1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 sqlite3TokenInit(&s, (char*)zC); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 136 || op==TK_REGISTER || op==TK_TRIGGER) 137 && p->pTab!=0 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 Expr *pNext = p->pRight; 153 /* The Expr.x union is never used at the same time as Expr.pRight */ 154 assert( p->x.pList==0 || p->pRight==0 ); 155 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 156 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 157 ** least one EP_Collate. Thus the following two ALWAYS. */ 158 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 159 int i; 160 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 161 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 162 pNext = p->x.pList->a[i].pExpr; 163 break; 164 } 165 } 166 } 167 p = pNext; 168 } 169 }else{ 170 break; 171 } 172 } 173 if( sqlite3CheckCollSeq(pParse, pColl) ){ 174 pColl = 0; 175 } 176 return pColl; 177 } 178 179 /* 180 ** pExpr is an operand of a comparison operator. aff2 is the 181 ** type affinity of the other operand. This routine returns the 182 ** type affinity that should be used for the comparison operator. 183 */ 184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 185 char aff1 = sqlite3ExprAffinity(pExpr); 186 if( aff1 && aff2 ){ 187 /* Both sides of the comparison are columns. If one has numeric 188 ** affinity, use that. Otherwise use no affinity. 189 */ 190 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 191 return SQLITE_AFF_NUMERIC; 192 }else{ 193 return SQLITE_AFF_BLOB; 194 } 195 }else if( !aff1 && !aff2 ){ 196 /* Neither side of the comparison is a column. Compare the 197 ** results directly. 198 */ 199 return SQLITE_AFF_BLOB; 200 }else{ 201 /* One side is a column, the other is not. Use the columns affinity. */ 202 assert( aff1==0 || aff2==0 ); 203 return (aff1 + aff2); 204 } 205 } 206 207 /* 208 ** pExpr is a comparison operator. Return the type affinity that should 209 ** be applied to both operands prior to doing the comparison. 210 */ 211 static char comparisonAffinity(Expr *pExpr){ 212 char aff; 213 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 214 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 215 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 216 assert( pExpr->pLeft ); 217 aff = sqlite3ExprAffinity(pExpr->pLeft); 218 if( pExpr->pRight ){ 219 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 220 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 221 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 222 }else if( !aff ){ 223 aff = SQLITE_AFF_BLOB; 224 } 225 return aff; 226 } 227 228 /* 229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 230 ** idx_affinity is the affinity of an indexed column. Return true 231 ** if the index with affinity idx_affinity may be used to implement 232 ** the comparison in pExpr. 233 */ 234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 235 char aff = comparisonAffinity(pExpr); 236 switch( aff ){ 237 case SQLITE_AFF_BLOB: 238 return 1; 239 case SQLITE_AFF_TEXT: 240 return idx_affinity==SQLITE_AFF_TEXT; 241 default: 242 return sqlite3IsNumericAffinity(idx_affinity); 243 } 244 } 245 246 /* 247 ** Return the P5 value that should be used for a binary comparison 248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 249 */ 250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 251 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 252 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 253 return aff; 254 } 255 256 /* 257 ** Return a pointer to the collation sequence that should be used by 258 ** a binary comparison operator comparing pLeft and pRight. 259 ** 260 ** If the left hand expression has a collating sequence type, then it is 261 ** used. Otherwise the collation sequence for the right hand expression 262 ** is used, or the default (BINARY) if neither expression has a collating 263 ** type. 264 ** 265 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 266 ** it is not considered. 267 */ 268 CollSeq *sqlite3BinaryCompareCollSeq( 269 Parse *pParse, 270 Expr *pLeft, 271 Expr *pRight 272 ){ 273 CollSeq *pColl; 274 assert( pLeft ); 275 if( pLeft->flags & EP_Collate ){ 276 pColl = sqlite3ExprCollSeq(pParse, pLeft); 277 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 278 pColl = sqlite3ExprCollSeq(pParse, pRight); 279 }else{ 280 pColl = sqlite3ExprCollSeq(pParse, pLeft); 281 if( !pColl ){ 282 pColl = sqlite3ExprCollSeq(pParse, pRight); 283 } 284 } 285 return pColl; 286 } 287 288 /* 289 ** Generate code for a comparison operator. 290 */ 291 static int codeCompare( 292 Parse *pParse, /* The parsing (and code generating) context */ 293 Expr *pLeft, /* The left operand */ 294 Expr *pRight, /* The right operand */ 295 int opcode, /* The comparison opcode */ 296 int in1, int in2, /* Register holding operands */ 297 int dest, /* Jump here if true. */ 298 int jumpIfNull /* If true, jump if either operand is NULL */ 299 ){ 300 int p5; 301 int addr; 302 CollSeq *p4; 303 304 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 305 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 306 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 307 (void*)p4, P4_COLLSEQ); 308 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 309 return addr; 310 } 311 312 #if SQLITE_MAX_EXPR_DEPTH>0 313 /* 314 ** Check that argument nHeight is less than or equal to the maximum 315 ** expression depth allowed. If it is not, leave an error message in 316 ** pParse. 317 */ 318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 319 int rc = SQLITE_OK; 320 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 321 if( nHeight>mxHeight ){ 322 sqlite3ErrorMsg(pParse, 323 "Expression tree is too large (maximum depth %d)", mxHeight 324 ); 325 rc = SQLITE_ERROR; 326 } 327 return rc; 328 } 329 330 /* The following three functions, heightOfExpr(), heightOfExprList() 331 ** and heightOfSelect(), are used to determine the maximum height 332 ** of any expression tree referenced by the structure passed as the 333 ** first argument. 334 ** 335 ** If this maximum height is greater than the current value pointed 336 ** to by pnHeight, the second parameter, then set *pnHeight to that 337 ** value. 338 */ 339 static void heightOfExpr(Expr *p, int *pnHeight){ 340 if( p ){ 341 if( p->nHeight>*pnHeight ){ 342 *pnHeight = p->nHeight; 343 } 344 } 345 } 346 static void heightOfExprList(ExprList *p, int *pnHeight){ 347 if( p ){ 348 int i; 349 for(i=0; i<p->nExpr; i++){ 350 heightOfExpr(p->a[i].pExpr, pnHeight); 351 } 352 } 353 } 354 static void heightOfSelect(Select *p, int *pnHeight){ 355 if( p ){ 356 heightOfExpr(p->pWhere, pnHeight); 357 heightOfExpr(p->pHaving, pnHeight); 358 heightOfExpr(p->pLimit, pnHeight); 359 heightOfExpr(p->pOffset, pnHeight); 360 heightOfExprList(p->pEList, pnHeight); 361 heightOfExprList(p->pGroupBy, pnHeight); 362 heightOfExprList(p->pOrderBy, pnHeight); 363 heightOfSelect(p->pPrior, pnHeight); 364 } 365 } 366 367 /* 368 ** Set the Expr.nHeight variable in the structure passed as an 369 ** argument. An expression with no children, Expr.pList or 370 ** Expr.pSelect member has a height of 1. Any other expression 371 ** has a height equal to the maximum height of any other 372 ** referenced Expr plus one. 373 ** 374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 375 ** if appropriate. 376 */ 377 static void exprSetHeight(Expr *p){ 378 int nHeight = 0; 379 heightOfExpr(p->pLeft, &nHeight); 380 heightOfExpr(p->pRight, &nHeight); 381 if( ExprHasProperty(p, EP_xIsSelect) ){ 382 heightOfSelect(p->x.pSelect, &nHeight); 383 }else if( p->x.pList ){ 384 heightOfExprList(p->x.pList, &nHeight); 385 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 386 } 387 p->nHeight = nHeight + 1; 388 } 389 390 /* 391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 392 ** the height is greater than the maximum allowed expression depth, 393 ** leave an error in pParse. 394 ** 395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 396 ** Expr.flags. 397 */ 398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 399 if( pParse->nErr ) return; 400 exprSetHeight(p); 401 sqlite3ExprCheckHeight(pParse, p->nHeight); 402 } 403 404 /* 405 ** Return the maximum height of any expression tree referenced 406 ** by the select statement passed as an argument. 407 */ 408 int sqlite3SelectExprHeight(Select *p){ 409 int nHeight = 0; 410 heightOfSelect(p, &nHeight); 411 return nHeight; 412 } 413 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 414 /* 415 ** Propagate all EP_Propagate flags from the Expr.x.pList into 416 ** Expr.flags. 417 */ 418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 419 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 420 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 421 } 422 } 423 #define exprSetHeight(y) 424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 425 426 /* 427 ** This routine is the core allocator for Expr nodes. 428 ** 429 ** Construct a new expression node and return a pointer to it. Memory 430 ** for this node and for the pToken argument is a single allocation 431 ** obtained from sqlite3DbMalloc(). The calling function 432 ** is responsible for making sure the node eventually gets freed. 433 ** 434 ** If dequote is true, then the token (if it exists) is dequoted. 435 ** If dequote is false, no dequoting is performed. The deQuote 436 ** parameter is ignored if pToken is NULL or if the token does not 437 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 438 ** then the EP_DblQuoted flag is set on the expression node. 439 ** 440 ** Special case: If op==TK_INTEGER and pToken points to a string that 441 ** can be translated into a 32-bit integer, then the token is not 442 ** stored in u.zToken. Instead, the integer values is written 443 ** into u.iValue and the EP_IntValue flag is set. No extra storage 444 ** is allocated to hold the integer text and the dequote flag is ignored. 445 */ 446 Expr *sqlite3ExprAlloc( 447 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 448 int op, /* Expression opcode */ 449 const Token *pToken, /* Token argument. Might be NULL */ 450 int dequote /* True to dequote */ 451 ){ 452 Expr *pNew; 453 int nExtra = 0; 454 int iValue = 0; 455 456 assert( db!=0 ); 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 memset(pNew, 0, sizeof(Expr)); 467 pNew->op = (u8)op; 468 pNew->iAgg = -1; 469 if( pToken ){ 470 if( nExtra==0 ){ 471 pNew->flags |= EP_IntValue; 472 pNew->u.iValue = iValue; 473 }else{ 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 479 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 480 sqlite3Dequote(pNew->u.zToken); 481 } 482 } 483 } 484 #if SQLITE_MAX_EXPR_DEPTH>0 485 pNew->nHeight = 1; 486 #endif 487 } 488 return pNew; 489 } 490 491 /* 492 ** Allocate a new expression node from a zero-terminated token that has 493 ** already been dequoted. 494 */ 495 Expr *sqlite3Expr( 496 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 497 int op, /* Expression opcode */ 498 const char *zToken /* Token argument. Might be NULL */ 499 ){ 500 Token x; 501 x.z = zToken; 502 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 503 return sqlite3ExprAlloc(db, op, &x, 0); 504 } 505 506 /* 507 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 508 ** 509 ** If pRoot==NULL that means that a memory allocation error has occurred. 510 ** In that case, delete the subtrees pLeft and pRight. 511 */ 512 void sqlite3ExprAttachSubtrees( 513 sqlite3 *db, 514 Expr *pRoot, 515 Expr *pLeft, 516 Expr *pRight 517 ){ 518 if( pRoot==0 ){ 519 assert( db->mallocFailed ); 520 sqlite3ExprDelete(db, pLeft); 521 sqlite3ExprDelete(db, pRight); 522 }else{ 523 if( pRight ){ 524 pRoot->pRight = pRight; 525 pRoot->flags |= EP_Propagate & pRight->flags; 526 } 527 if( pLeft ){ 528 pRoot->pLeft = pLeft; 529 pRoot->flags |= EP_Propagate & pLeft->flags; 530 } 531 exprSetHeight(pRoot); 532 } 533 } 534 535 /* 536 ** Allocate an Expr node which joins as many as two subtrees. 537 ** 538 ** One or both of the subtrees can be NULL. Return a pointer to the new 539 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 540 ** free the subtrees and return NULL. 541 */ 542 Expr *sqlite3PExpr( 543 Parse *pParse, /* Parsing context */ 544 int op, /* Expression opcode */ 545 Expr *pLeft, /* Left operand */ 546 Expr *pRight, /* Right operand */ 547 const Token *pToken /* Argument token */ 548 ){ 549 Expr *p; 550 if( op==TK_AND && pParse->nErr==0 ){ 551 /* Take advantage of short-circuit false optimization for AND */ 552 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 553 }else{ 554 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 555 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 556 } 557 if( p ) { 558 sqlite3ExprCheckHeight(pParse, p->nHeight); 559 } 560 return p; 561 } 562 563 /* 564 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 565 ** do a memory allocation failure) then delete the pSelect object. 566 */ 567 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 568 if( pExpr ){ 569 pExpr->x.pSelect = pSelect; 570 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 571 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 572 }else{ 573 assert( pParse->db->mallocFailed ); 574 sqlite3SelectDelete(pParse->db, pSelect); 575 } 576 } 577 578 579 /* 580 ** If the expression is always either TRUE or FALSE (respectively), 581 ** then return 1. If one cannot determine the truth value of the 582 ** expression at compile-time return 0. 583 ** 584 ** This is an optimization. If is OK to return 0 here even if 585 ** the expression really is always false or false (a false negative). 586 ** But it is a bug to return 1 if the expression might have different 587 ** boolean values in different circumstances (a false positive.) 588 ** 589 ** Note that if the expression is part of conditional for a 590 ** LEFT JOIN, then we cannot determine at compile-time whether or not 591 ** is it true or false, so always return 0. 592 */ 593 static int exprAlwaysTrue(Expr *p){ 594 int v = 0; 595 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 596 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 597 return v!=0; 598 } 599 static int exprAlwaysFalse(Expr *p){ 600 int v = 0; 601 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 602 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 603 return v==0; 604 } 605 606 /* 607 ** Join two expressions using an AND operator. If either expression is 608 ** NULL, then just return the other expression. 609 ** 610 ** If one side or the other of the AND is known to be false, then instead 611 ** of returning an AND expression, just return a constant expression with 612 ** a value of false. 613 */ 614 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 615 if( pLeft==0 ){ 616 return pRight; 617 }else if( pRight==0 ){ 618 return pLeft; 619 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 620 sqlite3ExprDelete(db, pLeft); 621 sqlite3ExprDelete(db, pRight); 622 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 623 }else{ 624 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 625 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 626 return pNew; 627 } 628 } 629 630 /* 631 ** Construct a new expression node for a function with multiple 632 ** arguments. 633 */ 634 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 635 Expr *pNew; 636 sqlite3 *db = pParse->db; 637 assert( pToken ); 638 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 639 if( pNew==0 ){ 640 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 641 return 0; 642 } 643 pNew->x.pList = pList; 644 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 645 sqlite3ExprSetHeightAndFlags(pParse, pNew); 646 return pNew; 647 } 648 649 /* 650 ** Assign a variable number to an expression that encodes a wildcard 651 ** in the original SQL statement. 652 ** 653 ** Wildcards consisting of a single "?" are assigned the next sequential 654 ** variable number. 655 ** 656 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 657 ** sure "nnn" is not too be to avoid a denial of service attack when 658 ** the SQL statement comes from an external source. 659 ** 660 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 661 ** as the previous instance of the same wildcard. Or if this is the first 662 ** instance of the wildcard, the next sequential variable number is 663 ** assigned. 664 */ 665 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 666 sqlite3 *db = pParse->db; 667 const char *z; 668 669 if( pExpr==0 ) return; 670 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 671 z = pExpr->u.zToken; 672 assert( z!=0 ); 673 assert( z[0]!=0 ); 674 if( z[1]==0 ){ 675 /* Wildcard of the form "?". Assign the next variable number */ 676 assert( z[0]=='?' ); 677 pExpr->iColumn = (ynVar)(++pParse->nVar); 678 }else{ 679 ynVar x = 0; 680 u32 n = sqlite3Strlen30(z); 681 if( z[0]=='?' ){ 682 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 683 ** use it as the variable number */ 684 i64 i; 685 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 686 pExpr->iColumn = x = (ynVar)i; 687 testcase( i==0 ); 688 testcase( i==1 ); 689 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 690 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 691 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 692 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 693 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 694 x = 0; 695 } 696 if( i>pParse->nVar ){ 697 pParse->nVar = (int)i; 698 } 699 }else{ 700 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 701 ** number as the prior appearance of the same name, or if the name 702 ** has never appeared before, reuse the same variable number 703 */ 704 ynVar i; 705 for(i=0; i<pParse->nzVar; i++){ 706 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 707 pExpr->iColumn = x = (ynVar)i+1; 708 break; 709 } 710 } 711 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 712 } 713 if( x>0 ){ 714 if( x>pParse->nzVar ){ 715 char **a; 716 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 717 if( a==0 ){ 718 assert( db->mallocFailed ); /* Error reported through mallocFailed */ 719 return; 720 } 721 pParse->azVar = a; 722 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 723 pParse->nzVar = x; 724 } 725 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 726 sqlite3DbFree(db, pParse->azVar[x-1]); 727 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 728 } 729 } 730 } 731 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 732 sqlite3ErrorMsg(pParse, "too many SQL variables"); 733 } 734 } 735 736 /* 737 ** Recursively delete an expression tree. 738 */ 739 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 740 assert( p!=0 ); 741 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 742 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 743 if( !ExprHasProperty(p, EP_TokenOnly) ){ 744 /* The Expr.x union is never used at the same time as Expr.pRight */ 745 assert( p->x.pList==0 || p->pRight==0 ); 746 sqlite3ExprDelete(db, p->pLeft); 747 sqlite3ExprDelete(db, p->pRight); 748 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 749 if( ExprHasProperty(p, EP_xIsSelect) ){ 750 sqlite3SelectDelete(db, p->x.pSelect); 751 }else{ 752 sqlite3ExprListDelete(db, p->x.pList); 753 } 754 } 755 if( !ExprHasProperty(p, EP_Static) ){ 756 sqlite3DbFree(db, p); 757 } 758 } 759 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 760 if( p ) sqlite3ExprDeleteNN(db, p); 761 } 762 763 /* 764 ** Return the number of bytes allocated for the expression structure 765 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 766 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 767 */ 768 static int exprStructSize(Expr *p){ 769 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 770 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 771 return EXPR_FULLSIZE; 772 } 773 774 /* 775 ** The dupedExpr*Size() routines each return the number of bytes required 776 ** to store a copy of an expression or expression tree. They differ in 777 ** how much of the tree is measured. 778 ** 779 ** dupedExprStructSize() Size of only the Expr structure 780 ** dupedExprNodeSize() Size of Expr + space for token 781 ** dupedExprSize() Expr + token + subtree components 782 ** 783 *************************************************************************** 784 ** 785 ** The dupedExprStructSize() function returns two values OR-ed together: 786 ** (1) the space required for a copy of the Expr structure only and 787 ** (2) the EP_xxx flags that indicate what the structure size should be. 788 ** The return values is always one of: 789 ** 790 ** EXPR_FULLSIZE 791 ** EXPR_REDUCEDSIZE | EP_Reduced 792 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 793 ** 794 ** The size of the structure can be found by masking the return value 795 ** of this routine with 0xfff. The flags can be found by masking the 796 ** return value with EP_Reduced|EP_TokenOnly. 797 ** 798 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 799 ** (unreduced) Expr objects as they or originally constructed by the parser. 800 ** During expression analysis, extra information is computed and moved into 801 ** later parts of teh Expr object and that extra information might get chopped 802 ** off if the expression is reduced. Note also that it does not work to 803 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 804 ** to reduce a pristine expression tree from the parser. The implementation 805 ** of dupedExprStructSize() contain multiple assert() statements that attempt 806 ** to enforce this constraint. 807 */ 808 static int dupedExprStructSize(Expr *p, int flags){ 809 int nSize; 810 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 811 assert( EXPR_FULLSIZE<=0xfff ); 812 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 813 if( 0==flags ){ 814 nSize = EXPR_FULLSIZE; 815 }else{ 816 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 817 assert( !ExprHasProperty(p, EP_FromJoin) ); 818 assert( !ExprHasProperty(p, EP_MemToken) ); 819 assert( !ExprHasProperty(p, EP_NoReduce) ); 820 if( p->pLeft || p->x.pList ){ 821 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 822 }else{ 823 assert( p->pRight==0 ); 824 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 825 } 826 } 827 return nSize; 828 } 829 830 /* 831 ** This function returns the space in bytes required to store the copy 832 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 833 ** string is defined.) 834 */ 835 static int dupedExprNodeSize(Expr *p, int flags){ 836 int nByte = dupedExprStructSize(p, flags) & 0xfff; 837 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 838 nByte += sqlite3Strlen30(p->u.zToken)+1; 839 } 840 return ROUND8(nByte); 841 } 842 843 /* 844 ** Return the number of bytes required to create a duplicate of the 845 ** expression passed as the first argument. The second argument is a 846 ** mask containing EXPRDUP_XXX flags. 847 ** 848 ** The value returned includes space to create a copy of the Expr struct 849 ** itself and the buffer referred to by Expr.u.zToken, if any. 850 ** 851 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 852 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 853 ** and Expr.pRight variables (but not for any structures pointed to or 854 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 855 */ 856 static int dupedExprSize(Expr *p, int flags){ 857 int nByte = 0; 858 if( p ){ 859 nByte = dupedExprNodeSize(p, flags); 860 if( flags&EXPRDUP_REDUCE ){ 861 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 862 } 863 } 864 return nByte; 865 } 866 867 /* 868 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 869 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 870 ** to store the copy of expression p, the copies of p->u.zToken 871 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 872 ** if any. Before returning, *pzBuffer is set to the first byte past the 873 ** portion of the buffer copied into by this function. 874 */ 875 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 876 Expr *pNew; /* Value to return */ 877 u8 *zAlloc; /* Memory space from which to build Expr object */ 878 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 879 880 assert( db!=0 ); 881 assert( p ); 882 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 883 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 884 885 /* Figure out where to write the new Expr structure. */ 886 if( pzBuffer ){ 887 zAlloc = *pzBuffer; 888 staticFlag = EP_Static; 889 }else{ 890 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 891 staticFlag = 0; 892 } 893 pNew = (Expr *)zAlloc; 894 895 if( pNew ){ 896 /* Set nNewSize to the size allocated for the structure pointed to 897 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 898 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 899 ** by the copy of the p->u.zToken string (if any). 900 */ 901 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 902 const int nNewSize = nStructSize & 0xfff; 903 int nToken; 904 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 905 nToken = sqlite3Strlen30(p->u.zToken) + 1; 906 }else{ 907 nToken = 0; 908 } 909 if( dupFlags ){ 910 assert( ExprHasProperty(p, EP_Reduced)==0 ); 911 memcpy(zAlloc, p, nNewSize); 912 }else{ 913 u32 nSize = (u32)exprStructSize(p); 914 memcpy(zAlloc, p, nSize); 915 if( nSize<EXPR_FULLSIZE ){ 916 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 917 } 918 } 919 920 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 921 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 922 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 923 pNew->flags |= staticFlag; 924 925 /* Copy the p->u.zToken string, if any. */ 926 if( nToken ){ 927 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 928 memcpy(zToken, p->u.zToken, nToken); 929 } 930 931 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 932 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 933 if( ExprHasProperty(p, EP_xIsSelect) ){ 934 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 935 }else{ 936 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 937 } 938 } 939 940 /* Fill in pNew->pLeft and pNew->pRight. */ 941 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 942 zAlloc += dupedExprNodeSize(p, dupFlags); 943 if( ExprHasProperty(pNew, EP_Reduced) ){ 944 pNew->pLeft = p->pLeft ? 945 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 946 pNew->pRight = p->pRight ? 947 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 948 } 949 if( pzBuffer ){ 950 *pzBuffer = zAlloc; 951 } 952 }else{ 953 if( !ExprHasProperty(p, EP_TokenOnly) ){ 954 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 955 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 956 } 957 } 958 } 959 return pNew; 960 } 961 962 /* 963 ** Create and return a deep copy of the object passed as the second 964 ** argument. If an OOM condition is encountered, NULL is returned 965 ** and the db->mallocFailed flag set. 966 */ 967 #ifndef SQLITE_OMIT_CTE 968 static With *withDup(sqlite3 *db, With *p){ 969 With *pRet = 0; 970 if( p ){ 971 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 972 pRet = sqlite3DbMallocZero(db, nByte); 973 if( pRet ){ 974 int i; 975 pRet->nCte = p->nCte; 976 for(i=0; i<p->nCte; i++){ 977 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 978 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 979 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 980 } 981 } 982 } 983 return pRet; 984 } 985 #else 986 # define withDup(x,y) 0 987 #endif 988 989 /* 990 ** The following group of routines make deep copies of expressions, 991 ** expression lists, ID lists, and select statements. The copies can 992 ** be deleted (by being passed to their respective ...Delete() routines) 993 ** without effecting the originals. 994 ** 995 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 996 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 997 ** by subsequent calls to sqlite*ListAppend() routines. 998 ** 999 ** Any tables that the SrcList might point to are not duplicated. 1000 ** 1001 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1002 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1003 ** truncated version of the usual Expr structure that will be stored as 1004 ** part of the in-memory representation of the database schema. 1005 */ 1006 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1007 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1008 return p ? exprDup(db, p, flags, 0) : 0; 1009 } 1010 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1011 ExprList *pNew; 1012 struct ExprList_item *pItem, *pOldItem; 1013 int i; 1014 assert( db!=0 ); 1015 if( p==0 ) return 0; 1016 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1017 if( pNew==0 ) return 0; 1018 pNew->nExpr = i = p->nExpr; 1019 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 1020 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); 1021 if( pItem==0 ){ 1022 sqlite3DbFree(db, pNew); 1023 return 0; 1024 } 1025 pOldItem = p->a; 1026 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1027 Expr *pOldExpr = pOldItem->pExpr; 1028 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1029 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1030 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1031 pItem->sortOrder = pOldItem->sortOrder; 1032 pItem->done = 0; 1033 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1034 pItem->u = pOldItem->u; 1035 } 1036 return pNew; 1037 } 1038 1039 /* 1040 ** If cursors, triggers, views and subqueries are all omitted from 1041 ** the build, then none of the following routines, except for 1042 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1043 ** called with a NULL argument. 1044 */ 1045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1046 || !defined(SQLITE_OMIT_SUBQUERY) 1047 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1048 SrcList *pNew; 1049 int i; 1050 int nByte; 1051 assert( db!=0 ); 1052 if( p==0 ) return 0; 1053 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1054 pNew = sqlite3DbMallocRawNN(db, nByte ); 1055 if( pNew==0 ) return 0; 1056 pNew->nSrc = pNew->nAlloc = p->nSrc; 1057 for(i=0; i<p->nSrc; i++){ 1058 struct SrcList_item *pNewItem = &pNew->a[i]; 1059 struct SrcList_item *pOldItem = &p->a[i]; 1060 Table *pTab; 1061 pNewItem->pSchema = pOldItem->pSchema; 1062 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1063 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1064 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1065 pNewItem->fg = pOldItem->fg; 1066 pNewItem->iCursor = pOldItem->iCursor; 1067 pNewItem->addrFillSub = pOldItem->addrFillSub; 1068 pNewItem->regReturn = pOldItem->regReturn; 1069 if( pNewItem->fg.isIndexedBy ){ 1070 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1071 } 1072 pNewItem->pIBIndex = pOldItem->pIBIndex; 1073 if( pNewItem->fg.isTabFunc ){ 1074 pNewItem->u1.pFuncArg = 1075 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1076 } 1077 pTab = pNewItem->pTab = pOldItem->pTab; 1078 if( pTab ){ 1079 pTab->nRef++; 1080 } 1081 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1082 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1083 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1084 pNewItem->colUsed = pOldItem->colUsed; 1085 } 1086 return pNew; 1087 } 1088 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1089 IdList *pNew; 1090 int i; 1091 assert( db!=0 ); 1092 if( p==0 ) return 0; 1093 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1094 if( pNew==0 ) return 0; 1095 pNew->nId = p->nId; 1096 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1097 if( pNew->a==0 ){ 1098 sqlite3DbFree(db, pNew); 1099 return 0; 1100 } 1101 /* Note that because the size of the allocation for p->a[] is not 1102 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1103 ** on the duplicate created by this function. */ 1104 for(i=0; i<p->nId; i++){ 1105 struct IdList_item *pNewItem = &pNew->a[i]; 1106 struct IdList_item *pOldItem = &p->a[i]; 1107 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1108 pNewItem->idx = pOldItem->idx; 1109 } 1110 return pNew; 1111 } 1112 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1113 Select *pNew, *pPrior; 1114 assert( db!=0 ); 1115 if( p==0 ) return 0; 1116 pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1117 if( pNew==0 ) return 0; 1118 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1119 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1120 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1121 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1122 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1123 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1124 pNew->op = p->op; 1125 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1126 if( pPrior ) pPrior->pNext = pNew; 1127 pNew->pNext = 0; 1128 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1129 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1130 pNew->iLimit = 0; 1131 pNew->iOffset = 0; 1132 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1133 pNew->addrOpenEphm[0] = -1; 1134 pNew->addrOpenEphm[1] = -1; 1135 pNew->nSelectRow = p->nSelectRow; 1136 pNew->pWith = withDup(db, p->pWith); 1137 sqlite3SelectSetName(pNew, p->zSelName); 1138 return pNew; 1139 } 1140 #else 1141 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1142 assert( p==0 ); 1143 return 0; 1144 } 1145 #endif 1146 1147 1148 /* 1149 ** Add a new element to the end of an expression list. If pList is 1150 ** initially NULL, then create a new expression list. 1151 ** 1152 ** If a memory allocation error occurs, the entire list is freed and 1153 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1154 ** that the new entry was successfully appended. 1155 */ 1156 ExprList *sqlite3ExprListAppend( 1157 Parse *pParse, /* Parsing context */ 1158 ExprList *pList, /* List to which to append. Might be NULL */ 1159 Expr *pExpr /* Expression to be appended. Might be NULL */ 1160 ){ 1161 sqlite3 *db = pParse->db; 1162 assert( db!=0 ); 1163 if( pList==0 ){ 1164 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1165 if( pList==0 ){ 1166 goto no_mem; 1167 } 1168 pList->nExpr = 0; 1169 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); 1170 if( pList->a==0 ) goto no_mem; 1171 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1172 struct ExprList_item *a; 1173 assert( pList->nExpr>0 ); 1174 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1175 if( a==0 ){ 1176 goto no_mem; 1177 } 1178 pList->a = a; 1179 } 1180 assert( pList->a!=0 ); 1181 if( 1 ){ 1182 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1183 memset(pItem, 0, sizeof(*pItem)); 1184 pItem->pExpr = pExpr; 1185 } 1186 return pList; 1187 1188 no_mem: 1189 /* Avoid leaking memory if malloc has failed. */ 1190 sqlite3ExprDelete(db, pExpr); 1191 sqlite3ExprListDelete(db, pList); 1192 return 0; 1193 } 1194 1195 /* 1196 ** Set the sort order for the last element on the given ExprList. 1197 */ 1198 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1199 if( p==0 ) return; 1200 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1201 assert( p->nExpr>0 ); 1202 if( iSortOrder<0 ){ 1203 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1204 return; 1205 } 1206 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1207 } 1208 1209 /* 1210 ** Set the ExprList.a[].zName element of the most recently added item 1211 ** on the expression list. 1212 ** 1213 ** pList might be NULL following an OOM error. But pName should never be 1214 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1215 ** is set. 1216 */ 1217 void sqlite3ExprListSetName( 1218 Parse *pParse, /* Parsing context */ 1219 ExprList *pList, /* List to which to add the span. */ 1220 Token *pName, /* Name to be added */ 1221 int dequote /* True to cause the name to be dequoted */ 1222 ){ 1223 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1224 if( pList ){ 1225 struct ExprList_item *pItem; 1226 assert( pList->nExpr>0 ); 1227 pItem = &pList->a[pList->nExpr-1]; 1228 assert( pItem->zName==0 ); 1229 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1230 if( dequote ) sqlite3Dequote(pItem->zName); 1231 } 1232 } 1233 1234 /* 1235 ** Set the ExprList.a[].zSpan element of the most recently added item 1236 ** on the expression list. 1237 ** 1238 ** pList might be NULL following an OOM error. But pSpan should never be 1239 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1240 ** is set. 1241 */ 1242 void sqlite3ExprListSetSpan( 1243 Parse *pParse, /* Parsing context */ 1244 ExprList *pList, /* List to which to add the span. */ 1245 ExprSpan *pSpan /* The span to be added */ 1246 ){ 1247 sqlite3 *db = pParse->db; 1248 assert( pList!=0 || db->mallocFailed!=0 ); 1249 if( pList ){ 1250 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1251 assert( pList->nExpr>0 ); 1252 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1253 sqlite3DbFree(db, pItem->zSpan); 1254 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1255 (int)(pSpan->zEnd - pSpan->zStart)); 1256 } 1257 } 1258 1259 /* 1260 ** If the expression list pEList contains more than iLimit elements, 1261 ** leave an error message in pParse. 1262 */ 1263 void sqlite3ExprListCheckLength( 1264 Parse *pParse, 1265 ExprList *pEList, 1266 const char *zObject 1267 ){ 1268 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1269 testcase( pEList && pEList->nExpr==mx ); 1270 testcase( pEList && pEList->nExpr==mx+1 ); 1271 if( pEList && pEList->nExpr>mx ){ 1272 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1273 } 1274 } 1275 1276 /* 1277 ** Delete an entire expression list. 1278 */ 1279 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1280 int i; 1281 struct ExprList_item *pItem; 1282 assert( pList->a!=0 || pList->nExpr==0 ); 1283 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1284 sqlite3ExprDelete(db, pItem->pExpr); 1285 sqlite3DbFree(db, pItem->zName); 1286 sqlite3DbFree(db, pItem->zSpan); 1287 } 1288 sqlite3DbFree(db, pList->a); 1289 sqlite3DbFree(db, pList); 1290 } 1291 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1292 if( pList ) exprListDeleteNN(db, pList); 1293 } 1294 1295 /* 1296 ** Return the bitwise-OR of all Expr.flags fields in the given 1297 ** ExprList. 1298 */ 1299 u32 sqlite3ExprListFlags(const ExprList *pList){ 1300 int i; 1301 u32 m = 0; 1302 if( pList ){ 1303 for(i=0; i<pList->nExpr; i++){ 1304 Expr *pExpr = pList->a[i].pExpr; 1305 assert( pExpr!=0 ); 1306 m |= pExpr->flags; 1307 } 1308 } 1309 return m; 1310 } 1311 1312 /* 1313 ** These routines are Walker callbacks used to check expressions to 1314 ** see if they are "constant" for some definition of constant. The 1315 ** Walker.eCode value determines the type of "constant" we are looking 1316 ** for. 1317 ** 1318 ** These callback routines are used to implement the following: 1319 ** 1320 ** sqlite3ExprIsConstant() pWalker->eCode==1 1321 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1322 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1323 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1324 ** 1325 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1326 ** is found to not be a constant. 1327 ** 1328 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1329 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1330 ** an existing schema and 4 when processing a new statement. A bound 1331 ** parameter raises an error for new statements, but is silently converted 1332 ** to NULL for existing schemas. This allows sqlite_master tables that 1333 ** contain a bound parameter because they were generated by older versions 1334 ** of SQLite to be parsed by newer versions of SQLite without raising a 1335 ** malformed schema error. 1336 */ 1337 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1338 1339 /* If pWalker->eCode is 2 then any term of the expression that comes from 1340 ** the ON or USING clauses of a left join disqualifies the expression 1341 ** from being considered constant. */ 1342 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1343 pWalker->eCode = 0; 1344 return WRC_Abort; 1345 } 1346 1347 switch( pExpr->op ){ 1348 /* Consider functions to be constant if all their arguments are constant 1349 ** and either pWalker->eCode==4 or 5 or the function has the 1350 ** SQLITE_FUNC_CONST flag. */ 1351 case TK_FUNCTION: 1352 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1353 return WRC_Continue; 1354 }else{ 1355 pWalker->eCode = 0; 1356 return WRC_Abort; 1357 } 1358 case TK_ID: 1359 case TK_COLUMN: 1360 case TK_AGG_FUNCTION: 1361 case TK_AGG_COLUMN: 1362 testcase( pExpr->op==TK_ID ); 1363 testcase( pExpr->op==TK_COLUMN ); 1364 testcase( pExpr->op==TK_AGG_FUNCTION ); 1365 testcase( pExpr->op==TK_AGG_COLUMN ); 1366 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1367 return WRC_Continue; 1368 }else{ 1369 pWalker->eCode = 0; 1370 return WRC_Abort; 1371 } 1372 case TK_VARIABLE: 1373 if( pWalker->eCode==5 ){ 1374 /* Silently convert bound parameters that appear inside of CREATE 1375 ** statements into a NULL when parsing the CREATE statement text out 1376 ** of the sqlite_master table */ 1377 pExpr->op = TK_NULL; 1378 }else if( pWalker->eCode==4 ){ 1379 /* A bound parameter in a CREATE statement that originates from 1380 ** sqlite3_prepare() causes an error */ 1381 pWalker->eCode = 0; 1382 return WRC_Abort; 1383 } 1384 /* Fall through */ 1385 default: 1386 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1387 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1388 return WRC_Continue; 1389 } 1390 } 1391 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1392 UNUSED_PARAMETER(NotUsed); 1393 pWalker->eCode = 0; 1394 return WRC_Abort; 1395 } 1396 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1397 Walker w; 1398 memset(&w, 0, sizeof(w)); 1399 w.eCode = initFlag; 1400 w.xExprCallback = exprNodeIsConstant; 1401 w.xSelectCallback = selectNodeIsConstant; 1402 w.u.iCur = iCur; 1403 sqlite3WalkExpr(&w, p); 1404 return w.eCode; 1405 } 1406 1407 /* 1408 ** Walk an expression tree. Return non-zero if the expression is constant 1409 ** and 0 if it involves variables or function calls. 1410 ** 1411 ** For the purposes of this function, a double-quoted string (ex: "abc") 1412 ** is considered a variable but a single-quoted string (ex: 'abc') is 1413 ** a constant. 1414 */ 1415 int sqlite3ExprIsConstant(Expr *p){ 1416 return exprIsConst(p, 1, 0); 1417 } 1418 1419 /* 1420 ** Walk an expression tree. Return non-zero if the expression is constant 1421 ** that does no originate from the ON or USING clauses of a join. 1422 ** Return 0 if it involves variables or function calls or terms from 1423 ** an ON or USING clause. 1424 */ 1425 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1426 return exprIsConst(p, 2, 0); 1427 } 1428 1429 /* 1430 ** Walk an expression tree. Return non-zero if the expression is constant 1431 ** for any single row of the table with cursor iCur. In other words, the 1432 ** expression must not refer to any non-deterministic function nor any 1433 ** table other than iCur. 1434 */ 1435 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1436 return exprIsConst(p, 3, iCur); 1437 } 1438 1439 /* 1440 ** Walk an expression tree. Return non-zero if the expression is constant 1441 ** or a function call with constant arguments. Return and 0 if there 1442 ** are any variables. 1443 ** 1444 ** For the purposes of this function, a double-quoted string (ex: "abc") 1445 ** is considered a variable but a single-quoted string (ex: 'abc') is 1446 ** a constant. 1447 */ 1448 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1449 assert( isInit==0 || isInit==1 ); 1450 return exprIsConst(p, 4+isInit, 0); 1451 } 1452 1453 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1454 /* 1455 ** Walk an expression tree. Return 1 if the expression contains a 1456 ** subquery of some kind. Return 0 if there are no subqueries. 1457 */ 1458 int sqlite3ExprContainsSubquery(Expr *p){ 1459 Walker w; 1460 memset(&w, 0, sizeof(w)); 1461 w.eCode = 1; 1462 w.xExprCallback = sqlite3ExprWalkNoop; 1463 w.xSelectCallback = selectNodeIsConstant; 1464 sqlite3WalkExpr(&w, p); 1465 return w.eCode==0; 1466 } 1467 #endif 1468 1469 /* 1470 ** If the expression p codes a constant integer that is small enough 1471 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1472 ** in *pValue. If the expression is not an integer or if it is too big 1473 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1474 */ 1475 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1476 int rc = 0; 1477 1478 /* If an expression is an integer literal that fits in a signed 32-bit 1479 ** integer, then the EP_IntValue flag will have already been set */ 1480 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1481 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1482 1483 if( p->flags & EP_IntValue ){ 1484 *pValue = p->u.iValue; 1485 return 1; 1486 } 1487 switch( p->op ){ 1488 case TK_UPLUS: { 1489 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1490 break; 1491 } 1492 case TK_UMINUS: { 1493 int v; 1494 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1495 assert( v!=(-2147483647-1) ); 1496 *pValue = -v; 1497 rc = 1; 1498 } 1499 break; 1500 } 1501 default: break; 1502 } 1503 return rc; 1504 } 1505 1506 /* 1507 ** Return FALSE if there is no chance that the expression can be NULL. 1508 ** 1509 ** If the expression might be NULL or if the expression is too complex 1510 ** to tell return TRUE. 1511 ** 1512 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1513 ** when we know that a value cannot be NULL. Hence, a false positive 1514 ** (returning TRUE when in fact the expression can never be NULL) might 1515 ** be a small performance hit but is otherwise harmless. On the other 1516 ** hand, a false negative (returning FALSE when the result could be NULL) 1517 ** will likely result in an incorrect answer. So when in doubt, return 1518 ** TRUE. 1519 */ 1520 int sqlite3ExprCanBeNull(const Expr *p){ 1521 u8 op; 1522 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1523 op = p->op; 1524 if( op==TK_REGISTER ) op = p->op2; 1525 switch( op ){ 1526 case TK_INTEGER: 1527 case TK_STRING: 1528 case TK_FLOAT: 1529 case TK_BLOB: 1530 return 0; 1531 case TK_COLUMN: 1532 assert( p->pTab!=0 ); 1533 return ExprHasProperty(p, EP_CanBeNull) || 1534 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1535 default: 1536 return 1; 1537 } 1538 } 1539 1540 /* 1541 ** Return TRUE if the given expression is a constant which would be 1542 ** unchanged by OP_Affinity with the affinity given in the second 1543 ** argument. 1544 ** 1545 ** This routine is used to determine if the OP_Affinity operation 1546 ** can be omitted. When in doubt return FALSE. A false negative 1547 ** is harmless. A false positive, however, can result in the wrong 1548 ** answer. 1549 */ 1550 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1551 u8 op; 1552 if( aff==SQLITE_AFF_BLOB ) return 1; 1553 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1554 op = p->op; 1555 if( op==TK_REGISTER ) op = p->op2; 1556 switch( op ){ 1557 case TK_INTEGER: { 1558 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1559 } 1560 case TK_FLOAT: { 1561 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1562 } 1563 case TK_STRING: { 1564 return aff==SQLITE_AFF_TEXT; 1565 } 1566 case TK_BLOB: { 1567 return 1; 1568 } 1569 case TK_COLUMN: { 1570 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1571 return p->iColumn<0 1572 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1573 } 1574 default: { 1575 return 0; 1576 } 1577 } 1578 } 1579 1580 /* 1581 ** Return TRUE if the given string is a row-id column name. 1582 */ 1583 int sqlite3IsRowid(const char *z){ 1584 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1585 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1586 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1587 return 0; 1588 } 1589 1590 /* 1591 ** pX is the RHS of an IN operator. If pX is a SELECT statement 1592 ** that can be simplified to a direct table access, then return 1593 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 1594 ** or if the SELECT statement needs to be manifested into a transient 1595 ** table, then return NULL. 1596 */ 1597 #ifndef SQLITE_OMIT_SUBQUERY 1598 static Select *isCandidateForInOpt(Expr *pX){ 1599 Select *p; 1600 SrcList *pSrc; 1601 ExprList *pEList; 1602 Expr *pRes; 1603 Table *pTab; 1604 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 1605 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 1606 p = pX->x.pSelect; 1607 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1608 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1609 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1610 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1611 return 0; /* No DISTINCT keyword and no aggregate functions */ 1612 } 1613 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1614 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1615 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1616 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1617 pSrc = p->pSrc; 1618 assert( pSrc!=0 ); 1619 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1620 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1621 pTab = pSrc->a[0].pTab; 1622 assert( pTab!=0 ); 1623 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1624 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1625 pEList = p->pEList; 1626 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1627 pRes = pEList->a[0].pExpr; 1628 if( pRes->op!=TK_COLUMN ) return 0; /* Result is a column */ 1629 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 1630 return p; 1631 } 1632 #endif /* SQLITE_OMIT_SUBQUERY */ 1633 1634 /* 1635 ** Code an OP_Once instruction and allocate space for its flag. Return the 1636 ** address of the new instruction. 1637 */ 1638 int sqlite3CodeOnce(Parse *pParse){ 1639 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1640 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1641 } 1642 1643 /* 1644 ** Generate code that checks the left-most column of index table iCur to see if 1645 ** it contains any NULL entries. Cause the register at regHasNull to be set 1646 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1647 ** to be set to NULL if iCur contains one or more NULL values. 1648 */ 1649 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1650 int addr1; 1651 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1652 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1653 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1654 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1655 VdbeComment((v, "first_entry_in(%d)", iCur)); 1656 sqlite3VdbeJumpHere(v, addr1); 1657 } 1658 1659 1660 #ifndef SQLITE_OMIT_SUBQUERY 1661 /* 1662 ** The argument is an IN operator with a list (not a subquery) on the 1663 ** right-hand side. Return TRUE if that list is constant. 1664 */ 1665 static int sqlite3InRhsIsConstant(Expr *pIn){ 1666 Expr *pLHS; 1667 int res; 1668 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1669 pLHS = pIn->pLeft; 1670 pIn->pLeft = 0; 1671 res = sqlite3ExprIsConstant(pIn); 1672 pIn->pLeft = pLHS; 1673 return res; 1674 } 1675 #endif 1676 1677 /* 1678 ** This function is used by the implementation of the IN (...) operator. 1679 ** The pX parameter is the expression on the RHS of the IN operator, which 1680 ** might be either a list of expressions or a subquery. 1681 ** 1682 ** The job of this routine is to find or create a b-tree object that can 1683 ** be used either to test for membership in the RHS set or to iterate through 1684 ** all members of the RHS set, skipping duplicates. 1685 ** 1686 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1687 ** and pX->iTable is set to the index of that cursor. 1688 ** 1689 ** The returned value of this function indicates the b-tree type, as follows: 1690 ** 1691 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1692 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1693 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1694 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1695 ** populated epheremal table. 1696 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1697 ** implemented as a sequence of comparisons. 1698 ** 1699 ** An existing b-tree might be used if the RHS expression pX is a simple 1700 ** subquery such as: 1701 ** 1702 ** SELECT <column> FROM <table> 1703 ** 1704 ** If the RHS of the IN operator is a list or a more complex subquery, then 1705 ** an ephemeral table might need to be generated from the RHS and then 1706 ** pX->iTable made to point to the ephemeral table instead of an 1707 ** existing table. 1708 ** 1709 ** The inFlags parameter must contain exactly one of the bits 1710 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1711 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1712 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1713 ** IN index will be used to loop over all values of the RHS of the 1714 ** IN operator. 1715 ** 1716 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1717 ** through the set members) then the b-tree must not contain duplicates. 1718 ** An epheremal table must be used unless the selected <column> is guaranteed 1719 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1720 ** has a UNIQUE constraint or UNIQUE index. 1721 ** 1722 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1723 ** for fast set membership tests) then an epheremal table must 1724 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1725 ** be found with <column> as its left-most column. 1726 ** 1727 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1728 ** if the RHS of the IN operator is a list (not a subquery) then this 1729 ** routine might decide that creating an ephemeral b-tree for membership 1730 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1731 ** calling routine should implement the IN operator using a sequence 1732 ** of Eq or Ne comparison operations. 1733 ** 1734 ** When the b-tree is being used for membership tests, the calling function 1735 ** might need to know whether or not the RHS side of the IN operator 1736 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1737 ** if there is any chance that the (...) might contain a NULL value at 1738 ** runtime, then a register is allocated and the register number written 1739 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1740 ** NULL value, then *prRhsHasNull is left unchanged. 1741 ** 1742 ** If a register is allocated and its location stored in *prRhsHasNull, then 1743 ** the value in that register will be NULL if the b-tree contains one or more 1744 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1745 ** NULL values. 1746 */ 1747 #ifndef SQLITE_OMIT_SUBQUERY 1748 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1749 Select *p; /* SELECT to the right of IN operator */ 1750 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1751 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1752 int mustBeUnique; /* True if RHS must be unique */ 1753 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1754 1755 assert( pX->op==TK_IN ); 1756 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1757 1758 /* Check to see if an existing table or index can be used to 1759 ** satisfy the query. This is preferable to generating a new 1760 ** ephemeral table. 1761 */ 1762 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 1763 sqlite3 *db = pParse->db; /* Database connection */ 1764 Table *pTab; /* Table <table>. */ 1765 Expr *pExpr; /* Expression <column> */ 1766 i16 iCol; /* Index of column <column> */ 1767 i16 iDb; /* Database idx for pTab */ 1768 1769 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1770 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1771 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1772 pTab = p->pSrc->a[0].pTab; 1773 pExpr = p->pEList->a[0].pExpr; 1774 iCol = (i16)pExpr->iColumn; 1775 1776 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1777 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1778 sqlite3CodeVerifySchema(pParse, iDb); 1779 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1780 1781 /* This function is only called from two places. In both cases the vdbe 1782 ** has already been allocated. So assume sqlite3GetVdbe() is always 1783 ** successful here. 1784 */ 1785 assert(v); 1786 if( iCol<0 ){ 1787 int iAddr = sqlite3CodeOnce(pParse); 1788 VdbeCoverage(v); 1789 1790 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1791 eType = IN_INDEX_ROWID; 1792 1793 sqlite3VdbeJumpHere(v, iAddr); 1794 }else{ 1795 Index *pIdx; /* Iterator variable */ 1796 1797 /* The collation sequence used by the comparison. If an index is to 1798 ** be used in place of a temp-table, it must be ordered according 1799 ** to this collation sequence. */ 1800 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1801 1802 /* Check that the affinity that will be used to perform the 1803 ** comparison is the same as the affinity of the column. If 1804 ** it is not, it is not possible to use any index. 1805 */ 1806 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1807 1808 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1809 if( (pIdx->aiColumn[0]==iCol) 1810 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1811 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1812 ){ 1813 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1814 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1815 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1816 VdbeComment((v, "%s", pIdx->zName)); 1817 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1818 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1819 1820 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1821 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 1822 const i64 sOne = 1; 1823 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 1824 iTab, 0, 0, (u8*)&sOne, P4_INT64); 1825 #endif 1826 *prRhsHasNull = ++pParse->nMem; 1827 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1828 } 1829 sqlite3VdbeJumpHere(v, iAddr); 1830 } 1831 } 1832 } 1833 } 1834 1835 /* If no preexisting index is available for the IN clause 1836 ** and IN_INDEX_NOOP is an allowed reply 1837 ** and the RHS of the IN operator is a list, not a subquery 1838 ** and the RHS is not constant or has two or fewer terms, 1839 ** then it is not worth creating an ephemeral table to evaluate 1840 ** the IN operator so return IN_INDEX_NOOP. 1841 */ 1842 if( eType==0 1843 && (inFlags & IN_INDEX_NOOP_OK) 1844 && !ExprHasProperty(pX, EP_xIsSelect) 1845 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1846 ){ 1847 eType = IN_INDEX_NOOP; 1848 } 1849 1850 1851 if( eType==0 ){ 1852 /* Could not find an existing table or index to use as the RHS b-tree. 1853 ** We will have to generate an ephemeral table to do the job. 1854 */ 1855 u32 savedNQueryLoop = pParse->nQueryLoop; 1856 int rMayHaveNull = 0; 1857 eType = IN_INDEX_EPH; 1858 if( inFlags & IN_INDEX_LOOP ){ 1859 pParse->nQueryLoop = 0; 1860 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1861 eType = IN_INDEX_ROWID; 1862 } 1863 }else if( prRhsHasNull ){ 1864 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1865 } 1866 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1867 pParse->nQueryLoop = savedNQueryLoop; 1868 }else{ 1869 pX->iTable = iTab; 1870 } 1871 return eType; 1872 } 1873 #endif 1874 1875 /* 1876 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1877 ** or IN operators. Examples: 1878 ** 1879 ** (SELECT a FROM b) -- subquery 1880 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1881 ** x IN (4,5,11) -- IN operator with list on right-hand side 1882 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1883 ** 1884 ** The pExpr parameter describes the expression that contains the IN 1885 ** operator or subquery. 1886 ** 1887 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1888 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1889 ** to some integer key column of a table B-Tree. In this case, use an 1890 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1891 ** (slower) variable length keys B-Tree. 1892 ** 1893 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1894 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1895 ** All this routine does is initialize the register given by rMayHaveNull 1896 ** to NULL. Calling routines will take care of changing this register 1897 ** value to non-NULL if the RHS is NULL-free. 1898 ** 1899 ** For a SELECT or EXISTS operator, return the register that holds the 1900 ** result. For IN operators or if an error occurs, the return value is 0. 1901 */ 1902 #ifndef SQLITE_OMIT_SUBQUERY 1903 int sqlite3CodeSubselect( 1904 Parse *pParse, /* Parsing context */ 1905 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1906 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1907 int isRowid /* If true, LHS of IN operator is a rowid */ 1908 ){ 1909 int jmpIfDynamic = -1; /* One-time test address */ 1910 int rReg = 0; /* Register storing resulting */ 1911 Vdbe *v = sqlite3GetVdbe(pParse); 1912 if( NEVER(v==0) ) return 0; 1913 sqlite3ExprCachePush(pParse); 1914 1915 /* This code must be run in its entirety every time it is encountered 1916 ** if any of the following is true: 1917 ** 1918 ** * The right-hand side is a correlated subquery 1919 ** * The right-hand side is an expression list containing variables 1920 ** * We are inside a trigger 1921 ** 1922 ** If all of the above are false, then we can run this code just once 1923 ** save the results, and reuse the same result on subsequent invocations. 1924 */ 1925 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1926 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1927 } 1928 1929 #ifndef SQLITE_OMIT_EXPLAIN 1930 if( pParse->explain==2 ){ 1931 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 1932 jmpIfDynamic>=0?"":"CORRELATED ", 1933 pExpr->op==TK_IN?"LIST":"SCALAR", 1934 pParse->iNextSelectId 1935 ); 1936 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1937 } 1938 #endif 1939 1940 switch( pExpr->op ){ 1941 case TK_IN: { 1942 char affinity; /* Affinity of the LHS of the IN */ 1943 int addr; /* Address of OP_OpenEphemeral instruction */ 1944 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1945 KeyInfo *pKeyInfo = 0; /* Key information */ 1946 1947 affinity = sqlite3ExprAffinity(pLeft); 1948 1949 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1950 ** expression it is handled the same way. An ephemeral table is 1951 ** filled with single-field index keys representing the results 1952 ** from the SELECT or the <exprlist>. 1953 ** 1954 ** If the 'x' expression is a column value, or the SELECT... 1955 ** statement returns a column value, then the affinity of that 1956 ** column is used to build the index keys. If both 'x' and the 1957 ** SELECT... statement are columns, then numeric affinity is used 1958 ** if either column has NUMERIC or INTEGER affinity. If neither 1959 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1960 ** is used. 1961 */ 1962 pExpr->iTable = pParse->nTab++; 1963 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1964 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1965 1966 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1967 /* Case 1: expr IN (SELECT ...) 1968 ** 1969 ** Generate code to write the results of the select into the temporary 1970 ** table allocated and opened above. 1971 */ 1972 Select *pSelect = pExpr->x.pSelect; 1973 SelectDest dest; 1974 ExprList *pEList; 1975 1976 assert( !isRowid ); 1977 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1978 dest.affSdst = (u8)affinity; 1979 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1980 pSelect->iLimit = 0; 1981 testcase( pSelect->selFlags & SF_Distinct ); 1982 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1983 if( sqlite3Select(pParse, pSelect, &dest) ){ 1984 sqlite3KeyInfoUnref(pKeyInfo); 1985 return 0; 1986 } 1987 pEList = pSelect->pEList; 1988 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1989 assert( pEList!=0 ); 1990 assert( pEList->nExpr>0 ); 1991 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1992 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1993 pEList->a[0].pExpr); 1994 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1995 /* Case 2: expr IN (exprlist) 1996 ** 1997 ** For each expression, build an index key from the evaluation and 1998 ** store it in the temporary table. If <expr> is a column, then use 1999 ** that columns affinity when building index keys. If <expr> is not 2000 ** a column, use numeric affinity. 2001 */ 2002 int i; 2003 ExprList *pList = pExpr->x.pList; 2004 struct ExprList_item *pItem; 2005 int r1, r2, r3; 2006 2007 if( !affinity ){ 2008 affinity = SQLITE_AFF_BLOB; 2009 } 2010 if( pKeyInfo ){ 2011 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2012 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2013 } 2014 2015 /* Loop through each expression in <exprlist>. */ 2016 r1 = sqlite3GetTempReg(pParse); 2017 r2 = sqlite3GetTempReg(pParse); 2018 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2019 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2020 Expr *pE2 = pItem->pExpr; 2021 int iValToIns; 2022 2023 /* If the expression is not constant then we will need to 2024 ** disable the test that was generated above that makes sure 2025 ** this code only executes once. Because for a non-constant 2026 ** expression we need to rerun this code each time. 2027 */ 2028 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2029 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2030 jmpIfDynamic = -1; 2031 } 2032 2033 /* Evaluate the expression and insert it into the temp table */ 2034 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2035 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2036 }else{ 2037 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2038 if( isRowid ){ 2039 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2040 sqlite3VdbeCurrentAddr(v)+2); 2041 VdbeCoverage(v); 2042 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2043 }else{ 2044 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2045 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2046 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2047 } 2048 } 2049 } 2050 sqlite3ReleaseTempReg(pParse, r1); 2051 sqlite3ReleaseTempReg(pParse, r2); 2052 } 2053 if( pKeyInfo ){ 2054 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2055 } 2056 break; 2057 } 2058 2059 case TK_EXISTS: 2060 case TK_SELECT: 2061 default: { 2062 /* If this has to be a scalar SELECT. Generate code to put the 2063 ** value of this select in a memory cell and record the number 2064 ** of the memory cell in iColumn. If this is an EXISTS, write 2065 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2066 ** and record that memory cell in iColumn. 2067 */ 2068 Select *pSel; /* SELECT statement to encode */ 2069 SelectDest dest; /* How to deal with SELECt result */ 2070 2071 testcase( pExpr->op==TK_EXISTS ); 2072 testcase( pExpr->op==TK_SELECT ); 2073 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2074 2075 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2076 pSel = pExpr->x.pSelect; 2077 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2078 if( pExpr->op==TK_SELECT ){ 2079 dest.eDest = SRT_Mem; 2080 dest.iSdst = dest.iSDParm; 2081 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2082 VdbeComment((v, "Init subquery result")); 2083 }else{ 2084 dest.eDest = SRT_Exists; 2085 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2086 VdbeComment((v, "Init EXISTS result")); 2087 } 2088 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2089 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2090 &sqlite3IntTokens[1]); 2091 pSel->iLimit = 0; 2092 pSel->selFlags &= ~SF_MultiValue; 2093 if( sqlite3Select(pParse, pSel, &dest) ){ 2094 return 0; 2095 } 2096 rReg = dest.iSDParm; 2097 ExprSetVVAProperty(pExpr, EP_NoReduce); 2098 break; 2099 } 2100 } 2101 2102 if( rHasNullFlag ){ 2103 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2104 } 2105 2106 if( jmpIfDynamic>=0 ){ 2107 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2108 } 2109 sqlite3ExprCachePop(pParse); 2110 2111 return rReg; 2112 } 2113 #endif /* SQLITE_OMIT_SUBQUERY */ 2114 2115 #ifndef SQLITE_OMIT_SUBQUERY 2116 /* 2117 ** Generate code for an IN expression. 2118 ** 2119 ** x IN (SELECT ...) 2120 ** x IN (value, value, ...) 2121 ** 2122 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2123 ** is an array of zero or more values. The expression is true if the LHS is 2124 ** contained within the RHS. The value of the expression is unknown (NULL) 2125 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2126 ** RHS contains one or more NULL values. 2127 ** 2128 ** This routine generates code that jumps to destIfFalse if the LHS is not 2129 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2130 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2131 ** within the RHS then fall through. 2132 */ 2133 static void sqlite3ExprCodeIN( 2134 Parse *pParse, /* Parsing and code generating context */ 2135 Expr *pExpr, /* The IN expression */ 2136 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2137 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2138 ){ 2139 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2140 char affinity; /* Comparison affinity to use */ 2141 int eType; /* Type of the RHS */ 2142 int r1; /* Temporary use register */ 2143 Vdbe *v; /* Statement under construction */ 2144 2145 /* Compute the RHS. After this step, the table with cursor 2146 ** pExpr->iTable will contains the values that make up the RHS. 2147 */ 2148 v = pParse->pVdbe; 2149 assert( v!=0 ); /* OOM detected prior to this routine */ 2150 VdbeNoopComment((v, "begin IN expr")); 2151 eType = sqlite3FindInIndex(pParse, pExpr, 2152 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2153 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2154 2155 /* Figure out the affinity to use to create a key from the results 2156 ** of the expression. affinityStr stores a static string suitable for 2157 ** P4 of OP_MakeRecord. 2158 */ 2159 affinity = comparisonAffinity(pExpr); 2160 2161 /* Code the LHS, the <expr> from "<expr> IN (...)". 2162 */ 2163 sqlite3ExprCachePush(pParse); 2164 r1 = sqlite3GetTempReg(pParse); 2165 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2166 2167 /* If sqlite3FindInIndex() did not find or create an index that is 2168 ** suitable for evaluating the IN operator, then evaluate using a 2169 ** sequence of comparisons. 2170 */ 2171 if( eType==IN_INDEX_NOOP ){ 2172 ExprList *pList = pExpr->x.pList; 2173 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2174 int labelOk = sqlite3VdbeMakeLabel(v); 2175 int r2, regToFree; 2176 int regCkNull = 0; 2177 int ii; 2178 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2179 if( destIfNull!=destIfFalse ){ 2180 regCkNull = sqlite3GetTempReg(pParse); 2181 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2182 } 2183 for(ii=0; ii<pList->nExpr; ii++){ 2184 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2185 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2186 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2187 } 2188 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2189 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2190 (void*)pColl, P4_COLLSEQ); 2191 VdbeCoverageIf(v, ii<pList->nExpr-1); 2192 VdbeCoverageIf(v, ii==pList->nExpr-1); 2193 sqlite3VdbeChangeP5(v, affinity); 2194 }else{ 2195 assert( destIfNull==destIfFalse ); 2196 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2197 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2198 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2199 } 2200 sqlite3ReleaseTempReg(pParse, regToFree); 2201 } 2202 if( regCkNull ){ 2203 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2204 sqlite3VdbeGoto(v, destIfFalse); 2205 } 2206 sqlite3VdbeResolveLabel(v, labelOk); 2207 sqlite3ReleaseTempReg(pParse, regCkNull); 2208 }else{ 2209 2210 /* If the LHS is NULL, then the result is either false or NULL depending 2211 ** on whether the RHS is empty or not, respectively. 2212 */ 2213 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2214 if( destIfNull==destIfFalse ){ 2215 /* Shortcut for the common case where the false and NULL outcomes are 2216 ** the same. */ 2217 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2218 }else{ 2219 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2220 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2221 VdbeCoverage(v); 2222 sqlite3VdbeGoto(v, destIfNull); 2223 sqlite3VdbeJumpHere(v, addr1); 2224 } 2225 } 2226 2227 if( eType==IN_INDEX_ROWID ){ 2228 /* In this case, the RHS is the ROWID of table b-tree 2229 */ 2230 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, r1); 2231 VdbeCoverage(v); 2232 }else{ 2233 /* In this case, the RHS is an index b-tree. 2234 */ 2235 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2236 2237 /* If the set membership test fails, then the result of the 2238 ** "x IN (...)" expression must be either 0 or NULL. If the set 2239 ** contains no NULL values, then the result is 0. If the set 2240 ** contains one or more NULL values, then the result of the 2241 ** expression is also NULL. 2242 */ 2243 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2244 if( rRhsHasNull==0 ){ 2245 /* This branch runs if it is known at compile time that the RHS 2246 ** cannot contain NULL values. This happens as the result 2247 ** of a "NOT NULL" constraint in the database schema. 2248 ** 2249 ** Also run this branch if NULL is equivalent to FALSE 2250 ** for this particular IN operator. 2251 */ 2252 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2253 VdbeCoverage(v); 2254 }else{ 2255 /* In this branch, the RHS of the IN might contain a NULL and 2256 ** the presence of a NULL on the RHS makes a difference in the 2257 ** outcome. 2258 */ 2259 int addr1; 2260 2261 /* First check to see if the LHS is contained in the RHS. If so, 2262 ** then the answer is TRUE the presence of NULLs in the RHS does 2263 ** not matter. If the LHS is not contained in the RHS, then the 2264 ** answer is NULL if the RHS contains NULLs and the answer is 2265 ** FALSE if the RHS is NULL-free. 2266 */ 2267 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2268 VdbeCoverage(v); 2269 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2270 VdbeCoverage(v); 2271 sqlite3VdbeGoto(v, destIfFalse); 2272 sqlite3VdbeJumpHere(v, addr1); 2273 } 2274 } 2275 } 2276 sqlite3ReleaseTempReg(pParse, r1); 2277 sqlite3ExprCachePop(pParse); 2278 VdbeComment((v, "end IN expr")); 2279 } 2280 #endif /* SQLITE_OMIT_SUBQUERY */ 2281 2282 #ifndef SQLITE_OMIT_FLOATING_POINT 2283 /* 2284 ** Generate an instruction that will put the floating point 2285 ** value described by z[0..n-1] into register iMem. 2286 ** 2287 ** The z[] string will probably not be zero-terminated. But the 2288 ** z[n] character is guaranteed to be something that does not look 2289 ** like the continuation of the number. 2290 */ 2291 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2292 if( ALWAYS(z!=0) ){ 2293 double value; 2294 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2295 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2296 if( negateFlag ) value = -value; 2297 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2298 } 2299 } 2300 #endif 2301 2302 2303 /* 2304 ** Generate an instruction that will put the integer describe by 2305 ** text z[0..n-1] into register iMem. 2306 ** 2307 ** Expr.u.zToken is always UTF8 and zero-terminated. 2308 */ 2309 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2310 Vdbe *v = pParse->pVdbe; 2311 if( pExpr->flags & EP_IntValue ){ 2312 int i = pExpr->u.iValue; 2313 assert( i>=0 ); 2314 if( negFlag ) i = -i; 2315 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2316 }else{ 2317 int c; 2318 i64 value; 2319 const char *z = pExpr->u.zToken; 2320 assert( z!=0 ); 2321 c = sqlite3DecOrHexToI64(z, &value); 2322 if( c==0 || (c==2 && negFlag) ){ 2323 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2324 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2325 }else{ 2326 #ifdef SQLITE_OMIT_FLOATING_POINT 2327 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2328 #else 2329 #ifndef SQLITE_OMIT_HEX_INTEGER 2330 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2331 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2332 }else 2333 #endif 2334 { 2335 codeReal(v, z, negFlag, iMem); 2336 } 2337 #endif 2338 } 2339 } 2340 } 2341 2342 #if defined(SQLITE_DEBUG) 2343 /* 2344 ** Verify the consistency of the column cache 2345 */ 2346 static int cacheIsValid(Parse *pParse){ 2347 int i, n; 2348 for(i=n=0; i<SQLITE_N_COLCACHE; i++){ 2349 if( pParse->aColCache[i].iReg>0 ) n++; 2350 } 2351 return n==pParse->nColCache; 2352 } 2353 #endif 2354 2355 /* 2356 ** Clear a cache entry. 2357 */ 2358 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2359 if( p->tempReg ){ 2360 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2361 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2362 } 2363 p->tempReg = 0; 2364 } 2365 p->iReg = 0; 2366 pParse->nColCache--; 2367 assert( pParse->db->mallocFailed || cacheIsValid(pParse) ); 2368 } 2369 2370 2371 /* 2372 ** Record in the column cache that a particular column from a 2373 ** particular table is stored in a particular register. 2374 */ 2375 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2376 int i; 2377 int minLru; 2378 int idxLru; 2379 struct yColCache *p; 2380 2381 /* Unless an error has occurred, register numbers are always positive. */ 2382 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2383 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2384 2385 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2386 ** for testing only - to verify that SQLite always gets the same answer 2387 ** with and without the column cache. 2388 */ 2389 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2390 2391 /* First replace any existing entry. 2392 ** 2393 ** Actually, the way the column cache is currently used, we are guaranteed 2394 ** that the object will never already be in cache. Verify this guarantee. 2395 */ 2396 #ifndef NDEBUG 2397 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2398 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2399 } 2400 #endif 2401 2402 /* Find an empty slot and replace it */ 2403 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2404 if( p->iReg==0 ){ 2405 p->iLevel = pParse->iCacheLevel; 2406 p->iTable = iTab; 2407 p->iColumn = iCol; 2408 p->iReg = iReg; 2409 p->tempReg = 0; 2410 p->lru = pParse->iCacheCnt++; 2411 pParse->nColCache++; 2412 assert( pParse->db->mallocFailed || cacheIsValid(pParse) ); 2413 return; 2414 } 2415 } 2416 2417 /* Replace the last recently used */ 2418 minLru = 0x7fffffff; 2419 idxLru = -1; 2420 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2421 if( p->lru<minLru ){ 2422 idxLru = i; 2423 minLru = p->lru; 2424 } 2425 } 2426 if( ALWAYS(idxLru>=0) ){ 2427 p = &pParse->aColCache[idxLru]; 2428 p->iLevel = pParse->iCacheLevel; 2429 p->iTable = iTab; 2430 p->iColumn = iCol; 2431 p->iReg = iReg; 2432 p->tempReg = 0; 2433 p->lru = pParse->iCacheCnt++; 2434 assert( cacheIsValid(pParse) ); 2435 return; 2436 } 2437 } 2438 2439 /* 2440 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2441 ** Purge the range of registers from the column cache. 2442 */ 2443 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2444 struct yColCache *p; 2445 if( iReg<=0 || pParse->nColCache==0 ) return; 2446 p = &pParse->aColCache[SQLITE_N_COLCACHE-1]; 2447 while(1){ 2448 if( p->iReg >= iReg && p->iReg < iReg+nReg ) cacheEntryClear(pParse, p); 2449 if( p==pParse->aColCache ) break; 2450 p--; 2451 } 2452 } 2453 2454 /* 2455 ** Remember the current column cache context. Any new entries added 2456 ** added to the column cache after this call are removed when the 2457 ** corresponding pop occurs. 2458 */ 2459 void sqlite3ExprCachePush(Parse *pParse){ 2460 pParse->iCacheLevel++; 2461 #ifdef SQLITE_DEBUG 2462 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2463 printf("PUSH to %d\n", pParse->iCacheLevel); 2464 } 2465 #endif 2466 } 2467 2468 /* 2469 ** Remove from the column cache any entries that were added since the 2470 ** the previous sqlite3ExprCachePush operation. In other words, restore 2471 ** the cache to the state it was in prior the most recent Push. 2472 */ 2473 void sqlite3ExprCachePop(Parse *pParse){ 2474 int i; 2475 struct yColCache *p; 2476 assert( pParse->iCacheLevel>=1 ); 2477 pParse->iCacheLevel--; 2478 #ifdef SQLITE_DEBUG 2479 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2480 printf("POP to %d\n", pParse->iCacheLevel); 2481 } 2482 #endif 2483 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2484 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2485 cacheEntryClear(pParse, p); 2486 } 2487 } 2488 } 2489 2490 /* 2491 ** When a cached column is reused, make sure that its register is 2492 ** no longer available as a temp register. ticket #3879: that same 2493 ** register might be in the cache in multiple places, so be sure to 2494 ** get them all. 2495 */ 2496 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2497 int i; 2498 struct yColCache *p; 2499 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2500 if( p->iReg==iReg ){ 2501 p->tempReg = 0; 2502 } 2503 } 2504 } 2505 2506 /* Generate code that will load into register regOut a value that is 2507 ** appropriate for the iIdxCol-th column of index pIdx. 2508 */ 2509 void sqlite3ExprCodeLoadIndexColumn( 2510 Parse *pParse, /* The parsing context */ 2511 Index *pIdx, /* The index whose column is to be loaded */ 2512 int iTabCur, /* Cursor pointing to a table row */ 2513 int iIdxCol, /* The column of the index to be loaded */ 2514 int regOut /* Store the index column value in this register */ 2515 ){ 2516 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2517 if( iTabCol==XN_EXPR ){ 2518 assert( pIdx->aColExpr ); 2519 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2520 pParse->iSelfTab = iTabCur; 2521 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2522 }else{ 2523 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2524 iTabCol, regOut); 2525 } 2526 } 2527 2528 /* 2529 ** Generate code to extract the value of the iCol-th column of a table. 2530 */ 2531 void sqlite3ExprCodeGetColumnOfTable( 2532 Vdbe *v, /* The VDBE under construction */ 2533 Table *pTab, /* The table containing the value */ 2534 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2535 int iCol, /* Index of the column to extract */ 2536 int regOut /* Extract the value into this register */ 2537 ){ 2538 if( iCol<0 || iCol==pTab->iPKey ){ 2539 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2540 }else{ 2541 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2542 int x = iCol; 2543 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 2544 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2545 } 2546 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2547 } 2548 if( iCol>=0 ){ 2549 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2550 } 2551 } 2552 2553 /* 2554 ** Generate code that will extract the iColumn-th column from 2555 ** table pTab and store the column value in a register. 2556 ** 2557 ** An effort is made to store the column value in register iReg. This 2558 ** is not garanteeed for GetColumn() - the result can be stored in 2559 ** any register. But the result is guaranteed to land in register iReg 2560 ** for GetColumnToReg(). 2561 ** 2562 ** There must be an open cursor to pTab in iTable when this routine 2563 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2564 */ 2565 int sqlite3ExprCodeGetColumn( 2566 Parse *pParse, /* Parsing and code generating context */ 2567 Table *pTab, /* Description of the table we are reading from */ 2568 int iColumn, /* Index of the table column */ 2569 int iTable, /* The cursor pointing to the table */ 2570 int iReg, /* Store results here */ 2571 u8 p5 /* P5 value for OP_Column + FLAGS */ 2572 ){ 2573 Vdbe *v = pParse->pVdbe; 2574 int i; 2575 struct yColCache *p; 2576 2577 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2578 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2579 p->lru = pParse->iCacheCnt++; 2580 sqlite3ExprCachePinRegister(pParse, p->iReg); 2581 return p->iReg; 2582 } 2583 } 2584 assert( v!=0 ); 2585 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2586 if( p5 ){ 2587 sqlite3VdbeChangeP5(v, p5); 2588 }else{ 2589 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2590 } 2591 return iReg; 2592 } 2593 void sqlite3ExprCodeGetColumnToReg( 2594 Parse *pParse, /* Parsing and code generating context */ 2595 Table *pTab, /* Description of the table we are reading from */ 2596 int iColumn, /* Index of the table column */ 2597 int iTable, /* The cursor pointing to the table */ 2598 int iReg /* Store results here */ 2599 ){ 2600 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2601 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2602 } 2603 2604 2605 /* 2606 ** Clear all column cache entries. 2607 */ 2608 void sqlite3ExprCacheClear(Parse *pParse){ 2609 int i; 2610 struct yColCache *p; 2611 2612 #if SQLITE_DEBUG 2613 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2614 printf("CLEAR\n"); 2615 } 2616 #endif 2617 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2618 if( p->iReg ){ 2619 cacheEntryClear(pParse, p); 2620 } 2621 } 2622 } 2623 2624 /* 2625 ** Record the fact that an affinity change has occurred on iCount 2626 ** registers starting with iStart. 2627 */ 2628 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2629 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2630 } 2631 2632 /* 2633 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2634 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2635 */ 2636 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2637 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2638 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2639 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2640 } 2641 2642 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2643 /* 2644 ** Return true if any register in the range iFrom..iTo (inclusive) 2645 ** is used as part of the column cache. 2646 ** 2647 ** This routine is used within assert() and testcase() macros only 2648 ** and does not appear in a normal build. 2649 */ 2650 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2651 int i; 2652 struct yColCache *p; 2653 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2654 int r = p->iReg; 2655 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2656 } 2657 return 0; 2658 } 2659 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2660 2661 2662 /* 2663 ** Convert an expression node to a TK_REGISTER 2664 */ 2665 static void exprToRegister(Expr *p, int iReg){ 2666 p->op2 = p->op; 2667 p->op = TK_REGISTER; 2668 p->iTable = iReg; 2669 ExprClearProperty(p, EP_Skip); 2670 } 2671 2672 /* 2673 ** Generate code into the current Vdbe to evaluate the given 2674 ** expression. Attempt to store the results in register "target". 2675 ** Return the register where results are stored. 2676 ** 2677 ** With this routine, there is no guarantee that results will 2678 ** be stored in target. The result might be stored in some other 2679 ** register if it is convenient to do so. The calling function 2680 ** must check the return code and move the results to the desired 2681 ** register. 2682 */ 2683 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2684 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2685 int op; /* The opcode being coded */ 2686 int inReg = target; /* Results stored in register inReg */ 2687 int regFree1 = 0; /* If non-zero free this temporary register */ 2688 int regFree2 = 0; /* If non-zero free this temporary register */ 2689 int r1, r2, r3, r4; /* Various register numbers */ 2690 sqlite3 *db = pParse->db; /* The database connection */ 2691 Expr tempX; /* Temporary expression node */ 2692 2693 assert( target>0 && target<=pParse->nMem ); 2694 if( v==0 ){ 2695 assert( pParse->db->mallocFailed ); 2696 return 0; 2697 } 2698 2699 if( pExpr==0 ){ 2700 op = TK_NULL; 2701 }else{ 2702 op = pExpr->op; 2703 } 2704 switch( op ){ 2705 case TK_AGG_COLUMN: { 2706 AggInfo *pAggInfo = pExpr->pAggInfo; 2707 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2708 if( !pAggInfo->directMode ){ 2709 assert( pCol->iMem>0 ); 2710 inReg = pCol->iMem; 2711 break; 2712 }else if( pAggInfo->useSortingIdx ){ 2713 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2714 pCol->iSorterColumn, target); 2715 break; 2716 } 2717 /* Otherwise, fall thru into the TK_COLUMN case */ 2718 } 2719 case TK_COLUMN: { 2720 int iTab = pExpr->iTable; 2721 if( iTab<0 ){ 2722 if( pParse->ckBase>0 ){ 2723 /* Generating CHECK constraints or inserting into partial index */ 2724 inReg = pExpr->iColumn + pParse->ckBase; 2725 break; 2726 }else{ 2727 /* Coding an expression that is part of an index where column names 2728 ** in the index refer to the table to which the index belongs */ 2729 iTab = pParse->iSelfTab; 2730 } 2731 } 2732 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2733 pExpr->iColumn, iTab, target, 2734 pExpr->op2); 2735 break; 2736 } 2737 case TK_INTEGER: { 2738 codeInteger(pParse, pExpr, 0, target); 2739 break; 2740 } 2741 #ifndef SQLITE_OMIT_FLOATING_POINT 2742 case TK_FLOAT: { 2743 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2744 codeReal(v, pExpr->u.zToken, 0, target); 2745 break; 2746 } 2747 #endif 2748 case TK_STRING: { 2749 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2750 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2751 break; 2752 } 2753 case TK_NULL: { 2754 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2755 break; 2756 } 2757 #ifndef SQLITE_OMIT_BLOB_LITERAL 2758 case TK_BLOB: { 2759 int n; 2760 const char *z; 2761 char *zBlob; 2762 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2763 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2764 assert( pExpr->u.zToken[1]=='\'' ); 2765 z = &pExpr->u.zToken[2]; 2766 n = sqlite3Strlen30(z) - 1; 2767 assert( z[n]=='\'' ); 2768 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2769 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2770 break; 2771 } 2772 #endif 2773 case TK_VARIABLE: { 2774 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2775 assert( pExpr->u.zToken!=0 ); 2776 assert( pExpr->u.zToken[0]!=0 ); 2777 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2778 if( pExpr->u.zToken[1]!=0 ){ 2779 assert( pExpr->u.zToken[0]=='?' 2780 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2781 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2782 } 2783 break; 2784 } 2785 case TK_REGISTER: { 2786 inReg = pExpr->iTable; 2787 break; 2788 } 2789 #ifndef SQLITE_OMIT_CAST 2790 case TK_CAST: { 2791 /* Expressions of the form: CAST(pLeft AS token) */ 2792 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2793 if( inReg!=target ){ 2794 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2795 inReg = target; 2796 } 2797 sqlite3VdbeAddOp2(v, OP_Cast, target, 2798 sqlite3AffinityType(pExpr->u.zToken, 0)); 2799 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2800 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2801 break; 2802 } 2803 #endif /* SQLITE_OMIT_CAST */ 2804 case TK_LT: 2805 case TK_LE: 2806 case TK_GT: 2807 case TK_GE: 2808 case TK_NE: 2809 case TK_EQ: { 2810 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2811 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2812 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2813 r1, r2, inReg, SQLITE_STOREP2); 2814 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2815 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2816 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2817 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2818 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2819 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2820 testcase( regFree1==0 ); 2821 testcase( regFree2==0 ); 2822 break; 2823 } 2824 case TK_IS: 2825 case TK_ISNOT: { 2826 testcase( op==TK_IS ); 2827 testcase( op==TK_ISNOT ); 2828 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2829 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2830 op = (op==TK_IS) ? TK_EQ : TK_NE; 2831 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2832 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2833 VdbeCoverageIf(v, op==TK_EQ); 2834 VdbeCoverageIf(v, op==TK_NE); 2835 testcase( regFree1==0 ); 2836 testcase( regFree2==0 ); 2837 break; 2838 } 2839 case TK_AND: 2840 case TK_OR: 2841 case TK_PLUS: 2842 case TK_STAR: 2843 case TK_MINUS: 2844 case TK_REM: 2845 case TK_BITAND: 2846 case TK_BITOR: 2847 case TK_SLASH: 2848 case TK_LSHIFT: 2849 case TK_RSHIFT: 2850 case TK_CONCAT: { 2851 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2852 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2853 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2854 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2855 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2856 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2857 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2858 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2859 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2860 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2861 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2862 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2863 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2864 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2865 testcase( regFree1==0 ); 2866 testcase( regFree2==0 ); 2867 break; 2868 } 2869 case TK_UMINUS: { 2870 Expr *pLeft = pExpr->pLeft; 2871 assert( pLeft ); 2872 if( pLeft->op==TK_INTEGER ){ 2873 codeInteger(pParse, pLeft, 1, target); 2874 #ifndef SQLITE_OMIT_FLOATING_POINT 2875 }else if( pLeft->op==TK_FLOAT ){ 2876 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2877 codeReal(v, pLeft->u.zToken, 1, target); 2878 #endif 2879 }else{ 2880 tempX.op = TK_INTEGER; 2881 tempX.flags = EP_IntValue|EP_TokenOnly; 2882 tempX.u.iValue = 0; 2883 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2884 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2885 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2886 testcase( regFree2==0 ); 2887 } 2888 inReg = target; 2889 break; 2890 } 2891 case TK_BITNOT: 2892 case TK_NOT: { 2893 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2894 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2895 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2896 testcase( regFree1==0 ); 2897 inReg = target; 2898 sqlite3VdbeAddOp2(v, op, r1, inReg); 2899 break; 2900 } 2901 case TK_ISNULL: 2902 case TK_NOTNULL: { 2903 int addr; 2904 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2905 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2906 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2907 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2908 testcase( regFree1==0 ); 2909 addr = sqlite3VdbeAddOp1(v, op, r1); 2910 VdbeCoverageIf(v, op==TK_ISNULL); 2911 VdbeCoverageIf(v, op==TK_NOTNULL); 2912 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2913 sqlite3VdbeJumpHere(v, addr); 2914 break; 2915 } 2916 case TK_AGG_FUNCTION: { 2917 AggInfo *pInfo = pExpr->pAggInfo; 2918 if( pInfo==0 ){ 2919 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2920 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2921 }else{ 2922 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2923 } 2924 break; 2925 } 2926 case TK_FUNCTION: { 2927 ExprList *pFarg; /* List of function arguments */ 2928 int nFarg; /* Number of function arguments */ 2929 FuncDef *pDef; /* The function definition object */ 2930 const char *zId; /* The function name */ 2931 u32 constMask = 0; /* Mask of function arguments that are constant */ 2932 int i; /* Loop counter */ 2933 u8 enc = ENC(db); /* The text encoding used by this database */ 2934 CollSeq *pColl = 0; /* A collating sequence */ 2935 2936 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2937 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2938 pFarg = 0; 2939 }else{ 2940 pFarg = pExpr->x.pList; 2941 } 2942 nFarg = pFarg ? pFarg->nExpr : 0; 2943 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2944 zId = pExpr->u.zToken; 2945 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 2946 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 2947 if( pDef==0 && pParse->explain ){ 2948 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 2949 } 2950 #endif 2951 if( pDef==0 || pDef->xFinalize!=0 ){ 2952 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 2953 break; 2954 } 2955 2956 /* Attempt a direct implementation of the built-in COALESCE() and 2957 ** IFNULL() functions. This avoids unnecessary evaluation of 2958 ** arguments past the first non-NULL argument. 2959 */ 2960 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2961 int endCoalesce = sqlite3VdbeMakeLabel(v); 2962 assert( nFarg>=2 ); 2963 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2964 for(i=1; i<nFarg; i++){ 2965 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2966 VdbeCoverage(v); 2967 sqlite3ExprCacheRemove(pParse, target, 1); 2968 sqlite3ExprCachePush(pParse); 2969 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2970 sqlite3ExprCachePop(pParse); 2971 } 2972 sqlite3VdbeResolveLabel(v, endCoalesce); 2973 break; 2974 } 2975 2976 /* The UNLIKELY() function is a no-op. The result is the value 2977 ** of the first argument. 2978 */ 2979 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2980 assert( nFarg>=1 ); 2981 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2982 break; 2983 } 2984 2985 for(i=0; i<nFarg; i++){ 2986 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2987 testcase( i==31 ); 2988 constMask |= MASKBIT32(i); 2989 } 2990 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2991 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2992 } 2993 } 2994 if( pFarg ){ 2995 if( constMask ){ 2996 r1 = pParse->nMem+1; 2997 pParse->nMem += nFarg; 2998 }else{ 2999 r1 = sqlite3GetTempRange(pParse, nFarg); 3000 } 3001 3002 /* For length() and typeof() functions with a column argument, 3003 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3004 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3005 ** loading. 3006 */ 3007 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3008 u8 exprOp; 3009 assert( nFarg==1 ); 3010 assert( pFarg->a[0].pExpr!=0 ); 3011 exprOp = pFarg->a[0].pExpr->op; 3012 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3013 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3014 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3015 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3016 pFarg->a[0].pExpr->op2 = 3017 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3018 } 3019 } 3020 3021 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3022 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3023 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3024 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3025 }else{ 3026 r1 = 0; 3027 } 3028 #ifndef SQLITE_OMIT_VIRTUALTABLE 3029 /* Possibly overload the function if the first argument is 3030 ** a virtual table column. 3031 ** 3032 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3033 ** second argument, not the first, as the argument to test to 3034 ** see if it is a column in a virtual table. This is done because 3035 ** the left operand of infix functions (the operand we want to 3036 ** control overloading) ends up as the second argument to the 3037 ** function. The expression "A glob B" is equivalent to 3038 ** "glob(B,A). We want to use the A in "A glob B" to test 3039 ** for function overloading. But we use the B term in "glob(B,A)". 3040 */ 3041 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3042 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3043 }else if( nFarg>0 ){ 3044 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3045 } 3046 #endif 3047 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3048 if( !pColl ) pColl = db->pDfltColl; 3049 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3050 } 3051 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3052 (char*)pDef, P4_FUNCDEF); 3053 sqlite3VdbeChangeP5(v, (u8)nFarg); 3054 if( nFarg && constMask==0 ){ 3055 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3056 } 3057 break; 3058 } 3059 #ifndef SQLITE_OMIT_SUBQUERY 3060 case TK_EXISTS: 3061 case TK_SELECT: { 3062 testcase( op==TK_EXISTS ); 3063 testcase( op==TK_SELECT ); 3064 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3065 break; 3066 } 3067 case TK_IN: { 3068 int destIfFalse = sqlite3VdbeMakeLabel(v); 3069 int destIfNull = sqlite3VdbeMakeLabel(v); 3070 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3071 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3072 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3073 sqlite3VdbeResolveLabel(v, destIfFalse); 3074 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3075 sqlite3VdbeResolveLabel(v, destIfNull); 3076 break; 3077 } 3078 #endif /* SQLITE_OMIT_SUBQUERY */ 3079 3080 3081 /* 3082 ** x BETWEEN y AND z 3083 ** 3084 ** This is equivalent to 3085 ** 3086 ** x>=y AND x<=z 3087 ** 3088 ** X is stored in pExpr->pLeft. 3089 ** Y is stored in pExpr->pList->a[0].pExpr. 3090 ** Z is stored in pExpr->pList->a[1].pExpr. 3091 */ 3092 case TK_BETWEEN: { 3093 Expr *pLeft = pExpr->pLeft; 3094 struct ExprList_item *pLItem = pExpr->x.pList->a; 3095 Expr *pRight = pLItem->pExpr; 3096 3097 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3098 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3099 testcase( regFree1==0 ); 3100 testcase( regFree2==0 ); 3101 r3 = sqlite3GetTempReg(pParse); 3102 r4 = sqlite3GetTempReg(pParse); 3103 codeCompare(pParse, pLeft, pRight, OP_Ge, 3104 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3105 pLItem++; 3106 pRight = pLItem->pExpr; 3107 sqlite3ReleaseTempReg(pParse, regFree2); 3108 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3109 testcase( regFree2==0 ); 3110 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3111 VdbeCoverage(v); 3112 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3113 sqlite3ReleaseTempReg(pParse, r3); 3114 sqlite3ReleaseTempReg(pParse, r4); 3115 break; 3116 } 3117 case TK_SPAN: 3118 case TK_COLLATE: 3119 case TK_UPLUS: { 3120 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3121 break; 3122 } 3123 3124 case TK_TRIGGER: { 3125 /* If the opcode is TK_TRIGGER, then the expression is a reference 3126 ** to a column in the new.* or old.* pseudo-tables available to 3127 ** trigger programs. In this case Expr.iTable is set to 1 for the 3128 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3129 ** is set to the column of the pseudo-table to read, or to -1 to 3130 ** read the rowid field. 3131 ** 3132 ** The expression is implemented using an OP_Param opcode. The p1 3133 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3134 ** to reference another column of the old.* pseudo-table, where 3135 ** i is the index of the column. For a new.rowid reference, p1 is 3136 ** set to (n+1), where n is the number of columns in each pseudo-table. 3137 ** For a reference to any other column in the new.* pseudo-table, p1 3138 ** is set to (n+2+i), where n and i are as defined previously. For 3139 ** example, if the table on which triggers are being fired is 3140 ** declared as: 3141 ** 3142 ** CREATE TABLE t1(a, b); 3143 ** 3144 ** Then p1 is interpreted as follows: 3145 ** 3146 ** p1==0 -> old.rowid p1==3 -> new.rowid 3147 ** p1==1 -> old.a p1==4 -> new.a 3148 ** p1==2 -> old.b p1==5 -> new.b 3149 */ 3150 Table *pTab = pExpr->pTab; 3151 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3152 3153 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3154 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3155 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3156 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3157 3158 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3159 VdbeComment((v, "%s.%s -> $%d", 3160 (pExpr->iTable ? "new" : "old"), 3161 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3162 target 3163 )); 3164 3165 #ifndef SQLITE_OMIT_FLOATING_POINT 3166 /* If the column has REAL affinity, it may currently be stored as an 3167 ** integer. Use OP_RealAffinity to make sure it is really real. 3168 ** 3169 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3170 ** floating point when extracting it from the record. */ 3171 if( pExpr->iColumn>=0 3172 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3173 ){ 3174 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3175 } 3176 #endif 3177 break; 3178 } 3179 3180 3181 /* 3182 ** Form A: 3183 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3184 ** 3185 ** Form B: 3186 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3187 ** 3188 ** Form A is can be transformed into the equivalent form B as follows: 3189 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3190 ** WHEN x=eN THEN rN ELSE y END 3191 ** 3192 ** X (if it exists) is in pExpr->pLeft. 3193 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3194 ** odd. The Y is also optional. If the number of elements in x.pList 3195 ** is even, then Y is omitted and the "otherwise" result is NULL. 3196 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3197 ** 3198 ** The result of the expression is the Ri for the first matching Ei, 3199 ** or if there is no matching Ei, the ELSE term Y, or if there is 3200 ** no ELSE term, NULL. 3201 */ 3202 default: assert( op==TK_CASE ); { 3203 int endLabel; /* GOTO label for end of CASE stmt */ 3204 int nextCase; /* GOTO label for next WHEN clause */ 3205 int nExpr; /* 2x number of WHEN terms */ 3206 int i; /* Loop counter */ 3207 ExprList *pEList; /* List of WHEN terms */ 3208 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3209 Expr opCompare; /* The X==Ei expression */ 3210 Expr *pX; /* The X expression */ 3211 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3212 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3213 3214 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3215 assert(pExpr->x.pList->nExpr > 0); 3216 pEList = pExpr->x.pList; 3217 aListelem = pEList->a; 3218 nExpr = pEList->nExpr; 3219 endLabel = sqlite3VdbeMakeLabel(v); 3220 if( (pX = pExpr->pLeft)!=0 ){ 3221 tempX = *pX; 3222 testcase( pX->op==TK_COLUMN ); 3223 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3224 testcase( regFree1==0 ); 3225 opCompare.op = TK_EQ; 3226 opCompare.pLeft = &tempX; 3227 pTest = &opCompare; 3228 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3229 ** The value in regFree1 might get SCopy-ed into the file result. 3230 ** So make sure that the regFree1 register is not reused for other 3231 ** purposes and possibly overwritten. */ 3232 regFree1 = 0; 3233 } 3234 for(i=0; i<nExpr-1; i=i+2){ 3235 sqlite3ExprCachePush(pParse); 3236 if( pX ){ 3237 assert( pTest!=0 ); 3238 opCompare.pRight = aListelem[i].pExpr; 3239 }else{ 3240 pTest = aListelem[i].pExpr; 3241 } 3242 nextCase = sqlite3VdbeMakeLabel(v); 3243 testcase( pTest->op==TK_COLUMN ); 3244 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3245 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3246 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3247 sqlite3VdbeGoto(v, endLabel); 3248 sqlite3ExprCachePop(pParse); 3249 sqlite3VdbeResolveLabel(v, nextCase); 3250 } 3251 if( (nExpr&1)!=0 ){ 3252 sqlite3ExprCachePush(pParse); 3253 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3254 sqlite3ExprCachePop(pParse); 3255 }else{ 3256 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3257 } 3258 assert( db->mallocFailed || pParse->nErr>0 3259 || pParse->iCacheLevel==iCacheLevel ); 3260 sqlite3VdbeResolveLabel(v, endLabel); 3261 break; 3262 } 3263 #ifndef SQLITE_OMIT_TRIGGER 3264 case TK_RAISE: { 3265 assert( pExpr->affinity==OE_Rollback 3266 || pExpr->affinity==OE_Abort 3267 || pExpr->affinity==OE_Fail 3268 || pExpr->affinity==OE_Ignore 3269 ); 3270 if( !pParse->pTriggerTab ){ 3271 sqlite3ErrorMsg(pParse, 3272 "RAISE() may only be used within a trigger-program"); 3273 return 0; 3274 } 3275 if( pExpr->affinity==OE_Abort ){ 3276 sqlite3MayAbort(pParse); 3277 } 3278 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3279 if( pExpr->affinity==OE_Ignore ){ 3280 sqlite3VdbeAddOp4( 3281 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3282 VdbeCoverage(v); 3283 }else{ 3284 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3285 pExpr->affinity, pExpr->u.zToken, 0, 0); 3286 } 3287 3288 break; 3289 } 3290 #endif 3291 } 3292 sqlite3ReleaseTempReg(pParse, regFree1); 3293 sqlite3ReleaseTempReg(pParse, regFree2); 3294 return inReg; 3295 } 3296 3297 /* 3298 ** Factor out the code of the given expression to initialization time. 3299 */ 3300 void sqlite3ExprCodeAtInit( 3301 Parse *pParse, /* Parsing context */ 3302 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3303 int regDest, /* Store the value in this register */ 3304 u8 reusable /* True if this expression is reusable */ 3305 ){ 3306 ExprList *p; 3307 assert( ConstFactorOk(pParse) ); 3308 p = pParse->pConstExpr; 3309 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3310 p = sqlite3ExprListAppend(pParse, p, pExpr); 3311 if( p ){ 3312 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3313 pItem->u.iConstExprReg = regDest; 3314 pItem->reusable = reusable; 3315 } 3316 pParse->pConstExpr = p; 3317 } 3318 3319 /* 3320 ** Generate code to evaluate an expression and store the results 3321 ** into a register. Return the register number where the results 3322 ** are stored. 3323 ** 3324 ** If the register is a temporary register that can be deallocated, 3325 ** then write its number into *pReg. If the result register is not 3326 ** a temporary, then set *pReg to zero. 3327 ** 3328 ** If pExpr is a constant, then this routine might generate this 3329 ** code to fill the register in the initialization section of the 3330 ** VDBE program, in order to factor it out of the evaluation loop. 3331 */ 3332 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3333 int r2; 3334 pExpr = sqlite3ExprSkipCollate(pExpr); 3335 if( ConstFactorOk(pParse) 3336 && pExpr->op!=TK_REGISTER 3337 && sqlite3ExprIsConstantNotJoin(pExpr) 3338 ){ 3339 ExprList *p = pParse->pConstExpr; 3340 int i; 3341 *pReg = 0; 3342 if( p ){ 3343 struct ExprList_item *pItem; 3344 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3345 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3346 return pItem->u.iConstExprReg; 3347 } 3348 } 3349 } 3350 r2 = ++pParse->nMem; 3351 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3352 }else{ 3353 int r1 = sqlite3GetTempReg(pParse); 3354 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3355 if( r2==r1 ){ 3356 *pReg = r1; 3357 }else{ 3358 sqlite3ReleaseTempReg(pParse, r1); 3359 *pReg = 0; 3360 } 3361 } 3362 return r2; 3363 } 3364 3365 /* 3366 ** Generate code that will evaluate expression pExpr and store the 3367 ** results in register target. The results are guaranteed to appear 3368 ** in register target. 3369 */ 3370 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3371 int inReg; 3372 3373 assert( target>0 && target<=pParse->nMem ); 3374 if( pExpr && pExpr->op==TK_REGISTER ){ 3375 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3376 }else{ 3377 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3378 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 3379 if( inReg!=target && pParse->pVdbe ){ 3380 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3381 } 3382 } 3383 } 3384 3385 /* 3386 ** Make a transient copy of expression pExpr and then code it using 3387 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 3388 ** except that the input expression is guaranteed to be unchanged. 3389 */ 3390 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 3391 sqlite3 *db = pParse->db; 3392 pExpr = sqlite3ExprDup(db, pExpr, 0); 3393 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 3394 sqlite3ExprDelete(db, pExpr); 3395 } 3396 3397 /* 3398 ** Generate code that will evaluate expression pExpr and store the 3399 ** results in register target. The results are guaranteed to appear 3400 ** in register target. If the expression is constant, then this routine 3401 ** might choose to code the expression at initialization time. 3402 */ 3403 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3404 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3405 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3406 }else{ 3407 sqlite3ExprCode(pParse, pExpr, target); 3408 } 3409 } 3410 3411 /* 3412 ** Generate code that evaluates the given expression and puts the result 3413 ** in register target. 3414 ** 3415 ** Also make a copy of the expression results into another "cache" register 3416 ** and modify the expression so that the next time it is evaluated, 3417 ** the result is a copy of the cache register. 3418 ** 3419 ** This routine is used for expressions that are used multiple 3420 ** times. They are evaluated once and the results of the expression 3421 ** are reused. 3422 */ 3423 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3424 Vdbe *v = pParse->pVdbe; 3425 int iMem; 3426 3427 assert( target>0 ); 3428 assert( pExpr->op!=TK_REGISTER ); 3429 sqlite3ExprCode(pParse, pExpr, target); 3430 iMem = ++pParse->nMem; 3431 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3432 exprToRegister(pExpr, iMem); 3433 } 3434 3435 /* 3436 ** Generate code that pushes the value of every element of the given 3437 ** expression list into a sequence of registers beginning at target. 3438 ** 3439 ** Return the number of elements evaluated. 3440 ** 3441 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3442 ** filled using OP_SCopy. OP_Copy must be used instead. 3443 ** 3444 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3445 ** factored out into initialization code. 3446 ** 3447 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3448 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3449 ** in registers at srcReg, and so the value can be copied from there. 3450 */ 3451 int sqlite3ExprCodeExprList( 3452 Parse *pParse, /* Parsing context */ 3453 ExprList *pList, /* The expression list to be coded */ 3454 int target, /* Where to write results */ 3455 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3456 u8 flags /* SQLITE_ECEL_* flags */ 3457 ){ 3458 struct ExprList_item *pItem; 3459 int i, j, n; 3460 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3461 Vdbe *v = pParse->pVdbe; 3462 assert( pList!=0 ); 3463 assert( target>0 ); 3464 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3465 n = pList->nExpr; 3466 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3467 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3468 Expr *pExpr = pItem->pExpr; 3469 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3470 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3471 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3472 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3473 }else{ 3474 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3475 if( inReg!=target+i ){ 3476 VdbeOp *pOp; 3477 if( copyOp==OP_Copy 3478 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3479 && pOp->p1+pOp->p3+1==inReg 3480 && pOp->p2+pOp->p3+1==target+i 3481 ){ 3482 pOp->p3++; 3483 }else{ 3484 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3485 } 3486 } 3487 } 3488 } 3489 return n; 3490 } 3491 3492 /* 3493 ** Generate code for a BETWEEN operator. 3494 ** 3495 ** x BETWEEN y AND z 3496 ** 3497 ** The above is equivalent to 3498 ** 3499 ** x>=y AND x<=z 3500 ** 3501 ** Code it as such, taking care to do the common subexpression 3502 ** elimination of x. 3503 */ 3504 static void exprCodeBetween( 3505 Parse *pParse, /* Parsing and code generating context */ 3506 Expr *pExpr, /* The BETWEEN expression */ 3507 int dest, /* Jump here if the jump is taken */ 3508 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3509 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3510 ){ 3511 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3512 Expr compLeft; /* The x>=y term */ 3513 Expr compRight; /* The x<=z term */ 3514 Expr exprX; /* The x subexpression */ 3515 int regFree1 = 0; /* Temporary use register */ 3516 3517 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3518 exprX = *pExpr->pLeft; 3519 exprAnd.op = TK_AND; 3520 exprAnd.pLeft = &compLeft; 3521 exprAnd.pRight = &compRight; 3522 compLeft.op = TK_GE; 3523 compLeft.pLeft = &exprX; 3524 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3525 compRight.op = TK_LE; 3526 compRight.pLeft = &exprX; 3527 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3528 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3529 if( jumpIfTrue ){ 3530 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3531 }else{ 3532 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3533 } 3534 sqlite3ReleaseTempReg(pParse, regFree1); 3535 3536 /* Ensure adequate test coverage */ 3537 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3538 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3539 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3540 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3541 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3542 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3543 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3544 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3545 } 3546 3547 /* 3548 ** Generate code for a boolean expression such that a jump is made 3549 ** to the label "dest" if the expression is true but execution 3550 ** continues straight thru if the expression is false. 3551 ** 3552 ** If the expression evaluates to NULL (neither true nor false), then 3553 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3554 ** 3555 ** This code depends on the fact that certain token values (ex: TK_EQ) 3556 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3557 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3558 ** the make process cause these values to align. Assert()s in the code 3559 ** below verify that the numbers are aligned correctly. 3560 */ 3561 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3562 Vdbe *v = pParse->pVdbe; 3563 int op = 0; 3564 int regFree1 = 0; 3565 int regFree2 = 0; 3566 int r1, r2; 3567 3568 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3569 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3570 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3571 op = pExpr->op; 3572 switch( op ){ 3573 case TK_AND: { 3574 int d2 = sqlite3VdbeMakeLabel(v); 3575 testcase( jumpIfNull==0 ); 3576 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3577 sqlite3ExprCachePush(pParse); 3578 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3579 sqlite3VdbeResolveLabel(v, d2); 3580 sqlite3ExprCachePop(pParse); 3581 break; 3582 } 3583 case TK_OR: { 3584 testcase( jumpIfNull==0 ); 3585 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3586 sqlite3ExprCachePush(pParse); 3587 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3588 sqlite3ExprCachePop(pParse); 3589 break; 3590 } 3591 case TK_NOT: { 3592 testcase( jumpIfNull==0 ); 3593 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3594 break; 3595 } 3596 case TK_IS: 3597 case TK_ISNOT: 3598 testcase( op==TK_IS ); 3599 testcase( op==TK_ISNOT ); 3600 op = (op==TK_IS) ? TK_EQ : TK_NE; 3601 jumpIfNull = SQLITE_NULLEQ; 3602 /* Fall thru */ 3603 case TK_LT: 3604 case TK_LE: 3605 case TK_GT: 3606 case TK_GE: 3607 case TK_NE: 3608 case TK_EQ: { 3609 testcase( jumpIfNull==0 ); 3610 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3611 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3612 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3613 r1, r2, dest, jumpIfNull); 3614 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3615 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3616 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3617 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3618 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 3619 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 3620 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 3621 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 3622 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 3623 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 3624 testcase( regFree1==0 ); 3625 testcase( regFree2==0 ); 3626 break; 3627 } 3628 case TK_ISNULL: 3629 case TK_NOTNULL: { 3630 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3631 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3632 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3633 sqlite3VdbeAddOp2(v, op, r1, dest); 3634 VdbeCoverageIf(v, op==TK_ISNULL); 3635 VdbeCoverageIf(v, op==TK_NOTNULL); 3636 testcase( regFree1==0 ); 3637 break; 3638 } 3639 case TK_BETWEEN: { 3640 testcase( jumpIfNull==0 ); 3641 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3642 break; 3643 } 3644 #ifndef SQLITE_OMIT_SUBQUERY 3645 case TK_IN: { 3646 int destIfFalse = sqlite3VdbeMakeLabel(v); 3647 int destIfNull = jumpIfNull ? dest : destIfFalse; 3648 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3649 sqlite3VdbeGoto(v, dest); 3650 sqlite3VdbeResolveLabel(v, destIfFalse); 3651 break; 3652 } 3653 #endif 3654 default: { 3655 if( exprAlwaysTrue(pExpr) ){ 3656 sqlite3VdbeGoto(v, dest); 3657 }else if( exprAlwaysFalse(pExpr) ){ 3658 /* No-op */ 3659 }else{ 3660 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3661 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3662 VdbeCoverage(v); 3663 testcase( regFree1==0 ); 3664 testcase( jumpIfNull==0 ); 3665 } 3666 break; 3667 } 3668 } 3669 sqlite3ReleaseTempReg(pParse, regFree1); 3670 sqlite3ReleaseTempReg(pParse, regFree2); 3671 } 3672 3673 /* 3674 ** Generate code for a boolean expression such that a jump is made 3675 ** to the label "dest" if the expression is false but execution 3676 ** continues straight thru if the expression is true. 3677 ** 3678 ** If the expression evaluates to NULL (neither true nor false) then 3679 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3680 ** is 0. 3681 */ 3682 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3683 Vdbe *v = pParse->pVdbe; 3684 int op = 0; 3685 int regFree1 = 0; 3686 int regFree2 = 0; 3687 int r1, r2; 3688 3689 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3690 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3691 if( pExpr==0 ) return; 3692 3693 /* The value of pExpr->op and op are related as follows: 3694 ** 3695 ** pExpr->op op 3696 ** --------- ---------- 3697 ** TK_ISNULL OP_NotNull 3698 ** TK_NOTNULL OP_IsNull 3699 ** TK_NE OP_Eq 3700 ** TK_EQ OP_Ne 3701 ** TK_GT OP_Le 3702 ** TK_LE OP_Gt 3703 ** TK_GE OP_Lt 3704 ** TK_LT OP_Ge 3705 ** 3706 ** For other values of pExpr->op, op is undefined and unused. 3707 ** The value of TK_ and OP_ constants are arranged such that we 3708 ** can compute the mapping above using the following expression. 3709 ** Assert()s verify that the computation is correct. 3710 */ 3711 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3712 3713 /* Verify correct alignment of TK_ and OP_ constants 3714 */ 3715 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3716 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3717 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3718 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3719 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3720 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3721 assert( pExpr->op!=TK_GT || op==OP_Le ); 3722 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3723 3724 switch( pExpr->op ){ 3725 case TK_AND: { 3726 testcase( jumpIfNull==0 ); 3727 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3728 sqlite3ExprCachePush(pParse); 3729 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3730 sqlite3ExprCachePop(pParse); 3731 break; 3732 } 3733 case TK_OR: { 3734 int d2 = sqlite3VdbeMakeLabel(v); 3735 testcase( jumpIfNull==0 ); 3736 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3737 sqlite3ExprCachePush(pParse); 3738 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3739 sqlite3VdbeResolveLabel(v, d2); 3740 sqlite3ExprCachePop(pParse); 3741 break; 3742 } 3743 case TK_NOT: { 3744 testcase( jumpIfNull==0 ); 3745 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3746 break; 3747 } 3748 case TK_IS: 3749 case TK_ISNOT: 3750 testcase( pExpr->op==TK_IS ); 3751 testcase( pExpr->op==TK_ISNOT ); 3752 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3753 jumpIfNull = SQLITE_NULLEQ; 3754 /* Fall thru */ 3755 case TK_LT: 3756 case TK_LE: 3757 case TK_GT: 3758 case TK_GE: 3759 case TK_NE: 3760 case TK_EQ: { 3761 testcase( jumpIfNull==0 ); 3762 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3763 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3764 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3765 r1, r2, dest, jumpIfNull); 3766 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3767 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3768 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3769 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3770 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 3771 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 3772 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 3773 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 3774 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 3775 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 3776 testcase( regFree1==0 ); 3777 testcase( regFree2==0 ); 3778 break; 3779 } 3780 case TK_ISNULL: 3781 case TK_NOTNULL: { 3782 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3783 sqlite3VdbeAddOp2(v, op, r1, dest); 3784 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3785 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3786 testcase( regFree1==0 ); 3787 break; 3788 } 3789 case TK_BETWEEN: { 3790 testcase( jumpIfNull==0 ); 3791 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3792 break; 3793 } 3794 #ifndef SQLITE_OMIT_SUBQUERY 3795 case TK_IN: { 3796 if( jumpIfNull ){ 3797 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3798 }else{ 3799 int destIfNull = sqlite3VdbeMakeLabel(v); 3800 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3801 sqlite3VdbeResolveLabel(v, destIfNull); 3802 } 3803 break; 3804 } 3805 #endif 3806 default: { 3807 if( exprAlwaysFalse(pExpr) ){ 3808 sqlite3VdbeGoto(v, dest); 3809 }else if( exprAlwaysTrue(pExpr) ){ 3810 /* no-op */ 3811 }else{ 3812 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3813 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3814 VdbeCoverage(v); 3815 testcase( regFree1==0 ); 3816 testcase( jumpIfNull==0 ); 3817 } 3818 break; 3819 } 3820 } 3821 sqlite3ReleaseTempReg(pParse, regFree1); 3822 sqlite3ReleaseTempReg(pParse, regFree2); 3823 } 3824 3825 /* 3826 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3827 ** code generation, and that copy is deleted after code generation. This 3828 ** ensures that the original pExpr is unchanged. 3829 */ 3830 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3831 sqlite3 *db = pParse->db; 3832 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3833 if( db->mallocFailed==0 ){ 3834 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3835 } 3836 sqlite3ExprDelete(db, pCopy); 3837 } 3838 3839 3840 /* 3841 ** Do a deep comparison of two expression trees. Return 0 if the two 3842 ** expressions are completely identical. Return 1 if they differ only 3843 ** by a COLLATE operator at the top level. Return 2 if there are differences 3844 ** other than the top-level COLLATE operator. 3845 ** 3846 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3847 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3848 ** 3849 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3850 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3851 ** 3852 ** Sometimes this routine will return 2 even if the two expressions 3853 ** really are equivalent. If we cannot prove that the expressions are 3854 ** identical, we return 2 just to be safe. So if this routine 3855 ** returns 2, then you do not really know for certain if the two 3856 ** expressions are the same. But if you get a 0 or 1 return, then you 3857 ** can be sure the expressions are the same. In the places where 3858 ** this routine is used, it does not hurt to get an extra 2 - that 3859 ** just might result in some slightly slower code. But returning 3860 ** an incorrect 0 or 1 could lead to a malfunction. 3861 */ 3862 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3863 u32 combinedFlags; 3864 if( pA==0 || pB==0 ){ 3865 return pB==pA ? 0 : 2; 3866 } 3867 combinedFlags = pA->flags | pB->flags; 3868 if( combinedFlags & EP_IntValue ){ 3869 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3870 return 0; 3871 } 3872 return 2; 3873 } 3874 if( pA->op!=pB->op ){ 3875 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3876 return 1; 3877 } 3878 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3879 return 1; 3880 } 3881 return 2; 3882 } 3883 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3884 if( pA->op==TK_FUNCTION ){ 3885 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3886 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3887 return pA->op==TK_COLLATE ? 1 : 2; 3888 } 3889 } 3890 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3891 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3892 if( combinedFlags & EP_xIsSelect ) return 2; 3893 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3894 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3895 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3896 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3897 if( pA->iColumn!=pB->iColumn ) return 2; 3898 if( pA->iTable!=pB->iTable 3899 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3900 } 3901 } 3902 return 0; 3903 } 3904 3905 /* 3906 ** Compare two ExprList objects. Return 0 if they are identical and 3907 ** non-zero if they differ in any way. 3908 ** 3909 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3910 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3911 ** 3912 ** This routine might return non-zero for equivalent ExprLists. The 3913 ** only consequence will be disabled optimizations. But this routine 3914 ** must never return 0 if the two ExprList objects are different, or 3915 ** a malfunction will result. 3916 ** 3917 ** Two NULL pointers are considered to be the same. But a NULL pointer 3918 ** always differs from a non-NULL pointer. 3919 */ 3920 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3921 int i; 3922 if( pA==0 && pB==0 ) return 0; 3923 if( pA==0 || pB==0 ) return 1; 3924 if( pA->nExpr!=pB->nExpr ) return 1; 3925 for(i=0; i<pA->nExpr; i++){ 3926 Expr *pExprA = pA->a[i].pExpr; 3927 Expr *pExprB = pB->a[i].pExpr; 3928 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3929 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3930 } 3931 return 0; 3932 } 3933 3934 /* 3935 ** Return true if we can prove the pE2 will always be true if pE1 is 3936 ** true. Return false if we cannot complete the proof or if pE2 might 3937 ** be false. Examples: 3938 ** 3939 ** pE1: x==5 pE2: x==5 Result: true 3940 ** pE1: x>0 pE2: x==5 Result: false 3941 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3942 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3943 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3944 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3945 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3946 ** 3947 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3948 ** Expr.iTable<0 then assume a table number given by iTab. 3949 ** 3950 ** When in doubt, return false. Returning true might give a performance 3951 ** improvement. Returning false might cause a performance reduction, but 3952 ** it will always give the correct answer and is hence always safe. 3953 */ 3954 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3955 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3956 return 1; 3957 } 3958 if( pE2->op==TK_OR 3959 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3960 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3961 ){ 3962 return 1; 3963 } 3964 if( pE2->op==TK_NOTNULL 3965 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3966 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3967 ){ 3968 return 1; 3969 } 3970 return 0; 3971 } 3972 3973 /* 3974 ** An instance of the following structure is used by the tree walker 3975 ** to determine if an expression can be evaluated by reference to the 3976 ** index only, without having to do a search for the corresponding 3977 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 3978 ** is the cursor for the table. 3979 */ 3980 struct IdxCover { 3981 Index *pIdx; /* The index to be tested for coverage */ 3982 int iCur; /* Cursor number for the table corresponding to the index */ 3983 }; 3984 3985 /* 3986 ** Check to see if there are references to columns in table 3987 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 3988 ** pWalker->u.pIdxCover->pIdx. 3989 */ 3990 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 3991 if( pExpr->op==TK_COLUMN 3992 && pExpr->iTable==pWalker->u.pIdxCover->iCur 3993 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 3994 ){ 3995 pWalker->eCode = 1; 3996 return WRC_Abort; 3997 } 3998 return WRC_Continue; 3999 } 4000 4001 /* 4002 ** Determine if an index pIdx on table with cursor iCur contains will 4003 ** the expression pExpr. Return true if the index does cover the 4004 ** expression and false if the pExpr expression references table columns 4005 ** that are not found in the index pIdx. 4006 ** 4007 ** An index covering an expression means that the expression can be 4008 ** evaluated using only the index and without having to lookup the 4009 ** corresponding table entry. 4010 */ 4011 int sqlite3ExprCoveredByIndex( 4012 Expr *pExpr, /* The index to be tested */ 4013 int iCur, /* The cursor number for the corresponding table */ 4014 Index *pIdx /* The index that might be used for coverage */ 4015 ){ 4016 Walker w; 4017 struct IdxCover xcov; 4018 memset(&w, 0, sizeof(w)); 4019 xcov.iCur = iCur; 4020 xcov.pIdx = pIdx; 4021 w.xExprCallback = exprIdxCover; 4022 w.u.pIdxCover = &xcov; 4023 sqlite3WalkExpr(&w, pExpr); 4024 return !w.eCode; 4025 } 4026 4027 4028 /* 4029 ** An instance of the following structure is used by the tree walker 4030 ** to count references to table columns in the arguments of an 4031 ** aggregate function, in order to implement the 4032 ** sqlite3FunctionThisSrc() routine. 4033 */ 4034 struct SrcCount { 4035 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4036 int nThis; /* Number of references to columns in pSrcList */ 4037 int nOther; /* Number of references to columns in other FROM clauses */ 4038 }; 4039 4040 /* 4041 ** Count the number of references to columns. 4042 */ 4043 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4044 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4045 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4046 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4047 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4048 ** NEVER() will need to be removed. */ 4049 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4050 int i; 4051 struct SrcCount *p = pWalker->u.pSrcCount; 4052 SrcList *pSrc = p->pSrc; 4053 int nSrc = pSrc ? pSrc->nSrc : 0; 4054 for(i=0; i<nSrc; i++){ 4055 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4056 } 4057 if( i<nSrc ){ 4058 p->nThis++; 4059 }else{ 4060 p->nOther++; 4061 } 4062 } 4063 return WRC_Continue; 4064 } 4065 4066 /* 4067 ** Determine if any of the arguments to the pExpr Function reference 4068 ** pSrcList. Return true if they do. Also return true if the function 4069 ** has no arguments or has only constant arguments. Return false if pExpr 4070 ** references columns but not columns of tables found in pSrcList. 4071 */ 4072 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4073 Walker w; 4074 struct SrcCount cnt; 4075 assert( pExpr->op==TK_AGG_FUNCTION ); 4076 memset(&w, 0, sizeof(w)); 4077 w.xExprCallback = exprSrcCount; 4078 w.u.pSrcCount = &cnt; 4079 cnt.pSrc = pSrcList; 4080 cnt.nThis = 0; 4081 cnt.nOther = 0; 4082 sqlite3WalkExprList(&w, pExpr->x.pList); 4083 return cnt.nThis>0 || cnt.nOther==0; 4084 } 4085 4086 /* 4087 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4088 ** the new element. Return a negative number if malloc fails. 4089 */ 4090 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4091 int i; 4092 pInfo->aCol = sqlite3ArrayAllocate( 4093 db, 4094 pInfo->aCol, 4095 sizeof(pInfo->aCol[0]), 4096 &pInfo->nColumn, 4097 &i 4098 ); 4099 return i; 4100 } 4101 4102 /* 4103 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4104 ** the new element. Return a negative number if malloc fails. 4105 */ 4106 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4107 int i; 4108 pInfo->aFunc = sqlite3ArrayAllocate( 4109 db, 4110 pInfo->aFunc, 4111 sizeof(pInfo->aFunc[0]), 4112 &pInfo->nFunc, 4113 &i 4114 ); 4115 return i; 4116 } 4117 4118 /* 4119 ** This is the xExprCallback for a tree walker. It is used to 4120 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4121 ** for additional information. 4122 */ 4123 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4124 int i; 4125 NameContext *pNC = pWalker->u.pNC; 4126 Parse *pParse = pNC->pParse; 4127 SrcList *pSrcList = pNC->pSrcList; 4128 AggInfo *pAggInfo = pNC->pAggInfo; 4129 4130 switch( pExpr->op ){ 4131 case TK_AGG_COLUMN: 4132 case TK_COLUMN: { 4133 testcase( pExpr->op==TK_AGG_COLUMN ); 4134 testcase( pExpr->op==TK_COLUMN ); 4135 /* Check to see if the column is in one of the tables in the FROM 4136 ** clause of the aggregate query */ 4137 if( ALWAYS(pSrcList!=0) ){ 4138 struct SrcList_item *pItem = pSrcList->a; 4139 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4140 struct AggInfo_col *pCol; 4141 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4142 if( pExpr->iTable==pItem->iCursor ){ 4143 /* If we reach this point, it means that pExpr refers to a table 4144 ** that is in the FROM clause of the aggregate query. 4145 ** 4146 ** Make an entry for the column in pAggInfo->aCol[] if there 4147 ** is not an entry there already. 4148 */ 4149 int k; 4150 pCol = pAggInfo->aCol; 4151 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4152 if( pCol->iTable==pExpr->iTable && 4153 pCol->iColumn==pExpr->iColumn ){ 4154 break; 4155 } 4156 } 4157 if( (k>=pAggInfo->nColumn) 4158 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4159 ){ 4160 pCol = &pAggInfo->aCol[k]; 4161 pCol->pTab = pExpr->pTab; 4162 pCol->iTable = pExpr->iTable; 4163 pCol->iColumn = pExpr->iColumn; 4164 pCol->iMem = ++pParse->nMem; 4165 pCol->iSorterColumn = -1; 4166 pCol->pExpr = pExpr; 4167 if( pAggInfo->pGroupBy ){ 4168 int j, n; 4169 ExprList *pGB = pAggInfo->pGroupBy; 4170 struct ExprList_item *pTerm = pGB->a; 4171 n = pGB->nExpr; 4172 for(j=0; j<n; j++, pTerm++){ 4173 Expr *pE = pTerm->pExpr; 4174 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4175 pE->iColumn==pExpr->iColumn ){ 4176 pCol->iSorterColumn = j; 4177 break; 4178 } 4179 } 4180 } 4181 if( pCol->iSorterColumn<0 ){ 4182 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4183 } 4184 } 4185 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4186 ** because it was there before or because we just created it). 4187 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4188 ** pAggInfo->aCol[] entry. 4189 */ 4190 ExprSetVVAProperty(pExpr, EP_NoReduce); 4191 pExpr->pAggInfo = pAggInfo; 4192 pExpr->op = TK_AGG_COLUMN; 4193 pExpr->iAgg = (i16)k; 4194 break; 4195 } /* endif pExpr->iTable==pItem->iCursor */ 4196 } /* end loop over pSrcList */ 4197 } 4198 return WRC_Prune; 4199 } 4200 case TK_AGG_FUNCTION: { 4201 if( (pNC->ncFlags & NC_InAggFunc)==0 4202 && pWalker->walkerDepth==pExpr->op2 4203 ){ 4204 /* Check to see if pExpr is a duplicate of another aggregate 4205 ** function that is already in the pAggInfo structure 4206 */ 4207 struct AggInfo_func *pItem = pAggInfo->aFunc; 4208 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4209 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4210 break; 4211 } 4212 } 4213 if( i>=pAggInfo->nFunc ){ 4214 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4215 */ 4216 u8 enc = ENC(pParse->db); 4217 i = addAggInfoFunc(pParse->db, pAggInfo); 4218 if( i>=0 ){ 4219 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4220 pItem = &pAggInfo->aFunc[i]; 4221 pItem->pExpr = pExpr; 4222 pItem->iMem = ++pParse->nMem; 4223 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4224 pItem->pFunc = sqlite3FindFunction(pParse->db, 4225 pExpr->u.zToken, 4226 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4227 if( pExpr->flags & EP_Distinct ){ 4228 pItem->iDistinct = pParse->nTab++; 4229 }else{ 4230 pItem->iDistinct = -1; 4231 } 4232 } 4233 } 4234 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4235 */ 4236 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4237 ExprSetVVAProperty(pExpr, EP_NoReduce); 4238 pExpr->iAgg = (i16)i; 4239 pExpr->pAggInfo = pAggInfo; 4240 return WRC_Prune; 4241 }else{ 4242 return WRC_Continue; 4243 } 4244 } 4245 } 4246 return WRC_Continue; 4247 } 4248 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4249 UNUSED_PARAMETER(pWalker); 4250 UNUSED_PARAMETER(pSelect); 4251 return WRC_Continue; 4252 } 4253 4254 /* 4255 ** Analyze the pExpr expression looking for aggregate functions and 4256 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4257 ** points to. Additional entries are made on the AggInfo object as 4258 ** necessary. 4259 ** 4260 ** This routine should only be called after the expression has been 4261 ** analyzed by sqlite3ResolveExprNames(). 4262 */ 4263 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4264 Walker w; 4265 memset(&w, 0, sizeof(w)); 4266 w.xExprCallback = analyzeAggregate; 4267 w.xSelectCallback = analyzeAggregatesInSelect; 4268 w.u.pNC = pNC; 4269 assert( pNC->pSrcList!=0 ); 4270 sqlite3WalkExpr(&w, pExpr); 4271 } 4272 4273 /* 4274 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4275 ** expression list. Return the number of errors. 4276 ** 4277 ** If an error is found, the analysis is cut short. 4278 */ 4279 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4280 struct ExprList_item *pItem; 4281 int i; 4282 if( pList ){ 4283 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4284 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4285 } 4286 } 4287 } 4288 4289 /* 4290 ** Allocate a single new register for use to hold some intermediate result. 4291 */ 4292 int sqlite3GetTempReg(Parse *pParse){ 4293 if( pParse->nTempReg==0 ){ 4294 return ++pParse->nMem; 4295 } 4296 return pParse->aTempReg[--pParse->nTempReg]; 4297 } 4298 4299 /* 4300 ** Deallocate a register, making available for reuse for some other 4301 ** purpose. 4302 ** 4303 ** If a register is currently being used by the column cache, then 4304 ** the deallocation is deferred until the column cache line that uses 4305 ** the register becomes stale. 4306 */ 4307 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4308 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4309 int i; 4310 struct yColCache *p; 4311 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4312 if( p->iReg==iReg ){ 4313 p->tempReg = 1; 4314 return; 4315 } 4316 } 4317 pParse->aTempReg[pParse->nTempReg++] = iReg; 4318 } 4319 } 4320 4321 /* 4322 ** Allocate or deallocate a block of nReg consecutive registers 4323 */ 4324 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4325 int i, n; 4326 i = pParse->iRangeReg; 4327 n = pParse->nRangeReg; 4328 if( nReg<=n ){ 4329 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4330 pParse->iRangeReg += nReg; 4331 pParse->nRangeReg -= nReg; 4332 }else{ 4333 i = pParse->nMem+1; 4334 pParse->nMem += nReg; 4335 } 4336 return i; 4337 } 4338 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4339 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4340 if( nReg>pParse->nRangeReg ){ 4341 pParse->nRangeReg = nReg; 4342 pParse->iRangeReg = iReg; 4343 } 4344 } 4345 4346 /* 4347 ** Mark all temporary registers as being unavailable for reuse. 4348 */ 4349 void sqlite3ClearTempRegCache(Parse *pParse){ 4350 pParse->nTempReg = 0; 4351 pParse->nRangeReg = 0; 4352 } 4353 4354 /* 4355 ** Validate that no temporary register falls within the range of 4356 ** iFirst..iLast, inclusive. This routine is only call from within assert() 4357 ** statements. 4358 */ 4359 #ifdef SQLITE_DEBUG 4360 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 4361 int i; 4362 if( pParse->nRangeReg>0 4363 && pParse->iRangeReg+pParse->nRangeReg<iLast 4364 && pParse->iRangeReg>=iFirst 4365 ){ 4366 return 0; 4367 } 4368 for(i=0; i<pParse->nTempReg; i++){ 4369 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 4370 return 0; 4371 } 4372 } 4373 return 1; 4374 } 4375 #endif /* SQLITE_DEBUG */ 4376