xref: /sqlite-3.40.0/src/expr.c (revision d4530979)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName   /* Name of collating sequence */
73 ){
74   if( pCollName->n>0 ){
75     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76     if( pNew ){
77       pNew->pLeft = pExpr;
78       pNew->flags |= EP_Collate|EP_Skip;
79       pExpr = pNew;
80     }
81   }
82   return pExpr;
83 }
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85   Token s;
86   assert( zC!=0 );
87   s.z = zC;
88   s.n = sqlite3Strlen30(s.z);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( p->pTab!=0
136      && (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         p = p->pRight;
153       }
154     }else{
155       break;
156     }
157   }
158   if( sqlite3CheckCollSeq(pParse, pColl) ){
159     pColl = 0;
160   }
161   return pColl;
162 }
163 
164 /*
165 ** pExpr is an operand of a comparison operator.  aff2 is the
166 ** type affinity of the other operand.  This routine returns the
167 ** type affinity that should be used for the comparison operator.
168 */
169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
170   char aff1 = sqlite3ExprAffinity(pExpr);
171   if( aff1 && aff2 ){
172     /* Both sides of the comparison are columns. If one has numeric
173     ** affinity, use that. Otherwise use no affinity.
174     */
175     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
176       return SQLITE_AFF_NUMERIC;
177     }else{
178       return SQLITE_AFF_NONE;
179     }
180   }else if( !aff1 && !aff2 ){
181     /* Neither side of the comparison is a column.  Compare the
182     ** results directly.
183     */
184     return SQLITE_AFF_NONE;
185   }else{
186     /* One side is a column, the other is not. Use the columns affinity. */
187     assert( aff1==0 || aff2==0 );
188     return (aff1 + aff2);
189   }
190 }
191 
192 /*
193 ** pExpr is a comparison operator.  Return the type affinity that should
194 ** be applied to both operands prior to doing the comparison.
195 */
196 static char comparisonAffinity(Expr *pExpr){
197   char aff;
198   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
199           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
200           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
201   assert( pExpr->pLeft );
202   aff = sqlite3ExprAffinity(pExpr->pLeft);
203   if( pExpr->pRight ){
204     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
205   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
206     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
207   }else if( !aff ){
208     aff = SQLITE_AFF_NONE;
209   }
210   return aff;
211 }
212 
213 /*
214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
215 ** idx_affinity is the affinity of an indexed column. Return true
216 ** if the index with affinity idx_affinity may be used to implement
217 ** the comparison in pExpr.
218 */
219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
220   char aff = comparisonAffinity(pExpr);
221   switch( aff ){
222     case SQLITE_AFF_NONE:
223       return 1;
224     case SQLITE_AFF_TEXT:
225       return idx_affinity==SQLITE_AFF_TEXT;
226     default:
227       return sqlite3IsNumericAffinity(idx_affinity);
228   }
229 }
230 
231 /*
232 ** Return the P5 value that should be used for a binary comparison
233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
234 */
235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
236   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
237   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
238   return aff;
239 }
240 
241 /*
242 ** Return a pointer to the collation sequence that should be used by
243 ** a binary comparison operator comparing pLeft and pRight.
244 **
245 ** If the left hand expression has a collating sequence type, then it is
246 ** used. Otherwise the collation sequence for the right hand expression
247 ** is used, or the default (BINARY) if neither expression has a collating
248 ** type.
249 **
250 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
251 ** it is not considered.
252 */
253 CollSeq *sqlite3BinaryCompareCollSeq(
254   Parse *pParse,
255   Expr *pLeft,
256   Expr *pRight
257 ){
258   CollSeq *pColl;
259   assert( pLeft );
260   if( pLeft->flags & EP_Collate ){
261     pColl = sqlite3ExprCollSeq(pParse, pLeft);
262   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
263     pColl = sqlite3ExprCollSeq(pParse, pRight);
264   }else{
265     pColl = sqlite3ExprCollSeq(pParse, pLeft);
266     if( !pColl ){
267       pColl = sqlite3ExprCollSeq(pParse, pRight);
268     }
269   }
270   return pColl;
271 }
272 
273 /*
274 ** Generate code for a comparison operator.
275 */
276 static int codeCompare(
277   Parse *pParse,    /* The parsing (and code generating) context */
278   Expr *pLeft,      /* The left operand */
279   Expr *pRight,     /* The right operand */
280   int opcode,       /* The comparison opcode */
281   int in1, int in2, /* Register holding operands */
282   int dest,         /* Jump here if true.  */
283   int jumpIfNull    /* If true, jump if either operand is NULL */
284 ){
285   int p5;
286   int addr;
287   CollSeq *p4;
288 
289   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
290   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
291   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
292                            (void*)p4, P4_COLLSEQ);
293   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
294   return addr;
295 }
296 
297 #if SQLITE_MAX_EXPR_DEPTH>0
298 /*
299 ** Check that argument nHeight is less than or equal to the maximum
300 ** expression depth allowed. If it is not, leave an error message in
301 ** pParse.
302 */
303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
304   int rc = SQLITE_OK;
305   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
306   if( nHeight>mxHeight ){
307     sqlite3ErrorMsg(pParse,
308        "Expression tree is too large (maximum depth %d)", mxHeight
309     );
310     rc = SQLITE_ERROR;
311   }
312   return rc;
313 }
314 
315 /* The following three functions, heightOfExpr(), heightOfExprList()
316 ** and heightOfSelect(), are used to determine the maximum height
317 ** of any expression tree referenced by the structure passed as the
318 ** first argument.
319 **
320 ** If this maximum height is greater than the current value pointed
321 ** to by pnHeight, the second parameter, then set *pnHeight to that
322 ** value.
323 */
324 static void heightOfExpr(Expr *p, int *pnHeight){
325   if( p ){
326     if( p->nHeight>*pnHeight ){
327       *pnHeight = p->nHeight;
328     }
329   }
330 }
331 static void heightOfExprList(ExprList *p, int *pnHeight){
332   if( p ){
333     int i;
334     for(i=0; i<p->nExpr; i++){
335       heightOfExpr(p->a[i].pExpr, pnHeight);
336     }
337   }
338 }
339 static void heightOfSelect(Select *p, int *pnHeight){
340   if( p ){
341     heightOfExpr(p->pWhere, pnHeight);
342     heightOfExpr(p->pHaving, pnHeight);
343     heightOfExpr(p->pLimit, pnHeight);
344     heightOfExpr(p->pOffset, pnHeight);
345     heightOfExprList(p->pEList, pnHeight);
346     heightOfExprList(p->pGroupBy, pnHeight);
347     heightOfExprList(p->pOrderBy, pnHeight);
348     heightOfSelect(p->pPrior, pnHeight);
349   }
350 }
351 
352 /*
353 ** Set the Expr.nHeight variable in the structure passed as an
354 ** argument. An expression with no children, Expr.pList or
355 ** Expr.pSelect member has a height of 1. Any other expression
356 ** has a height equal to the maximum height of any other
357 ** referenced Expr plus one.
358 */
359 static void exprSetHeight(Expr *p){
360   int nHeight = 0;
361   heightOfExpr(p->pLeft, &nHeight);
362   heightOfExpr(p->pRight, &nHeight);
363   if( ExprHasProperty(p, EP_xIsSelect) ){
364     heightOfSelect(p->x.pSelect, &nHeight);
365   }else{
366     heightOfExprList(p->x.pList, &nHeight);
367   }
368   p->nHeight = nHeight + 1;
369 }
370 
371 /*
372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
373 ** the height is greater than the maximum allowed expression depth,
374 ** leave an error in pParse.
375 */
376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
377   exprSetHeight(p);
378   sqlite3ExprCheckHeight(pParse, p->nHeight);
379 }
380 
381 /*
382 ** Return the maximum height of any expression tree referenced
383 ** by the select statement passed as an argument.
384 */
385 int sqlite3SelectExprHeight(Select *p){
386   int nHeight = 0;
387   heightOfSelect(p, &nHeight);
388   return nHeight;
389 }
390 #else
391   #define exprSetHeight(y)
392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
393 
394 /*
395 ** This routine is the core allocator for Expr nodes.
396 **
397 ** Construct a new expression node and return a pointer to it.  Memory
398 ** for this node and for the pToken argument is a single allocation
399 ** obtained from sqlite3DbMalloc().  The calling function
400 ** is responsible for making sure the node eventually gets freed.
401 **
402 ** If dequote is true, then the token (if it exists) is dequoted.
403 ** If dequote is false, no dequoting is performance.  The deQuote
404 ** parameter is ignored if pToken is NULL or if the token does not
405 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
406 ** then the EP_DblQuoted flag is set on the expression node.
407 **
408 ** Special case:  If op==TK_INTEGER and pToken points to a string that
409 ** can be translated into a 32-bit integer, then the token is not
410 ** stored in u.zToken.  Instead, the integer values is written
411 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
412 ** is allocated to hold the integer text and the dequote flag is ignored.
413 */
414 Expr *sqlite3ExprAlloc(
415   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
416   int op,                 /* Expression opcode */
417   const Token *pToken,    /* Token argument.  Might be NULL */
418   int dequote             /* True to dequote */
419 ){
420   Expr *pNew;
421   int nExtra = 0;
422   int iValue = 0;
423 
424   if( pToken ){
425     if( op!=TK_INTEGER || pToken->z==0
426           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
427       nExtra = pToken->n+1;
428       assert( iValue>=0 );
429     }
430   }
431   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
432   if( pNew ){
433     pNew->op = (u8)op;
434     pNew->iAgg = -1;
435     if( pToken ){
436       if( nExtra==0 ){
437         pNew->flags |= EP_IntValue;
438         pNew->u.iValue = iValue;
439       }else{
440         int c;
441         pNew->u.zToken = (char*)&pNew[1];
442         assert( pToken->z!=0 || pToken->n==0 );
443         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
444         pNew->u.zToken[pToken->n] = 0;
445         if( dequote && nExtra>=3
446              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
447           sqlite3Dequote(pNew->u.zToken);
448           if( c=='"' ) pNew->flags |= EP_DblQuoted;
449         }
450       }
451     }
452 #if SQLITE_MAX_EXPR_DEPTH>0
453     pNew->nHeight = 1;
454 #endif
455   }
456   return pNew;
457 }
458 
459 /*
460 ** Allocate a new expression node from a zero-terminated token that has
461 ** already been dequoted.
462 */
463 Expr *sqlite3Expr(
464   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
465   int op,                 /* Expression opcode */
466   const char *zToken      /* Token argument.  Might be NULL */
467 ){
468   Token x;
469   x.z = zToken;
470   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
471   return sqlite3ExprAlloc(db, op, &x, 0);
472 }
473 
474 /*
475 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
476 **
477 ** If pRoot==NULL that means that a memory allocation error has occurred.
478 ** In that case, delete the subtrees pLeft and pRight.
479 */
480 void sqlite3ExprAttachSubtrees(
481   sqlite3 *db,
482   Expr *pRoot,
483   Expr *pLeft,
484   Expr *pRight
485 ){
486   if( pRoot==0 ){
487     assert( db->mallocFailed );
488     sqlite3ExprDelete(db, pLeft);
489     sqlite3ExprDelete(db, pRight);
490   }else{
491     if( pRight ){
492       pRoot->pRight = pRight;
493       pRoot->flags |= EP_Collate & pRight->flags;
494     }
495     if( pLeft ){
496       pRoot->pLeft = pLeft;
497       pRoot->flags |= EP_Collate & pLeft->flags;
498     }
499     exprSetHeight(pRoot);
500   }
501 }
502 
503 /*
504 ** Allocate an Expr node which joins as many as two subtrees.
505 **
506 ** One or both of the subtrees can be NULL.  Return a pointer to the new
507 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
508 ** free the subtrees and return NULL.
509 */
510 Expr *sqlite3PExpr(
511   Parse *pParse,          /* Parsing context */
512   int op,                 /* Expression opcode */
513   Expr *pLeft,            /* Left operand */
514   Expr *pRight,           /* Right operand */
515   const Token *pToken     /* Argument token */
516 ){
517   Expr *p;
518   if( op==TK_AND && pLeft && pRight ){
519     /* Take advantage of short-circuit false optimization for AND */
520     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
521   }else{
522     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
523     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
524   }
525   if( p ) {
526     sqlite3ExprCheckHeight(pParse, p->nHeight);
527   }
528   return p;
529 }
530 
531 /*
532 ** If the expression is always either TRUE or FALSE (respectively),
533 ** then return 1.  If one cannot determine the truth value of the
534 ** expression at compile-time return 0.
535 **
536 ** This is an optimization.  If is OK to return 0 here even if
537 ** the expression really is always false or false (a false negative).
538 ** But it is a bug to return 1 if the expression might have different
539 ** boolean values in different circumstances (a false positive.)
540 **
541 ** Note that if the expression is part of conditional for a
542 ** LEFT JOIN, then we cannot determine at compile-time whether or not
543 ** is it true or false, so always return 0.
544 */
545 static int exprAlwaysTrue(Expr *p){
546   int v = 0;
547   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549   return v!=0;
550 }
551 static int exprAlwaysFalse(Expr *p){
552   int v = 0;
553   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
554   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
555   return v==0;
556 }
557 
558 /*
559 ** Join two expressions using an AND operator.  If either expression is
560 ** NULL, then just return the other expression.
561 **
562 ** If one side or the other of the AND is known to be false, then instead
563 ** of returning an AND expression, just return a constant expression with
564 ** a value of false.
565 */
566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
567   if( pLeft==0 ){
568     return pRight;
569   }else if( pRight==0 ){
570     return pLeft;
571   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
572     sqlite3ExprDelete(db, pLeft);
573     sqlite3ExprDelete(db, pRight);
574     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
575   }else{
576     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
577     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
578     return pNew;
579   }
580 }
581 
582 /*
583 ** Construct a new expression node for a function with multiple
584 ** arguments.
585 */
586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
587   Expr *pNew;
588   sqlite3 *db = pParse->db;
589   assert( pToken );
590   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
591   if( pNew==0 ){
592     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
593     return 0;
594   }
595   pNew->x.pList = pList;
596   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
597   sqlite3ExprSetHeight(pParse, pNew);
598   return pNew;
599 }
600 
601 /*
602 ** Assign a variable number to an expression that encodes a wildcard
603 ** in the original SQL statement.
604 **
605 ** Wildcards consisting of a single "?" are assigned the next sequential
606 ** variable number.
607 **
608 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
609 ** sure "nnn" is not too be to avoid a denial of service attack when
610 ** the SQL statement comes from an external source.
611 **
612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
613 ** as the previous instance of the same wildcard.  Or if this is the first
614 ** instance of the wildcard, the next sequential variable number is
615 ** assigned.
616 */
617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
618   sqlite3 *db = pParse->db;
619   const char *z;
620 
621   if( pExpr==0 ) return;
622   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
623   z = pExpr->u.zToken;
624   assert( z!=0 );
625   assert( z[0]!=0 );
626   if( z[1]==0 ){
627     /* Wildcard of the form "?".  Assign the next variable number */
628     assert( z[0]=='?' );
629     pExpr->iColumn = (ynVar)(++pParse->nVar);
630   }else{
631     ynVar x = 0;
632     u32 n = sqlite3Strlen30(z);
633     if( z[0]=='?' ){
634       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
635       ** use it as the variable number */
636       i64 i;
637       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
638       pExpr->iColumn = x = (ynVar)i;
639       testcase( i==0 );
640       testcase( i==1 );
641       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
642       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
643       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
644         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
645             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
646         x = 0;
647       }
648       if( i>pParse->nVar ){
649         pParse->nVar = (int)i;
650       }
651     }else{
652       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
653       ** number as the prior appearance of the same name, or if the name
654       ** has never appeared before, reuse the same variable number
655       */
656       ynVar i;
657       for(i=0; i<pParse->nzVar; i++){
658         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
659           pExpr->iColumn = x = (ynVar)i+1;
660           break;
661         }
662       }
663       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
664     }
665     if( x>0 ){
666       if( x>pParse->nzVar ){
667         char **a;
668         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
669         if( a==0 ) return;  /* Error reported through db->mallocFailed */
670         pParse->azVar = a;
671         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
672         pParse->nzVar = x;
673       }
674       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
675         sqlite3DbFree(db, pParse->azVar[x-1]);
676         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
677       }
678     }
679   }
680   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
681     sqlite3ErrorMsg(pParse, "too many SQL variables");
682   }
683 }
684 
685 /*
686 ** Recursively delete an expression tree.
687 */
688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
689   if( p==0 ) return;
690   /* Sanity check: Assert that the IntValue is non-negative if it exists */
691   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
692   if( !ExprHasProperty(p, EP_TokenOnly) ){
693     /* The Expr.x union is never used at the same time as Expr.pRight */
694     assert( p->x.pList==0 || p->pRight==0 );
695     sqlite3ExprDelete(db, p->pLeft);
696     sqlite3ExprDelete(db, p->pRight);
697     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
698     if( ExprHasProperty(p, EP_xIsSelect) ){
699       sqlite3SelectDelete(db, p->x.pSelect);
700     }else{
701       sqlite3ExprListDelete(db, p->x.pList);
702     }
703   }
704   if( !ExprHasProperty(p, EP_Static) ){
705     sqlite3DbFree(db, p);
706   }
707 }
708 
709 /*
710 ** Return the number of bytes allocated for the expression structure
711 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
713 */
714 static int exprStructSize(Expr *p){
715   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
716   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
717   return EXPR_FULLSIZE;
718 }
719 
720 /*
721 ** The dupedExpr*Size() routines each return the number of bytes required
722 ** to store a copy of an expression or expression tree.  They differ in
723 ** how much of the tree is measured.
724 **
725 **     dupedExprStructSize()     Size of only the Expr structure
726 **     dupedExprNodeSize()       Size of Expr + space for token
727 **     dupedExprSize()           Expr + token + subtree components
728 **
729 ***************************************************************************
730 **
731 ** The dupedExprStructSize() function returns two values OR-ed together:
732 ** (1) the space required for a copy of the Expr structure only and
733 ** (2) the EP_xxx flags that indicate what the structure size should be.
734 ** The return values is always one of:
735 **
736 **      EXPR_FULLSIZE
737 **      EXPR_REDUCEDSIZE   | EP_Reduced
738 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
739 **
740 ** The size of the structure can be found by masking the return value
741 ** of this routine with 0xfff.  The flags can be found by masking the
742 ** return value with EP_Reduced|EP_TokenOnly.
743 **
744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
745 ** (unreduced) Expr objects as they or originally constructed by the parser.
746 ** During expression analysis, extra information is computed and moved into
747 ** later parts of teh Expr object and that extra information might get chopped
748 ** off if the expression is reduced.  Note also that it does not work to
749 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
750 ** to reduce a pristine expression tree from the parser.  The implementation
751 ** of dupedExprStructSize() contain multiple assert() statements that attempt
752 ** to enforce this constraint.
753 */
754 static int dupedExprStructSize(Expr *p, int flags){
755   int nSize;
756   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
757   assert( EXPR_FULLSIZE<=0xfff );
758   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
759   if( 0==(flags&EXPRDUP_REDUCE) ){
760     nSize = EXPR_FULLSIZE;
761   }else{
762     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
763     assert( !ExprHasProperty(p, EP_FromJoin) );
764     assert( !ExprHasProperty(p, EP_MemToken) );
765     assert( !ExprHasProperty(p, EP_NoReduce) );
766     if( p->pLeft || p->x.pList ){
767       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
768     }else{
769       assert( p->pRight==0 );
770       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
771     }
772   }
773   return nSize;
774 }
775 
776 /*
777 ** This function returns the space in bytes required to store the copy
778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
779 ** string is defined.)
780 */
781 static int dupedExprNodeSize(Expr *p, int flags){
782   int nByte = dupedExprStructSize(p, flags) & 0xfff;
783   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
784     nByte += sqlite3Strlen30(p->u.zToken)+1;
785   }
786   return ROUND8(nByte);
787 }
788 
789 /*
790 ** Return the number of bytes required to create a duplicate of the
791 ** expression passed as the first argument. The second argument is a
792 ** mask containing EXPRDUP_XXX flags.
793 **
794 ** The value returned includes space to create a copy of the Expr struct
795 ** itself and the buffer referred to by Expr.u.zToken, if any.
796 **
797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
799 ** and Expr.pRight variables (but not for any structures pointed to or
800 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
801 */
802 static int dupedExprSize(Expr *p, int flags){
803   int nByte = 0;
804   if( p ){
805     nByte = dupedExprNodeSize(p, flags);
806     if( flags&EXPRDUP_REDUCE ){
807       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
808     }
809   }
810   return nByte;
811 }
812 
813 /*
814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
816 ** to store the copy of expression p, the copies of p->u.zToken
817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
818 ** if any. Before returning, *pzBuffer is set to the first byte past the
819 ** portion of the buffer copied into by this function.
820 */
821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
822   Expr *pNew = 0;                      /* Value to return */
823   if( p ){
824     const int isReduced = (flags&EXPRDUP_REDUCE);
825     u8 *zAlloc;
826     u32 staticFlag = 0;
827 
828     assert( pzBuffer==0 || isReduced );
829 
830     /* Figure out where to write the new Expr structure. */
831     if( pzBuffer ){
832       zAlloc = *pzBuffer;
833       staticFlag = EP_Static;
834     }else{
835       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
836     }
837     pNew = (Expr *)zAlloc;
838 
839     if( pNew ){
840       /* Set nNewSize to the size allocated for the structure pointed to
841       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
842       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
843       ** by the copy of the p->u.zToken string (if any).
844       */
845       const unsigned nStructSize = dupedExprStructSize(p, flags);
846       const int nNewSize = nStructSize & 0xfff;
847       int nToken;
848       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
849         nToken = sqlite3Strlen30(p->u.zToken) + 1;
850       }else{
851         nToken = 0;
852       }
853       if( isReduced ){
854         assert( ExprHasProperty(p, EP_Reduced)==0 );
855         memcpy(zAlloc, p, nNewSize);
856       }else{
857         int nSize = exprStructSize(p);
858         memcpy(zAlloc, p, nSize);
859         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
860       }
861 
862       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
863       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
864       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
865       pNew->flags |= staticFlag;
866 
867       /* Copy the p->u.zToken string, if any. */
868       if( nToken ){
869         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
870         memcpy(zToken, p->u.zToken, nToken);
871       }
872 
873       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
874         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
875         if( ExprHasProperty(p, EP_xIsSelect) ){
876           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
877         }else{
878           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
879         }
880       }
881 
882       /* Fill in pNew->pLeft and pNew->pRight. */
883       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
884         zAlloc += dupedExprNodeSize(p, flags);
885         if( ExprHasProperty(pNew, EP_Reduced) ){
886           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
887           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
888         }
889         if( pzBuffer ){
890           *pzBuffer = zAlloc;
891         }
892       }else{
893         if( !ExprHasProperty(p, EP_TokenOnly) ){
894           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
895           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
896         }
897       }
898 
899     }
900   }
901   return pNew;
902 }
903 
904 /*
905 ** Create and return a deep copy of the object passed as the second
906 ** argument. If an OOM condition is encountered, NULL is returned
907 ** and the db->mallocFailed flag set.
908 */
909 #ifndef SQLITE_OMIT_CTE
910 static With *withDup(sqlite3 *db, With *p){
911   With *pRet = 0;
912   if( p ){
913     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
914     pRet = sqlite3DbMallocZero(db, nByte);
915     if( pRet ){
916       int i;
917       pRet->nCte = p->nCte;
918       for(i=0; i<p->nCte; i++){
919         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
920         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
921         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
922       }
923     }
924   }
925   return pRet;
926 }
927 #else
928 # define withDup(x,y) 0
929 #endif
930 
931 /*
932 ** The following group of routines make deep copies of expressions,
933 ** expression lists, ID lists, and select statements.  The copies can
934 ** be deleted (by being passed to their respective ...Delete() routines)
935 ** without effecting the originals.
936 **
937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
939 ** by subsequent calls to sqlite*ListAppend() routines.
940 **
941 ** Any tables that the SrcList might point to are not duplicated.
942 **
943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
945 ** truncated version of the usual Expr structure that will be stored as
946 ** part of the in-memory representation of the database schema.
947 */
948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
949   return exprDup(db, p, flags, 0);
950 }
951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
952   ExprList *pNew;
953   struct ExprList_item *pItem, *pOldItem;
954   int i;
955   if( p==0 ) return 0;
956   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
957   if( pNew==0 ) return 0;
958   pNew->nExpr = i = p->nExpr;
959   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
960   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
961   if( pItem==0 ){
962     sqlite3DbFree(db, pNew);
963     return 0;
964   }
965   pOldItem = p->a;
966   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
967     Expr *pOldExpr = pOldItem->pExpr;
968     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
969     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
970     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
971     pItem->sortOrder = pOldItem->sortOrder;
972     pItem->done = 0;
973     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
974     pItem->u = pOldItem->u;
975   }
976   return pNew;
977 }
978 
979 /*
980 ** If cursors, triggers, views and subqueries are all omitted from
981 ** the build, then none of the following routines, except for
982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
983 ** called with a NULL argument.
984 */
985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
986  || !defined(SQLITE_OMIT_SUBQUERY)
987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
988   SrcList *pNew;
989   int i;
990   int nByte;
991   if( p==0 ) return 0;
992   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
993   pNew = sqlite3DbMallocRaw(db, nByte );
994   if( pNew==0 ) return 0;
995   pNew->nSrc = pNew->nAlloc = p->nSrc;
996   for(i=0; i<p->nSrc; i++){
997     struct SrcList_item *pNewItem = &pNew->a[i];
998     struct SrcList_item *pOldItem = &p->a[i];
999     Table *pTab;
1000     pNewItem->pSchema = pOldItem->pSchema;
1001     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1002     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1004     pNewItem->jointype = pOldItem->jointype;
1005     pNewItem->iCursor = pOldItem->iCursor;
1006     pNewItem->addrFillSub = pOldItem->addrFillSub;
1007     pNewItem->regReturn = pOldItem->regReturn;
1008     pNewItem->isCorrelated = pOldItem->isCorrelated;
1009     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1010     pNewItem->isRecursive = pOldItem->isRecursive;
1011     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1012     pNewItem->notIndexed = pOldItem->notIndexed;
1013     pNewItem->pIndex = pOldItem->pIndex;
1014     pTab = pNewItem->pTab = pOldItem->pTab;
1015     if( pTab ){
1016       pTab->nRef++;
1017     }
1018     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1019     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1020     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1021     pNewItem->colUsed = pOldItem->colUsed;
1022   }
1023   return pNew;
1024 }
1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1026   IdList *pNew;
1027   int i;
1028   if( p==0 ) return 0;
1029   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1030   if( pNew==0 ) return 0;
1031   pNew->nId = p->nId;
1032   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1033   if( pNew->a==0 ){
1034     sqlite3DbFree(db, pNew);
1035     return 0;
1036   }
1037   /* Note that because the size of the allocation for p->a[] is not
1038   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1039   ** on the duplicate created by this function. */
1040   for(i=0; i<p->nId; i++){
1041     struct IdList_item *pNewItem = &pNew->a[i];
1042     struct IdList_item *pOldItem = &p->a[i];
1043     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1044     pNewItem->idx = pOldItem->idx;
1045   }
1046   return pNew;
1047 }
1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1049   Select *pNew, *pPrior;
1050   if( p==0 ) return 0;
1051   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1052   if( pNew==0 ) return 0;
1053   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1054   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1055   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1056   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1057   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1058   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1059   pNew->op = p->op;
1060   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1061   if( pPrior ) pPrior->pNext = pNew;
1062   pNew->pNext = 0;
1063   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1064   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1065   pNew->iLimit = 0;
1066   pNew->iOffset = 0;
1067   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1068   pNew->addrOpenEphm[0] = -1;
1069   pNew->addrOpenEphm[1] = -1;
1070   pNew->nSelectRow = p->nSelectRow;
1071   pNew->pWith = withDup(db, p->pWith);
1072   return pNew;
1073 }
1074 #else
1075 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1076   assert( p==0 );
1077   return 0;
1078 }
1079 #endif
1080 
1081 
1082 /*
1083 ** Add a new element to the end of an expression list.  If pList is
1084 ** initially NULL, then create a new expression list.
1085 **
1086 ** If a memory allocation error occurs, the entire list is freed and
1087 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1088 ** that the new entry was successfully appended.
1089 */
1090 ExprList *sqlite3ExprListAppend(
1091   Parse *pParse,          /* Parsing context */
1092   ExprList *pList,        /* List to which to append. Might be NULL */
1093   Expr *pExpr             /* Expression to be appended. Might be NULL */
1094 ){
1095   sqlite3 *db = pParse->db;
1096   if( pList==0 ){
1097     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1098     if( pList==0 ){
1099       goto no_mem;
1100     }
1101     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1102     if( pList->a==0 ) goto no_mem;
1103   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1104     struct ExprList_item *a;
1105     assert( pList->nExpr>0 );
1106     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1107     if( a==0 ){
1108       goto no_mem;
1109     }
1110     pList->a = a;
1111   }
1112   assert( pList->a!=0 );
1113   if( 1 ){
1114     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1115     memset(pItem, 0, sizeof(*pItem));
1116     pItem->pExpr = pExpr;
1117   }
1118   return pList;
1119 
1120 no_mem:
1121   /* Avoid leaking memory if malloc has failed. */
1122   sqlite3ExprDelete(db, pExpr);
1123   sqlite3ExprListDelete(db, pList);
1124   return 0;
1125 }
1126 
1127 /*
1128 ** Set the ExprList.a[].zName element of the most recently added item
1129 ** on the expression list.
1130 **
1131 ** pList might be NULL following an OOM error.  But pName should never be
1132 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1133 ** is set.
1134 */
1135 void sqlite3ExprListSetName(
1136   Parse *pParse,          /* Parsing context */
1137   ExprList *pList,        /* List to which to add the span. */
1138   Token *pName,           /* Name to be added */
1139   int dequote             /* True to cause the name to be dequoted */
1140 ){
1141   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1142   if( pList ){
1143     struct ExprList_item *pItem;
1144     assert( pList->nExpr>0 );
1145     pItem = &pList->a[pList->nExpr-1];
1146     assert( pItem->zName==0 );
1147     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1148     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1149   }
1150 }
1151 
1152 /*
1153 ** Set the ExprList.a[].zSpan element of the most recently added item
1154 ** on the expression list.
1155 **
1156 ** pList might be NULL following an OOM error.  But pSpan should never be
1157 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1158 ** is set.
1159 */
1160 void sqlite3ExprListSetSpan(
1161   Parse *pParse,          /* Parsing context */
1162   ExprList *pList,        /* List to which to add the span. */
1163   ExprSpan *pSpan         /* The span to be added */
1164 ){
1165   sqlite3 *db = pParse->db;
1166   assert( pList!=0 || db->mallocFailed!=0 );
1167   if( pList ){
1168     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1169     assert( pList->nExpr>0 );
1170     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1171     sqlite3DbFree(db, pItem->zSpan);
1172     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1173                                     (int)(pSpan->zEnd - pSpan->zStart));
1174   }
1175 }
1176 
1177 /*
1178 ** If the expression list pEList contains more than iLimit elements,
1179 ** leave an error message in pParse.
1180 */
1181 void sqlite3ExprListCheckLength(
1182   Parse *pParse,
1183   ExprList *pEList,
1184   const char *zObject
1185 ){
1186   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1187   testcase( pEList && pEList->nExpr==mx );
1188   testcase( pEList && pEList->nExpr==mx+1 );
1189   if( pEList && pEList->nExpr>mx ){
1190     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1191   }
1192 }
1193 
1194 /*
1195 ** Delete an entire expression list.
1196 */
1197 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1198   int i;
1199   struct ExprList_item *pItem;
1200   if( pList==0 ) return;
1201   assert( pList->a!=0 || pList->nExpr==0 );
1202   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1203     sqlite3ExprDelete(db, pItem->pExpr);
1204     sqlite3DbFree(db, pItem->zName);
1205     sqlite3DbFree(db, pItem->zSpan);
1206   }
1207   sqlite3DbFree(db, pList->a);
1208   sqlite3DbFree(db, pList);
1209 }
1210 
1211 /*
1212 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1213 ** to an integer.  These routines are checking an expression to see
1214 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1215 ** not constant.
1216 **
1217 ** These callback routines are used to implement the following:
1218 **
1219 **     sqlite3ExprIsConstant()
1220 **     sqlite3ExprIsConstantNotJoin()
1221 **     sqlite3ExprIsConstantOrFunction()
1222 **
1223 */
1224 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1225 
1226   /* If pWalker->u.i is 3 then any term of the expression that comes from
1227   ** the ON or USING clauses of a join disqualifies the expression
1228   ** from being considered constant. */
1229   if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
1230     pWalker->u.i = 0;
1231     return WRC_Abort;
1232   }
1233 
1234   switch( pExpr->op ){
1235     /* Consider functions to be constant if all their arguments are constant
1236     ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
1237     ** flag. */
1238     case TK_FUNCTION:
1239       if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
1240         return WRC_Continue;
1241       }
1242       /* Fall through */
1243     case TK_ID:
1244     case TK_COLUMN:
1245     case TK_AGG_FUNCTION:
1246     case TK_AGG_COLUMN:
1247       testcase( pExpr->op==TK_ID );
1248       testcase( pExpr->op==TK_COLUMN );
1249       testcase( pExpr->op==TK_AGG_FUNCTION );
1250       testcase( pExpr->op==TK_AGG_COLUMN );
1251       pWalker->u.i = 0;
1252       return WRC_Abort;
1253     default:
1254       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1255       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1256       return WRC_Continue;
1257   }
1258 }
1259 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1260   UNUSED_PARAMETER(NotUsed);
1261   pWalker->u.i = 0;
1262   return WRC_Abort;
1263 }
1264 static int exprIsConst(Expr *p, int initFlag){
1265   Walker w;
1266   memset(&w, 0, sizeof(w));
1267   w.u.i = initFlag;
1268   w.xExprCallback = exprNodeIsConstant;
1269   w.xSelectCallback = selectNodeIsConstant;
1270   sqlite3WalkExpr(&w, p);
1271   return w.u.i;
1272 }
1273 
1274 /*
1275 ** Walk an expression tree.  Return 1 if the expression is constant
1276 ** and 0 if it involves variables or function calls.
1277 **
1278 ** For the purposes of this function, a double-quoted string (ex: "abc")
1279 ** is considered a variable but a single-quoted string (ex: 'abc') is
1280 ** a constant.
1281 */
1282 int sqlite3ExprIsConstant(Expr *p){
1283   return exprIsConst(p, 1);
1284 }
1285 
1286 /*
1287 ** Walk an expression tree.  Return 1 if the expression is constant
1288 ** that does no originate from the ON or USING clauses of a join.
1289 ** Return 0 if it involves variables or function calls or terms from
1290 ** an ON or USING clause.
1291 */
1292 int sqlite3ExprIsConstantNotJoin(Expr *p){
1293   return exprIsConst(p, 3);
1294 }
1295 
1296 /*
1297 ** Walk an expression tree.  Return 1 if the expression is constant
1298 ** or a function call with constant arguments.  Return and 0 if there
1299 ** are any variables.
1300 **
1301 ** For the purposes of this function, a double-quoted string (ex: "abc")
1302 ** is considered a variable but a single-quoted string (ex: 'abc') is
1303 ** a constant.
1304 */
1305 int sqlite3ExprIsConstantOrFunction(Expr *p){
1306   return exprIsConst(p, 2);
1307 }
1308 
1309 /*
1310 ** If the expression p codes a constant integer that is small enough
1311 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1312 ** in *pValue.  If the expression is not an integer or if it is too big
1313 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1314 */
1315 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1316   int rc = 0;
1317 
1318   /* If an expression is an integer literal that fits in a signed 32-bit
1319   ** integer, then the EP_IntValue flag will have already been set */
1320   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1321            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1322 
1323   if( p->flags & EP_IntValue ){
1324     *pValue = p->u.iValue;
1325     return 1;
1326   }
1327   switch( p->op ){
1328     case TK_UPLUS: {
1329       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1330       break;
1331     }
1332     case TK_UMINUS: {
1333       int v;
1334       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1335         assert( v!=(-2147483647-1) );
1336         *pValue = -v;
1337         rc = 1;
1338       }
1339       break;
1340     }
1341     default: break;
1342   }
1343   return rc;
1344 }
1345 
1346 /*
1347 ** Return FALSE if there is no chance that the expression can be NULL.
1348 **
1349 ** If the expression might be NULL or if the expression is too complex
1350 ** to tell return TRUE.
1351 **
1352 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1353 ** when we know that a value cannot be NULL.  Hence, a false positive
1354 ** (returning TRUE when in fact the expression can never be NULL) might
1355 ** be a small performance hit but is otherwise harmless.  On the other
1356 ** hand, a false negative (returning FALSE when the result could be NULL)
1357 ** will likely result in an incorrect answer.  So when in doubt, return
1358 ** TRUE.
1359 */
1360 int sqlite3ExprCanBeNull(const Expr *p){
1361   u8 op;
1362   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1363   op = p->op;
1364   if( op==TK_REGISTER ) op = p->op2;
1365   switch( op ){
1366     case TK_INTEGER:
1367     case TK_STRING:
1368     case TK_FLOAT:
1369     case TK_BLOB:
1370       return 0;
1371     case TK_COLUMN:
1372       assert( p->pTab!=0 );
1373       return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0;
1374     default:
1375       return 1;
1376   }
1377 }
1378 
1379 /*
1380 ** Return TRUE if the given expression is a constant which would be
1381 ** unchanged by OP_Affinity with the affinity given in the second
1382 ** argument.
1383 **
1384 ** This routine is used to determine if the OP_Affinity operation
1385 ** can be omitted.  When in doubt return FALSE.  A false negative
1386 ** is harmless.  A false positive, however, can result in the wrong
1387 ** answer.
1388 */
1389 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1390   u8 op;
1391   if( aff==SQLITE_AFF_NONE ) return 1;
1392   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1393   op = p->op;
1394   if( op==TK_REGISTER ) op = p->op2;
1395   switch( op ){
1396     case TK_INTEGER: {
1397       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1398     }
1399     case TK_FLOAT: {
1400       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1401     }
1402     case TK_STRING: {
1403       return aff==SQLITE_AFF_TEXT;
1404     }
1405     case TK_BLOB: {
1406       return 1;
1407     }
1408     case TK_COLUMN: {
1409       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1410       return p->iColumn<0
1411           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1412     }
1413     default: {
1414       return 0;
1415     }
1416   }
1417 }
1418 
1419 /*
1420 ** Return TRUE if the given string is a row-id column name.
1421 */
1422 int sqlite3IsRowid(const char *z){
1423   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1424   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1425   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1426   return 0;
1427 }
1428 
1429 /*
1430 ** Return true if we are able to the IN operator optimization on a
1431 ** query of the form
1432 **
1433 **       x IN (SELECT ...)
1434 **
1435 ** Where the SELECT... clause is as specified by the parameter to this
1436 ** routine.
1437 **
1438 ** The Select object passed in has already been preprocessed and no
1439 ** errors have been found.
1440 */
1441 #ifndef SQLITE_OMIT_SUBQUERY
1442 static int isCandidateForInOpt(Select *p){
1443   SrcList *pSrc;
1444   ExprList *pEList;
1445   Table *pTab;
1446   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1447   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1448   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1449     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1450     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1451     return 0; /* No DISTINCT keyword and no aggregate functions */
1452   }
1453   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1454   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1455   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1456   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1457   pSrc = p->pSrc;
1458   assert( pSrc!=0 );
1459   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1460   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1461   pTab = pSrc->a[0].pTab;
1462   if( NEVER(pTab==0) ) return 0;
1463   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1464   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1465   pEList = p->pEList;
1466   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1467   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1468   return 1;
1469 }
1470 #endif /* SQLITE_OMIT_SUBQUERY */
1471 
1472 /*
1473 ** Code an OP_Once instruction and allocate space for its flag. Return the
1474 ** address of the new instruction.
1475 */
1476 int sqlite3CodeOnce(Parse *pParse){
1477   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1478   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1479 }
1480 
1481 /*
1482 ** Generate code that checks the left-most column of index table iCur to see if
1483 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1484 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1485 ** to be set to NULL if iCur contains one or more NULL values.
1486 */
1487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1488   int j1;
1489   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1490   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1491   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1492   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1493   VdbeComment((v, "first_entry_in(%d)", iCur));
1494   sqlite3VdbeJumpHere(v, j1);
1495 }
1496 
1497 
1498 #ifndef SQLITE_OMIT_SUBQUERY
1499 /*
1500 ** The argument is an IN operator with a list (not a subquery) on the
1501 ** right-hand side.  Return TRUE if that list is constant.
1502 */
1503 static int sqlite3InRhsIsConstant(Expr *pIn){
1504   Expr *pLHS;
1505   int res;
1506   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1507   pLHS = pIn->pLeft;
1508   pIn->pLeft = 0;
1509   res = sqlite3ExprIsConstant(pIn);
1510   pIn->pLeft = pLHS;
1511   return res;
1512 }
1513 #endif
1514 
1515 /*
1516 ** This function is used by the implementation of the IN (...) operator.
1517 ** The pX parameter is the expression on the RHS of the IN operator, which
1518 ** might be either a list of expressions or a subquery.
1519 **
1520 ** The job of this routine is to find or create a b-tree object that can
1521 ** be used either to test for membership in the RHS set or to iterate through
1522 ** all members of the RHS set, skipping duplicates.
1523 **
1524 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1525 ** and pX->iTable is set to the index of that cursor.
1526 **
1527 ** The returned value of this function indicates the b-tree type, as follows:
1528 **
1529 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1530 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1531 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1532 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1533 **                         populated epheremal table.
1534 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1535 **                         implemented as a sequence of comparisons.
1536 **
1537 ** An existing b-tree might be used if the RHS expression pX is a simple
1538 ** subquery such as:
1539 **
1540 **     SELECT <column> FROM <table>
1541 **
1542 ** If the RHS of the IN operator is a list or a more complex subquery, then
1543 ** an ephemeral table might need to be generated from the RHS and then
1544 ** pX->iTable made to point to the ephemeral table instead of an
1545 ** existing table.
1546 **
1547 ** The inFlags parameter must contain exactly one of the bits
1548 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1549 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1550 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1551 ** IN index will be used to loop over all values of the RHS of the
1552 ** IN operator.
1553 **
1554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1555 ** through the set members) then the b-tree must not contain duplicates.
1556 ** An epheremal table must be used unless the selected <column> is guaranteed
1557 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1558 ** has a UNIQUE constraint or UNIQUE index.
1559 **
1560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1561 ** for fast set membership tests) then an epheremal table must
1562 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1563 ** be found with <column> as its left-most column.
1564 **
1565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1566 ** if the RHS of the IN operator is a list (not a subquery) then this
1567 ** routine might decide that creating an ephemeral b-tree for membership
1568 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1569 ** calling routine should implement the IN operator using a sequence
1570 ** of Eq or Ne comparison operations.
1571 **
1572 ** When the b-tree is being used for membership tests, the calling function
1573 ** might need to know whether or not the RHS side of the IN operator
1574 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1575 ** if there is any chance that the (...) might contain a NULL value at
1576 ** runtime, then a register is allocated and the register number written
1577 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1578 ** NULL value, then *prRhsHasNull is left unchanged.
1579 **
1580 ** If a register is allocated and its location stored in *prRhsHasNull, then
1581 ** the value in that register will be NULL if the b-tree contains one or more
1582 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1583 ** NULL values.
1584 */
1585 #ifndef SQLITE_OMIT_SUBQUERY
1586 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1587   Select *p;                            /* SELECT to the right of IN operator */
1588   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1589   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1590   int mustBeUnique;                     /* True if RHS must be unique */
1591   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1592 
1593   assert( pX->op==TK_IN );
1594   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1595 
1596   /* Check to see if an existing table or index can be used to
1597   ** satisfy the query.  This is preferable to generating a new
1598   ** ephemeral table.
1599   */
1600   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1601   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1602     sqlite3 *db = pParse->db;              /* Database connection */
1603     Table *pTab;                           /* Table <table>. */
1604     Expr *pExpr;                           /* Expression <column> */
1605     i16 iCol;                              /* Index of column <column> */
1606     i16 iDb;                               /* Database idx for pTab */
1607 
1608     assert( p );                        /* Because of isCandidateForInOpt(p) */
1609     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1610     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1611     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1612     pTab = p->pSrc->a[0].pTab;
1613     pExpr = p->pEList->a[0].pExpr;
1614     iCol = (i16)pExpr->iColumn;
1615 
1616     /* Code an OP_Transaction and OP_TableLock for <table>. */
1617     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1618     sqlite3CodeVerifySchema(pParse, iDb);
1619     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1620 
1621     /* This function is only called from two places. In both cases the vdbe
1622     ** has already been allocated. So assume sqlite3GetVdbe() is always
1623     ** successful here.
1624     */
1625     assert(v);
1626     if( iCol<0 ){
1627       int iAddr = sqlite3CodeOnce(pParse);
1628       VdbeCoverage(v);
1629 
1630       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1631       eType = IN_INDEX_ROWID;
1632 
1633       sqlite3VdbeJumpHere(v, iAddr);
1634     }else{
1635       Index *pIdx;                         /* Iterator variable */
1636 
1637       /* The collation sequence used by the comparison. If an index is to
1638       ** be used in place of a temp-table, it must be ordered according
1639       ** to this collation sequence.  */
1640       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1641 
1642       /* Check that the affinity that will be used to perform the
1643       ** comparison is the same as the affinity of the column. If
1644       ** it is not, it is not possible to use any index.
1645       */
1646       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1647 
1648       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1649         if( (pIdx->aiColumn[0]==iCol)
1650          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1651          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1652         ){
1653           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1654           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1655           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1656           VdbeComment((v, "%s", pIdx->zName));
1657           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1658           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1659 
1660           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1661             *prRhsHasNull = ++pParse->nMem;
1662             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1663           }
1664           sqlite3VdbeJumpHere(v, iAddr);
1665         }
1666       }
1667     }
1668   }
1669 
1670   /* If no preexisting index is available for the IN clause
1671   ** and IN_INDEX_NOOP is an allowed reply
1672   ** and the RHS of the IN operator is a list, not a subquery
1673   ** and the RHS is not contant or has two or fewer terms,
1674   ** then it is not worth creating an ephemeral table to evaluate
1675   ** the IN operator so return IN_INDEX_NOOP.
1676   */
1677   if( eType==0
1678    && (inFlags & IN_INDEX_NOOP_OK)
1679    && !ExprHasProperty(pX, EP_xIsSelect)
1680    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1681   ){
1682     eType = IN_INDEX_NOOP;
1683   }
1684 
1685 
1686   if( eType==0 ){
1687     /* Could not find an existing table or index to use as the RHS b-tree.
1688     ** We will have to generate an ephemeral table to do the job.
1689     */
1690     u32 savedNQueryLoop = pParse->nQueryLoop;
1691     int rMayHaveNull = 0;
1692     eType = IN_INDEX_EPH;
1693     if( inFlags & IN_INDEX_LOOP ){
1694       pParse->nQueryLoop = 0;
1695       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1696         eType = IN_INDEX_ROWID;
1697       }
1698     }else if( prRhsHasNull ){
1699       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1700     }
1701     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1702     pParse->nQueryLoop = savedNQueryLoop;
1703   }else{
1704     pX->iTable = iTab;
1705   }
1706   return eType;
1707 }
1708 #endif
1709 
1710 /*
1711 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1712 ** or IN operators.  Examples:
1713 **
1714 **     (SELECT a FROM b)          -- subquery
1715 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1716 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1717 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1718 **
1719 ** The pExpr parameter describes the expression that contains the IN
1720 ** operator or subquery.
1721 **
1722 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1723 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1724 ** to some integer key column of a table B-Tree. In this case, use an
1725 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1726 ** (slower) variable length keys B-Tree.
1727 **
1728 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1729 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1730 ** All this routine does is initialize the register given by rMayHaveNull
1731 ** to NULL.  Calling routines will take care of changing this register
1732 ** value to non-NULL if the RHS is NULL-free.
1733 **
1734 ** For a SELECT or EXISTS operator, return the register that holds the
1735 ** result.  For IN operators or if an error occurs, the return value is 0.
1736 */
1737 #ifndef SQLITE_OMIT_SUBQUERY
1738 int sqlite3CodeSubselect(
1739   Parse *pParse,          /* Parsing context */
1740   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1741   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1742   int isRowid             /* If true, LHS of IN operator is a rowid */
1743 ){
1744   int jmpIfDynamic = -1;                      /* One-time test address */
1745   int rReg = 0;                           /* Register storing resulting */
1746   Vdbe *v = sqlite3GetVdbe(pParse);
1747   if( NEVER(v==0) ) return 0;
1748   sqlite3ExprCachePush(pParse);
1749 
1750   /* This code must be run in its entirety every time it is encountered
1751   ** if any of the following is true:
1752   **
1753   **    *  The right-hand side is a correlated subquery
1754   **    *  The right-hand side is an expression list containing variables
1755   **    *  We are inside a trigger
1756   **
1757   ** If all of the above are false, then we can run this code just once
1758   ** save the results, and reuse the same result on subsequent invocations.
1759   */
1760   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1761     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1762   }
1763 
1764 #ifndef SQLITE_OMIT_EXPLAIN
1765   if( pParse->explain==2 ){
1766     char *zMsg = sqlite3MPrintf(
1767         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1768         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1769     );
1770     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1771   }
1772 #endif
1773 
1774   switch( pExpr->op ){
1775     case TK_IN: {
1776       char affinity;              /* Affinity of the LHS of the IN */
1777       int addr;                   /* Address of OP_OpenEphemeral instruction */
1778       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1779       KeyInfo *pKeyInfo = 0;      /* Key information */
1780 
1781       affinity = sqlite3ExprAffinity(pLeft);
1782 
1783       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1784       ** expression it is handled the same way.  An ephemeral table is
1785       ** filled with single-field index keys representing the results
1786       ** from the SELECT or the <exprlist>.
1787       **
1788       ** If the 'x' expression is a column value, or the SELECT...
1789       ** statement returns a column value, then the affinity of that
1790       ** column is used to build the index keys. If both 'x' and the
1791       ** SELECT... statement are columns, then numeric affinity is used
1792       ** if either column has NUMERIC or INTEGER affinity. If neither
1793       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1794       ** is used.
1795       */
1796       pExpr->iTable = pParse->nTab++;
1797       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1798       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1799 
1800       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1801         /* Case 1:     expr IN (SELECT ...)
1802         **
1803         ** Generate code to write the results of the select into the temporary
1804         ** table allocated and opened above.
1805         */
1806         Select *pSelect = pExpr->x.pSelect;
1807         SelectDest dest;
1808         ExprList *pEList;
1809 
1810         assert( !isRowid );
1811         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1812         dest.affSdst = (u8)affinity;
1813         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1814         pSelect->iLimit = 0;
1815         testcase( pSelect->selFlags & SF_Distinct );
1816         pSelect->selFlags &= ~SF_Distinct;
1817         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1818         if( sqlite3Select(pParse, pSelect, &dest) ){
1819           sqlite3KeyInfoUnref(pKeyInfo);
1820           return 0;
1821         }
1822         pEList = pSelect->pEList;
1823         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1824         assert( pEList!=0 );
1825         assert( pEList->nExpr>0 );
1826         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1827         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1828                                                          pEList->a[0].pExpr);
1829       }else if( ALWAYS(pExpr->x.pList!=0) ){
1830         /* Case 2:     expr IN (exprlist)
1831         **
1832         ** For each expression, build an index key from the evaluation and
1833         ** store it in the temporary table. If <expr> is a column, then use
1834         ** that columns affinity when building index keys. If <expr> is not
1835         ** a column, use numeric affinity.
1836         */
1837         int i;
1838         ExprList *pList = pExpr->x.pList;
1839         struct ExprList_item *pItem;
1840         int r1, r2, r3;
1841 
1842         if( !affinity ){
1843           affinity = SQLITE_AFF_NONE;
1844         }
1845         if( pKeyInfo ){
1846           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1847           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1848         }
1849 
1850         /* Loop through each expression in <exprlist>. */
1851         r1 = sqlite3GetTempReg(pParse);
1852         r2 = sqlite3GetTempReg(pParse);
1853         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1854         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1855           Expr *pE2 = pItem->pExpr;
1856           int iValToIns;
1857 
1858           /* If the expression is not constant then we will need to
1859           ** disable the test that was generated above that makes sure
1860           ** this code only executes once.  Because for a non-constant
1861           ** expression we need to rerun this code each time.
1862           */
1863           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1864             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1865             jmpIfDynamic = -1;
1866           }
1867 
1868           /* Evaluate the expression and insert it into the temp table */
1869           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1870             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1871           }else{
1872             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1873             if( isRowid ){
1874               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1875                                 sqlite3VdbeCurrentAddr(v)+2);
1876               VdbeCoverage(v);
1877               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1878             }else{
1879               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1880               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1881               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1882             }
1883           }
1884         }
1885         sqlite3ReleaseTempReg(pParse, r1);
1886         sqlite3ReleaseTempReg(pParse, r2);
1887       }
1888       if( pKeyInfo ){
1889         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1890       }
1891       break;
1892     }
1893 
1894     case TK_EXISTS:
1895     case TK_SELECT:
1896     default: {
1897       /* If this has to be a scalar SELECT.  Generate code to put the
1898       ** value of this select in a memory cell and record the number
1899       ** of the memory cell in iColumn.  If this is an EXISTS, write
1900       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1901       ** and record that memory cell in iColumn.
1902       */
1903       Select *pSel;                         /* SELECT statement to encode */
1904       SelectDest dest;                      /* How to deal with SELECt result */
1905 
1906       testcase( pExpr->op==TK_EXISTS );
1907       testcase( pExpr->op==TK_SELECT );
1908       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1909 
1910       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1911       pSel = pExpr->x.pSelect;
1912       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1913       if( pExpr->op==TK_SELECT ){
1914         dest.eDest = SRT_Mem;
1915         dest.iSdst = dest.iSDParm;
1916         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1917         VdbeComment((v, "Init subquery result"));
1918       }else{
1919         dest.eDest = SRT_Exists;
1920         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1921         VdbeComment((v, "Init EXISTS result"));
1922       }
1923       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1924       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1925                                   &sqlite3IntTokens[1]);
1926       pSel->iLimit = 0;
1927       if( sqlite3Select(pParse, pSel, &dest) ){
1928         return 0;
1929       }
1930       rReg = dest.iSDParm;
1931       ExprSetVVAProperty(pExpr, EP_NoReduce);
1932       break;
1933     }
1934   }
1935 
1936   if( rHasNullFlag ){
1937     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
1938   }
1939 
1940   if( jmpIfDynamic>=0 ){
1941     sqlite3VdbeJumpHere(v, jmpIfDynamic);
1942   }
1943   sqlite3ExprCachePop(pParse);
1944 
1945   return rReg;
1946 }
1947 #endif /* SQLITE_OMIT_SUBQUERY */
1948 
1949 #ifndef SQLITE_OMIT_SUBQUERY
1950 /*
1951 ** Generate code for an IN expression.
1952 **
1953 **      x IN (SELECT ...)
1954 **      x IN (value, value, ...)
1955 **
1956 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1957 ** is an array of zero or more values.  The expression is true if the LHS is
1958 ** contained within the RHS.  The value of the expression is unknown (NULL)
1959 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1960 ** RHS contains one or more NULL values.
1961 **
1962 ** This routine generates code that jumps to destIfFalse if the LHS is not
1963 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1964 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1965 ** within the RHS then fall through.
1966 */
1967 static void sqlite3ExprCodeIN(
1968   Parse *pParse,        /* Parsing and code generating context */
1969   Expr *pExpr,          /* The IN expression */
1970   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1971   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1972 ){
1973   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1974   char affinity;        /* Comparison affinity to use */
1975   int eType;            /* Type of the RHS */
1976   int r1;               /* Temporary use register */
1977   Vdbe *v;              /* Statement under construction */
1978 
1979   /* Compute the RHS.   After this step, the table with cursor
1980   ** pExpr->iTable will contains the values that make up the RHS.
1981   */
1982   v = pParse->pVdbe;
1983   assert( v!=0 );       /* OOM detected prior to this routine */
1984   VdbeNoopComment((v, "begin IN expr"));
1985   eType = sqlite3FindInIndex(pParse, pExpr,
1986                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
1987                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
1988 
1989   /* Figure out the affinity to use to create a key from the results
1990   ** of the expression. affinityStr stores a static string suitable for
1991   ** P4 of OP_MakeRecord.
1992   */
1993   affinity = comparisonAffinity(pExpr);
1994 
1995   /* Code the LHS, the <expr> from "<expr> IN (...)".
1996   */
1997   sqlite3ExprCachePush(pParse);
1998   r1 = sqlite3GetTempReg(pParse);
1999   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2000 
2001   /* If sqlite3FindInIndex() did not find or create an index that is
2002   ** suitable for evaluating the IN operator, then evaluate using a
2003   ** sequence of comparisons.
2004   */
2005   if( eType==IN_INDEX_NOOP ){
2006     ExprList *pList = pExpr->x.pList;
2007     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2008     int labelOk = sqlite3VdbeMakeLabel(v);
2009     int r2, regToFree;
2010     int regCkNull = 0;
2011     int ii;
2012     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2013     if( destIfNull!=destIfFalse ){
2014       regCkNull = sqlite3GetTempReg(pParse);
2015       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2016     }
2017     for(ii=0; ii<pList->nExpr; ii++){
2018       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2019       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2020         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2021       }
2022       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2023         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2024                           (void*)pColl, P4_COLLSEQ);
2025         VdbeCoverageIf(v, ii<pList->nExpr-1);
2026         VdbeCoverageIf(v, ii==pList->nExpr-1);
2027         sqlite3VdbeChangeP5(v, affinity);
2028       }else{
2029         assert( destIfNull==destIfFalse );
2030         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2031                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2032         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2033       }
2034       sqlite3ReleaseTempReg(pParse, regToFree);
2035     }
2036     if( regCkNull ){
2037       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2038       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2039     }
2040     sqlite3VdbeResolveLabel(v, labelOk);
2041     sqlite3ReleaseTempReg(pParse, regCkNull);
2042   }else{
2043 
2044     /* If the LHS is NULL, then the result is either false or NULL depending
2045     ** on whether the RHS is empty or not, respectively.
2046     */
2047     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2048       if( destIfNull==destIfFalse ){
2049         /* Shortcut for the common case where the false and NULL outcomes are
2050         ** the same. */
2051         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2052       }else{
2053         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2054         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2055         VdbeCoverage(v);
2056         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2057         sqlite3VdbeJumpHere(v, addr1);
2058       }
2059     }
2060 
2061     if( eType==IN_INDEX_ROWID ){
2062       /* In this case, the RHS is the ROWID of table b-tree
2063       */
2064       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2065       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2066       VdbeCoverage(v);
2067     }else{
2068       /* In this case, the RHS is an index b-tree.
2069       */
2070       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2071 
2072       /* If the set membership test fails, then the result of the
2073       ** "x IN (...)" expression must be either 0 or NULL. If the set
2074       ** contains no NULL values, then the result is 0. If the set
2075       ** contains one or more NULL values, then the result of the
2076       ** expression is also NULL.
2077       */
2078       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2079       if( rRhsHasNull==0 ){
2080         /* This branch runs if it is known at compile time that the RHS
2081         ** cannot contain NULL values. This happens as the result
2082         ** of a "NOT NULL" constraint in the database schema.
2083         **
2084         ** Also run this branch if NULL is equivalent to FALSE
2085         ** for this particular IN operator.
2086         */
2087         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2088         VdbeCoverage(v);
2089       }else{
2090         /* In this branch, the RHS of the IN might contain a NULL and
2091         ** the presence of a NULL on the RHS makes a difference in the
2092         ** outcome.
2093         */
2094         int j1;
2095 
2096         /* First check to see if the LHS is contained in the RHS.  If so,
2097         ** then the answer is TRUE the presence of NULLs in the RHS does
2098         ** not matter.  If the LHS is not contained in the RHS, then the
2099         ** answer is NULL if the RHS contains NULLs and the answer is
2100         ** FALSE if the RHS is NULL-free.
2101         */
2102         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2103         VdbeCoverage(v);
2104         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2105         VdbeCoverage(v);
2106         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2107         sqlite3VdbeJumpHere(v, j1);
2108       }
2109     }
2110   }
2111   sqlite3ReleaseTempReg(pParse, r1);
2112   sqlite3ExprCachePop(pParse);
2113   VdbeComment((v, "end IN expr"));
2114 }
2115 #endif /* SQLITE_OMIT_SUBQUERY */
2116 
2117 /*
2118 ** Duplicate an 8-byte value
2119 */
2120 static char *dup8bytes(Vdbe *v, const char *in){
2121   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2122   if( out ){
2123     memcpy(out, in, 8);
2124   }
2125   return out;
2126 }
2127 
2128 #ifndef SQLITE_OMIT_FLOATING_POINT
2129 /*
2130 ** Generate an instruction that will put the floating point
2131 ** value described by z[0..n-1] into register iMem.
2132 **
2133 ** The z[] string will probably not be zero-terminated.  But the
2134 ** z[n] character is guaranteed to be something that does not look
2135 ** like the continuation of the number.
2136 */
2137 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2138   if( ALWAYS(z!=0) ){
2139     double value;
2140     char *zV;
2141     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2142     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2143     if( negateFlag ) value = -value;
2144     zV = dup8bytes(v, (char*)&value);
2145     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2146   }
2147 }
2148 #endif
2149 
2150 
2151 /*
2152 ** Generate an instruction that will put the integer describe by
2153 ** text z[0..n-1] into register iMem.
2154 **
2155 ** Expr.u.zToken is always UTF8 and zero-terminated.
2156 */
2157 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2158   Vdbe *v = pParse->pVdbe;
2159   if( pExpr->flags & EP_IntValue ){
2160     int i = pExpr->u.iValue;
2161     assert( i>=0 );
2162     if( negFlag ) i = -i;
2163     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2164   }else{
2165     int c;
2166     i64 value;
2167     const char *z = pExpr->u.zToken;
2168     assert( z!=0 );
2169     c = sqlite3DecOrHexToI64(z, &value);
2170     if( c==0 || (c==2 && negFlag) ){
2171       char *zV;
2172       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2173       zV = dup8bytes(v, (char*)&value);
2174       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2175     }else{
2176 #ifdef SQLITE_OMIT_FLOATING_POINT
2177       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2178 #else
2179 #ifndef SQLITE_OMIT_HEX_INTEGER
2180       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2181         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2182       }else
2183 #endif
2184       {
2185         codeReal(v, z, negFlag, iMem);
2186       }
2187 #endif
2188     }
2189   }
2190 }
2191 
2192 /*
2193 ** Clear a cache entry.
2194 */
2195 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2196   if( p->tempReg ){
2197     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2198       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2199     }
2200     p->tempReg = 0;
2201   }
2202 }
2203 
2204 
2205 /*
2206 ** Record in the column cache that a particular column from a
2207 ** particular table is stored in a particular register.
2208 */
2209 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2210   int i;
2211   int minLru;
2212   int idxLru;
2213   struct yColCache *p;
2214 
2215   assert( iReg>0 );  /* Register numbers are always positive */
2216   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2217 
2218   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2219   ** for testing only - to verify that SQLite always gets the same answer
2220   ** with and without the column cache.
2221   */
2222   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2223 
2224   /* First replace any existing entry.
2225   **
2226   ** Actually, the way the column cache is currently used, we are guaranteed
2227   ** that the object will never already be in cache.  Verify this guarantee.
2228   */
2229 #ifndef NDEBUG
2230   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2231     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2232   }
2233 #endif
2234 
2235   /* Find an empty slot and replace it */
2236   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2237     if( p->iReg==0 ){
2238       p->iLevel = pParse->iCacheLevel;
2239       p->iTable = iTab;
2240       p->iColumn = iCol;
2241       p->iReg = iReg;
2242       p->tempReg = 0;
2243       p->lru = pParse->iCacheCnt++;
2244       return;
2245     }
2246   }
2247 
2248   /* Replace the last recently used */
2249   minLru = 0x7fffffff;
2250   idxLru = -1;
2251   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2252     if( p->lru<minLru ){
2253       idxLru = i;
2254       minLru = p->lru;
2255     }
2256   }
2257   if( ALWAYS(idxLru>=0) ){
2258     p = &pParse->aColCache[idxLru];
2259     p->iLevel = pParse->iCacheLevel;
2260     p->iTable = iTab;
2261     p->iColumn = iCol;
2262     p->iReg = iReg;
2263     p->tempReg = 0;
2264     p->lru = pParse->iCacheCnt++;
2265     return;
2266   }
2267 }
2268 
2269 /*
2270 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2271 ** Purge the range of registers from the column cache.
2272 */
2273 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2274   int i;
2275   int iLast = iReg + nReg - 1;
2276   struct yColCache *p;
2277   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2278     int r = p->iReg;
2279     if( r>=iReg && r<=iLast ){
2280       cacheEntryClear(pParse, p);
2281       p->iReg = 0;
2282     }
2283   }
2284 }
2285 
2286 /*
2287 ** Remember the current column cache context.  Any new entries added
2288 ** added to the column cache after this call are removed when the
2289 ** corresponding pop occurs.
2290 */
2291 void sqlite3ExprCachePush(Parse *pParse){
2292   pParse->iCacheLevel++;
2293 #ifdef SQLITE_DEBUG
2294   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2295     printf("PUSH to %d\n", pParse->iCacheLevel);
2296   }
2297 #endif
2298 }
2299 
2300 /*
2301 ** Remove from the column cache any entries that were added since the
2302 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2303 ** the cache to the state it was in prior the most recent Push.
2304 */
2305 void sqlite3ExprCachePop(Parse *pParse){
2306   int i;
2307   struct yColCache *p;
2308   assert( pParse->iCacheLevel>=1 );
2309   pParse->iCacheLevel--;
2310 #ifdef SQLITE_DEBUG
2311   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2312     printf("POP  to %d\n", pParse->iCacheLevel);
2313   }
2314 #endif
2315   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2316     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2317       cacheEntryClear(pParse, p);
2318       p->iReg = 0;
2319     }
2320   }
2321 }
2322 
2323 /*
2324 ** When a cached column is reused, make sure that its register is
2325 ** no longer available as a temp register.  ticket #3879:  that same
2326 ** register might be in the cache in multiple places, so be sure to
2327 ** get them all.
2328 */
2329 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2330   int i;
2331   struct yColCache *p;
2332   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2333     if( p->iReg==iReg ){
2334       p->tempReg = 0;
2335     }
2336   }
2337 }
2338 
2339 /*
2340 ** Generate code to extract the value of the iCol-th column of a table.
2341 */
2342 void sqlite3ExprCodeGetColumnOfTable(
2343   Vdbe *v,        /* The VDBE under construction */
2344   Table *pTab,    /* The table containing the value */
2345   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2346   int iCol,       /* Index of the column to extract */
2347   int regOut      /* Extract the value into this register */
2348 ){
2349   if( iCol<0 || iCol==pTab->iPKey ){
2350     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2351   }else{
2352     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2353     int x = iCol;
2354     if( !HasRowid(pTab) ){
2355       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2356     }
2357     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2358   }
2359   if( iCol>=0 ){
2360     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2361   }
2362 }
2363 
2364 /*
2365 ** Generate code that will extract the iColumn-th column from
2366 ** table pTab and store the column value in a register.  An effort
2367 ** is made to store the column value in register iReg, but this is
2368 ** not guaranteed.  The location of the column value is returned.
2369 **
2370 ** There must be an open cursor to pTab in iTable when this routine
2371 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2372 */
2373 int sqlite3ExprCodeGetColumn(
2374   Parse *pParse,   /* Parsing and code generating context */
2375   Table *pTab,     /* Description of the table we are reading from */
2376   int iColumn,     /* Index of the table column */
2377   int iTable,      /* The cursor pointing to the table */
2378   int iReg,        /* Store results here */
2379   u8 p5            /* P5 value for OP_Column */
2380 ){
2381   Vdbe *v = pParse->pVdbe;
2382   int i;
2383   struct yColCache *p;
2384 
2385   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2386     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2387       p->lru = pParse->iCacheCnt++;
2388       sqlite3ExprCachePinRegister(pParse, p->iReg);
2389       return p->iReg;
2390     }
2391   }
2392   assert( v!=0 );
2393   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2394   if( p5 ){
2395     sqlite3VdbeChangeP5(v, p5);
2396   }else{
2397     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2398   }
2399   return iReg;
2400 }
2401 
2402 /*
2403 ** Clear all column cache entries.
2404 */
2405 void sqlite3ExprCacheClear(Parse *pParse){
2406   int i;
2407   struct yColCache *p;
2408 
2409 #if SQLITE_DEBUG
2410   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2411     printf("CLEAR\n");
2412   }
2413 #endif
2414   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2415     if( p->iReg ){
2416       cacheEntryClear(pParse, p);
2417       p->iReg = 0;
2418     }
2419   }
2420 }
2421 
2422 /*
2423 ** Record the fact that an affinity change has occurred on iCount
2424 ** registers starting with iStart.
2425 */
2426 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2427   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2428 }
2429 
2430 /*
2431 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2432 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2433 */
2434 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2435   int i;
2436   struct yColCache *p;
2437   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2438   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2439   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2440     int x = p->iReg;
2441     if( x>=iFrom && x<iFrom+nReg ){
2442       p->iReg += iTo-iFrom;
2443     }
2444   }
2445 }
2446 
2447 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2448 /*
2449 ** Return true if any register in the range iFrom..iTo (inclusive)
2450 ** is used as part of the column cache.
2451 **
2452 ** This routine is used within assert() and testcase() macros only
2453 ** and does not appear in a normal build.
2454 */
2455 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2456   int i;
2457   struct yColCache *p;
2458   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2459     int r = p->iReg;
2460     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2461   }
2462   return 0;
2463 }
2464 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2465 
2466 /*
2467 ** Convert an expression node to a TK_REGISTER
2468 */
2469 static void exprToRegister(Expr *p, int iReg){
2470   p->op2 = p->op;
2471   p->op = TK_REGISTER;
2472   p->iTable = iReg;
2473   ExprClearProperty(p, EP_Skip);
2474 }
2475 
2476 /*
2477 ** Generate code into the current Vdbe to evaluate the given
2478 ** expression.  Attempt to store the results in register "target".
2479 ** Return the register where results are stored.
2480 **
2481 ** With this routine, there is no guarantee that results will
2482 ** be stored in target.  The result might be stored in some other
2483 ** register if it is convenient to do so.  The calling function
2484 ** must check the return code and move the results to the desired
2485 ** register.
2486 */
2487 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2488   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2489   int op;                   /* The opcode being coded */
2490   int inReg = target;       /* Results stored in register inReg */
2491   int regFree1 = 0;         /* If non-zero free this temporary register */
2492   int regFree2 = 0;         /* If non-zero free this temporary register */
2493   int r1, r2, r3, r4;       /* Various register numbers */
2494   sqlite3 *db = pParse->db; /* The database connection */
2495   Expr tempX;               /* Temporary expression node */
2496 
2497   assert( target>0 && target<=pParse->nMem );
2498   if( v==0 ){
2499     assert( pParse->db->mallocFailed );
2500     return 0;
2501   }
2502 
2503   if( pExpr==0 ){
2504     op = TK_NULL;
2505   }else{
2506     op = pExpr->op;
2507   }
2508   switch( op ){
2509     case TK_AGG_COLUMN: {
2510       AggInfo *pAggInfo = pExpr->pAggInfo;
2511       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2512       if( !pAggInfo->directMode ){
2513         assert( pCol->iMem>0 );
2514         inReg = pCol->iMem;
2515         break;
2516       }else if( pAggInfo->useSortingIdx ){
2517         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2518                               pCol->iSorterColumn, target);
2519         break;
2520       }
2521       /* Otherwise, fall thru into the TK_COLUMN case */
2522     }
2523     case TK_COLUMN: {
2524       int iTab = pExpr->iTable;
2525       if( iTab<0 ){
2526         if( pParse->ckBase>0 ){
2527           /* Generating CHECK constraints or inserting into partial index */
2528           inReg = pExpr->iColumn + pParse->ckBase;
2529           break;
2530         }else{
2531           /* Deleting from a partial index */
2532           iTab = pParse->iPartIdxTab;
2533         }
2534       }
2535       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2536                                pExpr->iColumn, iTab, target,
2537                                pExpr->op2);
2538       break;
2539     }
2540     case TK_INTEGER: {
2541       codeInteger(pParse, pExpr, 0, target);
2542       break;
2543     }
2544 #ifndef SQLITE_OMIT_FLOATING_POINT
2545     case TK_FLOAT: {
2546       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547       codeReal(v, pExpr->u.zToken, 0, target);
2548       break;
2549     }
2550 #endif
2551     case TK_STRING: {
2552       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2553       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2554       break;
2555     }
2556     case TK_NULL: {
2557       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2558       break;
2559     }
2560 #ifndef SQLITE_OMIT_BLOB_LITERAL
2561     case TK_BLOB: {
2562       int n;
2563       const char *z;
2564       char *zBlob;
2565       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2566       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2567       assert( pExpr->u.zToken[1]=='\'' );
2568       z = &pExpr->u.zToken[2];
2569       n = sqlite3Strlen30(z) - 1;
2570       assert( z[n]=='\'' );
2571       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2572       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2573       break;
2574     }
2575 #endif
2576     case TK_VARIABLE: {
2577       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2578       assert( pExpr->u.zToken!=0 );
2579       assert( pExpr->u.zToken[0]!=0 );
2580       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2581       if( pExpr->u.zToken[1]!=0 ){
2582         assert( pExpr->u.zToken[0]=='?'
2583              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2584         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2585       }
2586       break;
2587     }
2588     case TK_REGISTER: {
2589       inReg = pExpr->iTable;
2590       break;
2591     }
2592     case TK_AS: {
2593       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2594       break;
2595     }
2596 #ifndef SQLITE_OMIT_CAST
2597     case TK_CAST: {
2598       /* Expressions of the form:   CAST(pLeft AS token) */
2599       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2600       if( inReg!=target ){
2601         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2602         inReg = target;
2603       }
2604       sqlite3VdbeAddOp2(v, OP_Cast, target,
2605                         sqlite3AffinityType(pExpr->u.zToken, 0));
2606       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2607       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2608       break;
2609     }
2610 #endif /* SQLITE_OMIT_CAST */
2611     case TK_LT:
2612     case TK_LE:
2613     case TK_GT:
2614     case TK_GE:
2615     case TK_NE:
2616     case TK_EQ: {
2617       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2618       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2619       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2620                   r1, r2, inReg, SQLITE_STOREP2);
2621       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2622       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2623       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2624       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2625       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2626       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2627       testcase( regFree1==0 );
2628       testcase( regFree2==0 );
2629       break;
2630     }
2631     case TK_IS:
2632     case TK_ISNOT: {
2633       testcase( op==TK_IS );
2634       testcase( op==TK_ISNOT );
2635       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2636       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2637       op = (op==TK_IS) ? TK_EQ : TK_NE;
2638       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2639                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2640       VdbeCoverageIf(v, op==TK_EQ);
2641       VdbeCoverageIf(v, op==TK_NE);
2642       testcase( regFree1==0 );
2643       testcase( regFree2==0 );
2644       break;
2645     }
2646     case TK_AND:
2647     case TK_OR:
2648     case TK_PLUS:
2649     case TK_STAR:
2650     case TK_MINUS:
2651     case TK_REM:
2652     case TK_BITAND:
2653     case TK_BITOR:
2654     case TK_SLASH:
2655     case TK_LSHIFT:
2656     case TK_RSHIFT:
2657     case TK_CONCAT: {
2658       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2659       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2660       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2661       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2662       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2663       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2664       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2665       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2666       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2667       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2668       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2669       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2670       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2671       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2672       testcase( regFree1==0 );
2673       testcase( regFree2==0 );
2674       break;
2675     }
2676     case TK_UMINUS: {
2677       Expr *pLeft = pExpr->pLeft;
2678       assert( pLeft );
2679       if( pLeft->op==TK_INTEGER ){
2680         codeInteger(pParse, pLeft, 1, target);
2681 #ifndef SQLITE_OMIT_FLOATING_POINT
2682       }else if( pLeft->op==TK_FLOAT ){
2683         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2684         codeReal(v, pLeft->u.zToken, 1, target);
2685 #endif
2686       }else{
2687         tempX.op = TK_INTEGER;
2688         tempX.flags = EP_IntValue|EP_TokenOnly;
2689         tempX.u.iValue = 0;
2690         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2691         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2692         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2693         testcase( regFree2==0 );
2694       }
2695       inReg = target;
2696       break;
2697     }
2698     case TK_BITNOT:
2699     case TK_NOT: {
2700       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2701       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2702       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2703       testcase( regFree1==0 );
2704       inReg = target;
2705       sqlite3VdbeAddOp2(v, op, r1, inReg);
2706       break;
2707     }
2708     case TK_ISNULL:
2709     case TK_NOTNULL: {
2710       int addr;
2711       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2712       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2713       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2714       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2715       testcase( regFree1==0 );
2716       addr = sqlite3VdbeAddOp1(v, op, r1);
2717       VdbeCoverageIf(v, op==TK_ISNULL);
2718       VdbeCoverageIf(v, op==TK_NOTNULL);
2719       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2720       sqlite3VdbeJumpHere(v, addr);
2721       break;
2722     }
2723     case TK_AGG_FUNCTION: {
2724       AggInfo *pInfo = pExpr->pAggInfo;
2725       if( pInfo==0 ){
2726         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2727         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2728       }else{
2729         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2730       }
2731       break;
2732     }
2733     case TK_FUNCTION: {
2734       ExprList *pFarg;       /* List of function arguments */
2735       int nFarg;             /* Number of function arguments */
2736       FuncDef *pDef;         /* The function definition object */
2737       int nId;               /* Length of the function name in bytes */
2738       const char *zId;       /* The function name */
2739       u32 constMask = 0;     /* Mask of function arguments that are constant */
2740       int i;                 /* Loop counter */
2741       u8 enc = ENC(db);      /* The text encoding used by this database */
2742       CollSeq *pColl = 0;    /* A collating sequence */
2743 
2744       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2745       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2746         pFarg = 0;
2747       }else{
2748         pFarg = pExpr->x.pList;
2749       }
2750       nFarg = pFarg ? pFarg->nExpr : 0;
2751       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2752       zId = pExpr->u.zToken;
2753       nId = sqlite3Strlen30(zId);
2754       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2755       if( pDef==0 || pDef->xFunc==0 ){
2756         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2757         break;
2758       }
2759 
2760       /* Attempt a direct implementation of the built-in COALESCE() and
2761       ** IFNULL() functions.  This avoids unnecessary evaluation of
2762       ** arguments past the first non-NULL argument.
2763       */
2764       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2765         int endCoalesce = sqlite3VdbeMakeLabel(v);
2766         assert( nFarg>=2 );
2767         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2768         for(i=1; i<nFarg; i++){
2769           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2770           VdbeCoverage(v);
2771           sqlite3ExprCacheRemove(pParse, target, 1);
2772           sqlite3ExprCachePush(pParse);
2773           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2774           sqlite3ExprCachePop(pParse);
2775         }
2776         sqlite3VdbeResolveLabel(v, endCoalesce);
2777         break;
2778       }
2779 
2780       /* The UNLIKELY() function is a no-op.  The result is the value
2781       ** of the first argument.
2782       */
2783       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2784         assert( nFarg>=1 );
2785         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2786         break;
2787       }
2788 
2789       for(i=0; i<nFarg; i++){
2790         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2791           testcase( i==31 );
2792           constMask |= MASKBIT32(i);
2793         }
2794         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2795           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2796         }
2797       }
2798       if( pFarg ){
2799         if( constMask ){
2800           r1 = pParse->nMem+1;
2801           pParse->nMem += nFarg;
2802         }else{
2803           r1 = sqlite3GetTempRange(pParse, nFarg);
2804         }
2805 
2806         /* For length() and typeof() functions with a column argument,
2807         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2808         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2809         ** loading.
2810         */
2811         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2812           u8 exprOp;
2813           assert( nFarg==1 );
2814           assert( pFarg->a[0].pExpr!=0 );
2815           exprOp = pFarg->a[0].pExpr->op;
2816           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2817             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2818             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2819             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2820             pFarg->a[0].pExpr->op2 =
2821                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2822           }
2823         }
2824 
2825         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2826         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2827                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2828         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2829       }else{
2830         r1 = 0;
2831       }
2832 #ifndef SQLITE_OMIT_VIRTUALTABLE
2833       /* Possibly overload the function if the first argument is
2834       ** a virtual table column.
2835       **
2836       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2837       ** second argument, not the first, as the argument to test to
2838       ** see if it is a column in a virtual table.  This is done because
2839       ** the left operand of infix functions (the operand we want to
2840       ** control overloading) ends up as the second argument to the
2841       ** function.  The expression "A glob B" is equivalent to
2842       ** "glob(B,A).  We want to use the A in "A glob B" to test
2843       ** for function overloading.  But we use the B term in "glob(B,A)".
2844       */
2845       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2846         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2847       }else if( nFarg>0 ){
2848         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2849       }
2850 #endif
2851       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2852         if( !pColl ) pColl = db->pDfltColl;
2853         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2854       }
2855       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2856                         (char*)pDef, P4_FUNCDEF);
2857       sqlite3VdbeChangeP5(v, (u8)nFarg);
2858       if( nFarg && constMask==0 ){
2859         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2860       }
2861       break;
2862     }
2863 #ifndef SQLITE_OMIT_SUBQUERY
2864     case TK_EXISTS:
2865     case TK_SELECT: {
2866       testcase( op==TK_EXISTS );
2867       testcase( op==TK_SELECT );
2868       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2869       break;
2870     }
2871     case TK_IN: {
2872       int destIfFalse = sqlite3VdbeMakeLabel(v);
2873       int destIfNull = sqlite3VdbeMakeLabel(v);
2874       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2875       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2876       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2877       sqlite3VdbeResolveLabel(v, destIfFalse);
2878       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2879       sqlite3VdbeResolveLabel(v, destIfNull);
2880       break;
2881     }
2882 #endif /* SQLITE_OMIT_SUBQUERY */
2883 
2884 
2885     /*
2886     **    x BETWEEN y AND z
2887     **
2888     ** This is equivalent to
2889     **
2890     **    x>=y AND x<=z
2891     **
2892     ** X is stored in pExpr->pLeft.
2893     ** Y is stored in pExpr->pList->a[0].pExpr.
2894     ** Z is stored in pExpr->pList->a[1].pExpr.
2895     */
2896     case TK_BETWEEN: {
2897       Expr *pLeft = pExpr->pLeft;
2898       struct ExprList_item *pLItem = pExpr->x.pList->a;
2899       Expr *pRight = pLItem->pExpr;
2900 
2901       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2902       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2903       testcase( regFree1==0 );
2904       testcase( regFree2==0 );
2905       r3 = sqlite3GetTempReg(pParse);
2906       r4 = sqlite3GetTempReg(pParse);
2907       codeCompare(pParse, pLeft, pRight, OP_Ge,
2908                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2909       pLItem++;
2910       pRight = pLItem->pExpr;
2911       sqlite3ReleaseTempReg(pParse, regFree2);
2912       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2913       testcase( regFree2==0 );
2914       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2915       VdbeCoverage(v);
2916       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2917       sqlite3ReleaseTempReg(pParse, r3);
2918       sqlite3ReleaseTempReg(pParse, r4);
2919       break;
2920     }
2921     case TK_COLLATE:
2922     case TK_UPLUS: {
2923       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2924       break;
2925     }
2926 
2927     case TK_TRIGGER: {
2928       /* If the opcode is TK_TRIGGER, then the expression is a reference
2929       ** to a column in the new.* or old.* pseudo-tables available to
2930       ** trigger programs. In this case Expr.iTable is set to 1 for the
2931       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2932       ** is set to the column of the pseudo-table to read, or to -1 to
2933       ** read the rowid field.
2934       **
2935       ** The expression is implemented using an OP_Param opcode. The p1
2936       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2937       ** to reference another column of the old.* pseudo-table, where
2938       ** i is the index of the column. For a new.rowid reference, p1 is
2939       ** set to (n+1), where n is the number of columns in each pseudo-table.
2940       ** For a reference to any other column in the new.* pseudo-table, p1
2941       ** is set to (n+2+i), where n and i are as defined previously. For
2942       ** example, if the table on which triggers are being fired is
2943       ** declared as:
2944       **
2945       **   CREATE TABLE t1(a, b);
2946       **
2947       ** Then p1 is interpreted as follows:
2948       **
2949       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2950       **   p1==1   ->    old.a         p1==4   ->    new.a
2951       **   p1==2   ->    old.b         p1==5   ->    new.b
2952       */
2953       Table *pTab = pExpr->pTab;
2954       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2955 
2956       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2957       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2958       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2959       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2960 
2961       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2962       VdbeComment((v, "%s.%s -> $%d",
2963         (pExpr->iTable ? "new" : "old"),
2964         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2965         target
2966       ));
2967 
2968 #ifndef SQLITE_OMIT_FLOATING_POINT
2969       /* If the column has REAL affinity, it may currently be stored as an
2970       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2971       if( pExpr->iColumn>=0
2972        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2973       ){
2974         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2975       }
2976 #endif
2977       break;
2978     }
2979 
2980 
2981     /*
2982     ** Form A:
2983     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2984     **
2985     ** Form B:
2986     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2987     **
2988     ** Form A is can be transformed into the equivalent form B as follows:
2989     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2990     **        WHEN x=eN THEN rN ELSE y END
2991     **
2992     ** X (if it exists) is in pExpr->pLeft.
2993     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
2994     ** odd.  The Y is also optional.  If the number of elements in x.pList
2995     ** is even, then Y is omitted and the "otherwise" result is NULL.
2996     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2997     **
2998     ** The result of the expression is the Ri for the first matching Ei,
2999     ** or if there is no matching Ei, the ELSE term Y, or if there is
3000     ** no ELSE term, NULL.
3001     */
3002     default: assert( op==TK_CASE ); {
3003       int endLabel;                     /* GOTO label for end of CASE stmt */
3004       int nextCase;                     /* GOTO label for next WHEN clause */
3005       int nExpr;                        /* 2x number of WHEN terms */
3006       int i;                            /* Loop counter */
3007       ExprList *pEList;                 /* List of WHEN terms */
3008       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3009       Expr opCompare;                   /* The X==Ei expression */
3010       Expr *pX;                         /* The X expression */
3011       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3012       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3013 
3014       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3015       assert(pExpr->x.pList->nExpr > 0);
3016       pEList = pExpr->x.pList;
3017       aListelem = pEList->a;
3018       nExpr = pEList->nExpr;
3019       endLabel = sqlite3VdbeMakeLabel(v);
3020       if( (pX = pExpr->pLeft)!=0 ){
3021         tempX = *pX;
3022         testcase( pX->op==TK_COLUMN );
3023         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3024         testcase( regFree1==0 );
3025         opCompare.op = TK_EQ;
3026         opCompare.pLeft = &tempX;
3027         pTest = &opCompare;
3028         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3029         ** The value in regFree1 might get SCopy-ed into the file result.
3030         ** So make sure that the regFree1 register is not reused for other
3031         ** purposes and possibly overwritten.  */
3032         regFree1 = 0;
3033       }
3034       for(i=0; i<nExpr-1; i=i+2){
3035         sqlite3ExprCachePush(pParse);
3036         if( pX ){
3037           assert( pTest!=0 );
3038           opCompare.pRight = aListelem[i].pExpr;
3039         }else{
3040           pTest = aListelem[i].pExpr;
3041         }
3042         nextCase = sqlite3VdbeMakeLabel(v);
3043         testcase( pTest->op==TK_COLUMN );
3044         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3045         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3046         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3047         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3048         sqlite3ExprCachePop(pParse);
3049         sqlite3VdbeResolveLabel(v, nextCase);
3050       }
3051       if( (nExpr&1)!=0 ){
3052         sqlite3ExprCachePush(pParse);
3053         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3054         sqlite3ExprCachePop(pParse);
3055       }else{
3056         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3057       }
3058       assert( db->mallocFailed || pParse->nErr>0
3059            || pParse->iCacheLevel==iCacheLevel );
3060       sqlite3VdbeResolveLabel(v, endLabel);
3061       break;
3062     }
3063 #ifndef SQLITE_OMIT_TRIGGER
3064     case TK_RAISE: {
3065       assert( pExpr->affinity==OE_Rollback
3066            || pExpr->affinity==OE_Abort
3067            || pExpr->affinity==OE_Fail
3068            || pExpr->affinity==OE_Ignore
3069       );
3070       if( !pParse->pTriggerTab ){
3071         sqlite3ErrorMsg(pParse,
3072                        "RAISE() may only be used within a trigger-program");
3073         return 0;
3074       }
3075       if( pExpr->affinity==OE_Abort ){
3076         sqlite3MayAbort(pParse);
3077       }
3078       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3079       if( pExpr->affinity==OE_Ignore ){
3080         sqlite3VdbeAddOp4(
3081             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3082         VdbeCoverage(v);
3083       }else{
3084         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3085                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3086       }
3087 
3088       break;
3089     }
3090 #endif
3091   }
3092   sqlite3ReleaseTempReg(pParse, regFree1);
3093   sqlite3ReleaseTempReg(pParse, regFree2);
3094   return inReg;
3095 }
3096 
3097 /*
3098 ** Factor out the code of the given expression to initialization time.
3099 */
3100 void sqlite3ExprCodeAtInit(
3101   Parse *pParse,    /* Parsing context */
3102   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3103   int regDest,      /* Store the value in this register */
3104   u8 reusable       /* True if this expression is reusable */
3105 ){
3106   ExprList *p;
3107   assert( ConstFactorOk(pParse) );
3108   p = pParse->pConstExpr;
3109   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3110   p = sqlite3ExprListAppend(pParse, p, pExpr);
3111   if( p ){
3112      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3113      pItem->u.iConstExprReg = regDest;
3114      pItem->reusable = reusable;
3115   }
3116   pParse->pConstExpr = p;
3117 }
3118 
3119 /*
3120 ** Generate code to evaluate an expression and store the results
3121 ** into a register.  Return the register number where the results
3122 ** are stored.
3123 **
3124 ** If the register is a temporary register that can be deallocated,
3125 ** then write its number into *pReg.  If the result register is not
3126 ** a temporary, then set *pReg to zero.
3127 **
3128 ** If pExpr is a constant, then this routine might generate this
3129 ** code to fill the register in the initialization section of the
3130 ** VDBE program, in order to factor it out of the evaluation loop.
3131 */
3132 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3133   int r2;
3134   pExpr = sqlite3ExprSkipCollate(pExpr);
3135   if( ConstFactorOk(pParse)
3136    && pExpr->op!=TK_REGISTER
3137    && sqlite3ExprIsConstantNotJoin(pExpr)
3138   ){
3139     ExprList *p = pParse->pConstExpr;
3140     int i;
3141     *pReg  = 0;
3142     if( p ){
3143       struct ExprList_item *pItem;
3144       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3145         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3146           return pItem->u.iConstExprReg;
3147         }
3148       }
3149     }
3150     r2 = ++pParse->nMem;
3151     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3152   }else{
3153     int r1 = sqlite3GetTempReg(pParse);
3154     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3155     if( r2==r1 ){
3156       *pReg = r1;
3157     }else{
3158       sqlite3ReleaseTempReg(pParse, r1);
3159       *pReg = 0;
3160     }
3161   }
3162   return r2;
3163 }
3164 
3165 /*
3166 ** Generate code that will evaluate expression pExpr and store the
3167 ** results in register target.  The results are guaranteed to appear
3168 ** in register target.
3169 */
3170 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3171   int inReg;
3172 
3173   assert( target>0 && target<=pParse->nMem );
3174   if( pExpr && pExpr->op==TK_REGISTER ){
3175     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3176   }else{
3177     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3178     assert( pParse->pVdbe || pParse->db->mallocFailed );
3179     if( inReg!=target && pParse->pVdbe ){
3180       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3181     }
3182   }
3183 }
3184 
3185 /*
3186 ** Generate code that will evaluate expression pExpr and store the
3187 ** results in register target.  The results are guaranteed to appear
3188 ** in register target.  If the expression is constant, then this routine
3189 ** might choose to code the expression at initialization time.
3190 */
3191 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3192   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3193     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3194   }else{
3195     sqlite3ExprCode(pParse, pExpr, target);
3196   }
3197 }
3198 
3199 /*
3200 ** Generate code that evaluates the given expression and puts the result
3201 ** in register target.
3202 **
3203 ** Also make a copy of the expression results into another "cache" register
3204 ** and modify the expression so that the next time it is evaluated,
3205 ** the result is a copy of the cache register.
3206 **
3207 ** This routine is used for expressions that are used multiple
3208 ** times.  They are evaluated once and the results of the expression
3209 ** are reused.
3210 */
3211 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3212   Vdbe *v = pParse->pVdbe;
3213   int iMem;
3214 
3215   assert( target>0 );
3216   assert( pExpr->op!=TK_REGISTER );
3217   sqlite3ExprCode(pParse, pExpr, target);
3218   iMem = ++pParse->nMem;
3219   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3220   exprToRegister(pExpr, iMem);
3221 }
3222 
3223 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3224 /*
3225 ** Generate a human-readable explanation of an expression tree.
3226 */
3227 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3228   int op;                   /* The opcode being coded */
3229   const char *zBinOp = 0;   /* Binary operator */
3230   const char *zUniOp = 0;   /* Unary operator */
3231   if( pExpr==0 ){
3232     op = TK_NULL;
3233   }else{
3234     op = pExpr->op;
3235   }
3236   switch( op ){
3237     case TK_AGG_COLUMN: {
3238       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3239             pExpr->iTable, pExpr->iColumn);
3240       break;
3241     }
3242     case TK_COLUMN: {
3243       if( pExpr->iTable<0 ){
3244         /* This only happens when coding check constraints */
3245         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3246       }else{
3247         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3248                              pExpr->iTable, pExpr->iColumn);
3249       }
3250       break;
3251     }
3252     case TK_INTEGER: {
3253       if( pExpr->flags & EP_IntValue ){
3254         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3255       }else{
3256         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3257       }
3258       break;
3259     }
3260 #ifndef SQLITE_OMIT_FLOATING_POINT
3261     case TK_FLOAT: {
3262       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3263       break;
3264     }
3265 #endif
3266     case TK_STRING: {
3267       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3268       break;
3269     }
3270     case TK_NULL: {
3271       sqlite3ExplainPrintf(pOut,"NULL");
3272       break;
3273     }
3274 #ifndef SQLITE_OMIT_BLOB_LITERAL
3275     case TK_BLOB: {
3276       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3277       break;
3278     }
3279 #endif
3280     case TK_VARIABLE: {
3281       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3282                            pExpr->u.zToken, pExpr->iColumn);
3283       break;
3284     }
3285     case TK_REGISTER: {
3286       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3287       break;
3288     }
3289     case TK_AS: {
3290       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3291       break;
3292     }
3293 #ifndef SQLITE_OMIT_CAST
3294     case TK_CAST: {
3295       /* Expressions of the form:   CAST(pLeft AS token) */
3296       const char *zAff = "unk";
3297       switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
3298         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3299         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3300         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3301         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3302         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3303       }
3304       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3305       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3306       sqlite3ExplainPrintf(pOut, ")");
3307       break;
3308     }
3309 #endif /* SQLITE_OMIT_CAST */
3310     case TK_LT:      zBinOp = "LT";     break;
3311     case TK_LE:      zBinOp = "LE";     break;
3312     case TK_GT:      zBinOp = "GT";     break;
3313     case TK_GE:      zBinOp = "GE";     break;
3314     case TK_NE:      zBinOp = "NE";     break;
3315     case TK_EQ:      zBinOp = "EQ";     break;
3316     case TK_IS:      zBinOp = "IS";     break;
3317     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3318     case TK_AND:     zBinOp = "AND";    break;
3319     case TK_OR:      zBinOp = "OR";     break;
3320     case TK_PLUS:    zBinOp = "ADD";    break;
3321     case TK_STAR:    zBinOp = "MUL";    break;
3322     case TK_MINUS:   zBinOp = "SUB";    break;
3323     case TK_REM:     zBinOp = "REM";    break;
3324     case TK_BITAND:  zBinOp = "BITAND"; break;
3325     case TK_BITOR:   zBinOp = "BITOR";  break;
3326     case TK_SLASH:   zBinOp = "DIV";    break;
3327     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3328     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3329     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3330 
3331     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3332     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3333     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3334     case TK_NOT:     zUniOp = "NOT";    break;
3335     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3336     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3337 
3338     case TK_COLLATE: {
3339       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3340       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3341       break;
3342     }
3343 
3344     case TK_AGG_FUNCTION:
3345     case TK_FUNCTION: {
3346       ExprList *pFarg;       /* List of function arguments */
3347       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3348         pFarg = 0;
3349       }else{
3350         pFarg = pExpr->x.pList;
3351       }
3352       if( op==TK_AGG_FUNCTION ){
3353         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3354                              pExpr->op2, pExpr->u.zToken);
3355       }else{
3356         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3357       }
3358       if( pFarg ){
3359         sqlite3ExplainExprList(pOut, pFarg);
3360       }
3361       sqlite3ExplainPrintf(pOut, ")");
3362       break;
3363     }
3364 #ifndef SQLITE_OMIT_SUBQUERY
3365     case TK_EXISTS: {
3366       sqlite3ExplainPrintf(pOut, "EXISTS(");
3367       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3368       sqlite3ExplainPrintf(pOut,")");
3369       break;
3370     }
3371     case TK_SELECT: {
3372       sqlite3ExplainPrintf(pOut, "(");
3373       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3374       sqlite3ExplainPrintf(pOut, ")");
3375       break;
3376     }
3377     case TK_IN: {
3378       sqlite3ExplainPrintf(pOut, "IN(");
3379       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3380       sqlite3ExplainPrintf(pOut, ",");
3381       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3382         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3383       }else{
3384         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3385       }
3386       sqlite3ExplainPrintf(pOut, ")");
3387       break;
3388     }
3389 #endif /* SQLITE_OMIT_SUBQUERY */
3390 
3391     /*
3392     **    x BETWEEN y AND z
3393     **
3394     ** This is equivalent to
3395     **
3396     **    x>=y AND x<=z
3397     **
3398     ** X is stored in pExpr->pLeft.
3399     ** Y is stored in pExpr->pList->a[0].pExpr.
3400     ** Z is stored in pExpr->pList->a[1].pExpr.
3401     */
3402     case TK_BETWEEN: {
3403       Expr *pX = pExpr->pLeft;
3404       Expr *pY = pExpr->x.pList->a[0].pExpr;
3405       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3406       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3407       sqlite3ExplainExpr(pOut, pX);
3408       sqlite3ExplainPrintf(pOut, ",");
3409       sqlite3ExplainExpr(pOut, pY);
3410       sqlite3ExplainPrintf(pOut, ",");
3411       sqlite3ExplainExpr(pOut, pZ);
3412       sqlite3ExplainPrintf(pOut, ")");
3413       break;
3414     }
3415     case TK_TRIGGER: {
3416       /* If the opcode is TK_TRIGGER, then the expression is a reference
3417       ** to a column in the new.* or old.* pseudo-tables available to
3418       ** trigger programs. In this case Expr.iTable is set to 1 for the
3419       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3420       ** is set to the column of the pseudo-table to read, or to -1 to
3421       ** read the rowid field.
3422       */
3423       sqlite3ExplainPrintf(pOut, "%s(%d)",
3424           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3425       break;
3426     }
3427     case TK_CASE: {
3428       sqlite3ExplainPrintf(pOut, "CASE(");
3429       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3430       sqlite3ExplainPrintf(pOut, ",");
3431       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3432       break;
3433     }
3434 #ifndef SQLITE_OMIT_TRIGGER
3435     case TK_RAISE: {
3436       const char *zType = "unk";
3437       switch( pExpr->affinity ){
3438         case OE_Rollback:   zType = "rollback";  break;
3439         case OE_Abort:      zType = "abort";     break;
3440         case OE_Fail:       zType = "fail";      break;
3441         case OE_Ignore:     zType = "ignore";    break;
3442       }
3443       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3444       break;
3445     }
3446 #endif
3447   }
3448   if( zBinOp ){
3449     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3450     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3451     sqlite3ExplainPrintf(pOut,",");
3452     sqlite3ExplainExpr(pOut, pExpr->pRight);
3453     sqlite3ExplainPrintf(pOut,")");
3454   }else if( zUniOp ){
3455     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3456     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3457     sqlite3ExplainPrintf(pOut,")");
3458   }
3459 }
3460 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3461 
3462 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3463 /*
3464 ** Generate a human-readable explanation of an expression list.
3465 */
3466 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3467   int i;
3468   if( pList==0 || pList->nExpr==0 ){
3469     sqlite3ExplainPrintf(pOut, "(empty-list)");
3470     return;
3471   }else if( pList->nExpr==1 ){
3472     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3473   }else{
3474     sqlite3ExplainPush(pOut);
3475     for(i=0; i<pList->nExpr; i++){
3476       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3477       sqlite3ExplainPush(pOut);
3478       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3479       sqlite3ExplainPop(pOut);
3480       if( pList->a[i].zName ){
3481         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3482       }
3483       if( pList->a[i].bSpanIsTab ){
3484         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3485       }
3486       if( i<pList->nExpr-1 ){
3487         sqlite3ExplainNL(pOut);
3488       }
3489     }
3490     sqlite3ExplainPop(pOut);
3491   }
3492 }
3493 #endif /* SQLITE_DEBUG */
3494 
3495 /*
3496 ** Generate code that pushes the value of every element of the given
3497 ** expression list into a sequence of registers beginning at target.
3498 **
3499 ** Return the number of elements evaluated.
3500 **
3501 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3502 ** filled using OP_SCopy.  OP_Copy must be used instead.
3503 **
3504 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3505 ** factored out into initialization code.
3506 */
3507 int sqlite3ExprCodeExprList(
3508   Parse *pParse,     /* Parsing context */
3509   ExprList *pList,   /* The expression list to be coded */
3510   int target,        /* Where to write results */
3511   u8 flags           /* SQLITE_ECEL_* flags */
3512 ){
3513   struct ExprList_item *pItem;
3514   int i, n;
3515   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3516   assert( pList!=0 );
3517   assert( target>0 );
3518   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3519   n = pList->nExpr;
3520   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3521   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3522     Expr *pExpr = pItem->pExpr;
3523     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3524       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3525     }else{
3526       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3527       if( inReg!=target+i ){
3528         VdbeOp *pOp;
3529         Vdbe *v = pParse->pVdbe;
3530         if( copyOp==OP_Copy
3531          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3532          && pOp->p1+pOp->p3+1==inReg
3533          && pOp->p2+pOp->p3+1==target+i
3534         ){
3535           pOp->p3++;
3536         }else{
3537           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3538         }
3539       }
3540     }
3541   }
3542   return n;
3543 }
3544 
3545 /*
3546 ** Generate code for a BETWEEN operator.
3547 **
3548 **    x BETWEEN y AND z
3549 **
3550 ** The above is equivalent to
3551 **
3552 **    x>=y AND x<=z
3553 **
3554 ** Code it as such, taking care to do the common subexpression
3555 ** elimination of x.
3556 */
3557 static void exprCodeBetween(
3558   Parse *pParse,    /* Parsing and code generating context */
3559   Expr *pExpr,      /* The BETWEEN expression */
3560   int dest,         /* Jump here if the jump is taken */
3561   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3562   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3563 ){
3564   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3565   Expr compLeft;    /* The  x>=y  term */
3566   Expr compRight;   /* The  x<=z  term */
3567   Expr exprX;       /* The  x  subexpression */
3568   int regFree1 = 0; /* Temporary use register */
3569 
3570   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3571   exprX = *pExpr->pLeft;
3572   exprAnd.op = TK_AND;
3573   exprAnd.pLeft = &compLeft;
3574   exprAnd.pRight = &compRight;
3575   compLeft.op = TK_GE;
3576   compLeft.pLeft = &exprX;
3577   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3578   compRight.op = TK_LE;
3579   compRight.pLeft = &exprX;
3580   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3581   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3582   if( jumpIfTrue ){
3583     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3584   }else{
3585     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3586   }
3587   sqlite3ReleaseTempReg(pParse, regFree1);
3588 
3589   /* Ensure adequate test coverage */
3590   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3591   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3592   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3593   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3594   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3595   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3596   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3597   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3598 }
3599 
3600 /*
3601 ** Generate code for a boolean expression such that a jump is made
3602 ** to the label "dest" if the expression is true but execution
3603 ** continues straight thru if the expression is false.
3604 **
3605 ** If the expression evaluates to NULL (neither true nor false), then
3606 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3607 **
3608 ** This code depends on the fact that certain token values (ex: TK_EQ)
3609 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3610 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3611 ** the make process cause these values to align.  Assert()s in the code
3612 ** below verify that the numbers are aligned correctly.
3613 */
3614 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3615   Vdbe *v = pParse->pVdbe;
3616   int op = 0;
3617   int regFree1 = 0;
3618   int regFree2 = 0;
3619   int r1, r2;
3620 
3621   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3622   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3623   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3624   op = pExpr->op;
3625   switch( op ){
3626     case TK_AND: {
3627       int d2 = sqlite3VdbeMakeLabel(v);
3628       testcase( jumpIfNull==0 );
3629       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3630       sqlite3ExprCachePush(pParse);
3631       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3632       sqlite3VdbeResolveLabel(v, d2);
3633       sqlite3ExprCachePop(pParse);
3634       break;
3635     }
3636     case TK_OR: {
3637       testcase( jumpIfNull==0 );
3638       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3639       sqlite3ExprCachePush(pParse);
3640       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3641       sqlite3ExprCachePop(pParse);
3642       break;
3643     }
3644     case TK_NOT: {
3645       testcase( jumpIfNull==0 );
3646       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3647       break;
3648     }
3649     case TK_LT:
3650     case TK_LE:
3651     case TK_GT:
3652     case TK_GE:
3653     case TK_NE:
3654     case TK_EQ: {
3655       testcase( jumpIfNull==0 );
3656       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3657       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3658       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3659                   r1, r2, dest, jumpIfNull);
3660       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3661       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3662       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3663       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3664       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3665       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3666       testcase( regFree1==0 );
3667       testcase( regFree2==0 );
3668       break;
3669     }
3670     case TK_IS:
3671     case TK_ISNOT: {
3672       testcase( op==TK_IS );
3673       testcase( op==TK_ISNOT );
3674       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3675       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3676       op = (op==TK_IS) ? TK_EQ : TK_NE;
3677       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3678                   r1, r2, dest, SQLITE_NULLEQ);
3679       VdbeCoverageIf(v, op==TK_EQ);
3680       VdbeCoverageIf(v, op==TK_NE);
3681       testcase( regFree1==0 );
3682       testcase( regFree2==0 );
3683       break;
3684     }
3685     case TK_ISNULL:
3686     case TK_NOTNULL: {
3687       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3688       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3689       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3690       sqlite3VdbeAddOp2(v, op, r1, dest);
3691       VdbeCoverageIf(v, op==TK_ISNULL);
3692       VdbeCoverageIf(v, op==TK_NOTNULL);
3693       testcase( regFree1==0 );
3694       break;
3695     }
3696     case TK_BETWEEN: {
3697       testcase( jumpIfNull==0 );
3698       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3699       break;
3700     }
3701 #ifndef SQLITE_OMIT_SUBQUERY
3702     case TK_IN: {
3703       int destIfFalse = sqlite3VdbeMakeLabel(v);
3704       int destIfNull = jumpIfNull ? dest : destIfFalse;
3705       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3706       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3707       sqlite3VdbeResolveLabel(v, destIfFalse);
3708       break;
3709     }
3710 #endif
3711     default: {
3712       if( exprAlwaysTrue(pExpr) ){
3713         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3714       }else if( exprAlwaysFalse(pExpr) ){
3715         /* No-op */
3716       }else{
3717         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3718         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3719         VdbeCoverage(v);
3720         testcase( regFree1==0 );
3721         testcase( jumpIfNull==0 );
3722       }
3723       break;
3724     }
3725   }
3726   sqlite3ReleaseTempReg(pParse, regFree1);
3727   sqlite3ReleaseTempReg(pParse, regFree2);
3728 }
3729 
3730 /*
3731 ** Generate code for a boolean expression such that a jump is made
3732 ** to the label "dest" if the expression is false but execution
3733 ** continues straight thru if the expression is true.
3734 **
3735 ** If the expression evaluates to NULL (neither true nor false) then
3736 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3737 ** is 0.
3738 */
3739 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3740   Vdbe *v = pParse->pVdbe;
3741   int op = 0;
3742   int regFree1 = 0;
3743   int regFree2 = 0;
3744   int r1, r2;
3745 
3746   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3747   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3748   if( pExpr==0 )    return;
3749 
3750   /* The value of pExpr->op and op are related as follows:
3751   **
3752   **       pExpr->op            op
3753   **       ---------          ----------
3754   **       TK_ISNULL          OP_NotNull
3755   **       TK_NOTNULL         OP_IsNull
3756   **       TK_NE              OP_Eq
3757   **       TK_EQ              OP_Ne
3758   **       TK_GT              OP_Le
3759   **       TK_LE              OP_Gt
3760   **       TK_GE              OP_Lt
3761   **       TK_LT              OP_Ge
3762   **
3763   ** For other values of pExpr->op, op is undefined and unused.
3764   ** The value of TK_ and OP_ constants are arranged such that we
3765   ** can compute the mapping above using the following expression.
3766   ** Assert()s verify that the computation is correct.
3767   */
3768   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3769 
3770   /* Verify correct alignment of TK_ and OP_ constants
3771   */
3772   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3773   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3774   assert( pExpr->op!=TK_NE || op==OP_Eq );
3775   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3776   assert( pExpr->op!=TK_LT || op==OP_Ge );
3777   assert( pExpr->op!=TK_LE || op==OP_Gt );
3778   assert( pExpr->op!=TK_GT || op==OP_Le );
3779   assert( pExpr->op!=TK_GE || op==OP_Lt );
3780 
3781   switch( pExpr->op ){
3782     case TK_AND: {
3783       testcase( jumpIfNull==0 );
3784       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3785       sqlite3ExprCachePush(pParse);
3786       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3787       sqlite3ExprCachePop(pParse);
3788       break;
3789     }
3790     case TK_OR: {
3791       int d2 = sqlite3VdbeMakeLabel(v);
3792       testcase( jumpIfNull==0 );
3793       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3794       sqlite3ExprCachePush(pParse);
3795       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3796       sqlite3VdbeResolveLabel(v, d2);
3797       sqlite3ExprCachePop(pParse);
3798       break;
3799     }
3800     case TK_NOT: {
3801       testcase( jumpIfNull==0 );
3802       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3803       break;
3804     }
3805     case TK_LT:
3806     case TK_LE:
3807     case TK_GT:
3808     case TK_GE:
3809     case TK_NE:
3810     case TK_EQ: {
3811       testcase( jumpIfNull==0 );
3812       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3813       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3814       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3815                   r1, r2, dest, jumpIfNull);
3816       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3817       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3818       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3819       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3820       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3821       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3822       testcase( regFree1==0 );
3823       testcase( regFree2==0 );
3824       break;
3825     }
3826     case TK_IS:
3827     case TK_ISNOT: {
3828       testcase( pExpr->op==TK_IS );
3829       testcase( pExpr->op==TK_ISNOT );
3830       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3831       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3832       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3833       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3834                   r1, r2, dest, SQLITE_NULLEQ);
3835       VdbeCoverageIf(v, op==TK_EQ);
3836       VdbeCoverageIf(v, op==TK_NE);
3837       testcase( regFree1==0 );
3838       testcase( regFree2==0 );
3839       break;
3840     }
3841     case TK_ISNULL:
3842     case TK_NOTNULL: {
3843       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3844       sqlite3VdbeAddOp2(v, op, r1, dest);
3845       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3846       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3847       testcase( regFree1==0 );
3848       break;
3849     }
3850     case TK_BETWEEN: {
3851       testcase( jumpIfNull==0 );
3852       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3853       break;
3854     }
3855 #ifndef SQLITE_OMIT_SUBQUERY
3856     case TK_IN: {
3857       if( jumpIfNull ){
3858         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3859       }else{
3860         int destIfNull = sqlite3VdbeMakeLabel(v);
3861         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3862         sqlite3VdbeResolveLabel(v, destIfNull);
3863       }
3864       break;
3865     }
3866 #endif
3867     default: {
3868       if( exprAlwaysFalse(pExpr) ){
3869         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3870       }else if( exprAlwaysTrue(pExpr) ){
3871         /* no-op */
3872       }else{
3873         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3874         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3875         VdbeCoverage(v);
3876         testcase( regFree1==0 );
3877         testcase( jumpIfNull==0 );
3878       }
3879       break;
3880     }
3881   }
3882   sqlite3ReleaseTempReg(pParse, regFree1);
3883   sqlite3ReleaseTempReg(pParse, regFree2);
3884 }
3885 
3886 /*
3887 ** Do a deep comparison of two expression trees.  Return 0 if the two
3888 ** expressions are completely identical.  Return 1 if they differ only
3889 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3890 ** other than the top-level COLLATE operator.
3891 **
3892 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3893 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3894 **
3895 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3896 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3897 **
3898 ** Sometimes this routine will return 2 even if the two expressions
3899 ** really are equivalent.  If we cannot prove that the expressions are
3900 ** identical, we return 2 just to be safe.  So if this routine
3901 ** returns 2, then you do not really know for certain if the two
3902 ** expressions are the same.  But if you get a 0 or 1 return, then you
3903 ** can be sure the expressions are the same.  In the places where
3904 ** this routine is used, it does not hurt to get an extra 2 - that
3905 ** just might result in some slightly slower code.  But returning
3906 ** an incorrect 0 or 1 could lead to a malfunction.
3907 */
3908 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3909   u32 combinedFlags;
3910   if( pA==0 || pB==0 ){
3911     return pB==pA ? 0 : 2;
3912   }
3913   combinedFlags = pA->flags | pB->flags;
3914   if( combinedFlags & EP_IntValue ){
3915     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3916       return 0;
3917     }
3918     return 2;
3919   }
3920   if( pA->op!=pB->op ){
3921     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3922       return 1;
3923     }
3924     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3925       return 1;
3926     }
3927     return 2;
3928   }
3929   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3930     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3931       return pA->op==TK_COLLATE ? 1 : 2;
3932     }
3933   }
3934   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3935   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3936     if( combinedFlags & EP_xIsSelect ) return 2;
3937     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3938     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3939     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3940     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3941       if( pA->iColumn!=pB->iColumn ) return 2;
3942       if( pA->iTable!=pB->iTable
3943        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3944     }
3945   }
3946   return 0;
3947 }
3948 
3949 /*
3950 ** Compare two ExprList objects.  Return 0 if they are identical and
3951 ** non-zero if they differ in any way.
3952 **
3953 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3954 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3955 **
3956 ** This routine might return non-zero for equivalent ExprLists.  The
3957 ** only consequence will be disabled optimizations.  But this routine
3958 ** must never return 0 if the two ExprList objects are different, or
3959 ** a malfunction will result.
3960 **
3961 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3962 ** always differs from a non-NULL pointer.
3963 */
3964 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3965   int i;
3966   if( pA==0 && pB==0 ) return 0;
3967   if( pA==0 || pB==0 ) return 1;
3968   if( pA->nExpr!=pB->nExpr ) return 1;
3969   for(i=0; i<pA->nExpr; i++){
3970     Expr *pExprA = pA->a[i].pExpr;
3971     Expr *pExprB = pB->a[i].pExpr;
3972     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3973     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3974   }
3975   return 0;
3976 }
3977 
3978 /*
3979 ** Return true if we can prove the pE2 will always be true if pE1 is
3980 ** true.  Return false if we cannot complete the proof or if pE2 might
3981 ** be false.  Examples:
3982 **
3983 **     pE1: x==5       pE2: x==5             Result: true
3984 **     pE1: x>0        pE2: x==5             Result: false
3985 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3986 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3987 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3988 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3989 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3990 **
3991 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3992 ** Expr.iTable<0 then assume a table number given by iTab.
3993 **
3994 ** When in doubt, return false.  Returning true might give a performance
3995 ** improvement.  Returning false might cause a performance reduction, but
3996 ** it will always give the correct answer and is hence always safe.
3997 */
3998 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3999   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4000     return 1;
4001   }
4002   if( pE2->op==TK_OR
4003    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4004              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4005   ){
4006     return 1;
4007   }
4008   if( pE2->op==TK_NOTNULL
4009    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4010    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4011   ){
4012     return 1;
4013   }
4014   return 0;
4015 }
4016 
4017 /*
4018 ** An instance of the following structure is used by the tree walker
4019 ** to count references to table columns in the arguments of an
4020 ** aggregate function, in order to implement the
4021 ** sqlite3FunctionThisSrc() routine.
4022 */
4023 struct SrcCount {
4024   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4025   int nThis;       /* Number of references to columns in pSrcList */
4026   int nOther;      /* Number of references to columns in other FROM clauses */
4027 };
4028 
4029 /*
4030 ** Count the number of references to columns.
4031 */
4032 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4033   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4034   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4035   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4036   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4037   ** NEVER() will need to be removed. */
4038   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4039     int i;
4040     struct SrcCount *p = pWalker->u.pSrcCount;
4041     SrcList *pSrc = p->pSrc;
4042     for(i=0; i<pSrc->nSrc; i++){
4043       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4044     }
4045     if( i<pSrc->nSrc ){
4046       p->nThis++;
4047     }else{
4048       p->nOther++;
4049     }
4050   }
4051   return WRC_Continue;
4052 }
4053 
4054 /*
4055 ** Determine if any of the arguments to the pExpr Function reference
4056 ** pSrcList.  Return true if they do.  Also return true if the function
4057 ** has no arguments or has only constant arguments.  Return false if pExpr
4058 ** references columns but not columns of tables found in pSrcList.
4059 */
4060 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4061   Walker w;
4062   struct SrcCount cnt;
4063   assert( pExpr->op==TK_AGG_FUNCTION );
4064   memset(&w, 0, sizeof(w));
4065   w.xExprCallback = exprSrcCount;
4066   w.u.pSrcCount = &cnt;
4067   cnt.pSrc = pSrcList;
4068   cnt.nThis = 0;
4069   cnt.nOther = 0;
4070   sqlite3WalkExprList(&w, pExpr->x.pList);
4071   return cnt.nThis>0 || cnt.nOther==0;
4072 }
4073 
4074 /*
4075 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4076 ** the new element.  Return a negative number if malloc fails.
4077 */
4078 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4079   int i;
4080   pInfo->aCol = sqlite3ArrayAllocate(
4081        db,
4082        pInfo->aCol,
4083        sizeof(pInfo->aCol[0]),
4084        &pInfo->nColumn,
4085        &i
4086   );
4087   return i;
4088 }
4089 
4090 /*
4091 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4092 ** the new element.  Return a negative number if malloc fails.
4093 */
4094 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4095   int i;
4096   pInfo->aFunc = sqlite3ArrayAllocate(
4097        db,
4098        pInfo->aFunc,
4099        sizeof(pInfo->aFunc[0]),
4100        &pInfo->nFunc,
4101        &i
4102   );
4103   return i;
4104 }
4105 
4106 /*
4107 ** This is the xExprCallback for a tree walker.  It is used to
4108 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4109 ** for additional information.
4110 */
4111 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4112   int i;
4113   NameContext *pNC = pWalker->u.pNC;
4114   Parse *pParse = pNC->pParse;
4115   SrcList *pSrcList = pNC->pSrcList;
4116   AggInfo *pAggInfo = pNC->pAggInfo;
4117 
4118   switch( pExpr->op ){
4119     case TK_AGG_COLUMN:
4120     case TK_COLUMN: {
4121       testcase( pExpr->op==TK_AGG_COLUMN );
4122       testcase( pExpr->op==TK_COLUMN );
4123       /* Check to see if the column is in one of the tables in the FROM
4124       ** clause of the aggregate query */
4125       if( ALWAYS(pSrcList!=0) ){
4126         struct SrcList_item *pItem = pSrcList->a;
4127         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4128           struct AggInfo_col *pCol;
4129           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4130           if( pExpr->iTable==pItem->iCursor ){
4131             /* If we reach this point, it means that pExpr refers to a table
4132             ** that is in the FROM clause of the aggregate query.
4133             **
4134             ** Make an entry for the column in pAggInfo->aCol[] if there
4135             ** is not an entry there already.
4136             */
4137             int k;
4138             pCol = pAggInfo->aCol;
4139             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4140               if( pCol->iTable==pExpr->iTable &&
4141                   pCol->iColumn==pExpr->iColumn ){
4142                 break;
4143               }
4144             }
4145             if( (k>=pAggInfo->nColumn)
4146              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4147             ){
4148               pCol = &pAggInfo->aCol[k];
4149               pCol->pTab = pExpr->pTab;
4150               pCol->iTable = pExpr->iTable;
4151               pCol->iColumn = pExpr->iColumn;
4152               pCol->iMem = ++pParse->nMem;
4153               pCol->iSorterColumn = -1;
4154               pCol->pExpr = pExpr;
4155               if( pAggInfo->pGroupBy ){
4156                 int j, n;
4157                 ExprList *pGB = pAggInfo->pGroupBy;
4158                 struct ExprList_item *pTerm = pGB->a;
4159                 n = pGB->nExpr;
4160                 for(j=0; j<n; j++, pTerm++){
4161                   Expr *pE = pTerm->pExpr;
4162                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4163                       pE->iColumn==pExpr->iColumn ){
4164                     pCol->iSorterColumn = j;
4165                     break;
4166                   }
4167                 }
4168               }
4169               if( pCol->iSorterColumn<0 ){
4170                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4171               }
4172             }
4173             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4174             ** because it was there before or because we just created it).
4175             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4176             ** pAggInfo->aCol[] entry.
4177             */
4178             ExprSetVVAProperty(pExpr, EP_NoReduce);
4179             pExpr->pAggInfo = pAggInfo;
4180             pExpr->op = TK_AGG_COLUMN;
4181             pExpr->iAgg = (i16)k;
4182             break;
4183           } /* endif pExpr->iTable==pItem->iCursor */
4184         } /* end loop over pSrcList */
4185       }
4186       return WRC_Prune;
4187     }
4188     case TK_AGG_FUNCTION: {
4189       if( (pNC->ncFlags & NC_InAggFunc)==0
4190        && pWalker->walkerDepth==pExpr->op2
4191       ){
4192         /* Check to see if pExpr is a duplicate of another aggregate
4193         ** function that is already in the pAggInfo structure
4194         */
4195         struct AggInfo_func *pItem = pAggInfo->aFunc;
4196         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4197           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4198             break;
4199           }
4200         }
4201         if( i>=pAggInfo->nFunc ){
4202           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4203           */
4204           u8 enc = ENC(pParse->db);
4205           i = addAggInfoFunc(pParse->db, pAggInfo);
4206           if( i>=0 ){
4207             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4208             pItem = &pAggInfo->aFunc[i];
4209             pItem->pExpr = pExpr;
4210             pItem->iMem = ++pParse->nMem;
4211             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4212             pItem->pFunc = sqlite3FindFunction(pParse->db,
4213                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4214                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4215             if( pExpr->flags & EP_Distinct ){
4216               pItem->iDistinct = pParse->nTab++;
4217             }else{
4218               pItem->iDistinct = -1;
4219             }
4220           }
4221         }
4222         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4223         */
4224         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4225         ExprSetVVAProperty(pExpr, EP_NoReduce);
4226         pExpr->iAgg = (i16)i;
4227         pExpr->pAggInfo = pAggInfo;
4228         return WRC_Prune;
4229       }else{
4230         return WRC_Continue;
4231       }
4232     }
4233   }
4234   return WRC_Continue;
4235 }
4236 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4237   UNUSED_PARAMETER(pWalker);
4238   UNUSED_PARAMETER(pSelect);
4239   return WRC_Continue;
4240 }
4241 
4242 /*
4243 ** Analyze the pExpr expression looking for aggregate functions and
4244 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4245 ** points to.  Additional entries are made on the AggInfo object as
4246 ** necessary.
4247 **
4248 ** This routine should only be called after the expression has been
4249 ** analyzed by sqlite3ResolveExprNames().
4250 */
4251 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4252   Walker w;
4253   memset(&w, 0, sizeof(w));
4254   w.xExprCallback = analyzeAggregate;
4255   w.xSelectCallback = analyzeAggregatesInSelect;
4256   w.u.pNC = pNC;
4257   assert( pNC->pSrcList!=0 );
4258   sqlite3WalkExpr(&w, pExpr);
4259 }
4260 
4261 /*
4262 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4263 ** expression list.  Return the number of errors.
4264 **
4265 ** If an error is found, the analysis is cut short.
4266 */
4267 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4268   struct ExprList_item *pItem;
4269   int i;
4270   if( pList ){
4271     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4272       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4273     }
4274   }
4275 }
4276 
4277 /*
4278 ** Allocate a single new register for use to hold some intermediate result.
4279 */
4280 int sqlite3GetTempReg(Parse *pParse){
4281   if( pParse->nTempReg==0 ){
4282     return ++pParse->nMem;
4283   }
4284   return pParse->aTempReg[--pParse->nTempReg];
4285 }
4286 
4287 /*
4288 ** Deallocate a register, making available for reuse for some other
4289 ** purpose.
4290 **
4291 ** If a register is currently being used by the column cache, then
4292 ** the deallocation is deferred until the column cache line that uses
4293 ** the register becomes stale.
4294 */
4295 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4296   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4297     int i;
4298     struct yColCache *p;
4299     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4300       if( p->iReg==iReg ){
4301         p->tempReg = 1;
4302         return;
4303       }
4304     }
4305     pParse->aTempReg[pParse->nTempReg++] = iReg;
4306   }
4307 }
4308 
4309 /*
4310 ** Allocate or deallocate a block of nReg consecutive registers
4311 */
4312 int sqlite3GetTempRange(Parse *pParse, int nReg){
4313   int i, n;
4314   i = pParse->iRangeReg;
4315   n = pParse->nRangeReg;
4316   if( nReg<=n ){
4317     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4318     pParse->iRangeReg += nReg;
4319     pParse->nRangeReg -= nReg;
4320   }else{
4321     i = pParse->nMem+1;
4322     pParse->nMem += nReg;
4323   }
4324   return i;
4325 }
4326 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4327   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4328   if( nReg>pParse->nRangeReg ){
4329     pParse->nRangeReg = nReg;
4330     pParse->iRangeReg = iReg;
4331   }
4332 }
4333 
4334 /*
4335 ** Mark all temporary registers as being unavailable for reuse.
4336 */
4337 void sqlite3ClearTempRegCache(Parse *pParse){
4338   pParse->nTempReg = 0;
4339   pParse->nRangeReg = 0;
4340 }
4341