1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; 774 if( ExprUseXSelect(p) ){ 775 heightOfSelect(p->x.pSelect, &nHeight); 776 }else if( p->x.pList ){ 777 heightOfExprList(p->x.pList, &nHeight); 778 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 779 } 780 p->nHeight = nHeight + 1; 781 } 782 783 /* 784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 785 ** the height is greater than the maximum allowed expression depth, 786 ** leave an error in pParse. 787 ** 788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 789 ** Expr.flags. 790 */ 791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 792 if( pParse->nErr ) return; 793 exprSetHeight(p); 794 sqlite3ExprCheckHeight(pParse, p->nHeight); 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(const Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 807 /* 808 ** Propagate all EP_Propagate flags from the Expr.x.pList into 809 ** Expr.flags. 810 */ 811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 812 if( pParse->nErr ) return; 813 if( p && ExprUseXList(p) && p->x.pList ){ 814 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 815 } 816 } 817 #define exprSetHeight(y) 818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 819 820 /* 821 ** This routine is the core allocator for Expr nodes. 822 ** 823 ** Construct a new expression node and return a pointer to it. Memory 824 ** for this node and for the pToken argument is a single allocation 825 ** obtained from sqlite3DbMalloc(). The calling function 826 ** is responsible for making sure the node eventually gets freed. 827 ** 828 ** If dequote is true, then the token (if it exists) is dequoted. 829 ** If dequote is false, no dequoting is performed. The deQuote 830 ** parameter is ignored if pToken is NULL or if the token does not 831 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 832 ** then the EP_DblQuoted flag is set on the expression node. 833 ** 834 ** Special case: If op==TK_INTEGER and pToken points to a string that 835 ** can be translated into a 32-bit integer, then the token is not 836 ** stored in u.zToken. Instead, the integer values is written 837 ** into u.iValue and the EP_IntValue flag is set. No extra storage 838 ** is allocated to hold the integer text and the dequote flag is ignored. 839 */ 840 Expr *sqlite3ExprAlloc( 841 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 842 int op, /* Expression opcode */ 843 const Token *pToken, /* Token argument. Might be NULL */ 844 int dequote /* True to dequote */ 845 ){ 846 Expr *pNew; 847 int nExtra = 0; 848 int iValue = 0; 849 850 assert( db!=0 ); 851 if( pToken ){ 852 if( op!=TK_INTEGER || pToken->z==0 853 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 854 nExtra = pToken->n+1; 855 assert( iValue>=0 ); 856 } 857 } 858 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 859 if( pNew ){ 860 memset(pNew, 0, sizeof(Expr)); 861 pNew->op = (u8)op; 862 pNew->iAgg = -1; 863 if( pToken ){ 864 if( nExtra==0 ){ 865 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 866 pNew->u.iValue = iValue; 867 }else{ 868 pNew->u.zToken = (char*)&pNew[1]; 869 assert( pToken->z!=0 || pToken->n==0 ); 870 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 871 pNew->u.zToken[pToken->n] = 0; 872 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 873 sqlite3DequoteExpr(pNew); 874 } 875 } 876 } 877 #if SQLITE_MAX_EXPR_DEPTH>0 878 pNew->nHeight = 1; 879 #endif 880 } 881 return pNew; 882 } 883 884 /* 885 ** Allocate a new expression node from a zero-terminated token that has 886 ** already been dequoted. 887 */ 888 Expr *sqlite3Expr( 889 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 890 int op, /* Expression opcode */ 891 const char *zToken /* Token argument. Might be NULL */ 892 ){ 893 Token x; 894 x.z = zToken; 895 x.n = sqlite3Strlen30(zToken); 896 return sqlite3ExprAlloc(db, op, &x, 0); 897 } 898 899 /* 900 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 901 ** 902 ** If pRoot==NULL that means that a memory allocation error has occurred. 903 ** In that case, delete the subtrees pLeft and pRight. 904 */ 905 void sqlite3ExprAttachSubtrees( 906 sqlite3 *db, 907 Expr *pRoot, 908 Expr *pLeft, 909 Expr *pRight 910 ){ 911 if( pRoot==0 ){ 912 assert( db->mallocFailed ); 913 sqlite3ExprDelete(db, pLeft); 914 sqlite3ExprDelete(db, pRight); 915 }else{ 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 } 920 if( pLeft ){ 921 pRoot->pLeft = pLeft; 922 pRoot->flags |= EP_Propagate & pLeft->flags; 923 } 924 exprSetHeight(pRoot); 925 } 926 } 927 928 /* 929 ** Allocate an Expr node which joins as many as two subtrees. 930 ** 931 ** One or both of the subtrees can be NULL. Return a pointer to the new 932 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 933 ** free the subtrees and return NULL. 934 */ 935 Expr *sqlite3PExpr( 936 Parse *pParse, /* Parsing context */ 937 int op, /* Expression opcode */ 938 Expr *pLeft, /* Left operand */ 939 Expr *pRight /* Right operand */ 940 ){ 941 Expr *p; 942 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 943 if( p ){ 944 memset(p, 0, sizeof(Expr)); 945 p->op = op & 0xff; 946 p->iAgg = -1; 947 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 948 sqlite3ExprCheckHeight(pParse, p->nHeight); 949 }else{ 950 sqlite3ExprDelete(pParse->db, pLeft); 951 sqlite3ExprDelete(pParse->db, pRight); 952 } 953 return p; 954 } 955 956 /* 957 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 958 ** do a memory allocation failure) then delete the pSelect object. 959 */ 960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 961 if( pExpr ){ 962 pExpr->x.pSelect = pSelect; 963 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 964 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 965 }else{ 966 assert( pParse->db->mallocFailed ); 967 sqlite3SelectDelete(pParse->db, pSelect); 968 } 969 } 970 971 /* 972 ** Expression list pEList is a list of vector values. This function 973 ** converts the contents of pEList to a VALUES(...) Select statement 974 ** returning 1 row for each element of the list. For example, the 975 ** expression list: 976 ** 977 ** ( (1,2), (3,4) (5,6) ) 978 ** 979 ** is translated to the equivalent of: 980 ** 981 ** VALUES(1,2), (3,4), (5,6) 982 ** 983 ** Each of the vector values in pEList must contain exactly nElem terms. 984 ** If a list element that is not a vector or does not contain nElem terms, 985 ** an error message is left in pParse. 986 ** 987 ** This is used as part of processing IN(...) expressions with a list 988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 989 */ 990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 991 int ii; 992 Select *pRet = 0; 993 assert( nElem>1 ); 994 for(ii=0; ii<pEList->nExpr; ii++){ 995 Select *pSel; 996 Expr *pExpr = pEList->a[ii].pExpr; 997 int nExprElem; 998 if( pExpr->op==TK_VECTOR ){ 999 assert( ExprUseXList(pExpr) ); 1000 nExprElem = pExpr->x.pList->nExpr; 1001 }else{ 1002 nExprElem = 1; 1003 } 1004 if( nExprElem!=nElem ){ 1005 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1006 nExprElem, nExprElem>1?"s":"", nElem 1007 ); 1008 break; 1009 } 1010 assert( ExprUseXList(pExpr) ); 1011 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1012 pExpr->x.pList = 0; 1013 if( pSel ){ 1014 if( pRet ){ 1015 pSel->op = TK_ALL; 1016 pSel->pPrior = pRet; 1017 } 1018 pRet = pSel; 1019 } 1020 } 1021 1022 if( pRet && pRet->pPrior ){ 1023 pRet->selFlags |= SF_MultiValue; 1024 } 1025 sqlite3ExprListDelete(pParse->db, pEList); 1026 return pRet; 1027 } 1028 1029 /* 1030 ** Join two expressions using an AND operator. If either expression is 1031 ** NULL, then just return the other expression. 1032 ** 1033 ** If one side or the other of the AND is known to be false, then instead 1034 ** of returning an AND expression, just return a constant expression with 1035 ** a value of false. 1036 */ 1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1038 sqlite3 *db = pParse->db; 1039 if( pLeft==0 ){ 1040 return pRight; 1041 }else if( pRight==0 ){ 1042 return pLeft; 1043 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1044 && !IN_RENAME_OBJECT 1045 ){ 1046 sqlite3ExprDeferredDelete(pParse, pLeft); 1047 sqlite3ExprDeferredDelete(pParse, pRight); 1048 return sqlite3Expr(db, TK_INTEGER, "0"); 1049 }else{ 1050 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1051 } 1052 } 1053 1054 /* 1055 ** Construct a new expression node for a function with multiple 1056 ** arguments. 1057 */ 1058 Expr *sqlite3ExprFunction( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Argument list */ 1061 const Token *pToken, /* Name of the function */ 1062 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1063 ){ 1064 Expr *pNew; 1065 sqlite3 *db = pParse->db; 1066 assert( pToken ); 1067 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1068 if( pNew==0 ){ 1069 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1070 return 0; 1071 } 1072 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1073 if( pList 1074 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1075 && !pParse->nested 1076 ){ 1077 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1078 } 1079 pNew->x.pList = pList; 1080 ExprSetProperty(pNew, EP_HasFunc); 1081 assert( ExprUseXList(pNew) ); 1082 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1083 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1084 return pNew; 1085 } 1086 1087 /* 1088 ** Check to see if a function is usable according to current access 1089 ** rules: 1090 ** 1091 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1092 ** 1093 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1094 ** top-level SQL 1095 ** 1096 ** If the function is not usable, create an error. 1097 */ 1098 void sqlite3ExprFunctionUsable( 1099 Parse *pParse, /* Parsing and code generating context */ 1100 const Expr *pExpr, /* The function invocation */ 1101 const FuncDef *pDef /* The function being invoked */ 1102 ){ 1103 assert( !IN_RENAME_OBJECT ); 1104 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1105 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1106 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1107 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1108 ){ 1109 /* Functions prohibited in triggers and views if: 1110 ** (1) tagged with SQLITE_DIRECTONLY 1111 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1112 ** is tagged with SQLITE_FUNC_UNSAFE) and 1113 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1114 ** that the schema is possibly tainted). 1115 */ 1116 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1117 } 1118 } 1119 } 1120 1121 /* 1122 ** Assign a variable number to an expression that encodes a wildcard 1123 ** in the original SQL statement. 1124 ** 1125 ** Wildcards consisting of a single "?" are assigned the next sequential 1126 ** variable number. 1127 ** 1128 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1129 ** sure "nnn" is not too big to avoid a denial of service attack when 1130 ** the SQL statement comes from an external source. 1131 ** 1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1133 ** as the previous instance of the same wildcard. Or if this is the first 1134 ** instance of the wildcard, the next sequential variable number is 1135 ** assigned. 1136 */ 1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1138 sqlite3 *db = pParse->db; 1139 const char *z; 1140 ynVar x; 1141 1142 if( pExpr==0 ) return; 1143 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1144 z = pExpr->u.zToken; 1145 assert( z!=0 ); 1146 assert( z[0]!=0 ); 1147 assert( n==(u32)sqlite3Strlen30(z) ); 1148 if( z[1]==0 ){ 1149 /* Wildcard of the form "?". Assign the next variable number */ 1150 assert( z[0]=='?' ); 1151 x = (ynVar)(++pParse->nVar); 1152 }else{ 1153 int doAdd = 0; 1154 if( z[0]=='?' ){ 1155 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1156 ** use it as the variable number */ 1157 i64 i; 1158 int bOk; 1159 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1160 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1161 bOk = 1; 1162 }else{ 1163 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1164 } 1165 testcase( i==0 ); 1166 testcase( i==1 ); 1167 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1169 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1170 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1171 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1172 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1173 return; 1174 } 1175 x = (ynVar)i; 1176 if( x>pParse->nVar ){ 1177 pParse->nVar = (int)x; 1178 doAdd = 1; 1179 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1180 doAdd = 1; 1181 } 1182 }else{ 1183 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1184 ** number as the prior appearance of the same name, or if the name 1185 ** has never appeared before, reuse the same variable number 1186 */ 1187 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1188 if( x==0 ){ 1189 x = (ynVar)(++pParse->nVar); 1190 doAdd = 1; 1191 } 1192 } 1193 if( doAdd ){ 1194 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1195 } 1196 } 1197 pExpr->iColumn = x; 1198 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1199 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1200 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1201 } 1202 } 1203 1204 /* 1205 ** Recursively delete an expression tree. 1206 */ 1207 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1208 assert( p!=0 ); 1209 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1210 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1211 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1212 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1213 #ifdef SQLITE_DEBUG 1214 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1215 assert( p->pLeft==0 ); 1216 assert( p->pRight==0 ); 1217 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1218 assert( !ExprUseXList(p) || p->x.pList==0 ); 1219 } 1220 #endif 1221 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1222 /* The Expr.x union is never used at the same time as Expr.pRight */ 1223 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1224 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1225 if( p->pRight ){ 1226 assert( !ExprHasProperty(p, EP_WinFunc) ); 1227 sqlite3ExprDeleteNN(db, p->pRight); 1228 }else if( ExprUseXSelect(p) ){ 1229 assert( !ExprHasProperty(p, EP_WinFunc) ); 1230 sqlite3SelectDelete(db, p->x.pSelect); 1231 }else{ 1232 sqlite3ExprListDelete(db, p->x.pList); 1233 #ifndef SQLITE_OMIT_WINDOWFUNC 1234 if( ExprHasProperty(p, EP_WinFunc) ){ 1235 sqlite3WindowDelete(db, p->y.pWin); 1236 } 1237 #endif 1238 } 1239 } 1240 if( ExprHasProperty(p, EP_MemToken) ){ 1241 assert( !ExprHasProperty(p, EP_IntValue) ); 1242 sqlite3DbFree(db, p->u.zToken); 1243 } 1244 if( !ExprHasProperty(p, EP_Static) ){ 1245 sqlite3DbFreeNN(db, p); 1246 } 1247 } 1248 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1249 if( p ) sqlite3ExprDeleteNN(db, p); 1250 } 1251 1252 1253 /* 1254 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1255 ** This is similar to sqlite3ExprDelete() except that the delete is 1256 ** deferred untilthe pParse is deleted. 1257 ** 1258 ** The pExpr might be deleted immediately on an OOM error. 1259 ** 1260 ** The deferred delete is (currently) implemented by adding the 1261 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1262 */ 1263 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1264 pParse->pConstExpr = 1265 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1266 } 1267 1268 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1269 ** expression. 1270 */ 1271 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1272 if( p ){ 1273 if( IN_RENAME_OBJECT ){ 1274 sqlite3RenameExprUnmap(pParse, p); 1275 } 1276 sqlite3ExprDeleteNN(pParse->db, p); 1277 } 1278 } 1279 1280 /* 1281 ** Return the number of bytes allocated for the expression structure 1282 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1283 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1284 */ 1285 static int exprStructSize(const Expr *p){ 1286 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1287 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1288 return EXPR_FULLSIZE; 1289 } 1290 1291 /* 1292 ** The dupedExpr*Size() routines each return the number of bytes required 1293 ** to store a copy of an expression or expression tree. They differ in 1294 ** how much of the tree is measured. 1295 ** 1296 ** dupedExprStructSize() Size of only the Expr structure 1297 ** dupedExprNodeSize() Size of Expr + space for token 1298 ** dupedExprSize() Expr + token + subtree components 1299 ** 1300 *************************************************************************** 1301 ** 1302 ** The dupedExprStructSize() function returns two values OR-ed together: 1303 ** (1) the space required for a copy of the Expr structure only and 1304 ** (2) the EP_xxx flags that indicate what the structure size should be. 1305 ** The return values is always one of: 1306 ** 1307 ** EXPR_FULLSIZE 1308 ** EXPR_REDUCEDSIZE | EP_Reduced 1309 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1310 ** 1311 ** The size of the structure can be found by masking the return value 1312 ** of this routine with 0xfff. The flags can be found by masking the 1313 ** return value with EP_Reduced|EP_TokenOnly. 1314 ** 1315 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1316 ** (unreduced) Expr objects as they or originally constructed by the parser. 1317 ** During expression analysis, extra information is computed and moved into 1318 ** later parts of the Expr object and that extra information might get chopped 1319 ** off if the expression is reduced. Note also that it does not work to 1320 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1321 ** to reduce a pristine expression tree from the parser. The implementation 1322 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1323 ** to enforce this constraint. 1324 */ 1325 static int dupedExprStructSize(const Expr *p, int flags){ 1326 int nSize; 1327 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1328 assert( EXPR_FULLSIZE<=0xfff ); 1329 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1330 if( 0==flags || p->op==TK_SELECT_COLUMN 1331 #ifndef SQLITE_OMIT_WINDOWFUNC 1332 || ExprHasProperty(p, EP_WinFunc) 1333 #endif 1334 ){ 1335 nSize = EXPR_FULLSIZE; 1336 }else{ 1337 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1338 assert( !ExprHasProperty(p, EP_FromJoin) ); 1339 assert( !ExprHasProperty(p, EP_MemToken) ); 1340 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1341 if( p->pLeft || p->x.pList ){ 1342 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1343 }else{ 1344 assert( p->pRight==0 ); 1345 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1346 } 1347 } 1348 return nSize; 1349 } 1350 1351 /* 1352 ** This function returns the space in bytes required to store the copy 1353 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1354 ** string is defined.) 1355 */ 1356 static int dupedExprNodeSize(const Expr *p, int flags){ 1357 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1358 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1359 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1360 } 1361 return ROUND8(nByte); 1362 } 1363 1364 /* 1365 ** Return the number of bytes required to create a duplicate of the 1366 ** expression passed as the first argument. The second argument is a 1367 ** mask containing EXPRDUP_XXX flags. 1368 ** 1369 ** The value returned includes space to create a copy of the Expr struct 1370 ** itself and the buffer referred to by Expr.u.zToken, if any. 1371 ** 1372 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1373 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1374 ** and Expr.pRight variables (but not for any structures pointed to or 1375 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1376 */ 1377 static int dupedExprSize(const Expr *p, int flags){ 1378 int nByte = 0; 1379 if( p ){ 1380 nByte = dupedExprNodeSize(p, flags); 1381 if( flags&EXPRDUP_REDUCE ){ 1382 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1383 } 1384 } 1385 return nByte; 1386 } 1387 1388 /* 1389 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1390 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1391 ** to store the copy of expression p, the copies of p->u.zToken 1392 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1393 ** if any. Before returning, *pzBuffer is set to the first byte past the 1394 ** portion of the buffer copied into by this function. 1395 */ 1396 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1397 Expr *pNew; /* Value to return */ 1398 u8 *zAlloc; /* Memory space from which to build Expr object */ 1399 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1400 1401 assert( db!=0 ); 1402 assert( p ); 1403 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1404 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1405 1406 /* Figure out where to write the new Expr structure. */ 1407 if( pzBuffer ){ 1408 zAlloc = *pzBuffer; 1409 staticFlag = EP_Static; 1410 assert( zAlloc!=0 ); 1411 }else{ 1412 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1413 staticFlag = 0; 1414 } 1415 pNew = (Expr *)zAlloc; 1416 1417 if( pNew ){ 1418 /* Set nNewSize to the size allocated for the structure pointed to 1419 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1420 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1421 ** by the copy of the p->u.zToken string (if any). 1422 */ 1423 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1424 const int nNewSize = nStructSize & 0xfff; 1425 int nToken; 1426 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1427 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1428 }else{ 1429 nToken = 0; 1430 } 1431 if( dupFlags ){ 1432 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1433 memcpy(zAlloc, p, nNewSize); 1434 }else{ 1435 u32 nSize = (u32)exprStructSize(p); 1436 memcpy(zAlloc, p, nSize); 1437 if( nSize<EXPR_FULLSIZE ){ 1438 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1439 } 1440 } 1441 1442 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1443 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1444 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1445 pNew->flags |= staticFlag; 1446 ExprClearVVAProperties(pNew); 1447 if( dupFlags ){ 1448 ExprSetVVAProperty(pNew, EP_Immutable); 1449 } 1450 1451 /* Copy the p->u.zToken string, if any. */ 1452 if( nToken ){ 1453 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1454 memcpy(zToken, p->u.zToken, nToken); 1455 } 1456 1457 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1458 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1459 if( ExprUseXSelect(p) ){ 1460 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1461 }else{ 1462 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1463 } 1464 } 1465 1466 /* Fill in pNew->pLeft and pNew->pRight. */ 1467 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1468 zAlloc += dupedExprNodeSize(p, dupFlags); 1469 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1470 pNew->pLeft = p->pLeft ? 1471 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1472 pNew->pRight = p->pRight ? 1473 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1474 } 1475 #ifndef SQLITE_OMIT_WINDOWFUNC 1476 if( ExprHasProperty(p, EP_WinFunc) ){ 1477 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1478 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1479 } 1480 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1481 if( pzBuffer ){ 1482 *pzBuffer = zAlloc; 1483 } 1484 }else{ 1485 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1486 if( pNew->op==TK_SELECT_COLUMN ){ 1487 pNew->pLeft = p->pLeft; 1488 assert( p->pRight==0 || p->pRight==p->pLeft 1489 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1490 }else{ 1491 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1492 } 1493 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1494 } 1495 } 1496 } 1497 return pNew; 1498 } 1499 1500 /* 1501 ** Create and return a deep copy of the object passed as the second 1502 ** argument. If an OOM condition is encountered, NULL is returned 1503 ** and the db->mallocFailed flag set. 1504 */ 1505 #ifndef SQLITE_OMIT_CTE 1506 With *sqlite3WithDup(sqlite3 *db, With *p){ 1507 With *pRet = 0; 1508 if( p ){ 1509 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1510 pRet = sqlite3DbMallocZero(db, nByte); 1511 if( pRet ){ 1512 int i; 1513 pRet->nCte = p->nCte; 1514 for(i=0; i<p->nCte; i++){ 1515 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1516 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1517 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1518 } 1519 } 1520 } 1521 return pRet; 1522 } 1523 #else 1524 # define sqlite3WithDup(x,y) 0 1525 #endif 1526 1527 #ifndef SQLITE_OMIT_WINDOWFUNC 1528 /* 1529 ** The gatherSelectWindows() procedure and its helper routine 1530 ** gatherSelectWindowsCallback() are used to scan all the expressions 1531 ** an a newly duplicated SELECT statement and gather all of the Window 1532 ** objects found there, assembling them onto the linked list at Select->pWin. 1533 */ 1534 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1535 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1536 Select *pSelect = pWalker->u.pSelect; 1537 Window *pWin = pExpr->y.pWin; 1538 assert( pWin ); 1539 assert( IsWindowFunc(pExpr) ); 1540 assert( pWin->ppThis==0 ); 1541 sqlite3WindowLink(pSelect, pWin); 1542 } 1543 return WRC_Continue; 1544 } 1545 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1546 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1547 } 1548 static void gatherSelectWindows(Select *p){ 1549 Walker w; 1550 w.xExprCallback = gatherSelectWindowsCallback; 1551 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1552 w.xSelectCallback2 = 0; 1553 w.pParse = 0; 1554 w.u.pSelect = p; 1555 sqlite3WalkSelect(&w, p); 1556 } 1557 #endif 1558 1559 1560 /* 1561 ** The following group of routines make deep copies of expressions, 1562 ** expression lists, ID lists, and select statements. The copies can 1563 ** be deleted (by being passed to their respective ...Delete() routines) 1564 ** without effecting the originals. 1565 ** 1566 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1567 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1568 ** by subsequent calls to sqlite*ListAppend() routines. 1569 ** 1570 ** Any tables that the SrcList might point to are not duplicated. 1571 ** 1572 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1573 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1574 ** truncated version of the usual Expr structure that will be stored as 1575 ** part of the in-memory representation of the database schema. 1576 */ 1577 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1578 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1579 return p ? exprDup(db, p, flags, 0) : 0; 1580 } 1581 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1582 ExprList *pNew; 1583 struct ExprList_item *pItem; 1584 const struct ExprList_item *pOldItem; 1585 int i; 1586 Expr *pPriorSelectColOld = 0; 1587 Expr *pPriorSelectColNew = 0; 1588 assert( db!=0 ); 1589 if( p==0 ) return 0; 1590 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1591 if( pNew==0 ) return 0; 1592 pNew->nExpr = p->nExpr; 1593 pNew->nAlloc = p->nAlloc; 1594 pItem = pNew->a; 1595 pOldItem = p->a; 1596 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1597 Expr *pOldExpr = pOldItem->pExpr; 1598 Expr *pNewExpr; 1599 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1600 if( pOldExpr 1601 && pOldExpr->op==TK_SELECT_COLUMN 1602 && (pNewExpr = pItem->pExpr)!=0 1603 ){ 1604 if( pNewExpr->pRight ){ 1605 pPriorSelectColOld = pOldExpr->pRight; 1606 pPriorSelectColNew = pNewExpr->pRight; 1607 pNewExpr->pLeft = pNewExpr->pRight; 1608 }else{ 1609 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1610 pPriorSelectColOld = pOldExpr->pLeft; 1611 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1612 pNewExpr->pRight = pPriorSelectColNew; 1613 } 1614 pNewExpr->pLeft = pPriorSelectColNew; 1615 } 1616 } 1617 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1618 pItem->sortFlags = pOldItem->sortFlags; 1619 pItem->eEName = pOldItem->eEName; 1620 pItem->done = 0; 1621 pItem->bNulls = pOldItem->bNulls; 1622 pItem->bSorterRef = pOldItem->bSorterRef; 1623 pItem->u = pOldItem->u; 1624 } 1625 return pNew; 1626 } 1627 1628 /* 1629 ** If cursors, triggers, views and subqueries are all omitted from 1630 ** the build, then none of the following routines, except for 1631 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1632 ** called with a NULL argument. 1633 */ 1634 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1635 || !defined(SQLITE_OMIT_SUBQUERY) 1636 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1637 SrcList *pNew; 1638 int i; 1639 int nByte; 1640 assert( db!=0 ); 1641 if( p==0 ) return 0; 1642 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1643 pNew = sqlite3DbMallocRawNN(db, nByte ); 1644 if( pNew==0 ) return 0; 1645 pNew->nSrc = pNew->nAlloc = p->nSrc; 1646 for(i=0; i<p->nSrc; i++){ 1647 SrcItem *pNewItem = &pNew->a[i]; 1648 const SrcItem *pOldItem = &p->a[i]; 1649 Table *pTab; 1650 pNewItem->pSchema = pOldItem->pSchema; 1651 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1652 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1653 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1654 pNewItem->fg = pOldItem->fg; 1655 pNewItem->iCursor = pOldItem->iCursor; 1656 pNewItem->addrFillSub = pOldItem->addrFillSub; 1657 pNewItem->regReturn = pOldItem->regReturn; 1658 if( pNewItem->fg.isIndexedBy ){ 1659 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1660 } 1661 pNewItem->u2 = pOldItem->u2; 1662 if( pNewItem->fg.isCte ){ 1663 pNewItem->u2.pCteUse->nUse++; 1664 } 1665 if( pNewItem->fg.isTabFunc ){ 1666 pNewItem->u1.pFuncArg = 1667 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1668 } 1669 pTab = pNewItem->pTab = pOldItem->pTab; 1670 if( pTab ){ 1671 pTab->nTabRef++; 1672 } 1673 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1674 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1675 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1676 pNewItem->colUsed = pOldItem->colUsed; 1677 } 1678 return pNew; 1679 } 1680 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1681 IdList *pNew; 1682 int i; 1683 assert( db!=0 ); 1684 if( p==0 ) return 0; 1685 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1686 if( pNew==0 ) return 0; 1687 pNew->nId = p->nId; 1688 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1689 if( pNew->a==0 ){ 1690 sqlite3DbFreeNN(db, pNew); 1691 return 0; 1692 } 1693 /* Note that because the size of the allocation for p->a[] is not 1694 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1695 ** on the duplicate created by this function. */ 1696 for(i=0; i<p->nId; i++){ 1697 struct IdList_item *pNewItem = &pNew->a[i]; 1698 struct IdList_item *pOldItem = &p->a[i]; 1699 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1700 pNewItem->idx = pOldItem->idx; 1701 } 1702 return pNew; 1703 } 1704 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1705 Select *pRet = 0; 1706 Select *pNext = 0; 1707 Select **pp = &pRet; 1708 const Select *p; 1709 1710 assert( db!=0 ); 1711 for(p=pDup; p; p=p->pPrior){ 1712 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1713 if( pNew==0 ) break; 1714 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1715 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1716 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1717 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1718 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1719 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1720 pNew->op = p->op; 1721 pNew->pNext = pNext; 1722 pNew->pPrior = 0; 1723 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1724 pNew->iLimit = 0; 1725 pNew->iOffset = 0; 1726 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1727 pNew->addrOpenEphm[0] = -1; 1728 pNew->addrOpenEphm[1] = -1; 1729 pNew->nSelectRow = p->nSelectRow; 1730 pNew->pWith = sqlite3WithDup(db, p->pWith); 1731 #ifndef SQLITE_OMIT_WINDOWFUNC 1732 pNew->pWin = 0; 1733 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1734 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1735 #endif 1736 pNew->selId = p->selId; 1737 if( db->mallocFailed ){ 1738 /* Any prior OOM might have left the Select object incomplete. 1739 ** Delete the whole thing rather than allow an incomplete Select 1740 ** to be used by the code generator. */ 1741 pNew->pNext = 0; 1742 sqlite3SelectDelete(db, pNew); 1743 break; 1744 } 1745 *pp = pNew; 1746 pp = &pNew->pPrior; 1747 pNext = pNew; 1748 } 1749 1750 return pRet; 1751 } 1752 #else 1753 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1754 assert( p==0 ); 1755 return 0; 1756 } 1757 #endif 1758 1759 1760 /* 1761 ** Add a new element to the end of an expression list. If pList is 1762 ** initially NULL, then create a new expression list. 1763 ** 1764 ** The pList argument must be either NULL or a pointer to an ExprList 1765 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1766 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1767 ** Reason: This routine assumes that the number of slots in pList->a[] 1768 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1769 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1770 ** 1771 ** If a memory allocation error occurs, the entire list is freed and 1772 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1773 ** that the new entry was successfully appended. 1774 */ 1775 static const struct ExprList_item zeroItem = {0}; 1776 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1777 sqlite3 *db, /* Database handle. Used for memory allocation */ 1778 Expr *pExpr /* Expression to be appended. Might be NULL */ 1779 ){ 1780 struct ExprList_item *pItem; 1781 ExprList *pList; 1782 1783 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1784 if( pList==0 ){ 1785 sqlite3ExprDelete(db, pExpr); 1786 return 0; 1787 } 1788 pList->nAlloc = 4; 1789 pList->nExpr = 1; 1790 pItem = &pList->a[0]; 1791 *pItem = zeroItem; 1792 pItem->pExpr = pExpr; 1793 return pList; 1794 } 1795 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1796 sqlite3 *db, /* Database handle. Used for memory allocation */ 1797 ExprList *pList, /* List to which to append. Might be NULL */ 1798 Expr *pExpr /* Expression to be appended. Might be NULL */ 1799 ){ 1800 struct ExprList_item *pItem; 1801 ExprList *pNew; 1802 pList->nAlloc *= 2; 1803 pNew = sqlite3DbRealloc(db, pList, 1804 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1805 if( pNew==0 ){ 1806 sqlite3ExprListDelete(db, pList); 1807 sqlite3ExprDelete(db, pExpr); 1808 return 0; 1809 }else{ 1810 pList = pNew; 1811 } 1812 pItem = &pList->a[pList->nExpr++]; 1813 *pItem = zeroItem; 1814 pItem->pExpr = pExpr; 1815 return pList; 1816 } 1817 ExprList *sqlite3ExprListAppend( 1818 Parse *pParse, /* Parsing context */ 1819 ExprList *pList, /* List to which to append. Might be NULL */ 1820 Expr *pExpr /* Expression to be appended. Might be NULL */ 1821 ){ 1822 struct ExprList_item *pItem; 1823 if( pList==0 ){ 1824 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1825 } 1826 if( pList->nAlloc<pList->nExpr+1 ){ 1827 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1828 } 1829 pItem = &pList->a[pList->nExpr++]; 1830 *pItem = zeroItem; 1831 pItem->pExpr = pExpr; 1832 return pList; 1833 } 1834 1835 /* 1836 ** pColumns and pExpr form a vector assignment which is part of the SET 1837 ** clause of an UPDATE statement. Like this: 1838 ** 1839 ** (a,b,c) = (expr1,expr2,expr3) 1840 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1841 ** 1842 ** For each term of the vector assignment, append new entries to the 1843 ** expression list pList. In the case of a subquery on the RHS, append 1844 ** TK_SELECT_COLUMN expressions. 1845 */ 1846 ExprList *sqlite3ExprListAppendVector( 1847 Parse *pParse, /* Parsing context */ 1848 ExprList *pList, /* List to which to append. Might be NULL */ 1849 IdList *pColumns, /* List of names of LHS of the assignment */ 1850 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1851 ){ 1852 sqlite3 *db = pParse->db; 1853 int n; 1854 int i; 1855 int iFirst = pList ? pList->nExpr : 0; 1856 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1857 ** exit prior to this routine being invoked */ 1858 if( NEVER(pColumns==0) ) goto vector_append_error; 1859 if( pExpr==0 ) goto vector_append_error; 1860 1861 /* If the RHS is a vector, then we can immediately check to see that 1862 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1863 ** wildcards ("*") in the result set of the SELECT must be expanded before 1864 ** we can do the size check, so defer the size check until code generation. 1865 */ 1866 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1867 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1868 pColumns->nId, n); 1869 goto vector_append_error; 1870 } 1871 1872 for(i=0; i<pColumns->nId; i++){ 1873 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1874 assert( pSubExpr!=0 || db->mallocFailed ); 1875 if( pSubExpr==0 ) continue; 1876 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1877 if( pList ){ 1878 assert( pList->nExpr==iFirst+i+1 ); 1879 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1880 pColumns->a[i].zName = 0; 1881 } 1882 } 1883 1884 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1885 Expr *pFirst = pList->a[iFirst].pExpr; 1886 assert( pFirst!=0 ); 1887 assert( pFirst->op==TK_SELECT_COLUMN ); 1888 1889 /* Store the SELECT statement in pRight so it will be deleted when 1890 ** sqlite3ExprListDelete() is called */ 1891 pFirst->pRight = pExpr; 1892 pExpr = 0; 1893 1894 /* Remember the size of the LHS in iTable so that we can check that 1895 ** the RHS and LHS sizes match during code generation. */ 1896 pFirst->iTable = pColumns->nId; 1897 } 1898 1899 vector_append_error: 1900 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1901 sqlite3IdListDelete(db, pColumns); 1902 return pList; 1903 } 1904 1905 /* 1906 ** Set the sort order for the last element on the given ExprList. 1907 */ 1908 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1909 struct ExprList_item *pItem; 1910 if( p==0 ) return; 1911 assert( p->nExpr>0 ); 1912 1913 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1914 assert( iSortOrder==SQLITE_SO_UNDEFINED 1915 || iSortOrder==SQLITE_SO_ASC 1916 || iSortOrder==SQLITE_SO_DESC 1917 ); 1918 assert( eNulls==SQLITE_SO_UNDEFINED 1919 || eNulls==SQLITE_SO_ASC 1920 || eNulls==SQLITE_SO_DESC 1921 ); 1922 1923 pItem = &p->a[p->nExpr-1]; 1924 assert( pItem->bNulls==0 ); 1925 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1926 iSortOrder = SQLITE_SO_ASC; 1927 } 1928 pItem->sortFlags = (u8)iSortOrder; 1929 1930 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1931 pItem->bNulls = 1; 1932 if( iSortOrder!=eNulls ){ 1933 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1934 } 1935 } 1936 } 1937 1938 /* 1939 ** Set the ExprList.a[].zEName element of the most recently added item 1940 ** on the expression list. 1941 ** 1942 ** pList might be NULL following an OOM error. But pName should never be 1943 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1944 ** is set. 1945 */ 1946 void sqlite3ExprListSetName( 1947 Parse *pParse, /* Parsing context */ 1948 ExprList *pList, /* List to which to add the span. */ 1949 const Token *pName, /* Name to be added */ 1950 int dequote /* True to cause the name to be dequoted */ 1951 ){ 1952 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1953 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1954 if( pList ){ 1955 struct ExprList_item *pItem; 1956 assert( pList->nExpr>0 ); 1957 pItem = &pList->a[pList->nExpr-1]; 1958 assert( pItem->zEName==0 ); 1959 assert( pItem->eEName==ENAME_NAME ); 1960 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1961 if( dequote ){ 1962 /* If dequote==0, then pName->z does not point to part of a DDL 1963 ** statement handled by the parser. And so no token need be added 1964 ** to the token-map. */ 1965 sqlite3Dequote(pItem->zEName); 1966 if( IN_RENAME_OBJECT ){ 1967 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1968 } 1969 } 1970 } 1971 } 1972 1973 /* 1974 ** Set the ExprList.a[].zSpan element of the most recently added item 1975 ** on the expression list. 1976 ** 1977 ** pList might be NULL following an OOM error. But pSpan should never be 1978 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1979 ** is set. 1980 */ 1981 void sqlite3ExprListSetSpan( 1982 Parse *pParse, /* Parsing context */ 1983 ExprList *pList, /* List to which to add the span. */ 1984 const char *zStart, /* Start of the span */ 1985 const char *zEnd /* End of the span */ 1986 ){ 1987 sqlite3 *db = pParse->db; 1988 assert( pList!=0 || db->mallocFailed!=0 ); 1989 if( pList ){ 1990 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1991 assert( pList->nExpr>0 ); 1992 if( pItem->zEName==0 ){ 1993 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1994 pItem->eEName = ENAME_SPAN; 1995 } 1996 } 1997 } 1998 1999 /* 2000 ** If the expression list pEList contains more than iLimit elements, 2001 ** leave an error message in pParse. 2002 */ 2003 void sqlite3ExprListCheckLength( 2004 Parse *pParse, 2005 ExprList *pEList, 2006 const char *zObject 2007 ){ 2008 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2009 testcase( pEList && pEList->nExpr==mx ); 2010 testcase( pEList && pEList->nExpr==mx+1 ); 2011 if( pEList && pEList->nExpr>mx ){ 2012 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2013 } 2014 } 2015 2016 /* 2017 ** Delete an entire expression list. 2018 */ 2019 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2020 int i = pList->nExpr; 2021 struct ExprList_item *pItem = pList->a; 2022 assert( pList->nExpr>0 ); 2023 do{ 2024 sqlite3ExprDelete(db, pItem->pExpr); 2025 sqlite3DbFree(db, pItem->zEName); 2026 pItem++; 2027 }while( --i>0 ); 2028 sqlite3DbFreeNN(db, pList); 2029 } 2030 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2031 if( pList ) exprListDeleteNN(db, pList); 2032 } 2033 2034 /* 2035 ** Return the bitwise-OR of all Expr.flags fields in the given 2036 ** ExprList. 2037 */ 2038 u32 sqlite3ExprListFlags(const ExprList *pList){ 2039 int i; 2040 u32 m = 0; 2041 assert( pList!=0 ); 2042 for(i=0; i<pList->nExpr; i++){ 2043 Expr *pExpr = pList->a[i].pExpr; 2044 assert( pExpr!=0 ); 2045 m |= pExpr->flags; 2046 } 2047 return m; 2048 } 2049 2050 /* 2051 ** This is a SELECT-node callback for the expression walker that 2052 ** always "fails". By "fail" in this case, we mean set 2053 ** pWalker->eCode to zero and abort. 2054 ** 2055 ** This callback is used by multiple expression walkers. 2056 */ 2057 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2058 UNUSED_PARAMETER(NotUsed); 2059 pWalker->eCode = 0; 2060 return WRC_Abort; 2061 } 2062 2063 /* 2064 ** Check the input string to see if it is "true" or "false" (in any case). 2065 ** 2066 ** If the string is.... Return 2067 ** "true" EP_IsTrue 2068 ** "false" EP_IsFalse 2069 ** anything else 0 2070 */ 2071 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2072 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2073 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2074 return 0; 2075 } 2076 2077 2078 /* 2079 ** If the input expression is an ID with the name "true" or "false" 2080 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2081 ** the conversion happened, and zero if the expression is unaltered. 2082 */ 2083 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2084 u32 v; 2085 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2086 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2087 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2088 ){ 2089 pExpr->op = TK_TRUEFALSE; 2090 ExprSetProperty(pExpr, v); 2091 return 1; 2092 } 2093 return 0; 2094 } 2095 2096 /* 2097 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2098 ** and 0 if it is FALSE. 2099 */ 2100 int sqlite3ExprTruthValue(const Expr *pExpr){ 2101 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2102 assert( pExpr->op==TK_TRUEFALSE ); 2103 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2104 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2105 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2106 return pExpr->u.zToken[4]==0; 2107 } 2108 2109 /* 2110 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2111 ** terms that are always true or false. Return the simplified expression. 2112 ** Or return the original expression if no simplification is possible. 2113 ** 2114 ** Examples: 2115 ** 2116 ** (x<10) AND true => (x<10) 2117 ** (x<10) AND false => false 2118 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2119 ** (x<10) AND (y=22 OR true) => (x<10) 2120 ** (y=22) OR true => true 2121 */ 2122 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2123 assert( pExpr!=0 ); 2124 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2125 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2126 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2127 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2128 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2129 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2130 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2131 } 2132 } 2133 return pExpr; 2134 } 2135 2136 2137 /* 2138 ** These routines are Walker callbacks used to check expressions to 2139 ** see if they are "constant" for some definition of constant. The 2140 ** Walker.eCode value determines the type of "constant" we are looking 2141 ** for. 2142 ** 2143 ** These callback routines are used to implement the following: 2144 ** 2145 ** sqlite3ExprIsConstant() pWalker->eCode==1 2146 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2147 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2148 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2149 ** 2150 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2151 ** is found to not be a constant. 2152 ** 2153 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2154 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2155 ** when parsing an existing schema out of the sqlite_schema table and 4 2156 ** when processing a new CREATE TABLE statement. A bound parameter raises 2157 ** an error for new statements, but is silently converted 2158 ** to NULL for existing schemas. This allows sqlite_schema tables that 2159 ** contain a bound parameter because they were generated by older versions 2160 ** of SQLite to be parsed by newer versions of SQLite without raising a 2161 ** malformed schema error. 2162 */ 2163 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2164 2165 /* If pWalker->eCode is 2 then any term of the expression that comes from 2166 ** the ON or USING clauses of a left join disqualifies the expression 2167 ** from being considered constant. */ 2168 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2169 pWalker->eCode = 0; 2170 return WRC_Abort; 2171 } 2172 2173 switch( pExpr->op ){ 2174 /* Consider functions to be constant if all their arguments are constant 2175 ** and either pWalker->eCode==4 or 5 or the function has the 2176 ** SQLITE_FUNC_CONST flag. */ 2177 case TK_FUNCTION: 2178 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2179 && !ExprHasProperty(pExpr, EP_WinFunc) 2180 ){ 2181 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2182 return WRC_Continue; 2183 }else{ 2184 pWalker->eCode = 0; 2185 return WRC_Abort; 2186 } 2187 case TK_ID: 2188 /* Convert "true" or "false" in a DEFAULT clause into the 2189 ** appropriate TK_TRUEFALSE operator */ 2190 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2191 return WRC_Prune; 2192 } 2193 /* no break */ deliberate_fall_through 2194 case TK_COLUMN: 2195 case TK_AGG_FUNCTION: 2196 case TK_AGG_COLUMN: 2197 testcase( pExpr->op==TK_ID ); 2198 testcase( pExpr->op==TK_COLUMN ); 2199 testcase( pExpr->op==TK_AGG_FUNCTION ); 2200 testcase( pExpr->op==TK_AGG_COLUMN ); 2201 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2202 return WRC_Continue; 2203 } 2204 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2205 return WRC_Continue; 2206 } 2207 /* no break */ deliberate_fall_through 2208 case TK_IF_NULL_ROW: 2209 case TK_REGISTER: 2210 case TK_DOT: 2211 testcase( pExpr->op==TK_REGISTER ); 2212 testcase( pExpr->op==TK_IF_NULL_ROW ); 2213 testcase( pExpr->op==TK_DOT ); 2214 pWalker->eCode = 0; 2215 return WRC_Abort; 2216 case TK_VARIABLE: 2217 if( pWalker->eCode==5 ){ 2218 /* Silently convert bound parameters that appear inside of CREATE 2219 ** statements into a NULL when parsing the CREATE statement text out 2220 ** of the sqlite_schema table */ 2221 pExpr->op = TK_NULL; 2222 }else if( pWalker->eCode==4 ){ 2223 /* A bound parameter in a CREATE statement that originates from 2224 ** sqlite3_prepare() causes an error */ 2225 pWalker->eCode = 0; 2226 return WRC_Abort; 2227 } 2228 /* no break */ deliberate_fall_through 2229 default: 2230 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2231 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2232 return WRC_Continue; 2233 } 2234 } 2235 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2236 Walker w; 2237 w.eCode = initFlag; 2238 w.xExprCallback = exprNodeIsConstant; 2239 w.xSelectCallback = sqlite3SelectWalkFail; 2240 #ifdef SQLITE_DEBUG 2241 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2242 #endif 2243 w.u.iCur = iCur; 2244 sqlite3WalkExpr(&w, p); 2245 return w.eCode; 2246 } 2247 2248 /* 2249 ** Walk an expression tree. Return non-zero if the expression is constant 2250 ** and 0 if it involves variables or function calls. 2251 ** 2252 ** For the purposes of this function, a double-quoted string (ex: "abc") 2253 ** is considered a variable but a single-quoted string (ex: 'abc') is 2254 ** a constant. 2255 */ 2256 int sqlite3ExprIsConstant(Expr *p){ 2257 return exprIsConst(p, 1, 0); 2258 } 2259 2260 /* 2261 ** Walk an expression tree. Return non-zero if 2262 ** 2263 ** (1) the expression is constant, and 2264 ** (2) the expression does originate in the ON or USING clause 2265 ** of a LEFT JOIN, and 2266 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2267 ** operands created by the constant propagation optimization. 2268 ** 2269 ** When this routine returns true, it indicates that the expression 2270 ** can be added to the pParse->pConstExpr list and evaluated once when 2271 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2272 */ 2273 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2274 return exprIsConst(p, 2, 0); 2275 } 2276 2277 /* 2278 ** Walk an expression tree. Return non-zero if the expression is constant 2279 ** for any single row of the table with cursor iCur. In other words, the 2280 ** expression must not refer to any non-deterministic function nor any 2281 ** table other than iCur. 2282 */ 2283 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2284 return exprIsConst(p, 3, iCur); 2285 } 2286 2287 2288 /* 2289 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2290 */ 2291 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2292 ExprList *pGroupBy = pWalker->u.pGroupBy; 2293 int i; 2294 2295 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2296 ** it constant. */ 2297 for(i=0; i<pGroupBy->nExpr; i++){ 2298 Expr *p = pGroupBy->a[i].pExpr; 2299 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2300 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2301 if( sqlite3IsBinary(pColl) ){ 2302 return WRC_Prune; 2303 } 2304 } 2305 } 2306 2307 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2308 if( ExprUseXSelect(pExpr) ){ 2309 pWalker->eCode = 0; 2310 return WRC_Abort; 2311 } 2312 2313 return exprNodeIsConstant(pWalker, pExpr); 2314 } 2315 2316 /* 2317 ** Walk the expression tree passed as the first argument. Return non-zero 2318 ** if the expression consists entirely of constants or copies of terms 2319 ** in pGroupBy that sort with the BINARY collation sequence. 2320 ** 2321 ** This routine is used to determine if a term of the HAVING clause can 2322 ** be promoted into the WHERE clause. In order for such a promotion to work, 2323 ** the value of the HAVING clause term must be the same for all members of 2324 ** a "group". The requirement that the GROUP BY term must be BINARY 2325 ** assumes that no other collating sequence will have a finer-grained 2326 ** grouping than binary. In other words (A=B COLLATE binary) implies 2327 ** A=B in every other collating sequence. The requirement that the 2328 ** GROUP BY be BINARY is stricter than necessary. It would also work 2329 ** to promote HAVING clauses that use the same alternative collating 2330 ** sequence as the GROUP BY term, but that is much harder to check, 2331 ** alternative collating sequences are uncommon, and this is only an 2332 ** optimization, so we take the easy way out and simply require the 2333 ** GROUP BY to use the BINARY collating sequence. 2334 */ 2335 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2336 Walker w; 2337 w.eCode = 1; 2338 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2339 w.xSelectCallback = 0; 2340 w.u.pGroupBy = pGroupBy; 2341 w.pParse = pParse; 2342 sqlite3WalkExpr(&w, p); 2343 return w.eCode; 2344 } 2345 2346 /* 2347 ** Walk an expression tree for the DEFAULT field of a column definition 2348 ** in a CREATE TABLE statement. Return non-zero if the expression is 2349 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2350 ** the expression is constant or a function call with constant arguments. 2351 ** Return and 0 if there are any variables. 2352 ** 2353 ** isInit is true when parsing from sqlite_schema. isInit is false when 2354 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2355 ** (such as ? or $abc) in the expression are converted into NULL. When 2356 ** isInit is false, parameters raise an error. Parameters should not be 2357 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2358 ** allowed it, so we need to support it when reading sqlite_schema for 2359 ** backwards compatibility. 2360 ** 2361 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2362 ** 2363 ** For the purposes of this function, a double-quoted string (ex: "abc") 2364 ** is considered a variable but a single-quoted string (ex: 'abc') is 2365 ** a constant. 2366 */ 2367 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2368 assert( isInit==0 || isInit==1 ); 2369 return exprIsConst(p, 4+isInit, 0); 2370 } 2371 2372 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2373 /* 2374 ** Walk an expression tree. Return 1 if the expression contains a 2375 ** subquery of some kind. Return 0 if there are no subqueries. 2376 */ 2377 int sqlite3ExprContainsSubquery(Expr *p){ 2378 Walker w; 2379 w.eCode = 1; 2380 w.xExprCallback = sqlite3ExprWalkNoop; 2381 w.xSelectCallback = sqlite3SelectWalkFail; 2382 #ifdef SQLITE_DEBUG 2383 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2384 #endif 2385 sqlite3WalkExpr(&w, p); 2386 return w.eCode==0; 2387 } 2388 #endif 2389 2390 /* 2391 ** If the expression p codes a constant integer that is small enough 2392 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2393 ** in *pValue. If the expression is not an integer or if it is too big 2394 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2395 */ 2396 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2397 int rc = 0; 2398 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2399 2400 /* If an expression is an integer literal that fits in a signed 32-bit 2401 ** integer, then the EP_IntValue flag will have already been set */ 2402 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2403 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2404 2405 if( p->flags & EP_IntValue ){ 2406 *pValue = p->u.iValue; 2407 return 1; 2408 } 2409 switch( p->op ){ 2410 case TK_UPLUS: { 2411 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2412 break; 2413 } 2414 case TK_UMINUS: { 2415 int v = 0; 2416 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2417 assert( ((unsigned int)v)!=0x80000000 ); 2418 *pValue = -v; 2419 rc = 1; 2420 } 2421 break; 2422 } 2423 default: break; 2424 } 2425 return rc; 2426 } 2427 2428 /* 2429 ** Return FALSE if there is no chance that the expression can be NULL. 2430 ** 2431 ** If the expression might be NULL or if the expression is too complex 2432 ** to tell return TRUE. 2433 ** 2434 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2435 ** when we know that a value cannot be NULL. Hence, a false positive 2436 ** (returning TRUE when in fact the expression can never be NULL) might 2437 ** be a small performance hit but is otherwise harmless. On the other 2438 ** hand, a false negative (returning FALSE when the result could be NULL) 2439 ** will likely result in an incorrect answer. So when in doubt, return 2440 ** TRUE. 2441 */ 2442 int sqlite3ExprCanBeNull(const Expr *p){ 2443 u8 op; 2444 assert( p!=0 ); 2445 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2446 p = p->pLeft; 2447 assert( p!=0 ); 2448 } 2449 op = p->op; 2450 if( op==TK_REGISTER ) op = p->op2; 2451 switch( op ){ 2452 case TK_INTEGER: 2453 case TK_STRING: 2454 case TK_FLOAT: 2455 case TK_BLOB: 2456 return 0; 2457 case TK_COLUMN: 2458 assert( ExprUseYTab(p) ); 2459 return ExprHasProperty(p, EP_CanBeNull) || 2460 p->y.pTab==0 || /* Reference to column of index on expression */ 2461 (p->iColumn>=0 2462 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2463 && p->y.pTab->aCol[p->iColumn].notNull==0); 2464 default: 2465 return 1; 2466 } 2467 } 2468 2469 /* 2470 ** Return TRUE if the given expression is a constant which would be 2471 ** unchanged by OP_Affinity with the affinity given in the second 2472 ** argument. 2473 ** 2474 ** This routine is used to determine if the OP_Affinity operation 2475 ** can be omitted. When in doubt return FALSE. A false negative 2476 ** is harmless. A false positive, however, can result in the wrong 2477 ** answer. 2478 */ 2479 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2480 u8 op; 2481 int unaryMinus = 0; 2482 if( aff==SQLITE_AFF_BLOB ) return 1; 2483 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2484 if( p->op==TK_UMINUS ) unaryMinus = 1; 2485 p = p->pLeft; 2486 } 2487 op = p->op; 2488 if( op==TK_REGISTER ) op = p->op2; 2489 switch( op ){ 2490 case TK_INTEGER: { 2491 return aff>=SQLITE_AFF_NUMERIC; 2492 } 2493 case TK_FLOAT: { 2494 return aff>=SQLITE_AFF_NUMERIC; 2495 } 2496 case TK_STRING: { 2497 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2498 } 2499 case TK_BLOB: { 2500 return !unaryMinus; 2501 } 2502 case TK_COLUMN: { 2503 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2504 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2505 } 2506 default: { 2507 return 0; 2508 } 2509 } 2510 } 2511 2512 /* 2513 ** Return TRUE if the given string is a row-id column name. 2514 */ 2515 int sqlite3IsRowid(const char *z){ 2516 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2517 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2518 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2519 return 0; 2520 } 2521 2522 /* 2523 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2524 ** that can be simplified to a direct table access, then return 2525 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2526 ** or if the SELECT statement needs to be manifested into a transient 2527 ** table, then return NULL. 2528 */ 2529 #ifndef SQLITE_OMIT_SUBQUERY 2530 static Select *isCandidateForInOpt(const Expr *pX){ 2531 Select *p; 2532 SrcList *pSrc; 2533 ExprList *pEList; 2534 Table *pTab; 2535 int i; 2536 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2537 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2538 p = pX->x.pSelect; 2539 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2540 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2541 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2542 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2543 return 0; /* No DISTINCT keyword and no aggregate functions */ 2544 } 2545 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2546 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2547 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2548 pSrc = p->pSrc; 2549 assert( pSrc!=0 ); 2550 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2551 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2552 pTab = pSrc->a[0].pTab; 2553 assert( pTab!=0 ); 2554 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2555 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2556 pEList = p->pEList; 2557 assert( pEList!=0 ); 2558 /* All SELECT results must be columns. */ 2559 for(i=0; i<pEList->nExpr; i++){ 2560 Expr *pRes = pEList->a[i].pExpr; 2561 if( pRes->op!=TK_COLUMN ) return 0; 2562 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2563 } 2564 return p; 2565 } 2566 #endif /* SQLITE_OMIT_SUBQUERY */ 2567 2568 #ifndef SQLITE_OMIT_SUBQUERY 2569 /* 2570 ** Generate code that checks the left-most column of index table iCur to see if 2571 ** it contains any NULL entries. Cause the register at regHasNull to be set 2572 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2573 ** to be set to NULL if iCur contains one or more NULL values. 2574 */ 2575 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2576 int addr1; 2577 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2578 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2579 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2580 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2581 VdbeComment((v, "first_entry_in(%d)", iCur)); 2582 sqlite3VdbeJumpHere(v, addr1); 2583 } 2584 #endif 2585 2586 2587 #ifndef SQLITE_OMIT_SUBQUERY 2588 /* 2589 ** The argument is an IN operator with a list (not a subquery) on the 2590 ** right-hand side. Return TRUE if that list is constant. 2591 */ 2592 static int sqlite3InRhsIsConstant(Expr *pIn){ 2593 Expr *pLHS; 2594 int res; 2595 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2596 pLHS = pIn->pLeft; 2597 pIn->pLeft = 0; 2598 res = sqlite3ExprIsConstant(pIn); 2599 pIn->pLeft = pLHS; 2600 return res; 2601 } 2602 #endif 2603 2604 /* 2605 ** This function is used by the implementation of the IN (...) operator. 2606 ** The pX parameter is the expression on the RHS of the IN operator, which 2607 ** might be either a list of expressions or a subquery. 2608 ** 2609 ** The job of this routine is to find or create a b-tree object that can 2610 ** be used either to test for membership in the RHS set or to iterate through 2611 ** all members of the RHS set, skipping duplicates. 2612 ** 2613 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2614 ** and pX->iTable is set to the index of that cursor. 2615 ** 2616 ** The returned value of this function indicates the b-tree type, as follows: 2617 ** 2618 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2619 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2620 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2621 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2622 ** populated epheremal table. 2623 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2624 ** implemented as a sequence of comparisons. 2625 ** 2626 ** An existing b-tree might be used if the RHS expression pX is a simple 2627 ** subquery such as: 2628 ** 2629 ** SELECT <column1>, <column2>... FROM <table> 2630 ** 2631 ** If the RHS of the IN operator is a list or a more complex subquery, then 2632 ** an ephemeral table might need to be generated from the RHS and then 2633 ** pX->iTable made to point to the ephemeral table instead of an 2634 ** existing table. 2635 ** 2636 ** The inFlags parameter must contain, at a minimum, one of the bits 2637 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2638 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2639 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2640 ** be used to loop over all values of the RHS of the IN operator. 2641 ** 2642 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2643 ** through the set members) then the b-tree must not contain duplicates. 2644 ** An epheremal table will be created unless the selected columns are guaranteed 2645 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2646 ** a UNIQUE constraint or index. 2647 ** 2648 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2649 ** for fast set membership tests) then an epheremal table must 2650 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2651 ** index can be found with the specified <columns> as its left-most. 2652 ** 2653 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2654 ** if the RHS of the IN operator is a list (not a subquery) then this 2655 ** routine might decide that creating an ephemeral b-tree for membership 2656 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2657 ** calling routine should implement the IN operator using a sequence 2658 ** of Eq or Ne comparison operations. 2659 ** 2660 ** When the b-tree is being used for membership tests, the calling function 2661 ** might need to know whether or not the RHS side of the IN operator 2662 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2663 ** if there is any chance that the (...) might contain a NULL value at 2664 ** runtime, then a register is allocated and the register number written 2665 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2666 ** NULL value, then *prRhsHasNull is left unchanged. 2667 ** 2668 ** If a register is allocated and its location stored in *prRhsHasNull, then 2669 ** the value in that register will be NULL if the b-tree contains one or more 2670 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2671 ** NULL values. 2672 ** 2673 ** If the aiMap parameter is not NULL, it must point to an array containing 2674 ** one element for each column returned by the SELECT statement on the RHS 2675 ** of the IN(...) operator. The i'th entry of the array is populated with the 2676 ** offset of the index column that matches the i'th column returned by the 2677 ** SELECT. For example, if the expression and selected index are: 2678 ** 2679 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2680 ** CREATE INDEX i1 ON t1(b, c, a); 2681 ** 2682 ** then aiMap[] is populated with {2, 0, 1}. 2683 */ 2684 #ifndef SQLITE_OMIT_SUBQUERY 2685 int sqlite3FindInIndex( 2686 Parse *pParse, /* Parsing context */ 2687 Expr *pX, /* The IN expression */ 2688 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2689 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2690 int *aiMap, /* Mapping from Index fields to RHS fields */ 2691 int *piTab /* OUT: index to use */ 2692 ){ 2693 Select *p; /* SELECT to the right of IN operator */ 2694 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2695 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2696 int mustBeUnique; /* True if RHS must be unique */ 2697 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2698 2699 assert( pX->op==TK_IN ); 2700 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2701 2702 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2703 ** whether or not the SELECT result contains NULL values, check whether 2704 ** or not NULL is actually possible (it may not be, for example, due 2705 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2706 ** set prRhsHasNull to 0 before continuing. */ 2707 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2708 int i; 2709 ExprList *pEList = pX->x.pSelect->pEList; 2710 for(i=0; i<pEList->nExpr; i++){ 2711 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2712 } 2713 if( i==pEList->nExpr ){ 2714 prRhsHasNull = 0; 2715 } 2716 } 2717 2718 /* Check to see if an existing table or index can be used to 2719 ** satisfy the query. This is preferable to generating a new 2720 ** ephemeral table. */ 2721 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2722 sqlite3 *db = pParse->db; /* Database connection */ 2723 Table *pTab; /* Table <table>. */ 2724 int iDb; /* Database idx for pTab */ 2725 ExprList *pEList = p->pEList; 2726 int nExpr = pEList->nExpr; 2727 2728 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2729 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2730 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2731 pTab = p->pSrc->a[0].pTab; 2732 2733 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2734 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2735 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2736 sqlite3CodeVerifySchema(pParse, iDb); 2737 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2738 2739 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2740 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2741 /* The "x IN (SELECT rowid FROM table)" case */ 2742 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2743 VdbeCoverage(v); 2744 2745 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2746 eType = IN_INDEX_ROWID; 2747 ExplainQueryPlan((pParse, 0, 2748 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2749 sqlite3VdbeJumpHere(v, iAddr); 2750 }else{ 2751 Index *pIdx; /* Iterator variable */ 2752 int affinity_ok = 1; 2753 int i; 2754 2755 /* Check that the affinity that will be used to perform each 2756 ** comparison is the same as the affinity of each column in table 2757 ** on the RHS of the IN operator. If it not, it is not possible to 2758 ** use any index of the RHS table. */ 2759 for(i=0; i<nExpr && affinity_ok; i++){ 2760 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2761 int iCol = pEList->a[i].pExpr->iColumn; 2762 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2763 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2764 testcase( cmpaff==SQLITE_AFF_BLOB ); 2765 testcase( cmpaff==SQLITE_AFF_TEXT ); 2766 switch( cmpaff ){ 2767 case SQLITE_AFF_BLOB: 2768 break; 2769 case SQLITE_AFF_TEXT: 2770 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2771 ** other has no affinity and the other side is TEXT. Hence, 2772 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2773 ** and for the term on the LHS of the IN to have no affinity. */ 2774 assert( idxaff==SQLITE_AFF_TEXT ); 2775 break; 2776 default: 2777 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2778 } 2779 } 2780 2781 if( affinity_ok ){ 2782 /* Search for an existing index that will work for this IN operator */ 2783 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2784 Bitmask colUsed; /* Columns of the index used */ 2785 Bitmask mCol; /* Mask for the current column */ 2786 if( pIdx->nColumn<nExpr ) continue; 2787 if( pIdx->pPartIdxWhere!=0 ) continue; 2788 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2789 ** BITMASK(nExpr) without overflowing */ 2790 testcase( pIdx->nColumn==BMS-2 ); 2791 testcase( pIdx->nColumn==BMS-1 ); 2792 if( pIdx->nColumn>=BMS-1 ) continue; 2793 if( mustBeUnique ){ 2794 if( pIdx->nKeyCol>nExpr 2795 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2796 ){ 2797 continue; /* This index is not unique over the IN RHS columns */ 2798 } 2799 } 2800 2801 colUsed = 0; /* Columns of index used so far */ 2802 for(i=0; i<nExpr; i++){ 2803 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2804 Expr *pRhs = pEList->a[i].pExpr; 2805 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2806 int j; 2807 2808 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2809 for(j=0; j<nExpr; j++){ 2810 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2811 assert( pIdx->azColl[j] ); 2812 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2813 continue; 2814 } 2815 break; 2816 } 2817 if( j==nExpr ) break; 2818 mCol = MASKBIT(j); 2819 if( mCol & colUsed ) break; /* Each column used only once */ 2820 colUsed |= mCol; 2821 if( aiMap ) aiMap[i] = j; 2822 } 2823 2824 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2825 if( colUsed==(MASKBIT(nExpr)-1) ){ 2826 /* If we reach this point, that means the index pIdx is usable */ 2827 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2828 ExplainQueryPlan((pParse, 0, 2829 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2830 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2831 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2832 VdbeComment((v, "%s", pIdx->zName)); 2833 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2834 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2835 2836 if( prRhsHasNull ){ 2837 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2838 i64 mask = (1<<nExpr)-1; 2839 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2840 iTab, 0, 0, (u8*)&mask, P4_INT64); 2841 #endif 2842 *prRhsHasNull = ++pParse->nMem; 2843 if( nExpr==1 ){ 2844 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2845 } 2846 } 2847 sqlite3VdbeJumpHere(v, iAddr); 2848 } 2849 } /* End loop over indexes */ 2850 } /* End if( affinity_ok ) */ 2851 } /* End if not an rowid index */ 2852 } /* End attempt to optimize using an index */ 2853 2854 /* If no preexisting index is available for the IN clause 2855 ** and IN_INDEX_NOOP is an allowed reply 2856 ** and the RHS of the IN operator is a list, not a subquery 2857 ** and the RHS is not constant or has two or fewer terms, 2858 ** then it is not worth creating an ephemeral table to evaluate 2859 ** the IN operator so return IN_INDEX_NOOP. 2860 */ 2861 if( eType==0 2862 && (inFlags & IN_INDEX_NOOP_OK) 2863 && ExprUseXList(pX) 2864 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2865 ){ 2866 eType = IN_INDEX_NOOP; 2867 } 2868 2869 if( eType==0 ){ 2870 /* Could not find an existing table or index to use as the RHS b-tree. 2871 ** We will have to generate an ephemeral table to do the job. 2872 */ 2873 u32 savedNQueryLoop = pParse->nQueryLoop; 2874 int rMayHaveNull = 0; 2875 eType = IN_INDEX_EPH; 2876 if( inFlags & IN_INDEX_LOOP ){ 2877 pParse->nQueryLoop = 0; 2878 }else if( prRhsHasNull ){ 2879 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2880 } 2881 assert( pX->op==TK_IN ); 2882 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2883 if( rMayHaveNull ){ 2884 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2885 } 2886 pParse->nQueryLoop = savedNQueryLoop; 2887 } 2888 2889 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2890 int i, n; 2891 n = sqlite3ExprVectorSize(pX->pLeft); 2892 for(i=0; i<n; i++) aiMap[i] = i; 2893 } 2894 *piTab = iTab; 2895 return eType; 2896 } 2897 #endif 2898 2899 #ifndef SQLITE_OMIT_SUBQUERY 2900 /* 2901 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2902 ** function allocates and returns a nul-terminated string containing 2903 ** the affinities to be used for each column of the comparison. 2904 ** 2905 ** It is the responsibility of the caller to ensure that the returned 2906 ** string is eventually freed using sqlite3DbFree(). 2907 */ 2908 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2909 Expr *pLeft = pExpr->pLeft; 2910 int nVal = sqlite3ExprVectorSize(pLeft); 2911 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2912 char *zRet; 2913 2914 assert( pExpr->op==TK_IN ); 2915 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2916 if( zRet ){ 2917 int i; 2918 for(i=0; i<nVal; i++){ 2919 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2920 char a = sqlite3ExprAffinity(pA); 2921 if( pSelect ){ 2922 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2923 }else{ 2924 zRet[i] = a; 2925 } 2926 } 2927 zRet[nVal] = '\0'; 2928 } 2929 return zRet; 2930 } 2931 #endif 2932 2933 #ifndef SQLITE_OMIT_SUBQUERY 2934 /* 2935 ** Load the Parse object passed as the first argument with an error 2936 ** message of the form: 2937 ** 2938 ** "sub-select returns N columns - expected M" 2939 */ 2940 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2941 if( pParse->nErr==0 ){ 2942 const char *zFmt = "sub-select returns %d columns - expected %d"; 2943 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2944 } 2945 } 2946 #endif 2947 2948 /* 2949 ** Expression pExpr is a vector that has been used in a context where 2950 ** it is not permitted. If pExpr is a sub-select vector, this routine 2951 ** loads the Parse object with a message of the form: 2952 ** 2953 ** "sub-select returns N columns - expected 1" 2954 ** 2955 ** Or, if it is a regular scalar vector: 2956 ** 2957 ** "row value misused" 2958 */ 2959 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2960 #ifndef SQLITE_OMIT_SUBQUERY 2961 if( ExprUseXSelect(pExpr) ){ 2962 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2963 }else 2964 #endif 2965 { 2966 sqlite3ErrorMsg(pParse, "row value misused"); 2967 } 2968 } 2969 2970 #ifndef SQLITE_OMIT_SUBQUERY 2971 /* 2972 ** Generate code that will construct an ephemeral table containing all terms 2973 ** in the RHS of an IN operator. The IN operator can be in either of two 2974 ** forms: 2975 ** 2976 ** x IN (4,5,11) -- IN operator with list on right-hand side 2977 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2978 ** 2979 ** The pExpr parameter is the IN operator. The cursor number for the 2980 ** constructed ephermeral table is returned. The first time the ephemeral 2981 ** table is computed, the cursor number is also stored in pExpr->iTable, 2982 ** however the cursor number returned might not be the same, as it might 2983 ** have been duplicated using OP_OpenDup. 2984 ** 2985 ** If the LHS expression ("x" in the examples) is a column value, or 2986 ** the SELECT statement returns a column value, then the affinity of that 2987 ** column is used to build the index keys. If both 'x' and the 2988 ** SELECT... statement are columns, then numeric affinity is used 2989 ** if either column has NUMERIC or INTEGER affinity. If neither 2990 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2991 ** is used. 2992 */ 2993 void sqlite3CodeRhsOfIN( 2994 Parse *pParse, /* Parsing context */ 2995 Expr *pExpr, /* The IN operator */ 2996 int iTab /* Use this cursor number */ 2997 ){ 2998 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2999 int addr; /* Address of OP_OpenEphemeral instruction */ 3000 Expr *pLeft; /* the LHS of the IN operator */ 3001 KeyInfo *pKeyInfo = 0; /* Key information */ 3002 int nVal; /* Size of vector pLeft */ 3003 Vdbe *v; /* The prepared statement under construction */ 3004 3005 v = pParse->pVdbe; 3006 assert( v!=0 ); 3007 3008 /* The evaluation of the IN must be repeated every time it 3009 ** is encountered if any of the following is true: 3010 ** 3011 ** * The right-hand side is a correlated subquery 3012 ** * The right-hand side is an expression list containing variables 3013 ** * We are inside a trigger 3014 ** 3015 ** If all of the above are false, then we can compute the RHS just once 3016 ** and reuse it many names. 3017 */ 3018 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3019 /* Reuse of the RHS is allowed */ 3020 /* If this routine has already been coded, but the previous code 3021 ** might not have been invoked yet, so invoke it now as a subroutine. 3022 */ 3023 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3024 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3025 if( ExprUseXSelect(pExpr) ){ 3026 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3027 pExpr->x.pSelect->selId)); 3028 } 3029 assert( ExprUseYSub(pExpr) ); 3030 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3031 pExpr->y.sub.iAddr); 3032 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3033 sqlite3VdbeJumpHere(v, addrOnce); 3034 return; 3035 } 3036 3037 /* Begin coding the subroutine */ 3038 assert( !ExprUseYWin(pExpr) ); 3039 ExprSetProperty(pExpr, EP_Subrtn); 3040 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3041 pExpr->y.sub.regReturn = ++pParse->nMem; 3042 pExpr->y.sub.iAddr = 3043 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3044 VdbeComment((v, "return address")); 3045 3046 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3047 } 3048 3049 /* Check to see if this is a vector IN operator */ 3050 pLeft = pExpr->pLeft; 3051 nVal = sqlite3ExprVectorSize(pLeft); 3052 3053 /* Construct the ephemeral table that will contain the content of 3054 ** RHS of the IN operator. 3055 */ 3056 pExpr->iTable = iTab; 3057 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3058 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3059 if( ExprUseXSelect(pExpr) ){ 3060 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3061 }else{ 3062 VdbeComment((v, "RHS of IN operator")); 3063 } 3064 #endif 3065 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3066 3067 if( ExprUseXSelect(pExpr) ){ 3068 /* Case 1: expr IN (SELECT ...) 3069 ** 3070 ** Generate code to write the results of the select into the temporary 3071 ** table allocated and opened above. 3072 */ 3073 Select *pSelect = pExpr->x.pSelect; 3074 ExprList *pEList = pSelect->pEList; 3075 3076 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3077 addrOnce?"":"CORRELATED ", pSelect->selId 3078 )); 3079 /* If the LHS and RHS of the IN operator do not match, that 3080 ** error will have been caught long before we reach this point. */ 3081 if( ALWAYS(pEList->nExpr==nVal) ){ 3082 Select *pCopy; 3083 SelectDest dest; 3084 int i; 3085 int rc; 3086 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3087 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3088 pSelect->iLimit = 0; 3089 testcase( pSelect->selFlags & SF_Distinct ); 3090 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3091 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3092 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3093 sqlite3SelectDelete(pParse->db, pCopy); 3094 sqlite3DbFree(pParse->db, dest.zAffSdst); 3095 if( rc ){ 3096 sqlite3KeyInfoUnref(pKeyInfo); 3097 return; 3098 } 3099 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3100 assert( pEList!=0 ); 3101 assert( pEList->nExpr>0 ); 3102 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3103 for(i=0; i<nVal; i++){ 3104 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3105 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3106 pParse, p, pEList->a[i].pExpr 3107 ); 3108 } 3109 } 3110 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3111 /* Case 2: expr IN (exprlist) 3112 ** 3113 ** For each expression, build an index key from the evaluation and 3114 ** store it in the temporary table. If <expr> is a column, then use 3115 ** that columns affinity when building index keys. If <expr> is not 3116 ** a column, use numeric affinity. 3117 */ 3118 char affinity; /* Affinity of the LHS of the IN */ 3119 int i; 3120 ExprList *pList = pExpr->x.pList; 3121 struct ExprList_item *pItem; 3122 int r1, r2; 3123 affinity = sqlite3ExprAffinity(pLeft); 3124 if( affinity<=SQLITE_AFF_NONE ){ 3125 affinity = SQLITE_AFF_BLOB; 3126 }else if( affinity==SQLITE_AFF_REAL ){ 3127 affinity = SQLITE_AFF_NUMERIC; 3128 } 3129 if( pKeyInfo ){ 3130 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3131 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3132 } 3133 3134 /* Loop through each expression in <exprlist>. */ 3135 r1 = sqlite3GetTempReg(pParse); 3136 r2 = sqlite3GetTempReg(pParse); 3137 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3138 Expr *pE2 = pItem->pExpr; 3139 3140 /* If the expression is not constant then we will need to 3141 ** disable the test that was generated above that makes sure 3142 ** this code only executes once. Because for a non-constant 3143 ** expression we need to rerun this code each time. 3144 */ 3145 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3146 sqlite3VdbeChangeToNoop(v, addrOnce); 3147 ExprClearProperty(pExpr, EP_Subrtn); 3148 addrOnce = 0; 3149 } 3150 3151 /* Evaluate the expression and insert it into the temp table */ 3152 sqlite3ExprCode(pParse, pE2, r1); 3153 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3154 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3155 } 3156 sqlite3ReleaseTempReg(pParse, r1); 3157 sqlite3ReleaseTempReg(pParse, r2); 3158 } 3159 if( pKeyInfo ){ 3160 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3161 } 3162 if( addrOnce ){ 3163 sqlite3VdbeJumpHere(v, addrOnce); 3164 /* Subroutine return */ 3165 assert( ExprUseYSub(pExpr) ); 3166 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3167 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3168 sqlite3ClearTempRegCache(pParse); 3169 } 3170 } 3171 #endif /* SQLITE_OMIT_SUBQUERY */ 3172 3173 /* 3174 ** Generate code for scalar subqueries used as a subquery expression 3175 ** or EXISTS operator: 3176 ** 3177 ** (SELECT a FROM b) -- subquery 3178 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3179 ** 3180 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3181 ** 3182 ** Return the register that holds the result. For a multi-column SELECT, 3183 ** the result is stored in a contiguous array of registers and the 3184 ** return value is the register of the left-most result column. 3185 ** Return 0 if an error occurs. 3186 */ 3187 #ifndef SQLITE_OMIT_SUBQUERY 3188 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3189 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3190 int rReg = 0; /* Register storing resulting */ 3191 Select *pSel; /* SELECT statement to encode */ 3192 SelectDest dest; /* How to deal with SELECT result */ 3193 int nReg; /* Registers to allocate */ 3194 Expr *pLimit; /* New limit expression */ 3195 3196 Vdbe *v = pParse->pVdbe; 3197 assert( v!=0 ); 3198 if( pParse->nErr ) return 0; 3199 testcase( pExpr->op==TK_EXISTS ); 3200 testcase( pExpr->op==TK_SELECT ); 3201 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3202 assert( ExprUseXSelect(pExpr) ); 3203 pSel = pExpr->x.pSelect; 3204 3205 /* If this routine has already been coded, then invoke it as a 3206 ** subroutine. */ 3207 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3208 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3209 assert( ExprUseYSub(pExpr) ); 3210 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3211 pExpr->y.sub.iAddr); 3212 return pExpr->iTable; 3213 } 3214 3215 /* Begin coding the subroutine */ 3216 assert( !ExprUseYWin(pExpr) ); 3217 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3218 ExprSetProperty(pExpr, EP_Subrtn); 3219 pExpr->y.sub.regReturn = ++pParse->nMem; 3220 pExpr->y.sub.iAddr = 3221 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3222 VdbeComment((v, "return address")); 3223 3224 3225 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3226 ** is encountered if any of the following is true: 3227 ** 3228 ** * The right-hand side is a correlated subquery 3229 ** * The right-hand side is an expression list containing variables 3230 ** * We are inside a trigger 3231 ** 3232 ** If all of the above are false, then we can run this code just once 3233 ** save the results, and reuse the same result on subsequent invocations. 3234 */ 3235 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3236 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3237 } 3238 3239 /* For a SELECT, generate code to put the values for all columns of 3240 ** the first row into an array of registers and return the index of 3241 ** the first register. 3242 ** 3243 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3244 ** into a register and return that register number. 3245 ** 3246 ** In both cases, the query is augmented with "LIMIT 1". Any 3247 ** preexisting limit is discarded in place of the new LIMIT 1. 3248 */ 3249 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3250 addrOnce?"":"CORRELATED ", pSel->selId)); 3251 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3252 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3253 pParse->nMem += nReg; 3254 if( pExpr->op==TK_SELECT ){ 3255 dest.eDest = SRT_Mem; 3256 dest.iSdst = dest.iSDParm; 3257 dest.nSdst = nReg; 3258 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3259 VdbeComment((v, "Init subquery result")); 3260 }else{ 3261 dest.eDest = SRT_Exists; 3262 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3263 VdbeComment((v, "Init EXISTS result")); 3264 } 3265 if( pSel->pLimit ){ 3266 /* The subquery already has a limit. If the pre-existing limit is X 3267 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3268 sqlite3 *db = pParse->db; 3269 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3270 if( pLimit ){ 3271 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3272 pLimit = sqlite3PExpr(pParse, TK_NE, 3273 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3274 } 3275 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3276 pSel->pLimit->pLeft = pLimit; 3277 }else{ 3278 /* If there is no pre-existing limit add a limit of 1 */ 3279 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3280 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3281 } 3282 pSel->iLimit = 0; 3283 if( sqlite3Select(pParse, pSel, &dest) ){ 3284 pExpr->op2 = pExpr->op; 3285 pExpr->op = TK_ERROR; 3286 return 0; 3287 } 3288 pExpr->iTable = rReg = dest.iSDParm; 3289 ExprSetVVAProperty(pExpr, EP_NoReduce); 3290 if( addrOnce ){ 3291 sqlite3VdbeJumpHere(v, addrOnce); 3292 } 3293 3294 /* Subroutine return */ 3295 assert( ExprUseYSub(pExpr) ); 3296 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3297 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3298 sqlite3ClearTempRegCache(pParse); 3299 return rReg; 3300 } 3301 #endif /* SQLITE_OMIT_SUBQUERY */ 3302 3303 #ifndef SQLITE_OMIT_SUBQUERY 3304 /* 3305 ** Expr pIn is an IN(...) expression. This function checks that the 3306 ** sub-select on the RHS of the IN() operator has the same number of 3307 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3308 ** a sub-query, that the LHS is a vector of size 1. 3309 */ 3310 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3311 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3312 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3313 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3314 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3315 return 1; 3316 } 3317 }else if( nVector!=1 ){ 3318 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3319 return 1; 3320 } 3321 return 0; 3322 } 3323 #endif 3324 3325 #ifndef SQLITE_OMIT_SUBQUERY 3326 /* 3327 ** Generate code for an IN expression. 3328 ** 3329 ** x IN (SELECT ...) 3330 ** x IN (value, value, ...) 3331 ** 3332 ** The left-hand side (LHS) is a scalar or vector expression. The 3333 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3334 ** subquery. If the RHS is a subquery, the number of result columns must 3335 ** match the number of columns in the vector on the LHS. If the RHS is 3336 ** a list of values, the LHS must be a scalar. 3337 ** 3338 ** The IN operator is true if the LHS value is contained within the RHS. 3339 ** The result is false if the LHS is definitely not in the RHS. The 3340 ** result is NULL if the presence of the LHS in the RHS cannot be 3341 ** determined due to NULLs. 3342 ** 3343 ** This routine generates code that jumps to destIfFalse if the LHS is not 3344 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3345 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3346 ** within the RHS then fall through. 3347 ** 3348 ** See the separate in-operator.md documentation file in the canonical 3349 ** SQLite source tree for additional information. 3350 */ 3351 static void sqlite3ExprCodeIN( 3352 Parse *pParse, /* Parsing and code generating context */ 3353 Expr *pExpr, /* The IN expression */ 3354 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3355 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3356 ){ 3357 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3358 int eType; /* Type of the RHS */ 3359 int rLhs; /* Register(s) holding the LHS values */ 3360 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3361 Vdbe *v; /* Statement under construction */ 3362 int *aiMap = 0; /* Map from vector field to index column */ 3363 char *zAff = 0; /* Affinity string for comparisons */ 3364 int nVector; /* Size of vectors for this IN operator */ 3365 int iDummy; /* Dummy parameter to exprCodeVector() */ 3366 Expr *pLeft; /* The LHS of the IN operator */ 3367 int i; /* loop counter */ 3368 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3369 int destStep6 = 0; /* Start of code for Step 6 */ 3370 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3371 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3372 int addrTop; /* Top of the step-6 loop */ 3373 int iTab = 0; /* Index to use */ 3374 u8 okConstFactor = pParse->okConstFactor; 3375 3376 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3377 pLeft = pExpr->pLeft; 3378 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3379 zAff = exprINAffinity(pParse, pExpr); 3380 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3381 aiMap = (int*)sqlite3DbMallocZero( 3382 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3383 ); 3384 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3385 3386 /* Attempt to compute the RHS. After this step, if anything other than 3387 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3388 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3389 ** the RHS has not yet been coded. */ 3390 v = pParse->pVdbe; 3391 assert( v!=0 ); /* OOM detected prior to this routine */ 3392 VdbeNoopComment((v, "begin IN expr")); 3393 eType = sqlite3FindInIndex(pParse, pExpr, 3394 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3395 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3396 aiMap, &iTab); 3397 3398 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3399 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3400 ); 3401 #ifdef SQLITE_DEBUG 3402 /* Confirm that aiMap[] contains nVector integer values between 0 and 3403 ** nVector-1. */ 3404 for(i=0; i<nVector; i++){ 3405 int j, cnt; 3406 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3407 assert( cnt==1 ); 3408 } 3409 #endif 3410 3411 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3412 ** vector, then it is stored in an array of nVector registers starting 3413 ** at r1. 3414 ** 3415 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3416 ** so that the fields are in the same order as an existing index. The 3417 ** aiMap[] array contains a mapping from the original LHS field order to 3418 ** the field order that matches the RHS index. 3419 ** 3420 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3421 ** even if it is constant, as OP_Affinity may be used on the register 3422 ** by code generated below. */ 3423 assert( pParse->okConstFactor==okConstFactor ); 3424 pParse->okConstFactor = 0; 3425 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3426 pParse->okConstFactor = okConstFactor; 3427 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3428 if( i==nVector ){ 3429 /* LHS fields are not reordered */ 3430 rLhs = rLhsOrig; 3431 }else{ 3432 /* Need to reorder the LHS fields according to aiMap */ 3433 rLhs = sqlite3GetTempRange(pParse, nVector); 3434 for(i=0; i<nVector; i++){ 3435 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3436 } 3437 } 3438 3439 /* If sqlite3FindInIndex() did not find or create an index that is 3440 ** suitable for evaluating the IN operator, then evaluate using a 3441 ** sequence of comparisons. 3442 ** 3443 ** This is step (1) in the in-operator.md optimized algorithm. 3444 */ 3445 if( eType==IN_INDEX_NOOP ){ 3446 ExprList *pList; 3447 CollSeq *pColl; 3448 int labelOk = sqlite3VdbeMakeLabel(pParse); 3449 int r2, regToFree; 3450 int regCkNull = 0; 3451 int ii; 3452 assert( ExprUseXList(pExpr) ); 3453 pList = pExpr->x.pList; 3454 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3455 if( destIfNull!=destIfFalse ){ 3456 regCkNull = sqlite3GetTempReg(pParse); 3457 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3458 } 3459 for(ii=0; ii<pList->nExpr; ii++){ 3460 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3461 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3462 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3463 } 3464 sqlite3ReleaseTempReg(pParse, regToFree); 3465 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3466 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3467 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3468 (void*)pColl, P4_COLLSEQ); 3469 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3470 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3471 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3472 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3473 sqlite3VdbeChangeP5(v, zAff[0]); 3474 }else{ 3475 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3476 assert( destIfNull==destIfFalse ); 3477 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3478 (void*)pColl, P4_COLLSEQ); 3479 VdbeCoverageIf(v, op==OP_Ne); 3480 VdbeCoverageIf(v, op==OP_IsNull); 3481 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3482 } 3483 } 3484 if( regCkNull ){ 3485 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3486 sqlite3VdbeGoto(v, destIfFalse); 3487 } 3488 sqlite3VdbeResolveLabel(v, labelOk); 3489 sqlite3ReleaseTempReg(pParse, regCkNull); 3490 goto sqlite3ExprCodeIN_finished; 3491 } 3492 3493 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3494 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3495 ** We will then skip the binary search of the RHS. 3496 */ 3497 if( destIfNull==destIfFalse ){ 3498 destStep2 = destIfFalse; 3499 }else{ 3500 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3501 } 3502 for(i=0; i<nVector; i++){ 3503 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3504 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3505 if( sqlite3ExprCanBeNull(p) ){ 3506 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3507 VdbeCoverage(v); 3508 } 3509 } 3510 3511 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3512 ** of the RHS using the LHS as a probe. If found, the result is 3513 ** true. 3514 */ 3515 if( eType==IN_INDEX_ROWID ){ 3516 /* In this case, the RHS is the ROWID of table b-tree and so we also 3517 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3518 ** into a single opcode. */ 3519 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3520 VdbeCoverage(v); 3521 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3522 }else{ 3523 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3524 if( destIfFalse==destIfNull ){ 3525 /* Combine Step 3 and Step 5 into a single opcode */ 3526 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3527 rLhs, nVector); VdbeCoverage(v); 3528 goto sqlite3ExprCodeIN_finished; 3529 } 3530 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3531 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3532 rLhs, nVector); VdbeCoverage(v); 3533 } 3534 3535 /* Step 4. If the RHS is known to be non-NULL and we did not find 3536 ** an match on the search above, then the result must be FALSE. 3537 */ 3538 if( rRhsHasNull && nVector==1 ){ 3539 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3540 VdbeCoverage(v); 3541 } 3542 3543 /* Step 5. If we do not care about the difference between NULL and 3544 ** FALSE, then just return false. 3545 */ 3546 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3547 3548 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3549 ** If any comparison is NULL, then the result is NULL. If all 3550 ** comparisons are FALSE then the final result is FALSE. 3551 ** 3552 ** For a scalar LHS, it is sufficient to check just the first row 3553 ** of the RHS. 3554 */ 3555 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3556 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3557 VdbeCoverage(v); 3558 if( nVector>1 ){ 3559 destNotNull = sqlite3VdbeMakeLabel(pParse); 3560 }else{ 3561 /* For nVector==1, combine steps 6 and 7 by immediately returning 3562 ** FALSE if the first comparison is not NULL */ 3563 destNotNull = destIfFalse; 3564 } 3565 for(i=0; i<nVector; i++){ 3566 Expr *p; 3567 CollSeq *pColl; 3568 int r3 = sqlite3GetTempReg(pParse); 3569 p = sqlite3VectorFieldSubexpr(pLeft, i); 3570 pColl = sqlite3ExprCollSeq(pParse, p); 3571 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3572 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3573 (void*)pColl, P4_COLLSEQ); 3574 VdbeCoverage(v); 3575 sqlite3ReleaseTempReg(pParse, r3); 3576 } 3577 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3578 if( nVector>1 ){ 3579 sqlite3VdbeResolveLabel(v, destNotNull); 3580 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3581 VdbeCoverage(v); 3582 3583 /* Step 7: If we reach this point, we know that the result must 3584 ** be false. */ 3585 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3586 } 3587 3588 /* Jumps here in order to return true. */ 3589 sqlite3VdbeJumpHere(v, addrTruthOp); 3590 3591 sqlite3ExprCodeIN_finished: 3592 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3593 VdbeComment((v, "end IN expr")); 3594 sqlite3ExprCodeIN_oom_error: 3595 sqlite3DbFree(pParse->db, aiMap); 3596 sqlite3DbFree(pParse->db, zAff); 3597 } 3598 #endif /* SQLITE_OMIT_SUBQUERY */ 3599 3600 #ifndef SQLITE_OMIT_FLOATING_POINT 3601 /* 3602 ** Generate an instruction that will put the floating point 3603 ** value described by z[0..n-1] into register iMem. 3604 ** 3605 ** The z[] string will probably not be zero-terminated. But the 3606 ** z[n] character is guaranteed to be something that does not look 3607 ** like the continuation of the number. 3608 */ 3609 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3610 if( ALWAYS(z!=0) ){ 3611 double value; 3612 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3613 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3614 if( negateFlag ) value = -value; 3615 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3616 } 3617 } 3618 #endif 3619 3620 3621 /* 3622 ** Generate an instruction that will put the integer describe by 3623 ** text z[0..n-1] into register iMem. 3624 ** 3625 ** Expr.u.zToken is always UTF8 and zero-terminated. 3626 */ 3627 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3628 Vdbe *v = pParse->pVdbe; 3629 if( pExpr->flags & EP_IntValue ){ 3630 int i = pExpr->u.iValue; 3631 assert( i>=0 ); 3632 if( negFlag ) i = -i; 3633 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3634 }else{ 3635 int c; 3636 i64 value; 3637 const char *z = pExpr->u.zToken; 3638 assert( z!=0 ); 3639 c = sqlite3DecOrHexToI64(z, &value); 3640 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3641 #ifdef SQLITE_OMIT_FLOATING_POINT 3642 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3643 #else 3644 #ifndef SQLITE_OMIT_HEX_INTEGER 3645 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3646 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3647 negFlag?"-":"",pExpr); 3648 }else 3649 #endif 3650 { 3651 codeReal(v, z, negFlag, iMem); 3652 } 3653 #endif 3654 }else{ 3655 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3656 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3657 } 3658 } 3659 } 3660 3661 3662 /* Generate code that will load into register regOut a value that is 3663 ** appropriate for the iIdxCol-th column of index pIdx. 3664 */ 3665 void sqlite3ExprCodeLoadIndexColumn( 3666 Parse *pParse, /* The parsing context */ 3667 Index *pIdx, /* The index whose column is to be loaded */ 3668 int iTabCur, /* Cursor pointing to a table row */ 3669 int iIdxCol, /* The column of the index to be loaded */ 3670 int regOut /* Store the index column value in this register */ 3671 ){ 3672 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3673 if( iTabCol==XN_EXPR ){ 3674 assert( pIdx->aColExpr ); 3675 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3676 pParse->iSelfTab = iTabCur + 1; 3677 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3678 pParse->iSelfTab = 0; 3679 }else{ 3680 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3681 iTabCol, regOut); 3682 } 3683 } 3684 3685 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3686 /* 3687 ** Generate code that will compute the value of generated column pCol 3688 ** and store the result in register regOut 3689 */ 3690 void sqlite3ExprCodeGeneratedColumn( 3691 Parse *pParse, /* Parsing context */ 3692 Table *pTab, /* Table containing the generated column */ 3693 Column *pCol, /* The generated column */ 3694 int regOut /* Put the result in this register */ 3695 ){ 3696 int iAddr; 3697 Vdbe *v = pParse->pVdbe; 3698 assert( v!=0 ); 3699 assert( pParse->iSelfTab!=0 ); 3700 if( pParse->iSelfTab>0 ){ 3701 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3702 }else{ 3703 iAddr = 0; 3704 } 3705 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3706 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3707 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3708 } 3709 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3710 } 3711 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3712 3713 /* 3714 ** Generate code to extract the value of the iCol-th column of a table. 3715 */ 3716 void sqlite3ExprCodeGetColumnOfTable( 3717 Vdbe *v, /* Parsing context */ 3718 Table *pTab, /* The table containing the value */ 3719 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3720 int iCol, /* Index of the column to extract */ 3721 int regOut /* Extract the value into this register */ 3722 ){ 3723 Column *pCol; 3724 assert( v!=0 ); 3725 if( pTab==0 ){ 3726 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3727 return; 3728 } 3729 if( iCol<0 || iCol==pTab->iPKey ){ 3730 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3731 }else{ 3732 int op; 3733 int x; 3734 if( IsVirtual(pTab) ){ 3735 op = OP_VColumn; 3736 x = iCol; 3737 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3738 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3739 Parse *pParse = sqlite3VdbeParser(v); 3740 if( pCol->colFlags & COLFLAG_BUSY ){ 3741 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3742 pCol->zCnName); 3743 }else{ 3744 int savedSelfTab = pParse->iSelfTab; 3745 pCol->colFlags |= COLFLAG_BUSY; 3746 pParse->iSelfTab = iTabCur+1; 3747 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3748 pParse->iSelfTab = savedSelfTab; 3749 pCol->colFlags &= ~COLFLAG_BUSY; 3750 } 3751 return; 3752 #endif 3753 }else if( !HasRowid(pTab) ){ 3754 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3755 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3756 op = OP_Column; 3757 }else{ 3758 x = sqlite3TableColumnToStorage(pTab,iCol); 3759 testcase( x!=iCol ); 3760 op = OP_Column; 3761 } 3762 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3763 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3764 } 3765 } 3766 3767 /* 3768 ** Generate code that will extract the iColumn-th column from 3769 ** table pTab and store the column value in register iReg. 3770 ** 3771 ** There must be an open cursor to pTab in iTable when this routine 3772 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3773 */ 3774 int sqlite3ExprCodeGetColumn( 3775 Parse *pParse, /* Parsing and code generating context */ 3776 Table *pTab, /* Description of the table we are reading from */ 3777 int iColumn, /* Index of the table column */ 3778 int iTable, /* The cursor pointing to the table */ 3779 int iReg, /* Store results here */ 3780 u8 p5 /* P5 value for OP_Column + FLAGS */ 3781 ){ 3782 assert( pParse->pVdbe!=0 ); 3783 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3784 if( p5 ){ 3785 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3786 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3787 } 3788 return iReg; 3789 } 3790 3791 /* 3792 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3793 ** over to iTo..iTo+nReg-1. 3794 */ 3795 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3796 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3797 } 3798 3799 /* 3800 ** Convert a scalar expression node to a TK_REGISTER referencing 3801 ** register iReg. The caller must ensure that iReg already contains 3802 ** the correct value for the expression. 3803 */ 3804 static void exprToRegister(Expr *pExpr, int iReg){ 3805 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3806 if( NEVER(p==0) ) return; 3807 p->op2 = p->op; 3808 p->op = TK_REGISTER; 3809 p->iTable = iReg; 3810 ExprClearProperty(p, EP_Skip); 3811 } 3812 3813 /* 3814 ** Evaluate an expression (either a vector or a scalar expression) and store 3815 ** the result in continguous temporary registers. Return the index of 3816 ** the first register used to store the result. 3817 ** 3818 ** If the returned result register is a temporary scalar, then also write 3819 ** that register number into *piFreeable. If the returned result register 3820 ** is not a temporary or if the expression is a vector set *piFreeable 3821 ** to 0. 3822 */ 3823 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3824 int iResult; 3825 int nResult = sqlite3ExprVectorSize(p); 3826 if( nResult==1 ){ 3827 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3828 }else{ 3829 *piFreeable = 0; 3830 if( p->op==TK_SELECT ){ 3831 #if SQLITE_OMIT_SUBQUERY 3832 iResult = 0; 3833 #else 3834 iResult = sqlite3CodeSubselect(pParse, p); 3835 #endif 3836 }else{ 3837 int i; 3838 iResult = pParse->nMem+1; 3839 pParse->nMem += nResult; 3840 assert( ExprUseXList(p) ); 3841 for(i=0; i<nResult; i++){ 3842 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3843 } 3844 } 3845 } 3846 return iResult; 3847 } 3848 3849 /* 3850 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3851 ** so that a subsequent copy will not be merged into this one. 3852 */ 3853 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3854 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3855 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3856 } 3857 } 3858 3859 /* 3860 ** Generate code to implement special SQL functions that are implemented 3861 ** in-line rather than by using the usual callbacks. 3862 */ 3863 static int exprCodeInlineFunction( 3864 Parse *pParse, /* Parsing context */ 3865 ExprList *pFarg, /* List of function arguments */ 3866 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3867 int target /* Store function result in this register */ 3868 ){ 3869 int nFarg; 3870 Vdbe *v = pParse->pVdbe; 3871 assert( v!=0 ); 3872 assert( pFarg!=0 ); 3873 nFarg = pFarg->nExpr; 3874 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3875 switch( iFuncId ){ 3876 case INLINEFUNC_coalesce: { 3877 /* Attempt a direct implementation of the built-in COALESCE() and 3878 ** IFNULL() functions. This avoids unnecessary evaluation of 3879 ** arguments past the first non-NULL argument. 3880 */ 3881 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3882 int i; 3883 assert( nFarg>=2 ); 3884 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3885 for(i=1; i<nFarg; i++){ 3886 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3887 VdbeCoverage(v); 3888 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3889 } 3890 setDoNotMergeFlagOnCopy(v); 3891 sqlite3VdbeResolveLabel(v, endCoalesce); 3892 break; 3893 } 3894 case INLINEFUNC_iif: { 3895 Expr caseExpr; 3896 memset(&caseExpr, 0, sizeof(caseExpr)); 3897 caseExpr.op = TK_CASE; 3898 caseExpr.x.pList = pFarg; 3899 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3900 } 3901 3902 default: { 3903 /* The UNLIKELY() function is a no-op. The result is the value 3904 ** of the first argument. 3905 */ 3906 assert( nFarg==1 || nFarg==2 ); 3907 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3908 break; 3909 } 3910 3911 /*********************************************************************** 3912 ** Test-only SQL functions that are only usable if enabled 3913 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3914 */ 3915 #if !defined(SQLITE_UNTESTABLE) 3916 case INLINEFUNC_expr_compare: { 3917 /* Compare two expressions using sqlite3ExprCompare() */ 3918 assert( nFarg==2 ); 3919 sqlite3VdbeAddOp2(v, OP_Integer, 3920 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3921 target); 3922 break; 3923 } 3924 3925 case INLINEFUNC_expr_implies_expr: { 3926 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3927 assert( nFarg==2 ); 3928 sqlite3VdbeAddOp2(v, OP_Integer, 3929 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3930 target); 3931 break; 3932 } 3933 3934 case INLINEFUNC_implies_nonnull_row: { 3935 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3936 Expr *pA1; 3937 assert( nFarg==2 ); 3938 pA1 = pFarg->a[1].pExpr; 3939 if( pA1->op==TK_COLUMN ){ 3940 sqlite3VdbeAddOp2(v, OP_Integer, 3941 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3942 target); 3943 }else{ 3944 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3945 } 3946 break; 3947 } 3948 3949 case INLINEFUNC_affinity: { 3950 /* The AFFINITY() function evaluates to a string that describes 3951 ** the type affinity of the argument. This is used for testing of 3952 ** the SQLite type logic. 3953 */ 3954 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3955 char aff; 3956 assert( nFarg==1 ); 3957 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3958 sqlite3VdbeLoadString(v, target, 3959 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3960 break; 3961 } 3962 #endif /* !defined(SQLITE_UNTESTABLE) */ 3963 } 3964 return target; 3965 } 3966 3967 3968 /* 3969 ** Generate code into the current Vdbe to evaluate the given 3970 ** expression. Attempt to store the results in register "target". 3971 ** Return the register where results are stored. 3972 ** 3973 ** With this routine, there is no guarantee that results will 3974 ** be stored in target. The result might be stored in some other 3975 ** register if it is convenient to do so. The calling function 3976 ** must check the return code and move the results to the desired 3977 ** register. 3978 */ 3979 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3980 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3981 int op; /* The opcode being coded */ 3982 int inReg = target; /* Results stored in register inReg */ 3983 int regFree1 = 0; /* If non-zero free this temporary register */ 3984 int regFree2 = 0; /* If non-zero free this temporary register */ 3985 int r1, r2; /* Various register numbers */ 3986 Expr tempX; /* Temporary expression node */ 3987 int p5 = 0; 3988 3989 assert( target>0 && target<=pParse->nMem ); 3990 assert( v!=0 ); 3991 3992 expr_code_doover: 3993 if( pExpr==0 ){ 3994 op = TK_NULL; 3995 }else{ 3996 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3997 op = pExpr->op; 3998 } 3999 switch( op ){ 4000 case TK_AGG_COLUMN: { 4001 AggInfo *pAggInfo = pExpr->pAggInfo; 4002 struct AggInfo_col *pCol; 4003 assert( pAggInfo!=0 ); 4004 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4005 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4006 if( !pAggInfo->directMode ){ 4007 assert( pCol->iMem>0 ); 4008 return pCol->iMem; 4009 }else if( pAggInfo->useSortingIdx ){ 4010 Table *pTab = pCol->pTab; 4011 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4012 pCol->iSorterColumn, target); 4013 if( pCol->iColumn<0 ){ 4014 VdbeComment((v,"%s.rowid",pTab->zName)); 4015 }else{ 4016 VdbeComment((v,"%s.%s", 4017 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4018 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4019 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4020 } 4021 } 4022 return target; 4023 } 4024 /* Otherwise, fall thru into the TK_COLUMN case */ 4025 /* no break */ deliberate_fall_through 4026 } 4027 case TK_COLUMN: { 4028 int iTab = pExpr->iTable; 4029 int iReg; 4030 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4031 /* This COLUMN expression is really a constant due to WHERE clause 4032 ** constraints, and that constant is coded by the pExpr->pLeft 4033 ** expresssion. However, make sure the constant has the correct 4034 ** datatype by applying the Affinity of the table column to the 4035 ** constant. 4036 */ 4037 int aff; 4038 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4039 assert( ExprUseYTab(pExpr) ); 4040 if( pExpr->y.pTab ){ 4041 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4042 }else{ 4043 aff = pExpr->affExpr; 4044 } 4045 if( aff>SQLITE_AFF_BLOB ){ 4046 static const char zAff[] = "B\000C\000D\000E"; 4047 assert( SQLITE_AFF_BLOB=='A' ); 4048 assert( SQLITE_AFF_TEXT=='B' ); 4049 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4050 &zAff[(aff-'B')*2], P4_STATIC); 4051 } 4052 return iReg; 4053 } 4054 if( iTab<0 ){ 4055 if( pParse->iSelfTab<0 ){ 4056 /* Other columns in the same row for CHECK constraints or 4057 ** generated columns or for inserting into partial index. 4058 ** The row is unpacked into registers beginning at 4059 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4060 ** immediately prior to the first column. 4061 */ 4062 Column *pCol; 4063 Table *pTab; 4064 int iSrc; 4065 int iCol = pExpr->iColumn; 4066 assert( ExprUseYTab(pExpr) ); 4067 pTab = pExpr->y.pTab; 4068 assert( pTab!=0 ); 4069 assert( iCol>=XN_ROWID ); 4070 assert( iCol<pTab->nCol ); 4071 if( iCol<0 ){ 4072 return -1-pParse->iSelfTab; 4073 } 4074 pCol = pTab->aCol + iCol; 4075 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4076 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4077 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4078 if( pCol->colFlags & COLFLAG_GENERATED ){ 4079 if( pCol->colFlags & COLFLAG_BUSY ){ 4080 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4081 pCol->zCnName); 4082 return 0; 4083 } 4084 pCol->colFlags |= COLFLAG_BUSY; 4085 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4086 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4087 } 4088 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4089 return iSrc; 4090 }else 4091 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4092 if( pCol->affinity==SQLITE_AFF_REAL ){ 4093 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4094 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4095 return target; 4096 }else{ 4097 return iSrc; 4098 } 4099 }else{ 4100 /* Coding an expression that is part of an index where column names 4101 ** in the index refer to the table to which the index belongs */ 4102 iTab = pParse->iSelfTab - 1; 4103 } 4104 } 4105 assert( ExprUseYTab(pExpr) ); 4106 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4107 pExpr->iColumn, iTab, target, 4108 pExpr->op2); 4109 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4110 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4111 } 4112 return iReg; 4113 } 4114 case TK_INTEGER: { 4115 codeInteger(pParse, pExpr, 0, target); 4116 return target; 4117 } 4118 case TK_TRUEFALSE: { 4119 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4120 return target; 4121 } 4122 #ifndef SQLITE_OMIT_FLOATING_POINT 4123 case TK_FLOAT: { 4124 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4125 codeReal(v, pExpr->u.zToken, 0, target); 4126 return target; 4127 } 4128 #endif 4129 case TK_STRING: { 4130 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4131 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4132 return target; 4133 } 4134 default: { 4135 /* Make NULL the default case so that if a bug causes an illegal 4136 ** Expr node to be passed into this function, it will be handled 4137 ** sanely and not crash. But keep the assert() to bring the problem 4138 ** to the attention of the developers. */ 4139 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4140 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4141 return target; 4142 } 4143 #ifndef SQLITE_OMIT_BLOB_LITERAL 4144 case TK_BLOB: { 4145 int n; 4146 const char *z; 4147 char *zBlob; 4148 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4149 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4150 assert( pExpr->u.zToken[1]=='\'' ); 4151 z = &pExpr->u.zToken[2]; 4152 n = sqlite3Strlen30(z) - 1; 4153 assert( z[n]=='\'' ); 4154 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4155 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4156 return target; 4157 } 4158 #endif 4159 case TK_VARIABLE: { 4160 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4161 assert( pExpr->u.zToken!=0 ); 4162 assert( pExpr->u.zToken[0]!=0 ); 4163 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4164 if( pExpr->u.zToken[1]!=0 ){ 4165 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4166 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4167 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4168 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4169 } 4170 return target; 4171 } 4172 case TK_REGISTER: { 4173 return pExpr->iTable; 4174 } 4175 #ifndef SQLITE_OMIT_CAST 4176 case TK_CAST: { 4177 /* Expressions of the form: CAST(pLeft AS token) */ 4178 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4179 if( inReg!=target ){ 4180 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4181 inReg = target; 4182 } 4183 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4184 sqlite3VdbeAddOp2(v, OP_Cast, target, 4185 sqlite3AffinityType(pExpr->u.zToken, 0)); 4186 return inReg; 4187 } 4188 #endif /* SQLITE_OMIT_CAST */ 4189 case TK_IS: 4190 case TK_ISNOT: 4191 op = (op==TK_IS) ? TK_EQ : TK_NE; 4192 p5 = SQLITE_NULLEQ; 4193 /* fall-through */ 4194 case TK_LT: 4195 case TK_LE: 4196 case TK_GT: 4197 case TK_GE: 4198 case TK_NE: 4199 case TK_EQ: { 4200 Expr *pLeft = pExpr->pLeft; 4201 if( sqlite3ExprIsVector(pLeft) ){ 4202 codeVectorCompare(pParse, pExpr, target, op, p5); 4203 }else{ 4204 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4205 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4206 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4207 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4208 sqlite3VdbeCurrentAddr(v)+2, p5, 4209 ExprHasProperty(pExpr,EP_Commuted)); 4210 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4211 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4212 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4213 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4214 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4215 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4216 if( p5==SQLITE_NULLEQ ){ 4217 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4218 }else{ 4219 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4220 } 4221 testcase( regFree1==0 ); 4222 testcase( regFree2==0 ); 4223 } 4224 break; 4225 } 4226 case TK_AND: 4227 case TK_OR: 4228 case TK_PLUS: 4229 case TK_STAR: 4230 case TK_MINUS: 4231 case TK_REM: 4232 case TK_BITAND: 4233 case TK_BITOR: 4234 case TK_SLASH: 4235 case TK_LSHIFT: 4236 case TK_RSHIFT: 4237 case TK_CONCAT: { 4238 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4239 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4240 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4241 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4242 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4243 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4244 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4245 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4246 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4247 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4248 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4249 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4250 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4251 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4252 testcase( regFree1==0 ); 4253 testcase( regFree2==0 ); 4254 break; 4255 } 4256 case TK_UMINUS: { 4257 Expr *pLeft = pExpr->pLeft; 4258 assert( pLeft ); 4259 if( pLeft->op==TK_INTEGER ){ 4260 codeInteger(pParse, pLeft, 1, target); 4261 return target; 4262 #ifndef SQLITE_OMIT_FLOATING_POINT 4263 }else if( pLeft->op==TK_FLOAT ){ 4264 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4265 codeReal(v, pLeft->u.zToken, 1, target); 4266 return target; 4267 #endif 4268 }else{ 4269 tempX.op = TK_INTEGER; 4270 tempX.flags = EP_IntValue|EP_TokenOnly; 4271 tempX.u.iValue = 0; 4272 ExprClearVVAProperties(&tempX); 4273 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4274 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4275 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4276 testcase( regFree2==0 ); 4277 } 4278 break; 4279 } 4280 case TK_BITNOT: 4281 case TK_NOT: { 4282 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4283 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4284 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4285 testcase( regFree1==0 ); 4286 sqlite3VdbeAddOp2(v, op, r1, inReg); 4287 break; 4288 } 4289 case TK_TRUTH: { 4290 int isTrue; /* IS TRUE or IS NOT TRUE */ 4291 int bNormal; /* IS TRUE or IS FALSE */ 4292 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4293 testcase( regFree1==0 ); 4294 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4295 bNormal = pExpr->op2==TK_IS; 4296 testcase( isTrue && bNormal); 4297 testcase( !isTrue && bNormal); 4298 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4299 break; 4300 } 4301 case TK_ISNULL: 4302 case TK_NOTNULL: { 4303 int addr; 4304 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4305 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4306 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4307 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4308 testcase( regFree1==0 ); 4309 addr = sqlite3VdbeAddOp1(v, op, r1); 4310 VdbeCoverageIf(v, op==TK_ISNULL); 4311 VdbeCoverageIf(v, op==TK_NOTNULL); 4312 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4313 sqlite3VdbeJumpHere(v, addr); 4314 break; 4315 } 4316 case TK_AGG_FUNCTION: { 4317 AggInfo *pInfo = pExpr->pAggInfo; 4318 if( pInfo==0 4319 || NEVER(pExpr->iAgg<0) 4320 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4321 ){ 4322 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4323 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4324 }else{ 4325 return pInfo->aFunc[pExpr->iAgg].iMem; 4326 } 4327 break; 4328 } 4329 case TK_FUNCTION: { 4330 ExprList *pFarg; /* List of function arguments */ 4331 int nFarg; /* Number of function arguments */ 4332 FuncDef *pDef; /* The function definition object */ 4333 const char *zId; /* The function name */ 4334 u32 constMask = 0; /* Mask of function arguments that are constant */ 4335 int i; /* Loop counter */ 4336 sqlite3 *db = pParse->db; /* The database connection */ 4337 u8 enc = ENC(db); /* The text encoding used by this database */ 4338 CollSeq *pColl = 0; /* A collating sequence */ 4339 4340 #ifndef SQLITE_OMIT_WINDOWFUNC 4341 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4342 return pExpr->y.pWin->regResult; 4343 } 4344 #endif 4345 4346 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4347 /* SQL functions can be expensive. So try to avoid running them 4348 ** multiple times if we know they always give the same result */ 4349 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4350 } 4351 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4352 assert( ExprUseXList(pExpr) ); 4353 pFarg = pExpr->x.pList; 4354 nFarg = pFarg ? pFarg->nExpr : 0; 4355 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4356 zId = pExpr->u.zToken; 4357 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4358 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4359 if( pDef==0 && pParse->explain ){ 4360 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4361 } 4362 #endif 4363 if( pDef==0 || pDef->xFinalize!=0 ){ 4364 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4365 break; 4366 } 4367 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4368 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4369 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4370 return exprCodeInlineFunction(pParse, pFarg, 4371 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4372 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4373 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4374 } 4375 4376 for(i=0; i<nFarg; i++){ 4377 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4378 testcase( i==31 ); 4379 constMask |= MASKBIT32(i); 4380 } 4381 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4382 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4383 } 4384 } 4385 if( pFarg ){ 4386 if( constMask ){ 4387 r1 = pParse->nMem+1; 4388 pParse->nMem += nFarg; 4389 }else{ 4390 r1 = sqlite3GetTempRange(pParse, nFarg); 4391 } 4392 4393 /* For length() and typeof() functions with a column argument, 4394 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4395 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4396 ** loading. 4397 */ 4398 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4399 u8 exprOp; 4400 assert( nFarg==1 ); 4401 assert( pFarg->a[0].pExpr!=0 ); 4402 exprOp = pFarg->a[0].pExpr->op; 4403 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4404 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4405 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4406 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4407 pFarg->a[0].pExpr->op2 = 4408 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4409 } 4410 } 4411 4412 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4413 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4414 }else{ 4415 r1 = 0; 4416 } 4417 #ifndef SQLITE_OMIT_VIRTUALTABLE 4418 /* Possibly overload the function if the first argument is 4419 ** a virtual table column. 4420 ** 4421 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4422 ** second argument, not the first, as the argument to test to 4423 ** see if it is a column in a virtual table. This is done because 4424 ** the left operand of infix functions (the operand we want to 4425 ** control overloading) ends up as the second argument to the 4426 ** function. The expression "A glob B" is equivalent to 4427 ** "glob(B,A). We want to use the A in "A glob B" to test 4428 ** for function overloading. But we use the B term in "glob(B,A)". 4429 */ 4430 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4431 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4432 }else if( nFarg>0 ){ 4433 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4434 } 4435 #endif 4436 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4437 if( !pColl ) pColl = db->pDfltColl; 4438 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4439 } 4440 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4441 if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){ 4442 Expr *pArg = pFarg->a[0].pExpr; 4443 if( pArg->op==TK_COLUMN ){ 4444 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4445 }else{ 4446 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4447 } 4448 }else 4449 #endif 4450 { 4451 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4452 pDef, pExpr->op2); 4453 } 4454 if( nFarg ){ 4455 if( constMask==0 ){ 4456 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4457 }else{ 4458 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4459 } 4460 } 4461 return target; 4462 } 4463 #ifndef SQLITE_OMIT_SUBQUERY 4464 case TK_EXISTS: 4465 case TK_SELECT: { 4466 int nCol; 4467 testcase( op==TK_EXISTS ); 4468 testcase( op==TK_SELECT ); 4469 if( pParse->db->mallocFailed ){ 4470 return 0; 4471 }else if( op==TK_SELECT 4472 && ALWAYS( ExprUseXSelect(pExpr) ) 4473 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4474 ){ 4475 sqlite3SubselectError(pParse, nCol, 1); 4476 }else{ 4477 return sqlite3CodeSubselect(pParse, pExpr); 4478 } 4479 break; 4480 } 4481 case TK_SELECT_COLUMN: { 4482 int n; 4483 if( pExpr->pLeft->iTable==0 ){ 4484 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4485 } 4486 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4487 n = sqlite3ExprVectorSize(pExpr->pLeft); 4488 if( pExpr->iTable!=n ){ 4489 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4490 pExpr->iTable, n); 4491 } 4492 return pExpr->pLeft->iTable + pExpr->iColumn; 4493 } 4494 case TK_IN: { 4495 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4496 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4497 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4498 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4499 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4500 sqlite3VdbeResolveLabel(v, destIfFalse); 4501 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4502 sqlite3VdbeResolveLabel(v, destIfNull); 4503 return target; 4504 } 4505 #endif /* SQLITE_OMIT_SUBQUERY */ 4506 4507 4508 /* 4509 ** x BETWEEN y AND z 4510 ** 4511 ** This is equivalent to 4512 ** 4513 ** x>=y AND x<=z 4514 ** 4515 ** X is stored in pExpr->pLeft. 4516 ** Y is stored in pExpr->pList->a[0].pExpr. 4517 ** Z is stored in pExpr->pList->a[1].pExpr. 4518 */ 4519 case TK_BETWEEN: { 4520 exprCodeBetween(pParse, pExpr, target, 0, 0); 4521 return target; 4522 } 4523 case TK_SPAN: 4524 case TK_COLLATE: 4525 case TK_UPLUS: { 4526 pExpr = pExpr->pLeft; 4527 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4528 } 4529 4530 case TK_TRIGGER: { 4531 /* If the opcode is TK_TRIGGER, then the expression is a reference 4532 ** to a column in the new.* or old.* pseudo-tables available to 4533 ** trigger programs. In this case Expr.iTable is set to 1 for the 4534 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4535 ** is set to the column of the pseudo-table to read, or to -1 to 4536 ** read the rowid field. 4537 ** 4538 ** The expression is implemented using an OP_Param opcode. The p1 4539 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4540 ** to reference another column of the old.* pseudo-table, where 4541 ** i is the index of the column. For a new.rowid reference, p1 is 4542 ** set to (n+1), where n is the number of columns in each pseudo-table. 4543 ** For a reference to any other column in the new.* pseudo-table, p1 4544 ** is set to (n+2+i), where n and i are as defined previously. For 4545 ** example, if the table on which triggers are being fired is 4546 ** declared as: 4547 ** 4548 ** CREATE TABLE t1(a, b); 4549 ** 4550 ** Then p1 is interpreted as follows: 4551 ** 4552 ** p1==0 -> old.rowid p1==3 -> new.rowid 4553 ** p1==1 -> old.a p1==4 -> new.a 4554 ** p1==2 -> old.b p1==5 -> new.b 4555 */ 4556 Table *pTab; 4557 int iCol; 4558 int p1; 4559 4560 assert( ExprUseYTab(pExpr) ); 4561 pTab = pExpr->y.pTab; 4562 iCol = pExpr->iColumn; 4563 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4564 + sqlite3TableColumnToStorage(pTab, iCol); 4565 4566 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4567 assert( iCol>=-1 && iCol<pTab->nCol ); 4568 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4569 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4570 4571 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4572 VdbeComment((v, "r[%d]=%s.%s", target, 4573 (pExpr->iTable ? "new" : "old"), 4574 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4575 )); 4576 4577 #ifndef SQLITE_OMIT_FLOATING_POINT 4578 /* If the column has REAL affinity, it may currently be stored as an 4579 ** integer. Use OP_RealAffinity to make sure it is really real. 4580 ** 4581 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4582 ** floating point when extracting it from the record. */ 4583 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4584 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4585 } 4586 #endif 4587 break; 4588 } 4589 4590 case TK_VECTOR: { 4591 sqlite3ErrorMsg(pParse, "row value misused"); 4592 break; 4593 } 4594 4595 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4596 ** that derive from the right-hand table of a LEFT JOIN. The 4597 ** Expr.iTable value is the table number for the right-hand table. 4598 ** The expression is only evaluated if that table is not currently 4599 ** on a LEFT JOIN NULL row. 4600 */ 4601 case TK_IF_NULL_ROW: { 4602 int addrINR; 4603 u8 okConstFactor = pParse->okConstFactor; 4604 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4605 /* Temporarily disable factoring of constant expressions, since 4606 ** even though expressions may appear to be constant, they are not 4607 ** really constant because they originate from the right-hand side 4608 ** of a LEFT JOIN. */ 4609 pParse->okConstFactor = 0; 4610 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4611 pParse->okConstFactor = okConstFactor; 4612 sqlite3VdbeJumpHere(v, addrINR); 4613 sqlite3VdbeChangeP3(v, addrINR, inReg); 4614 break; 4615 } 4616 4617 /* 4618 ** Form A: 4619 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4620 ** 4621 ** Form B: 4622 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4623 ** 4624 ** Form A is can be transformed into the equivalent form B as follows: 4625 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4626 ** WHEN x=eN THEN rN ELSE y END 4627 ** 4628 ** X (if it exists) is in pExpr->pLeft. 4629 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4630 ** odd. The Y is also optional. If the number of elements in x.pList 4631 ** is even, then Y is omitted and the "otherwise" result is NULL. 4632 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4633 ** 4634 ** The result of the expression is the Ri for the first matching Ei, 4635 ** or if there is no matching Ei, the ELSE term Y, or if there is 4636 ** no ELSE term, NULL. 4637 */ 4638 case TK_CASE: { 4639 int endLabel; /* GOTO label for end of CASE stmt */ 4640 int nextCase; /* GOTO label for next WHEN clause */ 4641 int nExpr; /* 2x number of WHEN terms */ 4642 int i; /* Loop counter */ 4643 ExprList *pEList; /* List of WHEN terms */ 4644 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4645 Expr opCompare; /* The X==Ei expression */ 4646 Expr *pX; /* The X expression */ 4647 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4648 Expr *pDel = 0; 4649 sqlite3 *db = pParse->db; 4650 4651 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4652 assert(pExpr->x.pList->nExpr > 0); 4653 pEList = pExpr->x.pList; 4654 aListelem = pEList->a; 4655 nExpr = pEList->nExpr; 4656 endLabel = sqlite3VdbeMakeLabel(pParse); 4657 if( (pX = pExpr->pLeft)!=0 ){ 4658 pDel = sqlite3ExprDup(db, pX, 0); 4659 if( db->mallocFailed ){ 4660 sqlite3ExprDelete(db, pDel); 4661 break; 4662 } 4663 testcase( pX->op==TK_COLUMN ); 4664 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4665 testcase( regFree1==0 ); 4666 memset(&opCompare, 0, sizeof(opCompare)); 4667 opCompare.op = TK_EQ; 4668 opCompare.pLeft = pDel; 4669 pTest = &opCompare; 4670 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4671 ** The value in regFree1 might get SCopy-ed into the file result. 4672 ** So make sure that the regFree1 register is not reused for other 4673 ** purposes and possibly overwritten. */ 4674 regFree1 = 0; 4675 } 4676 for(i=0; i<nExpr-1; i=i+2){ 4677 if( pX ){ 4678 assert( pTest!=0 ); 4679 opCompare.pRight = aListelem[i].pExpr; 4680 }else{ 4681 pTest = aListelem[i].pExpr; 4682 } 4683 nextCase = sqlite3VdbeMakeLabel(pParse); 4684 testcase( pTest->op==TK_COLUMN ); 4685 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4686 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4687 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4688 sqlite3VdbeGoto(v, endLabel); 4689 sqlite3VdbeResolveLabel(v, nextCase); 4690 } 4691 if( (nExpr&1)!=0 ){ 4692 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4693 }else{ 4694 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4695 } 4696 sqlite3ExprDelete(db, pDel); 4697 setDoNotMergeFlagOnCopy(v); 4698 sqlite3VdbeResolveLabel(v, endLabel); 4699 break; 4700 } 4701 #ifndef SQLITE_OMIT_TRIGGER 4702 case TK_RAISE: { 4703 assert( pExpr->affExpr==OE_Rollback 4704 || pExpr->affExpr==OE_Abort 4705 || pExpr->affExpr==OE_Fail 4706 || pExpr->affExpr==OE_Ignore 4707 ); 4708 if( !pParse->pTriggerTab && !pParse->nested ){ 4709 sqlite3ErrorMsg(pParse, 4710 "RAISE() may only be used within a trigger-program"); 4711 return 0; 4712 } 4713 if( pExpr->affExpr==OE_Abort ){ 4714 sqlite3MayAbort(pParse); 4715 } 4716 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4717 if( pExpr->affExpr==OE_Ignore ){ 4718 sqlite3VdbeAddOp4( 4719 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4720 VdbeCoverage(v); 4721 }else{ 4722 sqlite3HaltConstraint(pParse, 4723 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4724 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4725 } 4726 4727 break; 4728 } 4729 #endif 4730 } 4731 sqlite3ReleaseTempReg(pParse, regFree1); 4732 sqlite3ReleaseTempReg(pParse, regFree2); 4733 return inReg; 4734 } 4735 4736 /* 4737 ** Generate code that will evaluate expression pExpr just one time 4738 ** per prepared statement execution. 4739 ** 4740 ** If the expression uses functions (that might throw an exception) then 4741 ** guard them with an OP_Once opcode to ensure that the code is only executed 4742 ** once. If no functions are involved, then factor the code out and put it at 4743 ** the end of the prepared statement in the initialization section. 4744 ** 4745 ** If regDest>=0 then the result is always stored in that register and the 4746 ** result is not reusable. If regDest<0 then this routine is free to 4747 ** store the value whereever it wants. The register where the expression 4748 ** is stored is returned. When regDest<0, two identical expressions might 4749 ** code to the same register, if they do not contain function calls and hence 4750 ** are factored out into the initialization section at the end of the 4751 ** prepared statement. 4752 */ 4753 int sqlite3ExprCodeRunJustOnce( 4754 Parse *pParse, /* Parsing context */ 4755 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4756 int regDest /* Store the value in this register */ 4757 ){ 4758 ExprList *p; 4759 assert( ConstFactorOk(pParse) ); 4760 p = pParse->pConstExpr; 4761 if( regDest<0 && p ){ 4762 struct ExprList_item *pItem; 4763 int i; 4764 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4765 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4766 return pItem->u.iConstExprReg; 4767 } 4768 } 4769 } 4770 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4771 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4772 Vdbe *v = pParse->pVdbe; 4773 int addr; 4774 assert( v ); 4775 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4776 pParse->okConstFactor = 0; 4777 if( !pParse->db->mallocFailed ){ 4778 if( regDest<0 ) regDest = ++pParse->nMem; 4779 sqlite3ExprCode(pParse, pExpr, regDest); 4780 } 4781 pParse->okConstFactor = 1; 4782 sqlite3ExprDelete(pParse->db, pExpr); 4783 sqlite3VdbeJumpHere(v, addr); 4784 }else{ 4785 p = sqlite3ExprListAppend(pParse, p, pExpr); 4786 if( p ){ 4787 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4788 pItem->reusable = regDest<0; 4789 if( regDest<0 ) regDest = ++pParse->nMem; 4790 pItem->u.iConstExprReg = regDest; 4791 } 4792 pParse->pConstExpr = p; 4793 } 4794 return regDest; 4795 } 4796 4797 /* 4798 ** Generate code to evaluate an expression and store the results 4799 ** into a register. Return the register number where the results 4800 ** are stored. 4801 ** 4802 ** If the register is a temporary register that can be deallocated, 4803 ** then write its number into *pReg. If the result register is not 4804 ** a temporary, then set *pReg to zero. 4805 ** 4806 ** If pExpr is a constant, then this routine might generate this 4807 ** code to fill the register in the initialization section of the 4808 ** VDBE program, in order to factor it out of the evaluation loop. 4809 */ 4810 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4811 int r2; 4812 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4813 if( ConstFactorOk(pParse) 4814 && ALWAYS(pExpr!=0) 4815 && pExpr->op!=TK_REGISTER 4816 && sqlite3ExprIsConstantNotJoin(pExpr) 4817 ){ 4818 *pReg = 0; 4819 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4820 }else{ 4821 int r1 = sqlite3GetTempReg(pParse); 4822 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4823 if( r2==r1 ){ 4824 *pReg = r1; 4825 }else{ 4826 sqlite3ReleaseTempReg(pParse, r1); 4827 *pReg = 0; 4828 } 4829 } 4830 return r2; 4831 } 4832 4833 /* 4834 ** Generate code that will evaluate expression pExpr and store the 4835 ** results in register target. The results are guaranteed to appear 4836 ** in register target. 4837 */ 4838 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4839 int inReg; 4840 4841 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4842 assert( target>0 && target<=pParse->nMem ); 4843 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4844 if( pParse->pVdbe==0 ) return; 4845 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4846 if( inReg!=target ){ 4847 u8 op; 4848 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4849 op = OP_Copy; 4850 }else{ 4851 op = OP_SCopy; 4852 } 4853 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4854 } 4855 } 4856 4857 /* 4858 ** Make a transient copy of expression pExpr and then code it using 4859 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4860 ** except that the input expression is guaranteed to be unchanged. 4861 */ 4862 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4863 sqlite3 *db = pParse->db; 4864 pExpr = sqlite3ExprDup(db, pExpr, 0); 4865 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4866 sqlite3ExprDelete(db, pExpr); 4867 } 4868 4869 /* 4870 ** Generate code that will evaluate expression pExpr and store the 4871 ** results in register target. The results are guaranteed to appear 4872 ** in register target. If the expression is constant, then this routine 4873 ** might choose to code the expression at initialization time. 4874 */ 4875 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4876 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4877 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4878 }else{ 4879 sqlite3ExprCodeCopy(pParse, pExpr, target); 4880 } 4881 } 4882 4883 /* 4884 ** Generate code that pushes the value of every element of the given 4885 ** expression list into a sequence of registers beginning at target. 4886 ** 4887 ** Return the number of elements evaluated. The number returned will 4888 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4889 ** is defined. 4890 ** 4891 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4892 ** filled using OP_SCopy. OP_Copy must be used instead. 4893 ** 4894 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4895 ** factored out into initialization code. 4896 ** 4897 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4898 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4899 ** in registers at srcReg, and so the value can be copied from there. 4900 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4901 ** are simply omitted rather than being copied from srcReg. 4902 */ 4903 int sqlite3ExprCodeExprList( 4904 Parse *pParse, /* Parsing context */ 4905 ExprList *pList, /* The expression list to be coded */ 4906 int target, /* Where to write results */ 4907 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4908 u8 flags /* SQLITE_ECEL_* flags */ 4909 ){ 4910 struct ExprList_item *pItem; 4911 int i, j, n; 4912 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4913 Vdbe *v = pParse->pVdbe; 4914 assert( pList!=0 ); 4915 assert( target>0 ); 4916 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4917 n = pList->nExpr; 4918 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4919 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4920 Expr *pExpr = pItem->pExpr; 4921 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4922 if( pItem->bSorterRef ){ 4923 i--; 4924 n--; 4925 }else 4926 #endif 4927 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4928 if( flags & SQLITE_ECEL_OMITREF ){ 4929 i--; 4930 n--; 4931 }else{ 4932 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4933 } 4934 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4935 && sqlite3ExprIsConstantNotJoin(pExpr) 4936 ){ 4937 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4938 }else{ 4939 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4940 if( inReg!=target+i ){ 4941 VdbeOp *pOp; 4942 if( copyOp==OP_Copy 4943 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4944 && pOp->p1+pOp->p3+1==inReg 4945 && pOp->p2+pOp->p3+1==target+i 4946 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4947 ){ 4948 pOp->p3++; 4949 }else{ 4950 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4951 } 4952 } 4953 } 4954 } 4955 return n; 4956 } 4957 4958 /* 4959 ** Generate code for a BETWEEN operator. 4960 ** 4961 ** x BETWEEN y AND z 4962 ** 4963 ** The above is equivalent to 4964 ** 4965 ** x>=y AND x<=z 4966 ** 4967 ** Code it as such, taking care to do the common subexpression 4968 ** elimination of x. 4969 ** 4970 ** The xJumpIf parameter determines details: 4971 ** 4972 ** NULL: Store the boolean result in reg[dest] 4973 ** sqlite3ExprIfTrue: Jump to dest if true 4974 ** sqlite3ExprIfFalse: Jump to dest if false 4975 ** 4976 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4977 */ 4978 static void exprCodeBetween( 4979 Parse *pParse, /* Parsing and code generating context */ 4980 Expr *pExpr, /* The BETWEEN expression */ 4981 int dest, /* Jump destination or storage location */ 4982 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4983 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4984 ){ 4985 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4986 Expr compLeft; /* The x>=y term */ 4987 Expr compRight; /* The x<=z term */ 4988 int regFree1 = 0; /* Temporary use register */ 4989 Expr *pDel = 0; 4990 sqlite3 *db = pParse->db; 4991 4992 memset(&compLeft, 0, sizeof(Expr)); 4993 memset(&compRight, 0, sizeof(Expr)); 4994 memset(&exprAnd, 0, sizeof(Expr)); 4995 4996 assert( ExprUseXList(pExpr) ); 4997 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4998 if( db->mallocFailed==0 ){ 4999 exprAnd.op = TK_AND; 5000 exprAnd.pLeft = &compLeft; 5001 exprAnd.pRight = &compRight; 5002 compLeft.op = TK_GE; 5003 compLeft.pLeft = pDel; 5004 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5005 compRight.op = TK_LE; 5006 compRight.pLeft = pDel; 5007 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5008 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5009 if( xJump ){ 5010 xJump(pParse, &exprAnd, dest, jumpIfNull); 5011 }else{ 5012 /* Mark the expression is being from the ON or USING clause of a join 5013 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5014 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5015 ** for clarity, but we are out of bits in the Expr.flags field so we 5016 ** have to reuse the EP_FromJoin bit. Bummer. */ 5017 pDel->flags |= EP_FromJoin; 5018 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5019 } 5020 sqlite3ReleaseTempReg(pParse, regFree1); 5021 } 5022 sqlite3ExprDelete(db, pDel); 5023 5024 /* Ensure adequate test coverage */ 5025 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5026 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5027 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5028 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5029 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5030 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5031 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5032 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5033 testcase( xJump==0 ); 5034 } 5035 5036 /* 5037 ** Generate code for a boolean expression such that a jump is made 5038 ** to the label "dest" if the expression is true but execution 5039 ** continues straight thru if the expression is false. 5040 ** 5041 ** If the expression evaluates to NULL (neither true nor false), then 5042 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5043 ** 5044 ** This code depends on the fact that certain token values (ex: TK_EQ) 5045 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5046 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5047 ** the make process cause these values to align. Assert()s in the code 5048 ** below verify that the numbers are aligned correctly. 5049 */ 5050 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5051 Vdbe *v = pParse->pVdbe; 5052 int op = 0; 5053 int regFree1 = 0; 5054 int regFree2 = 0; 5055 int r1, r2; 5056 5057 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5058 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5059 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5060 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5061 op = pExpr->op; 5062 switch( op ){ 5063 case TK_AND: 5064 case TK_OR: { 5065 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5066 if( pAlt!=pExpr ){ 5067 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5068 }else if( op==TK_AND ){ 5069 int d2 = sqlite3VdbeMakeLabel(pParse); 5070 testcase( jumpIfNull==0 ); 5071 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5072 jumpIfNull^SQLITE_JUMPIFNULL); 5073 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5074 sqlite3VdbeResolveLabel(v, d2); 5075 }else{ 5076 testcase( jumpIfNull==0 ); 5077 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5078 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5079 } 5080 break; 5081 } 5082 case TK_NOT: { 5083 testcase( jumpIfNull==0 ); 5084 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5085 break; 5086 } 5087 case TK_TRUTH: { 5088 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5089 int isTrue; /* IS TRUE or IS NOT TRUE */ 5090 testcase( jumpIfNull==0 ); 5091 isNot = pExpr->op2==TK_ISNOT; 5092 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5093 testcase( isTrue && isNot ); 5094 testcase( !isTrue && isNot ); 5095 if( isTrue ^ isNot ){ 5096 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5097 isNot ? SQLITE_JUMPIFNULL : 0); 5098 }else{ 5099 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5100 isNot ? SQLITE_JUMPIFNULL : 0); 5101 } 5102 break; 5103 } 5104 case TK_IS: 5105 case TK_ISNOT: 5106 testcase( op==TK_IS ); 5107 testcase( op==TK_ISNOT ); 5108 op = (op==TK_IS) ? TK_EQ : TK_NE; 5109 jumpIfNull = SQLITE_NULLEQ; 5110 /* no break */ deliberate_fall_through 5111 case TK_LT: 5112 case TK_LE: 5113 case TK_GT: 5114 case TK_GE: 5115 case TK_NE: 5116 case TK_EQ: { 5117 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5118 testcase( jumpIfNull==0 ); 5119 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5120 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5121 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5122 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5123 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5124 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5125 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5126 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5127 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5128 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5129 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5130 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5131 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5132 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5133 testcase( regFree1==0 ); 5134 testcase( regFree2==0 ); 5135 break; 5136 } 5137 case TK_ISNULL: 5138 case TK_NOTNULL: { 5139 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5140 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5141 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5142 sqlite3VdbeAddOp2(v, op, r1, dest); 5143 VdbeCoverageIf(v, op==TK_ISNULL); 5144 VdbeCoverageIf(v, op==TK_NOTNULL); 5145 testcase( regFree1==0 ); 5146 break; 5147 } 5148 case TK_BETWEEN: { 5149 testcase( jumpIfNull==0 ); 5150 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5151 break; 5152 } 5153 #ifndef SQLITE_OMIT_SUBQUERY 5154 case TK_IN: { 5155 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5156 int destIfNull = jumpIfNull ? dest : destIfFalse; 5157 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5158 sqlite3VdbeGoto(v, dest); 5159 sqlite3VdbeResolveLabel(v, destIfFalse); 5160 break; 5161 } 5162 #endif 5163 default: { 5164 default_expr: 5165 if( ExprAlwaysTrue(pExpr) ){ 5166 sqlite3VdbeGoto(v, dest); 5167 }else if( ExprAlwaysFalse(pExpr) ){ 5168 /* No-op */ 5169 }else{ 5170 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5171 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5172 VdbeCoverage(v); 5173 testcase( regFree1==0 ); 5174 testcase( jumpIfNull==0 ); 5175 } 5176 break; 5177 } 5178 } 5179 sqlite3ReleaseTempReg(pParse, regFree1); 5180 sqlite3ReleaseTempReg(pParse, regFree2); 5181 } 5182 5183 /* 5184 ** Generate code for a boolean expression such that a jump is made 5185 ** to the label "dest" if the expression is false but execution 5186 ** continues straight thru if the expression is true. 5187 ** 5188 ** If the expression evaluates to NULL (neither true nor false) then 5189 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5190 ** is 0. 5191 */ 5192 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5193 Vdbe *v = pParse->pVdbe; 5194 int op = 0; 5195 int regFree1 = 0; 5196 int regFree2 = 0; 5197 int r1, r2; 5198 5199 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5200 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5201 if( pExpr==0 ) return; 5202 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5203 5204 /* The value of pExpr->op and op are related as follows: 5205 ** 5206 ** pExpr->op op 5207 ** --------- ---------- 5208 ** TK_ISNULL OP_NotNull 5209 ** TK_NOTNULL OP_IsNull 5210 ** TK_NE OP_Eq 5211 ** TK_EQ OP_Ne 5212 ** TK_GT OP_Le 5213 ** TK_LE OP_Gt 5214 ** TK_GE OP_Lt 5215 ** TK_LT OP_Ge 5216 ** 5217 ** For other values of pExpr->op, op is undefined and unused. 5218 ** The value of TK_ and OP_ constants are arranged such that we 5219 ** can compute the mapping above using the following expression. 5220 ** Assert()s verify that the computation is correct. 5221 */ 5222 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5223 5224 /* Verify correct alignment of TK_ and OP_ constants 5225 */ 5226 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5227 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5228 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5229 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5230 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5231 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5232 assert( pExpr->op!=TK_GT || op==OP_Le ); 5233 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5234 5235 switch( pExpr->op ){ 5236 case TK_AND: 5237 case TK_OR: { 5238 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5239 if( pAlt!=pExpr ){ 5240 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5241 }else if( pExpr->op==TK_AND ){ 5242 testcase( jumpIfNull==0 ); 5243 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5244 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5245 }else{ 5246 int d2 = sqlite3VdbeMakeLabel(pParse); 5247 testcase( jumpIfNull==0 ); 5248 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5249 jumpIfNull^SQLITE_JUMPIFNULL); 5250 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5251 sqlite3VdbeResolveLabel(v, d2); 5252 } 5253 break; 5254 } 5255 case TK_NOT: { 5256 testcase( jumpIfNull==0 ); 5257 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5258 break; 5259 } 5260 case TK_TRUTH: { 5261 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5262 int isTrue; /* IS TRUE or IS NOT TRUE */ 5263 testcase( jumpIfNull==0 ); 5264 isNot = pExpr->op2==TK_ISNOT; 5265 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5266 testcase( isTrue && isNot ); 5267 testcase( !isTrue && isNot ); 5268 if( isTrue ^ isNot ){ 5269 /* IS TRUE and IS NOT FALSE */ 5270 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5271 isNot ? 0 : SQLITE_JUMPIFNULL); 5272 5273 }else{ 5274 /* IS FALSE and IS NOT TRUE */ 5275 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5276 isNot ? 0 : SQLITE_JUMPIFNULL); 5277 } 5278 break; 5279 } 5280 case TK_IS: 5281 case TK_ISNOT: 5282 testcase( pExpr->op==TK_IS ); 5283 testcase( pExpr->op==TK_ISNOT ); 5284 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5285 jumpIfNull = SQLITE_NULLEQ; 5286 /* no break */ deliberate_fall_through 5287 case TK_LT: 5288 case TK_LE: 5289 case TK_GT: 5290 case TK_GE: 5291 case TK_NE: 5292 case TK_EQ: { 5293 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5294 testcase( jumpIfNull==0 ); 5295 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5296 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5297 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5298 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5299 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5300 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5301 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5302 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5303 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5304 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5305 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5306 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5307 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5308 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5309 testcase( regFree1==0 ); 5310 testcase( regFree2==0 ); 5311 break; 5312 } 5313 case TK_ISNULL: 5314 case TK_NOTNULL: { 5315 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5316 sqlite3VdbeAddOp2(v, op, r1, dest); 5317 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5318 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5319 testcase( regFree1==0 ); 5320 break; 5321 } 5322 case TK_BETWEEN: { 5323 testcase( jumpIfNull==0 ); 5324 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5325 break; 5326 } 5327 #ifndef SQLITE_OMIT_SUBQUERY 5328 case TK_IN: { 5329 if( jumpIfNull ){ 5330 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5331 }else{ 5332 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5333 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5334 sqlite3VdbeResolveLabel(v, destIfNull); 5335 } 5336 break; 5337 } 5338 #endif 5339 default: { 5340 default_expr: 5341 if( ExprAlwaysFalse(pExpr) ){ 5342 sqlite3VdbeGoto(v, dest); 5343 }else if( ExprAlwaysTrue(pExpr) ){ 5344 /* no-op */ 5345 }else{ 5346 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5347 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5348 VdbeCoverage(v); 5349 testcase( regFree1==0 ); 5350 testcase( jumpIfNull==0 ); 5351 } 5352 break; 5353 } 5354 } 5355 sqlite3ReleaseTempReg(pParse, regFree1); 5356 sqlite3ReleaseTempReg(pParse, regFree2); 5357 } 5358 5359 /* 5360 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5361 ** code generation, and that copy is deleted after code generation. This 5362 ** ensures that the original pExpr is unchanged. 5363 */ 5364 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5365 sqlite3 *db = pParse->db; 5366 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5367 if( db->mallocFailed==0 ){ 5368 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5369 } 5370 sqlite3ExprDelete(db, pCopy); 5371 } 5372 5373 /* 5374 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5375 ** type of expression. 5376 ** 5377 ** If pExpr is a simple SQL value - an integer, real, string, blob 5378 ** or NULL value - then the VDBE currently being prepared is configured 5379 ** to re-prepare each time a new value is bound to variable pVar. 5380 ** 5381 ** Additionally, if pExpr is a simple SQL value and the value is the 5382 ** same as that currently bound to variable pVar, non-zero is returned. 5383 ** Otherwise, if the values are not the same or if pExpr is not a simple 5384 ** SQL value, zero is returned. 5385 */ 5386 static int exprCompareVariable( 5387 const Parse *pParse, 5388 const Expr *pVar, 5389 const Expr *pExpr 5390 ){ 5391 int res = 0; 5392 int iVar; 5393 sqlite3_value *pL, *pR = 0; 5394 5395 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5396 if( pR ){ 5397 iVar = pVar->iColumn; 5398 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5399 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5400 if( pL ){ 5401 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5402 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5403 } 5404 res = 0==sqlite3MemCompare(pL, pR, 0); 5405 } 5406 sqlite3ValueFree(pR); 5407 sqlite3ValueFree(pL); 5408 } 5409 5410 return res; 5411 } 5412 5413 /* 5414 ** Do a deep comparison of two expression trees. Return 0 if the two 5415 ** expressions are completely identical. Return 1 if they differ only 5416 ** by a COLLATE operator at the top level. Return 2 if there are differences 5417 ** other than the top-level COLLATE operator. 5418 ** 5419 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5420 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5421 ** 5422 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5423 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5424 ** 5425 ** Sometimes this routine will return 2 even if the two expressions 5426 ** really are equivalent. If we cannot prove that the expressions are 5427 ** identical, we return 2 just to be safe. So if this routine 5428 ** returns 2, then you do not really know for certain if the two 5429 ** expressions are the same. But if you get a 0 or 1 return, then you 5430 ** can be sure the expressions are the same. In the places where 5431 ** this routine is used, it does not hurt to get an extra 2 - that 5432 ** just might result in some slightly slower code. But returning 5433 ** an incorrect 0 or 1 could lead to a malfunction. 5434 ** 5435 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5436 ** pParse->pReprepare can be matched against literals in pB. The 5437 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5438 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5439 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5440 ** pB causes a return value of 2. 5441 */ 5442 int sqlite3ExprCompare( 5443 const Parse *pParse, 5444 const Expr *pA, 5445 const Expr *pB, 5446 int iTab 5447 ){ 5448 u32 combinedFlags; 5449 if( pA==0 || pB==0 ){ 5450 return pB==pA ? 0 : 2; 5451 } 5452 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5453 return 0; 5454 } 5455 combinedFlags = pA->flags | pB->flags; 5456 if( combinedFlags & EP_IntValue ){ 5457 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5458 return 0; 5459 } 5460 return 2; 5461 } 5462 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5463 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5464 return 1; 5465 } 5466 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5467 return 1; 5468 } 5469 return 2; 5470 } 5471 assert( !ExprHasProperty(pA, EP_IntValue) ); 5472 assert( !ExprHasProperty(pB, EP_IntValue) ); 5473 if( pA->u.zToken ){ 5474 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5475 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5476 #ifndef SQLITE_OMIT_WINDOWFUNC 5477 assert( pA->op==pB->op ); 5478 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5479 return 2; 5480 } 5481 if( ExprHasProperty(pA,EP_WinFunc) ){ 5482 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5483 return 2; 5484 } 5485 } 5486 #endif 5487 }else if( pA->op==TK_NULL ){ 5488 return 0; 5489 }else if( pA->op==TK_COLLATE ){ 5490 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5491 }else 5492 if( pB->u.zToken!=0 5493 && pA->op!=TK_COLUMN 5494 && pA->op!=TK_AGG_COLUMN 5495 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5496 ){ 5497 return 2; 5498 } 5499 } 5500 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5501 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5502 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5503 if( combinedFlags & EP_xIsSelect ) return 2; 5504 if( (combinedFlags & EP_FixedCol)==0 5505 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5506 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5507 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5508 if( pA->op!=TK_STRING 5509 && pA->op!=TK_TRUEFALSE 5510 && ALWAYS((combinedFlags & EP_Reduced)==0) 5511 ){ 5512 if( pA->iColumn!=pB->iColumn ) return 2; 5513 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5514 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5515 return 2; 5516 } 5517 } 5518 } 5519 return 0; 5520 } 5521 5522 /* 5523 ** Compare two ExprList objects. Return 0 if they are identical, 1 5524 ** if they are certainly different, or 2 if it is not possible to 5525 ** determine if they are identical or not. 5526 ** 5527 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5528 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5529 ** 5530 ** This routine might return non-zero for equivalent ExprLists. The 5531 ** only consequence will be disabled optimizations. But this routine 5532 ** must never return 0 if the two ExprList objects are different, or 5533 ** a malfunction will result. 5534 ** 5535 ** Two NULL pointers are considered to be the same. But a NULL pointer 5536 ** always differs from a non-NULL pointer. 5537 */ 5538 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5539 int i; 5540 if( pA==0 && pB==0 ) return 0; 5541 if( pA==0 || pB==0 ) return 1; 5542 if( pA->nExpr!=pB->nExpr ) return 1; 5543 for(i=0; i<pA->nExpr; i++){ 5544 int res; 5545 Expr *pExprA = pA->a[i].pExpr; 5546 Expr *pExprB = pB->a[i].pExpr; 5547 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5548 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5549 } 5550 return 0; 5551 } 5552 5553 /* 5554 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5555 ** are ignored. 5556 */ 5557 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5558 return sqlite3ExprCompare(0, 5559 sqlite3ExprSkipCollateAndLikely(pA), 5560 sqlite3ExprSkipCollateAndLikely(pB), 5561 iTab); 5562 } 5563 5564 /* 5565 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5566 ** 5567 ** Or if seenNot is true, return non-zero if Expr p can only be 5568 ** non-NULL if pNN is not NULL 5569 */ 5570 static int exprImpliesNotNull( 5571 const Parse *pParse,/* Parsing context */ 5572 const Expr *p, /* The expression to be checked */ 5573 const Expr *pNN, /* The expression that is NOT NULL */ 5574 int iTab, /* Table being evaluated */ 5575 int seenNot /* Return true only if p can be any non-NULL value */ 5576 ){ 5577 assert( p ); 5578 assert( pNN ); 5579 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5580 return pNN->op!=TK_NULL; 5581 } 5582 switch( p->op ){ 5583 case TK_IN: { 5584 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5585 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5586 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5587 } 5588 case TK_BETWEEN: { 5589 ExprList *pList; 5590 assert( ExprUseXList(p) ); 5591 pList = p->x.pList; 5592 assert( pList!=0 ); 5593 assert( pList->nExpr==2 ); 5594 if( seenNot ) return 0; 5595 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5596 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5597 ){ 5598 return 1; 5599 } 5600 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5601 } 5602 case TK_EQ: 5603 case TK_NE: 5604 case TK_LT: 5605 case TK_LE: 5606 case TK_GT: 5607 case TK_GE: 5608 case TK_PLUS: 5609 case TK_MINUS: 5610 case TK_BITOR: 5611 case TK_LSHIFT: 5612 case TK_RSHIFT: 5613 case TK_CONCAT: 5614 seenNot = 1; 5615 /* no break */ deliberate_fall_through 5616 case TK_STAR: 5617 case TK_REM: 5618 case TK_BITAND: 5619 case TK_SLASH: { 5620 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5621 /* no break */ deliberate_fall_through 5622 } 5623 case TK_SPAN: 5624 case TK_COLLATE: 5625 case TK_UPLUS: 5626 case TK_UMINUS: { 5627 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5628 } 5629 case TK_TRUTH: { 5630 if( seenNot ) return 0; 5631 if( p->op2!=TK_IS ) return 0; 5632 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5633 } 5634 case TK_BITNOT: 5635 case TK_NOT: { 5636 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5637 } 5638 } 5639 return 0; 5640 } 5641 5642 /* 5643 ** Return true if we can prove the pE2 will always be true if pE1 is 5644 ** true. Return false if we cannot complete the proof or if pE2 might 5645 ** be false. Examples: 5646 ** 5647 ** pE1: x==5 pE2: x==5 Result: true 5648 ** pE1: x>0 pE2: x==5 Result: false 5649 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5650 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5651 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5652 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5653 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5654 ** 5655 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5656 ** Expr.iTable<0 then assume a table number given by iTab. 5657 ** 5658 ** If pParse is not NULL, then the values of bound variables in pE1 are 5659 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5660 ** modified to record which bound variables are referenced. If pParse 5661 ** is NULL, then false will be returned if pE1 contains any bound variables. 5662 ** 5663 ** When in doubt, return false. Returning true might give a performance 5664 ** improvement. Returning false might cause a performance reduction, but 5665 ** it will always give the correct answer and is hence always safe. 5666 */ 5667 int sqlite3ExprImpliesExpr( 5668 const Parse *pParse, 5669 const Expr *pE1, 5670 const Expr *pE2, 5671 int iTab 5672 ){ 5673 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5674 return 1; 5675 } 5676 if( pE2->op==TK_OR 5677 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5678 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5679 ){ 5680 return 1; 5681 } 5682 if( pE2->op==TK_NOTNULL 5683 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5684 ){ 5685 return 1; 5686 } 5687 return 0; 5688 } 5689 5690 /* 5691 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5692 ** If the expression node requires that the table at pWalker->iCur 5693 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5694 ** 5695 ** This routine controls an optimization. False positives (setting 5696 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5697 ** (never setting pWalker->eCode) is a harmless missed optimization. 5698 */ 5699 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5700 testcase( pExpr->op==TK_AGG_COLUMN ); 5701 testcase( pExpr->op==TK_AGG_FUNCTION ); 5702 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5703 switch( pExpr->op ){ 5704 case TK_ISNOT: 5705 case TK_ISNULL: 5706 case TK_NOTNULL: 5707 case TK_IS: 5708 case TK_OR: 5709 case TK_VECTOR: 5710 case TK_CASE: 5711 case TK_IN: 5712 case TK_FUNCTION: 5713 case TK_TRUTH: 5714 testcase( pExpr->op==TK_ISNOT ); 5715 testcase( pExpr->op==TK_ISNULL ); 5716 testcase( pExpr->op==TK_NOTNULL ); 5717 testcase( pExpr->op==TK_IS ); 5718 testcase( pExpr->op==TK_OR ); 5719 testcase( pExpr->op==TK_VECTOR ); 5720 testcase( pExpr->op==TK_CASE ); 5721 testcase( pExpr->op==TK_IN ); 5722 testcase( pExpr->op==TK_FUNCTION ); 5723 testcase( pExpr->op==TK_TRUTH ); 5724 return WRC_Prune; 5725 case TK_COLUMN: 5726 if( pWalker->u.iCur==pExpr->iTable ){ 5727 pWalker->eCode = 1; 5728 return WRC_Abort; 5729 } 5730 return WRC_Prune; 5731 5732 case TK_AND: 5733 if( pWalker->eCode==0 ){ 5734 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5735 if( pWalker->eCode ){ 5736 pWalker->eCode = 0; 5737 sqlite3WalkExpr(pWalker, pExpr->pRight); 5738 } 5739 } 5740 return WRC_Prune; 5741 5742 case TK_BETWEEN: 5743 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5744 assert( pWalker->eCode ); 5745 return WRC_Abort; 5746 } 5747 return WRC_Prune; 5748 5749 /* Virtual tables are allowed to use constraints like x=NULL. So 5750 ** a term of the form x=y does not prove that y is not null if x 5751 ** is the column of a virtual table */ 5752 case TK_EQ: 5753 case TK_NE: 5754 case TK_LT: 5755 case TK_LE: 5756 case TK_GT: 5757 case TK_GE: { 5758 Expr *pLeft = pExpr->pLeft; 5759 Expr *pRight = pExpr->pRight; 5760 testcase( pExpr->op==TK_EQ ); 5761 testcase( pExpr->op==TK_NE ); 5762 testcase( pExpr->op==TK_LT ); 5763 testcase( pExpr->op==TK_LE ); 5764 testcase( pExpr->op==TK_GT ); 5765 testcase( pExpr->op==TK_GE ); 5766 /* The y.pTab=0 assignment in wherecode.c always happens after the 5767 ** impliesNotNullRow() test */ 5768 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5769 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5770 if( (pLeft->op==TK_COLUMN 5771 && pLeft->y.pTab!=0 5772 && IsVirtual(pLeft->y.pTab)) 5773 || (pRight->op==TK_COLUMN 5774 && pRight->y.pTab!=0 5775 && IsVirtual(pRight->y.pTab)) 5776 ){ 5777 return WRC_Prune; 5778 } 5779 /* no break */ deliberate_fall_through 5780 } 5781 default: 5782 return WRC_Continue; 5783 } 5784 } 5785 5786 /* 5787 ** Return true (non-zero) if expression p can only be true if at least 5788 ** one column of table iTab is non-null. In other words, return true 5789 ** if expression p will always be NULL or false if every column of iTab 5790 ** is NULL. 5791 ** 5792 ** False negatives are acceptable. In other words, it is ok to return 5793 ** zero even if expression p will never be true of every column of iTab 5794 ** is NULL. A false negative is merely a missed optimization opportunity. 5795 ** 5796 ** False positives are not allowed, however. A false positive may result 5797 ** in an incorrect answer. 5798 ** 5799 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5800 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5801 ** 5802 ** This routine is used to check if a LEFT JOIN can be converted into 5803 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5804 ** clause requires that some column of the right table of the LEFT JOIN 5805 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5806 ** ordinary join. 5807 */ 5808 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5809 Walker w; 5810 p = sqlite3ExprSkipCollateAndLikely(p); 5811 if( p==0 ) return 0; 5812 if( p->op==TK_NOTNULL ){ 5813 p = p->pLeft; 5814 }else{ 5815 while( p->op==TK_AND ){ 5816 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5817 p = p->pRight; 5818 } 5819 } 5820 w.xExprCallback = impliesNotNullRow; 5821 w.xSelectCallback = 0; 5822 w.xSelectCallback2 = 0; 5823 w.eCode = 0; 5824 w.u.iCur = iTab; 5825 sqlite3WalkExpr(&w, p); 5826 return w.eCode; 5827 } 5828 5829 /* 5830 ** An instance of the following structure is used by the tree walker 5831 ** to determine if an expression can be evaluated by reference to the 5832 ** index only, without having to do a search for the corresponding 5833 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5834 ** is the cursor for the table. 5835 */ 5836 struct IdxCover { 5837 Index *pIdx; /* The index to be tested for coverage */ 5838 int iCur; /* Cursor number for the table corresponding to the index */ 5839 }; 5840 5841 /* 5842 ** Check to see if there are references to columns in table 5843 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5844 ** pWalker->u.pIdxCover->pIdx. 5845 */ 5846 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5847 if( pExpr->op==TK_COLUMN 5848 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5849 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5850 ){ 5851 pWalker->eCode = 1; 5852 return WRC_Abort; 5853 } 5854 return WRC_Continue; 5855 } 5856 5857 /* 5858 ** Determine if an index pIdx on table with cursor iCur contains will 5859 ** the expression pExpr. Return true if the index does cover the 5860 ** expression and false if the pExpr expression references table columns 5861 ** that are not found in the index pIdx. 5862 ** 5863 ** An index covering an expression means that the expression can be 5864 ** evaluated using only the index and without having to lookup the 5865 ** corresponding table entry. 5866 */ 5867 int sqlite3ExprCoveredByIndex( 5868 Expr *pExpr, /* The index to be tested */ 5869 int iCur, /* The cursor number for the corresponding table */ 5870 Index *pIdx /* The index that might be used for coverage */ 5871 ){ 5872 Walker w; 5873 struct IdxCover xcov; 5874 memset(&w, 0, sizeof(w)); 5875 xcov.iCur = iCur; 5876 xcov.pIdx = pIdx; 5877 w.xExprCallback = exprIdxCover; 5878 w.u.pIdxCover = &xcov; 5879 sqlite3WalkExpr(&w, pExpr); 5880 return !w.eCode; 5881 } 5882 5883 5884 /* Structure used to pass information throught the Walker in order to 5885 ** implement sqlite3ReferencesSrcList(). 5886 */ 5887 struct RefSrcList { 5888 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5889 SrcList *pRef; /* Looking for references to these tables */ 5890 i64 nExclude; /* Number of tables to exclude from the search */ 5891 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5892 }; 5893 5894 /* 5895 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5896 ** 5897 ** When entering a new subquery on the pExpr argument, add all FROM clause 5898 ** entries for that subquery to the exclude list. 5899 ** 5900 ** When leaving the subquery, remove those entries from the exclude list. 5901 */ 5902 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5903 struct RefSrcList *p = pWalker->u.pRefSrcList; 5904 SrcList *pSrc = pSelect->pSrc; 5905 i64 i, j; 5906 int *piNew; 5907 if( pSrc->nSrc==0 ) return WRC_Continue; 5908 j = p->nExclude; 5909 p->nExclude += pSrc->nSrc; 5910 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5911 if( piNew==0 ){ 5912 p->nExclude = 0; 5913 return WRC_Abort; 5914 }else{ 5915 p->aiExclude = piNew; 5916 } 5917 for(i=0; i<pSrc->nSrc; i++, j++){ 5918 p->aiExclude[j] = pSrc->a[i].iCursor; 5919 } 5920 return WRC_Continue; 5921 } 5922 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5923 struct RefSrcList *p = pWalker->u.pRefSrcList; 5924 SrcList *pSrc = pSelect->pSrc; 5925 if( p->nExclude ){ 5926 assert( p->nExclude>=pSrc->nSrc ); 5927 p->nExclude -= pSrc->nSrc; 5928 } 5929 } 5930 5931 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 5932 ** 5933 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 5934 ** of the tables shown in RefSrcList.pRef. 5935 ** 5936 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 5937 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 5938 */ 5939 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 5940 if( pExpr->op==TK_COLUMN 5941 || pExpr->op==TK_AGG_COLUMN 5942 ){ 5943 int i; 5944 struct RefSrcList *p = pWalker->u.pRefSrcList; 5945 SrcList *pSrc = p->pRef; 5946 int nSrc = pSrc ? pSrc->nSrc : 0; 5947 for(i=0; i<nSrc; i++){ 5948 if( pExpr->iTable==pSrc->a[i].iCursor ){ 5949 pWalker->eCode |= 1; 5950 return WRC_Continue; 5951 } 5952 } 5953 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 5954 if( i>=p->nExclude ){ 5955 pWalker->eCode |= 2; 5956 } 5957 } 5958 return WRC_Continue; 5959 } 5960 5961 /* 5962 ** Check to see if pExpr references any tables in pSrcList. 5963 ** Possible return values: 5964 ** 5965 ** 1 pExpr does references a table in pSrcList. 5966 ** 5967 ** 0 pExpr references some table that is not defined in either 5968 ** pSrcList or in subqueries of pExpr itself. 5969 ** 5970 ** -1 pExpr only references no tables at all, or it only 5971 ** references tables defined in subqueries of pExpr itself. 5972 ** 5973 ** As currently used, pExpr is always an aggregate function call. That 5974 ** fact is exploited for efficiency. 5975 */ 5976 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 5977 Walker w; 5978 struct RefSrcList x; 5979 memset(&w, 0, sizeof(w)); 5980 memset(&x, 0, sizeof(x)); 5981 w.xExprCallback = exprRefToSrcList; 5982 w.xSelectCallback = selectRefEnter; 5983 w.xSelectCallback2 = selectRefLeave; 5984 w.u.pRefSrcList = &x; 5985 x.db = pParse->db; 5986 x.pRef = pSrcList; 5987 assert( pExpr->op==TK_AGG_FUNCTION ); 5988 assert( ExprUseXList(pExpr) ); 5989 sqlite3WalkExprList(&w, pExpr->x.pList); 5990 #ifndef SQLITE_OMIT_WINDOWFUNC 5991 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5992 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5993 } 5994 #endif 5995 sqlite3DbFree(pParse->db, x.aiExclude); 5996 if( w.eCode & 0x01 ){ 5997 return 1; 5998 }else if( w.eCode ){ 5999 return 0; 6000 }else{ 6001 return -1; 6002 } 6003 } 6004 6005 /* 6006 ** This is a Walker expression node callback. 6007 ** 6008 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6009 ** object that is referenced does not refer directly to the Expr. If 6010 ** it does, make a copy. This is done because the pExpr argument is 6011 ** subject to change. 6012 ** 6013 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6014 ** This will cause the expression to be deleted automatically when the 6015 ** Parse object is destroyed, but the zero register number means that it 6016 ** will not generate any code in the preamble. 6017 */ 6018 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6019 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6020 && pExpr->pAggInfo!=0 6021 ){ 6022 AggInfo *pAggInfo = pExpr->pAggInfo; 6023 int iAgg = pExpr->iAgg; 6024 Parse *pParse = pWalker->pParse; 6025 sqlite3 *db = pParse->db; 6026 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6027 if( pExpr->op==TK_AGG_COLUMN ){ 6028 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6029 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6030 pExpr = sqlite3ExprDup(db, pExpr, 0); 6031 if( pExpr ){ 6032 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6033 sqlite3ExprDeferredDelete(pParse, pExpr); 6034 } 6035 } 6036 }else{ 6037 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6038 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6039 pExpr = sqlite3ExprDup(db, pExpr, 0); 6040 if( pExpr ){ 6041 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6042 sqlite3ExprDeferredDelete(pParse, pExpr); 6043 } 6044 } 6045 } 6046 } 6047 return WRC_Continue; 6048 } 6049 6050 /* 6051 ** Initialize a Walker object so that will persist AggInfo entries referenced 6052 ** by the tree that is walked. 6053 */ 6054 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6055 memset(pWalker, 0, sizeof(*pWalker)); 6056 pWalker->pParse = pParse; 6057 pWalker->xExprCallback = agginfoPersistExprCb; 6058 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6059 } 6060 6061 /* 6062 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6063 ** the new element. Return a negative number if malloc fails. 6064 */ 6065 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6066 int i; 6067 pInfo->aCol = sqlite3ArrayAllocate( 6068 db, 6069 pInfo->aCol, 6070 sizeof(pInfo->aCol[0]), 6071 &pInfo->nColumn, 6072 &i 6073 ); 6074 return i; 6075 } 6076 6077 /* 6078 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6079 ** the new element. Return a negative number if malloc fails. 6080 */ 6081 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6082 int i; 6083 pInfo->aFunc = sqlite3ArrayAllocate( 6084 db, 6085 pInfo->aFunc, 6086 sizeof(pInfo->aFunc[0]), 6087 &pInfo->nFunc, 6088 &i 6089 ); 6090 return i; 6091 } 6092 6093 /* 6094 ** This is the xExprCallback for a tree walker. It is used to 6095 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6096 ** for additional information. 6097 */ 6098 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6099 int i; 6100 NameContext *pNC = pWalker->u.pNC; 6101 Parse *pParse = pNC->pParse; 6102 SrcList *pSrcList = pNC->pSrcList; 6103 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6104 6105 assert( pNC->ncFlags & NC_UAggInfo ); 6106 switch( pExpr->op ){ 6107 case TK_AGG_COLUMN: 6108 case TK_COLUMN: { 6109 testcase( pExpr->op==TK_AGG_COLUMN ); 6110 testcase( pExpr->op==TK_COLUMN ); 6111 /* Check to see if the column is in one of the tables in the FROM 6112 ** clause of the aggregate query */ 6113 if( ALWAYS(pSrcList!=0) ){ 6114 SrcItem *pItem = pSrcList->a; 6115 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6116 struct AggInfo_col *pCol; 6117 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6118 if( pExpr->iTable==pItem->iCursor ){ 6119 /* If we reach this point, it means that pExpr refers to a table 6120 ** that is in the FROM clause of the aggregate query. 6121 ** 6122 ** Make an entry for the column in pAggInfo->aCol[] if there 6123 ** is not an entry there already. 6124 */ 6125 int k; 6126 pCol = pAggInfo->aCol; 6127 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6128 if( pCol->iTable==pExpr->iTable && 6129 pCol->iColumn==pExpr->iColumn ){ 6130 break; 6131 } 6132 } 6133 if( (k>=pAggInfo->nColumn) 6134 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6135 ){ 6136 pCol = &pAggInfo->aCol[k]; 6137 assert( ExprUseYTab(pExpr) ); 6138 pCol->pTab = pExpr->y.pTab; 6139 pCol->iTable = pExpr->iTable; 6140 pCol->iColumn = pExpr->iColumn; 6141 pCol->iMem = ++pParse->nMem; 6142 pCol->iSorterColumn = -1; 6143 pCol->pCExpr = pExpr; 6144 if( pAggInfo->pGroupBy ){ 6145 int j, n; 6146 ExprList *pGB = pAggInfo->pGroupBy; 6147 struct ExprList_item *pTerm = pGB->a; 6148 n = pGB->nExpr; 6149 for(j=0; j<n; j++, pTerm++){ 6150 Expr *pE = pTerm->pExpr; 6151 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6152 pE->iColumn==pExpr->iColumn ){ 6153 pCol->iSorterColumn = j; 6154 break; 6155 } 6156 } 6157 } 6158 if( pCol->iSorterColumn<0 ){ 6159 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6160 } 6161 } 6162 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6163 ** because it was there before or because we just created it). 6164 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6165 ** pAggInfo->aCol[] entry. 6166 */ 6167 ExprSetVVAProperty(pExpr, EP_NoReduce); 6168 pExpr->pAggInfo = pAggInfo; 6169 pExpr->op = TK_AGG_COLUMN; 6170 pExpr->iAgg = (i16)k; 6171 break; 6172 } /* endif pExpr->iTable==pItem->iCursor */ 6173 } /* end loop over pSrcList */ 6174 } 6175 return WRC_Prune; 6176 } 6177 case TK_AGG_FUNCTION: { 6178 if( (pNC->ncFlags & NC_InAggFunc)==0 6179 && pWalker->walkerDepth==pExpr->op2 6180 ){ 6181 /* Check to see if pExpr is a duplicate of another aggregate 6182 ** function that is already in the pAggInfo structure 6183 */ 6184 struct AggInfo_func *pItem = pAggInfo->aFunc; 6185 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6186 if( pItem->pFExpr==pExpr ) break; 6187 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6188 break; 6189 } 6190 } 6191 if( i>=pAggInfo->nFunc ){ 6192 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6193 */ 6194 u8 enc = ENC(pParse->db); 6195 i = addAggInfoFunc(pParse->db, pAggInfo); 6196 if( i>=0 ){ 6197 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6198 pItem = &pAggInfo->aFunc[i]; 6199 pItem->pFExpr = pExpr; 6200 pItem->iMem = ++pParse->nMem; 6201 assert( ExprUseUToken(pExpr) ); 6202 pItem->pFunc = sqlite3FindFunction(pParse->db, 6203 pExpr->u.zToken, 6204 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6205 if( pExpr->flags & EP_Distinct ){ 6206 pItem->iDistinct = pParse->nTab++; 6207 }else{ 6208 pItem->iDistinct = -1; 6209 } 6210 } 6211 } 6212 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6213 */ 6214 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6215 ExprSetVVAProperty(pExpr, EP_NoReduce); 6216 pExpr->iAgg = (i16)i; 6217 pExpr->pAggInfo = pAggInfo; 6218 return WRC_Prune; 6219 }else{ 6220 return WRC_Continue; 6221 } 6222 } 6223 } 6224 return WRC_Continue; 6225 } 6226 6227 /* 6228 ** Analyze the pExpr expression looking for aggregate functions and 6229 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6230 ** points to. Additional entries are made on the AggInfo object as 6231 ** necessary. 6232 ** 6233 ** This routine should only be called after the expression has been 6234 ** analyzed by sqlite3ResolveExprNames(). 6235 */ 6236 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6237 Walker w; 6238 w.xExprCallback = analyzeAggregate; 6239 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6240 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6241 w.walkerDepth = 0; 6242 w.u.pNC = pNC; 6243 w.pParse = 0; 6244 assert( pNC->pSrcList!=0 ); 6245 sqlite3WalkExpr(&w, pExpr); 6246 } 6247 6248 /* 6249 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6250 ** expression list. Return the number of errors. 6251 ** 6252 ** If an error is found, the analysis is cut short. 6253 */ 6254 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6255 struct ExprList_item *pItem; 6256 int i; 6257 if( pList ){ 6258 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6259 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6260 } 6261 } 6262 } 6263 6264 /* 6265 ** Allocate a single new register for use to hold some intermediate result. 6266 */ 6267 int sqlite3GetTempReg(Parse *pParse){ 6268 if( pParse->nTempReg==0 ){ 6269 return ++pParse->nMem; 6270 } 6271 return pParse->aTempReg[--pParse->nTempReg]; 6272 } 6273 6274 /* 6275 ** Deallocate a register, making available for reuse for some other 6276 ** purpose. 6277 */ 6278 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6279 if( iReg ){ 6280 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6281 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6282 pParse->aTempReg[pParse->nTempReg++] = iReg; 6283 } 6284 } 6285 } 6286 6287 /* 6288 ** Allocate or deallocate a block of nReg consecutive registers. 6289 */ 6290 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6291 int i, n; 6292 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6293 i = pParse->iRangeReg; 6294 n = pParse->nRangeReg; 6295 if( nReg<=n ){ 6296 pParse->iRangeReg += nReg; 6297 pParse->nRangeReg -= nReg; 6298 }else{ 6299 i = pParse->nMem+1; 6300 pParse->nMem += nReg; 6301 } 6302 return i; 6303 } 6304 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6305 if( nReg==1 ){ 6306 sqlite3ReleaseTempReg(pParse, iReg); 6307 return; 6308 } 6309 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6310 if( nReg>pParse->nRangeReg ){ 6311 pParse->nRangeReg = nReg; 6312 pParse->iRangeReg = iReg; 6313 } 6314 } 6315 6316 /* 6317 ** Mark all temporary registers as being unavailable for reuse. 6318 ** 6319 ** Always invoke this procedure after coding a subroutine or co-routine 6320 ** that might be invoked from other parts of the code, to ensure that 6321 ** the sub/co-routine does not use registers in common with the code that 6322 ** invokes the sub/co-routine. 6323 */ 6324 void sqlite3ClearTempRegCache(Parse *pParse){ 6325 pParse->nTempReg = 0; 6326 pParse->nRangeReg = 0; 6327 } 6328 6329 /* 6330 ** Validate that no temporary register falls within the range of 6331 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6332 ** statements. 6333 */ 6334 #ifdef SQLITE_DEBUG 6335 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6336 int i; 6337 if( pParse->nRangeReg>0 6338 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6339 && pParse->iRangeReg <= iLast 6340 ){ 6341 return 0; 6342 } 6343 for(i=0; i<pParse->nTempReg; i++){ 6344 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6345 return 0; 6346 } 6347 } 6348 return 1; 6349 } 6350 #endif /* SQLITE_DEBUG */ 6351