xref: /sqlite-3.40.0/src/expr.c (revision db08a6d1)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
773   if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight;
774   if( ExprUseXSelect(p) ){
775     heightOfSelect(p->x.pSelect, &nHeight);
776   }else if( p->x.pList ){
777     heightOfExprList(p->x.pList, &nHeight);
778     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
779   }
780   p->nHeight = nHeight + 1;
781 }
782 
783 /*
784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
785 ** the height is greater than the maximum allowed expression depth,
786 ** leave an error in pParse.
787 **
788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
789 ** Expr.flags.
790 */
791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
792   if( pParse->nErr ) return;
793   exprSetHeight(p);
794   sqlite3ExprCheckHeight(pParse, p->nHeight);
795 }
796 
797 /*
798 ** Return the maximum height of any expression tree referenced
799 ** by the select statement passed as an argument.
800 */
801 int sqlite3SelectExprHeight(const Select *p){
802   int nHeight = 0;
803   heightOfSelect(p, &nHeight);
804   return nHeight;
805 }
806 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
807 /*
808 ** Propagate all EP_Propagate flags from the Expr.x.pList into
809 ** Expr.flags.
810 */
811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
812   if( pParse->nErr ) return;
813   if( p && ExprUseXList(p) && p->x.pList ){
814     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
815   }
816 }
817 #define exprSetHeight(y)
818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
819 
820 /*
821 ** This routine is the core allocator for Expr nodes.
822 **
823 ** Construct a new expression node and return a pointer to it.  Memory
824 ** for this node and for the pToken argument is a single allocation
825 ** obtained from sqlite3DbMalloc().  The calling function
826 ** is responsible for making sure the node eventually gets freed.
827 **
828 ** If dequote is true, then the token (if it exists) is dequoted.
829 ** If dequote is false, no dequoting is performed.  The deQuote
830 ** parameter is ignored if pToken is NULL or if the token does not
831 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
832 ** then the EP_DblQuoted flag is set on the expression node.
833 **
834 ** Special case:  If op==TK_INTEGER and pToken points to a string that
835 ** can be translated into a 32-bit integer, then the token is not
836 ** stored in u.zToken.  Instead, the integer values is written
837 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
838 ** is allocated to hold the integer text and the dequote flag is ignored.
839 */
840 Expr *sqlite3ExprAlloc(
841   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
842   int op,                 /* Expression opcode */
843   const Token *pToken,    /* Token argument.  Might be NULL */
844   int dequote             /* True to dequote */
845 ){
846   Expr *pNew;
847   int nExtra = 0;
848   int iValue = 0;
849 
850   assert( db!=0 );
851   if( pToken ){
852     if( op!=TK_INTEGER || pToken->z==0
853           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
854       nExtra = pToken->n+1;
855       assert( iValue>=0 );
856     }
857   }
858   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
859   if( pNew ){
860     memset(pNew, 0, sizeof(Expr));
861     pNew->op = (u8)op;
862     pNew->iAgg = -1;
863     if( pToken ){
864       if( nExtra==0 ){
865         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
866         pNew->u.iValue = iValue;
867       }else{
868         pNew->u.zToken = (char*)&pNew[1];
869         assert( pToken->z!=0 || pToken->n==0 );
870         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
871         pNew->u.zToken[pToken->n] = 0;
872         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
873           sqlite3DequoteExpr(pNew);
874         }
875       }
876     }
877 #if SQLITE_MAX_EXPR_DEPTH>0
878     pNew->nHeight = 1;
879 #endif
880   }
881   return pNew;
882 }
883 
884 /*
885 ** Allocate a new expression node from a zero-terminated token that has
886 ** already been dequoted.
887 */
888 Expr *sqlite3Expr(
889   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
890   int op,                 /* Expression opcode */
891   const char *zToken      /* Token argument.  Might be NULL */
892 ){
893   Token x;
894   x.z = zToken;
895   x.n = sqlite3Strlen30(zToken);
896   return sqlite3ExprAlloc(db, op, &x, 0);
897 }
898 
899 /*
900 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
901 **
902 ** If pRoot==NULL that means that a memory allocation error has occurred.
903 ** In that case, delete the subtrees pLeft and pRight.
904 */
905 void sqlite3ExprAttachSubtrees(
906   sqlite3 *db,
907   Expr *pRoot,
908   Expr *pLeft,
909   Expr *pRight
910 ){
911   if( pRoot==0 ){
912     assert( db->mallocFailed );
913     sqlite3ExprDelete(db, pLeft);
914     sqlite3ExprDelete(db, pRight);
915   }else{
916     if( pRight ){
917       pRoot->pRight = pRight;
918       pRoot->flags |= EP_Propagate & pRight->flags;
919     }
920     if( pLeft ){
921       pRoot->pLeft = pLeft;
922       pRoot->flags |= EP_Propagate & pLeft->flags;
923     }
924     exprSetHeight(pRoot);
925   }
926 }
927 
928 /*
929 ** Allocate an Expr node which joins as many as two subtrees.
930 **
931 ** One or both of the subtrees can be NULL.  Return a pointer to the new
932 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
933 ** free the subtrees and return NULL.
934 */
935 Expr *sqlite3PExpr(
936   Parse *pParse,          /* Parsing context */
937   int op,                 /* Expression opcode */
938   Expr *pLeft,            /* Left operand */
939   Expr *pRight            /* Right operand */
940 ){
941   Expr *p;
942   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
943   if( p ){
944     memset(p, 0, sizeof(Expr));
945     p->op = op & 0xff;
946     p->iAgg = -1;
947     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
948     sqlite3ExprCheckHeight(pParse, p->nHeight);
949   }else{
950     sqlite3ExprDelete(pParse->db, pLeft);
951     sqlite3ExprDelete(pParse->db, pRight);
952   }
953   return p;
954 }
955 
956 /*
957 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
958 ** do a memory allocation failure) then delete the pSelect object.
959 */
960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
961   if( pExpr ){
962     pExpr->x.pSelect = pSelect;
963     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
964     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
965   }else{
966     assert( pParse->db->mallocFailed );
967     sqlite3SelectDelete(pParse->db, pSelect);
968   }
969 }
970 
971 /*
972 ** Expression list pEList is a list of vector values. This function
973 ** converts the contents of pEList to a VALUES(...) Select statement
974 ** returning 1 row for each element of the list. For example, the
975 ** expression list:
976 **
977 **   ( (1,2), (3,4) (5,6) )
978 **
979 ** is translated to the equivalent of:
980 **
981 **   VALUES(1,2), (3,4), (5,6)
982 **
983 ** Each of the vector values in pEList must contain exactly nElem terms.
984 ** If a list element that is not a vector or does not contain nElem terms,
985 ** an error message is left in pParse.
986 **
987 ** This is used as part of processing IN(...) expressions with a list
988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
989 */
990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
991   int ii;
992   Select *pRet = 0;
993   assert( nElem>1 );
994   for(ii=0; ii<pEList->nExpr; ii++){
995     Select *pSel;
996     Expr *pExpr = pEList->a[ii].pExpr;
997     int nExprElem;
998     if( pExpr->op==TK_VECTOR ){
999       assert( ExprUseXList(pExpr) );
1000       nExprElem = pExpr->x.pList->nExpr;
1001     }else{
1002       nExprElem = 1;
1003     }
1004     if( nExprElem!=nElem ){
1005       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1006           nExprElem, nExprElem>1?"s":"", nElem
1007       );
1008       break;
1009     }
1010     assert( ExprUseXList(pExpr) );
1011     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1012     pExpr->x.pList = 0;
1013     if( pSel ){
1014       if( pRet ){
1015         pSel->op = TK_ALL;
1016         pSel->pPrior = pRet;
1017       }
1018       pRet = pSel;
1019     }
1020   }
1021 
1022   if( pRet && pRet->pPrior ){
1023     pRet->selFlags |= SF_MultiValue;
1024   }
1025   sqlite3ExprListDelete(pParse->db, pEList);
1026   return pRet;
1027 }
1028 
1029 /*
1030 ** Join two expressions using an AND operator.  If either expression is
1031 ** NULL, then just return the other expression.
1032 **
1033 ** If one side or the other of the AND is known to be false, then instead
1034 ** of returning an AND expression, just return a constant expression with
1035 ** a value of false.
1036 */
1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1038   sqlite3 *db = pParse->db;
1039   if( pLeft==0  ){
1040     return pRight;
1041   }else if( pRight==0 ){
1042     return pLeft;
1043   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1044          && !IN_RENAME_OBJECT
1045   ){
1046     sqlite3ExprDeferredDelete(pParse, pLeft);
1047     sqlite3ExprDeferredDelete(pParse, pRight);
1048     return sqlite3Expr(db, TK_INTEGER, "0");
1049   }else{
1050     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1051   }
1052 }
1053 
1054 /*
1055 ** Construct a new expression node for a function with multiple
1056 ** arguments.
1057 */
1058 Expr *sqlite3ExprFunction(
1059   Parse *pParse,        /* Parsing context */
1060   ExprList *pList,      /* Argument list */
1061   const Token *pToken,  /* Name of the function */
1062   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1063 ){
1064   Expr *pNew;
1065   sqlite3 *db = pParse->db;
1066   assert( pToken );
1067   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1068   if( pNew==0 ){
1069     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1070     return 0;
1071   }
1072   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1073   if( pList
1074    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1075    && !pParse->nested
1076   ){
1077     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1078   }
1079   pNew->x.pList = pList;
1080   ExprSetProperty(pNew, EP_HasFunc);
1081   assert( ExprUseXList(pNew) );
1082   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1083   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1084   return pNew;
1085 }
1086 
1087 /*
1088 ** Check to see if a function is usable according to current access
1089 ** rules:
1090 **
1091 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1092 **
1093 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1094 **                                top-level SQL
1095 **
1096 ** If the function is not usable, create an error.
1097 */
1098 void sqlite3ExprFunctionUsable(
1099   Parse *pParse,         /* Parsing and code generating context */
1100   const Expr *pExpr,     /* The function invocation */
1101   const FuncDef *pDef    /* The function being invoked */
1102 ){
1103   assert( !IN_RENAME_OBJECT );
1104   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1105   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1106     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1107      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1108     ){
1109       /* Functions prohibited in triggers and views if:
1110       **     (1) tagged with SQLITE_DIRECTONLY
1111       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1112       **         is tagged with SQLITE_FUNC_UNSAFE) and
1113       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1114       **         that the schema is possibly tainted).
1115       */
1116       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1117     }
1118   }
1119 }
1120 
1121 /*
1122 ** Assign a variable number to an expression that encodes a wildcard
1123 ** in the original SQL statement.
1124 **
1125 ** Wildcards consisting of a single "?" are assigned the next sequential
1126 ** variable number.
1127 **
1128 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1129 ** sure "nnn" is not too big to avoid a denial of service attack when
1130 ** the SQL statement comes from an external source.
1131 **
1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1133 ** as the previous instance of the same wildcard.  Or if this is the first
1134 ** instance of the wildcard, the next sequential variable number is
1135 ** assigned.
1136 */
1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1138   sqlite3 *db = pParse->db;
1139   const char *z;
1140   ynVar x;
1141 
1142   if( pExpr==0 ) return;
1143   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1144   z = pExpr->u.zToken;
1145   assert( z!=0 );
1146   assert( z[0]!=0 );
1147   assert( n==(u32)sqlite3Strlen30(z) );
1148   if( z[1]==0 ){
1149     /* Wildcard of the form "?".  Assign the next variable number */
1150     assert( z[0]=='?' );
1151     x = (ynVar)(++pParse->nVar);
1152   }else{
1153     int doAdd = 0;
1154     if( z[0]=='?' ){
1155       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1156       ** use it as the variable number */
1157       i64 i;
1158       int bOk;
1159       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1160         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1161         bOk = 1;
1162       }else{
1163         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1164       }
1165       testcase( i==0 );
1166       testcase( i==1 );
1167       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1168       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1169       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1170         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1171             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1172         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1173         return;
1174       }
1175       x = (ynVar)i;
1176       if( x>pParse->nVar ){
1177         pParse->nVar = (int)x;
1178         doAdd = 1;
1179       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1180         doAdd = 1;
1181       }
1182     }else{
1183       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1184       ** number as the prior appearance of the same name, or if the name
1185       ** has never appeared before, reuse the same variable number
1186       */
1187       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1188       if( x==0 ){
1189         x = (ynVar)(++pParse->nVar);
1190         doAdd = 1;
1191       }
1192     }
1193     if( doAdd ){
1194       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1195     }
1196   }
1197   pExpr->iColumn = x;
1198   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1199     sqlite3ErrorMsg(pParse, "too many SQL variables");
1200     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1201   }
1202 }
1203 
1204 /*
1205 ** Recursively delete an expression tree.
1206 */
1207 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1208   assert( p!=0 );
1209   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1210   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1211   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1212   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1213 #ifdef SQLITE_DEBUG
1214   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1215     assert( p->pLeft==0 );
1216     assert( p->pRight==0 );
1217     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1218     assert( !ExprUseXList(p) || p->x.pList==0 );
1219   }
1220 #endif
1221   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1222     /* The Expr.x union is never used at the same time as Expr.pRight */
1223     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1224     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1225     if( p->pRight ){
1226       assert( !ExprHasProperty(p, EP_WinFunc) );
1227       sqlite3ExprDeleteNN(db, p->pRight);
1228     }else if( ExprUseXSelect(p) ){
1229       assert( !ExprHasProperty(p, EP_WinFunc) );
1230       sqlite3SelectDelete(db, p->x.pSelect);
1231     }else{
1232       sqlite3ExprListDelete(db, p->x.pList);
1233 #ifndef SQLITE_OMIT_WINDOWFUNC
1234       if( ExprHasProperty(p, EP_WinFunc) ){
1235         sqlite3WindowDelete(db, p->y.pWin);
1236       }
1237 #endif
1238     }
1239   }
1240   if( ExprHasProperty(p, EP_MemToken) ){
1241     assert( !ExprHasProperty(p, EP_IntValue) );
1242     sqlite3DbFree(db, p->u.zToken);
1243   }
1244   if( !ExprHasProperty(p, EP_Static) ){
1245     sqlite3DbFreeNN(db, p);
1246   }
1247 }
1248 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1249   if( p ) sqlite3ExprDeleteNN(db, p);
1250 }
1251 
1252 /*
1253 ** Clear both elements of an OnOrUsing object
1254 */
1255 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1256   if( p==0 ){
1257     /* Nothing to clear */
1258   }else if( p->pOn ){
1259     sqlite3ExprDeleteNN(db, p->pOn);
1260   }else if( p->pUsing ){
1261     sqlite3IdListDelete(db, p->pUsing);
1262   }
1263 }
1264 
1265 /*
1266 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1267 ** This is similar to sqlite3ExprDelete() except that the delete is
1268 ** deferred untilthe pParse is deleted.
1269 **
1270 ** The pExpr might be deleted immediately on an OOM error.
1271 **
1272 ** The deferred delete is (currently) implemented by adding the
1273 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1274 */
1275 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1276   pParse->pConstExpr =
1277       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1278 }
1279 
1280 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1281 ** expression.
1282 */
1283 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1284   if( p ){
1285     if( IN_RENAME_OBJECT ){
1286       sqlite3RenameExprUnmap(pParse, p);
1287     }
1288     sqlite3ExprDeleteNN(pParse->db, p);
1289   }
1290 }
1291 
1292 /*
1293 ** Return the number of bytes allocated for the expression structure
1294 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1295 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1296 */
1297 static int exprStructSize(const Expr *p){
1298   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1299   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1300   return EXPR_FULLSIZE;
1301 }
1302 
1303 /*
1304 ** The dupedExpr*Size() routines each return the number of bytes required
1305 ** to store a copy of an expression or expression tree.  They differ in
1306 ** how much of the tree is measured.
1307 **
1308 **     dupedExprStructSize()     Size of only the Expr structure
1309 **     dupedExprNodeSize()       Size of Expr + space for token
1310 **     dupedExprSize()           Expr + token + subtree components
1311 **
1312 ***************************************************************************
1313 **
1314 ** The dupedExprStructSize() function returns two values OR-ed together:
1315 ** (1) the space required for a copy of the Expr structure only and
1316 ** (2) the EP_xxx flags that indicate what the structure size should be.
1317 ** The return values is always one of:
1318 **
1319 **      EXPR_FULLSIZE
1320 **      EXPR_REDUCEDSIZE   | EP_Reduced
1321 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1322 **
1323 ** The size of the structure can be found by masking the return value
1324 ** of this routine with 0xfff.  The flags can be found by masking the
1325 ** return value with EP_Reduced|EP_TokenOnly.
1326 **
1327 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1328 ** (unreduced) Expr objects as they or originally constructed by the parser.
1329 ** During expression analysis, extra information is computed and moved into
1330 ** later parts of the Expr object and that extra information might get chopped
1331 ** off if the expression is reduced.  Note also that it does not work to
1332 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1333 ** to reduce a pristine expression tree from the parser.  The implementation
1334 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1335 ** to enforce this constraint.
1336 */
1337 static int dupedExprStructSize(const Expr *p, int flags){
1338   int nSize;
1339   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1340   assert( EXPR_FULLSIZE<=0xfff );
1341   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1342   if( 0==flags || p->op==TK_SELECT_COLUMN
1343 #ifndef SQLITE_OMIT_WINDOWFUNC
1344    || ExprHasProperty(p, EP_WinFunc)
1345 #endif
1346   ){
1347     nSize = EXPR_FULLSIZE;
1348   }else{
1349     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1350     assert( !ExprHasProperty(p, EP_FromJoin) );
1351     assert( !ExprHasProperty(p, EP_MemToken) );
1352     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1353     if( p->pLeft || p->x.pList ){
1354       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1355     }else{
1356       assert( p->pRight==0 );
1357       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1358     }
1359   }
1360   return nSize;
1361 }
1362 
1363 /*
1364 ** This function returns the space in bytes required to store the copy
1365 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1366 ** string is defined.)
1367 */
1368 static int dupedExprNodeSize(const Expr *p, int flags){
1369   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1370   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1371     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1372   }
1373   return ROUND8(nByte);
1374 }
1375 
1376 /*
1377 ** Return the number of bytes required to create a duplicate of the
1378 ** expression passed as the first argument. The second argument is a
1379 ** mask containing EXPRDUP_XXX flags.
1380 **
1381 ** The value returned includes space to create a copy of the Expr struct
1382 ** itself and the buffer referred to by Expr.u.zToken, if any.
1383 **
1384 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1385 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1386 ** and Expr.pRight variables (but not for any structures pointed to or
1387 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1388 */
1389 static int dupedExprSize(const Expr *p, int flags){
1390   int nByte = 0;
1391   if( p ){
1392     nByte = dupedExprNodeSize(p, flags);
1393     if( flags&EXPRDUP_REDUCE ){
1394       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1395     }
1396   }
1397   return nByte;
1398 }
1399 
1400 /*
1401 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1402 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1403 ** to store the copy of expression p, the copies of p->u.zToken
1404 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1405 ** if any. Before returning, *pzBuffer is set to the first byte past the
1406 ** portion of the buffer copied into by this function.
1407 */
1408 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1409   Expr *pNew;           /* Value to return */
1410   u8 *zAlloc;           /* Memory space from which to build Expr object */
1411   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1412 
1413   assert( db!=0 );
1414   assert( p );
1415   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1416   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1417 
1418   /* Figure out where to write the new Expr structure. */
1419   if( pzBuffer ){
1420     zAlloc = *pzBuffer;
1421     staticFlag = EP_Static;
1422     assert( zAlloc!=0 );
1423   }else{
1424     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1425     staticFlag = 0;
1426   }
1427   pNew = (Expr *)zAlloc;
1428 
1429   if( pNew ){
1430     /* Set nNewSize to the size allocated for the structure pointed to
1431     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1432     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1433     ** by the copy of the p->u.zToken string (if any).
1434     */
1435     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1436     const int nNewSize = nStructSize & 0xfff;
1437     int nToken;
1438     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1439       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1440     }else{
1441       nToken = 0;
1442     }
1443     if( dupFlags ){
1444       assert( ExprHasProperty(p, EP_Reduced)==0 );
1445       memcpy(zAlloc, p, nNewSize);
1446     }else{
1447       u32 nSize = (u32)exprStructSize(p);
1448       memcpy(zAlloc, p, nSize);
1449       if( nSize<EXPR_FULLSIZE ){
1450         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1451       }
1452     }
1453 
1454     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1455     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1456     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1457     pNew->flags |= staticFlag;
1458     ExprClearVVAProperties(pNew);
1459     if( dupFlags ){
1460       ExprSetVVAProperty(pNew, EP_Immutable);
1461     }
1462 
1463     /* Copy the p->u.zToken string, if any. */
1464     if( nToken ){
1465       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1466       memcpy(zToken, p->u.zToken, nToken);
1467     }
1468 
1469     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1470       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1471       if( ExprUseXSelect(p) ){
1472         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1473       }else{
1474         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1475       }
1476     }
1477 
1478     /* Fill in pNew->pLeft and pNew->pRight. */
1479     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1480       zAlloc += dupedExprNodeSize(p, dupFlags);
1481       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1482         pNew->pLeft = p->pLeft ?
1483                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1484         pNew->pRight = p->pRight ?
1485                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1486       }
1487 #ifndef SQLITE_OMIT_WINDOWFUNC
1488       if( ExprHasProperty(p, EP_WinFunc) ){
1489         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1490         assert( ExprHasProperty(pNew, EP_WinFunc) );
1491       }
1492 #endif /* SQLITE_OMIT_WINDOWFUNC */
1493       if( pzBuffer ){
1494         *pzBuffer = zAlloc;
1495       }
1496     }else{
1497       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1498         if( pNew->op==TK_SELECT_COLUMN ){
1499           pNew->pLeft = p->pLeft;
1500           assert( p->pRight==0  || p->pRight==p->pLeft
1501                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1502         }else{
1503           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1504         }
1505         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1506       }
1507     }
1508   }
1509   return pNew;
1510 }
1511 
1512 /*
1513 ** Create and return a deep copy of the object passed as the second
1514 ** argument. If an OOM condition is encountered, NULL is returned
1515 ** and the db->mallocFailed flag set.
1516 */
1517 #ifndef SQLITE_OMIT_CTE
1518 With *sqlite3WithDup(sqlite3 *db, With *p){
1519   With *pRet = 0;
1520   if( p ){
1521     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1522     pRet = sqlite3DbMallocZero(db, nByte);
1523     if( pRet ){
1524       int i;
1525       pRet->nCte = p->nCte;
1526       for(i=0; i<p->nCte; i++){
1527         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1528         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1529         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1530       }
1531     }
1532   }
1533   return pRet;
1534 }
1535 #else
1536 # define sqlite3WithDup(x,y) 0
1537 #endif
1538 
1539 #ifndef SQLITE_OMIT_WINDOWFUNC
1540 /*
1541 ** The gatherSelectWindows() procedure and its helper routine
1542 ** gatherSelectWindowsCallback() are used to scan all the expressions
1543 ** an a newly duplicated SELECT statement and gather all of the Window
1544 ** objects found there, assembling them onto the linked list at Select->pWin.
1545 */
1546 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1547   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1548     Select *pSelect = pWalker->u.pSelect;
1549     Window *pWin = pExpr->y.pWin;
1550     assert( pWin );
1551     assert( IsWindowFunc(pExpr) );
1552     assert( pWin->ppThis==0 );
1553     sqlite3WindowLink(pSelect, pWin);
1554   }
1555   return WRC_Continue;
1556 }
1557 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1558   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1559 }
1560 static void gatherSelectWindows(Select *p){
1561   Walker w;
1562   w.xExprCallback = gatherSelectWindowsCallback;
1563   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1564   w.xSelectCallback2 = 0;
1565   w.pParse = 0;
1566   w.u.pSelect = p;
1567   sqlite3WalkSelect(&w, p);
1568 }
1569 #endif
1570 
1571 
1572 /*
1573 ** The following group of routines make deep copies of expressions,
1574 ** expression lists, ID lists, and select statements.  The copies can
1575 ** be deleted (by being passed to their respective ...Delete() routines)
1576 ** without effecting the originals.
1577 **
1578 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1579 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1580 ** by subsequent calls to sqlite*ListAppend() routines.
1581 **
1582 ** Any tables that the SrcList might point to are not duplicated.
1583 **
1584 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1585 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1586 ** truncated version of the usual Expr structure that will be stored as
1587 ** part of the in-memory representation of the database schema.
1588 */
1589 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1590   assert( flags==0 || flags==EXPRDUP_REDUCE );
1591   return p ? exprDup(db, p, flags, 0) : 0;
1592 }
1593 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1594   ExprList *pNew;
1595   struct ExprList_item *pItem;
1596   const struct ExprList_item *pOldItem;
1597   int i;
1598   Expr *pPriorSelectColOld = 0;
1599   Expr *pPriorSelectColNew = 0;
1600   assert( db!=0 );
1601   if( p==0 ) return 0;
1602   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1603   if( pNew==0 ) return 0;
1604   pNew->nExpr = p->nExpr;
1605   pNew->nAlloc = p->nAlloc;
1606   pItem = pNew->a;
1607   pOldItem = p->a;
1608   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1609     Expr *pOldExpr = pOldItem->pExpr;
1610     Expr *pNewExpr;
1611     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1612     if( pOldExpr
1613      && pOldExpr->op==TK_SELECT_COLUMN
1614      && (pNewExpr = pItem->pExpr)!=0
1615     ){
1616       if( pNewExpr->pRight ){
1617         pPriorSelectColOld = pOldExpr->pRight;
1618         pPriorSelectColNew = pNewExpr->pRight;
1619         pNewExpr->pLeft = pNewExpr->pRight;
1620       }else{
1621         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1622           pPriorSelectColOld = pOldExpr->pLeft;
1623           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1624           pNewExpr->pRight = pPriorSelectColNew;
1625         }
1626         pNewExpr->pLeft = pPriorSelectColNew;
1627       }
1628     }
1629     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1630     pItem->sortFlags = pOldItem->sortFlags;
1631     pItem->eEName = pOldItem->eEName;
1632     pItem->done = 0;
1633     pItem->bNulls = pOldItem->bNulls;
1634     pItem->bSorterRef = pOldItem->bSorterRef;
1635     pItem->u = pOldItem->u;
1636   }
1637   return pNew;
1638 }
1639 
1640 /*
1641 ** If cursors, triggers, views and subqueries are all omitted from
1642 ** the build, then none of the following routines, except for
1643 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1644 ** called with a NULL argument.
1645 */
1646 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1647  || !defined(SQLITE_OMIT_SUBQUERY)
1648 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1649   SrcList *pNew;
1650   int i;
1651   int nByte;
1652   assert( db!=0 );
1653   if( p==0 ) return 0;
1654   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1655   pNew = sqlite3DbMallocRawNN(db, nByte );
1656   if( pNew==0 ) return 0;
1657   pNew->nSrc = pNew->nAlloc = p->nSrc;
1658   for(i=0; i<p->nSrc; i++){
1659     SrcItem *pNewItem = &pNew->a[i];
1660     const SrcItem *pOldItem = &p->a[i];
1661     Table *pTab;
1662     pNewItem->pSchema = pOldItem->pSchema;
1663     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1664     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1665     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1666     pNewItem->fg = pOldItem->fg;
1667     pNewItem->iCursor = pOldItem->iCursor;
1668     pNewItem->addrFillSub = pOldItem->addrFillSub;
1669     pNewItem->regReturn = pOldItem->regReturn;
1670     if( pNewItem->fg.isIndexedBy ){
1671       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1672     }
1673     pNewItem->u2 = pOldItem->u2;
1674     if( pNewItem->fg.isCte ){
1675       pNewItem->u2.pCteUse->nUse++;
1676     }
1677     if( pNewItem->fg.isTabFunc ){
1678       pNewItem->u1.pFuncArg =
1679           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1680     }
1681     pTab = pNewItem->pTab = pOldItem->pTab;
1682     if( pTab ){
1683       pTab->nTabRef++;
1684     }
1685     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1686     if( pOldItem->fg.isUsing ){
1687       assert( pNewItem->fg.isUsing );
1688       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1689     }else{
1690       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1691     }
1692     pNewItem->colUsed = pOldItem->colUsed;
1693   }
1694   return pNew;
1695 }
1696 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1697   IdList *pNew;
1698   int i;
1699   assert( db!=0 );
1700   if( p==0 ) return 0;
1701   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1702   if( pNew==0 ) return 0;
1703   pNew->nId = p->nId;
1704   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1705   if( pNew->a==0 ){
1706     sqlite3DbFreeNN(db, pNew);
1707     return 0;
1708   }
1709   /* Note that because the size of the allocation for p->a[] is not
1710   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1711   ** on the duplicate created by this function. */
1712   for(i=0; i<p->nId; i++){
1713     struct IdList_item *pNewItem = &pNew->a[i];
1714     struct IdList_item *pOldItem = &p->a[i];
1715     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1716     pNewItem->idx = pOldItem->idx;
1717   }
1718   return pNew;
1719 }
1720 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1721   Select *pRet = 0;
1722   Select *pNext = 0;
1723   Select **pp = &pRet;
1724   const Select *p;
1725 
1726   assert( db!=0 );
1727   for(p=pDup; p; p=p->pPrior){
1728     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1729     if( pNew==0 ) break;
1730     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1731     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1732     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1733     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1734     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1735     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1736     pNew->op = p->op;
1737     pNew->pNext = pNext;
1738     pNew->pPrior = 0;
1739     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1740     pNew->iLimit = 0;
1741     pNew->iOffset = 0;
1742     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1743     pNew->addrOpenEphm[0] = -1;
1744     pNew->addrOpenEphm[1] = -1;
1745     pNew->nSelectRow = p->nSelectRow;
1746     pNew->pWith = sqlite3WithDup(db, p->pWith);
1747 #ifndef SQLITE_OMIT_WINDOWFUNC
1748     pNew->pWin = 0;
1749     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1750     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1751 #endif
1752     pNew->selId = p->selId;
1753     if( db->mallocFailed ){
1754       /* Any prior OOM might have left the Select object incomplete.
1755       ** Delete the whole thing rather than allow an incomplete Select
1756       ** to be used by the code generator. */
1757       pNew->pNext = 0;
1758       sqlite3SelectDelete(db, pNew);
1759       break;
1760     }
1761     *pp = pNew;
1762     pp = &pNew->pPrior;
1763     pNext = pNew;
1764   }
1765 
1766   return pRet;
1767 }
1768 #else
1769 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1770   assert( p==0 );
1771   return 0;
1772 }
1773 #endif
1774 
1775 
1776 /*
1777 ** Add a new element to the end of an expression list.  If pList is
1778 ** initially NULL, then create a new expression list.
1779 **
1780 ** The pList argument must be either NULL or a pointer to an ExprList
1781 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1782 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1783 ** Reason:  This routine assumes that the number of slots in pList->a[]
1784 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1785 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1786 **
1787 ** If a memory allocation error occurs, the entire list is freed and
1788 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1789 ** that the new entry was successfully appended.
1790 */
1791 static const struct ExprList_item zeroItem = {0};
1792 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1793   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1794   Expr *pExpr             /* Expression to be appended. Might be NULL */
1795 ){
1796   struct ExprList_item *pItem;
1797   ExprList *pList;
1798 
1799   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1800   if( pList==0 ){
1801     sqlite3ExprDelete(db, pExpr);
1802     return 0;
1803   }
1804   pList->nAlloc = 4;
1805   pList->nExpr = 1;
1806   pItem = &pList->a[0];
1807   *pItem = zeroItem;
1808   pItem->pExpr = pExpr;
1809   return pList;
1810 }
1811 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1812   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1813   ExprList *pList,        /* List to which to append. Might be NULL */
1814   Expr *pExpr             /* Expression to be appended. Might be NULL */
1815 ){
1816   struct ExprList_item *pItem;
1817   ExprList *pNew;
1818   pList->nAlloc *= 2;
1819   pNew = sqlite3DbRealloc(db, pList,
1820        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1821   if( pNew==0 ){
1822     sqlite3ExprListDelete(db, pList);
1823     sqlite3ExprDelete(db, pExpr);
1824     return 0;
1825   }else{
1826     pList = pNew;
1827   }
1828   pItem = &pList->a[pList->nExpr++];
1829   *pItem = zeroItem;
1830   pItem->pExpr = pExpr;
1831   return pList;
1832 }
1833 ExprList *sqlite3ExprListAppend(
1834   Parse *pParse,          /* Parsing context */
1835   ExprList *pList,        /* List to which to append. Might be NULL */
1836   Expr *pExpr             /* Expression to be appended. Might be NULL */
1837 ){
1838   struct ExprList_item *pItem;
1839   if( pList==0 ){
1840     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1841   }
1842   if( pList->nAlloc<pList->nExpr+1 ){
1843     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1844   }
1845   pItem = &pList->a[pList->nExpr++];
1846   *pItem = zeroItem;
1847   pItem->pExpr = pExpr;
1848   return pList;
1849 }
1850 
1851 /*
1852 ** pColumns and pExpr form a vector assignment which is part of the SET
1853 ** clause of an UPDATE statement.  Like this:
1854 **
1855 **        (a,b,c) = (expr1,expr2,expr3)
1856 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1857 **
1858 ** For each term of the vector assignment, append new entries to the
1859 ** expression list pList.  In the case of a subquery on the RHS, append
1860 ** TK_SELECT_COLUMN expressions.
1861 */
1862 ExprList *sqlite3ExprListAppendVector(
1863   Parse *pParse,         /* Parsing context */
1864   ExprList *pList,       /* List to which to append. Might be NULL */
1865   IdList *pColumns,      /* List of names of LHS of the assignment */
1866   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1867 ){
1868   sqlite3 *db = pParse->db;
1869   int n;
1870   int i;
1871   int iFirst = pList ? pList->nExpr : 0;
1872   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1873   ** exit prior to this routine being invoked */
1874   if( NEVER(pColumns==0) ) goto vector_append_error;
1875   if( pExpr==0 ) goto vector_append_error;
1876 
1877   /* If the RHS is a vector, then we can immediately check to see that
1878   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1879   ** wildcards ("*") in the result set of the SELECT must be expanded before
1880   ** we can do the size check, so defer the size check until code generation.
1881   */
1882   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1883     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1884                     pColumns->nId, n);
1885     goto vector_append_error;
1886   }
1887 
1888   for(i=0; i<pColumns->nId; i++){
1889     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1890     assert( pSubExpr!=0 || db->mallocFailed );
1891     if( pSubExpr==0 ) continue;
1892     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1893     if( pList ){
1894       assert( pList->nExpr==iFirst+i+1 );
1895       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1896       pColumns->a[i].zName = 0;
1897     }
1898   }
1899 
1900   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1901     Expr *pFirst = pList->a[iFirst].pExpr;
1902     assert( pFirst!=0 );
1903     assert( pFirst->op==TK_SELECT_COLUMN );
1904 
1905     /* Store the SELECT statement in pRight so it will be deleted when
1906     ** sqlite3ExprListDelete() is called */
1907     pFirst->pRight = pExpr;
1908     pExpr = 0;
1909 
1910     /* Remember the size of the LHS in iTable so that we can check that
1911     ** the RHS and LHS sizes match during code generation. */
1912     pFirst->iTable = pColumns->nId;
1913   }
1914 
1915 vector_append_error:
1916   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1917   sqlite3IdListDelete(db, pColumns);
1918   return pList;
1919 }
1920 
1921 /*
1922 ** Set the sort order for the last element on the given ExprList.
1923 */
1924 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1925   struct ExprList_item *pItem;
1926   if( p==0 ) return;
1927   assert( p->nExpr>0 );
1928 
1929   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1930   assert( iSortOrder==SQLITE_SO_UNDEFINED
1931        || iSortOrder==SQLITE_SO_ASC
1932        || iSortOrder==SQLITE_SO_DESC
1933   );
1934   assert( eNulls==SQLITE_SO_UNDEFINED
1935        || eNulls==SQLITE_SO_ASC
1936        || eNulls==SQLITE_SO_DESC
1937   );
1938 
1939   pItem = &p->a[p->nExpr-1];
1940   assert( pItem->bNulls==0 );
1941   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1942     iSortOrder = SQLITE_SO_ASC;
1943   }
1944   pItem->sortFlags = (u8)iSortOrder;
1945 
1946   if( eNulls!=SQLITE_SO_UNDEFINED ){
1947     pItem->bNulls = 1;
1948     if( iSortOrder!=eNulls ){
1949       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1950     }
1951   }
1952 }
1953 
1954 /*
1955 ** Set the ExprList.a[].zEName element of the most recently added item
1956 ** on the expression list.
1957 **
1958 ** pList might be NULL following an OOM error.  But pName should never be
1959 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1960 ** is set.
1961 */
1962 void sqlite3ExprListSetName(
1963   Parse *pParse,          /* Parsing context */
1964   ExprList *pList,        /* List to which to add the span. */
1965   const Token *pName,     /* Name to be added */
1966   int dequote             /* True to cause the name to be dequoted */
1967 ){
1968   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1969   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1970   if( pList ){
1971     struct ExprList_item *pItem;
1972     assert( pList->nExpr>0 );
1973     pItem = &pList->a[pList->nExpr-1];
1974     assert( pItem->zEName==0 );
1975     assert( pItem->eEName==ENAME_NAME );
1976     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1977     if( dequote ){
1978       /* If dequote==0, then pName->z does not point to part of a DDL
1979       ** statement handled by the parser. And so no token need be added
1980       ** to the token-map.  */
1981       sqlite3Dequote(pItem->zEName);
1982       if( IN_RENAME_OBJECT ){
1983         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1984       }
1985     }
1986   }
1987 }
1988 
1989 /*
1990 ** Set the ExprList.a[].zSpan element of the most recently added item
1991 ** on the expression list.
1992 **
1993 ** pList might be NULL following an OOM error.  But pSpan should never be
1994 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1995 ** is set.
1996 */
1997 void sqlite3ExprListSetSpan(
1998   Parse *pParse,          /* Parsing context */
1999   ExprList *pList,        /* List to which to add the span. */
2000   const char *zStart,     /* Start of the span */
2001   const char *zEnd        /* End of the span */
2002 ){
2003   sqlite3 *db = pParse->db;
2004   assert( pList!=0 || db->mallocFailed!=0 );
2005   if( pList ){
2006     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2007     assert( pList->nExpr>0 );
2008     if( pItem->zEName==0 ){
2009       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2010       pItem->eEName = ENAME_SPAN;
2011     }
2012   }
2013 }
2014 
2015 /*
2016 ** If the expression list pEList contains more than iLimit elements,
2017 ** leave an error message in pParse.
2018 */
2019 void sqlite3ExprListCheckLength(
2020   Parse *pParse,
2021   ExprList *pEList,
2022   const char *zObject
2023 ){
2024   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2025   testcase( pEList && pEList->nExpr==mx );
2026   testcase( pEList && pEList->nExpr==mx+1 );
2027   if( pEList && pEList->nExpr>mx ){
2028     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2029   }
2030 }
2031 
2032 /*
2033 ** Delete an entire expression list.
2034 */
2035 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2036   int i = pList->nExpr;
2037   struct ExprList_item *pItem =  pList->a;
2038   assert( pList->nExpr>0 );
2039   do{
2040     sqlite3ExprDelete(db, pItem->pExpr);
2041     sqlite3DbFree(db, pItem->zEName);
2042     pItem++;
2043   }while( --i>0 );
2044   sqlite3DbFreeNN(db, pList);
2045 }
2046 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2047   if( pList ) exprListDeleteNN(db, pList);
2048 }
2049 
2050 /*
2051 ** Return the bitwise-OR of all Expr.flags fields in the given
2052 ** ExprList.
2053 */
2054 u32 sqlite3ExprListFlags(const ExprList *pList){
2055   int i;
2056   u32 m = 0;
2057   assert( pList!=0 );
2058   for(i=0; i<pList->nExpr; i++){
2059      Expr *pExpr = pList->a[i].pExpr;
2060      assert( pExpr!=0 );
2061      m |= pExpr->flags;
2062   }
2063   return m;
2064 }
2065 
2066 /*
2067 ** This is a SELECT-node callback for the expression walker that
2068 ** always "fails".  By "fail" in this case, we mean set
2069 ** pWalker->eCode to zero and abort.
2070 **
2071 ** This callback is used by multiple expression walkers.
2072 */
2073 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2074   UNUSED_PARAMETER(NotUsed);
2075   pWalker->eCode = 0;
2076   return WRC_Abort;
2077 }
2078 
2079 /*
2080 ** Check the input string to see if it is "true" or "false" (in any case).
2081 **
2082 **       If the string is....           Return
2083 **         "true"                         EP_IsTrue
2084 **         "false"                        EP_IsFalse
2085 **         anything else                  0
2086 */
2087 u32 sqlite3IsTrueOrFalse(const char *zIn){
2088   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2089   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2090   return 0;
2091 }
2092 
2093 
2094 /*
2095 ** If the input expression is an ID with the name "true" or "false"
2096 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2097 ** the conversion happened, and zero if the expression is unaltered.
2098 */
2099 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2100   u32 v;
2101   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2102   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2103    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2104   ){
2105     pExpr->op = TK_TRUEFALSE;
2106     ExprSetProperty(pExpr, v);
2107     return 1;
2108   }
2109   return 0;
2110 }
2111 
2112 /*
2113 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2114 ** and 0 if it is FALSE.
2115 */
2116 int sqlite3ExprTruthValue(const Expr *pExpr){
2117   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2118   assert( pExpr->op==TK_TRUEFALSE );
2119   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2120   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2121        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2122   return pExpr->u.zToken[4]==0;
2123 }
2124 
2125 /*
2126 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2127 ** terms that are always true or false.  Return the simplified expression.
2128 ** Or return the original expression if no simplification is possible.
2129 **
2130 ** Examples:
2131 **
2132 **     (x<10) AND true                =>   (x<10)
2133 **     (x<10) AND false               =>   false
2134 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2135 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2136 **     (y=22) OR true                 =>   true
2137 */
2138 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2139   assert( pExpr!=0 );
2140   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2141     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2142     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2143     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2144       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2145     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2146       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2147     }
2148   }
2149   return pExpr;
2150 }
2151 
2152 
2153 /*
2154 ** These routines are Walker callbacks used to check expressions to
2155 ** see if they are "constant" for some definition of constant.  The
2156 ** Walker.eCode value determines the type of "constant" we are looking
2157 ** for.
2158 **
2159 ** These callback routines are used to implement the following:
2160 **
2161 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2162 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2163 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2164 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2165 **
2166 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2167 ** is found to not be a constant.
2168 **
2169 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2170 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2171 ** when parsing an existing schema out of the sqlite_schema table and 4
2172 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2173 ** an error for new statements, but is silently converted
2174 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2175 ** contain a bound parameter because they were generated by older versions
2176 ** of SQLite to be parsed by newer versions of SQLite without raising a
2177 ** malformed schema error.
2178 */
2179 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2180 
2181   /* If pWalker->eCode is 2 then any term of the expression that comes from
2182   ** the ON or USING clauses of a left join disqualifies the expression
2183   ** from being considered constant. */
2184   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2185     pWalker->eCode = 0;
2186     return WRC_Abort;
2187   }
2188 
2189   switch( pExpr->op ){
2190     /* Consider functions to be constant if all their arguments are constant
2191     ** and either pWalker->eCode==4 or 5 or the function has the
2192     ** SQLITE_FUNC_CONST flag. */
2193     case TK_FUNCTION:
2194       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2195        && !ExprHasProperty(pExpr, EP_WinFunc)
2196       ){
2197         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2198         return WRC_Continue;
2199       }else{
2200         pWalker->eCode = 0;
2201         return WRC_Abort;
2202       }
2203     case TK_ID:
2204       /* Convert "true" or "false" in a DEFAULT clause into the
2205       ** appropriate TK_TRUEFALSE operator */
2206       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2207         return WRC_Prune;
2208       }
2209       /* no break */ deliberate_fall_through
2210     case TK_COLUMN:
2211     case TK_AGG_FUNCTION:
2212     case TK_AGG_COLUMN:
2213       testcase( pExpr->op==TK_ID );
2214       testcase( pExpr->op==TK_COLUMN );
2215       testcase( pExpr->op==TK_AGG_FUNCTION );
2216       testcase( pExpr->op==TK_AGG_COLUMN );
2217       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2218         return WRC_Continue;
2219       }
2220       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2221         return WRC_Continue;
2222       }
2223       /* no break */ deliberate_fall_through
2224     case TK_IF_NULL_ROW:
2225     case TK_REGISTER:
2226     case TK_DOT:
2227       testcase( pExpr->op==TK_REGISTER );
2228       testcase( pExpr->op==TK_IF_NULL_ROW );
2229       testcase( pExpr->op==TK_DOT );
2230       pWalker->eCode = 0;
2231       return WRC_Abort;
2232     case TK_VARIABLE:
2233       if( pWalker->eCode==5 ){
2234         /* Silently convert bound parameters that appear inside of CREATE
2235         ** statements into a NULL when parsing the CREATE statement text out
2236         ** of the sqlite_schema table */
2237         pExpr->op = TK_NULL;
2238       }else if( pWalker->eCode==4 ){
2239         /* A bound parameter in a CREATE statement that originates from
2240         ** sqlite3_prepare() causes an error */
2241         pWalker->eCode = 0;
2242         return WRC_Abort;
2243       }
2244       /* no break */ deliberate_fall_through
2245     default:
2246       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2247       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2248       return WRC_Continue;
2249   }
2250 }
2251 static int exprIsConst(Expr *p, int initFlag, int iCur){
2252   Walker w;
2253   w.eCode = initFlag;
2254   w.xExprCallback = exprNodeIsConstant;
2255   w.xSelectCallback = sqlite3SelectWalkFail;
2256 #ifdef SQLITE_DEBUG
2257   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2258 #endif
2259   w.u.iCur = iCur;
2260   sqlite3WalkExpr(&w, p);
2261   return w.eCode;
2262 }
2263 
2264 /*
2265 ** Walk an expression tree.  Return non-zero if the expression is constant
2266 ** and 0 if it involves variables or function calls.
2267 **
2268 ** For the purposes of this function, a double-quoted string (ex: "abc")
2269 ** is considered a variable but a single-quoted string (ex: 'abc') is
2270 ** a constant.
2271 */
2272 int sqlite3ExprIsConstant(Expr *p){
2273   return exprIsConst(p, 1, 0);
2274 }
2275 
2276 /*
2277 ** Walk an expression tree.  Return non-zero if
2278 **
2279 **   (1) the expression is constant, and
2280 **   (2) the expression does originate in the ON or USING clause
2281 **       of a LEFT JOIN, and
2282 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2283 **       operands created by the constant propagation optimization.
2284 **
2285 ** When this routine returns true, it indicates that the expression
2286 ** can be added to the pParse->pConstExpr list and evaluated once when
2287 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2288 */
2289 int sqlite3ExprIsConstantNotJoin(Expr *p){
2290   return exprIsConst(p, 2, 0);
2291 }
2292 
2293 /*
2294 ** Walk an expression tree.  Return non-zero if the expression is constant
2295 ** for any single row of the table with cursor iCur.  In other words, the
2296 ** expression must not refer to any non-deterministic function nor any
2297 ** table other than iCur.
2298 */
2299 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2300   return exprIsConst(p, 3, iCur);
2301 }
2302 
2303 
2304 /*
2305 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2306 */
2307 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2308   ExprList *pGroupBy = pWalker->u.pGroupBy;
2309   int i;
2310 
2311   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2312   ** it constant.  */
2313   for(i=0; i<pGroupBy->nExpr; i++){
2314     Expr *p = pGroupBy->a[i].pExpr;
2315     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2316       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2317       if( sqlite3IsBinary(pColl) ){
2318         return WRC_Prune;
2319       }
2320     }
2321   }
2322 
2323   /* Check if pExpr is a sub-select. If so, consider it variable. */
2324   if( ExprUseXSelect(pExpr) ){
2325     pWalker->eCode = 0;
2326     return WRC_Abort;
2327   }
2328 
2329   return exprNodeIsConstant(pWalker, pExpr);
2330 }
2331 
2332 /*
2333 ** Walk the expression tree passed as the first argument. Return non-zero
2334 ** if the expression consists entirely of constants or copies of terms
2335 ** in pGroupBy that sort with the BINARY collation sequence.
2336 **
2337 ** This routine is used to determine if a term of the HAVING clause can
2338 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2339 ** the value of the HAVING clause term must be the same for all members of
2340 ** a "group".  The requirement that the GROUP BY term must be BINARY
2341 ** assumes that no other collating sequence will have a finer-grained
2342 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2343 ** A=B in every other collating sequence.  The requirement that the
2344 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2345 ** to promote HAVING clauses that use the same alternative collating
2346 ** sequence as the GROUP BY term, but that is much harder to check,
2347 ** alternative collating sequences are uncommon, and this is only an
2348 ** optimization, so we take the easy way out and simply require the
2349 ** GROUP BY to use the BINARY collating sequence.
2350 */
2351 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2352   Walker w;
2353   w.eCode = 1;
2354   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2355   w.xSelectCallback = 0;
2356   w.u.pGroupBy = pGroupBy;
2357   w.pParse = pParse;
2358   sqlite3WalkExpr(&w, p);
2359   return w.eCode;
2360 }
2361 
2362 /*
2363 ** Walk an expression tree for the DEFAULT field of a column definition
2364 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2365 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2366 ** the expression is constant or a function call with constant arguments.
2367 ** Return and 0 if there are any variables.
2368 **
2369 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2370 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2371 ** (such as ? or $abc) in the expression are converted into NULL.  When
2372 ** isInit is false, parameters raise an error.  Parameters should not be
2373 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2374 ** allowed it, so we need to support it when reading sqlite_schema for
2375 ** backwards compatibility.
2376 **
2377 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2378 **
2379 ** For the purposes of this function, a double-quoted string (ex: "abc")
2380 ** is considered a variable but a single-quoted string (ex: 'abc') is
2381 ** a constant.
2382 */
2383 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2384   assert( isInit==0 || isInit==1 );
2385   return exprIsConst(p, 4+isInit, 0);
2386 }
2387 
2388 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2389 /*
2390 ** Walk an expression tree.  Return 1 if the expression contains a
2391 ** subquery of some kind.  Return 0 if there are no subqueries.
2392 */
2393 int sqlite3ExprContainsSubquery(Expr *p){
2394   Walker w;
2395   w.eCode = 1;
2396   w.xExprCallback = sqlite3ExprWalkNoop;
2397   w.xSelectCallback = sqlite3SelectWalkFail;
2398 #ifdef SQLITE_DEBUG
2399   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2400 #endif
2401   sqlite3WalkExpr(&w, p);
2402   return w.eCode==0;
2403 }
2404 #endif
2405 
2406 /*
2407 ** If the expression p codes a constant integer that is small enough
2408 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2409 ** in *pValue.  If the expression is not an integer or if it is too big
2410 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2411 */
2412 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2413   int rc = 0;
2414   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2415 
2416   /* If an expression is an integer literal that fits in a signed 32-bit
2417   ** integer, then the EP_IntValue flag will have already been set */
2418   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2419            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2420 
2421   if( p->flags & EP_IntValue ){
2422     *pValue = p->u.iValue;
2423     return 1;
2424   }
2425   switch( p->op ){
2426     case TK_UPLUS: {
2427       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2428       break;
2429     }
2430     case TK_UMINUS: {
2431       int v = 0;
2432       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2433         assert( ((unsigned int)v)!=0x80000000 );
2434         *pValue = -v;
2435         rc = 1;
2436       }
2437       break;
2438     }
2439     default: break;
2440   }
2441   return rc;
2442 }
2443 
2444 /*
2445 ** Return FALSE if there is no chance that the expression can be NULL.
2446 **
2447 ** If the expression might be NULL or if the expression is too complex
2448 ** to tell return TRUE.
2449 **
2450 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2451 ** when we know that a value cannot be NULL.  Hence, a false positive
2452 ** (returning TRUE when in fact the expression can never be NULL) might
2453 ** be a small performance hit but is otherwise harmless.  On the other
2454 ** hand, a false negative (returning FALSE when the result could be NULL)
2455 ** will likely result in an incorrect answer.  So when in doubt, return
2456 ** TRUE.
2457 */
2458 int sqlite3ExprCanBeNull(const Expr *p){
2459   u8 op;
2460   assert( p!=0 );
2461   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2462     p = p->pLeft;
2463     assert( p!=0 );
2464   }
2465   op = p->op;
2466   if( op==TK_REGISTER ) op = p->op2;
2467   switch( op ){
2468     case TK_INTEGER:
2469     case TK_STRING:
2470     case TK_FLOAT:
2471     case TK_BLOB:
2472       return 0;
2473     case TK_COLUMN:
2474       assert( ExprUseYTab(p) );
2475       return ExprHasProperty(p, EP_CanBeNull) ||
2476              p->y.pTab==0 ||  /* Reference to column of index on expression */
2477              (p->iColumn>=0
2478               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2479               && p->y.pTab->aCol[p->iColumn].notNull==0);
2480     default:
2481       return 1;
2482   }
2483 }
2484 
2485 /*
2486 ** Return TRUE if the given expression is a constant which would be
2487 ** unchanged by OP_Affinity with the affinity given in the second
2488 ** argument.
2489 **
2490 ** This routine is used to determine if the OP_Affinity operation
2491 ** can be omitted.  When in doubt return FALSE.  A false negative
2492 ** is harmless.  A false positive, however, can result in the wrong
2493 ** answer.
2494 */
2495 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2496   u8 op;
2497   int unaryMinus = 0;
2498   if( aff==SQLITE_AFF_BLOB ) return 1;
2499   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2500     if( p->op==TK_UMINUS ) unaryMinus = 1;
2501     p = p->pLeft;
2502   }
2503   op = p->op;
2504   if( op==TK_REGISTER ) op = p->op2;
2505   switch( op ){
2506     case TK_INTEGER: {
2507       return aff>=SQLITE_AFF_NUMERIC;
2508     }
2509     case TK_FLOAT: {
2510       return aff>=SQLITE_AFF_NUMERIC;
2511     }
2512     case TK_STRING: {
2513       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2514     }
2515     case TK_BLOB: {
2516       return !unaryMinus;
2517     }
2518     case TK_COLUMN: {
2519       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2520       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2521     }
2522     default: {
2523       return 0;
2524     }
2525   }
2526 }
2527 
2528 /*
2529 ** Return TRUE if the given string is a row-id column name.
2530 */
2531 int sqlite3IsRowid(const char *z){
2532   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2533   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2534   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2535   return 0;
2536 }
2537 
2538 /*
2539 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2540 ** that can be simplified to a direct table access, then return
2541 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2542 ** or if the SELECT statement needs to be manifested into a transient
2543 ** table, then return NULL.
2544 */
2545 #ifndef SQLITE_OMIT_SUBQUERY
2546 static Select *isCandidateForInOpt(const Expr *pX){
2547   Select *p;
2548   SrcList *pSrc;
2549   ExprList *pEList;
2550   Table *pTab;
2551   int i;
2552   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2553   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2554   p = pX->x.pSelect;
2555   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2556   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2557     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2558     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2559     return 0; /* No DISTINCT keyword and no aggregate functions */
2560   }
2561   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2562   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2563   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2564   pSrc = p->pSrc;
2565   assert( pSrc!=0 );
2566   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2567   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2568   pTab = pSrc->a[0].pTab;
2569   assert( pTab!=0 );
2570   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2571   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2572   pEList = p->pEList;
2573   assert( pEList!=0 );
2574   /* All SELECT results must be columns. */
2575   for(i=0; i<pEList->nExpr; i++){
2576     Expr *pRes = pEList->a[i].pExpr;
2577     if( pRes->op!=TK_COLUMN ) return 0;
2578     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2579   }
2580   return p;
2581 }
2582 #endif /* SQLITE_OMIT_SUBQUERY */
2583 
2584 #ifndef SQLITE_OMIT_SUBQUERY
2585 /*
2586 ** Generate code that checks the left-most column of index table iCur to see if
2587 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2588 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2589 ** to be set to NULL if iCur contains one or more NULL values.
2590 */
2591 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2592   int addr1;
2593   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2594   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2595   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2596   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2597   VdbeComment((v, "first_entry_in(%d)", iCur));
2598   sqlite3VdbeJumpHere(v, addr1);
2599 }
2600 #endif
2601 
2602 
2603 #ifndef SQLITE_OMIT_SUBQUERY
2604 /*
2605 ** The argument is an IN operator with a list (not a subquery) on the
2606 ** right-hand side.  Return TRUE if that list is constant.
2607 */
2608 static int sqlite3InRhsIsConstant(Expr *pIn){
2609   Expr *pLHS;
2610   int res;
2611   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2612   pLHS = pIn->pLeft;
2613   pIn->pLeft = 0;
2614   res = sqlite3ExprIsConstant(pIn);
2615   pIn->pLeft = pLHS;
2616   return res;
2617 }
2618 #endif
2619 
2620 /*
2621 ** This function is used by the implementation of the IN (...) operator.
2622 ** The pX parameter is the expression on the RHS of the IN operator, which
2623 ** might be either a list of expressions or a subquery.
2624 **
2625 ** The job of this routine is to find or create a b-tree object that can
2626 ** be used either to test for membership in the RHS set or to iterate through
2627 ** all members of the RHS set, skipping duplicates.
2628 **
2629 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2630 ** and pX->iTable is set to the index of that cursor.
2631 **
2632 ** The returned value of this function indicates the b-tree type, as follows:
2633 **
2634 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2635 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2636 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2637 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2638 **                         populated epheremal table.
2639 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2640 **                         implemented as a sequence of comparisons.
2641 **
2642 ** An existing b-tree might be used if the RHS expression pX is a simple
2643 ** subquery such as:
2644 **
2645 **     SELECT <column1>, <column2>... FROM <table>
2646 **
2647 ** If the RHS of the IN operator is a list or a more complex subquery, then
2648 ** an ephemeral table might need to be generated from the RHS and then
2649 ** pX->iTable made to point to the ephemeral table instead of an
2650 ** existing table.
2651 **
2652 ** The inFlags parameter must contain, at a minimum, one of the bits
2653 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2654 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2655 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2656 ** be used to loop over all values of the RHS of the IN operator.
2657 **
2658 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2659 ** through the set members) then the b-tree must not contain duplicates.
2660 ** An epheremal table will be created unless the selected columns are guaranteed
2661 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2662 ** a UNIQUE constraint or index.
2663 **
2664 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2665 ** for fast set membership tests) then an epheremal table must
2666 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2667 ** index can be found with the specified <columns> as its left-most.
2668 **
2669 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2670 ** if the RHS of the IN operator is a list (not a subquery) then this
2671 ** routine might decide that creating an ephemeral b-tree for membership
2672 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2673 ** calling routine should implement the IN operator using a sequence
2674 ** of Eq or Ne comparison operations.
2675 **
2676 ** When the b-tree is being used for membership tests, the calling function
2677 ** might need to know whether or not the RHS side of the IN operator
2678 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2679 ** if there is any chance that the (...) might contain a NULL value at
2680 ** runtime, then a register is allocated and the register number written
2681 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2682 ** NULL value, then *prRhsHasNull is left unchanged.
2683 **
2684 ** If a register is allocated and its location stored in *prRhsHasNull, then
2685 ** the value in that register will be NULL if the b-tree contains one or more
2686 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2687 ** NULL values.
2688 **
2689 ** If the aiMap parameter is not NULL, it must point to an array containing
2690 ** one element for each column returned by the SELECT statement on the RHS
2691 ** of the IN(...) operator. The i'th entry of the array is populated with the
2692 ** offset of the index column that matches the i'th column returned by the
2693 ** SELECT. For example, if the expression and selected index are:
2694 **
2695 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2696 **   CREATE INDEX i1 ON t1(b, c, a);
2697 **
2698 ** then aiMap[] is populated with {2, 0, 1}.
2699 */
2700 #ifndef SQLITE_OMIT_SUBQUERY
2701 int sqlite3FindInIndex(
2702   Parse *pParse,             /* Parsing context */
2703   Expr *pX,                  /* The IN expression */
2704   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2705   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2706   int *aiMap,                /* Mapping from Index fields to RHS fields */
2707   int *piTab                 /* OUT: index to use */
2708 ){
2709   Select *p;                            /* SELECT to the right of IN operator */
2710   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2711   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2712   int mustBeUnique;                     /* True if RHS must be unique */
2713   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2714 
2715   assert( pX->op==TK_IN );
2716   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2717 
2718   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2719   ** whether or not the SELECT result contains NULL values, check whether
2720   ** or not NULL is actually possible (it may not be, for example, due
2721   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2722   ** set prRhsHasNull to 0 before continuing.  */
2723   if( prRhsHasNull && ExprUseXSelect(pX) ){
2724     int i;
2725     ExprList *pEList = pX->x.pSelect->pEList;
2726     for(i=0; i<pEList->nExpr; i++){
2727       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2728     }
2729     if( i==pEList->nExpr ){
2730       prRhsHasNull = 0;
2731     }
2732   }
2733 
2734   /* Check to see if an existing table or index can be used to
2735   ** satisfy the query.  This is preferable to generating a new
2736   ** ephemeral table.  */
2737   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2738     sqlite3 *db = pParse->db;              /* Database connection */
2739     Table *pTab;                           /* Table <table>. */
2740     int iDb;                               /* Database idx for pTab */
2741     ExprList *pEList = p->pEList;
2742     int nExpr = pEList->nExpr;
2743 
2744     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2745     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2746     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2747     pTab = p->pSrc->a[0].pTab;
2748 
2749     /* Code an OP_Transaction and OP_TableLock for <table>. */
2750     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2751     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2752     sqlite3CodeVerifySchema(pParse, iDb);
2753     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2754 
2755     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2756     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2757       /* The "x IN (SELECT rowid FROM table)" case */
2758       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2759       VdbeCoverage(v);
2760 
2761       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2762       eType = IN_INDEX_ROWID;
2763       ExplainQueryPlan((pParse, 0,
2764             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2765       sqlite3VdbeJumpHere(v, iAddr);
2766     }else{
2767       Index *pIdx;                         /* Iterator variable */
2768       int affinity_ok = 1;
2769       int i;
2770 
2771       /* Check that the affinity that will be used to perform each
2772       ** comparison is the same as the affinity of each column in table
2773       ** on the RHS of the IN operator.  If it not, it is not possible to
2774       ** use any index of the RHS table.  */
2775       for(i=0; i<nExpr && affinity_ok; i++){
2776         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2777         int iCol = pEList->a[i].pExpr->iColumn;
2778         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2779         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2780         testcase( cmpaff==SQLITE_AFF_BLOB );
2781         testcase( cmpaff==SQLITE_AFF_TEXT );
2782         switch( cmpaff ){
2783           case SQLITE_AFF_BLOB:
2784             break;
2785           case SQLITE_AFF_TEXT:
2786             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2787             ** other has no affinity and the other side is TEXT.  Hence,
2788             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2789             ** and for the term on the LHS of the IN to have no affinity. */
2790             assert( idxaff==SQLITE_AFF_TEXT );
2791             break;
2792           default:
2793             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2794         }
2795       }
2796 
2797       if( affinity_ok ){
2798         /* Search for an existing index that will work for this IN operator */
2799         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2800           Bitmask colUsed;      /* Columns of the index used */
2801           Bitmask mCol;         /* Mask for the current column */
2802           if( pIdx->nColumn<nExpr ) continue;
2803           if( pIdx->pPartIdxWhere!=0 ) continue;
2804           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2805           ** BITMASK(nExpr) without overflowing */
2806           testcase( pIdx->nColumn==BMS-2 );
2807           testcase( pIdx->nColumn==BMS-1 );
2808           if( pIdx->nColumn>=BMS-1 ) continue;
2809           if( mustBeUnique ){
2810             if( pIdx->nKeyCol>nExpr
2811              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2812             ){
2813               continue;  /* This index is not unique over the IN RHS columns */
2814             }
2815           }
2816 
2817           colUsed = 0;   /* Columns of index used so far */
2818           for(i=0; i<nExpr; i++){
2819             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2820             Expr *pRhs = pEList->a[i].pExpr;
2821             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2822             int j;
2823 
2824             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2825             for(j=0; j<nExpr; j++){
2826               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2827               assert( pIdx->azColl[j] );
2828               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2829                 continue;
2830               }
2831               break;
2832             }
2833             if( j==nExpr ) break;
2834             mCol = MASKBIT(j);
2835             if( mCol & colUsed ) break; /* Each column used only once */
2836             colUsed |= mCol;
2837             if( aiMap ) aiMap[i] = j;
2838           }
2839 
2840           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2841           if( colUsed==(MASKBIT(nExpr)-1) ){
2842             /* If we reach this point, that means the index pIdx is usable */
2843             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2844             ExplainQueryPlan((pParse, 0,
2845                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2846             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2847             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2848             VdbeComment((v, "%s", pIdx->zName));
2849             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2850             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2851 
2852             if( prRhsHasNull ){
2853 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2854               i64 mask = (1<<nExpr)-1;
2855               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2856                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2857 #endif
2858               *prRhsHasNull = ++pParse->nMem;
2859               if( nExpr==1 ){
2860                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2861               }
2862             }
2863             sqlite3VdbeJumpHere(v, iAddr);
2864           }
2865         } /* End loop over indexes */
2866       } /* End if( affinity_ok ) */
2867     } /* End if not an rowid index */
2868   } /* End attempt to optimize using an index */
2869 
2870   /* If no preexisting index is available for the IN clause
2871   ** and IN_INDEX_NOOP is an allowed reply
2872   ** and the RHS of the IN operator is a list, not a subquery
2873   ** and the RHS is not constant or has two or fewer terms,
2874   ** then it is not worth creating an ephemeral table to evaluate
2875   ** the IN operator so return IN_INDEX_NOOP.
2876   */
2877   if( eType==0
2878    && (inFlags & IN_INDEX_NOOP_OK)
2879    && ExprUseXList(pX)
2880    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2881   ){
2882     eType = IN_INDEX_NOOP;
2883   }
2884 
2885   if( eType==0 ){
2886     /* Could not find an existing table or index to use as the RHS b-tree.
2887     ** We will have to generate an ephemeral table to do the job.
2888     */
2889     u32 savedNQueryLoop = pParse->nQueryLoop;
2890     int rMayHaveNull = 0;
2891     eType = IN_INDEX_EPH;
2892     if( inFlags & IN_INDEX_LOOP ){
2893       pParse->nQueryLoop = 0;
2894     }else if( prRhsHasNull ){
2895       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2896     }
2897     assert( pX->op==TK_IN );
2898     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2899     if( rMayHaveNull ){
2900       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2901     }
2902     pParse->nQueryLoop = savedNQueryLoop;
2903   }
2904 
2905   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2906     int i, n;
2907     n = sqlite3ExprVectorSize(pX->pLeft);
2908     for(i=0; i<n; i++) aiMap[i] = i;
2909   }
2910   *piTab = iTab;
2911   return eType;
2912 }
2913 #endif
2914 
2915 #ifndef SQLITE_OMIT_SUBQUERY
2916 /*
2917 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2918 ** function allocates and returns a nul-terminated string containing
2919 ** the affinities to be used for each column of the comparison.
2920 **
2921 ** It is the responsibility of the caller to ensure that the returned
2922 ** string is eventually freed using sqlite3DbFree().
2923 */
2924 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2925   Expr *pLeft = pExpr->pLeft;
2926   int nVal = sqlite3ExprVectorSize(pLeft);
2927   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2928   char *zRet;
2929 
2930   assert( pExpr->op==TK_IN );
2931   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2932   if( zRet ){
2933     int i;
2934     for(i=0; i<nVal; i++){
2935       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2936       char a = sqlite3ExprAffinity(pA);
2937       if( pSelect ){
2938         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2939       }else{
2940         zRet[i] = a;
2941       }
2942     }
2943     zRet[nVal] = '\0';
2944   }
2945   return zRet;
2946 }
2947 #endif
2948 
2949 #ifndef SQLITE_OMIT_SUBQUERY
2950 /*
2951 ** Load the Parse object passed as the first argument with an error
2952 ** message of the form:
2953 **
2954 **   "sub-select returns N columns - expected M"
2955 */
2956 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2957   if( pParse->nErr==0 ){
2958     const char *zFmt = "sub-select returns %d columns - expected %d";
2959     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2960   }
2961 }
2962 #endif
2963 
2964 /*
2965 ** Expression pExpr is a vector that has been used in a context where
2966 ** it is not permitted. If pExpr is a sub-select vector, this routine
2967 ** loads the Parse object with a message of the form:
2968 **
2969 **   "sub-select returns N columns - expected 1"
2970 **
2971 ** Or, if it is a regular scalar vector:
2972 **
2973 **   "row value misused"
2974 */
2975 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2976 #ifndef SQLITE_OMIT_SUBQUERY
2977   if( ExprUseXSelect(pExpr) ){
2978     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2979   }else
2980 #endif
2981   {
2982     sqlite3ErrorMsg(pParse, "row value misused");
2983   }
2984 }
2985 
2986 #ifndef SQLITE_OMIT_SUBQUERY
2987 /*
2988 ** Generate code that will construct an ephemeral table containing all terms
2989 ** in the RHS of an IN operator.  The IN operator can be in either of two
2990 ** forms:
2991 **
2992 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2993 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2994 **
2995 ** The pExpr parameter is the IN operator.  The cursor number for the
2996 ** constructed ephermeral table is returned.  The first time the ephemeral
2997 ** table is computed, the cursor number is also stored in pExpr->iTable,
2998 ** however the cursor number returned might not be the same, as it might
2999 ** have been duplicated using OP_OpenDup.
3000 **
3001 ** If the LHS expression ("x" in the examples) is a column value, or
3002 ** the SELECT statement returns a column value, then the affinity of that
3003 ** column is used to build the index keys. If both 'x' and the
3004 ** SELECT... statement are columns, then numeric affinity is used
3005 ** if either column has NUMERIC or INTEGER affinity. If neither
3006 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3007 ** is used.
3008 */
3009 void sqlite3CodeRhsOfIN(
3010   Parse *pParse,          /* Parsing context */
3011   Expr *pExpr,            /* The IN operator */
3012   int iTab                /* Use this cursor number */
3013 ){
3014   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3015   int addr;                   /* Address of OP_OpenEphemeral instruction */
3016   Expr *pLeft;                /* the LHS of the IN operator */
3017   KeyInfo *pKeyInfo = 0;      /* Key information */
3018   int nVal;                   /* Size of vector pLeft */
3019   Vdbe *v;                    /* The prepared statement under construction */
3020 
3021   v = pParse->pVdbe;
3022   assert( v!=0 );
3023 
3024   /* The evaluation of the IN must be repeated every time it
3025   ** is encountered if any of the following is true:
3026   **
3027   **    *  The right-hand side is a correlated subquery
3028   **    *  The right-hand side is an expression list containing variables
3029   **    *  We are inside a trigger
3030   **
3031   ** If all of the above are false, then we can compute the RHS just once
3032   ** and reuse it many names.
3033   */
3034   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3035     /* Reuse of the RHS is allowed */
3036     /* If this routine has already been coded, but the previous code
3037     ** might not have been invoked yet, so invoke it now as a subroutine.
3038     */
3039     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3040       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3041       if( ExprUseXSelect(pExpr) ){
3042         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3043               pExpr->x.pSelect->selId));
3044       }
3045       assert( ExprUseYSub(pExpr) );
3046       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3047                         pExpr->y.sub.iAddr);
3048       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3049       sqlite3VdbeJumpHere(v, addrOnce);
3050       return;
3051     }
3052 
3053     /* Begin coding the subroutine */
3054     assert( !ExprUseYWin(pExpr) );
3055     ExprSetProperty(pExpr, EP_Subrtn);
3056     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3057     pExpr->y.sub.regReturn = ++pParse->nMem;
3058     pExpr->y.sub.iAddr =
3059       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3060 
3061     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3062   }
3063 
3064   /* Check to see if this is a vector IN operator */
3065   pLeft = pExpr->pLeft;
3066   nVal = sqlite3ExprVectorSize(pLeft);
3067 
3068   /* Construct the ephemeral table that will contain the content of
3069   ** RHS of the IN operator.
3070   */
3071   pExpr->iTable = iTab;
3072   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3073 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3074   if( ExprUseXSelect(pExpr) ){
3075     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3076   }else{
3077     VdbeComment((v, "RHS of IN operator"));
3078   }
3079 #endif
3080   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3081 
3082   if( ExprUseXSelect(pExpr) ){
3083     /* Case 1:     expr IN (SELECT ...)
3084     **
3085     ** Generate code to write the results of the select into the temporary
3086     ** table allocated and opened above.
3087     */
3088     Select *pSelect = pExpr->x.pSelect;
3089     ExprList *pEList = pSelect->pEList;
3090 
3091     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3092         addrOnce?"":"CORRELATED ", pSelect->selId
3093     ));
3094     /* If the LHS and RHS of the IN operator do not match, that
3095     ** error will have been caught long before we reach this point. */
3096     if( ALWAYS(pEList->nExpr==nVal) ){
3097       Select *pCopy;
3098       SelectDest dest;
3099       int i;
3100       int rc;
3101       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3102       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3103       pSelect->iLimit = 0;
3104       testcase( pSelect->selFlags & SF_Distinct );
3105       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3106       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3107       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3108       sqlite3SelectDelete(pParse->db, pCopy);
3109       sqlite3DbFree(pParse->db, dest.zAffSdst);
3110       if( rc ){
3111         sqlite3KeyInfoUnref(pKeyInfo);
3112         return;
3113       }
3114       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3115       assert( pEList!=0 );
3116       assert( pEList->nExpr>0 );
3117       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3118       for(i=0; i<nVal; i++){
3119         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3120         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3121             pParse, p, pEList->a[i].pExpr
3122         );
3123       }
3124     }
3125   }else if( ALWAYS(pExpr->x.pList!=0) ){
3126     /* Case 2:     expr IN (exprlist)
3127     **
3128     ** For each expression, build an index key from the evaluation and
3129     ** store it in the temporary table. If <expr> is a column, then use
3130     ** that columns affinity when building index keys. If <expr> is not
3131     ** a column, use numeric affinity.
3132     */
3133     char affinity;            /* Affinity of the LHS of the IN */
3134     int i;
3135     ExprList *pList = pExpr->x.pList;
3136     struct ExprList_item *pItem;
3137     int r1, r2;
3138     affinity = sqlite3ExprAffinity(pLeft);
3139     if( affinity<=SQLITE_AFF_NONE ){
3140       affinity = SQLITE_AFF_BLOB;
3141     }else if( affinity==SQLITE_AFF_REAL ){
3142       affinity = SQLITE_AFF_NUMERIC;
3143     }
3144     if( pKeyInfo ){
3145       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3146       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3147     }
3148 
3149     /* Loop through each expression in <exprlist>. */
3150     r1 = sqlite3GetTempReg(pParse);
3151     r2 = sqlite3GetTempReg(pParse);
3152     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3153       Expr *pE2 = pItem->pExpr;
3154 
3155       /* If the expression is not constant then we will need to
3156       ** disable the test that was generated above that makes sure
3157       ** this code only executes once.  Because for a non-constant
3158       ** expression we need to rerun this code each time.
3159       */
3160       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3161         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3162         sqlite3VdbeChangeToNoop(v, addrOnce);
3163         ExprClearProperty(pExpr, EP_Subrtn);
3164         addrOnce = 0;
3165       }
3166 
3167       /* Evaluate the expression and insert it into the temp table */
3168       sqlite3ExprCode(pParse, pE2, r1);
3169       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3170       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3171     }
3172     sqlite3ReleaseTempReg(pParse, r1);
3173     sqlite3ReleaseTempReg(pParse, r2);
3174   }
3175   if( pKeyInfo ){
3176     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3177   }
3178   if( addrOnce ){
3179     sqlite3VdbeJumpHere(v, addrOnce);
3180     /* Subroutine return */
3181     assert( ExprUseYSub(pExpr) );
3182     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3183             || pParse->nErr );
3184     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 0,
3185                       pExpr->y.sub.iAddr-1);
3186     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3187     sqlite3ClearTempRegCache(pParse);
3188   }
3189 }
3190 #endif /* SQLITE_OMIT_SUBQUERY */
3191 
3192 /*
3193 ** Generate code for scalar subqueries used as a subquery expression
3194 ** or EXISTS operator:
3195 **
3196 **     (SELECT a FROM b)          -- subquery
3197 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3198 **
3199 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3200 **
3201 ** Return the register that holds the result.  For a multi-column SELECT,
3202 ** the result is stored in a contiguous array of registers and the
3203 ** return value is the register of the left-most result column.
3204 ** Return 0 if an error occurs.
3205 */
3206 #ifndef SQLITE_OMIT_SUBQUERY
3207 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3208   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3209   int rReg = 0;               /* Register storing resulting */
3210   Select *pSel;               /* SELECT statement to encode */
3211   SelectDest dest;            /* How to deal with SELECT result */
3212   int nReg;                   /* Registers to allocate */
3213   Expr *pLimit;               /* New limit expression */
3214 
3215   Vdbe *v = pParse->pVdbe;
3216   assert( v!=0 );
3217   if( pParse->nErr ) return 0;
3218   testcase( pExpr->op==TK_EXISTS );
3219   testcase( pExpr->op==TK_SELECT );
3220   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3221   assert( ExprUseXSelect(pExpr) );
3222   pSel = pExpr->x.pSelect;
3223 
3224   /* If this routine has already been coded, then invoke it as a
3225   ** subroutine. */
3226   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3227     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3228     assert( ExprUseYSub(pExpr) );
3229     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3230                       pExpr->y.sub.iAddr);
3231     return pExpr->iTable;
3232   }
3233 
3234   /* Begin coding the subroutine */
3235   assert( !ExprUseYWin(pExpr) );
3236   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3237   ExprSetProperty(pExpr, EP_Subrtn);
3238   pExpr->y.sub.regReturn = ++pParse->nMem;
3239   pExpr->y.sub.iAddr =
3240     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3241 
3242   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3243   ** is encountered if any of the following is true:
3244   **
3245   **    *  The right-hand side is a correlated subquery
3246   **    *  The right-hand side is an expression list containing variables
3247   **    *  We are inside a trigger
3248   **
3249   ** If all of the above are false, then we can run this code just once
3250   ** save the results, and reuse the same result on subsequent invocations.
3251   */
3252   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3253     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3254   }
3255 
3256   /* For a SELECT, generate code to put the values for all columns of
3257   ** the first row into an array of registers and return the index of
3258   ** the first register.
3259   **
3260   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3261   ** into a register and return that register number.
3262   **
3263   ** In both cases, the query is augmented with "LIMIT 1".  Any
3264   ** preexisting limit is discarded in place of the new LIMIT 1.
3265   */
3266   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3267         addrOnce?"":"CORRELATED ", pSel->selId));
3268   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3269   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3270   pParse->nMem += nReg;
3271   if( pExpr->op==TK_SELECT ){
3272     dest.eDest = SRT_Mem;
3273     dest.iSdst = dest.iSDParm;
3274     dest.nSdst = nReg;
3275     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3276     VdbeComment((v, "Init subquery result"));
3277   }else{
3278     dest.eDest = SRT_Exists;
3279     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3280     VdbeComment((v, "Init EXISTS result"));
3281   }
3282   if( pSel->pLimit ){
3283     /* The subquery already has a limit.  If the pre-existing limit is X
3284     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3285     sqlite3 *db = pParse->db;
3286     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3287     if( pLimit ){
3288       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3289       pLimit = sqlite3PExpr(pParse, TK_NE,
3290                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3291     }
3292     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3293     pSel->pLimit->pLeft = pLimit;
3294   }else{
3295     /* If there is no pre-existing limit add a limit of 1 */
3296     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3297     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3298   }
3299   pSel->iLimit = 0;
3300   if( sqlite3Select(pParse, pSel, &dest) ){
3301     pExpr->op2 = pExpr->op;
3302     pExpr->op = TK_ERROR;
3303     return 0;
3304   }
3305   pExpr->iTable = rReg = dest.iSDParm;
3306   ExprSetVVAProperty(pExpr, EP_NoReduce);
3307   if( addrOnce ){
3308     sqlite3VdbeJumpHere(v, addrOnce);
3309   }
3310 
3311   /* Subroutine return */
3312   assert( ExprUseYSub(pExpr) );
3313   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3314           || pParse->nErr );
3315   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 0,
3316                     pExpr->y.sub.iAddr-1);
3317   sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3318   sqlite3ClearTempRegCache(pParse);
3319   return rReg;
3320 }
3321 #endif /* SQLITE_OMIT_SUBQUERY */
3322 
3323 #ifndef SQLITE_OMIT_SUBQUERY
3324 /*
3325 ** Expr pIn is an IN(...) expression. This function checks that the
3326 ** sub-select on the RHS of the IN() operator has the same number of
3327 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3328 ** a sub-query, that the LHS is a vector of size 1.
3329 */
3330 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3331   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3332   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3333     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3334       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3335       return 1;
3336     }
3337   }else if( nVector!=1 ){
3338     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3339     return 1;
3340   }
3341   return 0;
3342 }
3343 #endif
3344 
3345 #ifndef SQLITE_OMIT_SUBQUERY
3346 /*
3347 ** Generate code for an IN expression.
3348 **
3349 **      x IN (SELECT ...)
3350 **      x IN (value, value, ...)
3351 **
3352 ** The left-hand side (LHS) is a scalar or vector expression.  The
3353 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3354 ** subquery.  If the RHS is a subquery, the number of result columns must
3355 ** match the number of columns in the vector on the LHS.  If the RHS is
3356 ** a list of values, the LHS must be a scalar.
3357 **
3358 ** The IN operator is true if the LHS value is contained within the RHS.
3359 ** The result is false if the LHS is definitely not in the RHS.  The
3360 ** result is NULL if the presence of the LHS in the RHS cannot be
3361 ** determined due to NULLs.
3362 **
3363 ** This routine generates code that jumps to destIfFalse if the LHS is not
3364 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3365 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3366 ** within the RHS then fall through.
3367 **
3368 ** See the separate in-operator.md documentation file in the canonical
3369 ** SQLite source tree for additional information.
3370 */
3371 static void sqlite3ExprCodeIN(
3372   Parse *pParse,        /* Parsing and code generating context */
3373   Expr *pExpr,          /* The IN expression */
3374   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3375   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3376 ){
3377   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3378   int eType;            /* Type of the RHS */
3379   int rLhs;             /* Register(s) holding the LHS values */
3380   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3381   Vdbe *v;              /* Statement under construction */
3382   int *aiMap = 0;       /* Map from vector field to index column */
3383   char *zAff = 0;       /* Affinity string for comparisons */
3384   int nVector;          /* Size of vectors for this IN operator */
3385   int iDummy;           /* Dummy parameter to exprCodeVector() */
3386   Expr *pLeft;          /* The LHS of the IN operator */
3387   int i;                /* loop counter */
3388   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3389   int destStep6 = 0;    /* Start of code for Step 6 */
3390   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3391   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3392   int addrTop;          /* Top of the step-6 loop */
3393   int iTab = 0;         /* Index to use */
3394   u8 okConstFactor = pParse->okConstFactor;
3395 
3396   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3397   pLeft = pExpr->pLeft;
3398   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3399   zAff = exprINAffinity(pParse, pExpr);
3400   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3401   aiMap = (int*)sqlite3DbMallocZero(
3402       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3403   );
3404   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3405 
3406   /* Attempt to compute the RHS. After this step, if anything other than
3407   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3408   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3409   ** the RHS has not yet been coded.  */
3410   v = pParse->pVdbe;
3411   assert( v!=0 );       /* OOM detected prior to this routine */
3412   VdbeNoopComment((v, "begin IN expr"));
3413   eType = sqlite3FindInIndex(pParse, pExpr,
3414                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3415                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3416                              aiMap, &iTab);
3417 
3418   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3419        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3420   );
3421 #ifdef SQLITE_DEBUG
3422   /* Confirm that aiMap[] contains nVector integer values between 0 and
3423   ** nVector-1. */
3424   for(i=0; i<nVector; i++){
3425     int j, cnt;
3426     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3427     assert( cnt==1 );
3428   }
3429 #endif
3430 
3431   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3432   ** vector, then it is stored in an array of nVector registers starting
3433   ** at r1.
3434   **
3435   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3436   ** so that the fields are in the same order as an existing index.   The
3437   ** aiMap[] array contains a mapping from the original LHS field order to
3438   ** the field order that matches the RHS index.
3439   **
3440   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3441   ** even if it is constant, as OP_Affinity may be used on the register
3442   ** by code generated below.  */
3443   assert( pParse->okConstFactor==okConstFactor );
3444   pParse->okConstFactor = 0;
3445   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3446   pParse->okConstFactor = okConstFactor;
3447   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3448   if( i==nVector ){
3449     /* LHS fields are not reordered */
3450     rLhs = rLhsOrig;
3451   }else{
3452     /* Need to reorder the LHS fields according to aiMap */
3453     rLhs = sqlite3GetTempRange(pParse, nVector);
3454     for(i=0; i<nVector; i++){
3455       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3456     }
3457   }
3458 
3459   /* If sqlite3FindInIndex() did not find or create an index that is
3460   ** suitable for evaluating the IN operator, then evaluate using a
3461   ** sequence of comparisons.
3462   **
3463   ** This is step (1) in the in-operator.md optimized algorithm.
3464   */
3465   if( eType==IN_INDEX_NOOP ){
3466     ExprList *pList;
3467     CollSeq *pColl;
3468     int labelOk = sqlite3VdbeMakeLabel(pParse);
3469     int r2, regToFree;
3470     int regCkNull = 0;
3471     int ii;
3472     assert( ExprUseXList(pExpr) );
3473     pList = pExpr->x.pList;
3474     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3475     if( destIfNull!=destIfFalse ){
3476       regCkNull = sqlite3GetTempReg(pParse);
3477       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3478     }
3479     for(ii=0; ii<pList->nExpr; ii++){
3480       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3481       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3482         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3483       }
3484       sqlite3ReleaseTempReg(pParse, regToFree);
3485       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3486         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3487         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3488                           (void*)pColl, P4_COLLSEQ);
3489         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3490         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3491         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3492         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3493         sqlite3VdbeChangeP5(v, zAff[0]);
3494       }else{
3495         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3496         assert( destIfNull==destIfFalse );
3497         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3498                           (void*)pColl, P4_COLLSEQ);
3499         VdbeCoverageIf(v, op==OP_Ne);
3500         VdbeCoverageIf(v, op==OP_IsNull);
3501         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3502       }
3503     }
3504     if( regCkNull ){
3505       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3506       sqlite3VdbeGoto(v, destIfFalse);
3507     }
3508     sqlite3VdbeResolveLabel(v, labelOk);
3509     sqlite3ReleaseTempReg(pParse, regCkNull);
3510     goto sqlite3ExprCodeIN_finished;
3511   }
3512 
3513   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3514   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3515   ** We will then skip the binary search of the RHS.
3516   */
3517   if( destIfNull==destIfFalse ){
3518     destStep2 = destIfFalse;
3519   }else{
3520     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3521   }
3522   for(i=0; i<nVector; i++){
3523     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3524     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3525     if( sqlite3ExprCanBeNull(p) ){
3526       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3527       VdbeCoverage(v);
3528     }
3529   }
3530 
3531   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3532   ** of the RHS using the LHS as a probe.  If found, the result is
3533   ** true.
3534   */
3535   if( eType==IN_INDEX_ROWID ){
3536     /* In this case, the RHS is the ROWID of table b-tree and so we also
3537     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3538     ** into a single opcode. */
3539     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3540     VdbeCoverage(v);
3541     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3542   }else{
3543     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3544     if( destIfFalse==destIfNull ){
3545       /* Combine Step 3 and Step 5 into a single opcode */
3546       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3547                            rLhs, nVector); VdbeCoverage(v);
3548       goto sqlite3ExprCodeIN_finished;
3549     }
3550     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3551     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3552                                       rLhs, nVector); VdbeCoverage(v);
3553   }
3554 
3555   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3556   ** an match on the search above, then the result must be FALSE.
3557   */
3558   if( rRhsHasNull && nVector==1 ){
3559     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3560     VdbeCoverage(v);
3561   }
3562 
3563   /* Step 5.  If we do not care about the difference between NULL and
3564   ** FALSE, then just return false.
3565   */
3566   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3567 
3568   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3569   ** If any comparison is NULL, then the result is NULL.  If all
3570   ** comparisons are FALSE then the final result is FALSE.
3571   **
3572   ** For a scalar LHS, it is sufficient to check just the first row
3573   ** of the RHS.
3574   */
3575   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3576   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3577   VdbeCoverage(v);
3578   if( nVector>1 ){
3579     destNotNull = sqlite3VdbeMakeLabel(pParse);
3580   }else{
3581     /* For nVector==1, combine steps 6 and 7 by immediately returning
3582     ** FALSE if the first comparison is not NULL */
3583     destNotNull = destIfFalse;
3584   }
3585   for(i=0; i<nVector; i++){
3586     Expr *p;
3587     CollSeq *pColl;
3588     int r3 = sqlite3GetTempReg(pParse);
3589     p = sqlite3VectorFieldSubexpr(pLeft, i);
3590     pColl = sqlite3ExprCollSeq(pParse, p);
3591     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3592     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3593                       (void*)pColl, P4_COLLSEQ);
3594     VdbeCoverage(v);
3595     sqlite3ReleaseTempReg(pParse, r3);
3596   }
3597   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3598   if( nVector>1 ){
3599     sqlite3VdbeResolveLabel(v, destNotNull);
3600     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3601     VdbeCoverage(v);
3602 
3603     /* Step 7:  If we reach this point, we know that the result must
3604     ** be false. */
3605     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3606   }
3607 
3608   /* Jumps here in order to return true. */
3609   sqlite3VdbeJumpHere(v, addrTruthOp);
3610 
3611 sqlite3ExprCodeIN_finished:
3612   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3613   VdbeComment((v, "end IN expr"));
3614 sqlite3ExprCodeIN_oom_error:
3615   sqlite3DbFree(pParse->db, aiMap);
3616   sqlite3DbFree(pParse->db, zAff);
3617 }
3618 #endif /* SQLITE_OMIT_SUBQUERY */
3619 
3620 #ifndef SQLITE_OMIT_FLOATING_POINT
3621 /*
3622 ** Generate an instruction that will put the floating point
3623 ** value described by z[0..n-1] into register iMem.
3624 **
3625 ** The z[] string will probably not be zero-terminated.  But the
3626 ** z[n] character is guaranteed to be something that does not look
3627 ** like the continuation of the number.
3628 */
3629 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3630   if( ALWAYS(z!=0) ){
3631     double value;
3632     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3633     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3634     if( negateFlag ) value = -value;
3635     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3636   }
3637 }
3638 #endif
3639 
3640 
3641 /*
3642 ** Generate an instruction that will put the integer describe by
3643 ** text z[0..n-1] into register iMem.
3644 **
3645 ** Expr.u.zToken is always UTF8 and zero-terminated.
3646 */
3647 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3648   Vdbe *v = pParse->pVdbe;
3649   if( pExpr->flags & EP_IntValue ){
3650     int i = pExpr->u.iValue;
3651     assert( i>=0 );
3652     if( negFlag ) i = -i;
3653     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3654   }else{
3655     int c;
3656     i64 value;
3657     const char *z = pExpr->u.zToken;
3658     assert( z!=0 );
3659     c = sqlite3DecOrHexToI64(z, &value);
3660     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3661 #ifdef SQLITE_OMIT_FLOATING_POINT
3662       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3663 #else
3664 #ifndef SQLITE_OMIT_HEX_INTEGER
3665       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3666         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3667                         negFlag?"-":"",pExpr);
3668       }else
3669 #endif
3670       {
3671         codeReal(v, z, negFlag, iMem);
3672       }
3673 #endif
3674     }else{
3675       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3676       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3677     }
3678   }
3679 }
3680 
3681 
3682 /* Generate code that will load into register regOut a value that is
3683 ** appropriate for the iIdxCol-th column of index pIdx.
3684 */
3685 void sqlite3ExprCodeLoadIndexColumn(
3686   Parse *pParse,  /* The parsing context */
3687   Index *pIdx,    /* The index whose column is to be loaded */
3688   int iTabCur,    /* Cursor pointing to a table row */
3689   int iIdxCol,    /* The column of the index to be loaded */
3690   int regOut      /* Store the index column value in this register */
3691 ){
3692   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3693   if( iTabCol==XN_EXPR ){
3694     assert( pIdx->aColExpr );
3695     assert( pIdx->aColExpr->nExpr>iIdxCol );
3696     pParse->iSelfTab = iTabCur + 1;
3697     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3698     pParse->iSelfTab = 0;
3699   }else{
3700     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3701                                     iTabCol, regOut);
3702   }
3703 }
3704 
3705 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3706 /*
3707 ** Generate code that will compute the value of generated column pCol
3708 ** and store the result in register regOut
3709 */
3710 void sqlite3ExprCodeGeneratedColumn(
3711   Parse *pParse,     /* Parsing context */
3712   Table *pTab,       /* Table containing the generated column */
3713   Column *pCol,      /* The generated column */
3714   int regOut         /* Put the result in this register */
3715 ){
3716   int iAddr;
3717   Vdbe *v = pParse->pVdbe;
3718   assert( v!=0 );
3719   assert( pParse->iSelfTab!=0 );
3720   if( pParse->iSelfTab>0 ){
3721     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3722   }else{
3723     iAddr = 0;
3724   }
3725   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3726   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3727     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3728   }
3729   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3730 }
3731 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3732 
3733 /*
3734 ** Generate code to extract the value of the iCol-th column of a table.
3735 */
3736 void sqlite3ExprCodeGetColumnOfTable(
3737   Vdbe *v,        /* Parsing context */
3738   Table *pTab,    /* The table containing the value */
3739   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3740   int iCol,       /* Index of the column to extract */
3741   int regOut      /* Extract the value into this register */
3742 ){
3743   Column *pCol;
3744   assert( v!=0 );
3745   if( pTab==0 ){
3746     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3747     return;
3748   }
3749   if( iCol<0 || iCol==pTab->iPKey ){
3750     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3751   }else{
3752     int op;
3753     int x;
3754     if( IsVirtual(pTab) ){
3755       op = OP_VColumn;
3756       x = iCol;
3757 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3758     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3759       Parse *pParse = sqlite3VdbeParser(v);
3760       if( pCol->colFlags & COLFLAG_BUSY ){
3761         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3762                         pCol->zCnName);
3763       }else{
3764         int savedSelfTab = pParse->iSelfTab;
3765         pCol->colFlags |= COLFLAG_BUSY;
3766         pParse->iSelfTab = iTabCur+1;
3767         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3768         pParse->iSelfTab = savedSelfTab;
3769         pCol->colFlags &= ~COLFLAG_BUSY;
3770       }
3771       return;
3772 #endif
3773     }else if( !HasRowid(pTab) ){
3774       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3775       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3776       op = OP_Column;
3777     }else{
3778       x = sqlite3TableColumnToStorage(pTab,iCol);
3779       testcase( x!=iCol );
3780       op = OP_Column;
3781     }
3782     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3783     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3784   }
3785 }
3786 
3787 /*
3788 ** Generate code that will extract the iColumn-th column from
3789 ** table pTab and store the column value in register iReg.
3790 **
3791 ** There must be an open cursor to pTab in iTable when this routine
3792 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3793 */
3794 int sqlite3ExprCodeGetColumn(
3795   Parse *pParse,   /* Parsing and code generating context */
3796   Table *pTab,     /* Description of the table we are reading from */
3797   int iColumn,     /* Index of the table column */
3798   int iTable,      /* The cursor pointing to the table */
3799   int iReg,        /* Store results here */
3800   u8 p5            /* P5 value for OP_Column + FLAGS */
3801 ){
3802   assert( pParse->pVdbe!=0 );
3803   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3804   if( p5 ){
3805     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3806     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3807   }
3808   return iReg;
3809 }
3810 
3811 /*
3812 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3813 ** over to iTo..iTo+nReg-1.
3814 */
3815 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3816   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3817 }
3818 
3819 /*
3820 ** Convert a scalar expression node to a TK_REGISTER referencing
3821 ** register iReg.  The caller must ensure that iReg already contains
3822 ** the correct value for the expression.
3823 */
3824 static void exprToRegister(Expr *pExpr, int iReg){
3825   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3826   if( NEVER(p==0) ) return;
3827   p->op2 = p->op;
3828   p->op = TK_REGISTER;
3829   p->iTable = iReg;
3830   ExprClearProperty(p, EP_Skip);
3831 }
3832 
3833 /*
3834 ** Evaluate an expression (either a vector or a scalar expression) and store
3835 ** the result in continguous temporary registers.  Return the index of
3836 ** the first register used to store the result.
3837 **
3838 ** If the returned result register is a temporary scalar, then also write
3839 ** that register number into *piFreeable.  If the returned result register
3840 ** is not a temporary or if the expression is a vector set *piFreeable
3841 ** to 0.
3842 */
3843 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3844   int iResult;
3845   int nResult = sqlite3ExprVectorSize(p);
3846   if( nResult==1 ){
3847     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3848   }else{
3849     *piFreeable = 0;
3850     if( p->op==TK_SELECT ){
3851 #if SQLITE_OMIT_SUBQUERY
3852       iResult = 0;
3853 #else
3854       iResult = sqlite3CodeSubselect(pParse, p);
3855 #endif
3856     }else{
3857       int i;
3858       iResult = pParse->nMem+1;
3859       pParse->nMem += nResult;
3860       assert( ExprUseXList(p) );
3861       for(i=0; i<nResult; i++){
3862         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3863       }
3864     }
3865   }
3866   return iResult;
3867 }
3868 
3869 /*
3870 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3871 ** so that a subsequent copy will not be merged into this one.
3872 */
3873 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3874   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3875     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3876   }
3877 }
3878 
3879 /*
3880 ** Generate code to implement special SQL functions that are implemented
3881 ** in-line rather than by using the usual callbacks.
3882 */
3883 static int exprCodeInlineFunction(
3884   Parse *pParse,        /* Parsing context */
3885   ExprList *pFarg,      /* List of function arguments */
3886   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3887   int target            /* Store function result in this register */
3888 ){
3889   int nFarg;
3890   Vdbe *v = pParse->pVdbe;
3891   assert( v!=0 );
3892   assert( pFarg!=0 );
3893   nFarg = pFarg->nExpr;
3894   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3895   switch( iFuncId ){
3896     case INLINEFUNC_coalesce: {
3897       /* Attempt a direct implementation of the built-in COALESCE() and
3898       ** IFNULL() functions.  This avoids unnecessary evaluation of
3899       ** arguments past the first non-NULL argument.
3900       */
3901       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3902       int i;
3903       assert( nFarg>=2 );
3904       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3905       for(i=1; i<nFarg; i++){
3906         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3907         VdbeCoverage(v);
3908         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3909       }
3910       setDoNotMergeFlagOnCopy(v);
3911       sqlite3VdbeResolveLabel(v, endCoalesce);
3912       break;
3913     }
3914     case INLINEFUNC_iif: {
3915       Expr caseExpr;
3916       memset(&caseExpr, 0, sizeof(caseExpr));
3917       caseExpr.op = TK_CASE;
3918       caseExpr.x.pList = pFarg;
3919       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3920     }
3921 
3922     default: {
3923       /* The UNLIKELY() function is a no-op.  The result is the value
3924       ** of the first argument.
3925       */
3926       assert( nFarg==1 || nFarg==2 );
3927       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3928       break;
3929     }
3930 
3931   /***********************************************************************
3932   ** Test-only SQL functions that are only usable if enabled
3933   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3934   */
3935 #if !defined(SQLITE_UNTESTABLE)
3936     case INLINEFUNC_expr_compare: {
3937       /* Compare two expressions using sqlite3ExprCompare() */
3938       assert( nFarg==2 );
3939       sqlite3VdbeAddOp2(v, OP_Integer,
3940          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3941          target);
3942       break;
3943     }
3944 
3945     case INLINEFUNC_expr_implies_expr: {
3946       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3947       assert( nFarg==2 );
3948       sqlite3VdbeAddOp2(v, OP_Integer,
3949          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3950          target);
3951       break;
3952     }
3953 
3954     case INLINEFUNC_implies_nonnull_row: {
3955       /* REsult of sqlite3ExprImpliesNonNullRow() */
3956       Expr *pA1;
3957       assert( nFarg==2 );
3958       pA1 = pFarg->a[1].pExpr;
3959       if( pA1->op==TK_COLUMN ){
3960         sqlite3VdbeAddOp2(v, OP_Integer,
3961            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3962            target);
3963       }else{
3964         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3965       }
3966       break;
3967     }
3968 
3969     case INLINEFUNC_affinity: {
3970       /* The AFFINITY() function evaluates to a string that describes
3971       ** the type affinity of the argument.  This is used for testing of
3972       ** the SQLite type logic.
3973       */
3974       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3975       char aff;
3976       assert( nFarg==1 );
3977       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3978       sqlite3VdbeLoadString(v, target,
3979               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3980       break;
3981     }
3982 #endif /* !defined(SQLITE_UNTESTABLE) */
3983   }
3984   return target;
3985 }
3986 
3987 
3988 /*
3989 ** Generate code into the current Vdbe to evaluate the given
3990 ** expression.  Attempt to store the results in register "target".
3991 ** Return the register where results are stored.
3992 **
3993 ** With this routine, there is no guarantee that results will
3994 ** be stored in target.  The result might be stored in some other
3995 ** register if it is convenient to do so.  The calling function
3996 ** must check the return code and move the results to the desired
3997 ** register.
3998 */
3999 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4000   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
4001   int op;                   /* The opcode being coded */
4002   int inReg = target;       /* Results stored in register inReg */
4003   int regFree1 = 0;         /* If non-zero free this temporary register */
4004   int regFree2 = 0;         /* If non-zero free this temporary register */
4005   int r1, r2;               /* Various register numbers */
4006   Expr tempX;               /* Temporary expression node */
4007   int p5 = 0;
4008 
4009   assert( target>0 && target<=pParse->nMem );
4010   assert( v!=0 );
4011 
4012 expr_code_doover:
4013   if( pExpr==0 ){
4014     op = TK_NULL;
4015   }else{
4016     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4017     op = pExpr->op;
4018   }
4019   switch( op ){
4020     case TK_AGG_COLUMN: {
4021       AggInfo *pAggInfo = pExpr->pAggInfo;
4022       struct AggInfo_col *pCol;
4023       assert( pAggInfo!=0 );
4024       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4025       pCol = &pAggInfo->aCol[pExpr->iAgg];
4026       if( !pAggInfo->directMode ){
4027         assert( pCol->iMem>0 );
4028         return pCol->iMem;
4029       }else if( pAggInfo->useSortingIdx ){
4030         Table *pTab = pCol->pTab;
4031         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4032                               pCol->iSorterColumn, target);
4033         if( pCol->iColumn<0 ){
4034           VdbeComment((v,"%s.rowid",pTab->zName));
4035         }else{
4036           VdbeComment((v,"%s.%s",
4037               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4038           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4039             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4040           }
4041         }
4042         return target;
4043       }
4044       /* Otherwise, fall thru into the TK_COLUMN case */
4045       /* no break */ deliberate_fall_through
4046     }
4047     case TK_COLUMN: {
4048       int iTab = pExpr->iTable;
4049       int iReg;
4050       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4051         /* This COLUMN expression is really a constant due to WHERE clause
4052         ** constraints, and that constant is coded by the pExpr->pLeft
4053         ** expresssion.  However, make sure the constant has the correct
4054         ** datatype by applying the Affinity of the table column to the
4055         ** constant.
4056         */
4057         int aff;
4058         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4059         assert( ExprUseYTab(pExpr) );
4060         if( pExpr->y.pTab ){
4061           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4062         }else{
4063           aff = pExpr->affExpr;
4064         }
4065         if( aff>SQLITE_AFF_BLOB ){
4066           static const char zAff[] = "B\000C\000D\000E";
4067           assert( SQLITE_AFF_BLOB=='A' );
4068           assert( SQLITE_AFF_TEXT=='B' );
4069           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4070                             &zAff[(aff-'B')*2], P4_STATIC);
4071         }
4072         return iReg;
4073       }
4074       if( iTab<0 ){
4075         if( pParse->iSelfTab<0 ){
4076           /* Other columns in the same row for CHECK constraints or
4077           ** generated columns or for inserting into partial index.
4078           ** The row is unpacked into registers beginning at
4079           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4080           ** immediately prior to the first column.
4081           */
4082           Column *pCol;
4083           Table *pTab;
4084           int iSrc;
4085           int iCol = pExpr->iColumn;
4086           assert( ExprUseYTab(pExpr) );
4087           pTab = pExpr->y.pTab;
4088           assert( pTab!=0 );
4089           assert( iCol>=XN_ROWID );
4090           assert( iCol<pTab->nCol );
4091           if( iCol<0 ){
4092             return -1-pParse->iSelfTab;
4093           }
4094           pCol = pTab->aCol + iCol;
4095           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4096           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4097 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4098           if( pCol->colFlags & COLFLAG_GENERATED ){
4099             if( pCol->colFlags & COLFLAG_BUSY ){
4100               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4101                               pCol->zCnName);
4102               return 0;
4103             }
4104             pCol->colFlags |= COLFLAG_BUSY;
4105             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4106               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4107             }
4108             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4109             return iSrc;
4110           }else
4111 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4112           if( pCol->affinity==SQLITE_AFF_REAL ){
4113             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4114             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4115             return target;
4116           }else{
4117             return iSrc;
4118           }
4119         }else{
4120           /* Coding an expression that is part of an index where column names
4121           ** in the index refer to the table to which the index belongs */
4122           iTab = pParse->iSelfTab - 1;
4123         }
4124       }
4125       assert( ExprUseYTab(pExpr) );
4126       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4127                                pExpr->iColumn, iTab, target,
4128                                pExpr->op2);
4129       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4130         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4131       }
4132       return iReg;
4133     }
4134     case TK_INTEGER: {
4135       codeInteger(pParse, pExpr, 0, target);
4136       return target;
4137     }
4138     case TK_TRUEFALSE: {
4139       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4140       return target;
4141     }
4142 #ifndef SQLITE_OMIT_FLOATING_POINT
4143     case TK_FLOAT: {
4144       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4145       codeReal(v, pExpr->u.zToken, 0, target);
4146       return target;
4147     }
4148 #endif
4149     case TK_STRING: {
4150       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4151       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4152       return target;
4153     }
4154     default: {
4155       /* Make NULL the default case so that if a bug causes an illegal
4156       ** Expr node to be passed into this function, it will be handled
4157       ** sanely and not crash.  But keep the assert() to bring the problem
4158       ** to the attention of the developers. */
4159       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4160       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4161       return target;
4162     }
4163 #ifndef SQLITE_OMIT_BLOB_LITERAL
4164     case TK_BLOB: {
4165       int n;
4166       const char *z;
4167       char *zBlob;
4168       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4169       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4170       assert( pExpr->u.zToken[1]=='\'' );
4171       z = &pExpr->u.zToken[2];
4172       n = sqlite3Strlen30(z) - 1;
4173       assert( z[n]=='\'' );
4174       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4175       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4176       return target;
4177     }
4178 #endif
4179     case TK_VARIABLE: {
4180       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4181       assert( pExpr->u.zToken!=0 );
4182       assert( pExpr->u.zToken[0]!=0 );
4183       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4184       if( pExpr->u.zToken[1]!=0 ){
4185         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4186         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4187         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4188         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4189       }
4190       return target;
4191     }
4192     case TK_REGISTER: {
4193       return pExpr->iTable;
4194     }
4195 #ifndef SQLITE_OMIT_CAST
4196     case TK_CAST: {
4197       /* Expressions of the form:   CAST(pLeft AS token) */
4198       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4199       if( inReg!=target ){
4200         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4201         inReg = target;
4202       }
4203       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4204       sqlite3VdbeAddOp2(v, OP_Cast, target,
4205                         sqlite3AffinityType(pExpr->u.zToken, 0));
4206       return inReg;
4207     }
4208 #endif /* SQLITE_OMIT_CAST */
4209     case TK_IS:
4210     case TK_ISNOT:
4211       op = (op==TK_IS) ? TK_EQ : TK_NE;
4212       p5 = SQLITE_NULLEQ;
4213       /* fall-through */
4214     case TK_LT:
4215     case TK_LE:
4216     case TK_GT:
4217     case TK_GE:
4218     case TK_NE:
4219     case TK_EQ: {
4220       Expr *pLeft = pExpr->pLeft;
4221       if( sqlite3ExprIsVector(pLeft) ){
4222         codeVectorCompare(pParse, pExpr, target, op, p5);
4223       }else{
4224         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4225         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4226         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4227         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4228             sqlite3VdbeCurrentAddr(v)+2, p5,
4229             ExprHasProperty(pExpr,EP_Commuted));
4230         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4231         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4232         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4233         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4234         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4235         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4236         if( p5==SQLITE_NULLEQ ){
4237           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4238         }else{
4239           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4240         }
4241         testcase( regFree1==0 );
4242         testcase( regFree2==0 );
4243       }
4244       break;
4245     }
4246     case TK_AND:
4247     case TK_OR:
4248     case TK_PLUS:
4249     case TK_STAR:
4250     case TK_MINUS:
4251     case TK_REM:
4252     case TK_BITAND:
4253     case TK_BITOR:
4254     case TK_SLASH:
4255     case TK_LSHIFT:
4256     case TK_RSHIFT:
4257     case TK_CONCAT: {
4258       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4259       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4260       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4261       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4262       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4263       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4264       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4265       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4266       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4267       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4268       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4269       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4270       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4271       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4272       testcase( regFree1==0 );
4273       testcase( regFree2==0 );
4274       break;
4275     }
4276     case TK_UMINUS: {
4277       Expr *pLeft = pExpr->pLeft;
4278       assert( pLeft );
4279       if( pLeft->op==TK_INTEGER ){
4280         codeInteger(pParse, pLeft, 1, target);
4281         return target;
4282 #ifndef SQLITE_OMIT_FLOATING_POINT
4283       }else if( pLeft->op==TK_FLOAT ){
4284         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4285         codeReal(v, pLeft->u.zToken, 1, target);
4286         return target;
4287 #endif
4288       }else{
4289         tempX.op = TK_INTEGER;
4290         tempX.flags = EP_IntValue|EP_TokenOnly;
4291         tempX.u.iValue = 0;
4292         ExprClearVVAProperties(&tempX);
4293         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4294         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4295         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4296         testcase( regFree2==0 );
4297       }
4298       break;
4299     }
4300     case TK_BITNOT:
4301     case TK_NOT: {
4302       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4303       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4304       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4305       testcase( regFree1==0 );
4306       sqlite3VdbeAddOp2(v, op, r1, inReg);
4307       break;
4308     }
4309     case TK_TRUTH: {
4310       int isTrue;    /* IS TRUE or IS NOT TRUE */
4311       int bNormal;   /* IS TRUE or IS FALSE */
4312       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4313       testcase( regFree1==0 );
4314       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4315       bNormal = pExpr->op2==TK_IS;
4316       testcase( isTrue && bNormal);
4317       testcase( !isTrue && bNormal);
4318       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4319       break;
4320     }
4321     case TK_ISNULL:
4322     case TK_NOTNULL: {
4323       int addr;
4324       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4325       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4326       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4327       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4328       testcase( regFree1==0 );
4329       addr = sqlite3VdbeAddOp1(v, op, r1);
4330       VdbeCoverageIf(v, op==TK_ISNULL);
4331       VdbeCoverageIf(v, op==TK_NOTNULL);
4332       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4333       sqlite3VdbeJumpHere(v, addr);
4334       break;
4335     }
4336     case TK_AGG_FUNCTION: {
4337       AggInfo *pInfo = pExpr->pAggInfo;
4338       if( pInfo==0
4339        || NEVER(pExpr->iAgg<0)
4340        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4341       ){
4342         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4343         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4344       }else{
4345         return pInfo->aFunc[pExpr->iAgg].iMem;
4346       }
4347       break;
4348     }
4349     case TK_FUNCTION: {
4350       ExprList *pFarg;       /* List of function arguments */
4351       int nFarg;             /* Number of function arguments */
4352       FuncDef *pDef;         /* The function definition object */
4353       const char *zId;       /* The function name */
4354       u32 constMask = 0;     /* Mask of function arguments that are constant */
4355       int i;                 /* Loop counter */
4356       sqlite3 *db = pParse->db;  /* The database connection */
4357       u8 enc = ENC(db);      /* The text encoding used by this database */
4358       CollSeq *pColl = 0;    /* A collating sequence */
4359 
4360 #ifndef SQLITE_OMIT_WINDOWFUNC
4361       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4362         return pExpr->y.pWin->regResult;
4363       }
4364 #endif
4365 
4366       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4367         /* SQL functions can be expensive. So try to avoid running them
4368         ** multiple times if we know they always give the same result */
4369         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4370       }
4371       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4372       assert( ExprUseXList(pExpr) );
4373       pFarg = pExpr->x.pList;
4374       nFarg = pFarg ? pFarg->nExpr : 0;
4375       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4376       zId = pExpr->u.zToken;
4377       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4378 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4379       if( pDef==0 && pParse->explain ){
4380         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4381       }
4382 #endif
4383       if( pDef==0 || pDef->xFinalize!=0 ){
4384         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4385         break;
4386       }
4387       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4388         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4389         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4390         return exprCodeInlineFunction(pParse, pFarg,
4391              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4392       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4393         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4394       }
4395 
4396       for(i=0; i<nFarg; i++){
4397         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4398           testcase( i==31 );
4399           constMask |= MASKBIT32(i);
4400         }
4401         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4402           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4403         }
4404       }
4405       if( pFarg ){
4406         if( constMask ){
4407           r1 = pParse->nMem+1;
4408           pParse->nMem += nFarg;
4409         }else{
4410           r1 = sqlite3GetTempRange(pParse, nFarg);
4411         }
4412 
4413         /* For length() and typeof() functions with a column argument,
4414         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4415         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4416         ** loading.
4417         */
4418         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4419           u8 exprOp;
4420           assert( nFarg==1 );
4421           assert( pFarg->a[0].pExpr!=0 );
4422           exprOp = pFarg->a[0].pExpr->op;
4423           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4424             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4425             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4426             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4427             pFarg->a[0].pExpr->op2 =
4428                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4429           }
4430         }
4431 
4432         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4433                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4434       }else{
4435         r1 = 0;
4436       }
4437 #ifndef SQLITE_OMIT_VIRTUALTABLE
4438       /* Possibly overload the function if the first argument is
4439       ** a virtual table column.
4440       **
4441       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4442       ** second argument, not the first, as the argument to test to
4443       ** see if it is a column in a virtual table.  This is done because
4444       ** the left operand of infix functions (the operand we want to
4445       ** control overloading) ends up as the second argument to the
4446       ** function.  The expression "A glob B" is equivalent to
4447       ** "glob(B,A).  We want to use the A in "A glob B" to test
4448       ** for function overloading.  But we use the B term in "glob(B,A)".
4449       */
4450       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4451         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4452       }else if( nFarg>0 ){
4453         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4454       }
4455 #endif
4456       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4457         if( !pColl ) pColl = db->pDfltColl;
4458         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4459       }
4460 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4461       if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){
4462         Expr *pArg = pFarg->a[0].pExpr;
4463         if( pArg->op==TK_COLUMN ){
4464           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4465         }else{
4466           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4467         }
4468       }else
4469 #endif
4470       {
4471         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4472                                    pDef, pExpr->op2);
4473       }
4474       if( nFarg ){
4475         if( constMask==0 ){
4476           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4477         }else{
4478           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4479         }
4480       }
4481       return target;
4482     }
4483 #ifndef SQLITE_OMIT_SUBQUERY
4484     case TK_EXISTS:
4485     case TK_SELECT: {
4486       int nCol;
4487       testcase( op==TK_EXISTS );
4488       testcase( op==TK_SELECT );
4489       if( pParse->db->mallocFailed ){
4490         return 0;
4491       }else if( op==TK_SELECT
4492              && ALWAYS( ExprUseXSelect(pExpr) )
4493              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4494       ){
4495         sqlite3SubselectError(pParse, nCol, 1);
4496       }else{
4497         return sqlite3CodeSubselect(pParse, pExpr);
4498       }
4499       break;
4500     }
4501     case TK_SELECT_COLUMN: {
4502       int n;
4503       if( pExpr->pLeft->iTable==0 ){
4504         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4505       }
4506       assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR );
4507       n = sqlite3ExprVectorSize(pExpr->pLeft);
4508       if( pExpr->iTable!=n ){
4509         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4510                                 pExpr->iTable, n);
4511       }
4512       return pExpr->pLeft->iTable + pExpr->iColumn;
4513     }
4514     case TK_IN: {
4515       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4516       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4517       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4518       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4519       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4520       sqlite3VdbeResolveLabel(v, destIfFalse);
4521       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4522       sqlite3VdbeResolveLabel(v, destIfNull);
4523       return target;
4524     }
4525 #endif /* SQLITE_OMIT_SUBQUERY */
4526 
4527 
4528     /*
4529     **    x BETWEEN y AND z
4530     **
4531     ** This is equivalent to
4532     **
4533     **    x>=y AND x<=z
4534     **
4535     ** X is stored in pExpr->pLeft.
4536     ** Y is stored in pExpr->pList->a[0].pExpr.
4537     ** Z is stored in pExpr->pList->a[1].pExpr.
4538     */
4539     case TK_BETWEEN: {
4540       exprCodeBetween(pParse, pExpr, target, 0, 0);
4541       return target;
4542     }
4543     case TK_SPAN:
4544     case TK_COLLATE:
4545     case TK_UPLUS: {
4546       pExpr = pExpr->pLeft;
4547       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4548     }
4549 
4550     case TK_TRIGGER: {
4551       /* If the opcode is TK_TRIGGER, then the expression is a reference
4552       ** to a column in the new.* or old.* pseudo-tables available to
4553       ** trigger programs. In this case Expr.iTable is set to 1 for the
4554       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4555       ** is set to the column of the pseudo-table to read, or to -1 to
4556       ** read the rowid field.
4557       **
4558       ** The expression is implemented using an OP_Param opcode. The p1
4559       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4560       ** to reference another column of the old.* pseudo-table, where
4561       ** i is the index of the column. For a new.rowid reference, p1 is
4562       ** set to (n+1), where n is the number of columns in each pseudo-table.
4563       ** For a reference to any other column in the new.* pseudo-table, p1
4564       ** is set to (n+2+i), where n and i are as defined previously. For
4565       ** example, if the table on which triggers are being fired is
4566       ** declared as:
4567       **
4568       **   CREATE TABLE t1(a, b);
4569       **
4570       ** Then p1 is interpreted as follows:
4571       **
4572       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4573       **   p1==1   ->    old.a         p1==4   ->    new.a
4574       **   p1==2   ->    old.b         p1==5   ->    new.b
4575       */
4576       Table *pTab;
4577       int iCol;
4578       int p1;
4579 
4580       assert( ExprUseYTab(pExpr) );
4581       pTab = pExpr->y.pTab;
4582       iCol = pExpr->iColumn;
4583       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4584                      + sqlite3TableColumnToStorage(pTab, iCol);
4585 
4586       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4587       assert( iCol>=-1 && iCol<pTab->nCol );
4588       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4589       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4590 
4591       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4592       VdbeComment((v, "r[%d]=%s.%s", target,
4593         (pExpr->iTable ? "new" : "old"),
4594         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4595       ));
4596 
4597 #ifndef SQLITE_OMIT_FLOATING_POINT
4598       /* If the column has REAL affinity, it may currently be stored as an
4599       ** integer. Use OP_RealAffinity to make sure it is really real.
4600       **
4601       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4602       ** floating point when extracting it from the record.  */
4603       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4604         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4605       }
4606 #endif
4607       break;
4608     }
4609 
4610     case TK_VECTOR: {
4611       sqlite3ErrorMsg(pParse, "row value misused");
4612       break;
4613     }
4614 
4615     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4616     ** that derive from the right-hand table of a LEFT JOIN.  The
4617     ** Expr.iTable value is the table number for the right-hand table.
4618     ** The expression is only evaluated if that table is not currently
4619     ** on a LEFT JOIN NULL row.
4620     */
4621     case TK_IF_NULL_ROW: {
4622       int addrINR;
4623       u8 okConstFactor = pParse->okConstFactor;
4624       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4625       /* Temporarily disable factoring of constant expressions, since
4626       ** even though expressions may appear to be constant, they are not
4627       ** really constant because they originate from the right-hand side
4628       ** of a LEFT JOIN. */
4629       pParse->okConstFactor = 0;
4630       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4631       pParse->okConstFactor = okConstFactor;
4632       sqlite3VdbeJumpHere(v, addrINR);
4633       sqlite3VdbeChangeP3(v, addrINR, inReg);
4634       break;
4635     }
4636 
4637     /*
4638     ** Form A:
4639     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4640     **
4641     ** Form B:
4642     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4643     **
4644     ** Form A is can be transformed into the equivalent form B as follows:
4645     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4646     **        WHEN x=eN THEN rN ELSE y END
4647     **
4648     ** X (if it exists) is in pExpr->pLeft.
4649     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4650     ** odd.  The Y is also optional.  If the number of elements in x.pList
4651     ** is even, then Y is omitted and the "otherwise" result is NULL.
4652     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4653     **
4654     ** The result of the expression is the Ri for the first matching Ei,
4655     ** or if there is no matching Ei, the ELSE term Y, or if there is
4656     ** no ELSE term, NULL.
4657     */
4658     case TK_CASE: {
4659       int endLabel;                     /* GOTO label for end of CASE stmt */
4660       int nextCase;                     /* GOTO label for next WHEN clause */
4661       int nExpr;                        /* 2x number of WHEN terms */
4662       int i;                            /* Loop counter */
4663       ExprList *pEList;                 /* List of WHEN terms */
4664       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4665       Expr opCompare;                   /* The X==Ei expression */
4666       Expr *pX;                         /* The X expression */
4667       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4668       Expr *pDel = 0;
4669       sqlite3 *db = pParse->db;
4670 
4671       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4672       assert(pExpr->x.pList->nExpr > 0);
4673       pEList = pExpr->x.pList;
4674       aListelem = pEList->a;
4675       nExpr = pEList->nExpr;
4676       endLabel = sqlite3VdbeMakeLabel(pParse);
4677       if( (pX = pExpr->pLeft)!=0 ){
4678         pDel = sqlite3ExprDup(db, pX, 0);
4679         if( db->mallocFailed ){
4680           sqlite3ExprDelete(db, pDel);
4681           break;
4682         }
4683         testcase( pX->op==TK_COLUMN );
4684         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4685         testcase( regFree1==0 );
4686         memset(&opCompare, 0, sizeof(opCompare));
4687         opCompare.op = TK_EQ;
4688         opCompare.pLeft = pDel;
4689         pTest = &opCompare;
4690         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4691         ** The value in regFree1 might get SCopy-ed into the file result.
4692         ** So make sure that the regFree1 register is not reused for other
4693         ** purposes and possibly overwritten.  */
4694         regFree1 = 0;
4695       }
4696       for(i=0; i<nExpr-1; i=i+2){
4697         if( pX ){
4698           assert( pTest!=0 );
4699           opCompare.pRight = aListelem[i].pExpr;
4700         }else{
4701           pTest = aListelem[i].pExpr;
4702         }
4703         nextCase = sqlite3VdbeMakeLabel(pParse);
4704         testcase( pTest->op==TK_COLUMN );
4705         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4706         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4707         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4708         sqlite3VdbeGoto(v, endLabel);
4709         sqlite3VdbeResolveLabel(v, nextCase);
4710       }
4711       if( (nExpr&1)!=0 ){
4712         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4713       }else{
4714         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4715       }
4716       sqlite3ExprDelete(db, pDel);
4717       setDoNotMergeFlagOnCopy(v);
4718       sqlite3VdbeResolveLabel(v, endLabel);
4719       break;
4720     }
4721 #ifndef SQLITE_OMIT_TRIGGER
4722     case TK_RAISE: {
4723       assert( pExpr->affExpr==OE_Rollback
4724            || pExpr->affExpr==OE_Abort
4725            || pExpr->affExpr==OE_Fail
4726            || pExpr->affExpr==OE_Ignore
4727       );
4728       if( !pParse->pTriggerTab && !pParse->nested ){
4729         sqlite3ErrorMsg(pParse,
4730                        "RAISE() may only be used within a trigger-program");
4731         return 0;
4732       }
4733       if( pExpr->affExpr==OE_Abort ){
4734         sqlite3MayAbort(pParse);
4735       }
4736       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4737       if( pExpr->affExpr==OE_Ignore ){
4738         sqlite3VdbeAddOp4(
4739             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4740         VdbeCoverage(v);
4741       }else{
4742         sqlite3HaltConstraint(pParse,
4743              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4744              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4745       }
4746 
4747       break;
4748     }
4749 #endif
4750   }
4751   sqlite3ReleaseTempReg(pParse, regFree1);
4752   sqlite3ReleaseTempReg(pParse, regFree2);
4753   return inReg;
4754 }
4755 
4756 /*
4757 ** Generate code that will evaluate expression pExpr just one time
4758 ** per prepared statement execution.
4759 **
4760 ** If the expression uses functions (that might throw an exception) then
4761 ** guard them with an OP_Once opcode to ensure that the code is only executed
4762 ** once. If no functions are involved, then factor the code out and put it at
4763 ** the end of the prepared statement in the initialization section.
4764 **
4765 ** If regDest>=0 then the result is always stored in that register and the
4766 ** result is not reusable.  If regDest<0 then this routine is free to
4767 ** store the value whereever it wants.  The register where the expression
4768 ** is stored is returned.  When regDest<0, two identical expressions might
4769 ** code to the same register, if they do not contain function calls and hence
4770 ** are factored out into the initialization section at the end of the
4771 ** prepared statement.
4772 */
4773 int sqlite3ExprCodeRunJustOnce(
4774   Parse *pParse,    /* Parsing context */
4775   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4776   int regDest       /* Store the value in this register */
4777 ){
4778   ExprList *p;
4779   assert( ConstFactorOk(pParse) );
4780   p = pParse->pConstExpr;
4781   if( regDest<0 && p ){
4782     struct ExprList_item *pItem;
4783     int i;
4784     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4785       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4786         return pItem->u.iConstExprReg;
4787       }
4788     }
4789   }
4790   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4791   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4792     Vdbe *v = pParse->pVdbe;
4793     int addr;
4794     assert( v );
4795     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4796     pParse->okConstFactor = 0;
4797     if( !pParse->db->mallocFailed ){
4798       if( regDest<0 ) regDest = ++pParse->nMem;
4799       sqlite3ExprCode(pParse, pExpr, regDest);
4800     }
4801     pParse->okConstFactor = 1;
4802     sqlite3ExprDelete(pParse->db, pExpr);
4803     sqlite3VdbeJumpHere(v, addr);
4804   }else{
4805     p = sqlite3ExprListAppend(pParse, p, pExpr);
4806     if( p ){
4807        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4808        pItem->reusable = regDest<0;
4809        if( regDest<0 ) regDest = ++pParse->nMem;
4810        pItem->u.iConstExprReg = regDest;
4811     }
4812     pParse->pConstExpr = p;
4813   }
4814   return regDest;
4815 }
4816 
4817 /*
4818 ** Generate code to evaluate an expression and store the results
4819 ** into a register.  Return the register number where the results
4820 ** are stored.
4821 **
4822 ** If the register is a temporary register that can be deallocated,
4823 ** then write its number into *pReg.  If the result register is not
4824 ** a temporary, then set *pReg to zero.
4825 **
4826 ** If pExpr is a constant, then this routine might generate this
4827 ** code to fill the register in the initialization section of the
4828 ** VDBE program, in order to factor it out of the evaluation loop.
4829 */
4830 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4831   int r2;
4832   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4833   if( ConstFactorOk(pParse)
4834    && ALWAYS(pExpr!=0)
4835    && pExpr->op!=TK_REGISTER
4836    && sqlite3ExprIsConstantNotJoin(pExpr)
4837   ){
4838     *pReg  = 0;
4839     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4840   }else{
4841     int r1 = sqlite3GetTempReg(pParse);
4842     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4843     if( r2==r1 ){
4844       *pReg = r1;
4845     }else{
4846       sqlite3ReleaseTempReg(pParse, r1);
4847       *pReg = 0;
4848     }
4849   }
4850   return r2;
4851 }
4852 
4853 /*
4854 ** Generate code that will evaluate expression pExpr and store the
4855 ** results in register target.  The results are guaranteed to appear
4856 ** in register target.
4857 */
4858 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4859   int inReg;
4860 
4861   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4862   assert( target>0 && target<=pParse->nMem );
4863   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4864   if( pParse->pVdbe==0 ) return;
4865   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4866   if( inReg!=target ){
4867     u8 op;
4868     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4869       op = OP_Copy;
4870     }else{
4871       op = OP_SCopy;
4872     }
4873     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4874   }
4875 }
4876 
4877 /*
4878 ** Make a transient copy of expression pExpr and then code it using
4879 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4880 ** except that the input expression is guaranteed to be unchanged.
4881 */
4882 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4883   sqlite3 *db = pParse->db;
4884   pExpr = sqlite3ExprDup(db, pExpr, 0);
4885   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4886   sqlite3ExprDelete(db, pExpr);
4887 }
4888 
4889 /*
4890 ** Generate code that will evaluate expression pExpr and store the
4891 ** results in register target.  The results are guaranteed to appear
4892 ** in register target.  If the expression is constant, then this routine
4893 ** might choose to code the expression at initialization time.
4894 */
4895 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4896   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4897     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4898   }else{
4899     sqlite3ExprCodeCopy(pParse, pExpr, target);
4900   }
4901 }
4902 
4903 /*
4904 ** Generate code that pushes the value of every element of the given
4905 ** expression list into a sequence of registers beginning at target.
4906 **
4907 ** Return the number of elements evaluated.  The number returned will
4908 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4909 ** is defined.
4910 **
4911 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4912 ** filled using OP_SCopy.  OP_Copy must be used instead.
4913 **
4914 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4915 ** factored out into initialization code.
4916 **
4917 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4918 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4919 ** in registers at srcReg, and so the value can be copied from there.
4920 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4921 ** are simply omitted rather than being copied from srcReg.
4922 */
4923 int sqlite3ExprCodeExprList(
4924   Parse *pParse,     /* Parsing context */
4925   ExprList *pList,   /* The expression list to be coded */
4926   int target,        /* Where to write results */
4927   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4928   u8 flags           /* SQLITE_ECEL_* flags */
4929 ){
4930   struct ExprList_item *pItem;
4931   int i, j, n;
4932   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4933   Vdbe *v = pParse->pVdbe;
4934   assert( pList!=0 );
4935   assert( target>0 );
4936   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4937   n = pList->nExpr;
4938   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4939   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4940     Expr *pExpr = pItem->pExpr;
4941 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4942     if( pItem->bSorterRef ){
4943       i--;
4944       n--;
4945     }else
4946 #endif
4947     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4948       if( flags & SQLITE_ECEL_OMITREF ){
4949         i--;
4950         n--;
4951       }else{
4952         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4953       }
4954     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4955            && sqlite3ExprIsConstantNotJoin(pExpr)
4956     ){
4957       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4958     }else{
4959       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4960       if( inReg!=target+i ){
4961         VdbeOp *pOp;
4962         if( copyOp==OP_Copy
4963          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4964          && pOp->p1+pOp->p3+1==inReg
4965          && pOp->p2+pOp->p3+1==target+i
4966          && pOp->p5==0  /* The do-not-merge flag must be clear */
4967         ){
4968           pOp->p3++;
4969         }else{
4970           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4971         }
4972       }
4973     }
4974   }
4975   return n;
4976 }
4977 
4978 /*
4979 ** Generate code for a BETWEEN operator.
4980 **
4981 **    x BETWEEN y AND z
4982 **
4983 ** The above is equivalent to
4984 **
4985 **    x>=y AND x<=z
4986 **
4987 ** Code it as such, taking care to do the common subexpression
4988 ** elimination of x.
4989 **
4990 ** The xJumpIf parameter determines details:
4991 **
4992 **    NULL:                   Store the boolean result in reg[dest]
4993 **    sqlite3ExprIfTrue:      Jump to dest if true
4994 **    sqlite3ExprIfFalse:     Jump to dest if false
4995 **
4996 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4997 */
4998 static void exprCodeBetween(
4999   Parse *pParse,    /* Parsing and code generating context */
5000   Expr *pExpr,      /* The BETWEEN expression */
5001   int dest,         /* Jump destination or storage location */
5002   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5003   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5004 ){
5005   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5006   Expr compLeft;    /* The  x>=y  term */
5007   Expr compRight;   /* The  x<=z  term */
5008   int regFree1 = 0; /* Temporary use register */
5009   Expr *pDel = 0;
5010   sqlite3 *db = pParse->db;
5011 
5012   memset(&compLeft, 0, sizeof(Expr));
5013   memset(&compRight, 0, sizeof(Expr));
5014   memset(&exprAnd, 0, sizeof(Expr));
5015 
5016   assert( ExprUseXList(pExpr) );
5017   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5018   if( db->mallocFailed==0 ){
5019     exprAnd.op = TK_AND;
5020     exprAnd.pLeft = &compLeft;
5021     exprAnd.pRight = &compRight;
5022     compLeft.op = TK_GE;
5023     compLeft.pLeft = pDel;
5024     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5025     compRight.op = TK_LE;
5026     compRight.pLeft = pDel;
5027     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5028     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5029     if( xJump ){
5030       xJump(pParse, &exprAnd, dest, jumpIfNull);
5031     }else{
5032       /* Mark the expression is being from the ON or USING clause of a join
5033       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5034       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5035       ** for clarity, but we are out of bits in the Expr.flags field so we
5036       ** have to reuse the EP_FromJoin bit.  Bummer. */
5037       pDel->flags |= EP_FromJoin;
5038       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5039     }
5040     sqlite3ReleaseTempReg(pParse, regFree1);
5041   }
5042   sqlite3ExprDelete(db, pDel);
5043 
5044   /* Ensure adequate test coverage */
5045   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5046   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5047   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5048   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5049   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5050   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5051   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5052   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5053   testcase( xJump==0 );
5054 }
5055 
5056 /*
5057 ** Generate code for a boolean expression such that a jump is made
5058 ** to the label "dest" if the expression is true but execution
5059 ** continues straight thru if the expression is false.
5060 **
5061 ** If the expression evaluates to NULL (neither true nor false), then
5062 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5063 **
5064 ** This code depends on the fact that certain token values (ex: TK_EQ)
5065 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5066 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5067 ** the make process cause these values to align.  Assert()s in the code
5068 ** below verify that the numbers are aligned correctly.
5069 */
5070 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5071   Vdbe *v = pParse->pVdbe;
5072   int op = 0;
5073   int regFree1 = 0;
5074   int regFree2 = 0;
5075   int r1, r2;
5076 
5077   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5078   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5079   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5080   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5081   op = pExpr->op;
5082   switch( op ){
5083     case TK_AND:
5084     case TK_OR: {
5085       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5086       if( pAlt!=pExpr ){
5087         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5088       }else if( op==TK_AND ){
5089         int d2 = sqlite3VdbeMakeLabel(pParse);
5090         testcase( jumpIfNull==0 );
5091         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5092                            jumpIfNull^SQLITE_JUMPIFNULL);
5093         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5094         sqlite3VdbeResolveLabel(v, d2);
5095       }else{
5096         testcase( jumpIfNull==0 );
5097         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5098         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5099       }
5100       break;
5101     }
5102     case TK_NOT: {
5103       testcase( jumpIfNull==0 );
5104       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5105       break;
5106     }
5107     case TK_TRUTH: {
5108       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5109       int isTrue;     /* IS TRUE or IS NOT TRUE */
5110       testcase( jumpIfNull==0 );
5111       isNot = pExpr->op2==TK_ISNOT;
5112       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5113       testcase( isTrue && isNot );
5114       testcase( !isTrue && isNot );
5115       if( isTrue ^ isNot ){
5116         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5117                           isNot ? SQLITE_JUMPIFNULL : 0);
5118       }else{
5119         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5120                            isNot ? SQLITE_JUMPIFNULL : 0);
5121       }
5122       break;
5123     }
5124     case TK_IS:
5125     case TK_ISNOT:
5126       testcase( op==TK_IS );
5127       testcase( op==TK_ISNOT );
5128       op = (op==TK_IS) ? TK_EQ : TK_NE;
5129       jumpIfNull = SQLITE_NULLEQ;
5130       /* no break */ deliberate_fall_through
5131     case TK_LT:
5132     case TK_LE:
5133     case TK_GT:
5134     case TK_GE:
5135     case TK_NE:
5136     case TK_EQ: {
5137       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5138       testcase( jumpIfNull==0 );
5139       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5140       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5141       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5142                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5143       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5144       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5145       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5146       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5147       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5148       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5149       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5150       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5151       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5152       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5153       testcase( regFree1==0 );
5154       testcase( regFree2==0 );
5155       break;
5156     }
5157     case TK_ISNULL:
5158     case TK_NOTNULL: {
5159       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5160       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5161       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5162       sqlite3VdbeAddOp2(v, op, r1, dest);
5163       VdbeCoverageIf(v, op==TK_ISNULL);
5164       VdbeCoverageIf(v, op==TK_NOTNULL);
5165       testcase( regFree1==0 );
5166       break;
5167     }
5168     case TK_BETWEEN: {
5169       testcase( jumpIfNull==0 );
5170       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5171       break;
5172     }
5173 #ifndef SQLITE_OMIT_SUBQUERY
5174     case TK_IN: {
5175       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5176       int destIfNull = jumpIfNull ? dest : destIfFalse;
5177       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5178       sqlite3VdbeGoto(v, dest);
5179       sqlite3VdbeResolveLabel(v, destIfFalse);
5180       break;
5181     }
5182 #endif
5183     default: {
5184     default_expr:
5185       if( ExprAlwaysTrue(pExpr) ){
5186         sqlite3VdbeGoto(v, dest);
5187       }else if( ExprAlwaysFalse(pExpr) ){
5188         /* No-op */
5189       }else{
5190         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5191         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5192         VdbeCoverage(v);
5193         testcase( regFree1==0 );
5194         testcase( jumpIfNull==0 );
5195       }
5196       break;
5197     }
5198   }
5199   sqlite3ReleaseTempReg(pParse, regFree1);
5200   sqlite3ReleaseTempReg(pParse, regFree2);
5201 }
5202 
5203 /*
5204 ** Generate code for a boolean expression such that a jump is made
5205 ** to the label "dest" if the expression is false but execution
5206 ** continues straight thru if the expression is true.
5207 **
5208 ** If the expression evaluates to NULL (neither true nor false) then
5209 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5210 ** is 0.
5211 */
5212 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5213   Vdbe *v = pParse->pVdbe;
5214   int op = 0;
5215   int regFree1 = 0;
5216   int regFree2 = 0;
5217   int r1, r2;
5218 
5219   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5220   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5221   if( pExpr==0 )    return;
5222   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5223 
5224   /* The value of pExpr->op and op are related as follows:
5225   **
5226   **       pExpr->op            op
5227   **       ---------          ----------
5228   **       TK_ISNULL          OP_NotNull
5229   **       TK_NOTNULL         OP_IsNull
5230   **       TK_NE              OP_Eq
5231   **       TK_EQ              OP_Ne
5232   **       TK_GT              OP_Le
5233   **       TK_LE              OP_Gt
5234   **       TK_GE              OP_Lt
5235   **       TK_LT              OP_Ge
5236   **
5237   ** For other values of pExpr->op, op is undefined and unused.
5238   ** The value of TK_ and OP_ constants are arranged such that we
5239   ** can compute the mapping above using the following expression.
5240   ** Assert()s verify that the computation is correct.
5241   */
5242   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5243 
5244   /* Verify correct alignment of TK_ and OP_ constants
5245   */
5246   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5247   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5248   assert( pExpr->op!=TK_NE || op==OP_Eq );
5249   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5250   assert( pExpr->op!=TK_LT || op==OP_Ge );
5251   assert( pExpr->op!=TK_LE || op==OP_Gt );
5252   assert( pExpr->op!=TK_GT || op==OP_Le );
5253   assert( pExpr->op!=TK_GE || op==OP_Lt );
5254 
5255   switch( pExpr->op ){
5256     case TK_AND:
5257     case TK_OR: {
5258       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5259       if( pAlt!=pExpr ){
5260         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5261       }else if( pExpr->op==TK_AND ){
5262         testcase( jumpIfNull==0 );
5263         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5264         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5265       }else{
5266         int d2 = sqlite3VdbeMakeLabel(pParse);
5267         testcase( jumpIfNull==0 );
5268         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5269                           jumpIfNull^SQLITE_JUMPIFNULL);
5270         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5271         sqlite3VdbeResolveLabel(v, d2);
5272       }
5273       break;
5274     }
5275     case TK_NOT: {
5276       testcase( jumpIfNull==0 );
5277       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5278       break;
5279     }
5280     case TK_TRUTH: {
5281       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5282       int isTrue;  /* IS TRUE or IS NOT TRUE */
5283       testcase( jumpIfNull==0 );
5284       isNot = pExpr->op2==TK_ISNOT;
5285       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5286       testcase( isTrue && isNot );
5287       testcase( !isTrue && isNot );
5288       if( isTrue ^ isNot ){
5289         /* IS TRUE and IS NOT FALSE */
5290         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5291                            isNot ? 0 : SQLITE_JUMPIFNULL);
5292 
5293       }else{
5294         /* IS FALSE and IS NOT TRUE */
5295         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5296                           isNot ? 0 : SQLITE_JUMPIFNULL);
5297       }
5298       break;
5299     }
5300     case TK_IS:
5301     case TK_ISNOT:
5302       testcase( pExpr->op==TK_IS );
5303       testcase( pExpr->op==TK_ISNOT );
5304       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5305       jumpIfNull = SQLITE_NULLEQ;
5306       /* no break */ deliberate_fall_through
5307     case TK_LT:
5308     case TK_LE:
5309     case TK_GT:
5310     case TK_GE:
5311     case TK_NE:
5312     case TK_EQ: {
5313       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5314       testcase( jumpIfNull==0 );
5315       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5316       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5317       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5318                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5319       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5320       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5321       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5322       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5323       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5324       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5325       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5326       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5327       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5328       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5329       testcase( regFree1==0 );
5330       testcase( regFree2==0 );
5331       break;
5332     }
5333     case TK_ISNULL:
5334     case TK_NOTNULL: {
5335       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5336       sqlite3VdbeAddOp2(v, op, r1, dest);
5337       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5338       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5339       testcase( regFree1==0 );
5340       break;
5341     }
5342     case TK_BETWEEN: {
5343       testcase( jumpIfNull==0 );
5344       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5345       break;
5346     }
5347 #ifndef SQLITE_OMIT_SUBQUERY
5348     case TK_IN: {
5349       if( jumpIfNull ){
5350         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5351       }else{
5352         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5353         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5354         sqlite3VdbeResolveLabel(v, destIfNull);
5355       }
5356       break;
5357     }
5358 #endif
5359     default: {
5360     default_expr:
5361       if( ExprAlwaysFalse(pExpr) ){
5362         sqlite3VdbeGoto(v, dest);
5363       }else if( ExprAlwaysTrue(pExpr) ){
5364         /* no-op */
5365       }else{
5366         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5367         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5368         VdbeCoverage(v);
5369         testcase( regFree1==0 );
5370         testcase( jumpIfNull==0 );
5371       }
5372       break;
5373     }
5374   }
5375   sqlite3ReleaseTempReg(pParse, regFree1);
5376   sqlite3ReleaseTempReg(pParse, regFree2);
5377 }
5378 
5379 /*
5380 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5381 ** code generation, and that copy is deleted after code generation. This
5382 ** ensures that the original pExpr is unchanged.
5383 */
5384 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5385   sqlite3 *db = pParse->db;
5386   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5387   if( db->mallocFailed==0 ){
5388     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5389   }
5390   sqlite3ExprDelete(db, pCopy);
5391 }
5392 
5393 /*
5394 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5395 ** type of expression.
5396 **
5397 ** If pExpr is a simple SQL value - an integer, real, string, blob
5398 ** or NULL value - then the VDBE currently being prepared is configured
5399 ** to re-prepare each time a new value is bound to variable pVar.
5400 **
5401 ** Additionally, if pExpr is a simple SQL value and the value is the
5402 ** same as that currently bound to variable pVar, non-zero is returned.
5403 ** Otherwise, if the values are not the same or if pExpr is not a simple
5404 ** SQL value, zero is returned.
5405 */
5406 static int exprCompareVariable(
5407   const Parse *pParse,
5408   const Expr *pVar,
5409   const Expr *pExpr
5410 ){
5411   int res = 0;
5412   int iVar;
5413   sqlite3_value *pL, *pR = 0;
5414 
5415   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5416   if( pR ){
5417     iVar = pVar->iColumn;
5418     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5419     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5420     if( pL ){
5421       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5422         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5423       }
5424       res =  0==sqlite3MemCompare(pL, pR, 0);
5425     }
5426     sqlite3ValueFree(pR);
5427     sqlite3ValueFree(pL);
5428   }
5429 
5430   return res;
5431 }
5432 
5433 /*
5434 ** Do a deep comparison of two expression trees.  Return 0 if the two
5435 ** expressions are completely identical.  Return 1 if they differ only
5436 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5437 ** other than the top-level COLLATE operator.
5438 **
5439 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5440 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5441 **
5442 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5443 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5444 **
5445 ** Sometimes this routine will return 2 even if the two expressions
5446 ** really are equivalent.  If we cannot prove that the expressions are
5447 ** identical, we return 2 just to be safe.  So if this routine
5448 ** returns 2, then you do not really know for certain if the two
5449 ** expressions are the same.  But if you get a 0 or 1 return, then you
5450 ** can be sure the expressions are the same.  In the places where
5451 ** this routine is used, it does not hurt to get an extra 2 - that
5452 ** just might result in some slightly slower code.  But returning
5453 ** an incorrect 0 or 1 could lead to a malfunction.
5454 **
5455 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5456 ** pParse->pReprepare can be matched against literals in pB.  The
5457 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5458 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5459 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5460 ** pB causes a return value of 2.
5461 */
5462 int sqlite3ExprCompare(
5463   const Parse *pParse,
5464   const Expr *pA,
5465   const Expr *pB,
5466   int iTab
5467 ){
5468   u32 combinedFlags;
5469   if( pA==0 || pB==0 ){
5470     return pB==pA ? 0 : 2;
5471   }
5472   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5473     return 0;
5474   }
5475   combinedFlags = pA->flags | pB->flags;
5476   if( combinedFlags & EP_IntValue ){
5477     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5478       return 0;
5479     }
5480     return 2;
5481   }
5482   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5483     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5484       return 1;
5485     }
5486     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5487       return 1;
5488     }
5489     return 2;
5490   }
5491   assert( !ExprHasProperty(pA, EP_IntValue) );
5492   assert( !ExprHasProperty(pB, EP_IntValue) );
5493   if( pA->u.zToken ){
5494     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5495       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5496 #ifndef SQLITE_OMIT_WINDOWFUNC
5497       assert( pA->op==pB->op );
5498       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5499         return 2;
5500       }
5501       if( ExprHasProperty(pA,EP_WinFunc) ){
5502         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5503           return 2;
5504         }
5505       }
5506 #endif
5507     }else if( pA->op==TK_NULL ){
5508       return 0;
5509     }else if( pA->op==TK_COLLATE ){
5510       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5511     }else
5512     if( pB->u.zToken!=0
5513      && pA->op!=TK_COLUMN
5514      && pA->op!=TK_AGG_COLUMN
5515      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5516     ){
5517       return 2;
5518     }
5519   }
5520   if( (pA->flags & (EP_Distinct|EP_Commuted))
5521      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5522   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5523     if( combinedFlags & EP_xIsSelect ) return 2;
5524     if( (combinedFlags & EP_FixedCol)==0
5525      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5526     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5527     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5528     if( pA->op!=TK_STRING
5529      && pA->op!=TK_TRUEFALSE
5530      && ALWAYS((combinedFlags & EP_Reduced)==0)
5531     ){
5532       if( pA->iColumn!=pB->iColumn ) return 2;
5533       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5534       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5535         return 2;
5536       }
5537     }
5538   }
5539   return 0;
5540 }
5541 
5542 /*
5543 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5544 ** if they are certainly different, or 2 if it is not possible to
5545 ** determine if they are identical or not.
5546 **
5547 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5548 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5549 **
5550 ** This routine might return non-zero for equivalent ExprLists.  The
5551 ** only consequence will be disabled optimizations.  But this routine
5552 ** must never return 0 if the two ExprList objects are different, or
5553 ** a malfunction will result.
5554 **
5555 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5556 ** always differs from a non-NULL pointer.
5557 */
5558 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5559   int i;
5560   if( pA==0 && pB==0 ) return 0;
5561   if( pA==0 || pB==0 ) return 1;
5562   if( pA->nExpr!=pB->nExpr ) return 1;
5563   for(i=0; i<pA->nExpr; i++){
5564     int res;
5565     Expr *pExprA = pA->a[i].pExpr;
5566     Expr *pExprB = pB->a[i].pExpr;
5567     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5568     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5569   }
5570   return 0;
5571 }
5572 
5573 /*
5574 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5575 ** are ignored.
5576 */
5577 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5578   return sqlite3ExprCompare(0,
5579              sqlite3ExprSkipCollateAndLikely(pA),
5580              sqlite3ExprSkipCollateAndLikely(pB),
5581              iTab);
5582 }
5583 
5584 /*
5585 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5586 **
5587 ** Or if seenNot is true, return non-zero if Expr p can only be
5588 ** non-NULL if pNN is not NULL
5589 */
5590 static int exprImpliesNotNull(
5591   const Parse *pParse,/* Parsing context */
5592   const Expr *p,      /* The expression to be checked */
5593   const Expr *pNN,    /* The expression that is NOT NULL */
5594   int iTab,           /* Table being evaluated */
5595   int seenNot         /* Return true only if p can be any non-NULL value */
5596 ){
5597   assert( p );
5598   assert( pNN );
5599   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5600     return pNN->op!=TK_NULL;
5601   }
5602   switch( p->op ){
5603     case TK_IN: {
5604       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5605       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5606       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5607     }
5608     case TK_BETWEEN: {
5609       ExprList *pList;
5610       assert( ExprUseXList(p) );
5611       pList = p->x.pList;
5612       assert( pList!=0 );
5613       assert( pList->nExpr==2 );
5614       if( seenNot ) return 0;
5615       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5616        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5617       ){
5618         return 1;
5619       }
5620       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5621     }
5622     case TK_EQ:
5623     case TK_NE:
5624     case TK_LT:
5625     case TK_LE:
5626     case TK_GT:
5627     case TK_GE:
5628     case TK_PLUS:
5629     case TK_MINUS:
5630     case TK_BITOR:
5631     case TK_LSHIFT:
5632     case TK_RSHIFT:
5633     case TK_CONCAT:
5634       seenNot = 1;
5635       /* no break */ deliberate_fall_through
5636     case TK_STAR:
5637     case TK_REM:
5638     case TK_BITAND:
5639     case TK_SLASH: {
5640       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5641       /* no break */ deliberate_fall_through
5642     }
5643     case TK_SPAN:
5644     case TK_COLLATE:
5645     case TK_UPLUS:
5646     case TK_UMINUS: {
5647       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5648     }
5649     case TK_TRUTH: {
5650       if( seenNot ) return 0;
5651       if( p->op2!=TK_IS ) return 0;
5652       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5653     }
5654     case TK_BITNOT:
5655     case TK_NOT: {
5656       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5657     }
5658   }
5659   return 0;
5660 }
5661 
5662 /*
5663 ** Return true if we can prove the pE2 will always be true if pE1 is
5664 ** true.  Return false if we cannot complete the proof or if pE2 might
5665 ** be false.  Examples:
5666 **
5667 **     pE1: x==5       pE2: x==5             Result: true
5668 **     pE1: x>0        pE2: x==5             Result: false
5669 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5670 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5671 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5672 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5673 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5674 **
5675 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5676 ** Expr.iTable<0 then assume a table number given by iTab.
5677 **
5678 ** If pParse is not NULL, then the values of bound variables in pE1 are
5679 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5680 ** modified to record which bound variables are referenced.  If pParse
5681 ** is NULL, then false will be returned if pE1 contains any bound variables.
5682 **
5683 ** When in doubt, return false.  Returning true might give a performance
5684 ** improvement.  Returning false might cause a performance reduction, but
5685 ** it will always give the correct answer and is hence always safe.
5686 */
5687 int sqlite3ExprImpliesExpr(
5688   const Parse *pParse,
5689   const Expr *pE1,
5690   const Expr *pE2,
5691   int iTab
5692 ){
5693   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5694     return 1;
5695   }
5696   if( pE2->op==TK_OR
5697    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5698              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5699   ){
5700     return 1;
5701   }
5702   if( pE2->op==TK_NOTNULL
5703    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5704   ){
5705     return 1;
5706   }
5707   return 0;
5708 }
5709 
5710 /*
5711 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5712 ** If the expression node requires that the table at pWalker->iCur
5713 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5714 **
5715 ** This routine controls an optimization.  False positives (setting
5716 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5717 ** (never setting pWalker->eCode) is a harmless missed optimization.
5718 */
5719 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5720   testcase( pExpr->op==TK_AGG_COLUMN );
5721   testcase( pExpr->op==TK_AGG_FUNCTION );
5722   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5723   switch( pExpr->op ){
5724     case TK_ISNOT:
5725     case TK_ISNULL:
5726     case TK_NOTNULL:
5727     case TK_IS:
5728     case TK_OR:
5729     case TK_VECTOR:
5730     case TK_CASE:
5731     case TK_IN:
5732     case TK_FUNCTION:
5733     case TK_TRUTH:
5734       testcase( pExpr->op==TK_ISNOT );
5735       testcase( pExpr->op==TK_ISNULL );
5736       testcase( pExpr->op==TK_NOTNULL );
5737       testcase( pExpr->op==TK_IS );
5738       testcase( pExpr->op==TK_OR );
5739       testcase( pExpr->op==TK_VECTOR );
5740       testcase( pExpr->op==TK_CASE );
5741       testcase( pExpr->op==TK_IN );
5742       testcase( pExpr->op==TK_FUNCTION );
5743       testcase( pExpr->op==TK_TRUTH );
5744       return WRC_Prune;
5745     case TK_COLUMN:
5746       if( pWalker->u.iCur==pExpr->iTable ){
5747         pWalker->eCode = 1;
5748         return WRC_Abort;
5749       }
5750       return WRC_Prune;
5751 
5752     case TK_AND:
5753       if( pWalker->eCode==0 ){
5754         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5755         if( pWalker->eCode ){
5756           pWalker->eCode = 0;
5757           sqlite3WalkExpr(pWalker, pExpr->pRight);
5758         }
5759       }
5760       return WRC_Prune;
5761 
5762     case TK_BETWEEN:
5763       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5764         assert( pWalker->eCode );
5765         return WRC_Abort;
5766       }
5767       return WRC_Prune;
5768 
5769     /* Virtual tables are allowed to use constraints like x=NULL.  So
5770     ** a term of the form x=y does not prove that y is not null if x
5771     ** is the column of a virtual table */
5772     case TK_EQ:
5773     case TK_NE:
5774     case TK_LT:
5775     case TK_LE:
5776     case TK_GT:
5777     case TK_GE: {
5778       Expr *pLeft = pExpr->pLeft;
5779       Expr *pRight = pExpr->pRight;
5780       testcase( pExpr->op==TK_EQ );
5781       testcase( pExpr->op==TK_NE );
5782       testcase( pExpr->op==TK_LT );
5783       testcase( pExpr->op==TK_LE );
5784       testcase( pExpr->op==TK_GT );
5785       testcase( pExpr->op==TK_GE );
5786       /* The y.pTab=0 assignment in wherecode.c always happens after the
5787       ** impliesNotNullRow() test */
5788       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5789       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5790       if( (pLeft->op==TK_COLUMN
5791            && pLeft->y.pTab!=0
5792            && IsVirtual(pLeft->y.pTab))
5793        || (pRight->op==TK_COLUMN
5794            && pRight->y.pTab!=0
5795            && IsVirtual(pRight->y.pTab))
5796       ){
5797         return WRC_Prune;
5798       }
5799       /* no break */ deliberate_fall_through
5800     }
5801     default:
5802       return WRC_Continue;
5803   }
5804 }
5805 
5806 /*
5807 ** Return true (non-zero) if expression p can only be true if at least
5808 ** one column of table iTab is non-null.  In other words, return true
5809 ** if expression p will always be NULL or false if every column of iTab
5810 ** is NULL.
5811 **
5812 ** False negatives are acceptable.  In other words, it is ok to return
5813 ** zero even if expression p will never be true of every column of iTab
5814 ** is NULL.  A false negative is merely a missed optimization opportunity.
5815 **
5816 ** False positives are not allowed, however.  A false positive may result
5817 ** in an incorrect answer.
5818 **
5819 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5820 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5821 **
5822 ** This routine is used to check if a LEFT JOIN can be converted into
5823 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5824 ** clause requires that some column of the right table of the LEFT JOIN
5825 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5826 ** ordinary join.
5827 */
5828 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5829   Walker w;
5830   p = sqlite3ExprSkipCollateAndLikely(p);
5831   if( p==0 ) return 0;
5832   if( p->op==TK_NOTNULL ){
5833     p = p->pLeft;
5834   }else{
5835     while( p->op==TK_AND ){
5836       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5837       p = p->pRight;
5838     }
5839   }
5840   w.xExprCallback = impliesNotNullRow;
5841   w.xSelectCallback = 0;
5842   w.xSelectCallback2 = 0;
5843   w.eCode = 0;
5844   w.u.iCur = iTab;
5845   sqlite3WalkExpr(&w, p);
5846   return w.eCode;
5847 }
5848 
5849 /*
5850 ** An instance of the following structure is used by the tree walker
5851 ** to determine if an expression can be evaluated by reference to the
5852 ** index only, without having to do a search for the corresponding
5853 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5854 ** is the cursor for the table.
5855 */
5856 struct IdxCover {
5857   Index *pIdx;     /* The index to be tested for coverage */
5858   int iCur;        /* Cursor number for the table corresponding to the index */
5859 };
5860 
5861 /*
5862 ** Check to see if there are references to columns in table
5863 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5864 ** pWalker->u.pIdxCover->pIdx.
5865 */
5866 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5867   if( pExpr->op==TK_COLUMN
5868    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5869    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5870   ){
5871     pWalker->eCode = 1;
5872     return WRC_Abort;
5873   }
5874   return WRC_Continue;
5875 }
5876 
5877 /*
5878 ** Determine if an index pIdx on table with cursor iCur contains will
5879 ** the expression pExpr.  Return true if the index does cover the
5880 ** expression and false if the pExpr expression references table columns
5881 ** that are not found in the index pIdx.
5882 **
5883 ** An index covering an expression means that the expression can be
5884 ** evaluated using only the index and without having to lookup the
5885 ** corresponding table entry.
5886 */
5887 int sqlite3ExprCoveredByIndex(
5888   Expr *pExpr,        /* The index to be tested */
5889   int iCur,           /* The cursor number for the corresponding table */
5890   Index *pIdx         /* The index that might be used for coverage */
5891 ){
5892   Walker w;
5893   struct IdxCover xcov;
5894   memset(&w, 0, sizeof(w));
5895   xcov.iCur = iCur;
5896   xcov.pIdx = pIdx;
5897   w.xExprCallback = exprIdxCover;
5898   w.u.pIdxCover = &xcov;
5899   sqlite3WalkExpr(&w, pExpr);
5900   return !w.eCode;
5901 }
5902 
5903 
5904 /* Structure used to pass information throught the Walker in order to
5905 ** implement sqlite3ReferencesSrcList().
5906 */
5907 struct RefSrcList {
5908   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
5909   SrcList *pRef;       /* Looking for references to these tables */
5910   i64 nExclude;        /* Number of tables to exclude from the search */
5911   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
5912 };
5913 
5914 /*
5915 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5916 **
5917 ** When entering a new subquery on the pExpr argument, add all FROM clause
5918 ** entries for that subquery to the exclude list.
5919 **
5920 ** When leaving the subquery, remove those entries from the exclude list.
5921 */
5922 static int selectRefEnter(Walker *pWalker, Select *pSelect){
5923   struct RefSrcList *p = pWalker->u.pRefSrcList;
5924   SrcList *pSrc = pSelect->pSrc;
5925   i64 i, j;
5926   int *piNew;
5927   if( pSrc->nSrc==0 ) return WRC_Continue;
5928   j = p->nExclude;
5929   p->nExclude += pSrc->nSrc;
5930   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
5931   if( piNew==0 ){
5932     p->nExclude = 0;
5933     return WRC_Abort;
5934   }else{
5935     p->aiExclude = piNew;
5936   }
5937   for(i=0; i<pSrc->nSrc; i++, j++){
5938      p->aiExclude[j] = pSrc->a[i].iCursor;
5939   }
5940   return WRC_Continue;
5941 }
5942 static void selectRefLeave(Walker *pWalker, Select *pSelect){
5943   struct RefSrcList *p = pWalker->u.pRefSrcList;
5944   SrcList *pSrc = pSelect->pSrc;
5945   if( p->nExclude ){
5946     assert( p->nExclude>=pSrc->nSrc );
5947     p->nExclude -= pSrc->nSrc;
5948   }
5949 }
5950 
5951 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
5952 **
5953 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
5954 ** of the tables shown in RefSrcList.pRef.
5955 **
5956 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
5957 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
5958 */
5959 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
5960   if( pExpr->op==TK_COLUMN
5961    || pExpr->op==TK_AGG_COLUMN
5962   ){
5963     int i;
5964     struct RefSrcList *p = pWalker->u.pRefSrcList;
5965     SrcList *pSrc = p->pRef;
5966     int nSrc = pSrc ? pSrc->nSrc : 0;
5967     for(i=0; i<nSrc; i++){
5968       if( pExpr->iTable==pSrc->a[i].iCursor ){
5969         pWalker->eCode |= 1;
5970         return WRC_Continue;
5971       }
5972     }
5973     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
5974     if( i>=p->nExclude ){
5975       pWalker->eCode |= 2;
5976     }
5977   }
5978   return WRC_Continue;
5979 }
5980 
5981 /*
5982 ** Check to see if pExpr references any tables in pSrcList.
5983 ** Possible return values:
5984 **
5985 **    1         pExpr does references a table in pSrcList.
5986 **
5987 **    0         pExpr references some table that is not defined in either
5988 **              pSrcList or in subqueries of pExpr itself.
5989 **
5990 **   -1         pExpr only references no tables at all, or it only
5991 **              references tables defined in subqueries of pExpr itself.
5992 **
5993 ** As currently used, pExpr is always an aggregate function call.  That
5994 ** fact is exploited for efficiency.
5995 */
5996 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
5997   Walker w;
5998   struct RefSrcList x;
5999   memset(&w, 0, sizeof(w));
6000   memset(&x, 0, sizeof(x));
6001   w.xExprCallback = exprRefToSrcList;
6002   w.xSelectCallback = selectRefEnter;
6003   w.xSelectCallback2 = selectRefLeave;
6004   w.u.pRefSrcList = &x;
6005   x.db = pParse->db;
6006   x.pRef = pSrcList;
6007   assert( pExpr->op==TK_AGG_FUNCTION );
6008   assert( ExprUseXList(pExpr) );
6009   sqlite3WalkExprList(&w, pExpr->x.pList);
6010 #ifndef SQLITE_OMIT_WINDOWFUNC
6011   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6012     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6013   }
6014 #endif
6015   sqlite3DbFree(pParse->db, x.aiExclude);
6016   if( w.eCode & 0x01 ){
6017     return 1;
6018   }else if( w.eCode ){
6019     return 0;
6020   }else{
6021     return -1;
6022   }
6023 }
6024 
6025 /*
6026 ** This is a Walker expression node callback.
6027 **
6028 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6029 ** object that is referenced does not refer directly to the Expr.  If
6030 ** it does, make a copy.  This is done because the pExpr argument is
6031 ** subject to change.
6032 **
6033 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6034 ** This will cause the expression to be deleted automatically when the
6035 ** Parse object is destroyed, but the zero register number means that it
6036 ** will not generate any code in the preamble.
6037 */
6038 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6039   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6040    && pExpr->pAggInfo!=0
6041   ){
6042     AggInfo *pAggInfo = pExpr->pAggInfo;
6043     int iAgg = pExpr->iAgg;
6044     Parse *pParse = pWalker->pParse;
6045     sqlite3 *db = pParse->db;
6046     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
6047     if( pExpr->op==TK_AGG_COLUMN ){
6048       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6049       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6050         pExpr = sqlite3ExprDup(db, pExpr, 0);
6051         if( pExpr ){
6052           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6053           sqlite3ExprDeferredDelete(pParse, pExpr);
6054         }
6055       }
6056     }else{
6057       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6058       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6059         pExpr = sqlite3ExprDup(db, pExpr, 0);
6060         if( pExpr ){
6061           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6062           sqlite3ExprDeferredDelete(pParse, pExpr);
6063         }
6064       }
6065     }
6066   }
6067   return WRC_Continue;
6068 }
6069 
6070 /*
6071 ** Initialize a Walker object so that will persist AggInfo entries referenced
6072 ** by the tree that is walked.
6073 */
6074 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6075   memset(pWalker, 0, sizeof(*pWalker));
6076   pWalker->pParse = pParse;
6077   pWalker->xExprCallback = agginfoPersistExprCb;
6078   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6079 }
6080 
6081 /*
6082 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6083 ** the new element.  Return a negative number if malloc fails.
6084 */
6085 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6086   int i;
6087   pInfo->aCol = sqlite3ArrayAllocate(
6088        db,
6089        pInfo->aCol,
6090        sizeof(pInfo->aCol[0]),
6091        &pInfo->nColumn,
6092        &i
6093   );
6094   return i;
6095 }
6096 
6097 /*
6098 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6099 ** the new element.  Return a negative number if malloc fails.
6100 */
6101 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6102   int i;
6103   pInfo->aFunc = sqlite3ArrayAllocate(
6104        db,
6105        pInfo->aFunc,
6106        sizeof(pInfo->aFunc[0]),
6107        &pInfo->nFunc,
6108        &i
6109   );
6110   return i;
6111 }
6112 
6113 /*
6114 ** This is the xExprCallback for a tree walker.  It is used to
6115 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6116 ** for additional information.
6117 */
6118 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6119   int i;
6120   NameContext *pNC = pWalker->u.pNC;
6121   Parse *pParse = pNC->pParse;
6122   SrcList *pSrcList = pNC->pSrcList;
6123   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6124 
6125   assert( pNC->ncFlags & NC_UAggInfo );
6126   switch( pExpr->op ){
6127     case TK_AGG_COLUMN:
6128     case TK_COLUMN: {
6129       testcase( pExpr->op==TK_AGG_COLUMN );
6130       testcase( pExpr->op==TK_COLUMN );
6131       /* Check to see if the column is in one of the tables in the FROM
6132       ** clause of the aggregate query */
6133       if( ALWAYS(pSrcList!=0) ){
6134         SrcItem *pItem = pSrcList->a;
6135         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6136           struct AggInfo_col *pCol;
6137           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6138           if( pExpr->iTable==pItem->iCursor ){
6139             /* If we reach this point, it means that pExpr refers to a table
6140             ** that is in the FROM clause of the aggregate query.
6141             **
6142             ** Make an entry for the column in pAggInfo->aCol[] if there
6143             ** is not an entry there already.
6144             */
6145             int k;
6146             pCol = pAggInfo->aCol;
6147             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6148               if( pCol->iTable==pExpr->iTable &&
6149                   pCol->iColumn==pExpr->iColumn ){
6150                 break;
6151               }
6152             }
6153             if( (k>=pAggInfo->nColumn)
6154              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6155             ){
6156               pCol = &pAggInfo->aCol[k];
6157               assert( ExprUseYTab(pExpr) );
6158               pCol->pTab = pExpr->y.pTab;
6159               pCol->iTable = pExpr->iTable;
6160               pCol->iColumn = pExpr->iColumn;
6161               pCol->iMem = ++pParse->nMem;
6162               pCol->iSorterColumn = -1;
6163               pCol->pCExpr = pExpr;
6164               if( pAggInfo->pGroupBy ){
6165                 int j, n;
6166                 ExprList *pGB = pAggInfo->pGroupBy;
6167                 struct ExprList_item *pTerm = pGB->a;
6168                 n = pGB->nExpr;
6169                 for(j=0; j<n; j++, pTerm++){
6170                   Expr *pE = pTerm->pExpr;
6171                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6172                       pE->iColumn==pExpr->iColumn ){
6173                     pCol->iSorterColumn = j;
6174                     break;
6175                   }
6176                 }
6177               }
6178               if( pCol->iSorterColumn<0 ){
6179                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6180               }
6181             }
6182             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6183             ** because it was there before or because we just created it).
6184             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6185             ** pAggInfo->aCol[] entry.
6186             */
6187             ExprSetVVAProperty(pExpr, EP_NoReduce);
6188             pExpr->pAggInfo = pAggInfo;
6189             pExpr->op = TK_AGG_COLUMN;
6190             pExpr->iAgg = (i16)k;
6191             break;
6192           } /* endif pExpr->iTable==pItem->iCursor */
6193         } /* end loop over pSrcList */
6194       }
6195       return WRC_Prune;
6196     }
6197     case TK_AGG_FUNCTION: {
6198       if( (pNC->ncFlags & NC_InAggFunc)==0
6199        && pWalker->walkerDepth==pExpr->op2
6200       ){
6201         /* Check to see if pExpr is a duplicate of another aggregate
6202         ** function that is already in the pAggInfo structure
6203         */
6204         struct AggInfo_func *pItem = pAggInfo->aFunc;
6205         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6206           if( pItem->pFExpr==pExpr ) break;
6207           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6208             break;
6209           }
6210         }
6211         if( i>=pAggInfo->nFunc ){
6212           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6213           */
6214           u8 enc = ENC(pParse->db);
6215           i = addAggInfoFunc(pParse->db, pAggInfo);
6216           if( i>=0 ){
6217             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6218             pItem = &pAggInfo->aFunc[i];
6219             pItem->pFExpr = pExpr;
6220             pItem->iMem = ++pParse->nMem;
6221             assert( ExprUseUToken(pExpr) );
6222             pItem->pFunc = sqlite3FindFunction(pParse->db,
6223                    pExpr->u.zToken,
6224                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6225             if( pExpr->flags & EP_Distinct ){
6226               pItem->iDistinct = pParse->nTab++;
6227             }else{
6228               pItem->iDistinct = -1;
6229             }
6230           }
6231         }
6232         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6233         */
6234         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6235         ExprSetVVAProperty(pExpr, EP_NoReduce);
6236         pExpr->iAgg = (i16)i;
6237         pExpr->pAggInfo = pAggInfo;
6238         return WRC_Prune;
6239       }else{
6240         return WRC_Continue;
6241       }
6242     }
6243   }
6244   return WRC_Continue;
6245 }
6246 
6247 /*
6248 ** Analyze the pExpr expression looking for aggregate functions and
6249 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6250 ** points to.  Additional entries are made on the AggInfo object as
6251 ** necessary.
6252 **
6253 ** This routine should only be called after the expression has been
6254 ** analyzed by sqlite3ResolveExprNames().
6255 */
6256 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6257   Walker w;
6258   w.xExprCallback = analyzeAggregate;
6259   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6260   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6261   w.walkerDepth = 0;
6262   w.u.pNC = pNC;
6263   w.pParse = 0;
6264   assert( pNC->pSrcList!=0 );
6265   sqlite3WalkExpr(&w, pExpr);
6266 }
6267 
6268 /*
6269 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6270 ** expression list.  Return the number of errors.
6271 **
6272 ** If an error is found, the analysis is cut short.
6273 */
6274 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6275   struct ExprList_item *pItem;
6276   int i;
6277   if( pList ){
6278     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6279       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6280     }
6281   }
6282 }
6283 
6284 /*
6285 ** Allocate a single new register for use to hold some intermediate result.
6286 */
6287 int sqlite3GetTempReg(Parse *pParse){
6288   if( pParse->nTempReg==0 ){
6289     return ++pParse->nMem;
6290   }
6291   return pParse->aTempReg[--pParse->nTempReg];
6292 }
6293 
6294 /*
6295 ** Deallocate a register, making available for reuse for some other
6296 ** purpose.
6297 */
6298 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6299   if( iReg ){
6300     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6301     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6302       pParse->aTempReg[pParse->nTempReg++] = iReg;
6303     }
6304   }
6305 }
6306 
6307 /*
6308 ** Allocate or deallocate a block of nReg consecutive registers.
6309 */
6310 int sqlite3GetTempRange(Parse *pParse, int nReg){
6311   int i, n;
6312   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6313   i = pParse->iRangeReg;
6314   n = pParse->nRangeReg;
6315   if( nReg<=n ){
6316     pParse->iRangeReg += nReg;
6317     pParse->nRangeReg -= nReg;
6318   }else{
6319     i = pParse->nMem+1;
6320     pParse->nMem += nReg;
6321   }
6322   return i;
6323 }
6324 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6325   if( nReg==1 ){
6326     sqlite3ReleaseTempReg(pParse, iReg);
6327     return;
6328   }
6329   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6330   if( nReg>pParse->nRangeReg ){
6331     pParse->nRangeReg = nReg;
6332     pParse->iRangeReg = iReg;
6333   }
6334 }
6335 
6336 /*
6337 ** Mark all temporary registers as being unavailable for reuse.
6338 **
6339 ** Always invoke this procedure after coding a subroutine or co-routine
6340 ** that might be invoked from other parts of the code, to ensure that
6341 ** the sub/co-routine does not use registers in common with the code that
6342 ** invokes the sub/co-routine.
6343 */
6344 void sqlite3ClearTempRegCache(Parse *pParse){
6345   pParse->nTempReg = 0;
6346   pParse->nRangeReg = 0;
6347 }
6348 
6349 /*
6350 ** Validate that no temporary register falls within the range of
6351 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6352 ** statements.
6353 */
6354 #ifdef SQLITE_DEBUG
6355 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6356   int i;
6357   if( pParse->nRangeReg>0
6358    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6359    && pParse->iRangeReg <= iLast
6360   ){
6361      return 0;
6362   }
6363   for(i=0; i<pParse->nTempReg; i++){
6364     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6365       return 0;
6366     }
6367   }
6368   return 1;
6369 }
6370 #endif /* SQLITE_DEBUG */
6371