xref: /sqlite-3.40.0/src/expr.c (revision dfe4e6bb)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( op==TK_AGG_COLUMN || op==TK_COLUMN ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** The collating sequence might be determined by a COLLATE operator
128 ** or by the presence of a column with a defined collating sequence.
129 ** COLLATE operators take first precedence.  Left operands take
130 ** precedence over right operands.
131 */
132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
133   sqlite3 *db = pParse->db;
134   CollSeq *pColl = 0;
135   Expr *p = pExpr;
136   while( p ){
137     int op = p->op;
138     if( p->flags & EP_Generic ) break;
139     if( op==TK_CAST || op==TK_UPLUS ){
140       p = p->pLeft;
141       continue;
142     }
143     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
144       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
145       break;
146     }
147     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
148           || op==TK_REGISTER || op==TK_TRIGGER)
149      && p->pTab!=0
150     ){
151       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
152       ** a TK_COLUMN but was previously evaluated and cached in a register */
153       int j = p->iColumn;
154       if( j>=0 ){
155         const char *zColl = p->pTab->aCol[j].zColl;
156         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
157       }
158       break;
159     }
160     if( p->flags & EP_Collate ){
161       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
162         p = p->pLeft;
163       }else{
164         Expr *pNext  = p->pRight;
165         /* The Expr.x union is never used at the same time as Expr.pRight */
166         assert( p->x.pList==0 || p->pRight==0 );
167         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
168         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
169         ** least one EP_Collate. Thus the following two ALWAYS. */
170         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
171           int i;
172           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
173             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
174               pNext = p->x.pList->a[i].pExpr;
175               break;
176             }
177           }
178         }
179         p = pNext;
180       }
181     }else{
182       break;
183     }
184   }
185   if( sqlite3CheckCollSeq(pParse, pColl) ){
186     pColl = 0;
187   }
188   return pColl;
189 }
190 
191 /*
192 ** pExpr is an operand of a comparison operator.  aff2 is the
193 ** type affinity of the other operand.  This routine returns the
194 ** type affinity that should be used for the comparison operator.
195 */
196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
197   char aff1 = sqlite3ExprAffinity(pExpr);
198   if( aff1 && aff2 ){
199     /* Both sides of the comparison are columns. If one has numeric
200     ** affinity, use that. Otherwise use no affinity.
201     */
202     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
203       return SQLITE_AFF_NUMERIC;
204     }else{
205       return SQLITE_AFF_BLOB;
206     }
207   }else if( !aff1 && !aff2 ){
208     /* Neither side of the comparison is a column.  Compare the
209     ** results directly.
210     */
211     return SQLITE_AFF_BLOB;
212   }else{
213     /* One side is a column, the other is not. Use the columns affinity. */
214     assert( aff1==0 || aff2==0 );
215     return (aff1 + aff2);
216   }
217 }
218 
219 /*
220 ** pExpr is a comparison operator.  Return the type affinity that should
221 ** be applied to both operands prior to doing the comparison.
222 */
223 static char comparisonAffinity(Expr *pExpr){
224   char aff;
225   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
226           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
227           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
228   assert( pExpr->pLeft );
229   aff = sqlite3ExprAffinity(pExpr->pLeft);
230   if( pExpr->pRight ){
231     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
232   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
233     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
234   }else if( NEVER(aff==0) ){
235     aff = SQLITE_AFF_BLOB;
236   }
237   return aff;
238 }
239 
240 /*
241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
242 ** idx_affinity is the affinity of an indexed column. Return true
243 ** if the index with affinity idx_affinity may be used to implement
244 ** the comparison in pExpr.
245 */
246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
247   char aff = comparisonAffinity(pExpr);
248   switch( aff ){
249     case SQLITE_AFF_BLOB:
250       return 1;
251     case SQLITE_AFF_TEXT:
252       return idx_affinity==SQLITE_AFF_TEXT;
253     default:
254       return sqlite3IsNumericAffinity(idx_affinity);
255   }
256 }
257 
258 /*
259 ** Return the P5 value that should be used for a binary comparison
260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
261 */
262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
263   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
264   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
265   return aff;
266 }
267 
268 /*
269 ** Return a pointer to the collation sequence that should be used by
270 ** a binary comparison operator comparing pLeft and pRight.
271 **
272 ** If the left hand expression has a collating sequence type, then it is
273 ** used. Otherwise the collation sequence for the right hand expression
274 ** is used, or the default (BINARY) if neither expression has a collating
275 ** type.
276 **
277 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
278 ** it is not considered.
279 */
280 CollSeq *sqlite3BinaryCompareCollSeq(
281   Parse *pParse,
282   Expr *pLeft,
283   Expr *pRight
284 ){
285   CollSeq *pColl;
286   assert( pLeft );
287   if( pLeft->flags & EP_Collate ){
288     pColl = sqlite3ExprCollSeq(pParse, pLeft);
289   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
290     pColl = sqlite3ExprCollSeq(pParse, pRight);
291   }else{
292     pColl = sqlite3ExprCollSeq(pParse, pLeft);
293     if( !pColl ){
294       pColl = sqlite3ExprCollSeq(pParse, pRight);
295     }
296   }
297   return pColl;
298 }
299 
300 /*
301 ** Generate code for a comparison operator.
302 */
303 static int codeCompare(
304   Parse *pParse,    /* The parsing (and code generating) context */
305   Expr *pLeft,      /* The left operand */
306   Expr *pRight,     /* The right operand */
307   int opcode,       /* The comparison opcode */
308   int in1, int in2, /* Register holding operands */
309   int dest,         /* Jump here if true.  */
310   int jumpIfNull    /* If true, jump if either operand is NULL */
311 ){
312   int p5;
313   int addr;
314   CollSeq *p4;
315 
316   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
317   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
318   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
319                            (void*)p4, P4_COLLSEQ);
320   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
321   return addr;
322 }
323 
324 /*
325 ** Return true if expression pExpr is a vector, or false otherwise.
326 **
327 ** A vector is defined as any expression that results in two or more
328 ** columns of result.  Every TK_VECTOR node is an vector because the
329 ** parser will not generate a TK_VECTOR with fewer than two entries.
330 ** But a TK_SELECT might be either a vector or a scalar. It is only
331 ** considered a vector if it has two or more result columns.
332 */
333 int sqlite3ExprIsVector(Expr *pExpr){
334   return sqlite3ExprVectorSize(pExpr)>1;
335 }
336 
337 /*
338 ** If the expression passed as the only argument is of type TK_VECTOR
339 ** return the number of expressions in the vector. Or, if the expression
340 ** is a sub-select, return the number of columns in the sub-select. For
341 ** any other type of expression, return 1.
342 */
343 int sqlite3ExprVectorSize(Expr *pExpr){
344   u8 op = pExpr->op;
345   if( op==TK_REGISTER ) op = pExpr->op2;
346   if( op==TK_VECTOR ){
347     return pExpr->x.pList->nExpr;
348   }else if( op==TK_SELECT ){
349     return pExpr->x.pSelect->pEList->nExpr;
350   }else{
351     return 1;
352   }
353 }
354 
355 #ifndef SQLITE_OMIT_SUBQUERY
356 /*
357 ** Return a pointer to a subexpression of pVector that is the i-th
358 ** column of the vector (numbered starting with 0).  The caller must
359 ** ensure that i is within range.
360 **
361 ** If pVector is really a scalar (and "scalar" here includes subqueries
362 ** that return a single column!) then return pVector unmodified.
363 **
364 ** pVector retains ownership of the returned subexpression.
365 **
366 ** If the vector is a (SELECT ...) then the expression returned is
367 ** just the expression for the i-th term of the result set, and may
368 ** not be ready for evaluation because the table cursor has not yet
369 ** been positioned.
370 */
371 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
372   assert( i<sqlite3ExprVectorSize(pVector) );
373   if( sqlite3ExprIsVector(pVector) ){
374     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
375     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
376       return pVector->x.pSelect->pEList->a[i].pExpr;
377     }else{
378       return pVector->x.pList->a[i].pExpr;
379     }
380   }
381   return pVector;
382 }
383 #endif /* !defined(SQLITE_OMIT_SUBQUERY) */
384 
385 #ifndef SQLITE_OMIT_SUBQUERY
386 /*
387 ** Compute and return a new Expr object which when passed to
388 ** sqlite3ExprCode() will generate all necessary code to compute
389 ** the iField-th column of the vector expression pVector.
390 **
391 ** It is ok for pVector to be a scalar (as long as iField==0).
392 ** In that case, this routine works like sqlite3ExprDup().
393 **
394 ** The caller owns the returned Expr object and is responsible for
395 ** ensuring that the returned value eventually gets freed.
396 **
397 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
398 ** then the returned object will reference pVector and so pVector must remain
399 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
400 ** or a scalar expression, then it can be deleted as soon as this routine
401 ** returns.
402 **
403 ** A trick to cause a TK_SELECT pVector to be deleted together with
404 ** the returned Expr object is to attach the pVector to the pRight field
405 ** of the returned TK_SELECT_COLUMN Expr object.
406 */
407 Expr *sqlite3ExprForVectorField(
408   Parse *pParse,       /* Parsing context */
409   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
410   int iField           /* Which column of the vector to return */
411 ){
412   Expr *pRet;
413   if( pVector->op==TK_SELECT ){
414     assert( pVector->flags & EP_xIsSelect );
415     /* The TK_SELECT_COLUMN Expr node:
416     **
417     ** pLeft:           pVector containing TK_SELECT
418     ** pRight:          not used.  But recursively deleted.
419     ** iColumn:         Index of a column in pVector
420     ** pLeft->iTable:   First in an array of register holding result, or 0
421     **                  if the result is not yet computed.
422     **
423     ** sqlite3ExprDelete() specifically skips the recursive delete of
424     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
425     ** can be attached to pRight to cause this node to take ownership of
426     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
427     ** with the same pLeft pointer to the pVector, but only one of them
428     ** will own the pVector.
429     */
430     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0, 0);
431     if( pRet ){
432       pRet->iColumn = iField;
433       pRet->pLeft = pVector;
434     }
435     assert( pRet==0 || pRet->iTable==0 );
436   }else{
437     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
438     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
439   }
440   return pRet;
441 }
442 #endif /* !define(SQLITE_OMIT_SUBQUERY) */
443 
444 /*
445 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
446 ** it. Return the register in which the result is stored (or, if the
447 ** sub-select returns more than one column, the first in an array
448 ** of registers in which the result is stored).
449 **
450 ** If pExpr is not a TK_SELECT expression, return 0.
451 */
452 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
453   int reg = 0;
454 #ifndef SQLITE_OMIT_SUBQUERY
455   if( pExpr->op==TK_SELECT ){
456     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
457   }
458 #endif
459   return reg;
460 }
461 
462 /*
463 ** Argument pVector points to a vector expression - either a TK_VECTOR
464 ** or TK_SELECT that returns more than one column. This function returns
465 ** the register number of a register that contains the value of
466 ** element iField of the vector.
467 **
468 ** If pVector is a TK_SELECT expression, then code for it must have
469 ** already been generated using the exprCodeSubselect() routine. In this
470 ** case parameter regSelect should be the first in an array of registers
471 ** containing the results of the sub-select.
472 **
473 ** If pVector is of type TK_VECTOR, then code for the requested field
474 ** is generated. In this case (*pRegFree) may be set to the number of
475 ** a temporary register to be freed by the caller before returning.
476 **
477 ** Before returning, output parameter (*ppExpr) is set to point to the
478 ** Expr object corresponding to element iElem of the vector.
479 */
480 static int exprVectorRegister(
481   Parse *pParse,                  /* Parse context */
482   Expr *pVector,                  /* Vector to extract element from */
483   int iField,                     /* Field to extract from pVector */
484   int regSelect,                  /* First in array of registers */
485   Expr **ppExpr,                  /* OUT: Expression element */
486   int *pRegFree                   /* OUT: Temp register to free */
487 ){
488   u8 op = pVector->op;
489   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
490   if( op==TK_REGISTER ){
491     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
492     return pVector->iTable+iField;
493   }
494   if( op==TK_SELECT ){
495     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
496      return regSelect+iField;
497   }
498   *ppExpr = pVector->x.pList->a[iField].pExpr;
499   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
500 }
501 
502 /*
503 ** Expression pExpr is a comparison between two vector values. Compute
504 ** the result of the comparison (1, 0, or NULL) and write that
505 ** result into register dest.
506 **
507 ** The caller must satisfy the following preconditions:
508 **
509 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
510 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
511 **    otherwise:                op==pExpr->op and p5==0
512 */
513 static void codeVectorCompare(
514   Parse *pParse,        /* Code generator context */
515   Expr *pExpr,          /* The comparison operation */
516   int dest,             /* Write results into this register */
517   u8 op,                /* Comparison operator */
518   u8 p5                 /* SQLITE_NULLEQ or zero */
519 ){
520   Vdbe *v = pParse->pVdbe;
521   Expr *pLeft = pExpr->pLeft;
522   Expr *pRight = pExpr->pRight;
523   int nLeft = sqlite3ExprVectorSize(pLeft);
524   int i;
525   int regLeft = 0;
526   int regRight = 0;
527   u8 opx = op;
528   int addrDone = sqlite3VdbeMakeLabel(v);
529 
530   assert( nLeft==sqlite3ExprVectorSize(pRight) );
531   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
532        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
533        || pExpr->op==TK_LT || pExpr->op==TK_GT
534        || pExpr->op==TK_LE || pExpr->op==TK_GE
535   );
536   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
537             || (pExpr->op==TK_ISNOT && op==TK_NE) );
538   assert( p5==0 || pExpr->op!=op );
539   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
540 
541   p5 |= SQLITE_STOREP2;
542   if( opx==TK_LE ) opx = TK_LT;
543   if( opx==TK_GE ) opx = TK_GT;
544 
545   regLeft = exprCodeSubselect(pParse, pLeft);
546   regRight = exprCodeSubselect(pParse, pRight);
547 
548   for(i=0; 1 /*Loop exits by "break"*/; i++){
549     int regFree1 = 0, regFree2 = 0;
550     Expr *pL, *pR;
551     int r1, r2;
552     assert( i>=0 && i<nLeft );
553     if( i>0 ) sqlite3ExprCachePush(pParse);
554     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
555     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
556     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
557     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
558     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
559     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
560     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
561     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
562     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
563     sqlite3ReleaseTempReg(pParse, regFree1);
564     sqlite3ReleaseTempReg(pParse, regFree2);
565     if( i>0 ) sqlite3ExprCachePop(pParse);
566     if( i==nLeft-1 ){
567       break;
568     }
569     if( opx==TK_EQ ){
570       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
571       p5 |= SQLITE_KEEPNULL;
572     }else if( opx==TK_NE ){
573       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
574       p5 |= SQLITE_KEEPNULL;
575     }else{
576       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
577       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
578       VdbeCoverageIf(v, op==TK_LT);
579       VdbeCoverageIf(v, op==TK_GT);
580       VdbeCoverageIf(v, op==TK_LE);
581       VdbeCoverageIf(v, op==TK_GE);
582       if( i==nLeft-2 ) opx = op;
583     }
584   }
585   sqlite3VdbeResolveLabel(v, addrDone);
586 }
587 
588 #if SQLITE_MAX_EXPR_DEPTH>0
589 /*
590 ** Check that argument nHeight is less than or equal to the maximum
591 ** expression depth allowed. If it is not, leave an error message in
592 ** pParse.
593 */
594 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
595   int rc = SQLITE_OK;
596   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
597   if( nHeight>mxHeight ){
598     sqlite3ErrorMsg(pParse,
599        "Expression tree is too large (maximum depth %d)", mxHeight
600     );
601     rc = SQLITE_ERROR;
602   }
603   return rc;
604 }
605 
606 /* The following three functions, heightOfExpr(), heightOfExprList()
607 ** and heightOfSelect(), are used to determine the maximum height
608 ** of any expression tree referenced by the structure passed as the
609 ** first argument.
610 **
611 ** If this maximum height is greater than the current value pointed
612 ** to by pnHeight, the second parameter, then set *pnHeight to that
613 ** value.
614 */
615 static void heightOfExpr(Expr *p, int *pnHeight){
616   if( p ){
617     if( p->nHeight>*pnHeight ){
618       *pnHeight = p->nHeight;
619     }
620   }
621 }
622 static void heightOfExprList(ExprList *p, int *pnHeight){
623   if( p ){
624     int i;
625     for(i=0; i<p->nExpr; i++){
626       heightOfExpr(p->a[i].pExpr, pnHeight);
627     }
628   }
629 }
630 static void heightOfSelect(Select *p, int *pnHeight){
631   if( p ){
632     heightOfExpr(p->pWhere, pnHeight);
633     heightOfExpr(p->pHaving, pnHeight);
634     heightOfExpr(p->pLimit, pnHeight);
635     heightOfExpr(p->pOffset, pnHeight);
636     heightOfExprList(p->pEList, pnHeight);
637     heightOfExprList(p->pGroupBy, pnHeight);
638     heightOfExprList(p->pOrderBy, pnHeight);
639     heightOfSelect(p->pPrior, pnHeight);
640   }
641 }
642 
643 /*
644 ** Set the Expr.nHeight variable in the structure passed as an
645 ** argument. An expression with no children, Expr.pList or
646 ** Expr.pSelect member has a height of 1. Any other expression
647 ** has a height equal to the maximum height of any other
648 ** referenced Expr plus one.
649 **
650 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
651 ** if appropriate.
652 */
653 static void exprSetHeight(Expr *p){
654   int nHeight = 0;
655   heightOfExpr(p->pLeft, &nHeight);
656   heightOfExpr(p->pRight, &nHeight);
657   if( ExprHasProperty(p, EP_xIsSelect) ){
658     heightOfSelect(p->x.pSelect, &nHeight);
659   }else if( p->x.pList ){
660     heightOfExprList(p->x.pList, &nHeight);
661     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
662   }
663   p->nHeight = nHeight + 1;
664 }
665 
666 /*
667 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
668 ** the height is greater than the maximum allowed expression depth,
669 ** leave an error in pParse.
670 **
671 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
672 ** Expr.flags.
673 */
674 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
675   if( pParse->nErr ) return;
676   exprSetHeight(p);
677   sqlite3ExprCheckHeight(pParse, p->nHeight);
678 }
679 
680 /*
681 ** Return the maximum height of any expression tree referenced
682 ** by the select statement passed as an argument.
683 */
684 int sqlite3SelectExprHeight(Select *p){
685   int nHeight = 0;
686   heightOfSelect(p, &nHeight);
687   return nHeight;
688 }
689 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
690 /*
691 ** Propagate all EP_Propagate flags from the Expr.x.pList into
692 ** Expr.flags.
693 */
694 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
695   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
696     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
697   }
698 }
699 #define exprSetHeight(y)
700 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
701 
702 /*
703 ** This routine is the core allocator for Expr nodes.
704 **
705 ** Construct a new expression node and return a pointer to it.  Memory
706 ** for this node and for the pToken argument is a single allocation
707 ** obtained from sqlite3DbMalloc().  The calling function
708 ** is responsible for making sure the node eventually gets freed.
709 **
710 ** If dequote is true, then the token (if it exists) is dequoted.
711 ** If dequote is false, no dequoting is performed.  The deQuote
712 ** parameter is ignored if pToken is NULL or if the token does not
713 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
714 ** then the EP_DblQuoted flag is set on the expression node.
715 **
716 ** Special case:  If op==TK_INTEGER and pToken points to a string that
717 ** can be translated into a 32-bit integer, then the token is not
718 ** stored in u.zToken.  Instead, the integer values is written
719 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
720 ** is allocated to hold the integer text and the dequote flag is ignored.
721 */
722 Expr *sqlite3ExprAlloc(
723   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
724   int op,                 /* Expression opcode */
725   const Token *pToken,    /* Token argument.  Might be NULL */
726   int dequote             /* True to dequote */
727 ){
728   Expr *pNew;
729   int nExtra = 0;
730   int iValue = 0;
731 
732   assert( db!=0 );
733   if( pToken ){
734     if( op!=TK_INTEGER || pToken->z==0
735           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
736       nExtra = pToken->n+1;
737       assert( iValue>=0 );
738     }
739   }
740   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
741   if( pNew ){
742     memset(pNew, 0, sizeof(Expr));
743     pNew->op = (u8)op;
744     pNew->iAgg = -1;
745     if( pToken ){
746       if( nExtra==0 ){
747         pNew->flags |= EP_IntValue;
748         pNew->u.iValue = iValue;
749       }else{
750         pNew->u.zToken = (char*)&pNew[1];
751         assert( pToken->z!=0 || pToken->n==0 );
752         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
753         pNew->u.zToken[pToken->n] = 0;
754         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
755           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
756           sqlite3Dequote(pNew->u.zToken);
757         }
758       }
759     }
760 #if SQLITE_MAX_EXPR_DEPTH>0
761     pNew->nHeight = 1;
762 #endif
763   }
764   return pNew;
765 }
766 
767 /*
768 ** Allocate a new expression node from a zero-terminated token that has
769 ** already been dequoted.
770 */
771 Expr *sqlite3Expr(
772   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
773   int op,                 /* Expression opcode */
774   const char *zToken      /* Token argument.  Might be NULL */
775 ){
776   Token x;
777   x.z = zToken;
778   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
779   return sqlite3ExprAlloc(db, op, &x, 0);
780 }
781 
782 /*
783 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
784 **
785 ** If pRoot==NULL that means that a memory allocation error has occurred.
786 ** In that case, delete the subtrees pLeft and pRight.
787 */
788 void sqlite3ExprAttachSubtrees(
789   sqlite3 *db,
790   Expr *pRoot,
791   Expr *pLeft,
792   Expr *pRight
793 ){
794   if( pRoot==0 ){
795     assert( db->mallocFailed );
796     sqlite3ExprDelete(db, pLeft);
797     sqlite3ExprDelete(db, pRight);
798   }else{
799     if( pRight ){
800       pRoot->pRight = pRight;
801       pRoot->flags |= EP_Propagate & pRight->flags;
802     }
803     if( pLeft ){
804       pRoot->pLeft = pLeft;
805       pRoot->flags |= EP_Propagate & pLeft->flags;
806     }
807     exprSetHeight(pRoot);
808   }
809 }
810 
811 /*
812 ** Allocate an Expr node which joins as many as two subtrees.
813 **
814 ** One or both of the subtrees can be NULL.  Return a pointer to the new
815 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
816 ** free the subtrees and return NULL.
817 */
818 Expr *sqlite3PExpr(
819   Parse *pParse,          /* Parsing context */
820   int op,                 /* Expression opcode */
821   Expr *pLeft,            /* Left operand */
822   Expr *pRight,           /* Right operand */
823   const Token *pToken     /* Argument token */
824 ){
825   Expr *p;
826   if( op==TK_AND && pParse->nErr==0 ){
827     /* Take advantage of short-circuit false optimization for AND */
828     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
829   }else{
830     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
831     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
832   }
833   if( p ) {
834     sqlite3ExprCheckHeight(pParse, p->nHeight);
835   }
836   return p;
837 }
838 
839 /*
840 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
841 ** do a memory allocation failure) then delete the pSelect object.
842 */
843 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
844   if( pExpr ){
845     pExpr->x.pSelect = pSelect;
846     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
847     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
848   }else{
849     assert( pParse->db->mallocFailed );
850     sqlite3SelectDelete(pParse->db, pSelect);
851   }
852 }
853 
854 
855 /*
856 ** If the expression is always either TRUE or FALSE (respectively),
857 ** then return 1.  If one cannot determine the truth value of the
858 ** expression at compile-time return 0.
859 **
860 ** This is an optimization.  If is OK to return 0 here even if
861 ** the expression really is always false or false (a false negative).
862 ** But it is a bug to return 1 if the expression might have different
863 ** boolean values in different circumstances (a false positive.)
864 **
865 ** Note that if the expression is part of conditional for a
866 ** LEFT JOIN, then we cannot determine at compile-time whether or not
867 ** is it true or false, so always return 0.
868 */
869 static int exprAlwaysTrue(Expr *p){
870   int v = 0;
871   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
872   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
873   return v!=0;
874 }
875 static int exprAlwaysFalse(Expr *p){
876   int v = 0;
877   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
878   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
879   return v==0;
880 }
881 
882 /*
883 ** Join two expressions using an AND operator.  If either expression is
884 ** NULL, then just return the other expression.
885 **
886 ** If one side or the other of the AND is known to be false, then instead
887 ** of returning an AND expression, just return a constant expression with
888 ** a value of false.
889 */
890 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
891   if( pLeft==0 ){
892     return pRight;
893   }else if( pRight==0 ){
894     return pLeft;
895   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
896     sqlite3ExprDelete(db, pLeft);
897     sqlite3ExprDelete(db, pRight);
898     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
899   }else{
900     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
901     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
902     return pNew;
903   }
904 }
905 
906 /*
907 ** Construct a new expression node for a function with multiple
908 ** arguments.
909 */
910 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
911   Expr *pNew;
912   sqlite3 *db = pParse->db;
913   assert( pToken );
914   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
915   if( pNew==0 ){
916     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
917     return 0;
918   }
919   pNew->x.pList = pList;
920   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
921   sqlite3ExprSetHeightAndFlags(pParse, pNew);
922   return pNew;
923 }
924 
925 /*
926 ** Assign a variable number to an expression that encodes a wildcard
927 ** in the original SQL statement.
928 **
929 ** Wildcards consisting of a single "?" are assigned the next sequential
930 ** variable number.
931 **
932 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
933 ** sure "nnn" is not too be to avoid a denial of service attack when
934 ** the SQL statement comes from an external source.
935 **
936 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
937 ** as the previous instance of the same wildcard.  Or if this is the first
938 ** instance of the wildcard, the next sequential variable number is
939 ** assigned.
940 */
941 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
942   sqlite3 *db = pParse->db;
943   const char *z;
944 
945   if( pExpr==0 ) return;
946   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
947   z = pExpr->u.zToken;
948   assert( z!=0 );
949   assert( z[0]!=0 );
950   assert( n==sqlite3Strlen30(z) );
951   if( z[1]==0 ){
952     /* Wildcard of the form "?".  Assign the next variable number */
953     assert( z[0]=='?' );
954     pExpr->iColumn = (ynVar)(++pParse->nVar);
955   }else{
956     ynVar x;
957     if( z[0]=='?' ){
958       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
959       ** use it as the variable number */
960       i64 i;
961       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
962       x = (ynVar)i;
963       testcase( i==0 );
964       testcase( i==1 );
965       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
966       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
967       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
968         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
969             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
970         return;
971       }
972       if( i>pParse->nVar ){
973         pParse->nVar = (int)i;
974       }
975     }else{
976       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
977       ** number as the prior appearance of the same name, or if the name
978       ** has never appeared before, reuse the same variable number
979       */
980       ynVar i;
981       for(i=x=0; i<pParse->nzVar; i++){
982         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
983           x = (ynVar)i+1;
984           break;
985         }
986       }
987       if( x==0 ) x = (ynVar)(++pParse->nVar);
988     }
989     pExpr->iColumn = x;
990     if( x>pParse->nzVar ){
991       char **a;
992       a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
993       if( a==0 ){
994         assert( db->mallocFailed ); /* Error reported through mallocFailed */
995         return;
996       }
997       pParse->azVar = a;
998       memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
999       pParse->nzVar = x;
1000     }
1001     if( pParse->azVar[x-1]==0 ){
1002       pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
1003     }
1004   }
1005   if( pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1006     sqlite3ErrorMsg(pParse, "too many SQL variables");
1007   }
1008 }
1009 
1010 /*
1011 ** Recursively delete an expression tree.
1012 */
1013 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1014   assert( p!=0 );
1015   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1016   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1017 #ifdef SQLITE_DEBUG
1018   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1019     assert( p->pLeft==0 );
1020     assert( p->pRight==0 );
1021     assert( p->x.pSelect==0 );
1022   }
1023 #endif
1024   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1025     /* The Expr.x union is never used at the same time as Expr.pRight */
1026     assert( p->x.pList==0 || p->pRight==0 );
1027     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1028     sqlite3ExprDelete(db, p->pRight);
1029     if( ExprHasProperty(p, EP_xIsSelect) ){
1030       sqlite3SelectDelete(db, p->x.pSelect);
1031     }else{
1032       sqlite3ExprListDelete(db, p->x.pList);
1033     }
1034   }
1035   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1036   if( !ExprHasProperty(p, EP_Static) ){
1037     sqlite3DbFree(db, p);
1038   }
1039 }
1040 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1041   if( p ) sqlite3ExprDeleteNN(db, p);
1042 }
1043 
1044 /*
1045 ** Return the number of bytes allocated for the expression structure
1046 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1047 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1048 */
1049 static int exprStructSize(Expr *p){
1050   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1051   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1052   return EXPR_FULLSIZE;
1053 }
1054 
1055 /*
1056 ** The dupedExpr*Size() routines each return the number of bytes required
1057 ** to store a copy of an expression or expression tree.  They differ in
1058 ** how much of the tree is measured.
1059 **
1060 **     dupedExprStructSize()     Size of only the Expr structure
1061 **     dupedExprNodeSize()       Size of Expr + space for token
1062 **     dupedExprSize()           Expr + token + subtree components
1063 **
1064 ***************************************************************************
1065 **
1066 ** The dupedExprStructSize() function returns two values OR-ed together:
1067 ** (1) the space required for a copy of the Expr structure only and
1068 ** (2) the EP_xxx flags that indicate what the structure size should be.
1069 ** The return values is always one of:
1070 **
1071 **      EXPR_FULLSIZE
1072 **      EXPR_REDUCEDSIZE   | EP_Reduced
1073 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1074 **
1075 ** The size of the structure can be found by masking the return value
1076 ** of this routine with 0xfff.  The flags can be found by masking the
1077 ** return value with EP_Reduced|EP_TokenOnly.
1078 **
1079 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1080 ** (unreduced) Expr objects as they or originally constructed by the parser.
1081 ** During expression analysis, extra information is computed and moved into
1082 ** later parts of teh Expr object and that extra information might get chopped
1083 ** off if the expression is reduced.  Note also that it does not work to
1084 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1085 ** to reduce a pristine expression tree from the parser.  The implementation
1086 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1087 ** to enforce this constraint.
1088 */
1089 static int dupedExprStructSize(Expr *p, int flags){
1090   int nSize;
1091   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1092   assert( EXPR_FULLSIZE<=0xfff );
1093   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1094   if( 0==flags ){
1095     nSize = EXPR_FULLSIZE;
1096   }else{
1097     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1098     assert( !ExprHasProperty(p, EP_FromJoin) );
1099     assert( !ExprHasProperty(p, EP_MemToken) );
1100     assert( !ExprHasProperty(p, EP_NoReduce) );
1101     if( p->pLeft || p->x.pList ){
1102       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1103     }else{
1104       assert( p->pRight==0 );
1105       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1106     }
1107   }
1108   return nSize;
1109 }
1110 
1111 /*
1112 ** This function returns the space in bytes required to store the copy
1113 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1114 ** string is defined.)
1115 */
1116 static int dupedExprNodeSize(Expr *p, int flags){
1117   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1118   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1119     nByte += sqlite3Strlen30(p->u.zToken)+1;
1120   }
1121   return ROUND8(nByte);
1122 }
1123 
1124 /*
1125 ** Return the number of bytes required to create a duplicate of the
1126 ** expression passed as the first argument. The second argument is a
1127 ** mask containing EXPRDUP_XXX flags.
1128 **
1129 ** The value returned includes space to create a copy of the Expr struct
1130 ** itself and the buffer referred to by Expr.u.zToken, if any.
1131 **
1132 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1133 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1134 ** and Expr.pRight variables (but not for any structures pointed to or
1135 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1136 */
1137 static int dupedExprSize(Expr *p, int flags){
1138   int nByte = 0;
1139   if( p ){
1140     nByte = dupedExprNodeSize(p, flags);
1141     if( flags&EXPRDUP_REDUCE ){
1142       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1143     }
1144   }
1145   return nByte;
1146 }
1147 
1148 /*
1149 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1150 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1151 ** to store the copy of expression p, the copies of p->u.zToken
1152 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1153 ** if any. Before returning, *pzBuffer is set to the first byte past the
1154 ** portion of the buffer copied into by this function.
1155 */
1156 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1157   Expr *pNew;           /* Value to return */
1158   u8 *zAlloc;           /* Memory space from which to build Expr object */
1159   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1160 
1161   assert( db!=0 );
1162   assert( p );
1163   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1164   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1165 
1166   /* Figure out where to write the new Expr structure. */
1167   if( pzBuffer ){
1168     zAlloc = *pzBuffer;
1169     staticFlag = EP_Static;
1170   }else{
1171     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1172     staticFlag = 0;
1173   }
1174   pNew = (Expr *)zAlloc;
1175 
1176   if( pNew ){
1177     /* Set nNewSize to the size allocated for the structure pointed to
1178     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1179     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1180     ** by the copy of the p->u.zToken string (if any).
1181     */
1182     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1183     const int nNewSize = nStructSize & 0xfff;
1184     int nToken;
1185     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1186       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1187     }else{
1188       nToken = 0;
1189     }
1190     if( dupFlags ){
1191       assert( ExprHasProperty(p, EP_Reduced)==0 );
1192       memcpy(zAlloc, p, nNewSize);
1193     }else{
1194       u32 nSize = (u32)exprStructSize(p);
1195       memcpy(zAlloc, p, nSize);
1196       if( nSize<EXPR_FULLSIZE ){
1197         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1198       }
1199     }
1200 
1201     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1202     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1203     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1204     pNew->flags |= staticFlag;
1205 
1206     /* Copy the p->u.zToken string, if any. */
1207     if( nToken ){
1208       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1209       memcpy(zToken, p->u.zToken, nToken);
1210     }
1211 
1212     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1213       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1214       if( ExprHasProperty(p, EP_xIsSelect) ){
1215         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1216       }else{
1217         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1218       }
1219     }
1220 
1221     /* Fill in pNew->pLeft and pNew->pRight. */
1222     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1223       zAlloc += dupedExprNodeSize(p, dupFlags);
1224       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1225         pNew->pLeft = p->pLeft ?
1226                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1227         pNew->pRight = p->pRight ?
1228                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1229       }
1230       if( pzBuffer ){
1231         *pzBuffer = zAlloc;
1232       }
1233     }else{
1234       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1235         if( pNew->op==TK_SELECT_COLUMN ){
1236           pNew->pLeft = p->pLeft;
1237         }else{
1238           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1239         }
1240         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1241       }
1242     }
1243   }
1244   return pNew;
1245 }
1246 
1247 /*
1248 ** Create and return a deep copy of the object passed as the second
1249 ** argument. If an OOM condition is encountered, NULL is returned
1250 ** and the db->mallocFailed flag set.
1251 */
1252 #ifndef SQLITE_OMIT_CTE
1253 static With *withDup(sqlite3 *db, With *p){
1254   With *pRet = 0;
1255   if( p ){
1256     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1257     pRet = sqlite3DbMallocZero(db, nByte);
1258     if( pRet ){
1259       int i;
1260       pRet->nCte = p->nCte;
1261       for(i=0; i<p->nCte; i++){
1262         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1263         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1264         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1265       }
1266     }
1267   }
1268   return pRet;
1269 }
1270 #else
1271 # define withDup(x,y) 0
1272 #endif
1273 
1274 /*
1275 ** The following group of routines make deep copies of expressions,
1276 ** expression lists, ID lists, and select statements.  The copies can
1277 ** be deleted (by being passed to their respective ...Delete() routines)
1278 ** without effecting the originals.
1279 **
1280 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1281 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1282 ** by subsequent calls to sqlite*ListAppend() routines.
1283 **
1284 ** Any tables that the SrcList might point to are not duplicated.
1285 **
1286 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1287 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1288 ** truncated version of the usual Expr structure that will be stored as
1289 ** part of the in-memory representation of the database schema.
1290 */
1291 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1292   assert( flags==0 || flags==EXPRDUP_REDUCE );
1293   return p ? exprDup(db, p, flags, 0) : 0;
1294 }
1295 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1296   ExprList *pNew;
1297   struct ExprList_item *pItem, *pOldItem;
1298   int i;
1299   assert( db!=0 );
1300   if( p==0 ) return 0;
1301   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1302   if( pNew==0 ) return 0;
1303   pNew->nExpr = i = p->nExpr;
1304   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
1305   pNew->a = pItem = sqlite3DbMallocRawNN(db,  i*sizeof(p->a[0]) );
1306   if( pItem==0 ){
1307     sqlite3DbFree(db, pNew);
1308     return 0;
1309   }
1310   pOldItem = p->a;
1311   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1312     Expr *pOldExpr = pOldItem->pExpr;
1313     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1314     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1315     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1316     pItem->sortOrder = pOldItem->sortOrder;
1317     pItem->done = 0;
1318     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1319     pItem->u = pOldItem->u;
1320   }
1321   return pNew;
1322 }
1323 
1324 /*
1325 ** If cursors, triggers, views and subqueries are all omitted from
1326 ** the build, then none of the following routines, except for
1327 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1328 ** called with a NULL argument.
1329 */
1330 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1331  || !defined(SQLITE_OMIT_SUBQUERY)
1332 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1333   SrcList *pNew;
1334   int i;
1335   int nByte;
1336   assert( db!=0 );
1337   if( p==0 ) return 0;
1338   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1339   pNew = sqlite3DbMallocRawNN(db, nByte );
1340   if( pNew==0 ) return 0;
1341   pNew->nSrc = pNew->nAlloc = p->nSrc;
1342   for(i=0; i<p->nSrc; i++){
1343     struct SrcList_item *pNewItem = &pNew->a[i];
1344     struct SrcList_item *pOldItem = &p->a[i];
1345     Table *pTab;
1346     pNewItem->pSchema = pOldItem->pSchema;
1347     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1348     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1349     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1350     pNewItem->fg = pOldItem->fg;
1351     pNewItem->iCursor = pOldItem->iCursor;
1352     pNewItem->addrFillSub = pOldItem->addrFillSub;
1353     pNewItem->regReturn = pOldItem->regReturn;
1354     if( pNewItem->fg.isIndexedBy ){
1355       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1356     }
1357     pNewItem->pIBIndex = pOldItem->pIBIndex;
1358     if( pNewItem->fg.isTabFunc ){
1359       pNewItem->u1.pFuncArg =
1360           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1361     }
1362     pTab = pNewItem->pTab = pOldItem->pTab;
1363     if( pTab ){
1364       pTab->nRef++;
1365     }
1366     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1367     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1368     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1369     pNewItem->colUsed = pOldItem->colUsed;
1370   }
1371   return pNew;
1372 }
1373 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1374   IdList *pNew;
1375   int i;
1376   assert( db!=0 );
1377   if( p==0 ) return 0;
1378   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1379   if( pNew==0 ) return 0;
1380   pNew->nId = p->nId;
1381   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1382   if( pNew->a==0 ){
1383     sqlite3DbFree(db, pNew);
1384     return 0;
1385   }
1386   /* Note that because the size of the allocation for p->a[] is not
1387   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1388   ** on the duplicate created by this function. */
1389   for(i=0; i<p->nId; i++){
1390     struct IdList_item *pNewItem = &pNew->a[i];
1391     struct IdList_item *pOldItem = &p->a[i];
1392     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1393     pNewItem->idx = pOldItem->idx;
1394   }
1395   return pNew;
1396 }
1397 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1398   Select *pNew, *pPrior;
1399   assert( db!=0 );
1400   if( p==0 ) return 0;
1401   pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1402   if( pNew==0 ) return 0;
1403   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1404   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1405   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1406   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1407   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1408   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1409   pNew->op = p->op;
1410   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1411   if( pPrior ) pPrior->pNext = pNew;
1412   pNew->pNext = 0;
1413   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1414   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1415   pNew->iLimit = 0;
1416   pNew->iOffset = 0;
1417   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1418   pNew->addrOpenEphm[0] = -1;
1419   pNew->addrOpenEphm[1] = -1;
1420   pNew->nSelectRow = p->nSelectRow;
1421   pNew->pWith = withDup(db, p->pWith);
1422   sqlite3SelectSetName(pNew, p->zSelName);
1423   return pNew;
1424 }
1425 #else
1426 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1427   assert( p==0 );
1428   return 0;
1429 }
1430 #endif
1431 
1432 
1433 /*
1434 ** Add a new element to the end of an expression list.  If pList is
1435 ** initially NULL, then create a new expression list.
1436 **
1437 ** If a memory allocation error occurs, the entire list is freed and
1438 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1439 ** that the new entry was successfully appended.
1440 */
1441 ExprList *sqlite3ExprListAppend(
1442   Parse *pParse,          /* Parsing context */
1443   ExprList *pList,        /* List to which to append. Might be NULL */
1444   Expr *pExpr             /* Expression to be appended. Might be NULL */
1445 ){
1446   sqlite3 *db = pParse->db;
1447   assert( db!=0 );
1448   if( pList==0 ){
1449     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1450     if( pList==0 ){
1451       goto no_mem;
1452     }
1453     pList->nExpr = 0;
1454     pList->a = sqlite3DbMallocRawNN(db, sizeof(pList->a[0]));
1455     if( pList->a==0 ) goto no_mem;
1456   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1457     struct ExprList_item *a;
1458     assert( pList->nExpr>0 );
1459     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1460     if( a==0 ){
1461       goto no_mem;
1462     }
1463     pList->a = a;
1464   }
1465   assert( pList->a!=0 );
1466   if( 1 ){
1467     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1468     memset(pItem, 0, sizeof(*pItem));
1469     pItem->pExpr = pExpr;
1470   }
1471   return pList;
1472 
1473 no_mem:
1474   /* Avoid leaking memory if malloc has failed. */
1475   sqlite3ExprDelete(db, pExpr);
1476   sqlite3ExprListDelete(db, pList);
1477   return 0;
1478 }
1479 
1480 /*
1481 ** pColumns and pExpr form a vector assignment which is part of the SET
1482 ** clause of an UPDATE statement.  Like this:
1483 **
1484 **        (a,b,c) = (expr1,expr2,expr3)
1485 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1486 **
1487 ** For each term of the vector assignment, append new entries to the
1488 ** expression list pList.  In the case of a subquery on the LHS, append
1489 ** TK_SELECT_COLUMN expressions.
1490 */
1491 ExprList *sqlite3ExprListAppendVector(
1492   Parse *pParse,         /* Parsing context */
1493   ExprList *pList,       /* List to which to append. Might be NULL */
1494   IdList *pColumns,      /* List of names of LHS of the assignment */
1495   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1496 ){
1497   sqlite3 *db = pParse->db;
1498   int n;
1499   int i;
1500   int iFirst = pList ? pList->nExpr : 0;
1501   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1502   ** exit prior to this routine being invoked */
1503   if( NEVER(pColumns==0) ) goto vector_append_error;
1504   if( pExpr==0 ) goto vector_append_error;
1505   n = sqlite3ExprVectorSize(pExpr);
1506   if( pColumns->nId!=n ){
1507     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1508                     pColumns->nId, n);
1509     goto vector_append_error;
1510   }
1511   for(i=0; i<n; i++){
1512     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1513     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1514     if( pList ){
1515       assert( pList->nExpr==iFirst+i+1 );
1516       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1517       pColumns->a[i].zName = 0;
1518     }
1519   }
1520   if( pExpr->op==TK_SELECT ){
1521     if( pList && pList->a[iFirst].pExpr ){
1522       assert( pList->a[iFirst].pExpr->op==TK_SELECT_COLUMN );
1523       pList->a[iFirst].pExpr->pRight = pExpr;
1524       pExpr = 0;
1525     }
1526   }
1527 
1528 vector_append_error:
1529   sqlite3ExprDelete(db, pExpr);
1530   sqlite3IdListDelete(db, pColumns);
1531   return pList;
1532 }
1533 
1534 /*
1535 ** Set the sort order for the last element on the given ExprList.
1536 */
1537 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1538   if( p==0 ) return;
1539   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1540   assert( p->nExpr>0 );
1541   if( iSortOrder<0 ){
1542     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1543     return;
1544   }
1545   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1546 }
1547 
1548 /*
1549 ** Set the ExprList.a[].zName element of the most recently added item
1550 ** on the expression list.
1551 **
1552 ** pList might be NULL following an OOM error.  But pName should never be
1553 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1554 ** is set.
1555 */
1556 void sqlite3ExprListSetName(
1557   Parse *pParse,          /* Parsing context */
1558   ExprList *pList,        /* List to which to add the span. */
1559   Token *pName,           /* Name to be added */
1560   int dequote             /* True to cause the name to be dequoted */
1561 ){
1562   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1563   if( pList ){
1564     struct ExprList_item *pItem;
1565     assert( pList->nExpr>0 );
1566     pItem = &pList->a[pList->nExpr-1];
1567     assert( pItem->zName==0 );
1568     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1569     if( dequote ) sqlite3Dequote(pItem->zName);
1570   }
1571 }
1572 
1573 /*
1574 ** Set the ExprList.a[].zSpan element of the most recently added item
1575 ** on the expression list.
1576 **
1577 ** pList might be NULL following an OOM error.  But pSpan should never be
1578 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1579 ** is set.
1580 */
1581 void sqlite3ExprListSetSpan(
1582   Parse *pParse,          /* Parsing context */
1583   ExprList *pList,        /* List to which to add the span. */
1584   ExprSpan *pSpan         /* The span to be added */
1585 ){
1586   sqlite3 *db = pParse->db;
1587   assert( pList!=0 || db->mallocFailed!=0 );
1588   if( pList ){
1589     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1590     assert( pList->nExpr>0 );
1591     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1592     sqlite3DbFree(db, pItem->zSpan);
1593     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1594                                     (int)(pSpan->zEnd - pSpan->zStart));
1595   }
1596 }
1597 
1598 /*
1599 ** If the expression list pEList contains more than iLimit elements,
1600 ** leave an error message in pParse.
1601 */
1602 void sqlite3ExprListCheckLength(
1603   Parse *pParse,
1604   ExprList *pEList,
1605   const char *zObject
1606 ){
1607   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1608   testcase( pEList && pEList->nExpr==mx );
1609   testcase( pEList && pEList->nExpr==mx+1 );
1610   if( pEList && pEList->nExpr>mx ){
1611     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1612   }
1613 }
1614 
1615 /*
1616 ** Delete an entire expression list.
1617 */
1618 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1619   int i;
1620   struct ExprList_item *pItem;
1621   assert( pList->a!=0 || pList->nExpr==0 );
1622   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1623     sqlite3ExprDelete(db, pItem->pExpr);
1624     sqlite3DbFree(db, pItem->zName);
1625     sqlite3DbFree(db, pItem->zSpan);
1626   }
1627   sqlite3DbFree(db, pList->a);
1628   sqlite3DbFree(db, pList);
1629 }
1630 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1631   if( pList ) exprListDeleteNN(db, pList);
1632 }
1633 
1634 /*
1635 ** Return the bitwise-OR of all Expr.flags fields in the given
1636 ** ExprList.
1637 */
1638 u32 sqlite3ExprListFlags(const ExprList *pList){
1639   int i;
1640   u32 m = 0;
1641   if( pList ){
1642     for(i=0; i<pList->nExpr; i++){
1643        Expr *pExpr = pList->a[i].pExpr;
1644        assert( pExpr!=0 );
1645        m |= pExpr->flags;
1646     }
1647   }
1648   return m;
1649 }
1650 
1651 /*
1652 ** These routines are Walker callbacks used to check expressions to
1653 ** see if they are "constant" for some definition of constant.  The
1654 ** Walker.eCode value determines the type of "constant" we are looking
1655 ** for.
1656 **
1657 ** These callback routines are used to implement the following:
1658 **
1659 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1660 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1661 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1662 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1663 **
1664 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1665 ** is found to not be a constant.
1666 **
1667 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1668 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1669 ** an existing schema and 4 when processing a new statement.  A bound
1670 ** parameter raises an error for new statements, but is silently converted
1671 ** to NULL for existing schemas.  This allows sqlite_master tables that
1672 ** contain a bound parameter because they were generated by older versions
1673 ** of SQLite to be parsed by newer versions of SQLite without raising a
1674 ** malformed schema error.
1675 */
1676 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1677 
1678   /* If pWalker->eCode is 2 then any term of the expression that comes from
1679   ** the ON or USING clauses of a left join disqualifies the expression
1680   ** from being considered constant. */
1681   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1682     pWalker->eCode = 0;
1683     return WRC_Abort;
1684   }
1685 
1686   switch( pExpr->op ){
1687     /* Consider functions to be constant if all their arguments are constant
1688     ** and either pWalker->eCode==4 or 5 or the function has the
1689     ** SQLITE_FUNC_CONST flag. */
1690     case TK_FUNCTION:
1691       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1692         return WRC_Continue;
1693       }else{
1694         pWalker->eCode = 0;
1695         return WRC_Abort;
1696       }
1697     case TK_ID:
1698     case TK_COLUMN:
1699     case TK_AGG_FUNCTION:
1700     case TK_AGG_COLUMN:
1701       testcase( pExpr->op==TK_ID );
1702       testcase( pExpr->op==TK_COLUMN );
1703       testcase( pExpr->op==TK_AGG_FUNCTION );
1704       testcase( pExpr->op==TK_AGG_COLUMN );
1705       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1706         return WRC_Continue;
1707       }else{
1708         pWalker->eCode = 0;
1709         return WRC_Abort;
1710       }
1711     case TK_VARIABLE:
1712       if( pWalker->eCode==5 ){
1713         /* Silently convert bound parameters that appear inside of CREATE
1714         ** statements into a NULL when parsing the CREATE statement text out
1715         ** of the sqlite_master table */
1716         pExpr->op = TK_NULL;
1717       }else if( pWalker->eCode==4 ){
1718         /* A bound parameter in a CREATE statement that originates from
1719         ** sqlite3_prepare() causes an error */
1720         pWalker->eCode = 0;
1721         return WRC_Abort;
1722       }
1723       /* Fall through */
1724     default:
1725       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1726       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1727       return WRC_Continue;
1728   }
1729 }
1730 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1731   UNUSED_PARAMETER(NotUsed);
1732   pWalker->eCode = 0;
1733   return WRC_Abort;
1734 }
1735 static int exprIsConst(Expr *p, int initFlag, int iCur){
1736   Walker w;
1737   memset(&w, 0, sizeof(w));
1738   w.eCode = initFlag;
1739   w.xExprCallback = exprNodeIsConstant;
1740   w.xSelectCallback = selectNodeIsConstant;
1741   w.u.iCur = iCur;
1742   sqlite3WalkExpr(&w, p);
1743   return w.eCode;
1744 }
1745 
1746 /*
1747 ** Walk an expression tree.  Return non-zero if the expression is constant
1748 ** and 0 if it involves variables or function calls.
1749 **
1750 ** For the purposes of this function, a double-quoted string (ex: "abc")
1751 ** is considered a variable but a single-quoted string (ex: 'abc') is
1752 ** a constant.
1753 */
1754 int sqlite3ExprIsConstant(Expr *p){
1755   return exprIsConst(p, 1, 0);
1756 }
1757 
1758 /*
1759 ** Walk an expression tree.  Return non-zero if the expression is constant
1760 ** that does no originate from the ON or USING clauses of a join.
1761 ** Return 0 if it involves variables or function calls or terms from
1762 ** an ON or USING clause.
1763 */
1764 int sqlite3ExprIsConstantNotJoin(Expr *p){
1765   return exprIsConst(p, 2, 0);
1766 }
1767 
1768 /*
1769 ** Walk an expression tree.  Return non-zero if the expression is constant
1770 ** for any single row of the table with cursor iCur.  In other words, the
1771 ** expression must not refer to any non-deterministic function nor any
1772 ** table other than iCur.
1773 */
1774 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1775   return exprIsConst(p, 3, iCur);
1776 }
1777 
1778 /*
1779 ** Walk an expression tree.  Return non-zero if the expression is constant
1780 ** or a function call with constant arguments.  Return and 0 if there
1781 ** are any variables.
1782 **
1783 ** For the purposes of this function, a double-quoted string (ex: "abc")
1784 ** is considered a variable but a single-quoted string (ex: 'abc') is
1785 ** a constant.
1786 */
1787 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1788   assert( isInit==0 || isInit==1 );
1789   return exprIsConst(p, 4+isInit, 0);
1790 }
1791 
1792 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1793 /*
1794 ** Walk an expression tree.  Return 1 if the expression contains a
1795 ** subquery of some kind.  Return 0 if there are no subqueries.
1796 */
1797 int sqlite3ExprContainsSubquery(Expr *p){
1798   Walker w;
1799   memset(&w, 0, sizeof(w));
1800   w.eCode = 1;
1801   w.xExprCallback = sqlite3ExprWalkNoop;
1802   w.xSelectCallback = selectNodeIsConstant;
1803   sqlite3WalkExpr(&w, p);
1804   return w.eCode==0;
1805 }
1806 #endif
1807 
1808 /*
1809 ** If the expression p codes a constant integer that is small enough
1810 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1811 ** in *pValue.  If the expression is not an integer or if it is too big
1812 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1813 */
1814 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1815   int rc = 0;
1816 
1817   /* If an expression is an integer literal that fits in a signed 32-bit
1818   ** integer, then the EP_IntValue flag will have already been set */
1819   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1820            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1821 
1822   if( p->flags & EP_IntValue ){
1823     *pValue = p->u.iValue;
1824     return 1;
1825   }
1826   switch( p->op ){
1827     case TK_UPLUS: {
1828       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1829       break;
1830     }
1831     case TK_UMINUS: {
1832       int v;
1833       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1834         assert( v!=(-2147483647-1) );
1835         *pValue = -v;
1836         rc = 1;
1837       }
1838       break;
1839     }
1840     default: break;
1841   }
1842   return rc;
1843 }
1844 
1845 /*
1846 ** Return FALSE if there is no chance that the expression can be NULL.
1847 **
1848 ** If the expression might be NULL or if the expression is too complex
1849 ** to tell return TRUE.
1850 **
1851 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1852 ** when we know that a value cannot be NULL.  Hence, a false positive
1853 ** (returning TRUE when in fact the expression can never be NULL) might
1854 ** be a small performance hit but is otherwise harmless.  On the other
1855 ** hand, a false negative (returning FALSE when the result could be NULL)
1856 ** will likely result in an incorrect answer.  So when in doubt, return
1857 ** TRUE.
1858 */
1859 int sqlite3ExprCanBeNull(const Expr *p){
1860   u8 op;
1861   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1862   op = p->op;
1863   if( op==TK_REGISTER ) op = p->op2;
1864   switch( op ){
1865     case TK_INTEGER:
1866     case TK_STRING:
1867     case TK_FLOAT:
1868     case TK_BLOB:
1869       return 0;
1870     case TK_COLUMN:
1871       assert( p->pTab!=0 );
1872       return ExprHasProperty(p, EP_CanBeNull) ||
1873              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1874     default:
1875       return 1;
1876   }
1877 }
1878 
1879 /*
1880 ** Return TRUE if the given expression is a constant which would be
1881 ** unchanged by OP_Affinity with the affinity given in the second
1882 ** argument.
1883 **
1884 ** This routine is used to determine if the OP_Affinity operation
1885 ** can be omitted.  When in doubt return FALSE.  A false negative
1886 ** is harmless.  A false positive, however, can result in the wrong
1887 ** answer.
1888 */
1889 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1890   u8 op;
1891   if( aff==SQLITE_AFF_BLOB ) return 1;
1892   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1893   op = p->op;
1894   if( op==TK_REGISTER ) op = p->op2;
1895   switch( op ){
1896     case TK_INTEGER: {
1897       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1898     }
1899     case TK_FLOAT: {
1900       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1901     }
1902     case TK_STRING: {
1903       return aff==SQLITE_AFF_TEXT;
1904     }
1905     case TK_BLOB: {
1906       return 1;
1907     }
1908     case TK_COLUMN: {
1909       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1910       return p->iColumn<0
1911           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1912     }
1913     default: {
1914       return 0;
1915     }
1916   }
1917 }
1918 
1919 /*
1920 ** Return TRUE if the given string is a row-id column name.
1921 */
1922 int sqlite3IsRowid(const char *z){
1923   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1924   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1925   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1926   return 0;
1927 }
1928 
1929 /*
1930 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
1931 ** that can be simplified to a direct table access, then return
1932 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
1933 ** or if the SELECT statement needs to be manifested into a transient
1934 ** table, then return NULL.
1935 */
1936 #ifndef SQLITE_OMIT_SUBQUERY
1937 static Select *isCandidateForInOpt(Expr *pX){
1938   Select *p;
1939   SrcList *pSrc;
1940   ExprList *pEList;
1941   Table *pTab;
1942   int i;
1943   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
1944   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
1945   p = pX->x.pSelect;
1946   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1947   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1948     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1949     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1950     return 0; /* No DISTINCT keyword and no aggregate functions */
1951   }
1952   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1953   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1954   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1955   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1956   pSrc = p->pSrc;
1957   assert( pSrc!=0 );
1958   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1959   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1960   pTab = pSrc->a[0].pTab;
1961   assert( pTab!=0 );
1962   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1963   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1964   pEList = p->pEList;
1965   assert( pEList!=0 );
1966   /* All SELECT results must be columns. */
1967   for(i=0; i<pEList->nExpr; i++){
1968     Expr *pRes = pEList->a[i].pExpr;
1969     if( pRes->op!=TK_COLUMN ) return 0;
1970     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
1971   }
1972   return p;
1973 }
1974 #endif /* SQLITE_OMIT_SUBQUERY */
1975 
1976 #ifndef SQLITE_OMIT_SUBQUERY
1977 /*
1978 ** Generate code that checks the left-most column of index table iCur to see if
1979 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1980 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1981 ** to be set to NULL if iCur contains one or more NULL values.
1982 */
1983 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1984   int addr1;
1985   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1986   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1987   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1988   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1989   VdbeComment((v, "first_entry_in(%d)", iCur));
1990   sqlite3VdbeJumpHere(v, addr1);
1991 }
1992 #endif
1993 
1994 
1995 #ifndef SQLITE_OMIT_SUBQUERY
1996 /*
1997 ** The argument is an IN operator with a list (not a subquery) on the
1998 ** right-hand side.  Return TRUE if that list is constant.
1999 */
2000 static int sqlite3InRhsIsConstant(Expr *pIn){
2001   Expr *pLHS;
2002   int res;
2003   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2004   pLHS = pIn->pLeft;
2005   pIn->pLeft = 0;
2006   res = sqlite3ExprIsConstant(pIn);
2007   pIn->pLeft = pLHS;
2008   return res;
2009 }
2010 #endif
2011 
2012 /*
2013 ** This function is used by the implementation of the IN (...) operator.
2014 ** The pX parameter is the expression on the RHS of the IN operator, which
2015 ** might be either a list of expressions or a subquery.
2016 **
2017 ** The job of this routine is to find or create a b-tree object that can
2018 ** be used either to test for membership in the RHS set or to iterate through
2019 ** all members of the RHS set, skipping duplicates.
2020 **
2021 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2022 ** and pX->iTable is set to the index of that cursor.
2023 **
2024 ** The returned value of this function indicates the b-tree type, as follows:
2025 **
2026 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2027 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2028 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2029 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2030 **                         populated epheremal table.
2031 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2032 **                         implemented as a sequence of comparisons.
2033 **
2034 ** An existing b-tree might be used if the RHS expression pX is a simple
2035 ** subquery such as:
2036 **
2037 **     SELECT <column1>, <column2>... FROM <table>
2038 **
2039 ** If the RHS of the IN operator is a list or a more complex subquery, then
2040 ** an ephemeral table might need to be generated from the RHS and then
2041 ** pX->iTable made to point to the ephemeral table instead of an
2042 ** existing table.
2043 **
2044 ** The inFlags parameter must contain exactly one of the bits
2045 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
2046 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2047 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
2048 ** IN index will be used to loop over all values of the RHS of the
2049 ** IN operator.
2050 **
2051 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2052 ** through the set members) then the b-tree must not contain duplicates.
2053 ** An epheremal table must be used unless the selected columns are guaranteed
2054 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2055 ** a UNIQUE constraint or index.
2056 **
2057 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2058 ** for fast set membership tests) then an epheremal table must
2059 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2060 ** index can be found with the specified <columns> as its left-most.
2061 **
2062 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2063 ** if the RHS of the IN operator is a list (not a subquery) then this
2064 ** routine might decide that creating an ephemeral b-tree for membership
2065 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2066 ** calling routine should implement the IN operator using a sequence
2067 ** of Eq or Ne comparison operations.
2068 **
2069 ** When the b-tree is being used for membership tests, the calling function
2070 ** might need to know whether or not the RHS side of the IN operator
2071 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2072 ** if there is any chance that the (...) might contain a NULL value at
2073 ** runtime, then a register is allocated and the register number written
2074 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2075 ** NULL value, then *prRhsHasNull is left unchanged.
2076 **
2077 ** If a register is allocated and its location stored in *prRhsHasNull, then
2078 ** the value in that register will be NULL if the b-tree contains one or more
2079 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2080 ** NULL values.
2081 **
2082 ** If the aiMap parameter is not NULL, it must point to an array containing
2083 ** one element for each column returned by the SELECT statement on the RHS
2084 ** of the IN(...) operator. The i'th entry of the array is populated with the
2085 ** offset of the index column that matches the i'th column returned by the
2086 ** SELECT. For example, if the expression and selected index are:
2087 **
2088 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2089 **   CREATE INDEX i1 ON t1(b, c, a);
2090 **
2091 ** then aiMap[] is populated with {2, 0, 1}.
2092 */
2093 #ifndef SQLITE_OMIT_SUBQUERY
2094 int sqlite3FindInIndex(
2095   Parse *pParse,             /* Parsing context */
2096   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2097   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2098   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2099   int *aiMap                 /* Mapping from Index fields to RHS fields */
2100 ){
2101   Select *p;                            /* SELECT to the right of IN operator */
2102   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2103   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2104   int mustBeUnique;                     /* True if RHS must be unique */
2105   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2106 
2107   assert( pX->op==TK_IN );
2108   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2109 
2110   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2111   ** whether or not the SELECT result contains NULL values, check whether
2112   ** or not NULL is actually possible (it may not be, for example, due
2113   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2114   ** set prRhsHasNull to 0 before continuing.  */
2115   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2116     int i;
2117     ExprList *pEList = pX->x.pSelect->pEList;
2118     for(i=0; i<pEList->nExpr; i++){
2119       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2120     }
2121     if( i==pEList->nExpr ){
2122       prRhsHasNull = 0;
2123     }
2124   }
2125 
2126   /* Check to see if an existing table or index can be used to
2127   ** satisfy the query.  This is preferable to generating a new
2128   ** ephemeral table.  */
2129   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2130     sqlite3 *db = pParse->db;              /* Database connection */
2131     Table *pTab;                           /* Table <table>. */
2132     i16 iDb;                               /* Database idx for pTab */
2133     ExprList *pEList = p->pEList;
2134     int nExpr = pEList->nExpr;
2135 
2136     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2137     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2138     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2139     pTab = p->pSrc->a[0].pTab;
2140 
2141     /* Code an OP_Transaction and OP_TableLock for <table>. */
2142     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2143     sqlite3CodeVerifySchema(pParse, iDb);
2144     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2145 
2146     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2147     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2148       /* The "x IN (SELECT rowid FROM table)" case */
2149       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2150       VdbeCoverage(v);
2151 
2152       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2153       eType = IN_INDEX_ROWID;
2154 
2155       sqlite3VdbeJumpHere(v, iAddr);
2156     }else{
2157       Index *pIdx;                         /* Iterator variable */
2158       int affinity_ok = 1;
2159       int i;
2160 
2161       /* Check that the affinity that will be used to perform each
2162       ** comparison is the same as the affinity of each column in table
2163       ** on the RHS of the IN operator.  If it not, it is not possible to
2164       ** use any index of the RHS table.  */
2165       for(i=0; i<nExpr && affinity_ok; i++){
2166         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2167         int iCol = pEList->a[i].pExpr->iColumn;
2168         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2169         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2170         testcase( cmpaff==SQLITE_AFF_BLOB );
2171         testcase( cmpaff==SQLITE_AFF_TEXT );
2172         switch( cmpaff ){
2173           case SQLITE_AFF_BLOB:
2174             break;
2175           case SQLITE_AFF_TEXT:
2176             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2177             ** other has no affinity and the other side is TEXT.  Hence,
2178             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2179             ** and for the term on the LHS of the IN to have no affinity. */
2180             assert( idxaff==SQLITE_AFF_TEXT );
2181             break;
2182           default:
2183             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2184         }
2185       }
2186 
2187       if( affinity_ok ){
2188         /* Search for an existing index that will work for this IN operator */
2189         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2190           Bitmask colUsed;      /* Columns of the index used */
2191           Bitmask mCol;         /* Mask for the current column */
2192           if( pIdx->nColumn<nExpr ) continue;
2193           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2194           ** BITMASK(nExpr) without overflowing */
2195           testcase( pIdx->nColumn==BMS-2 );
2196           testcase( pIdx->nColumn==BMS-1 );
2197           if( pIdx->nColumn>=BMS-1 ) continue;
2198           if( mustBeUnique ){
2199             if( pIdx->nKeyCol>nExpr
2200              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2201             ){
2202               continue;  /* This index is not unique over the IN RHS columns */
2203             }
2204           }
2205 
2206           colUsed = 0;   /* Columns of index used so far */
2207           for(i=0; i<nExpr; i++){
2208             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2209             Expr *pRhs = pEList->a[i].pExpr;
2210             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2211             int j;
2212 
2213             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2214             for(j=0; j<nExpr; j++){
2215               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2216               assert( pIdx->azColl[j] );
2217               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2218                 continue;
2219               }
2220               break;
2221             }
2222             if( j==nExpr ) break;
2223             mCol = MASKBIT(j);
2224             if( mCol & colUsed ) break; /* Each column used only once */
2225             colUsed |= mCol;
2226             if( aiMap ) aiMap[i] = j;
2227           }
2228 
2229           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2230           if( colUsed==(MASKBIT(nExpr)-1) ){
2231             /* If we reach this point, that means the index pIdx is usable */
2232             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2233 #ifndef SQLITE_OMIT_EXPLAIN
2234             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2235               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2236               P4_DYNAMIC);
2237 #endif
2238             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2239             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2240             VdbeComment((v, "%s", pIdx->zName));
2241             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2242             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2243 
2244             if( prRhsHasNull ){
2245 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2246               i64 mask = (1<<nExpr)-1;
2247               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2248                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2249 #endif
2250               *prRhsHasNull = ++pParse->nMem;
2251               if( nExpr==1 ){
2252                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2253               }
2254             }
2255             sqlite3VdbeJumpHere(v, iAddr);
2256           }
2257         } /* End loop over indexes */
2258       } /* End if( affinity_ok ) */
2259     } /* End if not an rowid index */
2260   } /* End attempt to optimize using an index */
2261 
2262   /* If no preexisting index is available for the IN clause
2263   ** and IN_INDEX_NOOP is an allowed reply
2264   ** and the RHS of the IN operator is a list, not a subquery
2265   ** and the RHS is not constant or has two or fewer terms,
2266   ** then it is not worth creating an ephemeral table to evaluate
2267   ** the IN operator so return IN_INDEX_NOOP.
2268   */
2269   if( eType==0
2270    && (inFlags & IN_INDEX_NOOP_OK)
2271    && !ExprHasProperty(pX, EP_xIsSelect)
2272    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2273   ){
2274     eType = IN_INDEX_NOOP;
2275   }
2276 
2277   if( eType==0 ){
2278     /* Could not find an existing table or index to use as the RHS b-tree.
2279     ** We will have to generate an ephemeral table to do the job.
2280     */
2281     u32 savedNQueryLoop = pParse->nQueryLoop;
2282     int rMayHaveNull = 0;
2283     eType = IN_INDEX_EPH;
2284     if( inFlags & IN_INDEX_LOOP ){
2285       pParse->nQueryLoop = 0;
2286       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2287         eType = IN_INDEX_ROWID;
2288       }
2289     }else if( prRhsHasNull ){
2290       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2291     }
2292     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2293     pParse->nQueryLoop = savedNQueryLoop;
2294   }else{
2295     pX->iTable = iTab;
2296   }
2297 
2298   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2299     int i, n;
2300     n = sqlite3ExprVectorSize(pX->pLeft);
2301     for(i=0; i<n; i++) aiMap[i] = i;
2302   }
2303   return eType;
2304 }
2305 #endif
2306 
2307 #ifndef SQLITE_OMIT_SUBQUERY
2308 /*
2309 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2310 ** function allocates and returns a nul-terminated string containing
2311 ** the affinities to be used for each column of the comparison.
2312 **
2313 ** It is the responsibility of the caller to ensure that the returned
2314 ** string is eventually freed using sqlite3DbFree().
2315 */
2316 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2317   Expr *pLeft = pExpr->pLeft;
2318   int nVal = sqlite3ExprVectorSize(pLeft);
2319   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2320   char *zRet;
2321 
2322   assert( pExpr->op==TK_IN );
2323   zRet = sqlite3DbMallocZero(pParse->db, nVal+1);
2324   if( zRet ){
2325     int i;
2326     for(i=0; i<nVal; i++){
2327       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2328       char a = sqlite3ExprAffinity(pA);
2329       if( pSelect ){
2330         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2331       }else{
2332         zRet[i] = a;
2333       }
2334     }
2335     zRet[nVal] = '\0';
2336   }
2337   return zRet;
2338 }
2339 #endif
2340 
2341 #ifndef SQLITE_OMIT_SUBQUERY
2342 /*
2343 ** Load the Parse object passed as the first argument with an error
2344 ** message of the form:
2345 **
2346 **   "sub-select returns N columns - expected M"
2347 */
2348 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2349   const char *zFmt = "sub-select returns %d columns - expected %d";
2350   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2351 }
2352 #endif
2353 
2354 /*
2355 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2356 ** or IN operators.  Examples:
2357 **
2358 **     (SELECT a FROM b)          -- subquery
2359 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2360 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2361 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2362 **
2363 ** The pExpr parameter describes the expression that contains the IN
2364 ** operator or subquery.
2365 **
2366 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2367 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2368 ** to some integer key column of a table B-Tree. In this case, use an
2369 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2370 ** (slower) variable length keys B-Tree.
2371 **
2372 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2373 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2374 ** All this routine does is initialize the register given by rMayHaveNull
2375 ** to NULL.  Calling routines will take care of changing this register
2376 ** value to non-NULL if the RHS is NULL-free.
2377 **
2378 ** For a SELECT or EXISTS operator, return the register that holds the
2379 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2380 ** array of registers and the return value is the register of the left-most
2381 ** result column.  Return 0 for IN operators or if an error occurs.
2382 */
2383 #ifndef SQLITE_OMIT_SUBQUERY
2384 int sqlite3CodeSubselect(
2385   Parse *pParse,          /* Parsing context */
2386   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2387   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2388   int isRowid             /* If true, LHS of IN operator is a rowid */
2389 ){
2390   int jmpIfDynamic = -1;                      /* One-time test address */
2391   int rReg = 0;                           /* Register storing resulting */
2392   Vdbe *v = sqlite3GetVdbe(pParse);
2393   if( NEVER(v==0) ) return 0;
2394   sqlite3ExprCachePush(pParse);
2395 
2396   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2397   ** is encountered if any of the following is true:
2398   **
2399   **    *  The right-hand side is a correlated subquery
2400   **    *  The right-hand side is an expression list containing variables
2401   **    *  We are inside a trigger
2402   **
2403   ** If all of the above are false, then we can run this code just once
2404   ** save the results, and reuse the same result on subsequent invocations.
2405   */
2406   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2407     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2408   }
2409 
2410 #ifndef SQLITE_OMIT_EXPLAIN
2411   if( pParse->explain==2 ){
2412     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2413         jmpIfDynamic>=0?"":"CORRELATED ",
2414         pExpr->op==TK_IN?"LIST":"SCALAR",
2415         pParse->iNextSelectId
2416     );
2417     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2418   }
2419 #endif
2420 
2421   switch( pExpr->op ){
2422     case TK_IN: {
2423       int addr;                   /* Address of OP_OpenEphemeral instruction */
2424       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2425       KeyInfo *pKeyInfo = 0;      /* Key information */
2426       int nVal;                   /* Size of vector pLeft */
2427 
2428       nVal = sqlite3ExprVectorSize(pLeft);
2429       assert( !isRowid || nVal==1 );
2430 
2431       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2432       ** expression it is handled the same way.  An ephemeral table is
2433       ** filled with index keys representing the results from the
2434       ** SELECT or the <exprlist>.
2435       **
2436       ** If the 'x' expression is a column value, or the SELECT...
2437       ** statement returns a column value, then the affinity of that
2438       ** column is used to build the index keys. If both 'x' and the
2439       ** SELECT... statement are columns, then numeric affinity is used
2440       ** if either column has NUMERIC or INTEGER affinity. If neither
2441       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2442       ** is used.
2443       */
2444       pExpr->iTable = pParse->nTab++;
2445       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2446           pExpr->iTable, (isRowid?0:nVal));
2447       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2448 
2449       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2450         /* Case 1:     expr IN (SELECT ...)
2451         **
2452         ** Generate code to write the results of the select into the temporary
2453         ** table allocated and opened above.
2454         */
2455         Select *pSelect = pExpr->x.pSelect;
2456         ExprList *pEList = pSelect->pEList;
2457 
2458         assert( !isRowid );
2459         /* If the LHS and RHS of the IN operator do not match, that
2460         ** error will have been caught long before we reach this point. */
2461         if( ALWAYS(pEList->nExpr==nVal) ){
2462           SelectDest dest;
2463           int i;
2464           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2465           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2466           assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
2467           pSelect->iLimit = 0;
2468           testcase( pSelect->selFlags & SF_Distinct );
2469           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2470           if( sqlite3Select(pParse, pSelect, &dest) ){
2471             sqlite3DbFree(pParse->db, dest.zAffSdst);
2472             sqlite3KeyInfoUnref(pKeyInfo);
2473             return 0;
2474           }
2475           sqlite3DbFree(pParse->db, dest.zAffSdst);
2476           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2477           assert( pEList!=0 );
2478           assert( pEList->nExpr>0 );
2479           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2480           for(i=0; i<nVal; i++){
2481             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2482             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2483                 pParse, p, pEList->a[i].pExpr
2484             );
2485           }
2486         }
2487       }else if( ALWAYS(pExpr->x.pList!=0) ){
2488         /* Case 2:     expr IN (exprlist)
2489         **
2490         ** For each expression, build an index key from the evaluation and
2491         ** store it in the temporary table. If <expr> is a column, then use
2492         ** that columns affinity when building index keys. If <expr> is not
2493         ** a column, use numeric affinity.
2494         */
2495         char affinity;            /* Affinity of the LHS of the IN */
2496         int i;
2497         ExprList *pList = pExpr->x.pList;
2498         struct ExprList_item *pItem;
2499         int r1, r2, r3;
2500 
2501         affinity = sqlite3ExprAffinity(pLeft);
2502         if( !affinity ){
2503           affinity = SQLITE_AFF_BLOB;
2504         }
2505         if( pKeyInfo ){
2506           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2507           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2508         }
2509 
2510         /* Loop through each expression in <exprlist>. */
2511         r1 = sqlite3GetTempReg(pParse);
2512         r2 = sqlite3GetTempReg(pParse);
2513         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
2514         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2515           Expr *pE2 = pItem->pExpr;
2516           int iValToIns;
2517 
2518           /* If the expression is not constant then we will need to
2519           ** disable the test that was generated above that makes sure
2520           ** this code only executes once.  Because for a non-constant
2521           ** expression we need to rerun this code each time.
2522           */
2523           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2524             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2525             jmpIfDynamic = -1;
2526           }
2527 
2528           /* Evaluate the expression and insert it into the temp table */
2529           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2530             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2531           }else{
2532             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2533             if( isRowid ){
2534               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2535                                 sqlite3VdbeCurrentAddr(v)+2);
2536               VdbeCoverage(v);
2537               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2538             }else{
2539               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2540               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2541               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2542             }
2543           }
2544         }
2545         sqlite3ReleaseTempReg(pParse, r1);
2546         sqlite3ReleaseTempReg(pParse, r2);
2547       }
2548       if( pKeyInfo ){
2549         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2550       }
2551       break;
2552     }
2553 
2554     case TK_EXISTS:
2555     case TK_SELECT:
2556     default: {
2557       /* Case 3:    (SELECT ... FROM ...)
2558       **     or:    EXISTS(SELECT ... FROM ...)
2559       **
2560       ** For a SELECT, generate code to put the values for all columns of
2561       ** the first row into an array of registers and return the index of
2562       ** the first register.
2563       **
2564       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2565       ** into a register and return that register number.
2566       **
2567       ** In both cases, the query is augmented with "LIMIT 1".  Any
2568       ** preexisting limit is discarded in place of the new LIMIT 1.
2569       */
2570       Select *pSel;                         /* SELECT statement to encode */
2571       SelectDest dest;                      /* How to deal with SELECT result */
2572       int nReg;                             /* Registers to allocate */
2573 
2574       testcase( pExpr->op==TK_EXISTS );
2575       testcase( pExpr->op==TK_SELECT );
2576       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2577       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2578 
2579       pSel = pExpr->x.pSelect;
2580       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2581       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2582       pParse->nMem += nReg;
2583       if( pExpr->op==TK_SELECT ){
2584         dest.eDest = SRT_Mem;
2585         dest.iSdst = dest.iSDParm;
2586         dest.nSdst = nReg;
2587         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2588         VdbeComment((v, "Init subquery result"));
2589       }else{
2590         dest.eDest = SRT_Exists;
2591         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2592         VdbeComment((v, "Init EXISTS result"));
2593       }
2594       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2595       pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2596                                   &sqlite3IntTokens[1], 0);
2597       pSel->iLimit = 0;
2598       pSel->selFlags &= ~SF_MultiValue;
2599       if( sqlite3Select(pParse, pSel, &dest) ){
2600         return 0;
2601       }
2602       rReg = dest.iSDParm;
2603       ExprSetVVAProperty(pExpr, EP_NoReduce);
2604       break;
2605     }
2606   }
2607 
2608   if( rHasNullFlag ){
2609     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2610   }
2611 
2612   if( jmpIfDynamic>=0 ){
2613     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2614   }
2615   sqlite3ExprCachePop(pParse);
2616 
2617   return rReg;
2618 }
2619 #endif /* SQLITE_OMIT_SUBQUERY */
2620 
2621 #ifndef SQLITE_OMIT_SUBQUERY
2622 /*
2623 ** Expr pIn is an IN(...) expression. This function checks that the
2624 ** sub-select on the RHS of the IN() operator has the same number of
2625 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2626 ** a sub-query, that the LHS is a vector of size 1.
2627 */
2628 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2629   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2630   if( (pIn->flags & EP_xIsSelect) ){
2631     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2632       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2633       return 1;
2634     }
2635   }else if( nVector!=1 ){
2636     if( (pIn->pLeft->flags & EP_xIsSelect) ){
2637       sqlite3SubselectError(pParse, nVector, 1);
2638     }else{
2639       sqlite3ErrorMsg(pParse, "row value misused");
2640     }
2641     return 1;
2642   }
2643   return 0;
2644 }
2645 #endif
2646 
2647 #ifndef SQLITE_OMIT_SUBQUERY
2648 /*
2649 ** Generate code for an IN expression.
2650 **
2651 **      x IN (SELECT ...)
2652 **      x IN (value, value, ...)
2653 **
2654 ** The left-hand side (LHS) is a scalar or vector expression.  The
2655 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2656 ** subquery.  If the RHS is a subquery, the number of result columns must
2657 ** match the number of columns in the vector on the LHS.  If the RHS is
2658 ** a list of values, the LHS must be a scalar.
2659 **
2660 ** The IN operator is true if the LHS value is contained within the RHS.
2661 ** The result is false if the LHS is definitely not in the RHS.  The
2662 ** result is NULL if the presence of the LHS in the RHS cannot be
2663 ** determined due to NULLs.
2664 **
2665 ** This routine generates code that jumps to destIfFalse if the LHS is not
2666 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2667 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2668 ** within the RHS then fall through.
2669 **
2670 ** See the separate in-operator.md documentation file in the canonical
2671 ** SQLite source tree for additional information.
2672 */
2673 static void sqlite3ExprCodeIN(
2674   Parse *pParse,        /* Parsing and code generating context */
2675   Expr *pExpr,          /* The IN expression */
2676   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2677   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2678 ){
2679   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2680   int eType;            /* Type of the RHS */
2681   int rLhs;             /* Register(s) holding the LHS values */
2682   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2683   Vdbe *v;              /* Statement under construction */
2684   int *aiMap = 0;       /* Map from vector field to index column */
2685   char *zAff = 0;       /* Affinity string for comparisons */
2686   int nVector;          /* Size of vectors for this IN operator */
2687   int iDummy;           /* Dummy parameter to exprCodeVector() */
2688   Expr *pLeft;          /* The LHS of the IN operator */
2689   int i;                /* loop counter */
2690   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2691   int destStep6 = 0;    /* Start of code for Step 6 */
2692   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2693   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2694   int addrTop;          /* Top of the step-6 loop */
2695 
2696   pLeft = pExpr->pLeft;
2697   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2698   zAff = exprINAffinity(pParse, pExpr);
2699   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2700   aiMap = (int*)sqlite3DbMallocZero(
2701       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2702   );
2703   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2704 
2705   /* Attempt to compute the RHS. After this step, if anything other than
2706   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2707   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2708   ** the RHS has not yet been coded.  */
2709   v = pParse->pVdbe;
2710   assert( v!=0 );       /* OOM detected prior to this routine */
2711   VdbeNoopComment((v, "begin IN expr"));
2712   eType = sqlite3FindInIndex(pParse, pExpr,
2713                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2714                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2715 
2716   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2717        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2718   );
2719 #ifdef SQLITE_DEBUG
2720   /* Confirm that aiMap[] contains nVector integer values between 0 and
2721   ** nVector-1. */
2722   for(i=0; i<nVector; i++){
2723     int j, cnt;
2724     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2725     assert( cnt==1 );
2726   }
2727 #endif
2728 
2729   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2730   ** vector, then it is stored in an array of nVector registers starting
2731   ** at r1.
2732   **
2733   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2734   ** so that the fields are in the same order as an existing index.   The
2735   ** aiMap[] array contains a mapping from the original LHS field order to
2736   ** the field order that matches the RHS index.
2737   */
2738   sqlite3ExprCachePush(pParse);
2739   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2740   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2741   if( i==nVector ){
2742     /* LHS fields are not reordered */
2743     rLhs = rLhsOrig;
2744   }else{
2745     /* Need to reorder the LHS fields according to aiMap */
2746     rLhs = sqlite3GetTempRange(pParse, nVector);
2747     for(i=0; i<nVector; i++){
2748       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2749     }
2750   }
2751 
2752   /* If sqlite3FindInIndex() did not find or create an index that is
2753   ** suitable for evaluating the IN operator, then evaluate using a
2754   ** sequence of comparisons.
2755   **
2756   ** This is step (1) in the in-operator.md optimized algorithm.
2757   */
2758   if( eType==IN_INDEX_NOOP ){
2759     ExprList *pList = pExpr->x.pList;
2760     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2761     int labelOk = sqlite3VdbeMakeLabel(v);
2762     int r2, regToFree;
2763     int regCkNull = 0;
2764     int ii;
2765     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2766     if( destIfNull!=destIfFalse ){
2767       regCkNull = sqlite3GetTempReg(pParse);
2768       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2769     }
2770     for(ii=0; ii<pList->nExpr; ii++){
2771       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2772       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2773         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2774       }
2775       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2776         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2777                           (void*)pColl, P4_COLLSEQ);
2778         VdbeCoverageIf(v, ii<pList->nExpr-1);
2779         VdbeCoverageIf(v, ii==pList->nExpr-1);
2780         sqlite3VdbeChangeP5(v, zAff[0]);
2781       }else{
2782         assert( destIfNull==destIfFalse );
2783         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2784                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2785         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2786       }
2787       sqlite3ReleaseTempReg(pParse, regToFree);
2788     }
2789     if( regCkNull ){
2790       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2791       sqlite3VdbeGoto(v, destIfFalse);
2792     }
2793     sqlite3VdbeResolveLabel(v, labelOk);
2794     sqlite3ReleaseTempReg(pParse, regCkNull);
2795     goto sqlite3ExprCodeIN_finished;
2796   }
2797 
2798   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
2799   ** LHS does contain NULLs then the result must be either FALSE or NULL.
2800   ** We will then skip the binary search of the RHS.
2801   */
2802   if( destIfNull==destIfFalse ){
2803     destStep2 = destIfFalse;
2804   }else{
2805     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2806   }
2807   for(i=0; i<nVector; i++){
2808     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2809     if( sqlite3ExprCanBeNull(p) ){
2810       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2811       VdbeCoverage(v);
2812     }
2813   }
2814 
2815   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
2816   ** of the RHS using the LHS as a probe.  If found, the result is
2817   ** true.
2818   */
2819   if( eType==IN_INDEX_ROWID ){
2820     /* In this case, the RHS is the ROWID of table b-tree and so we also
2821     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
2822     ** into a single opcode. */
2823     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2824     VdbeCoverage(v);
2825     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
2826   }else{
2827     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2828     if( destIfFalse==destIfNull ){
2829       /* Combine Step 3 and Step 5 into a single opcode */
2830       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2831                            rLhs, nVector); VdbeCoverage(v);
2832       goto sqlite3ExprCodeIN_finished;
2833     }
2834     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
2835     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
2836                                       rLhs, nVector); VdbeCoverage(v);
2837   }
2838 
2839   /* Step 4.  If the RHS is known to be non-NULL and we did not find
2840   ** an match on the search above, then the result must be FALSE.
2841   */
2842   if( rRhsHasNull && nVector==1 ){
2843     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
2844     VdbeCoverage(v);
2845   }
2846 
2847   /* Step 5.  If we do not care about the difference between NULL and
2848   ** FALSE, then just return false.
2849   */
2850   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
2851 
2852   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
2853   ** If any comparison is NULL, then the result is NULL.  If all
2854   ** comparisons are FALSE then the final result is FALSE.
2855   **
2856   ** For a scalar LHS, it is sufficient to check just the first row
2857   ** of the RHS.
2858   */
2859   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
2860   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2861   VdbeCoverage(v);
2862   if( nVector>1 ){
2863     destNotNull = sqlite3VdbeMakeLabel(v);
2864   }else{
2865     /* For nVector==1, combine steps 6 and 7 by immediately returning
2866     ** FALSE if the first comparison is not NULL */
2867     destNotNull = destIfFalse;
2868   }
2869   for(i=0; i<nVector; i++){
2870     Expr *p;
2871     CollSeq *pColl;
2872     int r3 = sqlite3GetTempReg(pParse);
2873     p = sqlite3VectorFieldSubexpr(pLeft, i);
2874     pColl = sqlite3ExprCollSeq(pParse, p);
2875     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
2876     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
2877                       (void*)pColl, P4_COLLSEQ);
2878     VdbeCoverage(v);
2879     sqlite3ReleaseTempReg(pParse, r3);
2880   }
2881   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2882   if( nVector>1 ){
2883     sqlite3VdbeResolveLabel(v, destNotNull);
2884     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
2885     VdbeCoverage(v);
2886 
2887     /* Step 7:  If we reach this point, we know that the result must
2888     ** be false. */
2889     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2890   }
2891 
2892   /* Jumps here in order to return true. */
2893   sqlite3VdbeJumpHere(v, addrTruthOp);
2894 
2895 sqlite3ExprCodeIN_finished:
2896   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
2897   sqlite3ExprCachePop(pParse);
2898   VdbeComment((v, "end IN expr"));
2899 sqlite3ExprCodeIN_oom_error:
2900   sqlite3DbFree(pParse->db, aiMap);
2901   sqlite3DbFree(pParse->db, zAff);
2902 }
2903 #endif /* SQLITE_OMIT_SUBQUERY */
2904 
2905 #ifndef SQLITE_OMIT_FLOATING_POINT
2906 /*
2907 ** Generate an instruction that will put the floating point
2908 ** value described by z[0..n-1] into register iMem.
2909 **
2910 ** The z[] string will probably not be zero-terminated.  But the
2911 ** z[n] character is guaranteed to be something that does not look
2912 ** like the continuation of the number.
2913 */
2914 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2915   if( ALWAYS(z!=0) ){
2916     double value;
2917     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2918     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2919     if( negateFlag ) value = -value;
2920     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2921   }
2922 }
2923 #endif
2924 
2925 
2926 /*
2927 ** Generate an instruction that will put the integer describe by
2928 ** text z[0..n-1] into register iMem.
2929 **
2930 ** Expr.u.zToken is always UTF8 and zero-terminated.
2931 */
2932 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2933   Vdbe *v = pParse->pVdbe;
2934   if( pExpr->flags & EP_IntValue ){
2935     int i = pExpr->u.iValue;
2936     assert( i>=0 );
2937     if( negFlag ) i = -i;
2938     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2939   }else{
2940     int c;
2941     i64 value;
2942     const char *z = pExpr->u.zToken;
2943     assert( z!=0 );
2944     c = sqlite3DecOrHexToI64(z, &value);
2945     if( c==0 || (c==2 && negFlag) ){
2946       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2947       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2948     }else{
2949 #ifdef SQLITE_OMIT_FLOATING_POINT
2950       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2951 #else
2952 #ifndef SQLITE_OMIT_HEX_INTEGER
2953       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2954         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2955       }else
2956 #endif
2957       {
2958         codeReal(v, z, negFlag, iMem);
2959       }
2960 #endif
2961     }
2962   }
2963 }
2964 
2965 /*
2966 ** Erase column-cache entry number i
2967 */
2968 static void cacheEntryClear(Parse *pParse, int i){
2969   if( pParse->aColCache[i].tempReg ){
2970     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2971       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
2972     }
2973   }
2974   pParse->nColCache--;
2975   if( i<pParse->nColCache ){
2976     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
2977   }
2978 }
2979 
2980 
2981 /*
2982 ** Record in the column cache that a particular column from a
2983 ** particular table is stored in a particular register.
2984 */
2985 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2986   int i;
2987   int minLru;
2988   int idxLru;
2989   struct yColCache *p;
2990 
2991   /* Unless an error has occurred, register numbers are always positive. */
2992   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2993   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2994 
2995   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2996   ** for testing only - to verify that SQLite always gets the same answer
2997   ** with and without the column cache.
2998   */
2999   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3000 
3001   /* First replace any existing entry.
3002   **
3003   ** Actually, the way the column cache is currently used, we are guaranteed
3004   ** that the object will never already be in cache.  Verify this guarantee.
3005   */
3006 #ifndef NDEBUG
3007   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3008     assert( p->iTable!=iTab || p->iColumn!=iCol );
3009   }
3010 #endif
3011 
3012   /* If the cache is already full, delete the least recently used entry */
3013   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3014     minLru = 0x7fffffff;
3015     idxLru = -1;
3016     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3017       if( p->lru<minLru ){
3018         idxLru = i;
3019         minLru = p->lru;
3020       }
3021     }
3022     p = &pParse->aColCache[idxLru];
3023   }else{
3024     p = &pParse->aColCache[pParse->nColCache++];
3025   }
3026 
3027   /* Add the new entry to the end of the cache */
3028   p->iLevel = pParse->iCacheLevel;
3029   p->iTable = iTab;
3030   p->iColumn = iCol;
3031   p->iReg = iReg;
3032   p->tempReg = 0;
3033   p->lru = pParse->iCacheCnt++;
3034 }
3035 
3036 /*
3037 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3038 ** Purge the range of registers from the column cache.
3039 */
3040 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3041   int i = 0;
3042   while( i<pParse->nColCache ){
3043     struct yColCache *p = &pParse->aColCache[i];
3044     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3045       cacheEntryClear(pParse, i);
3046     }else{
3047       i++;
3048     }
3049   }
3050 }
3051 
3052 /*
3053 ** Remember the current column cache context.  Any new entries added
3054 ** added to the column cache after this call are removed when the
3055 ** corresponding pop occurs.
3056 */
3057 void sqlite3ExprCachePush(Parse *pParse){
3058   pParse->iCacheLevel++;
3059 #ifdef SQLITE_DEBUG
3060   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3061     printf("PUSH to %d\n", pParse->iCacheLevel);
3062   }
3063 #endif
3064 }
3065 
3066 /*
3067 ** Remove from the column cache any entries that were added since the
3068 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3069 ** the cache to the state it was in prior the most recent Push.
3070 */
3071 void sqlite3ExprCachePop(Parse *pParse){
3072   int i = 0;
3073   assert( pParse->iCacheLevel>=1 );
3074   pParse->iCacheLevel--;
3075 #ifdef SQLITE_DEBUG
3076   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3077     printf("POP  to %d\n", pParse->iCacheLevel);
3078   }
3079 #endif
3080   while( i<pParse->nColCache ){
3081     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3082       cacheEntryClear(pParse, i);
3083     }else{
3084       i++;
3085     }
3086   }
3087 }
3088 
3089 /*
3090 ** When a cached column is reused, make sure that its register is
3091 ** no longer available as a temp register.  ticket #3879:  that same
3092 ** register might be in the cache in multiple places, so be sure to
3093 ** get them all.
3094 */
3095 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3096   int i;
3097   struct yColCache *p;
3098   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3099     if( p->iReg==iReg ){
3100       p->tempReg = 0;
3101     }
3102   }
3103 }
3104 
3105 /* Generate code that will load into register regOut a value that is
3106 ** appropriate for the iIdxCol-th column of index pIdx.
3107 */
3108 void sqlite3ExprCodeLoadIndexColumn(
3109   Parse *pParse,  /* The parsing context */
3110   Index *pIdx,    /* The index whose column is to be loaded */
3111   int iTabCur,    /* Cursor pointing to a table row */
3112   int iIdxCol,    /* The column of the index to be loaded */
3113   int regOut      /* Store the index column value in this register */
3114 ){
3115   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3116   if( iTabCol==XN_EXPR ){
3117     assert( pIdx->aColExpr );
3118     assert( pIdx->aColExpr->nExpr>iIdxCol );
3119     pParse->iSelfTab = iTabCur;
3120     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3121   }else{
3122     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3123                                     iTabCol, regOut);
3124   }
3125 }
3126 
3127 /*
3128 ** Generate code to extract the value of the iCol-th column of a table.
3129 */
3130 void sqlite3ExprCodeGetColumnOfTable(
3131   Vdbe *v,        /* The VDBE under construction */
3132   Table *pTab,    /* The table containing the value */
3133   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3134   int iCol,       /* Index of the column to extract */
3135   int regOut      /* Extract the value into this register */
3136 ){
3137   if( iCol<0 || iCol==pTab->iPKey ){
3138     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3139   }else{
3140     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3141     int x = iCol;
3142     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3143       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3144     }
3145     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3146   }
3147   if( iCol>=0 ){
3148     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3149   }
3150 }
3151 
3152 /*
3153 ** Generate code that will extract the iColumn-th column from
3154 ** table pTab and store the column value in a register.
3155 **
3156 ** An effort is made to store the column value in register iReg.  This
3157 ** is not garanteeed for GetColumn() - the result can be stored in
3158 ** any register.  But the result is guaranteed to land in register iReg
3159 ** for GetColumnToReg().
3160 **
3161 ** There must be an open cursor to pTab in iTable when this routine
3162 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3163 */
3164 int sqlite3ExprCodeGetColumn(
3165   Parse *pParse,   /* Parsing and code generating context */
3166   Table *pTab,     /* Description of the table we are reading from */
3167   int iColumn,     /* Index of the table column */
3168   int iTable,      /* The cursor pointing to the table */
3169   int iReg,        /* Store results here */
3170   u8 p5            /* P5 value for OP_Column + FLAGS */
3171 ){
3172   Vdbe *v = pParse->pVdbe;
3173   int i;
3174   struct yColCache *p;
3175 
3176   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3177     if( p->iTable==iTable && p->iColumn==iColumn ){
3178       p->lru = pParse->iCacheCnt++;
3179       sqlite3ExprCachePinRegister(pParse, p->iReg);
3180       return p->iReg;
3181     }
3182   }
3183   assert( v!=0 );
3184   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3185   if( p5 ){
3186     sqlite3VdbeChangeP5(v, p5);
3187   }else{
3188     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3189   }
3190   return iReg;
3191 }
3192 void sqlite3ExprCodeGetColumnToReg(
3193   Parse *pParse,   /* Parsing and code generating context */
3194   Table *pTab,     /* Description of the table we are reading from */
3195   int iColumn,     /* Index of the table column */
3196   int iTable,      /* The cursor pointing to the table */
3197   int iReg         /* Store results here */
3198 ){
3199   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3200   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3201 }
3202 
3203 
3204 /*
3205 ** Clear all column cache entries.
3206 */
3207 void sqlite3ExprCacheClear(Parse *pParse){
3208   int i;
3209 
3210 #if SQLITE_DEBUG
3211   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3212     printf("CLEAR\n");
3213   }
3214 #endif
3215   for(i=0; i<pParse->nColCache; i++){
3216     if( pParse->aColCache[i].tempReg
3217      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3218     ){
3219        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3220     }
3221   }
3222   pParse->nColCache = 0;
3223 }
3224 
3225 /*
3226 ** Record the fact that an affinity change has occurred on iCount
3227 ** registers starting with iStart.
3228 */
3229 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3230   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3231 }
3232 
3233 /*
3234 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3235 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3236 */
3237 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3238   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3239   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3240   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3241 }
3242 
3243 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3244 /*
3245 ** Return true if any register in the range iFrom..iTo (inclusive)
3246 ** is used as part of the column cache.
3247 **
3248 ** This routine is used within assert() and testcase() macros only
3249 ** and does not appear in a normal build.
3250 */
3251 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3252   int i;
3253   struct yColCache *p;
3254   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3255     int r = p->iReg;
3256     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3257   }
3258   return 0;
3259 }
3260 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3261 
3262 
3263 /*
3264 ** Convert a scalar expression node to a TK_REGISTER referencing
3265 ** register iReg.  The caller must ensure that iReg already contains
3266 ** the correct value for the expression.
3267 */
3268 static void exprToRegister(Expr *p, int iReg){
3269   p->op2 = p->op;
3270   p->op = TK_REGISTER;
3271   p->iTable = iReg;
3272   ExprClearProperty(p, EP_Skip);
3273 }
3274 
3275 /*
3276 ** Evaluate an expression (either a vector or a scalar expression) and store
3277 ** the result in continguous temporary registers.  Return the index of
3278 ** the first register used to store the result.
3279 **
3280 ** If the returned result register is a temporary scalar, then also write
3281 ** that register number into *piFreeable.  If the returned result register
3282 ** is not a temporary or if the expression is a vector set *piFreeable
3283 ** to 0.
3284 */
3285 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3286   int iResult;
3287   int nResult = sqlite3ExprVectorSize(p);
3288   if( nResult==1 ){
3289     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3290   }else{
3291     *piFreeable = 0;
3292     if( p->op==TK_SELECT ){
3293       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3294     }else{
3295       int i;
3296       iResult = pParse->nMem+1;
3297       pParse->nMem += nResult;
3298       for(i=0; i<nResult; i++){
3299         sqlite3ExprCode(pParse, p->x.pList->a[i].pExpr, i+iResult);
3300       }
3301     }
3302   }
3303   return iResult;
3304 }
3305 
3306 
3307 /*
3308 ** Generate code into the current Vdbe to evaluate the given
3309 ** expression.  Attempt to store the results in register "target".
3310 ** Return the register where results are stored.
3311 **
3312 ** With this routine, there is no guarantee that results will
3313 ** be stored in target.  The result might be stored in some other
3314 ** register if it is convenient to do so.  The calling function
3315 ** must check the return code and move the results to the desired
3316 ** register.
3317 */
3318 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3319   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3320   int op;                   /* The opcode being coded */
3321   int inReg = target;       /* Results stored in register inReg */
3322   int regFree1 = 0;         /* If non-zero free this temporary register */
3323   int regFree2 = 0;         /* If non-zero free this temporary register */
3324   int r1, r2;               /* Various register numbers */
3325   Expr tempX;               /* Temporary expression node */
3326   int p5 = 0;
3327 
3328   assert( target>0 && target<=pParse->nMem );
3329   if( v==0 ){
3330     assert( pParse->db->mallocFailed );
3331     return 0;
3332   }
3333 
3334   if( pExpr==0 ){
3335     op = TK_NULL;
3336   }else{
3337     op = pExpr->op;
3338   }
3339   switch( op ){
3340     case TK_AGG_COLUMN: {
3341       AggInfo *pAggInfo = pExpr->pAggInfo;
3342       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3343       if( !pAggInfo->directMode ){
3344         assert( pCol->iMem>0 );
3345         return pCol->iMem;
3346       }else if( pAggInfo->useSortingIdx ){
3347         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3348                               pCol->iSorterColumn, target);
3349         return target;
3350       }
3351       /* Otherwise, fall thru into the TK_COLUMN case */
3352     }
3353     case TK_COLUMN: {
3354       int iTab = pExpr->iTable;
3355       if( iTab<0 ){
3356         if( pParse->ckBase>0 ){
3357           /* Generating CHECK constraints or inserting into partial index */
3358           return pExpr->iColumn + pParse->ckBase;
3359         }else{
3360           /* Coding an expression that is part of an index where column names
3361           ** in the index refer to the table to which the index belongs */
3362           iTab = pParse->iSelfTab;
3363         }
3364       }
3365       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3366                                pExpr->iColumn, iTab, target,
3367                                pExpr->op2);
3368     }
3369     case TK_INTEGER: {
3370       codeInteger(pParse, pExpr, 0, target);
3371       return target;
3372     }
3373 #ifndef SQLITE_OMIT_FLOATING_POINT
3374     case TK_FLOAT: {
3375       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3376       codeReal(v, pExpr->u.zToken, 0, target);
3377       return target;
3378     }
3379 #endif
3380     case TK_STRING: {
3381       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3382       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3383       return target;
3384     }
3385     case TK_NULL: {
3386       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3387       return target;
3388     }
3389 #ifndef SQLITE_OMIT_BLOB_LITERAL
3390     case TK_BLOB: {
3391       int n;
3392       const char *z;
3393       char *zBlob;
3394       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3395       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3396       assert( pExpr->u.zToken[1]=='\'' );
3397       z = &pExpr->u.zToken[2];
3398       n = sqlite3Strlen30(z) - 1;
3399       assert( z[n]=='\'' );
3400       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3401       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3402       return target;
3403     }
3404 #endif
3405     case TK_VARIABLE: {
3406       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3407       assert( pExpr->u.zToken!=0 );
3408       assert( pExpr->u.zToken[0]!=0 );
3409       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3410       if( pExpr->u.zToken[1]!=0 ){
3411         assert( pExpr->u.zToken[0]=='?'
3412              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
3413         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
3414       }
3415       return target;
3416     }
3417     case TK_REGISTER: {
3418       return pExpr->iTable;
3419     }
3420 #ifndef SQLITE_OMIT_CAST
3421     case TK_CAST: {
3422       /* Expressions of the form:   CAST(pLeft AS token) */
3423       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3424       if( inReg!=target ){
3425         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3426         inReg = target;
3427       }
3428       sqlite3VdbeAddOp2(v, OP_Cast, target,
3429                         sqlite3AffinityType(pExpr->u.zToken, 0));
3430       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3431       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3432       return inReg;
3433     }
3434 #endif /* SQLITE_OMIT_CAST */
3435     case TK_IS:
3436     case TK_ISNOT:
3437       op = (op==TK_IS) ? TK_EQ : TK_NE;
3438       p5 = SQLITE_NULLEQ;
3439       /* fall-through */
3440     case TK_LT:
3441     case TK_LE:
3442     case TK_GT:
3443     case TK_GE:
3444     case TK_NE:
3445     case TK_EQ: {
3446       Expr *pLeft = pExpr->pLeft;
3447       if( sqlite3ExprIsVector(pLeft) ){
3448         codeVectorCompare(pParse, pExpr, target, op, p5);
3449       }else{
3450         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3451         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3452         codeCompare(pParse, pLeft, pExpr->pRight, op,
3453             r1, r2, inReg, SQLITE_STOREP2 | p5);
3454         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3455         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3456         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3457         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3458         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3459         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3460         testcase( regFree1==0 );
3461         testcase( regFree2==0 );
3462       }
3463       break;
3464     }
3465     case TK_AND:
3466     case TK_OR:
3467     case TK_PLUS:
3468     case TK_STAR:
3469     case TK_MINUS:
3470     case TK_REM:
3471     case TK_BITAND:
3472     case TK_BITOR:
3473     case TK_SLASH:
3474     case TK_LSHIFT:
3475     case TK_RSHIFT:
3476     case TK_CONCAT: {
3477       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3478       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3479       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3480       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3481       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3482       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3483       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3484       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3485       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3486       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3487       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3488       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3489       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3490       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3491       testcase( regFree1==0 );
3492       testcase( regFree2==0 );
3493       break;
3494     }
3495     case TK_UMINUS: {
3496       Expr *pLeft = pExpr->pLeft;
3497       assert( pLeft );
3498       if( pLeft->op==TK_INTEGER ){
3499         codeInteger(pParse, pLeft, 1, target);
3500         return target;
3501 #ifndef SQLITE_OMIT_FLOATING_POINT
3502       }else if( pLeft->op==TK_FLOAT ){
3503         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3504         codeReal(v, pLeft->u.zToken, 1, target);
3505         return target;
3506 #endif
3507       }else{
3508         tempX.op = TK_INTEGER;
3509         tempX.flags = EP_IntValue|EP_TokenOnly;
3510         tempX.u.iValue = 0;
3511         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3512         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3513         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3514         testcase( regFree2==0 );
3515       }
3516       break;
3517     }
3518     case TK_BITNOT:
3519     case TK_NOT: {
3520       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3521       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3522       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3523       testcase( regFree1==0 );
3524       sqlite3VdbeAddOp2(v, op, r1, inReg);
3525       break;
3526     }
3527     case TK_ISNULL:
3528     case TK_NOTNULL: {
3529       int addr;
3530       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3531       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3532       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3533       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3534       testcase( regFree1==0 );
3535       addr = sqlite3VdbeAddOp1(v, op, r1);
3536       VdbeCoverageIf(v, op==TK_ISNULL);
3537       VdbeCoverageIf(v, op==TK_NOTNULL);
3538       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3539       sqlite3VdbeJumpHere(v, addr);
3540       break;
3541     }
3542     case TK_AGG_FUNCTION: {
3543       AggInfo *pInfo = pExpr->pAggInfo;
3544       if( pInfo==0 ){
3545         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3546         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3547       }else{
3548         return pInfo->aFunc[pExpr->iAgg].iMem;
3549       }
3550       break;
3551     }
3552     case TK_FUNCTION: {
3553       ExprList *pFarg;       /* List of function arguments */
3554       int nFarg;             /* Number of function arguments */
3555       FuncDef *pDef;         /* The function definition object */
3556       const char *zId;       /* The function name */
3557       u32 constMask = 0;     /* Mask of function arguments that are constant */
3558       int i;                 /* Loop counter */
3559       sqlite3 *db = pParse->db;  /* The database connection */
3560       u8 enc = ENC(db);      /* The text encoding used by this database */
3561       CollSeq *pColl = 0;    /* A collating sequence */
3562 
3563       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3564       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3565         pFarg = 0;
3566       }else{
3567         pFarg = pExpr->x.pList;
3568       }
3569       nFarg = pFarg ? pFarg->nExpr : 0;
3570       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3571       zId = pExpr->u.zToken;
3572       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3573 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3574       if( pDef==0 && pParse->explain ){
3575         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3576       }
3577 #endif
3578       if( pDef==0 || pDef->xFinalize!=0 ){
3579         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3580         break;
3581       }
3582 
3583       /* Attempt a direct implementation of the built-in COALESCE() and
3584       ** IFNULL() functions.  This avoids unnecessary evaluation of
3585       ** arguments past the first non-NULL argument.
3586       */
3587       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3588         int endCoalesce = sqlite3VdbeMakeLabel(v);
3589         assert( nFarg>=2 );
3590         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3591         for(i=1; i<nFarg; i++){
3592           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3593           VdbeCoverage(v);
3594           sqlite3ExprCacheRemove(pParse, target, 1);
3595           sqlite3ExprCachePush(pParse);
3596           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3597           sqlite3ExprCachePop(pParse);
3598         }
3599         sqlite3VdbeResolveLabel(v, endCoalesce);
3600         break;
3601       }
3602 
3603       /* The UNLIKELY() function is a no-op.  The result is the value
3604       ** of the first argument.
3605       */
3606       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3607         assert( nFarg>=1 );
3608         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3609       }
3610 
3611       for(i=0; i<nFarg; i++){
3612         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3613           testcase( i==31 );
3614           constMask |= MASKBIT32(i);
3615         }
3616         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3617           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3618         }
3619       }
3620       if( pFarg ){
3621         if( constMask ){
3622           r1 = pParse->nMem+1;
3623           pParse->nMem += nFarg;
3624         }else{
3625           r1 = sqlite3GetTempRange(pParse, nFarg);
3626         }
3627 
3628         /* For length() and typeof() functions with a column argument,
3629         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3630         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3631         ** loading.
3632         */
3633         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3634           u8 exprOp;
3635           assert( nFarg==1 );
3636           assert( pFarg->a[0].pExpr!=0 );
3637           exprOp = pFarg->a[0].pExpr->op;
3638           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3639             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3640             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3641             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3642             pFarg->a[0].pExpr->op2 =
3643                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3644           }
3645         }
3646 
3647         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3648         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3649                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3650         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3651       }else{
3652         r1 = 0;
3653       }
3654 #ifndef SQLITE_OMIT_VIRTUALTABLE
3655       /* Possibly overload the function if the first argument is
3656       ** a virtual table column.
3657       **
3658       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3659       ** second argument, not the first, as the argument to test to
3660       ** see if it is a column in a virtual table.  This is done because
3661       ** the left operand of infix functions (the operand we want to
3662       ** control overloading) ends up as the second argument to the
3663       ** function.  The expression "A glob B" is equivalent to
3664       ** "glob(B,A).  We want to use the A in "A glob B" to test
3665       ** for function overloading.  But we use the B term in "glob(B,A)".
3666       */
3667       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3668         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3669       }else if( nFarg>0 ){
3670         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3671       }
3672 #endif
3673       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3674         if( !pColl ) pColl = db->pDfltColl;
3675         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3676       }
3677       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3678                         (char*)pDef, P4_FUNCDEF);
3679       sqlite3VdbeChangeP5(v, (u8)nFarg);
3680       if( nFarg && constMask==0 ){
3681         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3682       }
3683       return target;
3684     }
3685 #ifndef SQLITE_OMIT_SUBQUERY
3686     case TK_EXISTS:
3687     case TK_SELECT: {
3688       int nCol;
3689       testcase( op==TK_EXISTS );
3690       testcase( op==TK_SELECT );
3691       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3692         sqlite3SubselectError(pParse, nCol, 1);
3693       }else{
3694         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3695       }
3696       break;
3697     }
3698     case TK_SELECT_COLUMN: {
3699       if( pExpr->pLeft->iTable==0 ){
3700         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3701       }
3702       return pExpr->pLeft->iTable + pExpr->iColumn;
3703     }
3704     case TK_IN: {
3705       int destIfFalse = sqlite3VdbeMakeLabel(v);
3706       int destIfNull = sqlite3VdbeMakeLabel(v);
3707       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3708       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3709       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3710       sqlite3VdbeResolveLabel(v, destIfFalse);
3711       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3712       sqlite3VdbeResolveLabel(v, destIfNull);
3713       return target;
3714     }
3715 #endif /* SQLITE_OMIT_SUBQUERY */
3716 
3717 
3718     /*
3719     **    x BETWEEN y AND z
3720     **
3721     ** This is equivalent to
3722     **
3723     **    x>=y AND x<=z
3724     **
3725     ** X is stored in pExpr->pLeft.
3726     ** Y is stored in pExpr->pList->a[0].pExpr.
3727     ** Z is stored in pExpr->pList->a[1].pExpr.
3728     */
3729     case TK_BETWEEN: {
3730       exprCodeBetween(pParse, pExpr, target, 0, 0);
3731       return target;
3732     }
3733     case TK_SPAN:
3734     case TK_COLLATE:
3735     case TK_UPLUS: {
3736       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3737     }
3738 
3739     case TK_TRIGGER: {
3740       /* If the opcode is TK_TRIGGER, then the expression is a reference
3741       ** to a column in the new.* or old.* pseudo-tables available to
3742       ** trigger programs. In this case Expr.iTable is set to 1 for the
3743       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3744       ** is set to the column of the pseudo-table to read, or to -1 to
3745       ** read the rowid field.
3746       **
3747       ** The expression is implemented using an OP_Param opcode. The p1
3748       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3749       ** to reference another column of the old.* pseudo-table, where
3750       ** i is the index of the column. For a new.rowid reference, p1 is
3751       ** set to (n+1), where n is the number of columns in each pseudo-table.
3752       ** For a reference to any other column in the new.* pseudo-table, p1
3753       ** is set to (n+2+i), where n and i are as defined previously. For
3754       ** example, if the table on which triggers are being fired is
3755       ** declared as:
3756       **
3757       **   CREATE TABLE t1(a, b);
3758       **
3759       ** Then p1 is interpreted as follows:
3760       **
3761       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3762       **   p1==1   ->    old.a         p1==4   ->    new.a
3763       **   p1==2   ->    old.b         p1==5   ->    new.b
3764       */
3765       Table *pTab = pExpr->pTab;
3766       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3767 
3768       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3769       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3770       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3771       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3772 
3773       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3774       VdbeComment((v, "%s.%s -> $%d",
3775         (pExpr->iTable ? "new" : "old"),
3776         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3777         target
3778       ));
3779 
3780 #ifndef SQLITE_OMIT_FLOATING_POINT
3781       /* If the column has REAL affinity, it may currently be stored as an
3782       ** integer. Use OP_RealAffinity to make sure it is really real.
3783       **
3784       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3785       ** floating point when extracting it from the record.  */
3786       if( pExpr->iColumn>=0
3787        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3788       ){
3789         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3790       }
3791 #endif
3792       break;
3793     }
3794 
3795     case TK_VECTOR: {
3796       sqlite3ErrorMsg(pParse, "row value misused");
3797       break;
3798     }
3799 
3800     /*
3801     ** Form A:
3802     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3803     **
3804     ** Form B:
3805     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3806     **
3807     ** Form A is can be transformed into the equivalent form B as follows:
3808     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3809     **        WHEN x=eN THEN rN ELSE y END
3810     **
3811     ** X (if it exists) is in pExpr->pLeft.
3812     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3813     ** odd.  The Y is also optional.  If the number of elements in x.pList
3814     ** is even, then Y is omitted and the "otherwise" result is NULL.
3815     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3816     **
3817     ** The result of the expression is the Ri for the first matching Ei,
3818     ** or if there is no matching Ei, the ELSE term Y, or if there is
3819     ** no ELSE term, NULL.
3820     */
3821     default: assert( op==TK_CASE ); {
3822       int endLabel;                     /* GOTO label for end of CASE stmt */
3823       int nextCase;                     /* GOTO label for next WHEN clause */
3824       int nExpr;                        /* 2x number of WHEN terms */
3825       int i;                            /* Loop counter */
3826       ExprList *pEList;                 /* List of WHEN terms */
3827       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3828       Expr opCompare;                   /* The X==Ei expression */
3829       Expr *pX;                         /* The X expression */
3830       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3831       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3832 
3833       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3834       assert(pExpr->x.pList->nExpr > 0);
3835       pEList = pExpr->x.pList;
3836       aListelem = pEList->a;
3837       nExpr = pEList->nExpr;
3838       endLabel = sqlite3VdbeMakeLabel(v);
3839       if( (pX = pExpr->pLeft)!=0 ){
3840         tempX = *pX;
3841         testcase( pX->op==TK_COLUMN );
3842         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
3843         testcase( regFree1==0 );
3844         memset(&opCompare, 0, sizeof(opCompare));
3845         opCompare.op = TK_EQ;
3846         opCompare.pLeft = &tempX;
3847         pTest = &opCompare;
3848         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3849         ** The value in regFree1 might get SCopy-ed into the file result.
3850         ** So make sure that the regFree1 register is not reused for other
3851         ** purposes and possibly overwritten.  */
3852         regFree1 = 0;
3853       }
3854       for(i=0; i<nExpr-1; i=i+2){
3855         sqlite3ExprCachePush(pParse);
3856         if( pX ){
3857           assert( pTest!=0 );
3858           opCompare.pRight = aListelem[i].pExpr;
3859         }else{
3860           pTest = aListelem[i].pExpr;
3861         }
3862         nextCase = sqlite3VdbeMakeLabel(v);
3863         testcase( pTest->op==TK_COLUMN );
3864         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3865         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3866         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3867         sqlite3VdbeGoto(v, endLabel);
3868         sqlite3ExprCachePop(pParse);
3869         sqlite3VdbeResolveLabel(v, nextCase);
3870       }
3871       if( (nExpr&1)!=0 ){
3872         sqlite3ExprCachePush(pParse);
3873         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3874         sqlite3ExprCachePop(pParse);
3875       }else{
3876         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3877       }
3878       assert( pParse->db->mallocFailed || pParse->nErr>0
3879            || pParse->iCacheLevel==iCacheLevel );
3880       sqlite3VdbeResolveLabel(v, endLabel);
3881       break;
3882     }
3883 #ifndef SQLITE_OMIT_TRIGGER
3884     case TK_RAISE: {
3885       assert( pExpr->affinity==OE_Rollback
3886            || pExpr->affinity==OE_Abort
3887            || pExpr->affinity==OE_Fail
3888            || pExpr->affinity==OE_Ignore
3889       );
3890       if( !pParse->pTriggerTab ){
3891         sqlite3ErrorMsg(pParse,
3892                        "RAISE() may only be used within a trigger-program");
3893         return 0;
3894       }
3895       if( pExpr->affinity==OE_Abort ){
3896         sqlite3MayAbort(pParse);
3897       }
3898       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3899       if( pExpr->affinity==OE_Ignore ){
3900         sqlite3VdbeAddOp4(
3901             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3902         VdbeCoverage(v);
3903       }else{
3904         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3905                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3906       }
3907 
3908       break;
3909     }
3910 #endif
3911   }
3912   sqlite3ReleaseTempReg(pParse, regFree1);
3913   sqlite3ReleaseTempReg(pParse, regFree2);
3914   return inReg;
3915 }
3916 
3917 /*
3918 ** Factor out the code of the given expression to initialization time.
3919 */
3920 void sqlite3ExprCodeAtInit(
3921   Parse *pParse,    /* Parsing context */
3922   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3923   int regDest,      /* Store the value in this register */
3924   u8 reusable       /* True if this expression is reusable */
3925 ){
3926   ExprList *p;
3927   assert( ConstFactorOk(pParse) );
3928   p = pParse->pConstExpr;
3929   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3930   p = sqlite3ExprListAppend(pParse, p, pExpr);
3931   if( p ){
3932      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3933      pItem->u.iConstExprReg = regDest;
3934      pItem->reusable = reusable;
3935   }
3936   pParse->pConstExpr = p;
3937 }
3938 
3939 /*
3940 ** Generate code to evaluate an expression and store the results
3941 ** into a register.  Return the register number where the results
3942 ** are stored.
3943 **
3944 ** If the register is a temporary register that can be deallocated,
3945 ** then write its number into *pReg.  If the result register is not
3946 ** a temporary, then set *pReg to zero.
3947 **
3948 ** If pExpr is a constant, then this routine might generate this
3949 ** code to fill the register in the initialization section of the
3950 ** VDBE program, in order to factor it out of the evaluation loop.
3951 */
3952 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3953   int r2;
3954   pExpr = sqlite3ExprSkipCollate(pExpr);
3955   if( ConstFactorOk(pParse)
3956    && pExpr->op!=TK_REGISTER
3957    && sqlite3ExprIsConstantNotJoin(pExpr)
3958   ){
3959     ExprList *p = pParse->pConstExpr;
3960     int i;
3961     *pReg  = 0;
3962     if( p ){
3963       struct ExprList_item *pItem;
3964       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3965         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3966           return pItem->u.iConstExprReg;
3967         }
3968       }
3969     }
3970     r2 = ++pParse->nMem;
3971     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3972   }else{
3973     int r1 = sqlite3GetTempReg(pParse);
3974     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3975     if( r2==r1 ){
3976       *pReg = r1;
3977     }else{
3978       sqlite3ReleaseTempReg(pParse, r1);
3979       *pReg = 0;
3980     }
3981   }
3982   return r2;
3983 }
3984 
3985 /*
3986 ** Generate code that will evaluate expression pExpr and store the
3987 ** results in register target.  The results are guaranteed to appear
3988 ** in register target.
3989 */
3990 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3991   int inReg;
3992 
3993   assert( target>0 && target<=pParse->nMem );
3994   if( pExpr && pExpr->op==TK_REGISTER ){
3995     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3996   }else{
3997     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3998     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3999     if( inReg!=target && pParse->pVdbe ){
4000       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4001     }
4002   }
4003 }
4004 
4005 /*
4006 ** Make a transient copy of expression pExpr and then code it using
4007 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4008 ** except that the input expression is guaranteed to be unchanged.
4009 */
4010 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4011   sqlite3 *db = pParse->db;
4012   pExpr = sqlite3ExprDup(db, pExpr, 0);
4013   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4014   sqlite3ExprDelete(db, pExpr);
4015 }
4016 
4017 /*
4018 ** Generate code that will evaluate expression pExpr and store the
4019 ** results in register target.  The results are guaranteed to appear
4020 ** in register target.  If the expression is constant, then this routine
4021 ** might choose to code the expression at initialization time.
4022 */
4023 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4024   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4025     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
4026   }else{
4027     sqlite3ExprCode(pParse, pExpr, target);
4028   }
4029 }
4030 
4031 /*
4032 ** Generate code that evaluates the given expression and puts the result
4033 ** in register target.
4034 **
4035 ** Also make a copy of the expression results into another "cache" register
4036 ** and modify the expression so that the next time it is evaluated,
4037 ** the result is a copy of the cache register.
4038 **
4039 ** This routine is used for expressions that are used multiple
4040 ** times.  They are evaluated once and the results of the expression
4041 ** are reused.
4042 */
4043 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4044   Vdbe *v = pParse->pVdbe;
4045   int iMem;
4046 
4047   assert( target>0 );
4048   assert( pExpr->op!=TK_REGISTER );
4049   sqlite3ExprCode(pParse, pExpr, target);
4050   iMem = ++pParse->nMem;
4051   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4052   exprToRegister(pExpr, iMem);
4053 }
4054 
4055 /*
4056 ** Generate code that pushes the value of every element of the given
4057 ** expression list into a sequence of registers beginning at target.
4058 **
4059 ** Return the number of elements evaluated.
4060 **
4061 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4062 ** filled using OP_SCopy.  OP_Copy must be used instead.
4063 **
4064 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4065 ** factored out into initialization code.
4066 **
4067 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4068 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4069 ** in registers at srcReg, and so the value can be copied from there.
4070 */
4071 int sqlite3ExprCodeExprList(
4072   Parse *pParse,     /* Parsing context */
4073   ExprList *pList,   /* The expression list to be coded */
4074   int target,        /* Where to write results */
4075   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4076   u8 flags           /* SQLITE_ECEL_* flags */
4077 ){
4078   struct ExprList_item *pItem;
4079   int i, j, n;
4080   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4081   Vdbe *v = pParse->pVdbe;
4082   assert( pList!=0 );
4083   assert( target>0 );
4084   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4085   n = pList->nExpr;
4086   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4087   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4088     Expr *pExpr = pItem->pExpr;
4089     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
4090       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4091     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4092       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
4093     }else{
4094       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4095       if( inReg!=target+i ){
4096         VdbeOp *pOp;
4097         if( copyOp==OP_Copy
4098          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4099          && pOp->p1+pOp->p3+1==inReg
4100          && pOp->p2+pOp->p3+1==target+i
4101         ){
4102           pOp->p3++;
4103         }else{
4104           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4105         }
4106       }
4107     }
4108   }
4109   return n;
4110 }
4111 
4112 /*
4113 ** Generate code for a BETWEEN operator.
4114 **
4115 **    x BETWEEN y AND z
4116 **
4117 ** The above is equivalent to
4118 **
4119 **    x>=y AND x<=z
4120 **
4121 ** Code it as such, taking care to do the common subexpression
4122 ** elimination of x.
4123 **
4124 ** The xJumpIf parameter determines details:
4125 **
4126 **    NULL:                   Store the boolean result in reg[dest]
4127 **    sqlite3ExprIfTrue:      Jump to dest if true
4128 **    sqlite3ExprIfFalse:     Jump to dest if false
4129 **
4130 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4131 */
4132 static void exprCodeBetween(
4133   Parse *pParse,    /* Parsing and code generating context */
4134   Expr *pExpr,      /* The BETWEEN expression */
4135   int dest,         /* Jump destination or storage location */
4136   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4137   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4138 ){
4139  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4140   Expr compLeft;    /* The  x>=y  term */
4141   Expr compRight;   /* The  x<=z  term */
4142   Expr exprX;       /* The  x  subexpression */
4143   int regFree1 = 0; /* Temporary use register */
4144 
4145 
4146   memset(&compLeft, 0, sizeof(Expr));
4147   memset(&compRight, 0, sizeof(Expr));
4148   memset(&exprAnd, 0, sizeof(Expr));
4149 
4150   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4151   exprX = *pExpr->pLeft;
4152   exprAnd.op = TK_AND;
4153   exprAnd.pLeft = &compLeft;
4154   exprAnd.pRight = &compRight;
4155   compLeft.op = TK_GE;
4156   compLeft.pLeft = &exprX;
4157   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4158   compRight.op = TK_LE;
4159   compRight.pLeft = &exprX;
4160   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4161   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4162   if( xJump ){
4163     xJump(pParse, &exprAnd, dest, jumpIfNull);
4164   }else{
4165     exprX.flags |= EP_FromJoin;
4166     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4167   }
4168   sqlite3ReleaseTempReg(pParse, regFree1);
4169 
4170   /* Ensure adequate test coverage */
4171   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4172   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4173   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4174   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4175   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4176   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4177   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4178   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4179   testcase( xJump==0 );
4180 }
4181 
4182 /*
4183 ** Generate code for a boolean expression such that a jump is made
4184 ** to the label "dest" if the expression is true but execution
4185 ** continues straight thru if the expression is false.
4186 **
4187 ** If the expression evaluates to NULL (neither true nor false), then
4188 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4189 **
4190 ** This code depends on the fact that certain token values (ex: TK_EQ)
4191 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4192 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4193 ** the make process cause these values to align.  Assert()s in the code
4194 ** below verify that the numbers are aligned correctly.
4195 */
4196 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4197   Vdbe *v = pParse->pVdbe;
4198   int op = 0;
4199   int regFree1 = 0;
4200   int regFree2 = 0;
4201   int r1, r2;
4202 
4203   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4204   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4205   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4206   op = pExpr->op;
4207   switch( op ){
4208     case TK_AND: {
4209       int d2 = sqlite3VdbeMakeLabel(v);
4210       testcase( jumpIfNull==0 );
4211       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4212       sqlite3ExprCachePush(pParse);
4213       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4214       sqlite3VdbeResolveLabel(v, d2);
4215       sqlite3ExprCachePop(pParse);
4216       break;
4217     }
4218     case TK_OR: {
4219       testcase( jumpIfNull==0 );
4220       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4221       sqlite3ExprCachePush(pParse);
4222       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4223       sqlite3ExprCachePop(pParse);
4224       break;
4225     }
4226     case TK_NOT: {
4227       testcase( jumpIfNull==0 );
4228       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4229       break;
4230     }
4231     case TK_IS:
4232     case TK_ISNOT:
4233       testcase( op==TK_IS );
4234       testcase( op==TK_ISNOT );
4235       op = (op==TK_IS) ? TK_EQ : TK_NE;
4236       jumpIfNull = SQLITE_NULLEQ;
4237       /* Fall thru */
4238     case TK_LT:
4239     case TK_LE:
4240     case TK_GT:
4241     case TK_GE:
4242     case TK_NE:
4243     case TK_EQ: {
4244       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4245       testcase( jumpIfNull==0 );
4246       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4247       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4248       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4249                   r1, r2, dest, jumpIfNull);
4250       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4251       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4252       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4253       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4254       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4255       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4256       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4257       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4258       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4259       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4260       testcase( regFree1==0 );
4261       testcase( regFree2==0 );
4262       break;
4263     }
4264     case TK_ISNULL:
4265     case TK_NOTNULL: {
4266       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4267       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4268       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4269       sqlite3VdbeAddOp2(v, op, r1, dest);
4270       VdbeCoverageIf(v, op==TK_ISNULL);
4271       VdbeCoverageIf(v, op==TK_NOTNULL);
4272       testcase( regFree1==0 );
4273       break;
4274     }
4275     case TK_BETWEEN: {
4276       testcase( jumpIfNull==0 );
4277       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4278       break;
4279     }
4280 #ifndef SQLITE_OMIT_SUBQUERY
4281     case TK_IN: {
4282       int destIfFalse = sqlite3VdbeMakeLabel(v);
4283       int destIfNull = jumpIfNull ? dest : destIfFalse;
4284       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4285       sqlite3VdbeGoto(v, dest);
4286       sqlite3VdbeResolveLabel(v, destIfFalse);
4287       break;
4288     }
4289 #endif
4290     default: {
4291     default_expr:
4292       if( exprAlwaysTrue(pExpr) ){
4293         sqlite3VdbeGoto(v, dest);
4294       }else if( exprAlwaysFalse(pExpr) ){
4295         /* No-op */
4296       }else{
4297         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4298         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4299         VdbeCoverage(v);
4300         testcase( regFree1==0 );
4301         testcase( jumpIfNull==0 );
4302       }
4303       break;
4304     }
4305   }
4306   sqlite3ReleaseTempReg(pParse, regFree1);
4307   sqlite3ReleaseTempReg(pParse, regFree2);
4308 }
4309 
4310 /*
4311 ** Generate code for a boolean expression such that a jump is made
4312 ** to the label "dest" if the expression is false but execution
4313 ** continues straight thru if the expression is true.
4314 **
4315 ** If the expression evaluates to NULL (neither true nor false) then
4316 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4317 ** is 0.
4318 */
4319 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4320   Vdbe *v = pParse->pVdbe;
4321   int op = 0;
4322   int regFree1 = 0;
4323   int regFree2 = 0;
4324   int r1, r2;
4325 
4326   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4327   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4328   if( pExpr==0 )    return;
4329 
4330   /* The value of pExpr->op and op are related as follows:
4331   **
4332   **       pExpr->op            op
4333   **       ---------          ----------
4334   **       TK_ISNULL          OP_NotNull
4335   **       TK_NOTNULL         OP_IsNull
4336   **       TK_NE              OP_Eq
4337   **       TK_EQ              OP_Ne
4338   **       TK_GT              OP_Le
4339   **       TK_LE              OP_Gt
4340   **       TK_GE              OP_Lt
4341   **       TK_LT              OP_Ge
4342   **
4343   ** For other values of pExpr->op, op is undefined and unused.
4344   ** The value of TK_ and OP_ constants are arranged such that we
4345   ** can compute the mapping above using the following expression.
4346   ** Assert()s verify that the computation is correct.
4347   */
4348   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4349 
4350   /* Verify correct alignment of TK_ and OP_ constants
4351   */
4352   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4353   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4354   assert( pExpr->op!=TK_NE || op==OP_Eq );
4355   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4356   assert( pExpr->op!=TK_LT || op==OP_Ge );
4357   assert( pExpr->op!=TK_LE || op==OP_Gt );
4358   assert( pExpr->op!=TK_GT || op==OP_Le );
4359   assert( pExpr->op!=TK_GE || op==OP_Lt );
4360 
4361   switch( pExpr->op ){
4362     case TK_AND: {
4363       testcase( jumpIfNull==0 );
4364       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4365       sqlite3ExprCachePush(pParse);
4366       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4367       sqlite3ExprCachePop(pParse);
4368       break;
4369     }
4370     case TK_OR: {
4371       int d2 = sqlite3VdbeMakeLabel(v);
4372       testcase( jumpIfNull==0 );
4373       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4374       sqlite3ExprCachePush(pParse);
4375       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4376       sqlite3VdbeResolveLabel(v, d2);
4377       sqlite3ExprCachePop(pParse);
4378       break;
4379     }
4380     case TK_NOT: {
4381       testcase( jumpIfNull==0 );
4382       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4383       break;
4384     }
4385     case TK_IS:
4386     case TK_ISNOT:
4387       testcase( pExpr->op==TK_IS );
4388       testcase( pExpr->op==TK_ISNOT );
4389       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4390       jumpIfNull = SQLITE_NULLEQ;
4391       /* Fall thru */
4392     case TK_LT:
4393     case TK_LE:
4394     case TK_GT:
4395     case TK_GE:
4396     case TK_NE:
4397     case TK_EQ: {
4398       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4399       testcase( jumpIfNull==0 );
4400       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4401       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4402       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4403                   r1, r2, dest, jumpIfNull);
4404       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4405       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4406       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4407       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4408       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4409       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4410       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4411       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4412       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4413       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4414       testcase( regFree1==0 );
4415       testcase( regFree2==0 );
4416       break;
4417     }
4418     case TK_ISNULL:
4419     case TK_NOTNULL: {
4420       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4421       sqlite3VdbeAddOp2(v, op, r1, dest);
4422       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4423       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4424       testcase( regFree1==0 );
4425       break;
4426     }
4427     case TK_BETWEEN: {
4428       testcase( jumpIfNull==0 );
4429       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4430       break;
4431     }
4432 #ifndef SQLITE_OMIT_SUBQUERY
4433     case TK_IN: {
4434       if( jumpIfNull ){
4435         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4436       }else{
4437         int destIfNull = sqlite3VdbeMakeLabel(v);
4438         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4439         sqlite3VdbeResolveLabel(v, destIfNull);
4440       }
4441       break;
4442     }
4443 #endif
4444     default: {
4445     default_expr:
4446       if( exprAlwaysFalse(pExpr) ){
4447         sqlite3VdbeGoto(v, dest);
4448       }else if( exprAlwaysTrue(pExpr) ){
4449         /* no-op */
4450       }else{
4451         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4452         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4453         VdbeCoverage(v);
4454         testcase( regFree1==0 );
4455         testcase( jumpIfNull==0 );
4456       }
4457       break;
4458     }
4459   }
4460   sqlite3ReleaseTempReg(pParse, regFree1);
4461   sqlite3ReleaseTempReg(pParse, regFree2);
4462 }
4463 
4464 /*
4465 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4466 ** code generation, and that copy is deleted after code generation. This
4467 ** ensures that the original pExpr is unchanged.
4468 */
4469 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4470   sqlite3 *db = pParse->db;
4471   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4472   if( db->mallocFailed==0 ){
4473     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4474   }
4475   sqlite3ExprDelete(db, pCopy);
4476 }
4477 
4478 
4479 /*
4480 ** Do a deep comparison of two expression trees.  Return 0 if the two
4481 ** expressions are completely identical.  Return 1 if they differ only
4482 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4483 ** other than the top-level COLLATE operator.
4484 **
4485 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4486 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4487 **
4488 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4489 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4490 **
4491 ** Sometimes this routine will return 2 even if the two expressions
4492 ** really are equivalent.  If we cannot prove that the expressions are
4493 ** identical, we return 2 just to be safe.  So if this routine
4494 ** returns 2, then you do not really know for certain if the two
4495 ** expressions are the same.  But if you get a 0 or 1 return, then you
4496 ** can be sure the expressions are the same.  In the places where
4497 ** this routine is used, it does not hurt to get an extra 2 - that
4498 ** just might result in some slightly slower code.  But returning
4499 ** an incorrect 0 or 1 could lead to a malfunction.
4500 */
4501 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
4502   u32 combinedFlags;
4503   if( pA==0 || pB==0 ){
4504     return pB==pA ? 0 : 2;
4505   }
4506   combinedFlags = pA->flags | pB->flags;
4507   if( combinedFlags & EP_IntValue ){
4508     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4509       return 0;
4510     }
4511     return 2;
4512   }
4513   if( pA->op!=pB->op ){
4514     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
4515       return 1;
4516     }
4517     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4518       return 1;
4519     }
4520     return 2;
4521   }
4522   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4523     if( pA->op==TK_FUNCTION ){
4524       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4525     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4526       return pA->op==TK_COLLATE ? 1 : 2;
4527     }
4528   }
4529   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4530   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4531     if( combinedFlags & EP_xIsSelect ) return 2;
4532     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4533     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4534     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4535     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4536       if( pA->iColumn!=pB->iColumn ) return 2;
4537       if( pA->iTable!=pB->iTable
4538        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4539     }
4540   }
4541   return 0;
4542 }
4543 
4544 /*
4545 ** Compare two ExprList objects.  Return 0 if they are identical and
4546 ** non-zero if they differ in any way.
4547 **
4548 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4549 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4550 **
4551 ** This routine might return non-zero for equivalent ExprLists.  The
4552 ** only consequence will be disabled optimizations.  But this routine
4553 ** must never return 0 if the two ExprList objects are different, or
4554 ** a malfunction will result.
4555 **
4556 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4557 ** always differs from a non-NULL pointer.
4558 */
4559 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4560   int i;
4561   if( pA==0 && pB==0 ) return 0;
4562   if( pA==0 || pB==0 ) return 1;
4563   if( pA->nExpr!=pB->nExpr ) return 1;
4564   for(i=0; i<pA->nExpr; i++){
4565     Expr *pExprA = pA->a[i].pExpr;
4566     Expr *pExprB = pB->a[i].pExpr;
4567     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4568     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4569   }
4570   return 0;
4571 }
4572 
4573 /*
4574 ** Return true if we can prove the pE2 will always be true if pE1 is
4575 ** true.  Return false if we cannot complete the proof or if pE2 might
4576 ** be false.  Examples:
4577 **
4578 **     pE1: x==5       pE2: x==5             Result: true
4579 **     pE1: x>0        pE2: x==5             Result: false
4580 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4581 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4582 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4583 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4584 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4585 **
4586 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4587 ** Expr.iTable<0 then assume a table number given by iTab.
4588 **
4589 ** When in doubt, return false.  Returning true might give a performance
4590 ** improvement.  Returning false might cause a performance reduction, but
4591 ** it will always give the correct answer and is hence always safe.
4592 */
4593 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4594   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4595     return 1;
4596   }
4597   if( pE2->op==TK_OR
4598    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4599              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4600   ){
4601     return 1;
4602   }
4603   if( pE2->op==TK_NOTNULL
4604    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4605    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4606   ){
4607     return 1;
4608   }
4609   return 0;
4610 }
4611 
4612 /*
4613 ** An instance of the following structure is used by the tree walker
4614 ** to determine if an expression can be evaluated by reference to the
4615 ** index only, without having to do a search for the corresponding
4616 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4617 ** is the cursor for the table.
4618 */
4619 struct IdxCover {
4620   Index *pIdx;     /* The index to be tested for coverage */
4621   int iCur;        /* Cursor number for the table corresponding to the index */
4622 };
4623 
4624 /*
4625 ** Check to see if there are references to columns in table
4626 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4627 ** pWalker->u.pIdxCover->pIdx.
4628 */
4629 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4630   if( pExpr->op==TK_COLUMN
4631    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4632    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4633   ){
4634     pWalker->eCode = 1;
4635     return WRC_Abort;
4636   }
4637   return WRC_Continue;
4638 }
4639 
4640 /*
4641 ** Determine if an index pIdx on table with cursor iCur contains will
4642 ** the expression pExpr.  Return true if the index does cover the
4643 ** expression and false if the pExpr expression references table columns
4644 ** that are not found in the index pIdx.
4645 **
4646 ** An index covering an expression means that the expression can be
4647 ** evaluated using only the index and without having to lookup the
4648 ** corresponding table entry.
4649 */
4650 int sqlite3ExprCoveredByIndex(
4651   Expr *pExpr,        /* The index to be tested */
4652   int iCur,           /* The cursor number for the corresponding table */
4653   Index *pIdx         /* The index that might be used for coverage */
4654 ){
4655   Walker w;
4656   struct IdxCover xcov;
4657   memset(&w, 0, sizeof(w));
4658   xcov.iCur = iCur;
4659   xcov.pIdx = pIdx;
4660   w.xExprCallback = exprIdxCover;
4661   w.u.pIdxCover = &xcov;
4662   sqlite3WalkExpr(&w, pExpr);
4663   return !w.eCode;
4664 }
4665 
4666 
4667 /*
4668 ** An instance of the following structure is used by the tree walker
4669 ** to count references to table columns in the arguments of an
4670 ** aggregate function, in order to implement the
4671 ** sqlite3FunctionThisSrc() routine.
4672 */
4673 struct SrcCount {
4674   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4675   int nThis;       /* Number of references to columns in pSrcList */
4676   int nOther;      /* Number of references to columns in other FROM clauses */
4677 };
4678 
4679 /*
4680 ** Count the number of references to columns.
4681 */
4682 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4683   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4684   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4685   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4686   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4687   ** NEVER() will need to be removed. */
4688   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4689     int i;
4690     struct SrcCount *p = pWalker->u.pSrcCount;
4691     SrcList *pSrc = p->pSrc;
4692     int nSrc = pSrc ? pSrc->nSrc : 0;
4693     for(i=0; i<nSrc; i++){
4694       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4695     }
4696     if( i<nSrc ){
4697       p->nThis++;
4698     }else{
4699       p->nOther++;
4700     }
4701   }
4702   return WRC_Continue;
4703 }
4704 
4705 /*
4706 ** Determine if any of the arguments to the pExpr Function reference
4707 ** pSrcList.  Return true if they do.  Also return true if the function
4708 ** has no arguments or has only constant arguments.  Return false if pExpr
4709 ** references columns but not columns of tables found in pSrcList.
4710 */
4711 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4712   Walker w;
4713   struct SrcCount cnt;
4714   assert( pExpr->op==TK_AGG_FUNCTION );
4715   memset(&w, 0, sizeof(w));
4716   w.xExprCallback = exprSrcCount;
4717   w.u.pSrcCount = &cnt;
4718   cnt.pSrc = pSrcList;
4719   cnt.nThis = 0;
4720   cnt.nOther = 0;
4721   sqlite3WalkExprList(&w, pExpr->x.pList);
4722   return cnt.nThis>0 || cnt.nOther==0;
4723 }
4724 
4725 /*
4726 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4727 ** the new element.  Return a negative number if malloc fails.
4728 */
4729 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4730   int i;
4731   pInfo->aCol = sqlite3ArrayAllocate(
4732        db,
4733        pInfo->aCol,
4734        sizeof(pInfo->aCol[0]),
4735        &pInfo->nColumn,
4736        &i
4737   );
4738   return i;
4739 }
4740 
4741 /*
4742 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4743 ** the new element.  Return a negative number if malloc fails.
4744 */
4745 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4746   int i;
4747   pInfo->aFunc = sqlite3ArrayAllocate(
4748        db,
4749        pInfo->aFunc,
4750        sizeof(pInfo->aFunc[0]),
4751        &pInfo->nFunc,
4752        &i
4753   );
4754   return i;
4755 }
4756 
4757 /*
4758 ** This is the xExprCallback for a tree walker.  It is used to
4759 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4760 ** for additional information.
4761 */
4762 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4763   int i;
4764   NameContext *pNC = pWalker->u.pNC;
4765   Parse *pParse = pNC->pParse;
4766   SrcList *pSrcList = pNC->pSrcList;
4767   AggInfo *pAggInfo = pNC->pAggInfo;
4768 
4769   switch( pExpr->op ){
4770     case TK_AGG_COLUMN:
4771     case TK_COLUMN: {
4772       testcase( pExpr->op==TK_AGG_COLUMN );
4773       testcase( pExpr->op==TK_COLUMN );
4774       /* Check to see if the column is in one of the tables in the FROM
4775       ** clause of the aggregate query */
4776       if( ALWAYS(pSrcList!=0) ){
4777         struct SrcList_item *pItem = pSrcList->a;
4778         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4779           struct AggInfo_col *pCol;
4780           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4781           if( pExpr->iTable==pItem->iCursor ){
4782             /* If we reach this point, it means that pExpr refers to a table
4783             ** that is in the FROM clause of the aggregate query.
4784             **
4785             ** Make an entry for the column in pAggInfo->aCol[] if there
4786             ** is not an entry there already.
4787             */
4788             int k;
4789             pCol = pAggInfo->aCol;
4790             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4791               if( pCol->iTable==pExpr->iTable &&
4792                   pCol->iColumn==pExpr->iColumn ){
4793                 break;
4794               }
4795             }
4796             if( (k>=pAggInfo->nColumn)
4797              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4798             ){
4799               pCol = &pAggInfo->aCol[k];
4800               pCol->pTab = pExpr->pTab;
4801               pCol->iTable = pExpr->iTable;
4802               pCol->iColumn = pExpr->iColumn;
4803               pCol->iMem = ++pParse->nMem;
4804               pCol->iSorterColumn = -1;
4805               pCol->pExpr = pExpr;
4806               if( pAggInfo->pGroupBy ){
4807                 int j, n;
4808                 ExprList *pGB = pAggInfo->pGroupBy;
4809                 struct ExprList_item *pTerm = pGB->a;
4810                 n = pGB->nExpr;
4811                 for(j=0; j<n; j++, pTerm++){
4812                   Expr *pE = pTerm->pExpr;
4813                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4814                       pE->iColumn==pExpr->iColumn ){
4815                     pCol->iSorterColumn = j;
4816                     break;
4817                   }
4818                 }
4819               }
4820               if( pCol->iSorterColumn<0 ){
4821                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4822               }
4823             }
4824             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4825             ** because it was there before or because we just created it).
4826             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4827             ** pAggInfo->aCol[] entry.
4828             */
4829             ExprSetVVAProperty(pExpr, EP_NoReduce);
4830             pExpr->pAggInfo = pAggInfo;
4831             pExpr->op = TK_AGG_COLUMN;
4832             pExpr->iAgg = (i16)k;
4833             break;
4834           } /* endif pExpr->iTable==pItem->iCursor */
4835         } /* end loop over pSrcList */
4836       }
4837       return WRC_Prune;
4838     }
4839     case TK_AGG_FUNCTION: {
4840       if( (pNC->ncFlags & NC_InAggFunc)==0
4841        && pWalker->walkerDepth==pExpr->op2
4842       ){
4843         /* Check to see if pExpr is a duplicate of another aggregate
4844         ** function that is already in the pAggInfo structure
4845         */
4846         struct AggInfo_func *pItem = pAggInfo->aFunc;
4847         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4848           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4849             break;
4850           }
4851         }
4852         if( i>=pAggInfo->nFunc ){
4853           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4854           */
4855           u8 enc = ENC(pParse->db);
4856           i = addAggInfoFunc(pParse->db, pAggInfo);
4857           if( i>=0 ){
4858             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4859             pItem = &pAggInfo->aFunc[i];
4860             pItem->pExpr = pExpr;
4861             pItem->iMem = ++pParse->nMem;
4862             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4863             pItem->pFunc = sqlite3FindFunction(pParse->db,
4864                    pExpr->u.zToken,
4865                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4866             if( pExpr->flags & EP_Distinct ){
4867               pItem->iDistinct = pParse->nTab++;
4868             }else{
4869               pItem->iDistinct = -1;
4870             }
4871           }
4872         }
4873         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4874         */
4875         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4876         ExprSetVVAProperty(pExpr, EP_NoReduce);
4877         pExpr->iAgg = (i16)i;
4878         pExpr->pAggInfo = pAggInfo;
4879         return WRC_Prune;
4880       }else{
4881         return WRC_Continue;
4882       }
4883     }
4884   }
4885   return WRC_Continue;
4886 }
4887 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4888   UNUSED_PARAMETER(pWalker);
4889   UNUSED_PARAMETER(pSelect);
4890   return WRC_Continue;
4891 }
4892 
4893 /*
4894 ** Analyze the pExpr expression looking for aggregate functions and
4895 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4896 ** points to.  Additional entries are made on the AggInfo object as
4897 ** necessary.
4898 **
4899 ** This routine should only be called after the expression has been
4900 ** analyzed by sqlite3ResolveExprNames().
4901 */
4902 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4903   Walker w;
4904   memset(&w, 0, sizeof(w));
4905   w.xExprCallback = analyzeAggregate;
4906   w.xSelectCallback = analyzeAggregatesInSelect;
4907   w.u.pNC = pNC;
4908   assert( pNC->pSrcList!=0 );
4909   sqlite3WalkExpr(&w, pExpr);
4910 }
4911 
4912 /*
4913 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4914 ** expression list.  Return the number of errors.
4915 **
4916 ** If an error is found, the analysis is cut short.
4917 */
4918 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4919   struct ExprList_item *pItem;
4920   int i;
4921   if( pList ){
4922     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4923       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4924     }
4925   }
4926 }
4927 
4928 /*
4929 ** Allocate a single new register for use to hold some intermediate result.
4930 */
4931 int sqlite3GetTempReg(Parse *pParse){
4932   if( pParse->nTempReg==0 ){
4933     return ++pParse->nMem;
4934   }
4935   return pParse->aTempReg[--pParse->nTempReg];
4936 }
4937 
4938 /*
4939 ** Deallocate a register, making available for reuse for some other
4940 ** purpose.
4941 **
4942 ** If a register is currently being used by the column cache, then
4943 ** the deallocation is deferred until the column cache line that uses
4944 ** the register becomes stale.
4945 */
4946 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4947   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4948     int i;
4949     struct yColCache *p;
4950     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
4951       if( p->iReg==iReg ){
4952         p->tempReg = 1;
4953         return;
4954       }
4955     }
4956     pParse->aTempReg[pParse->nTempReg++] = iReg;
4957   }
4958 }
4959 
4960 /*
4961 ** Allocate or deallocate a block of nReg consecutive registers.
4962 */
4963 int sqlite3GetTempRange(Parse *pParse, int nReg){
4964   int i, n;
4965   if( nReg==1 ) return sqlite3GetTempReg(pParse);
4966   i = pParse->iRangeReg;
4967   n = pParse->nRangeReg;
4968   if( nReg<=n ){
4969     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4970     pParse->iRangeReg += nReg;
4971     pParse->nRangeReg -= nReg;
4972   }else{
4973     i = pParse->nMem+1;
4974     pParse->nMem += nReg;
4975   }
4976   return i;
4977 }
4978 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4979   if( nReg==1 ){
4980     sqlite3ReleaseTempReg(pParse, iReg);
4981     return;
4982   }
4983   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4984   if( nReg>pParse->nRangeReg ){
4985     pParse->nRangeReg = nReg;
4986     pParse->iRangeReg = iReg;
4987   }
4988 }
4989 
4990 /*
4991 ** Mark all temporary registers as being unavailable for reuse.
4992 */
4993 void sqlite3ClearTempRegCache(Parse *pParse){
4994   pParse->nTempReg = 0;
4995   pParse->nRangeReg = 0;
4996 }
4997 
4998 /*
4999 ** Validate that no temporary register falls within the range of
5000 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5001 ** statements.
5002 */
5003 #ifdef SQLITE_DEBUG
5004 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5005   int i;
5006   if( pParse->nRangeReg>0
5007    && pParse->iRangeReg+pParse->nRangeReg<iLast
5008    && pParse->iRangeReg>=iFirst
5009   ){
5010      return 0;
5011   }
5012   for(i=0; i<pParse->nTempReg; i++){
5013     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5014       return 0;
5015     }
5016   }
5017   return 1;
5018 }
5019 #endif /* SQLITE_DEBUG */
5020