1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( op==TK_AGG_COLUMN || op==TK_COLUMN ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** The collating sequence might be determined by a COLLATE operator 128 ** or by the presence of a column with a defined collating sequence. 129 ** COLLATE operators take first precedence. Left operands take 130 ** precedence over right operands. 131 */ 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 133 sqlite3 *db = pParse->db; 134 CollSeq *pColl = 0; 135 Expr *p = pExpr; 136 while( p ){ 137 int op = p->op; 138 if( p->flags & EP_Generic ) break; 139 if( op==TK_CAST || op==TK_UPLUS ){ 140 p = p->pLeft; 141 continue; 142 } 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 145 break; 146 } 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 148 || op==TK_REGISTER || op==TK_TRIGGER) 149 && p->pTab!=0 150 ){ 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ 153 int j = p->iColumn; 154 if( j>=0 ){ 155 const char *zColl = p->pTab->aCol[j].zColl; 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 157 } 158 break; 159 } 160 if( p->flags & EP_Collate ){ 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 162 p = p->pLeft; 163 }else{ 164 Expr *pNext = p->pRight; 165 /* The Expr.x union is never used at the same time as Expr.pRight */ 166 assert( p->x.pList==0 || p->pRight==0 ); 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 169 ** least one EP_Collate. Thus the following two ALWAYS. */ 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 171 int i; 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 174 pNext = p->x.pList->a[i].pExpr; 175 break; 176 } 177 } 178 } 179 p = pNext; 180 } 181 }else{ 182 break; 183 } 184 } 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ 186 pColl = 0; 187 } 188 return pColl; 189 } 190 191 /* 192 ** pExpr is an operand of a comparison operator. aff2 is the 193 ** type affinity of the other operand. This routine returns the 194 ** type affinity that should be used for the comparison operator. 195 */ 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 197 char aff1 = sqlite3ExprAffinity(pExpr); 198 if( aff1 && aff2 ){ 199 /* Both sides of the comparison are columns. If one has numeric 200 ** affinity, use that. Otherwise use no affinity. 201 */ 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 203 return SQLITE_AFF_NUMERIC; 204 }else{ 205 return SQLITE_AFF_BLOB; 206 } 207 }else if( !aff1 && !aff2 ){ 208 /* Neither side of the comparison is a column. Compare the 209 ** results directly. 210 */ 211 return SQLITE_AFF_BLOB; 212 }else{ 213 /* One side is a column, the other is not. Use the columns affinity. */ 214 assert( aff1==0 || aff2==0 ); 215 return (aff1 + aff2); 216 } 217 } 218 219 /* 220 ** pExpr is a comparison operator. Return the type affinity that should 221 ** be applied to both operands prior to doing the comparison. 222 */ 223 static char comparisonAffinity(Expr *pExpr){ 224 char aff; 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 228 assert( pExpr->pLeft ); 229 aff = sqlite3ExprAffinity(pExpr->pLeft); 230 if( pExpr->pRight ){ 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 234 }else if( NEVER(aff==0) ){ 235 aff = SQLITE_AFF_BLOB; 236 } 237 return aff; 238 } 239 240 /* 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 242 ** idx_affinity is the affinity of an indexed column. Return true 243 ** if the index with affinity idx_affinity may be used to implement 244 ** the comparison in pExpr. 245 */ 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 247 char aff = comparisonAffinity(pExpr); 248 switch( aff ){ 249 case SQLITE_AFF_BLOB: 250 return 1; 251 case SQLITE_AFF_TEXT: 252 return idx_affinity==SQLITE_AFF_TEXT; 253 default: 254 return sqlite3IsNumericAffinity(idx_affinity); 255 } 256 } 257 258 /* 259 ** Return the P5 value that should be used for a binary comparison 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 261 */ 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 265 return aff; 266 } 267 268 /* 269 ** Return a pointer to the collation sequence that should be used by 270 ** a binary comparison operator comparing pLeft and pRight. 271 ** 272 ** If the left hand expression has a collating sequence type, then it is 273 ** used. Otherwise the collation sequence for the right hand expression 274 ** is used, or the default (BINARY) if neither expression has a collating 275 ** type. 276 ** 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 278 ** it is not considered. 279 */ 280 CollSeq *sqlite3BinaryCompareCollSeq( 281 Parse *pParse, 282 Expr *pLeft, 283 Expr *pRight 284 ){ 285 CollSeq *pColl; 286 assert( pLeft ); 287 if( pLeft->flags & EP_Collate ){ 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 290 pColl = sqlite3ExprCollSeq(pParse, pRight); 291 }else{ 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); 293 if( !pColl ){ 294 pColl = sqlite3ExprCollSeq(pParse, pRight); 295 } 296 } 297 return pColl; 298 } 299 300 /* 301 ** Generate code for a comparison operator. 302 */ 303 static int codeCompare( 304 Parse *pParse, /* The parsing (and code generating) context */ 305 Expr *pLeft, /* The left operand */ 306 Expr *pRight, /* The right operand */ 307 int opcode, /* The comparison opcode */ 308 int in1, int in2, /* Register holding operands */ 309 int dest, /* Jump here if true. */ 310 int jumpIfNull /* If true, jump if either operand is NULL */ 311 ){ 312 int p5; 313 int addr; 314 CollSeq *p4; 315 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 319 (void*)p4, P4_COLLSEQ); 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 321 return addr; 322 } 323 324 /* 325 ** Return true if expression pExpr is a vector, or false otherwise. 326 ** 327 ** A vector is defined as any expression that results in two or more 328 ** columns of result. Every TK_VECTOR node is an vector because the 329 ** parser will not generate a TK_VECTOR with fewer than two entries. 330 ** But a TK_SELECT might be either a vector or a scalar. It is only 331 ** considered a vector if it has two or more result columns. 332 */ 333 int sqlite3ExprIsVector(Expr *pExpr){ 334 return sqlite3ExprVectorSize(pExpr)>1; 335 } 336 337 /* 338 ** If the expression passed as the only argument is of type TK_VECTOR 339 ** return the number of expressions in the vector. Or, if the expression 340 ** is a sub-select, return the number of columns in the sub-select. For 341 ** any other type of expression, return 1. 342 */ 343 int sqlite3ExprVectorSize(Expr *pExpr){ 344 u8 op = pExpr->op; 345 if( op==TK_REGISTER ) op = pExpr->op2; 346 if( op==TK_VECTOR ){ 347 return pExpr->x.pList->nExpr; 348 }else if( op==TK_SELECT ){ 349 return pExpr->x.pSelect->pEList->nExpr; 350 }else{ 351 return 1; 352 } 353 } 354 355 #ifndef SQLITE_OMIT_SUBQUERY 356 /* 357 ** Return a pointer to a subexpression of pVector that is the i-th 358 ** column of the vector (numbered starting with 0). The caller must 359 ** ensure that i is within range. 360 ** 361 ** If pVector is really a scalar (and "scalar" here includes subqueries 362 ** that return a single column!) then return pVector unmodified. 363 ** 364 ** pVector retains ownership of the returned subexpression. 365 ** 366 ** If the vector is a (SELECT ...) then the expression returned is 367 ** just the expression for the i-th term of the result set, and may 368 ** not be ready for evaluation because the table cursor has not yet 369 ** been positioned. 370 */ 371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 372 assert( i<sqlite3ExprVectorSize(pVector) ); 373 if( sqlite3ExprIsVector(pVector) ){ 374 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 375 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 376 return pVector->x.pSelect->pEList->a[i].pExpr; 377 }else{ 378 return pVector->x.pList->a[i].pExpr; 379 } 380 } 381 return pVector; 382 } 383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */ 384 385 #ifndef SQLITE_OMIT_SUBQUERY 386 /* 387 ** Compute and return a new Expr object which when passed to 388 ** sqlite3ExprCode() will generate all necessary code to compute 389 ** the iField-th column of the vector expression pVector. 390 ** 391 ** It is ok for pVector to be a scalar (as long as iField==0). 392 ** In that case, this routine works like sqlite3ExprDup(). 393 ** 394 ** The caller owns the returned Expr object and is responsible for 395 ** ensuring that the returned value eventually gets freed. 396 ** 397 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 398 ** then the returned object will reference pVector and so pVector must remain 399 ** valid for the life of the returned object. If pVector is a TK_VECTOR 400 ** or a scalar expression, then it can be deleted as soon as this routine 401 ** returns. 402 ** 403 ** A trick to cause a TK_SELECT pVector to be deleted together with 404 ** the returned Expr object is to attach the pVector to the pRight field 405 ** of the returned TK_SELECT_COLUMN Expr object. 406 */ 407 Expr *sqlite3ExprForVectorField( 408 Parse *pParse, /* Parsing context */ 409 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 410 int iField /* Which column of the vector to return */ 411 ){ 412 Expr *pRet; 413 if( pVector->op==TK_SELECT ){ 414 assert( pVector->flags & EP_xIsSelect ); 415 /* The TK_SELECT_COLUMN Expr node: 416 ** 417 ** pLeft: pVector containing TK_SELECT 418 ** pRight: not used. But recursively deleted. 419 ** iColumn: Index of a column in pVector 420 ** pLeft->iTable: First in an array of register holding result, or 0 421 ** if the result is not yet computed. 422 ** 423 ** sqlite3ExprDelete() specifically skips the recursive delete of 424 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 425 ** can be attached to pRight to cause this node to take ownership of 426 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 427 ** with the same pLeft pointer to the pVector, but only one of them 428 ** will own the pVector. 429 */ 430 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0, 0); 431 if( pRet ){ 432 pRet->iColumn = iField; 433 pRet->pLeft = pVector; 434 } 435 assert( pRet==0 || pRet->iTable==0 ); 436 }else{ 437 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 438 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 439 } 440 return pRet; 441 } 442 #endif /* !define(SQLITE_OMIT_SUBQUERY) */ 443 444 /* 445 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 446 ** it. Return the register in which the result is stored (or, if the 447 ** sub-select returns more than one column, the first in an array 448 ** of registers in which the result is stored). 449 ** 450 ** If pExpr is not a TK_SELECT expression, return 0. 451 */ 452 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 453 int reg = 0; 454 #ifndef SQLITE_OMIT_SUBQUERY 455 if( pExpr->op==TK_SELECT ){ 456 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 457 } 458 #endif 459 return reg; 460 } 461 462 /* 463 ** Argument pVector points to a vector expression - either a TK_VECTOR 464 ** or TK_SELECT that returns more than one column. This function returns 465 ** the register number of a register that contains the value of 466 ** element iField of the vector. 467 ** 468 ** If pVector is a TK_SELECT expression, then code for it must have 469 ** already been generated using the exprCodeSubselect() routine. In this 470 ** case parameter regSelect should be the first in an array of registers 471 ** containing the results of the sub-select. 472 ** 473 ** If pVector is of type TK_VECTOR, then code for the requested field 474 ** is generated. In this case (*pRegFree) may be set to the number of 475 ** a temporary register to be freed by the caller before returning. 476 ** 477 ** Before returning, output parameter (*ppExpr) is set to point to the 478 ** Expr object corresponding to element iElem of the vector. 479 */ 480 static int exprVectorRegister( 481 Parse *pParse, /* Parse context */ 482 Expr *pVector, /* Vector to extract element from */ 483 int iField, /* Field to extract from pVector */ 484 int regSelect, /* First in array of registers */ 485 Expr **ppExpr, /* OUT: Expression element */ 486 int *pRegFree /* OUT: Temp register to free */ 487 ){ 488 u8 op = pVector->op; 489 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 490 if( op==TK_REGISTER ){ 491 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 492 return pVector->iTable+iField; 493 } 494 if( op==TK_SELECT ){ 495 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 496 return regSelect+iField; 497 } 498 *ppExpr = pVector->x.pList->a[iField].pExpr; 499 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 500 } 501 502 /* 503 ** Expression pExpr is a comparison between two vector values. Compute 504 ** the result of the comparison (1, 0, or NULL) and write that 505 ** result into register dest. 506 ** 507 ** The caller must satisfy the following preconditions: 508 ** 509 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 510 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 511 ** otherwise: op==pExpr->op and p5==0 512 */ 513 static void codeVectorCompare( 514 Parse *pParse, /* Code generator context */ 515 Expr *pExpr, /* The comparison operation */ 516 int dest, /* Write results into this register */ 517 u8 op, /* Comparison operator */ 518 u8 p5 /* SQLITE_NULLEQ or zero */ 519 ){ 520 Vdbe *v = pParse->pVdbe; 521 Expr *pLeft = pExpr->pLeft; 522 Expr *pRight = pExpr->pRight; 523 int nLeft = sqlite3ExprVectorSize(pLeft); 524 int i; 525 int regLeft = 0; 526 int regRight = 0; 527 u8 opx = op; 528 int addrDone = sqlite3VdbeMakeLabel(v); 529 530 assert( nLeft==sqlite3ExprVectorSize(pRight) ); 531 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 532 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 533 || pExpr->op==TK_LT || pExpr->op==TK_GT 534 || pExpr->op==TK_LE || pExpr->op==TK_GE 535 ); 536 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 537 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 538 assert( p5==0 || pExpr->op!=op ); 539 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 540 541 p5 |= SQLITE_STOREP2; 542 if( opx==TK_LE ) opx = TK_LT; 543 if( opx==TK_GE ) opx = TK_GT; 544 545 regLeft = exprCodeSubselect(pParse, pLeft); 546 regRight = exprCodeSubselect(pParse, pRight); 547 548 for(i=0; 1 /*Loop exits by "break"*/; i++){ 549 int regFree1 = 0, regFree2 = 0; 550 Expr *pL, *pR; 551 int r1, r2; 552 assert( i>=0 && i<nLeft ); 553 if( i>0 ) sqlite3ExprCachePush(pParse); 554 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 555 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 556 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 557 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 558 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 559 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 560 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 561 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 562 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 563 sqlite3ReleaseTempReg(pParse, regFree1); 564 sqlite3ReleaseTempReg(pParse, regFree2); 565 if( i>0 ) sqlite3ExprCachePop(pParse); 566 if( i==nLeft-1 ){ 567 break; 568 } 569 if( opx==TK_EQ ){ 570 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 571 p5 |= SQLITE_KEEPNULL; 572 }else if( opx==TK_NE ){ 573 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 574 p5 |= SQLITE_KEEPNULL; 575 }else{ 576 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 577 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 578 VdbeCoverageIf(v, op==TK_LT); 579 VdbeCoverageIf(v, op==TK_GT); 580 VdbeCoverageIf(v, op==TK_LE); 581 VdbeCoverageIf(v, op==TK_GE); 582 if( i==nLeft-2 ) opx = op; 583 } 584 } 585 sqlite3VdbeResolveLabel(v, addrDone); 586 } 587 588 #if SQLITE_MAX_EXPR_DEPTH>0 589 /* 590 ** Check that argument nHeight is less than or equal to the maximum 591 ** expression depth allowed. If it is not, leave an error message in 592 ** pParse. 593 */ 594 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 595 int rc = SQLITE_OK; 596 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 597 if( nHeight>mxHeight ){ 598 sqlite3ErrorMsg(pParse, 599 "Expression tree is too large (maximum depth %d)", mxHeight 600 ); 601 rc = SQLITE_ERROR; 602 } 603 return rc; 604 } 605 606 /* The following three functions, heightOfExpr(), heightOfExprList() 607 ** and heightOfSelect(), are used to determine the maximum height 608 ** of any expression tree referenced by the structure passed as the 609 ** first argument. 610 ** 611 ** If this maximum height is greater than the current value pointed 612 ** to by pnHeight, the second parameter, then set *pnHeight to that 613 ** value. 614 */ 615 static void heightOfExpr(Expr *p, int *pnHeight){ 616 if( p ){ 617 if( p->nHeight>*pnHeight ){ 618 *pnHeight = p->nHeight; 619 } 620 } 621 } 622 static void heightOfExprList(ExprList *p, int *pnHeight){ 623 if( p ){ 624 int i; 625 for(i=0; i<p->nExpr; i++){ 626 heightOfExpr(p->a[i].pExpr, pnHeight); 627 } 628 } 629 } 630 static void heightOfSelect(Select *p, int *pnHeight){ 631 if( p ){ 632 heightOfExpr(p->pWhere, pnHeight); 633 heightOfExpr(p->pHaving, pnHeight); 634 heightOfExpr(p->pLimit, pnHeight); 635 heightOfExpr(p->pOffset, pnHeight); 636 heightOfExprList(p->pEList, pnHeight); 637 heightOfExprList(p->pGroupBy, pnHeight); 638 heightOfExprList(p->pOrderBy, pnHeight); 639 heightOfSelect(p->pPrior, pnHeight); 640 } 641 } 642 643 /* 644 ** Set the Expr.nHeight variable in the structure passed as an 645 ** argument. An expression with no children, Expr.pList or 646 ** Expr.pSelect member has a height of 1. Any other expression 647 ** has a height equal to the maximum height of any other 648 ** referenced Expr plus one. 649 ** 650 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 651 ** if appropriate. 652 */ 653 static void exprSetHeight(Expr *p){ 654 int nHeight = 0; 655 heightOfExpr(p->pLeft, &nHeight); 656 heightOfExpr(p->pRight, &nHeight); 657 if( ExprHasProperty(p, EP_xIsSelect) ){ 658 heightOfSelect(p->x.pSelect, &nHeight); 659 }else if( p->x.pList ){ 660 heightOfExprList(p->x.pList, &nHeight); 661 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 662 } 663 p->nHeight = nHeight + 1; 664 } 665 666 /* 667 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 668 ** the height is greater than the maximum allowed expression depth, 669 ** leave an error in pParse. 670 ** 671 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 672 ** Expr.flags. 673 */ 674 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 675 if( pParse->nErr ) return; 676 exprSetHeight(p); 677 sqlite3ExprCheckHeight(pParse, p->nHeight); 678 } 679 680 /* 681 ** Return the maximum height of any expression tree referenced 682 ** by the select statement passed as an argument. 683 */ 684 int sqlite3SelectExprHeight(Select *p){ 685 int nHeight = 0; 686 heightOfSelect(p, &nHeight); 687 return nHeight; 688 } 689 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 690 /* 691 ** Propagate all EP_Propagate flags from the Expr.x.pList into 692 ** Expr.flags. 693 */ 694 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 695 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 696 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 697 } 698 } 699 #define exprSetHeight(y) 700 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 701 702 /* 703 ** This routine is the core allocator for Expr nodes. 704 ** 705 ** Construct a new expression node and return a pointer to it. Memory 706 ** for this node and for the pToken argument is a single allocation 707 ** obtained from sqlite3DbMalloc(). The calling function 708 ** is responsible for making sure the node eventually gets freed. 709 ** 710 ** If dequote is true, then the token (if it exists) is dequoted. 711 ** If dequote is false, no dequoting is performed. The deQuote 712 ** parameter is ignored if pToken is NULL or if the token does not 713 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 714 ** then the EP_DblQuoted flag is set on the expression node. 715 ** 716 ** Special case: If op==TK_INTEGER and pToken points to a string that 717 ** can be translated into a 32-bit integer, then the token is not 718 ** stored in u.zToken. Instead, the integer values is written 719 ** into u.iValue and the EP_IntValue flag is set. No extra storage 720 ** is allocated to hold the integer text and the dequote flag is ignored. 721 */ 722 Expr *sqlite3ExprAlloc( 723 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 724 int op, /* Expression opcode */ 725 const Token *pToken, /* Token argument. Might be NULL */ 726 int dequote /* True to dequote */ 727 ){ 728 Expr *pNew; 729 int nExtra = 0; 730 int iValue = 0; 731 732 assert( db!=0 ); 733 if( pToken ){ 734 if( op!=TK_INTEGER || pToken->z==0 735 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 736 nExtra = pToken->n+1; 737 assert( iValue>=0 ); 738 } 739 } 740 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 741 if( pNew ){ 742 memset(pNew, 0, sizeof(Expr)); 743 pNew->op = (u8)op; 744 pNew->iAgg = -1; 745 if( pToken ){ 746 if( nExtra==0 ){ 747 pNew->flags |= EP_IntValue; 748 pNew->u.iValue = iValue; 749 }else{ 750 pNew->u.zToken = (char*)&pNew[1]; 751 assert( pToken->z!=0 || pToken->n==0 ); 752 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 753 pNew->u.zToken[pToken->n] = 0; 754 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 755 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 756 sqlite3Dequote(pNew->u.zToken); 757 } 758 } 759 } 760 #if SQLITE_MAX_EXPR_DEPTH>0 761 pNew->nHeight = 1; 762 #endif 763 } 764 return pNew; 765 } 766 767 /* 768 ** Allocate a new expression node from a zero-terminated token that has 769 ** already been dequoted. 770 */ 771 Expr *sqlite3Expr( 772 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 773 int op, /* Expression opcode */ 774 const char *zToken /* Token argument. Might be NULL */ 775 ){ 776 Token x; 777 x.z = zToken; 778 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 779 return sqlite3ExprAlloc(db, op, &x, 0); 780 } 781 782 /* 783 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 784 ** 785 ** If pRoot==NULL that means that a memory allocation error has occurred. 786 ** In that case, delete the subtrees pLeft and pRight. 787 */ 788 void sqlite3ExprAttachSubtrees( 789 sqlite3 *db, 790 Expr *pRoot, 791 Expr *pLeft, 792 Expr *pRight 793 ){ 794 if( pRoot==0 ){ 795 assert( db->mallocFailed ); 796 sqlite3ExprDelete(db, pLeft); 797 sqlite3ExprDelete(db, pRight); 798 }else{ 799 if( pRight ){ 800 pRoot->pRight = pRight; 801 pRoot->flags |= EP_Propagate & pRight->flags; 802 } 803 if( pLeft ){ 804 pRoot->pLeft = pLeft; 805 pRoot->flags |= EP_Propagate & pLeft->flags; 806 } 807 exprSetHeight(pRoot); 808 } 809 } 810 811 /* 812 ** Allocate an Expr node which joins as many as two subtrees. 813 ** 814 ** One or both of the subtrees can be NULL. Return a pointer to the new 815 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 816 ** free the subtrees and return NULL. 817 */ 818 Expr *sqlite3PExpr( 819 Parse *pParse, /* Parsing context */ 820 int op, /* Expression opcode */ 821 Expr *pLeft, /* Left operand */ 822 Expr *pRight, /* Right operand */ 823 const Token *pToken /* Argument token */ 824 ){ 825 Expr *p; 826 if( op==TK_AND && pParse->nErr==0 ){ 827 /* Take advantage of short-circuit false optimization for AND */ 828 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 829 }else{ 830 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 831 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 832 } 833 if( p ) { 834 sqlite3ExprCheckHeight(pParse, p->nHeight); 835 } 836 return p; 837 } 838 839 /* 840 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 841 ** do a memory allocation failure) then delete the pSelect object. 842 */ 843 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 844 if( pExpr ){ 845 pExpr->x.pSelect = pSelect; 846 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 847 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 848 }else{ 849 assert( pParse->db->mallocFailed ); 850 sqlite3SelectDelete(pParse->db, pSelect); 851 } 852 } 853 854 855 /* 856 ** If the expression is always either TRUE or FALSE (respectively), 857 ** then return 1. If one cannot determine the truth value of the 858 ** expression at compile-time return 0. 859 ** 860 ** This is an optimization. If is OK to return 0 here even if 861 ** the expression really is always false or false (a false negative). 862 ** But it is a bug to return 1 if the expression might have different 863 ** boolean values in different circumstances (a false positive.) 864 ** 865 ** Note that if the expression is part of conditional for a 866 ** LEFT JOIN, then we cannot determine at compile-time whether or not 867 ** is it true or false, so always return 0. 868 */ 869 static int exprAlwaysTrue(Expr *p){ 870 int v = 0; 871 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 872 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 873 return v!=0; 874 } 875 static int exprAlwaysFalse(Expr *p){ 876 int v = 0; 877 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 878 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 879 return v==0; 880 } 881 882 /* 883 ** Join two expressions using an AND operator. If either expression is 884 ** NULL, then just return the other expression. 885 ** 886 ** If one side or the other of the AND is known to be false, then instead 887 ** of returning an AND expression, just return a constant expression with 888 ** a value of false. 889 */ 890 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 891 if( pLeft==0 ){ 892 return pRight; 893 }else if( pRight==0 ){ 894 return pLeft; 895 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 896 sqlite3ExprDelete(db, pLeft); 897 sqlite3ExprDelete(db, pRight); 898 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 899 }else{ 900 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 901 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 902 return pNew; 903 } 904 } 905 906 /* 907 ** Construct a new expression node for a function with multiple 908 ** arguments. 909 */ 910 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 911 Expr *pNew; 912 sqlite3 *db = pParse->db; 913 assert( pToken ); 914 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 915 if( pNew==0 ){ 916 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 917 return 0; 918 } 919 pNew->x.pList = pList; 920 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 921 sqlite3ExprSetHeightAndFlags(pParse, pNew); 922 return pNew; 923 } 924 925 /* 926 ** Assign a variable number to an expression that encodes a wildcard 927 ** in the original SQL statement. 928 ** 929 ** Wildcards consisting of a single "?" are assigned the next sequential 930 ** variable number. 931 ** 932 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 933 ** sure "nnn" is not too be to avoid a denial of service attack when 934 ** the SQL statement comes from an external source. 935 ** 936 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 937 ** as the previous instance of the same wildcard. Or if this is the first 938 ** instance of the wildcard, the next sequential variable number is 939 ** assigned. 940 */ 941 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 942 sqlite3 *db = pParse->db; 943 const char *z; 944 945 if( pExpr==0 ) return; 946 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 947 z = pExpr->u.zToken; 948 assert( z!=0 ); 949 assert( z[0]!=0 ); 950 assert( n==sqlite3Strlen30(z) ); 951 if( z[1]==0 ){ 952 /* Wildcard of the form "?". Assign the next variable number */ 953 assert( z[0]=='?' ); 954 pExpr->iColumn = (ynVar)(++pParse->nVar); 955 }else{ 956 ynVar x; 957 if( z[0]=='?' ){ 958 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 959 ** use it as the variable number */ 960 i64 i; 961 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 962 x = (ynVar)i; 963 testcase( i==0 ); 964 testcase( i==1 ); 965 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 966 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 967 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 968 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 969 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 970 return; 971 } 972 if( i>pParse->nVar ){ 973 pParse->nVar = (int)i; 974 } 975 }else{ 976 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 977 ** number as the prior appearance of the same name, or if the name 978 ** has never appeared before, reuse the same variable number 979 */ 980 ynVar i; 981 for(i=x=0; i<pParse->nzVar; i++){ 982 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 983 x = (ynVar)i+1; 984 break; 985 } 986 } 987 if( x==0 ) x = (ynVar)(++pParse->nVar); 988 } 989 pExpr->iColumn = x; 990 if( x>pParse->nzVar ){ 991 char **a; 992 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 993 if( a==0 ){ 994 assert( db->mallocFailed ); /* Error reported through mallocFailed */ 995 return; 996 } 997 pParse->azVar = a; 998 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 999 pParse->nzVar = x; 1000 } 1001 if( pParse->azVar[x-1]==0 ){ 1002 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 1003 } 1004 } 1005 if( pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1006 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1007 } 1008 } 1009 1010 /* 1011 ** Recursively delete an expression tree. 1012 */ 1013 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1014 assert( p!=0 ); 1015 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1016 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1017 #ifdef SQLITE_DEBUG 1018 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1019 assert( p->pLeft==0 ); 1020 assert( p->pRight==0 ); 1021 assert( p->x.pSelect==0 ); 1022 } 1023 #endif 1024 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1025 /* The Expr.x union is never used at the same time as Expr.pRight */ 1026 assert( p->x.pList==0 || p->pRight==0 ); 1027 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1028 sqlite3ExprDelete(db, p->pRight); 1029 if( ExprHasProperty(p, EP_xIsSelect) ){ 1030 sqlite3SelectDelete(db, p->x.pSelect); 1031 }else{ 1032 sqlite3ExprListDelete(db, p->x.pList); 1033 } 1034 } 1035 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1036 if( !ExprHasProperty(p, EP_Static) ){ 1037 sqlite3DbFree(db, p); 1038 } 1039 } 1040 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1041 if( p ) sqlite3ExprDeleteNN(db, p); 1042 } 1043 1044 /* 1045 ** Return the number of bytes allocated for the expression structure 1046 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1047 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1048 */ 1049 static int exprStructSize(Expr *p){ 1050 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1051 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1052 return EXPR_FULLSIZE; 1053 } 1054 1055 /* 1056 ** The dupedExpr*Size() routines each return the number of bytes required 1057 ** to store a copy of an expression or expression tree. They differ in 1058 ** how much of the tree is measured. 1059 ** 1060 ** dupedExprStructSize() Size of only the Expr structure 1061 ** dupedExprNodeSize() Size of Expr + space for token 1062 ** dupedExprSize() Expr + token + subtree components 1063 ** 1064 *************************************************************************** 1065 ** 1066 ** The dupedExprStructSize() function returns two values OR-ed together: 1067 ** (1) the space required for a copy of the Expr structure only and 1068 ** (2) the EP_xxx flags that indicate what the structure size should be. 1069 ** The return values is always one of: 1070 ** 1071 ** EXPR_FULLSIZE 1072 ** EXPR_REDUCEDSIZE | EP_Reduced 1073 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1074 ** 1075 ** The size of the structure can be found by masking the return value 1076 ** of this routine with 0xfff. The flags can be found by masking the 1077 ** return value with EP_Reduced|EP_TokenOnly. 1078 ** 1079 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1080 ** (unreduced) Expr objects as they or originally constructed by the parser. 1081 ** During expression analysis, extra information is computed and moved into 1082 ** later parts of teh Expr object and that extra information might get chopped 1083 ** off if the expression is reduced. Note also that it does not work to 1084 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1085 ** to reduce a pristine expression tree from the parser. The implementation 1086 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1087 ** to enforce this constraint. 1088 */ 1089 static int dupedExprStructSize(Expr *p, int flags){ 1090 int nSize; 1091 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1092 assert( EXPR_FULLSIZE<=0xfff ); 1093 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1094 if( 0==flags ){ 1095 nSize = EXPR_FULLSIZE; 1096 }else{ 1097 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1098 assert( !ExprHasProperty(p, EP_FromJoin) ); 1099 assert( !ExprHasProperty(p, EP_MemToken) ); 1100 assert( !ExprHasProperty(p, EP_NoReduce) ); 1101 if( p->pLeft || p->x.pList ){ 1102 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1103 }else{ 1104 assert( p->pRight==0 ); 1105 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1106 } 1107 } 1108 return nSize; 1109 } 1110 1111 /* 1112 ** This function returns the space in bytes required to store the copy 1113 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1114 ** string is defined.) 1115 */ 1116 static int dupedExprNodeSize(Expr *p, int flags){ 1117 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1118 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1119 nByte += sqlite3Strlen30(p->u.zToken)+1; 1120 } 1121 return ROUND8(nByte); 1122 } 1123 1124 /* 1125 ** Return the number of bytes required to create a duplicate of the 1126 ** expression passed as the first argument. The second argument is a 1127 ** mask containing EXPRDUP_XXX flags. 1128 ** 1129 ** The value returned includes space to create a copy of the Expr struct 1130 ** itself and the buffer referred to by Expr.u.zToken, if any. 1131 ** 1132 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1133 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1134 ** and Expr.pRight variables (but not for any structures pointed to or 1135 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1136 */ 1137 static int dupedExprSize(Expr *p, int flags){ 1138 int nByte = 0; 1139 if( p ){ 1140 nByte = dupedExprNodeSize(p, flags); 1141 if( flags&EXPRDUP_REDUCE ){ 1142 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1143 } 1144 } 1145 return nByte; 1146 } 1147 1148 /* 1149 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1150 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1151 ** to store the copy of expression p, the copies of p->u.zToken 1152 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1153 ** if any. Before returning, *pzBuffer is set to the first byte past the 1154 ** portion of the buffer copied into by this function. 1155 */ 1156 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1157 Expr *pNew; /* Value to return */ 1158 u8 *zAlloc; /* Memory space from which to build Expr object */ 1159 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1160 1161 assert( db!=0 ); 1162 assert( p ); 1163 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1164 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1165 1166 /* Figure out where to write the new Expr structure. */ 1167 if( pzBuffer ){ 1168 zAlloc = *pzBuffer; 1169 staticFlag = EP_Static; 1170 }else{ 1171 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1172 staticFlag = 0; 1173 } 1174 pNew = (Expr *)zAlloc; 1175 1176 if( pNew ){ 1177 /* Set nNewSize to the size allocated for the structure pointed to 1178 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1179 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1180 ** by the copy of the p->u.zToken string (if any). 1181 */ 1182 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1183 const int nNewSize = nStructSize & 0xfff; 1184 int nToken; 1185 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1186 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1187 }else{ 1188 nToken = 0; 1189 } 1190 if( dupFlags ){ 1191 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1192 memcpy(zAlloc, p, nNewSize); 1193 }else{ 1194 u32 nSize = (u32)exprStructSize(p); 1195 memcpy(zAlloc, p, nSize); 1196 if( nSize<EXPR_FULLSIZE ){ 1197 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1198 } 1199 } 1200 1201 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1202 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1203 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1204 pNew->flags |= staticFlag; 1205 1206 /* Copy the p->u.zToken string, if any. */ 1207 if( nToken ){ 1208 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1209 memcpy(zToken, p->u.zToken, nToken); 1210 } 1211 1212 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1213 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1214 if( ExprHasProperty(p, EP_xIsSelect) ){ 1215 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1216 }else{ 1217 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1218 } 1219 } 1220 1221 /* Fill in pNew->pLeft and pNew->pRight. */ 1222 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1223 zAlloc += dupedExprNodeSize(p, dupFlags); 1224 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1225 pNew->pLeft = p->pLeft ? 1226 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1227 pNew->pRight = p->pRight ? 1228 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1229 } 1230 if( pzBuffer ){ 1231 *pzBuffer = zAlloc; 1232 } 1233 }else{ 1234 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1235 if( pNew->op==TK_SELECT_COLUMN ){ 1236 pNew->pLeft = p->pLeft; 1237 }else{ 1238 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1239 } 1240 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1241 } 1242 } 1243 } 1244 return pNew; 1245 } 1246 1247 /* 1248 ** Create and return a deep copy of the object passed as the second 1249 ** argument. If an OOM condition is encountered, NULL is returned 1250 ** and the db->mallocFailed flag set. 1251 */ 1252 #ifndef SQLITE_OMIT_CTE 1253 static With *withDup(sqlite3 *db, With *p){ 1254 With *pRet = 0; 1255 if( p ){ 1256 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1257 pRet = sqlite3DbMallocZero(db, nByte); 1258 if( pRet ){ 1259 int i; 1260 pRet->nCte = p->nCte; 1261 for(i=0; i<p->nCte; i++){ 1262 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1263 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1264 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1265 } 1266 } 1267 } 1268 return pRet; 1269 } 1270 #else 1271 # define withDup(x,y) 0 1272 #endif 1273 1274 /* 1275 ** The following group of routines make deep copies of expressions, 1276 ** expression lists, ID lists, and select statements. The copies can 1277 ** be deleted (by being passed to their respective ...Delete() routines) 1278 ** without effecting the originals. 1279 ** 1280 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1281 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1282 ** by subsequent calls to sqlite*ListAppend() routines. 1283 ** 1284 ** Any tables that the SrcList might point to are not duplicated. 1285 ** 1286 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1287 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1288 ** truncated version of the usual Expr structure that will be stored as 1289 ** part of the in-memory representation of the database schema. 1290 */ 1291 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1292 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1293 return p ? exprDup(db, p, flags, 0) : 0; 1294 } 1295 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1296 ExprList *pNew; 1297 struct ExprList_item *pItem, *pOldItem; 1298 int i; 1299 assert( db!=0 ); 1300 if( p==0 ) return 0; 1301 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1302 if( pNew==0 ) return 0; 1303 pNew->nExpr = i = p->nExpr; 1304 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 1305 pNew->a = pItem = sqlite3DbMallocRawNN(db, i*sizeof(p->a[0]) ); 1306 if( pItem==0 ){ 1307 sqlite3DbFree(db, pNew); 1308 return 0; 1309 } 1310 pOldItem = p->a; 1311 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1312 Expr *pOldExpr = pOldItem->pExpr; 1313 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1314 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1315 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1316 pItem->sortOrder = pOldItem->sortOrder; 1317 pItem->done = 0; 1318 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1319 pItem->u = pOldItem->u; 1320 } 1321 return pNew; 1322 } 1323 1324 /* 1325 ** If cursors, triggers, views and subqueries are all omitted from 1326 ** the build, then none of the following routines, except for 1327 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1328 ** called with a NULL argument. 1329 */ 1330 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1331 || !defined(SQLITE_OMIT_SUBQUERY) 1332 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1333 SrcList *pNew; 1334 int i; 1335 int nByte; 1336 assert( db!=0 ); 1337 if( p==0 ) return 0; 1338 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1339 pNew = sqlite3DbMallocRawNN(db, nByte ); 1340 if( pNew==0 ) return 0; 1341 pNew->nSrc = pNew->nAlloc = p->nSrc; 1342 for(i=0; i<p->nSrc; i++){ 1343 struct SrcList_item *pNewItem = &pNew->a[i]; 1344 struct SrcList_item *pOldItem = &p->a[i]; 1345 Table *pTab; 1346 pNewItem->pSchema = pOldItem->pSchema; 1347 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1348 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1349 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1350 pNewItem->fg = pOldItem->fg; 1351 pNewItem->iCursor = pOldItem->iCursor; 1352 pNewItem->addrFillSub = pOldItem->addrFillSub; 1353 pNewItem->regReturn = pOldItem->regReturn; 1354 if( pNewItem->fg.isIndexedBy ){ 1355 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1356 } 1357 pNewItem->pIBIndex = pOldItem->pIBIndex; 1358 if( pNewItem->fg.isTabFunc ){ 1359 pNewItem->u1.pFuncArg = 1360 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1361 } 1362 pTab = pNewItem->pTab = pOldItem->pTab; 1363 if( pTab ){ 1364 pTab->nRef++; 1365 } 1366 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1367 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1368 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1369 pNewItem->colUsed = pOldItem->colUsed; 1370 } 1371 return pNew; 1372 } 1373 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1374 IdList *pNew; 1375 int i; 1376 assert( db!=0 ); 1377 if( p==0 ) return 0; 1378 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1379 if( pNew==0 ) return 0; 1380 pNew->nId = p->nId; 1381 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1382 if( pNew->a==0 ){ 1383 sqlite3DbFree(db, pNew); 1384 return 0; 1385 } 1386 /* Note that because the size of the allocation for p->a[] is not 1387 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1388 ** on the duplicate created by this function. */ 1389 for(i=0; i<p->nId; i++){ 1390 struct IdList_item *pNewItem = &pNew->a[i]; 1391 struct IdList_item *pOldItem = &p->a[i]; 1392 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1393 pNewItem->idx = pOldItem->idx; 1394 } 1395 return pNew; 1396 } 1397 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1398 Select *pNew, *pPrior; 1399 assert( db!=0 ); 1400 if( p==0 ) return 0; 1401 pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1402 if( pNew==0 ) return 0; 1403 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1404 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1405 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1406 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1407 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1408 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1409 pNew->op = p->op; 1410 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1411 if( pPrior ) pPrior->pNext = pNew; 1412 pNew->pNext = 0; 1413 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1414 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1415 pNew->iLimit = 0; 1416 pNew->iOffset = 0; 1417 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1418 pNew->addrOpenEphm[0] = -1; 1419 pNew->addrOpenEphm[1] = -1; 1420 pNew->nSelectRow = p->nSelectRow; 1421 pNew->pWith = withDup(db, p->pWith); 1422 sqlite3SelectSetName(pNew, p->zSelName); 1423 return pNew; 1424 } 1425 #else 1426 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1427 assert( p==0 ); 1428 return 0; 1429 } 1430 #endif 1431 1432 1433 /* 1434 ** Add a new element to the end of an expression list. If pList is 1435 ** initially NULL, then create a new expression list. 1436 ** 1437 ** If a memory allocation error occurs, the entire list is freed and 1438 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1439 ** that the new entry was successfully appended. 1440 */ 1441 ExprList *sqlite3ExprListAppend( 1442 Parse *pParse, /* Parsing context */ 1443 ExprList *pList, /* List to which to append. Might be NULL */ 1444 Expr *pExpr /* Expression to be appended. Might be NULL */ 1445 ){ 1446 sqlite3 *db = pParse->db; 1447 assert( db!=0 ); 1448 if( pList==0 ){ 1449 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1450 if( pList==0 ){ 1451 goto no_mem; 1452 } 1453 pList->nExpr = 0; 1454 pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0])); 1455 if( pList->a==0 ) goto no_mem; 1456 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1457 struct ExprList_item *a; 1458 assert( pList->nExpr>0 ); 1459 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1460 if( a==0 ){ 1461 goto no_mem; 1462 } 1463 pList->a = a; 1464 } 1465 assert( pList->a!=0 ); 1466 if( 1 ){ 1467 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1468 memset(pItem, 0, sizeof(*pItem)); 1469 pItem->pExpr = pExpr; 1470 } 1471 return pList; 1472 1473 no_mem: 1474 /* Avoid leaking memory if malloc has failed. */ 1475 sqlite3ExprDelete(db, pExpr); 1476 sqlite3ExprListDelete(db, pList); 1477 return 0; 1478 } 1479 1480 /* 1481 ** pColumns and pExpr form a vector assignment which is part of the SET 1482 ** clause of an UPDATE statement. Like this: 1483 ** 1484 ** (a,b,c) = (expr1,expr2,expr3) 1485 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1486 ** 1487 ** For each term of the vector assignment, append new entries to the 1488 ** expression list pList. In the case of a subquery on the LHS, append 1489 ** TK_SELECT_COLUMN expressions. 1490 */ 1491 ExprList *sqlite3ExprListAppendVector( 1492 Parse *pParse, /* Parsing context */ 1493 ExprList *pList, /* List to which to append. Might be NULL */ 1494 IdList *pColumns, /* List of names of LHS of the assignment */ 1495 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1496 ){ 1497 sqlite3 *db = pParse->db; 1498 int n; 1499 int i; 1500 int iFirst = pList ? pList->nExpr : 0; 1501 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1502 ** exit prior to this routine being invoked */ 1503 if( NEVER(pColumns==0) ) goto vector_append_error; 1504 if( pExpr==0 ) goto vector_append_error; 1505 n = sqlite3ExprVectorSize(pExpr); 1506 if( pColumns->nId!=n ){ 1507 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1508 pColumns->nId, n); 1509 goto vector_append_error; 1510 } 1511 for(i=0; i<n; i++){ 1512 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1513 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1514 if( pList ){ 1515 assert( pList->nExpr==iFirst+i+1 ); 1516 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1517 pColumns->a[i].zName = 0; 1518 } 1519 } 1520 if( pExpr->op==TK_SELECT ){ 1521 if( pList && pList->a[iFirst].pExpr ){ 1522 assert( pList->a[iFirst].pExpr->op==TK_SELECT_COLUMN ); 1523 pList->a[iFirst].pExpr->pRight = pExpr; 1524 pExpr = 0; 1525 } 1526 } 1527 1528 vector_append_error: 1529 sqlite3ExprDelete(db, pExpr); 1530 sqlite3IdListDelete(db, pColumns); 1531 return pList; 1532 } 1533 1534 /* 1535 ** Set the sort order for the last element on the given ExprList. 1536 */ 1537 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1538 if( p==0 ) return; 1539 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1540 assert( p->nExpr>0 ); 1541 if( iSortOrder<0 ){ 1542 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1543 return; 1544 } 1545 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1546 } 1547 1548 /* 1549 ** Set the ExprList.a[].zName element of the most recently added item 1550 ** on the expression list. 1551 ** 1552 ** pList might be NULL following an OOM error. But pName should never be 1553 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1554 ** is set. 1555 */ 1556 void sqlite3ExprListSetName( 1557 Parse *pParse, /* Parsing context */ 1558 ExprList *pList, /* List to which to add the span. */ 1559 Token *pName, /* Name to be added */ 1560 int dequote /* True to cause the name to be dequoted */ 1561 ){ 1562 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1563 if( pList ){ 1564 struct ExprList_item *pItem; 1565 assert( pList->nExpr>0 ); 1566 pItem = &pList->a[pList->nExpr-1]; 1567 assert( pItem->zName==0 ); 1568 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1569 if( dequote ) sqlite3Dequote(pItem->zName); 1570 } 1571 } 1572 1573 /* 1574 ** Set the ExprList.a[].zSpan element of the most recently added item 1575 ** on the expression list. 1576 ** 1577 ** pList might be NULL following an OOM error. But pSpan should never be 1578 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1579 ** is set. 1580 */ 1581 void sqlite3ExprListSetSpan( 1582 Parse *pParse, /* Parsing context */ 1583 ExprList *pList, /* List to which to add the span. */ 1584 ExprSpan *pSpan /* The span to be added */ 1585 ){ 1586 sqlite3 *db = pParse->db; 1587 assert( pList!=0 || db->mallocFailed!=0 ); 1588 if( pList ){ 1589 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1590 assert( pList->nExpr>0 ); 1591 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1592 sqlite3DbFree(db, pItem->zSpan); 1593 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1594 (int)(pSpan->zEnd - pSpan->zStart)); 1595 } 1596 } 1597 1598 /* 1599 ** If the expression list pEList contains more than iLimit elements, 1600 ** leave an error message in pParse. 1601 */ 1602 void sqlite3ExprListCheckLength( 1603 Parse *pParse, 1604 ExprList *pEList, 1605 const char *zObject 1606 ){ 1607 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1608 testcase( pEList && pEList->nExpr==mx ); 1609 testcase( pEList && pEList->nExpr==mx+1 ); 1610 if( pEList && pEList->nExpr>mx ){ 1611 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1612 } 1613 } 1614 1615 /* 1616 ** Delete an entire expression list. 1617 */ 1618 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1619 int i; 1620 struct ExprList_item *pItem; 1621 assert( pList->a!=0 || pList->nExpr==0 ); 1622 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1623 sqlite3ExprDelete(db, pItem->pExpr); 1624 sqlite3DbFree(db, pItem->zName); 1625 sqlite3DbFree(db, pItem->zSpan); 1626 } 1627 sqlite3DbFree(db, pList->a); 1628 sqlite3DbFree(db, pList); 1629 } 1630 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1631 if( pList ) exprListDeleteNN(db, pList); 1632 } 1633 1634 /* 1635 ** Return the bitwise-OR of all Expr.flags fields in the given 1636 ** ExprList. 1637 */ 1638 u32 sqlite3ExprListFlags(const ExprList *pList){ 1639 int i; 1640 u32 m = 0; 1641 if( pList ){ 1642 for(i=0; i<pList->nExpr; i++){ 1643 Expr *pExpr = pList->a[i].pExpr; 1644 assert( pExpr!=0 ); 1645 m |= pExpr->flags; 1646 } 1647 } 1648 return m; 1649 } 1650 1651 /* 1652 ** These routines are Walker callbacks used to check expressions to 1653 ** see if they are "constant" for some definition of constant. The 1654 ** Walker.eCode value determines the type of "constant" we are looking 1655 ** for. 1656 ** 1657 ** These callback routines are used to implement the following: 1658 ** 1659 ** sqlite3ExprIsConstant() pWalker->eCode==1 1660 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1661 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1662 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1663 ** 1664 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1665 ** is found to not be a constant. 1666 ** 1667 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1668 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1669 ** an existing schema and 4 when processing a new statement. A bound 1670 ** parameter raises an error for new statements, but is silently converted 1671 ** to NULL for existing schemas. This allows sqlite_master tables that 1672 ** contain a bound parameter because they were generated by older versions 1673 ** of SQLite to be parsed by newer versions of SQLite without raising a 1674 ** malformed schema error. 1675 */ 1676 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1677 1678 /* If pWalker->eCode is 2 then any term of the expression that comes from 1679 ** the ON or USING clauses of a left join disqualifies the expression 1680 ** from being considered constant. */ 1681 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1682 pWalker->eCode = 0; 1683 return WRC_Abort; 1684 } 1685 1686 switch( pExpr->op ){ 1687 /* Consider functions to be constant if all their arguments are constant 1688 ** and either pWalker->eCode==4 or 5 or the function has the 1689 ** SQLITE_FUNC_CONST flag. */ 1690 case TK_FUNCTION: 1691 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1692 return WRC_Continue; 1693 }else{ 1694 pWalker->eCode = 0; 1695 return WRC_Abort; 1696 } 1697 case TK_ID: 1698 case TK_COLUMN: 1699 case TK_AGG_FUNCTION: 1700 case TK_AGG_COLUMN: 1701 testcase( pExpr->op==TK_ID ); 1702 testcase( pExpr->op==TK_COLUMN ); 1703 testcase( pExpr->op==TK_AGG_FUNCTION ); 1704 testcase( pExpr->op==TK_AGG_COLUMN ); 1705 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1706 return WRC_Continue; 1707 }else{ 1708 pWalker->eCode = 0; 1709 return WRC_Abort; 1710 } 1711 case TK_VARIABLE: 1712 if( pWalker->eCode==5 ){ 1713 /* Silently convert bound parameters that appear inside of CREATE 1714 ** statements into a NULL when parsing the CREATE statement text out 1715 ** of the sqlite_master table */ 1716 pExpr->op = TK_NULL; 1717 }else if( pWalker->eCode==4 ){ 1718 /* A bound parameter in a CREATE statement that originates from 1719 ** sqlite3_prepare() causes an error */ 1720 pWalker->eCode = 0; 1721 return WRC_Abort; 1722 } 1723 /* Fall through */ 1724 default: 1725 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1726 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1727 return WRC_Continue; 1728 } 1729 } 1730 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1731 UNUSED_PARAMETER(NotUsed); 1732 pWalker->eCode = 0; 1733 return WRC_Abort; 1734 } 1735 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1736 Walker w; 1737 memset(&w, 0, sizeof(w)); 1738 w.eCode = initFlag; 1739 w.xExprCallback = exprNodeIsConstant; 1740 w.xSelectCallback = selectNodeIsConstant; 1741 w.u.iCur = iCur; 1742 sqlite3WalkExpr(&w, p); 1743 return w.eCode; 1744 } 1745 1746 /* 1747 ** Walk an expression tree. Return non-zero if the expression is constant 1748 ** and 0 if it involves variables or function calls. 1749 ** 1750 ** For the purposes of this function, a double-quoted string (ex: "abc") 1751 ** is considered a variable but a single-quoted string (ex: 'abc') is 1752 ** a constant. 1753 */ 1754 int sqlite3ExprIsConstant(Expr *p){ 1755 return exprIsConst(p, 1, 0); 1756 } 1757 1758 /* 1759 ** Walk an expression tree. Return non-zero if the expression is constant 1760 ** that does no originate from the ON or USING clauses of a join. 1761 ** Return 0 if it involves variables or function calls or terms from 1762 ** an ON or USING clause. 1763 */ 1764 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1765 return exprIsConst(p, 2, 0); 1766 } 1767 1768 /* 1769 ** Walk an expression tree. Return non-zero if the expression is constant 1770 ** for any single row of the table with cursor iCur. In other words, the 1771 ** expression must not refer to any non-deterministic function nor any 1772 ** table other than iCur. 1773 */ 1774 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1775 return exprIsConst(p, 3, iCur); 1776 } 1777 1778 /* 1779 ** Walk an expression tree. Return non-zero if the expression is constant 1780 ** or a function call with constant arguments. Return and 0 if there 1781 ** are any variables. 1782 ** 1783 ** For the purposes of this function, a double-quoted string (ex: "abc") 1784 ** is considered a variable but a single-quoted string (ex: 'abc') is 1785 ** a constant. 1786 */ 1787 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1788 assert( isInit==0 || isInit==1 ); 1789 return exprIsConst(p, 4+isInit, 0); 1790 } 1791 1792 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1793 /* 1794 ** Walk an expression tree. Return 1 if the expression contains a 1795 ** subquery of some kind. Return 0 if there are no subqueries. 1796 */ 1797 int sqlite3ExprContainsSubquery(Expr *p){ 1798 Walker w; 1799 memset(&w, 0, sizeof(w)); 1800 w.eCode = 1; 1801 w.xExprCallback = sqlite3ExprWalkNoop; 1802 w.xSelectCallback = selectNodeIsConstant; 1803 sqlite3WalkExpr(&w, p); 1804 return w.eCode==0; 1805 } 1806 #endif 1807 1808 /* 1809 ** If the expression p codes a constant integer that is small enough 1810 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1811 ** in *pValue. If the expression is not an integer or if it is too big 1812 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1813 */ 1814 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1815 int rc = 0; 1816 1817 /* If an expression is an integer literal that fits in a signed 32-bit 1818 ** integer, then the EP_IntValue flag will have already been set */ 1819 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1820 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1821 1822 if( p->flags & EP_IntValue ){ 1823 *pValue = p->u.iValue; 1824 return 1; 1825 } 1826 switch( p->op ){ 1827 case TK_UPLUS: { 1828 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1829 break; 1830 } 1831 case TK_UMINUS: { 1832 int v; 1833 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1834 assert( v!=(-2147483647-1) ); 1835 *pValue = -v; 1836 rc = 1; 1837 } 1838 break; 1839 } 1840 default: break; 1841 } 1842 return rc; 1843 } 1844 1845 /* 1846 ** Return FALSE if there is no chance that the expression can be NULL. 1847 ** 1848 ** If the expression might be NULL or if the expression is too complex 1849 ** to tell return TRUE. 1850 ** 1851 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1852 ** when we know that a value cannot be NULL. Hence, a false positive 1853 ** (returning TRUE when in fact the expression can never be NULL) might 1854 ** be a small performance hit but is otherwise harmless. On the other 1855 ** hand, a false negative (returning FALSE when the result could be NULL) 1856 ** will likely result in an incorrect answer. So when in doubt, return 1857 ** TRUE. 1858 */ 1859 int sqlite3ExprCanBeNull(const Expr *p){ 1860 u8 op; 1861 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1862 op = p->op; 1863 if( op==TK_REGISTER ) op = p->op2; 1864 switch( op ){ 1865 case TK_INTEGER: 1866 case TK_STRING: 1867 case TK_FLOAT: 1868 case TK_BLOB: 1869 return 0; 1870 case TK_COLUMN: 1871 assert( p->pTab!=0 ); 1872 return ExprHasProperty(p, EP_CanBeNull) || 1873 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1874 default: 1875 return 1; 1876 } 1877 } 1878 1879 /* 1880 ** Return TRUE if the given expression is a constant which would be 1881 ** unchanged by OP_Affinity with the affinity given in the second 1882 ** argument. 1883 ** 1884 ** This routine is used to determine if the OP_Affinity operation 1885 ** can be omitted. When in doubt return FALSE. A false negative 1886 ** is harmless. A false positive, however, can result in the wrong 1887 ** answer. 1888 */ 1889 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1890 u8 op; 1891 if( aff==SQLITE_AFF_BLOB ) return 1; 1892 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1893 op = p->op; 1894 if( op==TK_REGISTER ) op = p->op2; 1895 switch( op ){ 1896 case TK_INTEGER: { 1897 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1898 } 1899 case TK_FLOAT: { 1900 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1901 } 1902 case TK_STRING: { 1903 return aff==SQLITE_AFF_TEXT; 1904 } 1905 case TK_BLOB: { 1906 return 1; 1907 } 1908 case TK_COLUMN: { 1909 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1910 return p->iColumn<0 1911 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1912 } 1913 default: { 1914 return 0; 1915 } 1916 } 1917 } 1918 1919 /* 1920 ** Return TRUE if the given string is a row-id column name. 1921 */ 1922 int sqlite3IsRowid(const char *z){ 1923 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1924 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1925 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1926 return 0; 1927 } 1928 1929 /* 1930 ** pX is the RHS of an IN operator. If pX is a SELECT statement 1931 ** that can be simplified to a direct table access, then return 1932 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 1933 ** or if the SELECT statement needs to be manifested into a transient 1934 ** table, then return NULL. 1935 */ 1936 #ifndef SQLITE_OMIT_SUBQUERY 1937 static Select *isCandidateForInOpt(Expr *pX){ 1938 Select *p; 1939 SrcList *pSrc; 1940 ExprList *pEList; 1941 Table *pTab; 1942 int i; 1943 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 1944 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 1945 p = pX->x.pSelect; 1946 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1947 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1948 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1949 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1950 return 0; /* No DISTINCT keyword and no aggregate functions */ 1951 } 1952 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1953 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1954 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1955 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1956 pSrc = p->pSrc; 1957 assert( pSrc!=0 ); 1958 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1959 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1960 pTab = pSrc->a[0].pTab; 1961 assert( pTab!=0 ); 1962 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1963 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1964 pEList = p->pEList; 1965 assert( pEList!=0 ); 1966 /* All SELECT results must be columns. */ 1967 for(i=0; i<pEList->nExpr; i++){ 1968 Expr *pRes = pEList->a[i].pExpr; 1969 if( pRes->op!=TK_COLUMN ) return 0; 1970 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 1971 } 1972 return p; 1973 } 1974 #endif /* SQLITE_OMIT_SUBQUERY */ 1975 1976 #ifndef SQLITE_OMIT_SUBQUERY 1977 /* 1978 ** Generate code that checks the left-most column of index table iCur to see if 1979 ** it contains any NULL entries. Cause the register at regHasNull to be set 1980 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1981 ** to be set to NULL if iCur contains one or more NULL values. 1982 */ 1983 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1984 int addr1; 1985 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1986 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1987 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1988 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1989 VdbeComment((v, "first_entry_in(%d)", iCur)); 1990 sqlite3VdbeJumpHere(v, addr1); 1991 } 1992 #endif 1993 1994 1995 #ifndef SQLITE_OMIT_SUBQUERY 1996 /* 1997 ** The argument is an IN operator with a list (not a subquery) on the 1998 ** right-hand side. Return TRUE if that list is constant. 1999 */ 2000 static int sqlite3InRhsIsConstant(Expr *pIn){ 2001 Expr *pLHS; 2002 int res; 2003 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2004 pLHS = pIn->pLeft; 2005 pIn->pLeft = 0; 2006 res = sqlite3ExprIsConstant(pIn); 2007 pIn->pLeft = pLHS; 2008 return res; 2009 } 2010 #endif 2011 2012 /* 2013 ** This function is used by the implementation of the IN (...) operator. 2014 ** The pX parameter is the expression on the RHS of the IN operator, which 2015 ** might be either a list of expressions or a subquery. 2016 ** 2017 ** The job of this routine is to find or create a b-tree object that can 2018 ** be used either to test for membership in the RHS set or to iterate through 2019 ** all members of the RHS set, skipping duplicates. 2020 ** 2021 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2022 ** and pX->iTable is set to the index of that cursor. 2023 ** 2024 ** The returned value of this function indicates the b-tree type, as follows: 2025 ** 2026 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2027 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2028 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2029 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2030 ** populated epheremal table. 2031 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2032 ** implemented as a sequence of comparisons. 2033 ** 2034 ** An existing b-tree might be used if the RHS expression pX is a simple 2035 ** subquery such as: 2036 ** 2037 ** SELECT <column1>, <column2>... FROM <table> 2038 ** 2039 ** If the RHS of the IN operator is a list or a more complex subquery, then 2040 ** an ephemeral table might need to be generated from the RHS and then 2041 ** pX->iTable made to point to the ephemeral table instead of an 2042 ** existing table. 2043 ** 2044 ** The inFlags parameter must contain exactly one of the bits 2045 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2046 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2047 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2048 ** IN index will be used to loop over all values of the RHS of the 2049 ** IN operator. 2050 ** 2051 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2052 ** through the set members) then the b-tree must not contain duplicates. 2053 ** An epheremal table must be used unless the selected columns are guaranteed 2054 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2055 ** a UNIQUE constraint or index. 2056 ** 2057 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2058 ** for fast set membership tests) then an epheremal table must 2059 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2060 ** index can be found with the specified <columns> as its left-most. 2061 ** 2062 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2063 ** if the RHS of the IN operator is a list (not a subquery) then this 2064 ** routine might decide that creating an ephemeral b-tree for membership 2065 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2066 ** calling routine should implement the IN operator using a sequence 2067 ** of Eq or Ne comparison operations. 2068 ** 2069 ** When the b-tree is being used for membership tests, the calling function 2070 ** might need to know whether or not the RHS side of the IN operator 2071 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2072 ** if there is any chance that the (...) might contain a NULL value at 2073 ** runtime, then a register is allocated and the register number written 2074 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2075 ** NULL value, then *prRhsHasNull is left unchanged. 2076 ** 2077 ** If a register is allocated and its location stored in *prRhsHasNull, then 2078 ** the value in that register will be NULL if the b-tree contains one or more 2079 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2080 ** NULL values. 2081 ** 2082 ** If the aiMap parameter is not NULL, it must point to an array containing 2083 ** one element for each column returned by the SELECT statement on the RHS 2084 ** of the IN(...) operator. The i'th entry of the array is populated with the 2085 ** offset of the index column that matches the i'th column returned by the 2086 ** SELECT. For example, if the expression and selected index are: 2087 ** 2088 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2089 ** CREATE INDEX i1 ON t1(b, c, a); 2090 ** 2091 ** then aiMap[] is populated with {2, 0, 1}. 2092 */ 2093 #ifndef SQLITE_OMIT_SUBQUERY 2094 int sqlite3FindInIndex( 2095 Parse *pParse, /* Parsing context */ 2096 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2097 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2098 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2099 int *aiMap /* Mapping from Index fields to RHS fields */ 2100 ){ 2101 Select *p; /* SELECT to the right of IN operator */ 2102 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2103 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2104 int mustBeUnique; /* True if RHS must be unique */ 2105 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2106 2107 assert( pX->op==TK_IN ); 2108 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2109 2110 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2111 ** whether or not the SELECT result contains NULL values, check whether 2112 ** or not NULL is actually possible (it may not be, for example, due 2113 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2114 ** set prRhsHasNull to 0 before continuing. */ 2115 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2116 int i; 2117 ExprList *pEList = pX->x.pSelect->pEList; 2118 for(i=0; i<pEList->nExpr; i++){ 2119 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2120 } 2121 if( i==pEList->nExpr ){ 2122 prRhsHasNull = 0; 2123 } 2124 } 2125 2126 /* Check to see if an existing table or index can be used to 2127 ** satisfy the query. This is preferable to generating a new 2128 ** ephemeral table. */ 2129 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2130 sqlite3 *db = pParse->db; /* Database connection */ 2131 Table *pTab; /* Table <table>. */ 2132 i16 iDb; /* Database idx for pTab */ 2133 ExprList *pEList = p->pEList; 2134 int nExpr = pEList->nExpr; 2135 2136 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2137 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2138 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2139 pTab = p->pSrc->a[0].pTab; 2140 2141 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2142 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2143 sqlite3CodeVerifySchema(pParse, iDb); 2144 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2145 2146 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2147 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2148 /* The "x IN (SELECT rowid FROM table)" case */ 2149 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2150 VdbeCoverage(v); 2151 2152 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2153 eType = IN_INDEX_ROWID; 2154 2155 sqlite3VdbeJumpHere(v, iAddr); 2156 }else{ 2157 Index *pIdx; /* Iterator variable */ 2158 int affinity_ok = 1; 2159 int i; 2160 2161 /* Check that the affinity that will be used to perform each 2162 ** comparison is the same as the affinity of each column in table 2163 ** on the RHS of the IN operator. If it not, it is not possible to 2164 ** use any index of the RHS table. */ 2165 for(i=0; i<nExpr && affinity_ok; i++){ 2166 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2167 int iCol = pEList->a[i].pExpr->iColumn; 2168 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2169 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2170 testcase( cmpaff==SQLITE_AFF_BLOB ); 2171 testcase( cmpaff==SQLITE_AFF_TEXT ); 2172 switch( cmpaff ){ 2173 case SQLITE_AFF_BLOB: 2174 break; 2175 case SQLITE_AFF_TEXT: 2176 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2177 ** other has no affinity and the other side is TEXT. Hence, 2178 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2179 ** and for the term on the LHS of the IN to have no affinity. */ 2180 assert( idxaff==SQLITE_AFF_TEXT ); 2181 break; 2182 default: 2183 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2184 } 2185 } 2186 2187 if( affinity_ok ){ 2188 /* Search for an existing index that will work for this IN operator */ 2189 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2190 Bitmask colUsed; /* Columns of the index used */ 2191 Bitmask mCol; /* Mask for the current column */ 2192 if( pIdx->nColumn<nExpr ) continue; 2193 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2194 ** BITMASK(nExpr) without overflowing */ 2195 testcase( pIdx->nColumn==BMS-2 ); 2196 testcase( pIdx->nColumn==BMS-1 ); 2197 if( pIdx->nColumn>=BMS-1 ) continue; 2198 if( mustBeUnique ){ 2199 if( pIdx->nKeyCol>nExpr 2200 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2201 ){ 2202 continue; /* This index is not unique over the IN RHS columns */ 2203 } 2204 } 2205 2206 colUsed = 0; /* Columns of index used so far */ 2207 for(i=0; i<nExpr; i++){ 2208 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2209 Expr *pRhs = pEList->a[i].pExpr; 2210 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2211 int j; 2212 2213 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2214 for(j=0; j<nExpr; j++){ 2215 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2216 assert( pIdx->azColl[j] ); 2217 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2218 continue; 2219 } 2220 break; 2221 } 2222 if( j==nExpr ) break; 2223 mCol = MASKBIT(j); 2224 if( mCol & colUsed ) break; /* Each column used only once */ 2225 colUsed |= mCol; 2226 if( aiMap ) aiMap[i] = j; 2227 } 2228 2229 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2230 if( colUsed==(MASKBIT(nExpr)-1) ){ 2231 /* If we reach this point, that means the index pIdx is usable */ 2232 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2233 #ifndef SQLITE_OMIT_EXPLAIN 2234 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2235 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2236 P4_DYNAMIC); 2237 #endif 2238 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2239 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2240 VdbeComment((v, "%s", pIdx->zName)); 2241 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2242 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2243 2244 if( prRhsHasNull ){ 2245 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2246 i64 mask = (1<<nExpr)-1; 2247 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2248 iTab, 0, 0, (u8*)&mask, P4_INT64); 2249 #endif 2250 *prRhsHasNull = ++pParse->nMem; 2251 if( nExpr==1 ){ 2252 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2253 } 2254 } 2255 sqlite3VdbeJumpHere(v, iAddr); 2256 } 2257 } /* End loop over indexes */ 2258 } /* End if( affinity_ok ) */ 2259 } /* End if not an rowid index */ 2260 } /* End attempt to optimize using an index */ 2261 2262 /* If no preexisting index is available for the IN clause 2263 ** and IN_INDEX_NOOP is an allowed reply 2264 ** and the RHS of the IN operator is a list, not a subquery 2265 ** and the RHS is not constant or has two or fewer terms, 2266 ** then it is not worth creating an ephemeral table to evaluate 2267 ** the IN operator so return IN_INDEX_NOOP. 2268 */ 2269 if( eType==0 2270 && (inFlags & IN_INDEX_NOOP_OK) 2271 && !ExprHasProperty(pX, EP_xIsSelect) 2272 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2273 ){ 2274 eType = IN_INDEX_NOOP; 2275 } 2276 2277 if( eType==0 ){ 2278 /* Could not find an existing table or index to use as the RHS b-tree. 2279 ** We will have to generate an ephemeral table to do the job. 2280 */ 2281 u32 savedNQueryLoop = pParse->nQueryLoop; 2282 int rMayHaveNull = 0; 2283 eType = IN_INDEX_EPH; 2284 if( inFlags & IN_INDEX_LOOP ){ 2285 pParse->nQueryLoop = 0; 2286 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2287 eType = IN_INDEX_ROWID; 2288 } 2289 }else if( prRhsHasNull ){ 2290 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2291 } 2292 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2293 pParse->nQueryLoop = savedNQueryLoop; 2294 }else{ 2295 pX->iTable = iTab; 2296 } 2297 2298 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2299 int i, n; 2300 n = sqlite3ExprVectorSize(pX->pLeft); 2301 for(i=0; i<n; i++) aiMap[i] = i; 2302 } 2303 return eType; 2304 } 2305 #endif 2306 2307 #ifndef SQLITE_OMIT_SUBQUERY 2308 /* 2309 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2310 ** function allocates and returns a nul-terminated string containing 2311 ** the affinities to be used for each column of the comparison. 2312 ** 2313 ** It is the responsibility of the caller to ensure that the returned 2314 ** string is eventually freed using sqlite3DbFree(). 2315 */ 2316 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2317 Expr *pLeft = pExpr->pLeft; 2318 int nVal = sqlite3ExprVectorSize(pLeft); 2319 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2320 char *zRet; 2321 2322 assert( pExpr->op==TK_IN ); 2323 zRet = sqlite3DbMallocZero(pParse->db, nVal+1); 2324 if( zRet ){ 2325 int i; 2326 for(i=0; i<nVal; i++){ 2327 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2328 char a = sqlite3ExprAffinity(pA); 2329 if( pSelect ){ 2330 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2331 }else{ 2332 zRet[i] = a; 2333 } 2334 } 2335 zRet[nVal] = '\0'; 2336 } 2337 return zRet; 2338 } 2339 #endif 2340 2341 #ifndef SQLITE_OMIT_SUBQUERY 2342 /* 2343 ** Load the Parse object passed as the first argument with an error 2344 ** message of the form: 2345 ** 2346 ** "sub-select returns N columns - expected M" 2347 */ 2348 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2349 const char *zFmt = "sub-select returns %d columns - expected %d"; 2350 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2351 } 2352 #endif 2353 2354 /* 2355 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2356 ** or IN operators. Examples: 2357 ** 2358 ** (SELECT a FROM b) -- subquery 2359 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2360 ** x IN (4,5,11) -- IN operator with list on right-hand side 2361 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2362 ** 2363 ** The pExpr parameter describes the expression that contains the IN 2364 ** operator or subquery. 2365 ** 2366 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2367 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2368 ** to some integer key column of a table B-Tree. In this case, use an 2369 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2370 ** (slower) variable length keys B-Tree. 2371 ** 2372 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2373 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2374 ** All this routine does is initialize the register given by rMayHaveNull 2375 ** to NULL. Calling routines will take care of changing this register 2376 ** value to non-NULL if the RHS is NULL-free. 2377 ** 2378 ** For a SELECT or EXISTS operator, return the register that holds the 2379 ** result. For a multi-column SELECT, the result is stored in a contiguous 2380 ** array of registers and the return value is the register of the left-most 2381 ** result column. Return 0 for IN operators or if an error occurs. 2382 */ 2383 #ifndef SQLITE_OMIT_SUBQUERY 2384 int sqlite3CodeSubselect( 2385 Parse *pParse, /* Parsing context */ 2386 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2387 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2388 int isRowid /* If true, LHS of IN operator is a rowid */ 2389 ){ 2390 int jmpIfDynamic = -1; /* One-time test address */ 2391 int rReg = 0; /* Register storing resulting */ 2392 Vdbe *v = sqlite3GetVdbe(pParse); 2393 if( NEVER(v==0) ) return 0; 2394 sqlite3ExprCachePush(pParse); 2395 2396 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2397 ** is encountered if any of the following is true: 2398 ** 2399 ** * The right-hand side is a correlated subquery 2400 ** * The right-hand side is an expression list containing variables 2401 ** * We are inside a trigger 2402 ** 2403 ** If all of the above are false, then we can run this code just once 2404 ** save the results, and reuse the same result on subsequent invocations. 2405 */ 2406 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2407 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2408 } 2409 2410 #ifndef SQLITE_OMIT_EXPLAIN 2411 if( pParse->explain==2 ){ 2412 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2413 jmpIfDynamic>=0?"":"CORRELATED ", 2414 pExpr->op==TK_IN?"LIST":"SCALAR", 2415 pParse->iNextSelectId 2416 ); 2417 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2418 } 2419 #endif 2420 2421 switch( pExpr->op ){ 2422 case TK_IN: { 2423 int addr; /* Address of OP_OpenEphemeral instruction */ 2424 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2425 KeyInfo *pKeyInfo = 0; /* Key information */ 2426 int nVal; /* Size of vector pLeft */ 2427 2428 nVal = sqlite3ExprVectorSize(pLeft); 2429 assert( !isRowid || nVal==1 ); 2430 2431 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2432 ** expression it is handled the same way. An ephemeral table is 2433 ** filled with index keys representing the results from the 2434 ** SELECT or the <exprlist>. 2435 ** 2436 ** If the 'x' expression is a column value, or the SELECT... 2437 ** statement returns a column value, then the affinity of that 2438 ** column is used to build the index keys. If both 'x' and the 2439 ** SELECT... statement are columns, then numeric affinity is used 2440 ** if either column has NUMERIC or INTEGER affinity. If neither 2441 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2442 ** is used. 2443 */ 2444 pExpr->iTable = pParse->nTab++; 2445 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2446 pExpr->iTable, (isRowid?0:nVal)); 2447 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2448 2449 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2450 /* Case 1: expr IN (SELECT ...) 2451 ** 2452 ** Generate code to write the results of the select into the temporary 2453 ** table allocated and opened above. 2454 */ 2455 Select *pSelect = pExpr->x.pSelect; 2456 ExprList *pEList = pSelect->pEList; 2457 2458 assert( !isRowid ); 2459 /* If the LHS and RHS of the IN operator do not match, that 2460 ** error will have been caught long before we reach this point. */ 2461 if( ALWAYS(pEList->nExpr==nVal) ){ 2462 SelectDest dest; 2463 int i; 2464 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2465 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2466 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 2467 pSelect->iLimit = 0; 2468 testcase( pSelect->selFlags & SF_Distinct ); 2469 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2470 if( sqlite3Select(pParse, pSelect, &dest) ){ 2471 sqlite3DbFree(pParse->db, dest.zAffSdst); 2472 sqlite3KeyInfoUnref(pKeyInfo); 2473 return 0; 2474 } 2475 sqlite3DbFree(pParse->db, dest.zAffSdst); 2476 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2477 assert( pEList!=0 ); 2478 assert( pEList->nExpr>0 ); 2479 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2480 for(i=0; i<nVal; i++){ 2481 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2482 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2483 pParse, p, pEList->a[i].pExpr 2484 ); 2485 } 2486 } 2487 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2488 /* Case 2: expr IN (exprlist) 2489 ** 2490 ** For each expression, build an index key from the evaluation and 2491 ** store it in the temporary table. If <expr> is a column, then use 2492 ** that columns affinity when building index keys. If <expr> is not 2493 ** a column, use numeric affinity. 2494 */ 2495 char affinity; /* Affinity of the LHS of the IN */ 2496 int i; 2497 ExprList *pList = pExpr->x.pList; 2498 struct ExprList_item *pItem; 2499 int r1, r2, r3; 2500 2501 affinity = sqlite3ExprAffinity(pLeft); 2502 if( !affinity ){ 2503 affinity = SQLITE_AFF_BLOB; 2504 } 2505 if( pKeyInfo ){ 2506 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2507 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2508 } 2509 2510 /* Loop through each expression in <exprlist>. */ 2511 r1 = sqlite3GetTempReg(pParse); 2512 r2 = sqlite3GetTempReg(pParse); 2513 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2514 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2515 Expr *pE2 = pItem->pExpr; 2516 int iValToIns; 2517 2518 /* If the expression is not constant then we will need to 2519 ** disable the test that was generated above that makes sure 2520 ** this code only executes once. Because for a non-constant 2521 ** expression we need to rerun this code each time. 2522 */ 2523 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2524 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2525 jmpIfDynamic = -1; 2526 } 2527 2528 /* Evaluate the expression and insert it into the temp table */ 2529 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2530 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2531 }else{ 2532 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2533 if( isRowid ){ 2534 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2535 sqlite3VdbeCurrentAddr(v)+2); 2536 VdbeCoverage(v); 2537 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2538 }else{ 2539 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2540 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2541 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2542 } 2543 } 2544 } 2545 sqlite3ReleaseTempReg(pParse, r1); 2546 sqlite3ReleaseTempReg(pParse, r2); 2547 } 2548 if( pKeyInfo ){ 2549 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2550 } 2551 break; 2552 } 2553 2554 case TK_EXISTS: 2555 case TK_SELECT: 2556 default: { 2557 /* Case 3: (SELECT ... FROM ...) 2558 ** or: EXISTS(SELECT ... FROM ...) 2559 ** 2560 ** For a SELECT, generate code to put the values for all columns of 2561 ** the first row into an array of registers and return the index of 2562 ** the first register. 2563 ** 2564 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2565 ** into a register and return that register number. 2566 ** 2567 ** In both cases, the query is augmented with "LIMIT 1". Any 2568 ** preexisting limit is discarded in place of the new LIMIT 1. 2569 */ 2570 Select *pSel; /* SELECT statement to encode */ 2571 SelectDest dest; /* How to deal with SELECT result */ 2572 int nReg; /* Registers to allocate */ 2573 2574 testcase( pExpr->op==TK_EXISTS ); 2575 testcase( pExpr->op==TK_SELECT ); 2576 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2577 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2578 2579 pSel = pExpr->x.pSelect; 2580 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2581 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2582 pParse->nMem += nReg; 2583 if( pExpr->op==TK_SELECT ){ 2584 dest.eDest = SRT_Mem; 2585 dest.iSdst = dest.iSDParm; 2586 dest.nSdst = nReg; 2587 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2588 VdbeComment((v, "Init subquery result")); 2589 }else{ 2590 dest.eDest = SRT_Exists; 2591 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2592 VdbeComment((v, "Init EXISTS result")); 2593 } 2594 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2595 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2596 &sqlite3IntTokens[1], 0); 2597 pSel->iLimit = 0; 2598 pSel->selFlags &= ~SF_MultiValue; 2599 if( sqlite3Select(pParse, pSel, &dest) ){ 2600 return 0; 2601 } 2602 rReg = dest.iSDParm; 2603 ExprSetVVAProperty(pExpr, EP_NoReduce); 2604 break; 2605 } 2606 } 2607 2608 if( rHasNullFlag ){ 2609 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2610 } 2611 2612 if( jmpIfDynamic>=0 ){ 2613 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2614 } 2615 sqlite3ExprCachePop(pParse); 2616 2617 return rReg; 2618 } 2619 #endif /* SQLITE_OMIT_SUBQUERY */ 2620 2621 #ifndef SQLITE_OMIT_SUBQUERY 2622 /* 2623 ** Expr pIn is an IN(...) expression. This function checks that the 2624 ** sub-select on the RHS of the IN() operator has the same number of 2625 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2626 ** a sub-query, that the LHS is a vector of size 1. 2627 */ 2628 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2629 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2630 if( (pIn->flags & EP_xIsSelect) ){ 2631 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2632 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2633 return 1; 2634 } 2635 }else if( nVector!=1 ){ 2636 if( (pIn->pLeft->flags & EP_xIsSelect) ){ 2637 sqlite3SubselectError(pParse, nVector, 1); 2638 }else{ 2639 sqlite3ErrorMsg(pParse, "row value misused"); 2640 } 2641 return 1; 2642 } 2643 return 0; 2644 } 2645 #endif 2646 2647 #ifndef SQLITE_OMIT_SUBQUERY 2648 /* 2649 ** Generate code for an IN expression. 2650 ** 2651 ** x IN (SELECT ...) 2652 ** x IN (value, value, ...) 2653 ** 2654 ** The left-hand side (LHS) is a scalar or vector expression. The 2655 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2656 ** subquery. If the RHS is a subquery, the number of result columns must 2657 ** match the number of columns in the vector on the LHS. If the RHS is 2658 ** a list of values, the LHS must be a scalar. 2659 ** 2660 ** The IN operator is true if the LHS value is contained within the RHS. 2661 ** The result is false if the LHS is definitely not in the RHS. The 2662 ** result is NULL if the presence of the LHS in the RHS cannot be 2663 ** determined due to NULLs. 2664 ** 2665 ** This routine generates code that jumps to destIfFalse if the LHS is not 2666 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2667 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2668 ** within the RHS then fall through. 2669 ** 2670 ** See the separate in-operator.md documentation file in the canonical 2671 ** SQLite source tree for additional information. 2672 */ 2673 static void sqlite3ExprCodeIN( 2674 Parse *pParse, /* Parsing and code generating context */ 2675 Expr *pExpr, /* The IN expression */ 2676 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2677 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2678 ){ 2679 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2680 int eType; /* Type of the RHS */ 2681 int rLhs; /* Register(s) holding the LHS values */ 2682 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2683 Vdbe *v; /* Statement under construction */ 2684 int *aiMap = 0; /* Map from vector field to index column */ 2685 char *zAff = 0; /* Affinity string for comparisons */ 2686 int nVector; /* Size of vectors for this IN operator */ 2687 int iDummy; /* Dummy parameter to exprCodeVector() */ 2688 Expr *pLeft; /* The LHS of the IN operator */ 2689 int i; /* loop counter */ 2690 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2691 int destStep6 = 0; /* Start of code for Step 6 */ 2692 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2693 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2694 int addrTop; /* Top of the step-6 loop */ 2695 2696 pLeft = pExpr->pLeft; 2697 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2698 zAff = exprINAffinity(pParse, pExpr); 2699 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2700 aiMap = (int*)sqlite3DbMallocZero( 2701 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2702 ); 2703 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2704 2705 /* Attempt to compute the RHS. After this step, if anything other than 2706 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2707 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2708 ** the RHS has not yet been coded. */ 2709 v = pParse->pVdbe; 2710 assert( v!=0 ); /* OOM detected prior to this routine */ 2711 VdbeNoopComment((v, "begin IN expr")); 2712 eType = sqlite3FindInIndex(pParse, pExpr, 2713 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2714 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2715 2716 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2717 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2718 ); 2719 #ifdef SQLITE_DEBUG 2720 /* Confirm that aiMap[] contains nVector integer values between 0 and 2721 ** nVector-1. */ 2722 for(i=0; i<nVector; i++){ 2723 int j, cnt; 2724 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2725 assert( cnt==1 ); 2726 } 2727 #endif 2728 2729 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2730 ** vector, then it is stored in an array of nVector registers starting 2731 ** at r1. 2732 ** 2733 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2734 ** so that the fields are in the same order as an existing index. The 2735 ** aiMap[] array contains a mapping from the original LHS field order to 2736 ** the field order that matches the RHS index. 2737 */ 2738 sqlite3ExprCachePush(pParse); 2739 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2740 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2741 if( i==nVector ){ 2742 /* LHS fields are not reordered */ 2743 rLhs = rLhsOrig; 2744 }else{ 2745 /* Need to reorder the LHS fields according to aiMap */ 2746 rLhs = sqlite3GetTempRange(pParse, nVector); 2747 for(i=0; i<nVector; i++){ 2748 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2749 } 2750 } 2751 2752 /* If sqlite3FindInIndex() did not find or create an index that is 2753 ** suitable for evaluating the IN operator, then evaluate using a 2754 ** sequence of comparisons. 2755 ** 2756 ** This is step (1) in the in-operator.md optimized algorithm. 2757 */ 2758 if( eType==IN_INDEX_NOOP ){ 2759 ExprList *pList = pExpr->x.pList; 2760 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2761 int labelOk = sqlite3VdbeMakeLabel(v); 2762 int r2, regToFree; 2763 int regCkNull = 0; 2764 int ii; 2765 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2766 if( destIfNull!=destIfFalse ){ 2767 regCkNull = sqlite3GetTempReg(pParse); 2768 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2769 } 2770 for(ii=0; ii<pList->nExpr; ii++){ 2771 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2772 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2773 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2774 } 2775 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2776 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2777 (void*)pColl, P4_COLLSEQ); 2778 VdbeCoverageIf(v, ii<pList->nExpr-1); 2779 VdbeCoverageIf(v, ii==pList->nExpr-1); 2780 sqlite3VdbeChangeP5(v, zAff[0]); 2781 }else{ 2782 assert( destIfNull==destIfFalse ); 2783 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2784 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2785 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2786 } 2787 sqlite3ReleaseTempReg(pParse, regToFree); 2788 } 2789 if( regCkNull ){ 2790 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2791 sqlite3VdbeGoto(v, destIfFalse); 2792 } 2793 sqlite3VdbeResolveLabel(v, labelOk); 2794 sqlite3ReleaseTempReg(pParse, regCkNull); 2795 goto sqlite3ExprCodeIN_finished; 2796 } 2797 2798 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2799 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2800 ** We will then skip the binary search of the RHS. 2801 */ 2802 if( destIfNull==destIfFalse ){ 2803 destStep2 = destIfFalse; 2804 }else{ 2805 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2806 } 2807 for(i=0; i<nVector; i++){ 2808 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2809 if( sqlite3ExprCanBeNull(p) ){ 2810 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2811 VdbeCoverage(v); 2812 } 2813 } 2814 2815 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2816 ** of the RHS using the LHS as a probe. If found, the result is 2817 ** true. 2818 */ 2819 if( eType==IN_INDEX_ROWID ){ 2820 /* In this case, the RHS is the ROWID of table b-tree and so we also 2821 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2822 ** into a single opcode. */ 2823 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2824 VdbeCoverage(v); 2825 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2826 }else{ 2827 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2828 if( destIfFalse==destIfNull ){ 2829 /* Combine Step 3 and Step 5 into a single opcode */ 2830 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2831 rLhs, nVector); VdbeCoverage(v); 2832 goto sqlite3ExprCodeIN_finished; 2833 } 2834 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2835 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 2836 rLhs, nVector); VdbeCoverage(v); 2837 } 2838 2839 /* Step 4. If the RHS is known to be non-NULL and we did not find 2840 ** an match on the search above, then the result must be FALSE. 2841 */ 2842 if( rRhsHasNull && nVector==1 ){ 2843 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 2844 VdbeCoverage(v); 2845 } 2846 2847 /* Step 5. If we do not care about the difference between NULL and 2848 ** FALSE, then just return false. 2849 */ 2850 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 2851 2852 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 2853 ** If any comparison is NULL, then the result is NULL. If all 2854 ** comparisons are FALSE then the final result is FALSE. 2855 ** 2856 ** For a scalar LHS, it is sufficient to check just the first row 2857 ** of the RHS. 2858 */ 2859 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 2860 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2861 VdbeCoverage(v); 2862 if( nVector>1 ){ 2863 destNotNull = sqlite3VdbeMakeLabel(v); 2864 }else{ 2865 /* For nVector==1, combine steps 6 and 7 by immediately returning 2866 ** FALSE if the first comparison is not NULL */ 2867 destNotNull = destIfFalse; 2868 } 2869 for(i=0; i<nVector; i++){ 2870 Expr *p; 2871 CollSeq *pColl; 2872 int r3 = sqlite3GetTempReg(pParse); 2873 p = sqlite3VectorFieldSubexpr(pLeft, i); 2874 pColl = sqlite3ExprCollSeq(pParse, p); 2875 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 2876 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 2877 (void*)pColl, P4_COLLSEQ); 2878 VdbeCoverage(v); 2879 sqlite3ReleaseTempReg(pParse, r3); 2880 } 2881 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2882 if( nVector>1 ){ 2883 sqlite3VdbeResolveLabel(v, destNotNull); 2884 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 2885 VdbeCoverage(v); 2886 2887 /* Step 7: If we reach this point, we know that the result must 2888 ** be false. */ 2889 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2890 } 2891 2892 /* Jumps here in order to return true. */ 2893 sqlite3VdbeJumpHere(v, addrTruthOp); 2894 2895 sqlite3ExprCodeIN_finished: 2896 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 2897 sqlite3ExprCachePop(pParse); 2898 VdbeComment((v, "end IN expr")); 2899 sqlite3ExprCodeIN_oom_error: 2900 sqlite3DbFree(pParse->db, aiMap); 2901 sqlite3DbFree(pParse->db, zAff); 2902 } 2903 #endif /* SQLITE_OMIT_SUBQUERY */ 2904 2905 #ifndef SQLITE_OMIT_FLOATING_POINT 2906 /* 2907 ** Generate an instruction that will put the floating point 2908 ** value described by z[0..n-1] into register iMem. 2909 ** 2910 ** The z[] string will probably not be zero-terminated. But the 2911 ** z[n] character is guaranteed to be something that does not look 2912 ** like the continuation of the number. 2913 */ 2914 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2915 if( ALWAYS(z!=0) ){ 2916 double value; 2917 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2918 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2919 if( negateFlag ) value = -value; 2920 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2921 } 2922 } 2923 #endif 2924 2925 2926 /* 2927 ** Generate an instruction that will put the integer describe by 2928 ** text z[0..n-1] into register iMem. 2929 ** 2930 ** Expr.u.zToken is always UTF8 and zero-terminated. 2931 */ 2932 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2933 Vdbe *v = pParse->pVdbe; 2934 if( pExpr->flags & EP_IntValue ){ 2935 int i = pExpr->u.iValue; 2936 assert( i>=0 ); 2937 if( negFlag ) i = -i; 2938 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2939 }else{ 2940 int c; 2941 i64 value; 2942 const char *z = pExpr->u.zToken; 2943 assert( z!=0 ); 2944 c = sqlite3DecOrHexToI64(z, &value); 2945 if( c==0 || (c==2 && negFlag) ){ 2946 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2947 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2948 }else{ 2949 #ifdef SQLITE_OMIT_FLOATING_POINT 2950 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2951 #else 2952 #ifndef SQLITE_OMIT_HEX_INTEGER 2953 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2954 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2955 }else 2956 #endif 2957 { 2958 codeReal(v, z, negFlag, iMem); 2959 } 2960 #endif 2961 } 2962 } 2963 } 2964 2965 /* 2966 ** Erase column-cache entry number i 2967 */ 2968 static void cacheEntryClear(Parse *pParse, int i){ 2969 if( pParse->aColCache[i].tempReg ){ 2970 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2971 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 2972 } 2973 } 2974 pParse->nColCache--; 2975 if( i<pParse->nColCache ){ 2976 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 2977 } 2978 } 2979 2980 2981 /* 2982 ** Record in the column cache that a particular column from a 2983 ** particular table is stored in a particular register. 2984 */ 2985 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2986 int i; 2987 int minLru; 2988 int idxLru; 2989 struct yColCache *p; 2990 2991 /* Unless an error has occurred, register numbers are always positive. */ 2992 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2993 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2994 2995 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2996 ** for testing only - to verify that SQLite always gets the same answer 2997 ** with and without the column cache. 2998 */ 2999 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3000 3001 /* First replace any existing entry. 3002 ** 3003 ** Actually, the way the column cache is currently used, we are guaranteed 3004 ** that the object will never already be in cache. Verify this guarantee. 3005 */ 3006 #ifndef NDEBUG 3007 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3008 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3009 } 3010 #endif 3011 3012 /* If the cache is already full, delete the least recently used entry */ 3013 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3014 minLru = 0x7fffffff; 3015 idxLru = -1; 3016 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3017 if( p->lru<minLru ){ 3018 idxLru = i; 3019 minLru = p->lru; 3020 } 3021 } 3022 p = &pParse->aColCache[idxLru]; 3023 }else{ 3024 p = &pParse->aColCache[pParse->nColCache++]; 3025 } 3026 3027 /* Add the new entry to the end of the cache */ 3028 p->iLevel = pParse->iCacheLevel; 3029 p->iTable = iTab; 3030 p->iColumn = iCol; 3031 p->iReg = iReg; 3032 p->tempReg = 0; 3033 p->lru = pParse->iCacheCnt++; 3034 } 3035 3036 /* 3037 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3038 ** Purge the range of registers from the column cache. 3039 */ 3040 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3041 int i = 0; 3042 while( i<pParse->nColCache ){ 3043 struct yColCache *p = &pParse->aColCache[i]; 3044 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3045 cacheEntryClear(pParse, i); 3046 }else{ 3047 i++; 3048 } 3049 } 3050 } 3051 3052 /* 3053 ** Remember the current column cache context. Any new entries added 3054 ** added to the column cache after this call are removed when the 3055 ** corresponding pop occurs. 3056 */ 3057 void sqlite3ExprCachePush(Parse *pParse){ 3058 pParse->iCacheLevel++; 3059 #ifdef SQLITE_DEBUG 3060 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3061 printf("PUSH to %d\n", pParse->iCacheLevel); 3062 } 3063 #endif 3064 } 3065 3066 /* 3067 ** Remove from the column cache any entries that were added since the 3068 ** the previous sqlite3ExprCachePush operation. In other words, restore 3069 ** the cache to the state it was in prior the most recent Push. 3070 */ 3071 void sqlite3ExprCachePop(Parse *pParse){ 3072 int i = 0; 3073 assert( pParse->iCacheLevel>=1 ); 3074 pParse->iCacheLevel--; 3075 #ifdef SQLITE_DEBUG 3076 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3077 printf("POP to %d\n", pParse->iCacheLevel); 3078 } 3079 #endif 3080 while( i<pParse->nColCache ){ 3081 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3082 cacheEntryClear(pParse, i); 3083 }else{ 3084 i++; 3085 } 3086 } 3087 } 3088 3089 /* 3090 ** When a cached column is reused, make sure that its register is 3091 ** no longer available as a temp register. ticket #3879: that same 3092 ** register might be in the cache in multiple places, so be sure to 3093 ** get them all. 3094 */ 3095 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3096 int i; 3097 struct yColCache *p; 3098 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3099 if( p->iReg==iReg ){ 3100 p->tempReg = 0; 3101 } 3102 } 3103 } 3104 3105 /* Generate code that will load into register regOut a value that is 3106 ** appropriate for the iIdxCol-th column of index pIdx. 3107 */ 3108 void sqlite3ExprCodeLoadIndexColumn( 3109 Parse *pParse, /* The parsing context */ 3110 Index *pIdx, /* The index whose column is to be loaded */ 3111 int iTabCur, /* Cursor pointing to a table row */ 3112 int iIdxCol, /* The column of the index to be loaded */ 3113 int regOut /* Store the index column value in this register */ 3114 ){ 3115 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3116 if( iTabCol==XN_EXPR ){ 3117 assert( pIdx->aColExpr ); 3118 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3119 pParse->iSelfTab = iTabCur; 3120 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3121 }else{ 3122 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3123 iTabCol, regOut); 3124 } 3125 } 3126 3127 /* 3128 ** Generate code to extract the value of the iCol-th column of a table. 3129 */ 3130 void sqlite3ExprCodeGetColumnOfTable( 3131 Vdbe *v, /* The VDBE under construction */ 3132 Table *pTab, /* The table containing the value */ 3133 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3134 int iCol, /* Index of the column to extract */ 3135 int regOut /* Extract the value into this register */ 3136 ){ 3137 if( iCol<0 || iCol==pTab->iPKey ){ 3138 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3139 }else{ 3140 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3141 int x = iCol; 3142 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3143 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3144 } 3145 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3146 } 3147 if( iCol>=0 ){ 3148 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3149 } 3150 } 3151 3152 /* 3153 ** Generate code that will extract the iColumn-th column from 3154 ** table pTab and store the column value in a register. 3155 ** 3156 ** An effort is made to store the column value in register iReg. This 3157 ** is not garanteeed for GetColumn() - the result can be stored in 3158 ** any register. But the result is guaranteed to land in register iReg 3159 ** for GetColumnToReg(). 3160 ** 3161 ** There must be an open cursor to pTab in iTable when this routine 3162 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3163 */ 3164 int sqlite3ExprCodeGetColumn( 3165 Parse *pParse, /* Parsing and code generating context */ 3166 Table *pTab, /* Description of the table we are reading from */ 3167 int iColumn, /* Index of the table column */ 3168 int iTable, /* The cursor pointing to the table */ 3169 int iReg, /* Store results here */ 3170 u8 p5 /* P5 value for OP_Column + FLAGS */ 3171 ){ 3172 Vdbe *v = pParse->pVdbe; 3173 int i; 3174 struct yColCache *p; 3175 3176 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3177 if( p->iTable==iTable && p->iColumn==iColumn ){ 3178 p->lru = pParse->iCacheCnt++; 3179 sqlite3ExprCachePinRegister(pParse, p->iReg); 3180 return p->iReg; 3181 } 3182 } 3183 assert( v!=0 ); 3184 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3185 if( p5 ){ 3186 sqlite3VdbeChangeP5(v, p5); 3187 }else{ 3188 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3189 } 3190 return iReg; 3191 } 3192 void sqlite3ExprCodeGetColumnToReg( 3193 Parse *pParse, /* Parsing and code generating context */ 3194 Table *pTab, /* Description of the table we are reading from */ 3195 int iColumn, /* Index of the table column */ 3196 int iTable, /* The cursor pointing to the table */ 3197 int iReg /* Store results here */ 3198 ){ 3199 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3200 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3201 } 3202 3203 3204 /* 3205 ** Clear all column cache entries. 3206 */ 3207 void sqlite3ExprCacheClear(Parse *pParse){ 3208 int i; 3209 3210 #if SQLITE_DEBUG 3211 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3212 printf("CLEAR\n"); 3213 } 3214 #endif 3215 for(i=0; i<pParse->nColCache; i++){ 3216 if( pParse->aColCache[i].tempReg 3217 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3218 ){ 3219 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3220 } 3221 } 3222 pParse->nColCache = 0; 3223 } 3224 3225 /* 3226 ** Record the fact that an affinity change has occurred on iCount 3227 ** registers starting with iStart. 3228 */ 3229 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3230 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3231 } 3232 3233 /* 3234 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3235 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3236 */ 3237 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3238 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3239 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3240 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3241 } 3242 3243 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3244 /* 3245 ** Return true if any register in the range iFrom..iTo (inclusive) 3246 ** is used as part of the column cache. 3247 ** 3248 ** This routine is used within assert() and testcase() macros only 3249 ** and does not appear in a normal build. 3250 */ 3251 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3252 int i; 3253 struct yColCache *p; 3254 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3255 int r = p->iReg; 3256 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3257 } 3258 return 0; 3259 } 3260 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3261 3262 3263 /* 3264 ** Convert a scalar expression node to a TK_REGISTER referencing 3265 ** register iReg. The caller must ensure that iReg already contains 3266 ** the correct value for the expression. 3267 */ 3268 static void exprToRegister(Expr *p, int iReg){ 3269 p->op2 = p->op; 3270 p->op = TK_REGISTER; 3271 p->iTable = iReg; 3272 ExprClearProperty(p, EP_Skip); 3273 } 3274 3275 /* 3276 ** Evaluate an expression (either a vector or a scalar expression) and store 3277 ** the result in continguous temporary registers. Return the index of 3278 ** the first register used to store the result. 3279 ** 3280 ** If the returned result register is a temporary scalar, then also write 3281 ** that register number into *piFreeable. If the returned result register 3282 ** is not a temporary or if the expression is a vector set *piFreeable 3283 ** to 0. 3284 */ 3285 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3286 int iResult; 3287 int nResult = sqlite3ExprVectorSize(p); 3288 if( nResult==1 ){ 3289 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3290 }else{ 3291 *piFreeable = 0; 3292 if( p->op==TK_SELECT ){ 3293 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3294 }else{ 3295 int i; 3296 iResult = pParse->nMem+1; 3297 pParse->nMem += nResult; 3298 for(i=0; i<nResult; i++){ 3299 sqlite3ExprCode(pParse, p->x.pList->a[i].pExpr, i+iResult); 3300 } 3301 } 3302 } 3303 return iResult; 3304 } 3305 3306 3307 /* 3308 ** Generate code into the current Vdbe to evaluate the given 3309 ** expression. Attempt to store the results in register "target". 3310 ** Return the register where results are stored. 3311 ** 3312 ** With this routine, there is no guarantee that results will 3313 ** be stored in target. The result might be stored in some other 3314 ** register if it is convenient to do so. The calling function 3315 ** must check the return code and move the results to the desired 3316 ** register. 3317 */ 3318 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3319 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3320 int op; /* The opcode being coded */ 3321 int inReg = target; /* Results stored in register inReg */ 3322 int regFree1 = 0; /* If non-zero free this temporary register */ 3323 int regFree2 = 0; /* If non-zero free this temporary register */ 3324 int r1, r2; /* Various register numbers */ 3325 Expr tempX; /* Temporary expression node */ 3326 int p5 = 0; 3327 3328 assert( target>0 && target<=pParse->nMem ); 3329 if( v==0 ){ 3330 assert( pParse->db->mallocFailed ); 3331 return 0; 3332 } 3333 3334 if( pExpr==0 ){ 3335 op = TK_NULL; 3336 }else{ 3337 op = pExpr->op; 3338 } 3339 switch( op ){ 3340 case TK_AGG_COLUMN: { 3341 AggInfo *pAggInfo = pExpr->pAggInfo; 3342 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3343 if( !pAggInfo->directMode ){ 3344 assert( pCol->iMem>0 ); 3345 return pCol->iMem; 3346 }else if( pAggInfo->useSortingIdx ){ 3347 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3348 pCol->iSorterColumn, target); 3349 return target; 3350 } 3351 /* Otherwise, fall thru into the TK_COLUMN case */ 3352 } 3353 case TK_COLUMN: { 3354 int iTab = pExpr->iTable; 3355 if( iTab<0 ){ 3356 if( pParse->ckBase>0 ){ 3357 /* Generating CHECK constraints or inserting into partial index */ 3358 return pExpr->iColumn + pParse->ckBase; 3359 }else{ 3360 /* Coding an expression that is part of an index where column names 3361 ** in the index refer to the table to which the index belongs */ 3362 iTab = pParse->iSelfTab; 3363 } 3364 } 3365 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3366 pExpr->iColumn, iTab, target, 3367 pExpr->op2); 3368 } 3369 case TK_INTEGER: { 3370 codeInteger(pParse, pExpr, 0, target); 3371 return target; 3372 } 3373 #ifndef SQLITE_OMIT_FLOATING_POINT 3374 case TK_FLOAT: { 3375 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3376 codeReal(v, pExpr->u.zToken, 0, target); 3377 return target; 3378 } 3379 #endif 3380 case TK_STRING: { 3381 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3382 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3383 return target; 3384 } 3385 case TK_NULL: { 3386 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3387 return target; 3388 } 3389 #ifndef SQLITE_OMIT_BLOB_LITERAL 3390 case TK_BLOB: { 3391 int n; 3392 const char *z; 3393 char *zBlob; 3394 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3395 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3396 assert( pExpr->u.zToken[1]=='\'' ); 3397 z = &pExpr->u.zToken[2]; 3398 n = sqlite3Strlen30(z) - 1; 3399 assert( z[n]=='\'' ); 3400 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3401 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3402 return target; 3403 } 3404 #endif 3405 case TK_VARIABLE: { 3406 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3407 assert( pExpr->u.zToken!=0 ); 3408 assert( pExpr->u.zToken[0]!=0 ); 3409 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3410 if( pExpr->u.zToken[1]!=0 ){ 3411 assert( pExpr->u.zToken[0]=='?' 3412 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 3413 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 3414 } 3415 return target; 3416 } 3417 case TK_REGISTER: { 3418 return pExpr->iTable; 3419 } 3420 #ifndef SQLITE_OMIT_CAST 3421 case TK_CAST: { 3422 /* Expressions of the form: CAST(pLeft AS token) */ 3423 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3424 if( inReg!=target ){ 3425 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3426 inReg = target; 3427 } 3428 sqlite3VdbeAddOp2(v, OP_Cast, target, 3429 sqlite3AffinityType(pExpr->u.zToken, 0)); 3430 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3431 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3432 return inReg; 3433 } 3434 #endif /* SQLITE_OMIT_CAST */ 3435 case TK_IS: 3436 case TK_ISNOT: 3437 op = (op==TK_IS) ? TK_EQ : TK_NE; 3438 p5 = SQLITE_NULLEQ; 3439 /* fall-through */ 3440 case TK_LT: 3441 case TK_LE: 3442 case TK_GT: 3443 case TK_GE: 3444 case TK_NE: 3445 case TK_EQ: { 3446 Expr *pLeft = pExpr->pLeft; 3447 if( sqlite3ExprIsVector(pLeft) ){ 3448 codeVectorCompare(pParse, pExpr, target, op, p5); 3449 }else{ 3450 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3451 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3452 codeCompare(pParse, pLeft, pExpr->pRight, op, 3453 r1, r2, inReg, SQLITE_STOREP2 | p5); 3454 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3455 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3456 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3457 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3458 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3459 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3460 testcase( regFree1==0 ); 3461 testcase( regFree2==0 ); 3462 } 3463 break; 3464 } 3465 case TK_AND: 3466 case TK_OR: 3467 case TK_PLUS: 3468 case TK_STAR: 3469 case TK_MINUS: 3470 case TK_REM: 3471 case TK_BITAND: 3472 case TK_BITOR: 3473 case TK_SLASH: 3474 case TK_LSHIFT: 3475 case TK_RSHIFT: 3476 case TK_CONCAT: { 3477 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3478 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3479 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3480 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3481 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3482 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3483 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3484 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3485 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3486 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3487 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3488 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3489 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3490 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3491 testcase( regFree1==0 ); 3492 testcase( regFree2==0 ); 3493 break; 3494 } 3495 case TK_UMINUS: { 3496 Expr *pLeft = pExpr->pLeft; 3497 assert( pLeft ); 3498 if( pLeft->op==TK_INTEGER ){ 3499 codeInteger(pParse, pLeft, 1, target); 3500 return target; 3501 #ifndef SQLITE_OMIT_FLOATING_POINT 3502 }else if( pLeft->op==TK_FLOAT ){ 3503 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3504 codeReal(v, pLeft->u.zToken, 1, target); 3505 return target; 3506 #endif 3507 }else{ 3508 tempX.op = TK_INTEGER; 3509 tempX.flags = EP_IntValue|EP_TokenOnly; 3510 tempX.u.iValue = 0; 3511 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3512 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3513 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3514 testcase( regFree2==0 ); 3515 } 3516 break; 3517 } 3518 case TK_BITNOT: 3519 case TK_NOT: { 3520 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3521 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3522 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3523 testcase( regFree1==0 ); 3524 sqlite3VdbeAddOp2(v, op, r1, inReg); 3525 break; 3526 } 3527 case TK_ISNULL: 3528 case TK_NOTNULL: { 3529 int addr; 3530 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3531 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3532 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3533 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3534 testcase( regFree1==0 ); 3535 addr = sqlite3VdbeAddOp1(v, op, r1); 3536 VdbeCoverageIf(v, op==TK_ISNULL); 3537 VdbeCoverageIf(v, op==TK_NOTNULL); 3538 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3539 sqlite3VdbeJumpHere(v, addr); 3540 break; 3541 } 3542 case TK_AGG_FUNCTION: { 3543 AggInfo *pInfo = pExpr->pAggInfo; 3544 if( pInfo==0 ){ 3545 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3546 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3547 }else{ 3548 return pInfo->aFunc[pExpr->iAgg].iMem; 3549 } 3550 break; 3551 } 3552 case TK_FUNCTION: { 3553 ExprList *pFarg; /* List of function arguments */ 3554 int nFarg; /* Number of function arguments */ 3555 FuncDef *pDef; /* The function definition object */ 3556 const char *zId; /* The function name */ 3557 u32 constMask = 0; /* Mask of function arguments that are constant */ 3558 int i; /* Loop counter */ 3559 sqlite3 *db = pParse->db; /* The database connection */ 3560 u8 enc = ENC(db); /* The text encoding used by this database */ 3561 CollSeq *pColl = 0; /* A collating sequence */ 3562 3563 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3564 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3565 pFarg = 0; 3566 }else{ 3567 pFarg = pExpr->x.pList; 3568 } 3569 nFarg = pFarg ? pFarg->nExpr : 0; 3570 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3571 zId = pExpr->u.zToken; 3572 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3573 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3574 if( pDef==0 && pParse->explain ){ 3575 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3576 } 3577 #endif 3578 if( pDef==0 || pDef->xFinalize!=0 ){ 3579 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3580 break; 3581 } 3582 3583 /* Attempt a direct implementation of the built-in COALESCE() and 3584 ** IFNULL() functions. This avoids unnecessary evaluation of 3585 ** arguments past the first non-NULL argument. 3586 */ 3587 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3588 int endCoalesce = sqlite3VdbeMakeLabel(v); 3589 assert( nFarg>=2 ); 3590 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3591 for(i=1; i<nFarg; i++){ 3592 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3593 VdbeCoverage(v); 3594 sqlite3ExprCacheRemove(pParse, target, 1); 3595 sqlite3ExprCachePush(pParse); 3596 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3597 sqlite3ExprCachePop(pParse); 3598 } 3599 sqlite3VdbeResolveLabel(v, endCoalesce); 3600 break; 3601 } 3602 3603 /* The UNLIKELY() function is a no-op. The result is the value 3604 ** of the first argument. 3605 */ 3606 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3607 assert( nFarg>=1 ); 3608 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3609 } 3610 3611 for(i=0; i<nFarg; i++){ 3612 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3613 testcase( i==31 ); 3614 constMask |= MASKBIT32(i); 3615 } 3616 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3617 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3618 } 3619 } 3620 if( pFarg ){ 3621 if( constMask ){ 3622 r1 = pParse->nMem+1; 3623 pParse->nMem += nFarg; 3624 }else{ 3625 r1 = sqlite3GetTempRange(pParse, nFarg); 3626 } 3627 3628 /* For length() and typeof() functions with a column argument, 3629 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3630 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3631 ** loading. 3632 */ 3633 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3634 u8 exprOp; 3635 assert( nFarg==1 ); 3636 assert( pFarg->a[0].pExpr!=0 ); 3637 exprOp = pFarg->a[0].pExpr->op; 3638 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3639 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3640 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3641 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3642 pFarg->a[0].pExpr->op2 = 3643 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3644 } 3645 } 3646 3647 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3648 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3649 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3650 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3651 }else{ 3652 r1 = 0; 3653 } 3654 #ifndef SQLITE_OMIT_VIRTUALTABLE 3655 /* Possibly overload the function if the first argument is 3656 ** a virtual table column. 3657 ** 3658 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3659 ** second argument, not the first, as the argument to test to 3660 ** see if it is a column in a virtual table. This is done because 3661 ** the left operand of infix functions (the operand we want to 3662 ** control overloading) ends up as the second argument to the 3663 ** function. The expression "A glob B" is equivalent to 3664 ** "glob(B,A). We want to use the A in "A glob B" to test 3665 ** for function overloading. But we use the B term in "glob(B,A)". 3666 */ 3667 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3668 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3669 }else if( nFarg>0 ){ 3670 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3671 } 3672 #endif 3673 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3674 if( !pColl ) pColl = db->pDfltColl; 3675 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3676 } 3677 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3678 (char*)pDef, P4_FUNCDEF); 3679 sqlite3VdbeChangeP5(v, (u8)nFarg); 3680 if( nFarg && constMask==0 ){ 3681 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3682 } 3683 return target; 3684 } 3685 #ifndef SQLITE_OMIT_SUBQUERY 3686 case TK_EXISTS: 3687 case TK_SELECT: { 3688 int nCol; 3689 testcase( op==TK_EXISTS ); 3690 testcase( op==TK_SELECT ); 3691 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3692 sqlite3SubselectError(pParse, nCol, 1); 3693 }else{ 3694 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3695 } 3696 break; 3697 } 3698 case TK_SELECT_COLUMN: { 3699 if( pExpr->pLeft->iTable==0 ){ 3700 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3701 } 3702 return pExpr->pLeft->iTable + pExpr->iColumn; 3703 } 3704 case TK_IN: { 3705 int destIfFalse = sqlite3VdbeMakeLabel(v); 3706 int destIfNull = sqlite3VdbeMakeLabel(v); 3707 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3708 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3709 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3710 sqlite3VdbeResolveLabel(v, destIfFalse); 3711 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3712 sqlite3VdbeResolveLabel(v, destIfNull); 3713 return target; 3714 } 3715 #endif /* SQLITE_OMIT_SUBQUERY */ 3716 3717 3718 /* 3719 ** x BETWEEN y AND z 3720 ** 3721 ** This is equivalent to 3722 ** 3723 ** x>=y AND x<=z 3724 ** 3725 ** X is stored in pExpr->pLeft. 3726 ** Y is stored in pExpr->pList->a[0].pExpr. 3727 ** Z is stored in pExpr->pList->a[1].pExpr. 3728 */ 3729 case TK_BETWEEN: { 3730 exprCodeBetween(pParse, pExpr, target, 0, 0); 3731 return target; 3732 } 3733 case TK_SPAN: 3734 case TK_COLLATE: 3735 case TK_UPLUS: { 3736 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3737 } 3738 3739 case TK_TRIGGER: { 3740 /* If the opcode is TK_TRIGGER, then the expression is a reference 3741 ** to a column in the new.* or old.* pseudo-tables available to 3742 ** trigger programs. In this case Expr.iTable is set to 1 for the 3743 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3744 ** is set to the column of the pseudo-table to read, or to -1 to 3745 ** read the rowid field. 3746 ** 3747 ** The expression is implemented using an OP_Param opcode. The p1 3748 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3749 ** to reference another column of the old.* pseudo-table, where 3750 ** i is the index of the column. For a new.rowid reference, p1 is 3751 ** set to (n+1), where n is the number of columns in each pseudo-table. 3752 ** For a reference to any other column in the new.* pseudo-table, p1 3753 ** is set to (n+2+i), where n and i are as defined previously. For 3754 ** example, if the table on which triggers are being fired is 3755 ** declared as: 3756 ** 3757 ** CREATE TABLE t1(a, b); 3758 ** 3759 ** Then p1 is interpreted as follows: 3760 ** 3761 ** p1==0 -> old.rowid p1==3 -> new.rowid 3762 ** p1==1 -> old.a p1==4 -> new.a 3763 ** p1==2 -> old.b p1==5 -> new.b 3764 */ 3765 Table *pTab = pExpr->pTab; 3766 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3767 3768 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3769 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3770 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3771 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3772 3773 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3774 VdbeComment((v, "%s.%s -> $%d", 3775 (pExpr->iTable ? "new" : "old"), 3776 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3777 target 3778 )); 3779 3780 #ifndef SQLITE_OMIT_FLOATING_POINT 3781 /* If the column has REAL affinity, it may currently be stored as an 3782 ** integer. Use OP_RealAffinity to make sure it is really real. 3783 ** 3784 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3785 ** floating point when extracting it from the record. */ 3786 if( pExpr->iColumn>=0 3787 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3788 ){ 3789 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3790 } 3791 #endif 3792 break; 3793 } 3794 3795 case TK_VECTOR: { 3796 sqlite3ErrorMsg(pParse, "row value misused"); 3797 break; 3798 } 3799 3800 /* 3801 ** Form A: 3802 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3803 ** 3804 ** Form B: 3805 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3806 ** 3807 ** Form A is can be transformed into the equivalent form B as follows: 3808 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3809 ** WHEN x=eN THEN rN ELSE y END 3810 ** 3811 ** X (if it exists) is in pExpr->pLeft. 3812 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3813 ** odd. The Y is also optional. If the number of elements in x.pList 3814 ** is even, then Y is omitted and the "otherwise" result is NULL. 3815 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3816 ** 3817 ** The result of the expression is the Ri for the first matching Ei, 3818 ** or if there is no matching Ei, the ELSE term Y, or if there is 3819 ** no ELSE term, NULL. 3820 */ 3821 default: assert( op==TK_CASE ); { 3822 int endLabel; /* GOTO label for end of CASE stmt */ 3823 int nextCase; /* GOTO label for next WHEN clause */ 3824 int nExpr; /* 2x number of WHEN terms */ 3825 int i; /* Loop counter */ 3826 ExprList *pEList; /* List of WHEN terms */ 3827 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3828 Expr opCompare; /* The X==Ei expression */ 3829 Expr *pX; /* The X expression */ 3830 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3831 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3832 3833 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3834 assert(pExpr->x.pList->nExpr > 0); 3835 pEList = pExpr->x.pList; 3836 aListelem = pEList->a; 3837 nExpr = pEList->nExpr; 3838 endLabel = sqlite3VdbeMakeLabel(v); 3839 if( (pX = pExpr->pLeft)!=0 ){ 3840 tempX = *pX; 3841 testcase( pX->op==TK_COLUMN ); 3842 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 3843 testcase( regFree1==0 ); 3844 memset(&opCompare, 0, sizeof(opCompare)); 3845 opCompare.op = TK_EQ; 3846 opCompare.pLeft = &tempX; 3847 pTest = &opCompare; 3848 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3849 ** The value in regFree1 might get SCopy-ed into the file result. 3850 ** So make sure that the regFree1 register is not reused for other 3851 ** purposes and possibly overwritten. */ 3852 regFree1 = 0; 3853 } 3854 for(i=0; i<nExpr-1; i=i+2){ 3855 sqlite3ExprCachePush(pParse); 3856 if( pX ){ 3857 assert( pTest!=0 ); 3858 opCompare.pRight = aListelem[i].pExpr; 3859 }else{ 3860 pTest = aListelem[i].pExpr; 3861 } 3862 nextCase = sqlite3VdbeMakeLabel(v); 3863 testcase( pTest->op==TK_COLUMN ); 3864 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3865 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3866 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3867 sqlite3VdbeGoto(v, endLabel); 3868 sqlite3ExprCachePop(pParse); 3869 sqlite3VdbeResolveLabel(v, nextCase); 3870 } 3871 if( (nExpr&1)!=0 ){ 3872 sqlite3ExprCachePush(pParse); 3873 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3874 sqlite3ExprCachePop(pParse); 3875 }else{ 3876 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3877 } 3878 assert( pParse->db->mallocFailed || pParse->nErr>0 3879 || pParse->iCacheLevel==iCacheLevel ); 3880 sqlite3VdbeResolveLabel(v, endLabel); 3881 break; 3882 } 3883 #ifndef SQLITE_OMIT_TRIGGER 3884 case TK_RAISE: { 3885 assert( pExpr->affinity==OE_Rollback 3886 || pExpr->affinity==OE_Abort 3887 || pExpr->affinity==OE_Fail 3888 || pExpr->affinity==OE_Ignore 3889 ); 3890 if( !pParse->pTriggerTab ){ 3891 sqlite3ErrorMsg(pParse, 3892 "RAISE() may only be used within a trigger-program"); 3893 return 0; 3894 } 3895 if( pExpr->affinity==OE_Abort ){ 3896 sqlite3MayAbort(pParse); 3897 } 3898 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3899 if( pExpr->affinity==OE_Ignore ){ 3900 sqlite3VdbeAddOp4( 3901 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3902 VdbeCoverage(v); 3903 }else{ 3904 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3905 pExpr->affinity, pExpr->u.zToken, 0, 0); 3906 } 3907 3908 break; 3909 } 3910 #endif 3911 } 3912 sqlite3ReleaseTempReg(pParse, regFree1); 3913 sqlite3ReleaseTempReg(pParse, regFree2); 3914 return inReg; 3915 } 3916 3917 /* 3918 ** Factor out the code of the given expression to initialization time. 3919 */ 3920 void sqlite3ExprCodeAtInit( 3921 Parse *pParse, /* Parsing context */ 3922 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3923 int regDest, /* Store the value in this register */ 3924 u8 reusable /* True if this expression is reusable */ 3925 ){ 3926 ExprList *p; 3927 assert( ConstFactorOk(pParse) ); 3928 p = pParse->pConstExpr; 3929 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3930 p = sqlite3ExprListAppend(pParse, p, pExpr); 3931 if( p ){ 3932 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3933 pItem->u.iConstExprReg = regDest; 3934 pItem->reusable = reusable; 3935 } 3936 pParse->pConstExpr = p; 3937 } 3938 3939 /* 3940 ** Generate code to evaluate an expression and store the results 3941 ** into a register. Return the register number where the results 3942 ** are stored. 3943 ** 3944 ** If the register is a temporary register that can be deallocated, 3945 ** then write its number into *pReg. If the result register is not 3946 ** a temporary, then set *pReg to zero. 3947 ** 3948 ** If pExpr is a constant, then this routine might generate this 3949 ** code to fill the register in the initialization section of the 3950 ** VDBE program, in order to factor it out of the evaluation loop. 3951 */ 3952 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3953 int r2; 3954 pExpr = sqlite3ExprSkipCollate(pExpr); 3955 if( ConstFactorOk(pParse) 3956 && pExpr->op!=TK_REGISTER 3957 && sqlite3ExprIsConstantNotJoin(pExpr) 3958 ){ 3959 ExprList *p = pParse->pConstExpr; 3960 int i; 3961 *pReg = 0; 3962 if( p ){ 3963 struct ExprList_item *pItem; 3964 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3965 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3966 return pItem->u.iConstExprReg; 3967 } 3968 } 3969 } 3970 r2 = ++pParse->nMem; 3971 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3972 }else{ 3973 int r1 = sqlite3GetTempReg(pParse); 3974 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3975 if( r2==r1 ){ 3976 *pReg = r1; 3977 }else{ 3978 sqlite3ReleaseTempReg(pParse, r1); 3979 *pReg = 0; 3980 } 3981 } 3982 return r2; 3983 } 3984 3985 /* 3986 ** Generate code that will evaluate expression pExpr and store the 3987 ** results in register target. The results are guaranteed to appear 3988 ** in register target. 3989 */ 3990 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3991 int inReg; 3992 3993 assert( target>0 && target<=pParse->nMem ); 3994 if( pExpr && pExpr->op==TK_REGISTER ){ 3995 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3996 }else{ 3997 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3998 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 3999 if( inReg!=target && pParse->pVdbe ){ 4000 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4001 } 4002 } 4003 } 4004 4005 /* 4006 ** Make a transient copy of expression pExpr and then code it using 4007 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4008 ** except that the input expression is guaranteed to be unchanged. 4009 */ 4010 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4011 sqlite3 *db = pParse->db; 4012 pExpr = sqlite3ExprDup(db, pExpr, 0); 4013 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4014 sqlite3ExprDelete(db, pExpr); 4015 } 4016 4017 /* 4018 ** Generate code that will evaluate expression pExpr and store the 4019 ** results in register target. The results are guaranteed to appear 4020 ** in register target. If the expression is constant, then this routine 4021 ** might choose to code the expression at initialization time. 4022 */ 4023 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4024 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4025 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 4026 }else{ 4027 sqlite3ExprCode(pParse, pExpr, target); 4028 } 4029 } 4030 4031 /* 4032 ** Generate code that evaluates the given expression and puts the result 4033 ** in register target. 4034 ** 4035 ** Also make a copy of the expression results into another "cache" register 4036 ** and modify the expression so that the next time it is evaluated, 4037 ** the result is a copy of the cache register. 4038 ** 4039 ** This routine is used for expressions that are used multiple 4040 ** times. They are evaluated once and the results of the expression 4041 ** are reused. 4042 */ 4043 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4044 Vdbe *v = pParse->pVdbe; 4045 int iMem; 4046 4047 assert( target>0 ); 4048 assert( pExpr->op!=TK_REGISTER ); 4049 sqlite3ExprCode(pParse, pExpr, target); 4050 iMem = ++pParse->nMem; 4051 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4052 exprToRegister(pExpr, iMem); 4053 } 4054 4055 /* 4056 ** Generate code that pushes the value of every element of the given 4057 ** expression list into a sequence of registers beginning at target. 4058 ** 4059 ** Return the number of elements evaluated. 4060 ** 4061 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4062 ** filled using OP_SCopy. OP_Copy must be used instead. 4063 ** 4064 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4065 ** factored out into initialization code. 4066 ** 4067 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4068 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4069 ** in registers at srcReg, and so the value can be copied from there. 4070 */ 4071 int sqlite3ExprCodeExprList( 4072 Parse *pParse, /* Parsing context */ 4073 ExprList *pList, /* The expression list to be coded */ 4074 int target, /* Where to write results */ 4075 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4076 u8 flags /* SQLITE_ECEL_* flags */ 4077 ){ 4078 struct ExprList_item *pItem; 4079 int i, j, n; 4080 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4081 Vdbe *v = pParse->pVdbe; 4082 assert( pList!=0 ); 4083 assert( target>0 ); 4084 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4085 n = pList->nExpr; 4086 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4087 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4088 Expr *pExpr = pItem->pExpr; 4089 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 4090 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4091 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4092 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 4093 }else{ 4094 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4095 if( inReg!=target+i ){ 4096 VdbeOp *pOp; 4097 if( copyOp==OP_Copy 4098 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4099 && pOp->p1+pOp->p3+1==inReg 4100 && pOp->p2+pOp->p3+1==target+i 4101 ){ 4102 pOp->p3++; 4103 }else{ 4104 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4105 } 4106 } 4107 } 4108 } 4109 return n; 4110 } 4111 4112 /* 4113 ** Generate code for a BETWEEN operator. 4114 ** 4115 ** x BETWEEN y AND z 4116 ** 4117 ** The above is equivalent to 4118 ** 4119 ** x>=y AND x<=z 4120 ** 4121 ** Code it as such, taking care to do the common subexpression 4122 ** elimination of x. 4123 ** 4124 ** The xJumpIf parameter determines details: 4125 ** 4126 ** NULL: Store the boolean result in reg[dest] 4127 ** sqlite3ExprIfTrue: Jump to dest if true 4128 ** sqlite3ExprIfFalse: Jump to dest if false 4129 ** 4130 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4131 */ 4132 static void exprCodeBetween( 4133 Parse *pParse, /* Parsing and code generating context */ 4134 Expr *pExpr, /* The BETWEEN expression */ 4135 int dest, /* Jump destination or storage location */ 4136 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4137 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4138 ){ 4139 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4140 Expr compLeft; /* The x>=y term */ 4141 Expr compRight; /* The x<=z term */ 4142 Expr exprX; /* The x subexpression */ 4143 int regFree1 = 0; /* Temporary use register */ 4144 4145 4146 memset(&compLeft, 0, sizeof(Expr)); 4147 memset(&compRight, 0, sizeof(Expr)); 4148 memset(&exprAnd, 0, sizeof(Expr)); 4149 4150 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4151 exprX = *pExpr->pLeft; 4152 exprAnd.op = TK_AND; 4153 exprAnd.pLeft = &compLeft; 4154 exprAnd.pRight = &compRight; 4155 compLeft.op = TK_GE; 4156 compLeft.pLeft = &exprX; 4157 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4158 compRight.op = TK_LE; 4159 compRight.pLeft = &exprX; 4160 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4161 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4162 if( xJump ){ 4163 xJump(pParse, &exprAnd, dest, jumpIfNull); 4164 }else{ 4165 exprX.flags |= EP_FromJoin; 4166 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4167 } 4168 sqlite3ReleaseTempReg(pParse, regFree1); 4169 4170 /* Ensure adequate test coverage */ 4171 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4172 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4173 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4174 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4175 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4176 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4177 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4178 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4179 testcase( xJump==0 ); 4180 } 4181 4182 /* 4183 ** Generate code for a boolean expression such that a jump is made 4184 ** to the label "dest" if the expression is true but execution 4185 ** continues straight thru if the expression is false. 4186 ** 4187 ** If the expression evaluates to NULL (neither true nor false), then 4188 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4189 ** 4190 ** This code depends on the fact that certain token values (ex: TK_EQ) 4191 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4192 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4193 ** the make process cause these values to align. Assert()s in the code 4194 ** below verify that the numbers are aligned correctly. 4195 */ 4196 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4197 Vdbe *v = pParse->pVdbe; 4198 int op = 0; 4199 int regFree1 = 0; 4200 int regFree2 = 0; 4201 int r1, r2; 4202 4203 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4204 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4205 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4206 op = pExpr->op; 4207 switch( op ){ 4208 case TK_AND: { 4209 int d2 = sqlite3VdbeMakeLabel(v); 4210 testcase( jumpIfNull==0 ); 4211 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4212 sqlite3ExprCachePush(pParse); 4213 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4214 sqlite3VdbeResolveLabel(v, d2); 4215 sqlite3ExprCachePop(pParse); 4216 break; 4217 } 4218 case TK_OR: { 4219 testcase( jumpIfNull==0 ); 4220 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4221 sqlite3ExprCachePush(pParse); 4222 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4223 sqlite3ExprCachePop(pParse); 4224 break; 4225 } 4226 case TK_NOT: { 4227 testcase( jumpIfNull==0 ); 4228 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4229 break; 4230 } 4231 case TK_IS: 4232 case TK_ISNOT: 4233 testcase( op==TK_IS ); 4234 testcase( op==TK_ISNOT ); 4235 op = (op==TK_IS) ? TK_EQ : TK_NE; 4236 jumpIfNull = SQLITE_NULLEQ; 4237 /* Fall thru */ 4238 case TK_LT: 4239 case TK_LE: 4240 case TK_GT: 4241 case TK_GE: 4242 case TK_NE: 4243 case TK_EQ: { 4244 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4245 testcase( jumpIfNull==0 ); 4246 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4247 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4248 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4249 r1, r2, dest, jumpIfNull); 4250 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4251 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4252 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4253 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4254 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4255 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4256 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4257 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4258 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4259 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4260 testcase( regFree1==0 ); 4261 testcase( regFree2==0 ); 4262 break; 4263 } 4264 case TK_ISNULL: 4265 case TK_NOTNULL: { 4266 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4267 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4268 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4269 sqlite3VdbeAddOp2(v, op, r1, dest); 4270 VdbeCoverageIf(v, op==TK_ISNULL); 4271 VdbeCoverageIf(v, op==TK_NOTNULL); 4272 testcase( regFree1==0 ); 4273 break; 4274 } 4275 case TK_BETWEEN: { 4276 testcase( jumpIfNull==0 ); 4277 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4278 break; 4279 } 4280 #ifndef SQLITE_OMIT_SUBQUERY 4281 case TK_IN: { 4282 int destIfFalse = sqlite3VdbeMakeLabel(v); 4283 int destIfNull = jumpIfNull ? dest : destIfFalse; 4284 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4285 sqlite3VdbeGoto(v, dest); 4286 sqlite3VdbeResolveLabel(v, destIfFalse); 4287 break; 4288 } 4289 #endif 4290 default: { 4291 default_expr: 4292 if( exprAlwaysTrue(pExpr) ){ 4293 sqlite3VdbeGoto(v, dest); 4294 }else if( exprAlwaysFalse(pExpr) ){ 4295 /* No-op */ 4296 }else{ 4297 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4298 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4299 VdbeCoverage(v); 4300 testcase( regFree1==0 ); 4301 testcase( jumpIfNull==0 ); 4302 } 4303 break; 4304 } 4305 } 4306 sqlite3ReleaseTempReg(pParse, regFree1); 4307 sqlite3ReleaseTempReg(pParse, regFree2); 4308 } 4309 4310 /* 4311 ** Generate code for a boolean expression such that a jump is made 4312 ** to the label "dest" if the expression is false but execution 4313 ** continues straight thru if the expression is true. 4314 ** 4315 ** If the expression evaluates to NULL (neither true nor false) then 4316 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4317 ** is 0. 4318 */ 4319 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4320 Vdbe *v = pParse->pVdbe; 4321 int op = 0; 4322 int regFree1 = 0; 4323 int regFree2 = 0; 4324 int r1, r2; 4325 4326 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4327 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4328 if( pExpr==0 ) return; 4329 4330 /* The value of pExpr->op and op are related as follows: 4331 ** 4332 ** pExpr->op op 4333 ** --------- ---------- 4334 ** TK_ISNULL OP_NotNull 4335 ** TK_NOTNULL OP_IsNull 4336 ** TK_NE OP_Eq 4337 ** TK_EQ OP_Ne 4338 ** TK_GT OP_Le 4339 ** TK_LE OP_Gt 4340 ** TK_GE OP_Lt 4341 ** TK_LT OP_Ge 4342 ** 4343 ** For other values of pExpr->op, op is undefined and unused. 4344 ** The value of TK_ and OP_ constants are arranged such that we 4345 ** can compute the mapping above using the following expression. 4346 ** Assert()s verify that the computation is correct. 4347 */ 4348 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4349 4350 /* Verify correct alignment of TK_ and OP_ constants 4351 */ 4352 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4353 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4354 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4355 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4356 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4357 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4358 assert( pExpr->op!=TK_GT || op==OP_Le ); 4359 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4360 4361 switch( pExpr->op ){ 4362 case TK_AND: { 4363 testcase( jumpIfNull==0 ); 4364 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4365 sqlite3ExprCachePush(pParse); 4366 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4367 sqlite3ExprCachePop(pParse); 4368 break; 4369 } 4370 case TK_OR: { 4371 int d2 = sqlite3VdbeMakeLabel(v); 4372 testcase( jumpIfNull==0 ); 4373 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4374 sqlite3ExprCachePush(pParse); 4375 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4376 sqlite3VdbeResolveLabel(v, d2); 4377 sqlite3ExprCachePop(pParse); 4378 break; 4379 } 4380 case TK_NOT: { 4381 testcase( jumpIfNull==0 ); 4382 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4383 break; 4384 } 4385 case TK_IS: 4386 case TK_ISNOT: 4387 testcase( pExpr->op==TK_IS ); 4388 testcase( pExpr->op==TK_ISNOT ); 4389 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4390 jumpIfNull = SQLITE_NULLEQ; 4391 /* Fall thru */ 4392 case TK_LT: 4393 case TK_LE: 4394 case TK_GT: 4395 case TK_GE: 4396 case TK_NE: 4397 case TK_EQ: { 4398 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4399 testcase( jumpIfNull==0 ); 4400 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4401 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4402 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4403 r1, r2, dest, jumpIfNull); 4404 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4405 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4406 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4407 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4408 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4409 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4410 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4411 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4412 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4413 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4414 testcase( regFree1==0 ); 4415 testcase( regFree2==0 ); 4416 break; 4417 } 4418 case TK_ISNULL: 4419 case TK_NOTNULL: { 4420 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4421 sqlite3VdbeAddOp2(v, op, r1, dest); 4422 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4423 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4424 testcase( regFree1==0 ); 4425 break; 4426 } 4427 case TK_BETWEEN: { 4428 testcase( jumpIfNull==0 ); 4429 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4430 break; 4431 } 4432 #ifndef SQLITE_OMIT_SUBQUERY 4433 case TK_IN: { 4434 if( jumpIfNull ){ 4435 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4436 }else{ 4437 int destIfNull = sqlite3VdbeMakeLabel(v); 4438 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4439 sqlite3VdbeResolveLabel(v, destIfNull); 4440 } 4441 break; 4442 } 4443 #endif 4444 default: { 4445 default_expr: 4446 if( exprAlwaysFalse(pExpr) ){ 4447 sqlite3VdbeGoto(v, dest); 4448 }else if( exprAlwaysTrue(pExpr) ){ 4449 /* no-op */ 4450 }else{ 4451 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4452 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4453 VdbeCoverage(v); 4454 testcase( regFree1==0 ); 4455 testcase( jumpIfNull==0 ); 4456 } 4457 break; 4458 } 4459 } 4460 sqlite3ReleaseTempReg(pParse, regFree1); 4461 sqlite3ReleaseTempReg(pParse, regFree2); 4462 } 4463 4464 /* 4465 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4466 ** code generation, and that copy is deleted after code generation. This 4467 ** ensures that the original pExpr is unchanged. 4468 */ 4469 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4470 sqlite3 *db = pParse->db; 4471 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4472 if( db->mallocFailed==0 ){ 4473 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4474 } 4475 sqlite3ExprDelete(db, pCopy); 4476 } 4477 4478 4479 /* 4480 ** Do a deep comparison of two expression trees. Return 0 if the two 4481 ** expressions are completely identical. Return 1 if they differ only 4482 ** by a COLLATE operator at the top level. Return 2 if there are differences 4483 ** other than the top-level COLLATE operator. 4484 ** 4485 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4486 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4487 ** 4488 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4489 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4490 ** 4491 ** Sometimes this routine will return 2 even if the two expressions 4492 ** really are equivalent. If we cannot prove that the expressions are 4493 ** identical, we return 2 just to be safe. So if this routine 4494 ** returns 2, then you do not really know for certain if the two 4495 ** expressions are the same. But if you get a 0 or 1 return, then you 4496 ** can be sure the expressions are the same. In the places where 4497 ** this routine is used, it does not hurt to get an extra 2 - that 4498 ** just might result in some slightly slower code. But returning 4499 ** an incorrect 0 or 1 could lead to a malfunction. 4500 */ 4501 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 4502 u32 combinedFlags; 4503 if( pA==0 || pB==0 ){ 4504 return pB==pA ? 0 : 2; 4505 } 4506 combinedFlags = pA->flags | pB->flags; 4507 if( combinedFlags & EP_IntValue ){ 4508 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4509 return 0; 4510 } 4511 return 2; 4512 } 4513 if( pA->op!=pB->op ){ 4514 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 4515 return 1; 4516 } 4517 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 4518 return 1; 4519 } 4520 return 2; 4521 } 4522 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4523 if( pA->op==TK_FUNCTION ){ 4524 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4525 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4526 return pA->op==TK_COLLATE ? 1 : 2; 4527 } 4528 } 4529 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4530 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4531 if( combinedFlags & EP_xIsSelect ) return 2; 4532 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 4533 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 4534 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4535 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4536 if( pA->iColumn!=pB->iColumn ) return 2; 4537 if( pA->iTable!=pB->iTable 4538 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4539 } 4540 } 4541 return 0; 4542 } 4543 4544 /* 4545 ** Compare two ExprList objects. Return 0 if they are identical and 4546 ** non-zero if they differ in any way. 4547 ** 4548 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4549 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4550 ** 4551 ** This routine might return non-zero for equivalent ExprLists. The 4552 ** only consequence will be disabled optimizations. But this routine 4553 ** must never return 0 if the two ExprList objects are different, or 4554 ** a malfunction will result. 4555 ** 4556 ** Two NULL pointers are considered to be the same. But a NULL pointer 4557 ** always differs from a non-NULL pointer. 4558 */ 4559 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4560 int i; 4561 if( pA==0 && pB==0 ) return 0; 4562 if( pA==0 || pB==0 ) return 1; 4563 if( pA->nExpr!=pB->nExpr ) return 1; 4564 for(i=0; i<pA->nExpr; i++){ 4565 Expr *pExprA = pA->a[i].pExpr; 4566 Expr *pExprB = pB->a[i].pExpr; 4567 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4568 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4569 } 4570 return 0; 4571 } 4572 4573 /* 4574 ** Return true if we can prove the pE2 will always be true if pE1 is 4575 ** true. Return false if we cannot complete the proof or if pE2 might 4576 ** be false. Examples: 4577 ** 4578 ** pE1: x==5 pE2: x==5 Result: true 4579 ** pE1: x>0 pE2: x==5 Result: false 4580 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4581 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4582 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4583 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4584 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4585 ** 4586 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4587 ** Expr.iTable<0 then assume a table number given by iTab. 4588 ** 4589 ** When in doubt, return false. Returning true might give a performance 4590 ** improvement. Returning false might cause a performance reduction, but 4591 ** it will always give the correct answer and is hence always safe. 4592 */ 4593 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4594 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4595 return 1; 4596 } 4597 if( pE2->op==TK_OR 4598 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4599 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4600 ){ 4601 return 1; 4602 } 4603 if( pE2->op==TK_NOTNULL 4604 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 4605 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 4606 ){ 4607 return 1; 4608 } 4609 return 0; 4610 } 4611 4612 /* 4613 ** An instance of the following structure is used by the tree walker 4614 ** to determine if an expression can be evaluated by reference to the 4615 ** index only, without having to do a search for the corresponding 4616 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4617 ** is the cursor for the table. 4618 */ 4619 struct IdxCover { 4620 Index *pIdx; /* The index to be tested for coverage */ 4621 int iCur; /* Cursor number for the table corresponding to the index */ 4622 }; 4623 4624 /* 4625 ** Check to see if there are references to columns in table 4626 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4627 ** pWalker->u.pIdxCover->pIdx. 4628 */ 4629 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4630 if( pExpr->op==TK_COLUMN 4631 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4632 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4633 ){ 4634 pWalker->eCode = 1; 4635 return WRC_Abort; 4636 } 4637 return WRC_Continue; 4638 } 4639 4640 /* 4641 ** Determine if an index pIdx on table with cursor iCur contains will 4642 ** the expression pExpr. Return true if the index does cover the 4643 ** expression and false if the pExpr expression references table columns 4644 ** that are not found in the index pIdx. 4645 ** 4646 ** An index covering an expression means that the expression can be 4647 ** evaluated using only the index and without having to lookup the 4648 ** corresponding table entry. 4649 */ 4650 int sqlite3ExprCoveredByIndex( 4651 Expr *pExpr, /* The index to be tested */ 4652 int iCur, /* The cursor number for the corresponding table */ 4653 Index *pIdx /* The index that might be used for coverage */ 4654 ){ 4655 Walker w; 4656 struct IdxCover xcov; 4657 memset(&w, 0, sizeof(w)); 4658 xcov.iCur = iCur; 4659 xcov.pIdx = pIdx; 4660 w.xExprCallback = exprIdxCover; 4661 w.u.pIdxCover = &xcov; 4662 sqlite3WalkExpr(&w, pExpr); 4663 return !w.eCode; 4664 } 4665 4666 4667 /* 4668 ** An instance of the following structure is used by the tree walker 4669 ** to count references to table columns in the arguments of an 4670 ** aggregate function, in order to implement the 4671 ** sqlite3FunctionThisSrc() routine. 4672 */ 4673 struct SrcCount { 4674 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4675 int nThis; /* Number of references to columns in pSrcList */ 4676 int nOther; /* Number of references to columns in other FROM clauses */ 4677 }; 4678 4679 /* 4680 ** Count the number of references to columns. 4681 */ 4682 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4683 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4684 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4685 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4686 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4687 ** NEVER() will need to be removed. */ 4688 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4689 int i; 4690 struct SrcCount *p = pWalker->u.pSrcCount; 4691 SrcList *pSrc = p->pSrc; 4692 int nSrc = pSrc ? pSrc->nSrc : 0; 4693 for(i=0; i<nSrc; i++){ 4694 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4695 } 4696 if( i<nSrc ){ 4697 p->nThis++; 4698 }else{ 4699 p->nOther++; 4700 } 4701 } 4702 return WRC_Continue; 4703 } 4704 4705 /* 4706 ** Determine if any of the arguments to the pExpr Function reference 4707 ** pSrcList. Return true if they do. Also return true if the function 4708 ** has no arguments or has only constant arguments. Return false if pExpr 4709 ** references columns but not columns of tables found in pSrcList. 4710 */ 4711 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4712 Walker w; 4713 struct SrcCount cnt; 4714 assert( pExpr->op==TK_AGG_FUNCTION ); 4715 memset(&w, 0, sizeof(w)); 4716 w.xExprCallback = exprSrcCount; 4717 w.u.pSrcCount = &cnt; 4718 cnt.pSrc = pSrcList; 4719 cnt.nThis = 0; 4720 cnt.nOther = 0; 4721 sqlite3WalkExprList(&w, pExpr->x.pList); 4722 return cnt.nThis>0 || cnt.nOther==0; 4723 } 4724 4725 /* 4726 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4727 ** the new element. Return a negative number if malloc fails. 4728 */ 4729 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4730 int i; 4731 pInfo->aCol = sqlite3ArrayAllocate( 4732 db, 4733 pInfo->aCol, 4734 sizeof(pInfo->aCol[0]), 4735 &pInfo->nColumn, 4736 &i 4737 ); 4738 return i; 4739 } 4740 4741 /* 4742 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4743 ** the new element. Return a negative number if malloc fails. 4744 */ 4745 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4746 int i; 4747 pInfo->aFunc = sqlite3ArrayAllocate( 4748 db, 4749 pInfo->aFunc, 4750 sizeof(pInfo->aFunc[0]), 4751 &pInfo->nFunc, 4752 &i 4753 ); 4754 return i; 4755 } 4756 4757 /* 4758 ** This is the xExprCallback for a tree walker. It is used to 4759 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4760 ** for additional information. 4761 */ 4762 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4763 int i; 4764 NameContext *pNC = pWalker->u.pNC; 4765 Parse *pParse = pNC->pParse; 4766 SrcList *pSrcList = pNC->pSrcList; 4767 AggInfo *pAggInfo = pNC->pAggInfo; 4768 4769 switch( pExpr->op ){ 4770 case TK_AGG_COLUMN: 4771 case TK_COLUMN: { 4772 testcase( pExpr->op==TK_AGG_COLUMN ); 4773 testcase( pExpr->op==TK_COLUMN ); 4774 /* Check to see if the column is in one of the tables in the FROM 4775 ** clause of the aggregate query */ 4776 if( ALWAYS(pSrcList!=0) ){ 4777 struct SrcList_item *pItem = pSrcList->a; 4778 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4779 struct AggInfo_col *pCol; 4780 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4781 if( pExpr->iTable==pItem->iCursor ){ 4782 /* If we reach this point, it means that pExpr refers to a table 4783 ** that is in the FROM clause of the aggregate query. 4784 ** 4785 ** Make an entry for the column in pAggInfo->aCol[] if there 4786 ** is not an entry there already. 4787 */ 4788 int k; 4789 pCol = pAggInfo->aCol; 4790 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4791 if( pCol->iTable==pExpr->iTable && 4792 pCol->iColumn==pExpr->iColumn ){ 4793 break; 4794 } 4795 } 4796 if( (k>=pAggInfo->nColumn) 4797 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4798 ){ 4799 pCol = &pAggInfo->aCol[k]; 4800 pCol->pTab = pExpr->pTab; 4801 pCol->iTable = pExpr->iTable; 4802 pCol->iColumn = pExpr->iColumn; 4803 pCol->iMem = ++pParse->nMem; 4804 pCol->iSorterColumn = -1; 4805 pCol->pExpr = pExpr; 4806 if( pAggInfo->pGroupBy ){ 4807 int j, n; 4808 ExprList *pGB = pAggInfo->pGroupBy; 4809 struct ExprList_item *pTerm = pGB->a; 4810 n = pGB->nExpr; 4811 for(j=0; j<n; j++, pTerm++){ 4812 Expr *pE = pTerm->pExpr; 4813 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4814 pE->iColumn==pExpr->iColumn ){ 4815 pCol->iSorterColumn = j; 4816 break; 4817 } 4818 } 4819 } 4820 if( pCol->iSorterColumn<0 ){ 4821 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4822 } 4823 } 4824 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4825 ** because it was there before or because we just created it). 4826 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4827 ** pAggInfo->aCol[] entry. 4828 */ 4829 ExprSetVVAProperty(pExpr, EP_NoReduce); 4830 pExpr->pAggInfo = pAggInfo; 4831 pExpr->op = TK_AGG_COLUMN; 4832 pExpr->iAgg = (i16)k; 4833 break; 4834 } /* endif pExpr->iTable==pItem->iCursor */ 4835 } /* end loop over pSrcList */ 4836 } 4837 return WRC_Prune; 4838 } 4839 case TK_AGG_FUNCTION: { 4840 if( (pNC->ncFlags & NC_InAggFunc)==0 4841 && pWalker->walkerDepth==pExpr->op2 4842 ){ 4843 /* Check to see if pExpr is a duplicate of another aggregate 4844 ** function that is already in the pAggInfo structure 4845 */ 4846 struct AggInfo_func *pItem = pAggInfo->aFunc; 4847 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4848 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4849 break; 4850 } 4851 } 4852 if( i>=pAggInfo->nFunc ){ 4853 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4854 */ 4855 u8 enc = ENC(pParse->db); 4856 i = addAggInfoFunc(pParse->db, pAggInfo); 4857 if( i>=0 ){ 4858 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4859 pItem = &pAggInfo->aFunc[i]; 4860 pItem->pExpr = pExpr; 4861 pItem->iMem = ++pParse->nMem; 4862 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4863 pItem->pFunc = sqlite3FindFunction(pParse->db, 4864 pExpr->u.zToken, 4865 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4866 if( pExpr->flags & EP_Distinct ){ 4867 pItem->iDistinct = pParse->nTab++; 4868 }else{ 4869 pItem->iDistinct = -1; 4870 } 4871 } 4872 } 4873 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4874 */ 4875 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4876 ExprSetVVAProperty(pExpr, EP_NoReduce); 4877 pExpr->iAgg = (i16)i; 4878 pExpr->pAggInfo = pAggInfo; 4879 return WRC_Prune; 4880 }else{ 4881 return WRC_Continue; 4882 } 4883 } 4884 } 4885 return WRC_Continue; 4886 } 4887 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4888 UNUSED_PARAMETER(pWalker); 4889 UNUSED_PARAMETER(pSelect); 4890 return WRC_Continue; 4891 } 4892 4893 /* 4894 ** Analyze the pExpr expression looking for aggregate functions and 4895 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4896 ** points to. Additional entries are made on the AggInfo object as 4897 ** necessary. 4898 ** 4899 ** This routine should only be called after the expression has been 4900 ** analyzed by sqlite3ResolveExprNames(). 4901 */ 4902 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4903 Walker w; 4904 memset(&w, 0, sizeof(w)); 4905 w.xExprCallback = analyzeAggregate; 4906 w.xSelectCallback = analyzeAggregatesInSelect; 4907 w.u.pNC = pNC; 4908 assert( pNC->pSrcList!=0 ); 4909 sqlite3WalkExpr(&w, pExpr); 4910 } 4911 4912 /* 4913 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4914 ** expression list. Return the number of errors. 4915 ** 4916 ** If an error is found, the analysis is cut short. 4917 */ 4918 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4919 struct ExprList_item *pItem; 4920 int i; 4921 if( pList ){ 4922 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4923 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4924 } 4925 } 4926 } 4927 4928 /* 4929 ** Allocate a single new register for use to hold some intermediate result. 4930 */ 4931 int sqlite3GetTempReg(Parse *pParse){ 4932 if( pParse->nTempReg==0 ){ 4933 return ++pParse->nMem; 4934 } 4935 return pParse->aTempReg[--pParse->nTempReg]; 4936 } 4937 4938 /* 4939 ** Deallocate a register, making available for reuse for some other 4940 ** purpose. 4941 ** 4942 ** If a register is currently being used by the column cache, then 4943 ** the deallocation is deferred until the column cache line that uses 4944 ** the register becomes stale. 4945 */ 4946 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4947 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4948 int i; 4949 struct yColCache *p; 4950 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 4951 if( p->iReg==iReg ){ 4952 p->tempReg = 1; 4953 return; 4954 } 4955 } 4956 pParse->aTempReg[pParse->nTempReg++] = iReg; 4957 } 4958 } 4959 4960 /* 4961 ** Allocate or deallocate a block of nReg consecutive registers. 4962 */ 4963 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4964 int i, n; 4965 if( nReg==1 ) return sqlite3GetTempReg(pParse); 4966 i = pParse->iRangeReg; 4967 n = pParse->nRangeReg; 4968 if( nReg<=n ){ 4969 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4970 pParse->iRangeReg += nReg; 4971 pParse->nRangeReg -= nReg; 4972 }else{ 4973 i = pParse->nMem+1; 4974 pParse->nMem += nReg; 4975 } 4976 return i; 4977 } 4978 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4979 if( nReg==1 ){ 4980 sqlite3ReleaseTempReg(pParse, iReg); 4981 return; 4982 } 4983 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4984 if( nReg>pParse->nRangeReg ){ 4985 pParse->nRangeReg = nReg; 4986 pParse->iRangeReg = iReg; 4987 } 4988 } 4989 4990 /* 4991 ** Mark all temporary registers as being unavailable for reuse. 4992 */ 4993 void sqlite3ClearTempRegCache(Parse *pParse){ 4994 pParse->nTempReg = 0; 4995 pParse->nRangeReg = 0; 4996 } 4997 4998 /* 4999 ** Validate that no temporary register falls within the range of 5000 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5001 ** statements. 5002 */ 5003 #ifdef SQLITE_DEBUG 5004 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5005 int i; 5006 if( pParse->nRangeReg>0 5007 && pParse->iRangeReg+pParse->nRangeReg<iLast 5008 && pParse->iRangeReg>=iFirst 5009 ){ 5010 return 0; 5011 } 5012 for(i=0; i<pParse->nTempReg; i++){ 5013 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5014 return 0; 5015 } 5016 } 5017 return 1; 5018 } 5019 #endif /* SQLITE_DEBUG */ 5020