xref: /sqlite-3.40.0/src/expr.c (revision e7952263)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( op==TK_CAST || op==TK_UPLUS ){
145       p = p->pLeft;
146       continue;
147     }
148     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150       break;
151     }
152     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153           || op==TK_REGISTER || op==TK_TRIGGER)
154      && p->pTab!=0
155     ){
156       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157       ** a TK_COLUMN but was previously evaluated and cached in a register */
158       int j = p->iColumn;
159       if( j>=0 ){
160         const char *zColl = p->pTab->aCol[j].zColl;
161         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
162       }
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     if( i>0 ) sqlite3ExprCachePush(pParse);
585     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594     sqlite3ReleaseTempReg(pParse, regFree1);
595     sqlite3ReleaseTempReg(pParse, regFree2);
596     if( i>0 ) sqlite3ExprCachePop(pParse);
597     if( i==nLeft-1 ){
598       break;
599     }
600     if( opx==TK_EQ ){
601       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602       p5 |= SQLITE_KEEPNULL;
603     }else if( opx==TK_NE ){
604       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605       p5 |= SQLITE_KEEPNULL;
606     }else{
607       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609       VdbeCoverageIf(v, op==TK_LT);
610       VdbeCoverageIf(v, op==TK_GT);
611       VdbeCoverageIf(v, op==TK_LE);
612       VdbeCoverageIf(v, op==TK_GE);
613       if( i==nLeft-2 ) opx = op;
614     }
615   }
616   sqlite3VdbeResolveLabel(v, addrDone);
617 }
618 
619 #if SQLITE_MAX_EXPR_DEPTH>0
620 /*
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
624 */
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626   int rc = SQLITE_OK;
627   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628   if( nHeight>mxHeight ){
629     sqlite3ErrorMsg(pParse,
630        "Expression tree is too large (maximum depth %d)", mxHeight
631     );
632     rc = SQLITE_ERROR;
633   }
634   return rc;
635 }
636 
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
641 **
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
645 */
646 static void heightOfExpr(Expr *p, int *pnHeight){
647   if( p ){
648     if( p->nHeight>*pnHeight ){
649       *pnHeight = p->nHeight;
650     }
651   }
652 }
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654   if( p ){
655     int i;
656     for(i=0; i<p->nExpr; i++){
657       heightOfExpr(p->a[i].pExpr, pnHeight);
658     }
659   }
660 }
661 static void heightOfSelect(Select *pSelect, int *pnHeight){
662   Select *p;
663   for(p=pSelect; p; p=p->pPrior){
664     heightOfExpr(p->pWhere, pnHeight);
665     heightOfExpr(p->pHaving, pnHeight);
666     heightOfExpr(p->pLimit, pnHeight);
667     heightOfExprList(p->pEList, pnHeight);
668     heightOfExprList(p->pGroupBy, pnHeight);
669     heightOfExprList(p->pOrderBy, pnHeight);
670   }
671 }
672 
673 /*
674 ** Set the Expr.nHeight variable in the structure passed as an
675 ** argument. An expression with no children, Expr.pList or
676 ** Expr.pSelect member has a height of 1. Any other expression
677 ** has a height equal to the maximum height of any other
678 ** referenced Expr plus one.
679 **
680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
681 ** if appropriate.
682 */
683 static void exprSetHeight(Expr *p){
684   int nHeight = 0;
685   heightOfExpr(p->pLeft, &nHeight);
686   heightOfExpr(p->pRight, &nHeight);
687   if( ExprHasProperty(p, EP_xIsSelect) ){
688     heightOfSelect(p->x.pSelect, &nHeight);
689   }else if( p->x.pList ){
690     heightOfExprList(p->x.pList, &nHeight);
691     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
692   }
693   p->nHeight = nHeight + 1;
694 }
695 
696 /*
697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
698 ** the height is greater than the maximum allowed expression depth,
699 ** leave an error in pParse.
700 **
701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
702 ** Expr.flags.
703 */
704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
705   if( pParse->nErr ) return;
706   exprSetHeight(p);
707   sqlite3ExprCheckHeight(pParse, p->nHeight);
708 }
709 
710 /*
711 ** Return the maximum height of any expression tree referenced
712 ** by the select statement passed as an argument.
713 */
714 int sqlite3SelectExprHeight(Select *p){
715   int nHeight = 0;
716   heightOfSelect(p, &nHeight);
717   return nHeight;
718 }
719 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
720 /*
721 ** Propagate all EP_Propagate flags from the Expr.x.pList into
722 ** Expr.flags.
723 */
724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
725   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
726     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
727   }
728 }
729 #define exprSetHeight(y)
730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
731 
732 /*
733 ** This routine is the core allocator for Expr nodes.
734 **
735 ** Construct a new expression node and return a pointer to it.  Memory
736 ** for this node and for the pToken argument is a single allocation
737 ** obtained from sqlite3DbMalloc().  The calling function
738 ** is responsible for making sure the node eventually gets freed.
739 **
740 ** If dequote is true, then the token (if it exists) is dequoted.
741 ** If dequote is false, no dequoting is performed.  The deQuote
742 ** parameter is ignored if pToken is NULL or if the token does not
743 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
744 ** then the EP_DblQuoted flag is set on the expression node.
745 **
746 ** Special case:  If op==TK_INTEGER and pToken points to a string that
747 ** can be translated into a 32-bit integer, then the token is not
748 ** stored in u.zToken.  Instead, the integer values is written
749 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
750 ** is allocated to hold the integer text and the dequote flag is ignored.
751 */
752 Expr *sqlite3ExprAlloc(
753   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
754   int op,                 /* Expression opcode */
755   const Token *pToken,    /* Token argument.  Might be NULL */
756   int dequote             /* True to dequote */
757 ){
758   Expr *pNew;
759   int nExtra = 0;
760   int iValue = 0;
761 
762   assert( db!=0 );
763   if( pToken ){
764     if( op!=TK_INTEGER || pToken->z==0
765           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
766       nExtra = pToken->n+1;
767       assert( iValue>=0 );
768     }
769   }
770   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
771   if( pNew ){
772     memset(pNew, 0, sizeof(Expr));
773     pNew->op = (u8)op;
774     pNew->iAgg = -1;
775     if( pToken ){
776       if( nExtra==0 ){
777         pNew->flags |= EP_IntValue|EP_Leaf;
778         pNew->u.iValue = iValue;
779       }else{
780         pNew->u.zToken = (char*)&pNew[1];
781         assert( pToken->z!=0 || pToken->n==0 );
782         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
783         pNew->u.zToken[pToken->n] = 0;
784         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
785           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
786           sqlite3Dequote(pNew->u.zToken);
787         }
788       }
789     }
790 #if SQLITE_MAX_EXPR_DEPTH>0
791     pNew->nHeight = 1;
792 #endif
793   }
794   return pNew;
795 }
796 
797 /*
798 ** Allocate a new expression node from a zero-terminated token that has
799 ** already been dequoted.
800 */
801 Expr *sqlite3Expr(
802   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
803   int op,                 /* Expression opcode */
804   const char *zToken      /* Token argument.  Might be NULL */
805 ){
806   Token x;
807   x.z = zToken;
808   x.n = sqlite3Strlen30(zToken);
809   return sqlite3ExprAlloc(db, op, &x, 0);
810 }
811 
812 /*
813 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
814 **
815 ** If pRoot==NULL that means that a memory allocation error has occurred.
816 ** In that case, delete the subtrees pLeft and pRight.
817 */
818 void sqlite3ExprAttachSubtrees(
819   sqlite3 *db,
820   Expr *pRoot,
821   Expr *pLeft,
822   Expr *pRight
823 ){
824   if( pRoot==0 ){
825     assert( db->mallocFailed );
826     sqlite3ExprDelete(db, pLeft);
827     sqlite3ExprDelete(db, pRight);
828   }else{
829     if( pRight ){
830       pRoot->pRight = pRight;
831       pRoot->flags |= EP_Propagate & pRight->flags;
832     }
833     if( pLeft ){
834       pRoot->pLeft = pLeft;
835       pRoot->flags |= EP_Propagate & pLeft->flags;
836     }
837     exprSetHeight(pRoot);
838   }
839 }
840 
841 /*
842 ** Allocate an Expr node which joins as many as two subtrees.
843 **
844 ** One or both of the subtrees can be NULL.  Return a pointer to the new
845 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
846 ** free the subtrees and return NULL.
847 */
848 Expr *sqlite3PExpr(
849   Parse *pParse,          /* Parsing context */
850   int op,                 /* Expression opcode */
851   Expr *pLeft,            /* Left operand */
852   Expr *pRight            /* Right operand */
853 ){
854   Expr *p;
855   if( op==TK_AND && pParse->nErr==0 ){
856     /* Take advantage of short-circuit false optimization for AND */
857     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
858   }else{
859     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
860     if( p ){
861       memset(p, 0, sizeof(Expr));
862       p->op = op & TKFLG_MASK;
863       p->iAgg = -1;
864     }
865     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
866   }
867   if( p ) {
868     sqlite3ExprCheckHeight(pParse, p->nHeight);
869   }
870   return p;
871 }
872 
873 /*
874 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
875 ** do a memory allocation failure) then delete the pSelect object.
876 */
877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
878   if( pExpr ){
879     pExpr->x.pSelect = pSelect;
880     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
881     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
882   }else{
883     assert( pParse->db->mallocFailed );
884     sqlite3SelectDelete(pParse->db, pSelect);
885   }
886 }
887 
888 
889 /*
890 ** If the expression is always either TRUE or FALSE (respectively),
891 ** then return 1.  If one cannot determine the truth value of the
892 ** expression at compile-time return 0.
893 **
894 ** This is an optimization.  If is OK to return 0 here even if
895 ** the expression really is always false or false (a false negative).
896 ** But it is a bug to return 1 if the expression might have different
897 ** boolean values in different circumstances (a false positive.)
898 **
899 ** Note that if the expression is part of conditional for a
900 ** LEFT JOIN, then we cannot determine at compile-time whether or not
901 ** is it true or false, so always return 0.
902 */
903 static int exprAlwaysTrue(Expr *p){
904   int v = 0;
905   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
906   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
907   return v!=0;
908 }
909 static int exprAlwaysFalse(Expr *p){
910   int v = 0;
911   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
912   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
913   return v==0;
914 }
915 
916 /*
917 ** Join two expressions using an AND operator.  If either expression is
918 ** NULL, then just return the other expression.
919 **
920 ** If one side or the other of the AND is known to be false, then instead
921 ** of returning an AND expression, just return a constant expression with
922 ** a value of false.
923 */
924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
925   if( pLeft==0 ){
926     return pRight;
927   }else if( pRight==0 ){
928     return pLeft;
929   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
930     sqlite3ExprDelete(db, pLeft);
931     sqlite3ExprDelete(db, pRight);
932     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
933   }else{
934     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
935     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
936     return pNew;
937   }
938 }
939 
940 /*
941 ** Construct a new expression node for a function with multiple
942 ** arguments.
943 */
944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
945   Expr *pNew;
946   sqlite3 *db = pParse->db;
947   assert( pToken );
948   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
949   if( pNew==0 ){
950     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
951     return 0;
952   }
953   pNew->x.pList = pList;
954   ExprSetProperty(pNew, EP_HasFunc);
955   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
956   sqlite3ExprSetHeightAndFlags(pParse, pNew);
957   return pNew;
958 }
959 
960 /*
961 ** Assign a variable number to an expression that encodes a wildcard
962 ** in the original SQL statement.
963 **
964 ** Wildcards consisting of a single "?" are assigned the next sequential
965 ** variable number.
966 **
967 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
968 ** sure "nnn" is not too big to avoid a denial of service attack when
969 ** the SQL statement comes from an external source.
970 **
971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
972 ** as the previous instance of the same wildcard.  Or if this is the first
973 ** instance of the wildcard, the next sequential variable number is
974 ** assigned.
975 */
976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
977   sqlite3 *db = pParse->db;
978   const char *z;
979   ynVar x;
980 
981   if( pExpr==0 ) return;
982   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
983   z = pExpr->u.zToken;
984   assert( z!=0 );
985   assert( z[0]!=0 );
986   assert( n==(u32)sqlite3Strlen30(z) );
987   if( z[1]==0 ){
988     /* Wildcard of the form "?".  Assign the next variable number */
989     assert( z[0]=='?' );
990     x = (ynVar)(++pParse->nVar);
991   }else{
992     int doAdd = 0;
993     if( z[0]=='?' ){
994       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
995       ** use it as the variable number */
996       i64 i;
997       int bOk;
998       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
999         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1000         bOk = 1;
1001       }else{
1002         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1003       }
1004       testcase( i==0 );
1005       testcase( i==1 );
1006       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1007       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1008       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1009         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1010             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1011         return;
1012       }
1013       x = (ynVar)i;
1014       if( x>pParse->nVar ){
1015         pParse->nVar = (int)x;
1016         doAdd = 1;
1017       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1018         doAdd = 1;
1019       }
1020     }else{
1021       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1022       ** number as the prior appearance of the same name, or if the name
1023       ** has never appeared before, reuse the same variable number
1024       */
1025       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1026       if( x==0 ){
1027         x = (ynVar)(++pParse->nVar);
1028         doAdd = 1;
1029       }
1030     }
1031     if( doAdd ){
1032       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1033     }
1034   }
1035   pExpr->iColumn = x;
1036   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1037     sqlite3ErrorMsg(pParse, "too many SQL variables");
1038   }
1039 }
1040 
1041 /*
1042 ** Recursively delete an expression tree.
1043 */
1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1045   assert( p!=0 );
1046   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1047   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1048 #ifdef SQLITE_DEBUG
1049   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1050     assert( p->pLeft==0 );
1051     assert( p->pRight==0 );
1052     assert( p->x.pSelect==0 );
1053   }
1054 #endif
1055   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1056     /* The Expr.x union is never used at the same time as Expr.pRight */
1057     assert( p->x.pList==0 || p->pRight==0 );
1058     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1059     if( p->pRight ){
1060       sqlite3ExprDeleteNN(db, p->pRight);
1061     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1062       sqlite3SelectDelete(db, p->x.pSelect);
1063     }else{
1064       sqlite3ExprListDelete(db, p->x.pList);
1065     }
1066     if( !ExprHasProperty(p, EP_Reduced) ){
1067       sqlite3WindowDelete(db, p->pWin);
1068     }
1069   }
1070   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1071   if( !ExprHasProperty(p, EP_Static) ){
1072     sqlite3DbFreeNN(db, p);
1073   }
1074 }
1075 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1076   if( p ) sqlite3ExprDeleteNN(db, p);
1077 }
1078 
1079 /*
1080 ** Return the number of bytes allocated for the expression structure
1081 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1082 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1083 */
1084 static int exprStructSize(Expr *p){
1085   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1086   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1087   return EXPR_FULLSIZE;
1088 }
1089 
1090 /*
1091 ** The dupedExpr*Size() routines each return the number of bytes required
1092 ** to store a copy of an expression or expression tree.  They differ in
1093 ** how much of the tree is measured.
1094 **
1095 **     dupedExprStructSize()     Size of only the Expr structure
1096 **     dupedExprNodeSize()       Size of Expr + space for token
1097 **     dupedExprSize()           Expr + token + subtree components
1098 **
1099 ***************************************************************************
1100 **
1101 ** The dupedExprStructSize() function returns two values OR-ed together:
1102 ** (1) the space required for a copy of the Expr structure only and
1103 ** (2) the EP_xxx flags that indicate what the structure size should be.
1104 ** The return values is always one of:
1105 **
1106 **      EXPR_FULLSIZE
1107 **      EXPR_REDUCEDSIZE   | EP_Reduced
1108 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1109 **
1110 ** The size of the structure can be found by masking the return value
1111 ** of this routine with 0xfff.  The flags can be found by masking the
1112 ** return value with EP_Reduced|EP_TokenOnly.
1113 **
1114 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1115 ** (unreduced) Expr objects as they or originally constructed by the parser.
1116 ** During expression analysis, extra information is computed and moved into
1117 ** later parts of the Expr object and that extra information might get chopped
1118 ** off if the expression is reduced.  Note also that it does not work to
1119 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1120 ** to reduce a pristine expression tree from the parser.  The implementation
1121 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1122 ** to enforce this constraint.
1123 */
1124 static int dupedExprStructSize(Expr *p, int flags){
1125   int nSize;
1126   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1127   assert( EXPR_FULLSIZE<=0xfff );
1128   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1129   if( 0==flags || p->op==TK_SELECT_COLUMN
1130 #ifndef SQLITE_OMIT_WINDOWFUNC
1131    || p->pWin
1132 #endif
1133   ){
1134     nSize = EXPR_FULLSIZE;
1135   }else{
1136     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1137     assert( !ExprHasProperty(p, EP_FromJoin) );
1138     assert( !ExprHasProperty(p, EP_MemToken) );
1139     assert( !ExprHasProperty(p, EP_NoReduce) );
1140     if( p->pLeft || p->x.pList ){
1141       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1142     }else{
1143       assert( p->pRight==0 );
1144       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1145     }
1146   }
1147   return nSize;
1148 }
1149 
1150 /*
1151 ** This function returns the space in bytes required to store the copy
1152 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1153 ** string is defined.)
1154 */
1155 static int dupedExprNodeSize(Expr *p, int flags){
1156   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1157   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1158     nByte += sqlite3Strlen30(p->u.zToken)+1;
1159   }
1160   return ROUND8(nByte);
1161 }
1162 
1163 /*
1164 ** Return the number of bytes required to create a duplicate of the
1165 ** expression passed as the first argument. The second argument is a
1166 ** mask containing EXPRDUP_XXX flags.
1167 **
1168 ** The value returned includes space to create a copy of the Expr struct
1169 ** itself and the buffer referred to by Expr.u.zToken, if any.
1170 **
1171 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1172 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1173 ** and Expr.pRight variables (but not for any structures pointed to or
1174 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1175 */
1176 static int dupedExprSize(Expr *p, int flags){
1177   int nByte = 0;
1178   if( p ){
1179     nByte = dupedExprNodeSize(p, flags);
1180     if( flags&EXPRDUP_REDUCE ){
1181       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1182     }
1183   }
1184   return nByte;
1185 }
1186 
1187 /*
1188 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1189 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1190 ** to store the copy of expression p, the copies of p->u.zToken
1191 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1192 ** if any. Before returning, *pzBuffer is set to the first byte past the
1193 ** portion of the buffer copied into by this function.
1194 */
1195 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1196   Expr *pNew;           /* Value to return */
1197   u8 *zAlloc;           /* Memory space from which to build Expr object */
1198   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1199 
1200   assert( db!=0 );
1201   assert( p );
1202   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1203   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1204 
1205   /* Figure out where to write the new Expr structure. */
1206   if( pzBuffer ){
1207     zAlloc = *pzBuffer;
1208     staticFlag = EP_Static;
1209   }else{
1210     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1211     staticFlag = 0;
1212   }
1213   pNew = (Expr *)zAlloc;
1214 
1215   if( pNew ){
1216     /* Set nNewSize to the size allocated for the structure pointed to
1217     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1218     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1219     ** by the copy of the p->u.zToken string (if any).
1220     */
1221     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1222     const int nNewSize = nStructSize & 0xfff;
1223     int nToken;
1224     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1225       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1226     }else{
1227       nToken = 0;
1228     }
1229     if( dupFlags ){
1230       assert( ExprHasProperty(p, EP_Reduced)==0 );
1231       memcpy(zAlloc, p, nNewSize);
1232     }else{
1233       u32 nSize = (u32)exprStructSize(p);
1234       memcpy(zAlloc, p, nSize);
1235       if( nSize<EXPR_FULLSIZE ){
1236         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1237       }
1238     }
1239 
1240     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1241     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1242     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1243     pNew->flags |= staticFlag;
1244 
1245     /* Copy the p->u.zToken string, if any. */
1246     if( nToken ){
1247       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1248       memcpy(zToken, p->u.zToken, nToken);
1249     }
1250 
1251     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1252       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1253       if( ExprHasProperty(p, EP_xIsSelect) ){
1254         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1255       }else{
1256         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1257       }
1258     }
1259 
1260     /* Fill in pNew->pLeft and pNew->pRight. */
1261     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1262       zAlloc += dupedExprNodeSize(p, dupFlags);
1263       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1264         pNew->pLeft = p->pLeft ?
1265                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1266         pNew->pRight = p->pRight ?
1267                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1268       }
1269       if( pzBuffer ){
1270         *pzBuffer = zAlloc;
1271       }
1272     }else{
1273 #ifndef SQLITE_OMIT_WINDOWFUNC
1274       if( ExprHasProperty(p, EP_Reduced|EP_TokenOnly) ){
1275         pNew->pWin = 0;
1276       }else{
1277         pNew->pWin = sqlite3WindowDup(db, pNew, p->pWin);
1278       }
1279 #endif /* SQLITE_OMIT_WINDOWFUNC */
1280       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1281         if( pNew->op==TK_SELECT_COLUMN ){
1282           pNew->pLeft = p->pLeft;
1283           assert( p->iColumn==0 || p->pRight==0 );
1284           assert( p->pRight==0  || p->pRight==p->pLeft );
1285         }else{
1286           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1287         }
1288         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1289       }
1290     }
1291   }
1292   return pNew;
1293 }
1294 
1295 /*
1296 ** Create and return a deep copy of the object passed as the second
1297 ** argument. If an OOM condition is encountered, NULL is returned
1298 ** and the db->mallocFailed flag set.
1299 */
1300 #ifndef SQLITE_OMIT_CTE
1301 static With *withDup(sqlite3 *db, With *p){
1302   With *pRet = 0;
1303   if( p ){
1304     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1305     pRet = sqlite3DbMallocZero(db, nByte);
1306     if( pRet ){
1307       int i;
1308       pRet->nCte = p->nCte;
1309       for(i=0; i<p->nCte; i++){
1310         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1311         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1312         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1313       }
1314     }
1315   }
1316   return pRet;
1317 }
1318 #else
1319 # define withDup(x,y) 0
1320 #endif
1321 
1322 /*
1323 ** The following group of routines make deep copies of expressions,
1324 ** expression lists, ID lists, and select statements.  The copies can
1325 ** be deleted (by being passed to their respective ...Delete() routines)
1326 ** without effecting the originals.
1327 **
1328 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1329 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1330 ** by subsequent calls to sqlite*ListAppend() routines.
1331 **
1332 ** Any tables that the SrcList might point to are not duplicated.
1333 **
1334 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1335 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1336 ** truncated version of the usual Expr structure that will be stored as
1337 ** part of the in-memory representation of the database schema.
1338 */
1339 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1340   assert( flags==0 || flags==EXPRDUP_REDUCE );
1341   return p ? exprDup(db, p, flags, 0) : 0;
1342 }
1343 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1344   ExprList *pNew;
1345   struct ExprList_item *pItem, *pOldItem;
1346   int i;
1347   Expr *pPriorSelectCol = 0;
1348   assert( db!=0 );
1349   if( p==0 ) return 0;
1350   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1351   if( pNew==0 ) return 0;
1352   pNew->nExpr = p->nExpr;
1353   pItem = pNew->a;
1354   pOldItem = p->a;
1355   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1356     Expr *pOldExpr = pOldItem->pExpr;
1357     Expr *pNewExpr;
1358     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1359     if( pOldExpr
1360      && pOldExpr->op==TK_SELECT_COLUMN
1361      && (pNewExpr = pItem->pExpr)!=0
1362     ){
1363       assert( pNewExpr->iColumn==0 || i>0 );
1364       if( pNewExpr->iColumn==0 ){
1365         assert( pOldExpr->pLeft==pOldExpr->pRight );
1366         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1367       }else{
1368         assert( i>0 );
1369         assert( pItem[-1].pExpr!=0 );
1370         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1371         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1372         pNewExpr->pLeft = pPriorSelectCol;
1373       }
1374     }
1375     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1376     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1377     pItem->sortOrder = pOldItem->sortOrder;
1378     pItem->done = 0;
1379     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1380     pItem->bSorterRef = pOldItem->bSorterRef;
1381     pItem->u = pOldItem->u;
1382   }
1383   return pNew;
1384 }
1385 
1386 /*
1387 ** If cursors, triggers, views and subqueries are all omitted from
1388 ** the build, then none of the following routines, except for
1389 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1390 ** called with a NULL argument.
1391 */
1392 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1393  || !defined(SQLITE_OMIT_SUBQUERY)
1394 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1395   SrcList *pNew;
1396   int i;
1397   int nByte;
1398   assert( db!=0 );
1399   if( p==0 ) return 0;
1400   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1401   pNew = sqlite3DbMallocRawNN(db, nByte );
1402   if( pNew==0 ) return 0;
1403   pNew->nSrc = pNew->nAlloc = p->nSrc;
1404   for(i=0; i<p->nSrc; i++){
1405     struct SrcList_item *pNewItem = &pNew->a[i];
1406     struct SrcList_item *pOldItem = &p->a[i];
1407     Table *pTab;
1408     pNewItem->pSchema = pOldItem->pSchema;
1409     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1410     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1411     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1412     pNewItem->fg = pOldItem->fg;
1413     pNewItem->iCursor = pOldItem->iCursor;
1414     pNewItem->addrFillSub = pOldItem->addrFillSub;
1415     pNewItem->regReturn = pOldItem->regReturn;
1416     if( pNewItem->fg.isIndexedBy ){
1417       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1418     }
1419     pNewItem->pIBIndex = pOldItem->pIBIndex;
1420     if( pNewItem->fg.isTabFunc ){
1421       pNewItem->u1.pFuncArg =
1422           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1423     }
1424     pTab = pNewItem->pTab = pOldItem->pTab;
1425     if( pTab ){
1426       pTab->nTabRef++;
1427     }
1428     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1429     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1430     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1431     pNewItem->colUsed = pOldItem->colUsed;
1432   }
1433   return pNew;
1434 }
1435 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1436   IdList *pNew;
1437   int i;
1438   assert( db!=0 );
1439   if( p==0 ) return 0;
1440   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1441   if( pNew==0 ) return 0;
1442   pNew->nId = p->nId;
1443   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1444   if( pNew->a==0 ){
1445     sqlite3DbFreeNN(db, pNew);
1446     return 0;
1447   }
1448   /* Note that because the size of the allocation for p->a[] is not
1449   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1450   ** on the duplicate created by this function. */
1451   for(i=0; i<p->nId; i++){
1452     struct IdList_item *pNewItem = &pNew->a[i];
1453     struct IdList_item *pOldItem = &p->a[i];
1454     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1455     pNewItem->idx = pOldItem->idx;
1456   }
1457   return pNew;
1458 }
1459 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1460   Select *pRet = 0;
1461   Select *pNext = 0;
1462   Select **pp = &pRet;
1463   Select *p;
1464 
1465   assert( db!=0 );
1466   for(p=pDup; p; p=p->pPrior){
1467     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1468     if( pNew==0 ) break;
1469     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1470     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1471     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1472     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1473     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1474     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1475     pNew->op = p->op;
1476     pNew->pNext = pNext;
1477     pNew->pPrior = 0;
1478     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1479     pNew->iLimit = 0;
1480     pNew->iOffset = 0;
1481     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1482     pNew->addrOpenEphm[0] = -1;
1483     pNew->addrOpenEphm[1] = -1;
1484     pNew->nSelectRow = p->nSelectRow;
1485     pNew->pWith = withDup(db, p->pWith);
1486 #ifndef SQLITE_OMIT_WINDOWFUNC
1487     pNew->pWin = 0;
1488     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1489 #endif
1490     pNew->selId = p->selId;
1491     *pp = pNew;
1492     pp = &pNew->pPrior;
1493     pNext = pNew;
1494   }
1495 
1496   return pRet;
1497 }
1498 #else
1499 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1500   assert( p==0 );
1501   return 0;
1502 }
1503 #endif
1504 
1505 
1506 /*
1507 ** Add a new element to the end of an expression list.  If pList is
1508 ** initially NULL, then create a new expression list.
1509 **
1510 ** The pList argument must be either NULL or a pointer to an ExprList
1511 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1512 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1513 ** Reason:  This routine assumes that the number of slots in pList->a[]
1514 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1515 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1516 **
1517 ** If a memory allocation error occurs, the entire list is freed and
1518 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1519 ** that the new entry was successfully appended.
1520 */
1521 ExprList *sqlite3ExprListAppend(
1522   Parse *pParse,          /* Parsing context */
1523   ExprList *pList,        /* List to which to append. Might be NULL */
1524   Expr *pExpr             /* Expression to be appended. Might be NULL */
1525 ){
1526   struct ExprList_item *pItem;
1527   sqlite3 *db = pParse->db;
1528   assert( db!=0 );
1529   if( pList==0 ){
1530     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1531     if( pList==0 ){
1532       goto no_mem;
1533     }
1534     pList->nExpr = 0;
1535   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1536     ExprList *pNew;
1537     pNew = sqlite3DbRealloc(db, pList,
1538              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1539     if( pNew==0 ){
1540       goto no_mem;
1541     }
1542     pList = pNew;
1543   }
1544   pItem = &pList->a[pList->nExpr++];
1545   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1546   assert( offsetof(struct ExprList_item,pExpr)==0 );
1547   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1548   pItem->pExpr = pExpr;
1549   return pList;
1550 
1551 no_mem:
1552   /* Avoid leaking memory if malloc has failed. */
1553   sqlite3ExprDelete(db, pExpr);
1554   sqlite3ExprListDelete(db, pList);
1555   return 0;
1556 }
1557 
1558 /*
1559 ** pColumns and pExpr form a vector assignment which is part of the SET
1560 ** clause of an UPDATE statement.  Like this:
1561 **
1562 **        (a,b,c) = (expr1,expr2,expr3)
1563 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1564 **
1565 ** For each term of the vector assignment, append new entries to the
1566 ** expression list pList.  In the case of a subquery on the RHS, append
1567 ** TK_SELECT_COLUMN expressions.
1568 */
1569 ExprList *sqlite3ExprListAppendVector(
1570   Parse *pParse,         /* Parsing context */
1571   ExprList *pList,       /* List to which to append. Might be NULL */
1572   IdList *pColumns,      /* List of names of LHS of the assignment */
1573   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1574 ){
1575   sqlite3 *db = pParse->db;
1576   int n;
1577   int i;
1578   int iFirst = pList ? pList->nExpr : 0;
1579   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1580   ** exit prior to this routine being invoked */
1581   if( NEVER(pColumns==0) ) goto vector_append_error;
1582   if( pExpr==0 ) goto vector_append_error;
1583 
1584   /* If the RHS is a vector, then we can immediately check to see that
1585   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1586   ** wildcards ("*") in the result set of the SELECT must be expanded before
1587   ** we can do the size check, so defer the size check until code generation.
1588   */
1589   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1590     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1591                     pColumns->nId, n);
1592     goto vector_append_error;
1593   }
1594 
1595   for(i=0; i<pColumns->nId; i++){
1596     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1597     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1598     if( pList ){
1599       assert( pList->nExpr==iFirst+i+1 );
1600       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1601       pColumns->a[i].zName = 0;
1602     }
1603   }
1604 
1605   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1606     Expr *pFirst = pList->a[iFirst].pExpr;
1607     assert( pFirst!=0 );
1608     assert( pFirst->op==TK_SELECT_COLUMN );
1609 
1610     /* Store the SELECT statement in pRight so it will be deleted when
1611     ** sqlite3ExprListDelete() is called */
1612     pFirst->pRight = pExpr;
1613     pExpr = 0;
1614 
1615     /* Remember the size of the LHS in iTable so that we can check that
1616     ** the RHS and LHS sizes match during code generation. */
1617     pFirst->iTable = pColumns->nId;
1618   }
1619 
1620 vector_append_error:
1621   sqlite3ExprDelete(db, pExpr);
1622   sqlite3IdListDelete(db, pColumns);
1623   return pList;
1624 }
1625 
1626 /*
1627 ** Set the sort order for the last element on the given ExprList.
1628 */
1629 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1630   if( p==0 ) return;
1631   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1632   assert( p->nExpr>0 );
1633   if( iSortOrder<0 ){
1634     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1635     return;
1636   }
1637   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1638 }
1639 
1640 /*
1641 ** Set the ExprList.a[].zName element of the most recently added item
1642 ** on the expression list.
1643 **
1644 ** pList might be NULL following an OOM error.  But pName should never be
1645 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1646 ** is set.
1647 */
1648 void sqlite3ExprListSetName(
1649   Parse *pParse,          /* Parsing context */
1650   ExprList *pList,        /* List to which to add the span. */
1651   Token *pName,           /* Name to be added */
1652   int dequote             /* True to cause the name to be dequoted */
1653 ){
1654   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1655   if( pList ){
1656     struct ExprList_item *pItem;
1657     assert( pList->nExpr>0 );
1658     pItem = &pList->a[pList->nExpr-1];
1659     assert( pItem->zName==0 );
1660     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1661     if( dequote ) sqlite3Dequote(pItem->zName);
1662   }
1663 }
1664 
1665 /*
1666 ** Set the ExprList.a[].zSpan element of the most recently added item
1667 ** on the expression list.
1668 **
1669 ** pList might be NULL following an OOM error.  But pSpan should never be
1670 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1671 ** is set.
1672 */
1673 void sqlite3ExprListSetSpan(
1674   Parse *pParse,          /* Parsing context */
1675   ExprList *pList,        /* List to which to add the span. */
1676   const char *zStart,     /* Start of the span */
1677   const char *zEnd        /* End of the span */
1678 ){
1679   sqlite3 *db = pParse->db;
1680   assert( pList!=0 || db->mallocFailed!=0 );
1681   if( pList ){
1682     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1683     assert( pList->nExpr>0 );
1684     sqlite3DbFree(db, pItem->zSpan);
1685     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1686   }
1687 }
1688 
1689 /*
1690 ** If the expression list pEList contains more than iLimit elements,
1691 ** leave an error message in pParse.
1692 */
1693 void sqlite3ExprListCheckLength(
1694   Parse *pParse,
1695   ExprList *pEList,
1696   const char *zObject
1697 ){
1698   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1699   testcase( pEList && pEList->nExpr==mx );
1700   testcase( pEList && pEList->nExpr==mx+1 );
1701   if( pEList && pEList->nExpr>mx ){
1702     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1703   }
1704 }
1705 
1706 /*
1707 ** Delete an entire expression list.
1708 */
1709 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1710   int i = pList->nExpr;
1711   struct ExprList_item *pItem =  pList->a;
1712   assert( pList->nExpr>0 );
1713   do{
1714     sqlite3ExprDelete(db, pItem->pExpr);
1715     sqlite3DbFree(db, pItem->zName);
1716     sqlite3DbFree(db, pItem->zSpan);
1717     pItem++;
1718   }while( --i>0 );
1719   sqlite3DbFreeNN(db, pList);
1720 }
1721 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1722   if( pList ) exprListDeleteNN(db, pList);
1723 }
1724 
1725 /*
1726 ** Return the bitwise-OR of all Expr.flags fields in the given
1727 ** ExprList.
1728 */
1729 u32 sqlite3ExprListFlags(const ExprList *pList){
1730   int i;
1731   u32 m = 0;
1732   assert( pList!=0 );
1733   for(i=0; i<pList->nExpr; i++){
1734      Expr *pExpr = pList->a[i].pExpr;
1735      assert( pExpr!=0 );
1736      m |= pExpr->flags;
1737   }
1738   return m;
1739 }
1740 
1741 /*
1742 ** This is a SELECT-node callback for the expression walker that
1743 ** always "fails".  By "fail" in this case, we mean set
1744 ** pWalker->eCode to zero and abort.
1745 **
1746 ** This callback is used by multiple expression walkers.
1747 */
1748 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1749   UNUSED_PARAMETER(NotUsed);
1750   pWalker->eCode = 0;
1751   return WRC_Abort;
1752 }
1753 
1754 /*
1755 ** If the input expression is an ID with the name "true" or "false"
1756 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1757 ** the conversion happened, and zero if the expression is unaltered.
1758 */
1759 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1760   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1761   if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1762    || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1763   ){
1764     pExpr->op = TK_TRUEFALSE;
1765     return 1;
1766   }
1767   return 0;
1768 }
1769 
1770 /*
1771 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1772 ** and 0 if it is FALSE.
1773 */
1774 int sqlite3ExprTruthValue(const Expr *pExpr){
1775   assert( pExpr->op==TK_TRUEFALSE );
1776   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1777        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1778   return pExpr->u.zToken[4]==0;
1779 }
1780 
1781 
1782 /*
1783 ** These routines are Walker callbacks used to check expressions to
1784 ** see if they are "constant" for some definition of constant.  The
1785 ** Walker.eCode value determines the type of "constant" we are looking
1786 ** for.
1787 **
1788 ** These callback routines are used to implement the following:
1789 **
1790 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1791 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1792 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1793 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1794 **
1795 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1796 ** is found to not be a constant.
1797 **
1798 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1799 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1800 ** an existing schema and 4 when processing a new statement.  A bound
1801 ** parameter raises an error for new statements, but is silently converted
1802 ** to NULL for existing schemas.  This allows sqlite_master tables that
1803 ** contain a bound parameter because they were generated by older versions
1804 ** of SQLite to be parsed by newer versions of SQLite without raising a
1805 ** malformed schema error.
1806 */
1807 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1808 
1809   /* If pWalker->eCode is 2 then any term of the expression that comes from
1810   ** the ON or USING clauses of a left join disqualifies the expression
1811   ** from being considered constant. */
1812   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1813     pWalker->eCode = 0;
1814     return WRC_Abort;
1815   }
1816 
1817   switch( pExpr->op ){
1818     /* Consider functions to be constant if all their arguments are constant
1819     ** and either pWalker->eCode==4 or 5 or the function has the
1820     ** SQLITE_FUNC_CONST flag. */
1821     case TK_FUNCTION:
1822       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1823         return WRC_Continue;
1824       }else{
1825         pWalker->eCode = 0;
1826         return WRC_Abort;
1827       }
1828     case TK_ID:
1829       /* Convert "true" or "false" in a DEFAULT clause into the
1830       ** appropriate TK_TRUEFALSE operator */
1831       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1832         return WRC_Prune;
1833       }
1834       /* Fall thru */
1835     case TK_COLUMN:
1836     case TK_AGG_FUNCTION:
1837     case TK_AGG_COLUMN:
1838       testcase( pExpr->op==TK_ID );
1839       testcase( pExpr->op==TK_COLUMN );
1840       testcase( pExpr->op==TK_AGG_FUNCTION );
1841       testcase( pExpr->op==TK_AGG_COLUMN );
1842       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1843         return WRC_Continue;
1844       }
1845       /* Fall through */
1846     case TK_IF_NULL_ROW:
1847     case TK_REGISTER:
1848       testcase( pExpr->op==TK_REGISTER );
1849       testcase( pExpr->op==TK_IF_NULL_ROW );
1850       pWalker->eCode = 0;
1851       return WRC_Abort;
1852     case TK_VARIABLE:
1853       if( pWalker->eCode==5 ){
1854         /* Silently convert bound parameters that appear inside of CREATE
1855         ** statements into a NULL when parsing the CREATE statement text out
1856         ** of the sqlite_master table */
1857         pExpr->op = TK_NULL;
1858       }else if( pWalker->eCode==4 ){
1859         /* A bound parameter in a CREATE statement that originates from
1860         ** sqlite3_prepare() causes an error */
1861         pWalker->eCode = 0;
1862         return WRC_Abort;
1863       }
1864       /* Fall through */
1865     default:
1866       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1867       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1868       return WRC_Continue;
1869   }
1870 }
1871 static int exprIsConst(Expr *p, int initFlag, int iCur){
1872   Walker w;
1873   w.eCode = initFlag;
1874   w.xExprCallback = exprNodeIsConstant;
1875   w.xSelectCallback = sqlite3SelectWalkFail;
1876 #ifdef SQLITE_DEBUG
1877   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1878 #endif
1879   w.u.iCur = iCur;
1880   sqlite3WalkExpr(&w, p);
1881   return w.eCode;
1882 }
1883 
1884 /*
1885 ** Walk an expression tree.  Return non-zero if the expression is constant
1886 ** and 0 if it involves variables or function calls.
1887 **
1888 ** For the purposes of this function, a double-quoted string (ex: "abc")
1889 ** is considered a variable but a single-quoted string (ex: 'abc') is
1890 ** a constant.
1891 */
1892 int sqlite3ExprIsConstant(Expr *p){
1893   return exprIsConst(p, 1, 0);
1894 }
1895 
1896 /*
1897 ** Walk an expression tree.  Return non-zero if the expression is constant
1898 ** that does no originate from the ON or USING clauses of a join.
1899 ** Return 0 if it involves variables or function calls or terms from
1900 ** an ON or USING clause.
1901 */
1902 int sqlite3ExprIsConstantNotJoin(Expr *p){
1903   return exprIsConst(p, 2, 0);
1904 }
1905 
1906 /*
1907 ** Walk an expression tree.  Return non-zero if the expression is constant
1908 ** for any single row of the table with cursor iCur.  In other words, the
1909 ** expression must not refer to any non-deterministic function nor any
1910 ** table other than iCur.
1911 */
1912 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1913   return exprIsConst(p, 3, iCur);
1914 }
1915 
1916 
1917 /*
1918 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1919 */
1920 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1921   ExprList *pGroupBy = pWalker->u.pGroupBy;
1922   int i;
1923 
1924   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1925   ** it constant.  */
1926   for(i=0; i<pGroupBy->nExpr; i++){
1927     Expr *p = pGroupBy->a[i].pExpr;
1928     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1929       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1930       if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1931         return WRC_Prune;
1932       }
1933     }
1934   }
1935 
1936   /* Check if pExpr is a sub-select. If so, consider it variable. */
1937   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1938     pWalker->eCode = 0;
1939     return WRC_Abort;
1940   }
1941 
1942   return exprNodeIsConstant(pWalker, pExpr);
1943 }
1944 
1945 /*
1946 ** Walk the expression tree passed as the first argument. Return non-zero
1947 ** if the expression consists entirely of constants or copies of terms
1948 ** in pGroupBy that sort with the BINARY collation sequence.
1949 **
1950 ** This routine is used to determine if a term of the HAVING clause can
1951 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1952 ** the value of the HAVING clause term must be the same for all members of
1953 ** a "group".  The requirement that the GROUP BY term must be BINARY
1954 ** assumes that no other collating sequence will have a finer-grained
1955 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1956 ** A=B in every other collating sequence.  The requirement that the
1957 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1958 ** to promote HAVING clauses that use the same alternative collating
1959 ** sequence as the GROUP BY term, but that is much harder to check,
1960 ** alternative collating sequences are uncommon, and this is only an
1961 ** optimization, so we take the easy way out and simply require the
1962 ** GROUP BY to use the BINARY collating sequence.
1963 */
1964 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1965   Walker w;
1966   w.eCode = 1;
1967   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1968   w.xSelectCallback = 0;
1969   w.u.pGroupBy = pGroupBy;
1970   w.pParse = pParse;
1971   sqlite3WalkExpr(&w, p);
1972   return w.eCode;
1973 }
1974 
1975 /*
1976 ** Walk an expression tree.  Return non-zero if the expression is constant
1977 ** or a function call with constant arguments.  Return and 0 if there
1978 ** are any variables.
1979 **
1980 ** For the purposes of this function, a double-quoted string (ex: "abc")
1981 ** is considered a variable but a single-quoted string (ex: 'abc') is
1982 ** a constant.
1983 */
1984 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1985   assert( isInit==0 || isInit==1 );
1986   return exprIsConst(p, 4+isInit, 0);
1987 }
1988 
1989 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1990 /*
1991 ** Walk an expression tree.  Return 1 if the expression contains a
1992 ** subquery of some kind.  Return 0 if there are no subqueries.
1993 */
1994 int sqlite3ExprContainsSubquery(Expr *p){
1995   Walker w;
1996   w.eCode = 1;
1997   w.xExprCallback = sqlite3ExprWalkNoop;
1998   w.xSelectCallback = sqlite3SelectWalkFail;
1999 #ifdef SQLITE_DEBUG
2000   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2001 #endif
2002   sqlite3WalkExpr(&w, p);
2003   return w.eCode==0;
2004 }
2005 #endif
2006 
2007 /*
2008 ** If the expression p codes a constant integer that is small enough
2009 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2010 ** in *pValue.  If the expression is not an integer or if it is too big
2011 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2012 */
2013 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2014   int rc = 0;
2015   if( p==0 ) return 0;  /* Can only happen following on OOM */
2016 
2017   /* If an expression is an integer literal that fits in a signed 32-bit
2018   ** integer, then the EP_IntValue flag will have already been set */
2019   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2020            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2021 
2022   if( p->flags & EP_IntValue ){
2023     *pValue = p->u.iValue;
2024     return 1;
2025   }
2026   switch( p->op ){
2027     case TK_UPLUS: {
2028       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2029       break;
2030     }
2031     case TK_UMINUS: {
2032       int v;
2033       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2034         assert( v!=(-2147483647-1) );
2035         *pValue = -v;
2036         rc = 1;
2037       }
2038       break;
2039     }
2040     default: break;
2041   }
2042   return rc;
2043 }
2044 
2045 /*
2046 ** Return FALSE if there is no chance that the expression can be NULL.
2047 **
2048 ** If the expression might be NULL or if the expression is too complex
2049 ** to tell return TRUE.
2050 **
2051 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2052 ** when we know that a value cannot be NULL.  Hence, a false positive
2053 ** (returning TRUE when in fact the expression can never be NULL) might
2054 ** be a small performance hit but is otherwise harmless.  On the other
2055 ** hand, a false negative (returning FALSE when the result could be NULL)
2056 ** will likely result in an incorrect answer.  So when in doubt, return
2057 ** TRUE.
2058 */
2059 int sqlite3ExprCanBeNull(const Expr *p){
2060   u8 op;
2061   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2062   op = p->op;
2063   if( op==TK_REGISTER ) op = p->op2;
2064   switch( op ){
2065     case TK_INTEGER:
2066     case TK_STRING:
2067     case TK_FLOAT:
2068     case TK_BLOB:
2069       return 0;
2070     case TK_COLUMN:
2071       return ExprHasProperty(p, EP_CanBeNull) ||
2072              p->pTab==0 ||  /* Reference to column of index on expression */
2073              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2074     default:
2075       return 1;
2076   }
2077 }
2078 
2079 /*
2080 ** Return TRUE if the given expression is a constant which would be
2081 ** unchanged by OP_Affinity with the affinity given in the second
2082 ** argument.
2083 **
2084 ** This routine is used to determine if the OP_Affinity operation
2085 ** can be omitted.  When in doubt return FALSE.  A false negative
2086 ** is harmless.  A false positive, however, can result in the wrong
2087 ** answer.
2088 */
2089 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2090   u8 op;
2091   if( aff==SQLITE_AFF_BLOB ) return 1;
2092   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2093   op = p->op;
2094   if( op==TK_REGISTER ) op = p->op2;
2095   switch( op ){
2096     case TK_INTEGER: {
2097       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2098     }
2099     case TK_FLOAT: {
2100       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2101     }
2102     case TK_STRING: {
2103       return aff==SQLITE_AFF_TEXT;
2104     }
2105     case TK_BLOB: {
2106       return 1;
2107     }
2108     case TK_COLUMN: {
2109       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2110       return p->iColumn<0
2111           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2112     }
2113     default: {
2114       return 0;
2115     }
2116   }
2117 }
2118 
2119 /*
2120 ** Return TRUE if the given string is a row-id column name.
2121 */
2122 int sqlite3IsRowid(const char *z){
2123   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2124   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2125   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2126   return 0;
2127 }
2128 
2129 /*
2130 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2131 ** that can be simplified to a direct table access, then return
2132 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2133 ** or if the SELECT statement needs to be manifested into a transient
2134 ** table, then return NULL.
2135 */
2136 #ifndef SQLITE_OMIT_SUBQUERY
2137 static Select *isCandidateForInOpt(Expr *pX){
2138   Select *p;
2139   SrcList *pSrc;
2140   ExprList *pEList;
2141   Table *pTab;
2142   int i;
2143   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2144   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2145   p = pX->x.pSelect;
2146   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2147   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2148     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2149     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2150     return 0; /* No DISTINCT keyword and no aggregate functions */
2151   }
2152   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2153   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2154   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2155   pSrc = p->pSrc;
2156   assert( pSrc!=0 );
2157   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2158   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2159   pTab = pSrc->a[0].pTab;
2160   assert( pTab!=0 );
2161   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2162   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2163   pEList = p->pEList;
2164   assert( pEList!=0 );
2165   /* All SELECT results must be columns. */
2166   for(i=0; i<pEList->nExpr; i++){
2167     Expr *pRes = pEList->a[i].pExpr;
2168     if( pRes->op!=TK_COLUMN ) return 0;
2169     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2170   }
2171   return p;
2172 }
2173 #endif /* SQLITE_OMIT_SUBQUERY */
2174 
2175 #ifndef SQLITE_OMIT_SUBQUERY
2176 /*
2177 ** Generate code that checks the left-most column of index table iCur to see if
2178 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2179 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2180 ** to be set to NULL if iCur contains one or more NULL values.
2181 */
2182 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2183   int addr1;
2184   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2185   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2186   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2187   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2188   VdbeComment((v, "first_entry_in(%d)", iCur));
2189   sqlite3VdbeJumpHere(v, addr1);
2190 }
2191 #endif
2192 
2193 
2194 #ifndef SQLITE_OMIT_SUBQUERY
2195 /*
2196 ** The argument is an IN operator with a list (not a subquery) on the
2197 ** right-hand side.  Return TRUE if that list is constant.
2198 */
2199 static int sqlite3InRhsIsConstant(Expr *pIn){
2200   Expr *pLHS;
2201   int res;
2202   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2203   pLHS = pIn->pLeft;
2204   pIn->pLeft = 0;
2205   res = sqlite3ExprIsConstant(pIn);
2206   pIn->pLeft = pLHS;
2207   return res;
2208 }
2209 #endif
2210 
2211 /*
2212 ** This function is used by the implementation of the IN (...) operator.
2213 ** The pX parameter is the expression on the RHS of the IN operator, which
2214 ** might be either a list of expressions or a subquery.
2215 **
2216 ** The job of this routine is to find or create a b-tree object that can
2217 ** be used either to test for membership in the RHS set or to iterate through
2218 ** all members of the RHS set, skipping duplicates.
2219 **
2220 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2221 ** and pX->iTable is set to the index of that cursor.
2222 **
2223 ** The returned value of this function indicates the b-tree type, as follows:
2224 **
2225 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2226 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2227 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2228 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2229 **                         populated epheremal table.
2230 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2231 **                         implemented as a sequence of comparisons.
2232 **
2233 ** An existing b-tree might be used if the RHS expression pX is a simple
2234 ** subquery such as:
2235 **
2236 **     SELECT <column1>, <column2>... FROM <table>
2237 **
2238 ** If the RHS of the IN operator is a list or a more complex subquery, then
2239 ** an ephemeral table might need to be generated from the RHS and then
2240 ** pX->iTable made to point to the ephemeral table instead of an
2241 ** existing table.
2242 **
2243 ** The inFlags parameter must contain, at a minimum, one of the bits
2244 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2245 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2246 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2247 ** be used to loop over all values of the RHS of the IN operator.
2248 **
2249 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2250 ** through the set members) then the b-tree must not contain duplicates.
2251 ** An epheremal table will be created unless the selected columns are guaranteed
2252 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2253 ** a UNIQUE constraint or index.
2254 **
2255 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2256 ** for fast set membership tests) then an epheremal table must
2257 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2258 ** index can be found with the specified <columns> as its left-most.
2259 **
2260 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2261 ** if the RHS of the IN operator is a list (not a subquery) then this
2262 ** routine might decide that creating an ephemeral b-tree for membership
2263 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2264 ** calling routine should implement the IN operator using a sequence
2265 ** of Eq or Ne comparison operations.
2266 **
2267 ** When the b-tree is being used for membership tests, the calling function
2268 ** might need to know whether or not the RHS side of the IN operator
2269 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2270 ** if there is any chance that the (...) might contain a NULL value at
2271 ** runtime, then a register is allocated and the register number written
2272 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2273 ** NULL value, then *prRhsHasNull is left unchanged.
2274 **
2275 ** If a register is allocated and its location stored in *prRhsHasNull, then
2276 ** the value in that register will be NULL if the b-tree contains one or more
2277 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2278 ** NULL values.
2279 **
2280 ** If the aiMap parameter is not NULL, it must point to an array containing
2281 ** one element for each column returned by the SELECT statement on the RHS
2282 ** of the IN(...) operator. The i'th entry of the array is populated with the
2283 ** offset of the index column that matches the i'th column returned by the
2284 ** SELECT. For example, if the expression and selected index are:
2285 **
2286 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2287 **   CREATE INDEX i1 ON t1(b, c, a);
2288 **
2289 ** then aiMap[] is populated with {2, 0, 1}.
2290 */
2291 #ifndef SQLITE_OMIT_SUBQUERY
2292 int sqlite3FindInIndex(
2293   Parse *pParse,             /* Parsing context */
2294   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2295   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2296   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2297   int *aiMap                 /* Mapping from Index fields to RHS fields */
2298 ){
2299   Select *p;                            /* SELECT to the right of IN operator */
2300   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2301   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2302   int mustBeUnique;                     /* True if RHS must be unique */
2303   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2304 
2305   assert( pX->op==TK_IN );
2306   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2307 
2308   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2309   ** whether or not the SELECT result contains NULL values, check whether
2310   ** or not NULL is actually possible (it may not be, for example, due
2311   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2312   ** set prRhsHasNull to 0 before continuing.  */
2313   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2314     int i;
2315     ExprList *pEList = pX->x.pSelect->pEList;
2316     for(i=0; i<pEList->nExpr; i++){
2317       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2318     }
2319     if( i==pEList->nExpr ){
2320       prRhsHasNull = 0;
2321     }
2322   }
2323 
2324   /* Check to see if an existing table or index can be used to
2325   ** satisfy the query.  This is preferable to generating a new
2326   ** ephemeral table.  */
2327   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2328     sqlite3 *db = pParse->db;              /* Database connection */
2329     Table *pTab;                           /* Table <table>. */
2330     i16 iDb;                               /* Database idx for pTab */
2331     ExprList *pEList = p->pEList;
2332     int nExpr = pEList->nExpr;
2333 
2334     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2335     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2336     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2337     pTab = p->pSrc->a[0].pTab;
2338 
2339     /* Code an OP_Transaction and OP_TableLock for <table>. */
2340     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2341     sqlite3CodeVerifySchema(pParse, iDb);
2342     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2343 
2344     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2345     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2346       /* The "x IN (SELECT rowid FROM table)" case */
2347       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2348       VdbeCoverage(v);
2349 
2350       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2351       eType = IN_INDEX_ROWID;
2352 
2353       sqlite3VdbeJumpHere(v, iAddr);
2354     }else{
2355       Index *pIdx;                         /* Iterator variable */
2356       int affinity_ok = 1;
2357       int i;
2358 
2359       /* Check that the affinity that will be used to perform each
2360       ** comparison is the same as the affinity of each column in table
2361       ** on the RHS of the IN operator.  If it not, it is not possible to
2362       ** use any index of the RHS table.  */
2363       for(i=0; i<nExpr && affinity_ok; i++){
2364         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2365         int iCol = pEList->a[i].pExpr->iColumn;
2366         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2367         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2368         testcase( cmpaff==SQLITE_AFF_BLOB );
2369         testcase( cmpaff==SQLITE_AFF_TEXT );
2370         switch( cmpaff ){
2371           case SQLITE_AFF_BLOB:
2372             break;
2373           case SQLITE_AFF_TEXT:
2374             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2375             ** other has no affinity and the other side is TEXT.  Hence,
2376             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2377             ** and for the term on the LHS of the IN to have no affinity. */
2378             assert( idxaff==SQLITE_AFF_TEXT );
2379             break;
2380           default:
2381             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2382         }
2383       }
2384 
2385       if( affinity_ok ){
2386         /* Search for an existing index that will work for this IN operator */
2387         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2388           Bitmask colUsed;      /* Columns of the index used */
2389           Bitmask mCol;         /* Mask for the current column */
2390           if( pIdx->nColumn<nExpr ) continue;
2391           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2392           ** BITMASK(nExpr) without overflowing */
2393           testcase( pIdx->nColumn==BMS-2 );
2394           testcase( pIdx->nColumn==BMS-1 );
2395           if( pIdx->nColumn>=BMS-1 ) continue;
2396           if( mustBeUnique ){
2397             if( pIdx->nKeyCol>nExpr
2398              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2399             ){
2400               continue;  /* This index is not unique over the IN RHS columns */
2401             }
2402           }
2403 
2404           colUsed = 0;   /* Columns of index used so far */
2405           for(i=0; i<nExpr; i++){
2406             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2407             Expr *pRhs = pEList->a[i].pExpr;
2408             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2409             int j;
2410 
2411             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2412             for(j=0; j<nExpr; j++){
2413               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2414               assert( pIdx->azColl[j] );
2415               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2416                 continue;
2417               }
2418               break;
2419             }
2420             if( j==nExpr ) break;
2421             mCol = MASKBIT(j);
2422             if( mCol & colUsed ) break; /* Each column used only once */
2423             colUsed |= mCol;
2424             if( aiMap ) aiMap[i] = j;
2425           }
2426 
2427           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2428           if( colUsed==(MASKBIT(nExpr)-1) ){
2429             /* If we reach this point, that means the index pIdx is usable */
2430             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2431             ExplainQueryPlan((pParse, 0,
2432                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2433             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2434             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2435             VdbeComment((v, "%s", pIdx->zName));
2436             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2437             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2438 
2439             if( prRhsHasNull ){
2440 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2441               i64 mask = (1<<nExpr)-1;
2442               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2443                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2444 #endif
2445               *prRhsHasNull = ++pParse->nMem;
2446               if( nExpr==1 ){
2447                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2448               }
2449             }
2450             sqlite3VdbeJumpHere(v, iAddr);
2451           }
2452         } /* End loop over indexes */
2453       } /* End if( affinity_ok ) */
2454     } /* End if not an rowid index */
2455   } /* End attempt to optimize using an index */
2456 
2457   /* If no preexisting index is available for the IN clause
2458   ** and IN_INDEX_NOOP is an allowed reply
2459   ** and the RHS of the IN operator is a list, not a subquery
2460   ** and the RHS is not constant or has two or fewer terms,
2461   ** then it is not worth creating an ephemeral table to evaluate
2462   ** the IN operator so return IN_INDEX_NOOP.
2463   */
2464   if( eType==0
2465    && (inFlags & IN_INDEX_NOOP_OK)
2466    && !ExprHasProperty(pX, EP_xIsSelect)
2467    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2468   ){
2469     eType = IN_INDEX_NOOP;
2470   }
2471 
2472   if( eType==0 ){
2473     /* Could not find an existing table or index to use as the RHS b-tree.
2474     ** We will have to generate an ephemeral table to do the job.
2475     */
2476     u32 savedNQueryLoop = pParse->nQueryLoop;
2477     int rMayHaveNull = 0;
2478     eType = IN_INDEX_EPH;
2479     if( inFlags & IN_INDEX_LOOP ){
2480       pParse->nQueryLoop = 0;
2481       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2482         eType = IN_INDEX_ROWID;
2483       }
2484     }else if( prRhsHasNull ){
2485       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2486     }
2487     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2488     pParse->nQueryLoop = savedNQueryLoop;
2489   }else{
2490     pX->iTable = iTab;
2491   }
2492 
2493   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2494     int i, n;
2495     n = sqlite3ExprVectorSize(pX->pLeft);
2496     for(i=0; i<n; i++) aiMap[i] = i;
2497   }
2498   return eType;
2499 }
2500 #endif
2501 
2502 #ifndef SQLITE_OMIT_SUBQUERY
2503 /*
2504 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2505 ** function allocates and returns a nul-terminated string containing
2506 ** the affinities to be used for each column of the comparison.
2507 **
2508 ** It is the responsibility of the caller to ensure that the returned
2509 ** string is eventually freed using sqlite3DbFree().
2510 */
2511 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2512   Expr *pLeft = pExpr->pLeft;
2513   int nVal = sqlite3ExprVectorSize(pLeft);
2514   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2515   char *zRet;
2516 
2517   assert( pExpr->op==TK_IN );
2518   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2519   if( zRet ){
2520     int i;
2521     for(i=0; i<nVal; i++){
2522       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2523       char a = sqlite3ExprAffinity(pA);
2524       if( pSelect ){
2525         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2526       }else{
2527         zRet[i] = a;
2528       }
2529     }
2530     zRet[nVal] = '\0';
2531   }
2532   return zRet;
2533 }
2534 #endif
2535 
2536 #ifndef SQLITE_OMIT_SUBQUERY
2537 /*
2538 ** Load the Parse object passed as the first argument with an error
2539 ** message of the form:
2540 **
2541 **   "sub-select returns N columns - expected M"
2542 */
2543 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2544   const char *zFmt = "sub-select returns %d columns - expected %d";
2545   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2546 }
2547 #endif
2548 
2549 /*
2550 ** Expression pExpr is a vector that has been used in a context where
2551 ** it is not permitted. If pExpr is a sub-select vector, this routine
2552 ** loads the Parse object with a message of the form:
2553 **
2554 **   "sub-select returns N columns - expected 1"
2555 **
2556 ** Or, if it is a regular scalar vector:
2557 **
2558 **   "row value misused"
2559 */
2560 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2561 #ifndef SQLITE_OMIT_SUBQUERY
2562   if( pExpr->flags & EP_xIsSelect ){
2563     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2564   }else
2565 #endif
2566   {
2567     sqlite3ErrorMsg(pParse, "row value misused");
2568   }
2569 }
2570 
2571 /*
2572 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2573 ** or IN operators.  Examples:
2574 **
2575 **     (SELECT a FROM b)          -- subquery
2576 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2577 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2578 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2579 **
2580 ** The pExpr parameter describes the expression that contains the IN
2581 ** operator or subquery.
2582 **
2583 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2584 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2585 ** to some integer key column of a table B-Tree. In this case, use an
2586 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2587 ** (slower) variable length keys B-Tree.
2588 **
2589 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2590 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2591 ** All this routine does is initialize the register given by rMayHaveNull
2592 ** to NULL.  Calling routines will take care of changing this register
2593 ** value to non-NULL if the RHS is NULL-free.
2594 **
2595 ** For a SELECT or EXISTS operator, return the register that holds the
2596 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2597 ** array of registers and the return value is the register of the left-most
2598 ** result column.  Return 0 for IN operators or if an error occurs.
2599 */
2600 #ifndef SQLITE_OMIT_SUBQUERY
2601 int sqlite3CodeSubselect(
2602   Parse *pParse,          /* Parsing context */
2603   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2604   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2605   int isRowid             /* If true, LHS of IN operator is a rowid */
2606 ){
2607   int jmpIfDynamic = -1;                      /* One-time test address */
2608   int rReg = 0;                           /* Register storing resulting */
2609   Vdbe *v = sqlite3GetVdbe(pParse);
2610   if( NEVER(v==0) ) return 0;
2611   sqlite3ExprCachePush(pParse);
2612 
2613   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2614   ** is encountered if any of the following is true:
2615   **
2616   **    *  The right-hand side is a correlated subquery
2617   **    *  The right-hand side is an expression list containing variables
2618   **    *  We are inside a trigger
2619   **
2620   ** If all of the above are false, then we can run this code just once
2621   ** save the results, and reuse the same result on subsequent invocations.
2622   */
2623   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2624     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2625   }
2626 
2627   switch( pExpr->op ){
2628     case TK_IN: {
2629       int addr;                   /* Address of OP_OpenEphemeral instruction */
2630       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2631       KeyInfo *pKeyInfo = 0;      /* Key information */
2632       int nVal;                   /* Size of vector pLeft */
2633 
2634       nVal = sqlite3ExprVectorSize(pLeft);
2635       assert( !isRowid || nVal==1 );
2636 
2637       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2638       ** expression it is handled the same way.  An ephemeral table is
2639       ** filled with index keys representing the results from the
2640       ** SELECT or the <exprlist>.
2641       **
2642       ** If the 'x' expression is a column value, or the SELECT...
2643       ** statement returns a column value, then the affinity of that
2644       ** column is used to build the index keys. If both 'x' and the
2645       ** SELECT... statement are columns, then numeric affinity is used
2646       ** if either column has NUMERIC or INTEGER affinity. If neither
2647       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2648       ** is used.
2649       */
2650       pExpr->iTable = pParse->nTab++;
2651       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2652           pExpr->iTable, (isRowid?0:nVal));
2653       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2654 
2655       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2656         /* Case 1:     expr IN (SELECT ...)
2657         **
2658         ** Generate code to write the results of the select into the temporary
2659         ** table allocated and opened above.
2660         */
2661         Select *pSelect = pExpr->x.pSelect;
2662         ExprList *pEList = pSelect->pEList;
2663 
2664         ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",
2665             jmpIfDynamic>=0?"":"CORRELATED "
2666         ));
2667         assert( !isRowid );
2668         /* If the LHS and RHS of the IN operator do not match, that
2669         ** error will have been caught long before we reach this point. */
2670         if( ALWAYS(pEList->nExpr==nVal) ){
2671           SelectDest dest;
2672           int i;
2673           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2674           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2675           pSelect->iLimit = 0;
2676           testcase( pSelect->selFlags & SF_Distinct );
2677           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2678           if( sqlite3Select(pParse, pSelect, &dest) ){
2679             sqlite3DbFree(pParse->db, dest.zAffSdst);
2680             sqlite3KeyInfoUnref(pKeyInfo);
2681             return 0;
2682           }
2683           sqlite3DbFree(pParse->db, dest.zAffSdst);
2684           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2685           assert( pEList!=0 );
2686           assert( pEList->nExpr>0 );
2687           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2688           for(i=0; i<nVal; i++){
2689             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2690             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2691                 pParse, p, pEList->a[i].pExpr
2692             );
2693           }
2694         }
2695       }else if( ALWAYS(pExpr->x.pList!=0) ){
2696         /* Case 2:     expr IN (exprlist)
2697         **
2698         ** For each expression, build an index key from the evaluation and
2699         ** store it in the temporary table. If <expr> is a column, then use
2700         ** that columns affinity when building index keys. If <expr> is not
2701         ** a column, use numeric affinity.
2702         */
2703         char affinity;            /* Affinity of the LHS of the IN */
2704         int i;
2705         ExprList *pList = pExpr->x.pList;
2706         struct ExprList_item *pItem;
2707         int r1, r2, r3;
2708         affinity = sqlite3ExprAffinity(pLeft);
2709         if( !affinity ){
2710           affinity = SQLITE_AFF_BLOB;
2711         }
2712         if( pKeyInfo ){
2713           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2714           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2715         }
2716 
2717         /* Loop through each expression in <exprlist>. */
2718         r1 = sqlite3GetTempReg(pParse);
2719         r2 = sqlite3GetTempReg(pParse);
2720         if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2721         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2722           Expr *pE2 = pItem->pExpr;
2723           int iValToIns;
2724 
2725           /* If the expression is not constant then we will need to
2726           ** disable the test that was generated above that makes sure
2727           ** this code only executes once.  Because for a non-constant
2728           ** expression we need to rerun this code each time.
2729           */
2730           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2731             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2732             jmpIfDynamic = -1;
2733           }
2734 
2735           /* Evaluate the expression and insert it into the temp table */
2736           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2737             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2738           }else{
2739             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2740             if( isRowid ){
2741               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2742                                 sqlite3VdbeCurrentAddr(v)+2);
2743               VdbeCoverage(v);
2744               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2745             }else{
2746               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2747               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2748               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2749             }
2750           }
2751         }
2752         sqlite3ReleaseTempReg(pParse, r1);
2753         sqlite3ReleaseTempReg(pParse, r2);
2754       }
2755       if( pKeyInfo ){
2756         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2757       }
2758       break;
2759     }
2760 
2761     case TK_EXISTS:
2762     case TK_SELECT:
2763     default: {
2764       /* Case 3:    (SELECT ... FROM ...)
2765       **     or:    EXISTS(SELECT ... FROM ...)
2766       **
2767       ** For a SELECT, generate code to put the values for all columns of
2768       ** the first row into an array of registers and return the index of
2769       ** the first register.
2770       **
2771       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2772       ** into a register and return that register number.
2773       **
2774       ** In both cases, the query is augmented with "LIMIT 1".  Any
2775       ** preexisting limit is discarded in place of the new LIMIT 1.
2776       */
2777       Select *pSel;                         /* SELECT statement to encode */
2778       SelectDest dest;                      /* How to deal with SELECT result */
2779       int nReg;                             /* Registers to allocate */
2780       Expr *pLimit;                         /* New limit expression */
2781 
2782       testcase( pExpr->op==TK_EXISTS );
2783       testcase( pExpr->op==TK_SELECT );
2784       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2785       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2786 
2787       pSel = pExpr->x.pSelect;
2788       ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",
2789             jmpIfDynamic>=0?"":"CORRELATED "));
2790       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2791       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2792       pParse->nMem += nReg;
2793       if( pExpr->op==TK_SELECT ){
2794         dest.eDest = SRT_Mem;
2795         dest.iSdst = dest.iSDParm;
2796         dest.nSdst = nReg;
2797         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2798         VdbeComment((v, "Init subquery result"));
2799       }else{
2800         dest.eDest = SRT_Exists;
2801         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2802         VdbeComment((v, "Init EXISTS result"));
2803       }
2804       pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2805       if( pSel->pLimit ){
2806         sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2807         pSel->pLimit->pLeft = pLimit;
2808       }else{
2809         pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2810       }
2811       pSel->iLimit = 0;
2812       if( sqlite3Select(pParse, pSel, &dest) ){
2813         return 0;
2814       }
2815       rReg = dest.iSDParm;
2816       ExprSetVVAProperty(pExpr, EP_NoReduce);
2817       break;
2818     }
2819   }
2820 
2821   if( rHasNullFlag ){
2822     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2823   }
2824 
2825   if( jmpIfDynamic>=0 ){
2826     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2827   }
2828   sqlite3ExprCachePop(pParse);
2829 
2830   return rReg;
2831 }
2832 #endif /* SQLITE_OMIT_SUBQUERY */
2833 
2834 #ifndef SQLITE_OMIT_SUBQUERY
2835 /*
2836 ** Expr pIn is an IN(...) expression. This function checks that the
2837 ** sub-select on the RHS of the IN() operator has the same number of
2838 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2839 ** a sub-query, that the LHS is a vector of size 1.
2840 */
2841 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2842   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2843   if( (pIn->flags & EP_xIsSelect) ){
2844     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2845       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2846       return 1;
2847     }
2848   }else if( nVector!=1 ){
2849     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2850     return 1;
2851   }
2852   return 0;
2853 }
2854 #endif
2855 
2856 #ifndef SQLITE_OMIT_SUBQUERY
2857 /*
2858 ** Generate code for an IN expression.
2859 **
2860 **      x IN (SELECT ...)
2861 **      x IN (value, value, ...)
2862 **
2863 ** The left-hand side (LHS) is a scalar or vector expression.  The
2864 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2865 ** subquery.  If the RHS is a subquery, the number of result columns must
2866 ** match the number of columns in the vector on the LHS.  If the RHS is
2867 ** a list of values, the LHS must be a scalar.
2868 **
2869 ** The IN operator is true if the LHS value is contained within the RHS.
2870 ** The result is false if the LHS is definitely not in the RHS.  The
2871 ** result is NULL if the presence of the LHS in the RHS cannot be
2872 ** determined due to NULLs.
2873 **
2874 ** This routine generates code that jumps to destIfFalse if the LHS is not
2875 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2876 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2877 ** within the RHS then fall through.
2878 **
2879 ** See the separate in-operator.md documentation file in the canonical
2880 ** SQLite source tree for additional information.
2881 */
2882 static void sqlite3ExprCodeIN(
2883   Parse *pParse,        /* Parsing and code generating context */
2884   Expr *pExpr,          /* The IN expression */
2885   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2886   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2887 ){
2888   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2889   int eType;            /* Type of the RHS */
2890   int rLhs;             /* Register(s) holding the LHS values */
2891   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2892   Vdbe *v;              /* Statement under construction */
2893   int *aiMap = 0;       /* Map from vector field to index column */
2894   char *zAff = 0;       /* Affinity string for comparisons */
2895   int nVector;          /* Size of vectors for this IN operator */
2896   int iDummy;           /* Dummy parameter to exprCodeVector() */
2897   Expr *pLeft;          /* The LHS of the IN operator */
2898   int i;                /* loop counter */
2899   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2900   int destStep6 = 0;    /* Start of code for Step 6 */
2901   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2902   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2903   int addrTop;          /* Top of the step-6 loop */
2904 
2905   pLeft = pExpr->pLeft;
2906   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2907   zAff = exprINAffinity(pParse, pExpr);
2908   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2909   aiMap = (int*)sqlite3DbMallocZero(
2910       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2911   );
2912   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2913 
2914   /* Attempt to compute the RHS. After this step, if anything other than
2915   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2916   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2917   ** the RHS has not yet been coded.  */
2918   v = pParse->pVdbe;
2919   assert( v!=0 );       /* OOM detected prior to this routine */
2920   VdbeNoopComment((v, "begin IN expr"));
2921   eType = sqlite3FindInIndex(pParse, pExpr,
2922                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2923                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2924 
2925   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2926        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2927   );
2928 #ifdef SQLITE_DEBUG
2929   /* Confirm that aiMap[] contains nVector integer values between 0 and
2930   ** nVector-1. */
2931   for(i=0; i<nVector; i++){
2932     int j, cnt;
2933     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2934     assert( cnt==1 );
2935   }
2936 #endif
2937 
2938   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2939   ** vector, then it is stored in an array of nVector registers starting
2940   ** at r1.
2941   **
2942   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2943   ** so that the fields are in the same order as an existing index.   The
2944   ** aiMap[] array contains a mapping from the original LHS field order to
2945   ** the field order that matches the RHS index.
2946   */
2947   sqlite3ExprCachePush(pParse);
2948   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2949   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2950   if( i==nVector ){
2951     /* LHS fields are not reordered */
2952     rLhs = rLhsOrig;
2953   }else{
2954     /* Need to reorder the LHS fields according to aiMap */
2955     rLhs = sqlite3GetTempRange(pParse, nVector);
2956     for(i=0; i<nVector; i++){
2957       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2958     }
2959   }
2960 
2961   /* If sqlite3FindInIndex() did not find or create an index that is
2962   ** suitable for evaluating the IN operator, then evaluate using a
2963   ** sequence of comparisons.
2964   **
2965   ** This is step (1) in the in-operator.md optimized algorithm.
2966   */
2967   if( eType==IN_INDEX_NOOP ){
2968     ExprList *pList = pExpr->x.pList;
2969     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2970     int labelOk = sqlite3VdbeMakeLabel(v);
2971     int r2, regToFree;
2972     int regCkNull = 0;
2973     int ii;
2974     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2975     if( destIfNull!=destIfFalse ){
2976       regCkNull = sqlite3GetTempReg(pParse);
2977       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2978     }
2979     for(ii=0; ii<pList->nExpr; ii++){
2980       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2981       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2982         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2983       }
2984       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2985         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2986                           (void*)pColl, P4_COLLSEQ);
2987         VdbeCoverageIf(v, ii<pList->nExpr-1);
2988         VdbeCoverageIf(v, ii==pList->nExpr-1);
2989         sqlite3VdbeChangeP5(v, zAff[0]);
2990       }else{
2991         assert( destIfNull==destIfFalse );
2992         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2993                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2994         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2995       }
2996       sqlite3ReleaseTempReg(pParse, regToFree);
2997     }
2998     if( regCkNull ){
2999       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3000       sqlite3VdbeGoto(v, destIfFalse);
3001     }
3002     sqlite3VdbeResolveLabel(v, labelOk);
3003     sqlite3ReleaseTempReg(pParse, regCkNull);
3004     goto sqlite3ExprCodeIN_finished;
3005   }
3006 
3007   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3008   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3009   ** We will then skip the binary search of the RHS.
3010   */
3011   if( destIfNull==destIfFalse ){
3012     destStep2 = destIfFalse;
3013   }else{
3014     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3015   }
3016   for(i=0; i<nVector; i++){
3017     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3018     if( sqlite3ExprCanBeNull(p) ){
3019       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3020       VdbeCoverage(v);
3021     }
3022   }
3023 
3024   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3025   ** of the RHS using the LHS as a probe.  If found, the result is
3026   ** true.
3027   */
3028   if( eType==IN_INDEX_ROWID ){
3029     /* In this case, the RHS is the ROWID of table b-tree and so we also
3030     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3031     ** into a single opcode. */
3032     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3033     VdbeCoverage(v);
3034     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3035   }else{
3036     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3037     if( destIfFalse==destIfNull ){
3038       /* Combine Step 3 and Step 5 into a single opcode */
3039       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3040                            rLhs, nVector); VdbeCoverage(v);
3041       goto sqlite3ExprCodeIN_finished;
3042     }
3043     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3044     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3045                                       rLhs, nVector); VdbeCoverage(v);
3046   }
3047 
3048   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3049   ** an match on the search above, then the result must be FALSE.
3050   */
3051   if( rRhsHasNull && nVector==1 ){
3052     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3053     VdbeCoverage(v);
3054   }
3055 
3056   /* Step 5.  If we do not care about the difference between NULL and
3057   ** FALSE, then just return false.
3058   */
3059   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3060 
3061   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3062   ** If any comparison is NULL, then the result is NULL.  If all
3063   ** comparisons are FALSE then the final result is FALSE.
3064   **
3065   ** For a scalar LHS, it is sufficient to check just the first row
3066   ** of the RHS.
3067   */
3068   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3069   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3070   VdbeCoverage(v);
3071   if( nVector>1 ){
3072     destNotNull = sqlite3VdbeMakeLabel(v);
3073   }else{
3074     /* For nVector==1, combine steps 6 and 7 by immediately returning
3075     ** FALSE if the first comparison is not NULL */
3076     destNotNull = destIfFalse;
3077   }
3078   for(i=0; i<nVector; i++){
3079     Expr *p;
3080     CollSeq *pColl;
3081     int r3 = sqlite3GetTempReg(pParse);
3082     p = sqlite3VectorFieldSubexpr(pLeft, i);
3083     pColl = sqlite3ExprCollSeq(pParse, p);
3084     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3085     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3086                       (void*)pColl, P4_COLLSEQ);
3087     VdbeCoverage(v);
3088     sqlite3ReleaseTempReg(pParse, r3);
3089   }
3090   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3091   if( nVector>1 ){
3092     sqlite3VdbeResolveLabel(v, destNotNull);
3093     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3094     VdbeCoverage(v);
3095 
3096     /* Step 7:  If we reach this point, we know that the result must
3097     ** be false. */
3098     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3099   }
3100 
3101   /* Jumps here in order to return true. */
3102   sqlite3VdbeJumpHere(v, addrTruthOp);
3103 
3104 sqlite3ExprCodeIN_finished:
3105   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3106   sqlite3ExprCachePop(pParse);
3107   VdbeComment((v, "end IN expr"));
3108 sqlite3ExprCodeIN_oom_error:
3109   sqlite3DbFree(pParse->db, aiMap);
3110   sqlite3DbFree(pParse->db, zAff);
3111 }
3112 #endif /* SQLITE_OMIT_SUBQUERY */
3113 
3114 #ifndef SQLITE_OMIT_FLOATING_POINT
3115 /*
3116 ** Generate an instruction that will put the floating point
3117 ** value described by z[0..n-1] into register iMem.
3118 **
3119 ** The z[] string will probably not be zero-terminated.  But the
3120 ** z[n] character is guaranteed to be something that does not look
3121 ** like the continuation of the number.
3122 */
3123 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3124   if( ALWAYS(z!=0) ){
3125     double value;
3126     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3127     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3128     if( negateFlag ) value = -value;
3129     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3130   }
3131 }
3132 #endif
3133 
3134 
3135 /*
3136 ** Generate an instruction that will put the integer describe by
3137 ** text z[0..n-1] into register iMem.
3138 **
3139 ** Expr.u.zToken is always UTF8 and zero-terminated.
3140 */
3141 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3142   Vdbe *v = pParse->pVdbe;
3143   if( pExpr->flags & EP_IntValue ){
3144     int i = pExpr->u.iValue;
3145     assert( i>=0 );
3146     if( negFlag ) i = -i;
3147     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3148   }else{
3149     int c;
3150     i64 value;
3151     const char *z = pExpr->u.zToken;
3152     assert( z!=0 );
3153     c = sqlite3DecOrHexToI64(z, &value);
3154     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3155 #ifdef SQLITE_OMIT_FLOATING_POINT
3156       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3157 #else
3158 #ifndef SQLITE_OMIT_HEX_INTEGER
3159       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3160         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3161       }else
3162 #endif
3163       {
3164         codeReal(v, z, negFlag, iMem);
3165       }
3166 #endif
3167     }else{
3168       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3169       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3170     }
3171   }
3172 }
3173 
3174 /*
3175 ** Erase column-cache entry number i
3176 */
3177 static void cacheEntryClear(Parse *pParse, int i){
3178   if( pParse->aColCache[i].tempReg ){
3179     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3180       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3181     }
3182   }
3183   pParse->nColCache--;
3184   if( i<pParse->nColCache ){
3185     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3186   }
3187 }
3188 
3189 
3190 /*
3191 ** Record in the column cache that a particular column from a
3192 ** particular table is stored in a particular register.
3193 */
3194 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3195   int i;
3196   int minLru;
3197   int idxLru;
3198   struct yColCache *p;
3199 
3200   /* Unless an error has occurred, register numbers are always positive. */
3201   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3202   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3203 
3204   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3205   ** for testing only - to verify that SQLite always gets the same answer
3206   ** with and without the column cache.
3207   */
3208   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3209 
3210   /* First replace any existing entry.
3211   **
3212   ** Actually, the way the column cache is currently used, we are guaranteed
3213   ** that the object will never already be in cache.  Verify this guarantee.
3214   */
3215 #ifndef NDEBUG
3216   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3217     assert( p->iTable!=iTab || p->iColumn!=iCol );
3218   }
3219 #endif
3220 
3221 #ifdef SQLITE_DEBUG_COLUMNCACHE
3222   /* Add a SetTabCol opcode for run-time verification that the column
3223   ** cache is working correctly.
3224   */
3225   sqlite3VdbeAddOp3(pParse->pVdbe, OP_SetTabCol, iTab, iCol, iReg);
3226 #endif
3227 
3228   /* If the cache is already full, delete the least recently used entry */
3229   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3230     minLru = 0x7fffffff;
3231     idxLru = -1;
3232     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3233       if( p->lru<minLru ){
3234         idxLru = i;
3235         minLru = p->lru;
3236       }
3237     }
3238     p = &pParse->aColCache[idxLru];
3239   }else{
3240     p = &pParse->aColCache[pParse->nColCache++];
3241   }
3242 
3243   /* Add the new entry to the end of the cache */
3244   p->iLevel = pParse->iCacheLevel;
3245   p->iTable = iTab;
3246   p->iColumn = iCol;
3247   p->iReg = iReg;
3248   p->tempReg = 0;
3249   p->lru = pParse->iCacheCnt++;
3250 }
3251 
3252 /*
3253 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3254 ** Purge the range of registers from the column cache.
3255 */
3256 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3257   int i = 0;
3258   while( i<pParse->nColCache ){
3259     struct yColCache *p = &pParse->aColCache[i];
3260     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3261       cacheEntryClear(pParse, i);
3262     }else{
3263       i++;
3264     }
3265   }
3266 }
3267 
3268 /*
3269 ** Remember the current column cache context.  Any new entries added
3270 ** added to the column cache after this call are removed when the
3271 ** corresponding pop occurs.
3272 */
3273 void sqlite3ExprCachePush(Parse *pParse){
3274   pParse->iCacheLevel++;
3275 #ifdef SQLITE_DEBUG
3276   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3277     printf("PUSH to %d\n", pParse->iCacheLevel);
3278   }
3279 #endif
3280 }
3281 
3282 /*
3283 ** Remove from the column cache any entries that were added since the
3284 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3285 ** the cache to the state it was in prior the most recent Push.
3286 */
3287 void sqlite3ExprCachePop(Parse *pParse){
3288   int i = 0;
3289   assert( pParse->iCacheLevel>=1 );
3290   pParse->iCacheLevel--;
3291 #ifdef SQLITE_DEBUG
3292   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3293     printf("POP  to %d\n", pParse->iCacheLevel);
3294   }
3295 #endif
3296   while( i<pParse->nColCache ){
3297     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3298       cacheEntryClear(pParse, i);
3299     }else{
3300       i++;
3301     }
3302   }
3303 }
3304 
3305 /*
3306 ** When a cached column is reused, make sure that its register is
3307 ** no longer available as a temp register.  ticket #3879:  that same
3308 ** register might be in the cache in multiple places, so be sure to
3309 ** get them all.
3310 */
3311 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3312   int i;
3313   struct yColCache *p;
3314   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3315     if( p->iReg==iReg ){
3316       p->tempReg = 0;
3317     }
3318   }
3319 }
3320 
3321 /* Generate code that will load into register regOut a value that is
3322 ** appropriate for the iIdxCol-th column of index pIdx.
3323 */
3324 void sqlite3ExprCodeLoadIndexColumn(
3325   Parse *pParse,  /* The parsing context */
3326   Index *pIdx,    /* The index whose column is to be loaded */
3327   int iTabCur,    /* Cursor pointing to a table row */
3328   int iIdxCol,    /* The column of the index to be loaded */
3329   int regOut      /* Store the index column value in this register */
3330 ){
3331   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3332   if( iTabCol==XN_EXPR ){
3333     assert( pIdx->aColExpr );
3334     assert( pIdx->aColExpr->nExpr>iIdxCol );
3335     pParse->iSelfTab = iTabCur + 1;
3336     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3337     pParse->iSelfTab = 0;
3338   }else{
3339     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3340                                     iTabCol, regOut);
3341   }
3342 }
3343 
3344 /*
3345 ** Generate code to extract the value of the iCol-th column of a table.
3346 */
3347 void sqlite3ExprCodeGetColumnOfTable(
3348   Vdbe *v,        /* The VDBE under construction */
3349   Table *pTab,    /* The table containing the value */
3350   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3351   int iCol,       /* Index of the column to extract */
3352   int regOut      /* Extract the value into this register */
3353 ){
3354   if( pTab==0 ){
3355     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3356     return;
3357   }
3358   if( iCol<0 || iCol==pTab->iPKey ){
3359     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3360   }else{
3361     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3362     int x = iCol;
3363     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3364       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3365     }
3366     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3367   }
3368   if( iCol>=0 ){
3369     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3370   }
3371 }
3372 
3373 /*
3374 ** Generate code that will extract the iColumn-th column from
3375 ** table pTab and store the column value in a register.
3376 **
3377 ** An effort is made to store the column value in register iReg.  This
3378 ** is not garanteeed for GetColumn() - the result can be stored in
3379 ** any register.  But the result is guaranteed to land in register iReg
3380 ** for GetColumnToReg().
3381 **
3382 ** There must be an open cursor to pTab in iTable when this routine
3383 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3384 */
3385 int sqlite3ExprCodeGetColumn(
3386   Parse *pParse,   /* Parsing and code generating context */
3387   Table *pTab,     /* Description of the table we are reading from */
3388   int iColumn,     /* Index of the table column */
3389   int iTable,      /* The cursor pointing to the table */
3390   int iReg,        /* Store results here */
3391   u8 p5            /* P5 value for OP_Column + FLAGS */
3392 ){
3393   Vdbe *v = pParse->pVdbe;
3394   int i;
3395   struct yColCache *p;
3396 
3397   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3398     if( p->iTable==iTable && p->iColumn==iColumn ){
3399       p->lru = pParse->iCacheCnt++;
3400       sqlite3ExprCachePinRegister(pParse, p->iReg);
3401 #ifdef SQLITE_DEBUG_COLUMNCACHE
3402       sqlite3VdbeAddOp3(v, OP_VerifyTabCol, iTable, iColumn, p->iReg);
3403 #endif
3404       return p->iReg;
3405     }
3406   }
3407   assert( v!=0 );
3408   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3409   if( p5 ){
3410     sqlite3VdbeChangeP5(v, p5);
3411   }else{
3412     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3413   }
3414   return iReg;
3415 }
3416 void sqlite3ExprCodeGetColumnToReg(
3417   Parse *pParse,   /* Parsing and code generating context */
3418   Table *pTab,     /* Description of the table we are reading from */
3419   int iColumn,     /* Index of the table column */
3420   int iTable,      /* The cursor pointing to the table */
3421   int iReg         /* Store results here */
3422 ){
3423   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3424   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3425 }
3426 
3427 
3428 /*
3429 ** Clear all column cache entries.
3430 */
3431 void sqlite3ExprCacheClear(Parse *pParse){
3432   int i;
3433 
3434 #ifdef SQLITE_DEBUG
3435   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3436     printf("CLEAR\n");
3437   }
3438 #endif
3439   for(i=0; i<pParse->nColCache; i++){
3440     if( pParse->aColCache[i].tempReg
3441      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3442     ){
3443        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3444     }
3445   }
3446   pParse->nColCache = 0;
3447 }
3448 
3449 /*
3450 ** Record the fact that an affinity change has occurred on iCount
3451 ** registers starting with iStart.
3452 */
3453 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3454   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3455 }
3456 
3457 /*
3458 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3459 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3460 */
3461 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3462   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3463   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3464   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3465 }
3466 
3467 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3468 /*
3469 ** Return true if any register in the range iFrom..iTo (inclusive)
3470 ** is used as part of the column cache.
3471 **
3472 ** This routine is used within assert() and testcase() macros only
3473 ** and does not appear in a normal build.
3474 */
3475 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3476   int i;
3477   struct yColCache *p;
3478   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3479     int r = p->iReg;
3480     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3481   }
3482   return 0;
3483 }
3484 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3485 
3486 
3487 /*
3488 ** Convert a scalar expression node to a TK_REGISTER referencing
3489 ** register iReg.  The caller must ensure that iReg already contains
3490 ** the correct value for the expression.
3491 */
3492 static void exprToRegister(Expr *p, int iReg){
3493   p->op2 = p->op;
3494   p->op = TK_REGISTER;
3495   p->iTable = iReg;
3496   ExprClearProperty(p, EP_Skip);
3497 }
3498 
3499 /*
3500 ** Evaluate an expression (either a vector or a scalar expression) and store
3501 ** the result in continguous temporary registers.  Return the index of
3502 ** the first register used to store the result.
3503 **
3504 ** If the returned result register is a temporary scalar, then also write
3505 ** that register number into *piFreeable.  If the returned result register
3506 ** is not a temporary or if the expression is a vector set *piFreeable
3507 ** to 0.
3508 */
3509 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3510   int iResult;
3511   int nResult = sqlite3ExprVectorSize(p);
3512   if( nResult==1 ){
3513     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3514   }else{
3515     *piFreeable = 0;
3516     if( p->op==TK_SELECT ){
3517 #if SQLITE_OMIT_SUBQUERY
3518       iResult = 0;
3519 #else
3520       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3521 #endif
3522     }else{
3523       int i;
3524       iResult = pParse->nMem+1;
3525       pParse->nMem += nResult;
3526       for(i=0; i<nResult; i++){
3527         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3528       }
3529     }
3530   }
3531   return iResult;
3532 }
3533 
3534 
3535 /*
3536 ** Generate code into the current Vdbe to evaluate the given
3537 ** expression.  Attempt to store the results in register "target".
3538 ** Return the register where results are stored.
3539 **
3540 ** With this routine, there is no guarantee that results will
3541 ** be stored in target.  The result might be stored in some other
3542 ** register if it is convenient to do so.  The calling function
3543 ** must check the return code and move the results to the desired
3544 ** register.
3545 */
3546 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3547   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3548   int op;                   /* The opcode being coded */
3549   int inReg = target;       /* Results stored in register inReg */
3550   int regFree1 = 0;         /* If non-zero free this temporary register */
3551   int regFree2 = 0;         /* If non-zero free this temporary register */
3552   int r1, r2;               /* Various register numbers */
3553   Expr tempX;               /* Temporary expression node */
3554   int p5 = 0;
3555 
3556   assert( target>0 && target<=pParse->nMem );
3557   if( v==0 ){
3558     assert( pParse->db->mallocFailed );
3559     return 0;
3560   }
3561 
3562 expr_code_doover:
3563   if( pExpr==0 ){
3564     op = TK_NULL;
3565   }else{
3566     op = pExpr->op;
3567   }
3568   switch( op ){
3569     case TK_AGG_COLUMN: {
3570       AggInfo *pAggInfo = pExpr->pAggInfo;
3571       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3572       if( !pAggInfo->directMode ){
3573         assert( pCol->iMem>0 );
3574         return pCol->iMem;
3575       }else if( pAggInfo->useSortingIdx ){
3576         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3577                               pCol->iSorterColumn, target);
3578         return target;
3579       }
3580       /* Otherwise, fall thru into the TK_COLUMN case */
3581     }
3582     case TK_COLUMN: {
3583       int iTab = pExpr->iTable;
3584       if( iTab<0 ){
3585         if( pParse->iSelfTab<0 ){
3586           /* Generating CHECK constraints or inserting into partial index */
3587           return pExpr->iColumn - pParse->iSelfTab;
3588         }else{
3589           /* Coding an expression that is part of an index where column names
3590           ** in the index refer to the table to which the index belongs */
3591           iTab = pParse->iSelfTab - 1;
3592         }
3593       }
3594       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3595                                pExpr->iColumn, iTab, target,
3596                                pExpr->op2);
3597     }
3598     case TK_INTEGER: {
3599       codeInteger(pParse, pExpr, 0, target);
3600       return target;
3601     }
3602     case TK_TRUEFALSE: {
3603       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3604       return target;
3605     }
3606 #ifndef SQLITE_OMIT_FLOATING_POINT
3607     case TK_FLOAT: {
3608       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3609       codeReal(v, pExpr->u.zToken, 0, target);
3610       return target;
3611     }
3612 #endif
3613     case TK_STRING: {
3614       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3615       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3616       return target;
3617     }
3618     case TK_NULL: {
3619       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3620       return target;
3621     }
3622 #ifndef SQLITE_OMIT_BLOB_LITERAL
3623     case TK_BLOB: {
3624       int n;
3625       const char *z;
3626       char *zBlob;
3627       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3628       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3629       assert( pExpr->u.zToken[1]=='\'' );
3630       z = &pExpr->u.zToken[2];
3631       n = sqlite3Strlen30(z) - 1;
3632       assert( z[n]=='\'' );
3633       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3634       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3635       return target;
3636     }
3637 #endif
3638     case TK_VARIABLE: {
3639       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3640       assert( pExpr->u.zToken!=0 );
3641       assert( pExpr->u.zToken[0]!=0 );
3642       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3643       if( pExpr->u.zToken[1]!=0 ){
3644         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3645         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3646         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3647         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3648       }
3649       return target;
3650     }
3651     case TK_REGISTER: {
3652       return pExpr->iTable;
3653     }
3654 #ifndef SQLITE_OMIT_CAST
3655     case TK_CAST: {
3656       /* Expressions of the form:   CAST(pLeft AS token) */
3657       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3658       if( inReg!=target ){
3659         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3660         inReg = target;
3661       }
3662       sqlite3VdbeAddOp2(v, OP_Cast, target,
3663                         sqlite3AffinityType(pExpr->u.zToken, 0));
3664       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3665       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3666       return inReg;
3667     }
3668 #endif /* SQLITE_OMIT_CAST */
3669     case TK_IS:
3670     case TK_ISNOT:
3671       op = (op==TK_IS) ? TK_EQ : TK_NE;
3672       p5 = SQLITE_NULLEQ;
3673       /* fall-through */
3674     case TK_LT:
3675     case TK_LE:
3676     case TK_GT:
3677     case TK_GE:
3678     case TK_NE:
3679     case TK_EQ: {
3680       Expr *pLeft = pExpr->pLeft;
3681       if( sqlite3ExprIsVector(pLeft) ){
3682         codeVectorCompare(pParse, pExpr, target, op, p5);
3683       }else{
3684         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3685         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3686         codeCompare(pParse, pLeft, pExpr->pRight, op,
3687             r1, r2, inReg, SQLITE_STOREP2 | p5);
3688         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3689         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3690         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3691         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3692         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3693         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3694         testcase( regFree1==0 );
3695         testcase( regFree2==0 );
3696       }
3697       break;
3698     }
3699     case TK_AND:
3700     case TK_OR:
3701     case TK_PLUS:
3702     case TK_STAR:
3703     case TK_MINUS:
3704     case TK_REM:
3705     case TK_BITAND:
3706     case TK_BITOR:
3707     case TK_SLASH:
3708     case TK_LSHIFT:
3709     case TK_RSHIFT:
3710     case TK_CONCAT: {
3711       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3712       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3713       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3714       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3715       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3716       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3717       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3718       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3719       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3720       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3721       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3722       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3723       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3724       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3725       testcase( regFree1==0 );
3726       testcase( regFree2==0 );
3727       break;
3728     }
3729     case TK_UMINUS: {
3730       Expr *pLeft = pExpr->pLeft;
3731       assert( pLeft );
3732       if( pLeft->op==TK_INTEGER ){
3733         codeInteger(pParse, pLeft, 1, target);
3734         return target;
3735 #ifndef SQLITE_OMIT_FLOATING_POINT
3736       }else if( pLeft->op==TK_FLOAT ){
3737         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3738         codeReal(v, pLeft->u.zToken, 1, target);
3739         return target;
3740 #endif
3741       }else{
3742         tempX.op = TK_INTEGER;
3743         tempX.flags = EP_IntValue|EP_TokenOnly;
3744         tempX.u.iValue = 0;
3745         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3746         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3747         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3748         testcase( regFree2==0 );
3749       }
3750       break;
3751     }
3752     case TK_BITNOT:
3753     case TK_NOT: {
3754       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3755       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3756       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3757       testcase( regFree1==0 );
3758       sqlite3VdbeAddOp2(v, op, r1, inReg);
3759       break;
3760     }
3761     case TK_TRUTH: {
3762       int isTrue;    /* IS TRUE or IS NOT TRUE */
3763       int bNormal;   /* IS TRUE or IS FALSE */
3764       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3765       testcase( regFree1==0 );
3766       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3767       bNormal = pExpr->op2==TK_IS;
3768       testcase( isTrue && bNormal);
3769       testcase( !isTrue && bNormal);
3770       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3771       break;
3772     }
3773     case TK_ISNULL:
3774     case TK_NOTNULL: {
3775       int addr;
3776       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3777       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3778       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3779       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3780       testcase( regFree1==0 );
3781       addr = sqlite3VdbeAddOp1(v, op, r1);
3782       VdbeCoverageIf(v, op==TK_ISNULL);
3783       VdbeCoverageIf(v, op==TK_NOTNULL);
3784       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3785       sqlite3VdbeJumpHere(v, addr);
3786       break;
3787     }
3788     case TK_AGG_FUNCTION: {
3789       AggInfo *pInfo = pExpr->pAggInfo;
3790       if( pInfo==0 ){
3791         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3792         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3793       }else{
3794         return pInfo->aFunc[pExpr->iAgg].iMem;
3795       }
3796       break;
3797     }
3798     case TK_FUNCTION: {
3799       ExprList *pFarg;       /* List of function arguments */
3800       int nFarg;             /* Number of function arguments */
3801       FuncDef *pDef;         /* The function definition object */
3802       const char *zId;       /* The function name */
3803       u32 constMask = 0;     /* Mask of function arguments that are constant */
3804       int i;                 /* Loop counter */
3805       sqlite3 *db = pParse->db;  /* The database connection */
3806       u8 enc = ENC(db);      /* The text encoding used by this database */
3807       CollSeq *pColl = 0;    /* A collating sequence */
3808 
3809 #ifndef SQLITE_OMIT_WINDOWFUNC
3810       if( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) && pExpr->pWin ){
3811         return pExpr->pWin->regResult;
3812       }
3813 #endif
3814 
3815       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3816         /* SQL functions can be expensive. So try to move constant functions
3817         ** out of the inner loop, even if that means an extra OP_Copy. */
3818         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3819       }
3820       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3821       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3822         pFarg = 0;
3823       }else{
3824         pFarg = pExpr->x.pList;
3825       }
3826       nFarg = pFarg ? pFarg->nExpr : 0;
3827       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3828       zId = pExpr->u.zToken;
3829       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3830 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3831       if( pDef==0 && pParse->explain ){
3832         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3833       }
3834 #endif
3835       if( pDef==0 || pDef->xFinalize!=0 ){
3836         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3837         break;
3838       }
3839 
3840       /* Attempt a direct implementation of the built-in COALESCE() and
3841       ** IFNULL() functions.  This avoids unnecessary evaluation of
3842       ** arguments past the first non-NULL argument.
3843       */
3844       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3845         int endCoalesce = sqlite3VdbeMakeLabel(v);
3846         assert( nFarg>=2 );
3847         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3848         for(i=1; i<nFarg; i++){
3849           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3850           VdbeCoverage(v);
3851           sqlite3ExprCacheRemove(pParse, target, 1);
3852           sqlite3ExprCachePush(pParse);
3853           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3854           sqlite3ExprCachePop(pParse);
3855         }
3856         sqlite3VdbeResolveLabel(v, endCoalesce);
3857         break;
3858       }
3859 
3860       /* The UNLIKELY() function is a no-op.  The result is the value
3861       ** of the first argument.
3862       */
3863       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3864         assert( nFarg>=1 );
3865         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3866       }
3867 
3868 #ifdef SQLITE_DEBUG
3869       /* The AFFINITY() function evaluates to a string that describes
3870       ** the type affinity of the argument.  This is used for testing of
3871       ** the SQLite type logic.
3872       */
3873       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3874         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3875         char aff;
3876         assert( nFarg==1 );
3877         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3878         sqlite3VdbeLoadString(v, target,
3879                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3880         return target;
3881       }
3882 #endif
3883 
3884       for(i=0; i<nFarg; i++){
3885         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3886           testcase( i==31 );
3887           constMask |= MASKBIT32(i);
3888         }
3889         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3890           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3891         }
3892       }
3893       if( pFarg ){
3894         if( constMask ){
3895           r1 = pParse->nMem+1;
3896           pParse->nMem += nFarg;
3897         }else{
3898           r1 = sqlite3GetTempRange(pParse, nFarg);
3899         }
3900 
3901         /* For length() and typeof() functions with a column argument,
3902         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3903         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3904         ** loading.
3905         */
3906         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3907           u8 exprOp;
3908           assert( nFarg==1 );
3909           assert( pFarg->a[0].pExpr!=0 );
3910           exprOp = pFarg->a[0].pExpr->op;
3911           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3912             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3913             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3914             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3915             pFarg->a[0].pExpr->op2 =
3916                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3917           }
3918         }
3919 
3920         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3921         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3922                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3923         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3924       }else{
3925         r1 = 0;
3926       }
3927 #ifndef SQLITE_OMIT_VIRTUALTABLE
3928       /* Possibly overload the function if the first argument is
3929       ** a virtual table column.
3930       **
3931       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3932       ** second argument, not the first, as the argument to test to
3933       ** see if it is a column in a virtual table.  This is done because
3934       ** the left operand of infix functions (the operand we want to
3935       ** control overloading) ends up as the second argument to the
3936       ** function.  The expression "A glob B" is equivalent to
3937       ** "glob(B,A).  We want to use the A in "A glob B" to test
3938       ** for function overloading.  But we use the B term in "glob(B,A)".
3939       */
3940       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3941         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3942       }else if( nFarg>0 ){
3943         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3944       }
3945 #endif
3946       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3947         if( !pColl ) pColl = db->pDfltColl;
3948         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3949       }
3950 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3951       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3952         Expr *pArg = pFarg->a[0].pExpr;
3953         if( pArg->op==TK_COLUMN ){
3954           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3955         }else{
3956           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3957         }
3958       }else
3959 #endif
3960       {
3961         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3962                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3963         sqlite3VdbeChangeP5(v, (u8)nFarg);
3964       }
3965       if( nFarg && constMask==0 ){
3966         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3967       }
3968       return target;
3969     }
3970 #ifndef SQLITE_OMIT_SUBQUERY
3971     case TK_EXISTS:
3972     case TK_SELECT: {
3973       int nCol;
3974       testcase( op==TK_EXISTS );
3975       testcase( op==TK_SELECT );
3976       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3977         sqlite3SubselectError(pParse, nCol, 1);
3978       }else{
3979         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3980       }
3981       break;
3982     }
3983     case TK_SELECT_COLUMN: {
3984       int n;
3985       if( pExpr->pLeft->iTable==0 ){
3986         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3987       }
3988       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3989       if( pExpr->iTable
3990        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3991       ){
3992         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3993                                 pExpr->iTable, n);
3994       }
3995       return pExpr->pLeft->iTable + pExpr->iColumn;
3996     }
3997     case TK_IN: {
3998       int destIfFalse = sqlite3VdbeMakeLabel(v);
3999       int destIfNull = sqlite3VdbeMakeLabel(v);
4000       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4001       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4002       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4003       sqlite3VdbeResolveLabel(v, destIfFalse);
4004       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4005       sqlite3VdbeResolveLabel(v, destIfNull);
4006       return target;
4007     }
4008 #endif /* SQLITE_OMIT_SUBQUERY */
4009 
4010 
4011     /*
4012     **    x BETWEEN y AND z
4013     **
4014     ** This is equivalent to
4015     **
4016     **    x>=y AND x<=z
4017     **
4018     ** X is stored in pExpr->pLeft.
4019     ** Y is stored in pExpr->pList->a[0].pExpr.
4020     ** Z is stored in pExpr->pList->a[1].pExpr.
4021     */
4022     case TK_BETWEEN: {
4023       exprCodeBetween(pParse, pExpr, target, 0, 0);
4024       return target;
4025     }
4026     case TK_SPAN:
4027     case TK_COLLATE:
4028     case TK_UPLUS: {
4029       pExpr = pExpr->pLeft;
4030       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4031     }
4032 
4033     case TK_TRIGGER: {
4034       /* If the opcode is TK_TRIGGER, then the expression is a reference
4035       ** to a column in the new.* or old.* pseudo-tables available to
4036       ** trigger programs. In this case Expr.iTable is set to 1 for the
4037       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4038       ** is set to the column of the pseudo-table to read, or to -1 to
4039       ** read the rowid field.
4040       **
4041       ** The expression is implemented using an OP_Param opcode. The p1
4042       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4043       ** to reference another column of the old.* pseudo-table, where
4044       ** i is the index of the column. For a new.rowid reference, p1 is
4045       ** set to (n+1), where n is the number of columns in each pseudo-table.
4046       ** For a reference to any other column in the new.* pseudo-table, p1
4047       ** is set to (n+2+i), where n and i are as defined previously. For
4048       ** example, if the table on which triggers are being fired is
4049       ** declared as:
4050       **
4051       **   CREATE TABLE t1(a, b);
4052       **
4053       ** Then p1 is interpreted as follows:
4054       **
4055       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4056       **   p1==1   ->    old.a         p1==4   ->    new.a
4057       **   p1==2   ->    old.b         p1==5   ->    new.b
4058       */
4059       Table *pTab = pExpr->pTab;
4060       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
4061 
4062       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4063       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
4064       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
4065       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4066 
4067       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4068       VdbeComment((v, "r[%d]=%s.%s", target,
4069         (pExpr->iTable ? "new" : "old"),
4070         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName)
4071       ));
4072 
4073 #ifndef SQLITE_OMIT_FLOATING_POINT
4074       /* If the column has REAL affinity, it may currently be stored as an
4075       ** integer. Use OP_RealAffinity to make sure it is really real.
4076       **
4077       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4078       ** floating point when extracting it from the record.  */
4079       if( pExpr->iColumn>=0
4080        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
4081       ){
4082         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4083       }
4084 #endif
4085       break;
4086     }
4087 
4088     case TK_VECTOR: {
4089       sqlite3ErrorMsg(pParse, "row value misused");
4090       break;
4091     }
4092 
4093     case TK_IF_NULL_ROW: {
4094       int addrINR;
4095       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4096       sqlite3ExprCachePush(pParse);
4097       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4098       sqlite3ExprCachePop(pParse);
4099       sqlite3VdbeJumpHere(v, addrINR);
4100       sqlite3VdbeChangeP3(v, addrINR, inReg);
4101       break;
4102     }
4103 
4104     /*
4105     ** Form A:
4106     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4107     **
4108     ** Form B:
4109     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4110     **
4111     ** Form A is can be transformed into the equivalent form B as follows:
4112     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4113     **        WHEN x=eN THEN rN ELSE y END
4114     **
4115     ** X (if it exists) is in pExpr->pLeft.
4116     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4117     ** odd.  The Y is also optional.  If the number of elements in x.pList
4118     ** is even, then Y is omitted and the "otherwise" result is NULL.
4119     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4120     **
4121     ** The result of the expression is the Ri for the first matching Ei,
4122     ** or if there is no matching Ei, the ELSE term Y, or if there is
4123     ** no ELSE term, NULL.
4124     */
4125     default: assert( op==TK_CASE ); {
4126       int endLabel;                     /* GOTO label for end of CASE stmt */
4127       int nextCase;                     /* GOTO label for next WHEN clause */
4128       int nExpr;                        /* 2x number of WHEN terms */
4129       int i;                            /* Loop counter */
4130       ExprList *pEList;                 /* List of WHEN terms */
4131       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4132       Expr opCompare;                   /* The X==Ei expression */
4133       Expr *pX;                         /* The X expression */
4134       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4135       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4136 
4137       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4138       assert(pExpr->x.pList->nExpr > 0);
4139       pEList = pExpr->x.pList;
4140       aListelem = pEList->a;
4141       nExpr = pEList->nExpr;
4142       endLabel = sqlite3VdbeMakeLabel(v);
4143       if( (pX = pExpr->pLeft)!=0 ){
4144         tempX = *pX;
4145         testcase( pX->op==TK_COLUMN );
4146         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4147         testcase( regFree1==0 );
4148         memset(&opCompare, 0, sizeof(opCompare));
4149         opCompare.op = TK_EQ;
4150         opCompare.pLeft = &tempX;
4151         pTest = &opCompare;
4152         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4153         ** The value in regFree1 might get SCopy-ed into the file result.
4154         ** So make sure that the regFree1 register is not reused for other
4155         ** purposes and possibly overwritten.  */
4156         regFree1 = 0;
4157       }
4158       for(i=0; i<nExpr-1; i=i+2){
4159         sqlite3ExprCachePush(pParse);
4160         if( pX ){
4161           assert( pTest!=0 );
4162           opCompare.pRight = aListelem[i].pExpr;
4163         }else{
4164           pTest = aListelem[i].pExpr;
4165         }
4166         nextCase = sqlite3VdbeMakeLabel(v);
4167         testcase( pTest->op==TK_COLUMN );
4168         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4169         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4170         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4171         sqlite3VdbeGoto(v, endLabel);
4172         sqlite3ExprCachePop(pParse);
4173         sqlite3VdbeResolveLabel(v, nextCase);
4174       }
4175       if( (nExpr&1)!=0 ){
4176         sqlite3ExprCachePush(pParse);
4177         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4178         sqlite3ExprCachePop(pParse);
4179       }else{
4180         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4181       }
4182       assert( pParse->db->mallocFailed || pParse->nErr>0
4183            || pParse->iCacheLevel==iCacheLevel );
4184       sqlite3VdbeResolveLabel(v, endLabel);
4185       break;
4186     }
4187 #ifndef SQLITE_OMIT_TRIGGER
4188     case TK_RAISE: {
4189       assert( pExpr->affinity==OE_Rollback
4190            || pExpr->affinity==OE_Abort
4191            || pExpr->affinity==OE_Fail
4192            || pExpr->affinity==OE_Ignore
4193       );
4194       if( !pParse->pTriggerTab ){
4195         sqlite3ErrorMsg(pParse,
4196                        "RAISE() may only be used within a trigger-program");
4197         return 0;
4198       }
4199       if( pExpr->affinity==OE_Abort ){
4200         sqlite3MayAbort(pParse);
4201       }
4202       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4203       if( pExpr->affinity==OE_Ignore ){
4204         sqlite3VdbeAddOp4(
4205             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4206         VdbeCoverage(v);
4207       }else{
4208         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4209                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4210       }
4211 
4212       break;
4213     }
4214 #endif
4215   }
4216   sqlite3ReleaseTempReg(pParse, regFree1);
4217   sqlite3ReleaseTempReg(pParse, regFree2);
4218   return inReg;
4219 }
4220 
4221 /*
4222 ** Factor out the code of the given expression to initialization time.
4223 **
4224 ** If regDest>=0 then the result is always stored in that register and the
4225 ** result is not reusable.  If regDest<0 then this routine is free to
4226 ** store the value whereever it wants.  The register where the expression
4227 ** is stored is returned.  When regDest<0, two identical expressions will
4228 ** code to the same register.
4229 */
4230 int sqlite3ExprCodeAtInit(
4231   Parse *pParse,    /* Parsing context */
4232   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4233   int regDest       /* Store the value in this register */
4234 ){
4235   ExprList *p;
4236   assert( ConstFactorOk(pParse) );
4237   p = pParse->pConstExpr;
4238   if( regDest<0 && p ){
4239     struct ExprList_item *pItem;
4240     int i;
4241     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4242       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4243         return pItem->u.iConstExprReg;
4244       }
4245     }
4246   }
4247   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4248   p = sqlite3ExprListAppend(pParse, p, pExpr);
4249   if( p ){
4250      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4251      pItem->reusable = regDest<0;
4252      if( regDest<0 ) regDest = ++pParse->nMem;
4253      pItem->u.iConstExprReg = regDest;
4254   }
4255   pParse->pConstExpr = p;
4256   return regDest;
4257 }
4258 
4259 /*
4260 ** Generate code to evaluate an expression and store the results
4261 ** into a register.  Return the register number where the results
4262 ** are stored.
4263 **
4264 ** If the register is a temporary register that can be deallocated,
4265 ** then write its number into *pReg.  If the result register is not
4266 ** a temporary, then set *pReg to zero.
4267 **
4268 ** If pExpr is a constant, then this routine might generate this
4269 ** code to fill the register in the initialization section of the
4270 ** VDBE program, in order to factor it out of the evaluation loop.
4271 */
4272 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4273   int r2;
4274   pExpr = sqlite3ExprSkipCollate(pExpr);
4275   if( ConstFactorOk(pParse)
4276    && pExpr->op!=TK_REGISTER
4277    && sqlite3ExprIsConstantNotJoin(pExpr)
4278   ){
4279     *pReg  = 0;
4280     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4281   }else{
4282     int r1 = sqlite3GetTempReg(pParse);
4283     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4284     if( r2==r1 ){
4285       *pReg = r1;
4286     }else{
4287       sqlite3ReleaseTempReg(pParse, r1);
4288       *pReg = 0;
4289     }
4290   }
4291   return r2;
4292 }
4293 
4294 /*
4295 ** Generate code that will evaluate expression pExpr and store the
4296 ** results in register target.  The results are guaranteed to appear
4297 ** in register target.
4298 */
4299 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4300   int inReg;
4301 
4302   assert( target>0 && target<=pParse->nMem );
4303   if( pExpr && pExpr->op==TK_REGISTER ){
4304     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4305   }else{
4306     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4307     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4308     if( inReg!=target && pParse->pVdbe ){
4309       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4310     }
4311   }
4312 }
4313 
4314 /*
4315 ** Make a transient copy of expression pExpr and then code it using
4316 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4317 ** except that the input expression is guaranteed to be unchanged.
4318 */
4319 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4320   sqlite3 *db = pParse->db;
4321   pExpr = sqlite3ExprDup(db, pExpr, 0);
4322   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4323   sqlite3ExprDelete(db, pExpr);
4324 }
4325 
4326 /*
4327 ** Generate code that will evaluate expression pExpr and store the
4328 ** results in register target.  The results are guaranteed to appear
4329 ** in register target.  If the expression is constant, then this routine
4330 ** might choose to code the expression at initialization time.
4331 */
4332 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4333   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4334     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4335   }else{
4336     sqlite3ExprCode(pParse, pExpr, target);
4337   }
4338 }
4339 
4340 /*
4341 ** Generate code that evaluates the given expression and puts the result
4342 ** in register target.
4343 **
4344 ** Also make a copy of the expression results into another "cache" register
4345 ** and modify the expression so that the next time it is evaluated,
4346 ** the result is a copy of the cache register.
4347 **
4348 ** This routine is used for expressions that are used multiple
4349 ** times.  They are evaluated once and the results of the expression
4350 ** are reused.
4351 */
4352 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4353   Vdbe *v = pParse->pVdbe;
4354   int iMem;
4355 
4356   assert( target>0 );
4357   assert( pExpr->op!=TK_REGISTER );
4358   sqlite3ExprCode(pParse, pExpr, target);
4359   iMem = ++pParse->nMem;
4360   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4361   exprToRegister(pExpr, iMem);
4362 }
4363 
4364 /*
4365 ** Generate code that pushes the value of every element of the given
4366 ** expression list into a sequence of registers beginning at target.
4367 **
4368 ** Return the number of elements evaluated.  The number returned will
4369 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4370 ** is defined.
4371 **
4372 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4373 ** filled using OP_SCopy.  OP_Copy must be used instead.
4374 **
4375 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4376 ** factored out into initialization code.
4377 **
4378 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4379 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4380 ** in registers at srcReg, and so the value can be copied from there.
4381 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4382 ** are simply omitted rather than being copied from srcReg.
4383 */
4384 int sqlite3ExprCodeExprList(
4385   Parse *pParse,     /* Parsing context */
4386   ExprList *pList,   /* The expression list to be coded */
4387   int target,        /* Where to write results */
4388   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4389   u8 flags           /* SQLITE_ECEL_* flags */
4390 ){
4391   struct ExprList_item *pItem;
4392   int i, j, n;
4393   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4394   Vdbe *v = pParse->pVdbe;
4395   assert( pList!=0 );
4396   assert( target>0 );
4397   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4398   n = pList->nExpr;
4399   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4400   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4401     Expr *pExpr = pItem->pExpr;
4402 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4403     if( pItem->bSorterRef ){
4404       i--;
4405       n--;
4406     }else
4407 #endif
4408     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4409       if( flags & SQLITE_ECEL_OMITREF ){
4410         i--;
4411         n--;
4412       }else{
4413         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4414       }
4415     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4416       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4417     }else{
4418       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4419       if( inReg!=target+i ){
4420         VdbeOp *pOp;
4421         if( copyOp==OP_Copy
4422          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4423          && pOp->p1+pOp->p3+1==inReg
4424          && pOp->p2+pOp->p3+1==target+i
4425         ){
4426           pOp->p3++;
4427         }else{
4428           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4429         }
4430       }
4431     }
4432   }
4433   return n;
4434 }
4435 
4436 /*
4437 ** Generate code for a BETWEEN operator.
4438 **
4439 **    x BETWEEN y AND z
4440 **
4441 ** The above is equivalent to
4442 **
4443 **    x>=y AND x<=z
4444 **
4445 ** Code it as such, taking care to do the common subexpression
4446 ** elimination of x.
4447 **
4448 ** The xJumpIf parameter determines details:
4449 **
4450 **    NULL:                   Store the boolean result in reg[dest]
4451 **    sqlite3ExprIfTrue:      Jump to dest if true
4452 **    sqlite3ExprIfFalse:     Jump to dest if false
4453 **
4454 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4455 */
4456 static void exprCodeBetween(
4457   Parse *pParse,    /* Parsing and code generating context */
4458   Expr *pExpr,      /* The BETWEEN expression */
4459   int dest,         /* Jump destination or storage location */
4460   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4461   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4462 ){
4463  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4464   Expr compLeft;    /* The  x>=y  term */
4465   Expr compRight;   /* The  x<=z  term */
4466   Expr exprX;       /* The  x  subexpression */
4467   int regFree1 = 0; /* Temporary use register */
4468 
4469 
4470   memset(&compLeft, 0, sizeof(Expr));
4471   memset(&compRight, 0, sizeof(Expr));
4472   memset(&exprAnd, 0, sizeof(Expr));
4473 
4474   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4475   exprX = *pExpr->pLeft;
4476   exprAnd.op = TK_AND;
4477   exprAnd.pLeft = &compLeft;
4478   exprAnd.pRight = &compRight;
4479   compLeft.op = TK_GE;
4480   compLeft.pLeft = &exprX;
4481   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4482   compRight.op = TK_LE;
4483   compRight.pLeft = &exprX;
4484   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4485   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4486   if( xJump ){
4487     xJump(pParse, &exprAnd, dest, jumpIfNull);
4488   }else{
4489     /* Mark the expression is being from the ON or USING clause of a join
4490     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4491     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4492     ** for clarity, but we are out of bits in the Expr.flags field so we
4493     ** have to reuse the EP_FromJoin bit.  Bummer. */
4494     exprX.flags |= EP_FromJoin;
4495     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4496   }
4497   sqlite3ReleaseTempReg(pParse, regFree1);
4498 
4499   /* Ensure adequate test coverage */
4500   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4501   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4502   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4503   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4504   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4505   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4506   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4507   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4508   testcase( xJump==0 );
4509 }
4510 
4511 /*
4512 ** Generate code for a boolean expression such that a jump is made
4513 ** to the label "dest" if the expression is true but execution
4514 ** continues straight thru if the expression is false.
4515 **
4516 ** If the expression evaluates to NULL (neither true nor false), then
4517 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4518 **
4519 ** This code depends on the fact that certain token values (ex: TK_EQ)
4520 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4521 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4522 ** the make process cause these values to align.  Assert()s in the code
4523 ** below verify that the numbers are aligned correctly.
4524 */
4525 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4526   Vdbe *v = pParse->pVdbe;
4527   int op = 0;
4528   int regFree1 = 0;
4529   int regFree2 = 0;
4530   int r1, r2;
4531 
4532   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4533   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4534   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4535   op = pExpr->op;
4536   switch( op ){
4537     case TK_AND: {
4538       int d2 = sqlite3VdbeMakeLabel(v);
4539       testcase( jumpIfNull==0 );
4540       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4541       sqlite3ExprCachePush(pParse);
4542       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4543       sqlite3VdbeResolveLabel(v, d2);
4544       sqlite3ExprCachePop(pParse);
4545       break;
4546     }
4547     case TK_OR: {
4548       testcase( jumpIfNull==0 );
4549       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4550       sqlite3ExprCachePush(pParse);
4551       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4552       sqlite3ExprCachePop(pParse);
4553       break;
4554     }
4555     case TK_NOT: {
4556       testcase( jumpIfNull==0 );
4557       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4558       break;
4559     }
4560     case TK_TRUTH: {
4561       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4562       int isTrue;     /* IS TRUE or IS NOT TRUE */
4563       testcase( jumpIfNull==0 );
4564       isNot = pExpr->op2==TK_ISNOT;
4565       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4566       testcase( isTrue && isNot );
4567       testcase( !isTrue && isNot );
4568       if( isTrue ^ isNot ){
4569         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4570                           isNot ? SQLITE_JUMPIFNULL : 0);
4571       }else{
4572         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4573                            isNot ? SQLITE_JUMPIFNULL : 0);
4574       }
4575       break;
4576     }
4577     case TK_IS:
4578     case TK_ISNOT:
4579       testcase( op==TK_IS );
4580       testcase( op==TK_ISNOT );
4581       op = (op==TK_IS) ? TK_EQ : TK_NE;
4582       jumpIfNull = SQLITE_NULLEQ;
4583       /* Fall thru */
4584     case TK_LT:
4585     case TK_LE:
4586     case TK_GT:
4587     case TK_GE:
4588     case TK_NE:
4589     case TK_EQ: {
4590       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4591       testcase( jumpIfNull==0 );
4592       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4593       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4594       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4595                   r1, r2, dest, jumpIfNull);
4596       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4597       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4598       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4599       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4600       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4601       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4602       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4603       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4604       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4605       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4606       testcase( regFree1==0 );
4607       testcase( regFree2==0 );
4608       break;
4609     }
4610     case TK_ISNULL:
4611     case TK_NOTNULL: {
4612       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4613       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4614       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4615       sqlite3VdbeAddOp2(v, op, r1, dest);
4616       VdbeCoverageIf(v, op==TK_ISNULL);
4617       VdbeCoverageIf(v, op==TK_NOTNULL);
4618       testcase( regFree1==0 );
4619       break;
4620     }
4621     case TK_BETWEEN: {
4622       testcase( jumpIfNull==0 );
4623       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4624       break;
4625     }
4626 #ifndef SQLITE_OMIT_SUBQUERY
4627     case TK_IN: {
4628       int destIfFalse = sqlite3VdbeMakeLabel(v);
4629       int destIfNull = jumpIfNull ? dest : destIfFalse;
4630       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4631       sqlite3VdbeGoto(v, dest);
4632       sqlite3VdbeResolveLabel(v, destIfFalse);
4633       break;
4634     }
4635 #endif
4636     default: {
4637     default_expr:
4638       if( exprAlwaysTrue(pExpr) ){
4639         sqlite3VdbeGoto(v, dest);
4640       }else if( exprAlwaysFalse(pExpr) ){
4641         /* No-op */
4642       }else{
4643         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4644         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4645         VdbeCoverage(v);
4646         testcase( regFree1==0 );
4647         testcase( jumpIfNull==0 );
4648       }
4649       break;
4650     }
4651   }
4652   sqlite3ReleaseTempReg(pParse, regFree1);
4653   sqlite3ReleaseTempReg(pParse, regFree2);
4654 }
4655 
4656 /*
4657 ** Generate code for a boolean expression such that a jump is made
4658 ** to the label "dest" if the expression is false but execution
4659 ** continues straight thru if the expression is true.
4660 **
4661 ** If the expression evaluates to NULL (neither true nor false) then
4662 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4663 ** is 0.
4664 */
4665 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4666   Vdbe *v = pParse->pVdbe;
4667   int op = 0;
4668   int regFree1 = 0;
4669   int regFree2 = 0;
4670   int r1, r2;
4671 
4672   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4673   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4674   if( pExpr==0 )    return;
4675 
4676   /* The value of pExpr->op and op are related as follows:
4677   **
4678   **       pExpr->op            op
4679   **       ---------          ----------
4680   **       TK_ISNULL          OP_NotNull
4681   **       TK_NOTNULL         OP_IsNull
4682   **       TK_NE              OP_Eq
4683   **       TK_EQ              OP_Ne
4684   **       TK_GT              OP_Le
4685   **       TK_LE              OP_Gt
4686   **       TK_GE              OP_Lt
4687   **       TK_LT              OP_Ge
4688   **
4689   ** For other values of pExpr->op, op is undefined and unused.
4690   ** The value of TK_ and OP_ constants are arranged such that we
4691   ** can compute the mapping above using the following expression.
4692   ** Assert()s verify that the computation is correct.
4693   */
4694   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4695 
4696   /* Verify correct alignment of TK_ and OP_ constants
4697   */
4698   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4699   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4700   assert( pExpr->op!=TK_NE || op==OP_Eq );
4701   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4702   assert( pExpr->op!=TK_LT || op==OP_Ge );
4703   assert( pExpr->op!=TK_LE || op==OP_Gt );
4704   assert( pExpr->op!=TK_GT || op==OP_Le );
4705   assert( pExpr->op!=TK_GE || op==OP_Lt );
4706 
4707   switch( pExpr->op ){
4708     case TK_AND: {
4709       testcase( jumpIfNull==0 );
4710       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4711       sqlite3ExprCachePush(pParse);
4712       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4713       sqlite3ExprCachePop(pParse);
4714       break;
4715     }
4716     case TK_OR: {
4717       int d2 = sqlite3VdbeMakeLabel(v);
4718       testcase( jumpIfNull==0 );
4719       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4720       sqlite3ExprCachePush(pParse);
4721       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4722       sqlite3VdbeResolveLabel(v, d2);
4723       sqlite3ExprCachePop(pParse);
4724       break;
4725     }
4726     case TK_NOT: {
4727       testcase( jumpIfNull==0 );
4728       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4729       break;
4730     }
4731     case TK_TRUTH: {
4732       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4733       int isTrue;  /* IS TRUE or IS NOT TRUE */
4734       testcase( jumpIfNull==0 );
4735       isNot = pExpr->op2==TK_ISNOT;
4736       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4737       testcase( isTrue && isNot );
4738       testcase( !isTrue && isNot );
4739       if( isTrue ^ isNot ){
4740         /* IS TRUE and IS NOT FALSE */
4741         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4742                            isNot ? 0 : SQLITE_JUMPIFNULL);
4743 
4744       }else{
4745         /* IS FALSE and IS NOT TRUE */
4746         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4747                           isNot ? 0 : SQLITE_JUMPIFNULL);
4748       }
4749       break;
4750     }
4751     case TK_IS:
4752     case TK_ISNOT:
4753       testcase( pExpr->op==TK_IS );
4754       testcase( pExpr->op==TK_ISNOT );
4755       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4756       jumpIfNull = SQLITE_NULLEQ;
4757       /* Fall thru */
4758     case TK_LT:
4759     case TK_LE:
4760     case TK_GT:
4761     case TK_GE:
4762     case TK_NE:
4763     case TK_EQ: {
4764       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4765       testcase( jumpIfNull==0 );
4766       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4767       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4768       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4769                   r1, r2, dest, jumpIfNull);
4770       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4771       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4772       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4773       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4774       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4775       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4776       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4777       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4778       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4779       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4780       testcase( regFree1==0 );
4781       testcase( regFree2==0 );
4782       break;
4783     }
4784     case TK_ISNULL:
4785     case TK_NOTNULL: {
4786       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4787       sqlite3VdbeAddOp2(v, op, r1, dest);
4788       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4789       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4790       testcase( regFree1==0 );
4791       break;
4792     }
4793     case TK_BETWEEN: {
4794       testcase( jumpIfNull==0 );
4795       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4796       break;
4797     }
4798 #ifndef SQLITE_OMIT_SUBQUERY
4799     case TK_IN: {
4800       if( jumpIfNull ){
4801         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4802       }else{
4803         int destIfNull = sqlite3VdbeMakeLabel(v);
4804         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4805         sqlite3VdbeResolveLabel(v, destIfNull);
4806       }
4807       break;
4808     }
4809 #endif
4810     default: {
4811     default_expr:
4812       if( exprAlwaysFalse(pExpr) ){
4813         sqlite3VdbeGoto(v, dest);
4814       }else if( exprAlwaysTrue(pExpr) ){
4815         /* no-op */
4816       }else{
4817         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4818         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4819         VdbeCoverage(v);
4820         testcase( regFree1==0 );
4821         testcase( jumpIfNull==0 );
4822       }
4823       break;
4824     }
4825   }
4826   sqlite3ReleaseTempReg(pParse, regFree1);
4827   sqlite3ReleaseTempReg(pParse, regFree2);
4828 }
4829 
4830 /*
4831 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4832 ** code generation, and that copy is deleted after code generation. This
4833 ** ensures that the original pExpr is unchanged.
4834 */
4835 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4836   sqlite3 *db = pParse->db;
4837   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4838   if( db->mallocFailed==0 ){
4839     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4840   }
4841   sqlite3ExprDelete(db, pCopy);
4842 }
4843 
4844 /*
4845 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4846 ** type of expression.
4847 **
4848 ** If pExpr is a simple SQL value - an integer, real, string, blob
4849 ** or NULL value - then the VDBE currently being prepared is configured
4850 ** to re-prepare each time a new value is bound to variable pVar.
4851 **
4852 ** Additionally, if pExpr is a simple SQL value and the value is the
4853 ** same as that currently bound to variable pVar, non-zero is returned.
4854 ** Otherwise, if the values are not the same or if pExpr is not a simple
4855 ** SQL value, zero is returned.
4856 */
4857 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4858   int res = 0;
4859   int iVar;
4860   sqlite3_value *pL, *pR = 0;
4861 
4862   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4863   if( pR ){
4864     iVar = pVar->iColumn;
4865     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4866     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4867     if( pL ){
4868       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4869         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4870       }
4871       res =  0==sqlite3MemCompare(pL, pR, 0);
4872     }
4873     sqlite3ValueFree(pR);
4874     sqlite3ValueFree(pL);
4875   }
4876 
4877   return res;
4878 }
4879 
4880 /*
4881 ** Do a deep comparison of two expression trees.  Return 0 if the two
4882 ** expressions are completely identical.  Return 1 if they differ only
4883 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4884 ** other than the top-level COLLATE operator.
4885 **
4886 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4887 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4888 **
4889 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4890 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4891 **
4892 ** Sometimes this routine will return 2 even if the two expressions
4893 ** really are equivalent.  If we cannot prove that the expressions are
4894 ** identical, we return 2 just to be safe.  So if this routine
4895 ** returns 2, then you do not really know for certain if the two
4896 ** expressions are the same.  But if you get a 0 or 1 return, then you
4897 ** can be sure the expressions are the same.  In the places where
4898 ** this routine is used, it does not hurt to get an extra 2 - that
4899 ** just might result in some slightly slower code.  But returning
4900 ** an incorrect 0 or 1 could lead to a malfunction.
4901 **
4902 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4903 ** pParse->pReprepare can be matched against literals in pB.  The
4904 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4905 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4906 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4907 ** pB causes a return value of 2.
4908 */
4909 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4910   u32 combinedFlags;
4911   if( pA==0 || pB==0 ){
4912     return pB==pA ? 0 : 2;
4913   }
4914   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4915     return 0;
4916   }
4917   combinedFlags = pA->flags | pB->flags;
4918   if( combinedFlags & EP_IntValue ){
4919     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4920       return 0;
4921     }
4922     return 2;
4923   }
4924   if( pA->op!=pB->op ){
4925     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4926       return 1;
4927     }
4928     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4929       return 1;
4930     }
4931     return 2;
4932   }
4933   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4934     if( pA->op==TK_FUNCTION ){
4935       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4936     }else if( pA->op==TK_COLLATE ){
4937       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4938     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4939       return 2;
4940     }
4941   }
4942   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4943   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4944     if( combinedFlags & EP_xIsSelect ) return 2;
4945     if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4946     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4947     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4948     assert( (combinedFlags & EP_Reduced)==0 );
4949     if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
4950       if( pA->iColumn!=pB->iColumn ) return 2;
4951       if( pA->iTable!=pB->iTable
4952        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4953     }
4954 #ifndef SQLITE_OMIT_WINDOWFUNC
4955     /* Justification for the assert():
4956     ** window functions have p->op==TK_FUNCTION but aggregate functions
4957     ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
4958     ** function and a window function should have failed before reaching
4959     ** this point.  And, it is not possible to have a window function and
4960     ** a scalar function with the same name and number of arguments.  So
4961     ** if we reach this point, either A and B both window functions or
4962     ** neither are a window functions. */
4963     assert( (pA->pWin==0)==(pB->pWin==0) );
4964 
4965     if( pA->pWin!=0 ){
4966       if( sqlite3WindowCompare(pParse,pA->pWin,pB->pWin)!=0 ) return 2;
4967     }
4968 #endif
4969   }
4970   return 0;
4971 }
4972 
4973 /*
4974 ** Compare two ExprList objects.  Return 0 if they are identical and
4975 ** non-zero if they differ in any way.
4976 **
4977 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4978 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4979 **
4980 ** This routine might return non-zero for equivalent ExprLists.  The
4981 ** only consequence will be disabled optimizations.  But this routine
4982 ** must never return 0 if the two ExprList objects are different, or
4983 ** a malfunction will result.
4984 **
4985 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4986 ** always differs from a non-NULL pointer.
4987 */
4988 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4989   int i;
4990   if( pA==0 && pB==0 ) return 0;
4991   if( pA==0 || pB==0 ) return 1;
4992   if( pA->nExpr!=pB->nExpr ) return 1;
4993   for(i=0; i<pA->nExpr; i++){
4994     Expr *pExprA = pA->a[i].pExpr;
4995     Expr *pExprB = pB->a[i].pExpr;
4996     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4997     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4998   }
4999   return 0;
5000 }
5001 
5002 /*
5003 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5004 ** are ignored.
5005 */
5006 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5007   return sqlite3ExprCompare(0,
5008              sqlite3ExprSkipCollate(pA),
5009              sqlite3ExprSkipCollate(pB),
5010              iTab);
5011 }
5012 
5013 /*
5014 ** Return true if we can prove the pE2 will always be true if pE1 is
5015 ** true.  Return false if we cannot complete the proof or if pE2 might
5016 ** be false.  Examples:
5017 **
5018 **     pE1: x==5       pE2: x==5             Result: true
5019 **     pE1: x>0        pE2: x==5             Result: false
5020 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5021 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5022 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5023 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5024 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5025 **
5026 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5027 ** Expr.iTable<0 then assume a table number given by iTab.
5028 **
5029 ** If pParse is not NULL, then the values of bound variables in pE1 are
5030 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5031 ** modified to record which bound variables are referenced.  If pParse
5032 ** is NULL, then false will be returned if pE1 contains any bound variables.
5033 **
5034 ** When in doubt, return false.  Returning true might give a performance
5035 ** improvement.  Returning false might cause a performance reduction, but
5036 ** it will always give the correct answer and is hence always safe.
5037 */
5038 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5039   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5040     return 1;
5041   }
5042   if( pE2->op==TK_OR
5043    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5044              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5045   ){
5046     return 1;
5047   }
5048   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
5049     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
5050     testcase( pX!=pE1->pLeft );
5051     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
5052   }
5053   return 0;
5054 }
5055 
5056 /*
5057 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5058 ** If the expression node requires that the table at pWalker->iCur
5059 ** have a non-NULL column, then set pWalker->eCode to 1 and abort.
5060 */
5061 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5062   /* This routine is only called for WHERE clause expressions and so it
5063   ** cannot have any TK_AGG_COLUMN entries because those are only found
5064   ** in HAVING clauses.  We can get a TK_AGG_FUNCTION in a WHERE clause,
5065   ** but that is an illegal construct and the query will be rejected at
5066   ** a later stage of processing, so the TK_AGG_FUNCTION case does not
5067   ** need to be considered here. */
5068   assert( pExpr->op!=TK_AGG_COLUMN );
5069   testcase( pExpr->op==TK_AGG_FUNCTION );
5070 
5071   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5072   switch( pExpr->op ){
5073     case TK_ISNOT:
5074     case TK_NOT:
5075     case TK_ISNULL:
5076     case TK_IS:
5077     case TK_OR:
5078     case TK_CASE:
5079     case TK_IN:
5080     case TK_FUNCTION:
5081       testcase( pExpr->op==TK_ISNOT );
5082       testcase( pExpr->op==TK_NOT );
5083       testcase( pExpr->op==TK_ISNULL );
5084       testcase( pExpr->op==TK_IS );
5085       testcase( pExpr->op==TK_OR );
5086       testcase( pExpr->op==TK_CASE );
5087       testcase( pExpr->op==TK_IN );
5088       testcase( pExpr->op==TK_FUNCTION );
5089       return WRC_Prune;
5090     case TK_COLUMN:
5091       if( pWalker->u.iCur==pExpr->iTable ){
5092         pWalker->eCode = 1;
5093         return WRC_Abort;
5094       }
5095       return WRC_Prune;
5096 
5097     /* Virtual tables are allowed to use constraints like x=NULL.  So
5098     ** a term of the form x=y does not prove that y is not null if x
5099     ** is the column of a virtual table */
5100     case TK_EQ:
5101     case TK_NE:
5102     case TK_LT:
5103     case TK_LE:
5104     case TK_GT:
5105     case TK_GE:
5106       testcase( pExpr->op==TK_EQ );
5107       testcase( pExpr->op==TK_NE );
5108       testcase( pExpr->op==TK_LT );
5109       testcase( pExpr->op==TK_LE );
5110       testcase( pExpr->op==TK_GT );
5111       testcase( pExpr->op==TK_GE );
5112       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab))
5113        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab))
5114       ){
5115        return WRC_Prune;
5116       }
5117     default:
5118       return WRC_Continue;
5119   }
5120 }
5121 
5122 /*
5123 ** Return true (non-zero) if expression p can only be true if at least
5124 ** one column of table iTab is non-null.  In other words, return true
5125 ** if expression p will always be NULL or false if every column of iTab
5126 ** is NULL.
5127 **
5128 ** False negatives are acceptable.  In other words, it is ok to return
5129 ** zero even if expression p will never be true of every column of iTab
5130 ** is NULL.  A false negative is merely a missed optimization opportunity.
5131 **
5132 ** False positives are not allowed, however.  A false positive may result
5133 ** in an incorrect answer.
5134 **
5135 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5136 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5137 **
5138 ** This routine is used to check if a LEFT JOIN can be converted into
5139 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5140 ** clause requires that some column of the right table of the LEFT JOIN
5141 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5142 ** ordinary join.
5143 */
5144 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5145   Walker w;
5146   w.xExprCallback = impliesNotNullRow;
5147   w.xSelectCallback = 0;
5148   w.xSelectCallback2 = 0;
5149   w.eCode = 0;
5150   w.u.iCur = iTab;
5151   sqlite3WalkExpr(&w, p);
5152   return w.eCode;
5153 }
5154 
5155 /*
5156 ** An instance of the following structure is used by the tree walker
5157 ** to determine if an expression can be evaluated by reference to the
5158 ** index only, without having to do a search for the corresponding
5159 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5160 ** is the cursor for the table.
5161 */
5162 struct IdxCover {
5163   Index *pIdx;     /* The index to be tested for coverage */
5164   int iCur;        /* Cursor number for the table corresponding to the index */
5165 };
5166 
5167 /*
5168 ** Check to see if there are references to columns in table
5169 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5170 ** pWalker->u.pIdxCover->pIdx.
5171 */
5172 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5173   if( pExpr->op==TK_COLUMN
5174    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5175    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5176   ){
5177     pWalker->eCode = 1;
5178     return WRC_Abort;
5179   }
5180   return WRC_Continue;
5181 }
5182 
5183 /*
5184 ** Determine if an index pIdx on table with cursor iCur contains will
5185 ** the expression pExpr.  Return true if the index does cover the
5186 ** expression and false if the pExpr expression references table columns
5187 ** that are not found in the index pIdx.
5188 **
5189 ** An index covering an expression means that the expression can be
5190 ** evaluated using only the index and without having to lookup the
5191 ** corresponding table entry.
5192 */
5193 int sqlite3ExprCoveredByIndex(
5194   Expr *pExpr,        /* The index to be tested */
5195   int iCur,           /* The cursor number for the corresponding table */
5196   Index *pIdx         /* The index that might be used for coverage */
5197 ){
5198   Walker w;
5199   struct IdxCover xcov;
5200   memset(&w, 0, sizeof(w));
5201   xcov.iCur = iCur;
5202   xcov.pIdx = pIdx;
5203   w.xExprCallback = exprIdxCover;
5204   w.u.pIdxCover = &xcov;
5205   sqlite3WalkExpr(&w, pExpr);
5206   return !w.eCode;
5207 }
5208 
5209 
5210 /*
5211 ** An instance of the following structure is used by the tree walker
5212 ** to count references to table columns in the arguments of an
5213 ** aggregate function, in order to implement the
5214 ** sqlite3FunctionThisSrc() routine.
5215 */
5216 struct SrcCount {
5217   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5218   int nThis;       /* Number of references to columns in pSrcList */
5219   int nOther;      /* Number of references to columns in other FROM clauses */
5220 };
5221 
5222 /*
5223 ** Count the number of references to columns.
5224 */
5225 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5226   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5227   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5228   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5229   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5230   ** NEVER() will need to be removed. */
5231   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5232     int i;
5233     struct SrcCount *p = pWalker->u.pSrcCount;
5234     SrcList *pSrc = p->pSrc;
5235     int nSrc = pSrc ? pSrc->nSrc : 0;
5236     for(i=0; i<nSrc; i++){
5237       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5238     }
5239     if( i<nSrc ){
5240       p->nThis++;
5241     }else{
5242       p->nOther++;
5243     }
5244   }
5245   return WRC_Continue;
5246 }
5247 
5248 /*
5249 ** Determine if any of the arguments to the pExpr Function reference
5250 ** pSrcList.  Return true if they do.  Also return true if the function
5251 ** has no arguments or has only constant arguments.  Return false if pExpr
5252 ** references columns but not columns of tables found in pSrcList.
5253 */
5254 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5255   Walker w;
5256   struct SrcCount cnt;
5257   assert( pExpr->op==TK_AGG_FUNCTION );
5258   w.xExprCallback = exprSrcCount;
5259   w.xSelectCallback = 0;
5260   w.u.pSrcCount = &cnt;
5261   cnt.pSrc = pSrcList;
5262   cnt.nThis = 0;
5263   cnt.nOther = 0;
5264   sqlite3WalkExprList(&w, pExpr->x.pList);
5265   return cnt.nThis>0 || cnt.nOther==0;
5266 }
5267 
5268 /*
5269 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5270 ** the new element.  Return a negative number if malloc fails.
5271 */
5272 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5273   int i;
5274   pInfo->aCol = sqlite3ArrayAllocate(
5275        db,
5276        pInfo->aCol,
5277        sizeof(pInfo->aCol[0]),
5278        &pInfo->nColumn,
5279        &i
5280   );
5281   return i;
5282 }
5283 
5284 /*
5285 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5286 ** the new element.  Return a negative number if malloc fails.
5287 */
5288 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5289   int i;
5290   pInfo->aFunc = sqlite3ArrayAllocate(
5291        db,
5292        pInfo->aFunc,
5293        sizeof(pInfo->aFunc[0]),
5294        &pInfo->nFunc,
5295        &i
5296   );
5297   return i;
5298 }
5299 
5300 /*
5301 ** This is the xExprCallback for a tree walker.  It is used to
5302 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5303 ** for additional information.
5304 */
5305 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5306   int i;
5307   NameContext *pNC = pWalker->u.pNC;
5308   Parse *pParse = pNC->pParse;
5309   SrcList *pSrcList = pNC->pSrcList;
5310   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5311 
5312   assert( pNC->ncFlags & NC_UAggInfo );
5313   switch( pExpr->op ){
5314     case TK_AGG_COLUMN:
5315     case TK_COLUMN: {
5316       testcase( pExpr->op==TK_AGG_COLUMN );
5317       testcase( pExpr->op==TK_COLUMN );
5318       /* Check to see if the column is in one of the tables in the FROM
5319       ** clause of the aggregate query */
5320       if( ALWAYS(pSrcList!=0) ){
5321         struct SrcList_item *pItem = pSrcList->a;
5322         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5323           struct AggInfo_col *pCol;
5324           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5325           if( pExpr->iTable==pItem->iCursor ){
5326             /* If we reach this point, it means that pExpr refers to a table
5327             ** that is in the FROM clause of the aggregate query.
5328             **
5329             ** Make an entry for the column in pAggInfo->aCol[] if there
5330             ** is not an entry there already.
5331             */
5332             int k;
5333             pCol = pAggInfo->aCol;
5334             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5335               if( pCol->iTable==pExpr->iTable &&
5336                   pCol->iColumn==pExpr->iColumn ){
5337                 break;
5338               }
5339             }
5340             if( (k>=pAggInfo->nColumn)
5341              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5342             ){
5343               pCol = &pAggInfo->aCol[k];
5344               pCol->pTab = pExpr->pTab;
5345               pCol->iTable = pExpr->iTable;
5346               pCol->iColumn = pExpr->iColumn;
5347               pCol->iMem = ++pParse->nMem;
5348               pCol->iSorterColumn = -1;
5349               pCol->pExpr = pExpr;
5350               if( pAggInfo->pGroupBy ){
5351                 int j, n;
5352                 ExprList *pGB = pAggInfo->pGroupBy;
5353                 struct ExprList_item *pTerm = pGB->a;
5354                 n = pGB->nExpr;
5355                 for(j=0; j<n; j++, pTerm++){
5356                   Expr *pE = pTerm->pExpr;
5357                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5358                       pE->iColumn==pExpr->iColumn ){
5359                     pCol->iSorterColumn = j;
5360                     break;
5361                   }
5362                 }
5363               }
5364               if( pCol->iSorterColumn<0 ){
5365                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5366               }
5367             }
5368             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5369             ** because it was there before or because we just created it).
5370             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5371             ** pAggInfo->aCol[] entry.
5372             */
5373             ExprSetVVAProperty(pExpr, EP_NoReduce);
5374             pExpr->pAggInfo = pAggInfo;
5375             pExpr->op = TK_AGG_COLUMN;
5376             pExpr->iAgg = (i16)k;
5377             break;
5378           } /* endif pExpr->iTable==pItem->iCursor */
5379         } /* end loop over pSrcList */
5380       }
5381       return WRC_Prune;
5382     }
5383     case TK_AGG_FUNCTION: {
5384       if( (pNC->ncFlags & NC_InAggFunc)==0
5385        && pWalker->walkerDepth==pExpr->op2
5386       ){
5387         /* Check to see if pExpr is a duplicate of another aggregate
5388         ** function that is already in the pAggInfo structure
5389         */
5390         struct AggInfo_func *pItem = pAggInfo->aFunc;
5391         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5392           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5393             break;
5394           }
5395         }
5396         if( i>=pAggInfo->nFunc ){
5397           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5398           */
5399           u8 enc = ENC(pParse->db);
5400           i = addAggInfoFunc(pParse->db, pAggInfo);
5401           if( i>=0 ){
5402             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5403             pItem = &pAggInfo->aFunc[i];
5404             pItem->pExpr = pExpr;
5405             pItem->iMem = ++pParse->nMem;
5406             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5407             pItem->pFunc = sqlite3FindFunction(pParse->db,
5408                    pExpr->u.zToken,
5409                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5410             if( pExpr->flags & EP_Distinct ){
5411               pItem->iDistinct = pParse->nTab++;
5412             }else{
5413               pItem->iDistinct = -1;
5414             }
5415           }
5416         }
5417         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5418         */
5419         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5420         ExprSetVVAProperty(pExpr, EP_NoReduce);
5421         pExpr->iAgg = (i16)i;
5422         pExpr->pAggInfo = pAggInfo;
5423         return WRC_Prune;
5424       }else{
5425         return WRC_Continue;
5426       }
5427     }
5428   }
5429   return WRC_Continue;
5430 }
5431 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5432   UNUSED_PARAMETER(pSelect);
5433   pWalker->walkerDepth++;
5434   return WRC_Continue;
5435 }
5436 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5437   UNUSED_PARAMETER(pSelect);
5438   pWalker->walkerDepth--;
5439 }
5440 
5441 /*
5442 ** Analyze the pExpr expression looking for aggregate functions and
5443 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5444 ** points to.  Additional entries are made on the AggInfo object as
5445 ** necessary.
5446 **
5447 ** This routine should only be called after the expression has been
5448 ** analyzed by sqlite3ResolveExprNames().
5449 */
5450 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5451   Walker w;
5452   w.xExprCallback = analyzeAggregate;
5453   w.xSelectCallback = analyzeAggregatesInSelect;
5454   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5455   w.walkerDepth = 0;
5456   w.u.pNC = pNC;
5457   assert( pNC->pSrcList!=0 );
5458   sqlite3WalkExpr(&w, pExpr);
5459 }
5460 
5461 /*
5462 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5463 ** expression list.  Return the number of errors.
5464 **
5465 ** If an error is found, the analysis is cut short.
5466 */
5467 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5468   struct ExprList_item *pItem;
5469   int i;
5470   if( pList ){
5471     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5472       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5473     }
5474   }
5475 }
5476 
5477 /*
5478 ** Allocate a single new register for use to hold some intermediate result.
5479 */
5480 int sqlite3GetTempReg(Parse *pParse){
5481   if( pParse->nTempReg==0 ){
5482     return ++pParse->nMem;
5483   }
5484   return pParse->aTempReg[--pParse->nTempReg];
5485 }
5486 
5487 /*
5488 ** Deallocate a register, making available for reuse for some other
5489 ** purpose.
5490 **
5491 ** If a register is currently being used by the column cache, then
5492 ** the deallocation is deferred until the column cache line that uses
5493 ** the register becomes stale.
5494 */
5495 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5496   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5497     int i;
5498     struct yColCache *p;
5499     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5500       if( p->iReg==iReg ){
5501         p->tempReg = 1;
5502         return;
5503       }
5504     }
5505     pParse->aTempReg[pParse->nTempReg++] = iReg;
5506   }
5507 }
5508 
5509 /*
5510 ** Allocate or deallocate a block of nReg consecutive registers.
5511 */
5512 int sqlite3GetTempRange(Parse *pParse, int nReg){
5513   int i, n;
5514   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5515   i = pParse->iRangeReg;
5516   n = pParse->nRangeReg;
5517   if( nReg<=n ){
5518     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5519     pParse->iRangeReg += nReg;
5520     pParse->nRangeReg -= nReg;
5521   }else{
5522     i = pParse->nMem+1;
5523     pParse->nMem += nReg;
5524   }
5525   return i;
5526 }
5527 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5528   if( nReg==1 ){
5529     sqlite3ReleaseTempReg(pParse, iReg);
5530     return;
5531   }
5532   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5533   if( nReg>pParse->nRangeReg ){
5534     pParse->nRangeReg = nReg;
5535     pParse->iRangeReg = iReg;
5536   }
5537 }
5538 
5539 /*
5540 ** Mark all temporary registers as being unavailable for reuse.
5541 */
5542 void sqlite3ClearTempRegCache(Parse *pParse){
5543   pParse->nTempReg = 0;
5544   pParse->nRangeReg = 0;
5545 }
5546 
5547 /*
5548 ** Validate that no temporary register falls within the range of
5549 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5550 ** statements.
5551 */
5552 #ifdef SQLITE_DEBUG
5553 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5554   int i;
5555   if( pParse->nRangeReg>0
5556    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5557    && pParse->iRangeReg <= iLast
5558   ){
5559      return 0;
5560   }
5561   for(i=0; i<pParse->nTempReg; i++){
5562     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5563       return 0;
5564     }
5565   }
5566   return 1;
5567 }
5568 #endif /* SQLITE_DEBUG */
5569