1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_SELECT ){ 56 assert( pExpr->flags&EP_xIsSelect ); 57 assert( pExpr->x.pSelect!=0 ); 58 assert( pExpr->x.pSelect->pEList!=0 ); 59 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 60 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 61 } 62 if( op==TK_REGISTER ) op = pExpr->op2; 63 #ifndef SQLITE_OMIT_CAST 64 if( op==TK_CAST ){ 65 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 66 return sqlite3AffinityType(pExpr->u.zToken, 0); 67 } 68 #endif 69 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 70 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 71 } 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 return sqlite3ExprAffinity( 75 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 76 ); 77 } 78 if( op==TK_VECTOR ){ 79 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 80 } 81 return pExpr->affExpr; 82 } 83 84 /* 85 ** Set the collating sequence for expression pExpr to be the collating 86 ** sequence named by pToken. Return a pointer to a new Expr node that 87 ** implements the COLLATE operator. 88 ** 89 ** If a memory allocation error occurs, that fact is recorded in pParse->db 90 ** and the pExpr parameter is returned unchanged. 91 */ 92 Expr *sqlite3ExprAddCollateToken( 93 Parse *pParse, /* Parsing context */ 94 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 95 const Token *pCollName, /* Name of collating sequence */ 96 int dequote /* True to dequote pCollName */ 97 ){ 98 assert( pExpr!=0 || pParse->db->mallocFailed ); 99 if( pExpr==0 ) return 0; 100 if( pExpr->op==TK_VECTOR ){ 101 ExprList *pList = pExpr->x.pList; 102 if( ALWAYS(pList!=0) ){ 103 int i; 104 for(i=0; i<pList->nExpr; i++){ 105 pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr, 106 pCollName, dequote); 107 } 108 } 109 }else if( pCollName->n>0 ){ 110 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 111 if( pNew ){ 112 pNew->pLeft = pExpr; 113 pNew->flags |= EP_Collate|EP_Skip; 114 pExpr = pNew; 115 } 116 } 117 return pExpr; 118 } 119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 120 Token s; 121 assert( zC!=0 ); 122 sqlite3TokenInit(&s, (char*)zC); 123 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 124 } 125 126 /* 127 ** Skip over any TK_COLLATE operators. 128 */ 129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 131 assert( pExpr->op==TK_COLLATE ); 132 pExpr = pExpr->pLeft; 133 } 134 return pExpr; 135 } 136 137 /* 138 ** Skip over any TK_COLLATE operators and/or any unlikely() 139 ** or likelihood() or likely() functions at the root of an 140 ** expression. 141 */ 142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 143 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 144 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 146 assert( pExpr->x.pList->nExpr>0 ); 147 assert( pExpr->op==TK_FUNCTION ); 148 pExpr = pExpr->x.pList->a[0].pExpr; 149 }else{ 150 assert( pExpr->op==TK_COLLATE ); 151 pExpr = pExpr->pLeft; 152 } 153 } 154 return pExpr; 155 } 156 157 /* 158 ** Return the collation sequence for the expression pExpr. If 159 ** there is no defined collating sequence, return NULL. 160 ** 161 ** See also: sqlite3ExprNNCollSeq() 162 ** 163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 164 ** default collation if pExpr has no defined collation. 165 ** 166 ** The collating sequence might be determined by a COLLATE operator 167 ** or by the presence of a column with a defined collating sequence. 168 ** COLLATE operators take first precedence. Left operands take 169 ** precedence over right operands. 170 */ 171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 172 sqlite3 *db = pParse->db; 173 CollSeq *pColl = 0; 174 const Expr *p = pExpr; 175 while( p ){ 176 int op = p->op; 177 if( op==TK_REGISTER ) op = p->op2; 178 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 179 && p->y.pTab!=0 180 ){ 181 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 182 ** a TK_COLUMN but was previously evaluated and cached in a register */ 183 int j = p->iColumn; 184 if( j>=0 ){ 185 const char *zColl = p->y.pTab->aCol[j].zColl; 186 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 187 } 188 break; 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 p = p->x.pList->a[0].pExpr; 196 continue; 197 } 198 if( op==TK_COLLATE ){ 199 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 200 break; 201 } 202 if( p->flags & EP_Collate ){ 203 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 204 p = p->pLeft; 205 }else{ 206 Expr *pNext = p->pRight; 207 /* The Expr.x union is never used at the same time as Expr.pRight */ 208 assert( p->x.pList==0 || p->pRight==0 ); 209 if( p->x.pList!=0 210 && !db->mallocFailed 211 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 212 ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 return pExpr->x.pList->nExpr; 436 }else if( op==TK_SELECT ){ 437 return pExpr->x.pSelect->pEList->nExpr; 438 }else{ 439 return 1; 440 } 441 } 442 443 /* 444 ** Return a pointer to a subexpression of pVector that is the i-th 445 ** column of the vector (numbered starting with 0). The caller must 446 ** ensure that i is within range. 447 ** 448 ** If pVector is really a scalar (and "scalar" here includes subqueries 449 ** that return a single column!) then return pVector unmodified. 450 ** 451 ** pVector retains ownership of the returned subexpression. 452 ** 453 ** If the vector is a (SELECT ...) then the expression returned is 454 ** just the expression for the i-th term of the result set, and may 455 ** not be ready for evaluation because the table cursor has not yet 456 ** been positioned. 457 */ 458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 459 assert( i<sqlite3ExprVectorSize(pVector) ); 460 if( sqlite3ExprIsVector(pVector) ){ 461 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 462 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 463 return pVector->x.pSelect->pEList->a[i].pExpr; 464 }else{ 465 return pVector->x.pList->a[i].pExpr; 466 } 467 } 468 return pVector; 469 } 470 471 /* 472 ** Compute and return a new Expr object which when passed to 473 ** sqlite3ExprCode() will generate all necessary code to compute 474 ** the iField-th column of the vector expression pVector. 475 ** 476 ** It is ok for pVector to be a scalar (as long as iField==0). 477 ** In that case, this routine works like sqlite3ExprDup(). 478 ** 479 ** The caller owns the returned Expr object and is responsible for 480 ** ensuring that the returned value eventually gets freed. 481 ** 482 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 483 ** then the returned object will reference pVector and so pVector must remain 484 ** valid for the life of the returned object. If pVector is a TK_VECTOR 485 ** or a scalar expression, then it can be deleted as soon as this routine 486 ** returns. 487 ** 488 ** A trick to cause a TK_SELECT pVector to be deleted together with 489 ** the returned Expr object is to attach the pVector to the pRight field 490 ** of the returned TK_SELECT_COLUMN Expr object. 491 */ 492 Expr *sqlite3ExprForVectorField( 493 Parse *pParse, /* Parsing context */ 494 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 495 int iField /* Which column of the vector to return */ 496 ){ 497 Expr *pRet; 498 if( pVector->op==TK_SELECT ){ 499 assert( pVector->flags & EP_xIsSelect ); 500 /* The TK_SELECT_COLUMN Expr node: 501 ** 502 ** pLeft: pVector containing TK_SELECT. Not deleted. 503 ** pRight: not used. But recursively deleted. 504 ** iColumn: Index of a column in pVector 505 ** iTable: 0 or the number of columns on the LHS of an assignment 506 ** pLeft->iTable: First in an array of register holding result, or 0 507 ** if the result is not yet computed. 508 ** 509 ** sqlite3ExprDelete() specifically skips the recursive delete of 510 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 511 ** can be attached to pRight to cause this node to take ownership of 512 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 513 ** with the same pLeft pointer to the pVector, but only one of them 514 ** will own the pVector. 515 */ 516 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 517 if( pRet ){ 518 pRet->iColumn = iField; 519 pRet->pLeft = pVector; 520 } 521 assert( pRet==0 || pRet->iTable==0 ); 522 }else{ 523 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 524 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 525 sqlite3RenameTokenRemap(pParse, pRet, pVector); 526 } 527 return pRet; 528 } 529 530 /* 531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 532 ** it. Return the register in which the result is stored (or, if the 533 ** sub-select returns more than one column, the first in an array 534 ** of registers in which the result is stored). 535 ** 536 ** If pExpr is not a TK_SELECT expression, return 0. 537 */ 538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 539 int reg = 0; 540 #ifndef SQLITE_OMIT_SUBQUERY 541 if( pExpr->op==TK_SELECT ){ 542 reg = sqlite3CodeSubselect(pParse, pExpr); 543 } 544 #endif 545 return reg; 546 } 547 548 /* 549 ** Argument pVector points to a vector expression - either a TK_VECTOR 550 ** or TK_SELECT that returns more than one column. This function returns 551 ** the register number of a register that contains the value of 552 ** element iField of the vector. 553 ** 554 ** If pVector is a TK_SELECT expression, then code for it must have 555 ** already been generated using the exprCodeSubselect() routine. In this 556 ** case parameter regSelect should be the first in an array of registers 557 ** containing the results of the sub-select. 558 ** 559 ** If pVector is of type TK_VECTOR, then code for the requested field 560 ** is generated. In this case (*pRegFree) may be set to the number of 561 ** a temporary register to be freed by the caller before returning. 562 ** 563 ** Before returning, output parameter (*ppExpr) is set to point to the 564 ** Expr object corresponding to element iElem of the vector. 565 */ 566 static int exprVectorRegister( 567 Parse *pParse, /* Parse context */ 568 Expr *pVector, /* Vector to extract element from */ 569 int iField, /* Field to extract from pVector */ 570 int regSelect, /* First in array of registers */ 571 Expr **ppExpr, /* OUT: Expression element */ 572 int *pRegFree /* OUT: Temp register to free */ 573 ){ 574 u8 op = pVector->op; 575 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 576 if( op==TK_REGISTER ){ 577 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 578 return pVector->iTable+iField; 579 } 580 if( op==TK_SELECT ){ 581 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 582 return regSelect+iField; 583 } 584 *ppExpr = pVector->x.pList->a[iField].pExpr; 585 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 586 } 587 588 /* 589 ** Expression pExpr is a comparison between two vector values. Compute 590 ** the result of the comparison (1, 0, or NULL) and write that 591 ** result into register dest. 592 ** 593 ** The caller must satisfy the following preconditions: 594 ** 595 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 596 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 597 ** otherwise: op==pExpr->op and p5==0 598 */ 599 static void codeVectorCompare( 600 Parse *pParse, /* Code generator context */ 601 Expr *pExpr, /* The comparison operation */ 602 int dest, /* Write results into this register */ 603 u8 op, /* Comparison operator */ 604 u8 p5 /* SQLITE_NULLEQ or zero */ 605 ){ 606 Vdbe *v = pParse->pVdbe; 607 Expr *pLeft = pExpr->pLeft; 608 Expr *pRight = pExpr->pRight; 609 int nLeft = sqlite3ExprVectorSize(pLeft); 610 int i; 611 int regLeft = 0; 612 int regRight = 0; 613 u8 opx = op; 614 int addrDone = sqlite3VdbeMakeLabel(pParse); 615 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 616 617 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 618 if( pParse->nErr ) return; 619 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 620 sqlite3ErrorMsg(pParse, "row value misused"); 621 return; 622 } 623 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 624 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 625 || pExpr->op==TK_LT || pExpr->op==TK_GT 626 || pExpr->op==TK_LE || pExpr->op==TK_GE 627 ); 628 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 629 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 630 assert( p5==0 || pExpr->op!=op ); 631 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 632 633 p5 |= SQLITE_STOREP2; 634 if( opx==TK_LE ) opx = TK_LT; 635 if( opx==TK_GE ) opx = TK_GT; 636 637 regLeft = exprCodeSubselect(pParse, pLeft); 638 regRight = exprCodeSubselect(pParse, pRight); 639 640 for(i=0; 1 /*Loop exits by "break"*/; i++){ 641 int regFree1 = 0, regFree2 = 0; 642 Expr *pL, *pR; 643 int r1, r2; 644 assert( i>=0 && i<nLeft ); 645 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 646 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 647 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 648 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 649 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 650 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 651 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 652 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 653 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 654 sqlite3ReleaseTempReg(pParse, regFree1); 655 sqlite3ReleaseTempReg(pParse, regFree2); 656 if( i==nLeft-1 ){ 657 break; 658 } 659 if( opx==TK_EQ ){ 660 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 661 p5 |= SQLITE_KEEPNULL; 662 }else if( opx==TK_NE ){ 663 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 664 p5 |= SQLITE_KEEPNULL; 665 }else{ 666 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 667 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 668 VdbeCoverageIf(v, op==TK_LT); 669 VdbeCoverageIf(v, op==TK_GT); 670 VdbeCoverageIf(v, op==TK_LE); 671 VdbeCoverageIf(v, op==TK_GE); 672 if( i==nLeft-2 ) opx = op; 673 } 674 } 675 sqlite3VdbeResolveLabel(v, addrDone); 676 } 677 678 #if SQLITE_MAX_EXPR_DEPTH>0 679 /* 680 ** Check that argument nHeight is less than or equal to the maximum 681 ** expression depth allowed. If it is not, leave an error message in 682 ** pParse. 683 */ 684 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 685 int rc = SQLITE_OK; 686 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 687 if( nHeight>mxHeight ){ 688 sqlite3ErrorMsg(pParse, 689 "Expression tree is too large (maximum depth %d)", mxHeight 690 ); 691 rc = SQLITE_ERROR; 692 } 693 return rc; 694 } 695 696 /* The following three functions, heightOfExpr(), heightOfExprList() 697 ** and heightOfSelect(), are used to determine the maximum height 698 ** of any expression tree referenced by the structure passed as the 699 ** first argument. 700 ** 701 ** If this maximum height is greater than the current value pointed 702 ** to by pnHeight, the second parameter, then set *pnHeight to that 703 ** value. 704 */ 705 static void heightOfExpr(Expr *p, int *pnHeight){ 706 if( p ){ 707 if( p->nHeight>*pnHeight ){ 708 *pnHeight = p->nHeight; 709 } 710 } 711 } 712 static void heightOfExprList(ExprList *p, int *pnHeight){ 713 if( p ){ 714 int i; 715 for(i=0; i<p->nExpr; i++){ 716 heightOfExpr(p->a[i].pExpr, pnHeight); 717 } 718 } 719 } 720 static void heightOfSelect(Select *pSelect, int *pnHeight){ 721 Select *p; 722 for(p=pSelect; p; p=p->pPrior){ 723 heightOfExpr(p->pWhere, pnHeight); 724 heightOfExpr(p->pHaving, pnHeight); 725 heightOfExpr(p->pLimit, pnHeight); 726 heightOfExprList(p->pEList, pnHeight); 727 heightOfExprList(p->pGroupBy, pnHeight); 728 heightOfExprList(p->pOrderBy, pnHeight); 729 } 730 } 731 732 /* 733 ** Set the Expr.nHeight variable in the structure passed as an 734 ** argument. An expression with no children, Expr.pList or 735 ** Expr.pSelect member has a height of 1. Any other expression 736 ** has a height equal to the maximum height of any other 737 ** referenced Expr plus one. 738 ** 739 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 740 ** if appropriate. 741 */ 742 static void exprSetHeight(Expr *p){ 743 int nHeight = 0; 744 heightOfExpr(p->pLeft, &nHeight); 745 heightOfExpr(p->pRight, &nHeight); 746 if( ExprHasProperty(p, EP_xIsSelect) ){ 747 heightOfSelect(p->x.pSelect, &nHeight); 748 }else if( p->x.pList ){ 749 heightOfExprList(p->x.pList, &nHeight); 750 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 751 } 752 p->nHeight = nHeight + 1; 753 } 754 755 /* 756 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 757 ** the height is greater than the maximum allowed expression depth, 758 ** leave an error in pParse. 759 ** 760 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 761 ** Expr.flags. 762 */ 763 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 764 if( pParse->nErr ) return; 765 exprSetHeight(p); 766 sqlite3ExprCheckHeight(pParse, p->nHeight); 767 } 768 769 /* 770 ** Return the maximum height of any expression tree referenced 771 ** by the select statement passed as an argument. 772 */ 773 int sqlite3SelectExprHeight(Select *p){ 774 int nHeight = 0; 775 heightOfSelect(p, &nHeight); 776 return nHeight; 777 } 778 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 779 /* 780 ** Propagate all EP_Propagate flags from the Expr.x.pList into 781 ** Expr.flags. 782 */ 783 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 784 if( pParse->nErr ) return; 785 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 786 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 787 } 788 } 789 #define exprSetHeight(y) 790 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 791 792 /* 793 ** This routine is the core allocator for Expr nodes. 794 ** 795 ** Construct a new expression node and return a pointer to it. Memory 796 ** for this node and for the pToken argument is a single allocation 797 ** obtained from sqlite3DbMalloc(). The calling function 798 ** is responsible for making sure the node eventually gets freed. 799 ** 800 ** If dequote is true, then the token (if it exists) is dequoted. 801 ** If dequote is false, no dequoting is performed. The deQuote 802 ** parameter is ignored if pToken is NULL or if the token does not 803 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 804 ** then the EP_DblQuoted flag is set on the expression node. 805 ** 806 ** Special case: If op==TK_INTEGER and pToken points to a string that 807 ** can be translated into a 32-bit integer, then the token is not 808 ** stored in u.zToken. Instead, the integer values is written 809 ** into u.iValue and the EP_IntValue flag is set. No extra storage 810 ** is allocated to hold the integer text and the dequote flag is ignored. 811 */ 812 Expr *sqlite3ExprAlloc( 813 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 814 int op, /* Expression opcode */ 815 const Token *pToken, /* Token argument. Might be NULL */ 816 int dequote /* True to dequote */ 817 ){ 818 Expr *pNew; 819 int nExtra = 0; 820 int iValue = 0; 821 822 assert( db!=0 ); 823 if( pToken ){ 824 if( op!=TK_INTEGER || pToken->z==0 825 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 826 nExtra = pToken->n+1; 827 assert( iValue>=0 ); 828 } 829 } 830 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 831 if( pNew ){ 832 memset(pNew, 0, sizeof(Expr)); 833 pNew->op = (u8)op; 834 pNew->iAgg = -1; 835 if( pToken ){ 836 if( nExtra==0 ){ 837 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 838 pNew->u.iValue = iValue; 839 }else{ 840 pNew->u.zToken = (char*)&pNew[1]; 841 assert( pToken->z!=0 || pToken->n==0 ); 842 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 843 pNew->u.zToken[pToken->n] = 0; 844 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 845 sqlite3DequoteExpr(pNew); 846 } 847 } 848 } 849 #if SQLITE_MAX_EXPR_DEPTH>0 850 pNew->nHeight = 1; 851 #endif 852 } 853 return pNew; 854 } 855 856 /* 857 ** Allocate a new expression node from a zero-terminated token that has 858 ** already been dequoted. 859 */ 860 Expr *sqlite3Expr( 861 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 862 int op, /* Expression opcode */ 863 const char *zToken /* Token argument. Might be NULL */ 864 ){ 865 Token x; 866 x.z = zToken; 867 x.n = sqlite3Strlen30(zToken); 868 return sqlite3ExprAlloc(db, op, &x, 0); 869 } 870 871 /* 872 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 873 ** 874 ** If pRoot==NULL that means that a memory allocation error has occurred. 875 ** In that case, delete the subtrees pLeft and pRight. 876 */ 877 void sqlite3ExprAttachSubtrees( 878 sqlite3 *db, 879 Expr *pRoot, 880 Expr *pLeft, 881 Expr *pRight 882 ){ 883 if( pRoot==0 ){ 884 assert( db->mallocFailed ); 885 sqlite3ExprDelete(db, pLeft); 886 sqlite3ExprDelete(db, pRight); 887 }else{ 888 if( pRight ){ 889 pRoot->pRight = pRight; 890 pRoot->flags |= EP_Propagate & pRight->flags; 891 } 892 if( pLeft ){ 893 pRoot->pLeft = pLeft; 894 pRoot->flags |= EP_Propagate & pLeft->flags; 895 } 896 exprSetHeight(pRoot); 897 } 898 } 899 900 /* 901 ** Allocate an Expr node which joins as many as two subtrees. 902 ** 903 ** One or both of the subtrees can be NULL. Return a pointer to the new 904 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 905 ** free the subtrees and return NULL. 906 */ 907 Expr *sqlite3PExpr( 908 Parse *pParse, /* Parsing context */ 909 int op, /* Expression opcode */ 910 Expr *pLeft, /* Left operand */ 911 Expr *pRight /* Right operand */ 912 ){ 913 Expr *p; 914 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 915 if( p ){ 916 memset(p, 0, sizeof(Expr)); 917 p->op = op & 0xff; 918 p->iAgg = -1; 919 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 920 sqlite3ExprCheckHeight(pParse, p->nHeight); 921 }else{ 922 sqlite3ExprDelete(pParse->db, pLeft); 923 sqlite3ExprDelete(pParse->db, pRight); 924 } 925 return p; 926 } 927 928 /* 929 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 930 ** do a memory allocation failure) then delete the pSelect object. 931 */ 932 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 933 if( pExpr ){ 934 pExpr->x.pSelect = pSelect; 935 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 936 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 937 }else{ 938 assert( pParse->db->mallocFailed ); 939 sqlite3SelectDelete(pParse->db, pSelect); 940 } 941 } 942 943 944 /* 945 ** Join two expressions using an AND operator. If either expression is 946 ** NULL, then just return the other expression. 947 ** 948 ** If one side or the other of the AND is known to be false, then instead 949 ** of returning an AND expression, just return a constant expression with 950 ** a value of false. 951 */ 952 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 953 sqlite3 *db = pParse->db; 954 if( pLeft==0 ){ 955 return pRight; 956 }else if( pRight==0 ){ 957 return pLeft; 958 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 959 && !IN_RENAME_OBJECT 960 ){ 961 sqlite3ExprDelete(db, pLeft); 962 sqlite3ExprDelete(db, pRight); 963 return sqlite3Expr(db, TK_INTEGER, "0"); 964 }else{ 965 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 966 } 967 } 968 969 /* 970 ** Construct a new expression node for a function with multiple 971 ** arguments. 972 */ 973 Expr *sqlite3ExprFunction( 974 Parse *pParse, /* Parsing context */ 975 ExprList *pList, /* Argument list */ 976 Token *pToken, /* Name of the function */ 977 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 978 ){ 979 Expr *pNew; 980 sqlite3 *db = pParse->db; 981 assert( pToken ); 982 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 983 if( pNew==0 ){ 984 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 985 return 0; 986 } 987 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 988 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 989 } 990 pNew->x.pList = pList; 991 ExprSetProperty(pNew, EP_HasFunc); 992 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 993 sqlite3ExprSetHeightAndFlags(pParse, pNew); 994 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 995 return pNew; 996 } 997 998 /* 999 ** Check to see if a function is usable according to current access 1000 ** rules: 1001 ** 1002 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1003 ** 1004 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1005 ** top-level SQL 1006 ** 1007 ** If the function is not usable, create an error. 1008 */ 1009 void sqlite3ExprFunctionUsable( 1010 Parse *pParse, /* Parsing and code generating context */ 1011 Expr *pExpr, /* The function invocation */ 1012 FuncDef *pDef /* The function being invoked */ 1013 ){ 1014 assert( !IN_RENAME_OBJECT ); 1015 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1016 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1017 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1018 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1019 ){ 1020 /* Functions prohibited in triggers and views if: 1021 ** (1) tagged with SQLITE_DIRECTONLY 1022 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1023 ** is tagged with SQLITE_FUNC_UNSAFE) and 1024 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1025 ** that the schema is possibly tainted). 1026 */ 1027 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1028 } 1029 } 1030 } 1031 1032 /* 1033 ** Assign a variable number to an expression that encodes a wildcard 1034 ** in the original SQL statement. 1035 ** 1036 ** Wildcards consisting of a single "?" are assigned the next sequential 1037 ** variable number. 1038 ** 1039 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1040 ** sure "nnn" is not too big to avoid a denial of service attack when 1041 ** the SQL statement comes from an external source. 1042 ** 1043 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1044 ** as the previous instance of the same wildcard. Or if this is the first 1045 ** instance of the wildcard, the next sequential variable number is 1046 ** assigned. 1047 */ 1048 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1049 sqlite3 *db = pParse->db; 1050 const char *z; 1051 ynVar x; 1052 1053 if( pExpr==0 ) return; 1054 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1055 z = pExpr->u.zToken; 1056 assert( z!=0 ); 1057 assert( z[0]!=0 ); 1058 assert( n==(u32)sqlite3Strlen30(z) ); 1059 if( z[1]==0 ){ 1060 /* Wildcard of the form "?". Assign the next variable number */ 1061 assert( z[0]=='?' ); 1062 x = (ynVar)(++pParse->nVar); 1063 }else{ 1064 int doAdd = 0; 1065 if( z[0]=='?' ){ 1066 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1067 ** use it as the variable number */ 1068 i64 i; 1069 int bOk; 1070 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1071 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1072 bOk = 1; 1073 }else{ 1074 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1075 } 1076 testcase( i==0 ); 1077 testcase( i==1 ); 1078 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1079 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1080 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1081 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1082 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1083 return; 1084 } 1085 x = (ynVar)i; 1086 if( x>pParse->nVar ){ 1087 pParse->nVar = (int)x; 1088 doAdd = 1; 1089 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1090 doAdd = 1; 1091 } 1092 }else{ 1093 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1094 ** number as the prior appearance of the same name, or if the name 1095 ** has never appeared before, reuse the same variable number 1096 */ 1097 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1098 if( x==0 ){ 1099 x = (ynVar)(++pParse->nVar); 1100 doAdd = 1; 1101 } 1102 } 1103 if( doAdd ){ 1104 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1105 } 1106 } 1107 pExpr->iColumn = x; 1108 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1109 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1110 } 1111 } 1112 1113 /* 1114 ** Recursively delete an expression tree. 1115 */ 1116 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1117 assert( p!=0 ); 1118 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1119 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1120 1121 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1122 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1123 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1124 #ifdef SQLITE_DEBUG 1125 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1126 assert( p->pLeft==0 ); 1127 assert( p->pRight==0 ); 1128 assert( p->x.pSelect==0 ); 1129 } 1130 #endif 1131 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1132 /* The Expr.x union is never used at the same time as Expr.pRight */ 1133 assert( p->x.pList==0 || p->pRight==0 ); 1134 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1135 if( p->pRight ){ 1136 assert( !ExprHasProperty(p, EP_WinFunc) ); 1137 sqlite3ExprDeleteNN(db, p->pRight); 1138 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1139 assert( !ExprHasProperty(p, EP_WinFunc) ); 1140 sqlite3SelectDelete(db, p->x.pSelect); 1141 }else{ 1142 sqlite3ExprListDelete(db, p->x.pList); 1143 #ifndef SQLITE_OMIT_WINDOWFUNC 1144 if( ExprHasProperty(p, EP_WinFunc) ){ 1145 sqlite3WindowDelete(db, p->y.pWin); 1146 } 1147 #endif 1148 } 1149 } 1150 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1151 if( !ExprHasProperty(p, EP_Static) ){ 1152 sqlite3DbFreeNN(db, p); 1153 } 1154 } 1155 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1156 if( p ) sqlite3ExprDeleteNN(db, p); 1157 } 1158 1159 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1160 ** expression. 1161 */ 1162 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1163 if( p ){ 1164 if( IN_RENAME_OBJECT ){ 1165 sqlite3RenameExprUnmap(pParse, p); 1166 } 1167 sqlite3ExprDeleteNN(pParse->db, p); 1168 } 1169 } 1170 1171 /* 1172 ** Return the number of bytes allocated for the expression structure 1173 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1174 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1175 */ 1176 static int exprStructSize(Expr *p){ 1177 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1178 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1179 return EXPR_FULLSIZE; 1180 } 1181 1182 /* 1183 ** The dupedExpr*Size() routines each return the number of bytes required 1184 ** to store a copy of an expression or expression tree. They differ in 1185 ** how much of the tree is measured. 1186 ** 1187 ** dupedExprStructSize() Size of only the Expr structure 1188 ** dupedExprNodeSize() Size of Expr + space for token 1189 ** dupedExprSize() Expr + token + subtree components 1190 ** 1191 *************************************************************************** 1192 ** 1193 ** The dupedExprStructSize() function returns two values OR-ed together: 1194 ** (1) the space required for a copy of the Expr structure only and 1195 ** (2) the EP_xxx flags that indicate what the structure size should be. 1196 ** The return values is always one of: 1197 ** 1198 ** EXPR_FULLSIZE 1199 ** EXPR_REDUCEDSIZE | EP_Reduced 1200 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1201 ** 1202 ** The size of the structure can be found by masking the return value 1203 ** of this routine with 0xfff. The flags can be found by masking the 1204 ** return value with EP_Reduced|EP_TokenOnly. 1205 ** 1206 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1207 ** (unreduced) Expr objects as they or originally constructed by the parser. 1208 ** During expression analysis, extra information is computed and moved into 1209 ** later parts of the Expr object and that extra information might get chopped 1210 ** off if the expression is reduced. Note also that it does not work to 1211 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1212 ** to reduce a pristine expression tree from the parser. The implementation 1213 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1214 ** to enforce this constraint. 1215 */ 1216 static int dupedExprStructSize(Expr *p, int flags){ 1217 int nSize; 1218 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1219 assert( EXPR_FULLSIZE<=0xfff ); 1220 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1221 if( 0==flags || p->op==TK_SELECT_COLUMN 1222 #ifndef SQLITE_OMIT_WINDOWFUNC 1223 || ExprHasProperty(p, EP_WinFunc) 1224 #endif 1225 ){ 1226 nSize = EXPR_FULLSIZE; 1227 }else{ 1228 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1229 assert( !ExprHasProperty(p, EP_FromJoin) ); 1230 assert( !ExprHasProperty(p, EP_MemToken) ); 1231 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1232 if( p->pLeft || p->x.pList ){ 1233 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1234 }else{ 1235 assert( p->pRight==0 ); 1236 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1237 } 1238 } 1239 return nSize; 1240 } 1241 1242 /* 1243 ** This function returns the space in bytes required to store the copy 1244 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1245 ** string is defined.) 1246 */ 1247 static int dupedExprNodeSize(Expr *p, int flags){ 1248 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1249 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1250 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1251 } 1252 return ROUND8(nByte); 1253 } 1254 1255 /* 1256 ** Return the number of bytes required to create a duplicate of the 1257 ** expression passed as the first argument. The second argument is a 1258 ** mask containing EXPRDUP_XXX flags. 1259 ** 1260 ** The value returned includes space to create a copy of the Expr struct 1261 ** itself and the buffer referred to by Expr.u.zToken, if any. 1262 ** 1263 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1264 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1265 ** and Expr.pRight variables (but not for any structures pointed to or 1266 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1267 */ 1268 static int dupedExprSize(Expr *p, int flags){ 1269 int nByte = 0; 1270 if( p ){ 1271 nByte = dupedExprNodeSize(p, flags); 1272 if( flags&EXPRDUP_REDUCE ){ 1273 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1274 } 1275 } 1276 return nByte; 1277 } 1278 1279 /* 1280 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1281 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1282 ** to store the copy of expression p, the copies of p->u.zToken 1283 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1284 ** if any. Before returning, *pzBuffer is set to the first byte past the 1285 ** portion of the buffer copied into by this function. 1286 */ 1287 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1288 Expr *pNew; /* Value to return */ 1289 u8 *zAlloc; /* Memory space from which to build Expr object */ 1290 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1291 1292 assert( db!=0 ); 1293 assert( p ); 1294 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1295 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1296 1297 /* Figure out where to write the new Expr structure. */ 1298 if( pzBuffer ){ 1299 zAlloc = *pzBuffer; 1300 staticFlag = EP_Static; 1301 }else{ 1302 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1303 staticFlag = 0; 1304 } 1305 pNew = (Expr *)zAlloc; 1306 1307 if( pNew ){ 1308 /* Set nNewSize to the size allocated for the structure pointed to 1309 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1310 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1311 ** by the copy of the p->u.zToken string (if any). 1312 */ 1313 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1314 const int nNewSize = nStructSize & 0xfff; 1315 int nToken; 1316 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1317 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1318 }else{ 1319 nToken = 0; 1320 } 1321 if( dupFlags ){ 1322 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1323 memcpy(zAlloc, p, nNewSize); 1324 }else{ 1325 u32 nSize = (u32)exprStructSize(p); 1326 memcpy(zAlloc, p, nSize); 1327 if( nSize<EXPR_FULLSIZE ){ 1328 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1329 } 1330 } 1331 1332 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1333 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1334 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1335 pNew->flags |= staticFlag; 1336 ExprClearVVAProperties(pNew); 1337 if( dupFlags ){ 1338 ExprSetVVAProperty(pNew, EP_Immutable); 1339 } 1340 1341 /* Copy the p->u.zToken string, if any. */ 1342 if( nToken ){ 1343 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1344 memcpy(zToken, p->u.zToken, nToken); 1345 } 1346 1347 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1348 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1349 if( ExprHasProperty(p, EP_xIsSelect) ){ 1350 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1351 }else{ 1352 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1353 } 1354 } 1355 1356 /* Fill in pNew->pLeft and pNew->pRight. */ 1357 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1358 zAlloc += dupedExprNodeSize(p, dupFlags); 1359 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1360 pNew->pLeft = p->pLeft ? 1361 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1362 pNew->pRight = p->pRight ? 1363 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1364 } 1365 #ifndef SQLITE_OMIT_WINDOWFUNC 1366 if( ExprHasProperty(p, EP_WinFunc) ){ 1367 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1368 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1369 } 1370 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1371 if( pzBuffer ){ 1372 *pzBuffer = zAlloc; 1373 } 1374 }else{ 1375 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1376 if( pNew->op==TK_SELECT_COLUMN ){ 1377 pNew->pLeft = p->pLeft; 1378 assert( p->iColumn==0 || p->pRight==0 ); 1379 assert( p->pRight==0 || p->pRight==p->pLeft ); 1380 }else{ 1381 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1382 } 1383 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1384 } 1385 } 1386 } 1387 return pNew; 1388 } 1389 1390 /* 1391 ** Create and return a deep copy of the object passed as the second 1392 ** argument. If an OOM condition is encountered, NULL is returned 1393 ** and the db->mallocFailed flag set. 1394 */ 1395 #ifndef SQLITE_OMIT_CTE 1396 static With *withDup(sqlite3 *db, With *p){ 1397 With *pRet = 0; 1398 if( p ){ 1399 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1400 pRet = sqlite3DbMallocZero(db, nByte); 1401 if( pRet ){ 1402 int i; 1403 pRet->nCte = p->nCte; 1404 for(i=0; i<p->nCte; i++){ 1405 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1406 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1407 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1408 } 1409 } 1410 } 1411 return pRet; 1412 } 1413 #else 1414 # define withDup(x,y) 0 1415 #endif 1416 1417 #ifndef SQLITE_OMIT_WINDOWFUNC 1418 /* 1419 ** The gatherSelectWindows() procedure and its helper routine 1420 ** gatherSelectWindowsCallback() are used to scan all the expressions 1421 ** an a newly duplicated SELECT statement and gather all of the Window 1422 ** objects found there, assembling them onto the linked list at Select->pWin. 1423 */ 1424 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1425 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1426 Select *pSelect = pWalker->u.pSelect; 1427 Window *pWin = pExpr->y.pWin; 1428 assert( pWin ); 1429 assert( IsWindowFunc(pExpr) ); 1430 assert( pWin->ppThis==0 ); 1431 sqlite3WindowLink(pSelect, pWin); 1432 } 1433 return WRC_Continue; 1434 } 1435 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1436 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1437 } 1438 static void gatherSelectWindows(Select *p){ 1439 Walker w; 1440 w.xExprCallback = gatherSelectWindowsCallback; 1441 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1442 w.xSelectCallback2 = 0; 1443 w.pParse = 0; 1444 w.u.pSelect = p; 1445 sqlite3WalkSelect(&w, p); 1446 } 1447 #endif 1448 1449 1450 /* 1451 ** The following group of routines make deep copies of expressions, 1452 ** expression lists, ID lists, and select statements. The copies can 1453 ** be deleted (by being passed to their respective ...Delete() routines) 1454 ** without effecting the originals. 1455 ** 1456 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1457 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1458 ** by subsequent calls to sqlite*ListAppend() routines. 1459 ** 1460 ** Any tables that the SrcList might point to are not duplicated. 1461 ** 1462 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1463 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1464 ** truncated version of the usual Expr structure that will be stored as 1465 ** part of the in-memory representation of the database schema. 1466 */ 1467 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1468 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1469 return p ? exprDup(db, p, flags, 0) : 0; 1470 } 1471 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1472 ExprList *pNew; 1473 struct ExprList_item *pItem, *pOldItem; 1474 int i; 1475 Expr *pPriorSelectCol = 0; 1476 assert( db!=0 ); 1477 if( p==0 ) return 0; 1478 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1479 if( pNew==0 ) return 0; 1480 pNew->nExpr = p->nExpr; 1481 pItem = pNew->a; 1482 pOldItem = p->a; 1483 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1484 Expr *pOldExpr = pOldItem->pExpr; 1485 Expr *pNewExpr; 1486 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1487 if( pOldExpr 1488 && pOldExpr->op==TK_SELECT_COLUMN 1489 && (pNewExpr = pItem->pExpr)!=0 1490 ){ 1491 assert( pNewExpr->iColumn==0 || i>0 ); 1492 if( pNewExpr->iColumn==0 ){ 1493 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1494 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1495 }else{ 1496 assert( i>0 ); 1497 assert( pItem[-1].pExpr!=0 ); 1498 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1499 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1500 pNewExpr->pLeft = pPriorSelectCol; 1501 } 1502 } 1503 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1504 pItem->sortFlags = pOldItem->sortFlags; 1505 pItem->eEName = pOldItem->eEName; 1506 pItem->done = 0; 1507 pItem->bNulls = pOldItem->bNulls; 1508 pItem->bSorterRef = pOldItem->bSorterRef; 1509 pItem->u = pOldItem->u; 1510 } 1511 return pNew; 1512 } 1513 1514 /* 1515 ** If cursors, triggers, views and subqueries are all omitted from 1516 ** the build, then none of the following routines, except for 1517 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1518 ** called with a NULL argument. 1519 */ 1520 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1521 || !defined(SQLITE_OMIT_SUBQUERY) 1522 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1523 SrcList *pNew; 1524 int i; 1525 int nByte; 1526 assert( db!=0 ); 1527 if( p==0 ) return 0; 1528 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1529 pNew = sqlite3DbMallocRawNN(db, nByte ); 1530 if( pNew==0 ) return 0; 1531 pNew->nSrc = pNew->nAlloc = p->nSrc; 1532 for(i=0; i<p->nSrc; i++){ 1533 SrcItem *pNewItem = &pNew->a[i]; 1534 SrcItem *pOldItem = &p->a[i]; 1535 Table *pTab; 1536 pNewItem->pSchema = pOldItem->pSchema; 1537 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1538 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1539 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1540 pNewItem->fg = pOldItem->fg; 1541 pNewItem->iCursor = pOldItem->iCursor; 1542 pNewItem->addrFillSub = pOldItem->addrFillSub; 1543 pNewItem->regReturn = pOldItem->regReturn; 1544 if( pNewItem->fg.isIndexedBy ){ 1545 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1546 } 1547 pNewItem->u2 = pOldItem->u2; 1548 if( pNewItem->fg.isCte ){ 1549 pNewItem->u2.pCteUse->nUse++; 1550 } 1551 if( pNewItem->fg.isTabFunc ){ 1552 pNewItem->u1.pFuncArg = 1553 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1554 } 1555 pTab = pNewItem->pTab = pOldItem->pTab; 1556 if( pTab ){ 1557 pTab->nTabRef++; 1558 } 1559 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1560 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1561 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1562 pNewItem->colUsed = pOldItem->colUsed; 1563 } 1564 return pNew; 1565 } 1566 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1567 IdList *pNew; 1568 int i; 1569 assert( db!=0 ); 1570 if( p==0 ) return 0; 1571 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1572 if( pNew==0 ) return 0; 1573 pNew->nId = p->nId; 1574 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1575 if( pNew->a==0 ){ 1576 sqlite3DbFreeNN(db, pNew); 1577 return 0; 1578 } 1579 /* Note that because the size of the allocation for p->a[] is not 1580 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1581 ** on the duplicate created by this function. */ 1582 for(i=0; i<p->nId; i++){ 1583 struct IdList_item *pNewItem = &pNew->a[i]; 1584 struct IdList_item *pOldItem = &p->a[i]; 1585 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1586 pNewItem->idx = pOldItem->idx; 1587 } 1588 return pNew; 1589 } 1590 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1591 Select *pRet = 0; 1592 Select *pNext = 0; 1593 Select **pp = &pRet; 1594 Select *p; 1595 1596 assert( db!=0 ); 1597 for(p=pDup; p; p=p->pPrior){ 1598 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1599 if( pNew==0 ) break; 1600 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1601 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1602 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1603 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1604 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1605 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1606 pNew->op = p->op; 1607 pNew->pNext = pNext; 1608 pNew->pPrior = 0; 1609 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1610 pNew->iLimit = 0; 1611 pNew->iOffset = 0; 1612 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1613 pNew->addrOpenEphm[0] = -1; 1614 pNew->addrOpenEphm[1] = -1; 1615 pNew->nSelectRow = p->nSelectRow; 1616 pNew->pWith = withDup(db, p->pWith); 1617 #ifndef SQLITE_OMIT_WINDOWFUNC 1618 pNew->pWin = 0; 1619 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1620 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1621 #endif 1622 pNew->selId = p->selId; 1623 *pp = pNew; 1624 pp = &pNew->pPrior; 1625 pNext = pNew; 1626 } 1627 1628 return pRet; 1629 } 1630 #else 1631 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1632 assert( p==0 ); 1633 return 0; 1634 } 1635 #endif 1636 1637 1638 /* 1639 ** Add a new element to the end of an expression list. If pList is 1640 ** initially NULL, then create a new expression list. 1641 ** 1642 ** The pList argument must be either NULL or a pointer to an ExprList 1643 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1644 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1645 ** Reason: This routine assumes that the number of slots in pList->a[] 1646 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1647 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1648 ** 1649 ** If a memory allocation error occurs, the entire list is freed and 1650 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1651 ** that the new entry was successfully appended. 1652 */ 1653 ExprList *sqlite3ExprListAppend( 1654 Parse *pParse, /* Parsing context */ 1655 ExprList *pList, /* List to which to append. Might be NULL */ 1656 Expr *pExpr /* Expression to be appended. Might be NULL */ 1657 ){ 1658 struct ExprList_item *pItem; 1659 sqlite3 *db = pParse->db; 1660 assert( db!=0 ); 1661 if( pList==0 ){ 1662 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1663 if( pList==0 ){ 1664 goto no_mem; 1665 } 1666 pList->nExpr = 0; 1667 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1668 ExprList *pNew; 1669 pNew = sqlite3DbRealloc(db, pList, 1670 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1671 if( pNew==0 ){ 1672 goto no_mem; 1673 } 1674 pList = pNew; 1675 } 1676 pItem = &pList->a[pList->nExpr++]; 1677 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1678 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1679 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1680 pItem->pExpr = pExpr; 1681 return pList; 1682 1683 no_mem: 1684 /* Avoid leaking memory if malloc has failed. */ 1685 sqlite3ExprDelete(db, pExpr); 1686 sqlite3ExprListDelete(db, pList); 1687 return 0; 1688 } 1689 1690 /* 1691 ** pColumns and pExpr form a vector assignment which is part of the SET 1692 ** clause of an UPDATE statement. Like this: 1693 ** 1694 ** (a,b,c) = (expr1,expr2,expr3) 1695 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1696 ** 1697 ** For each term of the vector assignment, append new entries to the 1698 ** expression list pList. In the case of a subquery on the RHS, append 1699 ** TK_SELECT_COLUMN expressions. 1700 */ 1701 ExprList *sqlite3ExprListAppendVector( 1702 Parse *pParse, /* Parsing context */ 1703 ExprList *pList, /* List to which to append. Might be NULL */ 1704 IdList *pColumns, /* List of names of LHS of the assignment */ 1705 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1706 ){ 1707 sqlite3 *db = pParse->db; 1708 int n; 1709 int i; 1710 int iFirst = pList ? pList->nExpr : 0; 1711 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1712 ** exit prior to this routine being invoked */ 1713 if( NEVER(pColumns==0) ) goto vector_append_error; 1714 if( pExpr==0 ) goto vector_append_error; 1715 1716 /* If the RHS is a vector, then we can immediately check to see that 1717 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1718 ** wildcards ("*") in the result set of the SELECT must be expanded before 1719 ** we can do the size check, so defer the size check until code generation. 1720 */ 1721 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1722 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1723 pColumns->nId, n); 1724 goto vector_append_error; 1725 } 1726 1727 for(i=0; i<pColumns->nId; i++){ 1728 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1729 assert( pSubExpr!=0 || db->mallocFailed ); 1730 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1731 if( pSubExpr==0 ) continue; 1732 pSubExpr->iTable = pColumns->nId; 1733 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1734 if( pList ){ 1735 assert( pList->nExpr==iFirst+i+1 ); 1736 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1737 pColumns->a[i].zName = 0; 1738 } 1739 } 1740 1741 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1742 Expr *pFirst = pList->a[iFirst].pExpr; 1743 assert( pFirst!=0 ); 1744 assert( pFirst->op==TK_SELECT_COLUMN ); 1745 1746 /* Store the SELECT statement in pRight so it will be deleted when 1747 ** sqlite3ExprListDelete() is called */ 1748 pFirst->pRight = pExpr; 1749 pExpr = 0; 1750 1751 /* Remember the size of the LHS in iTable so that we can check that 1752 ** the RHS and LHS sizes match during code generation. */ 1753 pFirst->iTable = pColumns->nId; 1754 } 1755 1756 vector_append_error: 1757 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1758 sqlite3IdListDelete(db, pColumns); 1759 return pList; 1760 } 1761 1762 /* 1763 ** Set the sort order for the last element on the given ExprList. 1764 */ 1765 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1766 struct ExprList_item *pItem; 1767 if( p==0 ) return; 1768 assert( p->nExpr>0 ); 1769 1770 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1771 assert( iSortOrder==SQLITE_SO_UNDEFINED 1772 || iSortOrder==SQLITE_SO_ASC 1773 || iSortOrder==SQLITE_SO_DESC 1774 ); 1775 assert( eNulls==SQLITE_SO_UNDEFINED 1776 || eNulls==SQLITE_SO_ASC 1777 || eNulls==SQLITE_SO_DESC 1778 ); 1779 1780 pItem = &p->a[p->nExpr-1]; 1781 assert( pItem->bNulls==0 ); 1782 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1783 iSortOrder = SQLITE_SO_ASC; 1784 } 1785 pItem->sortFlags = (u8)iSortOrder; 1786 1787 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1788 pItem->bNulls = 1; 1789 if( iSortOrder!=eNulls ){ 1790 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1791 } 1792 } 1793 } 1794 1795 /* 1796 ** Set the ExprList.a[].zEName element of the most recently added item 1797 ** on the expression list. 1798 ** 1799 ** pList might be NULL following an OOM error. But pName should never be 1800 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1801 ** is set. 1802 */ 1803 void sqlite3ExprListSetName( 1804 Parse *pParse, /* Parsing context */ 1805 ExprList *pList, /* List to which to add the span. */ 1806 Token *pName, /* Name to be added */ 1807 int dequote /* True to cause the name to be dequoted */ 1808 ){ 1809 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1810 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1811 if( pList ){ 1812 struct ExprList_item *pItem; 1813 assert( pList->nExpr>0 ); 1814 pItem = &pList->a[pList->nExpr-1]; 1815 assert( pItem->zEName==0 ); 1816 assert( pItem->eEName==ENAME_NAME ); 1817 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1818 if( dequote ){ 1819 /* If dequote==0, then pName->z does not point to part of a DDL 1820 ** statement handled by the parser. And so no token need be added 1821 ** to the token-map. */ 1822 sqlite3Dequote(pItem->zEName); 1823 if( IN_RENAME_OBJECT ){ 1824 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1825 } 1826 } 1827 } 1828 } 1829 1830 /* 1831 ** Set the ExprList.a[].zSpan element of the most recently added item 1832 ** on the expression list. 1833 ** 1834 ** pList might be NULL following an OOM error. But pSpan should never be 1835 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1836 ** is set. 1837 */ 1838 void sqlite3ExprListSetSpan( 1839 Parse *pParse, /* Parsing context */ 1840 ExprList *pList, /* List to which to add the span. */ 1841 const char *zStart, /* Start of the span */ 1842 const char *zEnd /* End of the span */ 1843 ){ 1844 sqlite3 *db = pParse->db; 1845 assert( pList!=0 || db->mallocFailed!=0 ); 1846 if( pList ){ 1847 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1848 assert( pList->nExpr>0 ); 1849 if( pItem->zEName==0 ){ 1850 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1851 pItem->eEName = ENAME_SPAN; 1852 } 1853 } 1854 } 1855 1856 /* 1857 ** If the expression list pEList contains more than iLimit elements, 1858 ** leave an error message in pParse. 1859 */ 1860 void sqlite3ExprListCheckLength( 1861 Parse *pParse, 1862 ExprList *pEList, 1863 const char *zObject 1864 ){ 1865 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1866 testcase( pEList && pEList->nExpr==mx ); 1867 testcase( pEList && pEList->nExpr==mx+1 ); 1868 if( pEList && pEList->nExpr>mx ){ 1869 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1870 } 1871 } 1872 1873 /* 1874 ** Delete an entire expression list. 1875 */ 1876 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1877 int i = pList->nExpr; 1878 struct ExprList_item *pItem = pList->a; 1879 assert( pList->nExpr>0 ); 1880 do{ 1881 sqlite3ExprDelete(db, pItem->pExpr); 1882 sqlite3DbFree(db, pItem->zEName); 1883 pItem++; 1884 }while( --i>0 ); 1885 sqlite3DbFreeNN(db, pList); 1886 } 1887 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1888 if( pList ) exprListDeleteNN(db, pList); 1889 } 1890 1891 /* 1892 ** Return the bitwise-OR of all Expr.flags fields in the given 1893 ** ExprList. 1894 */ 1895 u32 sqlite3ExprListFlags(const ExprList *pList){ 1896 int i; 1897 u32 m = 0; 1898 assert( pList!=0 ); 1899 for(i=0; i<pList->nExpr; i++){ 1900 Expr *pExpr = pList->a[i].pExpr; 1901 assert( pExpr!=0 ); 1902 m |= pExpr->flags; 1903 } 1904 return m; 1905 } 1906 1907 /* 1908 ** This is a SELECT-node callback for the expression walker that 1909 ** always "fails". By "fail" in this case, we mean set 1910 ** pWalker->eCode to zero and abort. 1911 ** 1912 ** This callback is used by multiple expression walkers. 1913 */ 1914 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1915 UNUSED_PARAMETER(NotUsed); 1916 pWalker->eCode = 0; 1917 return WRC_Abort; 1918 } 1919 1920 /* 1921 ** Check the input string to see if it is "true" or "false" (in any case). 1922 ** 1923 ** If the string is.... Return 1924 ** "true" EP_IsTrue 1925 ** "false" EP_IsFalse 1926 ** anything else 0 1927 */ 1928 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1929 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1930 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1931 return 0; 1932 } 1933 1934 1935 /* 1936 ** If the input expression is an ID with the name "true" or "false" 1937 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1938 ** the conversion happened, and zero if the expression is unaltered. 1939 */ 1940 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1941 u32 v; 1942 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1943 if( !ExprHasProperty(pExpr, EP_Quoted) 1944 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1945 ){ 1946 pExpr->op = TK_TRUEFALSE; 1947 ExprSetProperty(pExpr, v); 1948 return 1; 1949 } 1950 return 0; 1951 } 1952 1953 /* 1954 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1955 ** and 0 if it is FALSE. 1956 */ 1957 int sqlite3ExprTruthValue(const Expr *pExpr){ 1958 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1959 assert( pExpr->op==TK_TRUEFALSE ); 1960 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1961 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1962 return pExpr->u.zToken[4]==0; 1963 } 1964 1965 /* 1966 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1967 ** terms that are always true or false. Return the simplified expression. 1968 ** Or return the original expression if no simplification is possible. 1969 ** 1970 ** Examples: 1971 ** 1972 ** (x<10) AND true => (x<10) 1973 ** (x<10) AND false => false 1974 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1975 ** (x<10) AND (y=22 OR true) => (x<10) 1976 ** (y=22) OR true => true 1977 */ 1978 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1979 assert( pExpr!=0 ); 1980 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1981 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1982 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1983 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1984 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1985 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1986 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1987 } 1988 } 1989 return pExpr; 1990 } 1991 1992 1993 /* 1994 ** These routines are Walker callbacks used to check expressions to 1995 ** see if they are "constant" for some definition of constant. The 1996 ** Walker.eCode value determines the type of "constant" we are looking 1997 ** for. 1998 ** 1999 ** These callback routines are used to implement the following: 2000 ** 2001 ** sqlite3ExprIsConstant() pWalker->eCode==1 2002 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2003 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2004 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2005 ** 2006 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2007 ** is found to not be a constant. 2008 ** 2009 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2010 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2011 ** when parsing an existing schema out of the sqlite_schema table and 4 2012 ** when processing a new CREATE TABLE statement. A bound parameter raises 2013 ** an error for new statements, but is silently converted 2014 ** to NULL for existing schemas. This allows sqlite_schema tables that 2015 ** contain a bound parameter because they were generated by older versions 2016 ** of SQLite to be parsed by newer versions of SQLite without raising a 2017 ** malformed schema error. 2018 */ 2019 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2020 2021 /* If pWalker->eCode is 2 then any term of the expression that comes from 2022 ** the ON or USING clauses of a left join disqualifies the expression 2023 ** from being considered constant. */ 2024 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2025 pWalker->eCode = 0; 2026 return WRC_Abort; 2027 } 2028 2029 switch( pExpr->op ){ 2030 /* Consider functions to be constant if all their arguments are constant 2031 ** and either pWalker->eCode==4 or 5 or the function has the 2032 ** SQLITE_FUNC_CONST flag. */ 2033 case TK_FUNCTION: 2034 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2035 && !ExprHasProperty(pExpr, EP_WinFunc) 2036 ){ 2037 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2038 return WRC_Continue; 2039 }else{ 2040 pWalker->eCode = 0; 2041 return WRC_Abort; 2042 } 2043 case TK_ID: 2044 /* Convert "true" or "false" in a DEFAULT clause into the 2045 ** appropriate TK_TRUEFALSE operator */ 2046 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2047 return WRC_Prune; 2048 } 2049 /* no break */ deliberate_fall_through 2050 case TK_COLUMN: 2051 case TK_AGG_FUNCTION: 2052 case TK_AGG_COLUMN: 2053 testcase( pExpr->op==TK_ID ); 2054 testcase( pExpr->op==TK_COLUMN ); 2055 testcase( pExpr->op==TK_AGG_FUNCTION ); 2056 testcase( pExpr->op==TK_AGG_COLUMN ); 2057 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2058 return WRC_Continue; 2059 } 2060 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2061 return WRC_Continue; 2062 } 2063 /* no break */ deliberate_fall_through 2064 case TK_IF_NULL_ROW: 2065 case TK_REGISTER: 2066 case TK_DOT: 2067 testcase( pExpr->op==TK_REGISTER ); 2068 testcase( pExpr->op==TK_IF_NULL_ROW ); 2069 testcase( pExpr->op==TK_DOT ); 2070 pWalker->eCode = 0; 2071 return WRC_Abort; 2072 case TK_VARIABLE: 2073 if( pWalker->eCode==5 ){ 2074 /* Silently convert bound parameters that appear inside of CREATE 2075 ** statements into a NULL when parsing the CREATE statement text out 2076 ** of the sqlite_schema table */ 2077 pExpr->op = TK_NULL; 2078 }else if( pWalker->eCode==4 ){ 2079 /* A bound parameter in a CREATE statement that originates from 2080 ** sqlite3_prepare() causes an error */ 2081 pWalker->eCode = 0; 2082 return WRC_Abort; 2083 } 2084 /* no break */ deliberate_fall_through 2085 default: 2086 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2087 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2088 return WRC_Continue; 2089 } 2090 } 2091 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2092 Walker w; 2093 w.eCode = initFlag; 2094 w.xExprCallback = exprNodeIsConstant; 2095 w.xSelectCallback = sqlite3SelectWalkFail; 2096 #ifdef SQLITE_DEBUG 2097 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2098 #endif 2099 w.u.iCur = iCur; 2100 sqlite3WalkExpr(&w, p); 2101 return w.eCode; 2102 } 2103 2104 /* 2105 ** Walk an expression tree. Return non-zero if the expression is constant 2106 ** and 0 if it involves variables or function calls. 2107 ** 2108 ** For the purposes of this function, a double-quoted string (ex: "abc") 2109 ** is considered a variable but a single-quoted string (ex: 'abc') is 2110 ** a constant. 2111 */ 2112 int sqlite3ExprIsConstant(Expr *p){ 2113 return exprIsConst(p, 1, 0); 2114 } 2115 2116 /* 2117 ** Walk an expression tree. Return non-zero if 2118 ** 2119 ** (1) the expression is constant, and 2120 ** (2) the expression does originate in the ON or USING clause 2121 ** of a LEFT JOIN, and 2122 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2123 ** operands created by the constant propagation optimization. 2124 ** 2125 ** When this routine returns true, it indicates that the expression 2126 ** can be added to the pParse->pConstExpr list and evaluated once when 2127 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2128 */ 2129 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2130 return exprIsConst(p, 2, 0); 2131 } 2132 2133 /* 2134 ** Walk an expression tree. Return non-zero if the expression is constant 2135 ** for any single row of the table with cursor iCur. In other words, the 2136 ** expression must not refer to any non-deterministic function nor any 2137 ** table other than iCur. 2138 */ 2139 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2140 return exprIsConst(p, 3, iCur); 2141 } 2142 2143 2144 /* 2145 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2146 */ 2147 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2148 ExprList *pGroupBy = pWalker->u.pGroupBy; 2149 int i; 2150 2151 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2152 ** it constant. */ 2153 for(i=0; i<pGroupBy->nExpr; i++){ 2154 Expr *p = pGroupBy->a[i].pExpr; 2155 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2156 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2157 if( sqlite3IsBinary(pColl) ){ 2158 return WRC_Prune; 2159 } 2160 } 2161 } 2162 2163 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2164 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2165 pWalker->eCode = 0; 2166 return WRC_Abort; 2167 } 2168 2169 return exprNodeIsConstant(pWalker, pExpr); 2170 } 2171 2172 /* 2173 ** Walk the expression tree passed as the first argument. Return non-zero 2174 ** if the expression consists entirely of constants or copies of terms 2175 ** in pGroupBy that sort with the BINARY collation sequence. 2176 ** 2177 ** This routine is used to determine if a term of the HAVING clause can 2178 ** be promoted into the WHERE clause. In order for such a promotion to work, 2179 ** the value of the HAVING clause term must be the same for all members of 2180 ** a "group". The requirement that the GROUP BY term must be BINARY 2181 ** assumes that no other collating sequence will have a finer-grained 2182 ** grouping than binary. In other words (A=B COLLATE binary) implies 2183 ** A=B in every other collating sequence. The requirement that the 2184 ** GROUP BY be BINARY is stricter than necessary. It would also work 2185 ** to promote HAVING clauses that use the same alternative collating 2186 ** sequence as the GROUP BY term, but that is much harder to check, 2187 ** alternative collating sequences are uncommon, and this is only an 2188 ** optimization, so we take the easy way out and simply require the 2189 ** GROUP BY to use the BINARY collating sequence. 2190 */ 2191 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2192 Walker w; 2193 w.eCode = 1; 2194 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2195 w.xSelectCallback = 0; 2196 w.u.pGroupBy = pGroupBy; 2197 w.pParse = pParse; 2198 sqlite3WalkExpr(&w, p); 2199 return w.eCode; 2200 } 2201 2202 /* 2203 ** Walk an expression tree for the DEFAULT field of a column definition 2204 ** in a CREATE TABLE statement. Return non-zero if the expression is 2205 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2206 ** the expression is constant or a function call with constant arguments. 2207 ** Return and 0 if there are any variables. 2208 ** 2209 ** isInit is true when parsing from sqlite_schema. isInit is false when 2210 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2211 ** (such as ? or $abc) in the expression are converted into NULL. When 2212 ** isInit is false, parameters raise an error. Parameters should not be 2213 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2214 ** allowed it, so we need to support it when reading sqlite_schema for 2215 ** backwards compatibility. 2216 ** 2217 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2218 ** 2219 ** For the purposes of this function, a double-quoted string (ex: "abc") 2220 ** is considered a variable but a single-quoted string (ex: 'abc') is 2221 ** a constant. 2222 */ 2223 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2224 assert( isInit==0 || isInit==1 ); 2225 return exprIsConst(p, 4+isInit, 0); 2226 } 2227 2228 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2229 /* 2230 ** Walk an expression tree. Return 1 if the expression contains a 2231 ** subquery of some kind. Return 0 if there are no subqueries. 2232 */ 2233 int sqlite3ExprContainsSubquery(Expr *p){ 2234 Walker w; 2235 w.eCode = 1; 2236 w.xExprCallback = sqlite3ExprWalkNoop; 2237 w.xSelectCallback = sqlite3SelectWalkFail; 2238 #ifdef SQLITE_DEBUG 2239 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2240 #endif 2241 sqlite3WalkExpr(&w, p); 2242 return w.eCode==0; 2243 } 2244 #endif 2245 2246 /* 2247 ** If the expression p codes a constant integer that is small enough 2248 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2249 ** in *pValue. If the expression is not an integer or if it is too big 2250 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2251 */ 2252 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2253 int rc = 0; 2254 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2255 2256 /* If an expression is an integer literal that fits in a signed 32-bit 2257 ** integer, then the EP_IntValue flag will have already been set */ 2258 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2259 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2260 2261 if( p->flags & EP_IntValue ){ 2262 *pValue = p->u.iValue; 2263 return 1; 2264 } 2265 switch( p->op ){ 2266 case TK_UPLUS: { 2267 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2268 break; 2269 } 2270 case TK_UMINUS: { 2271 int v; 2272 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2273 assert( v!=(-2147483647-1) ); 2274 *pValue = -v; 2275 rc = 1; 2276 } 2277 break; 2278 } 2279 default: break; 2280 } 2281 return rc; 2282 } 2283 2284 /* 2285 ** Return FALSE if there is no chance that the expression can be NULL. 2286 ** 2287 ** If the expression might be NULL or if the expression is too complex 2288 ** to tell return TRUE. 2289 ** 2290 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2291 ** when we know that a value cannot be NULL. Hence, a false positive 2292 ** (returning TRUE when in fact the expression can never be NULL) might 2293 ** be a small performance hit but is otherwise harmless. On the other 2294 ** hand, a false negative (returning FALSE when the result could be NULL) 2295 ** will likely result in an incorrect answer. So when in doubt, return 2296 ** TRUE. 2297 */ 2298 int sqlite3ExprCanBeNull(const Expr *p){ 2299 u8 op; 2300 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2301 p = p->pLeft; 2302 } 2303 op = p->op; 2304 if( op==TK_REGISTER ) op = p->op2; 2305 switch( op ){ 2306 case TK_INTEGER: 2307 case TK_STRING: 2308 case TK_FLOAT: 2309 case TK_BLOB: 2310 return 0; 2311 case TK_COLUMN: 2312 return ExprHasProperty(p, EP_CanBeNull) || 2313 p->y.pTab==0 || /* Reference to column of index on expression */ 2314 (p->iColumn>=0 2315 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2316 && p->y.pTab->aCol[p->iColumn].notNull==0); 2317 default: 2318 return 1; 2319 } 2320 } 2321 2322 /* 2323 ** Return TRUE if the given expression is a constant which would be 2324 ** unchanged by OP_Affinity with the affinity given in the second 2325 ** argument. 2326 ** 2327 ** This routine is used to determine if the OP_Affinity operation 2328 ** can be omitted. When in doubt return FALSE. A false negative 2329 ** is harmless. A false positive, however, can result in the wrong 2330 ** answer. 2331 */ 2332 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2333 u8 op; 2334 int unaryMinus = 0; 2335 if( aff==SQLITE_AFF_BLOB ) return 1; 2336 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2337 if( p->op==TK_UMINUS ) unaryMinus = 1; 2338 p = p->pLeft; 2339 } 2340 op = p->op; 2341 if( op==TK_REGISTER ) op = p->op2; 2342 switch( op ){ 2343 case TK_INTEGER: { 2344 return aff>=SQLITE_AFF_NUMERIC; 2345 } 2346 case TK_FLOAT: { 2347 return aff>=SQLITE_AFF_NUMERIC; 2348 } 2349 case TK_STRING: { 2350 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2351 } 2352 case TK_BLOB: { 2353 return !unaryMinus; 2354 } 2355 case TK_COLUMN: { 2356 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2357 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2358 } 2359 default: { 2360 return 0; 2361 } 2362 } 2363 } 2364 2365 /* 2366 ** Return TRUE if the given string is a row-id column name. 2367 */ 2368 int sqlite3IsRowid(const char *z){ 2369 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2370 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2371 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2372 return 0; 2373 } 2374 2375 /* 2376 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2377 ** that can be simplified to a direct table access, then return 2378 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2379 ** or if the SELECT statement needs to be manifested into a transient 2380 ** table, then return NULL. 2381 */ 2382 #ifndef SQLITE_OMIT_SUBQUERY 2383 static Select *isCandidateForInOpt(Expr *pX){ 2384 Select *p; 2385 SrcList *pSrc; 2386 ExprList *pEList; 2387 Table *pTab; 2388 int i; 2389 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2390 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2391 p = pX->x.pSelect; 2392 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2393 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2394 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2395 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2396 return 0; /* No DISTINCT keyword and no aggregate functions */ 2397 } 2398 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2399 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2400 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2401 pSrc = p->pSrc; 2402 assert( pSrc!=0 ); 2403 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2404 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2405 pTab = pSrc->a[0].pTab; 2406 assert( pTab!=0 ); 2407 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2408 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2409 pEList = p->pEList; 2410 assert( pEList!=0 ); 2411 /* All SELECT results must be columns. */ 2412 for(i=0; i<pEList->nExpr; i++){ 2413 Expr *pRes = pEList->a[i].pExpr; 2414 if( pRes->op!=TK_COLUMN ) return 0; 2415 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2416 } 2417 return p; 2418 } 2419 #endif /* SQLITE_OMIT_SUBQUERY */ 2420 2421 #ifndef SQLITE_OMIT_SUBQUERY 2422 /* 2423 ** Generate code that checks the left-most column of index table iCur to see if 2424 ** it contains any NULL entries. Cause the register at regHasNull to be set 2425 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2426 ** to be set to NULL if iCur contains one or more NULL values. 2427 */ 2428 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2429 int addr1; 2430 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2431 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2432 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2433 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2434 VdbeComment((v, "first_entry_in(%d)", iCur)); 2435 sqlite3VdbeJumpHere(v, addr1); 2436 } 2437 #endif 2438 2439 2440 #ifndef SQLITE_OMIT_SUBQUERY 2441 /* 2442 ** The argument is an IN operator with a list (not a subquery) on the 2443 ** right-hand side. Return TRUE if that list is constant. 2444 */ 2445 static int sqlite3InRhsIsConstant(Expr *pIn){ 2446 Expr *pLHS; 2447 int res; 2448 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2449 pLHS = pIn->pLeft; 2450 pIn->pLeft = 0; 2451 res = sqlite3ExprIsConstant(pIn); 2452 pIn->pLeft = pLHS; 2453 return res; 2454 } 2455 #endif 2456 2457 /* 2458 ** This function is used by the implementation of the IN (...) operator. 2459 ** The pX parameter is the expression on the RHS of the IN operator, which 2460 ** might be either a list of expressions or a subquery. 2461 ** 2462 ** The job of this routine is to find or create a b-tree object that can 2463 ** be used either to test for membership in the RHS set or to iterate through 2464 ** all members of the RHS set, skipping duplicates. 2465 ** 2466 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2467 ** and pX->iTable is set to the index of that cursor. 2468 ** 2469 ** The returned value of this function indicates the b-tree type, as follows: 2470 ** 2471 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2472 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2473 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2474 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2475 ** populated epheremal table. 2476 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2477 ** implemented as a sequence of comparisons. 2478 ** 2479 ** An existing b-tree might be used if the RHS expression pX is a simple 2480 ** subquery such as: 2481 ** 2482 ** SELECT <column1>, <column2>... FROM <table> 2483 ** 2484 ** If the RHS of the IN operator is a list or a more complex subquery, then 2485 ** an ephemeral table might need to be generated from the RHS and then 2486 ** pX->iTable made to point to the ephemeral table instead of an 2487 ** existing table. 2488 ** 2489 ** The inFlags parameter must contain, at a minimum, one of the bits 2490 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2491 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2492 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2493 ** be used to loop over all values of the RHS of the IN operator. 2494 ** 2495 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2496 ** through the set members) then the b-tree must not contain duplicates. 2497 ** An epheremal table will be created unless the selected columns are guaranteed 2498 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2499 ** a UNIQUE constraint or index. 2500 ** 2501 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2502 ** for fast set membership tests) then an epheremal table must 2503 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2504 ** index can be found with the specified <columns> as its left-most. 2505 ** 2506 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2507 ** if the RHS of the IN operator is a list (not a subquery) then this 2508 ** routine might decide that creating an ephemeral b-tree for membership 2509 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2510 ** calling routine should implement the IN operator using a sequence 2511 ** of Eq or Ne comparison operations. 2512 ** 2513 ** When the b-tree is being used for membership tests, the calling function 2514 ** might need to know whether or not the RHS side of the IN operator 2515 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2516 ** if there is any chance that the (...) might contain a NULL value at 2517 ** runtime, then a register is allocated and the register number written 2518 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2519 ** NULL value, then *prRhsHasNull is left unchanged. 2520 ** 2521 ** If a register is allocated and its location stored in *prRhsHasNull, then 2522 ** the value in that register will be NULL if the b-tree contains one or more 2523 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2524 ** NULL values. 2525 ** 2526 ** If the aiMap parameter is not NULL, it must point to an array containing 2527 ** one element for each column returned by the SELECT statement on the RHS 2528 ** of the IN(...) operator. The i'th entry of the array is populated with the 2529 ** offset of the index column that matches the i'th column returned by the 2530 ** SELECT. For example, if the expression and selected index are: 2531 ** 2532 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2533 ** CREATE INDEX i1 ON t1(b, c, a); 2534 ** 2535 ** then aiMap[] is populated with {2, 0, 1}. 2536 */ 2537 #ifndef SQLITE_OMIT_SUBQUERY 2538 int sqlite3FindInIndex( 2539 Parse *pParse, /* Parsing context */ 2540 Expr *pX, /* The IN expression */ 2541 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2542 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2543 int *aiMap, /* Mapping from Index fields to RHS fields */ 2544 int *piTab /* OUT: index to use */ 2545 ){ 2546 Select *p; /* SELECT to the right of IN operator */ 2547 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2548 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2549 int mustBeUnique; /* True if RHS must be unique */ 2550 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2551 2552 assert( pX->op==TK_IN ); 2553 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2554 2555 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2556 ** whether or not the SELECT result contains NULL values, check whether 2557 ** or not NULL is actually possible (it may not be, for example, due 2558 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2559 ** set prRhsHasNull to 0 before continuing. */ 2560 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2561 int i; 2562 ExprList *pEList = pX->x.pSelect->pEList; 2563 for(i=0; i<pEList->nExpr; i++){ 2564 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2565 } 2566 if( i==pEList->nExpr ){ 2567 prRhsHasNull = 0; 2568 } 2569 } 2570 2571 /* Check to see if an existing table or index can be used to 2572 ** satisfy the query. This is preferable to generating a new 2573 ** ephemeral table. */ 2574 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2575 sqlite3 *db = pParse->db; /* Database connection */ 2576 Table *pTab; /* Table <table>. */ 2577 int iDb; /* Database idx for pTab */ 2578 ExprList *pEList = p->pEList; 2579 int nExpr = pEList->nExpr; 2580 2581 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2582 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2583 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2584 pTab = p->pSrc->a[0].pTab; 2585 2586 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2587 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2588 assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED ); 2589 sqlite3CodeVerifySchema(pParse, iDb); 2590 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2591 2592 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2593 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2594 /* The "x IN (SELECT rowid FROM table)" case */ 2595 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2596 VdbeCoverage(v); 2597 2598 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2599 eType = IN_INDEX_ROWID; 2600 ExplainQueryPlan((pParse, 0, 2601 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2602 sqlite3VdbeJumpHere(v, iAddr); 2603 }else{ 2604 Index *pIdx; /* Iterator variable */ 2605 int affinity_ok = 1; 2606 int i; 2607 2608 /* Check that the affinity that will be used to perform each 2609 ** comparison is the same as the affinity of each column in table 2610 ** on the RHS of the IN operator. If it not, it is not possible to 2611 ** use any index of the RHS table. */ 2612 for(i=0; i<nExpr && affinity_ok; i++){ 2613 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2614 int iCol = pEList->a[i].pExpr->iColumn; 2615 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2616 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2617 testcase( cmpaff==SQLITE_AFF_BLOB ); 2618 testcase( cmpaff==SQLITE_AFF_TEXT ); 2619 switch( cmpaff ){ 2620 case SQLITE_AFF_BLOB: 2621 break; 2622 case SQLITE_AFF_TEXT: 2623 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2624 ** other has no affinity and the other side is TEXT. Hence, 2625 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2626 ** and for the term on the LHS of the IN to have no affinity. */ 2627 assert( idxaff==SQLITE_AFF_TEXT ); 2628 break; 2629 default: 2630 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2631 } 2632 } 2633 2634 if( affinity_ok ){ 2635 /* Search for an existing index that will work for this IN operator */ 2636 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2637 Bitmask colUsed; /* Columns of the index used */ 2638 Bitmask mCol; /* Mask for the current column */ 2639 if( pIdx->nColumn<nExpr ) continue; 2640 if( pIdx->pPartIdxWhere!=0 ) continue; 2641 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2642 ** BITMASK(nExpr) without overflowing */ 2643 testcase( pIdx->nColumn==BMS-2 ); 2644 testcase( pIdx->nColumn==BMS-1 ); 2645 if( pIdx->nColumn>=BMS-1 ) continue; 2646 if( mustBeUnique ){ 2647 if( pIdx->nKeyCol>nExpr 2648 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2649 ){ 2650 continue; /* This index is not unique over the IN RHS columns */ 2651 } 2652 } 2653 2654 colUsed = 0; /* Columns of index used so far */ 2655 for(i=0; i<nExpr; i++){ 2656 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2657 Expr *pRhs = pEList->a[i].pExpr; 2658 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2659 int j; 2660 2661 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2662 for(j=0; j<nExpr; j++){ 2663 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2664 assert( pIdx->azColl[j] ); 2665 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2666 continue; 2667 } 2668 break; 2669 } 2670 if( j==nExpr ) break; 2671 mCol = MASKBIT(j); 2672 if( mCol & colUsed ) break; /* Each column used only once */ 2673 colUsed |= mCol; 2674 if( aiMap ) aiMap[i] = j; 2675 } 2676 2677 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2678 if( colUsed==(MASKBIT(nExpr)-1) ){ 2679 /* If we reach this point, that means the index pIdx is usable */ 2680 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2681 ExplainQueryPlan((pParse, 0, 2682 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2683 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2684 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2685 VdbeComment((v, "%s", pIdx->zName)); 2686 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2687 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2688 2689 if( prRhsHasNull ){ 2690 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2691 i64 mask = (1<<nExpr)-1; 2692 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2693 iTab, 0, 0, (u8*)&mask, P4_INT64); 2694 #endif 2695 *prRhsHasNull = ++pParse->nMem; 2696 if( nExpr==1 ){ 2697 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2698 } 2699 } 2700 sqlite3VdbeJumpHere(v, iAddr); 2701 } 2702 } /* End loop over indexes */ 2703 } /* End if( affinity_ok ) */ 2704 } /* End if not an rowid index */ 2705 } /* End attempt to optimize using an index */ 2706 2707 /* If no preexisting index is available for the IN clause 2708 ** and IN_INDEX_NOOP is an allowed reply 2709 ** and the RHS of the IN operator is a list, not a subquery 2710 ** and the RHS is not constant or has two or fewer terms, 2711 ** then it is not worth creating an ephemeral table to evaluate 2712 ** the IN operator so return IN_INDEX_NOOP. 2713 */ 2714 if( eType==0 2715 && (inFlags & IN_INDEX_NOOP_OK) 2716 && !ExprHasProperty(pX, EP_xIsSelect) 2717 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2718 ){ 2719 eType = IN_INDEX_NOOP; 2720 } 2721 2722 if( eType==0 ){ 2723 /* Could not find an existing table or index to use as the RHS b-tree. 2724 ** We will have to generate an ephemeral table to do the job. 2725 */ 2726 u32 savedNQueryLoop = pParse->nQueryLoop; 2727 int rMayHaveNull = 0; 2728 eType = IN_INDEX_EPH; 2729 if( inFlags & IN_INDEX_LOOP ){ 2730 pParse->nQueryLoop = 0; 2731 }else if( prRhsHasNull ){ 2732 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2733 } 2734 assert( pX->op==TK_IN ); 2735 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2736 if( rMayHaveNull ){ 2737 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2738 } 2739 pParse->nQueryLoop = savedNQueryLoop; 2740 } 2741 2742 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2743 int i, n; 2744 n = sqlite3ExprVectorSize(pX->pLeft); 2745 for(i=0; i<n; i++) aiMap[i] = i; 2746 } 2747 *piTab = iTab; 2748 return eType; 2749 } 2750 #endif 2751 2752 #ifndef SQLITE_OMIT_SUBQUERY 2753 /* 2754 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2755 ** function allocates and returns a nul-terminated string containing 2756 ** the affinities to be used for each column of the comparison. 2757 ** 2758 ** It is the responsibility of the caller to ensure that the returned 2759 ** string is eventually freed using sqlite3DbFree(). 2760 */ 2761 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2762 Expr *pLeft = pExpr->pLeft; 2763 int nVal = sqlite3ExprVectorSize(pLeft); 2764 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2765 char *zRet; 2766 2767 assert( pExpr->op==TK_IN ); 2768 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2769 if( zRet ){ 2770 int i; 2771 for(i=0; i<nVal; i++){ 2772 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2773 char a = sqlite3ExprAffinity(pA); 2774 if( pSelect ){ 2775 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2776 }else{ 2777 zRet[i] = a; 2778 } 2779 } 2780 zRet[nVal] = '\0'; 2781 } 2782 return zRet; 2783 } 2784 #endif 2785 2786 #ifndef SQLITE_OMIT_SUBQUERY 2787 /* 2788 ** Load the Parse object passed as the first argument with an error 2789 ** message of the form: 2790 ** 2791 ** "sub-select returns N columns - expected M" 2792 */ 2793 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2794 if( pParse->nErr==0 ){ 2795 const char *zFmt = "sub-select returns %d columns - expected %d"; 2796 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2797 } 2798 } 2799 #endif 2800 2801 /* 2802 ** Expression pExpr is a vector that has been used in a context where 2803 ** it is not permitted. If pExpr is a sub-select vector, this routine 2804 ** loads the Parse object with a message of the form: 2805 ** 2806 ** "sub-select returns N columns - expected 1" 2807 ** 2808 ** Or, if it is a regular scalar vector: 2809 ** 2810 ** "row value misused" 2811 */ 2812 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2813 #ifndef SQLITE_OMIT_SUBQUERY 2814 if( pExpr->flags & EP_xIsSelect ){ 2815 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2816 }else 2817 #endif 2818 { 2819 sqlite3ErrorMsg(pParse, "row value misused"); 2820 } 2821 } 2822 2823 #ifndef SQLITE_OMIT_SUBQUERY 2824 /* 2825 ** Generate code that will construct an ephemeral table containing all terms 2826 ** in the RHS of an IN operator. The IN operator can be in either of two 2827 ** forms: 2828 ** 2829 ** x IN (4,5,11) -- IN operator with list on right-hand side 2830 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2831 ** 2832 ** The pExpr parameter is the IN operator. The cursor number for the 2833 ** constructed ephermeral table is returned. The first time the ephemeral 2834 ** table is computed, the cursor number is also stored in pExpr->iTable, 2835 ** however the cursor number returned might not be the same, as it might 2836 ** have been duplicated using OP_OpenDup. 2837 ** 2838 ** If the LHS expression ("x" in the examples) is a column value, or 2839 ** the SELECT statement returns a column value, then the affinity of that 2840 ** column is used to build the index keys. If both 'x' and the 2841 ** SELECT... statement are columns, then numeric affinity is used 2842 ** if either column has NUMERIC or INTEGER affinity. If neither 2843 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2844 ** is used. 2845 */ 2846 void sqlite3CodeRhsOfIN( 2847 Parse *pParse, /* Parsing context */ 2848 Expr *pExpr, /* The IN operator */ 2849 int iTab /* Use this cursor number */ 2850 ){ 2851 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2852 int addr; /* Address of OP_OpenEphemeral instruction */ 2853 Expr *pLeft; /* the LHS of the IN operator */ 2854 KeyInfo *pKeyInfo = 0; /* Key information */ 2855 int nVal; /* Size of vector pLeft */ 2856 Vdbe *v; /* The prepared statement under construction */ 2857 2858 v = pParse->pVdbe; 2859 assert( v!=0 ); 2860 2861 /* The evaluation of the IN must be repeated every time it 2862 ** is encountered if any of the following is true: 2863 ** 2864 ** * The right-hand side is a correlated subquery 2865 ** * The right-hand side is an expression list containing variables 2866 ** * We are inside a trigger 2867 ** 2868 ** If all of the above are false, then we can compute the RHS just once 2869 ** and reuse it many names. 2870 */ 2871 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2872 /* Reuse of the RHS is allowed */ 2873 /* If this routine has already been coded, but the previous code 2874 ** might not have been invoked yet, so invoke it now as a subroutine. 2875 */ 2876 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2877 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2878 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2879 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2880 pExpr->x.pSelect->selId)); 2881 } 2882 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2883 pExpr->y.sub.iAddr); 2884 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2885 sqlite3VdbeJumpHere(v, addrOnce); 2886 return; 2887 } 2888 2889 /* Begin coding the subroutine */ 2890 ExprSetProperty(pExpr, EP_Subrtn); 2891 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2892 pExpr->y.sub.regReturn = ++pParse->nMem; 2893 pExpr->y.sub.iAddr = 2894 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2895 VdbeComment((v, "return address")); 2896 2897 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2898 } 2899 2900 /* Check to see if this is a vector IN operator */ 2901 pLeft = pExpr->pLeft; 2902 nVal = sqlite3ExprVectorSize(pLeft); 2903 2904 /* Construct the ephemeral table that will contain the content of 2905 ** RHS of the IN operator. 2906 */ 2907 pExpr->iTable = iTab; 2908 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2909 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2910 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2911 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2912 }else{ 2913 VdbeComment((v, "RHS of IN operator")); 2914 } 2915 #endif 2916 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2917 2918 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2919 /* Case 1: expr IN (SELECT ...) 2920 ** 2921 ** Generate code to write the results of the select into the temporary 2922 ** table allocated and opened above. 2923 */ 2924 Select *pSelect = pExpr->x.pSelect; 2925 ExprList *pEList = pSelect->pEList; 2926 2927 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2928 addrOnce?"":"CORRELATED ", pSelect->selId 2929 )); 2930 /* If the LHS and RHS of the IN operator do not match, that 2931 ** error will have been caught long before we reach this point. */ 2932 if( ALWAYS(pEList->nExpr==nVal) ){ 2933 SelectDest dest; 2934 int i; 2935 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2936 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2937 pSelect->iLimit = 0; 2938 testcase( pSelect->selFlags & SF_Distinct ); 2939 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2940 if( sqlite3Select(pParse, pSelect, &dest) ){ 2941 sqlite3DbFree(pParse->db, dest.zAffSdst); 2942 sqlite3KeyInfoUnref(pKeyInfo); 2943 return; 2944 } 2945 sqlite3DbFree(pParse->db, dest.zAffSdst); 2946 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2947 assert( pEList!=0 ); 2948 assert( pEList->nExpr>0 ); 2949 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2950 for(i=0; i<nVal; i++){ 2951 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2952 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2953 pParse, p, pEList->a[i].pExpr 2954 ); 2955 } 2956 } 2957 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2958 /* Case 2: expr IN (exprlist) 2959 ** 2960 ** For each expression, build an index key from the evaluation and 2961 ** store it in the temporary table. If <expr> is a column, then use 2962 ** that columns affinity when building index keys. If <expr> is not 2963 ** a column, use numeric affinity. 2964 */ 2965 char affinity; /* Affinity of the LHS of the IN */ 2966 int i; 2967 ExprList *pList = pExpr->x.pList; 2968 struct ExprList_item *pItem; 2969 int r1, r2; 2970 affinity = sqlite3ExprAffinity(pLeft); 2971 if( affinity<=SQLITE_AFF_NONE ){ 2972 affinity = SQLITE_AFF_BLOB; 2973 }else if( affinity==SQLITE_AFF_REAL ){ 2974 affinity = SQLITE_AFF_NUMERIC; 2975 } 2976 if( pKeyInfo ){ 2977 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2978 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2979 } 2980 2981 /* Loop through each expression in <exprlist>. */ 2982 r1 = sqlite3GetTempReg(pParse); 2983 r2 = sqlite3GetTempReg(pParse); 2984 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2985 Expr *pE2 = pItem->pExpr; 2986 2987 /* If the expression is not constant then we will need to 2988 ** disable the test that was generated above that makes sure 2989 ** this code only executes once. Because for a non-constant 2990 ** expression we need to rerun this code each time. 2991 */ 2992 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2993 sqlite3VdbeChangeToNoop(v, addrOnce); 2994 ExprClearProperty(pExpr, EP_Subrtn); 2995 addrOnce = 0; 2996 } 2997 2998 /* Evaluate the expression and insert it into the temp table */ 2999 sqlite3ExprCode(pParse, pE2, r1); 3000 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3001 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3002 } 3003 sqlite3ReleaseTempReg(pParse, r1); 3004 sqlite3ReleaseTempReg(pParse, r2); 3005 } 3006 if( pKeyInfo ){ 3007 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3008 } 3009 if( addrOnce ){ 3010 sqlite3VdbeJumpHere(v, addrOnce); 3011 /* Subroutine return */ 3012 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3013 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3014 sqlite3ClearTempRegCache(pParse); 3015 } 3016 } 3017 #endif /* SQLITE_OMIT_SUBQUERY */ 3018 3019 /* 3020 ** Generate code for scalar subqueries used as a subquery expression 3021 ** or EXISTS operator: 3022 ** 3023 ** (SELECT a FROM b) -- subquery 3024 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3025 ** 3026 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3027 ** 3028 ** Return the register that holds the result. For a multi-column SELECT, 3029 ** the result is stored in a contiguous array of registers and the 3030 ** return value is the register of the left-most result column. 3031 ** Return 0 if an error occurs. 3032 */ 3033 #ifndef SQLITE_OMIT_SUBQUERY 3034 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3035 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3036 int rReg = 0; /* Register storing resulting */ 3037 Select *pSel; /* SELECT statement to encode */ 3038 SelectDest dest; /* How to deal with SELECT result */ 3039 int nReg; /* Registers to allocate */ 3040 Expr *pLimit; /* New limit expression */ 3041 3042 Vdbe *v = pParse->pVdbe; 3043 assert( v!=0 ); 3044 testcase( pExpr->op==TK_EXISTS ); 3045 testcase( pExpr->op==TK_SELECT ); 3046 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3047 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3048 pSel = pExpr->x.pSelect; 3049 3050 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3051 ** is encountered if any of the following is true: 3052 ** 3053 ** * The right-hand side is a correlated subquery 3054 ** * The right-hand side is an expression list containing variables 3055 ** * We are inside a trigger 3056 ** 3057 ** If all of the above are false, then we can run this code just once 3058 ** save the results, and reuse the same result on subsequent invocations. 3059 */ 3060 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3061 /* If this routine has already been coded, then invoke it as a 3062 ** subroutine. */ 3063 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3064 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3065 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3066 pExpr->y.sub.iAddr); 3067 return pExpr->iTable; 3068 } 3069 3070 /* Begin coding the subroutine */ 3071 ExprSetProperty(pExpr, EP_Subrtn); 3072 pExpr->y.sub.regReturn = ++pParse->nMem; 3073 pExpr->y.sub.iAddr = 3074 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3075 VdbeComment((v, "return address")); 3076 3077 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3078 } 3079 3080 /* For a SELECT, generate code to put the values for all columns of 3081 ** the first row into an array of registers and return the index of 3082 ** the first register. 3083 ** 3084 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3085 ** into a register and return that register number. 3086 ** 3087 ** In both cases, the query is augmented with "LIMIT 1". Any 3088 ** preexisting limit is discarded in place of the new LIMIT 1. 3089 */ 3090 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3091 addrOnce?"":"CORRELATED ", pSel->selId)); 3092 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3093 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3094 pParse->nMem += nReg; 3095 if( pExpr->op==TK_SELECT ){ 3096 dest.eDest = SRT_Mem; 3097 dest.iSdst = dest.iSDParm; 3098 dest.nSdst = nReg; 3099 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3100 VdbeComment((v, "Init subquery result")); 3101 }else{ 3102 dest.eDest = SRT_Exists; 3103 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3104 VdbeComment((v, "Init EXISTS result")); 3105 } 3106 if( pSel->pLimit ){ 3107 /* The subquery already has a limit. If the pre-existing limit is X 3108 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3109 sqlite3 *db = pParse->db; 3110 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3111 if( pLimit ){ 3112 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3113 pLimit = sqlite3PExpr(pParse, TK_NE, 3114 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3115 } 3116 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3117 pSel->pLimit->pLeft = pLimit; 3118 }else{ 3119 /* If there is no pre-existing limit add a limit of 1 */ 3120 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3121 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3122 } 3123 pSel->iLimit = 0; 3124 if( sqlite3Select(pParse, pSel, &dest) ){ 3125 return 0; 3126 } 3127 pExpr->iTable = rReg = dest.iSDParm; 3128 ExprSetVVAProperty(pExpr, EP_NoReduce); 3129 if( addrOnce ){ 3130 sqlite3VdbeJumpHere(v, addrOnce); 3131 3132 /* Subroutine return */ 3133 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3134 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3135 sqlite3ClearTempRegCache(pParse); 3136 } 3137 3138 return rReg; 3139 } 3140 #endif /* SQLITE_OMIT_SUBQUERY */ 3141 3142 #ifndef SQLITE_OMIT_SUBQUERY 3143 /* 3144 ** Expr pIn is an IN(...) expression. This function checks that the 3145 ** sub-select on the RHS of the IN() operator has the same number of 3146 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3147 ** a sub-query, that the LHS is a vector of size 1. 3148 */ 3149 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3150 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3151 if( (pIn->flags & EP_xIsSelect) ){ 3152 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3153 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3154 return 1; 3155 } 3156 }else if( nVector!=1 ){ 3157 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3158 return 1; 3159 } 3160 return 0; 3161 } 3162 #endif 3163 3164 #ifndef SQLITE_OMIT_SUBQUERY 3165 /* 3166 ** Generate code for an IN expression. 3167 ** 3168 ** x IN (SELECT ...) 3169 ** x IN (value, value, ...) 3170 ** 3171 ** The left-hand side (LHS) is a scalar or vector expression. The 3172 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3173 ** subquery. If the RHS is a subquery, the number of result columns must 3174 ** match the number of columns in the vector on the LHS. If the RHS is 3175 ** a list of values, the LHS must be a scalar. 3176 ** 3177 ** The IN operator is true if the LHS value is contained within the RHS. 3178 ** The result is false if the LHS is definitely not in the RHS. The 3179 ** result is NULL if the presence of the LHS in the RHS cannot be 3180 ** determined due to NULLs. 3181 ** 3182 ** This routine generates code that jumps to destIfFalse if the LHS is not 3183 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3184 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3185 ** within the RHS then fall through. 3186 ** 3187 ** See the separate in-operator.md documentation file in the canonical 3188 ** SQLite source tree for additional information. 3189 */ 3190 static void sqlite3ExprCodeIN( 3191 Parse *pParse, /* Parsing and code generating context */ 3192 Expr *pExpr, /* The IN expression */ 3193 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3194 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3195 ){ 3196 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3197 int eType; /* Type of the RHS */ 3198 int rLhs; /* Register(s) holding the LHS values */ 3199 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3200 Vdbe *v; /* Statement under construction */ 3201 int *aiMap = 0; /* Map from vector field to index column */ 3202 char *zAff = 0; /* Affinity string for comparisons */ 3203 int nVector; /* Size of vectors for this IN operator */ 3204 int iDummy; /* Dummy parameter to exprCodeVector() */ 3205 Expr *pLeft; /* The LHS of the IN operator */ 3206 int i; /* loop counter */ 3207 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3208 int destStep6 = 0; /* Start of code for Step 6 */ 3209 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3210 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3211 int addrTop; /* Top of the step-6 loop */ 3212 int iTab = 0; /* Index to use */ 3213 u8 okConstFactor = pParse->okConstFactor; 3214 3215 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3216 pLeft = pExpr->pLeft; 3217 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3218 zAff = exprINAffinity(pParse, pExpr); 3219 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3220 aiMap = (int*)sqlite3DbMallocZero( 3221 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3222 ); 3223 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3224 3225 /* Attempt to compute the RHS. After this step, if anything other than 3226 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3227 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3228 ** the RHS has not yet been coded. */ 3229 v = pParse->pVdbe; 3230 assert( v!=0 ); /* OOM detected prior to this routine */ 3231 VdbeNoopComment((v, "begin IN expr")); 3232 eType = sqlite3FindInIndex(pParse, pExpr, 3233 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3234 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3235 aiMap, &iTab); 3236 3237 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3238 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3239 ); 3240 #ifdef SQLITE_DEBUG 3241 /* Confirm that aiMap[] contains nVector integer values between 0 and 3242 ** nVector-1. */ 3243 for(i=0; i<nVector; i++){ 3244 int j, cnt; 3245 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3246 assert( cnt==1 ); 3247 } 3248 #endif 3249 3250 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3251 ** vector, then it is stored in an array of nVector registers starting 3252 ** at r1. 3253 ** 3254 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3255 ** so that the fields are in the same order as an existing index. The 3256 ** aiMap[] array contains a mapping from the original LHS field order to 3257 ** the field order that matches the RHS index. 3258 ** 3259 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3260 ** even if it is constant, as OP_Affinity may be used on the register 3261 ** by code generated below. */ 3262 assert( pParse->okConstFactor==okConstFactor ); 3263 pParse->okConstFactor = 0; 3264 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3265 pParse->okConstFactor = okConstFactor; 3266 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3267 if( i==nVector ){ 3268 /* LHS fields are not reordered */ 3269 rLhs = rLhsOrig; 3270 }else{ 3271 /* Need to reorder the LHS fields according to aiMap */ 3272 rLhs = sqlite3GetTempRange(pParse, nVector); 3273 for(i=0; i<nVector; i++){ 3274 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3275 } 3276 } 3277 3278 /* If sqlite3FindInIndex() did not find or create an index that is 3279 ** suitable for evaluating the IN operator, then evaluate using a 3280 ** sequence of comparisons. 3281 ** 3282 ** This is step (1) in the in-operator.md optimized algorithm. 3283 */ 3284 if( eType==IN_INDEX_NOOP ){ 3285 ExprList *pList = pExpr->x.pList; 3286 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3287 int labelOk = sqlite3VdbeMakeLabel(pParse); 3288 int r2, regToFree; 3289 int regCkNull = 0; 3290 int ii; 3291 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3292 if( destIfNull!=destIfFalse ){ 3293 regCkNull = sqlite3GetTempReg(pParse); 3294 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3295 } 3296 for(ii=0; ii<pList->nExpr; ii++){ 3297 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3298 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3299 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3300 } 3301 sqlite3ReleaseTempReg(pParse, regToFree); 3302 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3303 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3304 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3305 (void*)pColl, P4_COLLSEQ); 3306 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3307 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3308 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3309 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3310 sqlite3VdbeChangeP5(v, zAff[0]); 3311 }else{ 3312 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3313 assert( destIfNull==destIfFalse ); 3314 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3315 (void*)pColl, P4_COLLSEQ); 3316 VdbeCoverageIf(v, op==OP_Ne); 3317 VdbeCoverageIf(v, op==OP_IsNull); 3318 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3319 } 3320 } 3321 if( regCkNull ){ 3322 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3323 sqlite3VdbeGoto(v, destIfFalse); 3324 } 3325 sqlite3VdbeResolveLabel(v, labelOk); 3326 sqlite3ReleaseTempReg(pParse, regCkNull); 3327 goto sqlite3ExprCodeIN_finished; 3328 } 3329 3330 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3331 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3332 ** We will then skip the binary search of the RHS. 3333 */ 3334 if( destIfNull==destIfFalse ){ 3335 destStep2 = destIfFalse; 3336 }else{ 3337 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3338 } 3339 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3340 for(i=0; i<nVector; i++){ 3341 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3342 if( sqlite3ExprCanBeNull(p) ){ 3343 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3344 VdbeCoverage(v); 3345 } 3346 } 3347 3348 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3349 ** of the RHS using the LHS as a probe. If found, the result is 3350 ** true. 3351 */ 3352 if( eType==IN_INDEX_ROWID ){ 3353 /* In this case, the RHS is the ROWID of table b-tree and so we also 3354 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3355 ** into a single opcode. */ 3356 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3357 VdbeCoverage(v); 3358 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3359 }else{ 3360 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3361 if( destIfFalse==destIfNull ){ 3362 /* Combine Step 3 and Step 5 into a single opcode */ 3363 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3364 rLhs, nVector); VdbeCoverage(v); 3365 goto sqlite3ExprCodeIN_finished; 3366 } 3367 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3368 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3369 rLhs, nVector); VdbeCoverage(v); 3370 } 3371 3372 /* Step 4. If the RHS is known to be non-NULL and we did not find 3373 ** an match on the search above, then the result must be FALSE. 3374 */ 3375 if( rRhsHasNull && nVector==1 ){ 3376 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3377 VdbeCoverage(v); 3378 } 3379 3380 /* Step 5. If we do not care about the difference between NULL and 3381 ** FALSE, then just return false. 3382 */ 3383 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3384 3385 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3386 ** If any comparison is NULL, then the result is NULL. If all 3387 ** comparisons are FALSE then the final result is FALSE. 3388 ** 3389 ** For a scalar LHS, it is sufficient to check just the first row 3390 ** of the RHS. 3391 */ 3392 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3393 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3394 VdbeCoverage(v); 3395 if( nVector>1 ){ 3396 destNotNull = sqlite3VdbeMakeLabel(pParse); 3397 }else{ 3398 /* For nVector==1, combine steps 6 and 7 by immediately returning 3399 ** FALSE if the first comparison is not NULL */ 3400 destNotNull = destIfFalse; 3401 } 3402 for(i=0; i<nVector; i++){ 3403 Expr *p; 3404 CollSeq *pColl; 3405 int r3 = sqlite3GetTempReg(pParse); 3406 p = sqlite3VectorFieldSubexpr(pLeft, i); 3407 pColl = sqlite3ExprCollSeq(pParse, p); 3408 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3409 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3410 (void*)pColl, P4_COLLSEQ); 3411 VdbeCoverage(v); 3412 sqlite3ReleaseTempReg(pParse, r3); 3413 } 3414 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3415 if( nVector>1 ){ 3416 sqlite3VdbeResolveLabel(v, destNotNull); 3417 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3418 VdbeCoverage(v); 3419 3420 /* Step 7: If we reach this point, we know that the result must 3421 ** be false. */ 3422 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3423 } 3424 3425 /* Jumps here in order to return true. */ 3426 sqlite3VdbeJumpHere(v, addrTruthOp); 3427 3428 sqlite3ExprCodeIN_finished: 3429 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3430 VdbeComment((v, "end IN expr")); 3431 sqlite3ExprCodeIN_oom_error: 3432 sqlite3DbFree(pParse->db, aiMap); 3433 sqlite3DbFree(pParse->db, zAff); 3434 } 3435 #endif /* SQLITE_OMIT_SUBQUERY */ 3436 3437 #ifndef SQLITE_OMIT_FLOATING_POINT 3438 /* 3439 ** Generate an instruction that will put the floating point 3440 ** value described by z[0..n-1] into register iMem. 3441 ** 3442 ** The z[] string will probably not be zero-terminated. But the 3443 ** z[n] character is guaranteed to be something that does not look 3444 ** like the continuation of the number. 3445 */ 3446 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3447 if( ALWAYS(z!=0) ){ 3448 double value; 3449 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3450 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3451 if( negateFlag ) value = -value; 3452 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3453 } 3454 } 3455 #endif 3456 3457 3458 /* 3459 ** Generate an instruction that will put the integer describe by 3460 ** text z[0..n-1] into register iMem. 3461 ** 3462 ** Expr.u.zToken is always UTF8 and zero-terminated. 3463 */ 3464 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3465 Vdbe *v = pParse->pVdbe; 3466 if( pExpr->flags & EP_IntValue ){ 3467 int i = pExpr->u.iValue; 3468 assert( i>=0 ); 3469 if( negFlag ) i = -i; 3470 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3471 }else{ 3472 int c; 3473 i64 value; 3474 const char *z = pExpr->u.zToken; 3475 assert( z!=0 ); 3476 c = sqlite3DecOrHexToI64(z, &value); 3477 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3478 #ifdef SQLITE_OMIT_FLOATING_POINT 3479 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3480 #else 3481 #ifndef SQLITE_OMIT_HEX_INTEGER 3482 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3483 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3484 }else 3485 #endif 3486 { 3487 codeReal(v, z, negFlag, iMem); 3488 } 3489 #endif 3490 }else{ 3491 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3492 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3493 } 3494 } 3495 } 3496 3497 3498 /* Generate code that will load into register regOut a value that is 3499 ** appropriate for the iIdxCol-th column of index pIdx. 3500 */ 3501 void sqlite3ExprCodeLoadIndexColumn( 3502 Parse *pParse, /* The parsing context */ 3503 Index *pIdx, /* The index whose column is to be loaded */ 3504 int iTabCur, /* Cursor pointing to a table row */ 3505 int iIdxCol, /* The column of the index to be loaded */ 3506 int regOut /* Store the index column value in this register */ 3507 ){ 3508 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3509 if( iTabCol==XN_EXPR ){ 3510 assert( pIdx->aColExpr ); 3511 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3512 pParse->iSelfTab = iTabCur + 1; 3513 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3514 pParse->iSelfTab = 0; 3515 }else{ 3516 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3517 iTabCol, regOut); 3518 } 3519 } 3520 3521 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3522 /* 3523 ** Generate code that will compute the value of generated column pCol 3524 ** and store the result in register regOut 3525 */ 3526 void sqlite3ExprCodeGeneratedColumn( 3527 Parse *pParse, 3528 Column *pCol, 3529 int regOut 3530 ){ 3531 int iAddr; 3532 Vdbe *v = pParse->pVdbe; 3533 assert( v!=0 ); 3534 assert( pParse->iSelfTab!=0 ); 3535 if( pParse->iSelfTab>0 ){ 3536 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3537 }else{ 3538 iAddr = 0; 3539 } 3540 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3541 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3542 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3543 } 3544 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3545 } 3546 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3547 3548 /* 3549 ** Generate code to extract the value of the iCol-th column of a table. 3550 */ 3551 void sqlite3ExprCodeGetColumnOfTable( 3552 Vdbe *v, /* Parsing context */ 3553 Table *pTab, /* The table containing the value */ 3554 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3555 int iCol, /* Index of the column to extract */ 3556 int regOut /* Extract the value into this register */ 3557 ){ 3558 Column *pCol; 3559 assert( v!=0 ); 3560 if( pTab==0 ){ 3561 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3562 return; 3563 } 3564 if( iCol<0 || iCol==pTab->iPKey ){ 3565 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3566 }else{ 3567 int op; 3568 int x; 3569 if( IsVirtual(pTab) ){ 3570 op = OP_VColumn; 3571 x = iCol; 3572 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3573 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3574 Parse *pParse = sqlite3VdbeParser(v); 3575 if( pCol->colFlags & COLFLAG_BUSY ){ 3576 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3577 }else{ 3578 int savedSelfTab = pParse->iSelfTab; 3579 pCol->colFlags |= COLFLAG_BUSY; 3580 pParse->iSelfTab = iTabCur+1; 3581 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3582 pParse->iSelfTab = savedSelfTab; 3583 pCol->colFlags &= ~COLFLAG_BUSY; 3584 } 3585 return; 3586 #endif 3587 }else if( !HasRowid(pTab) ){ 3588 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3589 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3590 op = OP_Column; 3591 }else{ 3592 x = sqlite3TableColumnToStorage(pTab,iCol); 3593 testcase( x!=iCol ); 3594 op = OP_Column; 3595 } 3596 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3597 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3598 } 3599 } 3600 3601 /* 3602 ** Generate code that will extract the iColumn-th column from 3603 ** table pTab and store the column value in register iReg. 3604 ** 3605 ** There must be an open cursor to pTab in iTable when this routine 3606 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3607 */ 3608 int sqlite3ExprCodeGetColumn( 3609 Parse *pParse, /* Parsing and code generating context */ 3610 Table *pTab, /* Description of the table we are reading from */ 3611 int iColumn, /* Index of the table column */ 3612 int iTable, /* The cursor pointing to the table */ 3613 int iReg, /* Store results here */ 3614 u8 p5 /* P5 value for OP_Column + FLAGS */ 3615 ){ 3616 assert( pParse->pVdbe!=0 ); 3617 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3618 if( p5 ){ 3619 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3620 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3621 } 3622 return iReg; 3623 } 3624 3625 /* 3626 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3627 ** over to iTo..iTo+nReg-1. 3628 */ 3629 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3630 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3631 } 3632 3633 /* 3634 ** Convert a scalar expression node to a TK_REGISTER referencing 3635 ** register iReg. The caller must ensure that iReg already contains 3636 ** the correct value for the expression. 3637 */ 3638 static void exprToRegister(Expr *pExpr, int iReg){ 3639 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3640 if( NEVER(p==0) ) return; 3641 p->op2 = p->op; 3642 p->op = TK_REGISTER; 3643 p->iTable = iReg; 3644 ExprClearProperty(p, EP_Skip); 3645 } 3646 3647 /* 3648 ** Evaluate an expression (either a vector or a scalar expression) and store 3649 ** the result in continguous temporary registers. Return the index of 3650 ** the first register used to store the result. 3651 ** 3652 ** If the returned result register is a temporary scalar, then also write 3653 ** that register number into *piFreeable. If the returned result register 3654 ** is not a temporary or if the expression is a vector set *piFreeable 3655 ** to 0. 3656 */ 3657 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3658 int iResult; 3659 int nResult = sqlite3ExprVectorSize(p); 3660 if( nResult==1 ){ 3661 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3662 }else{ 3663 *piFreeable = 0; 3664 if( p->op==TK_SELECT ){ 3665 #if SQLITE_OMIT_SUBQUERY 3666 iResult = 0; 3667 #else 3668 iResult = sqlite3CodeSubselect(pParse, p); 3669 #endif 3670 }else{ 3671 int i; 3672 iResult = pParse->nMem+1; 3673 pParse->nMem += nResult; 3674 for(i=0; i<nResult; i++){ 3675 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3676 } 3677 } 3678 } 3679 return iResult; 3680 } 3681 3682 /* 3683 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3684 ** so that a subsequent copy will not be merged into this one. 3685 */ 3686 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3687 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3688 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3689 } 3690 } 3691 3692 /* 3693 ** Generate code to implement special SQL functions that are implemented 3694 ** in-line rather than by using the usual callbacks. 3695 */ 3696 static int exprCodeInlineFunction( 3697 Parse *pParse, /* Parsing context */ 3698 ExprList *pFarg, /* List of function arguments */ 3699 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3700 int target /* Store function result in this register */ 3701 ){ 3702 int nFarg; 3703 Vdbe *v = pParse->pVdbe; 3704 assert( v!=0 ); 3705 assert( pFarg!=0 ); 3706 nFarg = pFarg->nExpr; 3707 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3708 switch( iFuncId ){ 3709 case INLINEFUNC_coalesce: { 3710 /* Attempt a direct implementation of the built-in COALESCE() and 3711 ** IFNULL() functions. This avoids unnecessary evaluation of 3712 ** arguments past the first non-NULL argument. 3713 */ 3714 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3715 int i; 3716 assert( nFarg>=2 ); 3717 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3718 for(i=1; i<nFarg; i++){ 3719 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3720 VdbeCoverage(v); 3721 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3722 } 3723 setDoNotMergeFlagOnCopy(v); 3724 sqlite3VdbeResolveLabel(v, endCoalesce); 3725 break; 3726 } 3727 case INLINEFUNC_iif: { 3728 Expr caseExpr; 3729 memset(&caseExpr, 0, sizeof(caseExpr)); 3730 caseExpr.op = TK_CASE; 3731 caseExpr.x.pList = pFarg; 3732 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3733 } 3734 3735 default: { 3736 /* The UNLIKELY() function is a no-op. The result is the value 3737 ** of the first argument. 3738 */ 3739 assert( nFarg==1 || nFarg==2 ); 3740 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3741 break; 3742 } 3743 3744 /*********************************************************************** 3745 ** Test-only SQL functions that are only usable if enabled 3746 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3747 */ 3748 case INLINEFUNC_expr_compare: { 3749 /* Compare two expressions using sqlite3ExprCompare() */ 3750 assert( nFarg==2 ); 3751 sqlite3VdbeAddOp2(v, OP_Integer, 3752 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3753 target); 3754 break; 3755 } 3756 3757 case INLINEFUNC_expr_implies_expr: { 3758 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3759 assert( nFarg==2 ); 3760 sqlite3VdbeAddOp2(v, OP_Integer, 3761 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3762 target); 3763 break; 3764 } 3765 3766 case INLINEFUNC_implies_nonnull_row: { 3767 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3768 Expr *pA1; 3769 assert( nFarg==2 ); 3770 pA1 = pFarg->a[1].pExpr; 3771 if( pA1->op==TK_COLUMN ){ 3772 sqlite3VdbeAddOp2(v, OP_Integer, 3773 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3774 target); 3775 }else{ 3776 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3777 } 3778 break; 3779 } 3780 3781 #ifdef SQLITE_DEBUG 3782 case INLINEFUNC_affinity: { 3783 /* The AFFINITY() function evaluates to a string that describes 3784 ** the type affinity of the argument. This is used for testing of 3785 ** the SQLite type logic. 3786 */ 3787 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3788 char aff; 3789 assert( nFarg==1 ); 3790 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3791 sqlite3VdbeLoadString(v, target, 3792 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3793 break; 3794 } 3795 #endif 3796 } 3797 return target; 3798 } 3799 3800 3801 /* 3802 ** Generate code into the current Vdbe to evaluate the given 3803 ** expression. Attempt to store the results in register "target". 3804 ** Return the register where results are stored. 3805 ** 3806 ** With this routine, there is no guarantee that results will 3807 ** be stored in target. The result might be stored in some other 3808 ** register if it is convenient to do so. The calling function 3809 ** must check the return code and move the results to the desired 3810 ** register. 3811 */ 3812 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3813 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3814 int op; /* The opcode being coded */ 3815 int inReg = target; /* Results stored in register inReg */ 3816 int regFree1 = 0; /* If non-zero free this temporary register */ 3817 int regFree2 = 0; /* If non-zero free this temporary register */ 3818 int r1, r2; /* Various register numbers */ 3819 Expr tempX; /* Temporary expression node */ 3820 int p5 = 0; 3821 3822 assert( target>0 && target<=pParse->nMem ); 3823 assert( v!=0 ); 3824 3825 expr_code_doover: 3826 if( pExpr==0 ){ 3827 op = TK_NULL; 3828 }else{ 3829 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3830 op = pExpr->op; 3831 } 3832 switch( op ){ 3833 case TK_AGG_COLUMN: { 3834 AggInfo *pAggInfo = pExpr->pAggInfo; 3835 struct AggInfo_col *pCol; 3836 assert( pAggInfo!=0 ); 3837 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3838 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3839 if( !pAggInfo->directMode ){ 3840 assert( pCol->iMem>0 ); 3841 return pCol->iMem; 3842 }else if( pAggInfo->useSortingIdx ){ 3843 Table *pTab = pCol->pTab; 3844 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3845 pCol->iSorterColumn, target); 3846 if( pCol->iColumn<0 ){ 3847 VdbeComment((v,"%s.rowid",pTab->zName)); 3848 }else{ 3849 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3850 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3851 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3852 } 3853 } 3854 return target; 3855 } 3856 /* Otherwise, fall thru into the TK_COLUMN case */ 3857 /* no break */ deliberate_fall_through 3858 } 3859 case TK_COLUMN: { 3860 int iTab = pExpr->iTable; 3861 int iReg; 3862 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3863 /* This COLUMN expression is really a constant due to WHERE clause 3864 ** constraints, and that constant is coded by the pExpr->pLeft 3865 ** expresssion. However, make sure the constant has the correct 3866 ** datatype by applying the Affinity of the table column to the 3867 ** constant. 3868 */ 3869 int aff; 3870 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3871 if( pExpr->y.pTab ){ 3872 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3873 }else{ 3874 aff = pExpr->affExpr; 3875 } 3876 if( aff>SQLITE_AFF_BLOB ){ 3877 static const char zAff[] = "B\000C\000D\000E"; 3878 assert( SQLITE_AFF_BLOB=='A' ); 3879 assert( SQLITE_AFF_TEXT=='B' ); 3880 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3881 &zAff[(aff-'B')*2], P4_STATIC); 3882 } 3883 return iReg; 3884 } 3885 if( iTab<0 ){ 3886 if( pParse->iSelfTab<0 ){ 3887 /* Other columns in the same row for CHECK constraints or 3888 ** generated columns or for inserting into partial index. 3889 ** The row is unpacked into registers beginning at 3890 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3891 ** immediately prior to the first column. 3892 */ 3893 Column *pCol; 3894 Table *pTab = pExpr->y.pTab; 3895 int iSrc; 3896 int iCol = pExpr->iColumn; 3897 assert( pTab!=0 ); 3898 assert( iCol>=XN_ROWID ); 3899 assert( iCol<pTab->nCol ); 3900 if( iCol<0 ){ 3901 return -1-pParse->iSelfTab; 3902 } 3903 pCol = pTab->aCol + iCol; 3904 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3905 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3906 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3907 if( pCol->colFlags & COLFLAG_GENERATED ){ 3908 if( pCol->colFlags & COLFLAG_BUSY ){ 3909 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3910 pCol->zName); 3911 return 0; 3912 } 3913 pCol->colFlags |= COLFLAG_BUSY; 3914 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3915 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3916 } 3917 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3918 return iSrc; 3919 }else 3920 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3921 if( pCol->affinity==SQLITE_AFF_REAL ){ 3922 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3923 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3924 return target; 3925 }else{ 3926 return iSrc; 3927 } 3928 }else{ 3929 /* Coding an expression that is part of an index where column names 3930 ** in the index refer to the table to which the index belongs */ 3931 iTab = pParse->iSelfTab - 1; 3932 } 3933 } 3934 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3935 pExpr->iColumn, iTab, target, 3936 pExpr->op2); 3937 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3938 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3939 } 3940 return iReg; 3941 } 3942 case TK_INTEGER: { 3943 codeInteger(pParse, pExpr, 0, target); 3944 return target; 3945 } 3946 case TK_TRUEFALSE: { 3947 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3948 return target; 3949 } 3950 #ifndef SQLITE_OMIT_FLOATING_POINT 3951 case TK_FLOAT: { 3952 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3953 codeReal(v, pExpr->u.zToken, 0, target); 3954 return target; 3955 } 3956 #endif 3957 case TK_STRING: { 3958 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3959 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3960 return target; 3961 } 3962 default: { 3963 /* Make NULL the default case so that if a bug causes an illegal 3964 ** Expr node to be passed into this function, it will be handled 3965 ** sanely and not crash. But keep the assert() to bring the problem 3966 ** to the attention of the developers. */ 3967 assert( op==TK_NULL ); 3968 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3969 return target; 3970 } 3971 #ifndef SQLITE_OMIT_BLOB_LITERAL 3972 case TK_BLOB: { 3973 int n; 3974 const char *z; 3975 char *zBlob; 3976 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3977 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3978 assert( pExpr->u.zToken[1]=='\'' ); 3979 z = &pExpr->u.zToken[2]; 3980 n = sqlite3Strlen30(z) - 1; 3981 assert( z[n]=='\'' ); 3982 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3983 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3984 return target; 3985 } 3986 #endif 3987 case TK_VARIABLE: { 3988 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3989 assert( pExpr->u.zToken!=0 ); 3990 assert( pExpr->u.zToken[0]!=0 ); 3991 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3992 if( pExpr->u.zToken[1]!=0 ){ 3993 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3994 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3995 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3996 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3997 } 3998 return target; 3999 } 4000 case TK_REGISTER: { 4001 return pExpr->iTable; 4002 } 4003 #ifndef SQLITE_OMIT_CAST 4004 case TK_CAST: { 4005 /* Expressions of the form: CAST(pLeft AS token) */ 4006 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4007 if( inReg!=target ){ 4008 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4009 inReg = target; 4010 } 4011 sqlite3VdbeAddOp2(v, OP_Cast, target, 4012 sqlite3AffinityType(pExpr->u.zToken, 0)); 4013 return inReg; 4014 } 4015 #endif /* SQLITE_OMIT_CAST */ 4016 case TK_IS: 4017 case TK_ISNOT: 4018 op = (op==TK_IS) ? TK_EQ : TK_NE; 4019 p5 = SQLITE_NULLEQ; 4020 /* fall-through */ 4021 case TK_LT: 4022 case TK_LE: 4023 case TK_GT: 4024 case TK_GE: 4025 case TK_NE: 4026 case TK_EQ: { 4027 Expr *pLeft = pExpr->pLeft; 4028 if( sqlite3ExprIsVector(pLeft) ){ 4029 codeVectorCompare(pParse, pExpr, target, op, p5); 4030 }else{ 4031 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4032 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4033 codeCompare(pParse, pLeft, pExpr->pRight, op, 4034 r1, r2, inReg, SQLITE_STOREP2 | p5, 4035 ExprHasProperty(pExpr,EP_Commuted)); 4036 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4037 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4038 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4039 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4040 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4041 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4042 testcase( regFree1==0 ); 4043 testcase( regFree2==0 ); 4044 } 4045 break; 4046 } 4047 case TK_AND: 4048 case TK_OR: 4049 case TK_PLUS: 4050 case TK_STAR: 4051 case TK_MINUS: 4052 case TK_REM: 4053 case TK_BITAND: 4054 case TK_BITOR: 4055 case TK_SLASH: 4056 case TK_LSHIFT: 4057 case TK_RSHIFT: 4058 case TK_CONCAT: { 4059 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4060 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4061 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4062 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4063 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4064 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4065 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4066 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4067 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4068 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4069 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4070 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4071 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4072 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4073 testcase( regFree1==0 ); 4074 testcase( regFree2==0 ); 4075 break; 4076 } 4077 case TK_UMINUS: { 4078 Expr *pLeft = pExpr->pLeft; 4079 assert( pLeft ); 4080 if( pLeft->op==TK_INTEGER ){ 4081 codeInteger(pParse, pLeft, 1, target); 4082 return target; 4083 #ifndef SQLITE_OMIT_FLOATING_POINT 4084 }else if( pLeft->op==TK_FLOAT ){ 4085 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4086 codeReal(v, pLeft->u.zToken, 1, target); 4087 return target; 4088 #endif 4089 }else{ 4090 tempX.op = TK_INTEGER; 4091 tempX.flags = EP_IntValue|EP_TokenOnly; 4092 tempX.u.iValue = 0; 4093 ExprClearVVAProperties(&tempX); 4094 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4095 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4096 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4097 testcase( regFree2==0 ); 4098 } 4099 break; 4100 } 4101 case TK_BITNOT: 4102 case TK_NOT: { 4103 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4104 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4105 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4106 testcase( regFree1==0 ); 4107 sqlite3VdbeAddOp2(v, op, r1, inReg); 4108 break; 4109 } 4110 case TK_TRUTH: { 4111 int isTrue; /* IS TRUE or IS NOT TRUE */ 4112 int bNormal; /* IS TRUE or IS FALSE */ 4113 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4114 testcase( regFree1==0 ); 4115 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4116 bNormal = pExpr->op2==TK_IS; 4117 testcase( isTrue && bNormal); 4118 testcase( !isTrue && bNormal); 4119 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4120 break; 4121 } 4122 case TK_ISNULL: 4123 case TK_NOTNULL: { 4124 int addr; 4125 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4126 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4127 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4128 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4129 testcase( regFree1==0 ); 4130 addr = sqlite3VdbeAddOp1(v, op, r1); 4131 VdbeCoverageIf(v, op==TK_ISNULL); 4132 VdbeCoverageIf(v, op==TK_NOTNULL); 4133 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4134 sqlite3VdbeJumpHere(v, addr); 4135 break; 4136 } 4137 case TK_AGG_FUNCTION: { 4138 AggInfo *pInfo = pExpr->pAggInfo; 4139 if( pInfo==0 4140 || NEVER(pExpr->iAgg<0) 4141 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4142 ){ 4143 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4144 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4145 }else{ 4146 return pInfo->aFunc[pExpr->iAgg].iMem; 4147 } 4148 break; 4149 } 4150 case TK_FUNCTION: { 4151 ExprList *pFarg; /* List of function arguments */ 4152 int nFarg; /* Number of function arguments */ 4153 FuncDef *pDef; /* The function definition object */ 4154 const char *zId; /* The function name */ 4155 u32 constMask = 0; /* Mask of function arguments that are constant */ 4156 int i; /* Loop counter */ 4157 sqlite3 *db = pParse->db; /* The database connection */ 4158 u8 enc = ENC(db); /* The text encoding used by this database */ 4159 CollSeq *pColl = 0; /* A collating sequence */ 4160 4161 #ifndef SQLITE_OMIT_WINDOWFUNC 4162 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4163 return pExpr->y.pWin->regResult; 4164 } 4165 #endif 4166 4167 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4168 /* SQL functions can be expensive. So try to avoid running them 4169 ** multiple times if we know they always give the same result */ 4170 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4171 } 4172 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4173 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4174 pFarg = pExpr->x.pList; 4175 nFarg = pFarg ? pFarg->nExpr : 0; 4176 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4177 zId = pExpr->u.zToken; 4178 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4179 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4180 if( pDef==0 && pParse->explain ){ 4181 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4182 } 4183 #endif 4184 if( pDef==0 || pDef->xFinalize!=0 ){ 4185 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4186 break; 4187 } 4188 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4189 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4190 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4191 return exprCodeInlineFunction(pParse, pFarg, 4192 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4193 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4194 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4195 } 4196 4197 for(i=0; i<nFarg; i++){ 4198 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4199 testcase( i==31 ); 4200 constMask |= MASKBIT32(i); 4201 } 4202 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4203 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4204 } 4205 } 4206 if( pFarg ){ 4207 if( constMask ){ 4208 r1 = pParse->nMem+1; 4209 pParse->nMem += nFarg; 4210 }else{ 4211 r1 = sqlite3GetTempRange(pParse, nFarg); 4212 } 4213 4214 /* For length() and typeof() functions with a column argument, 4215 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4216 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4217 ** loading. 4218 */ 4219 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4220 u8 exprOp; 4221 assert( nFarg==1 ); 4222 assert( pFarg->a[0].pExpr!=0 ); 4223 exprOp = pFarg->a[0].pExpr->op; 4224 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4225 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4226 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4227 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4228 pFarg->a[0].pExpr->op2 = 4229 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4230 } 4231 } 4232 4233 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4234 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4235 }else{ 4236 r1 = 0; 4237 } 4238 #ifndef SQLITE_OMIT_VIRTUALTABLE 4239 /* Possibly overload the function if the first argument is 4240 ** a virtual table column. 4241 ** 4242 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4243 ** second argument, not the first, as the argument to test to 4244 ** see if it is a column in a virtual table. This is done because 4245 ** the left operand of infix functions (the operand we want to 4246 ** control overloading) ends up as the second argument to the 4247 ** function. The expression "A glob B" is equivalent to 4248 ** "glob(B,A). We want to use the A in "A glob B" to test 4249 ** for function overloading. But we use the B term in "glob(B,A)". 4250 */ 4251 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4252 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4253 }else if( nFarg>0 ){ 4254 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4255 } 4256 #endif 4257 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4258 if( !pColl ) pColl = db->pDfltColl; 4259 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4260 } 4261 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4262 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4263 Expr *pArg = pFarg->a[0].pExpr; 4264 if( pArg->op==TK_COLUMN ){ 4265 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4266 }else{ 4267 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4268 } 4269 }else 4270 #endif 4271 { 4272 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4273 pDef, pExpr->op2); 4274 } 4275 if( nFarg ){ 4276 if( constMask==0 ){ 4277 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4278 }else{ 4279 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4280 } 4281 } 4282 return target; 4283 } 4284 #ifndef SQLITE_OMIT_SUBQUERY 4285 case TK_EXISTS: 4286 case TK_SELECT: { 4287 int nCol; 4288 testcase( op==TK_EXISTS ); 4289 testcase( op==TK_SELECT ); 4290 if( pParse->db->mallocFailed ){ 4291 return 0; 4292 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4293 sqlite3SubselectError(pParse, nCol, 1); 4294 }else{ 4295 return sqlite3CodeSubselect(pParse, pExpr); 4296 } 4297 break; 4298 } 4299 case TK_SELECT_COLUMN: { 4300 int n; 4301 if( pExpr->pLeft->iTable==0 ){ 4302 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4303 } 4304 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4305 if( pExpr->iTable!=0 4306 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4307 ){ 4308 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4309 pExpr->iTable, n); 4310 } 4311 return pExpr->pLeft->iTable + pExpr->iColumn; 4312 } 4313 case TK_IN: { 4314 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4315 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4316 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4317 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4318 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4319 sqlite3VdbeResolveLabel(v, destIfFalse); 4320 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4321 sqlite3VdbeResolveLabel(v, destIfNull); 4322 return target; 4323 } 4324 #endif /* SQLITE_OMIT_SUBQUERY */ 4325 4326 4327 /* 4328 ** x BETWEEN y AND z 4329 ** 4330 ** This is equivalent to 4331 ** 4332 ** x>=y AND x<=z 4333 ** 4334 ** X is stored in pExpr->pLeft. 4335 ** Y is stored in pExpr->pList->a[0].pExpr. 4336 ** Z is stored in pExpr->pList->a[1].pExpr. 4337 */ 4338 case TK_BETWEEN: { 4339 exprCodeBetween(pParse, pExpr, target, 0, 0); 4340 return target; 4341 } 4342 case TK_SPAN: 4343 case TK_COLLATE: 4344 case TK_UPLUS: { 4345 pExpr = pExpr->pLeft; 4346 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4347 } 4348 4349 case TK_TRIGGER: { 4350 /* If the opcode is TK_TRIGGER, then the expression is a reference 4351 ** to a column in the new.* or old.* pseudo-tables available to 4352 ** trigger programs. In this case Expr.iTable is set to 1 for the 4353 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4354 ** is set to the column of the pseudo-table to read, or to -1 to 4355 ** read the rowid field. 4356 ** 4357 ** The expression is implemented using an OP_Param opcode. The p1 4358 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4359 ** to reference another column of the old.* pseudo-table, where 4360 ** i is the index of the column. For a new.rowid reference, p1 is 4361 ** set to (n+1), where n is the number of columns in each pseudo-table. 4362 ** For a reference to any other column in the new.* pseudo-table, p1 4363 ** is set to (n+2+i), where n and i are as defined previously. For 4364 ** example, if the table on which triggers are being fired is 4365 ** declared as: 4366 ** 4367 ** CREATE TABLE t1(a, b); 4368 ** 4369 ** Then p1 is interpreted as follows: 4370 ** 4371 ** p1==0 -> old.rowid p1==3 -> new.rowid 4372 ** p1==1 -> old.a p1==4 -> new.a 4373 ** p1==2 -> old.b p1==5 -> new.b 4374 */ 4375 Table *pTab = pExpr->y.pTab; 4376 int iCol = pExpr->iColumn; 4377 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4378 + sqlite3TableColumnToStorage(pTab, iCol); 4379 4380 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4381 assert( iCol>=-1 && iCol<pTab->nCol ); 4382 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4383 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4384 4385 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4386 VdbeComment((v, "r[%d]=%s.%s", target, 4387 (pExpr->iTable ? "new" : "old"), 4388 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4389 )); 4390 4391 #ifndef SQLITE_OMIT_FLOATING_POINT 4392 /* If the column has REAL affinity, it may currently be stored as an 4393 ** integer. Use OP_RealAffinity to make sure it is really real. 4394 ** 4395 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4396 ** floating point when extracting it from the record. */ 4397 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4398 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4399 } 4400 #endif 4401 break; 4402 } 4403 4404 case TK_VECTOR: { 4405 sqlite3ErrorMsg(pParse, "row value misused"); 4406 break; 4407 } 4408 4409 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4410 ** that derive from the right-hand table of a LEFT JOIN. The 4411 ** Expr.iTable value is the table number for the right-hand table. 4412 ** The expression is only evaluated if that table is not currently 4413 ** on a LEFT JOIN NULL row. 4414 */ 4415 case TK_IF_NULL_ROW: { 4416 int addrINR; 4417 u8 okConstFactor = pParse->okConstFactor; 4418 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4419 /* Temporarily disable factoring of constant expressions, since 4420 ** even though expressions may appear to be constant, they are not 4421 ** really constant because they originate from the right-hand side 4422 ** of a LEFT JOIN. */ 4423 pParse->okConstFactor = 0; 4424 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4425 pParse->okConstFactor = okConstFactor; 4426 sqlite3VdbeJumpHere(v, addrINR); 4427 sqlite3VdbeChangeP3(v, addrINR, inReg); 4428 break; 4429 } 4430 4431 /* 4432 ** Form A: 4433 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4434 ** 4435 ** Form B: 4436 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4437 ** 4438 ** Form A is can be transformed into the equivalent form B as follows: 4439 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4440 ** WHEN x=eN THEN rN ELSE y END 4441 ** 4442 ** X (if it exists) is in pExpr->pLeft. 4443 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4444 ** odd. The Y is also optional. If the number of elements in x.pList 4445 ** is even, then Y is omitted and the "otherwise" result is NULL. 4446 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4447 ** 4448 ** The result of the expression is the Ri for the first matching Ei, 4449 ** or if there is no matching Ei, the ELSE term Y, or if there is 4450 ** no ELSE term, NULL. 4451 */ 4452 case TK_CASE: { 4453 int endLabel; /* GOTO label for end of CASE stmt */ 4454 int nextCase; /* GOTO label for next WHEN clause */ 4455 int nExpr; /* 2x number of WHEN terms */ 4456 int i; /* Loop counter */ 4457 ExprList *pEList; /* List of WHEN terms */ 4458 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4459 Expr opCompare; /* The X==Ei expression */ 4460 Expr *pX; /* The X expression */ 4461 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4462 Expr *pDel = 0; 4463 sqlite3 *db = pParse->db; 4464 4465 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4466 assert(pExpr->x.pList->nExpr > 0); 4467 pEList = pExpr->x.pList; 4468 aListelem = pEList->a; 4469 nExpr = pEList->nExpr; 4470 endLabel = sqlite3VdbeMakeLabel(pParse); 4471 if( (pX = pExpr->pLeft)!=0 ){ 4472 pDel = sqlite3ExprDup(db, pX, 0); 4473 if( db->mallocFailed ){ 4474 sqlite3ExprDelete(db, pDel); 4475 break; 4476 } 4477 testcase( pX->op==TK_COLUMN ); 4478 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4479 testcase( regFree1==0 ); 4480 memset(&opCompare, 0, sizeof(opCompare)); 4481 opCompare.op = TK_EQ; 4482 opCompare.pLeft = pDel; 4483 pTest = &opCompare; 4484 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4485 ** The value in regFree1 might get SCopy-ed into the file result. 4486 ** So make sure that the regFree1 register is not reused for other 4487 ** purposes and possibly overwritten. */ 4488 regFree1 = 0; 4489 } 4490 for(i=0; i<nExpr-1; i=i+2){ 4491 if( pX ){ 4492 assert( pTest!=0 ); 4493 opCompare.pRight = aListelem[i].pExpr; 4494 }else{ 4495 pTest = aListelem[i].pExpr; 4496 } 4497 nextCase = sqlite3VdbeMakeLabel(pParse); 4498 testcase( pTest->op==TK_COLUMN ); 4499 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4500 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4501 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4502 sqlite3VdbeGoto(v, endLabel); 4503 sqlite3VdbeResolveLabel(v, nextCase); 4504 } 4505 if( (nExpr&1)!=0 ){ 4506 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4507 }else{ 4508 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4509 } 4510 sqlite3ExprDelete(db, pDel); 4511 setDoNotMergeFlagOnCopy(v); 4512 sqlite3VdbeResolveLabel(v, endLabel); 4513 break; 4514 } 4515 #ifndef SQLITE_OMIT_TRIGGER 4516 case TK_RAISE: { 4517 assert( pExpr->affExpr==OE_Rollback 4518 || pExpr->affExpr==OE_Abort 4519 || pExpr->affExpr==OE_Fail 4520 || pExpr->affExpr==OE_Ignore 4521 ); 4522 if( !pParse->pTriggerTab && !pParse->nested ){ 4523 sqlite3ErrorMsg(pParse, 4524 "RAISE() may only be used within a trigger-program"); 4525 return 0; 4526 } 4527 if( pExpr->affExpr==OE_Abort ){ 4528 sqlite3MayAbort(pParse); 4529 } 4530 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4531 if( pExpr->affExpr==OE_Ignore ){ 4532 sqlite3VdbeAddOp4( 4533 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4534 VdbeCoverage(v); 4535 }else{ 4536 sqlite3HaltConstraint(pParse, 4537 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4538 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4539 } 4540 4541 break; 4542 } 4543 #endif 4544 } 4545 sqlite3ReleaseTempReg(pParse, regFree1); 4546 sqlite3ReleaseTempReg(pParse, regFree2); 4547 return inReg; 4548 } 4549 4550 /* 4551 ** Generate code that will evaluate expression pExpr just one time 4552 ** per prepared statement execution. 4553 ** 4554 ** If the expression uses functions (that might throw an exception) then 4555 ** guard them with an OP_Once opcode to ensure that the code is only executed 4556 ** once. If no functions are involved, then factor the code out and put it at 4557 ** the end of the prepared statement in the initialization section. 4558 ** 4559 ** If regDest>=0 then the result is always stored in that register and the 4560 ** result is not reusable. If regDest<0 then this routine is free to 4561 ** store the value whereever it wants. The register where the expression 4562 ** is stored is returned. When regDest<0, two identical expressions might 4563 ** code to the same register, if they do not contain function calls and hence 4564 ** are factored out into the initialization section at the end of the 4565 ** prepared statement. 4566 */ 4567 int sqlite3ExprCodeRunJustOnce( 4568 Parse *pParse, /* Parsing context */ 4569 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4570 int regDest /* Store the value in this register */ 4571 ){ 4572 ExprList *p; 4573 assert( ConstFactorOk(pParse) ); 4574 p = pParse->pConstExpr; 4575 if( regDest<0 && p ){ 4576 struct ExprList_item *pItem; 4577 int i; 4578 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4579 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4580 return pItem->u.iConstExprReg; 4581 } 4582 } 4583 } 4584 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4585 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4586 Vdbe *v = pParse->pVdbe; 4587 int addr; 4588 assert( v ); 4589 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4590 pParse->okConstFactor = 0; 4591 if( !pParse->db->mallocFailed ){ 4592 if( regDest<0 ) regDest = ++pParse->nMem; 4593 sqlite3ExprCode(pParse, pExpr, regDest); 4594 } 4595 pParse->okConstFactor = 1; 4596 sqlite3ExprDelete(pParse->db, pExpr); 4597 sqlite3VdbeJumpHere(v, addr); 4598 }else{ 4599 p = sqlite3ExprListAppend(pParse, p, pExpr); 4600 if( p ){ 4601 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4602 pItem->reusable = regDest<0; 4603 if( regDest<0 ) regDest = ++pParse->nMem; 4604 pItem->u.iConstExprReg = regDest; 4605 } 4606 pParse->pConstExpr = p; 4607 } 4608 return regDest; 4609 } 4610 4611 /* 4612 ** Generate code to evaluate an expression and store the results 4613 ** into a register. Return the register number where the results 4614 ** are stored. 4615 ** 4616 ** If the register is a temporary register that can be deallocated, 4617 ** then write its number into *pReg. If the result register is not 4618 ** a temporary, then set *pReg to zero. 4619 ** 4620 ** If pExpr is a constant, then this routine might generate this 4621 ** code to fill the register in the initialization section of the 4622 ** VDBE program, in order to factor it out of the evaluation loop. 4623 */ 4624 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4625 int r2; 4626 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4627 if( ConstFactorOk(pParse) 4628 && ALWAYS(pExpr!=0) 4629 && pExpr->op!=TK_REGISTER 4630 && sqlite3ExprIsConstantNotJoin(pExpr) 4631 ){ 4632 *pReg = 0; 4633 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4634 }else{ 4635 int r1 = sqlite3GetTempReg(pParse); 4636 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4637 if( r2==r1 ){ 4638 *pReg = r1; 4639 }else{ 4640 sqlite3ReleaseTempReg(pParse, r1); 4641 *pReg = 0; 4642 } 4643 } 4644 return r2; 4645 } 4646 4647 /* 4648 ** Generate code that will evaluate expression pExpr and store the 4649 ** results in register target. The results are guaranteed to appear 4650 ** in register target. 4651 */ 4652 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4653 int inReg; 4654 4655 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4656 assert( target>0 && target<=pParse->nMem ); 4657 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4658 if( pParse->pVdbe==0 ) return; 4659 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4660 if( inReg!=target ){ 4661 u8 op; 4662 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4663 op = OP_Copy; 4664 }else{ 4665 op = OP_SCopy; 4666 } 4667 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4668 } 4669 } 4670 4671 /* 4672 ** Make a transient copy of expression pExpr and then code it using 4673 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4674 ** except that the input expression is guaranteed to be unchanged. 4675 */ 4676 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4677 sqlite3 *db = pParse->db; 4678 pExpr = sqlite3ExprDup(db, pExpr, 0); 4679 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4680 sqlite3ExprDelete(db, pExpr); 4681 } 4682 4683 /* 4684 ** Generate code that will evaluate expression pExpr and store the 4685 ** results in register target. The results are guaranteed to appear 4686 ** in register target. If the expression is constant, then this routine 4687 ** might choose to code the expression at initialization time. 4688 */ 4689 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4690 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4691 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4692 }else{ 4693 sqlite3ExprCodeCopy(pParse, pExpr, target); 4694 } 4695 } 4696 4697 /* 4698 ** Generate code that pushes the value of every element of the given 4699 ** expression list into a sequence of registers beginning at target. 4700 ** 4701 ** Return the number of elements evaluated. The number returned will 4702 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4703 ** is defined. 4704 ** 4705 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4706 ** filled using OP_SCopy. OP_Copy must be used instead. 4707 ** 4708 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4709 ** factored out into initialization code. 4710 ** 4711 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4712 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4713 ** in registers at srcReg, and so the value can be copied from there. 4714 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4715 ** are simply omitted rather than being copied from srcReg. 4716 */ 4717 int sqlite3ExprCodeExprList( 4718 Parse *pParse, /* Parsing context */ 4719 ExprList *pList, /* The expression list to be coded */ 4720 int target, /* Where to write results */ 4721 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4722 u8 flags /* SQLITE_ECEL_* flags */ 4723 ){ 4724 struct ExprList_item *pItem; 4725 int i, j, n; 4726 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4727 Vdbe *v = pParse->pVdbe; 4728 assert( pList!=0 ); 4729 assert( target>0 ); 4730 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4731 n = pList->nExpr; 4732 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4733 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4734 Expr *pExpr = pItem->pExpr; 4735 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4736 if( pItem->bSorterRef ){ 4737 i--; 4738 n--; 4739 }else 4740 #endif 4741 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4742 if( flags & SQLITE_ECEL_OMITREF ){ 4743 i--; 4744 n--; 4745 }else{ 4746 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4747 } 4748 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4749 && sqlite3ExprIsConstantNotJoin(pExpr) 4750 ){ 4751 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4752 }else{ 4753 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4754 if( inReg!=target+i ){ 4755 VdbeOp *pOp; 4756 if( copyOp==OP_Copy 4757 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4758 && pOp->p1+pOp->p3+1==inReg 4759 && pOp->p2+pOp->p3+1==target+i 4760 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4761 ){ 4762 pOp->p3++; 4763 }else{ 4764 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4765 } 4766 } 4767 } 4768 } 4769 return n; 4770 } 4771 4772 /* 4773 ** Generate code for a BETWEEN operator. 4774 ** 4775 ** x BETWEEN y AND z 4776 ** 4777 ** The above is equivalent to 4778 ** 4779 ** x>=y AND x<=z 4780 ** 4781 ** Code it as such, taking care to do the common subexpression 4782 ** elimination of x. 4783 ** 4784 ** The xJumpIf parameter determines details: 4785 ** 4786 ** NULL: Store the boolean result in reg[dest] 4787 ** sqlite3ExprIfTrue: Jump to dest if true 4788 ** sqlite3ExprIfFalse: Jump to dest if false 4789 ** 4790 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4791 */ 4792 static void exprCodeBetween( 4793 Parse *pParse, /* Parsing and code generating context */ 4794 Expr *pExpr, /* The BETWEEN expression */ 4795 int dest, /* Jump destination or storage location */ 4796 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4797 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4798 ){ 4799 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4800 Expr compLeft; /* The x>=y term */ 4801 Expr compRight; /* The x<=z term */ 4802 int regFree1 = 0; /* Temporary use register */ 4803 Expr *pDel = 0; 4804 sqlite3 *db = pParse->db; 4805 4806 memset(&compLeft, 0, sizeof(Expr)); 4807 memset(&compRight, 0, sizeof(Expr)); 4808 memset(&exprAnd, 0, sizeof(Expr)); 4809 4810 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4811 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4812 if( db->mallocFailed==0 ){ 4813 exprAnd.op = TK_AND; 4814 exprAnd.pLeft = &compLeft; 4815 exprAnd.pRight = &compRight; 4816 compLeft.op = TK_GE; 4817 compLeft.pLeft = pDel; 4818 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4819 compRight.op = TK_LE; 4820 compRight.pLeft = pDel; 4821 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4822 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4823 if( xJump ){ 4824 xJump(pParse, &exprAnd, dest, jumpIfNull); 4825 }else{ 4826 /* Mark the expression is being from the ON or USING clause of a join 4827 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4828 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4829 ** for clarity, but we are out of bits in the Expr.flags field so we 4830 ** have to reuse the EP_FromJoin bit. Bummer. */ 4831 pDel->flags |= EP_FromJoin; 4832 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4833 } 4834 sqlite3ReleaseTempReg(pParse, regFree1); 4835 } 4836 sqlite3ExprDelete(db, pDel); 4837 4838 /* Ensure adequate test coverage */ 4839 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4840 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4841 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4842 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4843 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4844 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4845 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4846 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4847 testcase( xJump==0 ); 4848 } 4849 4850 /* 4851 ** Generate code for a boolean expression such that a jump is made 4852 ** to the label "dest" if the expression is true but execution 4853 ** continues straight thru if the expression is false. 4854 ** 4855 ** If the expression evaluates to NULL (neither true nor false), then 4856 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4857 ** 4858 ** This code depends on the fact that certain token values (ex: TK_EQ) 4859 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4860 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4861 ** the make process cause these values to align. Assert()s in the code 4862 ** below verify that the numbers are aligned correctly. 4863 */ 4864 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4865 Vdbe *v = pParse->pVdbe; 4866 int op = 0; 4867 int regFree1 = 0; 4868 int regFree2 = 0; 4869 int r1, r2; 4870 4871 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4872 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4873 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4874 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4875 op = pExpr->op; 4876 switch( op ){ 4877 case TK_AND: 4878 case TK_OR: { 4879 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4880 if( pAlt!=pExpr ){ 4881 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4882 }else if( op==TK_AND ){ 4883 int d2 = sqlite3VdbeMakeLabel(pParse); 4884 testcase( jumpIfNull==0 ); 4885 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4886 jumpIfNull^SQLITE_JUMPIFNULL); 4887 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4888 sqlite3VdbeResolveLabel(v, d2); 4889 }else{ 4890 testcase( jumpIfNull==0 ); 4891 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4892 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4893 } 4894 break; 4895 } 4896 case TK_NOT: { 4897 testcase( jumpIfNull==0 ); 4898 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4899 break; 4900 } 4901 case TK_TRUTH: { 4902 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4903 int isTrue; /* IS TRUE or IS NOT TRUE */ 4904 testcase( jumpIfNull==0 ); 4905 isNot = pExpr->op2==TK_ISNOT; 4906 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4907 testcase( isTrue && isNot ); 4908 testcase( !isTrue && isNot ); 4909 if( isTrue ^ isNot ){ 4910 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4911 isNot ? SQLITE_JUMPIFNULL : 0); 4912 }else{ 4913 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4914 isNot ? SQLITE_JUMPIFNULL : 0); 4915 } 4916 break; 4917 } 4918 case TK_IS: 4919 case TK_ISNOT: 4920 testcase( op==TK_IS ); 4921 testcase( op==TK_ISNOT ); 4922 op = (op==TK_IS) ? TK_EQ : TK_NE; 4923 jumpIfNull = SQLITE_NULLEQ; 4924 /* no break */ deliberate_fall_through 4925 case TK_LT: 4926 case TK_LE: 4927 case TK_GT: 4928 case TK_GE: 4929 case TK_NE: 4930 case TK_EQ: { 4931 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4932 testcase( jumpIfNull==0 ); 4933 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4934 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4935 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4936 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4937 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4938 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4939 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4940 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4941 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4942 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4943 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4944 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4945 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4946 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4947 testcase( regFree1==0 ); 4948 testcase( regFree2==0 ); 4949 break; 4950 } 4951 case TK_ISNULL: 4952 case TK_NOTNULL: { 4953 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4954 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4955 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4956 sqlite3VdbeAddOp2(v, op, r1, dest); 4957 VdbeCoverageIf(v, op==TK_ISNULL); 4958 VdbeCoverageIf(v, op==TK_NOTNULL); 4959 testcase( regFree1==0 ); 4960 break; 4961 } 4962 case TK_BETWEEN: { 4963 testcase( jumpIfNull==0 ); 4964 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4965 break; 4966 } 4967 #ifndef SQLITE_OMIT_SUBQUERY 4968 case TK_IN: { 4969 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4970 int destIfNull = jumpIfNull ? dest : destIfFalse; 4971 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4972 sqlite3VdbeGoto(v, dest); 4973 sqlite3VdbeResolveLabel(v, destIfFalse); 4974 break; 4975 } 4976 #endif 4977 default: { 4978 default_expr: 4979 if( ExprAlwaysTrue(pExpr) ){ 4980 sqlite3VdbeGoto(v, dest); 4981 }else if( ExprAlwaysFalse(pExpr) ){ 4982 /* No-op */ 4983 }else{ 4984 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4985 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4986 VdbeCoverage(v); 4987 testcase( regFree1==0 ); 4988 testcase( jumpIfNull==0 ); 4989 } 4990 break; 4991 } 4992 } 4993 sqlite3ReleaseTempReg(pParse, regFree1); 4994 sqlite3ReleaseTempReg(pParse, regFree2); 4995 } 4996 4997 /* 4998 ** Generate code for a boolean expression such that a jump is made 4999 ** to the label "dest" if the expression is false but execution 5000 ** continues straight thru if the expression is true. 5001 ** 5002 ** If the expression evaluates to NULL (neither true nor false) then 5003 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5004 ** is 0. 5005 */ 5006 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5007 Vdbe *v = pParse->pVdbe; 5008 int op = 0; 5009 int regFree1 = 0; 5010 int regFree2 = 0; 5011 int r1, r2; 5012 5013 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5014 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5015 if( pExpr==0 ) return; 5016 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5017 5018 /* The value of pExpr->op and op are related as follows: 5019 ** 5020 ** pExpr->op op 5021 ** --------- ---------- 5022 ** TK_ISNULL OP_NotNull 5023 ** TK_NOTNULL OP_IsNull 5024 ** TK_NE OP_Eq 5025 ** TK_EQ OP_Ne 5026 ** TK_GT OP_Le 5027 ** TK_LE OP_Gt 5028 ** TK_GE OP_Lt 5029 ** TK_LT OP_Ge 5030 ** 5031 ** For other values of pExpr->op, op is undefined and unused. 5032 ** The value of TK_ and OP_ constants are arranged such that we 5033 ** can compute the mapping above using the following expression. 5034 ** Assert()s verify that the computation is correct. 5035 */ 5036 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5037 5038 /* Verify correct alignment of TK_ and OP_ constants 5039 */ 5040 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5041 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5042 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5043 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5044 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5045 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5046 assert( pExpr->op!=TK_GT || op==OP_Le ); 5047 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5048 5049 switch( pExpr->op ){ 5050 case TK_AND: 5051 case TK_OR: { 5052 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5053 if( pAlt!=pExpr ){ 5054 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5055 }else if( pExpr->op==TK_AND ){ 5056 testcase( jumpIfNull==0 ); 5057 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5058 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5059 }else{ 5060 int d2 = sqlite3VdbeMakeLabel(pParse); 5061 testcase( jumpIfNull==0 ); 5062 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5063 jumpIfNull^SQLITE_JUMPIFNULL); 5064 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5065 sqlite3VdbeResolveLabel(v, d2); 5066 } 5067 break; 5068 } 5069 case TK_NOT: { 5070 testcase( jumpIfNull==0 ); 5071 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5072 break; 5073 } 5074 case TK_TRUTH: { 5075 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5076 int isTrue; /* IS TRUE or IS NOT TRUE */ 5077 testcase( jumpIfNull==0 ); 5078 isNot = pExpr->op2==TK_ISNOT; 5079 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5080 testcase( isTrue && isNot ); 5081 testcase( !isTrue && isNot ); 5082 if( isTrue ^ isNot ){ 5083 /* IS TRUE and IS NOT FALSE */ 5084 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5085 isNot ? 0 : SQLITE_JUMPIFNULL); 5086 5087 }else{ 5088 /* IS FALSE and IS NOT TRUE */ 5089 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5090 isNot ? 0 : SQLITE_JUMPIFNULL); 5091 } 5092 break; 5093 } 5094 case TK_IS: 5095 case TK_ISNOT: 5096 testcase( pExpr->op==TK_IS ); 5097 testcase( pExpr->op==TK_ISNOT ); 5098 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5099 jumpIfNull = SQLITE_NULLEQ; 5100 /* no break */ deliberate_fall_through 5101 case TK_LT: 5102 case TK_LE: 5103 case TK_GT: 5104 case TK_GE: 5105 case TK_NE: 5106 case TK_EQ: { 5107 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5108 testcase( jumpIfNull==0 ); 5109 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5110 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5111 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5112 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5113 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5114 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5115 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5116 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5117 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5118 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5119 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5120 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5121 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5122 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5123 testcase( regFree1==0 ); 5124 testcase( regFree2==0 ); 5125 break; 5126 } 5127 case TK_ISNULL: 5128 case TK_NOTNULL: { 5129 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5130 sqlite3VdbeAddOp2(v, op, r1, dest); 5131 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5132 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5133 testcase( regFree1==0 ); 5134 break; 5135 } 5136 case TK_BETWEEN: { 5137 testcase( jumpIfNull==0 ); 5138 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5139 break; 5140 } 5141 #ifndef SQLITE_OMIT_SUBQUERY 5142 case TK_IN: { 5143 if( jumpIfNull ){ 5144 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5145 }else{ 5146 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5147 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5148 sqlite3VdbeResolveLabel(v, destIfNull); 5149 } 5150 break; 5151 } 5152 #endif 5153 default: { 5154 default_expr: 5155 if( ExprAlwaysFalse(pExpr) ){ 5156 sqlite3VdbeGoto(v, dest); 5157 }else if( ExprAlwaysTrue(pExpr) ){ 5158 /* no-op */ 5159 }else{ 5160 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5161 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5162 VdbeCoverage(v); 5163 testcase( regFree1==0 ); 5164 testcase( jumpIfNull==0 ); 5165 } 5166 break; 5167 } 5168 } 5169 sqlite3ReleaseTempReg(pParse, regFree1); 5170 sqlite3ReleaseTempReg(pParse, regFree2); 5171 } 5172 5173 /* 5174 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5175 ** code generation, and that copy is deleted after code generation. This 5176 ** ensures that the original pExpr is unchanged. 5177 */ 5178 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5179 sqlite3 *db = pParse->db; 5180 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5181 if( db->mallocFailed==0 ){ 5182 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5183 } 5184 sqlite3ExprDelete(db, pCopy); 5185 } 5186 5187 /* 5188 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5189 ** type of expression. 5190 ** 5191 ** If pExpr is a simple SQL value - an integer, real, string, blob 5192 ** or NULL value - then the VDBE currently being prepared is configured 5193 ** to re-prepare each time a new value is bound to variable pVar. 5194 ** 5195 ** Additionally, if pExpr is a simple SQL value and the value is the 5196 ** same as that currently bound to variable pVar, non-zero is returned. 5197 ** Otherwise, if the values are not the same or if pExpr is not a simple 5198 ** SQL value, zero is returned. 5199 */ 5200 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5201 int res = 0; 5202 int iVar; 5203 sqlite3_value *pL, *pR = 0; 5204 5205 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5206 if( pR ){ 5207 iVar = pVar->iColumn; 5208 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5209 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5210 if( pL ){ 5211 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5212 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5213 } 5214 res = 0==sqlite3MemCompare(pL, pR, 0); 5215 } 5216 sqlite3ValueFree(pR); 5217 sqlite3ValueFree(pL); 5218 } 5219 5220 return res; 5221 } 5222 5223 /* 5224 ** Do a deep comparison of two expression trees. Return 0 if the two 5225 ** expressions are completely identical. Return 1 if they differ only 5226 ** by a COLLATE operator at the top level. Return 2 if there are differences 5227 ** other than the top-level COLLATE operator. 5228 ** 5229 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5230 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5231 ** 5232 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5233 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5234 ** 5235 ** Sometimes this routine will return 2 even if the two expressions 5236 ** really are equivalent. If we cannot prove that the expressions are 5237 ** identical, we return 2 just to be safe. So if this routine 5238 ** returns 2, then you do not really know for certain if the two 5239 ** expressions are the same. But if you get a 0 or 1 return, then you 5240 ** can be sure the expressions are the same. In the places where 5241 ** this routine is used, it does not hurt to get an extra 2 - that 5242 ** just might result in some slightly slower code. But returning 5243 ** an incorrect 0 or 1 could lead to a malfunction. 5244 ** 5245 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5246 ** pParse->pReprepare can be matched against literals in pB. The 5247 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5248 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5249 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5250 ** pB causes a return value of 2. 5251 */ 5252 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5253 u32 combinedFlags; 5254 if( pA==0 || pB==0 ){ 5255 return pB==pA ? 0 : 2; 5256 } 5257 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5258 return 0; 5259 } 5260 combinedFlags = pA->flags | pB->flags; 5261 if( combinedFlags & EP_IntValue ){ 5262 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5263 return 0; 5264 } 5265 return 2; 5266 } 5267 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5268 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5269 return 1; 5270 } 5271 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5272 return 1; 5273 } 5274 return 2; 5275 } 5276 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5277 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5278 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5279 #ifndef SQLITE_OMIT_WINDOWFUNC 5280 assert( pA->op==pB->op ); 5281 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5282 return 2; 5283 } 5284 if( ExprHasProperty(pA,EP_WinFunc) ){ 5285 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5286 return 2; 5287 } 5288 } 5289 #endif 5290 }else if( pA->op==TK_NULL ){ 5291 return 0; 5292 }else if( pA->op==TK_COLLATE ){ 5293 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5294 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5295 return 2; 5296 } 5297 } 5298 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5299 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5300 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5301 if( combinedFlags & EP_xIsSelect ) return 2; 5302 if( (combinedFlags & EP_FixedCol)==0 5303 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5304 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5305 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5306 if( pA->op!=TK_STRING 5307 && pA->op!=TK_TRUEFALSE 5308 && ALWAYS((combinedFlags & EP_Reduced)==0) 5309 ){ 5310 if( pA->iColumn!=pB->iColumn ) return 2; 5311 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5312 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5313 return 2; 5314 } 5315 } 5316 } 5317 return 0; 5318 } 5319 5320 /* 5321 ** Compare two ExprList objects. Return 0 if they are identical, 1 5322 ** if they are certainly different, or 2 if it is not possible to 5323 ** determine if they are identical or not. 5324 ** 5325 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5326 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5327 ** 5328 ** This routine might return non-zero for equivalent ExprLists. The 5329 ** only consequence will be disabled optimizations. But this routine 5330 ** must never return 0 if the two ExprList objects are different, or 5331 ** a malfunction will result. 5332 ** 5333 ** Two NULL pointers are considered to be the same. But a NULL pointer 5334 ** always differs from a non-NULL pointer. 5335 */ 5336 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5337 int i; 5338 if( pA==0 && pB==0 ) return 0; 5339 if( pA==0 || pB==0 ) return 1; 5340 if( pA->nExpr!=pB->nExpr ) return 1; 5341 for(i=0; i<pA->nExpr; i++){ 5342 int res; 5343 Expr *pExprA = pA->a[i].pExpr; 5344 Expr *pExprB = pB->a[i].pExpr; 5345 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5346 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5347 } 5348 return 0; 5349 } 5350 5351 /* 5352 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5353 ** are ignored. 5354 */ 5355 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5356 return sqlite3ExprCompare(0, 5357 sqlite3ExprSkipCollateAndLikely(pA), 5358 sqlite3ExprSkipCollateAndLikely(pB), 5359 iTab); 5360 } 5361 5362 /* 5363 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5364 ** 5365 ** Or if seenNot is true, return non-zero if Expr p can only be 5366 ** non-NULL if pNN is not NULL 5367 */ 5368 static int exprImpliesNotNull( 5369 Parse *pParse, /* Parsing context */ 5370 Expr *p, /* The expression to be checked */ 5371 Expr *pNN, /* The expression that is NOT NULL */ 5372 int iTab, /* Table being evaluated */ 5373 int seenNot /* Return true only if p can be any non-NULL value */ 5374 ){ 5375 assert( p ); 5376 assert( pNN ); 5377 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5378 return pNN->op!=TK_NULL; 5379 } 5380 switch( p->op ){ 5381 case TK_IN: { 5382 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5383 assert( ExprHasProperty(p,EP_xIsSelect) 5384 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5385 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5386 } 5387 case TK_BETWEEN: { 5388 ExprList *pList = p->x.pList; 5389 assert( pList!=0 ); 5390 assert( pList->nExpr==2 ); 5391 if( seenNot ) return 0; 5392 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5393 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5394 ){ 5395 return 1; 5396 } 5397 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5398 } 5399 case TK_EQ: 5400 case TK_NE: 5401 case TK_LT: 5402 case TK_LE: 5403 case TK_GT: 5404 case TK_GE: 5405 case TK_PLUS: 5406 case TK_MINUS: 5407 case TK_BITOR: 5408 case TK_LSHIFT: 5409 case TK_RSHIFT: 5410 case TK_CONCAT: 5411 seenNot = 1; 5412 /* no break */ deliberate_fall_through 5413 case TK_STAR: 5414 case TK_REM: 5415 case TK_BITAND: 5416 case TK_SLASH: { 5417 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5418 /* no break */ deliberate_fall_through 5419 } 5420 case TK_SPAN: 5421 case TK_COLLATE: 5422 case TK_UPLUS: 5423 case TK_UMINUS: { 5424 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5425 } 5426 case TK_TRUTH: { 5427 if( seenNot ) return 0; 5428 if( p->op2!=TK_IS ) return 0; 5429 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5430 } 5431 case TK_BITNOT: 5432 case TK_NOT: { 5433 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5434 } 5435 } 5436 return 0; 5437 } 5438 5439 /* 5440 ** Return true if we can prove the pE2 will always be true if pE1 is 5441 ** true. Return false if we cannot complete the proof or if pE2 might 5442 ** be false. Examples: 5443 ** 5444 ** pE1: x==5 pE2: x==5 Result: true 5445 ** pE1: x>0 pE2: x==5 Result: false 5446 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5447 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5448 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5449 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5450 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5451 ** 5452 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5453 ** Expr.iTable<0 then assume a table number given by iTab. 5454 ** 5455 ** If pParse is not NULL, then the values of bound variables in pE1 are 5456 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5457 ** modified to record which bound variables are referenced. If pParse 5458 ** is NULL, then false will be returned if pE1 contains any bound variables. 5459 ** 5460 ** When in doubt, return false. Returning true might give a performance 5461 ** improvement. Returning false might cause a performance reduction, but 5462 ** it will always give the correct answer and is hence always safe. 5463 */ 5464 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5465 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5466 return 1; 5467 } 5468 if( pE2->op==TK_OR 5469 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5470 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5471 ){ 5472 return 1; 5473 } 5474 if( pE2->op==TK_NOTNULL 5475 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5476 ){ 5477 return 1; 5478 } 5479 return 0; 5480 } 5481 5482 /* 5483 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5484 ** If the expression node requires that the table at pWalker->iCur 5485 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5486 ** 5487 ** This routine controls an optimization. False positives (setting 5488 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5489 ** (never setting pWalker->eCode) is a harmless missed optimization. 5490 */ 5491 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5492 testcase( pExpr->op==TK_AGG_COLUMN ); 5493 testcase( pExpr->op==TK_AGG_FUNCTION ); 5494 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5495 switch( pExpr->op ){ 5496 case TK_ISNOT: 5497 case TK_ISNULL: 5498 case TK_NOTNULL: 5499 case TK_IS: 5500 case TK_OR: 5501 case TK_VECTOR: 5502 case TK_CASE: 5503 case TK_IN: 5504 case TK_FUNCTION: 5505 case TK_TRUTH: 5506 testcase( pExpr->op==TK_ISNOT ); 5507 testcase( pExpr->op==TK_ISNULL ); 5508 testcase( pExpr->op==TK_NOTNULL ); 5509 testcase( pExpr->op==TK_IS ); 5510 testcase( pExpr->op==TK_OR ); 5511 testcase( pExpr->op==TK_VECTOR ); 5512 testcase( pExpr->op==TK_CASE ); 5513 testcase( pExpr->op==TK_IN ); 5514 testcase( pExpr->op==TK_FUNCTION ); 5515 testcase( pExpr->op==TK_TRUTH ); 5516 return WRC_Prune; 5517 case TK_COLUMN: 5518 if( pWalker->u.iCur==pExpr->iTable ){ 5519 pWalker->eCode = 1; 5520 return WRC_Abort; 5521 } 5522 return WRC_Prune; 5523 5524 case TK_AND: 5525 if( pWalker->eCode==0 ){ 5526 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5527 if( pWalker->eCode ){ 5528 pWalker->eCode = 0; 5529 sqlite3WalkExpr(pWalker, pExpr->pRight); 5530 } 5531 } 5532 return WRC_Prune; 5533 5534 case TK_BETWEEN: 5535 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5536 assert( pWalker->eCode ); 5537 return WRC_Abort; 5538 } 5539 return WRC_Prune; 5540 5541 /* Virtual tables are allowed to use constraints like x=NULL. So 5542 ** a term of the form x=y does not prove that y is not null if x 5543 ** is the column of a virtual table */ 5544 case TK_EQ: 5545 case TK_NE: 5546 case TK_LT: 5547 case TK_LE: 5548 case TK_GT: 5549 case TK_GE: { 5550 Expr *pLeft = pExpr->pLeft; 5551 Expr *pRight = pExpr->pRight; 5552 testcase( pExpr->op==TK_EQ ); 5553 testcase( pExpr->op==TK_NE ); 5554 testcase( pExpr->op==TK_LT ); 5555 testcase( pExpr->op==TK_LE ); 5556 testcase( pExpr->op==TK_GT ); 5557 testcase( pExpr->op==TK_GE ); 5558 /* The y.pTab=0 assignment in wherecode.c always happens after the 5559 ** impliesNotNullRow() test */ 5560 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5561 && IsVirtual(pLeft->y.pTab)) 5562 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5563 && IsVirtual(pRight->y.pTab)) 5564 ){ 5565 return WRC_Prune; 5566 } 5567 /* no break */ deliberate_fall_through 5568 } 5569 default: 5570 return WRC_Continue; 5571 } 5572 } 5573 5574 /* 5575 ** Return true (non-zero) if expression p can only be true if at least 5576 ** one column of table iTab is non-null. In other words, return true 5577 ** if expression p will always be NULL or false if every column of iTab 5578 ** is NULL. 5579 ** 5580 ** False negatives are acceptable. In other words, it is ok to return 5581 ** zero even if expression p will never be true of every column of iTab 5582 ** is NULL. A false negative is merely a missed optimization opportunity. 5583 ** 5584 ** False positives are not allowed, however. A false positive may result 5585 ** in an incorrect answer. 5586 ** 5587 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5588 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5589 ** 5590 ** This routine is used to check if a LEFT JOIN can be converted into 5591 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5592 ** clause requires that some column of the right table of the LEFT JOIN 5593 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5594 ** ordinary join. 5595 */ 5596 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5597 Walker w; 5598 p = sqlite3ExprSkipCollateAndLikely(p); 5599 if( p==0 ) return 0; 5600 if( p->op==TK_NOTNULL ){ 5601 p = p->pLeft; 5602 }else{ 5603 while( p->op==TK_AND ){ 5604 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5605 p = p->pRight; 5606 } 5607 } 5608 w.xExprCallback = impliesNotNullRow; 5609 w.xSelectCallback = 0; 5610 w.xSelectCallback2 = 0; 5611 w.eCode = 0; 5612 w.u.iCur = iTab; 5613 sqlite3WalkExpr(&w, p); 5614 return w.eCode; 5615 } 5616 5617 /* 5618 ** An instance of the following structure is used by the tree walker 5619 ** to determine if an expression can be evaluated by reference to the 5620 ** index only, without having to do a search for the corresponding 5621 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5622 ** is the cursor for the table. 5623 */ 5624 struct IdxCover { 5625 Index *pIdx; /* The index to be tested for coverage */ 5626 int iCur; /* Cursor number for the table corresponding to the index */ 5627 }; 5628 5629 /* 5630 ** Check to see if there are references to columns in table 5631 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5632 ** pWalker->u.pIdxCover->pIdx. 5633 */ 5634 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5635 if( pExpr->op==TK_COLUMN 5636 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5637 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5638 ){ 5639 pWalker->eCode = 1; 5640 return WRC_Abort; 5641 } 5642 return WRC_Continue; 5643 } 5644 5645 /* 5646 ** Determine if an index pIdx on table with cursor iCur contains will 5647 ** the expression pExpr. Return true if the index does cover the 5648 ** expression and false if the pExpr expression references table columns 5649 ** that are not found in the index pIdx. 5650 ** 5651 ** An index covering an expression means that the expression can be 5652 ** evaluated using only the index and without having to lookup the 5653 ** corresponding table entry. 5654 */ 5655 int sqlite3ExprCoveredByIndex( 5656 Expr *pExpr, /* The index to be tested */ 5657 int iCur, /* The cursor number for the corresponding table */ 5658 Index *pIdx /* The index that might be used for coverage */ 5659 ){ 5660 Walker w; 5661 struct IdxCover xcov; 5662 memset(&w, 0, sizeof(w)); 5663 xcov.iCur = iCur; 5664 xcov.pIdx = pIdx; 5665 w.xExprCallback = exprIdxCover; 5666 w.u.pIdxCover = &xcov; 5667 sqlite3WalkExpr(&w, pExpr); 5668 return !w.eCode; 5669 } 5670 5671 5672 /* 5673 ** An instance of the following structure is used by the tree walker 5674 ** to count references to table columns in the arguments of an 5675 ** aggregate function, in order to implement the 5676 ** sqlite3FunctionThisSrc() routine. 5677 */ 5678 struct SrcCount { 5679 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5680 int iSrcInner; /* Smallest cursor number in this context */ 5681 int nThis; /* Number of references to columns in pSrcList */ 5682 int nOther; /* Number of references to columns in other FROM clauses */ 5683 }; 5684 5685 /* 5686 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5687 ** SELECT with a FROM clause encountered during this iteration, set 5688 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5689 ** the FROM cause. 5690 */ 5691 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5692 struct SrcCount *p = pWalker->u.pSrcCount; 5693 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5694 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5695 } 5696 return WRC_Continue; 5697 } 5698 5699 /* 5700 ** Count the number of references to columns. 5701 */ 5702 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5703 /* There was once a NEVER() on the second term on the grounds that 5704 ** sqlite3FunctionUsesThisSrc() was always called before 5705 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5706 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5707 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5708 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5709 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5710 int i; 5711 struct SrcCount *p = pWalker->u.pSrcCount; 5712 SrcList *pSrc = p->pSrc; 5713 int nSrc = pSrc ? pSrc->nSrc : 0; 5714 for(i=0; i<nSrc; i++){ 5715 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5716 } 5717 if( i<nSrc ){ 5718 p->nThis++; 5719 }else if( pExpr->iTable<p->iSrcInner ){ 5720 /* In a well-formed parse tree (no name resolution errors), 5721 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5722 ** outer context. Those are the only ones to count as "other" */ 5723 p->nOther++; 5724 } 5725 } 5726 return WRC_Continue; 5727 } 5728 5729 /* 5730 ** Determine if any of the arguments to the pExpr Function reference 5731 ** pSrcList. Return true if they do. Also return true if the function 5732 ** has no arguments or has only constant arguments. Return false if pExpr 5733 ** references columns but not columns of tables found in pSrcList. 5734 */ 5735 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5736 Walker w; 5737 struct SrcCount cnt; 5738 assert( pExpr->op==TK_AGG_FUNCTION ); 5739 memset(&w, 0, sizeof(w)); 5740 w.xExprCallback = exprSrcCount; 5741 w.xSelectCallback = selectSrcCount; 5742 w.u.pSrcCount = &cnt; 5743 cnt.pSrc = pSrcList; 5744 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5745 cnt.nThis = 0; 5746 cnt.nOther = 0; 5747 sqlite3WalkExprList(&w, pExpr->x.pList); 5748 #ifndef SQLITE_OMIT_WINDOWFUNC 5749 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5750 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5751 } 5752 #endif 5753 return cnt.nThis>0 || cnt.nOther==0; 5754 } 5755 5756 /* 5757 ** This is a Walker expression node callback. 5758 ** 5759 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5760 ** object that is referenced does not refer directly to the Expr. If 5761 ** it does, make a copy. This is done because the pExpr argument is 5762 ** subject to change. 5763 ** 5764 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5765 ** This will cause the expression to be deleted automatically when the 5766 ** Parse object is destroyed, but the zero register number means that it 5767 ** will not generate any code in the preamble. 5768 */ 5769 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5770 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5771 && pExpr->pAggInfo!=0 5772 ){ 5773 AggInfo *pAggInfo = pExpr->pAggInfo; 5774 int iAgg = pExpr->iAgg; 5775 Parse *pParse = pWalker->pParse; 5776 sqlite3 *db = pParse->db; 5777 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5778 if( pExpr->op==TK_AGG_COLUMN ){ 5779 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5780 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5781 pExpr = sqlite3ExprDup(db, pExpr, 0); 5782 if( pExpr ){ 5783 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5784 pParse->pConstExpr = 5785 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5786 } 5787 } 5788 }else{ 5789 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5790 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5791 pExpr = sqlite3ExprDup(db, pExpr, 0); 5792 if( pExpr ){ 5793 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5794 pParse->pConstExpr = 5795 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5796 } 5797 } 5798 } 5799 } 5800 return WRC_Continue; 5801 } 5802 5803 /* 5804 ** Initialize a Walker object so that will persist AggInfo entries referenced 5805 ** by the tree that is walked. 5806 */ 5807 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5808 memset(pWalker, 0, sizeof(*pWalker)); 5809 pWalker->pParse = pParse; 5810 pWalker->xExprCallback = agginfoPersistExprCb; 5811 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5812 } 5813 5814 /* 5815 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5816 ** the new element. Return a negative number if malloc fails. 5817 */ 5818 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5819 int i; 5820 pInfo->aCol = sqlite3ArrayAllocate( 5821 db, 5822 pInfo->aCol, 5823 sizeof(pInfo->aCol[0]), 5824 &pInfo->nColumn, 5825 &i 5826 ); 5827 return i; 5828 } 5829 5830 /* 5831 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5832 ** the new element. Return a negative number if malloc fails. 5833 */ 5834 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5835 int i; 5836 pInfo->aFunc = sqlite3ArrayAllocate( 5837 db, 5838 pInfo->aFunc, 5839 sizeof(pInfo->aFunc[0]), 5840 &pInfo->nFunc, 5841 &i 5842 ); 5843 return i; 5844 } 5845 5846 /* 5847 ** This is the xExprCallback for a tree walker. It is used to 5848 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5849 ** for additional information. 5850 */ 5851 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5852 int i; 5853 NameContext *pNC = pWalker->u.pNC; 5854 Parse *pParse = pNC->pParse; 5855 SrcList *pSrcList = pNC->pSrcList; 5856 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5857 5858 assert( pNC->ncFlags & NC_UAggInfo ); 5859 switch( pExpr->op ){ 5860 case TK_AGG_COLUMN: 5861 case TK_COLUMN: { 5862 testcase( pExpr->op==TK_AGG_COLUMN ); 5863 testcase( pExpr->op==TK_COLUMN ); 5864 /* Check to see if the column is in one of the tables in the FROM 5865 ** clause of the aggregate query */ 5866 if( ALWAYS(pSrcList!=0) ){ 5867 SrcItem *pItem = pSrcList->a; 5868 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5869 struct AggInfo_col *pCol; 5870 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5871 if( pExpr->iTable==pItem->iCursor ){ 5872 /* If we reach this point, it means that pExpr refers to a table 5873 ** that is in the FROM clause of the aggregate query. 5874 ** 5875 ** Make an entry for the column in pAggInfo->aCol[] if there 5876 ** is not an entry there already. 5877 */ 5878 int k; 5879 pCol = pAggInfo->aCol; 5880 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5881 if( pCol->iTable==pExpr->iTable && 5882 pCol->iColumn==pExpr->iColumn ){ 5883 break; 5884 } 5885 } 5886 if( (k>=pAggInfo->nColumn) 5887 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5888 ){ 5889 pCol = &pAggInfo->aCol[k]; 5890 pCol->pTab = pExpr->y.pTab; 5891 pCol->iTable = pExpr->iTable; 5892 pCol->iColumn = pExpr->iColumn; 5893 pCol->iMem = ++pParse->nMem; 5894 pCol->iSorterColumn = -1; 5895 pCol->pCExpr = pExpr; 5896 if( pAggInfo->pGroupBy ){ 5897 int j, n; 5898 ExprList *pGB = pAggInfo->pGroupBy; 5899 struct ExprList_item *pTerm = pGB->a; 5900 n = pGB->nExpr; 5901 for(j=0; j<n; j++, pTerm++){ 5902 Expr *pE = pTerm->pExpr; 5903 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5904 pE->iColumn==pExpr->iColumn ){ 5905 pCol->iSorterColumn = j; 5906 break; 5907 } 5908 } 5909 } 5910 if( pCol->iSorterColumn<0 ){ 5911 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5912 } 5913 } 5914 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5915 ** because it was there before or because we just created it). 5916 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5917 ** pAggInfo->aCol[] entry. 5918 */ 5919 ExprSetVVAProperty(pExpr, EP_NoReduce); 5920 pExpr->pAggInfo = pAggInfo; 5921 pExpr->op = TK_AGG_COLUMN; 5922 pExpr->iAgg = (i16)k; 5923 break; 5924 } /* endif pExpr->iTable==pItem->iCursor */ 5925 } /* end loop over pSrcList */ 5926 } 5927 return WRC_Prune; 5928 } 5929 case TK_AGG_FUNCTION: { 5930 if( (pNC->ncFlags & NC_InAggFunc)==0 5931 && pWalker->walkerDepth==pExpr->op2 5932 ){ 5933 /* Check to see if pExpr is a duplicate of another aggregate 5934 ** function that is already in the pAggInfo structure 5935 */ 5936 struct AggInfo_func *pItem = pAggInfo->aFunc; 5937 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5938 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5939 break; 5940 } 5941 } 5942 if( i>=pAggInfo->nFunc ){ 5943 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5944 */ 5945 u8 enc = ENC(pParse->db); 5946 i = addAggInfoFunc(pParse->db, pAggInfo); 5947 if( i>=0 ){ 5948 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5949 pItem = &pAggInfo->aFunc[i]; 5950 pItem->pFExpr = pExpr; 5951 pItem->iMem = ++pParse->nMem; 5952 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5953 pItem->pFunc = sqlite3FindFunction(pParse->db, 5954 pExpr->u.zToken, 5955 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5956 if( pExpr->flags & EP_Distinct ){ 5957 pItem->iDistinct = pParse->nTab++; 5958 }else{ 5959 pItem->iDistinct = -1; 5960 } 5961 } 5962 } 5963 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5964 */ 5965 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5966 ExprSetVVAProperty(pExpr, EP_NoReduce); 5967 pExpr->iAgg = (i16)i; 5968 pExpr->pAggInfo = pAggInfo; 5969 return WRC_Prune; 5970 }else{ 5971 return WRC_Continue; 5972 } 5973 } 5974 } 5975 return WRC_Continue; 5976 } 5977 5978 /* 5979 ** Analyze the pExpr expression looking for aggregate functions and 5980 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5981 ** points to. Additional entries are made on the AggInfo object as 5982 ** necessary. 5983 ** 5984 ** This routine should only be called after the expression has been 5985 ** analyzed by sqlite3ResolveExprNames(). 5986 */ 5987 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5988 Walker w; 5989 w.xExprCallback = analyzeAggregate; 5990 w.xSelectCallback = sqlite3WalkerDepthIncrease; 5991 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 5992 w.walkerDepth = 0; 5993 w.u.pNC = pNC; 5994 w.pParse = 0; 5995 assert( pNC->pSrcList!=0 ); 5996 sqlite3WalkExpr(&w, pExpr); 5997 } 5998 5999 /* 6000 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6001 ** expression list. Return the number of errors. 6002 ** 6003 ** If an error is found, the analysis is cut short. 6004 */ 6005 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6006 struct ExprList_item *pItem; 6007 int i; 6008 if( pList ){ 6009 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6010 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6011 } 6012 } 6013 } 6014 6015 /* 6016 ** Allocate a single new register for use to hold some intermediate result. 6017 */ 6018 int sqlite3GetTempReg(Parse *pParse){ 6019 if( pParse->nTempReg==0 ){ 6020 return ++pParse->nMem; 6021 } 6022 return pParse->aTempReg[--pParse->nTempReg]; 6023 } 6024 6025 /* 6026 ** Deallocate a register, making available for reuse for some other 6027 ** purpose. 6028 */ 6029 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6030 if( iReg ){ 6031 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6032 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6033 pParse->aTempReg[pParse->nTempReg++] = iReg; 6034 } 6035 } 6036 } 6037 6038 /* 6039 ** Allocate or deallocate a block of nReg consecutive registers. 6040 */ 6041 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6042 int i, n; 6043 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6044 i = pParse->iRangeReg; 6045 n = pParse->nRangeReg; 6046 if( nReg<=n ){ 6047 pParse->iRangeReg += nReg; 6048 pParse->nRangeReg -= nReg; 6049 }else{ 6050 i = pParse->nMem+1; 6051 pParse->nMem += nReg; 6052 } 6053 return i; 6054 } 6055 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6056 if( nReg==1 ){ 6057 sqlite3ReleaseTempReg(pParse, iReg); 6058 return; 6059 } 6060 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6061 if( nReg>pParse->nRangeReg ){ 6062 pParse->nRangeReg = nReg; 6063 pParse->iRangeReg = iReg; 6064 } 6065 } 6066 6067 /* 6068 ** Mark all temporary registers as being unavailable for reuse. 6069 ** 6070 ** Always invoke this procedure after coding a subroutine or co-routine 6071 ** that might be invoked from other parts of the code, to ensure that 6072 ** the sub/co-routine does not use registers in common with the code that 6073 ** invokes the sub/co-routine. 6074 */ 6075 void sqlite3ClearTempRegCache(Parse *pParse){ 6076 pParse->nTempReg = 0; 6077 pParse->nRangeReg = 0; 6078 } 6079 6080 /* 6081 ** Validate that no temporary register falls within the range of 6082 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6083 ** statements. 6084 */ 6085 #ifdef SQLITE_DEBUG 6086 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6087 int i; 6088 if( pParse->nRangeReg>0 6089 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6090 && pParse->iRangeReg <= iLast 6091 ){ 6092 return 0; 6093 } 6094 for(i=0; i<pParse->nTempReg; i++){ 6095 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6096 return 0; 6097 } 6098 } 6099 return 1; 6100 } 6101 #endif /* SQLITE_DEBUG */ 6102