xref: /sqlite-3.40.0/src/expr.c (revision e099b67c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   sqlite3TokenInit(&s, (char*)zC);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
136           || op==TK_REGISTER || op==TK_TRIGGER)
137      && p->pTab!=0
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         Expr *pNext  = p->pRight;
153         /* The Expr.x union is never used at the same time as Expr.pRight */
154         assert( p->x.pList==0 || p->pRight==0 );
155         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
156         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
157         ** least one EP_Collate. Thus the following two ALWAYS. */
158         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
159           int i;
160           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
161             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
162               pNext = p->x.pList->a[i].pExpr;
163               break;
164             }
165           }
166         }
167         p = pNext;
168       }
169     }else{
170       break;
171     }
172   }
173   if( sqlite3CheckCollSeq(pParse, pColl) ){
174     pColl = 0;
175   }
176   return pColl;
177 }
178 
179 /*
180 ** pExpr is an operand of a comparison operator.  aff2 is the
181 ** type affinity of the other operand.  This routine returns the
182 ** type affinity that should be used for the comparison operator.
183 */
184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
185   char aff1 = sqlite3ExprAffinity(pExpr);
186   if( aff1 && aff2 ){
187     /* Both sides of the comparison are columns. If one has numeric
188     ** affinity, use that. Otherwise use no affinity.
189     */
190     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
191       return SQLITE_AFF_NUMERIC;
192     }else{
193       return SQLITE_AFF_BLOB;
194     }
195   }else if( !aff1 && !aff2 ){
196     /* Neither side of the comparison is a column.  Compare the
197     ** results directly.
198     */
199     return SQLITE_AFF_BLOB;
200   }else{
201     /* One side is a column, the other is not. Use the columns affinity. */
202     assert( aff1==0 || aff2==0 );
203     return (aff1 + aff2);
204   }
205 }
206 
207 /*
208 ** pExpr is a comparison operator.  Return the type affinity that should
209 ** be applied to both operands prior to doing the comparison.
210 */
211 static char comparisonAffinity(Expr *pExpr){
212   char aff;
213   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
214           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
215           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
216   assert( pExpr->pLeft );
217   aff = sqlite3ExprAffinity(pExpr->pLeft);
218   if( pExpr->pRight ){
219     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
220   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
221     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
222   }else if( !aff ){
223     aff = SQLITE_AFF_BLOB;
224   }
225   return aff;
226 }
227 
228 /*
229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
230 ** idx_affinity is the affinity of an indexed column. Return true
231 ** if the index with affinity idx_affinity may be used to implement
232 ** the comparison in pExpr.
233 */
234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
235   char aff = comparisonAffinity(pExpr);
236   switch( aff ){
237     case SQLITE_AFF_BLOB:
238       return 1;
239     case SQLITE_AFF_TEXT:
240       return idx_affinity==SQLITE_AFF_TEXT;
241     default:
242       return sqlite3IsNumericAffinity(idx_affinity);
243   }
244 }
245 
246 /*
247 ** Return the P5 value that should be used for a binary comparison
248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
249 */
250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
251   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
252   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
253   return aff;
254 }
255 
256 /*
257 ** Return a pointer to the collation sequence that should be used by
258 ** a binary comparison operator comparing pLeft and pRight.
259 **
260 ** If the left hand expression has a collating sequence type, then it is
261 ** used. Otherwise the collation sequence for the right hand expression
262 ** is used, or the default (BINARY) if neither expression has a collating
263 ** type.
264 **
265 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
266 ** it is not considered.
267 */
268 CollSeq *sqlite3BinaryCompareCollSeq(
269   Parse *pParse,
270   Expr *pLeft,
271   Expr *pRight
272 ){
273   CollSeq *pColl;
274   assert( pLeft );
275   if( pLeft->flags & EP_Collate ){
276     pColl = sqlite3ExprCollSeq(pParse, pLeft);
277   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
278     pColl = sqlite3ExprCollSeq(pParse, pRight);
279   }else{
280     pColl = sqlite3ExprCollSeq(pParse, pLeft);
281     if( !pColl ){
282       pColl = sqlite3ExprCollSeq(pParse, pRight);
283     }
284   }
285   return pColl;
286 }
287 
288 /*
289 ** Generate code for a comparison operator.
290 */
291 static int codeCompare(
292   Parse *pParse,    /* The parsing (and code generating) context */
293   Expr *pLeft,      /* The left operand */
294   Expr *pRight,     /* The right operand */
295   int opcode,       /* The comparison opcode */
296   int in1, int in2, /* Register holding operands */
297   int dest,         /* Jump here if true.  */
298   int jumpIfNull    /* If true, jump if either operand is NULL */
299 ){
300   int p5;
301   int addr;
302   CollSeq *p4;
303 
304   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
305   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
306   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
307                            (void*)p4, P4_COLLSEQ);
308   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
309   return addr;
310 }
311 
312 #if SQLITE_MAX_EXPR_DEPTH>0
313 /*
314 ** Check that argument nHeight is less than or equal to the maximum
315 ** expression depth allowed. If it is not, leave an error message in
316 ** pParse.
317 */
318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
319   int rc = SQLITE_OK;
320   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
321   if( nHeight>mxHeight ){
322     sqlite3ErrorMsg(pParse,
323        "Expression tree is too large (maximum depth %d)", mxHeight
324     );
325     rc = SQLITE_ERROR;
326   }
327   return rc;
328 }
329 
330 /* The following three functions, heightOfExpr(), heightOfExprList()
331 ** and heightOfSelect(), are used to determine the maximum height
332 ** of any expression tree referenced by the structure passed as the
333 ** first argument.
334 **
335 ** If this maximum height is greater than the current value pointed
336 ** to by pnHeight, the second parameter, then set *pnHeight to that
337 ** value.
338 */
339 static void heightOfExpr(Expr *p, int *pnHeight){
340   if( p ){
341     if( p->nHeight>*pnHeight ){
342       *pnHeight = p->nHeight;
343     }
344   }
345 }
346 static void heightOfExprList(ExprList *p, int *pnHeight){
347   if( p ){
348     int i;
349     for(i=0; i<p->nExpr; i++){
350       heightOfExpr(p->a[i].pExpr, pnHeight);
351     }
352   }
353 }
354 static void heightOfSelect(Select *p, int *pnHeight){
355   if( p ){
356     heightOfExpr(p->pWhere, pnHeight);
357     heightOfExpr(p->pHaving, pnHeight);
358     heightOfExpr(p->pLimit, pnHeight);
359     heightOfExpr(p->pOffset, pnHeight);
360     heightOfExprList(p->pEList, pnHeight);
361     heightOfExprList(p->pGroupBy, pnHeight);
362     heightOfExprList(p->pOrderBy, pnHeight);
363     heightOfSelect(p->pPrior, pnHeight);
364   }
365 }
366 
367 /*
368 ** Set the Expr.nHeight variable in the structure passed as an
369 ** argument. An expression with no children, Expr.pList or
370 ** Expr.pSelect member has a height of 1. Any other expression
371 ** has a height equal to the maximum height of any other
372 ** referenced Expr plus one.
373 **
374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
375 ** if appropriate.
376 */
377 static void exprSetHeight(Expr *p){
378   int nHeight = 0;
379   heightOfExpr(p->pLeft, &nHeight);
380   heightOfExpr(p->pRight, &nHeight);
381   if( ExprHasProperty(p, EP_xIsSelect) ){
382     heightOfSelect(p->x.pSelect, &nHeight);
383   }else if( p->x.pList ){
384     heightOfExprList(p->x.pList, &nHeight);
385     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
386   }
387   p->nHeight = nHeight + 1;
388 }
389 
390 /*
391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
392 ** the height is greater than the maximum allowed expression depth,
393 ** leave an error in pParse.
394 **
395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
396 ** Expr.flags.
397 */
398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
399   if( pParse->nErr ) return;
400   exprSetHeight(p);
401   sqlite3ExprCheckHeight(pParse, p->nHeight);
402 }
403 
404 /*
405 ** Return the maximum height of any expression tree referenced
406 ** by the select statement passed as an argument.
407 */
408 int sqlite3SelectExprHeight(Select *p){
409   int nHeight = 0;
410   heightOfSelect(p, &nHeight);
411   return nHeight;
412 }
413 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
414 /*
415 ** Propagate all EP_Propagate flags from the Expr.x.pList into
416 ** Expr.flags.
417 */
418 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
419   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
420     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
421   }
422 }
423 #define exprSetHeight(y)
424 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
425 
426 /*
427 ** This routine is the core allocator for Expr nodes.
428 **
429 ** Construct a new expression node and return a pointer to it.  Memory
430 ** for this node and for the pToken argument is a single allocation
431 ** obtained from sqlite3DbMalloc().  The calling function
432 ** is responsible for making sure the node eventually gets freed.
433 **
434 ** If dequote is true, then the token (if it exists) is dequoted.
435 ** If dequote is false, no dequoting is performed.  The deQuote
436 ** parameter is ignored if pToken is NULL or if the token does not
437 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
438 ** then the EP_DblQuoted flag is set on the expression node.
439 **
440 ** Special case:  If op==TK_INTEGER and pToken points to a string that
441 ** can be translated into a 32-bit integer, then the token is not
442 ** stored in u.zToken.  Instead, the integer values is written
443 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
444 ** is allocated to hold the integer text and the dequote flag is ignored.
445 */
446 Expr *sqlite3ExprAlloc(
447   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
448   int op,                 /* Expression opcode */
449   const Token *pToken,    /* Token argument.  Might be NULL */
450   int dequote             /* True to dequote */
451 ){
452   Expr *pNew;
453   int nExtra = 0;
454   int iValue = 0;
455 
456   assert( db!=0 );
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     memset(pNew, 0, sizeof(Expr));
467     pNew->op = (u8)op;
468     pNew->iAgg = -1;
469     if( pToken ){
470       if( nExtra==0 ){
471         pNew->flags |= EP_IntValue;
472         pNew->u.iValue = iValue;
473       }else{
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
479           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
480           sqlite3Dequote(pNew->u.zToken);
481         }
482       }
483     }
484 #if SQLITE_MAX_EXPR_DEPTH>0
485     pNew->nHeight = 1;
486 #endif
487   }
488   return pNew;
489 }
490 
491 /*
492 ** Allocate a new expression node from a zero-terminated token that has
493 ** already been dequoted.
494 */
495 Expr *sqlite3Expr(
496   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
497   int op,                 /* Expression opcode */
498   const char *zToken      /* Token argument.  Might be NULL */
499 ){
500   Token x;
501   x.z = zToken;
502   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
503   return sqlite3ExprAlloc(db, op, &x, 0);
504 }
505 
506 /*
507 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
508 **
509 ** If pRoot==NULL that means that a memory allocation error has occurred.
510 ** In that case, delete the subtrees pLeft and pRight.
511 */
512 void sqlite3ExprAttachSubtrees(
513   sqlite3 *db,
514   Expr *pRoot,
515   Expr *pLeft,
516   Expr *pRight
517 ){
518   if( pRoot==0 ){
519     assert( db->mallocFailed );
520     sqlite3ExprDelete(db, pLeft);
521     sqlite3ExprDelete(db, pRight);
522   }else{
523     if( pRight ){
524       pRoot->pRight = pRight;
525       pRoot->flags |= EP_Propagate & pRight->flags;
526     }
527     if( pLeft ){
528       pRoot->pLeft = pLeft;
529       pRoot->flags |= EP_Propagate & pLeft->flags;
530     }
531     exprSetHeight(pRoot);
532   }
533 }
534 
535 /*
536 ** Allocate an Expr node which joins as many as two subtrees.
537 **
538 ** One or both of the subtrees can be NULL.  Return a pointer to the new
539 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
540 ** free the subtrees and return NULL.
541 */
542 Expr *sqlite3PExpr(
543   Parse *pParse,          /* Parsing context */
544   int op,                 /* Expression opcode */
545   Expr *pLeft,            /* Left operand */
546   Expr *pRight,           /* Right operand */
547   const Token *pToken     /* Argument token */
548 ){
549   Expr *p;
550   if( op==TK_AND && pParse->nErr==0 ){
551     /* Take advantage of short-circuit false optimization for AND */
552     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
553   }else{
554     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
555     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
556   }
557   if( p ) {
558     sqlite3ExprCheckHeight(pParse, p->nHeight);
559   }
560   return p;
561 }
562 
563 /*
564 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
565 ** do a memory allocation failure) then delete the pSelect object.
566 */
567 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
568   if( pExpr ){
569     pExpr->x.pSelect = pSelect;
570     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
571     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
572   }else{
573     assert( pParse->db->mallocFailed );
574     sqlite3SelectDelete(pParse->db, pSelect);
575   }
576 }
577 
578 
579 /*
580 ** If the expression is always either TRUE or FALSE (respectively),
581 ** then return 1.  If one cannot determine the truth value of the
582 ** expression at compile-time return 0.
583 **
584 ** This is an optimization.  If is OK to return 0 here even if
585 ** the expression really is always false or false (a false negative).
586 ** But it is a bug to return 1 if the expression might have different
587 ** boolean values in different circumstances (a false positive.)
588 **
589 ** Note that if the expression is part of conditional for a
590 ** LEFT JOIN, then we cannot determine at compile-time whether or not
591 ** is it true or false, so always return 0.
592 */
593 static int exprAlwaysTrue(Expr *p){
594   int v = 0;
595   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
596   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
597   return v!=0;
598 }
599 static int exprAlwaysFalse(Expr *p){
600   int v = 0;
601   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
602   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
603   return v==0;
604 }
605 
606 /*
607 ** Join two expressions using an AND operator.  If either expression is
608 ** NULL, then just return the other expression.
609 **
610 ** If one side or the other of the AND is known to be false, then instead
611 ** of returning an AND expression, just return a constant expression with
612 ** a value of false.
613 */
614 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
615   if( pLeft==0 ){
616     return pRight;
617   }else if( pRight==0 ){
618     return pLeft;
619   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
620     sqlite3ExprDelete(db, pLeft);
621     sqlite3ExprDelete(db, pRight);
622     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
623   }else{
624     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
625     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
626     return pNew;
627   }
628 }
629 
630 /*
631 ** Construct a new expression node for a function with multiple
632 ** arguments.
633 */
634 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
635   Expr *pNew;
636   sqlite3 *db = pParse->db;
637   assert( pToken );
638   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
639   if( pNew==0 ){
640     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
641     return 0;
642   }
643   pNew->x.pList = pList;
644   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
645   sqlite3ExprSetHeightAndFlags(pParse, pNew);
646   return pNew;
647 }
648 
649 /*
650 ** Assign a variable number to an expression that encodes a wildcard
651 ** in the original SQL statement.
652 **
653 ** Wildcards consisting of a single "?" are assigned the next sequential
654 ** variable number.
655 **
656 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
657 ** sure "nnn" is not too be to avoid a denial of service attack when
658 ** the SQL statement comes from an external source.
659 **
660 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
661 ** as the previous instance of the same wildcard.  Or if this is the first
662 ** instance of the wildcard, the next sequential variable number is
663 ** assigned.
664 */
665 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
666   sqlite3 *db = pParse->db;
667   const char *z;
668 
669   if( pExpr==0 ) return;
670   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
671   z = pExpr->u.zToken;
672   assert( z!=0 );
673   assert( z[0]!=0 );
674   if( z[1]==0 ){
675     /* Wildcard of the form "?".  Assign the next variable number */
676     assert( z[0]=='?' );
677     pExpr->iColumn = (ynVar)(++pParse->nVar);
678   }else{
679     ynVar x = 0;
680     u32 n = sqlite3Strlen30(z);
681     if( z[0]=='?' ){
682       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
683       ** use it as the variable number */
684       i64 i;
685       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
686       pExpr->iColumn = x = (ynVar)i;
687       testcase( i==0 );
688       testcase( i==1 );
689       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
690       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
691       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
692         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
693             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
694         x = 0;
695       }
696       if( i>pParse->nVar ){
697         pParse->nVar = (int)i;
698       }
699     }else{
700       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
701       ** number as the prior appearance of the same name, or if the name
702       ** has never appeared before, reuse the same variable number
703       */
704       ynVar i;
705       for(i=0; i<pParse->nzVar; i++){
706         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
707           pExpr->iColumn = x = (ynVar)i+1;
708           break;
709         }
710       }
711       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
712     }
713     if( x>0 ){
714       if( x>pParse->nzVar ){
715         char **a;
716         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
717         if( a==0 ){
718           assert( db->mallocFailed ); /* Error reported through mallocFailed */
719           return;
720         }
721         pParse->azVar = a;
722         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
723         pParse->nzVar = x;
724       }
725       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
726         sqlite3DbFree(db, pParse->azVar[x-1]);
727         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
728       }
729     }
730   }
731   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
732     sqlite3ErrorMsg(pParse, "too many SQL variables");
733   }
734 }
735 
736 /*
737 ** Recursively delete an expression tree.
738 */
739 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
740   assert( p!=0 );
741   /* Sanity check: Assert that the IntValue is non-negative if it exists */
742   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
743   if( !ExprHasProperty(p, EP_TokenOnly) ){
744     /* The Expr.x union is never used at the same time as Expr.pRight */
745     assert( p->x.pList==0 || p->pRight==0 );
746     sqlite3ExprDelete(db, p->pLeft);
747     sqlite3ExprDelete(db, p->pRight);
748     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
749     if( ExprHasProperty(p, EP_xIsSelect) ){
750       sqlite3SelectDelete(db, p->x.pSelect);
751     }else{
752       sqlite3ExprListDelete(db, p->x.pList);
753     }
754   }
755   if( !ExprHasProperty(p, EP_Static) ){
756     sqlite3DbFree(db, p);
757   }
758 }
759 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
760   if( p ) sqlite3ExprDeleteNN(db, p);
761 }
762 
763 /*
764 ** Return the number of bytes allocated for the expression structure
765 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
766 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
767 */
768 static int exprStructSize(Expr *p){
769   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
770   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
771   return EXPR_FULLSIZE;
772 }
773 
774 /*
775 ** The dupedExpr*Size() routines each return the number of bytes required
776 ** to store a copy of an expression or expression tree.  They differ in
777 ** how much of the tree is measured.
778 **
779 **     dupedExprStructSize()     Size of only the Expr structure
780 **     dupedExprNodeSize()       Size of Expr + space for token
781 **     dupedExprSize()           Expr + token + subtree components
782 **
783 ***************************************************************************
784 **
785 ** The dupedExprStructSize() function returns two values OR-ed together:
786 ** (1) the space required for a copy of the Expr structure only and
787 ** (2) the EP_xxx flags that indicate what the structure size should be.
788 ** The return values is always one of:
789 **
790 **      EXPR_FULLSIZE
791 **      EXPR_REDUCEDSIZE   | EP_Reduced
792 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
793 **
794 ** The size of the structure can be found by masking the return value
795 ** of this routine with 0xfff.  The flags can be found by masking the
796 ** return value with EP_Reduced|EP_TokenOnly.
797 **
798 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
799 ** (unreduced) Expr objects as they or originally constructed by the parser.
800 ** During expression analysis, extra information is computed and moved into
801 ** later parts of teh Expr object and that extra information might get chopped
802 ** off if the expression is reduced.  Note also that it does not work to
803 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
804 ** to reduce a pristine expression tree from the parser.  The implementation
805 ** of dupedExprStructSize() contain multiple assert() statements that attempt
806 ** to enforce this constraint.
807 */
808 static int dupedExprStructSize(Expr *p, int flags){
809   int nSize;
810   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
811   assert( EXPR_FULLSIZE<=0xfff );
812   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
813   if( 0==flags ){
814     nSize = EXPR_FULLSIZE;
815   }else{
816     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
817     assert( !ExprHasProperty(p, EP_FromJoin) );
818     assert( !ExprHasProperty(p, EP_MemToken) );
819     assert( !ExprHasProperty(p, EP_NoReduce) );
820     if( p->pLeft || p->x.pList ){
821       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
822     }else{
823       assert( p->pRight==0 );
824       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
825     }
826   }
827   return nSize;
828 }
829 
830 /*
831 ** This function returns the space in bytes required to store the copy
832 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
833 ** string is defined.)
834 */
835 static int dupedExprNodeSize(Expr *p, int flags){
836   int nByte = dupedExprStructSize(p, flags) & 0xfff;
837   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
838     nByte += sqlite3Strlen30(p->u.zToken)+1;
839   }
840   return ROUND8(nByte);
841 }
842 
843 /*
844 ** Return the number of bytes required to create a duplicate of the
845 ** expression passed as the first argument. The second argument is a
846 ** mask containing EXPRDUP_XXX flags.
847 **
848 ** The value returned includes space to create a copy of the Expr struct
849 ** itself and the buffer referred to by Expr.u.zToken, if any.
850 **
851 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
852 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
853 ** and Expr.pRight variables (but not for any structures pointed to or
854 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
855 */
856 static int dupedExprSize(Expr *p, int flags){
857   int nByte = 0;
858   if( p ){
859     nByte = dupedExprNodeSize(p, flags);
860     if( flags&EXPRDUP_REDUCE ){
861       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
862     }
863   }
864   return nByte;
865 }
866 
867 /*
868 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
869 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
870 ** to store the copy of expression p, the copies of p->u.zToken
871 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
872 ** if any. Before returning, *pzBuffer is set to the first byte past the
873 ** portion of the buffer copied into by this function.
874 */
875 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
876   Expr *pNew;           /* Value to return */
877   u8 *zAlloc;           /* Memory space from which to build Expr object */
878   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
879 
880   assert( db!=0 );
881   assert( p );
882   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
883   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
884 
885   /* Figure out where to write the new Expr structure. */
886   if( pzBuffer ){
887     zAlloc = *pzBuffer;
888     staticFlag = EP_Static;
889   }else{
890     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
891     staticFlag = 0;
892   }
893   pNew = (Expr *)zAlloc;
894 
895   if( pNew ){
896     /* Set nNewSize to the size allocated for the structure pointed to
897     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
898     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
899     ** by the copy of the p->u.zToken string (if any).
900     */
901     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
902     const int nNewSize = nStructSize & 0xfff;
903     int nToken;
904     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
905       nToken = sqlite3Strlen30(p->u.zToken) + 1;
906     }else{
907       nToken = 0;
908     }
909     if( dupFlags ){
910       assert( ExprHasProperty(p, EP_Reduced)==0 );
911       memcpy(zAlloc, p, nNewSize);
912     }else{
913       u32 nSize = (u32)exprStructSize(p);
914       memcpy(zAlloc, p, nSize);
915       if( nSize<EXPR_FULLSIZE ){
916         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
917       }
918     }
919 
920     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
921     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
922     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
923     pNew->flags |= staticFlag;
924 
925     /* Copy the p->u.zToken string, if any. */
926     if( nToken ){
927       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
928       memcpy(zToken, p->u.zToken, nToken);
929     }
930 
931     if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
932       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
933       if( ExprHasProperty(p, EP_xIsSelect) ){
934         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
935       }else{
936         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
937       }
938     }
939 
940     /* Fill in pNew->pLeft and pNew->pRight. */
941     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
942       zAlloc += dupedExprNodeSize(p, dupFlags);
943       if( ExprHasProperty(pNew, EP_Reduced) ){
944         pNew->pLeft = p->pLeft ?
945                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
946         pNew->pRight = p->pRight ?
947                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
948       }
949       if( pzBuffer ){
950         *pzBuffer = zAlloc;
951       }
952     }else{
953       if( !ExprHasProperty(p, EP_TokenOnly) ){
954         pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
955         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
956       }
957     }
958   }
959   return pNew;
960 }
961 
962 /*
963 ** Create and return a deep copy of the object passed as the second
964 ** argument. If an OOM condition is encountered, NULL is returned
965 ** and the db->mallocFailed flag set.
966 */
967 #ifndef SQLITE_OMIT_CTE
968 static With *withDup(sqlite3 *db, With *p){
969   With *pRet = 0;
970   if( p ){
971     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
972     pRet = sqlite3DbMallocZero(db, nByte);
973     if( pRet ){
974       int i;
975       pRet->nCte = p->nCte;
976       for(i=0; i<p->nCte; i++){
977         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
978         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
979         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
980       }
981     }
982   }
983   return pRet;
984 }
985 #else
986 # define withDup(x,y) 0
987 #endif
988 
989 /*
990 ** The following group of routines make deep copies of expressions,
991 ** expression lists, ID lists, and select statements.  The copies can
992 ** be deleted (by being passed to their respective ...Delete() routines)
993 ** without effecting the originals.
994 **
995 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
996 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
997 ** by subsequent calls to sqlite*ListAppend() routines.
998 **
999 ** Any tables that the SrcList might point to are not duplicated.
1000 **
1001 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1002 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1003 ** truncated version of the usual Expr structure that will be stored as
1004 ** part of the in-memory representation of the database schema.
1005 */
1006 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1007   assert( flags==0 || flags==EXPRDUP_REDUCE );
1008   return p ? exprDup(db, p, flags, 0) : 0;
1009 }
1010 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1011   ExprList *pNew;
1012   struct ExprList_item *pItem, *pOldItem;
1013   int i;
1014   assert( db!=0 );
1015   if( p==0 ) return 0;
1016   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1017   if( pNew==0 ) return 0;
1018   pNew->nExpr = i = p->nExpr;
1019   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
1020   pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
1021   if( pItem==0 ){
1022     sqlite3DbFree(db, pNew);
1023     return 0;
1024   }
1025   pOldItem = p->a;
1026   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1027     Expr *pOldExpr = pOldItem->pExpr;
1028     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1029     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1030     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1031     pItem->sortOrder = pOldItem->sortOrder;
1032     pItem->done = 0;
1033     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1034     pItem->u = pOldItem->u;
1035   }
1036   return pNew;
1037 }
1038 
1039 /*
1040 ** If cursors, triggers, views and subqueries are all omitted from
1041 ** the build, then none of the following routines, except for
1042 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1043 ** called with a NULL argument.
1044 */
1045 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1046  || !defined(SQLITE_OMIT_SUBQUERY)
1047 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1048   SrcList *pNew;
1049   int i;
1050   int nByte;
1051   assert( db!=0 );
1052   if( p==0 ) return 0;
1053   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1054   pNew = sqlite3DbMallocRawNN(db, nByte );
1055   if( pNew==0 ) return 0;
1056   pNew->nSrc = pNew->nAlloc = p->nSrc;
1057   for(i=0; i<p->nSrc; i++){
1058     struct SrcList_item *pNewItem = &pNew->a[i];
1059     struct SrcList_item *pOldItem = &p->a[i];
1060     Table *pTab;
1061     pNewItem->pSchema = pOldItem->pSchema;
1062     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1063     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1064     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1065     pNewItem->fg = pOldItem->fg;
1066     pNewItem->iCursor = pOldItem->iCursor;
1067     pNewItem->addrFillSub = pOldItem->addrFillSub;
1068     pNewItem->regReturn = pOldItem->regReturn;
1069     if( pNewItem->fg.isIndexedBy ){
1070       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1071     }
1072     pNewItem->pIBIndex = pOldItem->pIBIndex;
1073     if( pNewItem->fg.isTabFunc ){
1074       pNewItem->u1.pFuncArg =
1075           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1076     }
1077     pTab = pNewItem->pTab = pOldItem->pTab;
1078     if( pTab ){
1079       pTab->nRef++;
1080     }
1081     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1082     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1083     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1084     pNewItem->colUsed = pOldItem->colUsed;
1085   }
1086   return pNew;
1087 }
1088 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1089   IdList *pNew;
1090   int i;
1091   assert( db!=0 );
1092   if( p==0 ) return 0;
1093   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1094   if( pNew==0 ) return 0;
1095   pNew->nId = p->nId;
1096   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1097   if( pNew->a==0 ){
1098     sqlite3DbFree(db, pNew);
1099     return 0;
1100   }
1101   /* Note that because the size of the allocation for p->a[] is not
1102   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1103   ** on the duplicate created by this function. */
1104   for(i=0; i<p->nId; i++){
1105     struct IdList_item *pNewItem = &pNew->a[i];
1106     struct IdList_item *pOldItem = &p->a[i];
1107     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1108     pNewItem->idx = pOldItem->idx;
1109   }
1110   return pNew;
1111 }
1112 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1113   Select *pNew, *pPrior;
1114   assert( db!=0 );
1115   if( p==0 ) return 0;
1116   pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1117   if( pNew==0 ) return 0;
1118   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1119   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1120   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1121   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1122   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1123   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1124   pNew->op = p->op;
1125   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1126   if( pPrior ) pPrior->pNext = pNew;
1127   pNew->pNext = 0;
1128   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1129   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1130   pNew->iLimit = 0;
1131   pNew->iOffset = 0;
1132   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1133   pNew->addrOpenEphm[0] = -1;
1134   pNew->addrOpenEphm[1] = -1;
1135   pNew->nSelectRow = p->nSelectRow;
1136   pNew->pWith = withDup(db, p->pWith);
1137   sqlite3SelectSetName(pNew, p->zSelName);
1138   return pNew;
1139 }
1140 #else
1141 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1142   assert( p==0 );
1143   return 0;
1144 }
1145 #endif
1146 
1147 
1148 /*
1149 ** Add a new element to the end of an expression list.  If pList is
1150 ** initially NULL, then create a new expression list.
1151 **
1152 ** If a memory allocation error occurs, the entire list is freed and
1153 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1154 ** that the new entry was successfully appended.
1155 */
1156 ExprList *sqlite3ExprListAppend(
1157   Parse *pParse,          /* Parsing context */
1158   ExprList *pList,        /* List to which to append. Might be NULL */
1159   Expr *pExpr             /* Expression to be appended. Might be NULL */
1160 ){
1161   sqlite3 *db = pParse->db;
1162   assert( db!=0 );
1163   if( pList==0 ){
1164     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1165     if( pList==0 ){
1166       goto no_mem;
1167     }
1168     pList->nExpr = 0;
1169     pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
1170     if( pList->a==0 ) goto no_mem;
1171   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1172     struct ExprList_item *a;
1173     assert( pList->nExpr>0 );
1174     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1175     if( a==0 ){
1176       goto no_mem;
1177     }
1178     pList->a = a;
1179   }
1180   assert( pList->a!=0 );
1181   if( 1 ){
1182     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1183     memset(pItem, 0, sizeof(*pItem));
1184     pItem->pExpr = pExpr;
1185   }
1186   return pList;
1187 
1188 no_mem:
1189   /* Avoid leaking memory if malloc has failed. */
1190   sqlite3ExprDelete(db, pExpr);
1191   sqlite3ExprListDelete(db, pList);
1192   return 0;
1193 }
1194 
1195 /*
1196 ** Set the sort order for the last element on the given ExprList.
1197 */
1198 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1199   if( p==0 ) return;
1200   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1201   assert( p->nExpr>0 );
1202   if( iSortOrder<0 ){
1203     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1204     return;
1205   }
1206   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1207 }
1208 
1209 /*
1210 ** Set the ExprList.a[].zName element of the most recently added item
1211 ** on the expression list.
1212 **
1213 ** pList might be NULL following an OOM error.  But pName should never be
1214 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1215 ** is set.
1216 */
1217 void sqlite3ExprListSetName(
1218   Parse *pParse,          /* Parsing context */
1219   ExprList *pList,        /* List to which to add the span. */
1220   Token *pName,           /* Name to be added */
1221   int dequote             /* True to cause the name to be dequoted */
1222 ){
1223   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1224   if( pList ){
1225     struct ExprList_item *pItem;
1226     assert( pList->nExpr>0 );
1227     pItem = &pList->a[pList->nExpr-1];
1228     assert( pItem->zName==0 );
1229     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1230     if( dequote ) sqlite3Dequote(pItem->zName);
1231   }
1232 }
1233 
1234 /*
1235 ** Set the ExprList.a[].zSpan element of the most recently added item
1236 ** on the expression list.
1237 **
1238 ** pList might be NULL following an OOM error.  But pSpan should never be
1239 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1240 ** is set.
1241 */
1242 void sqlite3ExprListSetSpan(
1243   Parse *pParse,          /* Parsing context */
1244   ExprList *pList,        /* List to which to add the span. */
1245   ExprSpan *pSpan         /* The span to be added */
1246 ){
1247   sqlite3 *db = pParse->db;
1248   assert( pList!=0 || db->mallocFailed!=0 );
1249   if( pList ){
1250     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1251     assert( pList->nExpr>0 );
1252     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1253     sqlite3DbFree(db, pItem->zSpan);
1254     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1255                                     (int)(pSpan->zEnd - pSpan->zStart));
1256   }
1257 }
1258 
1259 /*
1260 ** If the expression list pEList contains more than iLimit elements,
1261 ** leave an error message in pParse.
1262 */
1263 void sqlite3ExprListCheckLength(
1264   Parse *pParse,
1265   ExprList *pEList,
1266   const char *zObject
1267 ){
1268   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1269   testcase( pEList && pEList->nExpr==mx );
1270   testcase( pEList && pEList->nExpr==mx+1 );
1271   if( pEList && pEList->nExpr>mx ){
1272     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1273   }
1274 }
1275 
1276 /*
1277 ** Delete an entire expression list.
1278 */
1279 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1280   int i;
1281   struct ExprList_item *pItem;
1282   assert( pList->a!=0 || pList->nExpr==0 );
1283   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1284     sqlite3ExprDelete(db, pItem->pExpr);
1285     sqlite3DbFree(db, pItem->zName);
1286     sqlite3DbFree(db, pItem->zSpan);
1287   }
1288   sqlite3DbFree(db, pList->a);
1289   sqlite3DbFree(db, pList);
1290 }
1291 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1292   if( pList ) exprListDeleteNN(db, pList);
1293 }
1294 
1295 /*
1296 ** Return the bitwise-OR of all Expr.flags fields in the given
1297 ** ExprList.
1298 */
1299 u32 sqlite3ExprListFlags(const ExprList *pList){
1300   int i;
1301   u32 m = 0;
1302   if( pList ){
1303     for(i=0; i<pList->nExpr; i++){
1304        Expr *pExpr = pList->a[i].pExpr;
1305        assert( pExpr!=0 );
1306        m |= pExpr->flags;
1307     }
1308   }
1309   return m;
1310 }
1311 
1312 /*
1313 ** These routines are Walker callbacks used to check expressions to
1314 ** see if they are "constant" for some definition of constant.  The
1315 ** Walker.eCode value determines the type of "constant" we are looking
1316 ** for.
1317 **
1318 ** These callback routines are used to implement the following:
1319 **
1320 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1321 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1322 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1323 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1324 **
1325 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1326 ** is found to not be a constant.
1327 **
1328 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1329 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1330 ** an existing schema and 4 when processing a new statement.  A bound
1331 ** parameter raises an error for new statements, but is silently converted
1332 ** to NULL for existing schemas.  This allows sqlite_master tables that
1333 ** contain a bound parameter because they were generated by older versions
1334 ** of SQLite to be parsed by newer versions of SQLite without raising a
1335 ** malformed schema error.
1336 */
1337 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1338 
1339   /* If pWalker->eCode is 2 then any term of the expression that comes from
1340   ** the ON or USING clauses of a left join disqualifies the expression
1341   ** from being considered constant. */
1342   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1343     pWalker->eCode = 0;
1344     return WRC_Abort;
1345   }
1346 
1347   switch( pExpr->op ){
1348     /* Consider functions to be constant if all their arguments are constant
1349     ** and either pWalker->eCode==4 or 5 or the function has the
1350     ** SQLITE_FUNC_CONST flag. */
1351     case TK_FUNCTION:
1352       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1353         return WRC_Continue;
1354       }else{
1355         pWalker->eCode = 0;
1356         return WRC_Abort;
1357       }
1358     case TK_ID:
1359     case TK_COLUMN:
1360     case TK_AGG_FUNCTION:
1361     case TK_AGG_COLUMN:
1362       testcase( pExpr->op==TK_ID );
1363       testcase( pExpr->op==TK_COLUMN );
1364       testcase( pExpr->op==TK_AGG_FUNCTION );
1365       testcase( pExpr->op==TK_AGG_COLUMN );
1366       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1367         return WRC_Continue;
1368       }else{
1369         pWalker->eCode = 0;
1370         return WRC_Abort;
1371       }
1372     case TK_VARIABLE:
1373       if( pWalker->eCode==5 ){
1374         /* Silently convert bound parameters that appear inside of CREATE
1375         ** statements into a NULL when parsing the CREATE statement text out
1376         ** of the sqlite_master table */
1377         pExpr->op = TK_NULL;
1378       }else if( pWalker->eCode==4 ){
1379         /* A bound parameter in a CREATE statement that originates from
1380         ** sqlite3_prepare() causes an error */
1381         pWalker->eCode = 0;
1382         return WRC_Abort;
1383       }
1384       /* Fall through */
1385     default:
1386       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1387       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1388       return WRC_Continue;
1389   }
1390 }
1391 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1392   UNUSED_PARAMETER(NotUsed);
1393   pWalker->eCode = 0;
1394   return WRC_Abort;
1395 }
1396 static int exprIsConst(Expr *p, int initFlag, int iCur){
1397   Walker w;
1398   memset(&w, 0, sizeof(w));
1399   w.eCode = initFlag;
1400   w.xExprCallback = exprNodeIsConstant;
1401   w.xSelectCallback = selectNodeIsConstant;
1402   w.u.iCur = iCur;
1403   sqlite3WalkExpr(&w, p);
1404   return w.eCode;
1405 }
1406 
1407 /*
1408 ** Walk an expression tree.  Return non-zero if the expression is constant
1409 ** and 0 if it involves variables or function calls.
1410 **
1411 ** For the purposes of this function, a double-quoted string (ex: "abc")
1412 ** is considered a variable but a single-quoted string (ex: 'abc') is
1413 ** a constant.
1414 */
1415 int sqlite3ExprIsConstant(Expr *p){
1416   return exprIsConst(p, 1, 0);
1417 }
1418 
1419 /*
1420 ** Walk an expression tree.  Return non-zero if the expression is constant
1421 ** that does no originate from the ON or USING clauses of a join.
1422 ** Return 0 if it involves variables or function calls or terms from
1423 ** an ON or USING clause.
1424 */
1425 int sqlite3ExprIsConstantNotJoin(Expr *p){
1426   return exprIsConst(p, 2, 0);
1427 }
1428 
1429 /*
1430 ** Walk an expression tree.  Return non-zero if the expression is constant
1431 ** for any single row of the table with cursor iCur.  In other words, the
1432 ** expression must not refer to any non-deterministic function nor any
1433 ** table other than iCur.
1434 */
1435 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1436   return exprIsConst(p, 3, iCur);
1437 }
1438 
1439 /*
1440 ** Walk an expression tree.  Return non-zero if the expression is constant
1441 ** or a function call with constant arguments.  Return and 0 if there
1442 ** are any variables.
1443 **
1444 ** For the purposes of this function, a double-quoted string (ex: "abc")
1445 ** is considered a variable but a single-quoted string (ex: 'abc') is
1446 ** a constant.
1447 */
1448 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1449   assert( isInit==0 || isInit==1 );
1450   return exprIsConst(p, 4+isInit, 0);
1451 }
1452 
1453 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1454 /*
1455 ** Walk an expression tree.  Return 1 if the expression contains a
1456 ** subquery of some kind.  Return 0 if there are no subqueries.
1457 */
1458 int sqlite3ExprContainsSubquery(Expr *p){
1459   Walker w;
1460   memset(&w, 0, sizeof(w));
1461   w.eCode = 1;
1462   w.xExprCallback = sqlite3ExprWalkNoop;
1463   w.xSelectCallback = selectNodeIsConstant;
1464   sqlite3WalkExpr(&w, p);
1465   return w.eCode==0;
1466 }
1467 #endif
1468 
1469 /*
1470 ** If the expression p codes a constant integer that is small enough
1471 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1472 ** in *pValue.  If the expression is not an integer or if it is too big
1473 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1474 */
1475 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1476   int rc = 0;
1477 
1478   /* If an expression is an integer literal that fits in a signed 32-bit
1479   ** integer, then the EP_IntValue flag will have already been set */
1480   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1481            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1482 
1483   if( p->flags & EP_IntValue ){
1484     *pValue = p->u.iValue;
1485     return 1;
1486   }
1487   switch( p->op ){
1488     case TK_UPLUS: {
1489       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1490       break;
1491     }
1492     case TK_UMINUS: {
1493       int v;
1494       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1495         assert( v!=(-2147483647-1) );
1496         *pValue = -v;
1497         rc = 1;
1498       }
1499       break;
1500     }
1501     default: break;
1502   }
1503   return rc;
1504 }
1505 
1506 /*
1507 ** Return FALSE if there is no chance that the expression can be NULL.
1508 **
1509 ** If the expression might be NULL or if the expression is too complex
1510 ** to tell return TRUE.
1511 **
1512 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1513 ** when we know that a value cannot be NULL.  Hence, a false positive
1514 ** (returning TRUE when in fact the expression can never be NULL) might
1515 ** be a small performance hit but is otherwise harmless.  On the other
1516 ** hand, a false negative (returning FALSE when the result could be NULL)
1517 ** will likely result in an incorrect answer.  So when in doubt, return
1518 ** TRUE.
1519 */
1520 int sqlite3ExprCanBeNull(const Expr *p){
1521   u8 op;
1522   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1523   op = p->op;
1524   if( op==TK_REGISTER ) op = p->op2;
1525   switch( op ){
1526     case TK_INTEGER:
1527     case TK_STRING:
1528     case TK_FLOAT:
1529     case TK_BLOB:
1530       return 0;
1531     case TK_COLUMN:
1532       assert( p->pTab!=0 );
1533       return ExprHasProperty(p, EP_CanBeNull) ||
1534              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1535     default:
1536       return 1;
1537   }
1538 }
1539 
1540 /*
1541 ** Return TRUE if the given expression is a constant which would be
1542 ** unchanged by OP_Affinity with the affinity given in the second
1543 ** argument.
1544 **
1545 ** This routine is used to determine if the OP_Affinity operation
1546 ** can be omitted.  When in doubt return FALSE.  A false negative
1547 ** is harmless.  A false positive, however, can result in the wrong
1548 ** answer.
1549 */
1550 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1551   u8 op;
1552   if( aff==SQLITE_AFF_BLOB ) return 1;
1553   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1554   op = p->op;
1555   if( op==TK_REGISTER ) op = p->op2;
1556   switch( op ){
1557     case TK_INTEGER: {
1558       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1559     }
1560     case TK_FLOAT: {
1561       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1562     }
1563     case TK_STRING: {
1564       return aff==SQLITE_AFF_TEXT;
1565     }
1566     case TK_BLOB: {
1567       return 1;
1568     }
1569     case TK_COLUMN: {
1570       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1571       return p->iColumn<0
1572           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1573     }
1574     default: {
1575       return 0;
1576     }
1577   }
1578 }
1579 
1580 /*
1581 ** Return TRUE if the given string is a row-id column name.
1582 */
1583 int sqlite3IsRowid(const char *z){
1584   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1585   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1586   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1587   return 0;
1588 }
1589 
1590 /*
1591 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
1592 ** that can be simplified to a direct table access, then return
1593 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
1594 ** or if the SELECT statement needs to be manifested into a transient
1595 ** table, then return NULL.
1596 */
1597 #ifndef SQLITE_OMIT_SUBQUERY
1598 static Select *isCandidateForInOpt(Expr *pX){
1599   Select *p;
1600   SrcList *pSrc;
1601   ExprList *pEList;
1602   Expr *pRes;
1603   Table *pTab;
1604   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
1605   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
1606   p = pX->x.pSelect;
1607   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1608   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1609     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1610     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1611     return 0; /* No DISTINCT keyword and no aggregate functions */
1612   }
1613   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1614   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1615   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1616   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1617   pSrc = p->pSrc;
1618   assert( pSrc!=0 );
1619   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1620   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1621   pTab = pSrc->a[0].pTab;
1622   assert( pTab!=0 );
1623   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1624   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1625   pEList = p->pEList;
1626   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1627   pRes = pEList->a[0].pExpr;
1628   if( pRes->op!=TK_COLUMN ) return 0;    /* Result is a column */
1629   assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
1630   return p;
1631 }
1632 #endif /* SQLITE_OMIT_SUBQUERY */
1633 
1634 /*
1635 ** Code an OP_Once instruction and allocate space for its flag. Return the
1636 ** address of the new instruction.
1637 */
1638 int sqlite3CodeOnce(Parse *pParse){
1639   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1640   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1641 }
1642 
1643 /*
1644 ** Generate code that checks the left-most column of index table iCur to see if
1645 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1646 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1647 ** to be set to NULL if iCur contains one or more NULL values.
1648 */
1649 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1650   int addr1;
1651   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1652   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1653   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1654   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1655   VdbeComment((v, "first_entry_in(%d)", iCur));
1656   sqlite3VdbeJumpHere(v, addr1);
1657 }
1658 
1659 
1660 #ifndef SQLITE_OMIT_SUBQUERY
1661 /*
1662 ** The argument is an IN operator with a list (not a subquery) on the
1663 ** right-hand side.  Return TRUE if that list is constant.
1664 */
1665 static int sqlite3InRhsIsConstant(Expr *pIn){
1666   Expr *pLHS;
1667   int res;
1668   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1669   pLHS = pIn->pLeft;
1670   pIn->pLeft = 0;
1671   res = sqlite3ExprIsConstant(pIn);
1672   pIn->pLeft = pLHS;
1673   return res;
1674 }
1675 #endif
1676 
1677 /*
1678 ** This function is used by the implementation of the IN (...) operator.
1679 ** The pX parameter is the expression on the RHS of the IN operator, which
1680 ** might be either a list of expressions or a subquery.
1681 **
1682 ** The job of this routine is to find or create a b-tree object that can
1683 ** be used either to test for membership in the RHS set or to iterate through
1684 ** all members of the RHS set, skipping duplicates.
1685 **
1686 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1687 ** and pX->iTable is set to the index of that cursor.
1688 **
1689 ** The returned value of this function indicates the b-tree type, as follows:
1690 **
1691 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1692 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1693 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1694 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1695 **                         populated epheremal table.
1696 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1697 **                         implemented as a sequence of comparisons.
1698 **
1699 ** An existing b-tree might be used if the RHS expression pX is a simple
1700 ** subquery such as:
1701 **
1702 **     SELECT <column> FROM <table>
1703 **
1704 ** If the RHS of the IN operator is a list or a more complex subquery, then
1705 ** an ephemeral table might need to be generated from the RHS and then
1706 ** pX->iTable made to point to the ephemeral table instead of an
1707 ** existing table.
1708 **
1709 ** The inFlags parameter must contain exactly one of the bits
1710 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1711 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1712 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1713 ** IN index will be used to loop over all values of the RHS of the
1714 ** IN operator.
1715 **
1716 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1717 ** through the set members) then the b-tree must not contain duplicates.
1718 ** An epheremal table must be used unless the selected <column> is guaranteed
1719 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1720 ** has a UNIQUE constraint or UNIQUE index.
1721 **
1722 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1723 ** for fast set membership tests) then an epheremal table must
1724 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1725 ** be found with <column> as its left-most column.
1726 **
1727 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1728 ** if the RHS of the IN operator is a list (not a subquery) then this
1729 ** routine might decide that creating an ephemeral b-tree for membership
1730 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1731 ** calling routine should implement the IN operator using a sequence
1732 ** of Eq or Ne comparison operations.
1733 **
1734 ** When the b-tree is being used for membership tests, the calling function
1735 ** might need to know whether or not the RHS side of the IN operator
1736 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1737 ** if there is any chance that the (...) might contain a NULL value at
1738 ** runtime, then a register is allocated and the register number written
1739 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1740 ** NULL value, then *prRhsHasNull is left unchanged.
1741 **
1742 ** If a register is allocated and its location stored in *prRhsHasNull, then
1743 ** the value in that register will be NULL if the b-tree contains one or more
1744 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1745 ** NULL values.
1746 */
1747 #ifndef SQLITE_OMIT_SUBQUERY
1748 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1749   Select *p;                            /* SELECT to the right of IN operator */
1750   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1751   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1752   int mustBeUnique;                     /* True if RHS must be unique */
1753   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1754 
1755   assert( pX->op==TK_IN );
1756   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1757 
1758   /* Check to see if an existing table or index can be used to
1759   ** satisfy the query.  This is preferable to generating a new
1760   ** ephemeral table.
1761   */
1762   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
1763     sqlite3 *db = pParse->db;              /* Database connection */
1764     Table *pTab;                           /* Table <table>. */
1765     Expr *pExpr;                           /* Expression <column> */
1766     i16 iCol;                              /* Index of column <column> */
1767     i16 iDb;                               /* Database idx for pTab */
1768 
1769     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1770     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1771     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1772     pTab = p->pSrc->a[0].pTab;
1773     pExpr = p->pEList->a[0].pExpr;
1774     iCol = (i16)pExpr->iColumn;
1775 
1776     /* Code an OP_Transaction and OP_TableLock for <table>. */
1777     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1778     sqlite3CodeVerifySchema(pParse, iDb);
1779     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1780 
1781     /* This function is only called from two places. In both cases the vdbe
1782     ** has already been allocated. So assume sqlite3GetVdbe() is always
1783     ** successful here.
1784     */
1785     assert(v);
1786     if( iCol<0 ){
1787       int iAddr = sqlite3CodeOnce(pParse);
1788       VdbeCoverage(v);
1789 
1790       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1791       eType = IN_INDEX_ROWID;
1792 
1793       sqlite3VdbeJumpHere(v, iAddr);
1794     }else{
1795       Index *pIdx;                         /* Iterator variable */
1796 
1797       /* The collation sequence used by the comparison. If an index is to
1798       ** be used in place of a temp-table, it must be ordered according
1799       ** to this collation sequence.  */
1800       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1801 
1802       /* Check that the affinity that will be used to perform the
1803       ** comparison is the same as the affinity of the column. If
1804       ** it is not, it is not possible to use any index.
1805       */
1806       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1807 
1808       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1809         if( (pIdx->aiColumn[0]==iCol)
1810          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1811          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1812         ){
1813           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1814           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1815           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1816           VdbeComment((v, "%s", pIdx->zName));
1817           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1818           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1819 
1820           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1821 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
1822             const i64 sOne = 1;
1823             sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
1824                 iTab, 0, 0, (u8*)&sOne, P4_INT64);
1825 #endif
1826             *prRhsHasNull = ++pParse->nMem;
1827             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1828           }
1829           sqlite3VdbeJumpHere(v, iAddr);
1830         }
1831       }
1832     }
1833   }
1834 
1835   /* If no preexisting index is available for the IN clause
1836   ** and IN_INDEX_NOOP is an allowed reply
1837   ** and the RHS of the IN operator is a list, not a subquery
1838   ** and the RHS is not constant or has two or fewer terms,
1839   ** then it is not worth creating an ephemeral table to evaluate
1840   ** the IN operator so return IN_INDEX_NOOP.
1841   */
1842   if( eType==0
1843    && (inFlags & IN_INDEX_NOOP_OK)
1844    && !ExprHasProperty(pX, EP_xIsSelect)
1845    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1846   ){
1847     eType = IN_INDEX_NOOP;
1848   }
1849 
1850 
1851   if( eType==0 ){
1852     /* Could not find an existing table or index to use as the RHS b-tree.
1853     ** We will have to generate an ephemeral table to do the job.
1854     */
1855     u32 savedNQueryLoop = pParse->nQueryLoop;
1856     int rMayHaveNull = 0;
1857     eType = IN_INDEX_EPH;
1858     if( inFlags & IN_INDEX_LOOP ){
1859       pParse->nQueryLoop = 0;
1860       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1861         eType = IN_INDEX_ROWID;
1862       }
1863     }else if( prRhsHasNull ){
1864       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1865     }
1866     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1867     pParse->nQueryLoop = savedNQueryLoop;
1868   }else{
1869     pX->iTable = iTab;
1870   }
1871   return eType;
1872 }
1873 #endif
1874 
1875 /*
1876 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1877 ** or IN operators.  Examples:
1878 **
1879 **     (SELECT a FROM b)          -- subquery
1880 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1881 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1882 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1883 **
1884 ** The pExpr parameter describes the expression that contains the IN
1885 ** operator or subquery.
1886 **
1887 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1888 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1889 ** to some integer key column of a table B-Tree. In this case, use an
1890 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1891 ** (slower) variable length keys B-Tree.
1892 **
1893 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1894 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1895 ** All this routine does is initialize the register given by rMayHaveNull
1896 ** to NULL.  Calling routines will take care of changing this register
1897 ** value to non-NULL if the RHS is NULL-free.
1898 **
1899 ** For a SELECT or EXISTS operator, return the register that holds the
1900 ** result.  For IN operators or if an error occurs, the return value is 0.
1901 */
1902 #ifndef SQLITE_OMIT_SUBQUERY
1903 int sqlite3CodeSubselect(
1904   Parse *pParse,          /* Parsing context */
1905   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1906   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1907   int isRowid             /* If true, LHS of IN operator is a rowid */
1908 ){
1909   int jmpIfDynamic = -1;                      /* One-time test address */
1910   int rReg = 0;                           /* Register storing resulting */
1911   Vdbe *v = sqlite3GetVdbe(pParse);
1912   if( NEVER(v==0) ) return 0;
1913   sqlite3ExprCachePush(pParse);
1914 
1915   /* This code must be run in its entirety every time it is encountered
1916   ** if any of the following is true:
1917   **
1918   **    *  The right-hand side is a correlated subquery
1919   **    *  The right-hand side is an expression list containing variables
1920   **    *  We are inside a trigger
1921   **
1922   ** If all of the above are false, then we can run this code just once
1923   ** save the results, and reuse the same result on subsequent invocations.
1924   */
1925   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1926     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1927   }
1928 
1929 #ifndef SQLITE_OMIT_EXPLAIN
1930   if( pParse->explain==2 ){
1931     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1932         jmpIfDynamic>=0?"":"CORRELATED ",
1933         pExpr->op==TK_IN?"LIST":"SCALAR",
1934         pParse->iNextSelectId
1935     );
1936     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1937   }
1938 #endif
1939 
1940   switch( pExpr->op ){
1941     case TK_IN: {
1942       char affinity;              /* Affinity of the LHS of the IN */
1943       int addr;                   /* Address of OP_OpenEphemeral instruction */
1944       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1945       KeyInfo *pKeyInfo = 0;      /* Key information */
1946 
1947       affinity = sqlite3ExprAffinity(pLeft);
1948 
1949       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1950       ** expression it is handled the same way.  An ephemeral table is
1951       ** filled with single-field index keys representing the results
1952       ** from the SELECT or the <exprlist>.
1953       **
1954       ** If the 'x' expression is a column value, or the SELECT...
1955       ** statement returns a column value, then the affinity of that
1956       ** column is used to build the index keys. If both 'x' and the
1957       ** SELECT... statement are columns, then numeric affinity is used
1958       ** if either column has NUMERIC or INTEGER affinity. If neither
1959       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1960       ** is used.
1961       */
1962       pExpr->iTable = pParse->nTab++;
1963       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1964       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1965 
1966       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1967         /* Case 1:     expr IN (SELECT ...)
1968         **
1969         ** Generate code to write the results of the select into the temporary
1970         ** table allocated and opened above.
1971         */
1972         Select *pSelect = pExpr->x.pSelect;
1973         SelectDest dest;
1974         ExprList *pEList;
1975 
1976         assert( !isRowid );
1977         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1978         dest.affSdst = (u8)affinity;
1979         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1980         pSelect->iLimit = 0;
1981         testcase( pSelect->selFlags & SF_Distinct );
1982         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1983         if( sqlite3Select(pParse, pSelect, &dest) ){
1984           sqlite3KeyInfoUnref(pKeyInfo);
1985           return 0;
1986         }
1987         pEList = pSelect->pEList;
1988         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1989         assert( pEList!=0 );
1990         assert( pEList->nExpr>0 );
1991         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1992         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1993                                                          pEList->a[0].pExpr);
1994       }else if( ALWAYS(pExpr->x.pList!=0) ){
1995         /* Case 2:     expr IN (exprlist)
1996         **
1997         ** For each expression, build an index key from the evaluation and
1998         ** store it in the temporary table. If <expr> is a column, then use
1999         ** that columns affinity when building index keys. If <expr> is not
2000         ** a column, use numeric affinity.
2001         */
2002         int i;
2003         ExprList *pList = pExpr->x.pList;
2004         struct ExprList_item *pItem;
2005         int r1, r2, r3;
2006 
2007         if( !affinity ){
2008           affinity = SQLITE_AFF_BLOB;
2009         }
2010         if( pKeyInfo ){
2011           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2012           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2013         }
2014 
2015         /* Loop through each expression in <exprlist>. */
2016         r1 = sqlite3GetTempReg(pParse);
2017         r2 = sqlite3GetTempReg(pParse);
2018         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2019         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2020           Expr *pE2 = pItem->pExpr;
2021           int iValToIns;
2022 
2023           /* If the expression is not constant then we will need to
2024           ** disable the test that was generated above that makes sure
2025           ** this code only executes once.  Because for a non-constant
2026           ** expression we need to rerun this code each time.
2027           */
2028           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2029             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2030             jmpIfDynamic = -1;
2031           }
2032 
2033           /* Evaluate the expression and insert it into the temp table */
2034           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2035             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2036           }else{
2037             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2038             if( isRowid ){
2039               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2040                                 sqlite3VdbeCurrentAddr(v)+2);
2041               VdbeCoverage(v);
2042               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2043             }else{
2044               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2045               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2046               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2047             }
2048           }
2049         }
2050         sqlite3ReleaseTempReg(pParse, r1);
2051         sqlite3ReleaseTempReg(pParse, r2);
2052       }
2053       if( pKeyInfo ){
2054         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2055       }
2056       break;
2057     }
2058 
2059     case TK_EXISTS:
2060     case TK_SELECT:
2061     default: {
2062       /* If this has to be a scalar SELECT.  Generate code to put the
2063       ** value of this select in a memory cell and record the number
2064       ** of the memory cell in iColumn.  If this is an EXISTS, write
2065       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2066       ** and record that memory cell in iColumn.
2067       */
2068       Select *pSel;                         /* SELECT statement to encode */
2069       SelectDest dest;                      /* How to deal with SELECt result */
2070 
2071       testcase( pExpr->op==TK_EXISTS );
2072       testcase( pExpr->op==TK_SELECT );
2073       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2074 
2075       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2076       pSel = pExpr->x.pSelect;
2077       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2078       if( pExpr->op==TK_SELECT ){
2079         dest.eDest = SRT_Mem;
2080         dest.iSdst = dest.iSDParm;
2081         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2082         VdbeComment((v, "Init subquery result"));
2083       }else{
2084         dest.eDest = SRT_Exists;
2085         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2086         VdbeComment((v, "Init EXISTS result"));
2087       }
2088       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2089       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2090                                   &sqlite3IntTokens[1]);
2091       pSel->iLimit = 0;
2092       pSel->selFlags &= ~SF_MultiValue;
2093       if( sqlite3Select(pParse, pSel, &dest) ){
2094         return 0;
2095       }
2096       rReg = dest.iSDParm;
2097       ExprSetVVAProperty(pExpr, EP_NoReduce);
2098       break;
2099     }
2100   }
2101 
2102   if( rHasNullFlag ){
2103     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2104   }
2105 
2106   if( jmpIfDynamic>=0 ){
2107     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2108   }
2109   sqlite3ExprCachePop(pParse);
2110 
2111   return rReg;
2112 }
2113 #endif /* SQLITE_OMIT_SUBQUERY */
2114 
2115 #ifndef SQLITE_OMIT_SUBQUERY
2116 /*
2117 ** Generate code for an IN expression.
2118 **
2119 **      x IN (SELECT ...)
2120 **      x IN (value, value, ...)
2121 **
2122 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2123 ** is an array of zero or more values.  The expression is true if the LHS is
2124 ** contained within the RHS.  The value of the expression is unknown (NULL)
2125 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2126 ** RHS contains one or more NULL values.
2127 **
2128 ** This routine generates code that jumps to destIfFalse if the LHS is not
2129 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2130 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2131 ** within the RHS then fall through.
2132 */
2133 static void sqlite3ExprCodeIN(
2134   Parse *pParse,        /* Parsing and code generating context */
2135   Expr *pExpr,          /* The IN expression */
2136   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2137   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2138 ){
2139   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2140   char affinity;        /* Comparison affinity to use */
2141   int eType;            /* Type of the RHS */
2142   int r1;               /* Temporary use register */
2143   Vdbe *v;              /* Statement under construction */
2144 
2145   /* Compute the RHS.   After this step, the table with cursor
2146   ** pExpr->iTable will contains the values that make up the RHS.
2147   */
2148   v = pParse->pVdbe;
2149   assert( v!=0 );       /* OOM detected prior to this routine */
2150   VdbeNoopComment((v, "begin IN expr"));
2151   eType = sqlite3FindInIndex(pParse, pExpr,
2152                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2153                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2154 
2155   /* Figure out the affinity to use to create a key from the results
2156   ** of the expression. affinityStr stores a static string suitable for
2157   ** P4 of OP_MakeRecord.
2158   */
2159   affinity = comparisonAffinity(pExpr);
2160 
2161   /* Code the LHS, the <expr> from "<expr> IN (...)".
2162   */
2163   sqlite3ExprCachePush(pParse);
2164   r1 = sqlite3GetTempReg(pParse);
2165   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2166 
2167   /* If sqlite3FindInIndex() did not find or create an index that is
2168   ** suitable for evaluating the IN operator, then evaluate using a
2169   ** sequence of comparisons.
2170   */
2171   if( eType==IN_INDEX_NOOP ){
2172     ExprList *pList = pExpr->x.pList;
2173     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2174     int labelOk = sqlite3VdbeMakeLabel(v);
2175     int r2, regToFree;
2176     int regCkNull = 0;
2177     int ii;
2178     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2179     if( destIfNull!=destIfFalse ){
2180       regCkNull = sqlite3GetTempReg(pParse);
2181       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2182     }
2183     for(ii=0; ii<pList->nExpr; ii++){
2184       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2185       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2186         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2187       }
2188       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2189         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2190                           (void*)pColl, P4_COLLSEQ);
2191         VdbeCoverageIf(v, ii<pList->nExpr-1);
2192         VdbeCoverageIf(v, ii==pList->nExpr-1);
2193         sqlite3VdbeChangeP5(v, affinity);
2194       }else{
2195         assert( destIfNull==destIfFalse );
2196         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2197                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2198         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2199       }
2200       sqlite3ReleaseTempReg(pParse, regToFree);
2201     }
2202     if( regCkNull ){
2203       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2204       sqlite3VdbeGoto(v, destIfFalse);
2205     }
2206     sqlite3VdbeResolveLabel(v, labelOk);
2207     sqlite3ReleaseTempReg(pParse, regCkNull);
2208   }else{
2209 
2210     /* If the LHS is NULL, then the result is either false or NULL depending
2211     ** on whether the RHS is empty or not, respectively.
2212     */
2213     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2214       if( destIfNull==destIfFalse ){
2215         /* Shortcut for the common case where the false and NULL outcomes are
2216         ** the same. */
2217         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2218       }else{
2219         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2220         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2221         VdbeCoverage(v);
2222         sqlite3VdbeGoto(v, destIfNull);
2223         sqlite3VdbeJumpHere(v, addr1);
2224       }
2225     }
2226 
2227     if( eType==IN_INDEX_ROWID ){
2228       /* In this case, the RHS is the ROWID of table b-tree
2229       */
2230       sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, r1);
2231       VdbeCoverage(v);
2232     }else{
2233       /* In this case, the RHS is an index b-tree.
2234       */
2235       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2236 
2237       /* If the set membership test fails, then the result of the
2238       ** "x IN (...)" expression must be either 0 or NULL. If the set
2239       ** contains no NULL values, then the result is 0. If the set
2240       ** contains one or more NULL values, then the result of the
2241       ** expression is also NULL.
2242       */
2243       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2244       if( rRhsHasNull==0 ){
2245         /* This branch runs if it is known at compile time that the RHS
2246         ** cannot contain NULL values. This happens as the result
2247         ** of a "NOT NULL" constraint in the database schema.
2248         **
2249         ** Also run this branch if NULL is equivalent to FALSE
2250         ** for this particular IN operator.
2251         */
2252         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2253         VdbeCoverage(v);
2254       }else{
2255         /* In this branch, the RHS of the IN might contain a NULL and
2256         ** the presence of a NULL on the RHS makes a difference in the
2257         ** outcome.
2258         */
2259         int addr1;
2260 
2261         /* First check to see if the LHS is contained in the RHS.  If so,
2262         ** then the answer is TRUE the presence of NULLs in the RHS does
2263         ** not matter.  If the LHS is not contained in the RHS, then the
2264         ** answer is NULL if the RHS contains NULLs and the answer is
2265         ** FALSE if the RHS is NULL-free.
2266         */
2267         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2268         VdbeCoverage(v);
2269         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2270         VdbeCoverage(v);
2271         sqlite3VdbeGoto(v, destIfFalse);
2272         sqlite3VdbeJumpHere(v, addr1);
2273       }
2274     }
2275   }
2276   sqlite3ReleaseTempReg(pParse, r1);
2277   sqlite3ExprCachePop(pParse);
2278   VdbeComment((v, "end IN expr"));
2279 }
2280 #endif /* SQLITE_OMIT_SUBQUERY */
2281 
2282 #ifndef SQLITE_OMIT_FLOATING_POINT
2283 /*
2284 ** Generate an instruction that will put the floating point
2285 ** value described by z[0..n-1] into register iMem.
2286 **
2287 ** The z[] string will probably not be zero-terminated.  But the
2288 ** z[n] character is guaranteed to be something that does not look
2289 ** like the continuation of the number.
2290 */
2291 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2292   if( ALWAYS(z!=0) ){
2293     double value;
2294     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2295     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2296     if( negateFlag ) value = -value;
2297     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2298   }
2299 }
2300 #endif
2301 
2302 
2303 /*
2304 ** Generate an instruction that will put the integer describe by
2305 ** text z[0..n-1] into register iMem.
2306 **
2307 ** Expr.u.zToken is always UTF8 and zero-terminated.
2308 */
2309 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2310   Vdbe *v = pParse->pVdbe;
2311   if( pExpr->flags & EP_IntValue ){
2312     int i = pExpr->u.iValue;
2313     assert( i>=0 );
2314     if( negFlag ) i = -i;
2315     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2316   }else{
2317     int c;
2318     i64 value;
2319     const char *z = pExpr->u.zToken;
2320     assert( z!=0 );
2321     c = sqlite3DecOrHexToI64(z, &value);
2322     if( c==0 || (c==2 && negFlag) ){
2323       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2324       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2325     }else{
2326 #ifdef SQLITE_OMIT_FLOATING_POINT
2327       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2328 #else
2329 #ifndef SQLITE_OMIT_HEX_INTEGER
2330       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2331         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2332       }else
2333 #endif
2334       {
2335         codeReal(v, z, negFlag, iMem);
2336       }
2337 #endif
2338     }
2339   }
2340 }
2341 
2342 #if defined(SQLITE_DEBUG)
2343 /*
2344 ** Verify the consistency of the column cache
2345 */
2346 static int cacheIsValid(Parse *pParse){
2347   int i, n;
2348   for(i=n=0; i<SQLITE_N_COLCACHE; i++){
2349     if( pParse->aColCache[i].iReg>0 ) n++;
2350   }
2351   return n==pParse->nColCache;
2352 }
2353 #endif
2354 
2355 /*
2356 ** Clear a cache entry.
2357 */
2358 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2359   if( p->tempReg ){
2360     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2361       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2362     }
2363     p->tempReg = 0;
2364   }
2365   p->iReg = 0;
2366   pParse->nColCache--;
2367   assert( pParse->db->mallocFailed || cacheIsValid(pParse) );
2368 }
2369 
2370 
2371 /*
2372 ** Record in the column cache that a particular column from a
2373 ** particular table is stored in a particular register.
2374 */
2375 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2376   int i;
2377   int minLru;
2378   int idxLru;
2379   struct yColCache *p;
2380 
2381   /* Unless an error has occurred, register numbers are always positive. */
2382   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2383   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2384 
2385   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2386   ** for testing only - to verify that SQLite always gets the same answer
2387   ** with and without the column cache.
2388   */
2389   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2390 
2391   /* First replace any existing entry.
2392   **
2393   ** Actually, the way the column cache is currently used, we are guaranteed
2394   ** that the object will never already be in cache.  Verify this guarantee.
2395   */
2396 #ifndef NDEBUG
2397   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2398     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2399   }
2400 #endif
2401 
2402   /* Find an empty slot and replace it */
2403   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2404     if( p->iReg==0 ){
2405       p->iLevel = pParse->iCacheLevel;
2406       p->iTable = iTab;
2407       p->iColumn = iCol;
2408       p->iReg = iReg;
2409       p->tempReg = 0;
2410       p->lru = pParse->iCacheCnt++;
2411       pParse->nColCache++;
2412       assert( pParse->db->mallocFailed || cacheIsValid(pParse) );
2413       return;
2414     }
2415   }
2416 
2417   /* Replace the last recently used */
2418   minLru = 0x7fffffff;
2419   idxLru = -1;
2420   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2421     if( p->lru<minLru ){
2422       idxLru = i;
2423       minLru = p->lru;
2424     }
2425   }
2426   if( ALWAYS(idxLru>=0) ){
2427     p = &pParse->aColCache[idxLru];
2428     p->iLevel = pParse->iCacheLevel;
2429     p->iTable = iTab;
2430     p->iColumn = iCol;
2431     p->iReg = iReg;
2432     p->tempReg = 0;
2433     p->lru = pParse->iCacheCnt++;
2434     assert( cacheIsValid(pParse) );
2435     return;
2436   }
2437 }
2438 
2439 /*
2440 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2441 ** Purge the range of registers from the column cache.
2442 */
2443 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2444   struct yColCache *p;
2445   if( iReg<=0 || pParse->nColCache==0 ) return;
2446   p = &pParse->aColCache[SQLITE_N_COLCACHE-1];
2447   while(1){
2448     if( p->iReg >= iReg && p->iReg < iReg+nReg ) cacheEntryClear(pParse, p);
2449     if( p==pParse->aColCache ) break;
2450     p--;
2451   }
2452 }
2453 
2454 /*
2455 ** Remember the current column cache context.  Any new entries added
2456 ** added to the column cache after this call are removed when the
2457 ** corresponding pop occurs.
2458 */
2459 void sqlite3ExprCachePush(Parse *pParse){
2460   pParse->iCacheLevel++;
2461 #ifdef SQLITE_DEBUG
2462   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2463     printf("PUSH to %d\n", pParse->iCacheLevel);
2464   }
2465 #endif
2466 }
2467 
2468 /*
2469 ** Remove from the column cache any entries that were added since the
2470 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2471 ** the cache to the state it was in prior the most recent Push.
2472 */
2473 void sqlite3ExprCachePop(Parse *pParse){
2474   int i;
2475   struct yColCache *p;
2476   assert( pParse->iCacheLevel>=1 );
2477   pParse->iCacheLevel--;
2478 #ifdef SQLITE_DEBUG
2479   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2480     printf("POP  to %d\n", pParse->iCacheLevel);
2481   }
2482 #endif
2483   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2484     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2485       cacheEntryClear(pParse, p);
2486     }
2487   }
2488 }
2489 
2490 /*
2491 ** When a cached column is reused, make sure that its register is
2492 ** no longer available as a temp register.  ticket #3879:  that same
2493 ** register might be in the cache in multiple places, so be sure to
2494 ** get them all.
2495 */
2496 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2497   int i;
2498   struct yColCache *p;
2499   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2500     if( p->iReg==iReg ){
2501       p->tempReg = 0;
2502     }
2503   }
2504 }
2505 
2506 /* Generate code that will load into register regOut a value that is
2507 ** appropriate for the iIdxCol-th column of index pIdx.
2508 */
2509 void sqlite3ExprCodeLoadIndexColumn(
2510   Parse *pParse,  /* The parsing context */
2511   Index *pIdx,    /* The index whose column is to be loaded */
2512   int iTabCur,    /* Cursor pointing to a table row */
2513   int iIdxCol,    /* The column of the index to be loaded */
2514   int regOut      /* Store the index column value in this register */
2515 ){
2516   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2517   if( iTabCol==XN_EXPR ){
2518     assert( pIdx->aColExpr );
2519     assert( pIdx->aColExpr->nExpr>iIdxCol );
2520     pParse->iSelfTab = iTabCur;
2521     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2522   }else{
2523     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2524                                     iTabCol, regOut);
2525   }
2526 }
2527 
2528 /*
2529 ** Generate code to extract the value of the iCol-th column of a table.
2530 */
2531 void sqlite3ExprCodeGetColumnOfTable(
2532   Vdbe *v,        /* The VDBE under construction */
2533   Table *pTab,    /* The table containing the value */
2534   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2535   int iCol,       /* Index of the column to extract */
2536   int regOut      /* Extract the value into this register */
2537 ){
2538   if( iCol<0 || iCol==pTab->iPKey ){
2539     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2540   }else{
2541     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2542     int x = iCol;
2543     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
2544       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2545     }
2546     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2547   }
2548   if( iCol>=0 ){
2549     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2550   }
2551 }
2552 
2553 /*
2554 ** Generate code that will extract the iColumn-th column from
2555 ** table pTab and store the column value in a register.
2556 **
2557 ** An effort is made to store the column value in register iReg.  This
2558 ** is not garanteeed for GetColumn() - the result can be stored in
2559 ** any register.  But the result is guaranteed to land in register iReg
2560 ** for GetColumnToReg().
2561 **
2562 ** There must be an open cursor to pTab in iTable when this routine
2563 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2564 */
2565 int sqlite3ExprCodeGetColumn(
2566   Parse *pParse,   /* Parsing and code generating context */
2567   Table *pTab,     /* Description of the table we are reading from */
2568   int iColumn,     /* Index of the table column */
2569   int iTable,      /* The cursor pointing to the table */
2570   int iReg,        /* Store results here */
2571   u8 p5            /* P5 value for OP_Column + FLAGS */
2572 ){
2573   Vdbe *v = pParse->pVdbe;
2574   int i;
2575   struct yColCache *p;
2576 
2577   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2578     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2579       p->lru = pParse->iCacheCnt++;
2580       sqlite3ExprCachePinRegister(pParse, p->iReg);
2581       return p->iReg;
2582     }
2583   }
2584   assert( v!=0 );
2585   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2586   if( p5 ){
2587     sqlite3VdbeChangeP5(v, p5);
2588   }else{
2589     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2590   }
2591   return iReg;
2592 }
2593 void sqlite3ExprCodeGetColumnToReg(
2594   Parse *pParse,   /* Parsing and code generating context */
2595   Table *pTab,     /* Description of the table we are reading from */
2596   int iColumn,     /* Index of the table column */
2597   int iTable,      /* The cursor pointing to the table */
2598   int iReg         /* Store results here */
2599 ){
2600   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2601   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2602 }
2603 
2604 
2605 /*
2606 ** Clear all column cache entries.
2607 */
2608 void sqlite3ExprCacheClear(Parse *pParse){
2609   int i;
2610   struct yColCache *p;
2611 
2612 #if SQLITE_DEBUG
2613   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2614     printf("CLEAR\n");
2615   }
2616 #endif
2617   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2618     if( p->iReg ){
2619       cacheEntryClear(pParse, p);
2620     }
2621   }
2622 }
2623 
2624 /*
2625 ** Record the fact that an affinity change has occurred on iCount
2626 ** registers starting with iStart.
2627 */
2628 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2629   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2630 }
2631 
2632 /*
2633 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2634 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2635 */
2636 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2637   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2638   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2639   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2640 }
2641 
2642 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2643 /*
2644 ** Return true if any register in the range iFrom..iTo (inclusive)
2645 ** is used as part of the column cache.
2646 **
2647 ** This routine is used within assert() and testcase() macros only
2648 ** and does not appear in a normal build.
2649 */
2650 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2651   int i;
2652   struct yColCache *p;
2653   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2654     int r = p->iReg;
2655     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2656   }
2657   return 0;
2658 }
2659 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2660 
2661 
2662 /*
2663 ** Convert an expression node to a TK_REGISTER
2664 */
2665 static void exprToRegister(Expr *p, int iReg){
2666   p->op2 = p->op;
2667   p->op = TK_REGISTER;
2668   p->iTable = iReg;
2669   ExprClearProperty(p, EP_Skip);
2670 }
2671 
2672 /*
2673 ** Generate code into the current Vdbe to evaluate the given
2674 ** expression.  Attempt to store the results in register "target".
2675 ** Return the register where results are stored.
2676 **
2677 ** With this routine, there is no guarantee that results will
2678 ** be stored in target.  The result might be stored in some other
2679 ** register if it is convenient to do so.  The calling function
2680 ** must check the return code and move the results to the desired
2681 ** register.
2682 */
2683 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2684   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2685   int op;                   /* The opcode being coded */
2686   int inReg = target;       /* Results stored in register inReg */
2687   int regFree1 = 0;         /* If non-zero free this temporary register */
2688   int regFree2 = 0;         /* If non-zero free this temporary register */
2689   int r1, r2, r3, r4;       /* Various register numbers */
2690   sqlite3 *db = pParse->db; /* The database connection */
2691   Expr tempX;               /* Temporary expression node */
2692 
2693   assert( target>0 && target<=pParse->nMem );
2694   if( v==0 ){
2695     assert( pParse->db->mallocFailed );
2696     return 0;
2697   }
2698 
2699   if( pExpr==0 ){
2700     op = TK_NULL;
2701   }else{
2702     op = pExpr->op;
2703   }
2704   switch( op ){
2705     case TK_AGG_COLUMN: {
2706       AggInfo *pAggInfo = pExpr->pAggInfo;
2707       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2708       if( !pAggInfo->directMode ){
2709         assert( pCol->iMem>0 );
2710         inReg = pCol->iMem;
2711         break;
2712       }else if( pAggInfo->useSortingIdx ){
2713         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2714                               pCol->iSorterColumn, target);
2715         break;
2716       }
2717       /* Otherwise, fall thru into the TK_COLUMN case */
2718     }
2719     case TK_COLUMN: {
2720       int iTab = pExpr->iTable;
2721       if( iTab<0 ){
2722         if( pParse->ckBase>0 ){
2723           /* Generating CHECK constraints or inserting into partial index */
2724           inReg = pExpr->iColumn + pParse->ckBase;
2725           break;
2726         }else{
2727           /* Coding an expression that is part of an index where column names
2728           ** in the index refer to the table to which the index belongs */
2729           iTab = pParse->iSelfTab;
2730         }
2731       }
2732       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2733                                pExpr->iColumn, iTab, target,
2734                                pExpr->op2);
2735       break;
2736     }
2737     case TK_INTEGER: {
2738       codeInteger(pParse, pExpr, 0, target);
2739       break;
2740     }
2741 #ifndef SQLITE_OMIT_FLOATING_POINT
2742     case TK_FLOAT: {
2743       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2744       codeReal(v, pExpr->u.zToken, 0, target);
2745       break;
2746     }
2747 #endif
2748     case TK_STRING: {
2749       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2750       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2751       break;
2752     }
2753     case TK_NULL: {
2754       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2755       break;
2756     }
2757 #ifndef SQLITE_OMIT_BLOB_LITERAL
2758     case TK_BLOB: {
2759       int n;
2760       const char *z;
2761       char *zBlob;
2762       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2763       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2764       assert( pExpr->u.zToken[1]=='\'' );
2765       z = &pExpr->u.zToken[2];
2766       n = sqlite3Strlen30(z) - 1;
2767       assert( z[n]=='\'' );
2768       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2769       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2770       break;
2771     }
2772 #endif
2773     case TK_VARIABLE: {
2774       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2775       assert( pExpr->u.zToken!=0 );
2776       assert( pExpr->u.zToken[0]!=0 );
2777       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2778       if( pExpr->u.zToken[1]!=0 ){
2779         assert( pExpr->u.zToken[0]=='?'
2780              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2781         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2782       }
2783       break;
2784     }
2785     case TK_REGISTER: {
2786       inReg = pExpr->iTable;
2787       break;
2788     }
2789 #ifndef SQLITE_OMIT_CAST
2790     case TK_CAST: {
2791       /* Expressions of the form:   CAST(pLeft AS token) */
2792       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2793       if( inReg!=target ){
2794         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2795         inReg = target;
2796       }
2797       sqlite3VdbeAddOp2(v, OP_Cast, target,
2798                         sqlite3AffinityType(pExpr->u.zToken, 0));
2799       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2800       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2801       break;
2802     }
2803 #endif /* SQLITE_OMIT_CAST */
2804     case TK_LT:
2805     case TK_LE:
2806     case TK_GT:
2807     case TK_GE:
2808     case TK_NE:
2809     case TK_EQ: {
2810       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2811       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2812       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2813                   r1, r2, inReg, SQLITE_STOREP2);
2814       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2815       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2816       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2817       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2818       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2819       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2820       testcase( regFree1==0 );
2821       testcase( regFree2==0 );
2822       break;
2823     }
2824     case TK_IS:
2825     case TK_ISNOT: {
2826       testcase( op==TK_IS );
2827       testcase( op==TK_ISNOT );
2828       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2829       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2830       op = (op==TK_IS) ? TK_EQ : TK_NE;
2831       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2832                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2833       VdbeCoverageIf(v, op==TK_EQ);
2834       VdbeCoverageIf(v, op==TK_NE);
2835       testcase( regFree1==0 );
2836       testcase( regFree2==0 );
2837       break;
2838     }
2839     case TK_AND:
2840     case TK_OR:
2841     case TK_PLUS:
2842     case TK_STAR:
2843     case TK_MINUS:
2844     case TK_REM:
2845     case TK_BITAND:
2846     case TK_BITOR:
2847     case TK_SLASH:
2848     case TK_LSHIFT:
2849     case TK_RSHIFT:
2850     case TK_CONCAT: {
2851       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2852       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2853       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2854       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2855       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2856       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2857       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2858       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2859       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2860       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2861       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2862       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2863       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2864       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2865       testcase( regFree1==0 );
2866       testcase( regFree2==0 );
2867       break;
2868     }
2869     case TK_UMINUS: {
2870       Expr *pLeft = pExpr->pLeft;
2871       assert( pLeft );
2872       if( pLeft->op==TK_INTEGER ){
2873         codeInteger(pParse, pLeft, 1, target);
2874 #ifndef SQLITE_OMIT_FLOATING_POINT
2875       }else if( pLeft->op==TK_FLOAT ){
2876         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2877         codeReal(v, pLeft->u.zToken, 1, target);
2878 #endif
2879       }else{
2880         tempX.op = TK_INTEGER;
2881         tempX.flags = EP_IntValue|EP_TokenOnly;
2882         tempX.u.iValue = 0;
2883         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2884         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2885         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2886         testcase( regFree2==0 );
2887       }
2888       inReg = target;
2889       break;
2890     }
2891     case TK_BITNOT:
2892     case TK_NOT: {
2893       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2894       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2895       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2896       testcase( regFree1==0 );
2897       inReg = target;
2898       sqlite3VdbeAddOp2(v, op, r1, inReg);
2899       break;
2900     }
2901     case TK_ISNULL:
2902     case TK_NOTNULL: {
2903       int addr;
2904       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2905       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2906       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2907       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2908       testcase( regFree1==0 );
2909       addr = sqlite3VdbeAddOp1(v, op, r1);
2910       VdbeCoverageIf(v, op==TK_ISNULL);
2911       VdbeCoverageIf(v, op==TK_NOTNULL);
2912       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2913       sqlite3VdbeJumpHere(v, addr);
2914       break;
2915     }
2916     case TK_AGG_FUNCTION: {
2917       AggInfo *pInfo = pExpr->pAggInfo;
2918       if( pInfo==0 ){
2919         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2920         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2921       }else{
2922         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2923       }
2924       break;
2925     }
2926     case TK_FUNCTION: {
2927       ExprList *pFarg;       /* List of function arguments */
2928       int nFarg;             /* Number of function arguments */
2929       FuncDef *pDef;         /* The function definition object */
2930       const char *zId;       /* The function name */
2931       u32 constMask = 0;     /* Mask of function arguments that are constant */
2932       int i;                 /* Loop counter */
2933       u8 enc = ENC(db);      /* The text encoding used by this database */
2934       CollSeq *pColl = 0;    /* A collating sequence */
2935 
2936       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2937       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2938         pFarg = 0;
2939       }else{
2940         pFarg = pExpr->x.pList;
2941       }
2942       nFarg = pFarg ? pFarg->nExpr : 0;
2943       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2944       zId = pExpr->u.zToken;
2945       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
2946 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
2947       if( pDef==0 && pParse->explain ){
2948         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
2949       }
2950 #endif
2951       if( pDef==0 || pDef->xFinalize!=0 ){
2952         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
2953         break;
2954       }
2955 
2956       /* Attempt a direct implementation of the built-in COALESCE() and
2957       ** IFNULL() functions.  This avoids unnecessary evaluation of
2958       ** arguments past the first non-NULL argument.
2959       */
2960       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2961         int endCoalesce = sqlite3VdbeMakeLabel(v);
2962         assert( nFarg>=2 );
2963         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2964         for(i=1; i<nFarg; i++){
2965           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2966           VdbeCoverage(v);
2967           sqlite3ExprCacheRemove(pParse, target, 1);
2968           sqlite3ExprCachePush(pParse);
2969           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2970           sqlite3ExprCachePop(pParse);
2971         }
2972         sqlite3VdbeResolveLabel(v, endCoalesce);
2973         break;
2974       }
2975 
2976       /* The UNLIKELY() function is a no-op.  The result is the value
2977       ** of the first argument.
2978       */
2979       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2980         assert( nFarg>=1 );
2981         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2982         break;
2983       }
2984 
2985       for(i=0; i<nFarg; i++){
2986         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2987           testcase( i==31 );
2988           constMask |= MASKBIT32(i);
2989         }
2990         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2991           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2992         }
2993       }
2994       if( pFarg ){
2995         if( constMask ){
2996           r1 = pParse->nMem+1;
2997           pParse->nMem += nFarg;
2998         }else{
2999           r1 = sqlite3GetTempRange(pParse, nFarg);
3000         }
3001 
3002         /* For length() and typeof() functions with a column argument,
3003         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3004         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3005         ** loading.
3006         */
3007         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3008           u8 exprOp;
3009           assert( nFarg==1 );
3010           assert( pFarg->a[0].pExpr!=0 );
3011           exprOp = pFarg->a[0].pExpr->op;
3012           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3013             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3014             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3015             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3016             pFarg->a[0].pExpr->op2 =
3017                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3018           }
3019         }
3020 
3021         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3022         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3023                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3024         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3025       }else{
3026         r1 = 0;
3027       }
3028 #ifndef SQLITE_OMIT_VIRTUALTABLE
3029       /* Possibly overload the function if the first argument is
3030       ** a virtual table column.
3031       **
3032       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3033       ** second argument, not the first, as the argument to test to
3034       ** see if it is a column in a virtual table.  This is done because
3035       ** the left operand of infix functions (the operand we want to
3036       ** control overloading) ends up as the second argument to the
3037       ** function.  The expression "A glob B" is equivalent to
3038       ** "glob(B,A).  We want to use the A in "A glob B" to test
3039       ** for function overloading.  But we use the B term in "glob(B,A)".
3040       */
3041       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3042         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3043       }else if( nFarg>0 ){
3044         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3045       }
3046 #endif
3047       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3048         if( !pColl ) pColl = db->pDfltColl;
3049         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3050       }
3051       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3052                         (char*)pDef, P4_FUNCDEF);
3053       sqlite3VdbeChangeP5(v, (u8)nFarg);
3054       if( nFarg && constMask==0 ){
3055         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3056       }
3057       break;
3058     }
3059 #ifndef SQLITE_OMIT_SUBQUERY
3060     case TK_EXISTS:
3061     case TK_SELECT: {
3062       testcase( op==TK_EXISTS );
3063       testcase( op==TK_SELECT );
3064       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3065       break;
3066     }
3067     case TK_IN: {
3068       int destIfFalse = sqlite3VdbeMakeLabel(v);
3069       int destIfNull = sqlite3VdbeMakeLabel(v);
3070       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3071       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3072       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3073       sqlite3VdbeResolveLabel(v, destIfFalse);
3074       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3075       sqlite3VdbeResolveLabel(v, destIfNull);
3076       break;
3077     }
3078 #endif /* SQLITE_OMIT_SUBQUERY */
3079 
3080 
3081     /*
3082     **    x BETWEEN y AND z
3083     **
3084     ** This is equivalent to
3085     **
3086     **    x>=y AND x<=z
3087     **
3088     ** X is stored in pExpr->pLeft.
3089     ** Y is stored in pExpr->pList->a[0].pExpr.
3090     ** Z is stored in pExpr->pList->a[1].pExpr.
3091     */
3092     case TK_BETWEEN: {
3093       Expr *pLeft = pExpr->pLeft;
3094       struct ExprList_item *pLItem = pExpr->x.pList->a;
3095       Expr *pRight = pLItem->pExpr;
3096 
3097       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3098       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3099       testcase( regFree1==0 );
3100       testcase( regFree2==0 );
3101       r3 = sqlite3GetTempReg(pParse);
3102       r4 = sqlite3GetTempReg(pParse);
3103       codeCompare(pParse, pLeft, pRight, OP_Ge,
3104                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3105       pLItem++;
3106       pRight = pLItem->pExpr;
3107       sqlite3ReleaseTempReg(pParse, regFree2);
3108       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3109       testcase( regFree2==0 );
3110       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3111       VdbeCoverage(v);
3112       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3113       sqlite3ReleaseTempReg(pParse, r3);
3114       sqlite3ReleaseTempReg(pParse, r4);
3115       break;
3116     }
3117     case TK_SPAN:
3118     case TK_COLLATE:
3119     case TK_UPLUS: {
3120       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3121       break;
3122     }
3123 
3124     case TK_TRIGGER: {
3125       /* If the opcode is TK_TRIGGER, then the expression is a reference
3126       ** to a column in the new.* or old.* pseudo-tables available to
3127       ** trigger programs. In this case Expr.iTable is set to 1 for the
3128       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3129       ** is set to the column of the pseudo-table to read, or to -1 to
3130       ** read the rowid field.
3131       **
3132       ** The expression is implemented using an OP_Param opcode. The p1
3133       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3134       ** to reference another column of the old.* pseudo-table, where
3135       ** i is the index of the column. For a new.rowid reference, p1 is
3136       ** set to (n+1), where n is the number of columns in each pseudo-table.
3137       ** For a reference to any other column in the new.* pseudo-table, p1
3138       ** is set to (n+2+i), where n and i are as defined previously. For
3139       ** example, if the table on which triggers are being fired is
3140       ** declared as:
3141       **
3142       **   CREATE TABLE t1(a, b);
3143       **
3144       ** Then p1 is interpreted as follows:
3145       **
3146       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3147       **   p1==1   ->    old.a         p1==4   ->    new.a
3148       **   p1==2   ->    old.b         p1==5   ->    new.b
3149       */
3150       Table *pTab = pExpr->pTab;
3151       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3152 
3153       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3154       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3155       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3156       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3157 
3158       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3159       VdbeComment((v, "%s.%s -> $%d",
3160         (pExpr->iTable ? "new" : "old"),
3161         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3162         target
3163       ));
3164 
3165 #ifndef SQLITE_OMIT_FLOATING_POINT
3166       /* If the column has REAL affinity, it may currently be stored as an
3167       ** integer. Use OP_RealAffinity to make sure it is really real.
3168       **
3169       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3170       ** floating point when extracting it from the record.  */
3171       if( pExpr->iColumn>=0
3172        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3173       ){
3174         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3175       }
3176 #endif
3177       break;
3178     }
3179 
3180 
3181     /*
3182     ** Form A:
3183     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3184     **
3185     ** Form B:
3186     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3187     **
3188     ** Form A is can be transformed into the equivalent form B as follows:
3189     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3190     **        WHEN x=eN THEN rN ELSE y END
3191     **
3192     ** X (if it exists) is in pExpr->pLeft.
3193     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3194     ** odd.  The Y is also optional.  If the number of elements in x.pList
3195     ** is even, then Y is omitted and the "otherwise" result is NULL.
3196     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3197     **
3198     ** The result of the expression is the Ri for the first matching Ei,
3199     ** or if there is no matching Ei, the ELSE term Y, or if there is
3200     ** no ELSE term, NULL.
3201     */
3202     default: assert( op==TK_CASE ); {
3203       int endLabel;                     /* GOTO label for end of CASE stmt */
3204       int nextCase;                     /* GOTO label for next WHEN clause */
3205       int nExpr;                        /* 2x number of WHEN terms */
3206       int i;                            /* Loop counter */
3207       ExprList *pEList;                 /* List of WHEN terms */
3208       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3209       Expr opCompare;                   /* The X==Ei expression */
3210       Expr *pX;                         /* The X expression */
3211       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3212       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3213 
3214       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3215       assert(pExpr->x.pList->nExpr > 0);
3216       pEList = pExpr->x.pList;
3217       aListelem = pEList->a;
3218       nExpr = pEList->nExpr;
3219       endLabel = sqlite3VdbeMakeLabel(v);
3220       if( (pX = pExpr->pLeft)!=0 ){
3221         tempX = *pX;
3222         testcase( pX->op==TK_COLUMN );
3223         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3224         testcase( regFree1==0 );
3225         opCompare.op = TK_EQ;
3226         opCompare.pLeft = &tempX;
3227         pTest = &opCompare;
3228         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3229         ** The value in regFree1 might get SCopy-ed into the file result.
3230         ** So make sure that the regFree1 register is not reused for other
3231         ** purposes and possibly overwritten.  */
3232         regFree1 = 0;
3233       }
3234       for(i=0; i<nExpr-1; i=i+2){
3235         sqlite3ExprCachePush(pParse);
3236         if( pX ){
3237           assert( pTest!=0 );
3238           opCompare.pRight = aListelem[i].pExpr;
3239         }else{
3240           pTest = aListelem[i].pExpr;
3241         }
3242         nextCase = sqlite3VdbeMakeLabel(v);
3243         testcase( pTest->op==TK_COLUMN );
3244         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3245         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3246         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3247         sqlite3VdbeGoto(v, endLabel);
3248         sqlite3ExprCachePop(pParse);
3249         sqlite3VdbeResolveLabel(v, nextCase);
3250       }
3251       if( (nExpr&1)!=0 ){
3252         sqlite3ExprCachePush(pParse);
3253         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3254         sqlite3ExprCachePop(pParse);
3255       }else{
3256         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3257       }
3258       assert( db->mallocFailed || pParse->nErr>0
3259            || pParse->iCacheLevel==iCacheLevel );
3260       sqlite3VdbeResolveLabel(v, endLabel);
3261       break;
3262     }
3263 #ifndef SQLITE_OMIT_TRIGGER
3264     case TK_RAISE: {
3265       assert( pExpr->affinity==OE_Rollback
3266            || pExpr->affinity==OE_Abort
3267            || pExpr->affinity==OE_Fail
3268            || pExpr->affinity==OE_Ignore
3269       );
3270       if( !pParse->pTriggerTab ){
3271         sqlite3ErrorMsg(pParse,
3272                        "RAISE() may only be used within a trigger-program");
3273         return 0;
3274       }
3275       if( pExpr->affinity==OE_Abort ){
3276         sqlite3MayAbort(pParse);
3277       }
3278       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3279       if( pExpr->affinity==OE_Ignore ){
3280         sqlite3VdbeAddOp4(
3281             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3282         VdbeCoverage(v);
3283       }else{
3284         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3285                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3286       }
3287 
3288       break;
3289     }
3290 #endif
3291   }
3292   sqlite3ReleaseTempReg(pParse, regFree1);
3293   sqlite3ReleaseTempReg(pParse, regFree2);
3294   return inReg;
3295 }
3296 
3297 /*
3298 ** Factor out the code of the given expression to initialization time.
3299 */
3300 void sqlite3ExprCodeAtInit(
3301   Parse *pParse,    /* Parsing context */
3302   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3303   int regDest,      /* Store the value in this register */
3304   u8 reusable       /* True if this expression is reusable */
3305 ){
3306   ExprList *p;
3307   assert( ConstFactorOk(pParse) );
3308   p = pParse->pConstExpr;
3309   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3310   p = sqlite3ExprListAppend(pParse, p, pExpr);
3311   if( p ){
3312      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3313      pItem->u.iConstExprReg = regDest;
3314      pItem->reusable = reusable;
3315   }
3316   pParse->pConstExpr = p;
3317 }
3318 
3319 /*
3320 ** Generate code to evaluate an expression and store the results
3321 ** into a register.  Return the register number where the results
3322 ** are stored.
3323 **
3324 ** If the register is a temporary register that can be deallocated,
3325 ** then write its number into *pReg.  If the result register is not
3326 ** a temporary, then set *pReg to zero.
3327 **
3328 ** If pExpr is a constant, then this routine might generate this
3329 ** code to fill the register in the initialization section of the
3330 ** VDBE program, in order to factor it out of the evaluation loop.
3331 */
3332 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3333   int r2;
3334   pExpr = sqlite3ExprSkipCollate(pExpr);
3335   if( ConstFactorOk(pParse)
3336    && pExpr->op!=TK_REGISTER
3337    && sqlite3ExprIsConstantNotJoin(pExpr)
3338   ){
3339     ExprList *p = pParse->pConstExpr;
3340     int i;
3341     *pReg  = 0;
3342     if( p ){
3343       struct ExprList_item *pItem;
3344       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3345         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3346           return pItem->u.iConstExprReg;
3347         }
3348       }
3349     }
3350     r2 = ++pParse->nMem;
3351     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3352   }else{
3353     int r1 = sqlite3GetTempReg(pParse);
3354     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3355     if( r2==r1 ){
3356       *pReg = r1;
3357     }else{
3358       sqlite3ReleaseTempReg(pParse, r1);
3359       *pReg = 0;
3360     }
3361   }
3362   return r2;
3363 }
3364 
3365 /*
3366 ** Generate code that will evaluate expression pExpr and store the
3367 ** results in register target.  The results are guaranteed to appear
3368 ** in register target.
3369 */
3370 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3371   int inReg;
3372 
3373   assert( target>0 && target<=pParse->nMem );
3374   if( pExpr && pExpr->op==TK_REGISTER ){
3375     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3376   }else{
3377     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3378     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3379     if( inReg!=target && pParse->pVdbe ){
3380       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3381     }
3382   }
3383 }
3384 
3385 /*
3386 ** Make a transient copy of expression pExpr and then code it using
3387 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
3388 ** except that the input expression is guaranteed to be unchanged.
3389 */
3390 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
3391   sqlite3 *db = pParse->db;
3392   pExpr = sqlite3ExprDup(db, pExpr, 0);
3393   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
3394   sqlite3ExprDelete(db, pExpr);
3395 }
3396 
3397 /*
3398 ** Generate code that will evaluate expression pExpr and store the
3399 ** results in register target.  The results are guaranteed to appear
3400 ** in register target.  If the expression is constant, then this routine
3401 ** might choose to code the expression at initialization time.
3402 */
3403 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3404   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3405     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3406   }else{
3407     sqlite3ExprCode(pParse, pExpr, target);
3408   }
3409 }
3410 
3411 /*
3412 ** Generate code that evaluates the given expression and puts the result
3413 ** in register target.
3414 **
3415 ** Also make a copy of the expression results into another "cache" register
3416 ** and modify the expression so that the next time it is evaluated,
3417 ** the result is a copy of the cache register.
3418 **
3419 ** This routine is used for expressions that are used multiple
3420 ** times.  They are evaluated once and the results of the expression
3421 ** are reused.
3422 */
3423 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3424   Vdbe *v = pParse->pVdbe;
3425   int iMem;
3426 
3427   assert( target>0 );
3428   assert( pExpr->op!=TK_REGISTER );
3429   sqlite3ExprCode(pParse, pExpr, target);
3430   iMem = ++pParse->nMem;
3431   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3432   exprToRegister(pExpr, iMem);
3433 }
3434 
3435 /*
3436 ** Generate code that pushes the value of every element of the given
3437 ** expression list into a sequence of registers beginning at target.
3438 **
3439 ** Return the number of elements evaluated.
3440 **
3441 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3442 ** filled using OP_SCopy.  OP_Copy must be used instead.
3443 **
3444 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3445 ** factored out into initialization code.
3446 **
3447 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3448 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3449 ** in registers at srcReg, and so the value can be copied from there.
3450 */
3451 int sqlite3ExprCodeExprList(
3452   Parse *pParse,     /* Parsing context */
3453   ExprList *pList,   /* The expression list to be coded */
3454   int target,        /* Where to write results */
3455   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3456   u8 flags           /* SQLITE_ECEL_* flags */
3457 ){
3458   struct ExprList_item *pItem;
3459   int i, j, n;
3460   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3461   Vdbe *v = pParse->pVdbe;
3462   assert( pList!=0 );
3463   assert( target>0 );
3464   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3465   n = pList->nExpr;
3466   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3467   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3468     Expr *pExpr = pItem->pExpr;
3469     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3470       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3471     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3472       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3473     }else{
3474       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3475       if( inReg!=target+i ){
3476         VdbeOp *pOp;
3477         if( copyOp==OP_Copy
3478          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3479          && pOp->p1+pOp->p3+1==inReg
3480          && pOp->p2+pOp->p3+1==target+i
3481         ){
3482           pOp->p3++;
3483         }else{
3484           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3485         }
3486       }
3487     }
3488   }
3489   return n;
3490 }
3491 
3492 /*
3493 ** Generate code for a BETWEEN operator.
3494 **
3495 **    x BETWEEN y AND z
3496 **
3497 ** The above is equivalent to
3498 **
3499 **    x>=y AND x<=z
3500 **
3501 ** Code it as such, taking care to do the common subexpression
3502 ** elimination of x.
3503 */
3504 static void exprCodeBetween(
3505   Parse *pParse,    /* Parsing and code generating context */
3506   Expr *pExpr,      /* The BETWEEN expression */
3507   int dest,         /* Jump here if the jump is taken */
3508   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3509   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3510 ){
3511   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3512   Expr compLeft;    /* The  x>=y  term */
3513   Expr compRight;   /* The  x<=z  term */
3514   Expr exprX;       /* The  x  subexpression */
3515   int regFree1 = 0; /* Temporary use register */
3516 
3517   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3518   exprX = *pExpr->pLeft;
3519   exprAnd.op = TK_AND;
3520   exprAnd.pLeft = &compLeft;
3521   exprAnd.pRight = &compRight;
3522   compLeft.op = TK_GE;
3523   compLeft.pLeft = &exprX;
3524   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3525   compRight.op = TK_LE;
3526   compRight.pLeft = &exprX;
3527   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3528   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3529   if( jumpIfTrue ){
3530     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3531   }else{
3532     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3533   }
3534   sqlite3ReleaseTempReg(pParse, regFree1);
3535 
3536   /* Ensure adequate test coverage */
3537   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3538   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3539   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3540   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3541   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3542   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3543   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3544   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3545 }
3546 
3547 /*
3548 ** Generate code for a boolean expression such that a jump is made
3549 ** to the label "dest" if the expression is true but execution
3550 ** continues straight thru if the expression is false.
3551 **
3552 ** If the expression evaluates to NULL (neither true nor false), then
3553 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3554 **
3555 ** This code depends on the fact that certain token values (ex: TK_EQ)
3556 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3557 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3558 ** the make process cause these values to align.  Assert()s in the code
3559 ** below verify that the numbers are aligned correctly.
3560 */
3561 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3562   Vdbe *v = pParse->pVdbe;
3563   int op = 0;
3564   int regFree1 = 0;
3565   int regFree2 = 0;
3566   int r1, r2;
3567 
3568   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3569   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3570   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3571   op = pExpr->op;
3572   switch( op ){
3573     case TK_AND: {
3574       int d2 = sqlite3VdbeMakeLabel(v);
3575       testcase( jumpIfNull==0 );
3576       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3577       sqlite3ExprCachePush(pParse);
3578       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3579       sqlite3VdbeResolveLabel(v, d2);
3580       sqlite3ExprCachePop(pParse);
3581       break;
3582     }
3583     case TK_OR: {
3584       testcase( jumpIfNull==0 );
3585       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3586       sqlite3ExprCachePush(pParse);
3587       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3588       sqlite3ExprCachePop(pParse);
3589       break;
3590     }
3591     case TK_NOT: {
3592       testcase( jumpIfNull==0 );
3593       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3594       break;
3595     }
3596     case TK_IS:
3597     case TK_ISNOT:
3598       testcase( op==TK_IS );
3599       testcase( op==TK_ISNOT );
3600       op = (op==TK_IS) ? TK_EQ : TK_NE;
3601       jumpIfNull = SQLITE_NULLEQ;
3602       /* Fall thru */
3603     case TK_LT:
3604     case TK_LE:
3605     case TK_GT:
3606     case TK_GE:
3607     case TK_NE:
3608     case TK_EQ: {
3609       testcase( jumpIfNull==0 );
3610       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3611       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3612       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3613                   r1, r2, dest, jumpIfNull);
3614       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3615       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3616       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3617       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3618       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
3619       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
3620       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
3621       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
3622       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
3623       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
3624       testcase( regFree1==0 );
3625       testcase( regFree2==0 );
3626       break;
3627     }
3628     case TK_ISNULL:
3629     case TK_NOTNULL: {
3630       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3631       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3632       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3633       sqlite3VdbeAddOp2(v, op, r1, dest);
3634       VdbeCoverageIf(v, op==TK_ISNULL);
3635       VdbeCoverageIf(v, op==TK_NOTNULL);
3636       testcase( regFree1==0 );
3637       break;
3638     }
3639     case TK_BETWEEN: {
3640       testcase( jumpIfNull==0 );
3641       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3642       break;
3643     }
3644 #ifndef SQLITE_OMIT_SUBQUERY
3645     case TK_IN: {
3646       int destIfFalse = sqlite3VdbeMakeLabel(v);
3647       int destIfNull = jumpIfNull ? dest : destIfFalse;
3648       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3649       sqlite3VdbeGoto(v, dest);
3650       sqlite3VdbeResolveLabel(v, destIfFalse);
3651       break;
3652     }
3653 #endif
3654     default: {
3655       if( exprAlwaysTrue(pExpr) ){
3656         sqlite3VdbeGoto(v, dest);
3657       }else if( exprAlwaysFalse(pExpr) ){
3658         /* No-op */
3659       }else{
3660         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3661         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3662         VdbeCoverage(v);
3663         testcase( regFree1==0 );
3664         testcase( jumpIfNull==0 );
3665       }
3666       break;
3667     }
3668   }
3669   sqlite3ReleaseTempReg(pParse, regFree1);
3670   sqlite3ReleaseTempReg(pParse, regFree2);
3671 }
3672 
3673 /*
3674 ** Generate code for a boolean expression such that a jump is made
3675 ** to the label "dest" if the expression is false but execution
3676 ** continues straight thru if the expression is true.
3677 **
3678 ** If the expression evaluates to NULL (neither true nor false) then
3679 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3680 ** is 0.
3681 */
3682 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3683   Vdbe *v = pParse->pVdbe;
3684   int op = 0;
3685   int regFree1 = 0;
3686   int regFree2 = 0;
3687   int r1, r2;
3688 
3689   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3690   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3691   if( pExpr==0 )    return;
3692 
3693   /* The value of pExpr->op and op are related as follows:
3694   **
3695   **       pExpr->op            op
3696   **       ---------          ----------
3697   **       TK_ISNULL          OP_NotNull
3698   **       TK_NOTNULL         OP_IsNull
3699   **       TK_NE              OP_Eq
3700   **       TK_EQ              OP_Ne
3701   **       TK_GT              OP_Le
3702   **       TK_LE              OP_Gt
3703   **       TK_GE              OP_Lt
3704   **       TK_LT              OP_Ge
3705   **
3706   ** For other values of pExpr->op, op is undefined and unused.
3707   ** The value of TK_ and OP_ constants are arranged such that we
3708   ** can compute the mapping above using the following expression.
3709   ** Assert()s verify that the computation is correct.
3710   */
3711   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3712 
3713   /* Verify correct alignment of TK_ and OP_ constants
3714   */
3715   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3716   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3717   assert( pExpr->op!=TK_NE || op==OP_Eq );
3718   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3719   assert( pExpr->op!=TK_LT || op==OP_Ge );
3720   assert( pExpr->op!=TK_LE || op==OP_Gt );
3721   assert( pExpr->op!=TK_GT || op==OP_Le );
3722   assert( pExpr->op!=TK_GE || op==OP_Lt );
3723 
3724   switch( pExpr->op ){
3725     case TK_AND: {
3726       testcase( jumpIfNull==0 );
3727       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3728       sqlite3ExprCachePush(pParse);
3729       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3730       sqlite3ExprCachePop(pParse);
3731       break;
3732     }
3733     case TK_OR: {
3734       int d2 = sqlite3VdbeMakeLabel(v);
3735       testcase( jumpIfNull==0 );
3736       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3737       sqlite3ExprCachePush(pParse);
3738       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3739       sqlite3VdbeResolveLabel(v, d2);
3740       sqlite3ExprCachePop(pParse);
3741       break;
3742     }
3743     case TK_NOT: {
3744       testcase( jumpIfNull==0 );
3745       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3746       break;
3747     }
3748     case TK_IS:
3749     case TK_ISNOT:
3750       testcase( pExpr->op==TK_IS );
3751       testcase( pExpr->op==TK_ISNOT );
3752       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3753       jumpIfNull = SQLITE_NULLEQ;
3754       /* Fall thru */
3755     case TK_LT:
3756     case TK_LE:
3757     case TK_GT:
3758     case TK_GE:
3759     case TK_NE:
3760     case TK_EQ: {
3761       testcase( jumpIfNull==0 );
3762       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3763       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3764       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3765                   r1, r2, dest, jumpIfNull);
3766       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3767       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3768       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3769       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3770       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
3771       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
3772       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
3773       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
3774       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
3775       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
3776       testcase( regFree1==0 );
3777       testcase( regFree2==0 );
3778       break;
3779     }
3780     case TK_ISNULL:
3781     case TK_NOTNULL: {
3782       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3783       sqlite3VdbeAddOp2(v, op, r1, dest);
3784       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3785       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3786       testcase( regFree1==0 );
3787       break;
3788     }
3789     case TK_BETWEEN: {
3790       testcase( jumpIfNull==0 );
3791       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3792       break;
3793     }
3794 #ifndef SQLITE_OMIT_SUBQUERY
3795     case TK_IN: {
3796       if( jumpIfNull ){
3797         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3798       }else{
3799         int destIfNull = sqlite3VdbeMakeLabel(v);
3800         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3801         sqlite3VdbeResolveLabel(v, destIfNull);
3802       }
3803       break;
3804     }
3805 #endif
3806     default: {
3807       if( exprAlwaysFalse(pExpr) ){
3808         sqlite3VdbeGoto(v, dest);
3809       }else if( exprAlwaysTrue(pExpr) ){
3810         /* no-op */
3811       }else{
3812         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3813         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3814         VdbeCoverage(v);
3815         testcase( regFree1==0 );
3816         testcase( jumpIfNull==0 );
3817       }
3818       break;
3819     }
3820   }
3821   sqlite3ReleaseTempReg(pParse, regFree1);
3822   sqlite3ReleaseTempReg(pParse, regFree2);
3823 }
3824 
3825 /*
3826 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3827 ** code generation, and that copy is deleted after code generation. This
3828 ** ensures that the original pExpr is unchanged.
3829 */
3830 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3831   sqlite3 *db = pParse->db;
3832   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3833   if( db->mallocFailed==0 ){
3834     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3835   }
3836   sqlite3ExprDelete(db, pCopy);
3837 }
3838 
3839 
3840 /*
3841 ** Do a deep comparison of two expression trees.  Return 0 if the two
3842 ** expressions are completely identical.  Return 1 if they differ only
3843 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3844 ** other than the top-level COLLATE operator.
3845 **
3846 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3847 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3848 **
3849 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3850 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3851 **
3852 ** Sometimes this routine will return 2 even if the two expressions
3853 ** really are equivalent.  If we cannot prove that the expressions are
3854 ** identical, we return 2 just to be safe.  So if this routine
3855 ** returns 2, then you do not really know for certain if the two
3856 ** expressions are the same.  But if you get a 0 or 1 return, then you
3857 ** can be sure the expressions are the same.  In the places where
3858 ** this routine is used, it does not hurt to get an extra 2 - that
3859 ** just might result in some slightly slower code.  But returning
3860 ** an incorrect 0 or 1 could lead to a malfunction.
3861 */
3862 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3863   u32 combinedFlags;
3864   if( pA==0 || pB==0 ){
3865     return pB==pA ? 0 : 2;
3866   }
3867   combinedFlags = pA->flags | pB->flags;
3868   if( combinedFlags & EP_IntValue ){
3869     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3870       return 0;
3871     }
3872     return 2;
3873   }
3874   if( pA->op!=pB->op ){
3875     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3876       return 1;
3877     }
3878     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3879       return 1;
3880     }
3881     return 2;
3882   }
3883   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3884     if( pA->op==TK_FUNCTION ){
3885       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3886     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3887       return pA->op==TK_COLLATE ? 1 : 2;
3888     }
3889   }
3890   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3891   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3892     if( combinedFlags & EP_xIsSelect ) return 2;
3893     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3894     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3895     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3896     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3897       if( pA->iColumn!=pB->iColumn ) return 2;
3898       if( pA->iTable!=pB->iTable
3899        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3900     }
3901   }
3902   return 0;
3903 }
3904 
3905 /*
3906 ** Compare two ExprList objects.  Return 0 if they are identical and
3907 ** non-zero if they differ in any way.
3908 **
3909 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3910 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3911 **
3912 ** This routine might return non-zero for equivalent ExprLists.  The
3913 ** only consequence will be disabled optimizations.  But this routine
3914 ** must never return 0 if the two ExprList objects are different, or
3915 ** a malfunction will result.
3916 **
3917 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3918 ** always differs from a non-NULL pointer.
3919 */
3920 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3921   int i;
3922   if( pA==0 && pB==0 ) return 0;
3923   if( pA==0 || pB==0 ) return 1;
3924   if( pA->nExpr!=pB->nExpr ) return 1;
3925   for(i=0; i<pA->nExpr; i++){
3926     Expr *pExprA = pA->a[i].pExpr;
3927     Expr *pExprB = pB->a[i].pExpr;
3928     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3929     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3930   }
3931   return 0;
3932 }
3933 
3934 /*
3935 ** Return true if we can prove the pE2 will always be true if pE1 is
3936 ** true.  Return false if we cannot complete the proof or if pE2 might
3937 ** be false.  Examples:
3938 **
3939 **     pE1: x==5       pE2: x==5             Result: true
3940 **     pE1: x>0        pE2: x==5             Result: false
3941 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3942 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3943 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3944 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3945 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3946 **
3947 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3948 ** Expr.iTable<0 then assume a table number given by iTab.
3949 **
3950 ** When in doubt, return false.  Returning true might give a performance
3951 ** improvement.  Returning false might cause a performance reduction, but
3952 ** it will always give the correct answer and is hence always safe.
3953 */
3954 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3955   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3956     return 1;
3957   }
3958   if( pE2->op==TK_OR
3959    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3960              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3961   ){
3962     return 1;
3963   }
3964   if( pE2->op==TK_NOTNULL
3965    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3966    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3967   ){
3968     return 1;
3969   }
3970   return 0;
3971 }
3972 
3973 /*
3974 ** An instance of the following structure is used by the tree walker
3975 ** to determine if an expression can be evaluated by reference to the
3976 ** index only, without having to do a search for the corresponding
3977 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
3978 ** is the cursor for the table.
3979 */
3980 struct IdxCover {
3981   Index *pIdx;     /* The index to be tested for coverage */
3982   int iCur;        /* Cursor number for the table corresponding to the index */
3983 };
3984 
3985 /*
3986 ** Check to see if there are references to columns in table
3987 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
3988 ** pWalker->u.pIdxCover->pIdx.
3989 */
3990 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
3991   if( pExpr->op==TK_COLUMN
3992    && pExpr->iTable==pWalker->u.pIdxCover->iCur
3993    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
3994   ){
3995     pWalker->eCode = 1;
3996     return WRC_Abort;
3997   }
3998   return WRC_Continue;
3999 }
4000 
4001 /*
4002 ** Determine if an index pIdx on table with cursor iCur contains will
4003 ** the expression pExpr.  Return true if the index does cover the
4004 ** expression and false if the pExpr expression references table columns
4005 ** that are not found in the index pIdx.
4006 **
4007 ** An index covering an expression means that the expression can be
4008 ** evaluated using only the index and without having to lookup the
4009 ** corresponding table entry.
4010 */
4011 int sqlite3ExprCoveredByIndex(
4012   Expr *pExpr,        /* The index to be tested */
4013   int iCur,           /* The cursor number for the corresponding table */
4014   Index *pIdx         /* The index that might be used for coverage */
4015 ){
4016   Walker w;
4017   struct IdxCover xcov;
4018   memset(&w, 0, sizeof(w));
4019   xcov.iCur = iCur;
4020   xcov.pIdx = pIdx;
4021   w.xExprCallback = exprIdxCover;
4022   w.u.pIdxCover = &xcov;
4023   sqlite3WalkExpr(&w, pExpr);
4024   return !w.eCode;
4025 }
4026 
4027 
4028 /*
4029 ** An instance of the following structure is used by the tree walker
4030 ** to count references to table columns in the arguments of an
4031 ** aggregate function, in order to implement the
4032 ** sqlite3FunctionThisSrc() routine.
4033 */
4034 struct SrcCount {
4035   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4036   int nThis;       /* Number of references to columns in pSrcList */
4037   int nOther;      /* Number of references to columns in other FROM clauses */
4038 };
4039 
4040 /*
4041 ** Count the number of references to columns.
4042 */
4043 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4044   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4045   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4046   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4047   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4048   ** NEVER() will need to be removed. */
4049   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4050     int i;
4051     struct SrcCount *p = pWalker->u.pSrcCount;
4052     SrcList *pSrc = p->pSrc;
4053     int nSrc = pSrc ? pSrc->nSrc : 0;
4054     for(i=0; i<nSrc; i++){
4055       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4056     }
4057     if( i<nSrc ){
4058       p->nThis++;
4059     }else{
4060       p->nOther++;
4061     }
4062   }
4063   return WRC_Continue;
4064 }
4065 
4066 /*
4067 ** Determine if any of the arguments to the pExpr Function reference
4068 ** pSrcList.  Return true if they do.  Also return true if the function
4069 ** has no arguments or has only constant arguments.  Return false if pExpr
4070 ** references columns but not columns of tables found in pSrcList.
4071 */
4072 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4073   Walker w;
4074   struct SrcCount cnt;
4075   assert( pExpr->op==TK_AGG_FUNCTION );
4076   memset(&w, 0, sizeof(w));
4077   w.xExprCallback = exprSrcCount;
4078   w.u.pSrcCount = &cnt;
4079   cnt.pSrc = pSrcList;
4080   cnt.nThis = 0;
4081   cnt.nOther = 0;
4082   sqlite3WalkExprList(&w, pExpr->x.pList);
4083   return cnt.nThis>0 || cnt.nOther==0;
4084 }
4085 
4086 /*
4087 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4088 ** the new element.  Return a negative number if malloc fails.
4089 */
4090 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4091   int i;
4092   pInfo->aCol = sqlite3ArrayAllocate(
4093        db,
4094        pInfo->aCol,
4095        sizeof(pInfo->aCol[0]),
4096        &pInfo->nColumn,
4097        &i
4098   );
4099   return i;
4100 }
4101 
4102 /*
4103 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4104 ** the new element.  Return a negative number if malloc fails.
4105 */
4106 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4107   int i;
4108   pInfo->aFunc = sqlite3ArrayAllocate(
4109        db,
4110        pInfo->aFunc,
4111        sizeof(pInfo->aFunc[0]),
4112        &pInfo->nFunc,
4113        &i
4114   );
4115   return i;
4116 }
4117 
4118 /*
4119 ** This is the xExprCallback for a tree walker.  It is used to
4120 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4121 ** for additional information.
4122 */
4123 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4124   int i;
4125   NameContext *pNC = pWalker->u.pNC;
4126   Parse *pParse = pNC->pParse;
4127   SrcList *pSrcList = pNC->pSrcList;
4128   AggInfo *pAggInfo = pNC->pAggInfo;
4129 
4130   switch( pExpr->op ){
4131     case TK_AGG_COLUMN:
4132     case TK_COLUMN: {
4133       testcase( pExpr->op==TK_AGG_COLUMN );
4134       testcase( pExpr->op==TK_COLUMN );
4135       /* Check to see if the column is in one of the tables in the FROM
4136       ** clause of the aggregate query */
4137       if( ALWAYS(pSrcList!=0) ){
4138         struct SrcList_item *pItem = pSrcList->a;
4139         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4140           struct AggInfo_col *pCol;
4141           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4142           if( pExpr->iTable==pItem->iCursor ){
4143             /* If we reach this point, it means that pExpr refers to a table
4144             ** that is in the FROM clause of the aggregate query.
4145             **
4146             ** Make an entry for the column in pAggInfo->aCol[] if there
4147             ** is not an entry there already.
4148             */
4149             int k;
4150             pCol = pAggInfo->aCol;
4151             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4152               if( pCol->iTable==pExpr->iTable &&
4153                   pCol->iColumn==pExpr->iColumn ){
4154                 break;
4155               }
4156             }
4157             if( (k>=pAggInfo->nColumn)
4158              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4159             ){
4160               pCol = &pAggInfo->aCol[k];
4161               pCol->pTab = pExpr->pTab;
4162               pCol->iTable = pExpr->iTable;
4163               pCol->iColumn = pExpr->iColumn;
4164               pCol->iMem = ++pParse->nMem;
4165               pCol->iSorterColumn = -1;
4166               pCol->pExpr = pExpr;
4167               if( pAggInfo->pGroupBy ){
4168                 int j, n;
4169                 ExprList *pGB = pAggInfo->pGroupBy;
4170                 struct ExprList_item *pTerm = pGB->a;
4171                 n = pGB->nExpr;
4172                 for(j=0; j<n; j++, pTerm++){
4173                   Expr *pE = pTerm->pExpr;
4174                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4175                       pE->iColumn==pExpr->iColumn ){
4176                     pCol->iSorterColumn = j;
4177                     break;
4178                   }
4179                 }
4180               }
4181               if( pCol->iSorterColumn<0 ){
4182                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4183               }
4184             }
4185             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4186             ** because it was there before or because we just created it).
4187             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4188             ** pAggInfo->aCol[] entry.
4189             */
4190             ExprSetVVAProperty(pExpr, EP_NoReduce);
4191             pExpr->pAggInfo = pAggInfo;
4192             pExpr->op = TK_AGG_COLUMN;
4193             pExpr->iAgg = (i16)k;
4194             break;
4195           } /* endif pExpr->iTable==pItem->iCursor */
4196         } /* end loop over pSrcList */
4197       }
4198       return WRC_Prune;
4199     }
4200     case TK_AGG_FUNCTION: {
4201       if( (pNC->ncFlags & NC_InAggFunc)==0
4202        && pWalker->walkerDepth==pExpr->op2
4203       ){
4204         /* Check to see if pExpr is a duplicate of another aggregate
4205         ** function that is already in the pAggInfo structure
4206         */
4207         struct AggInfo_func *pItem = pAggInfo->aFunc;
4208         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4209           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4210             break;
4211           }
4212         }
4213         if( i>=pAggInfo->nFunc ){
4214           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4215           */
4216           u8 enc = ENC(pParse->db);
4217           i = addAggInfoFunc(pParse->db, pAggInfo);
4218           if( i>=0 ){
4219             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4220             pItem = &pAggInfo->aFunc[i];
4221             pItem->pExpr = pExpr;
4222             pItem->iMem = ++pParse->nMem;
4223             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4224             pItem->pFunc = sqlite3FindFunction(pParse->db,
4225                    pExpr->u.zToken,
4226                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4227             if( pExpr->flags & EP_Distinct ){
4228               pItem->iDistinct = pParse->nTab++;
4229             }else{
4230               pItem->iDistinct = -1;
4231             }
4232           }
4233         }
4234         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4235         */
4236         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4237         ExprSetVVAProperty(pExpr, EP_NoReduce);
4238         pExpr->iAgg = (i16)i;
4239         pExpr->pAggInfo = pAggInfo;
4240         return WRC_Prune;
4241       }else{
4242         return WRC_Continue;
4243       }
4244     }
4245   }
4246   return WRC_Continue;
4247 }
4248 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4249   UNUSED_PARAMETER(pWalker);
4250   UNUSED_PARAMETER(pSelect);
4251   return WRC_Continue;
4252 }
4253 
4254 /*
4255 ** Analyze the pExpr expression looking for aggregate functions and
4256 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4257 ** points to.  Additional entries are made on the AggInfo object as
4258 ** necessary.
4259 **
4260 ** This routine should only be called after the expression has been
4261 ** analyzed by sqlite3ResolveExprNames().
4262 */
4263 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4264   Walker w;
4265   memset(&w, 0, sizeof(w));
4266   w.xExprCallback = analyzeAggregate;
4267   w.xSelectCallback = analyzeAggregatesInSelect;
4268   w.u.pNC = pNC;
4269   assert( pNC->pSrcList!=0 );
4270   sqlite3WalkExpr(&w, pExpr);
4271 }
4272 
4273 /*
4274 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4275 ** expression list.  Return the number of errors.
4276 **
4277 ** If an error is found, the analysis is cut short.
4278 */
4279 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4280   struct ExprList_item *pItem;
4281   int i;
4282   if( pList ){
4283     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4284       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4285     }
4286   }
4287 }
4288 
4289 /*
4290 ** Allocate a single new register for use to hold some intermediate result.
4291 */
4292 int sqlite3GetTempReg(Parse *pParse){
4293   if( pParse->nTempReg==0 ){
4294     return ++pParse->nMem;
4295   }
4296   return pParse->aTempReg[--pParse->nTempReg];
4297 }
4298 
4299 /*
4300 ** Deallocate a register, making available for reuse for some other
4301 ** purpose.
4302 **
4303 ** If a register is currently being used by the column cache, then
4304 ** the deallocation is deferred until the column cache line that uses
4305 ** the register becomes stale.
4306 */
4307 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4308   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4309     int i;
4310     struct yColCache *p;
4311     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4312       if( p->iReg==iReg ){
4313         p->tempReg = 1;
4314         return;
4315       }
4316     }
4317     pParse->aTempReg[pParse->nTempReg++] = iReg;
4318   }
4319 }
4320 
4321 /*
4322 ** Allocate or deallocate a block of nReg consecutive registers
4323 */
4324 int sqlite3GetTempRange(Parse *pParse, int nReg){
4325   int i, n;
4326   i = pParse->iRangeReg;
4327   n = pParse->nRangeReg;
4328   if( nReg<=n ){
4329     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4330     pParse->iRangeReg += nReg;
4331     pParse->nRangeReg -= nReg;
4332   }else{
4333     i = pParse->nMem+1;
4334     pParse->nMem += nReg;
4335   }
4336   return i;
4337 }
4338 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4339   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4340   if( nReg>pParse->nRangeReg ){
4341     pParse->nRangeReg = nReg;
4342     pParse->iRangeReg = iReg;
4343   }
4344 }
4345 
4346 /*
4347 ** Mark all temporary registers as being unavailable for reuse.
4348 */
4349 void sqlite3ClearTempRegCache(Parse *pParse){
4350   pParse->nTempReg = 0;
4351   pParse->nRangeReg = 0;
4352 }
4353 
4354 /*
4355 ** Validate that no temporary register falls within the range of
4356 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
4357 ** statements.
4358 */
4359 #ifdef SQLITE_DEBUG
4360 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
4361   int i;
4362   if( pParse->nRangeReg>0
4363    && pParse->iRangeReg+pParse->nRangeReg<iLast
4364    && pParse->iRangeReg>=iFirst
4365   ){
4366      return 0;
4367   }
4368   for(i=0; i<pParse->nTempReg; i++){
4369     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
4370       return 0;
4371     }
4372   }
4373   return 1;
4374 }
4375 #endif /* SQLITE_DEBUG */
4376