Return a pointer to the collation sequence that should be used by 316 ** a binary comparison operator comparing pLeft and pRight. 317 ** 318 ** If the left hand expression has a collating sequence type, then it is 319 ** used. Otherwise the collation sequence for the right hand expression 320 ** is used, or the default (BINARY) if neither expression has a collating 321 ** type. 322 ** 323 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 324 ** it is not considered. 325 */ 326 CollSeq *sqlite3BinaryCompareCollSeq( 327 Parse *pParse, 328 Expr *pLeft, 329 Expr *pRight 330 ){ 331 CollSeq *pColl; 332 assert( pLeft ); 333 if( pLeft->flags & EP_Collate ){ 334 pColl = sqlite3ExprCollSeq(pParse, pLeft); 335 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 336 pColl = sqlite3ExprCollSeq(pParse, pRight); 337 }else{ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 if( !pColl ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 } 342 } 343 return pColl; 344 } 345 346 /* Expresssion p is a comparison operator. Return a collation sequence 347 ** appropriate for the comparison operator. 348 ** 349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 350 ** However, if the OP_Commuted flag is set, then the order of the operands 351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 352 ** correct collating sequence is found. 353 */ 354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){ 355 if( ExprHasProperty(p, EP_Commuted) ){ 356 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 357 }else{ 358 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 359 } 360 } 361 362 /* 363 ** Generate code for a comparison operator. 364 */ 365 static int codeCompare( 366 Parse *pParse, /* The parsing (and code generating) context */ 367 Expr *pLeft, /* The left operand */ 368 Expr *pRight, /* The right operand */ 369 int opcode, /* The comparison opcode */ 370 int in1, int in2, /* Register holding operands */ 371 int dest, /* Jump here if true. */ 372 int jumpIfNull, /* If true, jump if either operand is NULL */ 373 int isCommuted /* The comparison has been commuted */ 374 ){ 375 int p5; 376 int addr; 377 CollSeq *p4; 378 379 if( pParse->nErr ) return 0; 380 if( isCommuted ){ 381 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 382 }else{ 383 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 384 } 385 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 386 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 387 (void*)p4, P4_COLLSEQ); 388 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 389 return addr; 390 } 391 392 /* 393 ** Return true if expression pExpr is a vector, or false otherwise. 394 ** 395 ** A vector is defined as any expression that results in two or more 396 ** columns of result. Every TK_VECTOR node is an vector because the 397 ** parser will not generate a TK_VECTOR with fewer than two entries. 398 ** But a TK_SELECT might be either a vector or a scalar. It is only 399 ** considered a vector if it has two or more result columns. 400 */ 401 int sqlite3ExprIsVector(Expr *pExpr){ 402 return sqlite3ExprVectorSize(pExpr)>1; 403 } 404 405 /* 406 ** If the expression passed as the only argument is of type TK_VECTOR 407 ** return the number of expressions in the vector. Or, if the expression 408 ** is a sub-select, return the number of columns in the sub-select. For 409 ** any other type of expression, return 1. 410 */ 411 int sqlite3ExprVectorSize(Expr *pExpr){ 412 u8 op = pExpr->op; 413 if( op==TK_REGISTER ) op = pExpr->op2; 414 if( op==TK_VECTOR ){ 415 return pExpr->x.pList->nExpr; 416 }else if( op==TK_SELECT ){ 417 return pExpr->x.pSelect->pEList->nExpr; 418 }else{ 419 return 1; 420 } 421 } 422 423 /* 424 ** Return a pointer to a subexpression of pVector that is the i-th 425 ** column of the vector (numbered starting with 0). The caller must 426 ** ensure that i is within range. 427 ** 428 ** If pVector is really a scalar (and "scalar" here includes subqueries 429 ** that return a single column!) then return pVector unmodified. 430 ** 431 ** pVector retains ownership of the returned subexpression. 432 ** 433 ** If the vector is a (SELECT ...) then the expression returned is 434 ** just the expression for the i-th term of the result set, and may 435 ** not be ready for evaluation because the table cursor has not yet 436 ** been positioned. 437 */ 438 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 439 assert( i<sqlite3ExprVectorSize(pVector) ); 440 if( sqlite3ExprIsVector(pVector) ){ 441 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 442 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 443 return pVector->x.pSelect->pEList->a[i].pExpr; 444 }else{ 445 return pVector->x.pList->a[i].pExpr; 446 } 447 } 448 return pVector; 449 } 450 451 /* 452 ** Compute and return a new Expr object which when passed to 453 ** sqlite3ExprCode() will generate all necessary code to compute 454 ** the iField-th column of the vector expression pVector. 455 ** 456 ** It is ok for pVector to be a scalar (as long as iField==0). 457 ** In that case, this routine works like sqlite3ExprDup(). 458 ** 459 ** The caller owns the returned Expr object and is responsible for 460 ** ensuring that the returned value eventually gets freed. 461 ** 462 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 463 ** then the returned object will reference pVector and so pVector must remain 464 ** valid for the life of the returned object. If pVector is a TK_VECTOR 465 ** or a scalar expression, then it can be deleted as soon as this routine 466 ** returns. 467 ** 468 ** A trick to cause a TK_SELECT pVector to be deleted together with 469 ** the returned Expr object is to attach the pVector to the pRight field 470 ** of the returned TK_SELECT_COLUMN Expr object. 471 */ 472 Expr *sqlite3ExprForVectorField( 473 Parse *pParse, /* Parsing context */ 474 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 475 int iField /* Which column of the vector to return */ 476 ){ 477 Expr *pRet; 478 if( pVector->op==TK_SELECT ){ 479 assert( pVector->flags & EP_xIsSelect ); 480 /* The TK_SELECT_COLUMN Expr node: 481 ** 482 ** pLeft: pVector containing TK_SELECT. Not deleted. 483 ** pRight: not used. But recursively deleted. 484 ** iColumn: Index of a column in pVector 485 ** iTable: 0 or the number of columns on the LHS of an assignment 486 ** pLeft->iTable: First in an array of register holding result, or 0 487 ** if the result is not yet computed. 488 ** 489 ** sqlite3ExprDelete() specifically skips the recursive delete of 490 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 491 ** can be attached to pRight to cause this node to take ownership of 492 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 493 ** with the same pLeft pointer to the pVector, but only one of them 494 ** will own the pVector. 495 */ 496 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 497 if( pRet ){ 498 pRet->iColumn = iField; 499 pRet->pLeft = pVector; 500 } 501 assert( pRet==0 || pRet->iTable==0 ); 502 }else{ 503 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 504 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 505 sqlite3RenameTokenRemap(pParse, pRet, pVector); 506 } 507 return pRet; 508 } 509 510 /* 511 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 512 ** it. Return the register in which the result is stored (or, if the 513 ** sub-select returns more than one column, the first in an array 514 ** of registers in which the result is stored). 515 ** 516 ** If pExpr is not a TK_SELECT expression, return 0. 517 */ 518 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 519 int reg = 0; 520 #ifndef SQLITE_OMIT_SUBQUERY 521 if( pExpr->op==TK_SELECT ){ 522 reg = sqlite3CodeSubselect(pParse, pExpr); 523 } 524 #endif 525 return reg; 526 } 527 528 /* 529 ** Argument pVector points to a vector expression - either a TK_VECTOR 530 ** or TK_SELECT that returns more than one column. This function returns 531 ** the register number of a register that contains the value of 532 ** element iField of the vector. 533 ** 534 ** If pVector is a TK_SELECT expression, then code for it must have 535 ** already been generated using the exprCodeSubselect() routine. In this 536 ** case parameter regSelect should be the first in an array of registers 537 ** containing the results of the sub-select. 538 ** 539 ** If pVector is of type TK_VECTOR, then code for the requested field 540 ** is generated. In this case (*pRegFree) may be set to the number of 541 ** a temporary register to be freed by the caller before returning. 542 ** 543 ** Before returning, output parameter (*ppExpr) is set to point to the 544 ** Expr object corresponding to element iElem of the vector. 545 */ 546 static int exprVectorRegister( 547 Parse *pParse, /* Parse context */ 548 Expr *pVector, /* Vector to extract element from */ 549 int iField, /* Field to extract from pVector */ 550 int regSelect, /* First in array of registers */ 551 Expr **ppExpr, /* OUT: Expression element */ 552 int *pRegFree /* OUT: Temp register to free */ 553 ){ 554 u8 op = pVector->op; 555 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 556 if( op==TK_REGISTER ){ 557 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 558 return pVector->iTable+iField; 559 } 560 if( op==TK_SELECT ){ 561 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 562 return regSelect+iField; 563 } 564 *ppExpr = pVector->x.pList->a[iField].pExpr; 565 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 566 } 567 568 /* 569 ** Expression pExpr is a comparison between two vector values. Compute 570 ** the result of the comparison (1, 0, or NULL) and write that 571 ** result into register dest. 572 ** 573 ** The caller must satisfy the following preconditions: 574 ** 575 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 576 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 577 ** otherwise: op==pExpr->op and p5==0 578 */ 579 static void codeVectorCompare( 580 Parse *pParse, /* Code generator context */ 581 Expr *pExpr, /* The comparison operation */ 582 int dest, /* Write results into this register */ 583 u8 op, /* Comparison operator */ 584 u8 p5 /* SQLITE_NULLEQ or zero */ 585 ){ 586 Vdbe *v = pParse->pVdbe; 587 Expr *pLeft = pExpr->pLeft; 588 Expr *pRight = pExpr->pRight; 589 int nLeft = sqlite3ExprVectorSize(pLeft); 590 int i; 591 int regLeft = 0; 592 int regRight = 0; 593 u8 opx = op; 594 int addrDone = sqlite3VdbeMakeLabel(pParse); 595 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 596 597 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 598 sqlite3ErrorMsg(pParse, "row value misused"); 599 return; 600 } 601 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 602 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 603 || pExpr->op==TK_LT || pExpr->op==TK_GT 604 || pExpr->op==TK_LE || pExpr->op==TK_GE 605 ); 606 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 607 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 608 assert( p5==0 || pExpr->op!=op ); 609 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 610 611 p5 |= SQLITE_STOREP2; 612 if( opx==TK_LE ) opx = TK_LT; 613 if( opx==TK_GE ) opx = TK_GT; 614 615 regLeft = exprCodeSubselect(pParse, pLeft); 616 regRight = exprCodeSubselect(pParse, pRight); 617 618 for(i=0; 1 /*Loop exits by "break"*/; i++){ 619 int regFree1 = 0, regFree2 = 0; 620 Expr *pL, *pR; 621 int r1, r2; 622 assert( i>=0 && i<nLeft ); 623 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 624 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 625 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 626 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 627 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 628 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 629 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 630 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 631 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 632 sqlite3ReleaseTempReg(pParse, regFree1); 633 sqlite3ReleaseTempReg(pParse, regFree2); 634 if( i==nLeft-1 ){ 635 break; 636 } 637 if( opx==TK_EQ ){ 638 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 639 p5 |= SQLITE_KEEPNULL; 640 }else if( opx==TK_NE ){ 641 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 642 p5 |= SQLITE_KEEPNULL; 643 }else{ 644 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 645 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 646 VdbeCoverageIf(v, op==TK_LT); 647 VdbeCoverageIf(v, op==TK_GT); 648 VdbeCoverageIf(v, op==TK_LE); 649 VdbeCoverageIf(v, op==TK_GE); 650 if( i==nLeft-2 ) opx = op; 651 } 652 } 653 sqlite3VdbeResolveLabel(v, addrDone); 654 } 655 656 #if SQLITE_MAX_EXPR_DEPTH>0 657 /* 658 ** Check that argument nHeight is less than or equal to the maximum 659 ** expression depth allowed. If it is not, leave an error message in 660 ** pParse. 661 */ 662 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 663 int rc = SQLITE_OK; 664 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 665 if( nHeight>mxHeight ){ 666 sqlite3ErrorMsg(pParse, 667 "Expression tree is too large (maximum depth %d)", mxHeight 668 ); 669 rc = SQLITE_ERROR; 670 } 671 return rc; 672 } 673 674 /* The following three functions, heightOfExpr(), heightOfExprList() 675 ** and heightOfSelect(), are used to determine the maximum height 676 ** of any expression tree referenced by the structure passed as the 677 ** first argument. 678 ** 679 ** If this maximum height is greater than the current value pointed 680 ** to by pnHeight, the second parameter, then set *pnHeight to that 681 ** value. 682 */ 683 static void heightOfExpr(Expr *p, int *pnHeight){ 684 if( p ){ 685 if( p->nHeight>*pnHeight ){ 686 *pnHeight = p->nHeight; 687 } 688 } 689 } 690 static void heightOfExprList(ExprList *p, int *pnHeight){ 691 if( p ){ 692 int i; 693 for(i=0; i<p->nExpr; i++){ 694 heightOfExpr(p->a[i].pExpr, pnHeight); 695 } 696 } 697 } 698 static void heightOfSelect(Select *pSelect, int *pnHeight){ 699 Select *p; 700 for(p=pSelect; p; p=p->pPrior){ 701 heightOfExpr(p->pWhere, pnHeight); 702 heightOfExpr(p->pHaving, pnHeight); 703 heightOfExpr(p->pLimit, pnHeight); 704 heightOfExprList(p->pEList, pnHeight); 705 heightOfExprList(p->pGroupBy, pnHeight); 706 heightOfExprList(p->pOrderBy, pnHeight); 707 } 708 } 709 710 /* 711 ** Set the Expr.nHeight variable in the structure passed as an 712 ** argument. An expression with no children, Expr.pList or 713 ** Expr.pSelect member has a height of 1. Any other expression 714 ** has a height equal to the maximum height of any other 715 ** referenced Expr plus one. 716 ** 717 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 718 ** if appropriate. 719 */ 720 static void exprSetHeight(Expr *p){ 721 int nHeight = 0; 722 heightOfExpr(p->pLeft, &nHeight); 723 heightOfExpr(p->pRight, &nHeight); 724 if( ExprHasProperty(p, EP_xIsSelect) ){ 725 heightOfSelect(p->x.pSelect, &nHeight); 726 }else if( p->x.pList ){ 727 heightOfExprList(p->x.pList, &nHeight); 728 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 729 } 730 p->nHeight = nHeight + 1; 731 } 732 733 /* 734 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 735 ** the height is greater than the maximum allowed expression depth, 736 ** leave an error in pParse. 737 ** 738 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 739 ** Expr.flags. 740 */ 741 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 742 if( pParse->nErr ) return; 743 exprSetHeight(p); 744 sqlite3ExprCheckHeight(pParse, p->nHeight); 745 } 746 747 /* 748 ** Return the maximum height of any expression tree referenced 749 ** by the select statement passed as an argument. 750 */ 751 int sqlite3SelectExprHeight(Select *p){ 752 int nHeight = 0; 753 heightOfSelect(p, &nHeight); 754 return nHeight; 755 } 756 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 757 /* 758 ** Propagate all EP_Propagate flags from the Expr.x.pList into 759 ** Expr.flags. 760 */ 761 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 762 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 763 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 764 } 765 } 766 #define exprSetHeight(y) 767 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 768 769 /* 770 ** This routine is the core allocator for Expr nodes. 771 ** 772 ** Construct a new expression node and return a pointer to it. Memory 773 ** for this node and for the pToken argument is a single allocation 774 ** obtained from sqlite3DbMalloc(). The calling function 775 ** is responsible for making sure the node eventually gets freed. 776 ** 777 ** If dequote is true, then the token (if it exists) is dequoted. 778 ** If dequote is false, no dequoting is performed. The deQuote 779 ** parameter is ignored if pToken is NULL or if the token does not 780 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 781 ** then the EP_DblQuoted flag is set on the expression node. 782 ** 783 ** Special case: If op==TK_INTEGER and pToken points to a string that 784 ** can be translated into a 32-bit integer, then the token is not 785 ** stored in u.zToken. Instead, the integer values is written 786 ** into u.iValue and the EP_IntValue flag is set. No extra storage 787 ** is allocated to hold the integer text and the dequote flag is ignored. 788 */ 789 Expr *sqlite3ExprAlloc( 790 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 791 int op, /* Expression opcode */ 792 const Token *pToken, /* Token argument. Might be NULL */ 793 int dequote /* True to dequote */ 794 ){ 795 Expr *pNew; 796 int nExtra = 0; 797 int iValue = 0; 798 799 assert( db!=0 ); 800 if( pToken ){ 801 if( op!=TK_INTEGER || pToken->z==0 802 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 803 nExtra = pToken->n+1; 804 assert( iValue>=0 ); 805 } 806 } 807 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 808 if( pNew ){ 809 memset(pNew, 0, sizeof(Expr)); 810 pNew->op = (u8)op; 811 pNew->iAgg = -1; 812 if( pToken ){ 813 if( nExtra==0 ){ 814 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 815 pNew->u.iValue = iValue; 816 }else{ 817 pNew->u.zToken = (char*)&pNew[1]; 818 assert( pToken->z!=0 || pToken->n==0 ); 819 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 820 pNew->u.zToken[pToken->n] = 0; 821 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 822 sqlite3DequoteExpr(pNew); 823 } 824 } 825 } 826 #if SQLITE_MAX_EXPR_DEPTH>0 827 pNew->nHeight = 1; 828 #endif 829 } 830 return pNew; 831 } 832 833 /* 834 ** Allocate a new expression node from a zero-terminated token that has 835 ** already been dequoted. 836 */ 837 Expr *sqlite3Expr( 838 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 839 int op, /* Expression opcode */ 840 const char *zToken /* Token argument. Might be NULL */ 841 ){ 842 Token x; 843 x.z = zToken; 844 x.n = sqlite3Strlen30(zToken); 845 return sqlite3ExprAlloc(db, op, &x, 0); 846 } 847 848 /* 849 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 850 ** 851 ** If pRoot==NULL that means that a memory allocation error has occurred. 852 ** In that case, delete the subtrees pLeft and pRight. 853 */ 854 void sqlite3ExprAttachSubtrees( 855 sqlite3 *db, 856 Expr *pRoot, 857 Expr *pLeft, 858 Expr *pRight 859 ){ 860 if( pRoot==0 ){ 861 assert( db->mallocFailed ); 862 sqlite3ExprDelete(db, pLeft); 863 sqlite3ExprDelete(db, pRight); 864 }else{ 865 if( pRight ){ 866 pRoot->pRight = pRight; 867 pRoot->flags |= EP_Propagate & pRight->flags; 868 } 869 if( pLeft ){ 870 pRoot->pLeft = pLeft; 871 pRoot->flags |= EP_Propagate & pLeft->flags; 872 } 873 exprSetHeight(pRoot); 874 } 875 } 876 877 /* 878 ** Allocate an Expr node which joins as many as two subtrees. 879 ** 880 ** One or both of the subtrees can be NULL. Return a pointer to the new 881 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 882 ** free the subtrees and return NULL. 883 */ 884 Expr *sqlite3PExpr( 885 Parse *pParse, /* Parsing context */ 886 int op, /* Expression opcode */ 887 Expr *pLeft, /* Left operand */ 888 Expr *pRight /* Right operand */ 889 ){ 890 Expr *p; 891 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 892 if( p ){ 893 memset(p, 0, sizeof(Expr)); 894 p->op = op & 0xff; 895 p->iAgg = -1; 896 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 897 sqlite3ExprCheckHeight(pParse, p->nHeight); 898 }else{ 899 sqlite3ExprDelete(pParse->db, pLeft); 900 sqlite3ExprDelete(pParse->db, pRight); 901 } 902 return p; 903 } 904 905 /* 906 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 907 ** do a memory allocation failure) then delete the pSelect object. 908 */ 909 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 910 if( pExpr ){ 911 pExpr->x.pSelect = pSelect; 912 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 913 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 914 }else{ 915 assert( pParse->db->mallocFailed ); 916 sqlite3SelectDelete(pParse->db, pSelect); 917 } 918 } 919 920 921 /* 922 ** Join two expressions using an AND operator. If either expression is 923 ** NULL, then just return the other expression. 924 ** 925 ** If one side or the other of the AND is known to be false, then instead 926 ** of returning an AND expression, just return a constant expression with 927 ** a value of false. 928 */ 929 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 930 sqlite3 *db = pParse->db; 931 if( pLeft==0 ){ 932 return pRight; 933 }else if( pRight==0 ){ 934 return pLeft; 935 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 936 sqlite3ExprUnmapAndDelete(pParse, pLeft); 937 sqlite3ExprUnmapAndDelete(pParse, pRight); 938 return sqlite3Expr(db, TK_INTEGER, "0"); 939 }else{ 940 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 941 } 942 } 943 944 /* 945 ** Construct a new expression node for a function with multiple 946 ** arguments. 947 */ 948 Expr *sqlite3ExprFunction( 949 Parse *pParse, /* Parsing context */ 950 ExprList *pList, /* Argument list */ 951 Token *pToken, /* Name of the function */ 952 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 953 ){ 954 Expr *pNew; 955 sqlite3 *db = pParse->db; 956 assert( pToken ); 957 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 958 if( pNew==0 ){ 959 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 960 return 0; 961 } 962 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 963 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 964 } 965 pNew->x.pList = pList; 966 ExprSetProperty(pNew, EP_HasFunc); 967 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 968 sqlite3ExprSetHeightAndFlags(pParse, pNew); 969 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 970 return pNew; 971 } 972 973 /* 974 ** Assign a variable number to an expression that encodes a wildcard 975 ** in the original SQL statement. 976 ** 977 ** Wildcards consisting of a single "?" are assigned the next sequential 978 ** variable number. 979 ** 980 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 981 ** sure "nnn" is not too big to avoid a denial of service attack when 982 ** the SQL statement comes from an external source. 983 ** 984 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 985 ** as the previous instance of the same wildcard. Or if this is the first 986 ** instance of the wildcard, the next sequential variable number is 987 ** assigned. 988 */ 989 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 990 sqlite3 *db = pParse->db; 991 const char *z; 992 ynVar x; 993 994 if( pExpr==0 ) return; 995 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 996 z = pExpr->u.zToken; 997 assert( z!=0 ); 998 assert( z[0]!=0 ); 999 assert( n==(u32)sqlite3Strlen30(z) ); 1000 if( z[1]==0 ){ 1001 /* Wildcard of the form "?". Assign the next variable number */ 1002 assert( z[0]=='?' ); 1003 x = (ynVar)(++pParse->nVar); 1004 }else{ 1005 int doAdd = 0; 1006 if( z[0]=='?' ){ 1007 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1008 ** use it as the variable number */ 1009 i64 i; 1010 int bOk; 1011 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1012 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1013 bOk = 1; 1014 }else{ 1015 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1016 } 1017 testcase( i==0 ); 1018 testcase( i==1 ); 1019 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1020 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1021 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1022 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1023 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1024 return; 1025 } 1026 x = (ynVar)i; 1027 if( x>pParse->nVar ){ 1028 pParse->nVar = (int)x; 1029 doAdd = 1; 1030 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1031 doAdd = 1; 1032 } 1033 }else{ 1034 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1035 ** number as the prior appearance of the same name, or if the name 1036 ** has never appeared before, reuse the same variable number 1037 */ 1038 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1039 if( x==0 ){ 1040 x = (ynVar)(++pParse->nVar); 1041 doAdd = 1; 1042 } 1043 } 1044 if( doAdd ){ 1045 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1046 } 1047 } 1048 pExpr->iColumn = x; 1049 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1050 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1051 } 1052 } 1053 1054 /* 1055 ** Recursively delete an expression tree. 1056 */ 1057 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1058 assert( p!=0 ); 1059 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1060 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1061 1062 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1063 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1064 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1065 #ifdef SQLITE_DEBUG 1066 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1067 assert( p->pLeft==0 ); 1068 assert( p->pRight==0 ); 1069 assert( p->x.pSelect==0 ); 1070 } 1071 #endif 1072 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1073 /* The Expr.x union is never used at the same time as Expr.pRight */ 1074 assert( p->x.pList==0 || p->pRight==0 ); 1075 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1076 if( p->pRight ){ 1077 assert( !ExprHasProperty(p, EP_WinFunc) ); 1078 sqlite3ExprDeleteNN(db, p->pRight); 1079 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1080 assert( !ExprHasProperty(p, EP_WinFunc) ); 1081 sqlite3SelectDelete(db, p->x.pSelect); 1082 }else{ 1083 sqlite3ExprListDelete(db, p->x.pList); 1084 #ifndef SQLITE_OMIT_WINDOWFUNC 1085 if( ExprHasProperty(p, EP_WinFunc) ){ 1086 sqlite3WindowDelete(db, p->y.pWin); 1087 } 1088 #endif 1089 } 1090 } 1091 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1092 if( !ExprHasProperty(p, EP_Static) ){ 1093 sqlite3DbFreeNN(db, p); 1094 } 1095 } 1096 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1097 if( p ) sqlite3ExprDeleteNN(db, p); 1098 } 1099 1100 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1101 ** expression. 1102 */ 1103 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1104 if( p ){ 1105 if( IN_RENAME_OBJECT ){ 1106 sqlite3RenameExprUnmap(pParse, p); 1107 } 1108 sqlite3ExprDeleteNN(pParse->db, p); 1109 } 1110 } 1111 1112 /* 1113 ** Return the number of bytes allocated for the expression structure 1114 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1115 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1116 */ 1117 static int exprStructSize(Expr *p){ 1118 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1119 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1120 return EXPR_FULLSIZE; 1121 } 1122 1123 /* 1124 ** The dupedExpr*Size() routines each return the number of bytes required 1125 ** to store a copy of an expression or expression tree. They differ in 1126 ** how much of the tree is measured. 1127 ** 1128 ** dupedExprStructSize() Size of only the Expr structure 1129 ** dupedExprNodeSize() Size of Expr + space for token 1130 ** dupedExprSize() Expr + token + subtree components 1131 ** 1132 *************************************************************************** 1133 ** 1134 ** The dupedExprStructSize() function returns two values OR-ed together: 1135 ** (1) the space required for a copy of the Expr structure only and 1136 ** (2) the EP_xxx flags that indicate what the structure size should be. 1137 ** The return values is always one of: 1138 ** 1139 ** EXPR_FULLSIZE 1140 ** EXPR_REDUCEDSIZE | EP_Reduced 1141 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1142 ** 1143 ** The size of the structure can be found by masking the return value 1144 ** of this routine with 0xfff. The flags can be found by masking the 1145 ** return value with EP_Reduced|EP_TokenOnly. 1146 ** 1147 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1148 ** (unreduced) Expr objects as they or originally constructed by the parser. 1149 ** During expression analysis, extra information is computed and moved into 1150 ** later parts of the Expr object and that extra information might get chopped 1151 ** off if the expression is reduced. Note also that it does not work to 1152 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1153 ** to reduce a pristine expression tree from the parser. The implementation 1154 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1155 ** to enforce this constraint. 1156 */ 1157 static int dupedExprStructSize(Expr *p, int flags){ 1158 int nSize; 1159 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1160 assert( EXPR_FULLSIZE<=0xfff ); 1161 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1162 if( 0==flags || p->op==TK_SELECT_COLUMN 1163 #ifndef SQLITE_OMIT_WINDOWFUNC 1164 || ExprHasProperty(p, EP_WinFunc) 1165 #endif 1166 ){ 1167 nSize = EXPR_FULLSIZE; 1168 }else{ 1169 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1170 assert( !ExprHasProperty(p, EP_FromJoin) ); 1171 assert( !ExprHasProperty(p, EP_MemToken) ); 1172 assert( !ExprHasProperty(p, EP_NoReduce) ); 1173 if( p->pLeft || p->x.pList ){ 1174 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1175 }else{ 1176 assert( p->pRight==0 ); 1177 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1178 } 1179 } 1180 return nSize; 1181 } 1182 1183 /* 1184 ** This function returns the space in bytes required to store the copy 1185 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1186 ** string is defined.) 1187 */ 1188 static int dupedExprNodeSize(Expr *p, int flags){ 1189 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1190 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1191 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1192 } 1193 return ROUND8(nByte); 1194 } 1195 1196 /* 1197 ** Return the number of bytes required to create a duplicate of the 1198 ** expression passed as the first argument. The second argument is a 1199 ** mask containing EXPRDUP_XXX flags. 1200 ** 1201 ** The value returned includes space to create a copy of the Expr struct 1202 ** itself and the buffer referred to by Expr.u.zToken, if any. 1203 ** 1204 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1205 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1206 ** and Expr.pRight variables (but not for any structures pointed to or 1207 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1208 */ 1209 static int dupedExprSize(Expr *p, int flags){ 1210 int nByte = 0; 1211 if( p ){ 1212 nByte = dupedExprNodeSize(p, flags); 1213 if( flags&EXPRDUP_REDUCE ){ 1214 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1215 } 1216 } 1217 return nByte; 1218 } 1219 1220 /* 1221 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1222 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1223 ** to store the copy of expression p, the copies of p->u.zToken 1224 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1225 ** if any. Before returning, *pzBuffer is set to the first byte past the 1226 ** portion of the buffer copied into by this function. 1227 */ 1228 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1229 Expr *pNew; /* Value to return */ 1230 u8 *zAlloc; /* Memory space from which to build Expr object */ 1231 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1232 1233 assert( db!=0 ); 1234 assert( p ); 1235 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1236 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1237 1238 /* Figure out where to write the new Expr structure. */ 1239 if( pzBuffer ){ 1240 zAlloc = *pzBuffer; 1241 staticFlag = EP_Static; 1242 }else{ 1243 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1244 staticFlag = 0; 1245 } 1246 pNew = (Expr *)zAlloc; 1247 1248 if( pNew ){ 1249 /* Set nNewSize to the size allocated for the structure pointed to 1250 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1251 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1252 ** by the copy of the p->u.zToken string (if any). 1253 */ 1254 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1255 const int nNewSize = nStructSize & 0xfff; 1256 int nToken; 1257 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1258 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1259 }else{ 1260 nToken = 0; 1261 } 1262 if( dupFlags ){ 1263 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1264 memcpy(zAlloc, p, nNewSize); 1265 }else{ 1266 u32 nSize = (u32)exprStructSize(p); 1267 memcpy(zAlloc, p, nSize); 1268 if( nSize<EXPR_FULLSIZE ){ 1269 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1270 } 1271 } 1272 1273 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1274 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1275 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1276 pNew->flags |= staticFlag; 1277 1278 /* Copy the p->u.zToken string, if any. */ 1279 if( nToken ){ 1280 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1281 memcpy(zToken, p->u.zToken, nToken); 1282 } 1283 1284 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1285 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1286 if( ExprHasProperty(p, EP_xIsSelect) ){ 1287 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1288 }else{ 1289 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1290 } 1291 } 1292 1293 /* Fill in pNew->pLeft and pNew->pRight. */ 1294 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1295 zAlloc += dupedExprNodeSize(p, dupFlags); 1296 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1297 pNew->pLeft = p->pLeft ? 1298 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1299 pNew->pRight = p->pRight ? 1300 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1301 } 1302 #ifndef SQLITE_OMIT_WINDOWFUNC 1303 if( ExprHasProperty(p, EP_WinFunc) ){ 1304 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1305 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1306 } 1307 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1308 if( pzBuffer ){ 1309 *pzBuffer = zAlloc; 1310 } 1311 }else{ 1312 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1313 if( pNew->op==TK_SELECT_COLUMN ){ 1314 pNew->pLeft = p->pLeft; 1315 assert( p->iColumn==0 || p->pRight==0 ); 1316 assert( p->pRight==0 || p->pRight==p->pLeft ); 1317 }else{ 1318 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1319 } 1320 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1321 } 1322 } 1323 } 1324 return pNew; 1325 } 1326 1327 /* 1328 ** Create and return a deep copy of the object passed as the second 1329 ** argument. If an OOM condition is encountered, NULL is returned 1330 ** and the db->mallocFailed flag set. 1331 */ 1332 #ifndef SQLITE_OMIT_CTE 1333 static With *withDup(sqlite3 *db, With *p){ 1334 With *pRet = 0; 1335 if( p ){ 1336 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1337 pRet = sqlite3DbMallocZero(db, nByte); 1338 if( pRet ){ 1339 int i; 1340 pRet->nCte = p->nCte; 1341 for(i=0; i<p->nCte; i++){ 1342 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1343 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1344 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1345 } 1346 } 1347 } 1348 return pRet; 1349 } 1350 #else 1351 # define withDup(x,y) 0 1352 #endif 1353 1354 #ifndef SQLITE_OMIT_WINDOWFUNC 1355 /* 1356 ** The gatherSelectWindows() procedure and its helper routine 1357 ** gatherSelectWindowsCallback() are used to scan all the expressions 1358 ** an a newly duplicated SELECT statement and gather all of the Window 1359 ** objects found there, assembling them onto the linked list at Select->pWin. 1360 */ 1361 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1362 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1363 Select *pSelect = pWalker->u.pSelect; 1364 Window *pWin = pExpr->y.pWin; 1365 assert( pWin ); 1366 assert( IsWindowFunc(pExpr) ); 1367 assert( pWin->ppThis==0 ); 1368 sqlite3WindowLink(pSelect, pWin); 1369 } 1370 return WRC_Continue; 1371 } 1372 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1373 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1374 } 1375 static void gatherSelectWindows(Select *p){ 1376 Walker w; 1377 w.xExprCallback = gatherSelectWindowsCallback; 1378 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1379 w.xSelectCallback2 = 0; 1380 w.pParse = 0; 1381 w.u.pSelect = p; 1382 sqlite3WalkSelect(&w, p); 1383 } 1384 #endif 1385 1386 1387 /* 1388 ** The following group of routines make deep copies of expressions, 1389 ** expression lists, ID lists, and select statements. The copies can 1390 ** be deleted (by being passed to their respective ...Delete() routines) 1391 ** without effecting the originals. 1392 ** 1393 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1394 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1395 ** by subsequent calls to sqlite*ListAppend() routines. 1396 ** 1397 ** Any tables that the SrcList might point to are not duplicated. 1398 ** 1399 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1400 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1401 ** truncated version of the usual Expr structure that will be stored as 1402 ** part of the in-memory representation of the database schema. 1403 */ 1404 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1405 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1406 return p ? exprDup(db, p, flags, 0) : 0; 1407 } 1408 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1409 ExprList *pNew; 1410 struct ExprList_item *pItem, *pOldItem; 1411 int i; 1412 Expr *pPriorSelectCol = 0; 1413 assert( db!=0 ); 1414 if( p==0 ) return 0; 1415 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1416 if( pNew==0 ) return 0; 1417 pNew->nExpr = p->nExpr; 1418 pItem = pNew->a; 1419 pOldItem = p->a; 1420 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1421 Expr *pOldExpr = pOldItem->pExpr; 1422 Expr *pNewExpr; 1423 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1424 if( pOldExpr 1425 && pOldExpr->op==TK_SELECT_COLUMN 1426 && (pNewExpr = pItem->pExpr)!=0 1427 ){ 1428 assert( pNewExpr->iColumn==0 || i>0 ); 1429 if( pNewExpr->iColumn==0 ){ 1430 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1431 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1432 }else{ 1433 assert( i>0 ); 1434 assert( pItem[-1].pExpr!=0 ); 1435 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1436 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1437 pNewExpr->pLeft = pPriorSelectCol; 1438 } 1439 } 1440 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1441 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1442 pItem->sortFlags = pOldItem->sortFlags; 1443 pItem->done = 0; 1444 pItem->bNulls = pOldItem->bNulls; 1445 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1446 pItem->bSorterRef = pOldItem->bSorterRef; 1447 pItem->u = pOldItem->u; 1448 } 1449 return pNew; 1450 } 1451 1452 /* 1453 ** If cursors, triggers, views and subqueries are all omitted from 1454 ** the build, then none of the following routines, except for 1455 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1456 ** called with a NULL argument. 1457 */ 1458 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1459 || !defined(SQLITE_OMIT_SUBQUERY) 1460 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1461 SrcList *pNew; 1462 int i; 1463 int nByte; 1464 assert( db!=0 ); 1465 if( p==0 ) return 0; 1466 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1467 pNew = sqlite3DbMallocRawNN(db, nByte ); 1468 if( pNew==0 ) return 0; 1469 pNew->nSrc = pNew->nAlloc = p->nSrc; 1470 for(i=0; i<p->nSrc; i++){ 1471 struct SrcList_item *pNewItem = &pNew->a[i]; 1472 struct SrcList_item *pOldItem = &p->a[i]; 1473 Table *pTab; 1474 pNewItem->pSchema = pOldItem->pSchema; 1475 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1476 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1477 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1478 pNewItem->fg = pOldItem->fg; 1479 pNewItem->iCursor = pOldItem->iCursor; 1480 pNewItem->addrFillSub = pOldItem->addrFillSub; 1481 pNewItem->regReturn = pOldItem->regReturn; 1482 if( pNewItem->fg.isIndexedBy ){ 1483 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1484 } 1485 pNewItem->pIBIndex = pOldItem->pIBIndex; 1486 if( pNewItem->fg.isTabFunc ){ 1487 pNewItem->u1.pFuncArg = 1488 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1489 } 1490 pTab = pNewItem->pTab = pOldItem->pTab; 1491 if( pTab ){ 1492 pTab->nTabRef++; 1493 } 1494 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1495 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1496 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1497 pNewItem->colUsed = pOldItem->colUsed; 1498 } 1499 return pNew; 1500 } 1501 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1502 IdList *pNew; 1503 int i; 1504 assert( db!=0 ); 1505 if( p==0 ) return 0; 1506 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1507 if( pNew==0 ) return 0; 1508 pNew->nId = p->nId; 1509 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1510 if( pNew->a==0 ){ 1511 sqlite3DbFreeNN(db, pNew); 1512 return 0; 1513 } 1514 /* Note that because the size of the allocation for p->a[] is not 1515 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1516 ** on the duplicate created by this function. */ 1517 for(i=0; i<p->nId; i++){ 1518 struct IdList_item *pNewItem = &pNew->a[i]; 1519 struct IdList_item *pOldItem = &p->a[i]; 1520 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1521 pNewItem->idx = pOldItem->idx; 1522 } 1523 return pNew; 1524 } 1525 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1526 Select *pRet = 0; 1527 Select *pNext = 0; 1528 Select **pp = &pRet; 1529 Select *p; 1530 1531 assert( db!=0 ); 1532 for(p=pDup; p; p=p->pPrior){ 1533 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1534 if( pNew==0 ) break; 1535 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1536 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1537 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1538 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1539 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1540 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1541 pNew->op = p->op; 1542 pNew->pNext = pNext; 1543 pNew->pPrior = 0; 1544 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1545 pNew->iLimit = 0; 1546 pNew->iOffset = 0; 1547 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1548 pNew->addrOpenEphm[0] = -1; 1549 pNew->addrOpenEphm[1] = -1; 1550 pNew->nSelectRow = p->nSelectRow; 1551 pNew->pWith = withDup(db, p->pWith); 1552 #ifndef SQLITE_OMIT_WINDOWFUNC 1553 pNew->pWin = 0; 1554 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1555 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1556 #endif 1557 pNew->selId = p->selId; 1558 *pp = pNew; 1559 pp = &pNew->pPrior; 1560 pNext = pNew; 1561 } 1562 1563 return pRet; 1564 } 1565 #else 1566 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1567 assert( p==0 ); 1568 return 0; 1569 } 1570 #endif 1571 1572 1573 /* 1574 ** Add a new element to the end of an expression list. If pList is 1575 ** initially NULL, then create a new expression list. 1576 ** 1577 ** The pList argument must be either NULL or a pointer to an ExprList 1578 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1579 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1580 ** Reason: This routine assumes that the number of slots in pList->a[] 1581 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1582 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1583 ** 1584 ** If a memory allocation error occurs, the entire list is freed and 1585 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1586 ** that the new entry was successfully appended. 1587 */ 1588 ExprList *sqlite3ExprListAppend( 1589 Parse *pParse, /* Parsing context */ 1590 ExprList *pList, /* List to which to append. Might be NULL */ 1591 Expr *pExpr /* Expression to be appended. Might be NULL */ 1592 ){ 1593 struct ExprList_item *pItem; 1594 sqlite3 *db = pParse->db; 1595 assert( db!=0 ); 1596 if( pList==0 ){ 1597 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1598 if( pList==0 ){ 1599 goto no_mem; 1600 } 1601 pList->nExpr = 0; 1602 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1603 ExprList *pNew; 1604 pNew = sqlite3DbRealloc(db, pList, 1605 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1606 if( pNew==0 ){ 1607 goto no_mem; 1608 } 1609 pList = pNew; 1610 } 1611 pItem = &pList->a[pList->nExpr++]; 1612 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1613 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1614 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1615 pItem->pExpr = pExpr; 1616 return pList; 1617 1618 no_mem: 1619 /* Avoid leaking memory if malloc has failed. */ 1620 sqlite3ExprDelete(db, pExpr); 1621 sqlite3ExprListDelete(db, pList); 1622 return 0; 1623 } 1624 1625 /* 1626 ** pColumns and pExpr form a vector assignment which is part of the SET 1627 ** clause of an UPDATE statement. Like this: 1628 ** 1629 ** (a,b,c) = (expr1,expr2,expr3) 1630 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1631 ** 1632 ** For each term of the vector assignment, append new entries to the 1633 ** expression list pList. In the case of a subquery on the RHS, append 1634 ** TK_SELECT_COLUMN expressions. 1635 */ 1636 ExprList *sqlite3ExprListAppendVector( 1637 Parse *pParse, /* Parsing context */ 1638 ExprList *pList, /* List to which to append. Might be NULL */ 1639 IdList *pColumns, /* List of names of LHS of the assignment */ 1640 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1641 ){ 1642 sqlite3 *db = pParse->db; 1643 int n; 1644 int i; 1645 int iFirst = pList ? pList->nExpr : 0; 1646 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1647 ** exit prior to this routine being invoked */ 1648 if( NEVER(pColumns==0) ) goto vector_append_error; 1649 if( pExpr==0 ) goto vector_append_error; 1650 1651 /* If the RHS is a vector, then we can immediately check to see that 1652 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1653 ** wildcards ("*") in the result set of the SELECT must be expanded before 1654 ** we can do the size check, so defer the size check until code generation. 1655 */ 1656 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1657 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1658 pColumns->nId, n); 1659 goto vector_append_error; 1660 } 1661 1662 for(i=0; i<pColumns->nId; i++){ 1663 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1664 assert( pSubExpr!=0 || db->mallocFailed ); 1665 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1666 if( pSubExpr==0 ) continue; 1667 pSubExpr->iTable = pColumns->nId; 1668 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1669 if( pList ){ 1670 assert( pList->nExpr==iFirst+i+1 ); 1671 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1672 pColumns->a[i].zName = 0; 1673 } 1674 } 1675 1676 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1677 Expr *pFirst = pList->a[iFirst].pExpr; 1678 assert( pFirst!=0 ); 1679 assert( pFirst->op==TK_SELECT_COLUMN ); 1680 1681 /* Store the SELECT statement in pRight so it will be deleted when 1682 ** sqlite3ExprListDelete() is called */ 1683 pFirst->pRight = pExpr; 1684 pExpr = 0; 1685 1686 /* Remember the size of the LHS in iTable so that we can check that 1687 ** the RHS and LHS sizes match during code generation. */ 1688 pFirst->iTable = pColumns->nId; 1689 } 1690 1691 vector_append_error: 1692 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1693 sqlite3IdListDelete(db, pColumns); 1694 return pList; 1695 } 1696 1697 /* 1698 ** Set the sort order for the last element on the given ExprList. 1699 */ 1700 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1701 struct ExprList_item *pItem; 1702 if( p==0 ) return; 1703 assert( p->nExpr>0 ); 1704 1705 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1706 assert( iSortOrder==SQLITE_SO_UNDEFINED 1707 || iSortOrder==SQLITE_SO_ASC 1708 || iSortOrder==SQLITE_SO_DESC 1709 ); 1710 assert( eNulls==SQLITE_SO_UNDEFINED 1711 || eNulls==SQLITE_SO_ASC 1712 || eNulls==SQLITE_SO_DESC 1713 ); 1714 1715 pItem = &p->a[p->nExpr-1]; 1716 assert( pItem->bNulls==0 ); 1717 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1718 iSortOrder = SQLITE_SO_ASC; 1719 } 1720 pItem->sortFlags = (u8)iSortOrder; 1721 1722 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1723 pItem->bNulls = 1; 1724 if( iSortOrder!=eNulls ){ 1725 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1726 } 1727 } 1728 } 1729 1730 /* 1731 ** Set the ExprList.a[].zName element of the most recently added item 1732 ** on the expression list. 1733 ** 1734 ** pList might be NULL following an OOM error. But pName should never be 1735 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1736 ** is set. 1737 */ 1738 void sqlite3ExprListSetName( 1739 Parse *pParse, /* Parsing context */ 1740 ExprList *pList, /* List to which to add the span. */ 1741 Token *pName, /* Name to be added */ 1742 int dequote /* True to cause the name to be dequoted */ 1743 ){ 1744 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1745 if( pList ){ 1746 struct ExprList_item *pItem; 1747 assert( pList->nExpr>0 ); 1748 pItem = &pList->a[pList->nExpr-1]; 1749 assert( pItem->zName==0 ); 1750 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1751 if( dequote ) sqlite3Dequote(pItem->zName); 1752 if( IN_RENAME_OBJECT ){ 1753 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1754 } 1755 } 1756 } 1757 1758 /* 1759 ** Set the ExprList.a[].zSpan element of the most recently added item 1760 ** on the expression list. 1761 ** 1762 ** pList might be NULL following an OOM error. But pSpan should never be 1763 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1764 ** is set. 1765 */ 1766 void sqlite3ExprListSetSpan( 1767 Parse *pParse, /* Parsing context */ 1768 ExprList *pList, /* List to which to add the span. */ 1769 const char *zStart, /* Start of the span */ 1770 const char *zEnd /* End of the span */ 1771 ){ 1772 sqlite3 *db = pParse->db; 1773 assert( pList!=0 || db->mallocFailed!=0 ); 1774 if( pList ){ 1775 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1776 assert( pList->nExpr>0 ); 1777 sqlite3DbFree(db, pItem->zSpan); 1778 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1779 } 1780 } 1781 1782 /* 1783 ** If the expression list pEList contains more than iLimit elements, 1784 ** leave an error message in pParse. 1785 */ 1786 void sqlite3ExprListCheckLength( 1787 Parse *pParse, 1788 ExprList *pEList, 1789 const char *zObject 1790 ){ 1791 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1792 testcase( pEList && pEList->nExpr==mx ); 1793 testcase( pEList && pEList->nExpr==mx+1 ); 1794 if( pEList && pEList->nExpr>mx ){ 1795 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1796 } 1797 } 1798 1799 /* 1800 ** Delete an entire expression list. 1801 */ 1802 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1803 int i = pList->nExpr; 1804 struct ExprList_item *pItem = pList->a; 1805 assert( pList->nExpr>0 ); 1806 do{ 1807 sqlite3ExprDelete(db, pItem->pExpr); 1808 sqlite3DbFree(db, pItem->zName); 1809 sqlite3DbFree(db, pItem->zSpan); 1810 pItem++; 1811 }while( --i>0 ); 1812 sqlite3DbFreeNN(db, pList); 1813 } 1814 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1815 if( pList ) exprListDeleteNN(db, pList); 1816 } 1817 1818 /* 1819 ** Return the bitwise-OR of all Expr.flags fields in the given 1820 ** ExprList. 1821 */ 1822 u32 sqlite3ExprListFlags(const ExprList *pList){ 1823 int i; 1824 u32 m = 0; 1825 assert( pList!=0 ); 1826 for(i=0; i<pList->nExpr; i++){ 1827 Expr *pExpr = pList->a[i].pExpr; 1828 assert( pExpr!=0 ); 1829 m |= pExpr->flags; 1830 } 1831 return m; 1832 } 1833 1834 /* 1835 ** This is a SELECT-node callback for the expression walker that 1836 ** always "fails". By "fail" in this case, we mean set 1837 ** pWalker->eCode to zero and abort. 1838 ** 1839 ** This callback is used by multiple expression walkers. 1840 */ 1841 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1842 UNUSED_PARAMETER(NotUsed); 1843 pWalker->eCode = 0; 1844 return WRC_Abort; 1845 } 1846 1847 /* 1848 ** If the input expression is an ID with the name "true" or "false" 1849 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1850 ** the conversion happened, and zero if the expression is unaltered. 1851 */ 1852 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1853 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1854 if( !ExprHasProperty(pExpr, EP_Quoted) 1855 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1856 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1857 ){ 1858 pExpr->op = TK_TRUEFALSE; 1859 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1860 return 1; 1861 } 1862 return 0; 1863 } 1864 1865 /* 1866 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1867 ** and 0 if it is FALSE. 1868 */ 1869 int sqlite3ExprTruthValue(const Expr *pExpr){ 1870 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1871 assert( pExpr->op==TK_TRUEFALSE ); 1872 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1873 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1874 return pExpr->u.zToken[4]==0; 1875 } 1876 1877 /* 1878 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1879 ** terms that are always true or false. Return the simplified expression. 1880 ** Or return the original expression if no simplification is possible. 1881 ** 1882 ** Examples: 1883 ** 1884 ** (x<10) AND true => (x<10) 1885 ** (x<10) AND false => false 1886 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1887 ** (x<10) AND (y=22 OR true) => (x<10) 1888 ** (y=22) OR true => true 1889 */ 1890 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1891 assert( pExpr!=0 ); 1892 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1893 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1894 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1895 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1896 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1897 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1898 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1899 } 1900 } 1901 return pExpr; 1902 } 1903 1904 1905 /* 1906 ** These routines are Walker callbacks used to check expressions to 1907 ** see if they are "constant" for some definition of constant. The 1908 ** Walker.eCode value determines the type of "constant" we are looking 1909 ** for. 1910 ** 1911 ** These callback routines are used to implement the following: 1912 ** 1913 ** sqlite3ExprIsConstant() pWalker->eCode==1 1914 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1915 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1916 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1917 ** 1918 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1919 ** is found to not be a constant. 1920 ** 1921 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1922 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1923 ** an existing schema and 4 when processing a new statement. A bound 1924 ** parameter raises an error for new statements, but is silently converted 1925 ** to NULL for existing schemas. This allows sqlite_master tables that 1926 ** contain a bound parameter because they were generated by older versions 1927 ** of SQLite to be parsed by newer versions of SQLite without raising a 1928 ** malformed schema error. 1929 */ 1930 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1931 1932 /* If pWalker->eCode is 2 then any term of the expression that comes from 1933 ** the ON or USING clauses of a left join disqualifies the expression 1934 ** from being considered constant. */ 1935 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1936 pWalker->eCode = 0; 1937 return WRC_Abort; 1938 } 1939 1940 switch( pExpr->op ){ 1941 /* Consider functions to be constant if all their arguments are constant 1942 ** and either pWalker->eCode==4 or 5 or the function has the 1943 ** SQLITE_FUNC_CONST flag. */ 1944 case TK_FUNCTION: 1945 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 1946 && !ExprHasProperty(pExpr, EP_WinFunc) 1947 ){ 1948 return WRC_Continue; 1949 }else{ 1950 pWalker->eCode = 0; 1951 return WRC_Abort; 1952 } 1953 case TK_ID: 1954 /* Convert "true" or "false" in a DEFAULT clause into the 1955 ** appropriate TK_TRUEFALSE operator */ 1956 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1957 return WRC_Prune; 1958 } 1959 /* Fall thru */ 1960 case TK_COLUMN: 1961 case TK_AGG_FUNCTION: 1962 case TK_AGG_COLUMN: 1963 testcase( pExpr->op==TK_ID ); 1964 testcase( pExpr->op==TK_COLUMN ); 1965 testcase( pExpr->op==TK_AGG_FUNCTION ); 1966 testcase( pExpr->op==TK_AGG_COLUMN ); 1967 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1968 return WRC_Continue; 1969 } 1970 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1971 return WRC_Continue; 1972 } 1973 /* Fall through */ 1974 case TK_IF_NULL_ROW: 1975 case TK_REGISTER: 1976 testcase( pExpr->op==TK_REGISTER ); 1977 testcase( pExpr->op==TK_IF_NULL_ROW ); 1978 pWalker->eCode = 0; 1979 return WRC_Abort; 1980 case TK_VARIABLE: 1981 if( pWalker->eCode==5 ){ 1982 /* Silently convert bound parameters that appear inside of CREATE 1983 ** statements into a NULL when parsing the CREATE statement text out 1984 ** of the sqlite_master table */ 1985 pExpr->op = TK_NULL; 1986 }else if( pWalker->eCode==4 ){ 1987 /* A bound parameter in a CREATE statement that originates from 1988 ** sqlite3_prepare() causes an error */ 1989 pWalker->eCode = 0; 1990 return WRC_Abort; 1991 } 1992 /* Fall through */ 1993 default: 1994 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1995 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1996 return WRC_Continue; 1997 } 1998 } 1999 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2000 Walker w; 2001 w.eCode = initFlag; 2002 w.xExprCallback = exprNodeIsConstant; 2003 w.xSelectCallback = sqlite3SelectWalkFail; 2004 #ifdef SQLITE_DEBUG 2005 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2006 #endif 2007 w.u.iCur = iCur; 2008 sqlite3WalkExpr(&w, p); 2009 return w.eCode; 2010 } 2011 2012 /* 2013 ** Walk an expression tree. Return non-zero if the expression is constant 2014 ** and 0 if it involves variables or function calls. 2015 ** 2016 ** For the purposes of this function, a double-quoted string (ex: "abc") 2017 ** is considered a variable but a single-quoted string (ex: 'abc') is 2018 ** a constant. 2019 */ 2020 int sqlite3ExprIsConstant(Expr *p){ 2021 return exprIsConst(p, 1, 0); 2022 } 2023 2024 /* 2025 ** Walk an expression tree. Return non-zero if 2026 ** 2027 ** (1) the expression is constant, and 2028 ** (2) the expression does originate in the ON or USING clause 2029 ** of a LEFT JOIN, and 2030 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2031 ** operands created by the constant propagation optimization. 2032 ** 2033 ** When this routine returns true, it indicates that the expression 2034 ** can be added to the pParse->pConstExpr list and evaluated once when 2035 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 2036 */ 2037 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2038 return exprIsConst(p, 2, 0); 2039 } 2040 2041 /* 2042 ** Walk an expression tree. Return non-zero if the expression is constant 2043 ** for any single row of the table with cursor iCur. In other words, the 2044 ** expression must not refer to any non-deterministic function nor any 2045 ** table other than iCur. 2046 */ 2047 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2048 return exprIsConst(p, 3, iCur); 2049 } 2050 2051 2052 /* 2053 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2054 */ 2055 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2056 ExprList *pGroupBy = pWalker->u.pGroupBy; 2057 int i; 2058 2059 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2060 ** it constant. */ 2061 for(i=0; i<pGroupBy->nExpr; i++){ 2062 Expr *p = pGroupBy->a[i].pExpr; 2063 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2064 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2065 if( sqlite3IsBinary(pColl) ){ 2066 return WRC_Prune; 2067 } 2068 } 2069 } 2070 2071 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2072 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2073 pWalker->eCode = 0; 2074 return WRC_Abort; 2075 } 2076 2077 return exprNodeIsConstant(pWalker, pExpr); 2078 } 2079 2080 /* 2081 ** Walk the expression tree passed as the first argument. Return non-zero 2082 ** if the expression consists entirely of constants or copies of terms 2083 ** in pGroupBy that sort with the BINARY collation sequence. 2084 ** 2085 ** This routine is used to determine if a term of the HAVING clause can 2086 ** be promoted into the WHERE clause. In order for such a promotion to work, 2087 ** the value of the HAVING clause term must be the same for all members of 2088 ** a "group". The requirement that the GROUP BY term must be BINARY 2089 ** assumes that no other collating sequence will have a finer-grained 2090 ** grouping than binary. In other words (A=B COLLATE binary) implies 2091 ** A=B in every other collating sequence. The requirement that the 2092 ** GROUP BY be BINARY is stricter than necessary. It would also work 2093 ** to promote HAVING clauses that use the same alternative collating 2094 ** sequence as the GROUP BY term, but that is much harder to check, 2095 ** alternative collating sequences are uncommon, and this is only an 2096 ** optimization, so we take the easy way out and simply require the 2097 ** GROUP BY to use the BINARY collating sequence. 2098 */ 2099 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2100 Walker w; 2101 w.eCode = 1; 2102 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2103 w.xSelectCallback = 0; 2104 w.u.pGroupBy = pGroupBy; 2105 w.pParse = pParse; 2106 sqlite3WalkExpr(&w, p); 2107 return w.eCode; 2108 } 2109 2110 /* 2111 ** Walk an expression tree. Return non-zero if the expression is constant 2112 ** or a function call with constant arguments. Return and 0 if there 2113 ** are any variables. 2114 ** 2115 ** For the purposes of this function, a double-quoted string (ex: "abc") 2116 ** is considered a variable but a single-quoted string (ex: 'abc') is 2117 ** a constant. 2118 */ 2119 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2120 assert( isInit==0 || isInit==1 ); 2121 return exprIsConst(p, 4+isInit, 0); 2122 } 2123 2124 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2125 /* 2126 ** Walk an expression tree. Return 1 if the expression contains a 2127 ** subquery of some kind. Return 0 if there are no subqueries. 2128 */ 2129 int sqlite3ExprContainsSubquery(Expr *p){ 2130 Walker w; 2131 w.eCode = 1; 2132 w.xExprCallback = sqlite3ExprWalkNoop; 2133 w.xSelectCallback = sqlite3SelectWalkFail; 2134 #ifdef SQLITE_DEBUG 2135 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2136 #endif 2137 sqlite3WalkExpr(&w, p); 2138 return w.eCode==0; 2139 } 2140 #endif 2141 2142 /* 2143 ** If the expression p codes a constant integer that is small enough 2144 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2145 ** in *pValue. If the expression is not an integer or if it is too big 2146 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2147 */ 2148 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2149 int rc = 0; 2150 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2151 2152 /* If an expression is an integer literal that fits in a signed 32-bit 2153 ** integer, then the EP_IntValue flag will have already been set */ 2154 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2155 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2156 2157 if( p->flags & EP_IntValue ){ 2158 *pValue = p->u.iValue; 2159 return 1; 2160 } 2161 switch( p->op ){ 2162 case TK_UPLUS: { 2163 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2164 break; 2165 } 2166 case TK_UMINUS: { 2167 int v; 2168 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2169 assert( v!=(-2147483647-1) ); 2170 *pValue = -v; 2171 rc = 1; 2172 } 2173 break; 2174 } 2175 default: break; 2176 } 2177 return rc; 2178 } 2179 2180 /* 2181 ** Return FALSE if there is no chance that the expression can be NULL. 2182 ** 2183 ** If the expression might be NULL or if the expression is too complex 2184 ** to tell return TRUE. 2185 ** 2186 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2187 ** when we know that a value cannot be NULL. Hence, a false positive 2188 ** (returning TRUE when in fact the expression can never be NULL) might 2189 ** be a small performance hit but is otherwise harmless. On the other 2190 ** hand, a false negative (returning FALSE when the result could be NULL) 2191 ** will likely result in an incorrect answer. So when in doubt, return 2192 ** TRUE. 2193 */ 2194 int sqlite3ExprCanBeNull(const Expr *p){ 2195 u8 op; 2196 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2197 p = p->pLeft; 2198 } 2199 op = p->op; 2200 if( op==TK_REGISTER ) op = p->op2; 2201 switch( op ){ 2202 case TK_INTEGER: 2203 case TK_STRING: 2204 case TK_FLOAT: 2205 case TK_BLOB: 2206 return 0; 2207 case TK_COLUMN: 2208 return ExprHasProperty(p, EP_CanBeNull) || 2209 p->y.pTab==0 || /* Reference to column of index on expression */ 2210 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2211 default: 2212 return 1; 2213 } 2214 } 2215 2216 /* 2217 ** Return TRUE if the given expression is a constant which would be 2218 ** unchanged by OP_Affinity with the affinity given in the second 2219 ** argument. 2220 ** 2221 ** This routine is used to determine if the OP_Affinity operation 2222 ** can be omitted. When in doubt return FALSE. A false negative 2223 ** is harmless. A false positive, however, can result in the wrong 2224 ** answer. 2225 */ 2226 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2227 u8 op; 2228 int unaryMinus = 0; 2229 if( aff==SQLITE_AFF_BLOB ) return 1; 2230 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2231 if( p->op==TK_UMINUS ) unaryMinus = 1; 2232 p = p->pLeft; 2233 } 2234 op = p->op; 2235 if( op==TK_REGISTER ) op = p->op2; 2236 switch( op ){ 2237 case TK_INTEGER: { 2238 return aff>=SQLITE_AFF_NUMERIC; 2239 } 2240 case TK_FLOAT: { 2241 return aff>=SQLITE_AFF_NUMERIC; 2242 } 2243 case TK_STRING: { 2244 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2245 } 2246 case TK_BLOB: { 2247 return !unaryMinus; 2248 } 2249 case TK_COLUMN: { 2250 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2251 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2252 } 2253 default: { 2254 return 0; 2255 } 2256 } 2257 } 2258 2259 /* 2260 ** Return TRUE if the given string is a row-id column name. 2261 */ 2262 int sqlite3IsRowid(const char *z){ 2263 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2264 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2265 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2266 return 0; 2267 } 2268 2269 /* 2270 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2271 ** that can be simplified to a direct table access, then return 2272 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2273 ** or if the SELECT statement needs to be manifested into a transient 2274 ** table, then return NULL. 2275 */ 2276 #ifndef SQLITE_OMIT_SUBQUERY 2277 static Select *isCandidateForInOpt(Expr *pX){ 2278 Select *p; 2279 SrcList *pSrc; 2280 ExprList *pEList; 2281 Table *pTab; 2282 int i; 2283 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2284 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2285 p = pX->x.pSelect; 2286 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2287 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2288 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2289 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2290 return 0; /* No DISTINCT keyword and no aggregate functions */ 2291 } 2292 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2293 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2294 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2295 pSrc = p->pSrc; 2296 assert( pSrc!=0 ); 2297 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2298 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2299 pTab = pSrc->a[0].pTab; 2300 assert( pTab!=0 ); 2301 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2302 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2303 pEList = p->pEList; 2304 assert( pEList!=0 ); 2305 /* All SELECT results must be columns. */ 2306 for(i=0; i<pEList->nExpr; i++){ 2307 Expr *pRes = pEList->a[i].pExpr; 2308 if( pRes->op!=TK_COLUMN ) return 0; 2309 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2310 } 2311 return p; 2312 } 2313 #endif /* SQLITE_OMIT_SUBQUERY */ 2314 2315 #ifndef SQLITE_OMIT_SUBQUERY 2316 /* 2317 ** Generate code that checks the left-most column of index table iCur to see if 2318 ** it contains any NULL entries. Cause the register at regHasNull to be set 2319 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2320 ** to be set to NULL if iCur contains one or more NULL values. 2321 */ 2322 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2323 int addr1; 2324 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2325 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2326 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2327 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2328 VdbeComment((v, "first_entry_in(%d)", iCur)); 2329 sqlite3VdbeJumpHere(v, addr1); 2330 } 2331 #endif 2332 2333 2334 #ifndef SQLITE_OMIT_SUBQUERY 2335 /* 2336 ** The argument is an IN operator with a list (not a subquery) on the 2337 ** right-hand side. Return TRUE if that list is constant. 2338 */ 2339 static int sqlite3InRhsIsConstant(Expr *pIn){ 2340 Expr *pLHS; 2341 int res; 2342 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2343 pLHS = pIn->pLeft; 2344 pIn->pLeft = 0; 2345 res = sqlite3ExprIsConstant(pIn); 2346 pIn->pLeft = pLHS; 2347 return res; 2348 } 2349 #endif 2350 2351 /* 2352 ** This function is used by the implementation of the IN (...) operator. 2353 ** The pX parameter is the expression on the RHS of the IN operator, which 2354 ** might be either a list of expressions or a subquery. 2355 ** 2356 ** The job of this routine is to find or create a b-tree object that can 2357 ** be used either to test for membership in the RHS set or to iterate through 2358 ** all members of the RHS set, skipping duplicates. 2359 ** 2360 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2361 ** and pX->iTable is set to the index of that cursor. 2362 ** 2363 ** The returned value of this function indicates the b-tree type, as follows: 2364 ** 2365 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2366 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2367 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2368 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2369 ** populated epheremal table. 2370 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2371 ** implemented as a sequence of comparisons. 2372 ** 2373 ** An existing b-tree might be used if the RHS expression pX is a simple 2374 ** subquery such as: 2375 ** 2376 ** SELECT <column1>, <column2>... FROM <table> 2377 ** 2378 ** If the RHS of the IN operator is a list or a more complex subquery, then 2379 ** an ephemeral table might need to be generated from the RHS and then 2380 ** pX->iTable made to point to the ephemeral table instead of an 2381 ** existing table. 2382 ** 2383 ** The inFlags parameter must contain, at a minimum, one of the bits 2384 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2385 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2386 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2387 ** be used to loop over all values of the RHS of the IN operator. 2388 ** 2389 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2390 ** through the set members) then the b-tree must not contain duplicates. 2391 ** An epheremal table will be created unless the selected columns are guaranteed 2392 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2393 ** a UNIQUE constraint or index. 2394 ** 2395 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2396 ** for fast set membership tests) then an epheremal table must 2397 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2398 ** index can be found with the specified <columns> as its left-most. 2399 ** 2400 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2401 ** if the RHS of the IN operator is a list (not a subquery) then this 2402 ** routine might decide that creating an ephemeral b-tree for membership 2403 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2404 ** calling routine should implement the IN operator using a sequence 2405 ** of Eq or Ne comparison operations. 2406 ** 2407 ** When the b-tree is being used for membership tests, the calling function 2408 ** might need to know whether or not the RHS side of the IN operator 2409 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2410 ** if there is any chance that the (...) might contain a NULL value at 2411 ** runtime, then a register is allocated and the register number written 2412 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2413 ** NULL value, then *prRhsHasNull is left unchanged. 2414 ** 2415 ** If a register is allocated and its location stored in *prRhsHasNull, then 2416 ** the value in that register will be NULL if the b-tree contains one or more 2417 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2418 ** NULL values. 2419 ** 2420 ** If the aiMap parameter is not NULL, it must point to an array containing 2421 ** one element for each column returned by the SELECT statement on the RHS 2422 ** of the IN(...) operator. The i'th entry of the array is populated with the 2423 ** offset of the index column that matches the i'th column returned by the 2424 ** SELECT. For example, if the expression and selected index are: 2425 ** 2426 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2427 ** CREATE INDEX i1 ON t1(b, c, a); 2428 ** 2429 ** then aiMap[] is populated with {2, 0, 1}. 2430 */ 2431 #ifndef SQLITE_OMIT_SUBQUERY 2432 int sqlite3FindInIndex( 2433 Parse *pParse, /* Parsing context */ 2434 Expr *pX, /* The IN expression */ 2435 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2436 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2437 int *aiMap, /* Mapping from Index fields to RHS fields */ 2438 int *piTab /* OUT: index to use */ 2439 ){ 2440 Select *p; /* SELECT to the right of IN operator */ 2441 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2442 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2443 int mustBeUnique; /* True if RHS must be unique */ 2444 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2445 2446 assert( pX->op==TK_IN ); 2447 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2448 2449 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2450 ** whether or not the SELECT result contains NULL values, check whether 2451 ** or not NULL is actually possible (it may not be, for example, due 2452 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2453 ** set prRhsHasNull to 0 before continuing. */ 2454 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2455 int i; 2456 ExprList *pEList = pX->x.pSelect->pEList; 2457 for(i=0; i<pEList->nExpr; i++){ 2458 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2459 } 2460 if( i==pEList->nExpr ){ 2461 prRhsHasNull = 0; 2462 } 2463 } 2464 2465 /* Check to see if an existing table or index can be used to 2466 ** satisfy the query. This is preferable to generating a new 2467 ** ephemeral table. */ 2468 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2469 sqlite3 *db = pParse->db; /* Database connection */ 2470 Table *pTab; /* Table <table>. */ 2471 i16 iDb; /* Database idx for pTab */ 2472 ExprList *pEList = p->pEList; 2473 int nExpr = pEList->nExpr; 2474 2475 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2476 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2477 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2478 pTab = p->pSrc->a[0].pTab; 2479 2480 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2481 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2482 sqlite3CodeVerifySchema(pParse, iDb); 2483 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2484 2485 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2486 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2487 /* The "x IN (SELECT rowid FROM table)" case */ 2488 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2489 VdbeCoverage(v); 2490 2491 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2492 eType = IN_INDEX_ROWID; 2493 ExplainQueryPlan((pParse, 0, 2494 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2495 sqlite3VdbeJumpHere(v, iAddr); 2496 }else{ 2497 Index *pIdx; /* Iterator variable */ 2498 int affinity_ok = 1; 2499 int i; 2500 2501 /* Check that the affinity that will be used to perform each 2502 ** comparison is the same as the affinity of each column in table 2503 ** on the RHS of the IN operator. If it not, it is not possible to 2504 ** use any index of the RHS table. */ 2505 for(i=0; i<nExpr && affinity_ok; i++){ 2506 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2507 int iCol = pEList->a[i].pExpr->iColumn; 2508 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2509 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2510 testcase( cmpaff==SQLITE_AFF_BLOB ); 2511 testcase( cmpaff==SQLITE_AFF_TEXT ); 2512 switch( cmpaff ){ 2513 case SQLITE_AFF_BLOB: 2514 break; 2515 case SQLITE_AFF_TEXT: 2516 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2517 ** other has no affinity and the other side is TEXT. Hence, 2518 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2519 ** and for the term on the LHS of the IN to have no affinity. */ 2520 assert( idxaff==SQLITE_AFF_TEXT ); 2521 break; 2522 default: 2523 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2524 } 2525 } 2526 2527 if( affinity_ok ){ 2528 /* Search for an existing index that will work for this IN operator */ 2529 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2530 Bitmask colUsed; /* Columns of the index used */ 2531 Bitmask mCol; /* Mask for the current column */ 2532 if( pIdx->nColumn<nExpr ) continue; 2533 if( pIdx->pPartIdxWhere!=0 ) continue; 2534 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2535 ** BITMASK(nExpr) without overflowing */ 2536 testcase( pIdx->nColumn==BMS-2 ); 2537 testcase( pIdx->nColumn==BMS-1 ); 2538 if( pIdx->nColumn>=BMS-1 ) continue; 2539 if( mustBeUnique ){ 2540 if( pIdx->nKeyCol>nExpr 2541 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2542 ){ 2543 continue; /* This index is not unique over the IN RHS columns */ 2544 } 2545 } 2546 2547 colUsed = 0; /* Columns of index used so far */ 2548 for(i=0; i<nExpr; i++){ 2549 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2550 Expr *pRhs = pEList->a[i].pExpr; 2551 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2552 int j; 2553 2554 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2555 for(j=0; j<nExpr; j++){ 2556 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2557 assert( pIdx->azColl[j] ); 2558 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2559 continue; 2560 } 2561 break; 2562 } 2563 if( j==nExpr ) break; 2564 mCol = MASKBIT(j); 2565 if( mCol & colUsed ) break; /* Each column used only once */ 2566 colUsed |= mCol; 2567 if( aiMap ) aiMap[i] = j; 2568 } 2569 2570 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2571 if( colUsed==(MASKBIT(nExpr)-1) ){ 2572 /* If we reach this point, that means the index pIdx is usable */ 2573 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2574 ExplainQueryPlan((pParse, 0, 2575 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2576 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2577 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2578 VdbeComment((v, "%s", pIdx->zName)); 2579 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2580 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2581 2582 if( prRhsHasNull ){ 2583 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2584 i64 mask = (1<<nExpr)-1; 2585 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2586 iTab, 0, 0, (u8*)&mask, P4_INT64); 2587 #endif 2588 *prRhsHasNull = ++pParse->nMem; 2589 if( nExpr==1 ){ 2590 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2591 } 2592 } 2593 sqlite3VdbeJumpHere(v, iAddr); 2594 } 2595 } /* End loop over indexes */ 2596 } /* End if( affinity_ok ) */ 2597 } /* End if not an rowid index */ 2598 } /* End attempt to optimize using an index */ 2599 2600 /* If no preexisting index is available for the IN clause 2601 ** and IN_INDEX_NOOP is an allowed reply 2602 ** and the RHS of the IN operator is a list, not a subquery 2603 ** and the RHS is not constant or has two or fewer terms, 2604 ** then it is not worth creating an ephemeral table to evaluate 2605 ** the IN operator so return IN_INDEX_NOOP. 2606 */ 2607 if( eType==0 2608 && (inFlags & IN_INDEX_NOOP_OK) 2609 && !ExprHasProperty(pX, EP_xIsSelect) 2610 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2611 ){ 2612 eType = IN_INDEX_NOOP; 2613 } 2614 2615 if( eType==0 ){ 2616 /* Could not find an existing table or index to use as the RHS b-tree. 2617 ** We will have to generate an ephemeral table to do the job. 2618 */ 2619 u32 savedNQueryLoop = pParse->nQueryLoop; 2620 int rMayHaveNull = 0; 2621 eType = IN_INDEX_EPH; 2622 if( inFlags & IN_INDEX_LOOP ){ 2623 pParse->nQueryLoop = 0; 2624 }else if( prRhsHasNull ){ 2625 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2626 } 2627 assert( pX->op==TK_IN ); 2628 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2629 if( rMayHaveNull ){ 2630 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2631 } 2632 pParse->nQueryLoop = savedNQueryLoop; 2633 } 2634 2635 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2636 int i, n; 2637 n = sqlite3ExprVectorSize(pX->pLeft); 2638 for(i=0; i<n; i++) aiMap[i] = i; 2639 } 2640 *piTab = iTab; 2641 return eType; 2642 } 2643 #endif 2644 2645 #ifndef SQLITE_OMIT_SUBQUERY 2646 /* 2647 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2648 ** function allocates and returns a nul-terminated string containing 2649 ** the affinities to be used for each column of the comparison. 2650 ** 2651 ** It is the responsibility of the caller to ensure that the returned 2652 ** string is eventually freed using sqlite3DbFree(). 2653 */ 2654 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2655 Expr *pLeft = pExpr->pLeft; 2656 int nVal = sqlite3ExprVectorSize(pLeft); 2657 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2658 char *zRet; 2659 2660 assert( pExpr->op==TK_IN ); 2661 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2662 if( zRet ){ 2663 int i; 2664 for(i=0; i<nVal; i++){ 2665 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2666 char a = sqlite3ExprAffinity(pA); 2667 if( pSelect ){ 2668 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2669 }else{ 2670 zRet[i] = a; 2671 } 2672 } 2673 zRet[nVal] = '\0'; 2674 } 2675 return zRet; 2676 } 2677 #endif 2678 2679 #ifndef SQLITE_OMIT_SUBQUERY 2680 /* 2681 ** Load the Parse object passed as the first argument with an error 2682 ** message of the form: 2683 ** 2684 ** "sub-select returns N columns - expected M" 2685 */ 2686 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2687 const char *zFmt = "sub-select returns %d columns - expected %d"; 2688 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2689 } 2690 #endif 2691 2692 /* 2693 ** Expression pExpr is a vector that has been used in a context where 2694 ** it is not permitted. If pExpr is a sub-select vector, this routine 2695 ** loads the Parse object with a message of the form: 2696 ** 2697 ** "sub-select returns N columns - expected 1" 2698 ** 2699 ** Or, if it is a regular scalar vector: 2700 ** 2701 ** "row value misused" 2702 */ 2703 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2704 #ifndef SQLITE_OMIT_SUBQUERY 2705 if( pExpr->flags & EP_xIsSelect ){ 2706 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2707 }else 2708 #endif 2709 { 2710 sqlite3ErrorMsg(pParse, "row value misused"); 2711 } 2712 } 2713 2714 #ifndef SQLITE_OMIT_SUBQUERY 2715 /* 2716 ** Generate code that will construct an ephemeral table containing all terms 2717 ** in the RHS of an IN operator. The IN operator can be in either of two 2718 ** forms: 2719 ** 2720 ** x IN (4,5,11) -- IN operator with list on right-hand side 2721 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2722 ** 2723 ** The pExpr parameter is the IN operator. The cursor number for the 2724 ** constructed ephermeral table is returned. The first time the ephemeral 2725 ** table is computed, the cursor number is also stored in pExpr->iTable, 2726 ** however the cursor number returned might not be the same, as it might 2727 ** have been duplicated using OP_OpenDup. 2728 ** 2729 ** If the LHS expression ("x" in the examples) is a column value, or 2730 ** the SELECT statement returns a column value, then the affinity of that 2731 ** column is used to build the index keys. If both 'x' and the 2732 ** SELECT... statement are columns, then numeric affinity is used 2733 ** if either column has NUMERIC or INTEGER affinity. If neither 2734 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2735 ** is used. 2736 */ 2737 void sqlite3CodeRhsOfIN( 2738 Parse *pParse, /* Parsing context */ 2739 Expr *pExpr, /* The IN operator */ 2740 int iTab /* Use this cursor number */ 2741 ){ 2742 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2743 int addr; /* Address of OP_OpenEphemeral instruction */ 2744 Expr *pLeft; /* the LHS of the IN operator */ 2745 KeyInfo *pKeyInfo = 0; /* Key information */ 2746 int nVal; /* Size of vector pLeft */ 2747 Vdbe *v; /* The prepared statement under construction */ 2748 2749 v = pParse->pVdbe; 2750 assert( v!=0 ); 2751 2752 /* The evaluation of the IN must be repeated every time it 2753 ** is encountered if any of the following is true: 2754 ** 2755 ** * The right-hand side is a correlated subquery 2756 ** * The right-hand side is an expression list containing variables 2757 ** * We are inside a trigger 2758 ** 2759 ** If all of the above are false, then we can compute the RHS just once 2760 ** and reuse it many names. 2761 */ 2762 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2763 /* Reuse of the RHS is allowed */ 2764 /* If this routine has already been coded, but the previous code 2765 ** might not have been invoked yet, so invoke it now as a subroutine. 2766 */ 2767 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2768 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2769 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2770 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2771 pExpr->x.pSelect->selId)); 2772 } 2773 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2774 pExpr->y.sub.iAddr); 2775 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2776 sqlite3VdbeJumpHere(v, addrOnce); 2777 return; 2778 } 2779 2780 /* Begin coding the subroutine */ 2781 ExprSetProperty(pExpr, EP_Subrtn); 2782 pExpr->y.sub.regReturn = ++pParse->nMem; 2783 pExpr->y.sub.iAddr = 2784 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2785 VdbeComment((v, "return address")); 2786 2787 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2788 } 2789 2790 /* Check to see if this is a vector IN operator */ 2791 pLeft = pExpr->pLeft; 2792 nVal = sqlite3ExprVectorSize(pLeft); 2793 2794 /* Construct the ephemeral table that will contain the content of 2795 ** RHS of the IN operator. 2796 */ 2797 pExpr->iTable = iTab; 2798 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2799 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2800 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2801 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2802 }else{ 2803 VdbeComment((v, "RHS of IN operator")); 2804 } 2805 #endif 2806 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2807 2808 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2809 /* Case 1: expr IN (SELECT ...) 2810 ** 2811 ** Generate code to write the results of the select into the temporary 2812 ** table allocated and opened above. 2813 */ 2814 Select *pSelect = pExpr->x.pSelect; 2815 ExprList *pEList = pSelect->pEList; 2816 2817 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2818 addrOnce?"":"CORRELATED ", pSelect->selId 2819 )); 2820 /* If the LHS and RHS of the IN operator do not match, that 2821 ** error will have been caught long before we reach this point. */ 2822 if( ALWAYS(pEList->nExpr==nVal) ){ 2823 SelectDest dest; 2824 int i; 2825 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2826 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2827 pSelect->iLimit = 0; 2828 testcase( pSelect->selFlags & SF_Distinct ); 2829 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2830 if( sqlite3Select(pParse, pSelect, &dest) ){ 2831 sqlite3DbFree(pParse->db, dest.zAffSdst); 2832 sqlite3KeyInfoUnref(pKeyInfo); 2833 return; 2834 } 2835 sqlite3DbFree(pParse->db, dest.zAffSdst); 2836 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2837 assert( pEList!=0 ); 2838 assert( pEList->nExpr>0 ); 2839 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2840 for(i=0; i<nVal; i++){ 2841 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2842 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2843 pParse, p, pEList->a[i].pExpr 2844 ); 2845 } 2846 } 2847 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2848 /* Case 2: expr IN (exprlist) 2849 ** 2850 ** For each expression, build an index key from the evaluation and 2851 ** store it in the temporary table. If <expr> is a column, then use 2852 ** that columns affinity when building index keys. If <expr> is not 2853 ** a column, use numeric affinity. 2854 */ 2855 char affinity; /* Affinity of the LHS of the IN */ 2856 int i; 2857 ExprList *pList = pExpr->x.pList; 2858 struct ExprList_item *pItem; 2859 int r1, r2; 2860 affinity = sqlite3ExprAffinity(pLeft); 2861 if( affinity<=SQLITE_AFF_NONE ){ 2862 affinity = SQLITE_AFF_BLOB; 2863 } 2864 if( pKeyInfo ){ 2865 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2866 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2867 } 2868 2869 /* Loop through each expression in <exprlist>. */ 2870 r1 = sqlite3GetTempReg(pParse); 2871 r2 = sqlite3GetTempReg(pParse); 2872 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2873 Expr *pE2 = pItem->pExpr; 2874 2875 /* If the expression is not constant then we will need to 2876 ** disable the test that was generated above that makes sure 2877 ** this code only executes once. Because for a non-constant 2878 ** expression we need to rerun this code each time. 2879 */ 2880 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2881 sqlite3VdbeChangeToNoop(v, addrOnce); 2882 ExprClearProperty(pExpr, EP_Subrtn); 2883 addrOnce = 0; 2884 } 2885 2886 /* Evaluate the expression and insert it into the temp table */ 2887 sqlite3ExprCode(pParse, pE2, r1); 2888 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2889 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2890 } 2891 sqlite3ReleaseTempReg(pParse, r1); 2892 sqlite3ReleaseTempReg(pParse, r2); 2893 } 2894 if( pKeyInfo ){ 2895 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2896 } 2897 if( addrOnce ){ 2898 sqlite3VdbeJumpHere(v, addrOnce); 2899 /* Subroutine return */ 2900 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2901 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2902 sqlite3ClearTempRegCache(pParse); 2903 } 2904 } 2905 #endif /* SQLITE_OMIT_SUBQUERY */ 2906 2907 /* 2908 ** Generate code for scalar subqueries used as a subquery expression 2909 ** or EXISTS operator: 2910 ** 2911 ** (SELECT a FROM b) -- subquery 2912 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2913 ** 2914 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2915 ** 2916 ** Return the register that holds the result. For a multi-column SELECT, 2917 ** the result is stored in a contiguous array of registers and the 2918 ** return value is the register of the left-most result column. 2919 ** Return 0 if an error occurs. 2920 */ 2921 #ifndef SQLITE_OMIT_SUBQUERY 2922 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2923 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2924 int rReg = 0; /* Register storing resulting */ 2925 Select *pSel; /* SELECT statement to encode */ 2926 SelectDest dest; /* How to deal with SELECT result */ 2927 int nReg; /* Registers to allocate */ 2928 Expr *pLimit; /* New limit expression */ 2929 2930 Vdbe *v = pParse->pVdbe; 2931 assert( v!=0 ); 2932 testcase( pExpr->op==TK_EXISTS ); 2933 testcase( pExpr->op==TK_SELECT ); 2934 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2935 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2936 pSel = pExpr->x.pSelect; 2937 2938 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2939 ** is encountered if any of the following is true: 2940 ** 2941 ** * The right-hand side is a correlated subquery 2942 ** * The right-hand side is an expression list containing variables 2943 ** * We are inside a trigger 2944 ** 2945 ** If all of the above are false, then we can run this code just once 2946 ** save the results, and reuse the same result on subsequent invocations. 2947 */ 2948 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2949 /* If this routine has already been coded, then invoke it as a 2950 ** subroutine. */ 2951 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2952 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2953 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2954 pExpr->y.sub.iAddr); 2955 return pExpr->iTable; 2956 } 2957 2958 /* Begin coding the subroutine */ 2959 ExprSetProperty(pExpr, EP_Subrtn); 2960 pExpr->y.sub.regReturn = ++pParse->nMem; 2961 pExpr->y.sub.iAddr = 2962 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2963 VdbeComment((v, "return address")); 2964 2965 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2966 } 2967 2968 /* For a SELECT, generate code to put the values for all columns of 2969 ** the first row into an array of registers and return the index of 2970 ** the first register. 2971 ** 2972 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2973 ** into a register and return that register number. 2974 ** 2975 ** In both cases, the query is augmented with "LIMIT 1". Any 2976 ** preexisting limit is discarded in place of the new LIMIT 1. 2977 */ 2978 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2979 addrOnce?"":"CORRELATED ", pSel->selId)); 2980 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2981 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2982 pParse->nMem += nReg; 2983 if( pExpr->op==TK_SELECT ){ 2984 dest.eDest = SRT_Mem; 2985 dest.iSdst = dest.iSDParm; 2986 dest.nSdst = nReg; 2987 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2988 VdbeComment((v, "Init subquery result")); 2989 }else{ 2990 dest.eDest = SRT_Exists; 2991 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2992 VdbeComment((v, "Init EXISTS result")); 2993 } 2994 if( pSel->pLimit ){ 2995 /* The subquery already has a limit. If the pre-existing limit is X 2996 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 2997 sqlite3 *db = pParse->db; 2998 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 2999 if( pLimit ){ 3000 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3001 pLimit = sqlite3PExpr(pParse, TK_NE, 3002 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3003 } 3004 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3005 pSel->pLimit->pLeft = pLimit; 3006 }else{ 3007 /* If there is no pre-existing limit add a limit of 1 */ 3008 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3009 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3010 } 3011 pSel->iLimit = 0; 3012 if( sqlite3Select(pParse, pSel, &dest) ){ 3013 return 0; 3014 } 3015 pExpr->iTable = rReg = dest.iSDParm; 3016 ExprSetVVAProperty(pExpr, EP_NoReduce); 3017 if( addrOnce ){ 3018 sqlite3VdbeJumpHere(v, addrOnce); 3019 3020 /* Subroutine return */ 3021 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3022 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3023 sqlite3ClearTempRegCache(pParse); 3024 } 3025 3026 return rReg; 3027 } 3028 #endif /* SQLITE_OMIT_SUBQUERY */ 3029 3030 #ifndef SQLITE_OMIT_SUBQUERY 3031 /* 3032 ** Expr pIn is an IN(...) expression. This function checks that the 3033 ** sub-select on the RHS of the IN() operator has the same number of 3034 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3035 ** a sub-query, that the LHS is a vector of size 1. 3036 */ 3037 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3038 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3039 if( (pIn->flags & EP_xIsSelect) ){ 3040 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3041 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3042 return 1; 3043 } 3044 }else if( nVector!=1 ){ 3045 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3046 return 1; 3047 } 3048 return 0; 3049 } 3050 #endif 3051 3052 #ifndef SQLITE_OMIT_SUBQUERY 3053 /* 3054 ** Generate code for an IN expression. 3055 ** 3056 ** x IN (SELECT ...) 3057 ** x IN (value, value, ...) 3058 ** 3059 ** The left-hand side (LHS) is a scalar or vector expression. The 3060 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3061 ** subquery. If the RHS is a subquery, the number of result columns must 3062 ** match the number of columns in the vector on the LHS. If the RHS is 3063 ** a list of values, the LHS must be a scalar. 3064 ** 3065 ** The IN operator is true if the LHS value is contained within the RHS. 3066 ** The result is false if the LHS is definitely not in the RHS. The 3067 ** result is NULL if the presence of the LHS in the RHS cannot be 3068 ** determined due to NULLs. 3069 ** 3070 ** This routine generates code that jumps to destIfFalse if the LHS is not 3071 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3072 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3073 ** within the RHS then fall through. 3074 ** 3075 ** See the separate in-operator.md documentation file in the canonical 3076 ** SQLite source tree for additional information. 3077 */ 3078 static void sqlite3ExprCodeIN( 3079 Parse *pParse, /* Parsing and code generating context */ 3080 Expr *pExpr, /* The IN expression */ 3081 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3082 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3083 ){ 3084 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3085 int eType; /* Type of the RHS */ 3086 int rLhs; /* Register(s) holding the LHS values */ 3087 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3088 Vdbe *v; /* Statement under construction */ 3089 int *aiMap = 0; /* Map from vector field to index column */ 3090 char *zAff = 0; /* Affinity string for comparisons */ 3091 int nVector; /* Size of vectors for this IN operator */ 3092 int iDummy; /* Dummy parameter to exprCodeVector() */ 3093 Expr *pLeft; /* The LHS of the IN operator */ 3094 int i; /* loop counter */ 3095 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3096 int destStep6 = 0; /* Start of code for Step 6 */ 3097 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3098 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3099 int addrTop; /* Top of the step-6 loop */ 3100 int iTab = 0; /* Index to use */ 3101 3102 pLeft = pExpr->pLeft; 3103 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3104 zAff = exprINAffinity(pParse, pExpr); 3105 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3106 aiMap = (int*)sqlite3DbMallocZero( 3107 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3108 ); 3109 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3110 3111 /* Attempt to compute the RHS. After this step, if anything other than 3112 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3113 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3114 ** the RHS has not yet been coded. */ 3115 v = pParse->pVdbe; 3116 assert( v!=0 ); /* OOM detected prior to this routine */ 3117 VdbeNoopComment((v, "begin IN expr")); 3118 eType = sqlite3FindInIndex(pParse, pExpr, 3119 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3120 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3121 aiMap, &iTab); 3122 3123 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3124 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3125 ); 3126 #ifdef SQLITE_DEBUG 3127 /* Confirm that aiMap[] contains nVector integer values between 0 and 3128 ** nVector-1. */ 3129 for(i=0; i<nVector; i++){ 3130 int j, cnt; 3131 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3132 assert( cnt==1 ); 3133 } 3134 #endif 3135 3136 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3137 ** vector, then it is stored in an array of nVector registers starting 3138 ** at r1. 3139 ** 3140 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3141 ** so that the fields are in the same order as an existing index. The 3142 ** aiMap[] array contains a mapping from the original LHS field order to 3143 ** the field order that matches the RHS index. 3144 */ 3145 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3146 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3147 if( i==nVector ){ 3148 /* LHS fields are not reordered */ 3149 rLhs = rLhsOrig; 3150 }else{ 3151 /* Need to reorder the LHS fields according to aiMap */ 3152 rLhs = sqlite3GetTempRange(pParse, nVector); 3153 for(i=0; i<nVector; i++){ 3154 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3155 } 3156 } 3157 3158 /* If sqlite3FindInIndex() did not find or create an index that is 3159 ** suitable for evaluating the IN operator, then evaluate using a 3160 ** sequence of comparisons. 3161 ** 3162 ** This is step (1) in the in-operator.md optimized algorithm. 3163 */ 3164 if( eType==IN_INDEX_NOOP ){ 3165 ExprList *pList = pExpr->x.pList; 3166 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3167 int labelOk = sqlite3VdbeMakeLabel(pParse); 3168 int r2, regToFree; 3169 int regCkNull = 0; 3170 int ii; 3171 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3172 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3173 if( destIfNull!=destIfFalse ){ 3174 regCkNull = sqlite3GetTempReg(pParse); 3175 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3176 } 3177 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3178 for(ii=0; ii<pList->nExpr; ii++){ 3179 if( bLhsReal ){ 3180 r2 = regToFree = sqlite3GetTempReg(pParse); 3181 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3182 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3183 }else{ 3184 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3185 } 3186 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3187 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3188 } 3189 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3190 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3191 (void*)pColl, P4_COLLSEQ); 3192 VdbeCoverageIf(v, ii<pList->nExpr-1); 3193 VdbeCoverageIf(v, ii==pList->nExpr-1); 3194 sqlite3VdbeChangeP5(v, zAff[0]); 3195 }else{ 3196 assert( destIfNull==destIfFalse ); 3197 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3198 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3199 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3200 } 3201 sqlite3ReleaseTempReg(pParse, regToFree); 3202 } 3203 if( regCkNull ){ 3204 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3205 sqlite3VdbeGoto(v, destIfFalse); 3206 } 3207 sqlite3VdbeResolveLabel(v, labelOk); 3208 sqlite3ReleaseTempReg(pParse, regCkNull); 3209 goto sqlite3ExprCodeIN_finished; 3210 } 3211 3212 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3213 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3214 ** We will then skip the binary search of the RHS. 3215 */ 3216 if( destIfNull==destIfFalse ){ 3217 destStep2 = destIfFalse; 3218 }else{ 3219 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3220 } 3221 for(i=0; i<nVector; i++){ 3222 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3223 if( sqlite3ExprCanBeNull(p) ){ 3224 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3225 VdbeCoverage(v); 3226 } 3227 } 3228 3229 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3230 ** of the RHS using the LHS as a probe. If found, the result is 3231 ** true. 3232 */ 3233 if( eType==IN_INDEX_ROWID ){ 3234 /* In this case, the RHS is the ROWID of table b-tree and so we also 3235 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3236 ** into a single opcode. */ 3237 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3238 VdbeCoverage(v); 3239 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3240 }else{ 3241 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3242 if( destIfFalse==destIfNull ){ 3243 /* Combine Step 3 and Step 5 into a single opcode */ 3244 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3245 rLhs, nVector); VdbeCoverage(v); 3246 goto sqlite3ExprCodeIN_finished; 3247 } 3248 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3249 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3250 rLhs, nVector); VdbeCoverage(v); 3251 } 3252 3253 /* Step 4. If the RHS is known to be non-NULL and we did not find 3254 ** an match on the search above, then the result must be FALSE. 3255 */ 3256 if( rRhsHasNull && nVector==1 ){ 3257 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3258 VdbeCoverage(v); 3259 } 3260 3261 /* Step 5. If we do not care about the difference between NULL and 3262 ** FALSE, then just return false. 3263 */ 3264 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3265 3266 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3267 ** If any comparison is NULL, then the result is NULL. If all 3268 ** comparisons are FALSE then the final result is FALSE. 3269 ** 3270 ** For a scalar LHS, it is sufficient to check just the first row 3271 ** of the RHS. 3272 */ 3273 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3274 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3275 VdbeCoverage(v); 3276 if( nVector>1 ){ 3277 destNotNull = sqlite3VdbeMakeLabel(pParse); 3278 }else{ 3279 /* For nVector==1, combine steps 6 and 7 by immediately returning 3280 ** FALSE if the first comparison is not NULL */ 3281 destNotNull = destIfFalse; 3282 } 3283 for(i=0; i<nVector; i++){ 3284 Expr *p; 3285 CollSeq *pColl; 3286 int r3 = sqlite3GetTempReg(pParse); 3287 p = sqlite3VectorFieldSubexpr(pLeft, i); 3288 pColl = sqlite3ExprCollSeq(pParse, p); 3289 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3290 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3291 (void*)pColl, P4_COLLSEQ); 3292 VdbeCoverage(v); 3293 sqlite3ReleaseTempReg(pParse, r3); 3294 } 3295 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3296 if( nVector>1 ){ 3297 sqlite3VdbeResolveLabel(v, destNotNull); 3298 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3299 VdbeCoverage(v); 3300 3301 /* Step 7: If we reach this point, we know that the result must 3302 ** be false. */ 3303 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3304 } 3305 3306 /* Jumps here in order to return true. */ 3307 sqlite3VdbeJumpHere(v, addrTruthOp); 3308 3309 sqlite3ExprCodeIN_finished: 3310 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3311 VdbeComment((v, "end IN expr")); 3312 sqlite3ExprCodeIN_oom_error: 3313 sqlite3DbFree(pParse->db, aiMap); 3314 sqlite3DbFree(pParse->db, zAff); 3315 } 3316 #endif /* SQLITE_OMIT_SUBQUERY */ 3317 3318 #ifndef SQLITE_OMIT_FLOATING_POINT 3319 /* 3320 ** Generate an instruction that will put the floating point 3321 ** value described by z[0..n-1] into register iMem. 3322 ** 3323 ** The z[] string will probably not be zero-terminated. But the 3324 ** z[n] character is guaranteed to be something that does not look 3325 ** like the continuation of the number. 3326 */ 3327 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3328 if( ALWAYS(z!=0) ){ 3329 double value; 3330 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3331 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3332 if( negateFlag ) value = -value; 3333 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3334 } 3335 } 3336 #endif 3337 3338 3339 /* 3340 ** Generate an instruction that will put the integer describe by 3341 ** text z[0..n-1] into register iMem. 3342 ** 3343 ** Expr.u.zToken is always UTF8 and zero-terminated. 3344 */ 3345 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3346 Vdbe *v = pParse->pVdbe; 3347 if( pExpr->flags & EP_IntValue ){ 3348 int i = pExpr->u.iValue; 3349 assert( i>=0 ); 3350 if( negFlag ) i = -i; 3351 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3352 }else{ 3353 int c; 3354 i64 value; 3355 const char *z = pExpr->u.zToken; 3356 assert( z!=0 ); 3357 c = sqlite3DecOrHexToI64(z, &value); 3358 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3359 #ifdef SQLITE_OMIT_FLOATING_POINT 3360 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3361 #else 3362 #ifndef SQLITE_OMIT_HEX_INTEGER 3363 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3364 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3365 }else 3366 #endif 3367 { 3368 codeReal(v, z, negFlag, iMem); 3369 } 3370 #endif 3371 }else{ 3372 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3373 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3374 } 3375 } 3376 } 3377 3378 3379 /* Generate code that will load into register regOut a value that is 3380 ** appropriate for the iIdxCol-th column of index pIdx. 3381 */ 3382 void sqlite3ExprCodeLoadIndexColumn( 3383 Parse *pParse, /* The parsing context */ 3384 Index *pIdx, /* The index whose column is to be loaded */ 3385 int iTabCur, /* Cursor pointing to a table row */ 3386 int iIdxCol, /* The column of the index to be loaded */ 3387 int regOut /* Store the index column value in this register */ 3388 ){ 3389 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3390 if( iTabCol==XN_EXPR ){ 3391 assert( pIdx->aColExpr ); 3392 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3393 pParse->iSelfTab = iTabCur + 1; 3394 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3395 pParse->iSelfTab = 0; 3396 }else{ 3397 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3398 iTabCol, regOut); 3399 } 3400 } 3401 3402 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3403 /* 3404 ** Generate code that will compute the value of generated column pCol 3405 ** and store the result in register regOut 3406 */ 3407 void sqlite3ExprCodeGeneratedColumn( 3408 Parse *pParse, 3409 Column *pCol, 3410 int regOut 3411 ){ 3412 int iAddr; 3413 Vdbe *v = pParse->pVdbe; 3414 assert( v!=0 ); 3415 assert( pParse->iSelfTab!=0 ); 3416 if( pParse->iSelfTab>0 ){ 3417 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3418 }else{ 3419 iAddr = 0; 3420 } 3421 sqlite3ExprCode(pParse, pCol->pDflt, regOut); 3422 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3423 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3424 } 3425 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3426 } 3427 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3428 3429 /* 3430 ** Generate code to extract the value of the iCol-th column of a table. 3431 */ 3432 void sqlite3ExprCodeGetColumnOfTable( 3433 Vdbe *v, /* Parsing context */ 3434 Table *pTab, /* The table containing the value */ 3435 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3436 int iCol, /* Index of the column to extract */ 3437 int regOut /* Extract the value into this register */ 3438 ){ 3439 Column *pCol; 3440 assert( v!=0 ); 3441 if( pTab==0 ){ 3442 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3443 return; 3444 } 3445 if( iCol<0 || iCol==pTab->iPKey ){ 3446 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3447 }else{ 3448 int op; 3449 int x; 3450 if( IsVirtual(pTab) ){ 3451 op = OP_VColumn; 3452 x = iCol; 3453 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3454 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3455 Parse *pParse = sqlite3VdbeParser(v); 3456 if( pCol->colFlags & COLFLAG_BUSY ){ 3457 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3458 }else{ 3459 int savedSelfTab = pParse->iSelfTab; 3460 pCol->colFlags |= COLFLAG_BUSY; 3461 pParse->iSelfTab = iTabCur+1; 3462 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3463 pParse->iSelfTab = savedSelfTab; 3464 pCol->colFlags &= ~COLFLAG_BUSY; 3465 } 3466 return; 3467 #endif 3468 }else if( !HasRowid(pTab) ){ 3469 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3470 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3471 op = OP_Column; 3472 }else{ 3473 x = sqlite3TableColumnToStorage(pTab,iCol); 3474 testcase( x!=iCol ); 3475 op = OP_Column; 3476 } 3477 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3478 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3479 } 3480 } 3481 3482 /* 3483 ** Generate code that will extract the iColumn-th column from 3484 ** table pTab and store the column value in register iReg. 3485 ** 3486 ** There must be an open cursor to pTab in iTable when this routine 3487 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3488 */ 3489 int sqlite3ExprCodeGetColumn( 3490 Parse *pParse, /* Parsing and code generating context */ 3491 Table *pTab, /* Description of the table we are reading from */ 3492 int iColumn, /* Index of the table column */ 3493 int iTable, /* The cursor pointing to the table */ 3494 int iReg, /* Store results here */ 3495 u8 p5 /* P5 value for OP_Column + FLAGS */ 3496 ){ 3497 assert( pParse->pVdbe!=0 ); 3498 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3499 if( p5 ){ 3500 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3501 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3502 } 3503 return iReg; 3504 } 3505 3506 /* 3507 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3508 ** over to iTo..iTo+nReg-1. 3509 */ 3510 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3511 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3512 } 3513 3514 /* 3515 ** Convert a scalar expression node to a TK_REGISTER referencing 3516 ** register iReg. The caller must ensure that iReg already contains 3517 ** the correct value for the expression. 3518 */ 3519 static void exprToRegister(Expr *pExpr, int iReg){ 3520 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3521 p->op2 = p->op; 3522 p->op = TK_REGISTER; 3523 p->iTable = iReg; 3524 ExprClearProperty(p, EP_Skip); 3525 } 3526 3527 /* 3528 ** Evaluate an expression (either a vector or a scalar expression) and store 3529 ** the result in continguous temporary registers. Return the index of 3530 ** the first register used to store the result. 3531 ** 3532 ** If the returned result register is a temporary scalar, then also write 3533 ** that register number into *piFreeable. If the returned result register 3534 ** is not a temporary or if the expression is a vector set *piFreeable 3535 ** to 0. 3536 */ 3537 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3538 int iResult; 3539 int nResult = sqlite3ExprVectorSize(p); 3540 if( nResult==1 ){ 3541 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3542 }else{ 3543 *piFreeable = 0; 3544 if( p->op==TK_SELECT ){ 3545 #if SQLITE_OMIT_SUBQUERY 3546 iResult = 0; 3547 #else 3548 iResult = sqlite3CodeSubselect(pParse, p); 3549 #endif 3550 }else{ 3551 int i; 3552 iResult = pParse->nMem+1; 3553 pParse->nMem += nResult; 3554 for(i=0; i<nResult; i++){ 3555 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3556 } 3557 } 3558 } 3559 return iResult; 3560 } 3561 3562 3563 /* 3564 ** Generate code into the current Vdbe to evaluate the given 3565 ** expression. Attempt to store the results in register "target". 3566 ** Return the register where results are stored. 3567 ** 3568 ** With this routine, there is no guarantee that results will 3569 ** be stored in target. The result might be stored in some other 3570 ** register if it is convenient to do so. The calling function 3571 ** must check the return code and move the results to the desired 3572 ** register. 3573 */ 3574 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3575 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3576 int op; /* The opcode being coded */ 3577 int inReg = target; /* Results stored in register inReg */ 3578 int regFree1 = 0; /* If non-zero free this temporary register */ 3579 int regFree2 = 0; /* If non-zero free this temporary register */ 3580 int r1, r2; /* Various register numbers */ 3581 Expr tempX; /* Temporary expression node */ 3582 int p5 = 0; 3583 3584 assert( target>0 && target<=pParse->nMem ); 3585 if( v==0 ){ 3586 assert( pParse->db->mallocFailed ); 3587 return 0; 3588 } 3589 3590 expr_code_doover: 3591 if( pExpr==0 ){ 3592 op = TK_NULL; 3593 }else{ 3594 op = pExpr->op; 3595 } 3596 switch( op ){ 3597 case TK_AGG_COLUMN: { 3598 AggInfo *pAggInfo = pExpr->pAggInfo; 3599 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3600 if( !pAggInfo->directMode ){ 3601 assert( pCol->iMem>0 ); 3602 return pCol->iMem; 3603 }else if( pAggInfo->useSortingIdx ){ 3604 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3605 pCol->iSorterColumn, target); 3606 return target; 3607 } 3608 /* Otherwise, fall thru into the TK_COLUMN case */ 3609 } 3610 case TK_COLUMN: { 3611 int iTab = pExpr->iTable; 3612 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3613 /* This COLUMN expression is really a constant due to WHERE clause 3614 ** constraints, and that constant is coded by the pExpr->pLeft 3615 ** expresssion. However, make sure the constant has the correct 3616 ** datatype by applying the Affinity of the table column to the 3617 ** constant. 3618 */ 3619 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3620 int aff; 3621 if( pExpr->y.pTab ){ 3622 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3623 }else{ 3624 aff = pExpr->affExpr; 3625 } 3626 if( aff>SQLITE_AFF_BLOB ){ 3627 static const char zAff[] = "B\000C\000D\000E"; 3628 assert( SQLITE_AFF_BLOB=='A' ); 3629 assert( SQLITE_AFF_TEXT=='B' ); 3630 if( iReg!=target ){ 3631 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3632 iReg = target; 3633 } 3634 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3635 &zAff[(aff-'B')*2], P4_STATIC); 3636 } 3637 return iReg; 3638 } 3639 if( iTab<0 ){ 3640 if( pParse->iSelfTab<0 ){ 3641 /* Other columns in the same row for CHECK constraints or 3642 ** generated columns or for inserting into partial index. 3643 ** The row is unpacked into registers beginning at 3644 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3645 ** immediately prior to the first column. 3646 */ 3647 Column *pCol; 3648 Table *pTab = pExpr->y.pTab; 3649 int iSrc; 3650 int iCol = pExpr->iColumn; 3651 assert( pTab!=0 ); 3652 assert( iCol>=XN_ROWID ); 3653 assert( iCol<pExpr->y.pTab->nCol ); 3654 if( iCol<0 ){ 3655 return -1-pParse->iSelfTab; 3656 } 3657 pCol = pTab->aCol + iCol; 3658 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3659 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3660 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3661 if( pCol->colFlags & COLFLAG_GENERATED ){ 3662 if( pCol->colFlags & COLFLAG_BUSY ){ 3663 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3664 pCol->zName); 3665 return 0; 3666 } 3667 pCol->colFlags |= COLFLAG_BUSY; 3668 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3669 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3670 } 3671 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3672 return iSrc; 3673 }else 3674 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3675 if( pCol->affinity==SQLITE_AFF_REAL ){ 3676 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3677 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3678 return target; 3679 }else{ 3680 return iSrc; 3681 } 3682 }else{ 3683 /* Coding an expression that is part of an index where column names 3684 ** in the index refer to the table to which the index belongs */ 3685 iTab = pParse->iSelfTab - 1; 3686 } 3687 } 3688 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3689 pExpr->iColumn, iTab, target, 3690 pExpr->op2); 3691 } 3692 case TK_INTEGER: { 3693 codeInteger(pParse, pExpr, 0, target); 3694 return target; 3695 } 3696 case TK_TRUEFALSE: { 3697 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3698 return target; 3699 } 3700 #ifndef SQLITE_OMIT_FLOATING_POINT 3701 case TK_FLOAT: { 3702 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3703 codeReal(v, pExpr->u.zToken, 0, target); 3704 return target; 3705 } 3706 #endif 3707 case TK_STRING: { 3708 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3709 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3710 return target; 3711 } 3712 default: { 3713 /* Make NULL the default case so that if a bug causes an illegal 3714 ** Expr node to be passed into this function, it will be handled 3715 ** sanely and not crash. But keep an assert() to bring the problem 3716 ** to the attention of the developers. */ 3717 assert( op==TK_NULL ); 3718 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3719 return target; 3720 } 3721 #ifndef SQLITE_OMIT_BLOB_LITERAL 3722 case TK_BLOB: { 3723 int n; 3724 const char *z; 3725 char *zBlob; 3726 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3727 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3728 assert( pExpr->u.zToken[1]=='\'' ); 3729 z = &pExpr->u.zToken[2]; 3730 n = sqlite3Strlen30(z) - 1; 3731 assert( z[n]=='\'' ); 3732 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3733 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3734 return target; 3735 } 3736 #endif 3737 case TK_VARIABLE: { 3738 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3739 assert( pExpr->u.zToken!=0 ); 3740 assert( pExpr->u.zToken[0]!=0 ); 3741 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3742 if( pExpr->u.zToken[1]!=0 ){ 3743 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3744 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3745 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3746 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3747 } 3748 return target; 3749 } 3750 case TK_REGISTER: { 3751 return pExpr->iTable; 3752 } 3753 #ifndef SQLITE_OMIT_CAST 3754 case TK_CAST: { 3755 /* Expressions of the form: CAST(pLeft AS token) */ 3756 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3757 if( inReg!=target ){ 3758 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3759 inReg = target; 3760 } 3761 sqlite3VdbeAddOp2(v, OP_Cast, target, 3762 sqlite3AffinityType(pExpr->u.zToken, 0)); 3763 return inReg; 3764 } 3765 #endif /* SQLITE_OMIT_CAST */ 3766 case TK_IS: 3767 case TK_ISNOT: 3768 op = (op==TK_IS) ? TK_EQ : TK_NE; 3769 p5 = SQLITE_NULLEQ; 3770 /* fall-through */ 3771 case TK_LT: 3772 case TK_LE: 3773 case TK_GT: 3774 case TK_GE: 3775 case TK_NE: 3776 case TK_EQ: { 3777 Expr *pLeft = pExpr->pLeft; 3778 if( sqlite3ExprIsVector(pLeft) ){ 3779 codeVectorCompare(pParse, pExpr, target, op, p5); 3780 }else{ 3781 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3782 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3783 codeCompare(pParse, pLeft, pExpr->pRight, op, 3784 r1, r2, inReg, SQLITE_STOREP2 | p5, 3785 ExprHasProperty(pExpr,EP_Commuted)); 3786 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3787 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3788 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3789 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3790 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3791 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3792 testcase( regFree1==0 ); 3793 testcase( regFree2==0 ); 3794 } 3795 break; 3796 } 3797 case TK_AND: 3798 case TK_OR: 3799 case TK_PLUS: 3800 case TK_STAR: 3801 case TK_MINUS: 3802 case TK_REM: 3803 case TK_BITAND: 3804 case TK_BITOR: 3805 case TK_SLASH: 3806 case TK_LSHIFT: 3807 case TK_RSHIFT: 3808 case TK_CONCAT: { 3809 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3810 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3811 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3812 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3813 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3814 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3815 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3816 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3817 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3818 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3819 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3820 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3821 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3822 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3823 testcase( regFree1==0 ); 3824 testcase( regFree2==0 ); 3825 break; 3826 } 3827 case TK_UMINUS: { 3828 Expr *pLeft = pExpr->pLeft; 3829 assert( pLeft ); 3830 if( pLeft->op==TK_INTEGER ){ 3831 codeInteger(pParse, pLeft, 1, target); 3832 return target; 3833 #ifndef SQLITE_OMIT_FLOATING_POINT 3834 }else if( pLeft->op==TK_FLOAT ){ 3835 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3836 codeReal(v, pLeft->u.zToken, 1, target); 3837 return target; 3838 #endif 3839 }else{ 3840 tempX.op = TK_INTEGER; 3841 tempX.flags = EP_IntValue|EP_TokenOnly; 3842 tempX.u.iValue = 0; 3843 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3844 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3845 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3846 testcase( regFree2==0 ); 3847 } 3848 break; 3849 } 3850 case TK_BITNOT: 3851 case TK_NOT: { 3852 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3853 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3854 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3855 testcase( regFree1==0 ); 3856 sqlite3VdbeAddOp2(v, op, r1, inReg); 3857 break; 3858 } 3859 case TK_TRUTH: { 3860 int isTrue; /* IS TRUE or IS NOT TRUE */ 3861 int bNormal; /* IS TRUE or IS FALSE */ 3862 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3863 testcase( regFree1==0 ); 3864 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3865 bNormal = pExpr->op2==TK_IS; 3866 testcase( isTrue && bNormal); 3867 testcase( !isTrue && bNormal); 3868 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3869 break; 3870 } 3871 case TK_ISNULL: 3872 case TK_NOTNULL: { 3873 int addr; 3874 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3875 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3876 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3877 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3878 testcase( regFree1==0 ); 3879 addr = sqlite3VdbeAddOp1(v, op, r1); 3880 VdbeCoverageIf(v, op==TK_ISNULL); 3881 VdbeCoverageIf(v, op==TK_NOTNULL); 3882 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3883 sqlite3VdbeJumpHere(v, addr); 3884 break; 3885 } 3886 case TK_AGG_FUNCTION: { 3887 AggInfo *pInfo = pExpr->pAggInfo; 3888 if( pInfo==0 ){ 3889 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3890 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3891 }else{ 3892 return pInfo->aFunc[pExpr->iAgg].iMem; 3893 } 3894 break; 3895 } 3896 case TK_FUNCTION: { 3897 ExprList *pFarg; /* List of function arguments */ 3898 int nFarg; /* Number of function arguments */ 3899 FuncDef *pDef; /* The function definition object */ 3900 const char *zId; /* The function name */ 3901 u32 constMask = 0; /* Mask of function arguments that are constant */ 3902 int i; /* Loop counter */ 3903 sqlite3 *db = pParse->db; /* The database connection */ 3904 u8 enc = ENC(db); /* The text encoding used by this database */ 3905 CollSeq *pColl = 0; /* A collating sequence */ 3906 3907 #ifndef SQLITE_OMIT_WINDOWFUNC 3908 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3909 return pExpr->y.pWin->regResult; 3910 } 3911 #endif 3912 3913 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3914 /* SQL functions can be expensive. So try to move constant functions 3915 ** out of the inner loop, even if that means an extra OP_Copy. */ 3916 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3917 } 3918 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3919 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3920 pFarg = 0; 3921 }else{ 3922 pFarg = pExpr->x.pList; 3923 } 3924 nFarg = pFarg ? pFarg->nExpr : 0; 3925 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3926 zId = pExpr->u.zToken; 3927 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3928 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3929 if( pDef==0 && pParse->explain ){ 3930 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3931 } 3932 #endif 3933 if( pDef==0 || pDef->xFinalize!=0 ){ 3934 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3935 break; 3936 } 3937 3938 /* Attempt a direct implementation of the built-in COALESCE() and 3939 ** IFNULL() functions. This avoids unnecessary evaluation of 3940 ** arguments past the first non-NULL argument. 3941 */ 3942 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3943 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3944 assert( nFarg>=2 ); 3945 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3946 for(i=1; i<nFarg; i++){ 3947 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3948 VdbeCoverage(v); 3949 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3950 } 3951 sqlite3VdbeResolveLabel(v, endCoalesce); 3952 break; 3953 } 3954 3955 /* The UNLIKELY() function is a no-op. The result is the value 3956 ** of the first argument. 3957 */ 3958 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3959 assert( nFarg>=1 ); 3960 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3961 } 3962 3963 #ifdef SQLITE_DEBUG 3964 /* The AFFINITY() function evaluates to a string that describes 3965 ** the type affinity of the argument. This is used for testing of 3966 ** the SQLite type logic. 3967 */ 3968 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3969 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3970 char aff; 3971 assert( nFarg==1 ); 3972 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3973 sqlite3VdbeLoadString(v, target, 3974 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3975 return target; 3976 } 3977 #endif 3978 3979 for(i=0; i<nFarg; i++){ 3980 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3981 testcase( i==31 ); 3982 constMask |= MASKBIT32(i); 3983 } 3984 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3985 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3986 } 3987 } 3988 if( pFarg ){ 3989 if( constMask ){ 3990 r1 = pParse->nMem+1; 3991 pParse->nMem += nFarg; 3992 }else{ 3993 r1 = sqlite3GetTempRange(pParse, nFarg); 3994 } 3995 3996 /* For length() and typeof() functions with a column argument, 3997 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3998 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3999 ** loading. 4000 */ 4001 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4002 u8 exprOp; 4003 assert( nFarg==1 ); 4004 assert( pFarg->a[0].pExpr!=0 ); 4005 exprOp = pFarg->a[0].pExpr->op; 4006 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4007 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4008 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4009 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4010 pFarg->a[0].pExpr->op2 = 4011 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4012 } 4013 } 4014 4015 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4016 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4017 }else{ 4018 r1 = 0; 4019 } 4020 #ifndef SQLITE_OMIT_VIRTUALTABLE 4021 /* Possibly overload the function if the first argument is 4022 ** a virtual table column. 4023 ** 4024 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4025 ** second argument, not the first, as the argument to test to 4026 ** see if it is a column in a virtual table. This is done because 4027 ** the left operand of infix functions (the operand we want to 4028 ** control overloading) ends up as the second argument to the 4029 ** function. The expression "A glob B" is equivalent to 4030 ** "glob(B,A). We want to use the A in "A glob B" to test 4031 ** for function overloading. But we use the B term in "glob(B,A)". 4032 */ 4033 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4034 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4035 }else if( nFarg>0 ){ 4036 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4037 } 4038 #endif 4039 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4040 if( !pColl ) pColl = db->pDfltColl; 4041 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4042 } 4043 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4044 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4045 Expr *pArg = pFarg->a[0].pExpr; 4046 if( pArg->op==TK_COLUMN ){ 4047 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4048 }else{ 4049 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4050 } 4051 }else 4052 #endif 4053 { 4054 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4055 pDef, pExpr->op2); 4056 } 4057 if( nFarg && constMask==0 ){ 4058 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4059 } 4060 return target; 4061 } 4062 #ifndef SQLITE_OMIT_SUBQUERY 4063 case TK_EXISTS: 4064 case TK_SELECT: { 4065 int nCol; 4066 testcase( op==TK_EXISTS ); 4067 testcase( op==TK_SELECT ); 4068 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4069 sqlite3SubselectError(pParse, nCol, 1); 4070 }else{ 4071 return sqlite3CodeSubselect(pParse, pExpr); 4072 } 4073 break; 4074 } 4075 case TK_SELECT_COLUMN: { 4076 int n; 4077 if( pExpr->pLeft->iTable==0 ){ 4078 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4079 } 4080 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4081 if( pExpr->iTable!=0 4082 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4083 ){ 4084 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4085 pExpr->iTable, n); 4086 } 4087 return pExpr->pLeft->iTable + pExpr->iColumn; 4088 } 4089 case TK_IN: { 4090 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4091 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4092 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4093 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4094 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4095 sqlite3VdbeResolveLabel(v, destIfFalse); 4096 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4097 sqlite3VdbeResolveLabel(v, destIfNull); 4098 return target; 4099 } 4100 #endif /* SQLITE_OMIT_SUBQUERY */ 4101 4102 4103 /* 4104 ** x BETWEEN y AND z 4105 ** 4106 ** This is equivalent to 4107 ** 4108 ** x>=y AND x<=z 4109 ** 4110 ** X is stored in pExpr->pLeft. 4111 ** Y is stored in pExpr->pList->a[0].pExpr. 4112 ** Z is stored in pExpr->pList->a[1].pExpr. 4113 */ 4114 case TK_BETWEEN: { 4115 exprCodeBetween(pParse, pExpr, target, 0, 0); 4116 return target; 4117 } 4118 case TK_SPAN: 4119 case TK_COLLATE: 4120 case TK_UPLUS: { 4121 pExpr = pExpr->pLeft; 4122 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4123 } 4124 4125 case TK_TRIGGER: { 4126 /* If the opcode is TK_TRIGGER, then the expression is a reference 4127 ** to a column in the new.* or old.* pseudo-tables available to 4128 ** trigger programs. In this case Expr.iTable is set to 1 for the 4129 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4130 ** is set to the column of the pseudo-table to read, or to -1 to 4131 ** read the rowid field. 4132 ** 4133 ** The expression is implemented using an OP_Param opcode. The p1 4134 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4135 ** to reference another column of the old.* pseudo-table, where 4136 ** i is the index of the column. For a new.rowid reference, p1 is 4137 ** set to (n+1), where n is the number of columns in each pseudo-table. 4138 ** For a reference to any other column in the new.* pseudo-table, p1 4139 ** is set to (n+2+i), where n and i are as defined previously. For 4140 ** example, if the table on which triggers are being fired is 4141 ** declared as: 4142 ** 4143 ** CREATE TABLE t1(a, b); 4144 ** 4145 ** Then p1 is interpreted as follows: 4146 ** 4147 ** p1==0 -> old.rowid p1==3 -> new.rowid 4148 ** p1==1 -> old.a p1==4 -> new.a 4149 ** p1==2 -> old.b p1==5 -> new.b 4150 */ 4151 Table *pTab = pExpr->y.pTab; 4152 int iCol = pExpr->iColumn; 4153 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4154 + sqlite3TableColumnToStorage(pTab, iCol); 4155 4156 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4157 assert( iCol>=-1 && iCol<pTab->nCol ); 4158 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4159 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4160 4161 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4162 VdbeComment((v, "r[%d]=%s.%s", target, 4163 (pExpr->iTable ? "new" : "old"), 4164 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4165 )); 4166 4167 #ifndef SQLITE_OMIT_FLOATING_POINT 4168 /* If the column has REAL affinity, it may currently be stored as an 4169 ** integer. Use OP_RealAffinity to make sure it is really real. 4170 ** 4171 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4172 ** floating point when extracting it from the record. */ 4173 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4174 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4175 } 4176 #endif 4177 break; 4178 } 4179 4180 case TK_VECTOR: { 4181 sqlite3ErrorMsg(pParse, "row value misused"); 4182 break; 4183 } 4184 4185 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4186 ** that derive from the right-hand table of a LEFT JOIN. The 4187 ** Expr.iTable value is the table number for the right-hand table. 4188 ** The expression is only evaluated if that table is not currently 4189 ** on a LEFT JOIN NULL row. 4190 */ 4191 case TK_IF_NULL_ROW: { 4192 int addrINR; 4193 u8 okConstFactor = pParse->okConstFactor; 4194 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4195 /* Temporarily disable factoring of constant expressions, since 4196 ** even though expressions may appear to be constant, they are not 4197 ** really constant because they originate from the right-hand side 4198 ** of a LEFT JOIN. */ 4199 pParse->okConstFactor = 0; 4200 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4201 pParse->okConstFactor = okConstFactor; 4202 sqlite3VdbeJumpHere(v, addrINR); 4203 sqlite3VdbeChangeP3(v, addrINR, inReg); 4204 break; 4205 } 4206 4207 /* 4208 ** Form A: 4209 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4210 ** 4211 ** Form B: 4212 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4213 ** 4214 ** Form A is can be transformed into the equivalent form B as follows: 4215 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4216 ** WHEN x=eN THEN rN ELSE y END 4217 ** 4218 ** X (if it exists) is in pExpr->pLeft. 4219 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4220 ** odd. The Y is also optional. If the number of elements in x.pList 4221 ** is even, then Y is omitted and the "otherwise" result is NULL. 4222 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4223 ** 4224 ** The result of the expression is the Ri for the first matching Ei, 4225 ** or if there is no matching Ei, the ELSE term Y, or if there is 4226 ** no ELSE term, NULL. 4227 */ 4228 case TK_CASE: { 4229 int endLabel; /* GOTO label for end of CASE stmt */ 4230 int nextCase; /* GOTO label for next WHEN clause */ 4231 int nExpr; /* 2x number of WHEN terms */ 4232 int i; /* Loop counter */ 4233 ExprList *pEList; /* List of WHEN terms */ 4234 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4235 Expr opCompare; /* The X==Ei expression */ 4236 Expr *pX; /* The X expression */ 4237 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4238 Expr *pDel = 0; 4239 sqlite3 *db = pParse->db; 4240 4241 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4242 assert(pExpr->x.pList->nExpr > 0); 4243 pEList = pExpr->x.pList; 4244 aListelem = pEList->a; 4245 nExpr = pEList->nExpr; 4246 endLabel = sqlite3VdbeMakeLabel(pParse); 4247 if( (pX = pExpr->pLeft)!=0 ){ 4248 pDel = sqlite3ExprDup(db, pX, 0); 4249 if( db->mallocFailed ){ 4250 sqlite3ExprDelete(db, pDel); 4251 break; 4252 } 4253 testcase( pX->op==TK_COLUMN ); 4254 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4255 testcase( regFree1==0 ); 4256 memset(&opCompare, 0, sizeof(opCompare)); 4257 opCompare.op = TK_EQ; 4258 opCompare.pLeft = pDel; 4259 pTest = &opCompare; 4260 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4261 ** The value in regFree1 might get SCopy-ed into the file result. 4262 ** So make sure that the regFree1 register is not reused for other 4263 ** purposes and possibly overwritten. */ 4264 regFree1 = 0; 4265 } 4266 for(i=0; i<nExpr-1; i=i+2){ 4267 if( pX ){ 4268 assert( pTest!=0 ); 4269 opCompare.pRight = aListelem[i].pExpr; 4270 }else{ 4271 pTest = aListelem[i].pExpr; 4272 } 4273 nextCase = sqlite3VdbeMakeLabel(pParse); 4274 testcase( pTest->op==TK_COLUMN ); 4275 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4276 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4277 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4278 sqlite3VdbeGoto(v, endLabel); 4279 sqlite3VdbeResolveLabel(v, nextCase); 4280 } 4281 if( (nExpr&1)!=0 ){ 4282 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4283 }else{ 4284 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4285 } 4286 sqlite3ExprDelete(db, pDel); 4287 sqlite3VdbeResolveLabel(v, endLabel); 4288 break; 4289 } 4290 #ifndef SQLITE_OMIT_TRIGGER 4291 case TK_RAISE: { 4292 assert( pExpr->affExpr==OE_Rollback 4293 || pExpr->affExpr==OE_Abort 4294 || pExpr->affExpr==OE_Fail 4295 || pExpr->affExpr==OE_Ignore 4296 ); 4297 if( !pParse->pTriggerTab ){ 4298 sqlite3ErrorMsg(pParse, 4299 "RAISE() may only be used within a trigger-program"); 4300 return 0; 4301 } 4302 if( pExpr->affExpr==OE_Abort ){ 4303 sqlite3MayAbort(pParse); 4304 } 4305 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4306 if( pExpr->affExpr==OE_Ignore ){ 4307 sqlite3VdbeAddOp4( 4308 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4309 VdbeCoverage(v); 4310 }else{ 4311 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4312 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4313 } 4314 4315 break; 4316 } 4317 #endif 4318 } 4319 sqlite3ReleaseTempReg(pParse, regFree1); 4320 sqlite3ReleaseTempReg(pParse, regFree2); 4321 return inReg; 4322 } 4323 4324 /* 4325 ** Factor out the code of the given expression to initialization time. 4326 ** 4327 ** If regDest>=0 then the result is always stored in that register and the 4328 ** result is not reusable. If regDest<0 then this routine is free to 4329 ** store the value whereever it wants. The register where the expression 4330 ** is stored is returned. When regDest<0, two identical expressions will 4331 ** code to the same register. 4332 */ 4333 int sqlite3ExprCodeAtInit( 4334 Parse *pParse, /* Parsing context */ 4335 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4336 int regDest /* Store the value in this register */ 4337 ){ 4338 ExprList *p; 4339 assert( ConstFactorOk(pParse) ); 4340 p = pParse->pConstExpr; 4341 if( regDest<0 && p ){ 4342 struct ExprList_item *pItem; 4343 int i; 4344 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4345 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4346 return pItem->u.iConstExprReg; 4347 } 4348 } 4349 } 4350 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4351 p = sqlite3ExprListAppend(pParse, p, pExpr); 4352 if( p ){ 4353 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4354 pItem->reusable = regDest<0; 4355 if( regDest<0 ) regDest = ++pParse->nMem; 4356 pItem->u.iConstExprReg = regDest; 4357 } 4358 pParse->pConstExpr = p; 4359 return regDest; 4360 } 4361 4362 /* 4363 ** Generate code to evaluate an expression and store the results 4364 ** into a register. Return the register number where the results 4365 ** are stored. 4366 ** 4367 ** If the register is a temporary register that can be deallocated, 4368 ** then write its number into *pReg. If the result register is not 4369 ** a temporary, then set *pReg to zero. 4370 ** 4371 ** If pExpr is a constant, then this routine might generate this 4372 ** code to fill the register in the initialization section of the 4373 ** VDBE program, in order to factor it out of the evaluation loop. 4374 */ 4375 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4376 int r2; 4377 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4378 if( ConstFactorOk(pParse) 4379 && pExpr->op!=TK_REGISTER 4380 && sqlite3ExprIsConstantNotJoin(pExpr) 4381 ){ 4382 *pReg = 0; 4383 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4384 }else{ 4385 int r1 = sqlite3GetTempReg(pParse); 4386 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4387 if( r2==r1 ){ 4388 *pReg = r1; 4389 }else{ 4390 sqlite3ReleaseTempReg(pParse, r1); 4391 *pReg = 0; 4392 } 4393 } 4394 return r2; 4395 } 4396 4397 /* 4398 ** Generate code that will evaluate expression pExpr and store the 4399 ** results in register target. The results are guaranteed to appear 4400 ** in register target. 4401 */ 4402 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4403 int inReg; 4404 4405 assert( target>0 && target<=pParse->nMem ); 4406 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4407 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4408 if( inReg!=target && pParse->pVdbe ){ 4409 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4410 } 4411 } 4412 4413 /* 4414 ** Make a transient copy of expression pExpr and then code it using 4415 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4416 ** except that the input expression is guaranteed to be unchanged. 4417 */ 4418 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4419 sqlite3 *db = pParse->db; 4420 pExpr = sqlite3ExprDup(db, pExpr, 0); 4421 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4422 sqlite3ExprDelete(db, pExpr); 4423 } 4424 4425 /* 4426 ** Generate code that will evaluate expression pExpr and store the 4427 ** results in register target. The results are guaranteed to appear 4428 ** in register target. If the expression is constant, then this routine 4429 ** might choose to code the expression at initialization time. 4430 */ 4431 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4432 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4433 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4434 }else{ 4435 sqlite3ExprCode(pParse, pExpr, target); 4436 } 4437 } 4438 4439 /* 4440 ** Generate code that pushes the value of every element of the given 4441 ** expression list into a sequence of registers beginning at target. 4442 ** 4443 ** Return the number of elements evaluated. The number returned will 4444 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4445 ** is defined. 4446 ** 4447 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4448 ** filled using OP_SCopy. OP_Copy must be used instead. 4449 ** 4450 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4451 ** factored out into initialization code. 4452 ** 4453 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4454 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4455 ** in registers at srcReg, and so the value can be copied from there. 4456 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4457 ** are simply omitted rather than being copied from srcReg. 4458 */ 4459 int sqlite3ExprCodeExprList( 4460 Parse *pParse, /* Parsing context */ 4461 ExprList *pList, /* The expression list to be coded */ 4462 int target, /* Where to write results */ 4463 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4464 u8 flags /* SQLITE_ECEL_* flags */ 4465 ){ 4466 struct ExprList_item *pItem; 4467 int i, j, n; 4468 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4469 Vdbe *v = pParse->pVdbe; 4470 assert( pList!=0 ); 4471 assert( target>0 ); 4472 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4473 n = pList->nExpr; 4474 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4475 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4476 Expr *pExpr = pItem->pExpr; 4477 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4478 if( pItem->bSorterRef ){ 4479 i--; 4480 n--; 4481 }else 4482 #endif 4483 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4484 if( flags & SQLITE_ECEL_OMITREF ){ 4485 i--; 4486 n--; 4487 }else{ 4488 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4489 } 4490 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4491 && sqlite3ExprIsConstantNotJoin(pExpr) 4492 ){ 4493 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4494 }else{ 4495 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4496 if( inReg!=target+i ){ 4497 VdbeOp *pOp; 4498 if( copyOp==OP_Copy 4499 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4500 && pOp->p1+pOp->p3+1==inReg 4501 && pOp->p2+pOp->p3+1==target+i 4502 ){ 4503 pOp->p3++; 4504 }else{ 4505 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4506 } 4507 } 4508 } 4509 } 4510 return n; 4511 } 4512 4513 /* 4514 ** Generate code for a BETWEEN operator. 4515 ** 4516 ** x BETWEEN y AND z 4517 ** 4518 ** The above is equivalent to 4519 ** 4520 ** x>=y AND x<=z 4521 ** 4522 ** Code it as such, taking care to do the common subexpression 4523 ** elimination of x. 4524 ** 4525 ** The xJumpIf parameter determines details: 4526 ** 4527 ** NULL: Store the boolean result in reg[dest] 4528 ** sqlite3ExprIfTrue: Jump to dest if true 4529 ** sqlite3ExprIfFalse: Jump to dest if false 4530 ** 4531 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4532 */ 4533 static void exprCodeBetween( 4534 Parse *pParse, /* Parsing and code generating context */ 4535 Expr *pExpr, /* The BETWEEN expression */ 4536 int dest, /* Jump destination or storage location */ 4537 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4538 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4539 ){ 4540 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4541 Expr compLeft; /* The x>=y term */ 4542 Expr compRight; /* The x<=z term */ 4543 int regFree1 = 0; /* Temporary use register */ 4544 Expr *pDel = 0; 4545 sqlite3 *db = pParse->db; 4546 4547 memset(&compLeft, 0, sizeof(Expr)); 4548 memset(&compRight, 0, sizeof(Expr)); 4549 memset(&exprAnd, 0, sizeof(Expr)); 4550 4551 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4552 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4553 if( db->mallocFailed==0 ){ 4554 exprAnd.op = TK_AND; 4555 exprAnd.pLeft = &compLeft; 4556 exprAnd.pRight = &compRight; 4557 compLeft.op = TK_GE; 4558 compLeft.pLeft = pDel; 4559 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4560 compRight.op = TK_LE; 4561 compRight.pLeft = pDel; 4562 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4563 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4564 if( xJump ){ 4565 xJump(pParse, &exprAnd, dest, jumpIfNull); 4566 }else{ 4567 /* Mark the expression is being from the ON or USING clause of a join 4568 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4569 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4570 ** for clarity, but we are out of bits in the Expr.flags field so we 4571 ** have to reuse the EP_FromJoin bit. Bummer. */ 4572 pDel->flags |= EP_FromJoin; 4573 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4574 } 4575 sqlite3ReleaseTempReg(pParse, regFree1); 4576 } 4577 sqlite3ExprDelete(db, pDel); 4578 4579 /* Ensure adequate test coverage */ 4580 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4581 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4582 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4583 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4584 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4585 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4586 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4587 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4588 testcase( xJump==0 ); 4589 } 4590 4591 /* 4592 ** Generate code for a boolean expression such that a jump is made 4593 ** to the label "dest" if the expression is true but execution 4594 ** continues straight thru if the expression is false. 4595 ** 4596 ** If the expression evaluates to NULL (neither true nor false), then 4597 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4598 ** 4599 ** This code depends on the fact that certain token values (ex: TK_EQ) 4600 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4601 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4602 ** the make process cause these values to align. Assert()s in the code 4603 ** below verify that the numbers are aligned correctly. 4604 */ 4605 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4606 Vdbe *v = pParse->pVdbe; 4607 int op = 0; 4608 int regFree1 = 0; 4609 int regFree2 = 0; 4610 int r1, r2; 4611 4612 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4613 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4614 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4615 op = pExpr->op; 4616 switch( op ){ 4617 case TK_AND: 4618 case TK_OR: { 4619 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4620 if( pAlt!=pExpr ){ 4621 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4622 }else if( op==TK_AND ){ 4623 int d2 = sqlite3VdbeMakeLabel(pParse); 4624 testcase( jumpIfNull==0 ); 4625 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4626 jumpIfNull^SQLITE_JUMPIFNULL); 4627 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4628 sqlite3VdbeResolveLabel(v, d2); 4629 }else{ 4630 testcase( jumpIfNull==0 ); 4631 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4632 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4633 } 4634 break; 4635 } 4636 case TK_NOT: { 4637 testcase( jumpIfNull==0 ); 4638 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4639 break; 4640 } 4641 case TK_TRUTH: { 4642 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4643 int isTrue; /* IS TRUE or IS NOT TRUE */ 4644 testcase( jumpIfNull==0 ); 4645 isNot = pExpr->op2==TK_ISNOT; 4646 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4647 testcase( isTrue && isNot ); 4648 testcase( !isTrue && isNot ); 4649 if( isTrue ^ isNot ){ 4650 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4651 isNot ? SQLITE_JUMPIFNULL : 0); 4652 }else{ 4653 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4654 isNot ? SQLITE_JUMPIFNULL : 0); 4655 } 4656 break; 4657 } 4658 case TK_IS: 4659 case TK_ISNOT: 4660 testcase( op==TK_IS ); 4661 testcase( op==TK_ISNOT ); 4662 op = (op==TK_IS) ? TK_EQ : TK_NE; 4663 jumpIfNull = SQLITE_NULLEQ; 4664 /* Fall thru */ 4665 case TK_LT: 4666 case TK_LE: 4667 case TK_GT: 4668 case TK_GE: 4669 case TK_NE: 4670 case TK_EQ: { 4671 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4672 testcase( jumpIfNull==0 ); 4673 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4674 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4675 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4676 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4677 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4678 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4679 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4680 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4681 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4682 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4683 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4684 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4685 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4686 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4687 testcase( regFree1==0 ); 4688 testcase( regFree2==0 ); 4689 break; 4690 } 4691 case TK_ISNULL: 4692 case TK_NOTNULL: { 4693 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4694 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4695 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4696 sqlite3VdbeAddOp2(v, op, r1, dest); 4697 VdbeCoverageIf(v, op==TK_ISNULL); 4698 VdbeCoverageIf(v, op==TK_NOTNULL); 4699 testcase( regFree1==0 ); 4700 break; 4701 } 4702 case TK_BETWEEN: { 4703 testcase( jumpIfNull==0 ); 4704 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4705 break; 4706 } 4707 #ifndef SQLITE_OMIT_SUBQUERY 4708 case TK_IN: { 4709 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4710 int destIfNull = jumpIfNull ? dest : destIfFalse; 4711 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4712 sqlite3VdbeGoto(v, dest); 4713 sqlite3VdbeResolveLabel(v, destIfFalse); 4714 break; 4715 } 4716 #endif 4717 default: { 4718 default_expr: 4719 if( ExprAlwaysTrue(pExpr) ){ 4720 sqlite3VdbeGoto(v, dest); 4721 }else if( ExprAlwaysFalse(pExpr) ){ 4722 /* No-op */ 4723 }else{ 4724 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4725 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4726 VdbeCoverage(v); 4727 testcase( regFree1==0 ); 4728 testcase( jumpIfNull==0 ); 4729 } 4730 break; 4731 } 4732 } 4733 sqlite3ReleaseTempReg(pParse, regFree1); 4734 sqlite3ReleaseTempReg(pParse, regFree2); 4735 } 4736 4737 /* 4738 ** Generate code for a boolean expression such that a jump is made 4739 ** to the label "dest" if the expression is false but execution 4740 ** continues straight thru if the expression is true. 4741 ** 4742 ** If the expression evaluates to NULL (neither true nor false) then 4743 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4744 ** is 0. 4745 */ 4746 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4747 Vdbe *v = pParse->pVdbe; 4748 int op = 0; 4749 int regFree1 = 0; 4750 int regFree2 = 0; 4751 int r1, r2; 4752 4753 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4754 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4755 if( pExpr==0 ) return; 4756 4757 /* The value of pExpr->op and op are related as follows: 4758 ** 4759 ** pExpr->op op 4760 ** --------- ---------- 4761 ** TK_ISNULL OP_NotNull 4762 ** TK_NOTNULL OP_IsNull 4763 ** TK_NE OP_Eq 4764 ** TK_EQ OP_Ne 4765 ** TK_GT OP_Le 4766 ** TK_LE OP_Gt 4767 ** TK_GE OP_Lt 4768 ** TK_LT OP_Ge 4769 ** 4770 ** For other values of pExpr->op, op is undefined and unused. 4771 ** The value of TK_ and OP_ constants are arranged such that we 4772 ** can compute the mapping above using the following expression. 4773 ** Assert()s verify that the computation is correct. 4774 */ 4775 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4776 4777 /* Verify correct alignment of TK_ and OP_ constants 4778 */ 4779 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4780 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4781 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4782 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4783 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4784 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4785 assert( pExpr->op!=TK_GT || op==OP_Le ); 4786 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4787 4788 switch( pExpr->op ){ 4789 case TK_AND: 4790 case TK_OR: { 4791 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4792 if( pAlt!=pExpr ){ 4793 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4794 }else if( pExpr->op==TK_AND ){ 4795 testcase( jumpIfNull==0 ); 4796 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4797 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4798 }else{ 4799 int d2 = sqlite3VdbeMakeLabel(pParse); 4800 testcase( jumpIfNull==0 ); 4801 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4802 jumpIfNull^SQLITE_JUMPIFNULL); 4803 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4804 sqlite3VdbeResolveLabel(v, d2); 4805 } 4806 break; 4807 } 4808 case TK_NOT: { 4809 testcase( jumpIfNull==0 ); 4810 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4811 break; 4812 } 4813 case TK_TRUTH: { 4814 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4815 int isTrue; /* IS TRUE or IS NOT TRUE */ 4816 testcase( jumpIfNull==0 ); 4817 isNot = pExpr->op2==TK_ISNOT; 4818 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4819 testcase( isTrue && isNot ); 4820 testcase( !isTrue && isNot ); 4821 if( isTrue ^ isNot ){ 4822 /* IS TRUE and IS NOT FALSE */ 4823 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4824 isNot ? 0 : SQLITE_JUMPIFNULL); 4825 4826 }else{ 4827 /* IS FALSE and IS NOT TRUE */ 4828 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4829 isNot ? 0 : SQLITE_JUMPIFNULL); 4830 } 4831 break; 4832 } 4833 case TK_IS: 4834 case TK_ISNOT: 4835 testcase( pExpr->op==TK_IS ); 4836 testcase( pExpr->op==TK_ISNOT ); 4837 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4838 jumpIfNull = SQLITE_NULLEQ; 4839 /* Fall thru */ 4840 case TK_LT: 4841 case TK_LE: 4842 case TK_GT: 4843 case TK_GE: 4844 case TK_NE: 4845 case TK_EQ: { 4846 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4847 testcase( jumpIfNull==0 ); 4848 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4849 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4850 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4851 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 4852 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4853 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4854 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4855 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4856 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4857 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4858 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4859 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4860 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4861 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4862 testcase( regFree1==0 ); 4863 testcase( regFree2==0 ); 4864 break; 4865 } 4866 case TK_ISNULL: 4867 case TK_NOTNULL: { 4868 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4869 sqlite3VdbeAddOp2(v, op, r1, dest); 4870 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4871 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4872 testcase( regFree1==0 ); 4873 break; 4874 } 4875 case TK_BETWEEN: { 4876 testcase( jumpIfNull==0 ); 4877 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4878 break; 4879 } 4880 #ifndef SQLITE_OMIT_SUBQUERY 4881 case TK_IN: { 4882 if( jumpIfNull ){ 4883 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4884 }else{ 4885 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4886 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4887 sqlite3VdbeResolveLabel(v, destIfNull); 4888 } 4889 break; 4890 } 4891 #endif 4892 default: { 4893 default_expr: 4894 if( ExprAlwaysFalse(pExpr) ){ 4895 sqlite3VdbeGoto(v, dest); 4896 }else if( ExprAlwaysTrue(pExpr) ){ 4897 /* no-op */ 4898 }else{ 4899 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4900 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4901 VdbeCoverage(v); 4902 testcase( regFree1==0 ); 4903 testcase( jumpIfNull==0 ); 4904 } 4905 break; 4906 } 4907 } 4908 sqlite3ReleaseTempReg(pParse, regFree1); 4909 sqlite3ReleaseTempReg(pParse, regFree2); 4910 } 4911 4912 /* 4913 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4914 ** code generation, and that copy is deleted after code generation. This 4915 ** ensures that the original pExpr is unchanged. 4916 */ 4917 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4918 sqlite3 *db = pParse->db; 4919 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4920 if( db->mallocFailed==0 ){ 4921 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4922 } 4923 sqlite3ExprDelete(db, pCopy); 4924 } 4925 4926 /* 4927 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4928 ** type of expression. 4929 ** 4930 ** If pExpr is a simple SQL value - an integer, real, string, blob 4931 ** or NULL value - then the VDBE currently being prepared is configured 4932 ** to re-prepare each time a new value is bound to variable pVar. 4933 ** 4934 ** Additionally, if pExpr is a simple SQL value and the value is the 4935 ** same as that currently bound to variable pVar, non-zero is returned. 4936 ** Otherwise, if the values are not the same or if pExpr is not a simple 4937 ** SQL value, zero is returned. 4938 */ 4939 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4940 int res = 0; 4941 int iVar; 4942 sqlite3_value *pL, *pR = 0; 4943 4944 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4945 if( pR ){ 4946 iVar = pVar->iColumn; 4947 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4948 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4949 if( pL ){ 4950 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4951 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4952 } 4953 res = 0==sqlite3MemCompare(pL, pR, 0); 4954 } 4955 sqlite3ValueFree(pR); 4956 sqlite3ValueFree(pL); 4957 } 4958 4959 return res; 4960 } 4961 4962 /* 4963 ** Do a deep comparison of two expression trees. Return 0 if the two 4964 ** expressions are completely identical. Return 1 if they differ only 4965 ** by a COLLATE operator at the top level. Return 2 if there are differences 4966 ** other than the top-level COLLATE operator. 4967 ** 4968 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4969 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4970 ** 4971 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4972 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4973 ** 4974 ** Sometimes this routine will return 2 even if the two expressions 4975 ** really are equivalent. If we cannot prove that the expressions are 4976 ** identical, we return 2 just to be safe. So if this routine 4977 ** returns 2, then you do not really know for certain if the two 4978 ** expressions are the same. But if you get a 0 or 1 return, then you 4979 ** can be sure the expressions are the same. In the places where 4980 ** this routine is used, it does not hurt to get an extra 2 - that 4981 ** just might result in some slightly slower code. But returning 4982 ** an incorrect 0 or 1 could lead to a malfunction. 4983 ** 4984 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4985 ** pParse->pReprepare can be matched against literals in pB. The 4986 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4987 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4988 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4989 ** pB causes a return value of 2. 4990 */ 4991 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4992 u32 combinedFlags; 4993 if( pA==0 || pB==0 ){ 4994 return pB==pA ? 0 : 2; 4995 } 4996 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4997 return 0; 4998 } 4999 combinedFlags = pA->flags | pB->flags; 5000 if( combinedFlags & EP_IntValue ){ 5001 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5002 return 0; 5003 } 5004 return 2; 5005 } 5006 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5007 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5008 return 1; 5009 } 5010 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5011 return 1; 5012 } 5013 return 2; 5014 } 5015 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5016 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5017 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5018 #ifndef SQLITE_OMIT_WINDOWFUNC 5019 assert( pA->op==pB->op ); 5020 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5021 return 2; 5022 } 5023 if( ExprHasProperty(pA,EP_WinFunc) ){ 5024 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5025 return 2; 5026 } 5027 } 5028 #endif 5029 }else if( pA->op==TK_NULL ){ 5030 return 0; 5031 }else if( pA->op==TK_COLLATE ){ 5032 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5033 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5034 return 2; 5035 } 5036 } 5037 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5038 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5039 if( (combinedFlags & EP_TokenOnly)==0 ){ 5040 if( combinedFlags & EP_xIsSelect ) return 2; 5041 if( (combinedFlags & EP_FixedCol)==0 5042 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5043 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5044 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5045 if( pA->op!=TK_STRING 5046 && pA->op!=TK_TRUEFALSE 5047 && (combinedFlags & EP_Reduced)==0 5048 ){ 5049 if( pA->iColumn!=pB->iColumn ) return 2; 5050 if( pA->op2!=pB->op2 ){ 5051 if( pA->op==TK_TRUTH ) return 2; 5052 if( pA->op==TK_FUNCTION && iTab<0 ){ 5053 /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') )); 5054 ** INSERT INTO t1(a) VALUES(julianday('now')+10); 5055 ** Without this test, sqlite3ExprCodeAtInit() will run on the 5056 ** the julianday() of INSERT first, and remember that expression. 5057 ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK 5058 ** constraint as redundant, reusing the one from the INSERT, even 5059 ** though the julianday() in INSERT lacks the critical NC_IsCheck 5060 ** flag. See ticket [830277d9db6c3ba1] (2019-10-30) 5061 */ 5062 return 2; 5063 } 5064 } 5065 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5066 return 2; 5067 } 5068 } 5069 } 5070 return 0; 5071 } 5072 5073 /* 5074 ** Compare two ExprList objects. Return 0 if they are identical and 5075 ** non-zero if they differ in any way. 5076 ** 5077 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5078 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5079 ** 5080 ** This routine might return non-zero for equivalent ExprLists. The 5081 ** only consequence will be disabled optimizations. But this routine 5082 ** must never return 0 if the two ExprList objects are different, or 5083 ** a malfunction will result. 5084 ** 5085 ** Two NULL pointers are considered to be the same. But a NULL pointer 5086 ** always differs from a non-NULL pointer. 5087 */ 5088 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5089 int i; 5090 if( pA==0 && pB==0 ) return 0; 5091 if( pA==0 || pB==0 ) return 1; 5092 if( pA->nExpr!=pB->nExpr ) return 1; 5093 for(i=0; i<pA->nExpr; i++){ 5094 Expr *pExprA = pA->a[i].pExpr; 5095 Expr *pExprB = pB->a[i].pExpr; 5096 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5097 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 5098 } 5099 return 0; 5100 } 5101 5102 /* 5103 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5104 ** are ignored. 5105 */ 5106 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5107 return sqlite3ExprCompare(0, 5108 sqlite3ExprSkipCollateAndLikely(pA), 5109 sqlite3ExprSkipCollateAndLikely(pB), 5110 iTab); 5111 } 5112 5113 /* 5114 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5115 ** 5116 ** Or if seenNot is true, return non-zero if Expr p can only be 5117 ** non-NULL if pNN is not NULL 5118 */ 5119 static int exprImpliesNotNull( 5120 Parse *pParse, /* Parsing context */ 5121 Expr *p, /* The expression to be checked */ 5122 Expr *pNN, /* The expression that is NOT NULL */ 5123 int iTab, /* Table being evaluated */ 5124 int seenNot /* Return true only if p can be any non-NULL value */ 5125 ){ 5126 assert( p ); 5127 assert( pNN ); 5128 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5129 return pNN->op!=TK_NULL; 5130 } 5131 switch( p->op ){ 5132 case TK_IN: { 5133 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5134 assert( ExprHasProperty(p,EP_xIsSelect) 5135 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5136 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5137 } 5138 case TK_BETWEEN: { 5139 ExprList *pList = p->x.pList; 5140 assert( pList!=0 ); 5141 assert( pList->nExpr==2 ); 5142 if( seenNot ) return 0; 5143 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5144 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5145 ){ 5146 return 1; 5147 } 5148 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5149 } 5150 case TK_EQ: 5151 case TK_NE: 5152 case TK_LT: 5153 case TK_LE: 5154 case TK_GT: 5155 case TK_GE: 5156 case TK_PLUS: 5157 case TK_MINUS: 5158 case TK_BITOR: 5159 case TK_LSHIFT: 5160 case TK_RSHIFT: 5161 case TK_CONCAT: 5162 seenNot = 1; 5163 /* Fall thru */ 5164 case TK_STAR: 5165 case TK_REM: 5166 case TK_BITAND: 5167 case TK_SLASH: { 5168 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5169 /* Fall thru into the next case */ 5170 } 5171 case TK_SPAN: 5172 case TK_COLLATE: 5173 case TK_UPLUS: 5174 case TK_UMINUS: { 5175 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5176 } 5177 case TK_TRUTH: { 5178 if( seenNot ) return 0; 5179 if( p->op2!=TK_IS ) return 0; 5180 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5181 } 5182 case TK_BITNOT: 5183 case TK_NOT: { 5184 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5185 } 5186 } 5187 return 0; 5188 } 5189 5190 /* 5191 ** Return true if we can prove the pE2 will always be true if pE1 is 5192 ** true. Return false if we cannot complete the proof or if pE2 might 5193 ** be false. Examples: 5194 ** 5195 ** pE1: x==5 pE2: x==5 Result: true 5196 ** pE1: x>0 pE2: x==5 Result: false 5197 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5198 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5199 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5200 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5201 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5202 ** 5203 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5204 ** Expr.iTable<0 then assume a table number given by iTab. 5205 ** 5206 ** If pParse is not NULL, then the values of bound variables in pE1 are 5207 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5208 ** modified to record which bound variables are referenced. If pParse 5209 ** is NULL, then false will be returned if pE1 contains any bound variables. 5210 ** 5211 ** When in doubt, return false. Returning true might give a performance 5212 ** improvement. Returning false might cause a performance reduction, but 5213 ** it will always give the correct answer and is hence always safe. 5214 */ 5215 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5216 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5217 return 1; 5218 } 5219 if( pE2->op==TK_OR 5220 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5221 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5222 ){ 5223 return 1; 5224 } 5225 if( pE2->op==TK_NOTNULL 5226 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5227 ){ 5228 return 1; 5229 } 5230 return 0; 5231 } 5232 5233 /* 5234 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5235 ** If the expression node requires that the table at pWalker->iCur 5236 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5237 ** 5238 ** This routine controls an optimization. False positives (setting 5239 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5240 ** (never setting pWalker->eCode) is a harmless missed optimization. 5241 */ 5242 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5243 testcase( pExpr->op==TK_AGG_COLUMN ); 5244 testcase( pExpr->op==TK_AGG_FUNCTION ); 5245 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5246 switch( pExpr->op ){ 5247 case TK_ISNOT: 5248 case TK_ISNULL: 5249 case TK_NOTNULL: 5250 case TK_IS: 5251 case TK_OR: 5252 case TK_VECTOR: 5253 case TK_CASE: 5254 case TK_IN: 5255 case TK_FUNCTION: 5256 case TK_TRUTH: 5257 testcase( pExpr->op==TK_ISNOT ); 5258 testcase( pExpr->op==TK_ISNULL ); 5259 testcase( pExpr->op==TK_NOTNULL ); 5260 testcase( pExpr->op==TK_IS ); 5261 testcase( pExpr->op==TK_OR ); 5262 testcase( pExpr->op==TK_VECTOR ); 5263 testcase( pExpr->op==TK_CASE ); 5264 testcase( pExpr->op==TK_IN ); 5265 testcase( pExpr->op==TK_FUNCTION ); 5266 testcase( pExpr->op==TK_TRUTH ); 5267 return WRC_Prune; 5268 case TK_COLUMN: 5269 if( pWalker->u.iCur==pExpr->iTable ){ 5270 pWalker->eCode = 1; 5271 return WRC_Abort; 5272 } 5273 return WRC_Prune; 5274 5275 case TK_AND: 5276 assert( pWalker->eCode==0 ); 5277 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5278 if( pWalker->eCode ){ 5279 pWalker->eCode = 0; 5280 sqlite3WalkExpr(pWalker, pExpr->pRight); 5281 } 5282 return WRC_Prune; 5283 5284 case TK_BETWEEN: 5285 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5286 return WRC_Prune; 5287 5288 /* Virtual tables are allowed to use constraints like x=NULL. So 5289 ** a term of the form x=y does not prove that y is not null if x 5290 ** is the column of a virtual table */ 5291 case TK_EQ: 5292 case TK_NE: 5293 case TK_LT: 5294 case TK_LE: 5295 case TK_GT: 5296 case TK_GE: 5297 testcase( pExpr->op==TK_EQ ); 5298 testcase( pExpr->op==TK_NE ); 5299 testcase( pExpr->op==TK_LT ); 5300 testcase( pExpr->op==TK_LE ); 5301 testcase( pExpr->op==TK_GT ); 5302 testcase( pExpr->op==TK_GE ); 5303 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5304 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5305 ){ 5306 return WRC_Prune; 5307 } 5308 5309 default: 5310 return WRC_Continue; 5311 } 5312 } 5313 5314 /* 5315 ** Return true (non-zero) if expression p can only be true if at least 5316 ** one column of table iTab is non-null. In other words, return true 5317 ** if expression p will always be NULL or false if every column of iTab 5318 ** is NULL. 5319 ** 5320 ** False negatives are acceptable. In other words, it is ok to return 5321 ** zero even if expression p will never be true of every column of iTab 5322 ** is NULL. A false negative is merely a missed optimization opportunity. 5323 ** 5324 ** False positives are not allowed, however. A false positive may result 5325 ** in an incorrect answer. 5326 ** 5327 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5328 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5329 ** 5330 ** This routine is used to check if a LEFT JOIN can be converted into 5331 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5332 ** clause requires that some column of the right table of the LEFT JOIN 5333 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5334 ** ordinary join. 5335 */ 5336 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5337 Walker w; 5338 p = sqlite3ExprSkipCollateAndLikely(p); 5339 if( p==0 ) return 0; 5340 if( p->op==TK_NOTNULL ){ 5341 p = p->pLeft; 5342 }else{ 5343 while( p->op==TK_AND ){ 5344 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5345 p = p->pRight; 5346 } 5347 } 5348 w.xExprCallback = impliesNotNullRow; 5349 w.xSelectCallback = 0; 5350 w.xSelectCallback2 = 0; 5351 w.eCode = 0; 5352 w.u.iCur = iTab; 5353 sqlite3WalkExpr(&w, p); 5354 return w.eCode; 5355 } 5356 5357 /* 5358 ** An instance of the following structure is used by the tree walker 5359 ** to determine if an expression can be evaluated by reference to the 5360 ** index only, without having to do a search for the corresponding 5361 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5362 ** is the cursor for the table. 5363 */ 5364 struct IdxCover { 5365 Index *pIdx; /* The index to be tested for coverage */ 5366 int iCur; /* Cursor number for the table corresponding to the index */ 5367 }; 5368 5369 /* 5370 ** Check to see if there are references to columns in table 5371 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5372 ** pWalker->u.pIdxCover->pIdx. 5373 */ 5374 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5375 if( pExpr->op==TK_COLUMN 5376 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5377 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5378 ){ 5379 pWalker->eCode = 1; 5380 return WRC_Abort; 5381 } 5382 return WRC_Continue; 5383 } 5384 5385 /* 5386 ** Determine if an index pIdx on table with cursor iCur contains will 5387 ** the expression pExpr. Return true if the index does cover the 5388 ** expression and false if the pExpr expression references table columns 5389 ** that are not found in the index pIdx. 5390 ** 5391 ** An index covering an expression means that the expression can be 5392 ** evaluated using only the index and without having to lookup the 5393 ** corresponding table entry. 5394 */ 5395 int sqlite3ExprCoveredByIndex( 5396 Expr *pExpr, /* The index to be tested */ 5397 int iCur, /* The cursor number for the corresponding table */ 5398 Index *pIdx /* The index that might be used for coverage */ 5399 ){ 5400 Walker w; 5401 struct IdxCover xcov; 5402 memset(&w, 0, sizeof(w)); 5403 xcov.iCur = iCur; 5404 xcov.pIdx = pIdx; 5405 w.xExprCallback = exprIdxCover; 5406 w.u.pIdxCover = &xcov; 5407 sqlite3WalkExpr(&w, pExpr); 5408 return !w.eCode; 5409 } 5410 5411 5412 /* 5413 ** An instance of the following structure is used by the tree walker 5414 ** to count references to table columns in the arguments of an 5415 ** aggregate function, in order to implement the 5416 ** sqlite3FunctionThisSrc() routine. 5417 */ 5418 struct SrcCount { 5419 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5420 int nThis; /* Number of references to columns in pSrcList */ 5421 int nOther; /* Number of references to columns in other FROM clauses */ 5422 }; 5423 5424 /* 5425 ** Count the number of references to columns. 5426 */ 5427 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5428 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5429 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5430 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5431 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5432 ** NEVER() will need to be removed. */ 5433 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5434 int i; 5435 struct SrcCount *p = pWalker->u.pSrcCount; 5436 SrcList *pSrc = p->pSrc; 5437 int nSrc = pSrc ? pSrc->nSrc : 0; 5438 for(i=0; i<nSrc; i++){ 5439 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5440 } 5441 if( i<nSrc ){ 5442 p->nThis++; 5443 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5444 /* In a well-formed parse tree (no name resolution errors), 5445 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5446 ** outer context. Those are the only ones to count as "other" */ 5447 p->nOther++; 5448 } 5449 } 5450 return WRC_Continue; 5451 } 5452 5453 /* 5454 ** Determine if any of the arguments to the pExpr Function reference 5455 ** pSrcList. Return true if they do. Also return true if the function 5456 ** has no arguments or has only constant arguments. Return false if pExpr 5457 ** references columns but not columns of tables found in pSrcList. 5458 */ 5459 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5460 Walker w; 5461 struct SrcCount cnt; 5462 assert( pExpr->op==TK_AGG_FUNCTION ); 5463 memset(&w, 0, sizeof(w)); 5464 w.xExprCallback = exprSrcCount; 5465 w.xSelectCallback = sqlite3SelectWalkNoop; 5466 w.u.pSrcCount = &cnt; 5467 cnt.pSrc = pSrcList; 5468 cnt.nThis = 0; 5469 cnt.nOther = 0; 5470 sqlite3WalkExprList(&w, pExpr->x.pList); 5471 return cnt.nThis>0 || cnt.nOther==0; 5472 } 5473 5474 /* 5475 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5476 ** the new element. Return a negative number if malloc fails. 5477 */ 5478 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5479 int i; 5480 pInfo->aCol = sqlite3ArrayAllocate( 5481 db, 5482 pInfo->aCol, 5483 sizeof(pInfo->aCol[0]), 5484 &pInfo->nColumn, 5485 &i 5486 ); 5487 return i; 5488 } 5489 5490 /* 5491 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5492 ** the new element. Return a negative number if malloc fails. 5493 */ 5494 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5495 int i; 5496 pInfo->aFunc = sqlite3ArrayAllocate( 5497 db, 5498 pInfo->aFunc, 5499 sizeof(pInfo->aFunc[0]), 5500 &pInfo->nFunc, 5501 &i 5502 ); 5503 return i; 5504 } 5505 5506 /* 5507 ** This is the xExprCallback for a tree walker. It is used to 5508 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5509 ** for additional information. 5510 */ 5511 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5512 int i; 5513 NameContext *pNC = pWalker->u.pNC; 5514 Parse *pParse = pNC->pParse; 5515 SrcList *pSrcList = pNC->pSrcList; 5516 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5517 5518 assert( pNC->ncFlags & NC_UAggInfo ); 5519 switch( pExpr->op ){ 5520 case TK_AGG_COLUMN: 5521 case TK_COLUMN: { 5522 testcase( pExpr->op==TK_AGG_COLUMN ); 5523 testcase( pExpr->op==TK_COLUMN ); 5524 /* Check to see if the column is in one of the tables in the FROM 5525 ** clause of the aggregate query */ 5526 if( ALWAYS(pSrcList!=0) ){ 5527 struct SrcList_item *pItem = pSrcList->a; 5528 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5529 struct AggInfo_col *pCol; 5530 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5531 if( pExpr->iTable==pItem->iCursor ){ 5532 /* If we reach this point, it means that pExpr refers to a table 5533 ** that is in the FROM clause of the aggregate query. 5534 ** 5535 ** Make an entry for the column in pAggInfo->aCol[] if there 5536 ** is not an entry there already. 5537 */ 5538 int k; 5539 pCol = pAggInfo->aCol; 5540 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5541 if( pCol->iTable==pExpr->iTable && 5542 pCol->iColumn==pExpr->iColumn ){ 5543 break; 5544 } 5545 } 5546 if( (k>=pAggInfo->nColumn) 5547 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5548 ){ 5549 pCol = &pAggInfo->aCol[k]; 5550 pCol->pTab = pExpr->y.pTab; 5551 pCol->iTable = pExpr->iTable; 5552 pCol->iColumn = pExpr->iColumn; 5553 pCol->iMem = ++pParse->nMem; 5554 pCol->iSorterColumn = -1; 5555 pCol->pExpr = pExpr; 5556 if( pAggInfo->pGroupBy ){ 5557 int j, n; 5558 ExprList *pGB = pAggInfo->pGroupBy; 5559 struct ExprList_item *pTerm = pGB->a; 5560 n = pGB->nExpr; 5561 for(j=0; j<n; j++, pTerm++){ 5562 Expr *pE = pTerm->pExpr; 5563 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5564 pE->iColumn==pExpr->iColumn ){ 5565 pCol->iSorterColumn = j; 5566 break; 5567 } 5568 } 5569 } 5570 if( pCol->iSorterColumn<0 ){ 5571 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5572 } 5573 } 5574 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5575 ** because it was there before or because we just created it). 5576 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5577 ** pAggInfo->aCol[] entry. 5578 */ 5579 ExprSetVVAProperty(pExpr, EP_NoReduce); 5580 pExpr->pAggInfo = pAggInfo; 5581 pExpr->op = TK_AGG_COLUMN; 5582 pExpr->iAgg = (i16)k; 5583 break; 5584 } /* endif pExpr->iTable==pItem->iCursor */ 5585 } /* end loop over pSrcList */ 5586 } 5587 return WRC_Prune; 5588 } 5589 case TK_AGG_FUNCTION: { 5590 if( (pNC->ncFlags & NC_InAggFunc)==0 5591 && pWalker->walkerDepth==pExpr->op2 5592 ){ 5593 /* Check to see if pExpr is a duplicate of another aggregate 5594 ** function that is already in the pAggInfo structure 5595 */ 5596 struct AggInfo_func *pItem = pAggInfo->aFunc; 5597 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5598 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5599 break; 5600 } 5601 } 5602 if( i>=pAggInfo->nFunc ){ 5603 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5604 */ 5605 u8 enc = ENC(pParse->db); 5606 i = addAggInfoFunc(pParse->db, pAggInfo); 5607 if( i>=0 ){ 5608 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5609 pItem = &pAggInfo->aFunc[i]; 5610 pItem->pExpr = pExpr; 5611 pItem->iMem = ++pParse->nMem; 5612 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5613 pItem->pFunc = sqlite3FindFunction(pParse->db, 5614 pExpr->u.zToken, 5615 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5616 if( pExpr->flags & EP_Distinct ){ 5617 pItem->iDistinct = pParse->nTab++; 5618 }else{ 5619 pItem->iDistinct = -1; 5620 } 5621 } 5622 } 5623 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5624 */ 5625 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5626 ExprSetVVAProperty(pExpr, EP_NoReduce); 5627 pExpr->iAgg = (i16)i; 5628 pExpr->pAggInfo = pAggInfo; 5629 return WRC_Prune; 5630 }else{ 5631 return WRC_Continue; 5632 } 5633 } 5634 } 5635 return WRC_Continue; 5636 } 5637 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5638 UNUSED_PARAMETER(pSelect); 5639 pWalker->walkerDepth++; 5640 return WRC_Continue; 5641 } 5642 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5643 UNUSED_PARAMETER(pSelect); 5644 pWalker->walkerDepth--; 5645 } 5646 5647 /* 5648 ** Analyze the pExpr expression looking for aggregate functions and 5649 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5650 ** points to. Additional entries are made on the AggInfo object as 5651 ** necessary. 5652 ** 5653 ** This routine should only be called after the expression has been 5654 ** analyzed by sqlite3ResolveExprNames(). 5655 */ 5656 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5657 Walker w; 5658 w.xExprCallback = analyzeAggregate; 5659 w.xSelectCallback = analyzeAggregatesInSelect; 5660 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5661 w.walkerDepth = 0; 5662 w.u.pNC = pNC; 5663 w.pParse = 0; 5664 assert( pNC->pSrcList!=0 ); 5665 sqlite3WalkExpr(&w, pExpr); 5666 } 5667 5668 /* 5669 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5670 ** expression list. Return the number of errors. 5671 ** 5672 ** If an error is found, the analysis is cut short. 5673 */ 5674 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5675 struct ExprList_item *pItem; 5676 int i; 5677 if( pList ){ 5678 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5679 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5680 } 5681 } 5682 } 5683 5684 /* 5685 ** Allocate a single new register for use to hold some intermediate result. 5686 */ 5687 int sqlite3GetTempReg(Parse *pParse){ 5688 if( pParse->nTempReg==0 ){ 5689 return ++pParse->nMem; 5690 } 5691 return pParse->aTempReg[--pParse->nTempReg]; 5692 } 5693 5694 /* 5695 ** Deallocate a register, making available for reuse for some other 5696 ** purpose. 5697 */ 5698 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5699 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5700 pParse->aTempReg[pParse->nTempReg++] = iReg; 5701 } 5702 } 5703 5704 /* 5705 ** Allocate or deallocate a block of nReg consecutive registers. 5706 */ 5707 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5708 int i, n; 5709 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5710 i = pParse->iRangeReg; 5711 n = pParse->nRangeReg; 5712 if( nReg<=n ){ 5713 pParse->iRangeReg += nReg; 5714 pParse->nRangeReg -= nReg; 5715 }else{ 5716 i = pParse->nMem+1; 5717 pParse->nMem += nReg; 5718 } 5719 return i; 5720 } 5721 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5722 if( nReg==1 ){ 5723 sqlite3ReleaseTempReg(pParse, iReg); 5724 return; 5725 } 5726 if( nReg>pParse->nRangeReg ){ 5727 pParse->nRangeReg = nReg; 5728 pParse->iRangeReg = iReg; 5729 } 5730 } 5731 5732 /* 5733 ** Mark all temporary registers as being unavailable for reuse. 5734 ** 5735 ** Always invoke this procedure after coding a subroutine or co-routine 5736 ** that might be invoked from other parts of the code, to ensure that 5737 ** the sub/co-routine does not use registers in common with the code that 5738 ** invokes the sub/co-routine. 5739 */ 5740 void sqlite3ClearTempRegCache(Parse *pParse){ 5741 pParse->nTempReg = 0; 5742 pParse->nRangeReg = 0; 5743 } 5744 5745 /* 5746 ** Validate that no temporary register falls within the range of 5747 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5748 ** statements. 5749 */ 5750 #ifdef SQLITE_DEBUG 5751 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5752 int i; 5753 if( pParse->nRangeReg>0 5754 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5755 && pParse->iRangeReg <= iLast 5756 ){ 5757 return 0; 5758 } 5759 for(i=0; i<pParse->nTempReg; i++){ 5760 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5761 return 0; 5762 } 5763 } 5764 return 1; 5765 } 5766 #endif /* SQLITE_DEBUG */ 5767