1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; 774 if( ExprUseXSelect(p) ){ 775 heightOfSelect(p->x.pSelect, &nHeight); 776 }else if( p->x.pList ){ 777 heightOfExprList(p->x.pList, &nHeight); 778 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 779 } 780 p->nHeight = nHeight + 1; 781 } 782 783 /* 784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 785 ** the height is greater than the maximum allowed expression depth, 786 ** leave an error in pParse. 787 ** 788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 789 ** Expr.flags. 790 */ 791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 792 if( pParse->nErr ) return; 793 exprSetHeight(p); 794 sqlite3ExprCheckHeight(pParse, p->nHeight); 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(const Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 807 /* 808 ** Propagate all EP_Propagate flags from the Expr.x.pList into 809 ** Expr.flags. 810 */ 811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 812 if( pParse->nErr ) return; 813 if( p && ExprUseXList(p) && p->x.pList ){ 814 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 815 } 816 } 817 #define exprSetHeight(y) 818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 819 820 /* 821 ** This routine is the core allocator for Expr nodes. 822 ** 823 ** Construct a new expression node and return a pointer to it. Memory 824 ** for this node and for the pToken argument is a single allocation 825 ** obtained from sqlite3DbMalloc(). The calling function 826 ** is responsible for making sure the node eventually gets freed. 827 ** 828 ** If dequote is true, then the token (if it exists) is dequoted. 829 ** If dequote is false, no dequoting is performed. The deQuote 830 ** parameter is ignored if pToken is NULL or if the token does not 831 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 832 ** then the EP_DblQuoted flag is set on the expression node. 833 ** 834 ** Special case: If op==TK_INTEGER and pToken points to a string that 835 ** can be translated into a 32-bit integer, then the token is not 836 ** stored in u.zToken. Instead, the integer values is written 837 ** into u.iValue and the EP_IntValue flag is set. No extra storage 838 ** is allocated to hold the integer text and the dequote flag is ignored. 839 */ 840 Expr *sqlite3ExprAlloc( 841 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 842 int op, /* Expression opcode */ 843 const Token *pToken, /* Token argument. Might be NULL */ 844 int dequote /* True to dequote */ 845 ){ 846 Expr *pNew; 847 int nExtra = 0; 848 int iValue = 0; 849 850 assert( db!=0 ); 851 if( pToken ){ 852 if( op!=TK_INTEGER || pToken->z==0 853 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 854 nExtra = pToken->n+1; 855 assert( iValue>=0 ); 856 } 857 } 858 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 859 if( pNew ){ 860 memset(pNew, 0, sizeof(Expr)); 861 pNew->op = (u8)op; 862 pNew->iAgg = -1; 863 if( pToken ){ 864 if( nExtra==0 ){ 865 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 866 pNew->u.iValue = iValue; 867 }else{ 868 pNew->u.zToken = (char*)&pNew[1]; 869 assert( pToken->z!=0 || pToken->n==0 ); 870 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 871 pNew->u.zToken[pToken->n] = 0; 872 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 873 sqlite3DequoteExpr(pNew); 874 } 875 } 876 } 877 #if SQLITE_MAX_EXPR_DEPTH>0 878 pNew->nHeight = 1; 879 #endif 880 } 881 return pNew; 882 } 883 884 /* 885 ** Allocate a new expression node from a zero-terminated token that has 886 ** already been dequoted. 887 */ 888 Expr *sqlite3Expr( 889 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 890 int op, /* Expression opcode */ 891 const char *zToken /* Token argument. Might be NULL */ 892 ){ 893 Token x; 894 x.z = zToken; 895 x.n = sqlite3Strlen30(zToken); 896 return sqlite3ExprAlloc(db, op, &x, 0); 897 } 898 899 /* 900 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 901 ** 902 ** If pRoot==NULL that means that a memory allocation error has occurred. 903 ** In that case, delete the subtrees pLeft and pRight. 904 */ 905 void sqlite3ExprAttachSubtrees( 906 sqlite3 *db, 907 Expr *pRoot, 908 Expr *pLeft, 909 Expr *pRight 910 ){ 911 if( pRoot==0 ){ 912 assert( db->mallocFailed ); 913 sqlite3ExprDelete(db, pLeft); 914 sqlite3ExprDelete(db, pRight); 915 }else{ 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 } 920 if( pLeft ){ 921 pRoot->pLeft = pLeft; 922 pRoot->flags |= EP_Propagate & pLeft->flags; 923 } 924 exprSetHeight(pRoot); 925 } 926 } 927 928 /* 929 ** Allocate an Expr node which joins as many as two subtrees. 930 ** 931 ** One or both of the subtrees can be NULL. Return a pointer to the new 932 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 933 ** free the subtrees and return NULL. 934 */ 935 Expr *sqlite3PExpr( 936 Parse *pParse, /* Parsing context */ 937 int op, /* Expression opcode */ 938 Expr *pLeft, /* Left operand */ 939 Expr *pRight /* Right operand */ 940 ){ 941 Expr *p; 942 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 943 if( p ){ 944 memset(p, 0, sizeof(Expr)); 945 p->op = op & 0xff; 946 p->iAgg = -1; 947 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 948 sqlite3ExprCheckHeight(pParse, p->nHeight); 949 }else{ 950 sqlite3ExprDelete(pParse->db, pLeft); 951 sqlite3ExprDelete(pParse->db, pRight); 952 } 953 return p; 954 } 955 956 /* 957 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 958 ** do a memory allocation failure) then delete the pSelect object. 959 */ 960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 961 if( pExpr ){ 962 pExpr->x.pSelect = pSelect; 963 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 964 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 965 }else{ 966 assert( pParse->db->mallocFailed ); 967 sqlite3SelectDelete(pParse->db, pSelect); 968 } 969 } 970 971 /* 972 ** Expression list pEList is a list of vector values. This function 973 ** converts the contents of pEList to a VALUES(...) Select statement 974 ** returning 1 row for each element of the list. For example, the 975 ** expression list: 976 ** 977 ** ( (1,2), (3,4) (5,6) ) 978 ** 979 ** is translated to the equivalent of: 980 ** 981 ** VALUES(1,2), (3,4), (5,6) 982 ** 983 ** Each of the vector values in pEList must contain exactly nElem terms. 984 ** If a list element that is not a vector or does not contain nElem terms, 985 ** an error message is left in pParse. 986 ** 987 ** This is used as part of processing IN(...) expressions with a list 988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 989 */ 990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 991 int ii; 992 Select *pRet = 0; 993 assert( nElem>1 ); 994 for(ii=0; ii<pEList->nExpr; ii++){ 995 Select *pSel; 996 Expr *pExpr = pEList->a[ii].pExpr; 997 int nExprElem; 998 if( pExpr->op==TK_VECTOR ){ 999 assert( ExprUseXList(pExpr) ); 1000 nExprElem = pExpr->x.pList->nExpr; 1001 }else{ 1002 nExprElem = 1; 1003 } 1004 if( nExprElem!=nElem ){ 1005 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1006 nExprElem, nExprElem>1?"s":"", nElem 1007 ); 1008 break; 1009 } 1010 assert( ExprUseXList(pExpr) ); 1011 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1012 pExpr->x.pList = 0; 1013 if( pSel ){ 1014 if( pRet ){ 1015 pSel->op = TK_ALL; 1016 pSel->pPrior = pRet; 1017 } 1018 pRet = pSel; 1019 } 1020 } 1021 1022 if( pRet && pRet->pPrior ){ 1023 pRet->selFlags |= SF_MultiValue; 1024 } 1025 sqlite3ExprListDelete(pParse->db, pEList); 1026 return pRet; 1027 } 1028 1029 /* 1030 ** Join two expressions using an AND operator. If either expression is 1031 ** NULL, then just return the other expression. 1032 ** 1033 ** If one side or the other of the AND is known to be false, then instead 1034 ** of returning an AND expression, just return a constant expression with 1035 ** a value of false. 1036 */ 1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1038 sqlite3 *db = pParse->db; 1039 if( pLeft==0 ){ 1040 return pRight; 1041 }else if( pRight==0 ){ 1042 return pLeft; 1043 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1044 && !IN_RENAME_OBJECT 1045 ){ 1046 sqlite3ExprDeferredDelete(pParse, pLeft); 1047 sqlite3ExprDeferredDelete(pParse, pRight); 1048 return sqlite3Expr(db, TK_INTEGER, "0"); 1049 }else{ 1050 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1051 } 1052 } 1053 1054 /* 1055 ** Construct a new expression node for a function with multiple 1056 ** arguments. 1057 */ 1058 Expr *sqlite3ExprFunction( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Argument list */ 1061 const Token *pToken, /* Name of the function */ 1062 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1063 ){ 1064 Expr *pNew; 1065 sqlite3 *db = pParse->db; 1066 assert( pToken ); 1067 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1068 if( pNew==0 ){ 1069 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1070 return 0; 1071 } 1072 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1073 if( pList 1074 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1075 && !pParse->nested 1076 ){ 1077 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1078 } 1079 pNew->x.pList = pList; 1080 ExprSetProperty(pNew, EP_HasFunc); 1081 assert( ExprUseXList(pNew) ); 1082 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1083 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1084 return pNew; 1085 } 1086 1087 /* 1088 ** Check to see if a function is usable according to current access 1089 ** rules: 1090 ** 1091 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1092 ** 1093 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1094 ** top-level SQL 1095 ** 1096 ** If the function is not usable, create an error. 1097 */ 1098 void sqlite3ExprFunctionUsable( 1099 Parse *pParse, /* Parsing and code generating context */ 1100 const Expr *pExpr, /* The function invocation */ 1101 const FuncDef *pDef /* The function being invoked */ 1102 ){ 1103 assert( !IN_RENAME_OBJECT ); 1104 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1105 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1106 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1107 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1108 ){ 1109 /* Functions prohibited in triggers and views if: 1110 ** (1) tagged with SQLITE_DIRECTONLY 1111 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1112 ** is tagged with SQLITE_FUNC_UNSAFE) and 1113 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1114 ** that the schema is possibly tainted). 1115 */ 1116 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1117 } 1118 } 1119 } 1120 1121 /* 1122 ** Assign a variable number to an expression that encodes a wildcard 1123 ** in the original SQL statement. 1124 ** 1125 ** Wildcards consisting of a single "?" are assigned the next sequential 1126 ** variable number. 1127 ** 1128 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1129 ** sure "nnn" is not too big to avoid a denial of service attack when 1130 ** the SQL statement comes from an external source. 1131 ** 1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1133 ** as the previous instance of the same wildcard. Or if this is the first 1134 ** instance of the wildcard, the next sequential variable number is 1135 ** assigned. 1136 */ 1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1138 sqlite3 *db = pParse->db; 1139 const char *z; 1140 ynVar x; 1141 1142 if( pExpr==0 ) return; 1143 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1144 z = pExpr->u.zToken; 1145 assert( z!=0 ); 1146 assert( z[0]!=0 ); 1147 assert( n==(u32)sqlite3Strlen30(z) ); 1148 if( z[1]==0 ){ 1149 /* Wildcard of the form "?". Assign the next variable number */ 1150 assert( z[0]=='?' ); 1151 x = (ynVar)(++pParse->nVar); 1152 }else{ 1153 int doAdd = 0; 1154 if( z[0]=='?' ){ 1155 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1156 ** use it as the variable number */ 1157 i64 i; 1158 int bOk; 1159 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1160 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1161 bOk = 1; 1162 }else{ 1163 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1164 } 1165 testcase( i==0 ); 1166 testcase( i==1 ); 1167 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1169 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1170 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1171 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1172 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1173 return; 1174 } 1175 x = (ynVar)i; 1176 if( x>pParse->nVar ){ 1177 pParse->nVar = (int)x; 1178 doAdd = 1; 1179 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1180 doAdd = 1; 1181 } 1182 }else{ 1183 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1184 ** number as the prior appearance of the same name, or if the name 1185 ** has never appeared before, reuse the same variable number 1186 */ 1187 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1188 if( x==0 ){ 1189 x = (ynVar)(++pParse->nVar); 1190 doAdd = 1; 1191 } 1192 } 1193 if( doAdd ){ 1194 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1195 } 1196 } 1197 pExpr->iColumn = x; 1198 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1199 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1200 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1201 } 1202 } 1203 1204 /* 1205 ** Recursively delete an expression tree. 1206 */ 1207 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1208 assert( p!=0 ); 1209 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1210 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1211 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1212 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1213 #ifdef SQLITE_DEBUG 1214 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1215 assert( p->pLeft==0 ); 1216 assert( p->pRight==0 ); 1217 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1218 assert( !ExprUseXList(p) || p->x.pList==0 ); 1219 } 1220 #endif 1221 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1222 /* The Expr.x union is never used at the same time as Expr.pRight */ 1223 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1224 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1225 if( p->pRight ){ 1226 assert( !ExprHasProperty(p, EP_WinFunc) ); 1227 sqlite3ExprDeleteNN(db, p->pRight); 1228 }else if( ExprUseXSelect(p) ){ 1229 assert( !ExprHasProperty(p, EP_WinFunc) ); 1230 sqlite3SelectDelete(db, p->x.pSelect); 1231 }else{ 1232 sqlite3ExprListDelete(db, p->x.pList); 1233 #ifndef SQLITE_OMIT_WINDOWFUNC 1234 if( ExprHasProperty(p, EP_WinFunc) ){ 1235 sqlite3WindowDelete(db, p->y.pWin); 1236 } 1237 #endif 1238 } 1239 } 1240 if( ExprHasProperty(p, EP_MemToken) ){ 1241 assert( !ExprHasProperty(p, EP_IntValue) ); 1242 sqlite3DbFree(db, p->u.zToken); 1243 } 1244 if( !ExprHasProperty(p, EP_Static) ){ 1245 sqlite3DbFreeNN(db, p); 1246 } 1247 } 1248 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1249 if( p ) sqlite3ExprDeleteNN(db, p); 1250 } 1251 1252 /* 1253 ** Clear both elements of an OnOrUsing object 1254 */ 1255 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1256 if( p==0 ){ 1257 /* Nothing to clear */ 1258 }else if( p->pOn ){ 1259 sqlite3ExprDeleteNN(db, p->pOn); 1260 }else if( p->pUsing ){ 1261 sqlite3IdListDelete(db, p->pUsing); 1262 } 1263 } 1264 1265 /* 1266 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1267 ** This is similar to sqlite3ExprDelete() except that the delete is 1268 ** deferred untilthe pParse is deleted. 1269 ** 1270 ** The pExpr might be deleted immediately on an OOM error. 1271 ** 1272 ** The deferred delete is (currently) implemented by adding the 1273 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1274 */ 1275 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1276 pParse->pConstExpr = 1277 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1278 } 1279 1280 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1281 ** expression. 1282 */ 1283 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1284 if( p ){ 1285 if( IN_RENAME_OBJECT ){ 1286 sqlite3RenameExprUnmap(pParse, p); 1287 } 1288 sqlite3ExprDeleteNN(pParse->db, p); 1289 } 1290 } 1291 1292 /* 1293 ** Return the number of bytes allocated for the expression structure 1294 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1295 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1296 */ 1297 static int exprStructSize(const Expr *p){ 1298 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1299 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1300 return EXPR_FULLSIZE; 1301 } 1302 1303 /* 1304 ** The dupedExpr*Size() routines each return the number of bytes required 1305 ** to store a copy of an expression or expression tree. They differ in 1306 ** how much of the tree is measured. 1307 ** 1308 ** dupedExprStructSize() Size of only the Expr structure 1309 ** dupedExprNodeSize() Size of Expr + space for token 1310 ** dupedExprSize() Expr + token + subtree components 1311 ** 1312 *************************************************************************** 1313 ** 1314 ** The dupedExprStructSize() function returns two values OR-ed together: 1315 ** (1) the space required for a copy of the Expr structure only and 1316 ** (2) the EP_xxx flags that indicate what the structure size should be. 1317 ** The return values is always one of: 1318 ** 1319 ** EXPR_FULLSIZE 1320 ** EXPR_REDUCEDSIZE | EP_Reduced 1321 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1322 ** 1323 ** The size of the structure can be found by masking the return value 1324 ** of this routine with 0xfff. The flags can be found by masking the 1325 ** return value with EP_Reduced|EP_TokenOnly. 1326 ** 1327 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1328 ** (unreduced) Expr objects as they or originally constructed by the parser. 1329 ** During expression analysis, extra information is computed and moved into 1330 ** later parts of the Expr object and that extra information might get chopped 1331 ** off if the expression is reduced. Note also that it does not work to 1332 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1333 ** to reduce a pristine expression tree from the parser. The implementation 1334 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1335 ** to enforce this constraint. 1336 */ 1337 static int dupedExprStructSize(const Expr *p, int flags){ 1338 int nSize; 1339 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1340 assert( EXPR_FULLSIZE<=0xfff ); 1341 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1342 if( 0==flags || p->op==TK_SELECT_COLUMN 1343 #ifndef SQLITE_OMIT_WINDOWFUNC 1344 || ExprHasProperty(p, EP_WinFunc) 1345 #endif 1346 ){ 1347 nSize = EXPR_FULLSIZE; 1348 }else{ 1349 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1350 assert( !ExprHasProperty(p, EP_FromJoin) ); 1351 assert( !ExprHasProperty(p, EP_MemToken) ); 1352 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1353 if( p->pLeft || p->x.pList ){ 1354 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1355 }else{ 1356 assert( p->pRight==0 ); 1357 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1358 } 1359 } 1360 return nSize; 1361 } 1362 1363 /* 1364 ** This function returns the space in bytes required to store the copy 1365 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1366 ** string is defined.) 1367 */ 1368 static int dupedExprNodeSize(const Expr *p, int flags){ 1369 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1370 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1371 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1372 } 1373 return ROUND8(nByte); 1374 } 1375 1376 /* 1377 ** Return the number of bytes required to create a duplicate of the 1378 ** expression passed as the first argument. The second argument is a 1379 ** mask containing EXPRDUP_XXX flags. 1380 ** 1381 ** The value returned includes space to create a copy of the Expr struct 1382 ** itself and the buffer referred to by Expr.u.zToken, if any. 1383 ** 1384 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1385 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1386 ** and Expr.pRight variables (but not for any structures pointed to or 1387 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1388 */ 1389 static int dupedExprSize(const Expr *p, int flags){ 1390 int nByte = 0; 1391 if( p ){ 1392 nByte = dupedExprNodeSize(p, flags); 1393 if( flags&EXPRDUP_REDUCE ){ 1394 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1395 } 1396 } 1397 return nByte; 1398 } 1399 1400 /* 1401 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1402 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1403 ** to store the copy of expression p, the copies of p->u.zToken 1404 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1405 ** if any. Before returning, *pzBuffer is set to the first byte past the 1406 ** portion of the buffer copied into by this function. 1407 */ 1408 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1409 Expr *pNew; /* Value to return */ 1410 u8 *zAlloc; /* Memory space from which to build Expr object */ 1411 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1412 1413 assert( db!=0 ); 1414 assert( p ); 1415 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1416 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1417 1418 /* Figure out where to write the new Expr structure. */ 1419 if( pzBuffer ){ 1420 zAlloc = *pzBuffer; 1421 staticFlag = EP_Static; 1422 assert( zAlloc!=0 ); 1423 }else{ 1424 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1425 staticFlag = 0; 1426 } 1427 pNew = (Expr *)zAlloc; 1428 1429 if( pNew ){ 1430 /* Set nNewSize to the size allocated for the structure pointed to 1431 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1432 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1433 ** by the copy of the p->u.zToken string (if any). 1434 */ 1435 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1436 const int nNewSize = nStructSize & 0xfff; 1437 int nToken; 1438 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1439 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1440 }else{ 1441 nToken = 0; 1442 } 1443 if( dupFlags ){ 1444 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1445 memcpy(zAlloc, p, nNewSize); 1446 }else{ 1447 u32 nSize = (u32)exprStructSize(p); 1448 memcpy(zAlloc, p, nSize); 1449 if( nSize<EXPR_FULLSIZE ){ 1450 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1451 } 1452 } 1453 1454 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1455 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1456 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1457 pNew->flags |= staticFlag; 1458 ExprClearVVAProperties(pNew); 1459 if( dupFlags ){ 1460 ExprSetVVAProperty(pNew, EP_Immutable); 1461 } 1462 1463 /* Copy the p->u.zToken string, if any. */ 1464 if( nToken ){ 1465 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1466 memcpy(zToken, p->u.zToken, nToken); 1467 } 1468 1469 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1470 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1471 if( ExprUseXSelect(p) ){ 1472 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1473 }else{ 1474 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1475 } 1476 } 1477 1478 /* Fill in pNew->pLeft and pNew->pRight. */ 1479 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1480 zAlloc += dupedExprNodeSize(p, dupFlags); 1481 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1482 pNew->pLeft = p->pLeft ? 1483 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1484 pNew->pRight = p->pRight ? 1485 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1486 } 1487 #ifndef SQLITE_OMIT_WINDOWFUNC 1488 if( ExprHasProperty(p, EP_WinFunc) ){ 1489 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1490 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1491 } 1492 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1493 if( pzBuffer ){ 1494 *pzBuffer = zAlloc; 1495 } 1496 }else{ 1497 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1498 if( pNew->op==TK_SELECT_COLUMN ){ 1499 pNew->pLeft = p->pLeft; 1500 assert( p->pRight==0 || p->pRight==p->pLeft 1501 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1502 }else{ 1503 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1504 } 1505 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1506 } 1507 } 1508 } 1509 return pNew; 1510 } 1511 1512 /* 1513 ** Create and return a deep copy of the object passed as the second 1514 ** argument. If an OOM condition is encountered, NULL is returned 1515 ** and the db->mallocFailed flag set. 1516 */ 1517 #ifndef SQLITE_OMIT_CTE 1518 With *sqlite3WithDup(sqlite3 *db, With *p){ 1519 With *pRet = 0; 1520 if( p ){ 1521 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1522 pRet = sqlite3DbMallocZero(db, nByte); 1523 if( pRet ){ 1524 int i; 1525 pRet->nCte = p->nCte; 1526 for(i=0; i<p->nCte; i++){ 1527 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1528 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1529 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1530 } 1531 } 1532 } 1533 return pRet; 1534 } 1535 #else 1536 # define sqlite3WithDup(x,y) 0 1537 #endif 1538 1539 #ifndef SQLITE_OMIT_WINDOWFUNC 1540 /* 1541 ** The gatherSelectWindows() procedure and its helper routine 1542 ** gatherSelectWindowsCallback() are used to scan all the expressions 1543 ** an a newly duplicated SELECT statement and gather all of the Window 1544 ** objects found there, assembling them onto the linked list at Select->pWin. 1545 */ 1546 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1547 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1548 Select *pSelect = pWalker->u.pSelect; 1549 Window *pWin = pExpr->y.pWin; 1550 assert( pWin ); 1551 assert( IsWindowFunc(pExpr) ); 1552 assert( pWin->ppThis==0 ); 1553 sqlite3WindowLink(pSelect, pWin); 1554 } 1555 return WRC_Continue; 1556 } 1557 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1558 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1559 } 1560 static void gatherSelectWindows(Select *p){ 1561 Walker w; 1562 w.xExprCallback = gatherSelectWindowsCallback; 1563 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1564 w.xSelectCallback2 = 0; 1565 w.pParse = 0; 1566 w.u.pSelect = p; 1567 sqlite3WalkSelect(&w, p); 1568 } 1569 #endif 1570 1571 1572 /* 1573 ** The following group of routines make deep copies of expressions, 1574 ** expression lists, ID lists, and select statements. The copies can 1575 ** be deleted (by being passed to their respective ...Delete() routines) 1576 ** without effecting the originals. 1577 ** 1578 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1579 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1580 ** by subsequent calls to sqlite*ListAppend() routines. 1581 ** 1582 ** Any tables that the SrcList might point to are not duplicated. 1583 ** 1584 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1585 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1586 ** truncated version of the usual Expr structure that will be stored as 1587 ** part of the in-memory representation of the database schema. 1588 */ 1589 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1590 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1591 return p ? exprDup(db, p, flags, 0) : 0; 1592 } 1593 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1594 ExprList *pNew; 1595 struct ExprList_item *pItem; 1596 const struct ExprList_item *pOldItem; 1597 int i; 1598 Expr *pPriorSelectColOld = 0; 1599 Expr *pPriorSelectColNew = 0; 1600 assert( db!=0 ); 1601 if( p==0 ) return 0; 1602 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1603 if( pNew==0 ) return 0; 1604 pNew->nExpr = p->nExpr; 1605 pNew->nAlloc = p->nAlloc; 1606 pItem = pNew->a; 1607 pOldItem = p->a; 1608 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1609 Expr *pOldExpr = pOldItem->pExpr; 1610 Expr *pNewExpr; 1611 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1612 if( pOldExpr 1613 && pOldExpr->op==TK_SELECT_COLUMN 1614 && (pNewExpr = pItem->pExpr)!=0 1615 ){ 1616 if( pNewExpr->pRight ){ 1617 pPriorSelectColOld = pOldExpr->pRight; 1618 pPriorSelectColNew = pNewExpr->pRight; 1619 pNewExpr->pLeft = pNewExpr->pRight; 1620 }else{ 1621 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1622 pPriorSelectColOld = pOldExpr->pLeft; 1623 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1624 pNewExpr->pRight = pPriorSelectColNew; 1625 } 1626 pNewExpr->pLeft = pPriorSelectColNew; 1627 } 1628 } 1629 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1630 pItem->sortFlags = pOldItem->sortFlags; 1631 pItem->eEName = pOldItem->eEName; 1632 pItem->done = 0; 1633 pItem->bNulls = pOldItem->bNulls; 1634 pItem->bSorterRef = pOldItem->bSorterRef; 1635 pItem->u = pOldItem->u; 1636 } 1637 return pNew; 1638 } 1639 1640 /* 1641 ** If cursors, triggers, views and subqueries are all omitted from 1642 ** the build, then none of the following routines, except for 1643 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1644 ** called with a NULL argument. 1645 */ 1646 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1647 || !defined(SQLITE_OMIT_SUBQUERY) 1648 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1649 SrcList *pNew; 1650 int i; 1651 int nByte; 1652 assert( db!=0 ); 1653 if( p==0 ) return 0; 1654 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1655 pNew = sqlite3DbMallocRawNN(db, nByte ); 1656 if( pNew==0 ) return 0; 1657 pNew->nSrc = pNew->nAlloc = p->nSrc; 1658 for(i=0; i<p->nSrc; i++){ 1659 SrcItem *pNewItem = &pNew->a[i]; 1660 const SrcItem *pOldItem = &p->a[i]; 1661 Table *pTab; 1662 pNewItem->pSchema = pOldItem->pSchema; 1663 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1664 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1665 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1666 pNewItem->fg = pOldItem->fg; 1667 pNewItem->iCursor = pOldItem->iCursor; 1668 pNewItem->addrFillSub = pOldItem->addrFillSub; 1669 pNewItem->regReturn = pOldItem->regReturn; 1670 if( pNewItem->fg.isIndexedBy ){ 1671 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1672 } 1673 pNewItem->u2 = pOldItem->u2; 1674 if( pNewItem->fg.isCte ){ 1675 pNewItem->u2.pCteUse->nUse++; 1676 } 1677 if( pNewItem->fg.isTabFunc ){ 1678 pNewItem->u1.pFuncArg = 1679 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1680 } 1681 pTab = pNewItem->pTab = pOldItem->pTab; 1682 if( pTab ){ 1683 pTab->nTabRef++; 1684 } 1685 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1686 if( pOldItem->fg.isUsing ){ 1687 assert( pNewItem->fg.isUsing ); 1688 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1689 }else{ 1690 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1691 } 1692 pNewItem->colUsed = pOldItem->colUsed; 1693 } 1694 return pNew; 1695 } 1696 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1697 IdList *pNew; 1698 int i; 1699 assert( db!=0 ); 1700 if( p==0 ) return 0; 1701 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1702 if( pNew==0 ) return 0; 1703 pNew->nId = p->nId; 1704 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1705 if( pNew->a==0 ){ 1706 sqlite3DbFreeNN(db, pNew); 1707 return 0; 1708 } 1709 /* Note that because the size of the allocation for p->a[] is not 1710 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1711 ** on the duplicate created by this function. */ 1712 for(i=0; i<p->nId; i++){ 1713 struct IdList_item *pNewItem = &pNew->a[i]; 1714 struct IdList_item *pOldItem = &p->a[i]; 1715 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1716 pNewItem->idx = pOldItem->idx; 1717 } 1718 return pNew; 1719 } 1720 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1721 Select *pRet = 0; 1722 Select *pNext = 0; 1723 Select **pp = &pRet; 1724 const Select *p; 1725 1726 assert( db!=0 ); 1727 for(p=pDup; p; p=p->pPrior){ 1728 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1729 if( pNew==0 ) break; 1730 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1731 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1732 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1733 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1734 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1735 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1736 pNew->op = p->op; 1737 pNew->pNext = pNext; 1738 pNew->pPrior = 0; 1739 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1740 pNew->iLimit = 0; 1741 pNew->iOffset = 0; 1742 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1743 pNew->addrOpenEphm[0] = -1; 1744 pNew->addrOpenEphm[1] = -1; 1745 pNew->nSelectRow = p->nSelectRow; 1746 pNew->pWith = sqlite3WithDup(db, p->pWith); 1747 #ifndef SQLITE_OMIT_WINDOWFUNC 1748 pNew->pWin = 0; 1749 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1750 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1751 #endif 1752 pNew->selId = p->selId; 1753 if( db->mallocFailed ){ 1754 /* Any prior OOM might have left the Select object incomplete. 1755 ** Delete the whole thing rather than allow an incomplete Select 1756 ** to be used by the code generator. */ 1757 pNew->pNext = 0; 1758 sqlite3SelectDelete(db, pNew); 1759 break; 1760 } 1761 *pp = pNew; 1762 pp = &pNew->pPrior; 1763 pNext = pNew; 1764 } 1765 1766 return pRet; 1767 } 1768 #else 1769 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1770 assert( p==0 ); 1771 return 0; 1772 } 1773 #endif 1774 1775 1776 /* 1777 ** Add a new element to the end of an expression list. If pList is 1778 ** initially NULL, then create a new expression list. 1779 ** 1780 ** The pList argument must be either NULL or a pointer to an ExprList 1781 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1782 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1783 ** Reason: This routine assumes that the number of slots in pList->a[] 1784 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1785 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1786 ** 1787 ** If a memory allocation error occurs, the entire list is freed and 1788 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1789 ** that the new entry was successfully appended. 1790 */ 1791 static const struct ExprList_item zeroItem = {0}; 1792 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1793 sqlite3 *db, /* Database handle. Used for memory allocation */ 1794 Expr *pExpr /* Expression to be appended. Might be NULL */ 1795 ){ 1796 struct ExprList_item *pItem; 1797 ExprList *pList; 1798 1799 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1800 if( pList==0 ){ 1801 sqlite3ExprDelete(db, pExpr); 1802 return 0; 1803 } 1804 pList->nAlloc = 4; 1805 pList->nExpr = 1; 1806 pItem = &pList->a[0]; 1807 *pItem = zeroItem; 1808 pItem->pExpr = pExpr; 1809 return pList; 1810 } 1811 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1812 sqlite3 *db, /* Database handle. Used for memory allocation */ 1813 ExprList *pList, /* List to which to append. Might be NULL */ 1814 Expr *pExpr /* Expression to be appended. Might be NULL */ 1815 ){ 1816 struct ExprList_item *pItem; 1817 ExprList *pNew; 1818 pList->nAlloc *= 2; 1819 pNew = sqlite3DbRealloc(db, pList, 1820 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1821 if( pNew==0 ){ 1822 sqlite3ExprListDelete(db, pList); 1823 sqlite3ExprDelete(db, pExpr); 1824 return 0; 1825 }else{ 1826 pList = pNew; 1827 } 1828 pItem = &pList->a[pList->nExpr++]; 1829 *pItem = zeroItem; 1830 pItem->pExpr = pExpr; 1831 return pList; 1832 } 1833 ExprList *sqlite3ExprListAppend( 1834 Parse *pParse, /* Parsing context */ 1835 ExprList *pList, /* List to which to append. Might be NULL */ 1836 Expr *pExpr /* Expression to be appended. Might be NULL */ 1837 ){ 1838 struct ExprList_item *pItem; 1839 if( pList==0 ){ 1840 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1841 } 1842 if( pList->nAlloc<pList->nExpr+1 ){ 1843 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1844 } 1845 pItem = &pList->a[pList->nExpr++]; 1846 *pItem = zeroItem; 1847 pItem->pExpr = pExpr; 1848 return pList; 1849 } 1850 1851 /* 1852 ** pColumns and pExpr form a vector assignment which is part of the SET 1853 ** clause of an UPDATE statement. Like this: 1854 ** 1855 ** (a,b,c) = (expr1,expr2,expr3) 1856 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1857 ** 1858 ** For each term of the vector assignment, append new entries to the 1859 ** expression list pList. In the case of a subquery on the RHS, append 1860 ** TK_SELECT_COLUMN expressions. 1861 */ 1862 ExprList *sqlite3ExprListAppendVector( 1863 Parse *pParse, /* Parsing context */ 1864 ExprList *pList, /* List to which to append. Might be NULL */ 1865 IdList *pColumns, /* List of names of LHS of the assignment */ 1866 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1867 ){ 1868 sqlite3 *db = pParse->db; 1869 int n; 1870 int i; 1871 int iFirst = pList ? pList->nExpr : 0; 1872 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1873 ** exit prior to this routine being invoked */ 1874 if( NEVER(pColumns==0) ) goto vector_append_error; 1875 if( pExpr==0 ) goto vector_append_error; 1876 1877 /* If the RHS is a vector, then we can immediately check to see that 1878 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1879 ** wildcards ("*") in the result set of the SELECT must be expanded before 1880 ** we can do the size check, so defer the size check until code generation. 1881 */ 1882 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1883 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1884 pColumns->nId, n); 1885 goto vector_append_error; 1886 } 1887 1888 for(i=0; i<pColumns->nId; i++){ 1889 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1890 assert( pSubExpr!=0 || db->mallocFailed ); 1891 if( pSubExpr==0 ) continue; 1892 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1893 if( pList ){ 1894 assert( pList->nExpr==iFirst+i+1 ); 1895 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1896 pColumns->a[i].zName = 0; 1897 } 1898 } 1899 1900 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1901 Expr *pFirst = pList->a[iFirst].pExpr; 1902 assert( pFirst!=0 ); 1903 assert( pFirst->op==TK_SELECT_COLUMN ); 1904 1905 /* Store the SELECT statement in pRight so it will be deleted when 1906 ** sqlite3ExprListDelete() is called */ 1907 pFirst->pRight = pExpr; 1908 pExpr = 0; 1909 1910 /* Remember the size of the LHS in iTable so that we can check that 1911 ** the RHS and LHS sizes match during code generation. */ 1912 pFirst->iTable = pColumns->nId; 1913 } 1914 1915 vector_append_error: 1916 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1917 sqlite3IdListDelete(db, pColumns); 1918 return pList; 1919 } 1920 1921 /* 1922 ** Set the sort order for the last element on the given ExprList. 1923 */ 1924 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1925 struct ExprList_item *pItem; 1926 if( p==0 ) return; 1927 assert( p->nExpr>0 ); 1928 1929 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1930 assert( iSortOrder==SQLITE_SO_UNDEFINED 1931 || iSortOrder==SQLITE_SO_ASC 1932 || iSortOrder==SQLITE_SO_DESC 1933 ); 1934 assert( eNulls==SQLITE_SO_UNDEFINED 1935 || eNulls==SQLITE_SO_ASC 1936 || eNulls==SQLITE_SO_DESC 1937 ); 1938 1939 pItem = &p->a[p->nExpr-1]; 1940 assert( pItem->bNulls==0 ); 1941 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1942 iSortOrder = SQLITE_SO_ASC; 1943 } 1944 pItem->sortFlags = (u8)iSortOrder; 1945 1946 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1947 pItem->bNulls = 1; 1948 if( iSortOrder!=eNulls ){ 1949 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1950 } 1951 } 1952 } 1953 1954 /* 1955 ** Set the ExprList.a[].zEName element of the most recently added item 1956 ** on the expression list. 1957 ** 1958 ** pList might be NULL following an OOM error. But pName should never be 1959 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1960 ** is set. 1961 */ 1962 void sqlite3ExprListSetName( 1963 Parse *pParse, /* Parsing context */ 1964 ExprList *pList, /* List to which to add the span. */ 1965 const Token *pName, /* Name to be added */ 1966 int dequote /* True to cause the name to be dequoted */ 1967 ){ 1968 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1969 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1970 if( pList ){ 1971 struct ExprList_item *pItem; 1972 assert( pList->nExpr>0 ); 1973 pItem = &pList->a[pList->nExpr-1]; 1974 assert( pItem->zEName==0 ); 1975 assert( pItem->eEName==ENAME_NAME ); 1976 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1977 if( dequote ){ 1978 /* If dequote==0, then pName->z does not point to part of a DDL 1979 ** statement handled by the parser. And so no token need be added 1980 ** to the token-map. */ 1981 sqlite3Dequote(pItem->zEName); 1982 if( IN_RENAME_OBJECT ){ 1983 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1984 } 1985 } 1986 } 1987 } 1988 1989 /* 1990 ** Set the ExprList.a[].zSpan element of the most recently added item 1991 ** on the expression list. 1992 ** 1993 ** pList might be NULL following an OOM error. But pSpan should never be 1994 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1995 ** is set. 1996 */ 1997 void sqlite3ExprListSetSpan( 1998 Parse *pParse, /* Parsing context */ 1999 ExprList *pList, /* List to which to add the span. */ 2000 const char *zStart, /* Start of the span */ 2001 const char *zEnd /* End of the span */ 2002 ){ 2003 sqlite3 *db = pParse->db; 2004 assert( pList!=0 || db->mallocFailed!=0 ); 2005 if( pList ){ 2006 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2007 assert( pList->nExpr>0 ); 2008 if( pItem->zEName==0 ){ 2009 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2010 pItem->eEName = ENAME_SPAN; 2011 } 2012 } 2013 } 2014 2015 /* 2016 ** If the expression list pEList contains more than iLimit elements, 2017 ** leave an error message in pParse. 2018 */ 2019 void sqlite3ExprListCheckLength( 2020 Parse *pParse, 2021 ExprList *pEList, 2022 const char *zObject 2023 ){ 2024 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2025 testcase( pEList && pEList->nExpr==mx ); 2026 testcase( pEList && pEList->nExpr==mx+1 ); 2027 if( pEList && pEList->nExpr>mx ){ 2028 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2029 } 2030 } 2031 2032 /* 2033 ** Delete an entire expression list. 2034 */ 2035 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2036 int i = pList->nExpr; 2037 struct ExprList_item *pItem = pList->a; 2038 assert( pList->nExpr>0 ); 2039 do{ 2040 sqlite3ExprDelete(db, pItem->pExpr); 2041 sqlite3DbFree(db, pItem->zEName); 2042 pItem++; 2043 }while( --i>0 ); 2044 sqlite3DbFreeNN(db, pList); 2045 } 2046 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2047 if( pList ) exprListDeleteNN(db, pList); 2048 } 2049 2050 /* 2051 ** Return the bitwise-OR of all Expr.flags fields in the given 2052 ** ExprList. 2053 */ 2054 u32 sqlite3ExprListFlags(const ExprList *pList){ 2055 int i; 2056 u32 m = 0; 2057 assert( pList!=0 ); 2058 for(i=0; i<pList->nExpr; i++){ 2059 Expr *pExpr = pList->a[i].pExpr; 2060 assert( pExpr!=0 ); 2061 m |= pExpr->flags; 2062 } 2063 return m; 2064 } 2065 2066 /* 2067 ** This is a SELECT-node callback for the expression walker that 2068 ** always "fails". By "fail" in this case, we mean set 2069 ** pWalker->eCode to zero and abort. 2070 ** 2071 ** This callback is used by multiple expression walkers. 2072 */ 2073 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2074 UNUSED_PARAMETER(NotUsed); 2075 pWalker->eCode = 0; 2076 return WRC_Abort; 2077 } 2078 2079 /* 2080 ** Check the input string to see if it is "true" or "false" (in any case). 2081 ** 2082 ** If the string is.... Return 2083 ** "true" EP_IsTrue 2084 ** "false" EP_IsFalse 2085 ** anything else 0 2086 */ 2087 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2088 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2089 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2090 return 0; 2091 } 2092 2093 2094 /* 2095 ** If the input expression is an ID with the name "true" or "false" 2096 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2097 ** the conversion happened, and zero if the expression is unaltered. 2098 */ 2099 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2100 u32 v; 2101 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2102 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2103 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2104 ){ 2105 pExpr->op = TK_TRUEFALSE; 2106 ExprSetProperty(pExpr, v); 2107 return 1; 2108 } 2109 return 0; 2110 } 2111 2112 /* 2113 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2114 ** and 0 if it is FALSE. 2115 */ 2116 int sqlite3ExprTruthValue(const Expr *pExpr){ 2117 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2118 assert( pExpr->op==TK_TRUEFALSE ); 2119 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2120 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2121 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2122 return pExpr->u.zToken[4]==0; 2123 } 2124 2125 /* 2126 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2127 ** terms that are always true or false. Return the simplified expression. 2128 ** Or return the original expression if no simplification is possible. 2129 ** 2130 ** Examples: 2131 ** 2132 ** (x<10) AND true => (x<10) 2133 ** (x<10) AND false => false 2134 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2135 ** (x<10) AND (y=22 OR true) => (x<10) 2136 ** (y=22) OR true => true 2137 */ 2138 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2139 assert( pExpr!=0 ); 2140 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2141 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2142 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2143 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2144 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2145 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2146 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2147 } 2148 } 2149 return pExpr; 2150 } 2151 2152 2153 /* 2154 ** These routines are Walker callbacks used to check expressions to 2155 ** see if they are "constant" for some definition of constant. The 2156 ** Walker.eCode value determines the type of "constant" we are looking 2157 ** for. 2158 ** 2159 ** These callback routines are used to implement the following: 2160 ** 2161 ** sqlite3ExprIsConstant() pWalker->eCode==1 2162 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2163 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2164 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2165 ** 2166 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2167 ** is found to not be a constant. 2168 ** 2169 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2170 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2171 ** when parsing an existing schema out of the sqlite_schema table and 4 2172 ** when processing a new CREATE TABLE statement. A bound parameter raises 2173 ** an error for new statements, but is silently converted 2174 ** to NULL for existing schemas. This allows sqlite_schema tables that 2175 ** contain a bound parameter because they were generated by older versions 2176 ** of SQLite to be parsed by newer versions of SQLite without raising a 2177 ** malformed schema error. 2178 */ 2179 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2180 2181 /* If pWalker->eCode is 2 then any term of the expression that comes from 2182 ** the ON or USING clauses of a left join disqualifies the expression 2183 ** from being considered constant. */ 2184 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2185 pWalker->eCode = 0; 2186 return WRC_Abort; 2187 } 2188 2189 switch( pExpr->op ){ 2190 /* Consider functions to be constant if all their arguments are constant 2191 ** and either pWalker->eCode==4 or 5 or the function has the 2192 ** SQLITE_FUNC_CONST flag. */ 2193 case TK_FUNCTION: 2194 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2195 && !ExprHasProperty(pExpr, EP_WinFunc) 2196 ){ 2197 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2198 return WRC_Continue; 2199 }else{ 2200 pWalker->eCode = 0; 2201 return WRC_Abort; 2202 } 2203 case TK_ID: 2204 /* Convert "true" or "false" in a DEFAULT clause into the 2205 ** appropriate TK_TRUEFALSE operator */ 2206 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2207 return WRC_Prune; 2208 } 2209 /* no break */ deliberate_fall_through 2210 case TK_COLUMN: 2211 case TK_AGG_FUNCTION: 2212 case TK_AGG_COLUMN: 2213 testcase( pExpr->op==TK_ID ); 2214 testcase( pExpr->op==TK_COLUMN ); 2215 testcase( pExpr->op==TK_AGG_FUNCTION ); 2216 testcase( pExpr->op==TK_AGG_COLUMN ); 2217 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2218 return WRC_Continue; 2219 } 2220 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2221 return WRC_Continue; 2222 } 2223 /* no break */ deliberate_fall_through 2224 case TK_IF_NULL_ROW: 2225 case TK_REGISTER: 2226 case TK_DOT: 2227 testcase( pExpr->op==TK_REGISTER ); 2228 testcase( pExpr->op==TK_IF_NULL_ROW ); 2229 testcase( pExpr->op==TK_DOT ); 2230 pWalker->eCode = 0; 2231 return WRC_Abort; 2232 case TK_VARIABLE: 2233 if( pWalker->eCode==5 ){ 2234 /* Silently convert bound parameters that appear inside of CREATE 2235 ** statements into a NULL when parsing the CREATE statement text out 2236 ** of the sqlite_schema table */ 2237 pExpr->op = TK_NULL; 2238 }else if( pWalker->eCode==4 ){ 2239 /* A bound parameter in a CREATE statement that originates from 2240 ** sqlite3_prepare() causes an error */ 2241 pWalker->eCode = 0; 2242 return WRC_Abort; 2243 } 2244 /* no break */ deliberate_fall_through 2245 default: 2246 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2247 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2248 return WRC_Continue; 2249 } 2250 } 2251 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2252 Walker w; 2253 w.eCode = initFlag; 2254 w.xExprCallback = exprNodeIsConstant; 2255 w.xSelectCallback = sqlite3SelectWalkFail; 2256 #ifdef SQLITE_DEBUG 2257 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2258 #endif 2259 w.u.iCur = iCur; 2260 sqlite3WalkExpr(&w, p); 2261 return w.eCode; 2262 } 2263 2264 /* 2265 ** Walk an expression tree. Return non-zero if the expression is constant 2266 ** and 0 if it involves variables or function calls. 2267 ** 2268 ** For the purposes of this function, a double-quoted string (ex: "abc") 2269 ** is considered a variable but a single-quoted string (ex: 'abc') is 2270 ** a constant. 2271 */ 2272 int sqlite3ExprIsConstant(Expr *p){ 2273 return exprIsConst(p, 1, 0); 2274 } 2275 2276 /* 2277 ** Walk an expression tree. Return non-zero if 2278 ** 2279 ** (1) the expression is constant, and 2280 ** (2) the expression does originate in the ON or USING clause 2281 ** of a LEFT JOIN, and 2282 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2283 ** operands created by the constant propagation optimization. 2284 ** 2285 ** When this routine returns true, it indicates that the expression 2286 ** can be added to the pParse->pConstExpr list and evaluated once when 2287 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2288 */ 2289 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2290 return exprIsConst(p, 2, 0); 2291 } 2292 2293 /* 2294 ** Walk an expression tree. Return non-zero if the expression is constant 2295 ** for any single row of the table with cursor iCur. In other words, the 2296 ** expression must not refer to any non-deterministic function nor any 2297 ** table other than iCur. 2298 */ 2299 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2300 return exprIsConst(p, 3, iCur); 2301 } 2302 2303 2304 /* 2305 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2306 */ 2307 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2308 ExprList *pGroupBy = pWalker->u.pGroupBy; 2309 int i; 2310 2311 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2312 ** it constant. */ 2313 for(i=0; i<pGroupBy->nExpr; i++){ 2314 Expr *p = pGroupBy->a[i].pExpr; 2315 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2316 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2317 if( sqlite3IsBinary(pColl) ){ 2318 return WRC_Prune; 2319 } 2320 } 2321 } 2322 2323 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2324 if( ExprUseXSelect(pExpr) ){ 2325 pWalker->eCode = 0; 2326 return WRC_Abort; 2327 } 2328 2329 return exprNodeIsConstant(pWalker, pExpr); 2330 } 2331 2332 /* 2333 ** Walk the expression tree passed as the first argument. Return non-zero 2334 ** if the expression consists entirely of constants or copies of terms 2335 ** in pGroupBy that sort with the BINARY collation sequence. 2336 ** 2337 ** This routine is used to determine if a term of the HAVING clause can 2338 ** be promoted into the WHERE clause. In order for such a promotion to work, 2339 ** the value of the HAVING clause term must be the same for all members of 2340 ** a "group". The requirement that the GROUP BY term must be BINARY 2341 ** assumes that no other collating sequence will have a finer-grained 2342 ** grouping than binary. In other words (A=B COLLATE binary) implies 2343 ** A=B in every other collating sequence. The requirement that the 2344 ** GROUP BY be BINARY is stricter than necessary. It would also work 2345 ** to promote HAVING clauses that use the same alternative collating 2346 ** sequence as the GROUP BY term, but that is much harder to check, 2347 ** alternative collating sequences are uncommon, and this is only an 2348 ** optimization, so we take the easy way out and simply require the 2349 ** GROUP BY to use the BINARY collating sequence. 2350 */ 2351 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2352 Walker w; 2353 w.eCode = 1; 2354 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2355 w.xSelectCallback = 0; 2356 w.u.pGroupBy = pGroupBy; 2357 w.pParse = pParse; 2358 sqlite3WalkExpr(&w, p); 2359 return w.eCode; 2360 } 2361 2362 /* 2363 ** Walk an expression tree for the DEFAULT field of a column definition 2364 ** in a CREATE TABLE statement. Return non-zero if the expression is 2365 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2366 ** the expression is constant or a function call with constant arguments. 2367 ** Return and 0 if there are any variables. 2368 ** 2369 ** isInit is true when parsing from sqlite_schema. isInit is false when 2370 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2371 ** (such as ? or $abc) in the expression are converted into NULL. When 2372 ** isInit is false, parameters raise an error. Parameters should not be 2373 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2374 ** allowed it, so we need to support it when reading sqlite_schema for 2375 ** backwards compatibility. 2376 ** 2377 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2378 ** 2379 ** For the purposes of this function, a double-quoted string (ex: "abc") 2380 ** is considered a variable but a single-quoted string (ex: 'abc') is 2381 ** a constant. 2382 */ 2383 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2384 assert( isInit==0 || isInit==1 ); 2385 return exprIsConst(p, 4+isInit, 0); 2386 } 2387 2388 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2389 /* 2390 ** Walk an expression tree. Return 1 if the expression contains a 2391 ** subquery of some kind. Return 0 if there are no subqueries. 2392 */ 2393 int sqlite3ExprContainsSubquery(Expr *p){ 2394 Walker w; 2395 w.eCode = 1; 2396 w.xExprCallback = sqlite3ExprWalkNoop; 2397 w.xSelectCallback = sqlite3SelectWalkFail; 2398 #ifdef SQLITE_DEBUG 2399 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2400 #endif 2401 sqlite3WalkExpr(&w, p); 2402 return w.eCode==0; 2403 } 2404 #endif 2405 2406 /* 2407 ** If the expression p codes a constant integer that is small enough 2408 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2409 ** in *pValue. If the expression is not an integer or if it is too big 2410 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2411 */ 2412 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2413 int rc = 0; 2414 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2415 2416 /* If an expression is an integer literal that fits in a signed 32-bit 2417 ** integer, then the EP_IntValue flag will have already been set */ 2418 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2419 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2420 2421 if( p->flags & EP_IntValue ){ 2422 *pValue = p->u.iValue; 2423 return 1; 2424 } 2425 switch( p->op ){ 2426 case TK_UPLUS: { 2427 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2428 break; 2429 } 2430 case TK_UMINUS: { 2431 int v = 0; 2432 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2433 assert( ((unsigned int)v)!=0x80000000 ); 2434 *pValue = -v; 2435 rc = 1; 2436 } 2437 break; 2438 } 2439 default: break; 2440 } 2441 return rc; 2442 } 2443 2444 /* 2445 ** Return FALSE if there is no chance that the expression can be NULL. 2446 ** 2447 ** If the expression might be NULL or if the expression is too complex 2448 ** to tell return TRUE. 2449 ** 2450 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2451 ** when we know that a value cannot be NULL. Hence, a false positive 2452 ** (returning TRUE when in fact the expression can never be NULL) might 2453 ** be a small performance hit but is otherwise harmless. On the other 2454 ** hand, a false negative (returning FALSE when the result could be NULL) 2455 ** will likely result in an incorrect answer. So when in doubt, return 2456 ** TRUE. 2457 */ 2458 int sqlite3ExprCanBeNull(const Expr *p){ 2459 u8 op; 2460 assert( p!=0 ); 2461 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2462 p = p->pLeft; 2463 assert( p!=0 ); 2464 } 2465 op = p->op; 2466 if( op==TK_REGISTER ) op = p->op2; 2467 switch( op ){ 2468 case TK_INTEGER: 2469 case TK_STRING: 2470 case TK_FLOAT: 2471 case TK_BLOB: 2472 return 0; 2473 case TK_COLUMN: 2474 assert( ExprUseYTab(p) ); 2475 return ExprHasProperty(p, EP_CanBeNull) || 2476 p->y.pTab==0 || /* Reference to column of index on expression */ 2477 (p->iColumn>=0 2478 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2479 && p->y.pTab->aCol[p->iColumn].notNull==0); 2480 default: 2481 return 1; 2482 } 2483 } 2484 2485 /* 2486 ** Return TRUE if the given expression is a constant which would be 2487 ** unchanged by OP_Affinity with the affinity given in the second 2488 ** argument. 2489 ** 2490 ** This routine is used to determine if the OP_Affinity operation 2491 ** can be omitted. When in doubt return FALSE. A false negative 2492 ** is harmless. A false positive, however, can result in the wrong 2493 ** answer. 2494 */ 2495 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2496 u8 op; 2497 int unaryMinus = 0; 2498 if( aff==SQLITE_AFF_BLOB ) return 1; 2499 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2500 if( p->op==TK_UMINUS ) unaryMinus = 1; 2501 p = p->pLeft; 2502 } 2503 op = p->op; 2504 if( op==TK_REGISTER ) op = p->op2; 2505 switch( op ){ 2506 case TK_INTEGER: { 2507 return aff>=SQLITE_AFF_NUMERIC; 2508 } 2509 case TK_FLOAT: { 2510 return aff>=SQLITE_AFF_NUMERIC; 2511 } 2512 case TK_STRING: { 2513 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2514 } 2515 case TK_BLOB: { 2516 return !unaryMinus; 2517 } 2518 case TK_COLUMN: { 2519 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2520 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2521 } 2522 default: { 2523 return 0; 2524 } 2525 } 2526 } 2527 2528 /* 2529 ** Return TRUE if the given string is a row-id column name. 2530 */ 2531 int sqlite3IsRowid(const char *z){ 2532 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2533 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2534 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2535 return 0; 2536 } 2537 2538 /* 2539 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2540 ** that can be simplified to a direct table access, then return 2541 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2542 ** or if the SELECT statement needs to be manifested into a transient 2543 ** table, then return NULL. 2544 */ 2545 #ifndef SQLITE_OMIT_SUBQUERY 2546 static Select *isCandidateForInOpt(const Expr *pX){ 2547 Select *p; 2548 SrcList *pSrc; 2549 ExprList *pEList; 2550 Table *pTab; 2551 int i; 2552 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2553 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2554 p = pX->x.pSelect; 2555 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2556 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2557 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2558 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2559 return 0; /* No DISTINCT keyword and no aggregate functions */ 2560 } 2561 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2562 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2563 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2564 pSrc = p->pSrc; 2565 assert( pSrc!=0 ); 2566 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2567 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2568 pTab = pSrc->a[0].pTab; 2569 assert( pTab!=0 ); 2570 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2571 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2572 pEList = p->pEList; 2573 assert( pEList!=0 ); 2574 /* All SELECT results must be columns. */ 2575 for(i=0; i<pEList->nExpr; i++){ 2576 Expr *pRes = pEList->a[i].pExpr; 2577 if( pRes->op!=TK_COLUMN ) return 0; 2578 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2579 } 2580 return p; 2581 } 2582 #endif /* SQLITE_OMIT_SUBQUERY */ 2583 2584 #ifndef SQLITE_OMIT_SUBQUERY 2585 /* 2586 ** Generate code that checks the left-most column of index table iCur to see if 2587 ** it contains any NULL entries. Cause the register at regHasNull to be set 2588 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2589 ** to be set to NULL if iCur contains one or more NULL values. 2590 */ 2591 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2592 int addr1; 2593 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2594 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2595 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2596 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2597 VdbeComment((v, "first_entry_in(%d)", iCur)); 2598 sqlite3VdbeJumpHere(v, addr1); 2599 } 2600 #endif 2601 2602 2603 #ifndef SQLITE_OMIT_SUBQUERY 2604 /* 2605 ** The argument is an IN operator with a list (not a subquery) on the 2606 ** right-hand side. Return TRUE if that list is constant. 2607 */ 2608 static int sqlite3InRhsIsConstant(Expr *pIn){ 2609 Expr *pLHS; 2610 int res; 2611 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2612 pLHS = pIn->pLeft; 2613 pIn->pLeft = 0; 2614 res = sqlite3ExprIsConstant(pIn); 2615 pIn->pLeft = pLHS; 2616 return res; 2617 } 2618 #endif 2619 2620 /* 2621 ** This function is used by the implementation of the IN (...) operator. 2622 ** The pX parameter is the expression on the RHS of the IN operator, which 2623 ** might be either a list of expressions or a subquery. 2624 ** 2625 ** The job of this routine is to find or create a b-tree object that can 2626 ** be used either to test for membership in the RHS set or to iterate through 2627 ** all members of the RHS set, skipping duplicates. 2628 ** 2629 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2630 ** and pX->iTable is set to the index of that cursor. 2631 ** 2632 ** The returned value of this function indicates the b-tree type, as follows: 2633 ** 2634 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2635 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2636 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2637 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2638 ** populated epheremal table. 2639 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2640 ** implemented as a sequence of comparisons. 2641 ** 2642 ** An existing b-tree might be used if the RHS expression pX is a simple 2643 ** subquery such as: 2644 ** 2645 ** SELECT <column1>, <column2>... FROM <table> 2646 ** 2647 ** If the RHS of the IN operator is a list or a more complex subquery, then 2648 ** an ephemeral table might need to be generated from the RHS and then 2649 ** pX->iTable made to point to the ephemeral table instead of an 2650 ** existing table. 2651 ** 2652 ** The inFlags parameter must contain, at a minimum, one of the bits 2653 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2654 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2655 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2656 ** be used to loop over all values of the RHS of the IN operator. 2657 ** 2658 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2659 ** through the set members) then the b-tree must not contain duplicates. 2660 ** An epheremal table will be created unless the selected columns are guaranteed 2661 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2662 ** a UNIQUE constraint or index. 2663 ** 2664 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2665 ** for fast set membership tests) then an epheremal table must 2666 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2667 ** index can be found with the specified <columns> as its left-most. 2668 ** 2669 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2670 ** if the RHS of the IN operator is a list (not a subquery) then this 2671 ** routine might decide that creating an ephemeral b-tree for membership 2672 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2673 ** calling routine should implement the IN operator using a sequence 2674 ** of Eq or Ne comparison operations. 2675 ** 2676 ** When the b-tree is being used for membership tests, the calling function 2677 ** might need to know whether or not the RHS side of the IN operator 2678 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2679 ** if there is any chance that the (...) might contain a NULL value at 2680 ** runtime, then a register is allocated and the register number written 2681 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2682 ** NULL value, then *prRhsHasNull is left unchanged. 2683 ** 2684 ** If a register is allocated and its location stored in *prRhsHasNull, then 2685 ** the value in that register will be NULL if the b-tree contains one or more 2686 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2687 ** NULL values. 2688 ** 2689 ** If the aiMap parameter is not NULL, it must point to an array containing 2690 ** one element for each column returned by the SELECT statement on the RHS 2691 ** of the IN(...) operator. The i'th entry of the array is populated with the 2692 ** offset of the index column that matches the i'th column returned by the 2693 ** SELECT. For example, if the expression and selected index are: 2694 ** 2695 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2696 ** CREATE INDEX i1 ON t1(b, c, a); 2697 ** 2698 ** then aiMap[] is populated with {2, 0, 1}. 2699 */ 2700 #ifndef SQLITE_OMIT_SUBQUERY 2701 int sqlite3FindInIndex( 2702 Parse *pParse, /* Parsing context */ 2703 Expr *pX, /* The IN expression */ 2704 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2705 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2706 int *aiMap, /* Mapping from Index fields to RHS fields */ 2707 int *piTab /* OUT: index to use */ 2708 ){ 2709 Select *p; /* SELECT to the right of IN operator */ 2710 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2711 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2712 int mustBeUnique; /* True if RHS must be unique */ 2713 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2714 2715 assert( pX->op==TK_IN ); 2716 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2717 2718 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2719 ** whether or not the SELECT result contains NULL values, check whether 2720 ** or not NULL is actually possible (it may not be, for example, due 2721 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2722 ** set prRhsHasNull to 0 before continuing. */ 2723 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2724 int i; 2725 ExprList *pEList = pX->x.pSelect->pEList; 2726 for(i=0; i<pEList->nExpr; i++){ 2727 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2728 } 2729 if( i==pEList->nExpr ){ 2730 prRhsHasNull = 0; 2731 } 2732 } 2733 2734 /* Check to see if an existing table or index can be used to 2735 ** satisfy the query. This is preferable to generating a new 2736 ** ephemeral table. */ 2737 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2738 sqlite3 *db = pParse->db; /* Database connection */ 2739 Table *pTab; /* Table <table>. */ 2740 int iDb; /* Database idx for pTab */ 2741 ExprList *pEList = p->pEList; 2742 int nExpr = pEList->nExpr; 2743 2744 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2745 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2746 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2747 pTab = p->pSrc->a[0].pTab; 2748 2749 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2750 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2751 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2752 sqlite3CodeVerifySchema(pParse, iDb); 2753 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2754 2755 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2756 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2757 /* The "x IN (SELECT rowid FROM table)" case */ 2758 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2759 VdbeCoverage(v); 2760 2761 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2762 eType = IN_INDEX_ROWID; 2763 ExplainQueryPlan((pParse, 0, 2764 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2765 sqlite3VdbeJumpHere(v, iAddr); 2766 }else{ 2767 Index *pIdx; /* Iterator variable */ 2768 int affinity_ok = 1; 2769 int i; 2770 2771 /* Check that the affinity that will be used to perform each 2772 ** comparison is the same as the affinity of each column in table 2773 ** on the RHS of the IN operator. If it not, it is not possible to 2774 ** use any index of the RHS table. */ 2775 for(i=0; i<nExpr && affinity_ok; i++){ 2776 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2777 int iCol = pEList->a[i].pExpr->iColumn; 2778 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2779 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2780 testcase( cmpaff==SQLITE_AFF_BLOB ); 2781 testcase( cmpaff==SQLITE_AFF_TEXT ); 2782 switch( cmpaff ){ 2783 case SQLITE_AFF_BLOB: 2784 break; 2785 case SQLITE_AFF_TEXT: 2786 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2787 ** other has no affinity and the other side is TEXT. Hence, 2788 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2789 ** and for the term on the LHS of the IN to have no affinity. */ 2790 assert( idxaff==SQLITE_AFF_TEXT ); 2791 break; 2792 default: 2793 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2794 } 2795 } 2796 2797 if( affinity_ok ){ 2798 /* Search for an existing index that will work for this IN operator */ 2799 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2800 Bitmask colUsed; /* Columns of the index used */ 2801 Bitmask mCol; /* Mask for the current column */ 2802 if( pIdx->nColumn<nExpr ) continue; 2803 if( pIdx->pPartIdxWhere!=0 ) continue; 2804 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2805 ** BITMASK(nExpr) without overflowing */ 2806 testcase( pIdx->nColumn==BMS-2 ); 2807 testcase( pIdx->nColumn==BMS-1 ); 2808 if( pIdx->nColumn>=BMS-1 ) continue; 2809 if( mustBeUnique ){ 2810 if( pIdx->nKeyCol>nExpr 2811 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2812 ){ 2813 continue; /* This index is not unique over the IN RHS columns */ 2814 } 2815 } 2816 2817 colUsed = 0; /* Columns of index used so far */ 2818 for(i=0; i<nExpr; i++){ 2819 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2820 Expr *pRhs = pEList->a[i].pExpr; 2821 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2822 int j; 2823 2824 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2825 for(j=0; j<nExpr; j++){ 2826 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2827 assert( pIdx->azColl[j] ); 2828 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2829 continue; 2830 } 2831 break; 2832 } 2833 if( j==nExpr ) break; 2834 mCol = MASKBIT(j); 2835 if( mCol & colUsed ) break; /* Each column used only once */ 2836 colUsed |= mCol; 2837 if( aiMap ) aiMap[i] = j; 2838 } 2839 2840 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2841 if( colUsed==(MASKBIT(nExpr)-1) ){ 2842 /* If we reach this point, that means the index pIdx is usable */ 2843 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2844 ExplainQueryPlan((pParse, 0, 2845 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2846 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2847 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2848 VdbeComment((v, "%s", pIdx->zName)); 2849 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2850 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2851 2852 if( prRhsHasNull ){ 2853 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2854 i64 mask = (1<<nExpr)-1; 2855 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2856 iTab, 0, 0, (u8*)&mask, P4_INT64); 2857 #endif 2858 *prRhsHasNull = ++pParse->nMem; 2859 if( nExpr==1 ){ 2860 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2861 } 2862 } 2863 sqlite3VdbeJumpHere(v, iAddr); 2864 } 2865 } /* End loop over indexes */ 2866 } /* End if( affinity_ok ) */ 2867 } /* End if not an rowid index */ 2868 } /* End attempt to optimize using an index */ 2869 2870 /* If no preexisting index is available for the IN clause 2871 ** and IN_INDEX_NOOP is an allowed reply 2872 ** and the RHS of the IN operator is a list, not a subquery 2873 ** and the RHS is not constant or has two or fewer terms, 2874 ** then it is not worth creating an ephemeral table to evaluate 2875 ** the IN operator so return IN_INDEX_NOOP. 2876 */ 2877 if( eType==0 2878 && (inFlags & IN_INDEX_NOOP_OK) 2879 && ExprUseXList(pX) 2880 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2881 ){ 2882 eType = IN_INDEX_NOOP; 2883 } 2884 2885 if( eType==0 ){ 2886 /* Could not find an existing table or index to use as the RHS b-tree. 2887 ** We will have to generate an ephemeral table to do the job. 2888 */ 2889 u32 savedNQueryLoop = pParse->nQueryLoop; 2890 int rMayHaveNull = 0; 2891 eType = IN_INDEX_EPH; 2892 if( inFlags & IN_INDEX_LOOP ){ 2893 pParse->nQueryLoop = 0; 2894 }else if( prRhsHasNull ){ 2895 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2896 } 2897 assert( pX->op==TK_IN ); 2898 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2899 if( rMayHaveNull ){ 2900 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2901 } 2902 pParse->nQueryLoop = savedNQueryLoop; 2903 } 2904 2905 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2906 int i, n; 2907 n = sqlite3ExprVectorSize(pX->pLeft); 2908 for(i=0; i<n; i++) aiMap[i] = i; 2909 } 2910 *piTab = iTab; 2911 return eType; 2912 } 2913 #endif 2914 2915 #ifndef SQLITE_OMIT_SUBQUERY 2916 /* 2917 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2918 ** function allocates and returns a nul-terminated string containing 2919 ** the affinities to be used for each column of the comparison. 2920 ** 2921 ** It is the responsibility of the caller to ensure that the returned 2922 ** string is eventually freed using sqlite3DbFree(). 2923 */ 2924 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2925 Expr *pLeft = pExpr->pLeft; 2926 int nVal = sqlite3ExprVectorSize(pLeft); 2927 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2928 char *zRet; 2929 2930 assert( pExpr->op==TK_IN ); 2931 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2932 if( zRet ){ 2933 int i; 2934 for(i=0; i<nVal; i++){ 2935 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2936 char a = sqlite3ExprAffinity(pA); 2937 if( pSelect ){ 2938 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2939 }else{ 2940 zRet[i] = a; 2941 } 2942 } 2943 zRet[nVal] = '\0'; 2944 } 2945 return zRet; 2946 } 2947 #endif 2948 2949 #ifndef SQLITE_OMIT_SUBQUERY 2950 /* 2951 ** Load the Parse object passed as the first argument with an error 2952 ** message of the form: 2953 ** 2954 ** "sub-select returns N columns - expected M" 2955 */ 2956 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2957 if( pParse->nErr==0 ){ 2958 const char *zFmt = "sub-select returns %d columns - expected %d"; 2959 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2960 } 2961 } 2962 #endif 2963 2964 /* 2965 ** Expression pExpr is a vector that has been used in a context where 2966 ** it is not permitted. If pExpr is a sub-select vector, this routine 2967 ** loads the Parse object with a message of the form: 2968 ** 2969 ** "sub-select returns N columns - expected 1" 2970 ** 2971 ** Or, if it is a regular scalar vector: 2972 ** 2973 ** "row value misused" 2974 */ 2975 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2976 #ifndef SQLITE_OMIT_SUBQUERY 2977 if( ExprUseXSelect(pExpr) ){ 2978 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2979 }else 2980 #endif 2981 { 2982 sqlite3ErrorMsg(pParse, "row value misused"); 2983 } 2984 } 2985 2986 #ifndef SQLITE_OMIT_SUBQUERY 2987 /* 2988 ** Generate code that will construct an ephemeral table containing all terms 2989 ** in the RHS of an IN operator. The IN operator can be in either of two 2990 ** forms: 2991 ** 2992 ** x IN (4,5,11) -- IN operator with list on right-hand side 2993 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2994 ** 2995 ** The pExpr parameter is the IN operator. The cursor number for the 2996 ** constructed ephermeral table is returned. The first time the ephemeral 2997 ** table is computed, the cursor number is also stored in pExpr->iTable, 2998 ** however the cursor number returned might not be the same, as it might 2999 ** have been duplicated using OP_OpenDup. 3000 ** 3001 ** If the LHS expression ("x" in the examples) is a column value, or 3002 ** the SELECT statement returns a column value, then the affinity of that 3003 ** column is used to build the index keys. If both 'x' and the 3004 ** SELECT... statement are columns, then numeric affinity is used 3005 ** if either column has NUMERIC or INTEGER affinity. If neither 3006 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3007 ** is used. 3008 */ 3009 void sqlite3CodeRhsOfIN( 3010 Parse *pParse, /* Parsing context */ 3011 Expr *pExpr, /* The IN operator */ 3012 int iTab /* Use this cursor number */ 3013 ){ 3014 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3015 int addr; /* Address of OP_OpenEphemeral instruction */ 3016 Expr *pLeft; /* the LHS of the IN operator */ 3017 KeyInfo *pKeyInfo = 0; /* Key information */ 3018 int nVal; /* Size of vector pLeft */ 3019 Vdbe *v; /* The prepared statement under construction */ 3020 3021 v = pParse->pVdbe; 3022 assert( v!=0 ); 3023 3024 /* The evaluation of the IN must be repeated every time it 3025 ** is encountered if any of the following is true: 3026 ** 3027 ** * The right-hand side is a correlated subquery 3028 ** * The right-hand side is an expression list containing variables 3029 ** * We are inside a trigger 3030 ** 3031 ** If all of the above are false, then we can compute the RHS just once 3032 ** and reuse it many names. 3033 */ 3034 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3035 /* Reuse of the RHS is allowed */ 3036 /* If this routine has already been coded, but the previous code 3037 ** might not have been invoked yet, so invoke it now as a subroutine. 3038 */ 3039 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3040 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3041 if( ExprUseXSelect(pExpr) ){ 3042 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3043 pExpr->x.pSelect->selId)); 3044 } 3045 assert( ExprUseYSub(pExpr) ); 3046 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3047 pExpr->y.sub.iAddr); 3048 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3049 sqlite3VdbeJumpHere(v, addrOnce); 3050 return; 3051 } 3052 3053 /* Begin coding the subroutine */ 3054 assert( !ExprUseYWin(pExpr) ); 3055 ExprSetProperty(pExpr, EP_Subrtn); 3056 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3057 pExpr->y.sub.regReturn = ++pParse->nMem; 3058 pExpr->y.sub.iAddr = 3059 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3060 3061 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3062 } 3063 3064 /* Check to see if this is a vector IN operator */ 3065 pLeft = pExpr->pLeft; 3066 nVal = sqlite3ExprVectorSize(pLeft); 3067 3068 /* Construct the ephemeral table that will contain the content of 3069 ** RHS of the IN operator. 3070 */ 3071 pExpr->iTable = iTab; 3072 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3073 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3074 if( ExprUseXSelect(pExpr) ){ 3075 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3076 }else{ 3077 VdbeComment((v, "RHS of IN operator")); 3078 } 3079 #endif 3080 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3081 3082 if( ExprUseXSelect(pExpr) ){ 3083 /* Case 1: expr IN (SELECT ...) 3084 ** 3085 ** Generate code to write the results of the select into the temporary 3086 ** table allocated and opened above. 3087 */ 3088 Select *pSelect = pExpr->x.pSelect; 3089 ExprList *pEList = pSelect->pEList; 3090 3091 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3092 addrOnce?"":"CORRELATED ", pSelect->selId 3093 )); 3094 /* If the LHS and RHS of the IN operator do not match, that 3095 ** error will have been caught long before we reach this point. */ 3096 if( ALWAYS(pEList->nExpr==nVal) ){ 3097 Select *pCopy; 3098 SelectDest dest; 3099 int i; 3100 int rc; 3101 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3102 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3103 pSelect->iLimit = 0; 3104 testcase( pSelect->selFlags & SF_Distinct ); 3105 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3106 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3107 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3108 sqlite3SelectDelete(pParse->db, pCopy); 3109 sqlite3DbFree(pParse->db, dest.zAffSdst); 3110 if( rc ){ 3111 sqlite3KeyInfoUnref(pKeyInfo); 3112 return; 3113 } 3114 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3115 assert( pEList!=0 ); 3116 assert( pEList->nExpr>0 ); 3117 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3118 for(i=0; i<nVal; i++){ 3119 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3120 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3121 pParse, p, pEList->a[i].pExpr 3122 ); 3123 } 3124 } 3125 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3126 /* Case 2: expr IN (exprlist) 3127 ** 3128 ** For each expression, build an index key from the evaluation and 3129 ** store it in the temporary table. If <expr> is a column, then use 3130 ** that columns affinity when building index keys. If <expr> is not 3131 ** a column, use numeric affinity. 3132 */ 3133 char affinity; /* Affinity of the LHS of the IN */ 3134 int i; 3135 ExprList *pList = pExpr->x.pList; 3136 struct ExprList_item *pItem; 3137 int r1, r2; 3138 affinity = sqlite3ExprAffinity(pLeft); 3139 if( affinity<=SQLITE_AFF_NONE ){ 3140 affinity = SQLITE_AFF_BLOB; 3141 }else if( affinity==SQLITE_AFF_REAL ){ 3142 affinity = SQLITE_AFF_NUMERIC; 3143 } 3144 if( pKeyInfo ){ 3145 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3146 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3147 } 3148 3149 /* Loop through each expression in <exprlist>. */ 3150 r1 = sqlite3GetTempReg(pParse); 3151 r2 = sqlite3GetTempReg(pParse); 3152 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3153 Expr *pE2 = pItem->pExpr; 3154 3155 /* If the expression is not constant then we will need to 3156 ** disable the test that was generated above that makes sure 3157 ** this code only executes once. Because for a non-constant 3158 ** expression we need to rerun this code each time. 3159 */ 3160 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3161 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3162 sqlite3VdbeChangeToNoop(v, addrOnce); 3163 ExprClearProperty(pExpr, EP_Subrtn); 3164 addrOnce = 0; 3165 } 3166 3167 /* Evaluate the expression and insert it into the temp table */ 3168 sqlite3ExprCode(pParse, pE2, r1); 3169 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3170 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3171 } 3172 sqlite3ReleaseTempReg(pParse, r1); 3173 sqlite3ReleaseTempReg(pParse, r2); 3174 } 3175 if( pKeyInfo ){ 3176 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3177 } 3178 if( addrOnce ){ 3179 sqlite3VdbeJumpHere(v, addrOnce); 3180 /* Subroutine return */ 3181 assert( ExprUseYSub(pExpr) ); 3182 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3183 || pParse->nErr ); 3184 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 0, 3185 pExpr->y.sub.iAddr-1); 3186 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3187 sqlite3ClearTempRegCache(pParse); 3188 } 3189 } 3190 #endif /* SQLITE_OMIT_SUBQUERY */ 3191 3192 /* 3193 ** Generate code for scalar subqueries used as a subquery expression 3194 ** or EXISTS operator: 3195 ** 3196 ** (SELECT a FROM b) -- subquery 3197 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3198 ** 3199 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3200 ** 3201 ** Return the register that holds the result. For a multi-column SELECT, 3202 ** the result is stored in a contiguous array of registers and the 3203 ** return value is the register of the left-most result column. 3204 ** Return 0 if an error occurs. 3205 */ 3206 #ifndef SQLITE_OMIT_SUBQUERY 3207 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3208 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3209 int rReg = 0; /* Register storing resulting */ 3210 Select *pSel; /* SELECT statement to encode */ 3211 SelectDest dest; /* How to deal with SELECT result */ 3212 int nReg; /* Registers to allocate */ 3213 Expr *pLimit; /* New limit expression */ 3214 3215 Vdbe *v = pParse->pVdbe; 3216 assert( v!=0 ); 3217 if( pParse->nErr ) return 0; 3218 testcase( pExpr->op==TK_EXISTS ); 3219 testcase( pExpr->op==TK_SELECT ); 3220 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3221 assert( ExprUseXSelect(pExpr) ); 3222 pSel = pExpr->x.pSelect; 3223 3224 /* If this routine has already been coded, then invoke it as a 3225 ** subroutine. */ 3226 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3227 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3228 assert( ExprUseYSub(pExpr) ); 3229 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3230 pExpr->y.sub.iAddr); 3231 return pExpr->iTable; 3232 } 3233 3234 /* Begin coding the subroutine */ 3235 assert( !ExprUseYWin(pExpr) ); 3236 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3237 ExprSetProperty(pExpr, EP_Subrtn); 3238 pExpr->y.sub.regReturn = ++pParse->nMem; 3239 pExpr->y.sub.iAddr = 3240 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3241 3242 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3243 ** is encountered if any of the following is true: 3244 ** 3245 ** * The right-hand side is a correlated subquery 3246 ** * The right-hand side is an expression list containing variables 3247 ** * We are inside a trigger 3248 ** 3249 ** If all of the above are false, then we can run this code just once 3250 ** save the results, and reuse the same result on subsequent invocations. 3251 */ 3252 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3253 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3254 } 3255 3256 /* For a SELECT, generate code to put the values for all columns of 3257 ** the first row into an array of registers and return the index of 3258 ** the first register. 3259 ** 3260 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3261 ** into a register and return that register number. 3262 ** 3263 ** In both cases, the query is augmented with "LIMIT 1". Any 3264 ** preexisting limit is discarded in place of the new LIMIT 1. 3265 */ 3266 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3267 addrOnce?"":"CORRELATED ", pSel->selId)); 3268 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3269 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3270 pParse->nMem += nReg; 3271 if( pExpr->op==TK_SELECT ){ 3272 dest.eDest = SRT_Mem; 3273 dest.iSdst = dest.iSDParm; 3274 dest.nSdst = nReg; 3275 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3276 VdbeComment((v, "Init subquery result")); 3277 }else{ 3278 dest.eDest = SRT_Exists; 3279 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3280 VdbeComment((v, "Init EXISTS result")); 3281 } 3282 if( pSel->pLimit ){ 3283 /* The subquery already has a limit. If the pre-existing limit is X 3284 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3285 sqlite3 *db = pParse->db; 3286 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3287 if( pLimit ){ 3288 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3289 pLimit = sqlite3PExpr(pParse, TK_NE, 3290 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3291 } 3292 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3293 pSel->pLimit->pLeft = pLimit; 3294 }else{ 3295 /* If there is no pre-existing limit add a limit of 1 */ 3296 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3297 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3298 } 3299 pSel->iLimit = 0; 3300 if( sqlite3Select(pParse, pSel, &dest) ){ 3301 pExpr->op2 = pExpr->op; 3302 pExpr->op = TK_ERROR; 3303 return 0; 3304 } 3305 pExpr->iTable = rReg = dest.iSDParm; 3306 ExprSetVVAProperty(pExpr, EP_NoReduce); 3307 if( addrOnce ){ 3308 sqlite3VdbeJumpHere(v, addrOnce); 3309 } 3310 3311 /* Subroutine return */ 3312 assert( ExprUseYSub(pExpr) ); 3313 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3314 || pParse->nErr ); 3315 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 0, 3316 pExpr->y.sub.iAddr-1); 3317 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3318 sqlite3ClearTempRegCache(pParse); 3319 return rReg; 3320 } 3321 #endif /* SQLITE_OMIT_SUBQUERY */ 3322 3323 #ifndef SQLITE_OMIT_SUBQUERY 3324 /* 3325 ** Expr pIn is an IN(...) expression. This function checks that the 3326 ** sub-select on the RHS of the IN() operator has the same number of 3327 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3328 ** a sub-query, that the LHS is a vector of size 1. 3329 */ 3330 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3331 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3332 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3333 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3334 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3335 return 1; 3336 } 3337 }else if( nVector!=1 ){ 3338 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3339 return 1; 3340 } 3341 return 0; 3342 } 3343 #endif 3344 3345 #ifndef SQLITE_OMIT_SUBQUERY 3346 /* 3347 ** Generate code for an IN expression. 3348 ** 3349 ** x IN (SELECT ...) 3350 ** x IN (value, value, ...) 3351 ** 3352 ** The left-hand side (LHS) is a scalar or vector expression. The 3353 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3354 ** subquery. If the RHS is a subquery, the number of result columns must 3355 ** match the number of columns in the vector on the LHS. If the RHS is 3356 ** a list of values, the LHS must be a scalar. 3357 ** 3358 ** The IN operator is true if the LHS value is contained within the RHS. 3359 ** The result is false if the LHS is definitely not in the RHS. The 3360 ** result is NULL if the presence of the LHS in the RHS cannot be 3361 ** determined due to NULLs. 3362 ** 3363 ** This routine generates code that jumps to destIfFalse if the LHS is not 3364 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3365 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3366 ** within the RHS then fall through. 3367 ** 3368 ** See the separate in-operator.md documentation file in the canonical 3369 ** SQLite source tree for additional information. 3370 */ 3371 static void sqlite3ExprCodeIN( 3372 Parse *pParse, /* Parsing and code generating context */ 3373 Expr *pExpr, /* The IN expression */ 3374 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3375 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3376 ){ 3377 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3378 int eType; /* Type of the RHS */ 3379 int rLhs; /* Register(s) holding the LHS values */ 3380 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3381 Vdbe *v; /* Statement under construction */ 3382 int *aiMap = 0; /* Map from vector field to index column */ 3383 char *zAff = 0; /* Affinity string for comparisons */ 3384 int nVector; /* Size of vectors for this IN operator */ 3385 int iDummy; /* Dummy parameter to exprCodeVector() */ 3386 Expr *pLeft; /* The LHS of the IN operator */ 3387 int i; /* loop counter */ 3388 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3389 int destStep6 = 0; /* Start of code for Step 6 */ 3390 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3391 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3392 int addrTop; /* Top of the step-6 loop */ 3393 int iTab = 0; /* Index to use */ 3394 u8 okConstFactor = pParse->okConstFactor; 3395 3396 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3397 pLeft = pExpr->pLeft; 3398 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3399 zAff = exprINAffinity(pParse, pExpr); 3400 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3401 aiMap = (int*)sqlite3DbMallocZero( 3402 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3403 ); 3404 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3405 3406 /* Attempt to compute the RHS. After this step, if anything other than 3407 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3408 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3409 ** the RHS has not yet been coded. */ 3410 v = pParse->pVdbe; 3411 assert( v!=0 ); /* OOM detected prior to this routine */ 3412 VdbeNoopComment((v, "begin IN expr")); 3413 eType = sqlite3FindInIndex(pParse, pExpr, 3414 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3415 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3416 aiMap, &iTab); 3417 3418 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3419 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3420 ); 3421 #ifdef SQLITE_DEBUG 3422 /* Confirm that aiMap[] contains nVector integer values between 0 and 3423 ** nVector-1. */ 3424 for(i=0; i<nVector; i++){ 3425 int j, cnt; 3426 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3427 assert( cnt==1 ); 3428 } 3429 #endif 3430 3431 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3432 ** vector, then it is stored in an array of nVector registers starting 3433 ** at r1. 3434 ** 3435 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3436 ** so that the fields are in the same order as an existing index. The 3437 ** aiMap[] array contains a mapping from the original LHS field order to 3438 ** the field order that matches the RHS index. 3439 ** 3440 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3441 ** even if it is constant, as OP_Affinity may be used on the register 3442 ** by code generated below. */ 3443 assert( pParse->okConstFactor==okConstFactor ); 3444 pParse->okConstFactor = 0; 3445 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3446 pParse->okConstFactor = okConstFactor; 3447 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3448 if( i==nVector ){ 3449 /* LHS fields are not reordered */ 3450 rLhs = rLhsOrig; 3451 }else{ 3452 /* Need to reorder the LHS fields according to aiMap */ 3453 rLhs = sqlite3GetTempRange(pParse, nVector); 3454 for(i=0; i<nVector; i++){ 3455 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3456 } 3457 } 3458 3459 /* If sqlite3FindInIndex() did not find or create an index that is 3460 ** suitable for evaluating the IN operator, then evaluate using a 3461 ** sequence of comparisons. 3462 ** 3463 ** This is step (1) in the in-operator.md optimized algorithm. 3464 */ 3465 if( eType==IN_INDEX_NOOP ){ 3466 ExprList *pList; 3467 CollSeq *pColl; 3468 int labelOk = sqlite3VdbeMakeLabel(pParse); 3469 int r2, regToFree; 3470 int regCkNull = 0; 3471 int ii; 3472 assert( ExprUseXList(pExpr) ); 3473 pList = pExpr->x.pList; 3474 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3475 if( destIfNull!=destIfFalse ){ 3476 regCkNull = sqlite3GetTempReg(pParse); 3477 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3478 } 3479 for(ii=0; ii<pList->nExpr; ii++){ 3480 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3481 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3482 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3483 } 3484 sqlite3ReleaseTempReg(pParse, regToFree); 3485 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3486 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3487 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3488 (void*)pColl, P4_COLLSEQ); 3489 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3490 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3491 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3492 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3493 sqlite3VdbeChangeP5(v, zAff[0]); 3494 }else{ 3495 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3496 assert( destIfNull==destIfFalse ); 3497 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3498 (void*)pColl, P4_COLLSEQ); 3499 VdbeCoverageIf(v, op==OP_Ne); 3500 VdbeCoverageIf(v, op==OP_IsNull); 3501 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3502 } 3503 } 3504 if( regCkNull ){ 3505 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3506 sqlite3VdbeGoto(v, destIfFalse); 3507 } 3508 sqlite3VdbeResolveLabel(v, labelOk); 3509 sqlite3ReleaseTempReg(pParse, regCkNull); 3510 goto sqlite3ExprCodeIN_finished; 3511 } 3512 3513 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3514 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3515 ** We will then skip the binary search of the RHS. 3516 */ 3517 if( destIfNull==destIfFalse ){ 3518 destStep2 = destIfFalse; 3519 }else{ 3520 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3521 } 3522 for(i=0; i<nVector; i++){ 3523 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3524 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3525 if( sqlite3ExprCanBeNull(p) ){ 3526 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3527 VdbeCoverage(v); 3528 } 3529 } 3530 3531 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3532 ** of the RHS using the LHS as a probe. If found, the result is 3533 ** true. 3534 */ 3535 if( eType==IN_INDEX_ROWID ){ 3536 /* In this case, the RHS is the ROWID of table b-tree and so we also 3537 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3538 ** into a single opcode. */ 3539 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3540 VdbeCoverage(v); 3541 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3542 }else{ 3543 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3544 if( destIfFalse==destIfNull ){ 3545 /* Combine Step 3 and Step 5 into a single opcode */ 3546 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3547 rLhs, nVector); VdbeCoverage(v); 3548 goto sqlite3ExprCodeIN_finished; 3549 } 3550 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3551 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3552 rLhs, nVector); VdbeCoverage(v); 3553 } 3554 3555 /* Step 4. If the RHS is known to be non-NULL and we did not find 3556 ** an match on the search above, then the result must be FALSE. 3557 */ 3558 if( rRhsHasNull && nVector==1 ){ 3559 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3560 VdbeCoverage(v); 3561 } 3562 3563 /* Step 5. If we do not care about the difference between NULL and 3564 ** FALSE, then just return false. 3565 */ 3566 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3567 3568 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3569 ** If any comparison is NULL, then the result is NULL. If all 3570 ** comparisons are FALSE then the final result is FALSE. 3571 ** 3572 ** For a scalar LHS, it is sufficient to check just the first row 3573 ** of the RHS. 3574 */ 3575 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3576 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3577 VdbeCoverage(v); 3578 if( nVector>1 ){ 3579 destNotNull = sqlite3VdbeMakeLabel(pParse); 3580 }else{ 3581 /* For nVector==1, combine steps 6 and 7 by immediately returning 3582 ** FALSE if the first comparison is not NULL */ 3583 destNotNull = destIfFalse; 3584 } 3585 for(i=0; i<nVector; i++){ 3586 Expr *p; 3587 CollSeq *pColl; 3588 int r3 = sqlite3GetTempReg(pParse); 3589 p = sqlite3VectorFieldSubexpr(pLeft, i); 3590 pColl = sqlite3ExprCollSeq(pParse, p); 3591 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3592 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3593 (void*)pColl, P4_COLLSEQ); 3594 VdbeCoverage(v); 3595 sqlite3ReleaseTempReg(pParse, r3); 3596 } 3597 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3598 if( nVector>1 ){ 3599 sqlite3VdbeResolveLabel(v, destNotNull); 3600 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3601 VdbeCoverage(v); 3602 3603 /* Step 7: If we reach this point, we know that the result must 3604 ** be false. */ 3605 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3606 } 3607 3608 /* Jumps here in order to return true. */ 3609 sqlite3VdbeJumpHere(v, addrTruthOp); 3610 3611 sqlite3ExprCodeIN_finished: 3612 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3613 VdbeComment((v, "end IN expr")); 3614 sqlite3ExprCodeIN_oom_error: 3615 sqlite3DbFree(pParse->db, aiMap); 3616 sqlite3DbFree(pParse->db, zAff); 3617 } 3618 #endif /* SQLITE_OMIT_SUBQUERY */ 3619 3620 #ifndef SQLITE_OMIT_FLOATING_POINT 3621 /* 3622 ** Generate an instruction that will put the floating point 3623 ** value described by z[0..n-1] into register iMem. 3624 ** 3625 ** The z[] string will probably not be zero-terminated. But the 3626 ** z[n] character is guaranteed to be something that does not look 3627 ** like the continuation of the number. 3628 */ 3629 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3630 if( ALWAYS(z!=0) ){ 3631 double value; 3632 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3633 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3634 if( negateFlag ) value = -value; 3635 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3636 } 3637 } 3638 #endif 3639 3640 3641 /* 3642 ** Generate an instruction that will put the integer describe by 3643 ** text z[0..n-1] into register iMem. 3644 ** 3645 ** Expr.u.zToken is always UTF8 and zero-terminated. 3646 */ 3647 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3648 Vdbe *v = pParse->pVdbe; 3649 if( pExpr->flags & EP_IntValue ){ 3650 int i = pExpr->u.iValue; 3651 assert( i>=0 ); 3652 if( negFlag ) i = -i; 3653 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3654 }else{ 3655 int c; 3656 i64 value; 3657 const char *z = pExpr->u.zToken; 3658 assert( z!=0 ); 3659 c = sqlite3DecOrHexToI64(z, &value); 3660 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3661 #ifdef SQLITE_OMIT_FLOATING_POINT 3662 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3663 #else 3664 #ifndef SQLITE_OMIT_HEX_INTEGER 3665 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3666 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3667 negFlag?"-":"",pExpr); 3668 }else 3669 #endif 3670 { 3671 codeReal(v, z, negFlag, iMem); 3672 } 3673 #endif 3674 }else{ 3675 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3676 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3677 } 3678 } 3679 } 3680 3681 3682 /* Generate code that will load into register regOut a value that is 3683 ** appropriate for the iIdxCol-th column of index pIdx. 3684 */ 3685 void sqlite3ExprCodeLoadIndexColumn( 3686 Parse *pParse, /* The parsing context */ 3687 Index *pIdx, /* The index whose column is to be loaded */ 3688 int iTabCur, /* Cursor pointing to a table row */ 3689 int iIdxCol, /* The column of the index to be loaded */ 3690 int regOut /* Store the index column value in this register */ 3691 ){ 3692 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3693 if( iTabCol==XN_EXPR ){ 3694 assert( pIdx->aColExpr ); 3695 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3696 pParse->iSelfTab = iTabCur + 1; 3697 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3698 pParse->iSelfTab = 0; 3699 }else{ 3700 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3701 iTabCol, regOut); 3702 } 3703 } 3704 3705 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3706 /* 3707 ** Generate code that will compute the value of generated column pCol 3708 ** and store the result in register regOut 3709 */ 3710 void sqlite3ExprCodeGeneratedColumn( 3711 Parse *pParse, /* Parsing context */ 3712 Table *pTab, /* Table containing the generated column */ 3713 Column *pCol, /* The generated column */ 3714 int regOut /* Put the result in this register */ 3715 ){ 3716 int iAddr; 3717 Vdbe *v = pParse->pVdbe; 3718 assert( v!=0 ); 3719 assert( pParse->iSelfTab!=0 ); 3720 if( pParse->iSelfTab>0 ){ 3721 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3722 }else{ 3723 iAddr = 0; 3724 } 3725 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3726 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3727 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3728 } 3729 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3730 } 3731 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3732 3733 /* 3734 ** Generate code to extract the value of the iCol-th column of a table. 3735 */ 3736 void sqlite3ExprCodeGetColumnOfTable( 3737 Vdbe *v, /* Parsing context */ 3738 Table *pTab, /* The table containing the value */ 3739 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3740 int iCol, /* Index of the column to extract */ 3741 int regOut /* Extract the value into this register */ 3742 ){ 3743 Column *pCol; 3744 assert( v!=0 ); 3745 if( pTab==0 ){ 3746 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3747 return; 3748 } 3749 if( iCol<0 || iCol==pTab->iPKey ){ 3750 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3751 }else{ 3752 int op; 3753 int x; 3754 if( IsVirtual(pTab) ){ 3755 op = OP_VColumn; 3756 x = iCol; 3757 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3758 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3759 Parse *pParse = sqlite3VdbeParser(v); 3760 if( pCol->colFlags & COLFLAG_BUSY ){ 3761 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3762 pCol->zCnName); 3763 }else{ 3764 int savedSelfTab = pParse->iSelfTab; 3765 pCol->colFlags |= COLFLAG_BUSY; 3766 pParse->iSelfTab = iTabCur+1; 3767 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3768 pParse->iSelfTab = savedSelfTab; 3769 pCol->colFlags &= ~COLFLAG_BUSY; 3770 } 3771 return; 3772 #endif 3773 }else if( !HasRowid(pTab) ){ 3774 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3775 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3776 op = OP_Column; 3777 }else{ 3778 x = sqlite3TableColumnToStorage(pTab,iCol); 3779 testcase( x!=iCol ); 3780 op = OP_Column; 3781 } 3782 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3783 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3784 } 3785 } 3786 3787 /* 3788 ** Generate code that will extract the iColumn-th column from 3789 ** table pTab and store the column value in register iReg. 3790 ** 3791 ** There must be an open cursor to pTab in iTable when this routine 3792 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3793 */ 3794 int sqlite3ExprCodeGetColumn( 3795 Parse *pParse, /* Parsing and code generating context */ 3796 Table *pTab, /* Description of the table we are reading from */ 3797 int iColumn, /* Index of the table column */ 3798 int iTable, /* The cursor pointing to the table */ 3799 int iReg, /* Store results here */ 3800 u8 p5 /* P5 value for OP_Column + FLAGS */ 3801 ){ 3802 assert( pParse->pVdbe!=0 ); 3803 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3804 if( p5 ){ 3805 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3806 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3807 } 3808 return iReg; 3809 } 3810 3811 /* 3812 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3813 ** over to iTo..iTo+nReg-1. 3814 */ 3815 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3816 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3817 } 3818 3819 /* 3820 ** Convert a scalar expression node to a TK_REGISTER referencing 3821 ** register iReg. The caller must ensure that iReg already contains 3822 ** the correct value for the expression. 3823 */ 3824 static void exprToRegister(Expr *pExpr, int iReg){ 3825 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3826 if( NEVER(p==0) ) return; 3827 p->op2 = p->op; 3828 p->op = TK_REGISTER; 3829 p->iTable = iReg; 3830 ExprClearProperty(p, EP_Skip); 3831 } 3832 3833 /* 3834 ** Evaluate an expression (either a vector or a scalar expression) and store 3835 ** the result in continguous temporary registers. Return the index of 3836 ** the first register used to store the result. 3837 ** 3838 ** If the returned result register is a temporary scalar, then also write 3839 ** that register number into *piFreeable. If the returned result register 3840 ** is not a temporary or if the expression is a vector set *piFreeable 3841 ** to 0. 3842 */ 3843 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3844 int iResult; 3845 int nResult = sqlite3ExprVectorSize(p); 3846 if( nResult==1 ){ 3847 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3848 }else{ 3849 *piFreeable = 0; 3850 if( p->op==TK_SELECT ){ 3851 #if SQLITE_OMIT_SUBQUERY 3852 iResult = 0; 3853 #else 3854 iResult = sqlite3CodeSubselect(pParse, p); 3855 #endif 3856 }else{ 3857 int i; 3858 iResult = pParse->nMem+1; 3859 pParse->nMem += nResult; 3860 assert( ExprUseXList(p) ); 3861 for(i=0; i<nResult; i++){ 3862 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3863 } 3864 } 3865 } 3866 return iResult; 3867 } 3868 3869 /* 3870 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3871 ** so that a subsequent copy will not be merged into this one. 3872 */ 3873 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3874 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3875 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3876 } 3877 } 3878 3879 /* 3880 ** Generate code to implement special SQL functions that are implemented 3881 ** in-line rather than by using the usual callbacks. 3882 */ 3883 static int exprCodeInlineFunction( 3884 Parse *pParse, /* Parsing context */ 3885 ExprList *pFarg, /* List of function arguments */ 3886 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3887 int target /* Store function result in this register */ 3888 ){ 3889 int nFarg; 3890 Vdbe *v = pParse->pVdbe; 3891 assert( v!=0 ); 3892 assert( pFarg!=0 ); 3893 nFarg = pFarg->nExpr; 3894 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3895 switch( iFuncId ){ 3896 case INLINEFUNC_coalesce: { 3897 /* Attempt a direct implementation of the built-in COALESCE() and 3898 ** IFNULL() functions. This avoids unnecessary evaluation of 3899 ** arguments past the first non-NULL argument. 3900 */ 3901 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3902 int i; 3903 assert( nFarg>=2 ); 3904 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3905 for(i=1; i<nFarg; i++){ 3906 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3907 VdbeCoverage(v); 3908 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3909 } 3910 setDoNotMergeFlagOnCopy(v); 3911 sqlite3VdbeResolveLabel(v, endCoalesce); 3912 break; 3913 } 3914 case INLINEFUNC_iif: { 3915 Expr caseExpr; 3916 memset(&caseExpr, 0, sizeof(caseExpr)); 3917 caseExpr.op = TK_CASE; 3918 caseExpr.x.pList = pFarg; 3919 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3920 } 3921 3922 default: { 3923 /* The UNLIKELY() function is a no-op. The result is the value 3924 ** of the first argument. 3925 */ 3926 assert( nFarg==1 || nFarg==2 ); 3927 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3928 break; 3929 } 3930 3931 /*********************************************************************** 3932 ** Test-only SQL functions that are only usable if enabled 3933 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3934 */ 3935 #if !defined(SQLITE_UNTESTABLE) 3936 case INLINEFUNC_expr_compare: { 3937 /* Compare two expressions using sqlite3ExprCompare() */ 3938 assert( nFarg==2 ); 3939 sqlite3VdbeAddOp2(v, OP_Integer, 3940 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3941 target); 3942 break; 3943 } 3944 3945 case INLINEFUNC_expr_implies_expr: { 3946 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3947 assert( nFarg==2 ); 3948 sqlite3VdbeAddOp2(v, OP_Integer, 3949 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3950 target); 3951 break; 3952 } 3953 3954 case INLINEFUNC_implies_nonnull_row: { 3955 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3956 Expr *pA1; 3957 assert( nFarg==2 ); 3958 pA1 = pFarg->a[1].pExpr; 3959 if( pA1->op==TK_COLUMN ){ 3960 sqlite3VdbeAddOp2(v, OP_Integer, 3961 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3962 target); 3963 }else{ 3964 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3965 } 3966 break; 3967 } 3968 3969 case INLINEFUNC_affinity: { 3970 /* The AFFINITY() function evaluates to a string that describes 3971 ** the type affinity of the argument. This is used for testing of 3972 ** the SQLite type logic. 3973 */ 3974 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3975 char aff; 3976 assert( nFarg==1 ); 3977 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3978 sqlite3VdbeLoadString(v, target, 3979 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3980 break; 3981 } 3982 #endif /* !defined(SQLITE_UNTESTABLE) */ 3983 } 3984 return target; 3985 } 3986 3987 3988 /* 3989 ** Generate code into the current Vdbe to evaluate the given 3990 ** expression. Attempt to store the results in register "target". 3991 ** Return the register where results are stored. 3992 ** 3993 ** With this routine, there is no guarantee that results will 3994 ** be stored in target. The result might be stored in some other 3995 ** register if it is convenient to do so. The calling function 3996 ** must check the return code and move the results to the desired 3997 ** register. 3998 */ 3999 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4000 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4001 int op; /* The opcode being coded */ 4002 int inReg = target; /* Results stored in register inReg */ 4003 int regFree1 = 0; /* If non-zero free this temporary register */ 4004 int regFree2 = 0; /* If non-zero free this temporary register */ 4005 int r1, r2; /* Various register numbers */ 4006 Expr tempX; /* Temporary expression node */ 4007 int p5 = 0; 4008 4009 assert( target>0 && target<=pParse->nMem ); 4010 assert( v!=0 ); 4011 4012 expr_code_doover: 4013 if( pExpr==0 ){ 4014 op = TK_NULL; 4015 }else{ 4016 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4017 op = pExpr->op; 4018 } 4019 switch( op ){ 4020 case TK_AGG_COLUMN: { 4021 AggInfo *pAggInfo = pExpr->pAggInfo; 4022 struct AggInfo_col *pCol; 4023 assert( pAggInfo!=0 ); 4024 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4025 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4026 if( !pAggInfo->directMode ){ 4027 assert( pCol->iMem>0 ); 4028 return pCol->iMem; 4029 }else if( pAggInfo->useSortingIdx ){ 4030 Table *pTab = pCol->pTab; 4031 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4032 pCol->iSorterColumn, target); 4033 if( pCol->iColumn<0 ){ 4034 VdbeComment((v,"%s.rowid",pTab->zName)); 4035 }else{ 4036 VdbeComment((v,"%s.%s", 4037 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4038 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4039 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4040 } 4041 } 4042 return target; 4043 } 4044 /* Otherwise, fall thru into the TK_COLUMN case */ 4045 /* no break */ deliberate_fall_through 4046 } 4047 case TK_COLUMN: { 4048 int iTab = pExpr->iTable; 4049 int iReg; 4050 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4051 /* This COLUMN expression is really a constant due to WHERE clause 4052 ** constraints, and that constant is coded by the pExpr->pLeft 4053 ** expresssion. However, make sure the constant has the correct 4054 ** datatype by applying the Affinity of the table column to the 4055 ** constant. 4056 */ 4057 int aff; 4058 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4059 assert( ExprUseYTab(pExpr) ); 4060 if( pExpr->y.pTab ){ 4061 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4062 }else{ 4063 aff = pExpr->affExpr; 4064 } 4065 if( aff>SQLITE_AFF_BLOB ){ 4066 static const char zAff[] = "B\000C\000D\000E"; 4067 assert( SQLITE_AFF_BLOB=='A' ); 4068 assert( SQLITE_AFF_TEXT=='B' ); 4069 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4070 &zAff[(aff-'B')*2], P4_STATIC); 4071 } 4072 return iReg; 4073 } 4074 if( iTab<0 ){ 4075 if( pParse->iSelfTab<0 ){ 4076 /* Other columns in the same row for CHECK constraints or 4077 ** generated columns or for inserting into partial index. 4078 ** The row is unpacked into registers beginning at 4079 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4080 ** immediately prior to the first column. 4081 */ 4082 Column *pCol; 4083 Table *pTab; 4084 int iSrc; 4085 int iCol = pExpr->iColumn; 4086 assert( ExprUseYTab(pExpr) ); 4087 pTab = pExpr->y.pTab; 4088 assert( pTab!=0 ); 4089 assert( iCol>=XN_ROWID ); 4090 assert( iCol<pTab->nCol ); 4091 if( iCol<0 ){ 4092 return -1-pParse->iSelfTab; 4093 } 4094 pCol = pTab->aCol + iCol; 4095 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4096 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4097 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4098 if( pCol->colFlags & COLFLAG_GENERATED ){ 4099 if( pCol->colFlags & COLFLAG_BUSY ){ 4100 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4101 pCol->zCnName); 4102 return 0; 4103 } 4104 pCol->colFlags |= COLFLAG_BUSY; 4105 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4106 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4107 } 4108 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4109 return iSrc; 4110 }else 4111 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4112 if( pCol->affinity==SQLITE_AFF_REAL ){ 4113 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4114 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4115 return target; 4116 }else{ 4117 return iSrc; 4118 } 4119 }else{ 4120 /* Coding an expression that is part of an index where column names 4121 ** in the index refer to the table to which the index belongs */ 4122 iTab = pParse->iSelfTab - 1; 4123 } 4124 } 4125 assert( ExprUseYTab(pExpr) ); 4126 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4127 pExpr->iColumn, iTab, target, 4128 pExpr->op2); 4129 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4130 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4131 } 4132 return iReg; 4133 } 4134 case TK_INTEGER: { 4135 codeInteger(pParse, pExpr, 0, target); 4136 return target; 4137 } 4138 case TK_TRUEFALSE: { 4139 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4140 return target; 4141 } 4142 #ifndef SQLITE_OMIT_FLOATING_POINT 4143 case TK_FLOAT: { 4144 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4145 codeReal(v, pExpr->u.zToken, 0, target); 4146 return target; 4147 } 4148 #endif 4149 case TK_STRING: { 4150 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4151 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4152 return target; 4153 } 4154 default: { 4155 /* Make NULL the default case so that if a bug causes an illegal 4156 ** Expr node to be passed into this function, it will be handled 4157 ** sanely and not crash. But keep the assert() to bring the problem 4158 ** to the attention of the developers. */ 4159 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4160 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4161 return target; 4162 } 4163 #ifndef SQLITE_OMIT_BLOB_LITERAL 4164 case TK_BLOB: { 4165 int n; 4166 const char *z; 4167 char *zBlob; 4168 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4169 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4170 assert( pExpr->u.zToken[1]=='\'' ); 4171 z = &pExpr->u.zToken[2]; 4172 n = sqlite3Strlen30(z) - 1; 4173 assert( z[n]=='\'' ); 4174 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4175 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4176 return target; 4177 } 4178 #endif 4179 case TK_VARIABLE: { 4180 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4181 assert( pExpr->u.zToken!=0 ); 4182 assert( pExpr->u.zToken[0]!=0 ); 4183 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4184 if( pExpr->u.zToken[1]!=0 ){ 4185 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4186 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4187 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4188 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4189 } 4190 return target; 4191 } 4192 case TK_REGISTER: { 4193 return pExpr->iTable; 4194 } 4195 #ifndef SQLITE_OMIT_CAST 4196 case TK_CAST: { 4197 /* Expressions of the form: CAST(pLeft AS token) */ 4198 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4199 if( inReg!=target ){ 4200 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4201 inReg = target; 4202 } 4203 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4204 sqlite3VdbeAddOp2(v, OP_Cast, target, 4205 sqlite3AffinityType(pExpr->u.zToken, 0)); 4206 return inReg; 4207 } 4208 #endif /* SQLITE_OMIT_CAST */ 4209 case TK_IS: 4210 case TK_ISNOT: 4211 op = (op==TK_IS) ? TK_EQ : TK_NE; 4212 p5 = SQLITE_NULLEQ; 4213 /* fall-through */ 4214 case TK_LT: 4215 case TK_LE: 4216 case TK_GT: 4217 case TK_GE: 4218 case TK_NE: 4219 case TK_EQ: { 4220 Expr *pLeft = pExpr->pLeft; 4221 if( sqlite3ExprIsVector(pLeft) ){ 4222 codeVectorCompare(pParse, pExpr, target, op, p5); 4223 }else{ 4224 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4225 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4226 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4227 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4228 sqlite3VdbeCurrentAddr(v)+2, p5, 4229 ExprHasProperty(pExpr,EP_Commuted)); 4230 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4231 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4232 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4233 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4234 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4235 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4236 if( p5==SQLITE_NULLEQ ){ 4237 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4238 }else{ 4239 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4240 } 4241 testcase( regFree1==0 ); 4242 testcase( regFree2==0 ); 4243 } 4244 break; 4245 } 4246 case TK_AND: 4247 case TK_OR: 4248 case TK_PLUS: 4249 case TK_STAR: 4250 case TK_MINUS: 4251 case TK_REM: 4252 case TK_BITAND: 4253 case TK_BITOR: 4254 case TK_SLASH: 4255 case TK_LSHIFT: 4256 case TK_RSHIFT: 4257 case TK_CONCAT: { 4258 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4259 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4260 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4261 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4262 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4263 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4264 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4265 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4266 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4267 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4268 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4269 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4270 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4271 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4272 testcase( regFree1==0 ); 4273 testcase( regFree2==0 ); 4274 break; 4275 } 4276 case TK_UMINUS: { 4277 Expr *pLeft = pExpr->pLeft; 4278 assert( pLeft ); 4279 if( pLeft->op==TK_INTEGER ){ 4280 codeInteger(pParse, pLeft, 1, target); 4281 return target; 4282 #ifndef SQLITE_OMIT_FLOATING_POINT 4283 }else if( pLeft->op==TK_FLOAT ){ 4284 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4285 codeReal(v, pLeft->u.zToken, 1, target); 4286 return target; 4287 #endif 4288 }else{ 4289 tempX.op = TK_INTEGER; 4290 tempX.flags = EP_IntValue|EP_TokenOnly; 4291 tempX.u.iValue = 0; 4292 ExprClearVVAProperties(&tempX); 4293 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4294 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4295 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4296 testcase( regFree2==0 ); 4297 } 4298 break; 4299 } 4300 case TK_BITNOT: 4301 case TK_NOT: { 4302 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4303 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4304 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4305 testcase( regFree1==0 ); 4306 sqlite3VdbeAddOp2(v, op, r1, inReg); 4307 break; 4308 } 4309 case TK_TRUTH: { 4310 int isTrue; /* IS TRUE or IS NOT TRUE */ 4311 int bNormal; /* IS TRUE or IS FALSE */ 4312 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4313 testcase( regFree1==0 ); 4314 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4315 bNormal = pExpr->op2==TK_IS; 4316 testcase( isTrue && bNormal); 4317 testcase( !isTrue && bNormal); 4318 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4319 break; 4320 } 4321 case TK_ISNULL: 4322 case TK_NOTNULL: { 4323 int addr; 4324 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4325 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4326 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4327 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4328 testcase( regFree1==0 ); 4329 addr = sqlite3VdbeAddOp1(v, op, r1); 4330 VdbeCoverageIf(v, op==TK_ISNULL); 4331 VdbeCoverageIf(v, op==TK_NOTNULL); 4332 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4333 sqlite3VdbeJumpHere(v, addr); 4334 break; 4335 } 4336 case TK_AGG_FUNCTION: { 4337 AggInfo *pInfo = pExpr->pAggInfo; 4338 if( pInfo==0 4339 || NEVER(pExpr->iAgg<0) 4340 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4341 ){ 4342 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4343 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4344 }else{ 4345 return pInfo->aFunc[pExpr->iAgg].iMem; 4346 } 4347 break; 4348 } 4349 case TK_FUNCTION: { 4350 ExprList *pFarg; /* List of function arguments */ 4351 int nFarg; /* Number of function arguments */ 4352 FuncDef *pDef; /* The function definition object */ 4353 const char *zId; /* The function name */ 4354 u32 constMask = 0; /* Mask of function arguments that are constant */ 4355 int i; /* Loop counter */ 4356 sqlite3 *db = pParse->db; /* The database connection */ 4357 u8 enc = ENC(db); /* The text encoding used by this database */ 4358 CollSeq *pColl = 0; /* A collating sequence */ 4359 4360 #ifndef SQLITE_OMIT_WINDOWFUNC 4361 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4362 return pExpr->y.pWin->regResult; 4363 } 4364 #endif 4365 4366 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4367 /* SQL functions can be expensive. So try to avoid running them 4368 ** multiple times if we know they always give the same result */ 4369 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4370 } 4371 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4372 assert( ExprUseXList(pExpr) ); 4373 pFarg = pExpr->x.pList; 4374 nFarg = pFarg ? pFarg->nExpr : 0; 4375 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4376 zId = pExpr->u.zToken; 4377 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4378 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4379 if( pDef==0 && pParse->explain ){ 4380 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4381 } 4382 #endif 4383 if( pDef==0 || pDef->xFinalize!=0 ){ 4384 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4385 break; 4386 } 4387 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4388 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4389 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4390 return exprCodeInlineFunction(pParse, pFarg, 4391 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4392 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4393 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4394 } 4395 4396 for(i=0; i<nFarg; i++){ 4397 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4398 testcase( i==31 ); 4399 constMask |= MASKBIT32(i); 4400 } 4401 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4402 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4403 } 4404 } 4405 if( pFarg ){ 4406 if( constMask ){ 4407 r1 = pParse->nMem+1; 4408 pParse->nMem += nFarg; 4409 }else{ 4410 r1 = sqlite3GetTempRange(pParse, nFarg); 4411 } 4412 4413 /* For length() and typeof() functions with a column argument, 4414 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4415 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4416 ** loading. 4417 */ 4418 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4419 u8 exprOp; 4420 assert( nFarg==1 ); 4421 assert( pFarg->a[0].pExpr!=0 ); 4422 exprOp = pFarg->a[0].pExpr->op; 4423 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4424 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4425 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4426 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4427 pFarg->a[0].pExpr->op2 = 4428 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4429 } 4430 } 4431 4432 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4433 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4434 }else{ 4435 r1 = 0; 4436 } 4437 #ifndef SQLITE_OMIT_VIRTUALTABLE 4438 /* Possibly overload the function if the first argument is 4439 ** a virtual table column. 4440 ** 4441 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4442 ** second argument, not the first, as the argument to test to 4443 ** see if it is a column in a virtual table. This is done because 4444 ** the left operand of infix functions (the operand we want to 4445 ** control overloading) ends up as the second argument to the 4446 ** function. The expression "A glob B" is equivalent to 4447 ** "glob(B,A). We want to use the A in "A glob B" to test 4448 ** for function overloading. But we use the B term in "glob(B,A)". 4449 */ 4450 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4451 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4452 }else if( nFarg>0 ){ 4453 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4454 } 4455 #endif 4456 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4457 if( !pColl ) pColl = db->pDfltColl; 4458 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4459 } 4460 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4461 if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){ 4462 Expr *pArg = pFarg->a[0].pExpr; 4463 if( pArg->op==TK_COLUMN ){ 4464 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4465 }else{ 4466 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4467 } 4468 }else 4469 #endif 4470 { 4471 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4472 pDef, pExpr->op2); 4473 } 4474 if( nFarg ){ 4475 if( constMask==0 ){ 4476 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4477 }else{ 4478 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4479 } 4480 } 4481 return target; 4482 } 4483 #ifndef SQLITE_OMIT_SUBQUERY 4484 case TK_EXISTS: 4485 case TK_SELECT: { 4486 int nCol; 4487 testcase( op==TK_EXISTS ); 4488 testcase( op==TK_SELECT ); 4489 if( pParse->db->mallocFailed ){ 4490 return 0; 4491 }else if( op==TK_SELECT 4492 && ALWAYS( ExprUseXSelect(pExpr) ) 4493 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4494 ){ 4495 sqlite3SubselectError(pParse, nCol, 1); 4496 }else{ 4497 return sqlite3CodeSubselect(pParse, pExpr); 4498 } 4499 break; 4500 } 4501 case TK_SELECT_COLUMN: { 4502 int n; 4503 if( pExpr->pLeft->iTable==0 ){ 4504 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4505 } 4506 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4507 n = sqlite3ExprVectorSize(pExpr->pLeft); 4508 if( pExpr->iTable!=n ){ 4509 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4510 pExpr->iTable, n); 4511 } 4512 return pExpr->pLeft->iTable + pExpr->iColumn; 4513 } 4514 case TK_IN: { 4515 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4516 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4517 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4518 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4519 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4520 sqlite3VdbeResolveLabel(v, destIfFalse); 4521 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4522 sqlite3VdbeResolveLabel(v, destIfNull); 4523 return target; 4524 } 4525 #endif /* SQLITE_OMIT_SUBQUERY */ 4526 4527 4528 /* 4529 ** x BETWEEN y AND z 4530 ** 4531 ** This is equivalent to 4532 ** 4533 ** x>=y AND x<=z 4534 ** 4535 ** X is stored in pExpr->pLeft. 4536 ** Y is stored in pExpr->pList->a[0].pExpr. 4537 ** Z is stored in pExpr->pList->a[1].pExpr. 4538 */ 4539 case TK_BETWEEN: { 4540 exprCodeBetween(pParse, pExpr, target, 0, 0); 4541 return target; 4542 } 4543 case TK_SPAN: 4544 case TK_COLLATE: 4545 case TK_UPLUS: { 4546 pExpr = pExpr->pLeft; 4547 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4548 } 4549 4550 case TK_TRIGGER: { 4551 /* If the opcode is TK_TRIGGER, then the expression is a reference 4552 ** to a column in the new.* or old.* pseudo-tables available to 4553 ** trigger programs. In this case Expr.iTable is set to 1 for the 4554 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4555 ** is set to the column of the pseudo-table to read, or to -1 to 4556 ** read the rowid field. 4557 ** 4558 ** The expression is implemented using an OP_Param opcode. The p1 4559 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4560 ** to reference another column of the old.* pseudo-table, where 4561 ** i is the index of the column. For a new.rowid reference, p1 is 4562 ** set to (n+1), where n is the number of columns in each pseudo-table. 4563 ** For a reference to any other column in the new.* pseudo-table, p1 4564 ** is set to (n+2+i), where n and i are as defined previously. For 4565 ** example, if the table on which triggers are being fired is 4566 ** declared as: 4567 ** 4568 ** CREATE TABLE t1(a, b); 4569 ** 4570 ** Then p1 is interpreted as follows: 4571 ** 4572 ** p1==0 -> old.rowid p1==3 -> new.rowid 4573 ** p1==1 -> old.a p1==4 -> new.a 4574 ** p1==2 -> old.b p1==5 -> new.b 4575 */ 4576 Table *pTab; 4577 int iCol; 4578 int p1; 4579 4580 assert( ExprUseYTab(pExpr) ); 4581 pTab = pExpr->y.pTab; 4582 iCol = pExpr->iColumn; 4583 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4584 + sqlite3TableColumnToStorage(pTab, iCol); 4585 4586 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4587 assert( iCol>=-1 && iCol<pTab->nCol ); 4588 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4589 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4590 4591 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4592 VdbeComment((v, "r[%d]=%s.%s", target, 4593 (pExpr->iTable ? "new" : "old"), 4594 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4595 )); 4596 4597 #ifndef SQLITE_OMIT_FLOATING_POINT 4598 /* If the column has REAL affinity, it may currently be stored as an 4599 ** integer. Use OP_RealAffinity to make sure it is really real. 4600 ** 4601 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4602 ** floating point when extracting it from the record. */ 4603 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4604 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4605 } 4606 #endif 4607 break; 4608 } 4609 4610 case TK_VECTOR: { 4611 sqlite3ErrorMsg(pParse, "row value misused"); 4612 break; 4613 } 4614 4615 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4616 ** that derive from the right-hand table of a LEFT JOIN. The 4617 ** Expr.iTable value is the table number for the right-hand table. 4618 ** The expression is only evaluated if that table is not currently 4619 ** on a LEFT JOIN NULL row. 4620 */ 4621 case TK_IF_NULL_ROW: { 4622 int addrINR; 4623 u8 okConstFactor = pParse->okConstFactor; 4624 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4625 /* Temporarily disable factoring of constant expressions, since 4626 ** even though expressions may appear to be constant, they are not 4627 ** really constant because they originate from the right-hand side 4628 ** of a LEFT JOIN. */ 4629 pParse->okConstFactor = 0; 4630 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4631 pParse->okConstFactor = okConstFactor; 4632 sqlite3VdbeJumpHere(v, addrINR); 4633 sqlite3VdbeChangeP3(v, addrINR, inReg); 4634 break; 4635 } 4636 4637 /* 4638 ** Form A: 4639 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4640 ** 4641 ** Form B: 4642 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4643 ** 4644 ** Form A is can be transformed into the equivalent form B as follows: 4645 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4646 ** WHEN x=eN THEN rN ELSE y END 4647 ** 4648 ** X (if it exists) is in pExpr->pLeft. 4649 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4650 ** odd. The Y is also optional. If the number of elements in x.pList 4651 ** is even, then Y is omitted and the "otherwise" result is NULL. 4652 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4653 ** 4654 ** The result of the expression is the Ri for the first matching Ei, 4655 ** or if there is no matching Ei, the ELSE term Y, or if there is 4656 ** no ELSE term, NULL. 4657 */ 4658 case TK_CASE: { 4659 int endLabel; /* GOTO label for end of CASE stmt */ 4660 int nextCase; /* GOTO label for next WHEN clause */ 4661 int nExpr; /* 2x number of WHEN terms */ 4662 int i; /* Loop counter */ 4663 ExprList *pEList; /* List of WHEN terms */ 4664 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4665 Expr opCompare; /* The X==Ei expression */ 4666 Expr *pX; /* The X expression */ 4667 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4668 Expr *pDel = 0; 4669 sqlite3 *db = pParse->db; 4670 4671 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4672 assert(pExpr->x.pList->nExpr > 0); 4673 pEList = pExpr->x.pList; 4674 aListelem = pEList->a; 4675 nExpr = pEList->nExpr; 4676 endLabel = sqlite3VdbeMakeLabel(pParse); 4677 if( (pX = pExpr->pLeft)!=0 ){ 4678 pDel = sqlite3ExprDup(db, pX, 0); 4679 if( db->mallocFailed ){ 4680 sqlite3ExprDelete(db, pDel); 4681 break; 4682 } 4683 testcase( pX->op==TK_COLUMN ); 4684 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4685 testcase( regFree1==0 ); 4686 memset(&opCompare, 0, sizeof(opCompare)); 4687 opCompare.op = TK_EQ; 4688 opCompare.pLeft = pDel; 4689 pTest = &opCompare; 4690 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4691 ** The value in regFree1 might get SCopy-ed into the file result. 4692 ** So make sure that the regFree1 register is not reused for other 4693 ** purposes and possibly overwritten. */ 4694 regFree1 = 0; 4695 } 4696 for(i=0; i<nExpr-1; i=i+2){ 4697 if( pX ){ 4698 assert( pTest!=0 ); 4699 opCompare.pRight = aListelem[i].pExpr; 4700 }else{ 4701 pTest = aListelem[i].pExpr; 4702 } 4703 nextCase = sqlite3VdbeMakeLabel(pParse); 4704 testcase( pTest->op==TK_COLUMN ); 4705 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4706 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4707 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4708 sqlite3VdbeGoto(v, endLabel); 4709 sqlite3VdbeResolveLabel(v, nextCase); 4710 } 4711 if( (nExpr&1)!=0 ){ 4712 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4713 }else{ 4714 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4715 } 4716 sqlite3ExprDelete(db, pDel); 4717 setDoNotMergeFlagOnCopy(v); 4718 sqlite3VdbeResolveLabel(v, endLabel); 4719 break; 4720 } 4721 #ifndef SQLITE_OMIT_TRIGGER 4722 case TK_RAISE: { 4723 assert( pExpr->affExpr==OE_Rollback 4724 || pExpr->affExpr==OE_Abort 4725 || pExpr->affExpr==OE_Fail 4726 || pExpr->affExpr==OE_Ignore 4727 ); 4728 if( !pParse->pTriggerTab && !pParse->nested ){ 4729 sqlite3ErrorMsg(pParse, 4730 "RAISE() may only be used within a trigger-program"); 4731 return 0; 4732 } 4733 if( pExpr->affExpr==OE_Abort ){ 4734 sqlite3MayAbort(pParse); 4735 } 4736 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4737 if( pExpr->affExpr==OE_Ignore ){ 4738 sqlite3VdbeAddOp4( 4739 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4740 VdbeCoverage(v); 4741 }else{ 4742 sqlite3HaltConstraint(pParse, 4743 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4744 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4745 } 4746 4747 break; 4748 } 4749 #endif 4750 } 4751 sqlite3ReleaseTempReg(pParse, regFree1); 4752 sqlite3ReleaseTempReg(pParse, regFree2); 4753 return inReg; 4754 } 4755 4756 /* 4757 ** Generate code that will evaluate expression pExpr just one time 4758 ** per prepared statement execution. 4759 ** 4760 ** If the expression uses functions (that might throw an exception) then 4761 ** guard them with an OP_Once opcode to ensure that the code is only executed 4762 ** once. If no functions are involved, then factor the code out and put it at 4763 ** the end of the prepared statement in the initialization section. 4764 ** 4765 ** If regDest>=0 then the result is always stored in that register and the 4766 ** result is not reusable. If regDest<0 then this routine is free to 4767 ** store the value whereever it wants. The register where the expression 4768 ** is stored is returned. When regDest<0, two identical expressions might 4769 ** code to the same register, if they do not contain function calls and hence 4770 ** are factored out into the initialization section at the end of the 4771 ** prepared statement. 4772 */ 4773 int sqlite3ExprCodeRunJustOnce( 4774 Parse *pParse, /* Parsing context */ 4775 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4776 int regDest /* Store the value in this register */ 4777 ){ 4778 ExprList *p; 4779 assert( ConstFactorOk(pParse) ); 4780 p = pParse->pConstExpr; 4781 if( regDest<0 && p ){ 4782 struct ExprList_item *pItem; 4783 int i; 4784 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4785 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4786 return pItem->u.iConstExprReg; 4787 } 4788 } 4789 } 4790 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4791 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4792 Vdbe *v = pParse->pVdbe; 4793 int addr; 4794 assert( v ); 4795 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4796 pParse->okConstFactor = 0; 4797 if( !pParse->db->mallocFailed ){ 4798 if( regDest<0 ) regDest = ++pParse->nMem; 4799 sqlite3ExprCode(pParse, pExpr, regDest); 4800 } 4801 pParse->okConstFactor = 1; 4802 sqlite3ExprDelete(pParse->db, pExpr); 4803 sqlite3VdbeJumpHere(v, addr); 4804 }else{ 4805 p = sqlite3ExprListAppend(pParse, p, pExpr); 4806 if( p ){ 4807 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4808 pItem->reusable = regDest<0; 4809 if( regDest<0 ) regDest = ++pParse->nMem; 4810 pItem->u.iConstExprReg = regDest; 4811 } 4812 pParse->pConstExpr = p; 4813 } 4814 return regDest; 4815 } 4816 4817 /* 4818 ** Generate code to evaluate an expression and store the results 4819 ** into a register. Return the register number where the results 4820 ** are stored. 4821 ** 4822 ** If the register is a temporary register that can be deallocated, 4823 ** then write its number into *pReg. If the result register is not 4824 ** a temporary, then set *pReg to zero. 4825 ** 4826 ** If pExpr is a constant, then this routine might generate this 4827 ** code to fill the register in the initialization section of the 4828 ** VDBE program, in order to factor it out of the evaluation loop. 4829 */ 4830 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4831 int r2; 4832 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4833 if( ConstFactorOk(pParse) 4834 && ALWAYS(pExpr!=0) 4835 && pExpr->op!=TK_REGISTER 4836 && sqlite3ExprIsConstantNotJoin(pExpr) 4837 ){ 4838 *pReg = 0; 4839 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4840 }else{ 4841 int r1 = sqlite3GetTempReg(pParse); 4842 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4843 if( r2==r1 ){ 4844 *pReg = r1; 4845 }else{ 4846 sqlite3ReleaseTempReg(pParse, r1); 4847 *pReg = 0; 4848 } 4849 } 4850 return r2; 4851 } 4852 4853 /* 4854 ** Generate code that will evaluate expression pExpr and store the 4855 ** results in register target. The results are guaranteed to appear 4856 ** in register target. 4857 */ 4858 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4859 int inReg; 4860 4861 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4862 assert( target>0 && target<=pParse->nMem ); 4863 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4864 if( pParse->pVdbe==0 ) return; 4865 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4866 if( inReg!=target ){ 4867 u8 op; 4868 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4869 op = OP_Copy; 4870 }else{ 4871 op = OP_SCopy; 4872 } 4873 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4874 } 4875 } 4876 4877 /* 4878 ** Make a transient copy of expression pExpr and then code it using 4879 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4880 ** except that the input expression is guaranteed to be unchanged. 4881 */ 4882 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4883 sqlite3 *db = pParse->db; 4884 pExpr = sqlite3ExprDup(db, pExpr, 0); 4885 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4886 sqlite3ExprDelete(db, pExpr); 4887 } 4888 4889 /* 4890 ** Generate code that will evaluate expression pExpr and store the 4891 ** results in register target. The results are guaranteed to appear 4892 ** in register target. If the expression is constant, then this routine 4893 ** might choose to code the expression at initialization time. 4894 */ 4895 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4896 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4897 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4898 }else{ 4899 sqlite3ExprCodeCopy(pParse, pExpr, target); 4900 } 4901 } 4902 4903 /* 4904 ** Generate code that pushes the value of every element of the given 4905 ** expression list into a sequence of registers beginning at target. 4906 ** 4907 ** Return the number of elements evaluated. The number returned will 4908 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4909 ** is defined. 4910 ** 4911 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4912 ** filled using OP_SCopy. OP_Copy must be used instead. 4913 ** 4914 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4915 ** factored out into initialization code. 4916 ** 4917 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4918 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4919 ** in registers at srcReg, and so the value can be copied from there. 4920 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4921 ** are simply omitted rather than being copied from srcReg. 4922 */ 4923 int sqlite3ExprCodeExprList( 4924 Parse *pParse, /* Parsing context */ 4925 ExprList *pList, /* The expression list to be coded */ 4926 int target, /* Where to write results */ 4927 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4928 u8 flags /* SQLITE_ECEL_* flags */ 4929 ){ 4930 struct ExprList_item *pItem; 4931 int i, j, n; 4932 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4933 Vdbe *v = pParse->pVdbe; 4934 assert( pList!=0 ); 4935 assert( target>0 ); 4936 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4937 n = pList->nExpr; 4938 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4939 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4940 Expr *pExpr = pItem->pExpr; 4941 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4942 if( pItem->bSorterRef ){ 4943 i--; 4944 n--; 4945 }else 4946 #endif 4947 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4948 if( flags & SQLITE_ECEL_OMITREF ){ 4949 i--; 4950 n--; 4951 }else{ 4952 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4953 } 4954 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4955 && sqlite3ExprIsConstantNotJoin(pExpr) 4956 ){ 4957 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4958 }else{ 4959 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4960 if( inReg!=target+i ){ 4961 VdbeOp *pOp; 4962 if( copyOp==OP_Copy 4963 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4964 && pOp->p1+pOp->p3+1==inReg 4965 && pOp->p2+pOp->p3+1==target+i 4966 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4967 ){ 4968 pOp->p3++; 4969 }else{ 4970 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4971 } 4972 } 4973 } 4974 } 4975 return n; 4976 } 4977 4978 /* 4979 ** Generate code for a BETWEEN operator. 4980 ** 4981 ** x BETWEEN y AND z 4982 ** 4983 ** The above is equivalent to 4984 ** 4985 ** x>=y AND x<=z 4986 ** 4987 ** Code it as such, taking care to do the common subexpression 4988 ** elimination of x. 4989 ** 4990 ** The xJumpIf parameter determines details: 4991 ** 4992 ** NULL: Store the boolean result in reg[dest] 4993 ** sqlite3ExprIfTrue: Jump to dest if true 4994 ** sqlite3ExprIfFalse: Jump to dest if false 4995 ** 4996 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4997 */ 4998 static void exprCodeBetween( 4999 Parse *pParse, /* Parsing and code generating context */ 5000 Expr *pExpr, /* The BETWEEN expression */ 5001 int dest, /* Jump destination or storage location */ 5002 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5003 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5004 ){ 5005 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5006 Expr compLeft; /* The x>=y term */ 5007 Expr compRight; /* The x<=z term */ 5008 int regFree1 = 0; /* Temporary use register */ 5009 Expr *pDel = 0; 5010 sqlite3 *db = pParse->db; 5011 5012 memset(&compLeft, 0, sizeof(Expr)); 5013 memset(&compRight, 0, sizeof(Expr)); 5014 memset(&exprAnd, 0, sizeof(Expr)); 5015 5016 assert( ExprUseXList(pExpr) ); 5017 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5018 if( db->mallocFailed==0 ){ 5019 exprAnd.op = TK_AND; 5020 exprAnd.pLeft = &compLeft; 5021 exprAnd.pRight = &compRight; 5022 compLeft.op = TK_GE; 5023 compLeft.pLeft = pDel; 5024 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5025 compRight.op = TK_LE; 5026 compRight.pLeft = pDel; 5027 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5028 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5029 if( xJump ){ 5030 xJump(pParse, &exprAnd, dest, jumpIfNull); 5031 }else{ 5032 /* Mark the expression is being from the ON or USING clause of a join 5033 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5034 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5035 ** for clarity, but we are out of bits in the Expr.flags field so we 5036 ** have to reuse the EP_FromJoin bit. Bummer. */ 5037 pDel->flags |= EP_FromJoin; 5038 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5039 } 5040 sqlite3ReleaseTempReg(pParse, regFree1); 5041 } 5042 sqlite3ExprDelete(db, pDel); 5043 5044 /* Ensure adequate test coverage */ 5045 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5046 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5047 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5048 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5049 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5050 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5051 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5052 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5053 testcase( xJump==0 ); 5054 } 5055 5056 /* 5057 ** Generate code for a boolean expression such that a jump is made 5058 ** to the label "dest" if the expression is true but execution 5059 ** continues straight thru if the expression is false. 5060 ** 5061 ** If the expression evaluates to NULL (neither true nor false), then 5062 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5063 ** 5064 ** This code depends on the fact that certain token values (ex: TK_EQ) 5065 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5066 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5067 ** the make process cause these values to align. Assert()s in the code 5068 ** below verify that the numbers are aligned correctly. 5069 */ 5070 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5071 Vdbe *v = pParse->pVdbe; 5072 int op = 0; 5073 int regFree1 = 0; 5074 int regFree2 = 0; 5075 int r1, r2; 5076 5077 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5078 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5079 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5080 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5081 op = pExpr->op; 5082 switch( op ){ 5083 case TK_AND: 5084 case TK_OR: { 5085 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5086 if( pAlt!=pExpr ){ 5087 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5088 }else if( op==TK_AND ){ 5089 int d2 = sqlite3VdbeMakeLabel(pParse); 5090 testcase( jumpIfNull==0 ); 5091 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5092 jumpIfNull^SQLITE_JUMPIFNULL); 5093 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5094 sqlite3VdbeResolveLabel(v, d2); 5095 }else{ 5096 testcase( jumpIfNull==0 ); 5097 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5098 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5099 } 5100 break; 5101 } 5102 case TK_NOT: { 5103 testcase( jumpIfNull==0 ); 5104 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5105 break; 5106 } 5107 case TK_TRUTH: { 5108 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5109 int isTrue; /* IS TRUE or IS NOT TRUE */ 5110 testcase( jumpIfNull==0 ); 5111 isNot = pExpr->op2==TK_ISNOT; 5112 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5113 testcase( isTrue && isNot ); 5114 testcase( !isTrue && isNot ); 5115 if( isTrue ^ isNot ){ 5116 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5117 isNot ? SQLITE_JUMPIFNULL : 0); 5118 }else{ 5119 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5120 isNot ? SQLITE_JUMPIFNULL : 0); 5121 } 5122 break; 5123 } 5124 case TK_IS: 5125 case TK_ISNOT: 5126 testcase( op==TK_IS ); 5127 testcase( op==TK_ISNOT ); 5128 op = (op==TK_IS) ? TK_EQ : TK_NE; 5129 jumpIfNull = SQLITE_NULLEQ; 5130 /* no break */ deliberate_fall_through 5131 case TK_LT: 5132 case TK_LE: 5133 case TK_GT: 5134 case TK_GE: 5135 case TK_NE: 5136 case TK_EQ: { 5137 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5138 testcase( jumpIfNull==0 ); 5139 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5140 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5141 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5142 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5143 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5144 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5145 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5146 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5147 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5148 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5149 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5150 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5151 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5152 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5153 testcase( regFree1==0 ); 5154 testcase( regFree2==0 ); 5155 break; 5156 } 5157 case TK_ISNULL: 5158 case TK_NOTNULL: { 5159 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5160 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5161 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5162 sqlite3VdbeAddOp2(v, op, r1, dest); 5163 VdbeCoverageIf(v, op==TK_ISNULL); 5164 VdbeCoverageIf(v, op==TK_NOTNULL); 5165 testcase( regFree1==0 ); 5166 break; 5167 } 5168 case TK_BETWEEN: { 5169 testcase( jumpIfNull==0 ); 5170 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5171 break; 5172 } 5173 #ifndef SQLITE_OMIT_SUBQUERY 5174 case TK_IN: { 5175 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5176 int destIfNull = jumpIfNull ? dest : destIfFalse; 5177 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5178 sqlite3VdbeGoto(v, dest); 5179 sqlite3VdbeResolveLabel(v, destIfFalse); 5180 break; 5181 } 5182 #endif 5183 default: { 5184 default_expr: 5185 if( ExprAlwaysTrue(pExpr) ){ 5186 sqlite3VdbeGoto(v, dest); 5187 }else if( ExprAlwaysFalse(pExpr) ){ 5188 /* No-op */ 5189 }else{ 5190 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5191 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5192 VdbeCoverage(v); 5193 testcase( regFree1==0 ); 5194 testcase( jumpIfNull==0 ); 5195 } 5196 break; 5197 } 5198 } 5199 sqlite3ReleaseTempReg(pParse, regFree1); 5200 sqlite3ReleaseTempReg(pParse, regFree2); 5201 } 5202 5203 /* 5204 ** Generate code for a boolean expression such that a jump is made 5205 ** to the label "dest" if the expression is false but execution 5206 ** continues straight thru if the expression is true. 5207 ** 5208 ** If the expression evaluates to NULL (neither true nor false) then 5209 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5210 ** is 0. 5211 */ 5212 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5213 Vdbe *v = pParse->pVdbe; 5214 int op = 0; 5215 int regFree1 = 0; 5216 int regFree2 = 0; 5217 int r1, r2; 5218 5219 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5220 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5221 if( pExpr==0 ) return; 5222 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5223 5224 /* The value of pExpr->op and op are related as follows: 5225 ** 5226 ** pExpr->op op 5227 ** --------- ---------- 5228 ** TK_ISNULL OP_NotNull 5229 ** TK_NOTNULL OP_IsNull 5230 ** TK_NE OP_Eq 5231 ** TK_EQ OP_Ne 5232 ** TK_GT OP_Le 5233 ** TK_LE OP_Gt 5234 ** TK_GE OP_Lt 5235 ** TK_LT OP_Ge 5236 ** 5237 ** For other values of pExpr->op, op is undefined and unused. 5238 ** The value of TK_ and OP_ constants are arranged such that we 5239 ** can compute the mapping above using the following expression. 5240 ** Assert()s verify that the computation is correct. 5241 */ 5242 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5243 5244 /* Verify correct alignment of TK_ and OP_ constants 5245 */ 5246 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5247 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5248 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5249 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5250 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5251 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5252 assert( pExpr->op!=TK_GT || op==OP_Le ); 5253 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5254 5255 switch( pExpr->op ){ 5256 case TK_AND: 5257 case TK_OR: { 5258 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5259 if( pAlt!=pExpr ){ 5260 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5261 }else if( pExpr->op==TK_AND ){ 5262 testcase( jumpIfNull==0 ); 5263 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5264 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5265 }else{ 5266 int d2 = sqlite3VdbeMakeLabel(pParse); 5267 testcase( jumpIfNull==0 ); 5268 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5269 jumpIfNull^SQLITE_JUMPIFNULL); 5270 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5271 sqlite3VdbeResolveLabel(v, d2); 5272 } 5273 break; 5274 } 5275 case TK_NOT: { 5276 testcase( jumpIfNull==0 ); 5277 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5278 break; 5279 } 5280 case TK_TRUTH: { 5281 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5282 int isTrue; /* IS TRUE or IS NOT TRUE */ 5283 testcase( jumpIfNull==0 ); 5284 isNot = pExpr->op2==TK_ISNOT; 5285 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5286 testcase( isTrue && isNot ); 5287 testcase( !isTrue && isNot ); 5288 if( isTrue ^ isNot ){ 5289 /* IS TRUE and IS NOT FALSE */ 5290 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5291 isNot ? 0 : SQLITE_JUMPIFNULL); 5292 5293 }else{ 5294 /* IS FALSE and IS NOT TRUE */ 5295 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5296 isNot ? 0 : SQLITE_JUMPIFNULL); 5297 } 5298 break; 5299 } 5300 case TK_IS: 5301 case TK_ISNOT: 5302 testcase( pExpr->op==TK_IS ); 5303 testcase( pExpr->op==TK_ISNOT ); 5304 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5305 jumpIfNull = SQLITE_NULLEQ; 5306 /* no break */ deliberate_fall_through 5307 case TK_LT: 5308 case TK_LE: 5309 case TK_GT: 5310 case TK_GE: 5311 case TK_NE: 5312 case TK_EQ: { 5313 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5314 testcase( jumpIfNull==0 ); 5315 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5316 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5317 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5318 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5319 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5320 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5321 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5322 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5323 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5324 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5325 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5326 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5327 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5328 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5329 testcase( regFree1==0 ); 5330 testcase( regFree2==0 ); 5331 break; 5332 } 5333 case TK_ISNULL: 5334 case TK_NOTNULL: { 5335 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5336 sqlite3VdbeAddOp2(v, op, r1, dest); 5337 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5338 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5339 testcase( regFree1==0 ); 5340 break; 5341 } 5342 case TK_BETWEEN: { 5343 testcase( jumpIfNull==0 ); 5344 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5345 break; 5346 } 5347 #ifndef SQLITE_OMIT_SUBQUERY 5348 case TK_IN: { 5349 if( jumpIfNull ){ 5350 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5351 }else{ 5352 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5353 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5354 sqlite3VdbeResolveLabel(v, destIfNull); 5355 } 5356 break; 5357 } 5358 #endif 5359 default: { 5360 default_expr: 5361 if( ExprAlwaysFalse(pExpr) ){ 5362 sqlite3VdbeGoto(v, dest); 5363 }else if( ExprAlwaysTrue(pExpr) ){ 5364 /* no-op */ 5365 }else{ 5366 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5367 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5368 VdbeCoverage(v); 5369 testcase( regFree1==0 ); 5370 testcase( jumpIfNull==0 ); 5371 } 5372 break; 5373 } 5374 } 5375 sqlite3ReleaseTempReg(pParse, regFree1); 5376 sqlite3ReleaseTempReg(pParse, regFree2); 5377 } 5378 5379 /* 5380 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5381 ** code generation, and that copy is deleted after code generation. This 5382 ** ensures that the original pExpr is unchanged. 5383 */ 5384 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5385 sqlite3 *db = pParse->db; 5386 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5387 if( db->mallocFailed==0 ){ 5388 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5389 } 5390 sqlite3ExprDelete(db, pCopy); 5391 } 5392 5393 /* 5394 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5395 ** type of expression. 5396 ** 5397 ** If pExpr is a simple SQL value - an integer, real, string, blob 5398 ** or NULL value - then the VDBE currently being prepared is configured 5399 ** to re-prepare each time a new value is bound to variable pVar. 5400 ** 5401 ** Additionally, if pExpr is a simple SQL value and the value is the 5402 ** same as that currently bound to variable pVar, non-zero is returned. 5403 ** Otherwise, if the values are not the same or if pExpr is not a simple 5404 ** SQL value, zero is returned. 5405 */ 5406 static int exprCompareVariable( 5407 const Parse *pParse, 5408 const Expr *pVar, 5409 const Expr *pExpr 5410 ){ 5411 int res = 0; 5412 int iVar; 5413 sqlite3_value *pL, *pR = 0; 5414 5415 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5416 if( pR ){ 5417 iVar = pVar->iColumn; 5418 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5419 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5420 if( pL ){ 5421 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5422 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5423 } 5424 res = 0==sqlite3MemCompare(pL, pR, 0); 5425 } 5426 sqlite3ValueFree(pR); 5427 sqlite3ValueFree(pL); 5428 } 5429 5430 return res; 5431 } 5432 5433 /* 5434 ** Do a deep comparison of two expression trees. Return 0 if the two 5435 ** expressions are completely identical. Return 1 if they differ only 5436 ** by a COLLATE operator at the top level. Return 2 if there are differences 5437 ** other than the top-level COLLATE operator. 5438 ** 5439 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5440 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5441 ** 5442 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5443 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5444 ** 5445 ** Sometimes this routine will return 2 even if the two expressions 5446 ** really are equivalent. If we cannot prove that the expressions are 5447 ** identical, we return 2 just to be safe. So if this routine 5448 ** returns 2, then you do not really know for certain if the two 5449 ** expressions are the same. But if you get a 0 or 1 return, then you 5450 ** can be sure the expressions are the same. In the places where 5451 ** this routine is used, it does not hurt to get an extra 2 - that 5452 ** just might result in some slightly slower code. But returning 5453 ** an incorrect 0 or 1 could lead to a malfunction. 5454 ** 5455 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5456 ** pParse->pReprepare can be matched against literals in pB. The 5457 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5458 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5459 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5460 ** pB causes a return value of 2. 5461 */ 5462 int sqlite3ExprCompare( 5463 const Parse *pParse, 5464 const Expr *pA, 5465 const Expr *pB, 5466 int iTab 5467 ){ 5468 u32 combinedFlags; 5469 if( pA==0 || pB==0 ){ 5470 return pB==pA ? 0 : 2; 5471 } 5472 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5473 return 0; 5474 } 5475 combinedFlags = pA->flags | pB->flags; 5476 if( combinedFlags & EP_IntValue ){ 5477 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5478 return 0; 5479 } 5480 return 2; 5481 } 5482 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5483 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5484 return 1; 5485 } 5486 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5487 return 1; 5488 } 5489 return 2; 5490 } 5491 assert( !ExprHasProperty(pA, EP_IntValue) ); 5492 assert( !ExprHasProperty(pB, EP_IntValue) ); 5493 if( pA->u.zToken ){ 5494 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5495 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5496 #ifndef SQLITE_OMIT_WINDOWFUNC 5497 assert( pA->op==pB->op ); 5498 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5499 return 2; 5500 } 5501 if( ExprHasProperty(pA,EP_WinFunc) ){ 5502 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5503 return 2; 5504 } 5505 } 5506 #endif 5507 }else if( pA->op==TK_NULL ){ 5508 return 0; 5509 }else if( pA->op==TK_COLLATE ){ 5510 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5511 }else 5512 if( pB->u.zToken!=0 5513 && pA->op!=TK_COLUMN 5514 && pA->op!=TK_AGG_COLUMN 5515 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5516 ){ 5517 return 2; 5518 } 5519 } 5520 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5521 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5522 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5523 if( combinedFlags & EP_xIsSelect ) return 2; 5524 if( (combinedFlags & EP_FixedCol)==0 5525 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5526 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5527 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5528 if( pA->op!=TK_STRING 5529 && pA->op!=TK_TRUEFALSE 5530 && ALWAYS((combinedFlags & EP_Reduced)==0) 5531 ){ 5532 if( pA->iColumn!=pB->iColumn ) return 2; 5533 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5534 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5535 return 2; 5536 } 5537 } 5538 } 5539 return 0; 5540 } 5541 5542 /* 5543 ** Compare two ExprList objects. Return 0 if they are identical, 1 5544 ** if they are certainly different, or 2 if it is not possible to 5545 ** determine if they are identical or not. 5546 ** 5547 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5548 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5549 ** 5550 ** This routine might return non-zero for equivalent ExprLists. The 5551 ** only consequence will be disabled optimizations. But this routine 5552 ** must never return 0 if the two ExprList objects are different, or 5553 ** a malfunction will result. 5554 ** 5555 ** Two NULL pointers are considered to be the same. But a NULL pointer 5556 ** always differs from a non-NULL pointer. 5557 */ 5558 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5559 int i; 5560 if( pA==0 && pB==0 ) return 0; 5561 if( pA==0 || pB==0 ) return 1; 5562 if( pA->nExpr!=pB->nExpr ) return 1; 5563 for(i=0; i<pA->nExpr; i++){ 5564 int res; 5565 Expr *pExprA = pA->a[i].pExpr; 5566 Expr *pExprB = pB->a[i].pExpr; 5567 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5568 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5569 } 5570 return 0; 5571 } 5572 5573 /* 5574 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5575 ** are ignored. 5576 */ 5577 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5578 return sqlite3ExprCompare(0, 5579 sqlite3ExprSkipCollateAndLikely(pA), 5580 sqlite3ExprSkipCollateAndLikely(pB), 5581 iTab); 5582 } 5583 5584 /* 5585 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5586 ** 5587 ** Or if seenNot is true, return non-zero if Expr p can only be 5588 ** non-NULL if pNN is not NULL 5589 */ 5590 static int exprImpliesNotNull( 5591 const Parse *pParse,/* Parsing context */ 5592 const Expr *p, /* The expression to be checked */ 5593 const Expr *pNN, /* The expression that is NOT NULL */ 5594 int iTab, /* Table being evaluated */ 5595 int seenNot /* Return true only if p can be any non-NULL value */ 5596 ){ 5597 assert( p ); 5598 assert( pNN ); 5599 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5600 return pNN->op!=TK_NULL; 5601 } 5602 switch( p->op ){ 5603 case TK_IN: { 5604 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5605 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5606 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5607 } 5608 case TK_BETWEEN: { 5609 ExprList *pList; 5610 assert( ExprUseXList(p) ); 5611 pList = p->x.pList; 5612 assert( pList!=0 ); 5613 assert( pList->nExpr==2 ); 5614 if( seenNot ) return 0; 5615 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5616 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5617 ){ 5618 return 1; 5619 } 5620 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5621 } 5622 case TK_EQ: 5623 case TK_NE: 5624 case TK_LT: 5625 case TK_LE: 5626 case TK_GT: 5627 case TK_GE: 5628 case TK_PLUS: 5629 case TK_MINUS: 5630 case TK_BITOR: 5631 case TK_LSHIFT: 5632 case TK_RSHIFT: 5633 case TK_CONCAT: 5634 seenNot = 1; 5635 /* no break */ deliberate_fall_through 5636 case TK_STAR: 5637 case TK_REM: 5638 case TK_BITAND: 5639 case TK_SLASH: { 5640 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5641 /* no break */ deliberate_fall_through 5642 } 5643 case TK_SPAN: 5644 case TK_COLLATE: 5645 case TK_UPLUS: 5646 case TK_UMINUS: { 5647 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5648 } 5649 case TK_TRUTH: { 5650 if( seenNot ) return 0; 5651 if( p->op2!=TK_IS ) return 0; 5652 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5653 } 5654 case TK_BITNOT: 5655 case TK_NOT: { 5656 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5657 } 5658 } 5659 return 0; 5660 } 5661 5662 /* 5663 ** Return true if we can prove the pE2 will always be true if pE1 is 5664 ** true. Return false if we cannot complete the proof or if pE2 might 5665 ** be false. Examples: 5666 ** 5667 ** pE1: x==5 pE2: x==5 Result: true 5668 ** pE1: x>0 pE2: x==5 Result: false 5669 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5670 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5671 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5672 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5673 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5674 ** 5675 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5676 ** Expr.iTable<0 then assume a table number given by iTab. 5677 ** 5678 ** If pParse is not NULL, then the values of bound variables in pE1 are 5679 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5680 ** modified to record which bound variables are referenced. If pParse 5681 ** is NULL, then false will be returned if pE1 contains any bound variables. 5682 ** 5683 ** When in doubt, return false. Returning true might give a performance 5684 ** improvement. Returning false might cause a performance reduction, but 5685 ** it will always give the correct answer and is hence always safe. 5686 */ 5687 int sqlite3ExprImpliesExpr( 5688 const Parse *pParse, 5689 const Expr *pE1, 5690 const Expr *pE2, 5691 int iTab 5692 ){ 5693 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5694 return 1; 5695 } 5696 if( pE2->op==TK_OR 5697 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5698 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5699 ){ 5700 return 1; 5701 } 5702 if( pE2->op==TK_NOTNULL 5703 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5704 ){ 5705 return 1; 5706 } 5707 return 0; 5708 } 5709 5710 /* 5711 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5712 ** If the expression node requires that the table at pWalker->iCur 5713 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5714 ** 5715 ** This routine controls an optimization. False positives (setting 5716 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5717 ** (never setting pWalker->eCode) is a harmless missed optimization. 5718 */ 5719 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5720 testcase( pExpr->op==TK_AGG_COLUMN ); 5721 testcase( pExpr->op==TK_AGG_FUNCTION ); 5722 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5723 switch( pExpr->op ){ 5724 case TK_ISNOT: 5725 case TK_ISNULL: 5726 case TK_NOTNULL: 5727 case TK_IS: 5728 case TK_OR: 5729 case TK_VECTOR: 5730 case TK_CASE: 5731 case TK_IN: 5732 case TK_FUNCTION: 5733 case TK_TRUTH: 5734 testcase( pExpr->op==TK_ISNOT ); 5735 testcase( pExpr->op==TK_ISNULL ); 5736 testcase( pExpr->op==TK_NOTNULL ); 5737 testcase( pExpr->op==TK_IS ); 5738 testcase( pExpr->op==TK_OR ); 5739 testcase( pExpr->op==TK_VECTOR ); 5740 testcase( pExpr->op==TK_CASE ); 5741 testcase( pExpr->op==TK_IN ); 5742 testcase( pExpr->op==TK_FUNCTION ); 5743 testcase( pExpr->op==TK_TRUTH ); 5744 return WRC_Prune; 5745 case TK_COLUMN: 5746 if( pWalker->u.iCur==pExpr->iTable ){ 5747 pWalker->eCode = 1; 5748 return WRC_Abort; 5749 } 5750 return WRC_Prune; 5751 5752 case TK_AND: 5753 if( pWalker->eCode==0 ){ 5754 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5755 if( pWalker->eCode ){ 5756 pWalker->eCode = 0; 5757 sqlite3WalkExpr(pWalker, pExpr->pRight); 5758 } 5759 } 5760 return WRC_Prune; 5761 5762 case TK_BETWEEN: 5763 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5764 assert( pWalker->eCode ); 5765 return WRC_Abort; 5766 } 5767 return WRC_Prune; 5768 5769 /* Virtual tables are allowed to use constraints like x=NULL. So 5770 ** a term of the form x=y does not prove that y is not null if x 5771 ** is the column of a virtual table */ 5772 case TK_EQ: 5773 case TK_NE: 5774 case TK_LT: 5775 case TK_LE: 5776 case TK_GT: 5777 case TK_GE: { 5778 Expr *pLeft = pExpr->pLeft; 5779 Expr *pRight = pExpr->pRight; 5780 testcase( pExpr->op==TK_EQ ); 5781 testcase( pExpr->op==TK_NE ); 5782 testcase( pExpr->op==TK_LT ); 5783 testcase( pExpr->op==TK_LE ); 5784 testcase( pExpr->op==TK_GT ); 5785 testcase( pExpr->op==TK_GE ); 5786 /* The y.pTab=0 assignment in wherecode.c always happens after the 5787 ** impliesNotNullRow() test */ 5788 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5789 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5790 if( (pLeft->op==TK_COLUMN 5791 && pLeft->y.pTab!=0 5792 && IsVirtual(pLeft->y.pTab)) 5793 || (pRight->op==TK_COLUMN 5794 && pRight->y.pTab!=0 5795 && IsVirtual(pRight->y.pTab)) 5796 ){ 5797 return WRC_Prune; 5798 } 5799 /* no break */ deliberate_fall_through 5800 } 5801 default: 5802 return WRC_Continue; 5803 } 5804 } 5805 5806 /* 5807 ** Return true (non-zero) if expression p can only be true if at least 5808 ** one column of table iTab is non-null. In other words, return true 5809 ** if expression p will always be NULL or false if every column of iTab 5810 ** is NULL. 5811 ** 5812 ** False negatives are acceptable. In other words, it is ok to return 5813 ** zero even if expression p will never be true of every column of iTab 5814 ** is NULL. A false negative is merely a missed optimization opportunity. 5815 ** 5816 ** False positives are not allowed, however. A false positive may result 5817 ** in an incorrect answer. 5818 ** 5819 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5820 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5821 ** 5822 ** This routine is used to check if a LEFT JOIN can be converted into 5823 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5824 ** clause requires that some column of the right table of the LEFT JOIN 5825 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5826 ** ordinary join. 5827 */ 5828 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5829 Walker w; 5830 p = sqlite3ExprSkipCollateAndLikely(p); 5831 if( p==0 ) return 0; 5832 if( p->op==TK_NOTNULL ){ 5833 p = p->pLeft; 5834 }else{ 5835 while( p->op==TK_AND ){ 5836 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5837 p = p->pRight; 5838 } 5839 } 5840 w.xExprCallback = impliesNotNullRow; 5841 w.xSelectCallback = 0; 5842 w.xSelectCallback2 = 0; 5843 w.eCode = 0; 5844 w.u.iCur = iTab; 5845 sqlite3WalkExpr(&w, p); 5846 return w.eCode; 5847 } 5848 5849 /* 5850 ** An instance of the following structure is used by the tree walker 5851 ** to determine if an expression can be evaluated by reference to the 5852 ** index only, without having to do a search for the corresponding 5853 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5854 ** is the cursor for the table. 5855 */ 5856 struct IdxCover { 5857 Index *pIdx; /* The index to be tested for coverage */ 5858 int iCur; /* Cursor number for the table corresponding to the index */ 5859 }; 5860 5861 /* 5862 ** Check to see if there are references to columns in table 5863 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5864 ** pWalker->u.pIdxCover->pIdx. 5865 */ 5866 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5867 if( pExpr->op==TK_COLUMN 5868 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5869 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5870 ){ 5871 pWalker->eCode = 1; 5872 return WRC_Abort; 5873 } 5874 return WRC_Continue; 5875 } 5876 5877 /* 5878 ** Determine if an index pIdx on table with cursor iCur contains will 5879 ** the expression pExpr. Return true if the index does cover the 5880 ** expression and false if the pExpr expression references table columns 5881 ** that are not found in the index pIdx. 5882 ** 5883 ** An index covering an expression means that the expression can be 5884 ** evaluated using only the index and without having to lookup the 5885 ** corresponding table entry. 5886 */ 5887 int sqlite3ExprCoveredByIndex( 5888 Expr *pExpr, /* The index to be tested */ 5889 int iCur, /* The cursor number for the corresponding table */ 5890 Index *pIdx /* The index that might be used for coverage */ 5891 ){ 5892 Walker w; 5893 struct IdxCover xcov; 5894 memset(&w, 0, sizeof(w)); 5895 xcov.iCur = iCur; 5896 xcov.pIdx = pIdx; 5897 w.xExprCallback = exprIdxCover; 5898 w.u.pIdxCover = &xcov; 5899 sqlite3WalkExpr(&w, pExpr); 5900 return !w.eCode; 5901 } 5902 5903 5904 /* Structure used to pass information throught the Walker in order to 5905 ** implement sqlite3ReferencesSrcList(). 5906 */ 5907 struct RefSrcList { 5908 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5909 SrcList *pRef; /* Looking for references to these tables */ 5910 i64 nExclude; /* Number of tables to exclude from the search */ 5911 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5912 }; 5913 5914 /* 5915 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5916 ** 5917 ** When entering a new subquery on the pExpr argument, add all FROM clause 5918 ** entries for that subquery to the exclude list. 5919 ** 5920 ** When leaving the subquery, remove those entries from the exclude list. 5921 */ 5922 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5923 struct RefSrcList *p = pWalker->u.pRefSrcList; 5924 SrcList *pSrc = pSelect->pSrc; 5925 i64 i, j; 5926 int *piNew; 5927 if( pSrc->nSrc==0 ) return WRC_Continue; 5928 j = p->nExclude; 5929 p->nExclude += pSrc->nSrc; 5930 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5931 if( piNew==0 ){ 5932 p->nExclude = 0; 5933 return WRC_Abort; 5934 }else{ 5935 p->aiExclude = piNew; 5936 } 5937 for(i=0; i<pSrc->nSrc; i++, j++){ 5938 p->aiExclude[j] = pSrc->a[i].iCursor; 5939 } 5940 return WRC_Continue; 5941 } 5942 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5943 struct RefSrcList *p = pWalker->u.pRefSrcList; 5944 SrcList *pSrc = pSelect->pSrc; 5945 if( p->nExclude ){ 5946 assert( p->nExclude>=pSrc->nSrc ); 5947 p->nExclude -= pSrc->nSrc; 5948 } 5949 } 5950 5951 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 5952 ** 5953 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 5954 ** of the tables shown in RefSrcList.pRef. 5955 ** 5956 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 5957 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 5958 */ 5959 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 5960 if( pExpr->op==TK_COLUMN 5961 || pExpr->op==TK_AGG_COLUMN 5962 ){ 5963 int i; 5964 struct RefSrcList *p = pWalker->u.pRefSrcList; 5965 SrcList *pSrc = p->pRef; 5966 int nSrc = pSrc ? pSrc->nSrc : 0; 5967 for(i=0; i<nSrc; i++){ 5968 if( pExpr->iTable==pSrc->a[i].iCursor ){ 5969 pWalker->eCode |= 1; 5970 return WRC_Continue; 5971 } 5972 } 5973 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 5974 if( i>=p->nExclude ){ 5975 pWalker->eCode |= 2; 5976 } 5977 } 5978 return WRC_Continue; 5979 } 5980 5981 /* 5982 ** Check to see if pExpr references any tables in pSrcList. 5983 ** Possible return values: 5984 ** 5985 ** 1 pExpr does references a table in pSrcList. 5986 ** 5987 ** 0 pExpr references some table that is not defined in either 5988 ** pSrcList or in subqueries of pExpr itself. 5989 ** 5990 ** -1 pExpr only references no tables at all, or it only 5991 ** references tables defined in subqueries of pExpr itself. 5992 ** 5993 ** As currently used, pExpr is always an aggregate function call. That 5994 ** fact is exploited for efficiency. 5995 */ 5996 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 5997 Walker w; 5998 struct RefSrcList x; 5999 memset(&w, 0, sizeof(w)); 6000 memset(&x, 0, sizeof(x)); 6001 w.xExprCallback = exprRefToSrcList; 6002 w.xSelectCallback = selectRefEnter; 6003 w.xSelectCallback2 = selectRefLeave; 6004 w.u.pRefSrcList = &x; 6005 x.db = pParse->db; 6006 x.pRef = pSrcList; 6007 assert( pExpr->op==TK_AGG_FUNCTION ); 6008 assert( ExprUseXList(pExpr) ); 6009 sqlite3WalkExprList(&w, pExpr->x.pList); 6010 #ifndef SQLITE_OMIT_WINDOWFUNC 6011 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6012 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6013 } 6014 #endif 6015 sqlite3DbFree(pParse->db, x.aiExclude); 6016 if( w.eCode & 0x01 ){ 6017 return 1; 6018 }else if( w.eCode ){ 6019 return 0; 6020 }else{ 6021 return -1; 6022 } 6023 } 6024 6025 /* 6026 ** This is a Walker expression node callback. 6027 ** 6028 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6029 ** object that is referenced does not refer directly to the Expr. If 6030 ** it does, make a copy. This is done because the pExpr argument is 6031 ** subject to change. 6032 ** 6033 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6034 ** This will cause the expression to be deleted automatically when the 6035 ** Parse object is destroyed, but the zero register number means that it 6036 ** will not generate any code in the preamble. 6037 */ 6038 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6039 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6040 && pExpr->pAggInfo!=0 6041 ){ 6042 AggInfo *pAggInfo = pExpr->pAggInfo; 6043 int iAgg = pExpr->iAgg; 6044 Parse *pParse = pWalker->pParse; 6045 sqlite3 *db = pParse->db; 6046 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6047 if( pExpr->op==TK_AGG_COLUMN ){ 6048 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6049 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6050 pExpr = sqlite3ExprDup(db, pExpr, 0); 6051 if( pExpr ){ 6052 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6053 sqlite3ExprDeferredDelete(pParse, pExpr); 6054 } 6055 } 6056 }else{ 6057 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6058 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6059 pExpr = sqlite3ExprDup(db, pExpr, 0); 6060 if( pExpr ){ 6061 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6062 sqlite3ExprDeferredDelete(pParse, pExpr); 6063 } 6064 } 6065 } 6066 } 6067 return WRC_Continue; 6068 } 6069 6070 /* 6071 ** Initialize a Walker object so that will persist AggInfo entries referenced 6072 ** by the tree that is walked. 6073 */ 6074 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6075 memset(pWalker, 0, sizeof(*pWalker)); 6076 pWalker->pParse = pParse; 6077 pWalker->xExprCallback = agginfoPersistExprCb; 6078 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6079 } 6080 6081 /* 6082 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6083 ** the new element. Return a negative number if malloc fails. 6084 */ 6085 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6086 int i; 6087 pInfo->aCol = sqlite3ArrayAllocate( 6088 db, 6089 pInfo->aCol, 6090 sizeof(pInfo->aCol[0]), 6091 &pInfo->nColumn, 6092 &i 6093 ); 6094 return i; 6095 } 6096 6097 /* 6098 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6099 ** the new element. Return a negative number if malloc fails. 6100 */ 6101 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6102 int i; 6103 pInfo->aFunc = sqlite3ArrayAllocate( 6104 db, 6105 pInfo->aFunc, 6106 sizeof(pInfo->aFunc[0]), 6107 &pInfo->nFunc, 6108 &i 6109 ); 6110 return i; 6111 } 6112 6113 /* 6114 ** This is the xExprCallback for a tree walker. It is used to 6115 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6116 ** for additional information. 6117 */ 6118 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6119 int i; 6120 NameContext *pNC = pWalker->u.pNC; 6121 Parse *pParse = pNC->pParse; 6122 SrcList *pSrcList = pNC->pSrcList; 6123 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6124 6125 assert( pNC->ncFlags & NC_UAggInfo ); 6126 switch( pExpr->op ){ 6127 case TK_AGG_COLUMN: 6128 case TK_COLUMN: { 6129 testcase( pExpr->op==TK_AGG_COLUMN ); 6130 testcase( pExpr->op==TK_COLUMN ); 6131 /* Check to see if the column is in one of the tables in the FROM 6132 ** clause of the aggregate query */ 6133 if( ALWAYS(pSrcList!=0) ){ 6134 SrcItem *pItem = pSrcList->a; 6135 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6136 struct AggInfo_col *pCol; 6137 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6138 if( pExpr->iTable==pItem->iCursor ){ 6139 /* If we reach this point, it means that pExpr refers to a table 6140 ** that is in the FROM clause of the aggregate query. 6141 ** 6142 ** Make an entry for the column in pAggInfo->aCol[] if there 6143 ** is not an entry there already. 6144 */ 6145 int k; 6146 pCol = pAggInfo->aCol; 6147 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6148 if( pCol->iTable==pExpr->iTable && 6149 pCol->iColumn==pExpr->iColumn ){ 6150 break; 6151 } 6152 } 6153 if( (k>=pAggInfo->nColumn) 6154 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6155 ){ 6156 pCol = &pAggInfo->aCol[k]; 6157 assert( ExprUseYTab(pExpr) ); 6158 pCol->pTab = pExpr->y.pTab; 6159 pCol->iTable = pExpr->iTable; 6160 pCol->iColumn = pExpr->iColumn; 6161 pCol->iMem = ++pParse->nMem; 6162 pCol->iSorterColumn = -1; 6163 pCol->pCExpr = pExpr; 6164 if( pAggInfo->pGroupBy ){ 6165 int j, n; 6166 ExprList *pGB = pAggInfo->pGroupBy; 6167 struct ExprList_item *pTerm = pGB->a; 6168 n = pGB->nExpr; 6169 for(j=0; j<n; j++, pTerm++){ 6170 Expr *pE = pTerm->pExpr; 6171 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6172 pE->iColumn==pExpr->iColumn ){ 6173 pCol->iSorterColumn = j; 6174 break; 6175 } 6176 } 6177 } 6178 if( pCol->iSorterColumn<0 ){ 6179 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6180 } 6181 } 6182 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6183 ** because it was there before or because we just created it). 6184 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6185 ** pAggInfo->aCol[] entry. 6186 */ 6187 ExprSetVVAProperty(pExpr, EP_NoReduce); 6188 pExpr->pAggInfo = pAggInfo; 6189 pExpr->op = TK_AGG_COLUMN; 6190 pExpr->iAgg = (i16)k; 6191 break; 6192 } /* endif pExpr->iTable==pItem->iCursor */ 6193 } /* end loop over pSrcList */ 6194 } 6195 return WRC_Prune; 6196 } 6197 case TK_AGG_FUNCTION: { 6198 if( (pNC->ncFlags & NC_InAggFunc)==0 6199 && pWalker->walkerDepth==pExpr->op2 6200 ){ 6201 /* Check to see if pExpr is a duplicate of another aggregate 6202 ** function that is already in the pAggInfo structure 6203 */ 6204 struct AggInfo_func *pItem = pAggInfo->aFunc; 6205 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6206 if( pItem->pFExpr==pExpr ) break; 6207 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6208 break; 6209 } 6210 } 6211 if( i>=pAggInfo->nFunc ){ 6212 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6213 */ 6214 u8 enc = ENC(pParse->db); 6215 i = addAggInfoFunc(pParse->db, pAggInfo); 6216 if( i>=0 ){ 6217 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6218 pItem = &pAggInfo->aFunc[i]; 6219 pItem->pFExpr = pExpr; 6220 pItem->iMem = ++pParse->nMem; 6221 assert( ExprUseUToken(pExpr) ); 6222 pItem->pFunc = sqlite3FindFunction(pParse->db, 6223 pExpr->u.zToken, 6224 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6225 if( pExpr->flags & EP_Distinct ){ 6226 pItem->iDistinct = pParse->nTab++; 6227 }else{ 6228 pItem->iDistinct = -1; 6229 } 6230 } 6231 } 6232 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6233 */ 6234 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6235 ExprSetVVAProperty(pExpr, EP_NoReduce); 6236 pExpr->iAgg = (i16)i; 6237 pExpr->pAggInfo = pAggInfo; 6238 return WRC_Prune; 6239 }else{ 6240 return WRC_Continue; 6241 } 6242 } 6243 } 6244 return WRC_Continue; 6245 } 6246 6247 /* 6248 ** Analyze the pExpr expression looking for aggregate functions and 6249 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6250 ** points to. Additional entries are made on the AggInfo object as 6251 ** necessary. 6252 ** 6253 ** This routine should only be called after the expression has been 6254 ** analyzed by sqlite3ResolveExprNames(). 6255 */ 6256 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6257 Walker w; 6258 w.xExprCallback = analyzeAggregate; 6259 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6260 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6261 w.walkerDepth = 0; 6262 w.u.pNC = pNC; 6263 w.pParse = 0; 6264 assert( pNC->pSrcList!=0 ); 6265 sqlite3WalkExpr(&w, pExpr); 6266 } 6267 6268 /* 6269 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6270 ** expression list. Return the number of errors. 6271 ** 6272 ** If an error is found, the analysis is cut short. 6273 */ 6274 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6275 struct ExprList_item *pItem; 6276 int i; 6277 if( pList ){ 6278 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6279 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6280 } 6281 } 6282 } 6283 6284 /* 6285 ** Allocate a single new register for use to hold some intermediate result. 6286 */ 6287 int sqlite3GetTempReg(Parse *pParse){ 6288 if( pParse->nTempReg==0 ){ 6289 return ++pParse->nMem; 6290 } 6291 return pParse->aTempReg[--pParse->nTempReg]; 6292 } 6293 6294 /* 6295 ** Deallocate a register, making available for reuse for some other 6296 ** purpose. 6297 */ 6298 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6299 if( iReg ){ 6300 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6301 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6302 pParse->aTempReg[pParse->nTempReg++] = iReg; 6303 } 6304 } 6305 } 6306 6307 /* 6308 ** Allocate or deallocate a block of nReg consecutive registers. 6309 */ 6310 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6311 int i, n; 6312 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6313 i = pParse->iRangeReg; 6314 n = pParse->nRangeReg; 6315 if( nReg<=n ){ 6316 pParse->iRangeReg += nReg; 6317 pParse->nRangeReg -= nReg; 6318 }else{ 6319 i = pParse->nMem+1; 6320 pParse->nMem += nReg; 6321 } 6322 return i; 6323 } 6324 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6325 if( nReg==1 ){ 6326 sqlite3ReleaseTempReg(pParse, iReg); 6327 return; 6328 } 6329 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6330 if( nReg>pParse->nRangeReg ){ 6331 pParse->nRangeReg = nReg; 6332 pParse->iRangeReg = iReg; 6333 } 6334 } 6335 6336 /* 6337 ** Mark all temporary registers as being unavailable for reuse. 6338 ** 6339 ** Always invoke this procedure after coding a subroutine or co-routine 6340 ** that might be invoked from other parts of the code, to ensure that 6341 ** the sub/co-routine does not use registers in common with the code that 6342 ** invokes the sub/co-routine. 6343 */ 6344 void sqlite3ClearTempRegCache(Parse *pParse){ 6345 pParse->nTempReg = 0; 6346 pParse->nRangeReg = 0; 6347 } 6348 6349 /* 6350 ** Validate that no temporary register falls within the range of 6351 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6352 ** statements. 6353 */ 6354 #ifdef SQLITE_DEBUG 6355 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6356 int i; 6357 if( pParse->nRangeReg>0 6358 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6359 && pParse->iRangeReg <= iLast 6360 ){ 6361 return 0; 6362 } 6363 for(i=0; i<pParse->nTempReg; i++){ 6364 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6365 return 0; 6366 } 6367 } 6368 return 1; 6369 } 6370 #endif /* SQLITE_DEBUG */ 6371