1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; 774 if( ExprUseXSelect(p) ){ 775 heightOfSelect(p->x.pSelect, &nHeight); 776 }else if( p->x.pList ){ 777 heightOfExprList(p->x.pList, &nHeight); 778 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 779 } 780 p->nHeight = nHeight + 1; 781 } 782 783 /* 784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 785 ** the height is greater than the maximum allowed expression depth, 786 ** leave an error in pParse. 787 ** 788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 789 ** Expr.flags. 790 */ 791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 792 if( pParse->nErr ) return; 793 exprSetHeight(p); 794 sqlite3ExprCheckHeight(pParse, p->nHeight); 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(const Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 807 /* 808 ** Propagate all EP_Propagate flags from the Expr.x.pList into 809 ** Expr.flags. 810 */ 811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 812 if( pParse->nErr ) return; 813 if( p && ExprUseXList(p) && p->x.pList ){ 814 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 815 } 816 } 817 #define exprSetHeight(y) 818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 819 820 /* 821 ** This routine is the core allocator for Expr nodes. 822 ** 823 ** Construct a new expression node and return a pointer to it. Memory 824 ** for this node and for the pToken argument is a single allocation 825 ** obtained from sqlite3DbMalloc(). The calling function 826 ** is responsible for making sure the node eventually gets freed. 827 ** 828 ** If dequote is true, then the token (if it exists) is dequoted. 829 ** If dequote is false, no dequoting is performed. The deQuote 830 ** parameter is ignored if pToken is NULL or if the token does not 831 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 832 ** then the EP_DblQuoted flag is set on the expression node. 833 ** 834 ** Special case: If op==TK_INTEGER and pToken points to a string that 835 ** can be translated into a 32-bit integer, then the token is not 836 ** stored in u.zToken. Instead, the integer values is written 837 ** into u.iValue and the EP_IntValue flag is set. No extra storage 838 ** is allocated to hold the integer text and the dequote flag is ignored. 839 */ 840 Expr *sqlite3ExprAlloc( 841 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 842 int op, /* Expression opcode */ 843 const Token *pToken, /* Token argument. Might be NULL */ 844 int dequote /* True to dequote */ 845 ){ 846 Expr *pNew; 847 int nExtra = 0; 848 int iValue = 0; 849 850 assert( db!=0 ); 851 if( pToken ){ 852 if( op!=TK_INTEGER || pToken->z==0 853 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 854 nExtra = pToken->n+1; 855 assert( iValue>=0 ); 856 } 857 } 858 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 859 if( pNew ){ 860 memset(pNew, 0, sizeof(Expr)); 861 pNew->op = (u8)op; 862 pNew->iAgg = -1; 863 if( pToken ){ 864 if( nExtra==0 ){ 865 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 866 pNew->u.iValue = iValue; 867 }else{ 868 pNew->u.zToken = (char*)&pNew[1]; 869 assert( pToken->z!=0 || pToken->n==0 ); 870 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 871 pNew->u.zToken[pToken->n] = 0; 872 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 873 sqlite3DequoteExpr(pNew); 874 } 875 } 876 } 877 #if SQLITE_MAX_EXPR_DEPTH>0 878 pNew->nHeight = 1; 879 #endif 880 } 881 return pNew; 882 } 883 884 /* 885 ** Allocate a new expression node from a zero-terminated token that has 886 ** already been dequoted. 887 */ 888 Expr *sqlite3Expr( 889 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 890 int op, /* Expression opcode */ 891 const char *zToken /* Token argument. Might be NULL */ 892 ){ 893 Token x; 894 x.z = zToken; 895 x.n = sqlite3Strlen30(zToken); 896 return sqlite3ExprAlloc(db, op, &x, 0); 897 } 898 899 /* 900 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 901 ** 902 ** If pRoot==NULL that means that a memory allocation error has occurred. 903 ** In that case, delete the subtrees pLeft and pRight. 904 */ 905 void sqlite3ExprAttachSubtrees( 906 sqlite3 *db, 907 Expr *pRoot, 908 Expr *pLeft, 909 Expr *pRight 910 ){ 911 if( pRoot==0 ){ 912 assert( db->mallocFailed ); 913 sqlite3ExprDelete(db, pLeft); 914 sqlite3ExprDelete(db, pRight); 915 }else{ 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 } 920 if( pLeft ){ 921 pRoot->pLeft = pLeft; 922 pRoot->flags |= EP_Propagate & pLeft->flags; 923 } 924 exprSetHeight(pRoot); 925 } 926 } 927 928 /* 929 ** Allocate an Expr node which joins as many as two subtrees. 930 ** 931 ** One or both of the subtrees can be NULL. Return a pointer to the new 932 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 933 ** free the subtrees and return NULL. 934 */ 935 Expr *sqlite3PExpr( 936 Parse *pParse, /* Parsing context */ 937 int op, /* Expression opcode */ 938 Expr *pLeft, /* Left operand */ 939 Expr *pRight /* Right operand */ 940 ){ 941 Expr *p; 942 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 943 if( p ){ 944 memset(p, 0, sizeof(Expr)); 945 p->op = op & 0xff; 946 p->iAgg = -1; 947 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 948 sqlite3ExprCheckHeight(pParse, p->nHeight); 949 }else{ 950 sqlite3ExprDelete(pParse->db, pLeft); 951 sqlite3ExprDelete(pParse->db, pRight); 952 } 953 return p; 954 } 955 956 /* 957 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 958 ** do a memory allocation failure) then delete the pSelect object. 959 */ 960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 961 if( pExpr ){ 962 pExpr->x.pSelect = pSelect; 963 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 964 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 965 }else{ 966 assert( pParse->db->mallocFailed ); 967 sqlite3SelectDelete(pParse->db, pSelect); 968 } 969 } 970 971 /* 972 ** Expression list pEList is a list of vector values. This function 973 ** converts the contents of pEList to a VALUES(...) Select statement 974 ** returning 1 row for each element of the list. For example, the 975 ** expression list: 976 ** 977 ** ( (1,2), (3,4) (5,6) ) 978 ** 979 ** is translated to the equivalent of: 980 ** 981 ** VALUES(1,2), (3,4), (5,6) 982 ** 983 ** Each of the vector values in pEList must contain exactly nElem terms. 984 ** If a list element that is not a vector or does not contain nElem terms, 985 ** an error message is left in pParse. 986 ** 987 ** This is used as part of processing IN(...) expressions with a list 988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 989 */ 990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 991 int ii; 992 Select *pRet = 0; 993 assert( nElem>1 ); 994 for(ii=0; ii<pEList->nExpr; ii++){ 995 Select *pSel; 996 Expr *pExpr = pEList->a[ii].pExpr; 997 int nExprElem; 998 if( pExpr->op==TK_VECTOR ){ 999 assert( ExprUseXList(pExpr) ); 1000 nExprElem = pExpr->x.pList->nExpr; 1001 }else{ 1002 nExprElem = 1; 1003 } 1004 if( nExprElem!=nElem ){ 1005 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1006 nExprElem, nExprElem>1?"s":"", nElem 1007 ); 1008 break; 1009 } 1010 assert( ExprUseXList(pExpr) ); 1011 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1012 pExpr->x.pList = 0; 1013 if( pSel ){ 1014 if( pRet ){ 1015 pSel->op = TK_ALL; 1016 pSel->pPrior = pRet; 1017 } 1018 pRet = pSel; 1019 } 1020 } 1021 1022 if( pRet && pRet->pPrior ){ 1023 pRet->selFlags |= SF_MultiValue; 1024 } 1025 sqlite3ExprListDelete(pParse->db, pEList); 1026 return pRet; 1027 } 1028 1029 /* 1030 ** Join two expressions using an AND operator. If either expression is 1031 ** NULL, then just return the other expression. 1032 ** 1033 ** If one side or the other of the AND is known to be false, then instead 1034 ** of returning an AND expression, just return a constant expression with 1035 ** a value of false. 1036 */ 1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1038 sqlite3 *db = pParse->db; 1039 if( pLeft==0 ){ 1040 return pRight; 1041 }else if( pRight==0 ){ 1042 return pLeft; 1043 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1044 && !IN_RENAME_OBJECT 1045 ){ 1046 sqlite3ExprDeferredDelete(pParse, pLeft); 1047 sqlite3ExprDeferredDelete(pParse, pRight); 1048 return sqlite3Expr(db, TK_INTEGER, "0"); 1049 }else{ 1050 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1051 } 1052 } 1053 1054 /* 1055 ** Construct a new expression node for a function with multiple 1056 ** arguments. 1057 */ 1058 Expr *sqlite3ExprFunction( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Argument list */ 1061 const Token *pToken, /* Name of the function */ 1062 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1063 ){ 1064 Expr *pNew; 1065 sqlite3 *db = pParse->db; 1066 assert( pToken ); 1067 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1068 if( pNew==0 ){ 1069 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1070 return 0; 1071 } 1072 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1073 if( pList 1074 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1075 && !pParse->nested 1076 ){ 1077 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1078 } 1079 pNew->x.pList = pList; 1080 ExprSetProperty(pNew, EP_HasFunc); 1081 assert( ExprUseXList(pNew) ); 1082 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1083 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1084 return pNew; 1085 } 1086 1087 /* 1088 ** Check to see if a function is usable according to current access 1089 ** rules: 1090 ** 1091 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1092 ** 1093 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1094 ** top-level SQL 1095 ** 1096 ** If the function is not usable, create an error. 1097 */ 1098 void sqlite3ExprFunctionUsable( 1099 Parse *pParse, /* Parsing and code generating context */ 1100 const Expr *pExpr, /* The function invocation */ 1101 const FuncDef *pDef /* The function being invoked */ 1102 ){ 1103 assert( !IN_RENAME_OBJECT ); 1104 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1105 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1106 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1107 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1108 ){ 1109 /* Functions prohibited in triggers and views if: 1110 ** (1) tagged with SQLITE_DIRECTONLY 1111 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1112 ** is tagged with SQLITE_FUNC_UNSAFE) and 1113 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1114 ** that the schema is possibly tainted). 1115 */ 1116 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1117 } 1118 } 1119 } 1120 1121 /* 1122 ** Assign a variable number to an expression that encodes a wildcard 1123 ** in the original SQL statement. 1124 ** 1125 ** Wildcards consisting of a single "?" are assigned the next sequential 1126 ** variable number. 1127 ** 1128 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1129 ** sure "nnn" is not too big to avoid a denial of service attack when 1130 ** the SQL statement comes from an external source. 1131 ** 1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1133 ** as the previous instance of the same wildcard. Or if this is the first 1134 ** instance of the wildcard, the next sequential variable number is 1135 ** assigned. 1136 */ 1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1138 sqlite3 *db = pParse->db; 1139 const char *z; 1140 ynVar x; 1141 1142 if( pExpr==0 ) return; 1143 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1144 z = pExpr->u.zToken; 1145 assert( z!=0 ); 1146 assert( z[0]!=0 ); 1147 assert( n==(u32)sqlite3Strlen30(z) ); 1148 if( z[1]==0 ){ 1149 /* Wildcard of the form "?". Assign the next variable number */ 1150 assert( z[0]=='?' ); 1151 x = (ynVar)(++pParse->nVar); 1152 }else{ 1153 int doAdd = 0; 1154 if( z[0]=='?' ){ 1155 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1156 ** use it as the variable number */ 1157 i64 i; 1158 int bOk; 1159 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1160 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1161 bOk = 1; 1162 }else{ 1163 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1164 } 1165 testcase( i==0 ); 1166 testcase( i==1 ); 1167 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1169 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1170 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1171 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1172 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1173 return; 1174 } 1175 x = (ynVar)i; 1176 if( x>pParse->nVar ){ 1177 pParse->nVar = (int)x; 1178 doAdd = 1; 1179 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1180 doAdd = 1; 1181 } 1182 }else{ 1183 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1184 ** number as the prior appearance of the same name, or if the name 1185 ** has never appeared before, reuse the same variable number 1186 */ 1187 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1188 if( x==0 ){ 1189 x = (ynVar)(++pParse->nVar); 1190 doAdd = 1; 1191 } 1192 } 1193 if( doAdd ){ 1194 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1195 } 1196 } 1197 pExpr->iColumn = x; 1198 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1199 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1200 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1201 } 1202 } 1203 1204 /* 1205 ** Recursively delete an expression tree. 1206 */ 1207 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1208 assert( p!=0 ); 1209 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1210 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1211 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1212 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1213 #ifdef SQLITE_DEBUG 1214 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1215 assert( p->pLeft==0 ); 1216 assert( p->pRight==0 ); 1217 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1218 assert( !ExprUseXList(p) || p->x.pList==0 ); 1219 } 1220 #endif 1221 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1222 /* The Expr.x union is never used at the same time as Expr.pRight */ 1223 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1224 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1225 if( p->pRight ){ 1226 assert( !ExprHasProperty(p, EP_WinFunc) ); 1227 sqlite3ExprDeleteNN(db, p->pRight); 1228 }else if( ExprUseXSelect(p) ){ 1229 assert( !ExprHasProperty(p, EP_WinFunc) ); 1230 sqlite3SelectDelete(db, p->x.pSelect); 1231 }else{ 1232 sqlite3ExprListDelete(db, p->x.pList); 1233 #ifndef SQLITE_OMIT_WINDOWFUNC 1234 if( ExprHasProperty(p, EP_WinFunc) ){ 1235 sqlite3WindowDelete(db, p->y.pWin); 1236 } 1237 #endif 1238 } 1239 } 1240 if( ExprHasProperty(p, EP_MemToken) ){ 1241 assert( !ExprHasProperty(p, EP_IntValue) ); 1242 sqlite3DbFree(db, p->u.zToken); 1243 } 1244 if( !ExprHasProperty(p, EP_Static) ){ 1245 sqlite3DbFreeNN(db, p); 1246 } 1247 } 1248 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1249 if( p ) sqlite3ExprDeleteNN(db, p); 1250 } 1251 1252 /* 1253 ** Clear both elements of an OnOrUsing object 1254 */ 1255 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1256 if( p==0 ){ 1257 /* Nothing to clear */ 1258 }else if( p->pOn ){ 1259 sqlite3ExprDeleteNN(db, p->pOn); 1260 }else if( p->pUsing ){ 1261 sqlite3IdListDelete(db, p->pUsing); 1262 } 1263 } 1264 1265 /* 1266 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1267 ** This is similar to sqlite3ExprDelete() except that the delete is 1268 ** deferred untilthe pParse is deleted. 1269 ** 1270 ** The pExpr might be deleted immediately on an OOM error. 1271 ** 1272 ** The deferred delete is (currently) implemented by adding the 1273 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1274 */ 1275 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1276 pParse->pConstExpr = 1277 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1278 } 1279 1280 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1281 ** expression. 1282 */ 1283 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1284 if( p ){ 1285 if( IN_RENAME_OBJECT ){ 1286 sqlite3RenameExprUnmap(pParse, p); 1287 } 1288 sqlite3ExprDeleteNN(pParse->db, p); 1289 } 1290 } 1291 1292 /* 1293 ** Return the number of bytes allocated for the expression structure 1294 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1295 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1296 */ 1297 static int exprStructSize(const Expr *p){ 1298 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1299 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1300 return EXPR_FULLSIZE; 1301 } 1302 1303 /* 1304 ** The dupedExpr*Size() routines each return the number of bytes required 1305 ** to store a copy of an expression or expression tree. They differ in 1306 ** how much of the tree is measured. 1307 ** 1308 ** dupedExprStructSize() Size of only the Expr structure 1309 ** dupedExprNodeSize() Size of Expr + space for token 1310 ** dupedExprSize() Expr + token + subtree components 1311 ** 1312 *************************************************************************** 1313 ** 1314 ** The dupedExprStructSize() function returns two values OR-ed together: 1315 ** (1) the space required for a copy of the Expr structure only and 1316 ** (2) the EP_xxx flags that indicate what the structure size should be. 1317 ** The return values is always one of: 1318 ** 1319 ** EXPR_FULLSIZE 1320 ** EXPR_REDUCEDSIZE | EP_Reduced 1321 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1322 ** 1323 ** The size of the structure can be found by masking the return value 1324 ** of this routine with 0xfff. The flags can be found by masking the 1325 ** return value with EP_Reduced|EP_TokenOnly. 1326 ** 1327 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1328 ** (unreduced) Expr objects as they or originally constructed by the parser. 1329 ** During expression analysis, extra information is computed and moved into 1330 ** later parts of the Expr object and that extra information might get chopped 1331 ** off if the expression is reduced. Note also that it does not work to 1332 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1333 ** to reduce a pristine expression tree from the parser. The implementation 1334 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1335 ** to enforce this constraint. 1336 */ 1337 static int dupedExprStructSize(const Expr *p, int flags){ 1338 int nSize; 1339 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1340 assert( EXPR_FULLSIZE<=0xfff ); 1341 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1342 if( 0==flags || p->op==TK_SELECT_COLUMN 1343 #ifndef SQLITE_OMIT_WINDOWFUNC 1344 || ExprHasProperty(p, EP_WinFunc) 1345 #endif 1346 ){ 1347 nSize = EXPR_FULLSIZE; 1348 }else{ 1349 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1350 assert( !ExprHasProperty(p, EP_FromJoin) ); 1351 assert( !ExprHasProperty(p, EP_MemToken) ); 1352 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1353 if( p->pLeft || p->x.pList ){ 1354 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1355 }else{ 1356 assert( p->pRight==0 ); 1357 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1358 } 1359 } 1360 return nSize; 1361 } 1362 1363 /* 1364 ** This function returns the space in bytes required to store the copy 1365 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1366 ** string is defined.) 1367 */ 1368 static int dupedExprNodeSize(const Expr *p, int flags){ 1369 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1370 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1371 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1372 } 1373 return ROUND8(nByte); 1374 } 1375 1376 /* 1377 ** Return the number of bytes required to create a duplicate of the 1378 ** expression passed as the first argument. The second argument is a 1379 ** mask containing EXPRDUP_XXX flags. 1380 ** 1381 ** The value returned includes space to create a copy of the Expr struct 1382 ** itself and the buffer referred to by Expr.u.zToken, if any. 1383 ** 1384 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1385 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1386 ** and Expr.pRight variables (but not for any structures pointed to or 1387 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1388 */ 1389 static int dupedExprSize(const Expr *p, int flags){ 1390 int nByte = 0; 1391 if( p ){ 1392 nByte = dupedExprNodeSize(p, flags); 1393 if( flags&EXPRDUP_REDUCE ){ 1394 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1395 } 1396 } 1397 return nByte; 1398 } 1399 1400 /* 1401 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1402 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1403 ** to store the copy of expression p, the copies of p->u.zToken 1404 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1405 ** if any. Before returning, *pzBuffer is set to the first byte past the 1406 ** portion of the buffer copied into by this function. 1407 */ 1408 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1409 Expr *pNew; /* Value to return */ 1410 u8 *zAlloc; /* Memory space from which to build Expr object */ 1411 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1412 1413 assert( db!=0 ); 1414 assert( p ); 1415 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1416 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1417 1418 /* Figure out where to write the new Expr structure. */ 1419 if( pzBuffer ){ 1420 zAlloc = *pzBuffer; 1421 staticFlag = EP_Static; 1422 assert( zAlloc!=0 ); 1423 }else{ 1424 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1425 staticFlag = 0; 1426 } 1427 pNew = (Expr *)zAlloc; 1428 1429 if( pNew ){ 1430 /* Set nNewSize to the size allocated for the structure pointed to 1431 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1432 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1433 ** by the copy of the p->u.zToken string (if any). 1434 */ 1435 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1436 const int nNewSize = nStructSize & 0xfff; 1437 int nToken; 1438 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1439 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1440 }else{ 1441 nToken = 0; 1442 } 1443 if( dupFlags ){ 1444 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1445 memcpy(zAlloc, p, nNewSize); 1446 }else{ 1447 u32 nSize = (u32)exprStructSize(p); 1448 memcpy(zAlloc, p, nSize); 1449 if( nSize<EXPR_FULLSIZE ){ 1450 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1451 } 1452 } 1453 1454 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1455 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1456 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1457 pNew->flags |= staticFlag; 1458 ExprClearVVAProperties(pNew); 1459 if( dupFlags ){ 1460 ExprSetVVAProperty(pNew, EP_Immutable); 1461 } 1462 1463 /* Copy the p->u.zToken string, if any. */ 1464 if( nToken ){ 1465 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1466 memcpy(zToken, p->u.zToken, nToken); 1467 } 1468 1469 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1470 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1471 if( ExprUseXSelect(p) ){ 1472 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1473 }else{ 1474 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1475 } 1476 } 1477 1478 /* Fill in pNew->pLeft and pNew->pRight. */ 1479 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1480 zAlloc += dupedExprNodeSize(p, dupFlags); 1481 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1482 pNew->pLeft = p->pLeft ? 1483 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1484 pNew->pRight = p->pRight ? 1485 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1486 } 1487 #ifndef SQLITE_OMIT_WINDOWFUNC 1488 if( ExprHasProperty(p, EP_WinFunc) ){ 1489 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1490 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1491 } 1492 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1493 if( pzBuffer ){ 1494 *pzBuffer = zAlloc; 1495 } 1496 }else{ 1497 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1498 if( pNew->op==TK_SELECT_COLUMN ){ 1499 pNew->pLeft = p->pLeft; 1500 assert( p->pRight==0 || p->pRight==p->pLeft 1501 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1502 }else{ 1503 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1504 } 1505 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1506 } 1507 } 1508 } 1509 return pNew; 1510 } 1511 1512 /* 1513 ** Create and return a deep copy of the object passed as the second 1514 ** argument. If an OOM condition is encountered, NULL is returned 1515 ** and the db->mallocFailed flag set. 1516 */ 1517 #ifndef SQLITE_OMIT_CTE 1518 With *sqlite3WithDup(sqlite3 *db, With *p){ 1519 With *pRet = 0; 1520 if( p ){ 1521 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1522 pRet = sqlite3DbMallocZero(db, nByte); 1523 if( pRet ){ 1524 int i; 1525 pRet->nCte = p->nCte; 1526 for(i=0; i<p->nCte; i++){ 1527 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1528 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1529 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1530 pRet->a[i].eM10d = p->a[i].eM10d; 1531 } 1532 } 1533 } 1534 return pRet; 1535 } 1536 #else 1537 # define sqlite3WithDup(x,y) 0 1538 #endif 1539 1540 #ifndef SQLITE_OMIT_WINDOWFUNC 1541 /* 1542 ** The gatherSelectWindows() procedure and its helper routine 1543 ** gatherSelectWindowsCallback() are used to scan all the expressions 1544 ** an a newly duplicated SELECT statement and gather all of the Window 1545 ** objects found there, assembling them onto the linked list at Select->pWin. 1546 */ 1547 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1548 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1549 Select *pSelect = pWalker->u.pSelect; 1550 Window *pWin = pExpr->y.pWin; 1551 assert( pWin ); 1552 assert( IsWindowFunc(pExpr) ); 1553 assert( pWin->ppThis==0 ); 1554 sqlite3WindowLink(pSelect, pWin); 1555 } 1556 return WRC_Continue; 1557 } 1558 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1559 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1560 } 1561 static void gatherSelectWindows(Select *p){ 1562 Walker w; 1563 w.xExprCallback = gatherSelectWindowsCallback; 1564 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1565 w.xSelectCallback2 = 0; 1566 w.pParse = 0; 1567 w.u.pSelect = p; 1568 sqlite3WalkSelect(&w, p); 1569 } 1570 #endif 1571 1572 1573 /* 1574 ** The following group of routines make deep copies of expressions, 1575 ** expression lists, ID lists, and select statements. The copies can 1576 ** be deleted (by being passed to their respective ...Delete() routines) 1577 ** without effecting the originals. 1578 ** 1579 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1580 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1581 ** by subsequent calls to sqlite*ListAppend() routines. 1582 ** 1583 ** Any tables that the SrcList might point to are not duplicated. 1584 ** 1585 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1586 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1587 ** truncated version of the usual Expr structure that will be stored as 1588 ** part of the in-memory representation of the database schema. 1589 */ 1590 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1591 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1592 return p ? exprDup(db, p, flags, 0) : 0; 1593 } 1594 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1595 ExprList *pNew; 1596 struct ExprList_item *pItem; 1597 const struct ExprList_item *pOldItem; 1598 int i; 1599 Expr *pPriorSelectColOld = 0; 1600 Expr *pPriorSelectColNew = 0; 1601 assert( db!=0 ); 1602 if( p==0 ) return 0; 1603 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1604 if( pNew==0 ) return 0; 1605 pNew->nExpr = p->nExpr; 1606 pNew->nAlloc = p->nAlloc; 1607 pItem = pNew->a; 1608 pOldItem = p->a; 1609 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1610 Expr *pOldExpr = pOldItem->pExpr; 1611 Expr *pNewExpr; 1612 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1613 if( pOldExpr 1614 && pOldExpr->op==TK_SELECT_COLUMN 1615 && (pNewExpr = pItem->pExpr)!=0 1616 ){ 1617 if( pNewExpr->pRight ){ 1618 pPriorSelectColOld = pOldExpr->pRight; 1619 pPriorSelectColNew = pNewExpr->pRight; 1620 pNewExpr->pLeft = pNewExpr->pRight; 1621 }else{ 1622 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1623 pPriorSelectColOld = pOldExpr->pLeft; 1624 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1625 pNewExpr->pRight = pPriorSelectColNew; 1626 } 1627 pNewExpr->pLeft = pPriorSelectColNew; 1628 } 1629 } 1630 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1631 pItem->sortFlags = pOldItem->sortFlags; 1632 pItem->eEName = pOldItem->eEName; 1633 pItem->done = 0; 1634 pItem->bNulls = pOldItem->bNulls; 1635 pItem->bUsed = pOldItem->bUsed; 1636 pItem->bSorterRef = pOldItem->bSorterRef; 1637 pItem->u = pOldItem->u; 1638 } 1639 return pNew; 1640 } 1641 1642 /* 1643 ** If cursors, triggers, views and subqueries are all omitted from 1644 ** the build, then none of the following routines, except for 1645 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1646 ** called with a NULL argument. 1647 */ 1648 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1649 || !defined(SQLITE_OMIT_SUBQUERY) 1650 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1651 SrcList *pNew; 1652 int i; 1653 int nByte; 1654 assert( db!=0 ); 1655 if( p==0 ) return 0; 1656 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1657 pNew = sqlite3DbMallocRawNN(db, nByte ); 1658 if( pNew==0 ) return 0; 1659 pNew->nSrc = pNew->nAlloc = p->nSrc; 1660 for(i=0; i<p->nSrc; i++){ 1661 SrcItem *pNewItem = &pNew->a[i]; 1662 const SrcItem *pOldItem = &p->a[i]; 1663 Table *pTab; 1664 pNewItem->pSchema = pOldItem->pSchema; 1665 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1666 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1667 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1668 pNewItem->fg = pOldItem->fg; 1669 pNewItem->iCursor = pOldItem->iCursor; 1670 pNewItem->addrFillSub = pOldItem->addrFillSub; 1671 pNewItem->regReturn = pOldItem->regReturn; 1672 if( pNewItem->fg.isIndexedBy ){ 1673 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1674 } 1675 pNewItem->u2 = pOldItem->u2; 1676 if( pNewItem->fg.isCte ){ 1677 pNewItem->u2.pCteUse->nUse++; 1678 } 1679 if( pNewItem->fg.isTabFunc ){ 1680 pNewItem->u1.pFuncArg = 1681 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1682 } 1683 pTab = pNewItem->pTab = pOldItem->pTab; 1684 if( pTab ){ 1685 pTab->nTabRef++; 1686 } 1687 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1688 if( pOldItem->fg.isUsing ){ 1689 assert( pNewItem->fg.isUsing ); 1690 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1691 }else{ 1692 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1693 } 1694 pNewItem->colUsed = pOldItem->colUsed; 1695 } 1696 return pNew; 1697 } 1698 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1699 IdList *pNew; 1700 int i; 1701 assert( db!=0 ); 1702 if( p==0 ) return 0; 1703 assert( p->eU4!=EU4_EXPR ); 1704 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1705 if( pNew==0 ) return 0; 1706 pNew->nId = p->nId; 1707 pNew->eU4 = p->eU4; 1708 for(i=0; i<p->nId; i++){ 1709 struct IdList_item *pNewItem = &pNew->a[i]; 1710 const struct IdList_item *pOldItem = &p->a[i]; 1711 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1712 pNewItem->u4 = pOldItem->u4; 1713 } 1714 return pNew; 1715 } 1716 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1717 Select *pRet = 0; 1718 Select *pNext = 0; 1719 Select **pp = &pRet; 1720 const Select *p; 1721 1722 assert( db!=0 ); 1723 for(p=pDup; p; p=p->pPrior){ 1724 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1725 if( pNew==0 ) break; 1726 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1727 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1728 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1729 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1730 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1731 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1732 pNew->op = p->op; 1733 pNew->pNext = pNext; 1734 pNew->pPrior = 0; 1735 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1736 pNew->iLimit = 0; 1737 pNew->iOffset = 0; 1738 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1739 pNew->addrOpenEphm[0] = -1; 1740 pNew->addrOpenEphm[1] = -1; 1741 pNew->nSelectRow = p->nSelectRow; 1742 pNew->pWith = sqlite3WithDup(db, p->pWith); 1743 #ifndef SQLITE_OMIT_WINDOWFUNC 1744 pNew->pWin = 0; 1745 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1746 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1747 #endif 1748 pNew->selId = p->selId; 1749 if( db->mallocFailed ){ 1750 /* Any prior OOM might have left the Select object incomplete. 1751 ** Delete the whole thing rather than allow an incomplete Select 1752 ** to be used by the code generator. */ 1753 pNew->pNext = 0; 1754 sqlite3SelectDelete(db, pNew); 1755 break; 1756 } 1757 *pp = pNew; 1758 pp = &pNew->pPrior; 1759 pNext = pNew; 1760 } 1761 1762 return pRet; 1763 } 1764 #else 1765 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1766 assert( p==0 ); 1767 return 0; 1768 } 1769 #endif 1770 1771 1772 /* 1773 ** Add a new element to the end of an expression list. If pList is 1774 ** initially NULL, then create a new expression list. 1775 ** 1776 ** The pList argument must be either NULL or a pointer to an ExprList 1777 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1778 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1779 ** Reason: This routine assumes that the number of slots in pList->a[] 1780 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1781 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1782 ** 1783 ** If a memory allocation error occurs, the entire list is freed and 1784 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1785 ** that the new entry was successfully appended. 1786 */ 1787 static const struct ExprList_item zeroItem = {0}; 1788 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1789 sqlite3 *db, /* Database handle. Used for memory allocation */ 1790 Expr *pExpr /* Expression to be appended. Might be NULL */ 1791 ){ 1792 struct ExprList_item *pItem; 1793 ExprList *pList; 1794 1795 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1796 if( pList==0 ){ 1797 sqlite3ExprDelete(db, pExpr); 1798 return 0; 1799 } 1800 pList->nAlloc = 4; 1801 pList->nExpr = 1; 1802 pItem = &pList->a[0]; 1803 *pItem = zeroItem; 1804 pItem->pExpr = pExpr; 1805 return pList; 1806 } 1807 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1808 sqlite3 *db, /* Database handle. Used for memory allocation */ 1809 ExprList *pList, /* List to which to append. Might be NULL */ 1810 Expr *pExpr /* Expression to be appended. Might be NULL */ 1811 ){ 1812 struct ExprList_item *pItem; 1813 ExprList *pNew; 1814 pList->nAlloc *= 2; 1815 pNew = sqlite3DbRealloc(db, pList, 1816 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1817 if( pNew==0 ){ 1818 sqlite3ExprListDelete(db, pList); 1819 sqlite3ExprDelete(db, pExpr); 1820 return 0; 1821 }else{ 1822 pList = pNew; 1823 } 1824 pItem = &pList->a[pList->nExpr++]; 1825 *pItem = zeroItem; 1826 pItem->pExpr = pExpr; 1827 return pList; 1828 } 1829 ExprList *sqlite3ExprListAppend( 1830 Parse *pParse, /* Parsing context */ 1831 ExprList *pList, /* List to which to append. Might be NULL */ 1832 Expr *pExpr /* Expression to be appended. Might be NULL */ 1833 ){ 1834 struct ExprList_item *pItem; 1835 if( pList==0 ){ 1836 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1837 } 1838 if( pList->nAlloc<pList->nExpr+1 ){ 1839 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1840 } 1841 pItem = &pList->a[pList->nExpr++]; 1842 *pItem = zeroItem; 1843 pItem->pExpr = pExpr; 1844 return pList; 1845 } 1846 1847 /* 1848 ** pColumns and pExpr form a vector assignment which is part of the SET 1849 ** clause of an UPDATE statement. Like this: 1850 ** 1851 ** (a,b,c) = (expr1,expr2,expr3) 1852 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1853 ** 1854 ** For each term of the vector assignment, append new entries to the 1855 ** expression list pList. In the case of a subquery on the RHS, append 1856 ** TK_SELECT_COLUMN expressions. 1857 */ 1858 ExprList *sqlite3ExprListAppendVector( 1859 Parse *pParse, /* Parsing context */ 1860 ExprList *pList, /* List to which to append. Might be NULL */ 1861 IdList *pColumns, /* List of names of LHS of the assignment */ 1862 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1863 ){ 1864 sqlite3 *db = pParse->db; 1865 int n; 1866 int i; 1867 int iFirst = pList ? pList->nExpr : 0; 1868 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1869 ** exit prior to this routine being invoked */ 1870 if( NEVER(pColumns==0) ) goto vector_append_error; 1871 if( pExpr==0 ) goto vector_append_error; 1872 1873 /* If the RHS is a vector, then we can immediately check to see that 1874 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1875 ** wildcards ("*") in the result set of the SELECT must be expanded before 1876 ** we can do the size check, so defer the size check until code generation. 1877 */ 1878 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1879 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1880 pColumns->nId, n); 1881 goto vector_append_error; 1882 } 1883 1884 for(i=0; i<pColumns->nId; i++){ 1885 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1886 assert( pSubExpr!=0 || db->mallocFailed ); 1887 if( pSubExpr==0 ) continue; 1888 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1889 if( pList ){ 1890 assert( pList->nExpr==iFirst+i+1 ); 1891 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1892 pColumns->a[i].zName = 0; 1893 } 1894 } 1895 1896 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1897 Expr *pFirst = pList->a[iFirst].pExpr; 1898 assert( pFirst!=0 ); 1899 assert( pFirst->op==TK_SELECT_COLUMN ); 1900 1901 /* Store the SELECT statement in pRight so it will be deleted when 1902 ** sqlite3ExprListDelete() is called */ 1903 pFirst->pRight = pExpr; 1904 pExpr = 0; 1905 1906 /* Remember the size of the LHS in iTable so that we can check that 1907 ** the RHS and LHS sizes match during code generation. */ 1908 pFirst->iTable = pColumns->nId; 1909 } 1910 1911 vector_append_error: 1912 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1913 sqlite3IdListDelete(db, pColumns); 1914 return pList; 1915 } 1916 1917 /* 1918 ** Set the sort order for the last element on the given ExprList. 1919 */ 1920 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1921 struct ExprList_item *pItem; 1922 if( p==0 ) return; 1923 assert( p->nExpr>0 ); 1924 1925 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1926 assert( iSortOrder==SQLITE_SO_UNDEFINED 1927 || iSortOrder==SQLITE_SO_ASC 1928 || iSortOrder==SQLITE_SO_DESC 1929 ); 1930 assert( eNulls==SQLITE_SO_UNDEFINED 1931 || eNulls==SQLITE_SO_ASC 1932 || eNulls==SQLITE_SO_DESC 1933 ); 1934 1935 pItem = &p->a[p->nExpr-1]; 1936 assert( pItem->bNulls==0 ); 1937 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1938 iSortOrder = SQLITE_SO_ASC; 1939 } 1940 pItem->sortFlags = (u8)iSortOrder; 1941 1942 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1943 pItem->bNulls = 1; 1944 if( iSortOrder!=eNulls ){ 1945 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1946 } 1947 } 1948 } 1949 1950 /* 1951 ** Set the ExprList.a[].zEName element of the most recently added item 1952 ** on the expression list. 1953 ** 1954 ** pList might be NULL following an OOM error. But pName should never be 1955 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1956 ** is set. 1957 */ 1958 void sqlite3ExprListSetName( 1959 Parse *pParse, /* Parsing context */ 1960 ExprList *pList, /* List to which to add the span. */ 1961 const Token *pName, /* Name to be added */ 1962 int dequote /* True to cause the name to be dequoted */ 1963 ){ 1964 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1965 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1966 if( pList ){ 1967 struct ExprList_item *pItem; 1968 assert( pList->nExpr>0 ); 1969 pItem = &pList->a[pList->nExpr-1]; 1970 assert( pItem->zEName==0 ); 1971 assert( pItem->eEName==ENAME_NAME ); 1972 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1973 if( dequote ){ 1974 /* If dequote==0, then pName->z does not point to part of a DDL 1975 ** statement handled by the parser. And so no token need be added 1976 ** to the token-map. */ 1977 sqlite3Dequote(pItem->zEName); 1978 if( IN_RENAME_OBJECT ){ 1979 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1980 } 1981 } 1982 } 1983 } 1984 1985 /* 1986 ** Set the ExprList.a[].zSpan element of the most recently added item 1987 ** on the expression list. 1988 ** 1989 ** pList might be NULL following an OOM error. But pSpan should never be 1990 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1991 ** is set. 1992 */ 1993 void sqlite3ExprListSetSpan( 1994 Parse *pParse, /* Parsing context */ 1995 ExprList *pList, /* List to which to add the span. */ 1996 const char *zStart, /* Start of the span */ 1997 const char *zEnd /* End of the span */ 1998 ){ 1999 sqlite3 *db = pParse->db; 2000 assert( pList!=0 || db->mallocFailed!=0 ); 2001 if( pList ){ 2002 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2003 assert( pList->nExpr>0 ); 2004 if( pItem->zEName==0 ){ 2005 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2006 pItem->eEName = ENAME_SPAN; 2007 } 2008 } 2009 } 2010 2011 /* 2012 ** If the expression list pEList contains more than iLimit elements, 2013 ** leave an error message in pParse. 2014 */ 2015 void sqlite3ExprListCheckLength( 2016 Parse *pParse, 2017 ExprList *pEList, 2018 const char *zObject 2019 ){ 2020 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2021 testcase( pEList && pEList->nExpr==mx ); 2022 testcase( pEList && pEList->nExpr==mx+1 ); 2023 if( pEList && pEList->nExpr>mx ){ 2024 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2025 } 2026 } 2027 2028 /* 2029 ** Delete an entire expression list. 2030 */ 2031 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2032 int i = pList->nExpr; 2033 struct ExprList_item *pItem = pList->a; 2034 assert( pList->nExpr>0 ); 2035 do{ 2036 sqlite3ExprDelete(db, pItem->pExpr); 2037 sqlite3DbFree(db, pItem->zEName); 2038 pItem++; 2039 }while( --i>0 ); 2040 sqlite3DbFreeNN(db, pList); 2041 } 2042 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2043 if( pList ) exprListDeleteNN(db, pList); 2044 } 2045 2046 /* 2047 ** Return the bitwise-OR of all Expr.flags fields in the given 2048 ** ExprList. 2049 */ 2050 u32 sqlite3ExprListFlags(const ExprList *pList){ 2051 int i; 2052 u32 m = 0; 2053 assert( pList!=0 ); 2054 for(i=0; i<pList->nExpr; i++){ 2055 Expr *pExpr = pList->a[i].pExpr; 2056 assert( pExpr!=0 ); 2057 m |= pExpr->flags; 2058 } 2059 return m; 2060 } 2061 2062 /* 2063 ** This is a SELECT-node callback for the expression walker that 2064 ** always "fails". By "fail" in this case, we mean set 2065 ** pWalker->eCode to zero and abort. 2066 ** 2067 ** This callback is used by multiple expression walkers. 2068 */ 2069 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2070 UNUSED_PARAMETER(NotUsed); 2071 pWalker->eCode = 0; 2072 return WRC_Abort; 2073 } 2074 2075 /* 2076 ** Check the input string to see if it is "true" or "false" (in any case). 2077 ** 2078 ** If the string is.... Return 2079 ** "true" EP_IsTrue 2080 ** "false" EP_IsFalse 2081 ** anything else 0 2082 */ 2083 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2084 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2085 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2086 return 0; 2087 } 2088 2089 2090 /* 2091 ** If the input expression is an ID with the name "true" or "false" 2092 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2093 ** the conversion happened, and zero if the expression is unaltered. 2094 */ 2095 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2096 u32 v; 2097 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2098 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2099 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2100 ){ 2101 pExpr->op = TK_TRUEFALSE; 2102 ExprSetProperty(pExpr, v); 2103 return 1; 2104 } 2105 return 0; 2106 } 2107 2108 /* 2109 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2110 ** and 0 if it is FALSE. 2111 */ 2112 int sqlite3ExprTruthValue(const Expr *pExpr){ 2113 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2114 assert( pExpr->op==TK_TRUEFALSE ); 2115 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2116 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2117 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2118 return pExpr->u.zToken[4]==0; 2119 } 2120 2121 /* 2122 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2123 ** terms that are always true or false. Return the simplified expression. 2124 ** Or return the original expression if no simplification is possible. 2125 ** 2126 ** Examples: 2127 ** 2128 ** (x<10) AND true => (x<10) 2129 ** (x<10) AND false => false 2130 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2131 ** (x<10) AND (y=22 OR true) => (x<10) 2132 ** (y=22) OR true => true 2133 */ 2134 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2135 assert( pExpr!=0 ); 2136 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2137 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2138 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2139 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2140 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2141 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2142 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2143 } 2144 } 2145 return pExpr; 2146 } 2147 2148 2149 /* 2150 ** These routines are Walker callbacks used to check expressions to 2151 ** see if they are "constant" for some definition of constant. The 2152 ** Walker.eCode value determines the type of "constant" we are looking 2153 ** for. 2154 ** 2155 ** These callback routines are used to implement the following: 2156 ** 2157 ** sqlite3ExprIsConstant() pWalker->eCode==1 2158 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2159 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2160 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2161 ** 2162 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2163 ** is found to not be a constant. 2164 ** 2165 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2166 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2167 ** when parsing an existing schema out of the sqlite_schema table and 4 2168 ** when processing a new CREATE TABLE statement. A bound parameter raises 2169 ** an error for new statements, but is silently converted 2170 ** to NULL for existing schemas. This allows sqlite_schema tables that 2171 ** contain a bound parameter because they were generated by older versions 2172 ** of SQLite to be parsed by newer versions of SQLite without raising a 2173 ** malformed schema error. 2174 */ 2175 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2176 2177 /* If pWalker->eCode is 2 then any term of the expression that comes from 2178 ** the ON or USING clauses of an outer join disqualifies the expression 2179 ** from being considered constant. */ 2180 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2181 pWalker->eCode = 0; 2182 return WRC_Abort; 2183 } 2184 2185 switch( pExpr->op ){ 2186 /* Consider functions to be constant if all their arguments are constant 2187 ** and either pWalker->eCode==4 or 5 or the function has the 2188 ** SQLITE_FUNC_CONST flag. */ 2189 case TK_FUNCTION: 2190 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2191 && !ExprHasProperty(pExpr, EP_WinFunc) 2192 ){ 2193 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2194 return WRC_Continue; 2195 }else{ 2196 pWalker->eCode = 0; 2197 return WRC_Abort; 2198 } 2199 case TK_ID: 2200 /* Convert "true" or "false" in a DEFAULT clause into the 2201 ** appropriate TK_TRUEFALSE operator */ 2202 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2203 return WRC_Prune; 2204 } 2205 /* no break */ deliberate_fall_through 2206 case TK_COLUMN: 2207 case TK_AGG_FUNCTION: 2208 case TK_AGG_COLUMN: 2209 testcase( pExpr->op==TK_ID ); 2210 testcase( pExpr->op==TK_COLUMN ); 2211 testcase( pExpr->op==TK_AGG_FUNCTION ); 2212 testcase( pExpr->op==TK_AGG_COLUMN ); 2213 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2214 return WRC_Continue; 2215 } 2216 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2217 return WRC_Continue; 2218 } 2219 /* no break */ deliberate_fall_through 2220 case TK_IF_NULL_ROW: 2221 case TK_REGISTER: 2222 case TK_DOT: 2223 testcase( pExpr->op==TK_REGISTER ); 2224 testcase( pExpr->op==TK_IF_NULL_ROW ); 2225 testcase( pExpr->op==TK_DOT ); 2226 pWalker->eCode = 0; 2227 return WRC_Abort; 2228 case TK_VARIABLE: 2229 if( pWalker->eCode==5 ){ 2230 /* Silently convert bound parameters that appear inside of CREATE 2231 ** statements into a NULL when parsing the CREATE statement text out 2232 ** of the sqlite_schema table */ 2233 pExpr->op = TK_NULL; 2234 }else if( pWalker->eCode==4 ){ 2235 /* A bound parameter in a CREATE statement that originates from 2236 ** sqlite3_prepare() causes an error */ 2237 pWalker->eCode = 0; 2238 return WRC_Abort; 2239 } 2240 /* no break */ deliberate_fall_through 2241 default: 2242 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2243 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2244 return WRC_Continue; 2245 } 2246 } 2247 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2248 Walker w; 2249 w.eCode = initFlag; 2250 w.xExprCallback = exprNodeIsConstant; 2251 w.xSelectCallback = sqlite3SelectWalkFail; 2252 #ifdef SQLITE_DEBUG 2253 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2254 #endif 2255 w.u.iCur = iCur; 2256 sqlite3WalkExpr(&w, p); 2257 return w.eCode; 2258 } 2259 2260 /* 2261 ** Walk an expression tree. Return non-zero if the expression is constant 2262 ** and 0 if it involves variables or function calls. 2263 ** 2264 ** For the purposes of this function, a double-quoted string (ex: "abc") 2265 ** is considered a variable but a single-quoted string (ex: 'abc') is 2266 ** a constant. 2267 */ 2268 int sqlite3ExprIsConstant(Expr *p){ 2269 return exprIsConst(p, 1, 0); 2270 } 2271 2272 /* 2273 ** Walk an expression tree. Return non-zero if 2274 ** 2275 ** (1) the expression is constant, and 2276 ** (2) the expression does originate in the ON or USING clause 2277 ** of a LEFT JOIN, and 2278 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2279 ** operands created by the constant propagation optimization. 2280 ** 2281 ** When this routine returns true, it indicates that the expression 2282 ** can be added to the pParse->pConstExpr list and evaluated once when 2283 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2284 */ 2285 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2286 return exprIsConst(p, 2, 0); 2287 } 2288 2289 /* 2290 ** Walk an expression tree. Return non-zero if the expression is constant 2291 ** for any single row of the table with cursor iCur. In other words, the 2292 ** expression must not refer to any non-deterministic function nor any 2293 ** table other than iCur. 2294 */ 2295 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2296 return exprIsConst(p, 3, iCur); 2297 } 2298 2299 /* 2300 ** Check pExpr to see if it is an invariant constraint on data source pSrc. 2301 ** This is an optimization. False negatives will perhaps cause slower 2302 ** queries, but false positives will yield incorrect answers. So when in 2303 ** doubt, return 0. 2304 ** 2305 ** To be an invariant constraint, the following must be true: 2306 ** 2307 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 2308 ** 2309 ** (2) pExpr cannot use subqueries or non-deterministic functions. 2310 ** 2311 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 2312 ** (Is there some way to relax this constraint?) 2313 ** 2314 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 2315 ** (4a) pExpr must come from an ON clause.. 2316 (4b) and specifically the ON clause associated with the LEFT JOIN. 2317 ** 2318 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 2319 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 2320 ** clause, not an ON clause. 2321 */ 2322 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ 2323 if( pSrc->fg.jointype & JT_LTORJ ){ 2324 return 0; /* rule (3) */ 2325 } 2326 if( pSrc->fg.jointype & JT_LEFT ){ 2327 if( !ExprHasProperty(pExpr, EP_FromJoin) ) return 0; /* rule (4a) */ 2328 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 2329 }else{ 2330 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; /* rule (5) */ 2331 } 2332 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 2333 } 2334 2335 2336 /* 2337 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2338 */ 2339 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2340 ExprList *pGroupBy = pWalker->u.pGroupBy; 2341 int i; 2342 2343 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2344 ** it constant. */ 2345 for(i=0; i<pGroupBy->nExpr; i++){ 2346 Expr *p = pGroupBy->a[i].pExpr; 2347 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2348 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2349 if( sqlite3IsBinary(pColl) ){ 2350 return WRC_Prune; 2351 } 2352 } 2353 } 2354 2355 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2356 if( ExprUseXSelect(pExpr) ){ 2357 pWalker->eCode = 0; 2358 return WRC_Abort; 2359 } 2360 2361 return exprNodeIsConstant(pWalker, pExpr); 2362 } 2363 2364 /* 2365 ** Walk the expression tree passed as the first argument. Return non-zero 2366 ** if the expression consists entirely of constants or copies of terms 2367 ** in pGroupBy that sort with the BINARY collation sequence. 2368 ** 2369 ** This routine is used to determine if a term of the HAVING clause can 2370 ** be promoted into the WHERE clause. In order for such a promotion to work, 2371 ** the value of the HAVING clause term must be the same for all members of 2372 ** a "group". The requirement that the GROUP BY term must be BINARY 2373 ** assumes that no other collating sequence will have a finer-grained 2374 ** grouping than binary. In other words (A=B COLLATE binary) implies 2375 ** A=B in every other collating sequence. The requirement that the 2376 ** GROUP BY be BINARY is stricter than necessary. It would also work 2377 ** to promote HAVING clauses that use the same alternative collating 2378 ** sequence as the GROUP BY term, but that is much harder to check, 2379 ** alternative collating sequences are uncommon, and this is only an 2380 ** optimization, so we take the easy way out and simply require the 2381 ** GROUP BY to use the BINARY collating sequence. 2382 */ 2383 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2384 Walker w; 2385 w.eCode = 1; 2386 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2387 w.xSelectCallback = 0; 2388 w.u.pGroupBy = pGroupBy; 2389 w.pParse = pParse; 2390 sqlite3WalkExpr(&w, p); 2391 return w.eCode; 2392 } 2393 2394 /* 2395 ** Walk an expression tree for the DEFAULT field of a column definition 2396 ** in a CREATE TABLE statement. Return non-zero if the expression is 2397 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2398 ** the expression is constant or a function call with constant arguments. 2399 ** Return and 0 if there are any variables. 2400 ** 2401 ** isInit is true when parsing from sqlite_schema. isInit is false when 2402 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2403 ** (such as ? or $abc) in the expression are converted into NULL. When 2404 ** isInit is false, parameters raise an error. Parameters should not be 2405 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2406 ** allowed it, so we need to support it when reading sqlite_schema for 2407 ** backwards compatibility. 2408 ** 2409 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2410 ** 2411 ** For the purposes of this function, a double-quoted string (ex: "abc") 2412 ** is considered a variable but a single-quoted string (ex: 'abc') is 2413 ** a constant. 2414 */ 2415 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2416 assert( isInit==0 || isInit==1 ); 2417 return exprIsConst(p, 4+isInit, 0); 2418 } 2419 2420 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2421 /* 2422 ** Walk an expression tree. Return 1 if the expression contains a 2423 ** subquery of some kind. Return 0 if there are no subqueries. 2424 */ 2425 int sqlite3ExprContainsSubquery(Expr *p){ 2426 Walker w; 2427 w.eCode = 1; 2428 w.xExprCallback = sqlite3ExprWalkNoop; 2429 w.xSelectCallback = sqlite3SelectWalkFail; 2430 #ifdef SQLITE_DEBUG 2431 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2432 #endif 2433 sqlite3WalkExpr(&w, p); 2434 return w.eCode==0; 2435 } 2436 #endif 2437 2438 /* 2439 ** If the expression p codes a constant integer that is small enough 2440 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2441 ** in *pValue. If the expression is not an integer or if it is too big 2442 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2443 */ 2444 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2445 int rc = 0; 2446 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2447 2448 /* If an expression is an integer literal that fits in a signed 32-bit 2449 ** integer, then the EP_IntValue flag will have already been set */ 2450 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2451 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2452 2453 if( p->flags & EP_IntValue ){ 2454 *pValue = p->u.iValue; 2455 return 1; 2456 } 2457 switch( p->op ){ 2458 case TK_UPLUS: { 2459 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2460 break; 2461 } 2462 case TK_UMINUS: { 2463 int v = 0; 2464 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2465 assert( ((unsigned int)v)!=0x80000000 ); 2466 *pValue = -v; 2467 rc = 1; 2468 } 2469 break; 2470 } 2471 default: break; 2472 } 2473 return rc; 2474 } 2475 2476 /* 2477 ** Return FALSE if there is no chance that the expression can be NULL. 2478 ** 2479 ** If the expression might be NULL or if the expression is too complex 2480 ** to tell return TRUE. 2481 ** 2482 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2483 ** when we know that a value cannot be NULL. Hence, a false positive 2484 ** (returning TRUE when in fact the expression can never be NULL) might 2485 ** be a small performance hit but is otherwise harmless. On the other 2486 ** hand, a false negative (returning FALSE when the result could be NULL) 2487 ** will likely result in an incorrect answer. So when in doubt, return 2488 ** TRUE. 2489 */ 2490 int sqlite3ExprCanBeNull(const Expr *p){ 2491 u8 op; 2492 assert( p!=0 ); 2493 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2494 p = p->pLeft; 2495 assert( p!=0 ); 2496 } 2497 op = p->op; 2498 if( op==TK_REGISTER ) op = p->op2; 2499 switch( op ){ 2500 case TK_INTEGER: 2501 case TK_STRING: 2502 case TK_FLOAT: 2503 case TK_BLOB: 2504 return 0; 2505 case TK_COLUMN: 2506 assert( ExprUseYTab(p) ); 2507 return ExprHasProperty(p, EP_CanBeNull) || 2508 p->y.pTab==0 || /* Reference to column of index on expression */ 2509 (p->iColumn>=0 2510 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2511 && p->y.pTab->aCol[p->iColumn].notNull==0); 2512 default: 2513 return 1; 2514 } 2515 } 2516 2517 /* 2518 ** Return TRUE if the given expression is a constant which would be 2519 ** unchanged by OP_Affinity with the affinity given in the second 2520 ** argument. 2521 ** 2522 ** This routine is used to determine if the OP_Affinity operation 2523 ** can be omitted. When in doubt return FALSE. A false negative 2524 ** is harmless. A false positive, however, can result in the wrong 2525 ** answer. 2526 */ 2527 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2528 u8 op; 2529 int unaryMinus = 0; 2530 if( aff==SQLITE_AFF_BLOB ) return 1; 2531 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2532 if( p->op==TK_UMINUS ) unaryMinus = 1; 2533 p = p->pLeft; 2534 } 2535 op = p->op; 2536 if( op==TK_REGISTER ) op = p->op2; 2537 switch( op ){ 2538 case TK_INTEGER: { 2539 return aff>=SQLITE_AFF_NUMERIC; 2540 } 2541 case TK_FLOAT: { 2542 return aff>=SQLITE_AFF_NUMERIC; 2543 } 2544 case TK_STRING: { 2545 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2546 } 2547 case TK_BLOB: { 2548 return !unaryMinus; 2549 } 2550 case TK_COLUMN: { 2551 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2552 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2553 } 2554 default: { 2555 return 0; 2556 } 2557 } 2558 } 2559 2560 /* 2561 ** Return TRUE if the given string is a row-id column name. 2562 */ 2563 int sqlite3IsRowid(const char *z){ 2564 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2565 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2566 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2567 return 0; 2568 } 2569 2570 /* 2571 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2572 ** that can be simplified to a direct table access, then return 2573 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2574 ** or if the SELECT statement needs to be manifested into a transient 2575 ** table, then return NULL. 2576 */ 2577 #ifndef SQLITE_OMIT_SUBQUERY 2578 static Select *isCandidateForInOpt(const Expr *pX){ 2579 Select *p; 2580 SrcList *pSrc; 2581 ExprList *pEList; 2582 Table *pTab; 2583 int i; 2584 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2585 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2586 p = pX->x.pSelect; 2587 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2588 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2589 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2590 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2591 return 0; /* No DISTINCT keyword and no aggregate functions */ 2592 } 2593 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2594 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2595 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2596 pSrc = p->pSrc; 2597 assert( pSrc!=0 ); 2598 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2599 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2600 pTab = pSrc->a[0].pTab; 2601 assert( pTab!=0 ); 2602 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2603 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2604 pEList = p->pEList; 2605 assert( pEList!=0 ); 2606 /* All SELECT results must be columns. */ 2607 for(i=0; i<pEList->nExpr; i++){ 2608 Expr *pRes = pEList->a[i].pExpr; 2609 if( pRes->op!=TK_COLUMN ) return 0; 2610 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2611 } 2612 return p; 2613 } 2614 #endif /* SQLITE_OMIT_SUBQUERY */ 2615 2616 #ifndef SQLITE_OMIT_SUBQUERY 2617 /* 2618 ** Generate code that checks the left-most column of index table iCur to see if 2619 ** it contains any NULL entries. Cause the register at regHasNull to be set 2620 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2621 ** to be set to NULL if iCur contains one or more NULL values. 2622 */ 2623 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2624 int addr1; 2625 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2626 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2627 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2628 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2629 VdbeComment((v, "first_entry_in(%d)", iCur)); 2630 sqlite3VdbeJumpHere(v, addr1); 2631 } 2632 #endif 2633 2634 2635 #ifndef SQLITE_OMIT_SUBQUERY 2636 /* 2637 ** The argument is an IN operator with a list (not a subquery) on the 2638 ** right-hand side. Return TRUE if that list is constant. 2639 */ 2640 static int sqlite3InRhsIsConstant(Expr *pIn){ 2641 Expr *pLHS; 2642 int res; 2643 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2644 pLHS = pIn->pLeft; 2645 pIn->pLeft = 0; 2646 res = sqlite3ExprIsConstant(pIn); 2647 pIn->pLeft = pLHS; 2648 return res; 2649 } 2650 #endif 2651 2652 /* 2653 ** This function is used by the implementation of the IN (...) operator. 2654 ** The pX parameter is the expression on the RHS of the IN operator, which 2655 ** might be either a list of expressions or a subquery. 2656 ** 2657 ** The job of this routine is to find or create a b-tree object that can 2658 ** be used either to test for membership in the RHS set or to iterate through 2659 ** all members of the RHS set, skipping duplicates. 2660 ** 2661 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2662 ** and pX->iTable is set to the index of that cursor. 2663 ** 2664 ** The returned value of this function indicates the b-tree type, as follows: 2665 ** 2666 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2667 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2668 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2669 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2670 ** populated epheremal table. 2671 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2672 ** implemented as a sequence of comparisons. 2673 ** 2674 ** An existing b-tree might be used if the RHS expression pX is a simple 2675 ** subquery such as: 2676 ** 2677 ** SELECT <column1>, <column2>... FROM <table> 2678 ** 2679 ** If the RHS of the IN operator is a list or a more complex subquery, then 2680 ** an ephemeral table might need to be generated from the RHS and then 2681 ** pX->iTable made to point to the ephemeral table instead of an 2682 ** existing table. 2683 ** 2684 ** The inFlags parameter must contain, at a minimum, one of the bits 2685 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2686 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2687 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2688 ** be used to loop over all values of the RHS of the IN operator. 2689 ** 2690 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2691 ** through the set members) then the b-tree must not contain duplicates. 2692 ** An epheremal table will be created unless the selected columns are guaranteed 2693 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2694 ** a UNIQUE constraint or index. 2695 ** 2696 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2697 ** for fast set membership tests) then an epheremal table must 2698 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2699 ** index can be found with the specified <columns> as its left-most. 2700 ** 2701 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2702 ** if the RHS of the IN operator is a list (not a subquery) then this 2703 ** routine might decide that creating an ephemeral b-tree for membership 2704 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2705 ** calling routine should implement the IN operator using a sequence 2706 ** of Eq or Ne comparison operations. 2707 ** 2708 ** When the b-tree is being used for membership tests, the calling function 2709 ** might need to know whether or not the RHS side of the IN operator 2710 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2711 ** if there is any chance that the (...) might contain a NULL value at 2712 ** runtime, then a register is allocated and the register number written 2713 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2714 ** NULL value, then *prRhsHasNull is left unchanged. 2715 ** 2716 ** If a register is allocated and its location stored in *prRhsHasNull, then 2717 ** the value in that register will be NULL if the b-tree contains one or more 2718 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2719 ** NULL values. 2720 ** 2721 ** If the aiMap parameter is not NULL, it must point to an array containing 2722 ** one element for each column returned by the SELECT statement on the RHS 2723 ** of the IN(...) operator. The i'th entry of the array is populated with the 2724 ** offset of the index column that matches the i'th column returned by the 2725 ** SELECT. For example, if the expression and selected index are: 2726 ** 2727 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2728 ** CREATE INDEX i1 ON t1(b, c, a); 2729 ** 2730 ** then aiMap[] is populated with {2, 0, 1}. 2731 */ 2732 #ifndef SQLITE_OMIT_SUBQUERY 2733 int sqlite3FindInIndex( 2734 Parse *pParse, /* Parsing context */ 2735 Expr *pX, /* The IN expression */ 2736 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2737 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2738 int *aiMap, /* Mapping from Index fields to RHS fields */ 2739 int *piTab /* OUT: index to use */ 2740 ){ 2741 Select *p; /* SELECT to the right of IN operator */ 2742 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2743 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2744 int mustBeUnique; /* True if RHS must be unique */ 2745 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2746 2747 assert( pX->op==TK_IN ); 2748 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2749 2750 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2751 ** whether or not the SELECT result contains NULL values, check whether 2752 ** or not NULL is actually possible (it may not be, for example, due 2753 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2754 ** set prRhsHasNull to 0 before continuing. */ 2755 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2756 int i; 2757 ExprList *pEList = pX->x.pSelect->pEList; 2758 for(i=0; i<pEList->nExpr; i++){ 2759 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2760 } 2761 if( i==pEList->nExpr ){ 2762 prRhsHasNull = 0; 2763 } 2764 } 2765 2766 /* Check to see if an existing table or index can be used to 2767 ** satisfy the query. This is preferable to generating a new 2768 ** ephemeral table. */ 2769 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2770 sqlite3 *db = pParse->db; /* Database connection */ 2771 Table *pTab; /* Table <table>. */ 2772 int iDb; /* Database idx for pTab */ 2773 ExprList *pEList = p->pEList; 2774 int nExpr = pEList->nExpr; 2775 2776 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2777 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2778 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2779 pTab = p->pSrc->a[0].pTab; 2780 2781 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2782 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2783 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2784 sqlite3CodeVerifySchema(pParse, iDb); 2785 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2786 2787 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2788 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2789 /* The "x IN (SELECT rowid FROM table)" case */ 2790 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2791 VdbeCoverage(v); 2792 2793 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2794 eType = IN_INDEX_ROWID; 2795 ExplainQueryPlan((pParse, 0, 2796 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2797 sqlite3VdbeJumpHere(v, iAddr); 2798 }else{ 2799 Index *pIdx; /* Iterator variable */ 2800 int affinity_ok = 1; 2801 int i; 2802 2803 /* Check that the affinity that will be used to perform each 2804 ** comparison is the same as the affinity of each column in table 2805 ** on the RHS of the IN operator. If it not, it is not possible to 2806 ** use any index of the RHS table. */ 2807 for(i=0; i<nExpr && affinity_ok; i++){ 2808 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2809 int iCol = pEList->a[i].pExpr->iColumn; 2810 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2811 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2812 testcase( cmpaff==SQLITE_AFF_BLOB ); 2813 testcase( cmpaff==SQLITE_AFF_TEXT ); 2814 switch( cmpaff ){ 2815 case SQLITE_AFF_BLOB: 2816 break; 2817 case SQLITE_AFF_TEXT: 2818 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2819 ** other has no affinity and the other side is TEXT. Hence, 2820 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2821 ** and for the term on the LHS of the IN to have no affinity. */ 2822 assert( idxaff==SQLITE_AFF_TEXT ); 2823 break; 2824 default: 2825 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2826 } 2827 } 2828 2829 if( affinity_ok ){ 2830 /* Search for an existing index that will work for this IN operator */ 2831 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2832 Bitmask colUsed; /* Columns of the index used */ 2833 Bitmask mCol; /* Mask for the current column */ 2834 if( pIdx->nColumn<nExpr ) continue; 2835 if( pIdx->pPartIdxWhere!=0 ) continue; 2836 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2837 ** BITMASK(nExpr) without overflowing */ 2838 testcase( pIdx->nColumn==BMS-2 ); 2839 testcase( pIdx->nColumn==BMS-1 ); 2840 if( pIdx->nColumn>=BMS-1 ) continue; 2841 if( mustBeUnique ){ 2842 if( pIdx->nKeyCol>nExpr 2843 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2844 ){ 2845 continue; /* This index is not unique over the IN RHS columns */ 2846 } 2847 } 2848 2849 colUsed = 0; /* Columns of index used so far */ 2850 for(i=0; i<nExpr; i++){ 2851 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2852 Expr *pRhs = pEList->a[i].pExpr; 2853 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2854 int j; 2855 2856 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2857 for(j=0; j<nExpr; j++){ 2858 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2859 assert( pIdx->azColl[j] ); 2860 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2861 continue; 2862 } 2863 break; 2864 } 2865 if( j==nExpr ) break; 2866 mCol = MASKBIT(j); 2867 if( mCol & colUsed ) break; /* Each column used only once */ 2868 colUsed |= mCol; 2869 if( aiMap ) aiMap[i] = j; 2870 } 2871 2872 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2873 if( colUsed==(MASKBIT(nExpr)-1) ){ 2874 /* If we reach this point, that means the index pIdx is usable */ 2875 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2876 ExplainQueryPlan((pParse, 0, 2877 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2878 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2879 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2880 VdbeComment((v, "%s", pIdx->zName)); 2881 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2882 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2883 2884 if( prRhsHasNull ){ 2885 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2886 i64 mask = (1<<nExpr)-1; 2887 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2888 iTab, 0, 0, (u8*)&mask, P4_INT64); 2889 #endif 2890 *prRhsHasNull = ++pParse->nMem; 2891 if( nExpr==1 ){ 2892 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2893 } 2894 } 2895 sqlite3VdbeJumpHere(v, iAddr); 2896 } 2897 } /* End loop over indexes */ 2898 } /* End if( affinity_ok ) */ 2899 } /* End if not an rowid index */ 2900 } /* End attempt to optimize using an index */ 2901 2902 /* If no preexisting index is available for the IN clause 2903 ** and IN_INDEX_NOOP is an allowed reply 2904 ** and the RHS of the IN operator is a list, not a subquery 2905 ** and the RHS is not constant or has two or fewer terms, 2906 ** then it is not worth creating an ephemeral table to evaluate 2907 ** the IN operator so return IN_INDEX_NOOP. 2908 */ 2909 if( eType==0 2910 && (inFlags & IN_INDEX_NOOP_OK) 2911 && ExprUseXList(pX) 2912 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2913 ){ 2914 eType = IN_INDEX_NOOP; 2915 } 2916 2917 if( eType==0 ){ 2918 /* Could not find an existing table or index to use as the RHS b-tree. 2919 ** We will have to generate an ephemeral table to do the job. 2920 */ 2921 u32 savedNQueryLoop = pParse->nQueryLoop; 2922 int rMayHaveNull = 0; 2923 eType = IN_INDEX_EPH; 2924 if( inFlags & IN_INDEX_LOOP ){ 2925 pParse->nQueryLoop = 0; 2926 }else if( prRhsHasNull ){ 2927 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2928 } 2929 assert( pX->op==TK_IN ); 2930 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2931 if( rMayHaveNull ){ 2932 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2933 } 2934 pParse->nQueryLoop = savedNQueryLoop; 2935 } 2936 2937 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2938 int i, n; 2939 n = sqlite3ExprVectorSize(pX->pLeft); 2940 for(i=0; i<n; i++) aiMap[i] = i; 2941 } 2942 *piTab = iTab; 2943 return eType; 2944 } 2945 #endif 2946 2947 #ifndef SQLITE_OMIT_SUBQUERY 2948 /* 2949 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2950 ** function allocates and returns a nul-terminated string containing 2951 ** the affinities to be used for each column of the comparison. 2952 ** 2953 ** It is the responsibility of the caller to ensure that the returned 2954 ** string is eventually freed using sqlite3DbFree(). 2955 */ 2956 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2957 Expr *pLeft = pExpr->pLeft; 2958 int nVal = sqlite3ExprVectorSize(pLeft); 2959 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2960 char *zRet; 2961 2962 assert( pExpr->op==TK_IN ); 2963 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2964 if( zRet ){ 2965 int i; 2966 for(i=0; i<nVal; i++){ 2967 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2968 char a = sqlite3ExprAffinity(pA); 2969 if( pSelect ){ 2970 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2971 }else{ 2972 zRet[i] = a; 2973 } 2974 } 2975 zRet[nVal] = '\0'; 2976 } 2977 return zRet; 2978 } 2979 #endif 2980 2981 #ifndef SQLITE_OMIT_SUBQUERY 2982 /* 2983 ** Load the Parse object passed as the first argument with an error 2984 ** message of the form: 2985 ** 2986 ** "sub-select returns N columns - expected M" 2987 */ 2988 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2989 if( pParse->nErr==0 ){ 2990 const char *zFmt = "sub-select returns %d columns - expected %d"; 2991 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2992 } 2993 } 2994 #endif 2995 2996 /* 2997 ** Expression pExpr is a vector that has been used in a context where 2998 ** it is not permitted. If pExpr is a sub-select vector, this routine 2999 ** loads the Parse object with a message of the form: 3000 ** 3001 ** "sub-select returns N columns - expected 1" 3002 ** 3003 ** Or, if it is a regular scalar vector: 3004 ** 3005 ** "row value misused" 3006 */ 3007 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 3008 #ifndef SQLITE_OMIT_SUBQUERY 3009 if( ExprUseXSelect(pExpr) ){ 3010 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 3011 }else 3012 #endif 3013 { 3014 sqlite3ErrorMsg(pParse, "row value misused"); 3015 } 3016 } 3017 3018 #ifndef SQLITE_OMIT_SUBQUERY 3019 /* 3020 ** Generate code that will construct an ephemeral table containing all terms 3021 ** in the RHS of an IN operator. The IN operator can be in either of two 3022 ** forms: 3023 ** 3024 ** x IN (4,5,11) -- IN operator with list on right-hand side 3025 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 3026 ** 3027 ** The pExpr parameter is the IN operator. The cursor number for the 3028 ** constructed ephermeral table is returned. The first time the ephemeral 3029 ** table is computed, the cursor number is also stored in pExpr->iTable, 3030 ** however the cursor number returned might not be the same, as it might 3031 ** have been duplicated using OP_OpenDup. 3032 ** 3033 ** If the LHS expression ("x" in the examples) is a column value, or 3034 ** the SELECT statement returns a column value, then the affinity of that 3035 ** column is used to build the index keys. If both 'x' and the 3036 ** SELECT... statement are columns, then numeric affinity is used 3037 ** if either column has NUMERIC or INTEGER affinity. If neither 3038 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3039 ** is used. 3040 */ 3041 void sqlite3CodeRhsOfIN( 3042 Parse *pParse, /* Parsing context */ 3043 Expr *pExpr, /* The IN operator */ 3044 int iTab /* Use this cursor number */ 3045 ){ 3046 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3047 int addr; /* Address of OP_OpenEphemeral instruction */ 3048 Expr *pLeft; /* the LHS of the IN operator */ 3049 KeyInfo *pKeyInfo = 0; /* Key information */ 3050 int nVal; /* Size of vector pLeft */ 3051 Vdbe *v; /* The prepared statement under construction */ 3052 3053 v = pParse->pVdbe; 3054 assert( v!=0 ); 3055 3056 /* The evaluation of the IN must be repeated every time it 3057 ** is encountered if any of the following is true: 3058 ** 3059 ** * The right-hand side is a correlated subquery 3060 ** * The right-hand side is an expression list containing variables 3061 ** * We are inside a trigger 3062 ** 3063 ** If all of the above are false, then we can compute the RHS just once 3064 ** and reuse it many names. 3065 */ 3066 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3067 /* Reuse of the RHS is allowed */ 3068 /* If this routine has already been coded, but the previous code 3069 ** might not have been invoked yet, so invoke it now as a subroutine. 3070 */ 3071 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3072 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3073 if( ExprUseXSelect(pExpr) ){ 3074 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3075 pExpr->x.pSelect->selId)); 3076 } 3077 assert( ExprUseYSub(pExpr) ); 3078 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3079 pExpr->y.sub.iAddr); 3080 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3081 sqlite3VdbeJumpHere(v, addrOnce); 3082 return; 3083 } 3084 3085 /* Begin coding the subroutine */ 3086 assert( !ExprUseYWin(pExpr) ); 3087 ExprSetProperty(pExpr, EP_Subrtn); 3088 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3089 pExpr->y.sub.regReturn = ++pParse->nMem; 3090 pExpr->y.sub.iAddr = 3091 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3092 3093 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3094 } 3095 3096 /* Check to see if this is a vector IN operator */ 3097 pLeft = pExpr->pLeft; 3098 nVal = sqlite3ExprVectorSize(pLeft); 3099 3100 /* Construct the ephemeral table that will contain the content of 3101 ** RHS of the IN operator. 3102 */ 3103 pExpr->iTable = iTab; 3104 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3105 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3106 if( ExprUseXSelect(pExpr) ){ 3107 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3108 }else{ 3109 VdbeComment((v, "RHS of IN operator")); 3110 } 3111 #endif 3112 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3113 3114 if( ExprUseXSelect(pExpr) ){ 3115 /* Case 1: expr IN (SELECT ...) 3116 ** 3117 ** Generate code to write the results of the select into the temporary 3118 ** table allocated and opened above. 3119 */ 3120 Select *pSelect = pExpr->x.pSelect; 3121 ExprList *pEList = pSelect->pEList; 3122 3123 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3124 addrOnce?"":"CORRELATED ", pSelect->selId 3125 )); 3126 /* If the LHS and RHS of the IN operator do not match, that 3127 ** error will have been caught long before we reach this point. */ 3128 if( ALWAYS(pEList->nExpr==nVal) ){ 3129 Select *pCopy; 3130 SelectDest dest; 3131 int i; 3132 int rc; 3133 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3134 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3135 pSelect->iLimit = 0; 3136 testcase( pSelect->selFlags & SF_Distinct ); 3137 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3138 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3139 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3140 sqlite3SelectDelete(pParse->db, pCopy); 3141 sqlite3DbFree(pParse->db, dest.zAffSdst); 3142 if( rc ){ 3143 sqlite3KeyInfoUnref(pKeyInfo); 3144 return; 3145 } 3146 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3147 assert( pEList!=0 ); 3148 assert( pEList->nExpr>0 ); 3149 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3150 for(i=0; i<nVal; i++){ 3151 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3152 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3153 pParse, p, pEList->a[i].pExpr 3154 ); 3155 } 3156 } 3157 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3158 /* Case 2: expr IN (exprlist) 3159 ** 3160 ** For each expression, build an index key from the evaluation and 3161 ** store it in the temporary table. If <expr> is a column, then use 3162 ** that columns affinity when building index keys. If <expr> is not 3163 ** a column, use numeric affinity. 3164 */ 3165 char affinity; /* Affinity of the LHS of the IN */ 3166 int i; 3167 ExprList *pList = pExpr->x.pList; 3168 struct ExprList_item *pItem; 3169 int r1, r2; 3170 affinity = sqlite3ExprAffinity(pLeft); 3171 if( affinity<=SQLITE_AFF_NONE ){ 3172 affinity = SQLITE_AFF_BLOB; 3173 }else if( affinity==SQLITE_AFF_REAL ){ 3174 affinity = SQLITE_AFF_NUMERIC; 3175 } 3176 if( pKeyInfo ){ 3177 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3178 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3179 } 3180 3181 /* Loop through each expression in <exprlist>. */ 3182 r1 = sqlite3GetTempReg(pParse); 3183 r2 = sqlite3GetTempReg(pParse); 3184 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3185 Expr *pE2 = pItem->pExpr; 3186 3187 /* If the expression is not constant then we will need to 3188 ** disable the test that was generated above that makes sure 3189 ** this code only executes once. Because for a non-constant 3190 ** expression we need to rerun this code each time. 3191 */ 3192 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3193 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3194 sqlite3VdbeChangeToNoop(v, addrOnce); 3195 ExprClearProperty(pExpr, EP_Subrtn); 3196 addrOnce = 0; 3197 } 3198 3199 /* Evaluate the expression and insert it into the temp table */ 3200 sqlite3ExprCode(pParse, pE2, r1); 3201 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3202 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3203 } 3204 sqlite3ReleaseTempReg(pParse, r1); 3205 sqlite3ReleaseTempReg(pParse, r2); 3206 } 3207 if( pKeyInfo ){ 3208 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3209 } 3210 if( addrOnce ){ 3211 sqlite3VdbeJumpHere(v, addrOnce); 3212 /* Subroutine return */ 3213 assert( ExprUseYSub(pExpr) ); 3214 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3215 || pParse->nErr ); 3216 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3217 pExpr->y.sub.iAddr, 1); 3218 VdbeCoverage(v); 3219 sqlite3ClearTempRegCache(pParse); 3220 } 3221 } 3222 #endif /* SQLITE_OMIT_SUBQUERY */ 3223 3224 /* 3225 ** Generate code for scalar subqueries used as a subquery expression 3226 ** or EXISTS operator: 3227 ** 3228 ** (SELECT a FROM b) -- subquery 3229 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3230 ** 3231 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3232 ** 3233 ** Return the register that holds the result. For a multi-column SELECT, 3234 ** the result is stored in a contiguous array of registers and the 3235 ** return value is the register of the left-most result column. 3236 ** Return 0 if an error occurs. 3237 */ 3238 #ifndef SQLITE_OMIT_SUBQUERY 3239 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3240 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3241 int rReg = 0; /* Register storing resulting */ 3242 Select *pSel; /* SELECT statement to encode */ 3243 SelectDest dest; /* How to deal with SELECT result */ 3244 int nReg; /* Registers to allocate */ 3245 Expr *pLimit; /* New limit expression */ 3246 3247 Vdbe *v = pParse->pVdbe; 3248 assert( v!=0 ); 3249 if( pParse->nErr ) return 0; 3250 testcase( pExpr->op==TK_EXISTS ); 3251 testcase( pExpr->op==TK_SELECT ); 3252 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3253 assert( ExprUseXSelect(pExpr) ); 3254 pSel = pExpr->x.pSelect; 3255 3256 /* If this routine has already been coded, then invoke it as a 3257 ** subroutine. */ 3258 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3259 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3260 assert( ExprUseYSub(pExpr) ); 3261 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3262 pExpr->y.sub.iAddr); 3263 return pExpr->iTable; 3264 } 3265 3266 /* Begin coding the subroutine */ 3267 assert( !ExprUseYWin(pExpr) ); 3268 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3269 ExprSetProperty(pExpr, EP_Subrtn); 3270 pExpr->y.sub.regReturn = ++pParse->nMem; 3271 pExpr->y.sub.iAddr = 3272 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3273 3274 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3275 ** is encountered if any of the following is true: 3276 ** 3277 ** * The right-hand side is a correlated subquery 3278 ** * The right-hand side is an expression list containing variables 3279 ** * We are inside a trigger 3280 ** 3281 ** If all of the above are false, then we can run this code just once 3282 ** save the results, and reuse the same result on subsequent invocations. 3283 */ 3284 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3285 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3286 } 3287 3288 /* For a SELECT, generate code to put the values for all columns of 3289 ** the first row into an array of registers and return the index of 3290 ** the first register. 3291 ** 3292 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3293 ** into a register and return that register number. 3294 ** 3295 ** In both cases, the query is augmented with "LIMIT 1". Any 3296 ** preexisting limit is discarded in place of the new LIMIT 1. 3297 */ 3298 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3299 addrOnce?"":"CORRELATED ", pSel->selId)); 3300 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3301 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3302 pParse->nMem += nReg; 3303 if( pExpr->op==TK_SELECT ){ 3304 dest.eDest = SRT_Mem; 3305 dest.iSdst = dest.iSDParm; 3306 dest.nSdst = nReg; 3307 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3308 VdbeComment((v, "Init subquery result")); 3309 }else{ 3310 dest.eDest = SRT_Exists; 3311 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3312 VdbeComment((v, "Init EXISTS result")); 3313 } 3314 if( pSel->pLimit ){ 3315 /* The subquery already has a limit. If the pre-existing limit is X 3316 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3317 sqlite3 *db = pParse->db; 3318 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3319 if( pLimit ){ 3320 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3321 pLimit = sqlite3PExpr(pParse, TK_NE, 3322 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3323 } 3324 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3325 pSel->pLimit->pLeft = pLimit; 3326 }else{ 3327 /* If there is no pre-existing limit add a limit of 1 */ 3328 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3329 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3330 } 3331 pSel->iLimit = 0; 3332 if( sqlite3Select(pParse, pSel, &dest) ){ 3333 pExpr->op2 = pExpr->op; 3334 pExpr->op = TK_ERROR; 3335 return 0; 3336 } 3337 pExpr->iTable = rReg = dest.iSDParm; 3338 ExprSetVVAProperty(pExpr, EP_NoReduce); 3339 if( addrOnce ){ 3340 sqlite3VdbeJumpHere(v, addrOnce); 3341 } 3342 3343 /* Subroutine return */ 3344 assert( ExprUseYSub(pExpr) ); 3345 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3346 || pParse->nErr ); 3347 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3348 pExpr->y.sub.iAddr, 1); 3349 VdbeCoverage(v); 3350 sqlite3ClearTempRegCache(pParse); 3351 return rReg; 3352 } 3353 #endif /* SQLITE_OMIT_SUBQUERY */ 3354 3355 #ifndef SQLITE_OMIT_SUBQUERY 3356 /* 3357 ** Expr pIn is an IN(...) expression. This function checks that the 3358 ** sub-select on the RHS of the IN() operator has the same number of 3359 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3360 ** a sub-query, that the LHS is a vector of size 1. 3361 */ 3362 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3363 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3364 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3365 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3366 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3367 return 1; 3368 } 3369 }else if( nVector!=1 ){ 3370 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3371 return 1; 3372 } 3373 return 0; 3374 } 3375 #endif 3376 3377 #ifndef SQLITE_OMIT_SUBQUERY 3378 /* 3379 ** Generate code for an IN expression. 3380 ** 3381 ** x IN (SELECT ...) 3382 ** x IN (value, value, ...) 3383 ** 3384 ** The left-hand side (LHS) is a scalar or vector expression. The 3385 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3386 ** subquery. If the RHS is a subquery, the number of result columns must 3387 ** match the number of columns in the vector on the LHS. If the RHS is 3388 ** a list of values, the LHS must be a scalar. 3389 ** 3390 ** The IN operator is true if the LHS value is contained within the RHS. 3391 ** The result is false if the LHS is definitely not in the RHS. The 3392 ** result is NULL if the presence of the LHS in the RHS cannot be 3393 ** determined due to NULLs. 3394 ** 3395 ** This routine generates code that jumps to destIfFalse if the LHS is not 3396 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3397 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3398 ** within the RHS then fall through. 3399 ** 3400 ** See the separate in-operator.md documentation file in the canonical 3401 ** SQLite source tree for additional information. 3402 */ 3403 static void sqlite3ExprCodeIN( 3404 Parse *pParse, /* Parsing and code generating context */ 3405 Expr *pExpr, /* The IN expression */ 3406 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3407 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3408 ){ 3409 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3410 int eType; /* Type of the RHS */ 3411 int rLhs; /* Register(s) holding the LHS values */ 3412 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3413 Vdbe *v; /* Statement under construction */ 3414 int *aiMap = 0; /* Map from vector field to index column */ 3415 char *zAff = 0; /* Affinity string for comparisons */ 3416 int nVector; /* Size of vectors for this IN operator */ 3417 int iDummy; /* Dummy parameter to exprCodeVector() */ 3418 Expr *pLeft; /* The LHS of the IN operator */ 3419 int i; /* loop counter */ 3420 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3421 int destStep6 = 0; /* Start of code for Step 6 */ 3422 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3423 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3424 int addrTop; /* Top of the step-6 loop */ 3425 int iTab = 0; /* Index to use */ 3426 u8 okConstFactor = pParse->okConstFactor; 3427 3428 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3429 pLeft = pExpr->pLeft; 3430 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3431 zAff = exprINAffinity(pParse, pExpr); 3432 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3433 aiMap = (int*)sqlite3DbMallocZero( 3434 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3435 ); 3436 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3437 3438 /* Attempt to compute the RHS. After this step, if anything other than 3439 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3440 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3441 ** the RHS has not yet been coded. */ 3442 v = pParse->pVdbe; 3443 assert( v!=0 ); /* OOM detected prior to this routine */ 3444 VdbeNoopComment((v, "begin IN expr")); 3445 eType = sqlite3FindInIndex(pParse, pExpr, 3446 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3447 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3448 aiMap, &iTab); 3449 3450 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3451 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3452 ); 3453 #ifdef SQLITE_DEBUG 3454 /* Confirm that aiMap[] contains nVector integer values between 0 and 3455 ** nVector-1. */ 3456 for(i=0; i<nVector; i++){ 3457 int j, cnt; 3458 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3459 assert( cnt==1 ); 3460 } 3461 #endif 3462 3463 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3464 ** vector, then it is stored in an array of nVector registers starting 3465 ** at r1. 3466 ** 3467 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3468 ** so that the fields are in the same order as an existing index. The 3469 ** aiMap[] array contains a mapping from the original LHS field order to 3470 ** the field order that matches the RHS index. 3471 ** 3472 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3473 ** even if it is constant, as OP_Affinity may be used on the register 3474 ** by code generated below. */ 3475 assert( pParse->okConstFactor==okConstFactor ); 3476 pParse->okConstFactor = 0; 3477 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3478 pParse->okConstFactor = okConstFactor; 3479 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3480 if( i==nVector ){ 3481 /* LHS fields are not reordered */ 3482 rLhs = rLhsOrig; 3483 }else{ 3484 /* Need to reorder the LHS fields according to aiMap */ 3485 rLhs = sqlite3GetTempRange(pParse, nVector); 3486 for(i=0; i<nVector; i++){ 3487 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3488 } 3489 } 3490 3491 /* If sqlite3FindInIndex() did not find or create an index that is 3492 ** suitable for evaluating the IN operator, then evaluate using a 3493 ** sequence of comparisons. 3494 ** 3495 ** This is step (1) in the in-operator.md optimized algorithm. 3496 */ 3497 if( eType==IN_INDEX_NOOP ){ 3498 ExprList *pList; 3499 CollSeq *pColl; 3500 int labelOk = sqlite3VdbeMakeLabel(pParse); 3501 int r2, regToFree; 3502 int regCkNull = 0; 3503 int ii; 3504 assert( ExprUseXList(pExpr) ); 3505 pList = pExpr->x.pList; 3506 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3507 if( destIfNull!=destIfFalse ){ 3508 regCkNull = sqlite3GetTempReg(pParse); 3509 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3510 } 3511 for(ii=0; ii<pList->nExpr; ii++){ 3512 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3513 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3514 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3515 } 3516 sqlite3ReleaseTempReg(pParse, regToFree); 3517 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3518 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3519 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3520 (void*)pColl, P4_COLLSEQ); 3521 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3522 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3523 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3524 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3525 sqlite3VdbeChangeP5(v, zAff[0]); 3526 }else{ 3527 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3528 assert( destIfNull==destIfFalse ); 3529 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3530 (void*)pColl, P4_COLLSEQ); 3531 VdbeCoverageIf(v, op==OP_Ne); 3532 VdbeCoverageIf(v, op==OP_IsNull); 3533 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3534 } 3535 } 3536 if( regCkNull ){ 3537 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3538 sqlite3VdbeGoto(v, destIfFalse); 3539 } 3540 sqlite3VdbeResolveLabel(v, labelOk); 3541 sqlite3ReleaseTempReg(pParse, regCkNull); 3542 goto sqlite3ExprCodeIN_finished; 3543 } 3544 3545 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3546 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3547 ** We will then skip the binary search of the RHS. 3548 */ 3549 if( destIfNull==destIfFalse ){ 3550 destStep2 = destIfFalse; 3551 }else{ 3552 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3553 } 3554 for(i=0; i<nVector; i++){ 3555 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3556 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3557 if( sqlite3ExprCanBeNull(p) ){ 3558 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3559 VdbeCoverage(v); 3560 } 3561 } 3562 3563 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3564 ** of the RHS using the LHS as a probe. If found, the result is 3565 ** true. 3566 */ 3567 if( eType==IN_INDEX_ROWID ){ 3568 /* In this case, the RHS is the ROWID of table b-tree and so we also 3569 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3570 ** into a single opcode. */ 3571 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3572 VdbeCoverage(v); 3573 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3574 }else{ 3575 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3576 if( destIfFalse==destIfNull ){ 3577 /* Combine Step 3 and Step 5 into a single opcode */ 3578 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3579 rLhs, nVector); VdbeCoverage(v); 3580 goto sqlite3ExprCodeIN_finished; 3581 } 3582 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3583 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3584 rLhs, nVector); VdbeCoverage(v); 3585 } 3586 3587 /* Step 4. If the RHS is known to be non-NULL and we did not find 3588 ** an match on the search above, then the result must be FALSE. 3589 */ 3590 if( rRhsHasNull && nVector==1 ){ 3591 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3592 VdbeCoverage(v); 3593 } 3594 3595 /* Step 5. If we do not care about the difference between NULL and 3596 ** FALSE, then just return false. 3597 */ 3598 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3599 3600 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3601 ** If any comparison is NULL, then the result is NULL. If all 3602 ** comparisons are FALSE then the final result is FALSE. 3603 ** 3604 ** For a scalar LHS, it is sufficient to check just the first row 3605 ** of the RHS. 3606 */ 3607 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3608 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3609 VdbeCoverage(v); 3610 if( nVector>1 ){ 3611 destNotNull = sqlite3VdbeMakeLabel(pParse); 3612 }else{ 3613 /* For nVector==1, combine steps 6 and 7 by immediately returning 3614 ** FALSE if the first comparison is not NULL */ 3615 destNotNull = destIfFalse; 3616 } 3617 for(i=0; i<nVector; i++){ 3618 Expr *p; 3619 CollSeq *pColl; 3620 int r3 = sqlite3GetTempReg(pParse); 3621 p = sqlite3VectorFieldSubexpr(pLeft, i); 3622 pColl = sqlite3ExprCollSeq(pParse, p); 3623 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3624 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3625 (void*)pColl, P4_COLLSEQ); 3626 VdbeCoverage(v); 3627 sqlite3ReleaseTempReg(pParse, r3); 3628 } 3629 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3630 if( nVector>1 ){ 3631 sqlite3VdbeResolveLabel(v, destNotNull); 3632 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3633 VdbeCoverage(v); 3634 3635 /* Step 7: If we reach this point, we know that the result must 3636 ** be false. */ 3637 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3638 } 3639 3640 /* Jumps here in order to return true. */ 3641 sqlite3VdbeJumpHere(v, addrTruthOp); 3642 3643 sqlite3ExprCodeIN_finished: 3644 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3645 VdbeComment((v, "end IN expr")); 3646 sqlite3ExprCodeIN_oom_error: 3647 sqlite3DbFree(pParse->db, aiMap); 3648 sqlite3DbFree(pParse->db, zAff); 3649 } 3650 #endif /* SQLITE_OMIT_SUBQUERY */ 3651 3652 #ifndef SQLITE_OMIT_FLOATING_POINT 3653 /* 3654 ** Generate an instruction that will put the floating point 3655 ** value described by z[0..n-1] into register iMem. 3656 ** 3657 ** The z[] string will probably not be zero-terminated. But the 3658 ** z[n] character is guaranteed to be something that does not look 3659 ** like the continuation of the number. 3660 */ 3661 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3662 if( ALWAYS(z!=0) ){ 3663 double value; 3664 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3665 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3666 if( negateFlag ) value = -value; 3667 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3668 } 3669 } 3670 #endif 3671 3672 3673 /* 3674 ** Generate an instruction that will put the integer describe by 3675 ** text z[0..n-1] into register iMem. 3676 ** 3677 ** Expr.u.zToken is always UTF8 and zero-terminated. 3678 */ 3679 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3680 Vdbe *v = pParse->pVdbe; 3681 if( pExpr->flags & EP_IntValue ){ 3682 int i = pExpr->u.iValue; 3683 assert( i>=0 ); 3684 if( negFlag ) i = -i; 3685 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3686 }else{ 3687 int c; 3688 i64 value; 3689 const char *z = pExpr->u.zToken; 3690 assert( z!=0 ); 3691 c = sqlite3DecOrHexToI64(z, &value); 3692 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3693 #ifdef SQLITE_OMIT_FLOATING_POINT 3694 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3695 #else 3696 #ifndef SQLITE_OMIT_HEX_INTEGER 3697 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3698 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3699 negFlag?"-":"",pExpr); 3700 }else 3701 #endif 3702 { 3703 codeReal(v, z, negFlag, iMem); 3704 } 3705 #endif 3706 }else{ 3707 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3708 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3709 } 3710 } 3711 } 3712 3713 3714 /* Generate code that will load into register regOut a value that is 3715 ** appropriate for the iIdxCol-th column of index pIdx. 3716 */ 3717 void sqlite3ExprCodeLoadIndexColumn( 3718 Parse *pParse, /* The parsing context */ 3719 Index *pIdx, /* The index whose column is to be loaded */ 3720 int iTabCur, /* Cursor pointing to a table row */ 3721 int iIdxCol, /* The column of the index to be loaded */ 3722 int regOut /* Store the index column value in this register */ 3723 ){ 3724 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3725 if( iTabCol==XN_EXPR ){ 3726 assert( pIdx->aColExpr ); 3727 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3728 pParse->iSelfTab = iTabCur + 1; 3729 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3730 pParse->iSelfTab = 0; 3731 }else{ 3732 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3733 iTabCol, regOut); 3734 } 3735 } 3736 3737 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3738 /* 3739 ** Generate code that will compute the value of generated column pCol 3740 ** and store the result in register regOut 3741 */ 3742 void sqlite3ExprCodeGeneratedColumn( 3743 Parse *pParse, /* Parsing context */ 3744 Table *pTab, /* Table containing the generated column */ 3745 Column *pCol, /* The generated column */ 3746 int regOut /* Put the result in this register */ 3747 ){ 3748 int iAddr; 3749 Vdbe *v = pParse->pVdbe; 3750 assert( v!=0 ); 3751 assert( pParse->iSelfTab!=0 ); 3752 if( pParse->iSelfTab>0 ){ 3753 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3754 }else{ 3755 iAddr = 0; 3756 } 3757 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3758 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3759 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3760 } 3761 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3762 } 3763 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3764 3765 /* 3766 ** Generate code to extract the value of the iCol-th column of a table. 3767 */ 3768 void sqlite3ExprCodeGetColumnOfTable( 3769 Vdbe *v, /* Parsing context */ 3770 Table *pTab, /* The table containing the value */ 3771 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3772 int iCol, /* Index of the column to extract */ 3773 int regOut /* Extract the value into this register */ 3774 ){ 3775 Column *pCol; 3776 assert( v!=0 ); 3777 if( pTab==0 ){ 3778 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3779 return; 3780 } 3781 if( iCol<0 || iCol==pTab->iPKey ){ 3782 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3783 VdbeComment((v, "%s.rowid", pTab->zName)); 3784 }else{ 3785 int op; 3786 int x; 3787 if( IsVirtual(pTab) ){ 3788 op = OP_VColumn; 3789 x = iCol; 3790 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3791 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3792 Parse *pParse = sqlite3VdbeParser(v); 3793 if( pCol->colFlags & COLFLAG_BUSY ){ 3794 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3795 pCol->zCnName); 3796 }else{ 3797 int savedSelfTab = pParse->iSelfTab; 3798 pCol->colFlags |= COLFLAG_BUSY; 3799 pParse->iSelfTab = iTabCur+1; 3800 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3801 pParse->iSelfTab = savedSelfTab; 3802 pCol->colFlags &= ~COLFLAG_BUSY; 3803 } 3804 return; 3805 #endif 3806 }else if( !HasRowid(pTab) ){ 3807 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3808 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3809 op = OP_Column; 3810 }else{ 3811 x = sqlite3TableColumnToStorage(pTab,iCol); 3812 testcase( x!=iCol ); 3813 op = OP_Column; 3814 } 3815 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3816 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3817 } 3818 } 3819 3820 /* 3821 ** Generate code that will extract the iColumn-th column from 3822 ** table pTab and store the column value in register iReg. 3823 ** 3824 ** There must be an open cursor to pTab in iTable when this routine 3825 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3826 */ 3827 int sqlite3ExprCodeGetColumn( 3828 Parse *pParse, /* Parsing and code generating context */ 3829 Table *pTab, /* Description of the table we are reading from */ 3830 int iColumn, /* Index of the table column */ 3831 int iTable, /* The cursor pointing to the table */ 3832 int iReg, /* Store results here */ 3833 u8 p5 /* P5 value for OP_Column + FLAGS */ 3834 ){ 3835 assert( pParse->pVdbe!=0 ); 3836 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3837 if( p5 ){ 3838 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3839 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3840 } 3841 return iReg; 3842 } 3843 3844 /* 3845 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3846 ** over to iTo..iTo+nReg-1. 3847 */ 3848 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3849 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3850 } 3851 3852 /* 3853 ** Convert a scalar expression node to a TK_REGISTER referencing 3854 ** register iReg. The caller must ensure that iReg already contains 3855 ** the correct value for the expression. 3856 */ 3857 static void exprToRegister(Expr *pExpr, int iReg){ 3858 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3859 if( NEVER(p==0) ) return; 3860 p->op2 = p->op; 3861 p->op = TK_REGISTER; 3862 p->iTable = iReg; 3863 ExprClearProperty(p, EP_Skip); 3864 } 3865 3866 /* 3867 ** Evaluate an expression (either a vector or a scalar expression) and store 3868 ** the result in continguous temporary registers. Return the index of 3869 ** the first register used to store the result. 3870 ** 3871 ** If the returned result register is a temporary scalar, then also write 3872 ** that register number into *piFreeable. If the returned result register 3873 ** is not a temporary or if the expression is a vector set *piFreeable 3874 ** to 0. 3875 */ 3876 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3877 int iResult; 3878 int nResult = sqlite3ExprVectorSize(p); 3879 if( nResult==1 ){ 3880 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3881 }else{ 3882 *piFreeable = 0; 3883 if( p->op==TK_SELECT ){ 3884 #if SQLITE_OMIT_SUBQUERY 3885 iResult = 0; 3886 #else 3887 iResult = sqlite3CodeSubselect(pParse, p); 3888 #endif 3889 }else{ 3890 int i; 3891 iResult = pParse->nMem+1; 3892 pParse->nMem += nResult; 3893 assert( ExprUseXList(p) ); 3894 for(i=0; i<nResult; i++){ 3895 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3896 } 3897 } 3898 } 3899 return iResult; 3900 } 3901 3902 /* 3903 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3904 ** so that a subsequent copy will not be merged into this one. 3905 */ 3906 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3907 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3908 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3909 } 3910 } 3911 3912 /* 3913 ** Generate code to implement special SQL functions that are implemented 3914 ** in-line rather than by using the usual callbacks. 3915 */ 3916 static int exprCodeInlineFunction( 3917 Parse *pParse, /* Parsing context */ 3918 ExprList *pFarg, /* List of function arguments */ 3919 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3920 int target /* Store function result in this register */ 3921 ){ 3922 int nFarg; 3923 Vdbe *v = pParse->pVdbe; 3924 assert( v!=0 ); 3925 assert( pFarg!=0 ); 3926 nFarg = pFarg->nExpr; 3927 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3928 switch( iFuncId ){ 3929 case INLINEFUNC_coalesce: { 3930 /* Attempt a direct implementation of the built-in COALESCE() and 3931 ** IFNULL() functions. This avoids unnecessary evaluation of 3932 ** arguments past the first non-NULL argument. 3933 */ 3934 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3935 int i; 3936 assert( nFarg>=2 ); 3937 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3938 for(i=1; i<nFarg; i++){ 3939 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3940 VdbeCoverage(v); 3941 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3942 } 3943 setDoNotMergeFlagOnCopy(v); 3944 sqlite3VdbeResolveLabel(v, endCoalesce); 3945 break; 3946 } 3947 case INLINEFUNC_iif: { 3948 Expr caseExpr; 3949 memset(&caseExpr, 0, sizeof(caseExpr)); 3950 caseExpr.op = TK_CASE; 3951 caseExpr.x.pList = pFarg; 3952 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3953 } 3954 3955 default: { 3956 /* The UNLIKELY() function is a no-op. The result is the value 3957 ** of the first argument. 3958 */ 3959 assert( nFarg==1 || nFarg==2 ); 3960 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3961 break; 3962 } 3963 3964 /*********************************************************************** 3965 ** Test-only SQL functions that are only usable if enabled 3966 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3967 */ 3968 #if !defined(SQLITE_UNTESTABLE) 3969 case INLINEFUNC_expr_compare: { 3970 /* Compare two expressions using sqlite3ExprCompare() */ 3971 assert( nFarg==2 ); 3972 sqlite3VdbeAddOp2(v, OP_Integer, 3973 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3974 target); 3975 break; 3976 } 3977 3978 case INLINEFUNC_expr_implies_expr: { 3979 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3980 assert( nFarg==2 ); 3981 sqlite3VdbeAddOp2(v, OP_Integer, 3982 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3983 target); 3984 break; 3985 } 3986 3987 case INLINEFUNC_implies_nonnull_row: { 3988 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3989 Expr *pA1; 3990 assert( nFarg==2 ); 3991 pA1 = pFarg->a[1].pExpr; 3992 if( pA1->op==TK_COLUMN ){ 3993 sqlite3VdbeAddOp2(v, OP_Integer, 3994 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3995 target); 3996 }else{ 3997 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3998 } 3999 break; 4000 } 4001 4002 case INLINEFUNC_affinity: { 4003 /* The AFFINITY() function evaluates to a string that describes 4004 ** the type affinity of the argument. This is used for testing of 4005 ** the SQLite type logic. 4006 */ 4007 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 4008 char aff; 4009 assert( nFarg==1 ); 4010 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 4011 sqlite3VdbeLoadString(v, target, 4012 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 4013 break; 4014 } 4015 #endif /* !defined(SQLITE_UNTESTABLE) */ 4016 } 4017 return target; 4018 } 4019 4020 4021 /* 4022 ** Generate code into the current Vdbe to evaluate the given 4023 ** expression. Attempt to store the results in register "target". 4024 ** Return the register where results are stored. 4025 ** 4026 ** With this routine, there is no guarantee that results will 4027 ** be stored in target. The result might be stored in some other 4028 ** register if it is convenient to do so. The calling function 4029 ** must check the return code and move the results to the desired 4030 ** register. 4031 */ 4032 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4033 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4034 int op; /* The opcode being coded */ 4035 int inReg = target; /* Results stored in register inReg */ 4036 int regFree1 = 0; /* If non-zero free this temporary register */ 4037 int regFree2 = 0; /* If non-zero free this temporary register */ 4038 int r1, r2; /* Various register numbers */ 4039 Expr tempX; /* Temporary expression node */ 4040 int p5 = 0; 4041 4042 assert( target>0 && target<=pParse->nMem ); 4043 assert( v!=0 ); 4044 4045 expr_code_doover: 4046 if( pExpr==0 ){ 4047 op = TK_NULL; 4048 }else{ 4049 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4050 op = pExpr->op; 4051 } 4052 switch( op ){ 4053 case TK_AGG_COLUMN: { 4054 AggInfo *pAggInfo = pExpr->pAggInfo; 4055 struct AggInfo_col *pCol; 4056 assert( pAggInfo!=0 ); 4057 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4058 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4059 if( !pAggInfo->directMode ){ 4060 assert( pCol->iMem>0 ); 4061 return pCol->iMem; 4062 }else if( pAggInfo->useSortingIdx ){ 4063 Table *pTab = pCol->pTab; 4064 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4065 pCol->iSorterColumn, target); 4066 if( pCol->iColumn<0 ){ 4067 VdbeComment((v,"%s.rowid",pTab->zName)); 4068 }else{ 4069 VdbeComment((v,"%s.%s", 4070 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4071 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4072 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4073 } 4074 } 4075 return target; 4076 } 4077 /* Otherwise, fall thru into the TK_COLUMN case */ 4078 /* no break */ deliberate_fall_through 4079 } 4080 case TK_COLUMN: { 4081 int iTab = pExpr->iTable; 4082 int iReg; 4083 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4084 /* This COLUMN expression is really a constant due to WHERE clause 4085 ** constraints, and that constant is coded by the pExpr->pLeft 4086 ** expresssion. However, make sure the constant has the correct 4087 ** datatype by applying the Affinity of the table column to the 4088 ** constant. 4089 */ 4090 int aff; 4091 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4092 assert( ExprUseYTab(pExpr) ); 4093 if( pExpr->y.pTab ){ 4094 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4095 }else{ 4096 aff = pExpr->affExpr; 4097 } 4098 if( aff>SQLITE_AFF_BLOB ){ 4099 static const char zAff[] = "B\000C\000D\000E"; 4100 assert( SQLITE_AFF_BLOB=='A' ); 4101 assert( SQLITE_AFF_TEXT=='B' ); 4102 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4103 &zAff[(aff-'B')*2], P4_STATIC); 4104 } 4105 return iReg; 4106 } 4107 if( iTab<0 ){ 4108 if( pParse->iSelfTab<0 ){ 4109 /* Other columns in the same row for CHECK constraints or 4110 ** generated columns or for inserting into partial index. 4111 ** The row is unpacked into registers beginning at 4112 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4113 ** immediately prior to the first column. 4114 */ 4115 Column *pCol; 4116 Table *pTab; 4117 int iSrc; 4118 int iCol = pExpr->iColumn; 4119 assert( ExprUseYTab(pExpr) ); 4120 pTab = pExpr->y.pTab; 4121 assert( pTab!=0 ); 4122 assert( iCol>=XN_ROWID ); 4123 assert( iCol<pTab->nCol ); 4124 if( iCol<0 ){ 4125 return -1-pParse->iSelfTab; 4126 } 4127 pCol = pTab->aCol + iCol; 4128 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4129 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4130 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4131 if( pCol->colFlags & COLFLAG_GENERATED ){ 4132 if( pCol->colFlags & COLFLAG_BUSY ){ 4133 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4134 pCol->zCnName); 4135 return 0; 4136 } 4137 pCol->colFlags |= COLFLAG_BUSY; 4138 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4139 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4140 } 4141 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4142 return iSrc; 4143 }else 4144 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4145 if( pCol->affinity==SQLITE_AFF_REAL ){ 4146 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4147 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4148 return target; 4149 }else{ 4150 return iSrc; 4151 } 4152 }else{ 4153 /* Coding an expression that is part of an index where column names 4154 ** in the index refer to the table to which the index belongs */ 4155 iTab = pParse->iSelfTab - 1; 4156 } 4157 } 4158 assert( ExprUseYTab(pExpr) ); 4159 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4160 pExpr->iColumn, iTab, target, 4161 pExpr->op2); 4162 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4163 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4164 } 4165 return iReg; 4166 } 4167 case TK_INTEGER: { 4168 codeInteger(pParse, pExpr, 0, target); 4169 return target; 4170 } 4171 case TK_TRUEFALSE: { 4172 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4173 return target; 4174 } 4175 #ifndef SQLITE_OMIT_FLOATING_POINT 4176 case TK_FLOAT: { 4177 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4178 codeReal(v, pExpr->u.zToken, 0, target); 4179 return target; 4180 } 4181 #endif 4182 case TK_STRING: { 4183 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4184 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4185 return target; 4186 } 4187 default: { 4188 /* Make NULL the default case so that if a bug causes an illegal 4189 ** Expr node to be passed into this function, it will be handled 4190 ** sanely and not crash. But keep the assert() to bring the problem 4191 ** to the attention of the developers. */ 4192 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4193 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4194 return target; 4195 } 4196 #ifndef SQLITE_OMIT_BLOB_LITERAL 4197 case TK_BLOB: { 4198 int n; 4199 const char *z; 4200 char *zBlob; 4201 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4202 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4203 assert( pExpr->u.zToken[1]=='\'' ); 4204 z = &pExpr->u.zToken[2]; 4205 n = sqlite3Strlen30(z) - 1; 4206 assert( z[n]=='\'' ); 4207 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4208 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4209 return target; 4210 } 4211 #endif 4212 case TK_VARIABLE: { 4213 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4214 assert( pExpr->u.zToken!=0 ); 4215 assert( pExpr->u.zToken[0]!=0 ); 4216 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4217 if( pExpr->u.zToken[1]!=0 ){ 4218 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4219 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4220 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4221 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4222 } 4223 return target; 4224 } 4225 case TK_REGISTER: { 4226 return pExpr->iTable; 4227 } 4228 #ifndef SQLITE_OMIT_CAST 4229 case TK_CAST: { 4230 /* Expressions of the form: CAST(pLeft AS token) */ 4231 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4232 if( inReg!=target ){ 4233 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4234 inReg = target; 4235 } 4236 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4237 sqlite3VdbeAddOp2(v, OP_Cast, target, 4238 sqlite3AffinityType(pExpr->u.zToken, 0)); 4239 return inReg; 4240 } 4241 #endif /* SQLITE_OMIT_CAST */ 4242 case TK_IS: 4243 case TK_ISNOT: 4244 op = (op==TK_IS) ? TK_EQ : TK_NE; 4245 p5 = SQLITE_NULLEQ; 4246 /* fall-through */ 4247 case TK_LT: 4248 case TK_LE: 4249 case TK_GT: 4250 case TK_GE: 4251 case TK_NE: 4252 case TK_EQ: { 4253 Expr *pLeft = pExpr->pLeft; 4254 if( sqlite3ExprIsVector(pLeft) ){ 4255 codeVectorCompare(pParse, pExpr, target, op, p5); 4256 }else{ 4257 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4258 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4259 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4260 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4261 sqlite3VdbeCurrentAddr(v)+2, p5, 4262 ExprHasProperty(pExpr,EP_Commuted)); 4263 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4264 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4265 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4266 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4267 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4268 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4269 if( p5==SQLITE_NULLEQ ){ 4270 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4271 }else{ 4272 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4273 } 4274 testcase( regFree1==0 ); 4275 testcase( regFree2==0 ); 4276 } 4277 break; 4278 } 4279 case TK_AND: 4280 case TK_OR: 4281 case TK_PLUS: 4282 case TK_STAR: 4283 case TK_MINUS: 4284 case TK_REM: 4285 case TK_BITAND: 4286 case TK_BITOR: 4287 case TK_SLASH: 4288 case TK_LSHIFT: 4289 case TK_RSHIFT: 4290 case TK_CONCAT: { 4291 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4292 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4293 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4294 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4295 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4296 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4297 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4298 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4299 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4300 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4301 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4302 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4303 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4304 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4305 testcase( regFree1==0 ); 4306 testcase( regFree2==0 ); 4307 break; 4308 } 4309 case TK_UMINUS: { 4310 Expr *pLeft = pExpr->pLeft; 4311 assert( pLeft ); 4312 if( pLeft->op==TK_INTEGER ){ 4313 codeInteger(pParse, pLeft, 1, target); 4314 return target; 4315 #ifndef SQLITE_OMIT_FLOATING_POINT 4316 }else if( pLeft->op==TK_FLOAT ){ 4317 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4318 codeReal(v, pLeft->u.zToken, 1, target); 4319 return target; 4320 #endif 4321 }else{ 4322 tempX.op = TK_INTEGER; 4323 tempX.flags = EP_IntValue|EP_TokenOnly; 4324 tempX.u.iValue = 0; 4325 ExprClearVVAProperties(&tempX); 4326 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4327 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4328 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4329 testcase( regFree2==0 ); 4330 } 4331 break; 4332 } 4333 case TK_BITNOT: 4334 case TK_NOT: { 4335 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4336 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4337 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4338 testcase( regFree1==0 ); 4339 sqlite3VdbeAddOp2(v, op, r1, inReg); 4340 break; 4341 } 4342 case TK_TRUTH: { 4343 int isTrue; /* IS TRUE or IS NOT TRUE */ 4344 int bNormal; /* IS TRUE or IS FALSE */ 4345 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4346 testcase( regFree1==0 ); 4347 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4348 bNormal = pExpr->op2==TK_IS; 4349 testcase( isTrue && bNormal); 4350 testcase( !isTrue && bNormal); 4351 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4352 break; 4353 } 4354 case TK_ISNULL: 4355 case TK_NOTNULL: { 4356 int addr; 4357 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4358 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4359 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4360 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4361 testcase( regFree1==0 ); 4362 addr = sqlite3VdbeAddOp1(v, op, r1); 4363 VdbeCoverageIf(v, op==TK_ISNULL); 4364 VdbeCoverageIf(v, op==TK_NOTNULL); 4365 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4366 sqlite3VdbeJumpHere(v, addr); 4367 break; 4368 } 4369 case TK_AGG_FUNCTION: { 4370 AggInfo *pInfo = pExpr->pAggInfo; 4371 if( pInfo==0 4372 || NEVER(pExpr->iAgg<0) 4373 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4374 ){ 4375 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4376 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4377 }else{ 4378 return pInfo->aFunc[pExpr->iAgg].iMem; 4379 } 4380 break; 4381 } 4382 case TK_FUNCTION: { 4383 ExprList *pFarg; /* List of function arguments */ 4384 int nFarg; /* Number of function arguments */ 4385 FuncDef *pDef; /* The function definition object */ 4386 const char *zId; /* The function name */ 4387 u32 constMask = 0; /* Mask of function arguments that are constant */ 4388 int i; /* Loop counter */ 4389 sqlite3 *db = pParse->db; /* The database connection */ 4390 u8 enc = ENC(db); /* The text encoding used by this database */ 4391 CollSeq *pColl = 0; /* A collating sequence */ 4392 4393 #ifndef SQLITE_OMIT_WINDOWFUNC 4394 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4395 return pExpr->y.pWin->regResult; 4396 } 4397 #endif 4398 4399 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4400 /* SQL functions can be expensive. So try to avoid running them 4401 ** multiple times if we know they always give the same result */ 4402 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4403 } 4404 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4405 assert( ExprUseXList(pExpr) ); 4406 pFarg = pExpr->x.pList; 4407 nFarg = pFarg ? pFarg->nExpr : 0; 4408 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4409 zId = pExpr->u.zToken; 4410 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4411 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4412 if( pDef==0 && pParse->explain ){ 4413 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4414 } 4415 #endif 4416 if( pDef==0 || pDef->xFinalize!=0 ){ 4417 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4418 break; 4419 } 4420 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4421 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4422 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4423 return exprCodeInlineFunction(pParse, pFarg, 4424 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4425 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4426 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4427 } 4428 4429 for(i=0; i<nFarg; i++){ 4430 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4431 testcase( i==31 ); 4432 constMask |= MASKBIT32(i); 4433 } 4434 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4435 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4436 } 4437 } 4438 if( pFarg ){ 4439 if( constMask ){ 4440 r1 = pParse->nMem+1; 4441 pParse->nMem += nFarg; 4442 }else{ 4443 r1 = sqlite3GetTempRange(pParse, nFarg); 4444 } 4445 4446 /* For length() and typeof() functions with a column argument, 4447 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4448 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4449 ** loading. 4450 */ 4451 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4452 u8 exprOp; 4453 assert( nFarg==1 ); 4454 assert( pFarg->a[0].pExpr!=0 ); 4455 exprOp = pFarg->a[0].pExpr->op; 4456 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4457 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4458 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4459 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4460 pFarg->a[0].pExpr->op2 = 4461 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4462 } 4463 } 4464 4465 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4466 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4467 }else{ 4468 r1 = 0; 4469 } 4470 #ifndef SQLITE_OMIT_VIRTUALTABLE 4471 /* Possibly overload the function if the first argument is 4472 ** a virtual table column. 4473 ** 4474 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4475 ** second argument, not the first, as the argument to test to 4476 ** see if it is a column in a virtual table. This is done because 4477 ** the left operand of infix functions (the operand we want to 4478 ** control overloading) ends up as the second argument to the 4479 ** function. The expression "A glob B" is equivalent to 4480 ** "glob(B,A). We want to use the A in "A glob B" to test 4481 ** for function overloading. But we use the B term in "glob(B,A)". 4482 */ 4483 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4484 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4485 }else if( nFarg>0 ){ 4486 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4487 } 4488 #endif 4489 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4490 if( !pColl ) pColl = db->pDfltColl; 4491 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4492 } 4493 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4494 if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){ 4495 Expr *pArg = pFarg->a[0].pExpr; 4496 if( pArg->op==TK_COLUMN ){ 4497 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4498 }else{ 4499 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4500 } 4501 }else 4502 #endif 4503 { 4504 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4505 pDef, pExpr->op2); 4506 } 4507 if( nFarg ){ 4508 if( constMask==0 ){ 4509 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4510 }else{ 4511 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4512 } 4513 } 4514 return target; 4515 } 4516 #ifndef SQLITE_OMIT_SUBQUERY 4517 case TK_EXISTS: 4518 case TK_SELECT: { 4519 int nCol; 4520 testcase( op==TK_EXISTS ); 4521 testcase( op==TK_SELECT ); 4522 if( pParse->db->mallocFailed ){ 4523 return 0; 4524 }else if( op==TK_SELECT 4525 && ALWAYS( ExprUseXSelect(pExpr) ) 4526 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4527 ){ 4528 sqlite3SubselectError(pParse, nCol, 1); 4529 }else{ 4530 return sqlite3CodeSubselect(pParse, pExpr); 4531 } 4532 break; 4533 } 4534 case TK_SELECT_COLUMN: { 4535 int n; 4536 Expr *pLeft = pExpr->pLeft; 4537 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4538 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4539 pLeft->op2 = pParse->withinRJSubrtn; 4540 } 4541 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4542 n = sqlite3ExprVectorSize(pLeft); 4543 if( pExpr->iTable!=n ){ 4544 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4545 pExpr->iTable, n); 4546 } 4547 return pLeft->iTable + pExpr->iColumn; 4548 } 4549 case TK_IN: { 4550 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4551 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4552 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4553 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4554 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4555 sqlite3VdbeResolveLabel(v, destIfFalse); 4556 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4557 sqlite3VdbeResolveLabel(v, destIfNull); 4558 return target; 4559 } 4560 #endif /* SQLITE_OMIT_SUBQUERY */ 4561 4562 4563 /* 4564 ** x BETWEEN y AND z 4565 ** 4566 ** This is equivalent to 4567 ** 4568 ** x>=y AND x<=z 4569 ** 4570 ** X is stored in pExpr->pLeft. 4571 ** Y is stored in pExpr->pList->a[0].pExpr. 4572 ** Z is stored in pExpr->pList->a[1].pExpr. 4573 */ 4574 case TK_BETWEEN: { 4575 exprCodeBetween(pParse, pExpr, target, 0, 0); 4576 return target; 4577 } 4578 case TK_SPAN: 4579 case TK_COLLATE: 4580 case TK_UPLUS: { 4581 pExpr = pExpr->pLeft; 4582 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4583 } 4584 4585 case TK_TRIGGER: { 4586 /* If the opcode is TK_TRIGGER, then the expression is a reference 4587 ** to a column in the new.* or old.* pseudo-tables available to 4588 ** trigger programs. In this case Expr.iTable is set to 1 for the 4589 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4590 ** is set to the column of the pseudo-table to read, or to -1 to 4591 ** read the rowid field. 4592 ** 4593 ** The expression is implemented using an OP_Param opcode. The p1 4594 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4595 ** to reference another column of the old.* pseudo-table, where 4596 ** i is the index of the column. For a new.rowid reference, p1 is 4597 ** set to (n+1), where n is the number of columns in each pseudo-table. 4598 ** For a reference to any other column in the new.* pseudo-table, p1 4599 ** is set to (n+2+i), where n and i are as defined previously. For 4600 ** example, if the table on which triggers are being fired is 4601 ** declared as: 4602 ** 4603 ** CREATE TABLE t1(a, b); 4604 ** 4605 ** Then p1 is interpreted as follows: 4606 ** 4607 ** p1==0 -> old.rowid p1==3 -> new.rowid 4608 ** p1==1 -> old.a p1==4 -> new.a 4609 ** p1==2 -> old.b p1==5 -> new.b 4610 */ 4611 Table *pTab; 4612 int iCol; 4613 int p1; 4614 4615 assert( ExprUseYTab(pExpr) ); 4616 pTab = pExpr->y.pTab; 4617 iCol = pExpr->iColumn; 4618 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4619 + sqlite3TableColumnToStorage(pTab, iCol); 4620 4621 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4622 assert( iCol>=-1 && iCol<pTab->nCol ); 4623 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4624 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4625 4626 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4627 VdbeComment((v, "r[%d]=%s.%s", target, 4628 (pExpr->iTable ? "new" : "old"), 4629 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4630 )); 4631 4632 #ifndef SQLITE_OMIT_FLOATING_POINT 4633 /* If the column has REAL affinity, it may currently be stored as an 4634 ** integer. Use OP_RealAffinity to make sure it is really real. 4635 ** 4636 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4637 ** floating point when extracting it from the record. */ 4638 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4639 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4640 } 4641 #endif 4642 break; 4643 } 4644 4645 case TK_VECTOR: { 4646 sqlite3ErrorMsg(pParse, "row value misused"); 4647 break; 4648 } 4649 4650 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4651 ** that derive from the right-hand table of a LEFT JOIN. The 4652 ** Expr.iTable value is the table number for the right-hand table. 4653 ** The expression is only evaluated if that table is not currently 4654 ** on a LEFT JOIN NULL row. 4655 */ 4656 case TK_IF_NULL_ROW: { 4657 int addrINR; 4658 u8 okConstFactor = pParse->okConstFactor; 4659 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4660 /* Temporarily disable factoring of constant expressions, since 4661 ** even though expressions may appear to be constant, they are not 4662 ** really constant because they originate from the right-hand side 4663 ** of a LEFT JOIN. */ 4664 pParse->okConstFactor = 0; 4665 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4666 pParse->okConstFactor = okConstFactor; 4667 sqlite3VdbeJumpHere(v, addrINR); 4668 sqlite3VdbeChangeP3(v, addrINR, inReg); 4669 break; 4670 } 4671 4672 /* 4673 ** Form A: 4674 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4675 ** 4676 ** Form B: 4677 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4678 ** 4679 ** Form A is can be transformed into the equivalent form B as follows: 4680 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4681 ** WHEN x=eN THEN rN ELSE y END 4682 ** 4683 ** X (if it exists) is in pExpr->pLeft. 4684 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4685 ** odd. The Y is also optional. If the number of elements in x.pList 4686 ** is even, then Y is omitted and the "otherwise" result is NULL. 4687 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4688 ** 4689 ** The result of the expression is the Ri for the first matching Ei, 4690 ** or if there is no matching Ei, the ELSE term Y, or if there is 4691 ** no ELSE term, NULL. 4692 */ 4693 case TK_CASE: { 4694 int endLabel; /* GOTO label for end of CASE stmt */ 4695 int nextCase; /* GOTO label for next WHEN clause */ 4696 int nExpr; /* 2x number of WHEN terms */ 4697 int i; /* Loop counter */ 4698 ExprList *pEList; /* List of WHEN terms */ 4699 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4700 Expr opCompare; /* The X==Ei expression */ 4701 Expr *pX; /* The X expression */ 4702 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4703 Expr *pDel = 0; 4704 sqlite3 *db = pParse->db; 4705 4706 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4707 assert(pExpr->x.pList->nExpr > 0); 4708 pEList = pExpr->x.pList; 4709 aListelem = pEList->a; 4710 nExpr = pEList->nExpr; 4711 endLabel = sqlite3VdbeMakeLabel(pParse); 4712 if( (pX = pExpr->pLeft)!=0 ){ 4713 pDel = sqlite3ExprDup(db, pX, 0); 4714 if( db->mallocFailed ){ 4715 sqlite3ExprDelete(db, pDel); 4716 break; 4717 } 4718 testcase( pX->op==TK_COLUMN ); 4719 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4720 testcase( regFree1==0 ); 4721 memset(&opCompare, 0, sizeof(opCompare)); 4722 opCompare.op = TK_EQ; 4723 opCompare.pLeft = pDel; 4724 pTest = &opCompare; 4725 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4726 ** The value in regFree1 might get SCopy-ed into the file result. 4727 ** So make sure that the regFree1 register is not reused for other 4728 ** purposes and possibly overwritten. */ 4729 regFree1 = 0; 4730 } 4731 for(i=0; i<nExpr-1; i=i+2){ 4732 if( pX ){ 4733 assert( pTest!=0 ); 4734 opCompare.pRight = aListelem[i].pExpr; 4735 }else{ 4736 pTest = aListelem[i].pExpr; 4737 } 4738 nextCase = sqlite3VdbeMakeLabel(pParse); 4739 testcase( pTest->op==TK_COLUMN ); 4740 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4741 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4742 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4743 sqlite3VdbeGoto(v, endLabel); 4744 sqlite3VdbeResolveLabel(v, nextCase); 4745 } 4746 if( (nExpr&1)!=0 ){ 4747 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4748 }else{ 4749 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4750 } 4751 sqlite3ExprDelete(db, pDel); 4752 setDoNotMergeFlagOnCopy(v); 4753 sqlite3VdbeResolveLabel(v, endLabel); 4754 break; 4755 } 4756 #ifndef SQLITE_OMIT_TRIGGER 4757 case TK_RAISE: { 4758 assert( pExpr->affExpr==OE_Rollback 4759 || pExpr->affExpr==OE_Abort 4760 || pExpr->affExpr==OE_Fail 4761 || pExpr->affExpr==OE_Ignore 4762 ); 4763 if( !pParse->pTriggerTab && !pParse->nested ){ 4764 sqlite3ErrorMsg(pParse, 4765 "RAISE() may only be used within a trigger-program"); 4766 return 0; 4767 } 4768 if( pExpr->affExpr==OE_Abort ){ 4769 sqlite3MayAbort(pParse); 4770 } 4771 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4772 if( pExpr->affExpr==OE_Ignore ){ 4773 sqlite3VdbeAddOp4( 4774 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4775 VdbeCoverage(v); 4776 }else{ 4777 sqlite3HaltConstraint(pParse, 4778 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4779 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4780 } 4781 4782 break; 4783 } 4784 #endif 4785 } 4786 sqlite3ReleaseTempReg(pParse, regFree1); 4787 sqlite3ReleaseTempReg(pParse, regFree2); 4788 return inReg; 4789 } 4790 4791 /* 4792 ** Generate code that will evaluate expression pExpr just one time 4793 ** per prepared statement execution. 4794 ** 4795 ** If the expression uses functions (that might throw an exception) then 4796 ** guard them with an OP_Once opcode to ensure that the code is only executed 4797 ** once. If no functions are involved, then factor the code out and put it at 4798 ** the end of the prepared statement in the initialization section. 4799 ** 4800 ** If regDest>=0 then the result is always stored in that register and the 4801 ** result is not reusable. If regDest<0 then this routine is free to 4802 ** store the value whereever it wants. The register where the expression 4803 ** is stored is returned. When regDest<0, two identical expressions might 4804 ** code to the same register, if they do not contain function calls and hence 4805 ** are factored out into the initialization section at the end of the 4806 ** prepared statement. 4807 */ 4808 int sqlite3ExprCodeRunJustOnce( 4809 Parse *pParse, /* Parsing context */ 4810 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4811 int regDest /* Store the value in this register */ 4812 ){ 4813 ExprList *p; 4814 assert( ConstFactorOk(pParse) ); 4815 p = pParse->pConstExpr; 4816 if( regDest<0 && p ){ 4817 struct ExprList_item *pItem; 4818 int i; 4819 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4820 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4821 return pItem->u.iConstExprReg; 4822 } 4823 } 4824 } 4825 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4826 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4827 Vdbe *v = pParse->pVdbe; 4828 int addr; 4829 assert( v ); 4830 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4831 pParse->okConstFactor = 0; 4832 if( !pParse->db->mallocFailed ){ 4833 if( regDest<0 ) regDest = ++pParse->nMem; 4834 sqlite3ExprCode(pParse, pExpr, regDest); 4835 } 4836 pParse->okConstFactor = 1; 4837 sqlite3ExprDelete(pParse->db, pExpr); 4838 sqlite3VdbeJumpHere(v, addr); 4839 }else{ 4840 p = sqlite3ExprListAppend(pParse, p, pExpr); 4841 if( p ){ 4842 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4843 pItem->reusable = regDest<0; 4844 if( regDest<0 ) regDest = ++pParse->nMem; 4845 pItem->u.iConstExprReg = regDest; 4846 } 4847 pParse->pConstExpr = p; 4848 } 4849 return regDest; 4850 } 4851 4852 /* 4853 ** Generate code to evaluate an expression and store the results 4854 ** into a register. Return the register number where the results 4855 ** are stored. 4856 ** 4857 ** If the register is a temporary register that can be deallocated, 4858 ** then write its number into *pReg. If the result register is not 4859 ** a temporary, then set *pReg to zero. 4860 ** 4861 ** If pExpr is a constant, then this routine might generate this 4862 ** code to fill the register in the initialization section of the 4863 ** VDBE program, in order to factor it out of the evaluation loop. 4864 */ 4865 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4866 int r2; 4867 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4868 if( ConstFactorOk(pParse) 4869 && ALWAYS(pExpr!=0) 4870 && pExpr->op!=TK_REGISTER 4871 && sqlite3ExprIsConstantNotJoin(pExpr) 4872 ){ 4873 *pReg = 0; 4874 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4875 }else{ 4876 int r1 = sqlite3GetTempReg(pParse); 4877 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4878 if( r2==r1 ){ 4879 *pReg = r1; 4880 }else{ 4881 sqlite3ReleaseTempReg(pParse, r1); 4882 *pReg = 0; 4883 } 4884 } 4885 return r2; 4886 } 4887 4888 /* 4889 ** Generate code that will evaluate expression pExpr and store the 4890 ** results in register target. The results are guaranteed to appear 4891 ** in register target. 4892 */ 4893 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4894 int inReg; 4895 4896 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4897 assert( target>0 && target<=pParse->nMem ); 4898 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4899 if( pParse->pVdbe==0 ) return; 4900 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4901 if( inReg!=target ){ 4902 u8 op; 4903 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4904 op = OP_Copy; 4905 }else{ 4906 op = OP_SCopy; 4907 } 4908 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4909 } 4910 } 4911 4912 /* 4913 ** Make a transient copy of expression pExpr and then code it using 4914 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4915 ** except that the input expression is guaranteed to be unchanged. 4916 */ 4917 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4918 sqlite3 *db = pParse->db; 4919 pExpr = sqlite3ExprDup(db, pExpr, 0); 4920 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4921 sqlite3ExprDelete(db, pExpr); 4922 } 4923 4924 /* 4925 ** Generate code that will evaluate expression pExpr and store the 4926 ** results in register target. The results are guaranteed to appear 4927 ** in register target. If the expression is constant, then this routine 4928 ** might choose to code the expression at initialization time. 4929 */ 4930 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4931 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4932 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4933 }else{ 4934 sqlite3ExprCodeCopy(pParse, pExpr, target); 4935 } 4936 } 4937 4938 /* 4939 ** Generate code that pushes the value of every element of the given 4940 ** expression list into a sequence of registers beginning at target. 4941 ** 4942 ** Return the number of elements evaluated. The number returned will 4943 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4944 ** is defined. 4945 ** 4946 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4947 ** filled using OP_SCopy. OP_Copy must be used instead. 4948 ** 4949 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4950 ** factored out into initialization code. 4951 ** 4952 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4953 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4954 ** in registers at srcReg, and so the value can be copied from there. 4955 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4956 ** are simply omitted rather than being copied from srcReg. 4957 */ 4958 int sqlite3ExprCodeExprList( 4959 Parse *pParse, /* Parsing context */ 4960 ExprList *pList, /* The expression list to be coded */ 4961 int target, /* Where to write results */ 4962 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4963 u8 flags /* SQLITE_ECEL_* flags */ 4964 ){ 4965 struct ExprList_item *pItem; 4966 int i, j, n; 4967 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4968 Vdbe *v = pParse->pVdbe; 4969 assert( pList!=0 ); 4970 assert( target>0 ); 4971 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4972 n = pList->nExpr; 4973 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4974 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4975 Expr *pExpr = pItem->pExpr; 4976 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4977 if( pItem->bSorterRef ){ 4978 i--; 4979 n--; 4980 }else 4981 #endif 4982 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4983 if( flags & SQLITE_ECEL_OMITREF ){ 4984 i--; 4985 n--; 4986 }else{ 4987 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4988 } 4989 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4990 && sqlite3ExprIsConstantNotJoin(pExpr) 4991 ){ 4992 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4993 }else{ 4994 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4995 if( inReg!=target+i ){ 4996 VdbeOp *pOp; 4997 if( copyOp==OP_Copy 4998 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4999 && pOp->p1+pOp->p3+1==inReg 5000 && pOp->p2+pOp->p3+1==target+i 5001 && pOp->p5==0 /* The do-not-merge flag must be clear */ 5002 ){ 5003 pOp->p3++; 5004 }else{ 5005 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 5006 } 5007 } 5008 } 5009 } 5010 return n; 5011 } 5012 5013 /* 5014 ** Generate code for a BETWEEN operator. 5015 ** 5016 ** x BETWEEN y AND z 5017 ** 5018 ** The above is equivalent to 5019 ** 5020 ** x>=y AND x<=z 5021 ** 5022 ** Code it as such, taking care to do the common subexpression 5023 ** elimination of x. 5024 ** 5025 ** The xJumpIf parameter determines details: 5026 ** 5027 ** NULL: Store the boolean result in reg[dest] 5028 ** sqlite3ExprIfTrue: Jump to dest if true 5029 ** sqlite3ExprIfFalse: Jump to dest if false 5030 ** 5031 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 5032 */ 5033 static void exprCodeBetween( 5034 Parse *pParse, /* Parsing and code generating context */ 5035 Expr *pExpr, /* The BETWEEN expression */ 5036 int dest, /* Jump destination or storage location */ 5037 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5038 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5039 ){ 5040 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5041 Expr compLeft; /* The x>=y term */ 5042 Expr compRight; /* The x<=z term */ 5043 int regFree1 = 0; /* Temporary use register */ 5044 Expr *pDel = 0; 5045 sqlite3 *db = pParse->db; 5046 5047 memset(&compLeft, 0, sizeof(Expr)); 5048 memset(&compRight, 0, sizeof(Expr)); 5049 memset(&exprAnd, 0, sizeof(Expr)); 5050 5051 assert( ExprUseXList(pExpr) ); 5052 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5053 if( db->mallocFailed==0 ){ 5054 exprAnd.op = TK_AND; 5055 exprAnd.pLeft = &compLeft; 5056 exprAnd.pRight = &compRight; 5057 compLeft.op = TK_GE; 5058 compLeft.pLeft = pDel; 5059 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5060 compRight.op = TK_LE; 5061 compRight.pLeft = pDel; 5062 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5063 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5064 if( xJump ){ 5065 xJump(pParse, &exprAnd, dest, jumpIfNull); 5066 }else{ 5067 /* Mark the expression is being from the ON or USING clause of a join 5068 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5069 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5070 ** for clarity, but we are out of bits in the Expr.flags field so we 5071 ** have to reuse the EP_FromJoin bit. Bummer. */ 5072 pDel->flags |= EP_FromJoin; 5073 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5074 } 5075 sqlite3ReleaseTempReg(pParse, regFree1); 5076 } 5077 sqlite3ExprDelete(db, pDel); 5078 5079 /* Ensure adequate test coverage */ 5080 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5081 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5082 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5083 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5084 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5085 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5086 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5087 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5088 testcase( xJump==0 ); 5089 } 5090 5091 /* 5092 ** Generate code for a boolean expression such that a jump is made 5093 ** to the label "dest" if the expression is true but execution 5094 ** continues straight thru if the expression is false. 5095 ** 5096 ** If the expression evaluates to NULL (neither true nor false), then 5097 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5098 ** 5099 ** This code depends on the fact that certain token values (ex: TK_EQ) 5100 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5101 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5102 ** the make process cause these values to align. Assert()s in the code 5103 ** below verify that the numbers are aligned correctly. 5104 */ 5105 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5106 Vdbe *v = pParse->pVdbe; 5107 int op = 0; 5108 int regFree1 = 0; 5109 int regFree2 = 0; 5110 int r1, r2; 5111 5112 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5113 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5114 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5115 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5116 op = pExpr->op; 5117 switch( op ){ 5118 case TK_AND: 5119 case TK_OR: { 5120 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5121 if( pAlt!=pExpr ){ 5122 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5123 }else if( op==TK_AND ){ 5124 int d2 = sqlite3VdbeMakeLabel(pParse); 5125 testcase( jumpIfNull==0 ); 5126 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5127 jumpIfNull^SQLITE_JUMPIFNULL); 5128 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5129 sqlite3VdbeResolveLabel(v, d2); 5130 }else{ 5131 testcase( jumpIfNull==0 ); 5132 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5133 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5134 } 5135 break; 5136 } 5137 case TK_NOT: { 5138 testcase( jumpIfNull==0 ); 5139 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5140 break; 5141 } 5142 case TK_TRUTH: { 5143 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5144 int isTrue; /* IS TRUE or IS NOT TRUE */ 5145 testcase( jumpIfNull==0 ); 5146 isNot = pExpr->op2==TK_ISNOT; 5147 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5148 testcase( isTrue && isNot ); 5149 testcase( !isTrue && isNot ); 5150 if( isTrue ^ isNot ){ 5151 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5152 isNot ? SQLITE_JUMPIFNULL : 0); 5153 }else{ 5154 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5155 isNot ? SQLITE_JUMPIFNULL : 0); 5156 } 5157 break; 5158 } 5159 case TK_IS: 5160 case TK_ISNOT: 5161 testcase( op==TK_IS ); 5162 testcase( op==TK_ISNOT ); 5163 op = (op==TK_IS) ? TK_EQ : TK_NE; 5164 jumpIfNull = SQLITE_NULLEQ; 5165 /* no break */ deliberate_fall_through 5166 case TK_LT: 5167 case TK_LE: 5168 case TK_GT: 5169 case TK_GE: 5170 case TK_NE: 5171 case TK_EQ: { 5172 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5173 testcase( jumpIfNull==0 ); 5174 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5175 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5176 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5177 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5178 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5179 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5180 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5181 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5182 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5183 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5184 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5185 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5186 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5187 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5188 testcase( regFree1==0 ); 5189 testcase( regFree2==0 ); 5190 break; 5191 } 5192 case TK_ISNULL: 5193 case TK_NOTNULL: { 5194 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5195 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5196 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5197 sqlite3VdbeAddOp2(v, op, r1, dest); 5198 VdbeCoverageIf(v, op==TK_ISNULL); 5199 VdbeCoverageIf(v, op==TK_NOTNULL); 5200 testcase( regFree1==0 ); 5201 break; 5202 } 5203 case TK_BETWEEN: { 5204 testcase( jumpIfNull==0 ); 5205 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5206 break; 5207 } 5208 #ifndef SQLITE_OMIT_SUBQUERY 5209 case TK_IN: { 5210 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5211 int destIfNull = jumpIfNull ? dest : destIfFalse; 5212 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5213 sqlite3VdbeGoto(v, dest); 5214 sqlite3VdbeResolveLabel(v, destIfFalse); 5215 break; 5216 } 5217 #endif 5218 default: { 5219 default_expr: 5220 if( ExprAlwaysTrue(pExpr) ){ 5221 sqlite3VdbeGoto(v, dest); 5222 }else if( ExprAlwaysFalse(pExpr) ){ 5223 /* No-op */ 5224 }else{ 5225 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5226 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5227 VdbeCoverage(v); 5228 testcase( regFree1==0 ); 5229 testcase( jumpIfNull==0 ); 5230 } 5231 break; 5232 } 5233 } 5234 sqlite3ReleaseTempReg(pParse, regFree1); 5235 sqlite3ReleaseTempReg(pParse, regFree2); 5236 } 5237 5238 /* 5239 ** Generate code for a boolean expression such that a jump is made 5240 ** to the label "dest" if the expression is false but execution 5241 ** continues straight thru if the expression is true. 5242 ** 5243 ** If the expression evaluates to NULL (neither true nor false) then 5244 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5245 ** is 0. 5246 */ 5247 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5248 Vdbe *v = pParse->pVdbe; 5249 int op = 0; 5250 int regFree1 = 0; 5251 int regFree2 = 0; 5252 int r1, r2; 5253 5254 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5255 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5256 if( pExpr==0 ) return; 5257 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5258 5259 /* The value of pExpr->op and op are related as follows: 5260 ** 5261 ** pExpr->op op 5262 ** --------- ---------- 5263 ** TK_ISNULL OP_NotNull 5264 ** TK_NOTNULL OP_IsNull 5265 ** TK_NE OP_Eq 5266 ** TK_EQ OP_Ne 5267 ** TK_GT OP_Le 5268 ** TK_LE OP_Gt 5269 ** TK_GE OP_Lt 5270 ** TK_LT OP_Ge 5271 ** 5272 ** For other values of pExpr->op, op is undefined and unused. 5273 ** The value of TK_ and OP_ constants are arranged such that we 5274 ** can compute the mapping above using the following expression. 5275 ** Assert()s verify that the computation is correct. 5276 */ 5277 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5278 5279 /* Verify correct alignment of TK_ and OP_ constants 5280 */ 5281 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5282 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5283 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5284 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5285 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5286 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5287 assert( pExpr->op!=TK_GT || op==OP_Le ); 5288 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5289 5290 switch( pExpr->op ){ 5291 case TK_AND: 5292 case TK_OR: { 5293 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5294 if( pAlt!=pExpr ){ 5295 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5296 }else if( pExpr->op==TK_AND ){ 5297 testcase( jumpIfNull==0 ); 5298 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5299 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5300 }else{ 5301 int d2 = sqlite3VdbeMakeLabel(pParse); 5302 testcase( jumpIfNull==0 ); 5303 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5304 jumpIfNull^SQLITE_JUMPIFNULL); 5305 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5306 sqlite3VdbeResolveLabel(v, d2); 5307 } 5308 break; 5309 } 5310 case TK_NOT: { 5311 testcase( jumpIfNull==0 ); 5312 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5313 break; 5314 } 5315 case TK_TRUTH: { 5316 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5317 int isTrue; /* IS TRUE or IS NOT TRUE */ 5318 testcase( jumpIfNull==0 ); 5319 isNot = pExpr->op2==TK_ISNOT; 5320 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5321 testcase( isTrue && isNot ); 5322 testcase( !isTrue && isNot ); 5323 if( isTrue ^ isNot ){ 5324 /* IS TRUE and IS NOT FALSE */ 5325 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5326 isNot ? 0 : SQLITE_JUMPIFNULL); 5327 5328 }else{ 5329 /* IS FALSE and IS NOT TRUE */ 5330 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5331 isNot ? 0 : SQLITE_JUMPIFNULL); 5332 } 5333 break; 5334 } 5335 case TK_IS: 5336 case TK_ISNOT: 5337 testcase( pExpr->op==TK_IS ); 5338 testcase( pExpr->op==TK_ISNOT ); 5339 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5340 jumpIfNull = SQLITE_NULLEQ; 5341 /* no break */ deliberate_fall_through 5342 case TK_LT: 5343 case TK_LE: 5344 case TK_GT: 5345 case TK_GE: 5346 case TK_NE: 5347 case TK_EQ: { 5348 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5349 testcase( jumpIfNull==0 ); 5350 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5351 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5352 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5353 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5354 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5355 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5356 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5357 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5358 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5359 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5360 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5361 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5362 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5363 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5364 testcase( regFree1==0 ); 5365 testcase( regFree2==0 ); 5366 break; 5367 } 5368 case TK_ISNULL: 5369 case TK_NOTNULL: { 5370 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5371 sqlite3VdbeAddOp2(v, op, r1, dest); 5372 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5373 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5374 testcase( regFree1==0 ); 5375 break; 5376 } 5377 case TK_BETWEEN: { 5378 testcase( jumpIfNull==0 ); 5379 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5380 break; 5381 } 5382 #ifndef SQLITE_OMIT_SUBQUERY 5383 case TK_IN: { 5384 if( jumpIfNull ){ 5385 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5386 }else{ 5387 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5388 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5389 sqlite3VdbeResolveLabel(v, destIfNull); 5390 } 5391 break; 5392 } 5393 #endif 5394 default: { 5395 default_expr: 5396 if( ExprAlwaysFalse(pExpr) ){ 5397 sqlite3VdbeGoto(v, dest); 5398 }else if( ExprAlwaysTrue(pExpr) ){ 5399 /* no-op */ 5400 }else{ 5401 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5402 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5403 VdbeCoverage(v); 5404 testcase( regFree1==0 ); 5405 testcase( jumpIfNull==0 ); 5406 } 5407 break; 5408 } 5409 } 5410 sqlite3ReleaseTempReg(pParse, regFree1); 5411 sqlite3ReleaseTempReg(pParse, regFree2); 5412 } 5413 5414 /* 5415 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5416 ** code generation, and that copy is deleted after code generation. This 5417 ** ensures that the original pExpr is unchanged. 5418 */ 5419 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5420 sqlite3 *db = pParse->db; 5421 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5422 if( db->mallocFailed==0 ){ 5423 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5424 } 5425 sqlite3ExprDelete(db, pCopy); 5426 } 5427 5428 /* 5429 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5430 ** type of expression. 5431 ** 5432 ** If pExpr is a simple SQL value - an integer, real, string, blob 5433 ** or NULL value - then the VDBE currently being prepared is configured 5434 ** to re-prepare each time a new value is bound to variable pVar. 5435 ** 5436 ** Additionally, if pExpr is a simple SQL value and the value is the 5437 ** same as that currently bound to variable pVar, non-zero is returned. 5438 ** Otherwise, if the values are not the same or if pExpr is not a simple 5439 ** SQL value, zero is returned. 5440 */ 5441 static int exprCompareVariable( 5442 const Parse *pParse, 5443 const Expr *pVar, 5444 const Expr *pExpr 5445 ){ 5446 int res = 0; 5447 int iVar; 5448 sqlite3_value *pL, *pR = 0; 5449 5450 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5451 if( pR ){ 5452 iVar = pVar->iColumn; 5453 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5454 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5455 if( pL ){ 5456 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5457 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5458 } 5459 res = 0==sqlite3MemCompare(pL, pR, 0); 5460 } 5461 sqlite3ValueFree(pR); 5462 sqlite3ValueFree(pL); 5463 } 5464 5465 return res; 5466 } 5467 5468 /* 5469 ** Do a deep comparison of two expression trees. Return 0 if the two 5470 ** expressions are completely identical. Return 1 if they differ only 5471 ** by a COLLATE operator at the top level. Return 2 if there are differences 5472 ** other than the top-level COLLATE operator. 5473 ** 5474 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5475 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5476 ** 5477 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5478 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5479 ** 5480 ** Sometimes this routine will return 2 even if the two expressions 5481 ** really are equivalent. If we cannot prove that the expressions are 5482 ** identical, we return 2 just to be safe. So if this routine 5483 ** returns 2, then you do not really know for certain if the two 5484 ** expressions are the same. But if you get a 0 or 1 return, then you 5485 ** can be sure the expressions are the same. In the places where 5486 ** this routine is used, it does not hurt to get an extra 2 - that 5487 ** just might result in some slightly slower code. But returning 5488 ** an incorrect 0 or 1 could lead to a malfunction. 5489 ** 5490 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5491 ** pParse->pReprepare can be matched against literals in pB. The 5492 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5493 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5494 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5495 ** pB causes a return value of 2. 5496 */ 5497 int sqlite3ExprCompare( 5498 const Parse *pParse, 5499 const Expr *pA, 5500 const Expr *pB, 5501 int iTab 5502 ){ 5503 u32 combinedFlags; 5504 if( pA==0 || pB==0 ){ 5505 return pB==pA ? 0 : 2; 5506 } 5507 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5508 return 0; 5509 } 5510 combinedFlags = pA->flags | pB->flags; 5511 if( combinedFlags & EP_IntValue ){ 5512 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5513 return 0; 5514 } 5515 return 2; 5516 } 5517 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5518 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5519 return 1; 5520 } 5521 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5522 return 1; 5523 } 5524 return 2; 5525 } 5526 assert( !ExprHasProperty(pA, EP_IntValue) ); 5527 assert( !ExprHasProperty(pB, EP_IntValue) ); 5528 if( pA->u.zToken ){ 5529 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5530 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5531 #ifndef SQLITE_OMIT_WINDOWFUNC 5532 assert( pA->op==pB->op ); 5533 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5534 return 2; 5535 } 5536 if( ExprHasProperty(pA,EP_WinFunc) ){ 5537 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5538 return 2; 5539 } 5540 } 5541 #endif 5542 }else if( pA->op==TK_NULL ){ 5543 return 0; 5544 }else if( pA->op==TK_COLLATE ){ 5545 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5546 }else 5547 if( pB->u.zToken!=0 5548 && pA->op!=TK_COLUMN 5549 && pA->op!=TK_AGG_COLUMN 5550 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5551 ){ 5552 return 2; 5553 } 5554 } 5555 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5556 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5557 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5558 if( combinedFlags & EP_xIsSelect ) return 2; 5559 if( (combinedFlags & EP_FixedCol)==0 5560 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5561 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5562 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5563 if( pA->op!=TK_STRING 5564 && pA->op!=TK_TRUEFALSE 5565 && ALWAYS((combinedFlags & EP_Reduced)==0) 5566 ){ 5567 if( pA->iColumn!=pB->iColumn ) return 2; 5568 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5569 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5570 return 2; 5571 } 5572 } 5573 } 5574 return 0; 5575 } 5576 5577 /* 5578 ** Compare two ExprList objects. Return 0 if they are identical, 1 5579 ** if they are certainly different, or 2 if it is not possible to 5580 ** determine if they are identical or not. 5581 ** 5582 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5583 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5584 ** 5585 ** This routine might return non-zero for equivalent ExprLists. The 5586 ** only consequence will be disabled optimizations. But this routine 5587 ** must never return 0 if the two ExprList objects are different, or 5588 ** a malfunction will result. 5589 ** 5590 ** Two NULL pointers are considered to be the same. But a NULL pointer 5591 ** always differs from a non-NULL pointer. 5592 */ 5593 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5594 int i; 5595 if( pA==0 && pB==0 ) return 0; 5596 if( pA==0 || pB==0 ) return 1; 5597 if( pA->nExpr!=pB->nExpr ) return 1; 5598 for(i=0; i<pA->nExpr; i++){ 5599 int res; 5600 Expr *pExprA = pA->a[i].pExpr; 5601 Expr *pExprB = pB->a[i].pExpr; 5602 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5603 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5604 } 5605 return 0; 5606 } 5607 5608 /* 5609 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5610 ** are ignored. 5611 */ 5612 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5613 return sqlite3ExprCompare(0, 5614 sqlite3ExprSkipCollateAndLikely(pA), 5615 sqlite3ExprSkipCollateAndLikely(pB), 5616 iTab); 5617 } 5618 5619 /* 5620 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5621 ** 5622 ** Or if seenNot is true, return non-zero if Expr p can only be 5623 ** non-NULL if pNN is not NULL 5624 */ 5625 static int exprImpliesNotNull( 5626 const Parse *pParse,/* Parsing context */ 5627 const Expr *p, /* The expression to be checked */ 5628 const Expr *pNN, /* The expression that is NOT NULL */ 5629 int iTab, /* Table being evaluated */ 5630 int seenNot /* Return true only if p can be any non-NULL value */ 5631 ){ 5632 assert( p ); 5633 assert( pNN ); 5634 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5635 return pNN->op!=TK_NULL; 5636 } 5637 switch( p->op ){ 5638 case TK_IN: { 5639 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5640 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5641 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5642 } 5643 case TK_BETWEEN: { 5644 ExprList *pList; 5645 assert( ExprUseXList(p) ); 5646 pList = p->x.pList; 5647 assert( pList!=0 ); 5648 assert( pList->nExpr==2 ); 5649 if( seenNot ) return 0; 5650 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5651 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5652 ){ 5653 return 1; 5654 } 5655 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5656 } 5657 case TK_EQ: 5658 case TK_NE: 5659 case TK_LT: 5660 case TK_LE: 5661 case TK_GT: 5662 case TK_GE: 5663 case TK_PLUS: 5664 case TK_MINUS: 5665 case TK_BITOR: 5666 case TK_LSHIFT: 5667 case TK_RSHIFT: 5668 case TK_CONCAT: 5669 seenNot = 1; 5670 /* no break */ deliberate_fall_through 5671 case TK_STAR: 5672 case TK_REM: 5673 case TK_BITAND: 5674 case TK_SLASH: { 5675 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5676 /* no break */ deliberate_fall_through 5677 } 5678 case TK_SPAN: 5679 case TK_COLLATE: 5680 case TK_UPLUS: 5681 case TK_UMINUS: { 5682 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5683 } 5684 case TK_TRUTH: { 5685 if( seenNot ) return 0; 5686 if( p->op2!=TK_IS ) return 0; 5687 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5688 } 5689 case TK_BITNOT: 5690 case TK_NOT: { 5691 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5692 } 5693 } 5694 return 0; 5695 } 5696 5697 /* 5698 ** Return true if we can prove the pE2 will always be true if pE1 is 5699 ** true. Return false if we cannot complete the proof or if pE2 might 5700 ** be false. Examples: 5701 ** 5702 ** pE1: x==5 pE2: x==5 Result: true 5703 ** pE1: x>0 pE2: x==5 Result: false 5704 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5705 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5706 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5707 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5708 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5709 ** 5710 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5711 ** Expr.iTable<0 then assume a table number given by iTab. 5712 ** 5713 ** If pParse is not NULL, then the values of bound variables in pE1 are 5714 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5715 ** modified to record which bound variables are referenced. If pParse 5716 ** is NULL, then false will be returned if pE1 contains any bound variables. 5717 ** 5718 ** When in doubt, return false. Returning true might give a performance 5719 ** improvement. Returning false might cause a performance reduction, but 5720 ** it will always give the correct answer and is hence always safe. 5721 */ 5722 int sqlite3ExprImpliesExpr( 5723 const Parse *pParse, 5724 const Expr *pE1, 5725 const Expr *pE2, 5726 int iTab 5727 ){ 5728 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5729 return 1; 5730 } 5731 if( pE2->op==TK_OR 5732 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5733 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5734 ){ 5735 return 1; 5736 } 5737 if( pE2->op==TK_NOTNULL 5738 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5739 ){ 5740 return 1; 5741 } 5742 return 0; 5743 } 5744 5745 /* 5746 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5747 ** If the expression node requires that the table at pWalker->iCur 5748 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5749 ** 5750 ** This routine controls an optimization. False positives (setting 5751 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5752 ** (never setting pWalker->eCode) is a harmless missed optimization. 5753 */ 5754 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5755 testcase( pExpr->op==TK_AGG_COLUMN ); 5756 testcase( pExpr->op==TK_AGG_FUNCTION ); 5757 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5758 switch( pExpr->op ){ 5759 case TK_ISNOT: 5760 case TK_ISNULL: 5761 case TK_NOTNULL: 5762 case TK_IS: 5763 case TK_OR: 5764 case TK_VECTOR: 5765 case TK_CASE: 5766 case TK_IN: 5767 case TK_FUNCTION: 5768 case TK_TRUTH: 5769 testcase( pExpr->op==TK_ISNOT ); 5770 testcase( pExpr->op==TK_ISNULL ); 5771 testcase( pExpr->op==TK_NOTNULL ); 5772 testcase( pExpr->op==TK_IS ); 5773 testcase( pExpr->op==TK_OR ); 5774 testcase( pExpr->op==TK_VECTOR ); 5775 testcase( pExpr->op==TK_CASE ); 5776 testcase( pExpr->op==TK_IN ); 5777 testcase( pExpr->op==TK_FUNCTION ); 5778 testcase( pExpr->op==TK_TRUTH ); 5779 return WRC_Prune; 5780 case TK_COLUMN: 5781 if( pWalker->u.iCur==pExpr->iTable ){ 5782 pWalker->eCode = 1; 5783 return WRC_Abort; 5784 } 5785 return WRC_Prune; 5786 5787 case TK_AND: 5788 if( pWalker->eCode==0 ){ 5789 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5790 if( pWalker->eCode ){ 5791 pWalker->eCode = 0; 5792 sqlite3WalkExpr(pWalker, pExpr->pRight); 5793 } 5794 } 5795 return WRC_Prune; 5796 5797 case TK_BETWEEN: 5798 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5799 assert( pWalker->eCode ); 5800 return WRC_Abort; 5801 } 5802 return WRC_Prune; 5803 5804 /* Virtual tables are allowed to use constraints like x=NULL. So 5805 ** a term of the form x=y does not prove that y is not null if x 5806 ** is the column of a virtual table */ 5807 case TK_EQ: 5808 case TK_NE: 5809 case TK_LT: 5810 case TK_LE: 5811 case TK_GT: 5812 case TK_GE: { 5813 Expr *pLeft = pExpr->pLeft; 5814 Expr *pRight = pExpr->pRight; 5815 testcase( pExpr->op==TK_EQ ); 5816 testcase( pExpr->op==TK_NE ); 5817 testcase( pExpr->op==TK_LT ); 5818 testcase( pExpr->op==TK_LE ); 5819 testcase( pExpr->op==TK_GT ); 5820 testcase( pExpr->op==TK_GE ); 5821 /* The y.pTab=0 assignment in wherecode.c always happens after the 5822 ** impliesNotNullRow() test */ 5823 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5824 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5825 if( (pLeft->op==TK_COLUMN 5826 && pLeft->y.pTab!=0 5827 && IsVirtual(pLeft->y.pTab)) 5828 || (pRight->op==TK_COLUMN 5829 && pRight->y.pTab!=0 5830 && IsVirtual(pRight->y.pTab)) 5831 ){ 5832 return WRC_Prune; 5833 } 5834 /* no break */ deliberate_fall_through 5835 } 5836 default: 5837 return WRC_Continue; 5838 } 5839 } 5840 5841 /* 5842 ** Return true (non-zero) if expression p can only be true if at least 5843 ** one column of table iTab is non-null. In other words, return true 5844 ** if expression p will always be NULL or false if every column of iTab 5845 ** is NULL. 5846 ** 5847 ** False negatives are acceptable. In other words, it is ok to return 5848 ** zero even if expression p will never be true of every column of iTab 5849 ** is NULL. A false negative is merely a missed optimization opportunity. 5850 ** 5851 ** False positives are not allowed, however. A false positive may result 5852 ** in an incorrect answer. 5853 ** 5854 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5855 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5856 ** 5857 ** This routine is used to check if a LEFT JOIN can be converted into 5858 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5859 ** clause requires that some column of the right table of the LEFT JOIN 5860 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5861 ** ordinary join. 5862 */ 5863 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5864 Walker w; 5865 p = sqlite3ExprSkipCollateAndLikely(p); 5866 if( p==0 ) return 0; 5867 if( p->op==TK_NOTNULL ){ 5868 p = p->pLeft; 5869 }else{ 5870 while( p->op==TK_AND ){ 5871 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5872 p = p->pRight; 5873 } 5874 } 5875 w.xExprCallback = impliesNotNullRow; 5876 w.xSelectCallback = 0; 5877 w.xSelectCallback2 = 0; 5878 w.eCode = 0; 5879 w.u.iCur = iTab; 5880 sqlite3WalkExpr(&w, p); 5881 return w.eCode; 5882 } 5883 5884 /* 5885 ** An instance of the following structure is used by the tree walker 5886 ** to determine if an expression can be evaluated by reference to the 5887 ** index only, without having to do a search for the corresponding 5888 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5889 ** is the cursor for the table. 5890 */ 5891 struct IdxCover { 5892 Index *pIdx; /* The index to be tested for coverage */ 5893 int iCur; /* Cursor number for the table corresponding to the index */ 5894 }; 5895 5896 /* 5897 ** Check to see if there are references to columns in table 5898 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5899 ** pWalker->u.pIdxCover->pIdx. 5900 */ 5901 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5902 if( pExpr->op==TK_COLUMN 5903 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5904 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5905 ){ 5906 pWalker->eCode = 1; 5907 return WRC_Abort; 5908 } 5909 return WRC_Continue; 5910 } 5911 5912 /* 5913 ** Determine if an index pIdx on table with cursor iCur contains will 5914 ** the expression pExpr. Return true if the index does cover the 5915 ** expression and false if the pExpr expression references table columns 5916 ** that are not found in the index pIdx. 5917 ** 5918 ** An index covering an expression means that the expression can be 5919 ** evaluated using only the index and without having to lookup the 5920 ** corresponding table entry. 5921 */ 5922 int sqlite3ExprCoveredByIndex( 5923 Expr *pExpr, /* The index to be tested */ 5924 int iCur, /* The cursor number for the corresponding table */ 5925 Index *pIdx /* The index that might be used for coverage */ 5926 ){ 5927 Walker w; 5928 struct IdxCover xcov; 5929 memset(&w, 0, sizeof(w)); 5930 xcov.iCur = iCur; 5931 xcov.pIdx = pIdx; 5932 w.xExprCallback = exprIdxCover; 5933 w.u.pIdxCover = &xcov; 5934 sqlite3WalkExpr(&w, pExpr); 5935 return !w.eCode; 5936 } 5937 5938 5939 /* Structure used to pass information throught the Walker in order to 5940 ** implement sqlite3ReferencesSrcList(). 5941 */ 5942 struct RefSrcList { 5943 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5944 SrcList *pRef; /* Looking for references to these tables */ 5945 i64 nExclude; /* Number of tables to exclude from the search */ 5946 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5947 }; 5948 5949 /* 5950 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5951 ** 5952 ** When entering a new subquery on the pExpr argument, add all FROM clause 5953 ** entries for that subquery to the exclude list. 5954 ** 5955 ** When leaving the subquery, remove those entries from the exclude list. 5956 */ 5957 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5958 struct RefSrcList *p = pWalker->u.pRefSrcList; 5959 SrcList *pSrc = pSelect->pSrc; 5960 i64 i, j; 5961 int *piNew; 5962 if( pSrc->nSrc==0 ) return WRC_Continue; 5963 j = p->nExclude; 5964 p->nExclude += pSrc->nSrc; 5965 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5966 if( piNew==0 ){ 5967 p->nExclude = 0; 5968 return WRC_Abort; 5969 }else{ 5970 p->aiExclude = piNew; 5971 } 5972 for(i=0; i<pSrc->nSrc; i++, j++){ 5973 p->aiExclude[j] = pSrc->a[i].iCursor; 5974 } 5975 return WRC_Continue; 5976 } 5977 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5978 struct RefSrcList *p = pWalker->u.pRefSrcList; 5979 SrcList *pSrc = pSelect->pSrc; 5980 if( p->nExclude ){ 5981 assert( p->nExclude>=pSrc->nSrc ); 5982 p->nExclude -= pSrc->nSrc; 5983 } 5984 } 5985 5986 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 5987 ** 5988 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 5989 ** of the tables shown in RefSrcList.pRef. 5990 ** 5991 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 5992 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 5993 */ 5994 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 5995 if( pExpr->op==TK_COLUMN 5996 || pExpr->op==TK_AGG_COLUMN 5997 ){ 5998 int i; 5999 struct RefSrcList *p = pWalker->u.pRefSrcList; 6000 SrcList *pSrc = p->pRef; 6001 int nSrc = pSrc ? pSrc->nSrc : 0; 6002 for(i=0; i<nSrc; i++){ 6003 if( pExpr->iTable==pSrc->a[i].iCursor ){ 6004 pWalker->eCode |= 1; 6005 return WRC_Continue; 6006 } 6007 } 6008 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 6009 if( i>=p->nExclude ){ 6010 pWalker->eCode |= 2; 6011 } 6012 } 6013 return WRC_Continue; 6014 } 6015 6016 /* 6017 ** Check to see if pExpr references any tables in pSrcList. 6018 ** Possible return values: 6019 ** 6020 ** 1 pExpr does references a table in pSrcList. 6021 ** 6022 ** 0 pExpr references some table that is not defined in either 6023 ** pSrcList or in subqueries of pExpr itself. 6024 ** 6025 ** -1 pExpr only references no tables at all, or it only 6026 ** references tables defined in subqueries of pExpr itself. 6027 ** 6028 ** As currently used, pExpr is always an aggregate function call. That 6029 ** fact is exploited for efficiency. 6030 */ 6031 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 6032 Walker w; 6033 struct RefSrcList x; 6034 memset(&w, 0, sizeof(w)); 6035 memset(&x, 0, sizeof(x)); 6036 w.xExprCallback = exprRefToSrcList; 6037 w.xSelectCallback = selectRefEnter; 6038 w.xSelectCallback2 = selectRefLeave; 6039 w.u.pRefSrcList = &x; 6040 x.db = pParse->db; 6041 x.pRef = pSrcList; 6042 assert( pExpr->op==TK_AGG_FUNCTION ); 6043 assert( ExprUseXList(pExpr) ); 6044 sqlite3WalkExprList(&w, pExpr->x.pList); 6045 #ifndef SQLITE_OMIT_WINDOWFUNC 6046 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6047 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6048 } 6049 #endif 6050 sqlite3DbFree(pParse->db, x.aiExclude); 6051 if( w.eCode & 0x01 ){ 6052 return 1; 6053 }else if( w.eCode ){ 6054 return 0; 6055 }else{ 6056 return -1; 6057 } 6058 } 6059 6060 /* 6061 ** This is a Walker expression node callback. 6062 ** 6063 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6064 ** object that is referenced does not refer directly to the Expr. If 6065 ** it does, make a copy. This is done because the pExpr argument is 6066 ** subject to change. 6067 ** 6068 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6069 ** This will cause the expression to be deleted automatically when the 6070 ** Parse object is destroyed, but the zero register number means that it 6071 ** will not generate any code in the preamble. 6072 */ 6073 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6074 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6075 && pExpr->pAggInfo!=0 6076 ){ 6077 AggInfo *pAggInfo = pExpr->pAggInfo; 6078 int iAgg = pExpr->iAgg; 6079 Parse *pParse = pWalker->pParse; 6080 sqlite3 *db = pParse->db; 6081 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6082 if( pExpr->op==TK_AGG_COLUMN ){ 6083 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6084 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6085 pExpr = sqlite3ExprDup(db, pExpr, 0); 6086 if( pExpr ){ 6087 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6088 sqlite3ExprDeferredDelete(pParse, pExpr); 6089 } 6090 } 6091 }else{ 6092 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6093 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6094 pExpr = sqlite3ExprDup(db, pExpr, 0); 6095 if( pExpr ){ 6096 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6097 sqlite3ExprDeferredDelete(pParse, pExpr); 6098 } 6099 } 6100 } 6101 } 6102 return WRC_Continue; 6103 } 6104 6105 /* 6106 ** Initialize a Walker object so that will persist AggInfo entries referenced 6107 ** by the tree that is walked. 6108 */ 6109 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6110 memset(pWalker, 0, sizeof(*pWalker)); 6111 pWalker->pParse = pParse; 6112 pWalker->xExprCallback = agginfoPersistExprCb; 6113 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6114 } 6115 6116 /* 6117 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6118 ** the new element. Return a negative number if malloc fails. 6119 */ 6120 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6121 int i; 6122 pInfo->aCol = sqlite3ArrayAllocate( 6123 db, 6124 pInfo->aCol, 6125 sizeof(pInfo->aCol[0]), 6126 &pInfo->nColumn, 6127 &i 6128 ); 6129 return i; 6130 } 6131 6132 /* 6133 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6134 ** the new element. Return a negative number if malloc fails. 6135 */ 6136 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6137 int i; 6138 pInfo->aFunc = sqlite3ArrayAllocate( 6139 db, 6140 pInfo->aFunc, 6141 sizeof(pInfo->aFunc[0]), 6142 &pInfo->nFunc, 6143 &i 6144 ); 6145 return i; 6146 } 6147 6148 /* 6149 ** This is the xExprCallback for a tree walker. It is used to 6150 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6151 ** for additional information. 6152 */ 6153 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6154 int i; 6155 NameContext *pNC = pWalker->u.pNC; 6156 Parse *pParse = pNC->pParse; 6157 SrcList *pSrcList = pNC->pSrcList; 6158 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6159 6160 assert( pNC->ncFlags & NC_UAggInfo ); 6161 switch( pExpr->op ){ 6162 case TK_AGG_COLUMN: 6163 case TK_COLUMN: { 6164 testcase( pExpr->op==TK_AGG_COLUMN ); 6165 testcase( pExpr->op==TK_COLUMN ); 6166 /* Check to see if the column is in one of the tables in the FROM 6167 ** clause of the aggregate query */ 6168 if( ALWAYS(pSrcList!=0) ){ 6169 SrcItem *pItem = pSrcList->a; 6170 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6171 struct AggInfo_col *pCol; 6172 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6173 if( pExpr->iTable==pItem->iCursor ){ 6174 /* If we reach this point, it means that pExpr refers to a table 6175 ** that is in the FROM clause of the aggregate query. 6176 ** 6177 ** Make an entry for the column in pAggInfo->aCol[] if there 6178 ** is not an entry there already. 6179 */ 6180 int k; 6181 pCol = pAggInfo->aCol; 6182 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6183 if( pCol->iTable==pExpr->iTable && 6184 pCol->iColumn==pExpr->iColumn ){ 6185 break; 6186 } 6187 } 6188 if( (k>=pAggInfo->nColumn) 6189 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6190 ){ 6191 pCol = &pAggInfo->aCol[k]; 6192 assert( ExprUseYTab(pExpr) ); 6193 pCol->pTab = pExpr->y.pTab; 6194 pCol->iTable = pExpr->iTable; 6195 pCol->iColumn = pExpr->iColumn; 6196 pCol->iMem = ++pParse->nMem; 6197 pCol->iSorterColumn = -1; 6198 pCol->pCExpr = pExpr; 6199 if( pAggInfo->pGroupBy ){ 6200 int j, n; 6201 ExprList *pGB = pAggInfo->pGroupBy; 6202 struct ExprList_item *pTerm = pGB->a; 6203 n = pGB->nExpr; 6204 for(j=0; j<n; j++, pTerm++){ 6205 Expr *pE = pTerm->pExpr; 6206 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6207 pE->iColumn==pExpr->iColumn ){ 6208 pCol->iSorterColumn = j; 6209 break; 6210 } 6211 } 6212 } 6213 if( pCol->iSorterColumn<0 ){ 6214 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6215 } 6216 } 6217 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6218 ** because it was there before or because we just created it). 6219 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6220 ** pAggInfo->aCol[] entry. 6221 */ 6222 ExprSetVVAProperty(pExpr, EP_NoReduce); 6223 pExpr->pAggInfo = pAggInfo; 6224 pExpr->op = TK_AGG_COLUMN; 6225 pExpr->iAgg = (i16)k; 6226 break; 6227 } /* endif pExpr->iTable==pItem->iCursor */ 6228 } /* end loop over pSrcList */ 6229 } 6230 return WRC_Prune; 6231 } 6232 case TK_AGG_FUNCTION: { 6233 if( (pNC->ncFlags & NC_InAggFunc)==0 6234 && pWalker->walkerDepth==pExpr->op2 6235 ){ 6236 /* Check to see if pExpr is a duplicate of another aggregate 6237 ** function that is already in the pAggInfo structure 6238 */ 6239 struct AggInfo_func *pItem = pAggInfo->aFunc; 6240 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6241 if( pItem->pFExpr==pExpr ) break; 6242 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6243 break; 6244 } 6245 } 6246 if( i>=pAggInfo->nFunc ){ 6247 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6248 */ 6249 u8 enc = ENC(pParse->db); 6250 i = addAggInfoFunc(pParse->db, pAggInfo); 6251 if( i>=0 ){ 6252 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6253 pItem = &pAggInfo->aFunc[i]; 6254 pItem->pFExpr = pExpr; 6255 pItem->iMem = ++pParse->nMem; 6256 assert( ExprUseUToken(pExpr) ); 6257 pItem->pFunc = sqlite3FindFunction(pParse->db, 6258 pExpr->u.zToken, 6259 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6260 if( pExpr->flags & EP_Distinct ){ 6261 pItem->iDistinct = pParse->nTab++; 6262 }else{ 6263 pItem->iDistinct = -1; 6264 } 6265 } 6266 } 6267 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6268 */ 6269 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6270 ExprSetVVAProperty(pExpr, EP_NoReduce); 6271 pExpr->iAgg = (i16)i; 6272 pExpr->pAggInfo = pAggInfo; 6273 return WRC_Prune; 6274 }else{ 6275 return WRC_Continue; 6276 } 6277 } 6278 } 6279 return WRC_Continue; 6280 } 6281 6282 /* 6283 ** Analyze the pExpr expression looking for aggregate functions and 6284 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6285 ** points to. Additional entries are made on the AggInfo object as 6286 ** necessary. 6287 ** 6288 ** This routine should only be called after the expression has been 6289 ** analyzed by sqlite3ResolveExprNames(). 6290 */ 6291 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6292 Walker w; 6293 w.xExprCallback = analyzeAggregate; 6294 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6295 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6296 w.walkerDepth = 0; 6297 w.u.pNC = pNC; 6298 w.pParse = 0; 6299 assert( pNC->pSrcList!=0 ); 6300 sqlite3WalkExpr(&w, pExpr); 6301 } 6302 6303 /* 6304 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6305 ** expression list. Return the number of errors. 6306 ** 6307 ** If an error is found, the analysis is cut short. 6308 */ 6309 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6310 struct ExprList_item *pItem; 6311 int i; 6312 if( pList ){ 6313 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6314 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6315 } 6316 } 6317 } 6318 6319 /* 6320 ** Allocate a single new register for use to hold some intermediate result. 6321 */ 6322 int sqlite3GetTempReg(Parse *pParse){ 6323 if( pParse->nTempReg==0 ){ 6324 return ++pParse->nMem; 6325 } 6326 return pParse->aTempReg[--pParse->nTempReg]; 6327 } 6328 6329 /* 6330 ** Deallocate a register, making available for reuse for some other 6331 ** purpose. 6332 */ 6333 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6334 if( iReg ){ 6335 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6336 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6337 pParse->aTempReg[pParse->nTempReg++] = iReg; 6338 } 6339 } 6340 } 6341 6342 /* 6343 ** Allocate or deallocate a block of nReg consecutive registers. 6344 */ 6345 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6346 int i, n; 6347 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6348 i = pParse->iRangeReg; 6349 n = pParse->nRangeReg; 6350 if( nReg<=n ){ 6351 pParse->iRangeReg += nReg; 6352 pParse->nRangeReg -= nReg; 6353 }else{ 6354 i = pParse->nMem+1; 6355 pParse->nMem += nReg; 6356 } 6357 return i; 6358 } 6359 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6360 if( nReg==1 ){ 6361 sqlite3ReleaseTempReg(pParse, iReg); 6362 return; 6363 } 6364 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6365 if( nReg>pParse->nRangeReg ){ 6366 pParse->nRangeReg = nReg; 6367 pParse->iRangeReg = iReg; 6368 } 6369 } 6370 6371 /* 6372 ** Mark all temporary registers as being unavailable for reuse. 6373 ** 6374 ** Always invoke this procedure after coding a subroutine or co-routine 6375 ** that might be invoked from other parts of the code, to ensure that 6376 ** the sub/co-routine does not use registers in common with the code that 6377 ** invokes the sub/co-routine. 6378 */ 6379 void sqlite3ClearTempRegCache(Parse *pParse){ 6380 pParse->nTempReg = 0; 6381 pParse->nRangeReg = 0; 6382 } 6383 6384 /* 6385 ** Validate that no temporary register falls within the range of 6386 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6387 ** statements. 6388 */ 6389 #ifdef SQLITE_DEBUG 6390 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6391 int i; 6392 if( pParse->nRangeReg>0 6393 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6394 && pParse->iRangeReg <= iLast 6395 ){ 6396 return 0; 6397 } 6398 for(i=0; i<pParse->nTempReg; i++){ 6399 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6400 return 0; 6401 } 6402 } 6403 return 1; 6404 } 6405 #endif /* SQLITE_DEBUG */ 6406