xref: /sqlite-3.40.0/src/expr.c (revision e7a37704)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_SELECT ){
56     assert( pExpr->flags&EP_xIsSelect );
57     assert( pExpr->x.pSelect!=0 );
58     assert( pExpr->x.pSelect->pEList!=0 );
59     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
60     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
61   }
62   if( op==TK_REGISTER ) op = pExpr->op2;
63 #ifndef SQLITE_OMIT_CAST
64   if( op==TK_CAST ){
65     assert( !ExprHasProperty(pExpr, EP_IntValue) );
66     return sqlite3AffinityType(pExpr->u.zToken, 0);
67   }
68 #endif
69   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
70     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
71   }
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     return sqlite3ExprAffinity(
75         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76     );
77   }
78   if( op==TK_VECTOR ){
79     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80   }
81   return pExpr->affExpr;
82 }
83 
84 /*
85 ** Set the collating sequence for expression pExpr to be the collating
86 ** sequence named by pToken.   Return a pointer to a new Expr node that
87 ** implements the COLLATE operator.
88 **
89 ** If a memory allocation error occurs, that fact is recorded in pParse->db
90 ** and the pExpr parameter is returned unchanged.
91 */
92 Expr *sqlite3ExprAddCollateToken(
93   Parse *pParse,           /* Parsing context */
94   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
95   const Token *pCollName,  /* Name of collating sequence */
96   int dequote              /* True to dequote pCollName */
97 ){
98   assert( pExpr!=0 || pParse->db->mallocFailed );
99   if( pExpr==0 ) return 0;
100   if( pExpr->op==TK_VECTOR ){
101     ExprList *pList = pExpr->x.pList;
102     if( ALWAYS(pList!=0) ){
103       int i;
104       for(i=0; i<pList->nExpr; i++){
105         pList->a[i].pExpr = sqlite3ExprAddCollateToken(pParse,pList->a[i].pExpr,
106                                                        pCollName, dequote);
107       }
108     }
109   }else if( pCollName->n>0 ){
110     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
111     if( pNew ){
112       pNew->pLeft = pExpr;
113       pNew->flags |= EP_Collate|EP_Skip;
114       pExpr = pNew;
115     }
116   }
117   return pExpr;
118 }
119 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
120   Token s;
121   assert( zC!=0 );
122   sqlite3TokenInit(&s, (char*)zC);
123   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
124 }
125 
126 /*
127 ** Skip over any TK_COLLATE operators.
128 */
129 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
130   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
131     assert( pExpr->op==TK_COLLATE );
132     pExpr = pExpr->pLeft;
133   }
134   return pExpr;
135 }
136 
137 /*
138 ** Skip over any TK_COLLATE operators and/or any unlikely()
139 ** or likelihood() or likely() functions at the root of an
140 ** expression.
141 */
142 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
143   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
144     if( ExprHasProperty(pExpr, EP_Unlikely) ){
145       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
146       assert( pExpr->x.pList->nExpr>0 );
147       assert( pExpr->op==TK_FUNCTION );
148       pExpr = pExpr->x.pList->a[0].pExpr;
149     }else{
150       assert( pExpr->op==TK_COLLATE );
151       pExpr = pExpr->pLeft;
152     }
153   }
154   return pExpr;
155 }
156 
157 /*
158 ** Return the collation sequence for the expression pExpr. If
159 ** there is no defined collating sequence, return NULL.
160 **
161 ** See also: sqlite3ExprNNCollSeq()
162 **
163 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
164 ** default collation if pExpr has no defined collation.
165 **
166 ** The collating sequence might be determined by a COLLATE operator
167 ** or by the presence of a column with a defined collating sequence.
168 ** COLLATE operators take first precedence.  Left operands take
169 ** precedence over right operands.
170 */
171 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
172   sqlite3 *db = pParse->db;
173   CollSeq *pColl = 0;
174   const Expr *p = pExpr;
175   while( p ){
176     int op = p->op;
177     if( op==TK_REGISTER ) op = p->op2;
178     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
179      && p->y.pTab!=0
180     ){
181       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
182       ** a TK_COLUMN but was previously evaluated and cached in a register */
183       int j = p->iColumn;
184       if( j>=0 ){
185         const char *zColl = p->y.pTab->aCol[j].zColl;
186         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
187       }
188       break;
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       p = p->x.pList->a[0].pExpr;
196       continue;
197     }
198     if( op==TK_COLLATE ){
199       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
200       break;
201     }
202     if( p->flags & EP_Collate ){
203       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
204         p = p->pLeft;
205       }else{
206         Expr *pNext  = p->pRight;
207         /* The Expr.x union is never used at the same time as Expr.pRight */
208         assert( p->x.pList==0 || p->pRight==0 );
209         if( p->x.pList!=0
210          && !db->mallocFailed
211          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
212         ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     return pExpr->x.pList->nExpr;
436   }else if( op==TK_SELECT ){
437     return pExpr->x.pSelect->pEList->nExpr;
438   }else{
439     return 1;
440   }
441 }
442 
443 /*
444 ** Return a pointer to a subexpression of pVector that is the i-th
445 ** column of the vector (numbered starting with 0).  The caller must
446 ** ensure that i is within range.
447 **
448 ** If pVector is really a scalar (and "scalar" here includes subqueries
449 ** that return a single column!) then return pVector unmodified.
450 **
451 ** pVector retains ownership of the returned subexpression.
452 **
453 ** If the vector is a (SELECT ...) then the expression returned is
454 ** just the expression for the i-th term of the result set, and may
455 ** not be ready for evaluation because the table cursor has not yet
456 ** been positioned.
457 */
458 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
459   assert( i<sqlite3ExprVectorSize(pVector) );
460   if( sqlite3ExprIsVector(pVector) ){
461     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
462     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
463       return pVector->x.pSelect->pEList->a[i].pExpr;
464     }else{
465       return pVector->x.pList->a[i].pExpr;
466     }
467   }
468   return pVector;
469 }
470 
471 /*
472 ** Compute and return a new Expr object which when passed to
473 ** sqlite3ExprCode() will generate all necessary code to compute
474 ** the iField-th column of the vector expression pVector.
475 **
476 ** It is ok for pVector to be a scalar (as long as iField==0).
477 ** In that case, this routine works like sqlite3ExprDup().
478 **
479 ** The caller owns the returned Expr object and is responsible for
480 ** ensuring that the returned value eventually gets freed.
481 **
482 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
483 ** then the returned object will reference pVector and so pVector must remain
484 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
485 ** or a scalar expression, then it can be deleted as soon as this routine
486 ** returns.
487 **
488 ** A trick to cause a TK_SELECT pVector to be deleted together with
489 ** the returned Expr object is to attach the pVector to the pRight field
490 ** of the returned TK_SELECT_COLUMN Expr object.
491 */
492 Expr *sqlite3ExprForVectorField(
493   Parse *pParse,       /* Parsing context */
494   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
495   int iField           /* Which column of the vector to return */
496 ){
497   Expr *pRet;
498   if( pVector->op==TK_SELECT ){
499     assert( pVector->flags & EP_xIsSelect );
500     /* The TK_SELECT_COLUMN Expr node:
501     **
502     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
503     ** pRight:          not used.  But recursively deleted.
504     ** iColumn:         Index of a column in pVector
505     ** iTable:          0 or the number of columns on the LHS of an assignment
506     ** pLeft->iTable:   First in an array of register holding result, or 0
507     **                  if the result is not yet computed.
508     **
509     ** sqlite3ExprDelete() specifically skips the recursive delete of
510     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
511     ** can be attached to pRight to cause this node to take ownership of
512     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
513     ** with the same pLeft pointer to the pVector, but only one of them
514     ** will own the pVector.
515     */
516     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
517     if( pRet ){
518       pRet->iColumn = iField;
519       pRet->pLeft = pVector;
520     }
521     assert( pRet==0 || pRet->iTable==0 );
522   }else{
523     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
524     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
525     sqlite3RenameTokenRemap(pParse, pRet, pVector);
526   }
527   return pRet;
528 }
529 
530 /*
531 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
532 ** it. Return the register in which the result is stored (or, if the
533 ** sub-select returns more than one column, the first in an array
534 ** of registers in which the result is stored).
535 **
536 ** If pExpr is not a TK_SELECT expression, return 0.
537 */
538 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
539   int reg = 0;
540 #ifndef SQLITE_OMIT_SUBQUERY
541   if( pExpr->op==TK_SELECT ){
542     reg = sqlite3CodeSubselect(pParse, pExpr);
543   }
544 #endif
545   return reg;
546 }
547 
548 /*
549 ** Argument pVector points to a vector expression - either a TK_VECTOR
550 ** or TK_SELECT that returns more than one column. This function returns
551 ** the register number of a register that contains the value of
552 ** element iField of the vector.
553 **
554 ** If pVector is a TK_SELECT expression, then code for it must have
555 ** already been generated using the exprCodeSubselect() routine. In this
556 ** case parameter regSelect should be the first in an array of registers
557 ** containing the results of the sub-select.
558 **
559 ** If pVector is of type TK_VECTOR, then code for the requested field
560 ** is generated. In this case (*pRegFree) may be set to the number of
561 ** a temporary register to be freed by the caller before returning.
562 **
563 ** Before returning, output parameter (*ppExpr) is set to point to the
564 ** Expr object corresponding to element iElem of the vector.
565 */
566 static int exprVectorRegister(
567   Parse *pParse,                  /* Parse context */
568   Expr *pVector,                  /* Vector to extract element from */
569   int iField,                     /* Field to extract from pVector */
570   int regSelect,                  /* First in array of registers */
571   Expr **ppExpr,                  /* OUT: Expression element */
572   int *pRegFree                   /* OUT: Temp register to free */
573 ){
574   u8 op = pVector->op;
575   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
576   if( op==TK_REGISTER ){
577     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
578     return pVector->iTable+iField;
579   }
580   if( op==TK_SELECT ){
581     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
582      return regSelect+iField;
583   }
584   *ppExpr = pVector->x.pList->a[iField].pExpr;
585   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
586 }
587 
588 /*
589 ** Expression pExpr is a comparison between two vector values. Compute
590 ** the result of the comparison (1, 0, or NULL) and write that
591 ** result into register dest.
592 **
593 ** The caller must satisfy the following preconditions:
594 **
595 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
596 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
597 **    otherwise:                op==pExpr->op and p5==0
598 */
599 static void codeVectorCompare(
600   Parse *pParse,        /* Code generator context */
601   Expr *pExpr,          /* The comparison operation */
602   int dest,             /* Write results into this register */
603   u8 op,                /* Comparison operator */
604   u8 p5                 /* SQLITE_NULLEQ or zero */
605 ){
606   Vdbe *v = pParse->pVdbe;
607   Expr *pLeft = pExpr->pLeft;
608   Expr *pRight = pExpr->pRight;
609   int nLeft = sqlite3ExprVectorSize(pLeft);
610   int i;
611   int regLeft = 0;
612   int regRight = 0;
613   u8 opx = op;
614   int addrDone = sqlite3VdbeMakeLabel(pParse);
615   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
616 
617   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
618   if( pParse->nErr ) return;
619   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
620     sqlite3ErrorMsg(pParse, "row value misused");
621     return;
622   }
623   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
624        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
625        || pExpr->op==TK_LT || pExpr->op==TK_GT
626        || pExpr->op==TK_LE || pExpr->op==TK_GE
627   );
628   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
629             || (pExpr->op==TK_ISNOT && op==TK_NE) );
630   assert( p5==0 || pExpr->op!=op );
631   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
632 
633   p5 |= SQLITE_STOREP2;
634   if( opx==TK_LE ) opx = TK_LT;
635   if( opx==TK_GE ) opx = TK_GT;
636 
637   regLeft = exprCodeSubselect(pParse, pLeft);
638   regRight = exprCodeSubselect(pParse, pRight);
639 
640   for(i=0; 1 /*Loop exits by "break"*/; i++){
641     int regFree1 = 0, regFree2 = 0;
642     Expr *pL, *pR;
643     int r1, r2;
644     assert( i>=0 && i<nLeft );
645     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
646     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
647     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
648     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
649     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
650     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
651     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
652     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
653     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
654     sqlite3ReleaseTempReg(pParse, regFree1);
655     sqlite3ReleaseTempReg(pParse, regFree2);
656     if( i==nLeft-1 ){
657       break;
658     }
659     if( opx==TK_EQ ){
660       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
661       p5 |= SQLITE_KEEPNULL;
662     }else if( opx==TK_NE ){
663       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
664       p5 |= SQLITE_KEEPNULL;
665     }else{
666       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
667       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
668       VdbeCoverageIf(v, op==TK_LT);
669       VdbeCoverageIf(v, op==TK_GT);
670       VdbeCoverageIf(v, op==TK_LE);
671       VdbeCoverageIf(v, op==TK_GE);
672       if( i==nLeft-2 ) opx = op;
673     }
674   }
675   sqlite3VdbeResolveLabel(v, addrDone);
676 }
677 
678 #if SQLITE_MAX_EXPR_DEPTH>0
679 /*
680 ** Check that argument nHeight is less than or equal to the maximum
681 ** expression depth allowed. If it is not, leave an error message in
682 ** pParse.
683 */
684 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
685   int rc = SQLITE_OK;
686   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
687   if( nHeight>mxHeight ){
688     sqlite3ErrorMsg(pParse,
689        "Expression tree is too large (maximum depth %d)", mxHeight
690     );
691     rc = SQLITE_ERROR;
692   }
693   return rc;
694 }
695 
696 /* The following three functions, heightOfExpr(), heightOfExprList()
697 ** and heightOfSelect(), are used to determine the maximum height
698 ** of any expression tree referenced by the structure passed as the
699 ** first argument.
700 **
701 ** If this maximum height is greater than the current value pointed
702 ** to by pnHeight, the second parameter, then set *pnHeight to that
703 ** value.
704 */
705 static void heightOfExpr(Expr *p, int *pnHeight){
706   if( p ){
707     if( p->nHeight>*pnHeight ){
708       *pnHeight = p->nHeight;
709     }
710   }
711 }
712 static void heightOfExprList(ExprList *p, int *pnHeight){
713   if( p ){
714     int i;
715     for(i=0; i<p->nExpr; i++){
716       heightOfExpr(p->a[i].pExpr, pnHeight);
717     }
718   }
719 }
720 static void heightOfSelect(Select *pSelect, int *pnHeight){
721   Select *p;
722   for(p=pSelect; p; p=p->pPrior){
723     heightOfExpr(p->pWhere, pnHeight);
724     heightOfExpr(p->pHaving, pnHeight);
725     heightOfExpr(p->pLimit, pnHeight);
726     heightOfExprList(p->pEList, pnHeight);
727     heightOfExprList(p->pGroupBy, pnHeight);
728     heightOfExprList(p->pOrderBy, pnHeight);
729   }
730 }
731 
732 /*
733 ** Set the Expr.nHeight variable in the structure passed as an
734 ** argument. An expression with no children, Expr.pList or
735 ** Expr.pSelect member has a height of 1. Any other expression
736 ** has a height equal to the maximum height of any other
737 ** referenced Expr plus one.
738 **
739 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
740 ** if appropriate.
741 */
742 static void exprSetHeight(Expr *p){
743   int nHeight = 0;
744   heightOfExpr(p->pLeft, &nHeight);
745   heightOfExpr(p->pRight, &nHeight);
746   if( ExprHasProperty(p, EP_xIsSelect) ){
747     heightOfSelect(p->x.pSelect, &nHeight);
748   }else if( p->x.pList ){
749     heightOfExprList(p->x.pList, &nHeight);
750     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
751   }
752   p->nHeight = nHeight + 1;
753 }
754 
755 /*
756 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
757 ** the height is greater than the maximum allowed expression depth,
758 ** leave an error in pParse.
759 **
760 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
761 ** Expr.flags.
762 */
763 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
764   if( pParse->nErr ) return;
765   exprSetHeight(p);
766   sqlite3ExprCheckHeight(pParse, p->nHeight);
767 }
768 
769 /*
770 ** Return the maximum height of any expression tree referenced
771 ** by the select statement passed as an argument.
772 */
773 int sqlite3SelectExprHeight(Select *p){
774   int nHeight = 0;
775   heightOfSelect(p, &nHeight);
776   return nHeight;
777 }
778 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
779 /*
780 ** Propagate all EP_Propagate flags from the Expr.x.pList into
781 ** Expr.flags.
782 */
783 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
784   if( pParse->nErr ) return;
785   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
786     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
787   }
788 }
789 #define exprSetHeight(y)
790 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
791 
792 /*
793 ** This routine is the core allocator for Expr nodes.
794 **
795 ** Construct a new expression node and return a pointer to it.  Memory
796 ** for this node and for the pToken argument is a single allocation
797 ** obtained from sqlite3DbMalloc().  The calling function
798 ** is responsible for making sure the node eventually gets freed.
799 **
800 ** If dequote is true, then the token (if it exists) is dequoted.
801 ** If dequote is false, no dequoting is performed.  The deQuote
802 ** parameter is ignored if pToken is NULL or if the token does not
803 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
804 ** then the EP_DblQuoted flag is set on the expression node.
805 **
806 ** Special case:  If op==TK_INTEGER and pToken points to a string that
807 ** can be translated into a 32-bit integer, then the token is not
808 ** stored in u.zToken.  Instead, the integer values is written
809 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
810 ** is allocated to hold the integer text and the dequote flag is ignored.
811 */
812 Expr *sqlite3ExprAlloc(
813   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
814   int op,                 /* Expression opcode */
815   const Token *pToken,    /* Token argument.  Might be NULL */
816   int dequote             /* True to dequote */
817 ){
818   Expr *pNew;
819   int nExtra = 0;
820   int iValue = 0;
821 
822   assert( db!=0 );
823   if( pToken ){
824     if( op!=TK_INTEGER || pToken->z==0
825           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
826       nExtra = pToken->n+1;
827       assert( iValue>=0 );
828     }
829   }
830   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
831   if( pNew ){
832     memset(pNew, 0, sizeof(Expr));
833     pNew->op = (u8)op;
834     pNew->iAgg = -1;
835     if( pToken ){
836       if( nExtra==0 ){
837         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
838         pNew->u.iValue = iValue;
839       }else{
840         pNew->u.zToken = (char*)&pNew[1];
841         assert( pToken->z!=0 || pToken->n==0 );
842         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
843         pNew->u.zToken[pToken->n] = 0;
844         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
845           sqlite3DequoteExpr(pNew);
846         }
847       }
848     }
849 #if SQLITE_MAX_EXPR_DEPTH>0
850     pNew->nHeight = 1;
851 #endif
852   }
853   return pNew;
854 }
855 
856 /*
857 ** Allocate a new expression node from a zero-terminated token that has
858 ** already been dequoted.
859 */
860 Expr *sqlite3Expr(
861   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
862   int op,                 /* Expression opcode */
863   const char *zToken      /* Token argument.  Might be NULL */
864 ){
865   Token x;
866   x.z = zToken;
867   x.n = sqlite3Strlen30(zToken);
868   return sqlite3ExprAlloc(db, op, &x, 0);
869 }
870 
871 /*
872 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
873 **
874 ** If pRoot==NULL that means that a memory allocation error has occurred.
875 ** In that case, delete the subtrees pLeft and pRight.
876 */
877 void sqlite3ExprAttachSubtrees(
878   sqlite3 *db,
879   Expr *pRoot,
880   Expr *pLeft,
881   Expr *pRight
882 ){
883   if( pRoot==0 ){
884     assert( db->mallocFailed );
885     sqlite3ExprDelete(db, pLeft);
886     sqlite3ExprDelete(db, pRight);
887   }else{
888     if( pRight ){
889       pRoot->pRight = pRight;
890       pRoot->flags |= EP_Propagate & pRight->flags;
891     }
892     if( pLeft ){
893       pRoot->pLeft = pLeft;
894       pRoot->flags |= EP_Propagate & pLeft->flags;
895     }
896     exprSetHeight(pRoot);
897   }
898 }
899 
900 /*
901 ** Allocate an Expr node which joins as many as two subtrees.
902 **
903 ** One or both of the subtrees can be NULL.  Return a pointer to the new
904 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
905 ** free the subtrees and return NULL.
906 */
907 Expr *sqlite3PExpr(
908   Parse *pParse,          /* Parsing context */
909   int op,                 /* Expression opcode */
910   Expr *pLeft,            /* Left operand */
911   Expr *pRight            /* Right operand */
912 ){
913   Expr *p;
914   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
915   if( p ){
916     memset(p, 0, sizeof(Expr));
917     p->op = op & 0xff;
918     p->iAgg = -1;
919     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
920     sqlite3ExprCheckHeight(pParse, p->nHeight);
921   }else{
922     sqlite3ExprDelete(pParse->db, pLeft);
923     sqlite3ExprDelete(pParse->db, pRight);
924   }
925   return p;
926 }
927 
928 /*
929 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
930 ** do a memory allocation failure) then delete the pSelect object.
931 */
932 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
933   if( pExpr ){
934     pExpr->x.pSelect = pSelect;
935     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
936     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
937   }else{
938     assert( pParse->db->mallocFailed );
939     sqlite3SelectDelete(pParse->db, pSelect);
940   }
941 }
942 
943 
944 /*
945 ** Join two expressions using an AND operator.  If either expression is
946 ** NULL, then just return the other expression.
947 **
948 ** If one side or the other of the AND is known to be false, then instead
949 ** of returning an AND expression, just return a constant expression with
950 ** a value of false.
951 */
952 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
953   sqlite3 *db = pParse->db;
954   if( pLeft==0  ){
955     return pRight;
956   }else if( pRight==0 ){
957     return pLeft;
958   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
959          && !IN_RENAME_OBJECT
960   ){
961     sqlite3ExprDelete(db, pLeft);
962     sqlite3ExprDelete(db, pRight);
963     return sqlite3Expr(db, TK_INTEGER, "0");
964   }else{
965     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
966   }
967 }
968 
969 /*
970 ** Construct a new expression node for a function with multiple
971 ** arguments.
972 */
973 Expr *sqlite3ExprFunction(
974   Parse *pParse,        /* Parsing context */
975   ExprList *pList,      /* Argument list */
976   Token *pToken,        /* Name of the function */
977   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
978 ){
979   Expr *pNew;
980   sqlite3 *db = pParse->db;
981   assert( pToken );
982   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
983   if( pNew==0 ){
984     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
985     return 0;
986   }
987   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
988     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
989   }
990   pNew->x.pList = pList;
991   ExprSetProperty(pNew, EP_HasFunc);
992   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
993   sqlite3ExprSetHeightAndFlags(pParse, pNew);
994   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
995   return pNew;
996 }
997 
998 /*
999 ** Check to see if a function is usable according to current access
1000 ** rules:
1001 **
1002 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1003 **
1004 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1005 **                                top-level SQL
1006 **
1007 ** If the function is not usable, create an error.
1008 */
1009 void sqlite3ExprFunctionUsable(
1010   Parse *pParse,         /* Parsing and code generating context */
1011   Expr *pExpr,           /* The function invocation */
1012   FuncDef *pDef          /* The function being invoked */
1013 ){
1014   assert( !IN_RENAME_OBJECT );
1015   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1016   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1017     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1018      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1019     ){
1020       /* Functions prohibited in triggers and views if:
1021       **     (1) tagged with SQLITE_DIRECTONLY
1022       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1023       **         is tagged with SQLITE_FUNC_UNSAFE) and
1024       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1025       **         that the schema is possibly tainted).
1026       */
1027       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1028     }
1029   }
1030 }
1031 
1032 /*
1033 ** Assign a variable number to an expression that encodes a wildcard
1034 ** in the original SQL statement.
1035 **
1036 ** Wildcards consisting of a single "?" are assigned the next sequential
1037 ** variable number.
1038 **
1039 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1040 ** sure "nnn" is not too big to avoid a denial of service attack when
1041 ** the SQL statement comes from an external source.
1042 **
1043 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1044 ** as the previous instance of the same wildcard.  Or if this is the first
1045 ** instance of the wildcard, the next sequential variable number is
1046 ** assigned.
1047 */
1048 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1049   sqlite3 *db = pParse->db;
1050   const char *z;
1051   ynVar x;
1052 
1053   if( pExpr==0 ) return;
1054   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1055   z = pExpr->u.zToken;
1056   assert( z!=0 );
1057   assert( z[0]!=0 );
1058   assert( n==(u32)sqlite3Strlen30(z) );
1059   if( z[1]==0 ){
1060     /* Wildcard of the form "?".  Assign the next variable number */
1061     assert( z[0]=='?' );
1062     x = (ynVar)(++pParse->nVar);
1063   }else{
1064     int doAdd = 0;
1065     if( z[0]=='?' ){
1066       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1067       ** use it as the variable number */
1068       i64 i;
1069       int bOk;
1070       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1071         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1072         bOk = 1;
1073       }else{
1074         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1075       }
1076       testcase( i==0 );
1077       testcase( i==1 );
1078       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1079       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1080       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1081         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1082             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1083         return;
1084       }
1085       x = (ynVar)i;
1086       if( x>pParse->nVar ){
1087         pParse->nVar = (int)x;
1088         doAdd = 1;
1089       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1090         doAdd = 1;
1091       }
1092     }else{
1093       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1094       ** number as the prior appearance of the same name, or if the name
1095       ** has never appeared before, reuse the same variable number
1096       */
1097       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1098       if( x==0 ){
1099         x = (ynVar)(++pParse->nVar);
1100         doAdd = 1;
1101       }
1102     }
1103     if( doAdd ){
1104       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1105     }
1106   }
1107   pExpr->iColumn = x;
1108   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1109     sqlite3ErrorMsg(pParse, "too many SQL variables");
1110   }
1111 }
1112 
1113 /*
1114 ** Recursively delete an expression tree.
1115 */
1116 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1117   assert( p!=0 );
1118   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1119   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1120 
1121   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1122   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1123           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1124 #ifdef SQLITE_DEBUG
1125   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1126     assert( p->pLeft==0 );
1127     assert( p->pRight==0 );
1128     assert( p->x.pSelect==0 );
1129   }
1130 #endif
1131   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1132     /* The Expr.x union is never used at the same time as Expr.pRight */
1133     assert( p->x.pList==0 || p->pRight==0 );
1134     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1135     if( p->pRight ){
1136       assert( !ExprHasProperty(p, EP_WinFunc) );
1137       sqlite3ExprDeleteNN(db, p->pRight);
1138     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1139       assert( !ExprHasProperty(p, EP_WinFunc) );
1140       sqlite3SelectDelete(db, p->x.pSelect);
1141     }else{
1142       sqlite3ExprListDelete(db, p->x.pList);
1143 #ifndef SQLITE_OMIT_WINDOWFUNC
1144       if( ExprHasProperty(p, EP_WinFunc) ){
1145         sqlite3WindowDelete(db, p->y.pWin);
1146       }
1147 #endif
1148     }
1149   }
1150   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1151   if( !ExprHasProperty(p, EP_Static) ){
1152     sqlite3DbFreeNN(db, p);
1153   }
1154 }
1155 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1156   if( p ) sqlite3ExprDeleteNN(db, p);
1157 }
1158 
1159 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1160 ** expression.
1161 */
1162 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1163   if( p ){
1164     if( IN_RENAME_OBJECT ){
1165       sqlite3RenameExprUnmap(pParse, p);
1166     }
1167     sqlite3ExprDeleteNN(pParse->db, p);
1168   }
1169 }
1170 
1171 /*
1172 ** Return the number of bytes allocated for the expression structure
1173 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1174 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1175 */
1176 static int exprStructSize(Expr *p){
1177   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1178   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1179   return EXPR_FULLSIZE;
1180 }
1181 
1182 /*
1183 ** The dupedExpr*Size() routines each return the number of bytes required
1184 ** to store a copy of an expression or expression tree.  They differ in
1185 ** how much of the tree is measured.
1186 **
1187 **     dupedExprStructSize()     Size of only the Expr structure
1188 **     dupedExprNodeSize()       Size of Expr + space for token
1189 **     dupedExprSize()           Expr + token + subtree components
1190 **
1191 ***************************************************************************
1192 **
1193 ** The dupedExprStructSize() function returns two values OR-ed together:
1194 ** (1) the space required for a copy of the Expr structure only and
1195 ** (2) the EP_xxx flags that indicate what the structure size should be.
1196 ** The return values is always one of:
1197 **
1198 **      EXPR_FULLSIZE
1199 **      EXPR_REDUCEDSIZE   | EP_Reduced
1200 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1201 **
1202 ** The size of the structure can be found by masking the return value
1203 ** of this routine with 0xfff.  The flags can be found by masking the
1204 ** return value with EP_Reduced|EP_TokenOnly.
1205 **
1206 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1207 ** (unreduced) Expr objects as they or originally constructed by the parser.
1208 ** During expression analysis, extra information is computed and moved into
1209 ** later parts of the Expr object and that extra information might get chopped
1210 ** off if the expression is reduced.  Note also that it does not work to
1211 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1212 ** to reduce a pristine expression tree from the parser.  The implementation
1213 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1214 ** to enforce this constraint.
1215 */
1216 static int dupedExprStructSize(Expr *p, int flags){
1217   int nSize;
1218   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1219   assert( EXPR_FULLSIZE<=0xfff );
1220   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1221   if( 0==flags || p->op==TK_SELECT_COLUMN
1222 #ifndef SQLITE_OMIT_WINDOWFUNC
1223    || ExprHasProperty(p, EP_WinFunc)
1224 #endif
1225   ){
1226     nSize = EXPR_FULLSIZE;
1227   }else{
1228     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1229     assert( !ExprHasProperty(p, EP_FromJoin) );
1230     assert( !ExprHasProperty(p, EP_MemToken) );
1231     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1232     if( p->pLeft || p->x.pList ){
1233       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1234     }else{
1235       assert( p->pRight==0 );
1236       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1237     }
1238   }
1239   return nSize;
1240 }
1241 
1242 /*
1243 ** This function returns the space in bytes required to store the copy
1244 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1245 ** string is defined.)
1246 */
1247 static int dupedExprNodeSize(Expr *p, int flags){
1248   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1249   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1250     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1251   }
1252   return ROUND8(nByte);
1253 }
1254 
1255 /*
1256 ** Return the number of bytes required to create a duplicate of the
1257 ** expression passed as the first argument. The second argument is a
1258 ** mask containing EXPRDUP_XXX flags.
1259 **
1260 ** The value returned includes space to create a copy of the Expr struct
1261 ** itself and the buffer referred to by Expr.u.zToken, if any.
1262 **
1263 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1264 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1265 ** and Expr.pRight variables (but not for any structures pointed to or
1266 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1267 */
1268 static int dupedExprSize(Expr *p, int flags){
1269   int nByte = 0;
1270   if( p ){
1271     nByte = dupedExprNodeSize(p, flags);
1272     if( flags&EXPRDUP_REDUCE ){
1273       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1274     }
1275   }
1276   return nByte;
1277 }
1278 
1279 /*
1280 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1281 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1282 ** to store the copy of expression p, the copies of p->u.zToken
1283 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1284 ** if any. Before returning, *pzBuffer is set to the first byte past the
1285 ** portion of the buffer copied into by this function.
1286 */
1287 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1288   Expr *pNew;           /* Value to return */
1289   u8 *zAlloc;           /* Memory space from which to build Expr object */
1290   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1291 
1292   assert( db!=0 );
1293   assert( p );
1294   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1295   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1296 
1297   /* Figure out where to write the new Expr structure. */
1298   if( pzBuffer ){
1299     zAlloc = *pzBuffer;
1300     staticFlag = EP_Static;
1301   }else{
1302     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1303     staticFlag = 0;
1304   }
1305   pNew = (Expr *)zAlloc;
1306 
1307   if( pNew ){
1308     /* Set nNewSize to the size allocated for the structure pointed to
1309     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1310     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1311     ** by the copy of the p->u.zToken string (if any).
1312     */
1313     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1314     const int nNewSize = nStructSize & 0xfff;
1315     int nToken;
1316     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1317       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1318     }else{
1319       nToken = 0;
1320     }
1321     if( dupFlags ){
1322       assert( ExprHasProperty(p, EP_Reduced)==0 );
1323       memcpy(zAlloc, p, nNewSize);
1324     }else{
1325       u32 nSize = (u32)exprStructSize(p);
1326       memcpy(zAlloc, p, nSize);
1327       if( nSize<EXPR_FULLSIZE ){
1328         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1329       }
1330     }
1331 
1332     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1333     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1334     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1335     pNew->flags |= staticFlag;
1336     ExprClearVVAProperties(pNew);
1337     if( dupFlags ){
1338       ExprSetVVAProperty(pNew, EP_Immutable);
1339     }
1340 
1341     /* Copy the p->u.zToken string, if any. */
1342     if( nToken ){
1343       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1344       memcpy(zToken, p->u.zToken, nToken);
1345     }
1346 
1347     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1348       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1349       if( ExprHasProperty(p, EP_xIsSelect) ){
1350         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1351       }else{
1352         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1353       }
1354     }
1355 
1356     /* Fill in pNew->pLeft and pNew->pRight. */
1357     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1358       zAlloc += dupedExprNodeSize(p, dupFlags);
1359       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1360         pNew->pLeft = p->pLeft ?
1361                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1362         pNew->pRight = p->pRight ?
1363                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1364       }
1365 #ifndef SQLITE_OMIT_WINDOWFUNC
1366       if( ExprHasProperty(p, EP_WinFunc) ){
1367         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1368         assert( ExprHasProperty(pNew, EP_WinFunc) );
1369       }
1370 #endif /* SQLITE_OMIT_WINDOWFUNC */
1371       if( pzBuffer ){
1372         *pzBuffer = zAlloc;
1373       }
1374     }else{
1375       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1376         if( pNew->op==TK_SELECT_COLUMN ){
1377           pNew->pLeft = p->pLeft;
1378           assert( p->iColumn==0 || p->pRight==0 );
1379           assert( p->pRight==0  || p->pRight==p->pLeft );
1380         }else{
1381           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1382         }
1383         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1384       }
1385     }
1386   }
1387   return pNew;
1388 }
1389 
1390 /*
1391 ** Create and return a deep copy of the object passed as the second
1392 ** argument. If an OOM condition is encountered, NULL is returned
1393 ** and the db->mallocFailed flag set.
1394 */
1395 #ifndef SQLITE_OMIT_CTE
1396 static With *withDup(sqlite3 *db, With *p){
1397   With *pRet = 0;
1398   if( p ){
1399     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1400     pRet = sqlite3DbMallocZero(db, nByte);
1401     if( pRet ){
1402       int i;
1403       pRet->nCte = p->nCte;
1404       for(i=0; i<p->nCte; i++){
1405         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1406         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1407         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1408       }
1409     }
1410   }
1411   return pRet;
1412 }
1413 #else
1414 # define withDup(x,y) 0
1415 #endif
1416 
1417 #ifndef SQLITE_OMIT_WINDOWFUNC
1418 /*
1419 ** The gatherSelectWindows() procedure and its helper routine
1420 ** gatherSelectWindowsCallback() are used to scan all the expressions
1421 ** an a newly duplicated SELECT statement and gather all of the Window
1422 ** objects found there, assembling them onto the linked list at Select->pWin.
1423 */
1424 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1425   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1426     Select *pSelect = pWalker->u.pSelect;
1427     Window *pWin = pExpr->y.pWin;
1428     assert( pWin );
1429     assert( IsWindowFunc(pExpr) );
1430     assert( pWin->ppThis==0 );
1431     sqlite3WindowLink(pSelect, pWin);
1432   }
1433   return WRC_Continue;
1434 }
1435 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1436   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1437 }
1438 static void gatherSelectWindows(Select *p){
1439   Walker w;
1440   w.xExprCallback = gatherSelectWindowsCallback;
1441   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1442   w.xSelectCallback2 = 0;
1443   w.pParse = 0;
1444   w.u.pSelect = p;
1445   sqlite3WalkSelect(&w, p);
1446 }
1447 #endif
1448 
1449 
1450 /*
1451 ** The following group of routines make deep copies of expressions,
1452 ** expression lists, ID lists, and select statements.  The copies can
1453 ** be deleted (by being passed to their respective ...Delete() routines)
1454 ** without effecting the originals.
1455 **
1456 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1457 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1458 ** by subsequent calls to sqlite*ListAppend() routines.
1459 **
1460 ** Any tables that the SrcList might point to are not duplicated.
1461 **
1462 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1463 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1464 ** truncated version of the usual Expr structure that will be stored as
1465 ** part of the in-memory representation of the database schema.
1466 */
1467 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1468   assert( flags==0 || flags==EXPRDUP_REDUCE );
1469   return p ? exprDup(db, p, flags, 0) : 0;
1470 }
1471 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1472   ExprList *pNew;
1473   struct ExprList_item *pItem, *pOldItem;
1474   int i;
1475   Expr *pPriorSelectCol = 0;
1476   assert( db!=0 );
1477   if( p==0 ) return 0;
1478   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1479   if( pNew==0 ) return 0;
1480   pNew->nExpr = p->nExpr;
1481   pItem = pNew->a;
1482   pOldItem = p->a;
1483   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1484     Expr *pOldExpr = pOldItem->pExpr;
1485     Expr *pNewExpr;
1486     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1487     if( pOldExpr
1488      && pOldExpr->op==TK_SELECT_COLUMN
1489      && (pNewExpr = pItem->pExpr)!=0
1490     ){
1491       assert( pNewExpr->iColumn==0 || i>0 );
1492       if( pNewExpr->iColumn==0 ){
1493         assert( pOldExpr->pLeft==pOldExpr->pRight );
1494         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1495       }else{
1496         assert( i>0 );
1497         assert( pItem[-1].pExpr!=0 );
1498         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1499         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1500         pNewExpr->pLeft = pPriorSelectCol;
1501       }
1502     }
1503     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1504     pItem->sortFlags = pOldItem->sortFlags;
1505     pItem->eEName = pOldItem->eEName;
1506     pItem->done = 0;
1507     pItem->bNulls = pOldItem->bNulls;
1508     pItem->bSorterRef = pOldItem->bSorterRef;
1509     pItem->u = pOldItem->u;
1510   }
1511   return pNew;
1512 }
1513 
1514 /*
1515 ** If cursors, triggers, views and subqueries are all omitted from
1516 ** the build, then none of the following routines, except for
1517 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1518 ** called with a NULL argument.
1519 */
1520 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1521  || !defined(SQLITE_OMIT_SUBQUERY)
1522 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1523   SrcList *pNew;
1524   int i;
1525   int nByte;
1526   assert( db!=0 );
1527   if( p==0 ) return 0;
1528   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1529   pNew = sqlite3DbMallocRawNN(db, nByte );
1530   if( pNew==0 ) return 0;
1531   pNew->nSrc = pNew->nAlloc = p->nSrc;
1532   for(i=0; i<p->nSrc; i++){
1533     SrcItem *pNewItem = &pNew->a[i];
1534     SrcItem *pOldItem = &p->a[i];
1535     Table *pTab;
1536     pNewItem->pSchema = pOldItem->pSchema;
1537     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1538     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1539     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1540     pNewItem->fg = pOldItem->fg;
1541     pNewItem->iCursor = pOldItem->iCursor;
1542     pNewItem->addrFillSub = pOldItem->addrFillSub;
1543     pNewItem->regReturn = pOldItem->regReturn;
1544     if( pNewItem->fg.isIndexedBy ){
1545       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1546     }
1547     pNewItem->u2 = pOldItem->u2;
1548     if( pNewItem->fg.isCte ){
1549       pNewItem->u2.pCteUse->nUse++;
1550     }
1551     if( pNewItem->fg.isTabFunc ){
1552       pNewItem->u1.pFuncArg =
1553           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1554     }
1555     pTab = pNewItem->pTab = pOldItem->pTab;
1556     if( pTab ){
1557       pTab->nTabRef++;
1558     }
1559     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1560     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1561     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1562     pNewItem->colUsed = pOldItem->colUsed;
1563   }
1564   return pNew;
1565 }
1566 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1567   IdList *pNew;
1568   int i;
1569   assert( db!=0 );
1570   if( p==0 ) return 0;
1571   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1572   if( pNew==0 ) return 0;
1573   pNew->nId = p->nId;
1574   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1575   if( pNew->a==0 ){
1576     sqlite3DbFreeNN(db, pNew);
1577     return 0;
1578   }
1579   /* Note that because the size of the allocation for p->a[] is not
1580   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1581   ** on the duplicate created by this function. */
1582   for(i=0; i<p->nId; i++){
1583     struct IdList_item *pNewItem = &pNew->a[i];
1584     struct IdList_item *pOldItem = &p->a[i];
1585     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1586     pNewItem->idx = pOldItem->idx;
1587   }
1588   return pNew;
1589 }
1590 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1591   Select *pRet = 0;
1592   Select *pNext = 0;
1593   Select **pp = &pRet;
1594   Select *p;
1595 
1596   assert( db!=0 );
1597   for(p=pDup; p; p=p->pPrior){
1598     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1599     if( pNew==0 ) break;
1600     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1601     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1602     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1603     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1604     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1605     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1606     pNew->op = p->op;
1607     pNew->pNext = pNext;
1608     pNew->pPrior = 0;
1609     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1610     pNew->iLimit = 0;
1611     pNew->iOffset = 0;
1612     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1613     pNew->addrOpenEphm[0] = -1;
1614     pNew->addrOpenEphm[1] = -1;
1615     pNew->nSelectRow = p->nSelectRow;
1616     pNew->pWith = withDup(db, p->pWith);
1617 #ifndef SQLITE_OMIT_WINDOWFUNC
1618     pNew->pWin = 0;
1619     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1620     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1621 #endif
1622     pNew->selId = p->selId;
1623     *pp = pNew;
1624     pp = &pNew->pPrior;
1625     pNext = pNew;
1626   }
1627 
1628   return pRet;
1629 }
1630 #else
1631 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1632   assert( p==0 );
1633   return 0;
1634 }
1635 #endif
1636 
1637 
1638 /*
1639 ** Add a new element to the end of an expression list.  If pList is
1640 ** initially NULL, then create a new expression list.
1641 **
1642 ** The pList argument must be either NULL or a pointer to an ExprList
1643 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1644 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1645 ** Reason:  This routine assumes that the number of slots in pList->a[]
1646 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1647 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1648 **
1649 ** If a memory allocation error occurs, the entire list is freed and
1650 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1651 ** that the new entry was successfully appended.
1652 */
1653 ExprList *sqlite3ExprListAppend(
1654   Parse *pParse,          /* Parsing context */
1655   ExprList *pList,        /* List to which to append. Might be NULL */
1656   Expr *pExpr             /* Expression to be appended. Might be NULL */
1657 ){
1658   struct ExprList_item *pItem;
1659   sqlite3 *db = pParse->db;
1660   assert( db!=0 );
1661   if( pList==0 ){
1662     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1663     if( pList==0 ){
1664       goto no_mem;
1665     }
1666     pList->nExpr = 0;
1667   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1668     ExprList *pNew;
1669     pNew = sqlite3DbRealloc(db, pList,
1670          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1671     if( pNew==0 ){
1672       goto no_mem;
1673     }
1674     pList = pNew;
1675   }
1676   pItem = &pList->a[pList->nExpr++];
1677   assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) );
1678   assert( offsetof(struct ExprList_item,pExpr)==0 );
1679   memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName));
1680   pItem->pExpr = pExpr;
1681   return pList;
1682 
1683 no_mem:
1684   /* Avoid leaking memory if malloc has failed. */
1685   sqlite3ExprDelete(db, pExpr);
1686   sqlite3ExprListDelete(db, pList);
1687   return 0;
1688 }
1689 
1690 /*
1691 ** pColumns and pExpr form a vector assignment which is part of the SET
1692 ** clause of an UPDATE statement.  Like this:
1693 **
1694 **        (a,b,c) = (expr1,expr2,expr3)
1695 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1696 **
1697 ** For each term of the vector assignment, append new entries to the
1698 ** expression list pList.  In the case of a subquery on the RHS, append
1699 ** TK_SELECT_COLUMN expressions.
1700 */
1701 ExprList *sqlite3ExprListAppendVector(
1702   Parse *pParse,         /* Parsing context */
1703   ExprList *pList,       /* List to which to append. Might be NULL */
1704   IdList *pColumns,      /* List of names of LHS of the assignment */
1705   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1706 ){
1707   sqlite3 *db = pParse->db;
1708   int n;
1709   int i;
1710   int iFirst = pList ? pList->nExpr : 0;
1711   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1712   ** exit prior to this routine being invoked */
1713   if( NEVER(pColumns==0) ) goto vector_append_error;
1714   if( pExpr==0 ) goto vector_append_error;
1715 
1716   /* If the RHS is a vector, then we can immediately check to see that
1717   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1718   ** wildcards ("*") in the result set of the SELECT must be expanded before
1719   ** we can do the size check, so defer the size check until code generation.
1720   */
1721   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1722     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1723                     pColumns->nId, n);
1724     goto vector_append_error;
1725   }
1726 
1727   for(i=0; i<pColumns->nId; i++){
1728     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1729     assert( pSubExpr!=0 || db->mallocFailed );
1730     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1731     if( pSubExpr==0 ) continue;
1732     pSubExpr->iTable = pColumns->nId;
1733     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1734     if( pList ){
1735       assert( pList->nExpr==iFirst+i+1 );
1736       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1737       pColumns->a[i].zName = 0;
1738     }
1739   }
1740 
1741   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1742     Expr *pFirst = pList->a[iFirst].pExpr;
1743     assert( pFirst!=0 );
1744     assert( pFirst->op==TK_SELECT_COLUMN );
1745 
1746     /* Store the SELECT statement in pRight so it will be deleted when
1747     ** sqlite3ExprListDelete() is called */
1748     pFirst->pRight = pExpr;
1749     pExpr = 0;
1750 
1751     /* Remember the size of the LHS in iTable so that we can check that
1752     ** the RHS and LHS sizes match during code generation. */
1753     pFirst->iTable = pColumns->nId;
1754   }
1755 
1756 vector_append_error:
1757   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1758   sqlite3IdListDelete(db, pColumns);
1759   return pList;
1760 }
1761 
1762 /*
1763 ** Set the sort order for the last element on the given ExprList.
1764 */
1765 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1766   struct ExprList_item *pItem;
1767   if( p==0 ) return;
1768   assert( p->nExpr>0 );
1769 
1770   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1771   assert( iSortOrder==SQLITE_SO_UNDEFINED
1772        || iSortOrder==SQLITE_SO_ASC
1773        || iSortOrder==SQLITE_SO_DESC
1774   );
1775   assert( eNulls==SQLITE_SO_UNDEFINED
1776        || eNulls==SQLITE_SO_ASC
1777        || eNulls==SQLITE_SO_DESC
1778   );
1779 
1780   pItem = &p->a[p->nExpr-1];
1781   assert( pItem->bNulls==0 );
1782   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1783     iSortOrder = SQLITE_SO_ASC;
1784   }
1785   pItem->sortFlags = (u8)iSortOrder;
1786 
1787   if( eNulls!=SQLITE_SO_UNDEFINED ){
1788     pItem->bNulls = 1;
1789     if( iSortOrder!=eNulls ){
1790       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1791     }
1792   }
1793 }
1794 
1795 /*
1796 ** Set the ExprList.a[].zEName element of the most recently added item
1797 ** on the expression list.
1798 **
1799 ** pList might be NULL following an OOM error.  But pName should never be
1800 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1801 ** is set.
1802 */
1803 void sqlite3ExprListSetName(
1804   Parse *pParse,          /* Parsing context */
1805   ExprList *pList,        /* List to which to add the span. */
1806   Token *pName,           /* Name to be added */
1807   int dequote             /* True to cause the name to be dequoted */
1808 ){
1809   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1810   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1811   if( pList ){
1812     struct ExprList_item *pItem;
1813     assert( pList->nExpr>0 );
1814     pItem = &pList->a[pList->nExpr-1];
1815     assert( pItem->zEName==0 );
1816     assert( pItem->eEName==ENAME_NAME );
1817     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1818     if( dequote ){
1819       /* If dequote==0, then pName->z does not point to part of a DDL
1820       ** statement handled by the parser. And so no token need be added
1821       ** to the token-map.  */
1822       sqlite3Dequote(pItem->zEName);
1823       if( IN_RENAME_OBJECT ){
1824         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1825       }
1826     }
1827   }
1828 }
1829 
1830 /*
1831 ** Set the ExprList.a[].zSpan element of the most recently added item
1832 ** on the expression list.
1833 **
1834 ** pList might be NULL following an OOM error.  But pSpan should never be
1835 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1836 ** is set.
1837 */
1838 void sqlite3ExprListSetSpan(
1839   Parse *pParse,          /* Parsing context */
1840   ExprList *pList,        /* List to which to add the span. */
1841   const char *zStart,     /* Start of the span */
1842   const char *zEnd        /* End of the span */
1843 ){
1844   sqlite3 *db = pParse->db;
1845   assert( pList!=0 || db->mallocFailed!=0 );
1846   if( pList ){
1847     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1848     assert( pList->nExpr>0 );
1849     if( pItem->zEName==0 ){
1850       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1851       pItem->eEName = ENAME_SPAN;
1852     }
1853   }
1854 }
1855 
1856 /*
1857 ** If the expression list pEList contains more than iLimit elements,
1858 ** leave an error message in pParse.
1859 */
1860 void sqlite3ExprListCheckLength(
1861   Parse *pParse,
1862   ExprList *pEList,
1863   const char *zObject
1864 ){
1865   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1866   testcase( pEList && pEList->nExpr==mx );
1867   testcase( pEList && pEList->nExpr==mx+1 );
1868   if( pEList && pEList->nExpr>mx ){
1869     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1870   }
1871 }
1872 
1873 /*
1874 ** Delete an entire expression list.
1875 */
1876 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1877   int i = pList->nExpr;
1878   struct ExprList_item *pItem =  pList->a;
1879   assert( pList->nExpr>0 );
1880   do{
1881     sqlite3ExprDelete(db, pItem->pExpr);
1882     sqlite3DbFree(db, pItem->zEName);
1883     pItem++;
1884   }while( --i>0 );
1885   sqlite3DbFreeNN(db, pList);
1886 }
1887 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1888   if( pList ) exprListDeleteNN(db, pList);
1889 }
1890 
1891 /*
1892 ** Return the bitwise-OR of all Expr.flags fields in the given
1893 ** ExprList.
1894 */
1895 u32 sqlite3ExprListFlags(const ExprList *pList){
1896   int i;
1897   u32 m = 0;
1898   assert( pList!=0 );
1899   for(i=0; i<pList->nExpr; i++){
1900      Expr *pExpr = pList->a[i].pExpr;
1901      assert( pExpr!=0 );
1902      m |= pExpr->flags;
1903   }
1904   return m;
1905 }
1906 
1907 /*
1908 ** This is a SELECT-node callback for the expression walker that
1909 ** always "fails".  By "fail" in this case, we mean set
1910 ** pWalker->eCode to zero and abort.
1911 **
1912 ** This callback is used by multiple expression walkers.
1913 */
1914 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1915   UNUSED_PARAMETER(NotUsed);
1916   pWalker->eCode = 0;
1917   return WRC_Abort;
1918 }
1919 
1920 /*
1921 ** Check the input string to see if it is "true" or "false" (in any case).
1922 **
1923 **       If the string is....           Return
1924 **         "true"                         EP_IsTrue
1925 **         "false"                        EP_IsFalse
1926 **         anything else                  0
1927 */
1928 u32 sqlite3IsTrueOrFalse(const char *zIn){
1929   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1930   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1931   return 0;
1932 }
1933 
1934 
1935 /*
1936 ** If the input expression is an ID with the name "true" or "false"
1937 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1938 ** the conversion happened, and zero if the expression is unaltered.
1939 */
1940 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1941   u32 v;
1942   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1943   if( !ExprHasProperty(pExpr, EP_Quoted)
1944    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1945   ){
1946     pExpr->op = TK_TRUEFALSE;
1947     ExprSetProperty(pExpr, v);
1948     return 1;
1949   }
1950   return 0;
1951 }
1952 
1953 /*
1954 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1955 ** and 0 if it is FALSE.
1956 */
1957 int sqlite3ExprTruthValue(const Expr *pExpr){
1958   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1959   assert( pExpr->op==TK_TRUEFALSE );
1960   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1961        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1962   return pExpr->u.zToken[4]==0;
1963 }
1964 
1965 /*
1966 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1967 ** terms that are always true or false.  Return the simplified expression.
1968 ** Or return the original expression if no simplification is possible.
1969 **
1970 ** Examples:
1971 **
1972 **     (x<10) AND true                =>   (x<10)
1973 **     (x<10) AND false               =>   false
1974 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1975 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1976 **     (y=22) OR true                 =>   true
1977 */
1978 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1979   assert( pExpr!=0 );
1980   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1981     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1982     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1983     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1984       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1985     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1986       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1987     }
1988   }
1989   return pExpr;
1990 }
1991 
1992 
1993 /*
1994 ** These routines are Walker callbacks used to check expressions to
1995 ** see if they are "constant" for some definition of constant.  The
1996 ** Walker.eCode value determines the type of "constant" we are looking
1997 ** for.
1998 **
1999 ** These callback routines are used to implement the following:
2000 **
2001 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2002 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2003 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2004 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2005 **
2006 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2007 ** is found to not be a constant.
2008 **
2009 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2010 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2011 ** when parsing an existing schema out of the sqlite_schema table and 4
2012 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2013 ** an error for new statements, but is silently converted
2014 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2015 ** contain a bound parameter because they were generated by older versions
2016 ** of SQLite to be parsed by newer versions of SQLite without raising a
2017 ** malformed schema error.
2018 */
2019 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2020 
2021   /* If pWalker->eCode is 2 then any term of the expression that comes from
2022   ** the ON or USING clauses of a left join disqualifies the expression
2023   ** from being considered constant. */
2024   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2025     pWalker->eCode = 0;
2026     return WRC_Abort;
2027   }
2028 
2029   switch( pExpr->op ){
2030     /* Consider functions to be constant if all their arguments are constant
2031     ** and either pWalker->eCode==4 or 5 or the function has the
2032     ** SQLITE_FUNC_CONST flag. */
2033     case TK_FUNCTION:
2034       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2035        && !ExprHasProperty(pExpr, EP_WinFunc)
2036       ){
2037         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2038         return WRC_Continue;
2039       }else{
2040         pWalker->eCode = 0;
2041         return WRC_Abort;
2042       }
2043     case TK_ID:
2044       /* Convert "true" or "false" in a DEFAULT clause into the
2045       ** appropriate TK_TRUEFALSE operator */
2046       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2047         return WRC_Prune;
2048       }
2049       /* no break */ deliberate_fall_through
2050     case TK_COLUMN:
2051     case TK_AGG_FUNCTION:
2052     case TK_AGG_COLUMN:
2053       testcase( pExpr->op==TK_ID );
2054       testcase( pExpr->op==TK_COLUMN );
2055       testcase( pExpr->op==TK_AGG_FUNCTION );
2056       testcase( pExpr->op==TK_AGG_COLUMN );
2057       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2058         return WRC_Continue;
2059       }
2060       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2061         return WRC_Continue;
2062       }
2063       /* no break */ deliberate_fall_through
2064     case TK_IF_NULL_ROW:
2065     case TK_REGISTER:
2066     case TK_DOT:
2067       testcase( pExpr->op==TK_REGISTER );
2068       testcase( pExpr->op==TK_IF_NULL_ROW );
2069       testcase( pExpr->op==TK_DOT );
2070       pWalker->eCode = 0;
2071       return WRC_Abort;
2072     case TK_VARIABLE:
2073       if( pWalker->eCode==5 ){
2074         /* Silently convert bound parameters that appear inside of CREATE
2075         ** statements into a NULL when parsing the CREATE statement text out
2076         ** of the sqlite_schema table */
2077         pExpr->op = TK_NULL;
2078       }else if( pWalker->eCode==4 ){
2079         /* A bound parameter in a CREATE statement that originates from
2080         ** sqlite3_prepare() causes an error */
2081         pWalker->eCode = 0;
2082         return WRC_Abort;
2083       }
2084       /* no break */ deliberate_fall_through
2085     default:
2086       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2087       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2088       return WRC_Continue;
2089   }
2090 }
2091 static int exprIsConst(Expr *p, int initFlag, int iCur){
2092   Walker w;
2093   w.eCode = initFlag;
2094   w.xExprCallback = exprNodeIsConstant;
2095   w.xSelectCallback = sqlite3SelectWalkFail;
2096 #ifdef SQLITE_DEBUG
2097   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2098 #endif
2099   w.u.iCur = iCur;
2100   sqlite3WalkExpr(&w, p);
2101   return w.eCode;
2102 }
2103 
2104 /*
2105 ** Walk an expression tree.  Return non-zero if the expression is constant
2106 ** and 0 if it involves variables or function calls.
2107 **
2108 ** For the purposes of this function, a double-quoted string (ex: "abc")
2109 ** is considered a variable but a single-quoted string (ex: 'abc') is
2110 ** a constant.
2111 */
2112 int sqlite3ExprIsConstant(Expr *p){
2113   return exprIsConst(p, 1, 0);
2114 }
2115 
2116 /*
2117 ** Walk an expression tree.  Return non-zero if
2118 **
2119 **   (1) the expression is constant, and
2120 **   (2) the expression does originate in the ON or USING clause
2121 **       of a LEFT JOIN, and
2122 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2123 **       operands created by the constant propagation optimization.
2124 **
2125 ** When this routine returns true, it indicates that the expression
2126 ** can be added to the pParse->pConstExpr list and evaluated once when
2127 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2128 */
2129 int sqlite3ExprIsConstantNotJoin(Expr *p){
2130   return exprIsConst(p, 2, 0);
2131 }
2132 
2133 /*
2134 ** Walk an expression tree.  Return non-zero if the expression is constant
2135 ** for any single row of the table with cursor iCur.  In other words, the
2136 ** expression must not refer to any non-deterministic function nor any
2137 ** table other than iCur.
2138 */
2139 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2140   return exprIsConst(p, 3, iCur);
2141 }
2142 
2143 
2144 /*
2145 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2146 */
2147 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2148   ExprList *pGroupBy = pWalker->u.pGroupBy;
2149   int i;
2150 
2151   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2152   ** it constant.  */
2153   for(i=0; i<pGroupBy->nExpr; i++){
2154     Expr *p = pGroupBy->a[i].pExpr;
2155     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2156       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2157       if( sqlite3IsBinary(pColl) ){
2158         return WRC_Prune;
2159       }
2160     }
2161   }
2162 
2163   /* Check if pExpr is a sub-select. If so, consider it variable. */
2164   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2165     pWalker->eCode = 0;
2166     return WRC_Abort;
2167   }
2168 
2169   return exprNodeIsConstant(pWalker, pExpr);
2170 }
2171 
2172 /*
2173 ** Walk the expression tree passed as the first argument. Return non-zero
2174 ** if the expression consists entirely of constants or copies of terms
2175 ** in pGroupBy that sort with the BINARY collation sequence.
2176 **
2177 ** This routine is used to determine if a term of the HAVING clause can
2178 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2179 ** the value of the HAVING clause term must be the same for all members of
2180 ** a "group".  The requirement that the GROUP BY term must be BINARY
2181 ** assumes that no other collating sequence will have a finer-grained
2182 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2183 ** A=B in every other collating sequence.  The requirement that the
2184 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2185 ** to promote HAVING clauses that use the same alternative collating
2186 ** sequence as the GROUP BY term, but that is much harder to check,
2187 ** alternative collating sequences are uncommon, and this is only an
2188 ** optimization, so we take the easy way out and simply require the
2189 ** GROUP BY to use the BINARY collating sequence.
2190 */
2191 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2192   Walker w;
2193   w.eCode = 1;
2194   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2195   w.xSelectCallback = 0;
2196   w.u.pGroupBy = pGroupBy;
2197   w.pParse = pParse;
2198   sqlite3WalkExpr(&w, p);
2199   return w.eCode;
2200 }
2201 
2202 /*
2203 ** Walk an expression tree for the DEFAULT field of a column definition
2204 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2205 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2206 ** the expression is constant or a function call with constant arguments.
2207 ** Return and 0 if there are any variables.
2208 **
2209 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2210 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2211 ** (such as ? or $abc) in the expression are converted into NULL.  When
2212 ** isInit is false, parameters raise an error.  Parameters should not be
2213 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2214 ** allowed it, so we need to support it when reading sqlite_schema for
2215 ** backwards compatibility.
2216 **
2217 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2218 **
2219 ** For the purposes of this function, a double-quoted string (ex: "abc")
2220 ** is considered a variable but a single-quoted string (ex: 'abc') is
2221 ** a constant.
2222 */
2223 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2224   assert( isInit==0 || isInit==1 );
2225   return exprIsConst(p, 4+isInit, 0);
2226 }
2227 
2228 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2229 /*
2230 ** Walk an expression tree.  Return 1 if the expression contains a
2231 ** subquery of some kind.  Return 0 if there are no subqueries.
2232 */
2233 int sqlite3ExprContainsSubquery(Expr *p){
2234   Walker w;
2235   w.eCode = 1;
2236   w.xExprCallback = sqlite3ExprWalkNoop;
2237   w.xSelectCallback = sqlite3SelectWalkFail;
2238 #ifdef SQLITE_DEBUG
2239   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2240 #endif
2241   sqlite3WalkExpr(&w, p);
2242   return w.eCode==0;
2243 }
2244 #endif
2245 
2246 /*
2247 ** If the expression p codes a constant integer that is small enough
2248 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2249 ** in *pValue.  If the expression is not an integer or if it is too big
2250 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2251 */
2252 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2253   int rc = 0;
2254   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2255 
2256   /* If an expression is an integer literal that fits in a signed 32-bit
2257   ** integer, then the EP_IntValue flag will have already been set */
2258   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2259            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2260 
2261   if( p->flags & EP_IntValue ){
2262     *pValue = p->u.iValue;
2263     return 1;
2264   }
2265   switch( p->op ){
2266     case TK_UPLUS: {
2267       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2268       break;
2269     }
2270     case TK_UMINUS: {
2271       int v;
2272       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2273         assert( v!=(-2147483647-1) );
2274         *pValue = -v;
2275         rc = 1;
2276       }
2277       break;
2278     }
2279     default: break;
2280   }
2281   return rc;
2282 }
2283 
2284 /*
2285 ** Return FALSE if there is no chance that the expression can be NULL.
2286 **
2287 ** If the expression might be NULL or if the expression is too complex
2288 ** to tell return TRUE.
2289 **
2290 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2291 ** when we know that a value cannot be NULL.  Hence, a false positive
2292 ** (returning TRUE when in fact the expression can never be NULL) might
2293 ** be a small performance hit but is otherwise harmless.  On the other
2294 ** hand, a false negative (returning FALSE when the result could be NULL)
2295 ** will likely result in an incorrect answer.  So when in doubt, return
2296 ** TRUE.
2297 */
2298 int sqlite3ExprCanBeNull(const Expr *p){
2299   u8 op;
2300   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2301     p = p->pLeft;
2302   }
2303   op = p->op;
2304   if( op==TK_REGISTER ) op = p->op2;
2305   switch( op ){
2306     case TK_INTEGER:
2307     case TK_STRING:
2308     case TK_FLOAT:
2309     case TK_BLOB:
2310       return 0;
2311     case TK_COLUMN:
2312       return ExprHasProperty(p, EP_CanBeNull) ||
2313              p->y.pTab==0 ||  /* Reference to column of index on expression */
2314              (p->iColumn>=0
2315               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2316               && p->y.pTab->aCol[p->iColumn].notNull==0);
2317     default:
2318       return 1;
2319   }
2320 }
2321 
2322 /*
2323 ** Return TRUE if the given expression is a constant which would be
2324 ** unchanged by OP_Affinity with the affinity given in the second
2325 ** argument.
2326 **
2327 ** This routine is used to determine if the OP_Affinity operation
2328 ** can be omitted.  When in doubt return FALSE.  A false negative
2329 ** is harmless.  A false positive, however, can result in the wrong
2330 ** answer.
2331 */
2332 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2333   u8 op;
2334   int unaryMinus = 0;
2335   if( aff==SQLITE_AFF_BLOB ) return 1;
2336   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2337     if( p->op==TK_UMINUS ) unaryMinus = 1;
2338     p = p->pLeft;
2339   }
2340   op = p->op;
2341   if( op==TK_REGISTER ) op = p->op2;
2342   switch( op ){
2343     case TK_INTEGER: {
2344       return aff>=SQLITE_AFF_NUMERIC;
2345     }
2346     case TK_FLOAT: {
2347       return aff>=SQLITE_AFF_NUMERIC;
2348     }
2349     case TK_STRING: {
2350       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2351     }
2352     case TK_BLOB: {
2353       return !unaryMinus;
2354     }
2355     case TK_COLUMN: {
2356       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2357       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2358     }
2359     default: {
2360       return 0;
2361     }
2362   }
2363 }
2364 
2365 /*
2366 ** Return TRUE if the given string is a row-id column name.
2367 */
2368 int sqlite3IsRowid(const char *z){
2369   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2370   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2371   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2372   return 0;
2373 }
2374 
2375 /*
2376 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2377 ** that can be simplified to a direct table access, then return
2378 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2379 ** or if the SELECT statement needs to be manifested into a transient
2380 ** table, then return NULL.
2381 */
2382 #ifndef SQLITE_OMIT_SUBQUERY
2383 static Select *isCandidateForInOpt(Expr *pX){
2384   Select *p;
2385   SrcList *pSrc;
2386   ExprList *pEList;
2387   Table *pTab;
2388   int i;
2389   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2390   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2391   p = pX->x.pSelect;
2392   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2393   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2394     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2395     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2396     return 0; /* No DISTINCT keyword and no aggregate functions */
2397   }
2398   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2399   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2400   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2401   pSrc = p->pSrc;
2402   assert( pSrc!=0 );
2403   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2404   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2405   pTab = pSrc->a[0].pTab;
2406   assert( pTab!=0 );
2407   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2408   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2409   pEList = p->pEList;
2410   assert( pEList!=0 );
2411   /* All SELECT results must be columns. */
2412   for(i=0; i<pEList->nExpr; i++){
2413     Expr *pRes = pEList->a[i].pExpr;
2414     if( pRes->op!=TK_COLUMN ) return 0;
2415     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2416   }
2417   return p;
2418 }
2419 #endif /* SQLITE_OMIT_SUBQUERY */
2420 
2421 #ifndef SQLITE_OMIT_SUBQUERY
2422 /*
2423 ** Generate code that checks the left-most column of index table iCur to see if
2424 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2425 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2426 ** to be set to NULL if iCur contains one or more NULL values.
2427 */
2428 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2429   int addr1;
2430   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2431   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2432   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2433   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2434   VdbeComment((v, "first_entry_in(%d)", iCur));
2435   sqlite3VdbeJumpHere(v, addr1);
2436 }
2437 #endif
2438 
2439 
2440 #ifndef SQLITE_OMIT_SUBQUERY
2441 /*
2442 ** The argument is an IN operator with a list (not a subquery) on the
2443 ** right-hand side.  Return TRUE if that list is constant.
2444 */
2445 static int sqlite3InRhsIsConstant(Expr *pIn){
2446   Expr *pLHS;
2447   int res;
2448   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2449   pLHS = pIn->pLeft;
2450   pIn->pLeft = 0;
2451   res = sqlite3ExprIsConstant(pIn);
2452   pIn->pLeft = pLHS;
2453   return res;
2454 }
2455 #endif
2456 
2457 /*
2458 ** This function is used by the implementation of the IN (...) operator.
2459 ** The pX parameter is the expression on the RHS of the IN operator, which
2460 ** might be either a list of expressions or a subquery.
2461 **
2462 ** The job of this routine is to find or create a b-tree object that can
2463 ** be used either to test for membership in the RHS set or to iterate through
2464 ** all members of the RHS set, skipping duplicates.
2465 **
2466 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2467 ** and pX->iTable is set to the index of that cursor.
2468 **
2469 ** The returned value of this function indicates the b-tree type, as follows:
2470 **
2471 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2472 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2473 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2474 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2475 **                         populated epheremal table.
2476 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2477 **                         implemented as a sequence of comparisons.
2478 **
2479 ** An existing b-tree might be used if the RHS expression pX is a simple
2480 ** subquery such as:
2481 **
2482 **     SELECT <column1>, <column2>... FROM <table>
2483 **
2484 ** If the RHS of the IN operator is a list or a more complex subquery, then
2485 ** an ephemeral table might need to be generated from the RHS and then
2486 ** pX->iTable made to point to the ephemeral table instead of an
2487 ** existing table.
2488 **
2489 ** The inFlags parameter must contain, at a minimum, one of the bits
2490 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2491 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2492 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2493 ** be used to loop over all values of the RHS of the IN operator.
2494 **
2495 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2496 ** through the set members) then the b-tree must not contain duplicates.
2497 ** An epheremal table will be created unless the selected columns are guaranteed
2498 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2499 ** a UNIQUE constraint or index.
2500 **
2501 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2502 ** for fast set membership tests) then an epheremal table must
2503 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2504 ** index can be found with the specified <columns> as its left-most.
2505 **
2506 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2507 ** if the RHS of the IN operator is a list (not a subquery) then this
2508 ** routine might decide that creating an ephemeral b-tree for membership
2509 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2510 ** calling routine should implement the IN operator using a sequence
2511 ** of Eq or Ne comparison operations.
2512 **
2513 ** When the b-tree is being used for membership tests, the calling function
2514 ** might need to know whether or not the RHS side of the IN operator
2515 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2516 ** if there is any chance that the (...) might contain a NULL value at
2517 ** runtime, then a register is allocated and the register number written
2518 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2519 ** NULL value, then *prRhsHasNull is left unchanged.
2520 **
2521 ** If a register is allocated and its location stored in *prRhsHasNull, then
2522 ** the value in that register will be NULL if the b-tree contains one or more
2523 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2524 ** NULL values.
2525 **
2526 ** If the aiMap parameter is not NULL, it must point to an array containing
2527 ** one element for each column returned by the SELECT statement on the RHS
2528 ** of the IN(...) operator. The i'th entry of the array is populated with the
2529 ** offset of the index column that matches the i'th column returned by the
2530 ** SELECT. For example, if the expression and selected index are:
2531 **
2532 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2533 **   CREATE INDEX i1 ON t1(b, c, a);
2534 **
2535 ** then aiMap[] is populated with {2, 0, 1}.
2536 */
2537 #ifndef SQLITE_OMIT_SUBQUERY
2538 int sqlite3FindInIndex(
2539   Parse *pParse,             /* Parsing context */
2540   Expr *pX,                  /* The IN expression */
2541   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2542   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2543   int *aiMap,                /* Mapping from Index fields to RHS fields */
2544   int *piTab                 /* OUT: index to use */
2545 ){
2546   Select *p;                            /* SELECT to the right of IN operator */
2547   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2548   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2549   int mustBeUnique;                     /* True if RHS must be unique */
2550   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2551 
2552   assert( pX->op==TK_IN );
2553   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2554 
2555   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2556   ** whether or not the SELECT result contains NULL values, check whether
2557   ** or not NULL is actually possible (it may not be, for example, due
2558   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2559   ** set prRhsHasNull to 0 before continuing.  */
2560   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2561     int i;
2562     ExprList *pEList = pX->x.pSelect->pEList;
2563     for(i=0; i<pEList->nExpr; i++){
2564       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2565     }
2566     if( i==pEList->nExpr ){
2567       prRhsHasNull = 0;
2568     }
2569   }
2570 
2571   /* Check to see if an existing table or index can be used to
2572   ** satisfy the query.  This is preferable to generating a new
2573   ** ephemeral table.  */
2574   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2575     sqlite3 *db = pParse->db;              /* Database connection */
2576     Table *pTab;                           /* Table <table>. */
2577     int iDb;                               /* Database idx for pTab */
2578     ExprList *pEList = p->pEList;
2579     int nExpr = pEList->nExpr;
2580 
2581     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2582     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2583     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2584     pTab = p->pSrc->a[0].pTab;
2585 
2586     /* Code an OP_Transaction and OP_TableLock for <table>. */
2587     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2588     assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED );
2589     sqlite3CodeVerifySchema(pParse, iDb);
2590     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2591 
2592     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2593     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2594       /* The "x IN (SELECT rowid FROM table)" case */
2595       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2596       VdbeCoverage(v);
2597 
2598       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2599       eType = IN_INDEX_ROWID;
2600       ExplainQueryPlan((pParse, 0,
2601             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2602       sqlite3VdbeJumpHere(v, iAddr);
2603     }else{
2604       Index *pIdx;                         /* Iterator variable */
2605       int affinity_ok = 1;
2606       int i;
2607 
2608       /* Check that the affinity that will be used to perform each
2609       ** comparison is the same as the affinity of each column in table
2610       ** on the RHS of the IN operator.  If it not, it is not possible to
2611       ** use any index of the RHS table.  */
2612       for(i=0; i<nExpr && affinity_ok; i++){
2613         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2614         int iCol = pEList->a[i].pExpr->iColumn;
2615         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2616         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2617         testcase( cmpaff==SQLITE_AFF_BLOB );
2618         testcase( cmpaff==SQLITE_AFF_TEXT );
2619         switch( cmpaff ){
2620           case SQLITE_AFF_BLOB:
2621             break;
2622           case SQLITE_AFF_TEXT:
2623             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2624             ** other has no affinity and the other side is TEXT.  Hence,
2625             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2626             ** and for the term on the LHS of the IN to have no affinity. */
2627             assert( idxaff==SQLITE_AFF_TEXT );
2628             break;
2629           default:
2630             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2631         }
2632       }
2633 
2634       if( affinity_ok ){
2635         /* Search for an existing index that will work for this IN operator */
2636         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2637           Bitmask colUsed;      /* Columns of the index used */
2638           Bitmask mCol;         /* Mask for the current column */
2639           if( pIdx->nColumn<nExpr ) continue;
2640           if( pIdx->pPartIdxWhere!=0 ) continue;
2641           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2642           ** BITMASK(nExpr) without overflowing */
2643           testcase( pIdx->nColumn==BMS-2 );
2644           testcase( pIdx->nColumn==BMS-1 );
2645           if( pIdx->nColumn>=BMS-1 ) continue;
2646           if( mustBeUnique ){
2647             if( pIdx->nKeyCol>nExpr
2648              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2649             ){
2650               continue;  /* This index is not unique over the IN RHS columns */
2651             }
2652           }
2653 
2654           colUsed = 0;   /* Columns of index used so far */
2655           for(i=0; i<nExpr; i++){
2656             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2657             Expr *pRhs = pEList->a[i].pExpr;
2658             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2659             int j;
2660 
2661             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2662             for(j=0; j<nExpr; j++){
2663               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2664               assert( pIdx->azColl[j] );
2665               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2666                 continue;
2667               }
2668               break;
2669             }
2670             if( j==nExpr ) break;
2671             mCol = MASKBIT(j);
2672             if( mCol & colUsed ) break; /* Each column used only once */
2673             colUsed |= mCol;
2674             if( aiMap ) aiMap[i] = j;
2675           }
2676 
2677           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2678           if( colUsed==(MASKBIT(nExpr)-1) ){
2679             /* If we reach this point, that means the index pIdx is usable */
2680             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2681             ExplainQueryPlan((pParse, 0,
2682                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2683             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2684             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2685             VdbeComment((v, "%s", pIdx->zName));
2686             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2687             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2688 
2689             if( prRhsHasNull ){
2690 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2691               i64 mask = (1<<nExpr)-1;
2692               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2693                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2694 #endif
2695               *prRhsHasNull = ++pParse->nMem;
2696               if( nExpr==1 ){
2697                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2698               }
2699             }
2700             sqlite3VdbeJumpHere(v, iAddr);
2701           }
2702         } /* End loop over indexes */
2703       } /* End if( affinity_ok ) */
2704     } /* End if not an rowid index */
2705   } /* End attempt to optimize using an index */
2706 
2707   /* If no preexisting index is available for the IN clause
2708   ** and IN_INDEX_NOOP is an allowed reply
2709   ** and the RHS of the IN operator is a list, not a subquery
2710   ** and the RHS is not constant or has two or fewer terms,
2711   ** then it is not worth creating an ephemeral table to evaluate
2712   ** the IN operator so return IN_INDEX_NOOP.
2713   */
2714   if( eType==0
2715    && (inFlags & IN_INDEX_NOOP_OK)
2716    && !ExprHasProperty(pX, EP_xIsSelect)
2717    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2718   ){
2719     eType = IN_INDEX_NOOP;
2720   }
2721 
2722   if( eType==0 ){
2723     /* Could not find an existing table or index to use as the RHS b-tree.
2724     ** We will have to generate an ephemeral table to do the job.
2725     */
2726     u32 savedNQueryLoop = pParse->nQueryLoop;
2727     int rMayHaveNull = 0;
2728     eType = IN_INDEX_EPH;
2729     if( inFlags & IN_INDEX_LOOP ){
2730       pParse->nQueryLoop = 0;
2731     }else if( prRhsHasNull ){
2732       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2733     }
2734     assert( pX->op==TK_IN );
2735     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2736     if( rMayHaveNull ){
2737       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2738     }
2739     pParse->nQueryLoop = savedNQueryLoop;
2740   }
2741 
2742   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2743     int i, n;
2744     n = sqlite3ExprVectorSize(pX->pLeft);
2745     for(i=0; i<n; i++) aiMap[i] = i;
2746   }
2747   *piTab = iTab;
2748   return eType;
2749 }
2750 #endif
2751 
2752 #ifndef SQLITE_OMIT_SUBQUERY
2753 /*
2754 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2755 ** function allocates and returns a nul-terminated string containing
2756 ** the affinities to be used for each column of the comparison.
2757 **
2758 ** It is the responsibility of the caller to ensure that the returned
2759 ** string is eventually freed using sqlite3DbFree().
2760 */
2761 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2762   Expr *pLeft = pExpr->pLeft;
2763   int nVal = sqlite3ExprVectorSize(pLeft);
2764   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2765   char *zRet;
2766 
2767   assert( pExpr->op==TK_IN );
2768   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2769   if( zRet ){
2770     int i;
2771     for(i=0; i<nVal; i++){
2772       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2773       char a = sqlite3ExprAffinity(pA);
2774       if( pSelect ){
2775         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2776       }else{
2777         zRet[i] = a;
2778       }
2779     }
2780     zRet[nVal] = '\0';
2781   }
2782   return zRet;
2783 }
2784 #endif
2785 
2786 #ifndef SQLITE_OMIT_SUBQUERY
2787 /*
2788 ** Load the Parse object passed as the first argument with an error
2789 ** message of the form:
2790 **
2791 **   "sub-select returns N columns - expected M"
2792 */
2793 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2794   if( pParse->nErr==0 ){
2795     const char *zFmt = "sub-select returns %d columns - expected %d";
2796     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2797   }
2798 }
2799 #endif
2800 
2801 /*
2802 ** Expression pExpr is a vector that has been used in a context where
2803 ** it is not permitted. If pExpr is a sub-select vector, this routine
2804 ** loads the Parse object with a message of the form:
2805 **
2806 **   "sub-select returns N columns - expected 1"
2807 **
2808 ** Or, if it is a regular scalar vector:
2809 **
2810 **   "row value misused"
2811 */
2812 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2813 #ifndef SQLITE_OMIT_SUBQUERY
2814   if( pExpr->flags & EP_xIsSelect ){
2815     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2816   }else
2817 #endif
2818   {
2819     sqlite3ErrorMsg(pParse, "row value misused");
2820   }
2821 }
2822 
2823 #ifndef SQLITE_OMIT_SUBQUERY
2824 /*
2825 ** Generate code that will construct an ephemeral table containing all terms
2826 ** in the RHS of an IN operator.  The IN operator can be in either of two
2827 ** forms:
2828 **
2829 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2830 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2831 **
2832 ** The pExpr parameter is the IN operator.  The cursor number for the
2833 ** constructed ephermeral table is returned.  The first time the ephemeral
2834 ** table is computed, the cursor number is also stored in pExpr->iTable,
2835 ** however the cursor number returned might not be the same, as it might
2836 ** have been duplicated using OP_OpenDup.
2837 **
2838 ** If the LHS expression ("x" in the examples) is a column value, or
2839 ** the SELECT statement returns a column value, then the affinity of that
2840 ** column is used to build the index keys. If both 'x' and the
2841 ** SELECT... statement are columns, then numeric affinity is used
2842 ** if either column has NUMERIC or INTEGER affinity. If neither
2843 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2844 ** is used.
2845 */
2846 void sqlite3CodeRhsOfIN(
2847   Parse *pParse,          /* Parsing context */
2848   Expr *pExpr,            /* The IN operator */
2849   int iTab                /* Use this cursor number */
2850 ){
2851   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2852   int addr;                   /* Address of OP_OpenEphemeral instruction */
2853   Expr *pLeft;                /* the LHS of the IN operator */
2854   KeyInfo *pKeyInfo = 0;      /* Key information */
2855   int nVal;                   /* Size of vector pLeft */
2856   Vdbe *v;                    /* The prepared statement under construction */
2857 
2858   v = pParse->pVdbe;
2859   assert( v!=0 );
2860 
2861   /* The evaluation of the IN must be repeated every time it
2862   ** is encountered if any of the following is true:
2863   **
2864   **    *  The right-hand side is a correlated subquery
2865   **    *  The right-hand side is an expression list containing variables
2866   **    *  We are inside a trigger
2867   **
2868   ** If all of the above are false, then we can compute the RHS just once
2869   ** and reuse it many names.
2870   */
2871   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2872     /* Reuse of the RHS is allowed */
2873     /* If this routine has already been coded, but the previous code
2874     ** might not have been invoked yet, so invoke it now as a subroutine.
2875     */
2876     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2877       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2878       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2879         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2880               pExpr->x.pSelect->selId));
2881       }
2882       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2883                         pExpr->y.sub.iAddr);
2884       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2885       sqlite3VdbeJumpHere(v, addrOnce);
2886       return;
2887     }
2888 
2889     /* Begin coding the subroutine */
2890     ExprSetProperty(pExpr, EP_Subrtn);
2891     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2892     pExpr->y.sub.regReturn = ++pParse->nMem;
2893     pExpr->y.sub.iAddr =
2894       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2895     VdbeComment((v, "return address"));
2896 
2897     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2898   }
2899 
2900   /* Check to see if this is a vector IN operator */
2901   pLeft = pExpr->pLeft;
2902   nVal = sqlite3ExprVectorSize(pLeft);
2903 
2904   /* Construct the ephemeral table that will contain the content of
2905   ** RHS of the IN operator.
2906   */
2907   pExpr->iTable = iTab;
2908   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2909 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2910   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2911     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2912   }else{
2913     VdbeComment((v, "RHS of IN operator"));
2914   }
2915 #endif
2916   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2917 
2918   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2919     /* Case 1:     expr IN (SELECT ...)
2920     **
2921     ** Generate code to write the results of the select into the temporary
2922     ** table allocated and opened above.
2923     */
2924     Select *pSelect = pExpr->x.pSelect;
2925     ExprList *pEList = pSelect->pEList;
2926 
2927     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2928         addrOnce?"":"CORRELATED ", pSelect->selId
2929     ));
2930     /* If the LHS and RHS of the IN operator do not match, that
2931     ** error will have been caught long before we reach this point. */
2932     if( ALWAYS(pEList->nExpr==nVal) ){
2933       SelectDest dest;
2934       int i;
2935       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2936       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2937       pSelect->iLimit = 0;
2938       testcase( pSelect->selFlags & SF_Distinct );
2939       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2940       if( sqlite3Select(pParse, pSelect, &dest) ){
2941         sqlite3DbFree(pParse->db, dest.zAffSdst);
2942         sqlite3KeyInfoUnref(pKeyInfo);
2943         return;
2944       }
2945       sqlite3DbFree(pParse->db, dest.zAffSdst);
2946       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2947       assert( pEList!=0 );
2948       assert( pEList->nExpr>0 );
2949       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2950       for(i=0; i<nVal; i++){
2951         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2952         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2953             pParse, p, pEList->a[i].pExpr
2954         );
2955       }
2956     }
2957   }else if( ALWAYS(pExpr->x.pList!=0) ){
2958     /* Case 2:     expr IN (exprlist)
2959     **
2960     ** For each expression, build an index key from the evaluation and
2961     ** store it in the temporary table. If <expr> is a column, then use
2962     ** that columns affinity when building index keys. If <expr> is not
2963     ** a column, use numeric affinity.
2964     */
2965     char affinity;            /* Affinity of the LHS of the IN */
2966     int i;
2967     ExprList *pList = pExpr->x.pList;
2968     struct ExprList_item *pItem;
2969     int r1, r2;
2970     affinity = sqlite3ExprAffinity(pLeft);
2971     if( affinity<=SQLITE_AFF_NONE ){
2972       affinity = SQLITE_AFF_BLOB;
2973     }else if( affinity==SQLITE_AFF_REAL ){
2974       affinity = SQLITE_AFF_NUMERIC;
2975     }
2976     if( pKeyInfo ){
2977       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2978       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2979     }
2980 
2981     /* Loop through each expression in <exprlist>. */
2982     r1 = sqlite3GetTempReg(pParse);
2983     r2 = sqlite3GetTempReg(pParse);
2984     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2985       Expr *pE2 = pItem->pExpr;
2986 
2987       /* If the expression is not constant then we will need to
2988       ** disable the test that was generated above that makes sure
2989       ** this code only executes once.  Because for a non-constant
2990       ** expression we need to rerun this code each time.
2991       */
2992       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2993         sqlite3VdbeChangeToNoop(v, addrOnce);
2994         ExprClearProperty(pExpr, EP_Subrtn);
2995         addrOnce = 0;
2996       }
2997 
2998       /* Evaluate the expression and insert it into the temp table */
2999       sqlite3ExprCode(pParse, pE2, r1);
3000       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3001       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3002     }
3003     sqlite3ReleaseTempReg(pParse, r1);
3004     sqlite3ReleaseTempReg(pParse, r2);
3005   }
3006   if( pKeyInfo ){
3007     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3008   }
3009   if( addrOnce ){
3010     sqlite3VdbeJumpHere(v, addrOnce);
3011     /* Subroutine return */
3012     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3013     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3014     sqlite3ClearTempRegCache(pParse);
3015   }
3016 }
3017 #endif /* SQLITE_OMIT_SUBQUERY */
3018 
3019 /*
3020 ** Generate code for scalar subqueries used as a subquery expression
3021 ** or EXISTS operator:
3022 **
3023 **     (SELECT a FROM b)          -- subquery
3024 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3025 **
3026 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3027 **
3028 ** Return the register that holds the result.  For a multi-column SELECT,
3029 ** the result is stored in a contiguous array of registers and the
3030 ** return value is the register of the left-most result column.
3031 ** Return 0 if an error occurs.
3032 */
3033 #ifndef SQLITE_OMIT_SUBQUERY
3034 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3035   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3036   int rReg = 0;               /* Register storing resulting */
3037   Select *pSel;               /* SELECT statement to encode */
3038   SelectDest dest;            /* How to deal with SELECT result */
3039   int nReg;                   /* Registers to allocate */
3040   Expr *pLimit;               /* New limit expression */
3041 
3042   Vdbe *v = pParse->pVdbe;
3043   assert( v!=0 );
3044   testcase( pExpr->op==TK_EXISTS );
3045   testcase( pExpr->op==TK_SELECT );
3046   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3047   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3048   pSel = pExpr->x.pSelect;
3049 
3050   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3051   ** is encountered if any of the following is true:
3052   **
3053   **    *  The right-hand side is a correlated subquery
3054   **    *  The right-hand side is an expression list containing variables
3055   **    *  We are inside a trigger
3056   **
3057   ** If all of the above are false, then we can run this code just once
3058   ** save the results, and reuse the same result on subsequent invocations.
3059   */
3060   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3061     /* If this routine has already been coded, then invoke it as a
3062     ** subroutine. */
3063     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3064       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3065       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3066                         pExpr->y.sub.iAddr);
3067       return pExpr->iTable;
3068     }
3069 
3070     /* Begin coding the subroutine */
3071     ExprSetProperty(pExpr, EP_Subrtn);
3072     pExpr->y.sub.regReturn = ++pParse->nMem;
3073     pExpr->y.sub.iAddr =
3074       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3075     VdbeComment((v, "return address"));
3076 
3077     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3078   }
3079 
3080   /* For a SELECT, generate code to put the values for all columns of
3081   ** the first row into an array of registers and return the index of
3082   ** the first register.
3083   **
3084   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3085   ** into a register and return that register number.
3086   **
3087   ** In both cases, the query is augmented with "LIMIT 1".  Any
3088   ** preexisting limit is discarded in place of the new LIMIT 1.
3089   */
3090   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3091         addrOnce?"":"CORRELATED ", pSel->selId));
3092   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3093   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3094   pParse->nMem += nReg;
3095   if( pExpr->op==TK_SELECT ){
3096     dest.eDest = SRT_Mem;
3097     dest.iSdst = dest.iSDParm;
3098     dest.nSdst = nReg;
3099     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3100     VdbeComment((v, "Init subquery result"));
3101   }else{
3102     dest.eDest = SRT_Exists;
3103     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3104     VdbeComment((v, "Init EXISTS result"));
3105   }
3106   if( pSel->pLimit ){
3107     /* The subquery already has a limit.  If the pre-existing limit is X
3108     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3109     sqlite3 *db = pParse->db;
3110     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3111     if( pLimit ){
3112       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3113       pLimit = sqlite3PExpr(pParse, TK_NE,
3114                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3115     }
3116     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3117     pSel->pLimit->pLeft = pLimit;
3118   }else{
3119     /* If there is no pre-existing limit add a limit of 1 */
3120     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3121     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3122   }
3123   pSel->iLimit = 0;
3124   if( sqlite3Select(pParse, pSel, &dest) ){
3125     return 0;
3126   }
3127   pExpr->iTable = rReg = dest.iSDParm;
3128   ExprSetVVAProperty(pExpr, EP_NoReduce);
3129   if( addrOnce ){
3130     sqlite3VdbeJumpHere(v, addrOnce);
3131 
3132     /* Subroutine return */
3133     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3134     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3135     sqlite3ClearTempRegCache(pParse);
3136   }
3137 
3138   return rReg;
3139 }
3140 #endif /* SQLITE_OMIT_SUBQUERY */
3141 
3142 #ifndef SQLITE_OMIT_SUBQUERY
3143 /*
3144 ** Expr pIn is an IN(...) expression. This function checks that the
3145 ** sub-select on the RHS of the IN() operator has the same number of
3146 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3147 ** a sub-query, that the LHS is a vector of size 1.
3148 */
3149 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3150   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3151   if( (pIn->flags & EP_xIsSelect) ){
3152     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3153       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3154       return 1;
3155     }
3156   }else if( nVector!=1 ){
3157     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3158     return 1;
3159   }
3160   return 0;
3161 }
3162 #endif
3163 
3164 #ifndef SQLITE_OMIT_SUBQUERY
3165 /*
3166 ** Generate code for an IN expression.
3167 **
3168 **      x IN (SELECT ...)
3169 **      x IN (value, value, ...)
3170 **
3171 ** The left-hand side (LHS) is a scalar or vector expression.  The
3172 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3173 ** subquery.  If the RHS is a subquery, the number of result columns must
3174 ** match the number of columns in the vector on the LHS.  If the RHS is
3175 ** a list of values, the LHS must be a scalar.
3176 **
3177 ** The IN operator is true if the LHS value is contained within the RHS.
3178 ** The result is false if the LHS is definitely not in the RHS.  The
3179 ** result is NULL if the presence of the LHS in the RHS cannot be
3180 ** determined due to NULLs.
3181 **
3182 ** This routine generates code that jumps to destIfFalse if the LHS is not
3183 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3184 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3185 ** within the RHS then fall through.
3186 **
3187 ** See the separate in-operator.md documentation file in the canonical
3188 ** SQLite source tree for additional information.
3189 */
3190 static void sqlite3ExprCodeIN(
3191   Parse *pParse,        /* Parsing and code generating context */
3192   Expr *pExpr,          /* The IN expression */
3193   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3194   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3195 ){
3196   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3197   int eType;            /* Type of the RHS */
3198   int rLhs;             /* Register(s) holding the LHS values */
3199   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3200   Vdbe *v;              /* Statement under construction */
3201   int *aiMap = 0;       /* Map from vector field to index column */
3202   char *zAff = 0;       /* Affinity string for comparisons */
3203   int nVector;          /* Size of vectors for this IN operator */
3204   int iDummy;           /* Dummy parameter to exprCodeVector() */
3205   Expr *pLeft;          /* The LHS of the IN operator */
3206   int i;                /* loop counter */
3207   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3208   int destStep6 = 0;    /* Start of code for Step 6 */
3209   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3210   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3211   int addrTop;          /* Top of the step-6 loop */
3212   int iTab = 0;         /* Index to use */
3213   u8 okConstFactor = pParse->okConstFactor;
3214 
3215   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3216   pLeft = pExpr->pLeft;
3217   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3218   zAff = exprINAffinity(pParse, pExpr);
3219   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3220   aiMap = (int*)sqlite3DbMallocZero(
3221       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3222   );
3223   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3224 
3225   /* Attempt to compute the RHS. After this step, if anything other than
3226   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3227   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3228   ** the RHS has not yet been coded.  */
3229   v = pParse->pVdbe;
3230   assert( v!=0 );       /* OOM detected prior to this routine */
3231   VdbeNoopComment((v, "begin IN expr"));
3232   eType = sqlite3FindInIndex(pParse, pExpr,
3233                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3234                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3235                              aiMap, &iTab);
3236 
3237   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3238        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3239   );
3240 #ifdef SQLITE_DEBUG
3241   /* Confirm that aiMap[] contains nVector integer values between 0 and
3242   ** nVector-1. */
3243   for(i=0; i<nVector; i++){
3244     int j, cnt;
3245     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3246     assert( cnt==1 );
3247   }
3248 #endif
3249 
3250   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3251   ** vector, then it is stored in an array of nVector registers starting
3252   ** at r1.
3253   **
3254   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3255   ** so that the fields are in the same order as an existing index.   The
3256   ** aiMap[] array contains a mapping from the original LHS field order to
3257   ** the field order that matches the RHS index.
3258   **
3259   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3260   ** even if it is constant, as OP_Affinity may be used on the register
3261   ** by code generated below.  */
3262   assert( pParse->okConstFactor==okConstFactor );
3263   pParse->okConstFactor = 0;
3264   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3265   pParse->okConstFactor = okConstFactor;
3266   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3267   if( i==nVector ){
3268     /* LHS fields are not reordered */
3269     rLhs = rLhsOrig;
3270   }else{
3271     /* Need to reorder the LHS fields according to aiMap */
3272     rLhs = sqlite3GetTempRange(pParse, nVector);
3273     for(i=0; i<nVector; i++){
3274       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3275     }
3276   }
3277 
3278   /* If sqlite3FindInIndex() did not find or create an index that is
3279   ** suitable for evaluating the IN operator, then evaluate using a
3280   ** sequence of comparisons.
3281   **
3282   ** This is step (1) in the in-operator.md optimized algorithm.
3283   */
3284   if( eType==IN_INDEX_NOOP ){
3285     ExprList *pList = pExpr->x.pList;
3286     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3287     int labelOk = sqlite3VdbeMakeLabel(pParse);
3288     int r2, regToFree;
3289     int regCkNull = 0;
3290     int ii;
3291     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3292     if( destIfNull!=destIfFalse ){
3293       regCkNull = sqlite3GetTempReg(pParse);
3294       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3295     }
3296     for(ii=0; ii<pList->nExpr; ii++){
3297       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3298       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3299         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3300       }
3301       sqlite3ReleaseTempReg(pParse, regToFree);
3302       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3303         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3304         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3305                           (void*)pColl, P4_COLLSEQ);
3306         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3307         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3308         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3309         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3310         sqlite3VdbeChangeP5(v, zAff[0]);
3311       }else{
3312         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3313         assert( destIfNull==destIfFalse );
3314         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3315                           (void*)pColl, P4_COLLSEQ);
3316         VdbeCoverageIf(v, op==OP_Ne);
3317         VdbeCoverageIf(v, op==OP_IsNull);
3318         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3319       }
3320     }
3321     if( regCkNull ){
3322       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3323       sqlite3VdbeGoto(v, destIfFalse);
3324     }
3325     sqlite3VdbeResolveLabel(v, labelOk);
3326     sqlite3ReleaseTempReg(pParse, regCkNull);
3327     goto sqlite3ExprCodeIN_finished;
3328   }
3329 
3330   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3331   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3332   ** We will then skip the binary search of the RHS.
3333   */
3334   if( destIfNull==destIfFalse ){
3335     destStep2 = destIfFalse;
3336   }else{
3337     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3338   }
3339   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3340   for(i=0; i<nVector; i++){
3341     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3342     if( sqlite3ExprCanBeNull(p) ){
3343       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3344       VdbeCoverage(v);
3345     }
3346   }
3347 
3348   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3349   ** of the RHS using the LHS as a probe.  If found, the result is
3350   ** true.
3351   */
3352   if( eType==IN_INDEX_ROWID ){
3353     /* In this case, the RHS is the ROWID of table b-tree and so we also
3354     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3355     ** into a single opcode. */
3356     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3357     VdbeCoverage(v);
3358     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3359   }else{
3360     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3361     if( destIfFalse==destIfNull ){
3362       /* Combine Step 3 and Step 5 into a single opcode */
3363       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3364                            rLhs, nVector); VdbeCoverage(v);
3365       goto sqlite3ExprCodeIN_finished;
3366     }
3367     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3368     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3369                                       rLhs, nVector); VdbeCoverage(v);
3370   }
3371 
3372   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3373   ** an match on the search above, then the result must be FALSE.
3374   */
3375   if( rRhsHasNull && nVector==1 ){
3376     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3377     VdbeCoverage(v);
3378   }
3379 
3380   /* Step 5.  If we do not care about the difference between NULL and
3381   ** FALSE, then just return false.
3382   */
3383   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3384 
3385   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3386   ** If any comparison is NULL, then the result is NULL.  If all
3387   ** comparisons are FALSE then the final result is FALSE.
3388   **
3389   ** For a scalar LHS, it is sufficient to check just the first row
3390   ** of the RHS.
3391   */
3392   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3393   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3394   VdbeCoverage(v);
3395   if( nVector>1 ){
3396     destNotNull = sqlite3VdbeMakeLabel(pParse);
3397   }else{
3398     /* For nVector==1, combine steps 6 and 7 by immediately returning
3399     ** FALSE if the first comparison is not NULL */
3400     destNotNull = destIfFalse;
3401   }
3402   for(i=0; i<nVector; i++){
3403     Expr *p;
3404     CollSeq *pColl;
3405     int r3 = sqlite3GetTempReg(pParse);
3406     p = sqlite3VectorFieldSubexpr(pLeft, i);
3407     pColl = sqlite3ExprCollSeq(pParse, p);
3408     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3409     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3410                       (void*)pColl, P4_COLLSEQ);
3411     VdbeCoverage(v);
3412     sqlite3ReleaseTempReg(pParse, r3);
3413   }
3414   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3415   if( nVector>1 ){
3416     sqlite3VdbeResolveLabel(v, destNotNull);
3417     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3418     VdbeCoverage(v);
3419 
3420     /* Step 7:  If we reach this point, we know that the result must
3421     ** be false. */
3422     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3423   }
3424 
3425   /* Jumps here in order to return true. */
3426   sqlite3VdbeJumpHere(v, addrTruthOp);
3427 
3428 sqlite3ExprCodeIN_finished:
3429   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3430   VdbeComment((v, "end IN expr"));
3431 sqlite3ExprCodeIN_oom_error:
3432   sqlite3DbFree(pParse->db, aiMap);
3433   sqlite3DbFree(pParse->db, zAff);
3434 }
3435 #endif /* SQLITE_OMIT_SUBQUERY */
3436 
3437 #ifndef SQLITE_OMIT_FLOATING_POINT
3438 /*
3439 ** Generate an instruction that will put the floating point
3440 ** value described by z[0..n-1] into register iMem.
3441 **
3442 ** The z[] string will probably not be zero-terminated.  But the
3443 ** z[n] character is guaranteed to be something that does not look
3444 ** like the continuation of the number.
3445 */
3446 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3447   if( ALWAYS(z!=0) ){
3448     double value;
3449     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3450     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3451     if( negateFlag ) value = -value;
3452     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3453   }
3454 }
3455 #endif
3456 
3457 
3458 /*
3459 ** Generate an instruction that will put the integer describe by
3460 ** text z[0..n-1] into register iMem.
3461 **
3462 ** Expr.u.zToken is always UTF8 and zero-terminated.
3463 */
3464 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3465   Vdbe *v = pParse->pVdbe;
3466   if( pExpr->flags & EP_IntValue ){
3467     int i = pExpr->u.iValue;
3468     assert( i>=0 );
3469     if( negFlag ) i = -i;
3470     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3471   }else{
3472     int c;
3473     i64 value;
3474     const char *z = pExpr->u.zToken;
3475     assert( z!=0 );
3476     c = sqlite3DecOrHexToI64(z, &value);
3477     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3478 #ifdef SQLITE_OMIT_FLOATING_POINT
3479       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3480 #else
3481 #ifndef SQLITE_OMIT_HEX_INTEGER
3482       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3483         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3484       }else
3485 #endif
3486       {
3487         codeReal(v, z, negFlag, iMem);
3488       }
3489 #endif
3490     }else{
3491       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3492       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3493     }
3494   }
3495 }
3496 
3497 
3498 /* Generate code that will load into register regOut a value that is
3499 ** appropriate for the iIdxCol-th column of index pIdx.
3500 */
3501 void sqlite3ExprCodeLoadIndexColumn(
3502   Parse *pParse,  /* The parsing context */
3503   Index *pIdx,    /* The index whose column is to be loaded */
3504   int iTabCur,    /* Cursor pointing to a table row */
3505   int iIdxCol,    /* The column of the index to be loaded */
3506   int regOut      /* Store the index column value in this register */
3507 ){
3508   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3509   if( iTabCol==XN_EXPR ){
3510     assert( pIdx->aColExpr );
3511     assert( pIdx->aColExpr->nExpr>iIdxCol );
3512     pParse->iSelfTab = iTabCur + 1;
3513     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3514     pParse->iSelfTab = 0;
3515   }else{
3516     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3517                                     iTabCol, regOut);
3518   }
3519 }
3520 
3521 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3522 /*
3523 ** Generate code that will compute the value of generated column pCol
3524 ** and store the result in register regOut
3525 */
3526 void sqlite3ExprCodeGeneratedColumn(
3527   Parse *pParse,
3528   Column *pCol,
3529   int regOut
3530 ){
3531   int iAddr;
3532   Vdbe *v = pParse->pVdbe;
3533   assert( v!=0 );
3534   assert( pParse->iSelfTab!=0 );
3535   if( pParse->iSelfTab>0 ){
3536     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3537   }else{
3538     iAddr = 0;
3539   }
3540   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3541   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3542     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3543   }
3544   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3545 }
3546 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3547 
3548 /*
3549 ** Generate code to extract the value of the iCol-th column of a table.
3550 */
3551 void sqlite3ExprCodeGetColumnOfTable(
3552   Vdbe *v,        /* Parsing context */
3553   Table *pTab,    /* The table containing the value */
3554   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3555   int iCol,       /* Index of the column to extract */
3556   int regOut      /* Extract the value into this register */
3557 ){
3558   Column *pCol;
3559   assert( v!=0 );
3560   if( pTab==0 ){
3561     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3562     return;
3563   }
3564   if( iCol<0 || iCol==pTab->iPKey ){
3565     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3566   }else{
3567     int op;
3568     int x;
3569     if( IsVirtual(pTab) ){
3570       op = OP_VColumn;
3571       x = iCol;
3572 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3573     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3574       Parse *pParse = sqlite3VdbeParser(v);
3575       if( pCol->colFlags & COLFLAG_BUSY ){
3576         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3577       }else{
3578         int savedSelfTab = pParse->iSelfTab;
3579         pCol->colFlags |= COLFLAG_BUSY;
3580         pParse->iSelfTab = iTabCur+1;
3581         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3582         pParse->iSelfTab = savedSelfTab;
3583         pCol->colFlags &= ~COLFLAG_BUSY;
3584       }
3585       return;
3586 #endif
3587     }else if( !HasRowid(pTab) ){
3588       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3589       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3590       op = OP_Column;
3591     }else{
3592       x = sqlite3TableColumnToStorage(pTab,iCol);
3593       testcase( x!=iCol );
3594       op = OP_Column;
3595     }
3596     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3597     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3598   }
3599 }
3600 
3601 /*
3602 ** Generate code that will extract the iColumn-th column from
3603 ** table pTab and store the column value in register iReg.
3604 **
3605 ** There must be an open cursor to pTab in iTable when this routine
3606 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3607 */
3608 int sqlite3ExprCodeGetColumn(
3609   Parse *pParse,   /* Parsing and code generating context */
3610   Table *pTab,     /* Description of the table we are reading from */
3611   int iColumn,     /* Index of the table column */
3612   int iTable,      /* The cursor pointing to the table */
3613   int iReg,        /* Store results here */
3614   u8 p5            /* P5 value for OP_Column + FLAGS */
3615 ){
3616   assert( pParse->pVdbe!=0 );
3617   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3618   if( p5 ){
3619     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3620     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3621   }
3622   return iReg;
3623 }
3624 
3625 /*
3626 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3627 ** over to iTo..iTo+nReg-1.
3628 */
3629 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3630   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3631 }
3632 
3633 /*
3634 ** Convert a scalar expression node to a TK_REGISTER referencing
3635 ** register iReg.  The caller must ensure that iReg already contains
3636 ** the correct value for the expression.
3637 */
3638 static void exprToRegister(Expr *pExpr, int iReg){
3639   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3640   if( NEVER(p==0) ) return;
3641   p->op2 = p->op;
3642   p->op = TK_REGISTER;
3643   p->iTable = iReg;
3644   ExprClearProperty(p, EP_Skip);
3645 }
3646 
3647 /*
3648 ** Evaluate an expression (either a vector or a scalar expression) and store
3649 ** the result in continguous temporary registers.  Return the index of
3650 ** the first register used to store the result.
3651 **
3652 ** If the returned result register is a temporary scalar, then also write
3653 ** that register number into *piFreeable.  If the returned result register
3654 ** is not a temporary or if the expression is a vector set *piFreeable
3655 ** to 0.
3656 */
3657 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3658   int iResult;
3659   int nResult = sqlite3ExprVectorSize(p);
3660   if( nResult==1 ){
3661     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3662   }else{
3663     *piFreeable = 0;
3664     if( p->op==TK_SELECT ){
3665 #if SQLITE_OMIT_SUBQUERY
3666       iResult = 0;
3667 #else
3668       iResult = sqlite3CodeSubselect(pParse, p);
3669 #endif
3670     }else{
3671       int i;
3672       iResult = pParse->nMem+1;
3673       pParse->nMem += nResult;
3674       for(i=0; i<nResult; i++){
3675         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3676       }
3677     }
3678   }
3679   return iResult;
3680 }
3681 
3682 /*
3683 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3684 ** so that a subsequent copy will not be merged into this one.
3685 */
3686 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3687   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3688     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3689   }
3690 }
3691 
3692 /*
3693 ** Generate code to implement special SQL functions that are implemented
3694 ** in-line rather than by using the usual callbacks.
3695 */
3696 static int exprCodeInlineFunction(
3697   Parse *pParse,        /* Parsing context */
3698   ExprList *pFarg,      /* List of function arguments */
3699   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3700   int target            /* Store function result in this register */
3701 ){
3702   int nFarg;
3703   Vdbe *v = pParse->pVdbe;
3704   assert( v!=0 );
3705   assert( pFarg!=0 );
3706   nFarg = pFarg->nExpr;
3707   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3708   switch( iFuncId ){
3709     case INLINEFUNC_coalesce: {
3710       /* Attempt a direct implementation of the built-in COALESCE() and
3711       ** IFNULL() functions.  This avoids unnecessary evaluation of
3712       ** arguments past the first non-NULL argument.
3713       */
3714       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3715       int i;
3716       assert( nFarg>=2 );
3717       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3718       for(i=1; i<nFarg; i++){
3719         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3720         VdbeCoverage(v);
3721         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3722       }
3723       setDoNotMergeFlagOnCopy(v);
3724       sqlite3VdbeResolveLabel(v, endCoalesce);
3725       break;
3726     }
3727     case INLINEFUNC_iif: {
3728       Expr caseExpr;
3729       memset(&caseExpr, 0, sizeof(caseExpr));
3730       caseExpr.op = TK_CASE;
3731       caseExpr.x.pList = pFarg;
3732       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3733     }
3734 
3735     default: {
3736       /* The UNLIKELY() function is a no-op.  The result is the value
3737       ** of the first argument.
3738       */
3739       assert( nFarg==1 || nFarg==2 );
3740       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3741       break;
3742     }
3743 
3744   /***********************************************************************
3745   ** Test-only SQL functions that are only usable if enabled
3746   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3747   */
3748     case INLINEFUNC_expr_compare: {
3749       /* Compare two expressions using sqlite3ExprCompare() */
3750       assert( nFarg==2 );
3751       sqlite3VdbeAddOp2(v, OP_Integer,
3752          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3753          target);
3754       break;
3755     }
3756 
3757     case INLINEFUNC_expr_implies_expr: {
3758       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3759       assert( nFarg==2 );
3760       sqlite3VdbeAddOp2(v, OP_Integer,
3761          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3762          target);
3763       break;
3764     }
3765 
3766     case INLINEFUNC_implies_nonnull_row: {
3767       /* REsult of sqlite3ExprImpliesNonNullRow() */
3768       Expr *pA1;
3769       assert( nFarg==2 );
3770       pA1 = pFarg->a[1].pExpr;
3771       if( pA1->op==TK_COLUMN ){
3772         sqlite3VdbeAddOp2(v, OP_Integer,
3773            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3774            target);
3775       }else{
3776         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3777       }
3778       break;
3779     }
3780 
3781 #ifdef SQLITE_DEBUG
3782     case INLINEFUNC_affinity: {
3783       /* The AFFINITY() function evaluates to a string that describes
3784       ** the type affinity of the argument.  This is used for testing of
3785       ** the SQLite type logic.
3786       */
3787       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3788       char aff;
3789       assert( nFarg==1 );
3790       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3791       sqlite3VdbeLoadString(v, target,
3792               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3793       break;
3794     }
3795 #endif
3796   }
3797   return target;
3798 }
3799 
3800 
3801 /*
3802 ** Generate code into the current Vdbe to evaluate the given
3803 ** expression.  Attempt to store the results in register "target".
3804 ** Return the register where results are stored.
3805 **
3806 ** With this routine, there is no guarantee that results will
3807 ** be stored in target.  The result might be stored in some other
3808 ** register if it is convenient to do so.  The calling function
3809 ** must check the return code and move the results to the desired
3810 ** register.
3811 */
3812 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3813   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3814   int op;                   /* The opcode being coded */
3815   int inReg = target;       /* Results stored in register inReg */
3816   int regFree1 = 0;         /* If non-zero free this temporary register */
3817   int regFree2 = 0;         /* If non-zero free this temporary register */
3818   int r1, r2;               /* Various register numbers */
3819   Expr tempX;               /* Temporary expression node */
3820   int p5 = 0;
3821 
3822   assert( target>0 && target<=pParse->nMem );
3823   assert( v!=0 );
3824 
3825 expr_code_doover:
3826   if( pExpr==0 ){
3827     op = TK_NULL;
3828   }else{
3829     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3830     op = pExpr->op;
3831   }
3832   switch( op ){
3833     case TK_AGG_COLUMN: {
3834       AggInfo *pAggInfo = pExpr->pAggInfo;
3835       struct AggInfo_col *pCol;
3836       assert( pAggInfo!=0 );
3837       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3838       pCol = &pAggInfo->aCol[pExpr->iAgg];
3839       if( !pAggInfo->directMode ){
3840         assert( pCol->iMem>0 );
3841         return pCol->iMem;
3842       }else if( pAggInfo->useSortingIdx ){
3843         Table *pTab = pCol->pTab;
3844         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3845                               pCol->iSorterColumn, target);
3846         if( pCol->iColumn<0 ){
3847           VdbeComment((v,"%s.rowid",pTab->zName));
3848         }else{
3849           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3850           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3851             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3852           }
3853         }
3854         return target;
3855       }
3856       /* Otherwise, fall thru into the TK_COLUMN case */
3857       /* no break */ deliberate_fall_through
3858     }
3859     case TK_COLUMN: {
3860       int iTab = pExpr->iTable;
3861       int iReg;
3862       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3863         /* This COLUMN expression is really a constant due to WHERE clause
3864         ** constraints, and that constant is coded by the pExpr->pLeft
3865         ** expresssion.  However, make sure the constant has the correct
3866         ** datatype by applying the Affinity of the table column to the
3867         ** constant.
3868         */
3869         int aff;
3870         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3871         if( pExpr->y.pTab ){
3872           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3873         }else{
3874           aff = pExpr->affExpr;
3875         }
3876         if( aff>SQLITE_AFF_BLOB ){
3877           static const char zAff[] = "B\000C\000D\000E";
3878           assert( SQLITE_AFF_BLOB=='A' );
3879           assert( SQLITE_AFF_TEXT=='B' );
3880           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3881                             &zAff[(aff-'B')*2], P4_STATIC);
3882         }
3883         return iReg;
3884       }
3885       if( iTab<0 ){
3886         if( pParse->iSelfTab<0 ){
3887           /* Other columns in the same row for CHECK constraints or
3888           ** generated columns or for inserting into partial index.
3889           ** The row is unpacked into registers beginning at
3890           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3891           ** immediately prior to the first column.
3892           */
3893           Column *pCol;
3894           Table *pTab = pExpr->y.pTab;
3895           int iSrc;
3896           int iCol = pExpr->iColumn;
3897           assert( pTab!=0 );
3898           assert( iCol>=XN_ROWID );
3899           assert( iCol<pTab->nCol );
3900           if( iCol<0 ){
3901             return -1-pParse->iSelfTab;
3902           }
3903           pCol = pTab->aCol + iCol;
3904           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3905           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3906 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3907           if( pCol->colFlags & COLFLAG_GENERATED ){
3908             if( pCol->colFlags & COLFLAG_BUSY ){
3909               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3910                               pCol->zName);
3911               return 0;
3912             }
3913             pCol->colFlags |= COLFLAG_BUSY;
3914             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3915               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3916             }
3917             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3918             return iSrc;
3919           }else
3920 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3921           if( pCol->affinity==SQLITE_AFF_REAL ){
3922             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3923             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3924             return target;
3925           }else{
3926             return iSrc;
3927           }
3928         }else{
3929           /* Coding an expression that is part of an index where column names
3930           ** in the index refer to the table to which the index belongs */
3931           iTab = pParse->iSelfTab - 1;
3932         }
3933       }
3934       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3935                                pExpr->iColumn, iTab, target,
3936                                pExpr->op2);
3937       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3938         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3939       }
3940       return iReg;
3941     }
3942     case TK_INTEGER: {
3943       codeInteger(pParse, pExpr, 0, target);
3944       return target;
3945     }
3946     case TK_TRUEFALSE: {
3947       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3948       return target;
3949     }
3950 #ifndef SQLITE_OMIT_FLOATING_POINT
3951     case TK_FLOAT: {
3952       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3953       codeReal(v, pExpr->u.zToken, 0, target);
3954       return target;
3955     }
3956 #endif
3957     case TK_STRING: {
3958       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3959       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3960       return target;
3961     }
3962     default: {
3963       /* Make NULL the default case so that if a bug causes an illegal
3964       ** Expr node to be passed into this function, it will be handled
3965       ** sanely and not crash.  But keep the assert() to bring the problem
3966       ** to the attention of the developers. */
3967       assert( op==TK_NULL );
3968       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3969       return target;
3970     }
3971 #ifndef SQLITE_OMIT_BLOB_LITERAL
3972     case TK_BLOB: {
3973       int n;
3974       const char *z;
3975       char *zBlob;
3976       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3977       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3978       assert( pExpr->u.zToken[1]=='\'' );
3979       z = &pExpr->u.zToken[2];
3980       n = sqlite3Strlen30(z) - 1;
3981       assert( z[n]=='\'' );
3982       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3983       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3984       return target;
3985     }
3986 #endif
3987     case TK_VARIABLE: {
3988       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3989       assert( pExpr->u.zToken!=0 );
3990       assert( pExpr->u.zToken[0]!=0 );
3991       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3992       if( pExpr->u.zToken[1]!=0 ){
3993         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3994         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3995         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3996         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3997       }
3998       return target;
3999     }
4000     case TK_REGISTER: {
4001       return pExpr->iTable;
4002     }
4003 #ifndef SQLITE_OMIT_CAST
4004     case TK_CAST: {
4005       /* Expressions of the form:   CAST(pLeft AS token) */
4006       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4007       if( inReg!=target ){
4008         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4009         inReg = target;
4010       }
4011       sqlite3VdbeAddOp2(v, OP_Cast, target,
4012                         sqlite3AffinityType(pExpr->u.zToken, 0));
4013       return inReg;
4014     }
4015 #endif /* SQLITE_OMIT_CAST */
4016     case TK_IS:
4017     case TK_ISNOT:
4018       op = (op==TK_IS) ? TK_EQ : TK_NE;
4019       p5 = SQLITE_NULLEQ;
4020       /* fall-through */
4021     case TK_LT:
4022     case TK_LE:
4023     case TK_GT:
4024     case TK_GE:
4025     case TK_NE:
4026     case TK_EQ: {
4027       Expr *pLeft = pExpr->pLeft;
4028       if( sqlite3ExprIsVector(pLeft) ){
4029         codeVectorCompare(pParse, pExpr, target, op, p5);
4030       }else{
4031         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4032         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4033         codeCompare(pParse, pLeft, pExpr->pRight, op,
4034             r1, r2, inReg, SQLITE_STOREP2 | p5,
4035             ExprHasProperty(pExpr,EP_Commuted));
4036         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4037         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4038         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4039         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4040         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4041         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4042         testcase( regFree1==0 );
4043         testcase( regFree2==0 );
4044       }
4045       break;
4046     }
4047     case TK_AND:
4048     case TK_OR:
4049     case TK_PLUS:
4050     case TK_STAR:
4051     case TK_MINUS:
4052     case TK_REM:
4053     case TK_BITAND:
4054     case TK_BITOR:
4055     case TK_SLASH:
4056     case TK_LSHIFT:
4057     case TK_RSHIFT:
4058     case TK_CONCAT: {
4059       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4060       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4061       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4062       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4063       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4064       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4065       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4066       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4067       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4068       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4069       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4070       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4071       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4072       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4073       testcase( regFree1==0 );
4074       testcase( regFree2==0 );
4075       break;
4076     }
4077     case TK_UMINUS: {
4078       Expr *pLeft = pExpr->pLeft;
4079       assert( pLeft );
4080       if( pLeft->op==TK_INTEGER ){
4081         codeInteger(pParse, pLeft, 1, target);
4082         return target;
4083 #ifndef SQLITE_OMIT_FLOATING_POINT
4084       }else if( pLeft->op==TK_FLOAT ){
4085         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4086         codeReal(v, pLeft->u.zToken, 1, target);
4087         return target;
4088 #endif
4089       }else{
4090         tempX.op = TK_INTEGER;
4091         tempX.flags = EP_IntValue|EP_TokenOnly;
4092         tempX.u.iValue = 0;
4093         ExprClearVVAProperties(&tempX);
4094         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4095         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4096         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4097         testcase( regFree2==0 );
4098       }
4099       break;
4100     }
4101     case TK_BITNOT:
4102     case TK_NOT: {
4103       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4104       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4105       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4106       testcase( regFree1==0 );
4107       sqlite3VdbeAddOp2(v, op, r1, inReg);
4108       break;
4109     }
4110     case TK_TRUTH: {
4111       int isTrue;    /* IS TRUE or IS NOT TRUE */
4112       int bNormal;   /* IS TRUE or IS FALSE */
4113       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4114       testcase( regFree1==0 );
4115       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4116       bNormal = pExpr->op2==TK_IS;
4117       testcase( isTrue && bNormal);
4118       testcase( !isTrue && bNormal);
4119       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4120       break;
4121     }
4122     case TK_ISNULL:
4123     case TK_NOTNULL: {
4124       int addr;
4125       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4126       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4127       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4128       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4129       testcase( regFree1==0 );
4130       addr = sqlite3VdbeAddOp1(v, op, r1);
4131       VdbeCoverageIf(v, op==TK_ISNULL);
4132       VdbeCoverageIf(v, op==TK_NOTNULL);
4133       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4134       sqlite3VdbeJumpHere(v, addr);
4135       break;
4136     }
4137     case TK_AGG_FUNCTION: {
4138       AggInfo *pInfo = pExpr->pAggInfo;
4139       if( pInfo==0
4140        || NEVER(pExpr->iAgg<0)
4141        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4142       ){
4143         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4144         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4145       }else{
4146         return pInfo->aFunc[pExpr->iAgg].iMem;
4147       }
4148       break;
4149     }
4150     case TK_FUNCTION: {
4151       ExprList *pFarg;       /* List of function arguments */
4152       int nFarg;             /* Number of function arguments */
4153       FuncDef *pDef;         /* The function definition object */
4154       const char *zId;       /* The function name */
4155       u32 constMask = 0;     /* Mask of function arguments that are constant */
4156       int i;                 /* Loop counter */
4157       sqlite3 *db = pParse->db;  /* The database connection */
4158       u8 enc = ENC(db);      /* The text encoding used by this database */
4159       CollSeq *pColl = 0;    /* A collating sequence */
4160 
4161 #ifndef SQLITE_OMIT_WINDOWFUNC
4162       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4163         return pExpr->y.pWin->regResult;
4164       }
4165 #endif
4166 
4167       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4168         /* SQL functions can be expensive. So try to avoid running them
4169         ** multiple times if we know they always give the same result */
4170         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4171       }
4172       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4173       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4174       pFarg = pExpr->x.pList;
4175       nFarg = pFarg ? pFarg->nExpr : 0;
4176       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4177       zId = pExpr->u.zToken;
4178       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4179 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4180       if( pDef==0 && pParse->explain ){
4181         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4182       }
4183 #endif
4184       if( pDef==0 || pDef->xFinalize!=0 ){
4185         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4186         break;
4187       }
4188       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4189         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4190         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4191         return exprCodeInlineFunction(pParse, pFarg,
4192              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4193       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4194         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4195       }
4196 
4197       for(i=0; i<nFarg; i++){
4198         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4199           testcase( i==31 );
4200           constMask |= MASKBIT32(i);
4201         }
4202         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4203           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4204         }
4205       }
4206       if( pFarg ){
4207         if( constMask ){
4208           r1 = pParse->nMem+1;
4209           pParse->nMem += nFarg;
4210         }else{
4211           r1 = sqlite3GetTempRange(pParse, nFarg);
4212         }
4213 
4214         /* For length() and typeof() functions with a column argument,
4215         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4216         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4217         ** loading.
4218         */
4219         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4220           u8 exprOp;
4221           assert( nFarg==1 );
4222           assert( pFarg->a[0].pExpr!=0 );
4223           exprOp = pFarg->a[0].pExpr->op;
4224           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4225             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4226             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4227             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4228             pFarg->a[0].pExpr->op2 =
4229                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4230           }
4231         }
4232 
4233         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4234                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4235       }else{
4236         r1 = 0;
4237       }
4238 #ifndef SQLITE_OMIT_VIRTUALTABLE
4239       /* Possibly overload the function if the first argument is
4240       ** a virtual table column.
4241       **
4242       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4243       ** second argument, not the first, as the argument to test to
4244       ** see if it is a column in a virtual table.  This is done because
4245       ** the left operand of infix functions (the operand we want to
4246       ** control overloading) ends up as the second argument to the
4247       ** function.  The expression "A glob B" is equivalent to
4248       ** "glob(B,A).  We want to use the A in "A glob B" to test
4249       ** for function overloading.  But we use the B term in "glob(B,A)".
4250       */
4251       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4252         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4253       }else if( nFarg>0 ){
4254         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4255       }
4256 #endif
4257       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4258         if( !pColl ) pColl = db->pDfltColl;
4259         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4260       }
4261 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4262       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4263         Expr *pArg = pFarg->a[0].pExpr;
4264         if( pArg->op==TK_COLUMN ){
4265           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4266         }else{
4267           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4268         }
4269       }else
4270 #endif
4271       {
4272         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4273                                    pDef, pExpr->op2);
4274       }
4275       if( nFarg ){
4276         if( constMask==0 ){
4277           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4278         }else{
4279           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4280         }
4281       }
4282       return target;
4283     }
4284 #ifndef SQLITE_OMIT_SUBQUERY
4285     case TK_EXISTS:
4286     case TK_SELECT: {
4287       int nCol;
4288       testcase( op==TK_EXISTS );
4289       testcase( op==TK_SELECT );
4290       if( pParse->db->mallocFailed ){
4291         return 0;
4292       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4293         sqlite3SubselectError(pParse, nCol, 1);
4294       }else{
4295         return sqlite3CodeSubselect(pParse, pExpr);
4296       }
4297       break;
4298     }
4299     case TK_SELECT_COLUMN: {
4300       int n;
4301       if( pExpr->pLeft->iTable==0 ){
4302         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4303       }
4304       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4305       if( pExpr->iTable!=0
4306        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4307       ){
4308         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4309                                 pExpr->iTable, n);
4310       }
4311       return pExpr->pLeft->iTable + pExpr->iColumn;
4312     }
4313     case TK_IN: {
4314       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4315       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4316       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4317       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4318       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4319       sqlite3VdbeResolveLabel(v, destIfFalse);
4320       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4321       sqlite3VdbeResolveLabel(v, destIfNull);
4322       return target;
4323     }
4324 #endif /* SQLITE_OMIT_SUBQUERY */
4325 
4326 
4327     /*
4328     **    x BETWEEN y AND z
4329     **
4330     ** This is equivalent to
4331     **
4332     **    x>=y AND x<=z
4333     **
4334     ** X is stored in pExpr->pLeft.
4335     ** Y is stored in pExpr->pList->a[0].pExpr.
4336     ** Z is stored in pExpr->pList->a[1].pExpr.
4337     */
4338     case TK_BETWEEN: {
4339       exprCodeBetween(pParse, pExpr, target, 0, 0);
4340       return target;
4341     }
4342     case TK_SPAN:
4343     case TK_COLLATE:
4344     case TK_UPLUS: {
4345       pExpr = pExpr->pLeft;
4346       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4347     }
4348 
4349     case TK_TRIGGER: {
4350       /* If the opcode is TK_TRIGGER, then the expression is a reference
4351       ** to a column in the new.* or old.* pseudo-tables available to
4352       ** trigger programs. In this case Expr.iTable is set to 1 for the
4353       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4354       ** is set to the column of the pseudo-table to read, or to -1 to
4355       ** read the rowid field.
4356       **
4357       ** The expression is implemented using an OP_Param opcode. The p1
4358       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4359       ** to reference another column of the old.* pseudo-table, where
4360       ** i is the index of the column. For a new.rowid reference, p1 is
4361       ** set to (n+1), where n is the number of columns in each pseudo-table.
4362       ** For a reference to any other column in the new.* pseudo-table, p1
4363       ** is set to (n+2+i), where n and i are as defined previously. For
4364       ** example, if the table on which triggers are being fired is
4365       ** declared as:
4366       **
4367       **   CREATE TABLE t1(a, b);
4368       **
4369       ** Then p1 is interpreted as follows:
4370       **
4371       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4372       **   p1==1   ->    old.a         p1==4   ->    new.a
4373       **   p1==2   ->    old.b         p1==5   ->    new.b
4374       */
4375       Table *pTab = pExpr->y.pTab;
4376       int iCol = pExpr->iColumn;
4377       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4378                      + sqlite3TableColumnToStorage(pTab, iCol);
4379 
4380       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4381       assert( iCol>=-1 && iCol<pTab->nCol );
4382       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4383       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4384 
4385       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4386       VdbeComment((v, "r[%d]=%s.%s", target,
4387         (pExpr->iTable ? "new" : "old"),
4388         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4389       ));
4390 
4391 #ifndef SQLITE_OMIT_FLOATING_POINT
4392       /* If the column has REAL affinity, it may currently be stored as an
4393       ** integer. Use OP_RealAffinity to make sure it is really real.
4394       **
4395       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4396       ** floating point when extracting it from the record.  */
4397       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4398         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4399       }
4400 #endif
4401       break;
4402     }
4403 
4404     case TK_VECTOR: {
4405       sqlite3ErrorMsg(pParse, "row value misused");
4406       break;
4407     }
4408 
4409     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4410     ** that derive from the right-hand table of a LEFT JOIN.  The
4411     ** Expr.iTable value is the table number for the right-hand table.
4412     ** The expression is only evaluated if that table is not currently
4413     ** on a LEFT JOIN NULL row.
4414     */
4415     case TK_IF_NULL_ROW: {
4416       int addrINR;
4417       u8 okConstFactor = pParse->okConstFactor;
4418       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4419       /* Temporarily disable factoring of constant expressions, since
4420       ** even though expressions may appear to be constant, they are not
4421       ** really constant because they originate from the right-hand side
4422       ** of a LEFT JOIN. */
4423       pParse->okConstFactor = 0;
4424       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4425       pParse->okConstFactor = okConstFactor;
4426       sqlite3VdbeJumpHere(v, addrINR);
4427       sqlite3VdbeChangeP3(v, addrINR, inReg);
4428       break;
4429     }
4430 
4431     /*
4432     ** Form A:
4433     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4434     **
4435     ** Form B:
4436     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4437     **
4438     ** Form A is can be transformed into the equivalent form B as follows:
4439     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4440     **        WHEN x=eN THEN rN ELSE y END
4441     **
4442     ** X (if it exists) is in pExpr->pLeft.
4443     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4444     ** odd.  The Y is also optional.  If the number of elements in x.pList
4445     ** is even, then Y is omitted and the "otherwise" result is NULL.
4446     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4447     **
4448     ** The result of the expression is the Ri for the first matching Ei,
4449     ** or if there is no matching Ei, the ELSE term Y, or if there is
4450     ** no ELSE term, NULL.
4451     */
4452     case TK_CASE: {
4453       int endLabel;                     /* GOTO label for end of CASE stmt */
4454       int nextCase;                     /* GOTO label for next WHEN clause */
4455       int nExpr;                        /* 2x number of WHEN terms */
4456       int i;                            /* Loop counter */
4457       ExprList *pEList;                 /* List of WHEN terms */
4458       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4459       Expr opCompare;                   /* The X==Ei expression */
4460       Expr *pX;                         /* The X expression */
4461       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4462       Expr *pDel = 0;
4463       sqlite3 *db = pParse->db;
4464 
4465       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4466       assert(pExpr->x.pList->nExpr > 0);
4467       pEList = pExpr->x.pList;
4468       aListelem = pEList->a;
4469       nExpr = pEList->nExpr;
4470       endLabel = sqlite3VdbeMakeLabel(pParse);
4471       if( (pX = pExpr->pLeft)!=0 ){
4472         pDel = sqlite3ExprDup(db, pX, 0);
4473         if( db->mallocFailed ){
4474           sqlite3ExprDelete(db, pDel);
4475           break;
4476         }
4477         testcase( pX->op==TK_COLUMN );
4478         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4479         testcase( regFree1==0 );
4480         memset(&opCompare, 0, sizeof(opCompare));
4481         opCompare.op = TK_EQ;
4482         opCompare.pLeft = pDel;
4483         pTest = &opCompare;
4484         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4485         ** The value in regFree1 might get SCopy-ed into the file result.
4486         ** So make sure that the regFree1 register is not reused for other
4487         ** purposes and possibly overwritten.  */
4488         regFree1 = 0;
4489       }
4490       for(i=0; i<nExpr-1; i=i+2){
4491         if( pX ){
4492           assert( pTest!=0 );
4493           opCompare.pRight = aListelem[i].pExpr;
4494         }else{
4495           pTest = aListelem[i].pExpr;
4496         }
4497         nextCase = sqlite3VdbeMakeLabel(pParse);
4498         testcase( pTest->op==TK_COLUMN );
4499         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4500         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4501         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4502         sqlite3VdbeGoto(v, endLabel);
4503         sqlite3VdbeResolveLabel(v, nextCase);
4504       }
4505       if( (nExpr&1)!=0 ){
4506         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4507       }else{
4508         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4509       }
4510       sqlite3ExprDelete(db, pDel);
4511       setDoNotMergeFlagOnCopy(v);
4512       sqlite3VdbeResolveLabel(v, endLabel);
4513       break;
4514     }
4515 #ifndef SQLITE_OMIT_TRIGGER
4516     case TK_RAISE: {
4517       assert( pExpr->affExpr==OE_Rollback
4518            || pExpr->affExpr==OE_Abort
4519            || pExpr->affExpr==OE_Fail
4520            || pExpr->affExpr==OE_Ignore
4521       );
4522       if( !pParse->pTriggerTab && !pParse->nested ){
4523         sqlite3ErrorMsg(pParse,
4524                        "RAISE() may only be used within a trigger-program");
4525         return 0;
4526       }
4527       if( pExpr->affExpr==OE_Abort ){
4528         sqlite3MayAbort(pParse);
4529       }
4530       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4531       if( pExpr->affExpr==OE_Ignore ){
4532         sqlite3VdbeAddOp4(
4533             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4534         VdbeCoverage(v);
4535       }else{
4536         sqlite3HaltConstraint(pParse,
4537              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4538              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4539       }
4540 
4541       break;
4542     }
4543 #endif
4544   }
4545   sqlite3ReleaseTempReg(pParse, regFree1);
4546   sqlite3ReleaseTempReg(pParse, regFree2);
4547   return inReg;
4548 }
4549 
4550 /*
4551 ** Generate code that will evaluate expression pExpr just one time
4552 ** per prepared statement execution.
4553 **
4554 ** If the expression uses functions (that might throw an exception) then
4555 ** guard them with an OP_Once opcode to ensure that the code is only executed
4556 ** once. If no functions are involved, then factor the code out and put it at
4557 ** the end of the prepared statement in the initialization section.
4558 **
4559 ** If regDest>=0 then the result is always stored in that register and the
4560 ** result is not reusable.  If regDest<0 then this routine is free to
4561 ** store the value whereever it wants.  The register where the expression
4562 ** is stored is returned.  When regDest<0, two identical expressions might
4563 ** code to the same register, if they do not contain function calls and hence
4564 ** are factored out into the initialization section at the end of the
4565 ** prepared statement.
4566 */
4567 int sqlite3ExprCodeRunJustOnce(
4568   Parse *pParse,    /* Parsing context */
4569   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4570   int regDest       /* Store the value in this register */
4571 ){
4572   ExprList *p;
4573   assert( ConstFactorOk(pParse) );
4574   p = pParse->pConstExpr;
4575   if( regDest<0 && p ){
4576     struct ExprList_item *pItem;
4577     int i;
4578     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4579       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4580         return pItem->u.iConstExprReg;
4581       }
4582     }
4583   }
4584   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4585   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4586     Vdbe *v = pParse->pVdbe;
4587     int addr;
4588     assert( v );
4589     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4590     pParse->okConstFactor = 0;
4591     if( !pParse->db->mallocFailed ){
4592       if( regDest<0 ) regDest = ++pParse->nMem;
4593       sqlite3ExprCode(pParse, pExpr, regDest);
4594     }
4595     pParse->okConstFactor = 1;
4596     sqlite3ExprDelete(pParse->db, pExpr);
4597     sqlite3VdbeJumpHere(v, addr);
4598   }else{
4599     p = sqlite3ExprListAppend(pParse, p, pExpr);
4600     if( p ){
4601        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4602        pItem->reusable = regDest<0;
4603        if( regDest<0 ) regDest = ++pParse->nMem;
4604        pItem->u.iConstExprReg = regDest;
4605     }
4606     pParse->pConstExpr = p;
4607   }
4608   return regDest;
4609 }
4610 
4611 /*
4612 ** Generate code to evaluate an expression and store the results
4613 ** into a register.  Return the register number where the results
4614 ** are stored.
4615 **
4616 ** If the register is a temporary register that can be deallocated,
4617 ** then write its number into *pReg.  If the result register is not
4618 ** a temporary, then set *pReg to zero.
4619 **
4620 ** If pExpr is a constant, then this routine might generate this
4621 ** code to fill the register in the initialization section of the
4622 ** VDBE program, in order to factor it out of the evaluation loop.
4623 */
4624 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4625   int r2;
4626   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4627   if( ConstFactorOk(pParse)
4628    && ALWAYS(pExpr!=0)
4629    && pExpr->op!=TK_REGISTER
4630    && sqlite3ExprIsConstantNotJoin(pExpr)
4631   ){
4632     *pReg  = 0;
4633     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4634   }else{
4635     int r1 = sqlite3GetTempReg(pParse);
4636     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4637     if( r2==r1 ){
4638       *pReg = r1;
4639     }else{
4640       sqlite3ReleaseTempReg(pParse, r1);
4641       *pReg = 0;
4642     }
4643   }
4644   return r2;
4645 }
4646 
4647 /*
4648 ** Generate code that will evaluate expression pExpr and store the
4649 ** results in register target.  The results are guaranteed to appear
4650 ** in register target.
4651 */
4652 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4653   int inReg;
4654 
4655   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4656   assert( target>0 && target<=pParse->nMem );
4657   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4658   if( pParse->pVdbe==0 ) return;
4659   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4660   if( inReg!=target ){
4661     u8 op;
4662     if( ExprHasProperty(pExpr,EP_Subquery) ){
4663       op = OP_Copy;
4664     }else{
4665       op = OP_SCopy;
4666     }
4667     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4668   }
4669 }
4670 
4671 /*
4672 ** Make a transient copy of expression pExpr and then code it using
4673 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4674 ** except that the input expression is guaranteed to be unchanged.
4675 */
4676 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4677   sqlite3 *db = pParse->db;
4678   pExpr = sqlite3ExprDup(db, pExpr, 0);
4679   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4680   sqlite3ExprDelete(db, pExpr);
4681 }
4682 
4683 /*
4684 ** Generate code that will evaluate expression pExpr and store the
4685 ** results in register target.  The results are guaranteed to appear
4686 ** in register target.  If the expression is constant, then this routine
4687 ** might choose to code the expression at initialization time.
4688 */
4689 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4690   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4691     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4692   }else{
4693     sqlite3ExprCodeCopy(pParse, pExpr, target);
4694   }
4695 }
4696 
4697 /*
4698 ** Generate code that pushes the value of every element of the given
4699 ** expression list into a sequence of registers beginning at target.
4700 **
4701 ** Return the number of elements evaluated.  The number returned will
4702 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4703 ** is defined.
4704 **
4705 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4706 ** filled using OP_SCopy.  OP_Copy must be used instead.
4707 **
4708 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4709 ** factored out into initialization code.
4710 **
4711 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4712 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4713 ** in registers at srcReg, and so the value can be copied from there.
4714 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4715 ** are simply omitted rather than being copied from srcReg.
4716 */
4717 int sqlite3ExprCodeExprList(
4718   Parse *pParse,     /* Parsing context */
4719   ExprList *pList,   /* The expression list to be coded */
4720   int target,        /* Where to write results */
4721   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4722   u8 flags           /* SQLITE_ECEL_* flags */
4723 ){
4724   struct ExprList_item *pItem;
4725   int i, j, n;
4726   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4727   Vdbe *v = pParse->pVdbe;
4728   assert( pList!=0 );
4729   assert( target>0 );
4730   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4731   n = pList->nExpr;
4732   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4733   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4734     Expr *pExpr = pItem->pExpr;
4735 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4736     if( pItem->bSorterRef ){
4737       i--;
4738       n--;
4739     }else
4740 #endif
4741     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4742       if( flags & SQLITE_ECEL_OMITREF ){
4743         i--;
4744         n--;
4745       }else{
4746         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4747       }
4748     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4749            && sqlite3ExprIsConstantNotJoin(pExpr)
4750     ){
4751       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4752     }else{
4753       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4754       if( inReg!=target+i ){
4755         VdbeOp *pOp;
4756         if( copyOp==OP_Copy
4757          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4758          && pOp->p1+pOp->p3+1==inReg
4759          && pOp->p2+pOp->p3+1==target+i
4760          && pOp->p5==0  /* The do-not-merge flag must be clear */
4761         ){
4762           pOp->p3++;
4763         }else{
4764           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4765         }
4766       }
4767     }
4768   }
4769   return n;
4770 }
4771 
4772 /*
4773 ** Generate code for a BETWEEN operator.
4774 **
4775 **    x BETWEEN y AND z
4776 **
4777 ** The above is equivalent to
4778 **
4779 **    x>=y AND x<=z
4780 **
4781 ** Code it as such, taking care to do the common subexpression
4782 ** elimination of x.
4783 **
4784 ** The xJumpIf parameter determines details:
4785 **
4786 **    NULL:                   Store the boolean result in reg[dest]
4787 **    sqlite3ExprIfTrue:      Jump to dest if true
4788 **    sqlite3ExprIfFalse:     Jump to dest if false
4789 **
4790 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4791 */
4792 static void exprCodeBetween(
4793   Parse *pParse,    /* Parsing and code generating context */
4794   Expr *pExpr,      /* The BETWEEN expression */
4795   int dest,         /* Jump destination or storage location */
4796   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4797   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4798 ){
4799   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4800   Expr compLeft;    /* The  x>=y  term */
4801   Expr compRight;   /* The  x<=z  term */
4802   int regFree1 = 0; /* Temporary use register */
4803   Expr *pDel = 0;
4804   sqlite3 *db = pParse->db;
4805 
4806   memset(&compLeft, 0, sizeof(Expr));
4807   memset(&compRight, 0, sizeof(Expr));
4808   memset(&exprAnd, 0, sizeof(Expr));
4809 
4810   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4811   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4812   if( db->mallocFailed==0 ){
4813     exprAnd.op = TK_AND;
4814     exprAnd.pLeft = &compLeft;
4815     exprAnd.pRight = &compRight;
4816     compLeft.op = TK_GE;
4817     compLeft.pLeft = pDel;
4818     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4819     compRight.op = TK_LE;
4820     compRight.pLeft = pDel;
4821     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4822     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4823     if( xJump ){
4824       xJump(pParse, &exprAnd, dest, jumpIfNull);
4825     }else{
4826       /* Mark the expression is being from the ON or USING clause of a join
4827       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4828       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4829       ** for clarity, but we are out of bits in the Expr.flags field so we
4830       ** have to reuse the EP_FromJoin bit.  Bummer. */
4831       pDel->flags |= EP_FromJoin;
4832       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4833     }
4834     sqlite3ReleaseTempReg(pParse, regFree1);
4835   }
4836   sqlite3ExprDelete(db, pDel);
4837 
4838   /* Ensure adequate test coverage */
4839   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4840   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4841   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4842   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4843   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4844   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4845   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4846   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4847   testcase( xJump==0 );
4848 }
4849 
4850 /*
4851 ** Generate code for a boolean expression such that a jump is made
4852 ** to the label "dest" if the expression is true but execution
4853 ** continues straight thru if the expression is false.
4854 **
4855 ** If the expression evaluates to NULL (neither true nor false), then
4856 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4857 **
4858 ** This code depends on the fact that certain token values (ex: TK_EQ)
4859 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4860 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4861 ** the make process cause these values to align.  Assert()s in the code
4862 ** below verify that the numbers are aligned correctly.
4863 */
4864 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4865   Vdbe *v = pParse->pVdbe;
4866   int op = 0;
4867   int regFree1 = 0;
4868   int regFree2 = 0;
4869   int r1, r2;
4870 
4871   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4872   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4873   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4874   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4875   op = pExpr->op;
4876   switch( op ){
4877     case TK_AND:
4878     case TK_OR: {
4879       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4880       if( pAlt!=pExpr ){
4881         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4882       }else if( op==TK_AND ){
4883         int d2 = sqlite3VdbeMakeLabel(pParse);
4884         testcase( jumpIfNull==0 );
4885         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4886                            jumpIfNull^SQLITE_JUMPIFNULL);
4887         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4888         sqlite3VdbeResolveLabel(v, d2);
4889       }else{
4890         testcase( jumpIfNull==0 );
4891         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4892         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4893       }
4894       break;
4895     }
4896     case TK_NOT: {
4897       testcase( jumpIfNull==0 );
4898       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4899       break;
4900     }
4901     case TK_TRUTH: {
4902       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4903       int isTrue;     /* IS TRUE or IS NOT TRUE */
4904       testcase( jumpIfNull==0 );
4905       isNot = pExpr->op2==TK_ISNOT;
4906       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4907       testcase( isTrue && isNot );
4908       testcase( !isTrue && isNot );
4909       if( isTrue ^ isNot ){
4910         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4911                           isNot ? SQLITE_JUMPIFNULL : 0);
4912       }else{
4913         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4914                            isNot ? SQLITE_JUMPIFNULL : 0);
4915       }
4916       break;
4917     }
4918     case TK_IS:
4919     case TK_ISNOT:
4920       testcase( op==TK_IS );
4921       testcase( op==TK_ISNOT );
4922       op = (op==TK_IS) ? TK_EQ : TK_NE;
4923       jumpIfNull = SQLITE_NULLEQ;
4924       /* no break */ deliberate_fall_through
4925     case TK_LT:
4926     case TK_LE:
4927     case TK_GT:
4928     case TK_GE:
4929     case TK_NE:
4930     case TK_EQ: {
4931       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4932       testcase( jumpIfNull==0 );
4933       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4934       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4935       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4936                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4937       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4938       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4939       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4940       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4941       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4942       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4943       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4944       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4945       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4946       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4947       testcase( regFree1==0 );
4948       testcase( regFree2==0 );
4949       break;
4950     }
4951     case TK_ISNULL:
4952     case TK_NOTNULL: {
4953       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4954       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4955       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4956       sqlite3VdbeAddOp2(v, op, r1, dest);
4957       VdbeCoverageIf(v, op==TK_ISNULL);
4958       VdbeCoverageIf(v, op==TK_NOTNULL);
4959       testcase( regFree1==0 );
4960       break;
4961     }
4962     case TK_BETWEEN: {
4963       testcase( jumpIfNull==0 );
4964       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4965       break;
4966     }
4967 #ifndef SQLITE_OMIT_SUBQUERY
4968     case TK_IN: {
4969       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4970       int destIfNull = jumpIfNull ? dest : destIfFalse;
4971       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4972       sqlite3VdbeGoto(v, dest);
4973       sqlite3VdbeResolveLabel(v, destIfFalse);
4974       break;
4975     }
4976 #endif
4977     default: {
4978     default_expr:
4979       if( ExprAlwaysTrue(pExpr) ){
4980         sqlite3VdbeGoto(v, dest);
4981       }else if( ExprAlwaysFalse(pExpr) ){
4982         /* No-op */
4983       }else{
4984         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4985         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4986         VdbeCoverage(v);
4987         testcase( regFree1==0 );
4988         testcase( jumpIfNull==0 );
4989       }
4990       break;
4991     }
4992   }
4993   sqlite3ReleaseTempReg(pParse, regFree1);
4994   sqlite3ReleaseTempReg(pParse, regFree2);
4995 }
4996 
4997 /*
4998 ** Generate code for a boolean expression such that a jump is made
4999 ** to the label "dest" if the expression is false but execution
5000 ** continues straight thru if the expression is true.
5001 **
5002 ** If the expression evaluates to NULL (neither true nor false) then
5003 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5004 ** is 0.
5005 */
5006 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5007   Vdbe *v = pParse->pVdbe;
5008   int op = 0;
5009   int regFree1 = 0;
5010   int regFree2 = 0;
5011   int r1, r2;
5012 
5013   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5014   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5015   if( pExpr==0 )    return;
5016   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5017 
5018   /* The value of pExpr->op and op are related as follows:
5019   **
5020   **       pExpr->op            op
5021   **       ---------          ----------
5022   **       TK_ISNULL          OP_NotNull
5023   **       TK_NOTNULL         OP_IsNull
5024   **       TK_NE              OP_Eq
5025   **       TK_EQ              OP_Ne
5026   **       TK_GT              OP_Le
5027   **       TK_LE              OP_Gt
5028   **       TK_GE              OP_Lt
5029   **       TK_LT              OP_Ge
5030   **
5031   ** For other values of pExpr->op, op is undefined and unused.
5032   ** The value of TK_ and OP_ constants are arranged such that we
5033   ** can compute the mapping above using the following expression.
5034   ** Assert()s verify that the computation is correct.
5035   */
5036   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5037 
5038   /* Verify correct alignment of TK_ and OP_ constants
5039   */
5040   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5041   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5042   assert( pExpr->op!=TK_NE || op==OP_Eq );
5043   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5044   assert( pExpr->op!=TK_LT || op==OP_Ge );
5045   assert( pExpr->op!=TK_LE || op==OP_Gt );
5046   assert( pExpr->op!=TK_GT || op==OP_Le );
5047   assert( pExpr->op!=TK_GE || op==OP_Lt );
5048 
5049   switch( pExpr->op ){
5050     case TK_AND:
5051     case TK_OR: {
5052       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5053       if( pAlt!=pExpr ){
5054         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5055       }else if( pExpr->op==TK_AND ){
5056         testcase( jumpIfNull==0 );
5057         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5058         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5059       }else{
5060         int d2 = sqlite3VdbeMakeLabel(pParse);
5061         testcase( jumpIfNull==0 );
5062         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5063                           jumpIfNull^SQLITE_JUMPIFNULL);
5064         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5065         sqlite3VdbeResolveLabel(v, d2);
5066       }
5067       break;
5068     }
5069     case TK_NOT: {
5070       testcase( jumpIfNull==0 );
5071       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5072       break;
5073     }
5074     case TK_TRUTH: {
5075       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5076       int isTrue;  /* IS TRUE or IS NOT TRUE */
5077       testcase( jumpIfNull==0 );
5078       isNot = pExpr->op2==TK_ISNOT;
5079       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5080       testcase( isTrue && isNot );
5081       testcase( !isTrue && isNot );
5082       if( isTrue ^ isNot ){
5083         /* IS TRUE and IS NOT FALSE */
5084         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5085                            isNot ? 0 : SQLITE_JUMPIFNULL);
5086 
5087       }else{
5088         /* IS FALSE and IS NOT TRUE */
5089         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5090                           isNot ? 0 : SQLITE_JUMPIFNULL);
5091       }
5092       break;
5093     }
5094     case TK_IS:
5095     case TK_ISNOT:
5096       testcase( pExpr->op==TK_IS );
5097       testcase( pExpr->op==TK_ISNOT );
5098       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5099       jumpIfNull = SQLITE_NULLEQ;
5100       /* no break */ deliberate_fall_through
5101     case TK_LT:
5102     case TK_LE:
5103     case TK_GT:
5104     case TK_GE:
5105     case TK_NE:
5106     case TK_EQ: {
5107       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5108       testcase( jumpIfNull==0 );
5109       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5110       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5111       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5112                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5113       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5114       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5115       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5116       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5117       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5118       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5119       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5120       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5121       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5122       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5123       testcase( regFree1==0 );
5124       testcase( regFree2==0 );
5125       break;
5126     }
5127     case TK_ISNULL:
5128     case TK_NOTNULL: {
5129       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5130       sqlite3VdbeAddOp2(v, op, r1, dest);
5131       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5132       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5133       testcase( regFree1==0 );
5134       break;
5135     }
5136     case TK_BETWEEN: {
5137       testcase( jumpIfNull==0 );
5138       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5139       break;
5140     }
5141 #ifndef SQLITE_OMIT_SUBQUERY
5142     case TK_IN: {
5143       if( jumpIfNull ){
5144         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5145       }else{
5146         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5147         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5148         sqlite3VdbeResolveLabel(v, destIfNull);
5149       }
5150       break;
5151     }
5152 #endif
5153     default: {
5154     default_expr:
5155       if( ExprAlwaysFalse(pExpr) ){
5156         sqlite3VdbeGoto(v, dest);
5157       }else if( ExprAlwaysTrue(pExpr) ){
5158         /* no-op */
5159       }else{
5160         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5161         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5162         VdbeCoverage(v);
5163         testcase( regFree1==0 );
5164         testcase( jumpIfNull==0 );
5165       }
5166       break;
5167     }
5168   }
5169   sqlite3ReleaseTempReg(pParse, regFree1);
5170   sqlite3ReleaseTempReg(pParse, regFree2);
5171 }
5172 
5173 /*
5174 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5175 ** code generation, and that copy is deleted after code generation. This
5176 ** ensures that the original pExpr is unchanged.
5177 */
5178 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5179   sqlite3 *db = pParse->db;
5180   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5181   if( db->mallocFailed==0 ){
5182     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5183   }
5184   sqlite3ExprDelete(db, pCopy);
5185 }
5186 
5187 /*
5188 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5189 ** type of expression.
5190 **
5191 ** If pExpr is a simple SQL value - an integer, real, string, blob
5192 ** or NULL value - then the VDBE currently being prepared is configured
5193 ** to re-prepare each time a new value is bound to variable pVar.
5194 **
5195 ** Additionally, if pExpr is a simple SQL value and the value is the
5196 ** same as that currently bound to variable pVar, non-zero is returned.
5197 ** Otherwise, if the values are not the same or if pExpr is not a simple
5198 ** SQL value, zero is returned.
5199 */
5200 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5201   int res = 0;
5202   int iVar;
5203   sqlite3_value *pL, *pR = 0;
5204 
5205   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5206   if( pR ){
5207     iVar = pVar->iColumn;
5208     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5209     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5210     if( pL ){
5211       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5212         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5213       }
5214       res =  0==sqlite3MemCompare(pL, pR, 0);
5215     }
5216     sqlite3ValueFree(pR);
5217     sqlite3ValueFree(pL);
5218   }
5219 
5220   return res;
5221 }
5222 
5223 /*
5224 ** Do a deep comparison of two expression trees.  Return 0 if the two
5225 ** expressions are completely identical.  Return 1 if they differ only
5226 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5227 ** other than the top-level COLLATE operator.
5228 **
5229 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5230 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5231 **
5232 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5233 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5234 **
5235 ** Sometimes this routine will return 2 even if the two expressions
5236 ** really are equivalent.  If we cannot prove that the expressions are
5237 ** identical, we return 2 just to be safe.  So if this routine
5238 ** returns 2, then you do not really know for certain if the two
5239 ** expressions are the same.  But if you get a 0 or 1 return, then you
5240 ** can be sure the expressions are the same.  In the places where
5241 ** this routine is used, it does not hurt to get an extra 2 - that
5242 ** just might result in some slightly slower code.  But returning
5243 ** an incorrect 0 or 1 could lead to a malfunction.
5244 **
5245 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5246 ** pParse->pReprepare can be matched against literals in pB.  The
5247 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5248 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5249 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5250 ** pB causes a return value of 2.
5251 */
5252 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5253   u32 combinedFlags;
5254   if( pA==0 || pB==0 ){
5255     return pB==pA ? 0 : 2;
5256   }
5257   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5258     return 0;
5259   }
5260   combinedFlags = pA->flags | pB->flags;
5261   if( combinedFlags & EP_IntValue ){
5262     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5263       return 0;
5264     }
5265     return 2;
5266   }
5267   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5268     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5269       return 1;
5270     }
5271     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5272       return 1;
5273     }
5274     return 2;
5275   }
5276   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5277     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5278       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5279 #ifndef SQLITE_OMIT_WINDOWFUNC
5280       assert( pA->op==pB->op );
5281       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5282         return 2;
5283       }
5284       if( ExprHasProperty(pA,EP_WinFunc) ){
5285         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5286           return 2;
5287         }
5288       }
5289 #endif
5290     }else if( pA->op==TK_NULL ){
5291       return 0;
5292     }else if( pA->op==TK_COLLATE ){
5293       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5294     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5295       return 2;
5296     }
5297   }
5298   if( (pA->flags & (EP_Distinct|EP_Commuted))
5299      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5300   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5301     if( combinedFlags & EP_xIsSelect ) return 2;
5302     if( (combinedFlags & EP_FixedCol)==0
5303      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5304     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5305     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5306     if( pA->op!=TK_STRING
5307      && pA->op!=TK_TRUEFALSE
5308      && ALWAYS((combinedFlags & EP_Reduced)==0)
5309     ){
5310       if( pA->iColumn!=pB->iColumn ) return 2;
5311       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5312       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5313         return 2;
5314       }
5315     }
5316   }
5317   return 0;
5318 }
5319 
5320 /*
5321 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5322 ** if they are certainly different, or 2 if it is not possible to
5323 ** determine if they are identical or not.
5324 **
5325 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5326 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5327 **
5328 ** This routine might return non-zero for equivalent ExprLists.  The
5329 ** only consequence will be disabled optimizations.  But this routine
5330 ** must never return 0 if the two ExprList objects are different, or
5331 ** a malfunction will result.
5332 **
5333 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5334 ** always differs from a non-NULL pointer.
5335 */
5336 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5337   int i;
5338   if( pA==0 && pB==0 ) return 0;
5339   if( pA==0 || pB==0 ) return 1;
5340   if( pA->nExpr!=pB->nExpr ) return 1;
5341   for(i=0; i<pA->nExpr; i++){
5342     int res;
5343     Expr *pExprA = pA->a[i].pExpr;
5344     Expr *pExprB = pB->a[i].pExpr;
5345     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5346     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5347   }
5348   return 0;
5349 }
5350 
5351 /*
5352 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5353 ** are ignored.
5354 */
5355 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5356   return sqlite3ExprCompare(0,
5357              sqlite3ExprSkipCollateAndLikely(pA),
5358              sqlite3ExprSkipCollateAndLikely(pB),
5359              iTab);
5360 }
5361 
5362 /*
5363 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5364 **
5365 ** Or if seenNot is true, return non-zero if Expr p can only be
5366 ** non-NULL if pNN is not NULL
5367 */
5368 static int exprImpliesNotNull(
5369   Parse *pParse,      /* Parsing context */
5370   Expr *p,            /* The expression to be checked */
5371   Expr *pNN,          /* The expression that is NOT NULL */
5372   int iTab,           /* Table being evaluated */
5373   int seenNot         /* Return true only if p can be any non-NULL value */
5374 ){
5375   assert( p );
5376   assert( pNN );
5377   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5378     return pNN->op!=TK_NULL;
5379   }
5380   switch( p->op ){
5381     case TK_IN: {
5382       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5383       assert( ExprHasProperty(p,EP_xIsSelect)
5384            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5385       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5386     }
5387     case TK_BETWEEN: {
5388       ExprList *pList = p->x.pList;
5389       assert( pList!=0 );
5390       assert( pList->nExpr==2 );
5391       if( seenNot ) return 0;
5392       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5393        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5394       ){
5395         return 1;
5396       }
5397       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5398     }
5399     case TK_EQ:
5400     case TK_NE:
5401     case TK_LT:
5402     case TK_LE:
5403     case TK_GT:
5404     case TK_GE:
5405     case TK_PLUS:
5406     case TK_MINUS:
5407     case TK_BITOR:
5408     case TK_LSHIFT:
5409     case TK_RSHIFT:
5410     case TK_CONCAT:
5411       seenNot = 1;
5412       /* no break */ deliberate_fall_through
5413     case TK_STAR:
5414     case TK_REM:
5415     case TK_BITAND:
5416     case TK_SLASH: {
5417       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5418       /* no break */ deliberate_fall_through
5419     }
5420     case TK_SPAN:
5421     case TK_COLLATE:
5422     case TK_UPLUS:
5423     case TK_UMINUS: {
5424       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5425     }
5426     case TK_TRUTH: {
5427       if( seenNot ) return 0;
5428       if( p->op2!=TK_IS ) return 0;
5429       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5430     }
5431     case TK_BITNOT:
5432     case TK_NOT: {
5433       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5434     }
5435   }
5436   return 0;
5437 }
5438 
5439 /*
5440 ** Return true if we can prove the pE2 will always be true if pE1 is
5441 ** true.  Return false if we cannot complete the proof or if pE2 might
5442 ** be false.  Examples:
5443 **
5444 **     pE1: x==5       pE2: x==5             Result: true
5445 **     pE1: x>0        pE2: x==5             Result: false
5446 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5447 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5448 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5449 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5450 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5451 **
5452 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5453 ** Expr.iTable<0 then assume a table number given by iTab.
5454 **
5455 ** If pParse is not NULL, then the values of bound variables in pE1 are
5456 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5457 ** modified to record which bound variables are referenced.  If pParse
5458 ** is NULL, then false will be returned if pE1 contains any bound variables.
5459 **
5460 ** When in doubt, return false.  Returning true might give a performance
5461 ** improvement.  Returning false might cause a performance reduction, but
5462 ** it will always give the correct answer and is hence always safe.
5463 */
5464 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5465   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5466     return 1;
5467   }
5468   if( pE2->op==TK_OR
5469    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5470              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5471   ){
5472     return 1;
5473   }
5474   if( pE2->op==TK_NOTNULL
5475    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5476   ){
5477     return 1;
5478   }
5479   return 0;
5480 }
5481 
5482 /*
5483 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5484 ** If the expression node requires that the table at pWalker->iCur
5485 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5486 **
5487 ** This routine controls an optimization.  False positives (setting
5488 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5489 ** (never setting pWalker->eCode) is a harmless missed optimization.
5490 */
5491 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5492   testcase( pExpr->op==TK_AGG_COLUMN );
5493   testcase( pExpr->op==TK_AGG_FUNCTION );
5494   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5495   switch( pExpr->op ){
5496     case TK_ISNOT:
5497     case TK_ISNULL:
5498     case TK_NOTNULL:
5499     case TK_IS:
5500     case TK_OR:
5501     case TK_VECTOR:
5502     case TK_CASE:
5503     case TK_IN:
5504     case TK_FUNCTION:
5505     case TK_TRUTH:
5506       testcase( pExpr->op==TK_ISNOT );
5507       testcase( pExpr->op==TK_ISNULL );
5508       testcase( pExpr->op==TK_NOTNULL );
5509       testcase( pExpr->op==TK_IS );
5510       testcase( pExpr->op==TK_OR );
5511       testcase( pExpr->op==TK_VECTOR );
5512       testcase( pExpr->op==TK_CASE );
5513       testcase( pExpr->op==TK_IN );
5514       testcase( pExpr->op==TK_FUNCTION );
5515       testcase( pExpr->op==TK_TRUTH );
5516       return WRC_Prune;
5517     case TK_COLUMN:
5518       if( pWalker->u.iCur==pExpr->iTable ){
5519         pWalker->eCode = 1;
5520         return WRC_Abort;
5521       }
5522       return WRC_Prune;
5523 
5524     case TK_AND:
5525       if( pWalker->eCode==0 ){
5526         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5527         if( pWalker->eCode ){
5528           pWalker->eCode = 0;
5529           sqlite3WalkExpr(pWalker, pExpr->pRight);
5530         }
5531       }
5532       return WRC_Prune;
5533 
5534     case TK_BETWEEN:
5535       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5536         assert( pWalker->eCode );
5537         return WRC_Abort;
5538       }
5539       return WRC_Prune;
5540 
5541     /* Virtual tables are allowed to use constraints like x=NULL.  So
5542     ** a term of the form x=y does not prove that y is not null if x
5543     ** is the column of a virtual table */
5544     case TK_EQ:
5545     case TK_NE:
5546     case TK_LT:
5547     case TK_LE:
5548     case TK_GT:
5549     case TK_GE: {
5550       Expr *pLeft = pExpr->pLeft;
5551       Expr *pRight = pExpr->pRight;
5552       testcase( pExpr->op==TK_EQ );
5553       testcase( pExpr->op==TK_NE );
5554       testcase( pExpr->op==TK_LT );
5555       testcase( pExpr->op==TK_LE );
5556       testcase( pExpr->op==TK_GT );
5557       testcase( pExpr->op==TK_GE );
5558       /* The y.pTab=0 assignment in wherecode.c always happens after the
5559       ** impliesNotNullRow() test */
5560       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5561                                && IsVirtual(pLeft->y.pTab))
5562        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5563                                && IsVirtual(pRight->y.pTab))
5564       ){
5565         return WRC_Prune;
5566       }
5567       /* no break */ deliberate_fall_through
5568     }
5569     default:
5570       return WRC_Continue;
5571   }
5572 }
5573 
5574 /*
5575 ** Return true (non-zero) if expression p can only be true if at least
5576 ** one column of table iTab is non-null.  In other words, return true
5577 ** if expression p will always be NULL or false if every column of iTab
5578 ** is NULL.
5579 **
5580 ** False negatives are acceptable.  In other words, it is ok to return
5581 ** zero even if expression p will never be true of every column of iTab
5582 ** is NULL.  A false negative is merely a missed optimization opportunity.
5583 **
5584 ** False positives are not allowed, however.  A false positive may result
5585 ** in an incorrect answer.
5586 **
5587 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5588 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5589 **
5590 ** This routine is used to check if a LEFT JOIN can be converted into
5591 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5592 ** clause requires that some column of the right table of the LEFT JOIN
5593 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5594 ** ordinary join.
5595 */
5596 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5597   Walker w;
5598   p = sqlite3ExprSkipCollateAndLikely(p);
5599   if( p==0 ) return 0;
5600   if( p->op==TK_NOTNULL ){
5601     p = p->pLeft;
5602   }else{
5603     while( p->op==TK_AND ){
5604       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5605       p = p->pRight;
5606     }
5607   }
5608   w.xExprCallback = impliesNotNullRow;
5609   w.xSelectCallback = 0;
5610   w.xSelectCallback2 = 0;
5611   w.eCode = 0;
5612   w.u.iCur = iTab;
5613   sqlite3WalkExpr(&w, p);
5614   return w.eCode;
5615 }
5616 
5617 /*
5618 ** An instance of the following structure is used by the tree walker
5619 ** to determine if an expression can be evaluated by reference to the
5620 ** index only, without having to do a search for the corresponding
5621 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5622 ** is the cursor for the table.
5623 */
5624 struct IdxCover {
5625   Index *pIdx;     /* The index to be tested for coverage */
5626   int iCur;        /* Cursor number for the table corresponding to the index */
5627 };
5628 
5629 /*
5630 ** Check to see if there are references to columns in table
5631 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5632 ** pWalker->u.pIdxCover->pIdx.
5633 */
5634 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5635   if( pExpr->op==TK_COLUMN
5636    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5637    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5638   ){
5639     pWalker->eCode = 1;
5640     return WRC_Abort;
5641   }
5642   return WRC_Continue;
5643 }
5644 
5645 /*
5646 ** Determine if an index pIdx on table with cursor iCur contains will
5647 ** the expression pExpr.  Return true if the index does cover the
5648 ** expression and false if the pExpr expression references table columns
5649 ** that are not found in the index pIdx.
5650 **
5651 ** An index covering an expression means that the expression can be
5652 ** evaluated using only the index and without having to lookup the
5653 ** corresponding table entry.
5654 */
5655 int sqlite3ExprCoveredByIndex(
5656   Expr *pExpr,        /* The index to be tested */
5657   int iCur,           /* The cursor number for the corresponding table */
5658   Index *pIdx         /* The index that might be used for coverage */
5659 ){
5660   Walker w;
5661   struct IdxCover xcov;
5662   memset(&w, 0, sizeof(w));
5663   xcov.iCur = iCur;
5664   xcov.pIdx = pIdx;
5665   w.xExprCallback = exprIdxCover;
5666   w.u.pIdxCover = &xcov;
5667   sqlite3WalkExpr(&w, pExpr);
5668   return !w.eCode;
5669 }
5670 
5671 
5672 /*
5673 ** An instance of the following structure is used by the tree walker
5674 ** to count references to table columns in the arguments of an
5675 ** aggregate function, in order to implement the
5676 ** sqlite3FunctionThisSrc() routine.
5677 */
5678 struct SrcCount {
5679   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5680   int iSrcInner;   /* Smallest cursor number in this context */
5681   int nThis;       /* Number of references to columns in pSrcList */
5682   int nOther;      /* Number of references to columns in other FROM clauses */
5683 };
5684 
5685 /*
5686 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5687 ** SELECT with a FROM clause encountered during this iteration, set
5688 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5689 ** the FROM cause.
5690 */
5691 static int selectSrcCount(Walker *pWalker, Select *pSel){
5692   struct SrcCount *p = pWalker->u.pSrcCount;
5693   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5694     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5695   }
5696   return WRC_Continue;
5697 }
5698 
5699 /*
5700 ** Count the number of references to columns.
5701 */
5702 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5703   /* There was once a NEVER() on the second term on the grounds that
5704   ** sqlite3FunctionUsesThisSrc() was always called before
5705   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5706   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5707   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5708   ** FunctionUsesThisSrc() when creating a new sub-select. */
5709   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5710     int i;
5711     struct SrcCount *p = pWalker->u.pSrcCount;
5712     SrcList *pSrc = p->pSrc;
5713     int nSrc = pSrc ? pSrc->nSrc : 0;
5714     for(i=0; i<nSrc; i++){
5715       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5716     }
5717     if( i<nSrc ){
5718       p->nThis++;
5719     }else if( pExpr->iTable<p->iSrcInner ){
5720       /* In a well-formed parse tree (no name resolution errors),
5721       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5722       ** outer context.  Those are the only ones to count as "other" */
5723       p->nOther++;
5724     }
5725   }
5726   return WRC_Continue;
5727 }
5728 
5729 /*
5730 ** Determine if any of the arguments to the pExpr Function reference
5731 ** pSrcList.  Return true if they do.  Also return true if the function
5732 ** has no arguments or has only constant arguments.  Return false if pExpr
5733 ** references columns but not columns of tables found in pSrcList.
5734 */
5735 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5736   Walker w;
5737   struct SrcCount cnt;
5738   assert( pExpr->op==TK_AGG_FUNCTION );
5739   memset(&w, 0, sizeof(w));
5740   w.xExprCallback = exprSrcCount;
5741   w.xSelectCallback = selectSrcCount;
5742   w.u.pSrcCount = &cnt;
5743   cnt.pSrc = pSrcList;
5744   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5745   cnt.nThis = 0;
5746   cnt.nOther = 0;
5747   sqlite3WalkExprList(&w, pExpr->x.pList);
5748 #ifndef SQLITE_OMIT_WINDOWFUNC
5749   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5750     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5751   }
5752 #endif
5753   return cnt.nThis>0 || cnt.nOther==0;
5754 }
5755 
5756 /*
5757 ** This is a Walker expression node callback.
5758 **
5759 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5760 ** object that is referenced does not refer directly to the Expr.  If
5761 ** it does, make a copy.  This is done because the pExpr argument is
5762 ** subject to change.
5763 **
5764 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5765 ** This will cause the expression to be deleted automatically when the
5766 ** Parse object is destroyed, but the zero register number means that it
5767 ** will not generate any code in the preamble.
5768 */
5769 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5770   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5771    && pExpr->pAggInfo!=0
5772   ){
5773     AggInfo *pAggInfo = pExpr->pAggInfo;
5774     int iAgg = pExpr->iAgg;
5775     Parse *pParse = pWalker->pParse;
5776     sqlite3 *db = pParse->db;
5777     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5778     if( pExpr->op==TK_AGG_COLUMN ){
5779       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5780       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5781         pExpr = sqlite3ExprDup(db, pExpr, 0);
5782         if( pExpr ){
5783           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5784           pParse->pConstExpr =
5785              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5786         }
5787       }
5788     }else{
5789       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5790       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5791         pExpr = sqlite3ExprDup(db, pExpr, 0);
5792         if( pExpr ){
5793           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5794           pParse->pConstExpr =
5795              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5796         }
5797       }
5798     }
5799   }
5800   return WRC_Continue;
5801 }
5802 
5803 /*
5804 ** Initialize a Walker object so that will persist AggInfo entries referenced
5805 ** by the tree that is walked.
5806 */
5807 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5808   memset(pWalker, 0, sizeof(*pWalker));
5809   pWalker->pParse = pParse;
5810   pWalker->xExprCallback = agginfoPersistExprCb;
5811   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5812 }
5813 
5814 /*
5815 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5816 ** the new element.  Return a negative number if malloc fails.
5817 */
5818 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5819   int i;
5820   pInfo->aCol = sqlite3ArrayAllocate(
5821        db,
5822        pInfo->aCol,
5823        sizeof(pInfo->aCol[0]),
5824        &pInfo->nColumn,
5825        &i
5826   );
5827   return i;
5828 }
5829 
5830 /*
5831 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5832 ** the new element.  Return a negative number if malloc fails.
5833 */
5834 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5835   int i;
5836   pInfo->aFunc = sqlite3ArrayAllocate(
5837        db,
5838        pInfo->aFunc,
5839        sizeof(pInfo->aFunc[0]),
5840        &pInfo->nFunc,
5841        &i
5842   );
5843   return i;
5844 }
5845 
5846 /*
5847 ** This is the xExprCallback for a tree walker.  It is used to
5848 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5849 ** for additional information.
5850 */
5851 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5852   int i;
5853   NameContext *pNC = pWalker->u.pNC;
5854   Parse *pParse = pNC->pParse;
5855   SrcList *pSrcList = pNC->pSrcList;
5856   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5857 
5858   assert( pNC->ncFlags & NC_UAggInfo );
5859   switch( pExpr->op ){
5860     case TK_AGG_COLUMN:
5861     case TK_COLUMN: {
5862       testcase( pExpr->op==TK_AGG_COLUMN );
5863       testcase( pExpr->op==TK_COLUMN );
5864       /* Check to see if the column is in one of the tables in the FROM
5865       ** clause of the aggregate query */
5866       if( ALWAYS(pSrcList!=0) ){
5867         SrcItem *pItem = pSrcList->a;
5868         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5869           struct AggInfo_col *pCol;
5870           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5871           if( pExpr->iTable==pItem->iCursor ){
5872             /* If we reach this point, it means that pExpr refers to a table
5873             ** that is in the FROM clause of the aggregate query.
5874             **
5875             ** Make an entry for the column in pAggInfo->aCol[] if there
5876             ** is not an entry there already.
5877             */
5878             int k;
5879             pCol = pAggInfo->aCol;
5880             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5881               if( pCol->iTable==pExpr->iTable &&
5882                   pCol->iColumn==pExpr->iColumn ){
5883                 break;
5884               }
5885             }
5886             if( (k>=pAggInfo->nColumn)
5887              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5888             ){
5889               pCol = &pAggInfo->aCol[k];
5890               pCol->pTab = pExpr->y.pTab;
5891               pCol->iTable = pExpr->iTable;
5892               pCol->iColumn = pExpr->iColumn;
5893               pCol->iMem = ++pParse->nMem;
5894               pCol->iSorterColumn = -1;
5895               pCol->pCExpr = pExpr;
5896               if( pAggInfo->pGroupBy ){
5897                 int j, n;
5898                 ExprList *pGB = pAggInfo->pGroupBy;
5899                 struct ExprList_item *pTerm = pGB->a;
5900                 n = pGB->nExpr;
5901                 for(j=0; j<n; j++, pTerm++){
5902                   Expr *pE = pTerm->pExpr;
5903                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5904                       pE->iColumn==pExpr->iColumn ){
5905                     pCol->iSorterColumn = j;
5906                     break;
5907                   }
5908                 }
5909               }
5910               if( pCol->iSorterColumn<0 ){
5911                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5912               }
5913             }
5914             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5915             ** because it was there before or because we just created it).
5916             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5917             ** pAggInfo->aCol[] entry.
5918             */
5919             ExprSetVVAProperty(pExpr, EP_NoReduce);
5920             pExpr->pAggInfo = pAggInfo;
5921             pExpr->op = TK_AGG_COLUMN;
5922             pExpr->iAgg = (i16)k;
5923             break;
5924           } /* endif pExpr->iTable==pItem->iCursor */
5925         } /* end loop over pSrcList */
5926       }
5927       return WRC_Prune;
5928     }
5929     case TK_AGG_FUNCTION: {
5930       if( (pNC->ncFlags & NC_InAggFunc)==0
5931        && pWalker->walkerDepth==pExpr->op2
5932       ){
5933         /* Check to see if pExpr is a duplicate of another aggregate
5934         ** function that is already in the pAggInfo structure
5935         */
5936         struct AggInfo_func *pItem = pAggInfo->aFunc;
5937         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5938           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
5939             break;
5940           }
5941         }
5942         if( i>=pAggInfo->nFunc ){
5943           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5944           */
5945           u8 enc = ENC(pParse->db);
5946           i = addAggInfoFunc(pParse->db, pAggInfo);
5947           if( i>=0 ){
5948             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5949             pItem = &pAggInfo->aFunc[i];
5950             pItem->pFExpr = pExpr;
5951             pItem->iMem = ++pParse->nMem;
5952             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5953             pItem->pFunc = sqlite3FindFunction(pParse->db,
5954                    pExpr->u.zToken,
5955                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5956             if( pExpr->flags & EP_Distinct ){
5957               pItem->iDistinct = pParse->nTab++;
5958             }else{
5959               pItem->iDistinct = -1;
5960             }
5961           }
5962         }
5963         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5964         */
5965         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5966         ExprSetVVAProperty(pExpr, EP_NoReduce);
5967         pExpr->iAgg = (i16)i;
5968         pExpr->pAggInfo = pAggInfo;
5969         return WRC_Prune;
5970       }else{
5971         return WRC_Continue;
5972       }
5973     }
5974   }
5975   return WRC_Continue;
5976 }
5977 
5978 /*
5979 ** Analyze the pExpr expression looking for aggregate functions and
5980 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5981 ** points to.  Additional entries are made on the AggInfo object as
5982 ** necessary.
5983 **
5984 ** This routine should only be called after the expression has been
5985 ** analyzed by sqlite3ResolveExprNames().
5986 */
5987 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5988   Walker w;
5989   w.xExprCallback = analyzeAggregate;
5990   w.xSelectCallback = sqlite3WalkerDepthIncrease;
5991   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
5992   w.walkerDepth = 0;
5993   w.u.pNC = pNC;
5994   w.pParse = 0;
5995   assert( pNC->pSrcList!=0 );
5996   sqlite3WalkExpr(&w, pExpr);
5997 }
5998 
5999 /*
6000 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6001 ** expression list.  Return the number of errors.
6002 **
6003 ** If an error is found, the analysis is cut short.
6004 */
6005 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6006   struct ExprList_item *pItem;
6007   int i;
6008   if( pList ){
6009     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6010       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6011     }
6012   }
6013 }
6014 
6015 /*
6016 ** Allocate a single new register for use to hold some intermediate result.
6017 */
6018 int sqlite3GetTempReg(Parse *pParse){
6019   if( pParse->nTempReg==0 ){
6020     return ++pParse->nMem;
6021   }
6022   return pParse->aTempReg[--pParse->nTempReg];
6023 }
6024 
6025 /*
6026 ** Deallocate a register, making available for reuse for some other
6027 ** purpose.
6028 */
6029 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6030   if( iReg ){
6031     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6032     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6033       pParse->aTempReg[pParse->nTempReg++] = iReg;
6034     }
6035   }
6036 }
6037 
6038 /*
6039 ** Allocate or deallocate a block of nReg consecutive registers.
6040 */
6041 int sqlite3GetTempRange(Parse *pParse, int nReg){
6042   int i, n;
6043   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6044   i = pParse->iRangeReg;
6045   n = pParse->nRangeReg;
6046   if( nReg<=n ){
6047     pParse->iRangeReg += nReg;
6048     pParse->nRangeReg -= nReg;
6049   }else{
6050     i = pParse->nMem+1;
6051     pParse->nMem += nReg;
6052   }
6053   return i;
6054 }
6055 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6056   if( nReg==1 ){
6057     sqlite3ReleaseTempReg(pParse, iReg);
6058     return;
6059   }
6060   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6061   if( nReg>pParse->nRangeReg ){
6062     pParse->nRangeReg = nReg;
6063     pParse->iRangeReg = iReg;
6064   }
6065 }
6066 
6067 /*
6068 ** Mark all temporary registers as being unavailable for reuse.
6069 **
6070 ** Always invoke this procedure after coding a subroutine or co-routine
6071 ** that might be invoked from other parts of the code, to ensure that
6072 ** the sub/co-routine does not use registers in common with the code that
6073 ** invokes the sub/co-routine.
6074 */
6075 void sqlite3ClearTempRegCache(Parse *pParse){
6076   pParse->nTempReg = 0;
6077   pParse->nRangeReg = 0;
6078 }
6079 
6080 /*
6081 ** Validate that no temporary register falls within the range of
6082 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6083 ** statements.
6084 */
6085 #ifdef SQLITE_DEBUG
6086 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6087   int i;
6088   if( pParse->nRangeReg>0
6089    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6090    && pParse->iRangeReg <= iLast
6091   ){
6092      return 0;
6093   }
6094   for(i=0; i<pParse->nTempReg; i++){
6095     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6096       return 0;
6097     }
6098   }
6099   return 1;
6100 }
6101 #endif /* SQLITE_DEBUG */
6102