1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName /* Name of collating sequence */ 73 ){ 74 if( pCollName->n>0 ){ 75 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 76 if( pNew ){ 77 pNew->pLeft = pExpr; 78 pNew->flags |= EP_Collate|EP_Skip; 79 pExpr = pNew; 80 } 81 } 82 return pExpr; 83 } 84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 85 Token s; 86 assert( zC!=0 ); 87 s.z = zC; 88 s.n = sqlite3Strlen30(s.z); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( p->pTab!=0 136 && (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 p = p->pRight; 153 } 154 }else{ 155 break; 156 } 157 } 158 if( sqlite3CheckCollSeq(pParse, pColl) ){ 159 pColl = 0; 160 } 161 return pColl; 162 } 163 164 /* 165 ** pExpr is an operand of a comparison operator. aff2 is the 166 ** type affinity of the other operand. This routine returns the 167 ** type affinity that should be used for the comparison operator. 168 */ 169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 170 char aff1 = sqlite3ExprAffinity(pExpr); 171 if( aff1 && aff2 ){ 172 /* Both sides of the comparison are columns. If one has numeric 173 ** affinity, use that. Otherwise use no affinity. 174 */ 175 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 176 return SQLITE_AFF_NUMERIC; 177 }else{ 178 return SQLITE_AFF_NONE; 179 } 180 }else if( !aff1 && !aff2 ){ 181 /* Neither side of the comparison is a column. Compare the 182 ** results directly. 183 */ 184 return SQLITE_AFF_NONE; 185 }else{ 186 /* One side is a column, the other is not. Use the columns affinity. */ 187 assert( aff1==0 || aff2==0 ); 188 return (aff1 + aff2); 189 } 190 } 191 192 /* 193 ** pExpr is a comparison operator. Return the type affinity that should 194 ** be applied to both operands prior to doing the comparison. 195 */ 196 static char comparisonAffinity(Expr *pExpr){ 197 char aff; 198 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 199 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 200 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 201 assert( pExpr->pLeft ); 202 aff = sqlite3ExprAffinity(pExpr->pLeft); 203 if( pExpr->pRight ){ 204 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 205 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 206 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 207 }else if( !aff ){ 208 aff = SQLITE_AFF_NONE; 209 } 210 return aff; 211 } 212 213 /* 214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 215 ** idx_affinity is the affinity of an indexed column. Return true 216 ** if the index with affinity idx_affinity may be used to implement 217 ** the comparison in pExpr. 218 */ 219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 220 char aff = comparisonAffinity(pExpr); 221 switch( aff ){ 222 case SQLITE_AFF_NONE: 223 return 1; 224 case SQLITE_AFF_TEXT: 225 return idx_affinity==SQLITE_AFF_TEXT; 226 default: 227 return sqlite3IsNumericAffinity(idx_affinity); 228 } 229 } 230 231 /* 232 ** Return the P5 value that should be used for a binary comparison 233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 234 */ 235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 236 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 237 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 238 return aff; 239 } 240 241 /* 242 ** Return a pointer to the collation sequence that should be used by 243 ** a binary comparison operator comparing pLeft and pRight. 244 ** 245 ** If the left hand expression has a collating sequence type, then it is 246 ** used. Otherwise the collation sequence for the right hand expression 247 ** is used, or the default (BINARY) if neither expression has a collating 248 ** type. 249 ** 250 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 251 ** it is not considered. 252 */ 253 CollSeq *sqlite3BinaryCompareCollSeq( 254 Parse *pParse, 255 Expr *pLeft, 256 Expr *pRight 257 ){ 258 CollSeq *pColl; 259 assert( pLeft ); 260 if( pLeft->flags & EP_Collate ){ 261 pColl = sqlite3ExprCollSeq(pParse, pLeft); 262 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 263 pColl = sqlite3ExprCollSeq(pParse, pRight); 264 }else{ 265 pColl = sqlite3ExprCollSeq(pParse, pLeft); 266 if( !pColl ){ 267 pColl = sqlite3ExprCollSeq(pParse, pRight); 268 } 269 } 270 return pColl; 271 } 272 273 /* 274 ** Generate code for a comparison operator. 275 */ 276 static int codeCompare( 277 Parse *pParse, /* The parsing (and code generating) context */ 278 Expr *pLeft, /* The left operand */ 279 Expr *pRight, /* The right operand */ 280 int opcode, /* The comparison opcode */ 281 int in1, int in2, /* Register holding operands */ 282 int dest, /* Jump here if true. */ 283 int jumpIfNull /* If true, jump if either operand is NULL */ 284 ){ 285 int p5; 286 int addr; 287 CollSeq *p4; 288 289 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 290 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 291 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 292 (void*)p4, P4_COLLSEQ); 293 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 294 return addr; 295 } 296 297 #if SQLITE_MAX_EXPR_DEPTH>0 298 /* 299 ** Check that argument nHeight is less than or equal to the maximum 300 ** expression depth allowed. If it is not, leave an error message in 301 ** pParse. 302 */ 303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 304 int rc = SQLITE_OK; 305 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 306 if( nHeight>mxHeight ){ 307 sqlite3ErrorMsg(pParse, 308 "Expression tree is too large (maximum depth %d)", mxHeight 309 ); 310 rc = SQLITE_ERROR; 311 } 312 return rc; 313 } 314 315 /* The following three functions, heightOfExpr(), heightOfExprList() 316 ** and heightOfSelect(), are used to determine the maximum height 317 ** of any expression tree referenced by the structure passed as the 318 ** first argument. 319 ** 320 ** If this maximum height is greater than the current value pointed 321 ** to by pnHeight, the second parameter, then set *pnHeight to that 322 ** value. 323 */ 324 static void heightOfExpr(Expr *p, int *pnHeight){ 325 if( p ){ 326 if( p->nHeight>*pnHeight ){ 327 *pnHeight = p->nHeight; 328 } 329 } 330 } 331 static void heightOfExprList(ExprList *p, int *pnHeight){ 332 if( p ){ 333 int i; 334 for(i=0; i<p->nExpr; i++){ 335 heightOfExpr(p->a[i].pExpr, pnHeight); 336 } 337 } 338 } 339 static void heightOfSelect(Select *p, int *pnHeight){ 340 if( p ){ 341 heightOfExpr(p->pWhere, pnHeight); 342 heightOfExpr(p->pHaving, pnHeight); 343 heightOfExpr(p->pLimit, pnHeight); 344 heightOfExpr(p->pOffset, pnHeight); 345 heightOfExprList(p->pEList, pnHeight); 346 heightOfExprList(p->pGroupBy, pnHeight); 347 heightOfExprList(p->pOrderBy, pnHeight); 348 heightOfSelect(p->pPrior, pnHeight); 349 } 350 } 351 352 /* 353 ** Set the Expr.nHeight variable in the structure passed as an 354 ** argument. An expression with no children, Expr.pList or 355 ** Expr.pSelect member has a height of 1. Any other expression 356 ** has a height equal to the maximum height of any other 357 ** referenced Expr plus one. 358 */ 359 static void exprSetHeight(Expr *p){ 360 int nHeight = 0; 361 heightOfExpr(p->pLeft, &nHeight); 362 heightOfExpr(p->pRight, &nHeight); 363 if( ExprHasProperty(p, EP_xIsSelect) ){ 364 heightOfSelect(p->x.pSelect, &nHeight); 365 }else{ 366 heightOfExprList(p->x.pList, &nHeight); 367 } 368 p->nHeight = nHeight + 1; 369 } 370 371 /* 372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 373 ** the height is greater than the maximum allowed expression depth, 374 ** leave an error in pParse. 375 */ 376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 377 exprSetHeight(p); 378 sqlite3ExprCheckHeight(pParse, p->nHeight); 379 } 380 381 /* 382 ** Return the maximum height of any expression tree referenced 383 ** by the select statement passed as an argument. 384 */ 385 int sqlite3SelectExprHeight(Select *p){ 386 int nHeight = 0; 387 heightOfSelect(p, &nHeight); 388 return nHeight; 389 } 390 #else 391 #define exprSetHeight(y) 392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 393 394 /* 395 ** This routine is the core allocator for Expr nodes. 396 ** 397 ** Construct a new expression node and return a pointer to it. Memory 398 ** for this node and for the pToken argument is a single allocation 399 ** obtained from sqlite3DbMalloc(). The calling function 400 ** is responsible for making sure the node eventually gets freed. 401 ** 402 ** If dequote is true, then the token (if it exists) is dequoted. 403 ** If dequote is false, no dequoting is performance. The deQuote 404 ** parameter is ignored if pToken is NULL or if the token does not 405 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 406 ** then the EP_DblQuoted flag is set on the expression node. 407 ** 408 ** Special case: If op==TK_INTEGER and pToken points to a string that 409 ** can be translated into a 32-bit integer, then the token is not 410 ** stored in u.zToken. Instead, the integer values is written 411 ** into u.iValue and the EP_IntValue flag is set. No extra storage 412 ** is allocated to hold the integer text and the dequote flag is ignored. 413 */ 414 Expr *sqlite3ExprAlloc( 415 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 416 int op, /* Expression opcode */ 417 const Token *pToken, /* Token argument. Might be NULL */ 418 int dequote /* True to dequote */ 419 ){ 420 Expr *pNew; 421 int nExtra = 0; 422 int iValue = 0; 423 424 if( pToken ){ 425 if( op!=TK_INTEGER || pToken->z==0 426 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 427 nExtra = pToken->n+1; 428 assert( iValue>=0 ); 429 } 430 } 431 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 432 if( pNew ){ 433 pNew->op = (u8)op; 434 pNew->iAgg = -1; 435 if( pToken ){ 436 if( nExtra==0 ){ 437 pNew->flags |= EP_IntValue; 438 pNew->u.iValue = iValue; 439 }else{ 440 int c; 441 pNew->u.zToken = (char*)&pNew[1]; 442 assert( pToken->z!=0 || pToken->n==0 ); 443 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 444 pNew->u.zToken[pToken->n] = 0; 445 if( dequote && nExtra>=3 446 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 447 sqlite3Dequote(pNew->u.zToken); 448 if( c=='"' ) pNew->flags |= EP_DblQuoted; 449 } 450 } 451 } 452 #if SQLITE_MAX_EXPR_DEPTH>0 453 pNew->nHeight = 1; 454 #endif 455 } 456 return pNew; 457 } 458 459 /* 460 ** Allocate a new expression node from a zero-terminated token that has 461 ** already been dequoted. 462 */ 463 Expr *sqlite3Expr( 464 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 465 int op, /* Expression opcode */ 466 const char *zToken /* Token argument. Might be NULL */ 467 ){ 468 Token x; 469 x.z = zToken; 470 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 471 return sqlite3ExprAlloc(db, op, &x, 0); 472 } 473 474 /* 475 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 476 ** 477 ** If pRoot==NULL that means that a memory allocation error has occurred. 478 ** In that case, delete the subtrees pLeft and pRight. 479 */ 480 void sqlite3ExprAttachSubtrees( 481 sqlite3 *db, 482 Expr *pRoot, 483 Expr *pLeft, 484 Expr *pRight 485 ){ 486 if( pRoot==0 ){ 487 assert( db->mallocFailed ); 488 sqlite3ExprDelete(db, pLeft); 489 sqlite3ExprDelete(db, pRight); 490 }else{ 491 if( pRight ){ 492 pRoot->pRight = pRight; 493 pRoot->flags |= EP_Collate & pRight->flags; 494 } 495 if( pLeft ){ 496 pRoot->pLeft = pLeft; 497 pRoot->flags |= EP_Collate & pLeft->flags; 498 } 499 exprSetHeight(pRoot); 500 } 501 } 502 503 /* 504 ** Allocate an Expr node which joins as many as two subtrees. 505 ** 506 ** One or both of the subtrees can be NULL. Return a pointer to the new 507 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 508 ** free the subtrees and return NULL. 509 */ 510 Expr *sqlite3PExpr( 511 Parse *pParse, /* Parsing context */ 512 int op, /* Expression opcode */ 513 Expr *pLeft, /* Left operand */ 514 Expr *pRight, /* Right operand */ 515 const Token *pToken /* Argument token */ 516 ){ 517 Expr *p; 518 if( op==TK_AND && pLeft && pRight ){ 519 /* Take advantage of short-circuit false optimization for AND */ 520 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 521 }else{ 522 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 523 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 524 } 525 if( p ) { 526 sqlite3ExprCheckHeight(pParse, p->nHeight); 527 } 528 return p; 529 } 530 531 /* 532 ** If the expression is always either TRUE or FALSE (respectively), 533 ** then return 1. If one cannot determine the truth value of the 534 ** expression at compile-time return 0. 535 ** 536 ** This is an optimization. If is OK to return 0 here even if 537 ** the expression really is always false or false (a false negative). 538 ** But it is a bug to return 1 if the expression might have different 539 ** boolean values in different circumstances (a false positive.) 540 ** 541 ** Note that if the expression is part of conditional for a 542 ** LEFT JOIN, then we cannot determine at compile-time whether or not 543 ** is it true or false, so always return 0. 544 */ 545 static int exprAlwaysTrue(Expr *p){ 546 int v = 0; 547 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 548 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 549 return v!=0; 550 } 551 static int exprAlwaysFalse(Expr *p){ 552 int v = 0; 553 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 554 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 555 return v==0; 556 } 557 558 /* 559 ** Join two expressions using an AND operator. If either expression is 560 ** NULL, then just return the other expression. 561 ** 562 ** If one side or the other of the AND is known to be false, then instead 563 ** of returning an AND expression, just return a constant expression with 564 ** a value of false. 565 */ 566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 567 if( pLeft==0 ){ 568 return pRight; 569 }else if( pRight==0 ){ 570 return pLeft; 571 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 572 sqlite3ExprDelete(db, pLeft); 573 sqlite3ExprDelete(db, pRight); 574 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 575 }else{ 576 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 577 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 578 return pNew; 579 } 580 } 581 582 /* 583 ** Construct a new expression node for a function with multiple 584 ** arguments. 585 */ 586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 587 Expr *pNew; 588 sqlite3 *db = pParse->db; 589 assert( pToken ); 590 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 591 if( pNew==0 ){ 592 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 593 return 0; 594 } 595 pNew->x.pList = pList; 596 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 597 sqlite3ExprSetHeight(pParse, pNew); 598 return pNew; 599 } 600 601 /* 602 ** Assign a variable number to an expression that encodes a wildcard 603 ** in the original SQL statement. 604 ** 605 ** Wildcards consisting of a single "?" are assigned the next sequential 606 ** variable number. 607 ** 608 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 609 ** sure "nnn" is not too be to avoid a denial of service attack when 610 ** the SQL statement comes from an external source. 611 ** 612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 613 ** as the previous instance of the same wildcard. Or if this is the first 614 ** instance of the wildcard, the next sequential variable number is 615 ** assigned. 616 */ 617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 618 sqlite3 *db = pParse->db; 619 const char *z; 620 621 if( pExpr==0 ) return; 622 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 623 z = pExpr->u.zToken; 624 assert( z!=0 ); 625 assert( z[0]!=0 ); 626 if( z[1]==0 ){ 627 /* Wildcard of the form "?". Assign the next variable number */ 628 assert( z[0]=='?' ); 629 pExpr->iColumn = (ynVar)(++pParse->nVar); 630 }else{ 631 ynVar x = 0; 632 u32 n = sqlite3Strlen30(z); 633 if( z[0]=='?' ){ 634 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 635 ** use it as the variable number */ 636 i64 i; 637 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 638 pExpr->iColumn = x = (ynVar)i; 639 testcase( i==0 ); 640 testcase( i==1 ); 641 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 642 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 643 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 644 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 645 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 646 x = 0; 647 } 648 if( i>pParse->nVar ){ 649 pParse->nVar = (int)i; 650 } 651 }else{ 652 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 653 ** number as the prior appearance of the same name, or if the name 654 ** has never appeared before, reuse the same variable number 655 */ 656 ynVar i; 657 for(i=0; i<pParse->nzVar; i++){ 658 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 659 pExpr->iColumn = x = (ynVar)i+1; 660 break; 661 } 662 } 663 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 664 } 665 if( x>0 ){ 666 if( x>pParse->nzVar ){ 667 char **a; 668 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 669 if( a==0 ) return; /* Error reported through db->mallocFailed */ 670 pParse->azVar = a; 671 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 672 pParse->nzVar = x; 673 } 674 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 675 sqlite3DbFree(db, pParse->azVar[x-1]); 676 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 677 } 678 } 679 } 680 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 681 sqlite3ErrorMsg(pParse, "too many SQL variables"); 682 } 683 } 684 685 /* 686 ** Recursively delete an expression tree. 687 */ 688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 689 if( p==0 ) return; 690 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 691 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 692 if( !ExprHasProperty(p, EP_TokenOnly) ){ 693 /* The Expr.x union is never used at the same time as Expr.pRight */ 694 assert( p->x.pList==0 || p->pRight==0 ); 695 sqlite3ExprDelete(db, p->pLeft); 696 sqlite3ExprDelete(db, p->pRight); 697 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 698 if( ExprHasProperty(p, EP_xIsSelect) ){ 699 sqlite3SelectDelete(db, p->x.pSelect); 700 }else{ 701 sqlite3ExprListDelete(db, p->x.pList); 702 } 703 } 704 if( !ExprHasProperty(p, EP_Static) ){ 705 sqlite3DbFree(db, p); 706 } 707 } 708 709 /* 710 ** Return the number of bytes allocated for the expression structure 711 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 713 */ 714 static int exprStructSize(Expr *p){ 715 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 716 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 717 return EXPR_FULLSIZE; 718 } 719 720 /* 721 ** The dupedExpr*Size() routines each return the number of bytes required 722 ** to store a copy of an expression or expression tree. They differ in 723 ** how much of the tree is measured. 724 ** 725 ** dupedExprStructSize() Size of only the Expr structure 726 ** dupedExprNodeSize() Size of Expr + space for token 727 ** dupedExprSize() Expr + token + subtree components 728 ** 729 *************************************************************************** 730 ** 731 ** The dupedExprStructSize() function returns two values OR-ed together: 732 ** (1) the space required for a copy of the Expr structure only and 733 ** (2) the EP_xxx flags that indicate what the structure size should be. 734 ** The return values is always one of: 735 ** 736 ** EXPR_FULLSIZE 737 ** EXPR_REDUCEDSIZE | EP_Reduced 738 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 739 ** 740 ** The size of the structure can be found by masking the return value 741 ** of this routine with 0xfff. The flags can be found by masking the 742 ** return value with EP_Reduced|EP_TokenOnly. 743 ** 744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 745 ** (unreduced) Expr objects as they or originally constructed by the parser. 746 ** During expression analysis, extra information is computed and moved into 747 ** later parts of teh Expr object and that extra information might get chopped 748 ** off if the expression is reduced. Note also that it does not work to 749 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 750 ** to reduce a pristine expression tree from the parser. The implementation 751 ** of dupedExprStructSize() contain multiple assert() statements that attempt 752 ** to enforce this constraint. 753 */ 754 static int dupedExprStructSize(Expr *p, int flags){ 755 int nSize; 756 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 757 assert( EXPR_FULLSIZE<=0xfff ); 758 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 759 if( 0==(flags&EXPRDUP_REDUCE) ){ 760 nSize = EXPR_FULLSIZE; 761 }else{ 762 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 763 assert( !ExprHasProperty(p, EP_FromJoin) ); 764 assert( !ExprHasProperty(p, EP_MemToken) ); 765 assert( !ExprHasProperty(p, EP_NoReduce) ); 766 if( p->pLeft || p->x.pList ){ 767 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 768 }else{ 769 assert( p->pRight==0 ); 770 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 771 } 772 } 773 return nSize; 774 } 775 776 /* 777 ** This function returns the space in bytes required to store the copy 778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 779 ** string is defined.) 780 */ 781 static int dupedExprNodeSize(Expr *p, int flags){ 782 int nByte = dupedExprStructSize(p, flags) & 0xfff; 783 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 784 nByte += sqlite3Strlen30(p->u.zToken)+1; 785 } 786 return ROUND8(nByte); 787 } 788 789 /* 790 ** Return the number of bytes required to create a duplicate of the 791 ** expression passed as the first argument. The second argument is a 792 ** mask containing EXPRDUP_XXX flags. 793 ** 794 ** The value returned includes space to create a copy of the Expr struct 795 ** itself and the buffer referred to by Expr.u.zToken, if any. 796 ** 797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 799 ** and Expr.pRight variables (but not for any structures pointed to or 800 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 801 */ 802 static int dupedExprSize(Expr *p, int flags){ 803 int nByte = 0; 804 if( p ){ 805 nByte = dupedExprNodeSize(p, flags); 806 if( flags&EXPRDUP_REDUCE ){ 807 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 808 } 809 } 810 return nByte; 811 } 812 813 /* 814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 816 ** to store the copy of expression p, the copies of p->u.zToken 817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 818 ** if any. Before returning, *pzBuffer is set to the first byte past the 819 ** portion of the buffer copied into by this function. 820 */ 821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 822 Expr *pNew = 0; /* Value to return */ 823 if( p ){ 824 const int isReduced = (flags&EXPRDUP_REDUCE); 825 u8 *zAlloc; 826 u32 staticFlag = 0; 827 828 assert( pzBuffer==0 || isReduced ); 829 830 /* Figure out where to write the new Expr structure. */ 831 if( pzBuffer ){ 832 zAlloc = *pzBuffer; 833 staticFlag = EP_Static; 834 }else{ 835 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 836 } 837 pNew = (Expr *)zAlloc; 838 839 if( pNew ){ 840 /* Set nNewSize to the size allocated for the structure pointed to 841 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 842 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 843 ** by the copy of the p->u.zToken string (if any). 844 */ 845 const unsigned nStructSize = dupedExprStructSize(p, flags); 846 const int nNewSize = nStructSize & 0xfff; 847 int nToken; 848 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 849 nToken = sqlite3Strlen30(p->u.zToken) + 1; 850 }else{ 851 nToken = 0; 852 } 853 if( isReduced ){ 854 assert( ExprHasProperty(p, EP_Reduced)==0 ); 855 memcpy(zAlloc, p, nNewSize); 856 }else{ 857 int nSize = exprStructSize(p); 858 memcpy(zAlloc, p, nSize); 859 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 860 } 861 862 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 863 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 864 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 865 pNew->flags |= staticFlag; 866 867 /* Copy the p->u.zToken string, if any. */ 868 if( nToken ){ 869 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 870 memcpy(zToken, p->u.zToken, nToken); 871 } 872 873 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 874 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 875 if( ExprHasProperty(p, EP_xIsSelect) ){ 876 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 877 }else{ 878 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 879 } 880 } 881 882 /* Fill in pNew->pLeft and pNew->pRight. */ 883 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 884 zAlloc += dupedExprNodeSize(p, flags); 885 if( ExprHasProperty(pNew, EP_Reduced) ){ 886 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 887 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 888 } 889 if( pzBuffer ){ 890 *pzBuffer = zAlloc; 891 } 892 }else{ 893 if( !ExprHasProperty(p, EP_TokenOnly) ){ 894 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 895 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 896 } 897 } 898 899 } 900 } 901 return pNew; 902 } 903 904 /* 905 ** Create and return a deep copy of the object passed as the second 906 ** argument. If an OOM condition is encountered, NULL is returned 907 ** and the db->mallocFailed flag set. 908 */ 909 #ifndef SQLITE_OMIT_CTE 910 static With *withDup(sqlite3 *db, With *p){ 911 With *pRet = 0; 912 if( p ){ 913 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 914 pRet = sqlite3DbMallocZero(db, nByte); 915 if( pRet ){ 916 int i; 917 pRet->nCte = p->nCte; 918 for(i=0; i<p->nCte; i++){ 919 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 920 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 921 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 922 } 923 } 924 } 925 return pRet; 926 } 927 #else 928 # define withDup(x,y) 0 929 #endif 930 931 /* 932 ** The following group of routines make deep copies of expressions, 933 ** expression lists, ID lists, and select statements. The copies can 934 ** be deleted (by being passed to their respective ...Delete() routines) 935 ** without effecting the originals. 936 ** 937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 939 ** by subsequent calls to sqlite*ListAppend() routines. 940 ** 941 ** Any tables that the SrcList might point to are not duplicated. 942 ** 943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 945 ** truncated version of the usual Expr structure that will be stored as 946 ** part of the in-memory representation of the database schema. 947 */ 948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 949 return exprDup(db, p, flags, 0); 950 } 951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 952 ExprList *pNew; 953 struct ExprList_item *pItem, *pOldItem; 954 int i; 955 if( p==0 ) return 0; 956 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 957 if( pNew==0 ) return 0; 958 pNew->nExpr = i = p->nExpr; 959 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 960 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 961 if( pItem==0 ){ 962 sqlite3DbFree(db, pNew); 963 return 0; 964 } 965 pOldItem = p->a; 966 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 967 Expr *pOldExpr = pOldItem->pExpr; 968 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 969 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 970 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 971 pItem->sortOrder = pOldItem->sortOrder; 972 pItem->done = 0; 973 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 974 pItem->u = pOldItem->u; 975 } 976 return pNew; 977 } 978 979 /* 980 ** If cursors, triggers, views and subqueries are all omitted from 981 ** the build, then none of the following routines, except for 982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 983 ** called with a NULL argument. 984 */ 985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 986 || !defined(SQLITE_OMIT_SUBQUERY) 987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 988 SrcList *pNew; 989 int i; 990 int nByte; 991 if( p==0 ) return 0; 992 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 993 pNew = sqlite3DbMallocRaw(db, nByte ); 994 if( pNew==0 ) return 0; 995 pNew->nSrc = pNew->nAlloc = p->nSrc; 996 for(i=0; i<p->nSrc; i++){ 997 struct SrcList_item *pNewItem = &pNew->a[i]; 998 struct SrcList_item *pOldItem = &p->a[i]; 999 Table *pTab; 1000 pNewItem->pSchema = pOldItem->pSchema; 1001 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1002 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1004 pNewItem->jointype = pOldItem->jointype; 1005 pNewItem->iCursor = pOldItem->iCursor; 1006 pNewItem->addrFillSub = pOldItem->addrFillSub; 1007 pNewItem->regReturn = pOldItem->regReturn; 1008 pNewItem->isCorrelated = pOldItem->isCorrelated; 1009 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1010 pNewItem->isRecursive = pOldItem->isRecursive; 1011 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1012 pNewItem->notIndexed = pOldItem->notIndexed; 1013 pNewItem->pIndex = pOldItem->pIndex; 1014 pTab = pNewItem->pTab = pOldItem->pTab; 1015 if( pTab ){ 1016 pTab->nRef++; 1017 } 1018 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1019 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1020 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1021 pNewItem->colUsed = pOldItem->colUsed; 1022 } 1023 return pNew; 1024 } 1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1026 IdList *pNew; 1027 int i; 1028 if( p==0 ) return 0; 1029 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1030 if( pNew==0 ) return 0; 1031 pNew->nId = p->nId; 1032 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1033 if( pNew->a==0 ){ 1034 sqlite3DbFree(db, pNew); 1035 return 0; 1036 } 1037 /* Note that because the size of the allocation for p->a[] is not 1038 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1039 ** on the duplicate created by this function. */ 1040 for(i=0; i<p->nId; i++){ 1041 struct IdList_item *pNewItem = &pNew->a[i]; 1042 struct IdList_item *pOldItem = &p->a[i]; 1043 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1044 pNewItem->idx = pOldItem->idx; 1045 } 1046 return pNew; 1047 } 1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1049 Select *pNew, *pPrior; 1050 if( p==0 ) return 0; 1051 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1052 if( pNew==0 ) return 0; 1053 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1054 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1055 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1056 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1057 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1058 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1059 pNew->op = p->op; 1060 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1061 if( pPrior ) pPrior->pNext = pNew; 1062 pNew->pNext = 0; 1063 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1064 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1065 pNew->iLimit = 0; 1066 pNew->iOffset = 0; 1067 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1068 pNew->addrOpenEphm[0] = -1; 1069 pNew->addrOpenEphm[1] = -1; 1070 pNew->nSelectRow = p->nSelectRow; 1071 pNew->pWith = withDup(db, p->pWith); 1072 return pNew; 1073 } 1074 #else 1075 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1076 assert( p==0 ); 1077 return 0; 1078 } 1079 #endif 1080 1081 1082 /* 1083 ** Add a new element to the end of an expression list. If pList is 1084 ** initially NULL, then create a new expression list. 1085 ** 1086 ** If a memory allocation error occurs, the entire list is freed and 1087 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1088 ** that the new entry was successfully appended. 1089 */ 1090 ExprList *sqlite3ExprListAppend( 1091 Parse *pParse, /* Parsing context */ 1092 ExprList *pList, /* List to which to append. Might be NULL */ 1093 Expr *pExpr /* Expression to be appended. Might be NULL */ 1094 ){ 1095 sqlite3 *db = pParse->db; 1096 if( pList==0 ){ 1097 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1098 if( pList==0 ){ 1099 goto no_mem; 1100 } 1101 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1102 if( pList->a==0 ) goto no_mem; 1103 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1104 struct ExprList_item *a; 1105 assert( pList->nExpr>0 ); 1106 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1107 if( a==0 ){ 1108 goto no_mem; 1109 } 1110 pList->a = a; 1111 } 1112 assert( pList->a!=0 ); 1113 if( 1 ){ 1114 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1115 memset(pItem, 0, sizeof(*pItem)); 1116 pItem->pExpr = pExpr; 1117 } 1118 return pList; 1119 1120 no_mem: 1121 /* Avoid leaking memory if malloc has failed. */ 1122 sqlite3ExprDelete(db, pExpr); 1123 sqlite3ExprListDelete(db, pList); 1124 return 0; 1125 } 1126 1127 /* 1128 ** Set the ExprList.a[].zName element of the most recently added item 1129 ** on the expression list. 1130 ** 1131 ** pList might be NULL following an OOM error. But pName should never be 1132 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1133 ** is set. 1134 */ 1135 void sqlite3ExprListSetName( 1136 Parse *pParse, /* Parsing context */ 1137 ExprList *pList, /* List to which to add the span. */ 1138 Token *pName, /* Name to be added */ 1139 int dequote /* True to cause the name to be dequoted */ 1140 ){ 1141 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1142 if( pList ){ 1143 struct ExprList_item *pItem; 1144 assert( pList->nExpr>0 ); 1145 pItem = &pList->a[pList->nExpr-1]; 1146 assert( pItem->zName==0 ); 1147 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1148 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1149 } 1150 } 1151 1152 /* 1153 ** Set the ExprList.a[].zSpan element of the most recently added item 1154 ** on the expression list. 1155 ** 1156 ** pList might be NULL following an OOM error. But pSpan should never be 1157 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1158 ** is set. 1159 */ 1160 void sqlite3ExprListSetSpan( 1161 Parse *pParse, /* Parsing context */ 1162 ExprList *pList, /* List to which to add the span. */ 1163 ExprSpan *pSpan /* The span to be added */ 1164 ){ 1165 sqlite3 *db = pParse->db; 1166 assert( pList!=0 || db->mallocFailed!=0 ); 1167 if( pList ){ 1168 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1169 assert( pList->nExpr>0 ); 1170 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1171 sqlite3DbFree(db, pItem->zSpan); 1172 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1173 (int)(pSpan->zEnd - pSpan->zStart)); 1174 } 1175 } 1176 1177 /* 1178 ** If the expression list pEList contains more than iLimit elements, 1179 ** leave an error message in pParse. 1180 */ 1181 void sqlite3ExprListCheckLength( 1182 Parse *pParse, 1183 ExprList *pEList, 1184 const char *zObject 1185 ){ 1186 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1187 testcase( pEList && pEList->nExpr==mx ); 1188 testcase( pEList && pEList->nExpr==mx+1 ); 1189 if( pEList && pEList->nExpr>mx ){ 1190 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1191 } 1192 } 1193 1194 /* 1195 ** Delete an entire expression list. 1196 */ 1197 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1198 int i; 1199 struct ExprList_item *pItem; 1200 if( pList==0 ) return; 1201 assert( pList->a!=0 || pList->nExpr==0 ); 1202 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1203 sqlite3ExprDelete(db, pItem->pExpr); 1204 sqlite3DbFree(db, pItem->zName); 1205 sqlite3DbFree(db, pItem->zSpan); 1206 } 1207 sqlite3DbFree(db, pList->a); 1208 sqlite3DbFree(db, pList); 1209 } 1210 1211 /* 1212 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1213 ** to an integer. These routines are checking an expression to see 1214 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1215 ** not constant. 1216 ** 1217 ** These callback routines are used to implement the following: 1218 ** 1219 ** sqlite3ExprIsConstant() 1220 ** sqlite3ExprIsConstantNotJoin() 1221 ** sqlite3ExprIsConstantOrFunction() 1222 ** 1223 */ 1224 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1225 1226 /* If pWalker->u.i is 3 then any term of the expression that comes from 1227 ** the ON or USING clauses of a join disqualifies the expression 1228 ** from being considered constant. */ 1229 if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1230 pWalker->u.i = 0; 1231 return WRC_Abort; 1232 } 1233 1234 switch( pExpr->op ){ 1235 /* Consider functions to be constant if all their arguments are constant 1236 ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST 1237 ** flag. */ 1238 case TK_FUNCTION: 1239 if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){ 1240 return WRC_Continue; 1241 } 1242 /* Fall through */ 1243 case TK_ID: 1244 case TK_COLUMN: 1245 case TK_AGG_FUNCTION: 1246 case TK_AGG_COLUMN: 1247 testcase( pExpr->op==TK_ID ); 1248 testcase( pExpr->op==TK_COLUMN ); 1249 testcase( pExpr->op==TK_AGG_FUNCTION ); 1250 testcase( pExpr->op==TK_AGG_COLUMN ); 1251 pWalker->u.i = 0; 1252 return WRC_Abort; 1253 default: 1254 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1255 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1256 return WRC_Continue; 1257 } 1258 } 1259 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1260 UNUSED_PARAMETER(NotUsed); 1261 pWalker->u.i = 0; 1262 return WRC_Abort; 1263 } 1264 static int exprIsConst(Expr *p, int initFlag){ 1265 Walker w; 1266 memset(&w, 0, sizeof(w)); 1267 w.u.i = initFlag; 1268 w.xExprCallback = exprNodeIsConstant; 1269 w.xSelectCallback = selectNodeIsConstant; 1270 sqlite3WalkExpr(&w, p); 1271 return w.u.i; 1272 } 1273 1274 /* 1275 ** Walk an expression tree. Return 1 if the expression is constant 1276 ** and 0 if it involves variables or function calls. 1277 ** 1278 ** For the purposes of this function, a double-quoted string (ex: "abc") 1279 ** is considered a variable but a single-quoted string (ex: 'abc') is 1280 ** a constant. 1281 */ 1282 int sqlite3ExprIsConstant(Expr *p){ 1283 return exprIsConst(p, 1); 1284 } 1285 1286 /* 1287 ** Walk an expression tree. Return 1 if the expression is constant 1288 ** that does no originate from the ON or USING clauses of a join. 1289 ** Return 0 if it involves variables or function calls or terms from 1290 ** an ON or USING clause. 1291 */ 1292 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1293 return exprIsConst(p, 3); 1294 } 1295 1296 /* 1297 ** Walk an expression tree. Return 1 if the expression is constant 1298 ** or a function call with constant arguments. Return and 0 if there 1299 ** are any variables. 1300 ** 1301 ** For the purposes of this function, a double-quoted string (ex: "abc") 1302 ** is considered a variable but a single-quoted string (ex: 'abc') is 1303 ** a constant. 1304 */ 1305 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1306 return exprIsConst(p, 2); 1307 } 1308 1309 /* 1310 ** If the expression p codes a constant integer that is small enough 1311 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1312 ** in *pValue. If the expression is not an integer or if it is too big 1313 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1314 */ 1315 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1316 int rc = 0; 1317 1318 /* If an expression is an integer literal that fits in a signed 32-bit 1319 ** integer, then the EP_IntValue flag will have already been set */ 1320 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1321 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1322 1323 if( p->flags & EP_IntValue ){ 1324 *pValue = p->u.iValue; 1325 return 1; 1326 } 1327 switch( p->op ){ 1328 case TK_UPLUS: { 1329 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1330 break; 1331 } 1332 case TK_UMINUS: { 1333 int v; 1334 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1335 assert( v!=(-2147483647-1) ); 1336 *pValue = -v; 1337 rc = 1; 1338 } 1339 break; 1340 } 1341 default: break; 1342 } 1343 return rc; 1344 } 1345 1346 /* 1347 ** Return FALSE if there is no chance that the expression can be NULL. 1348 ** 1349 ** If the expression might be NULL or if the expression is too complex 1350 ** to tell return TRUE. 1351 ** 1352 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1353 ** when we know that a value cannot be NULL. Hence, a false positive 1354 ** (returning TRUE when in fact the expression can never be NULL) might 1355 ** be a small performance hit but is otherwise harmless. On the other 1356 ** hand, a false negative (returning FALSE when the result could be NULL) 1357 ** will likely result in an incorrect answer. So when in doubt, return 1358 ** TRUE. 1359 */ 1360 int sqlite3ExprCanBeNull(const Expr *p){ 1361 u8 op; 1362 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1363 op = p->op; 1364 if( op==TK_REGISTER ) op = p->op2; 1365 switch( op ){ 1366 case TK_INTEGER: 1367 case TK_STRING: 1368 case TK_FLOAT: 1369 case TK_BLOB: 1370 return 0; 1371 case TK_COLUMN: 1372 assert( p->pTab!=0 ); 1373 return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0; 1374 default: 1375 return 1; 1376 } 1377 } 1378 1379 /* 1380 ** Return TRUE if the given expression is a constant which would be 1381 ** unchanged by OP_Affinity with the affinity given in the second 1382 ** argument. 1383 ** 1384 ** This routine is used to determine if the OP_Affinity operation 1385 ** can be omitted. When in doubt return FALSE. A false negative 1386 ** is harmless. A false positive, however, can result in the wrong 1387 ** answer. 1388 */ 1389 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1390 u8 op; 1391 if( aff==SQLITE_AFF_NONE ) return 1; 1392 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1393 op = p->op; 1394 if( op==TK_REGISTER ) op = p->op2; 1395 switch( op ){ 1396 case TK_INTEGER: { 1397 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1398 } 1399 case TK_FLOAT: { 1400 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1401 } 1402 case TK_STRING: { 1403 return aff==SQLITE_AFF_TEXT; 1404 } 1405 case TK_BLOB: { 1406 return 1; 1407 } 1408 case TK_COLUMN: { 1409 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1410 return p->iColumn<0 1411 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1412 } 1413 default: { 1414 return 0; 1415 } 1416 } 1417 } 1418 1419 /* 1420 ** Return TRUE if the given string is a row-id column name. 1421 */ 1422 int sqlite3IsRowid(const char *z){ 1423 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1424 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1425 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1426 return 0; 1427 } 1428 1429 /* 1430 ** Return true if we are able to the IN operator optimization on a 1431 ** query of the form 1432 ** 1433 ** x IN (SELECT ...) 1434 ** 1435 ** Where the SELECT... clause is as specified by the parameter to this 1436 ** routine. 1437 ** 1438 ** The Select object passed in has already been preprocessed and no 1439 ** errors have been found. 1440 */ 1441 #ifndef SQLITE_OMIT_SUBQUERY 1442 static int isCandidateForInOpt(Select *p){ 1443 SrcList *pSrc; 1444 ExprList *pEList; 1445 Table *pTab; 1446 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1447 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1448 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1449 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1450 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1451 return 0; /* No DISTINCT keyword and no aggregate functions */ 1452 } 1453 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1454 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1455 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1456 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1457 pSrc = p->pSrc; 1458 assert( pSrc!=0 ); 1459 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1460 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1461 pTab = pSrc->a[0].pTab; 1462 if( NEVER(pTab==0) ) return 0; 1463 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1464 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1465 pEList = p->pEList; 1466 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1467 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1468 return 1; 1469 } 1470 #endif /* SQLITE_OMIT_SUBQUERY */ 1471 1472 /* 1473 ** Code an OP_Once instruction and allocate space for its flag. Return the 1474 ** address of the new instruction. 1475 */ 1476 int sqlite3CodeOnce(Parse *pParse){ 1477 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1478 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1479 } 1480 1481 /* 1482 ** Generate code that checks the left-most column of index table iCur to see if 1483 ** it contains any NULL entries. Cause the register at regHasNull to be set 1484 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1485 ** to be set to NULL if iCur contains one or more NULL values. 1486 */ 1487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1488 int j1; 1489 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1490 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1491 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1492 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1493 VdbeComment((v, "first_entry_in(%d)", iCur)); 1494 sqlite3VdbeJumpHere(v, j1); 1495 } 1496 1497 1498 #ifndef SQLITE_OMIT_SUBQUERY 1499 /* 1500 ** The argument is an IN operator with a list (not a subquery) on the 1501 ** right-hand side. Return TRUE if that list is constant. 1502 */ 1503 static int sqlite3InRhsIsConstant(Expr *pIn){ 1504 Expr *pLHS; 1505 int res; 1506 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1507 pLHS = pIn->pLeft; 1508 pIn->pLeft = 0; 1509 res = sqlite3ExprIsConstant(pIn); 1510 pIn->pLeft = pLHS; 1511 return res; 1512 } 1513 #endif 1514 1515 /* 1516 ** This function is used by the implementation of the IN (...) operator. 1517 ** The pX parameter is the expression on the RHS of the IN operator, which 1518 ** might be either a list of expressions or a subquery. 1519 ** 1520 ** The job of this routine is to find or create a b-tree object that can 1521 ** be used either to test for membership in the RHS set or to iterate through 1522 ** all members of the RHS set, skipping duplicates. 1523 ** 1524 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1525 ** and pX->iTable is set to the index of that cursor. 1526 ** 1527 ** The returned value of this function indicates the b-tree type, as follows: 1528 ** 1529 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1530 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1531 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1532 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1533 ** populated epheremal table. 1534 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1535 ** implemented as a sequence of comparisons. 1536 ** 1537 ** An existing b-tree might be used if the RHS expression pX is a simple 1538 ** subquery such as: 1539 ** 1540 ** SELECT <column> FROM <table> 1541 ** 1542 ** If the RHS of the IN operator is a list or a more complex subquery, then 1543 ** an ephemeral table might need to be generated from the RHS and then 1544 ** pX->iTable made to point to the ephemeral table instead of an 1545 ** existing table. 1546 ** 1547 ** The inFlags parameter must contain exactly one of the bits 1548 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1549 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1550 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1551 ** IN index will be used to loop over all values of the RHS of the 1552 ** IN operator. 1553 ** 1554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1555 ** through the set members) then the b-tree must not contain duplicates. 1556 ** An epheremal table must be used unless the selected <column> is guaranteed 1557 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1558 ** has a UNIQUE constraint or UNIQUE index. 1559 ** 1560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1561 ** for fast set membership tests) then an epheremal table must 1562 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1563 ** be found with <column> as its left-most column. 1564 ** 1565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1566 ** if the RHS of the IN operator is a list (not a subquery) then this 1567 ** routine might decide that creating an ephemeral b-tree for membership 1568 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1569 ** calling routine should implement the IN operator using a sequence 1570 ** of Eq or Ne comparison operations. 1571 ** 1572 ** When the b-tree is being used for membership tests, the calling function 1573 ** might need to know whether or not the RHS side of the IN operator 1574 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1575 ** if there is any chance that the (...) might contain a NULL value at 1576 ** runtime, then a register is allocated and the register number written 1577 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1578 ** NULL value, then *prRhsHasNull is left unchanged. 1579 ** 1580 ** If a register is allocated and its location stored in *prRhsHasNull, then 1581 ** the value in that register will be NULL if the b-tree contains one or more 1582 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1583 ** NULL values. 1584 */ 1585 #ifndef SQLITE_OMIT_SUBQUERY 1586 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1587 Select *p; /* SELECT to the right of IN operator */ 1588 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1589 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1590 int mustBeUnique; /* True if RHS must be unique */ 1591 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1592 1593 assert( pX->op==TK_IN ); 1594 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1595 1596 /* Check to see if an existing table or index can be used to 1597 ** satisfy the query. This is preferable to generating a new 1598 ** ephemeral table. 1599 */ 1600 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1601 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1602 sqlite3 *db = pParse->db; /* Database connection */ 1603 Table *pTab; /* Table <table>. */ 1604 Expr *pExpr; /* Expression <column> */ 1605 i16 iCol; /* Index of column <column> */ 1606 i16 iDb; /* Database idx for pTab */ 1607 1608 assert( p ); /* Because of isCandidateForInOpt(p) */ 1609 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1610 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1611 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1612 pTab = p->pSrc->a[0].pTab; 1613 pExpr = p->pEList->a[0].pExpr; 1614 iCol = (i16)pExpr->iColumn; 1615 1616 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1617 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1618 sqlite3CodeVerifySchema(pParse, iDb); 1619 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1620 1621 /* This function is only called from two places. In both cases the vdbe 1622 ** has already been allocated. So assume sqlite3GetVdbe() is always 1623 ** successful here. 1624 */ 1625 assert(v); 1626 if( iCol<0 ){ 1627 int iAddr = sqlite3CodeOnce(pParse); 1628 VdbeCoverage(v); 1629 1630 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1631 eType = IN_INDEX_ROWID; 1632 1633 sqlite3VdbeJumpHere(v, iAddr); 1634 }else{ 1635 Index *pIdx; /* Iterator variable */ 1636 1637 /* The collation sequence used by the comparison. If an index is to 1638 ** be used in place of a temp-table, it must be ordered according 1639 ** to this collation sequence. */ 1640 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1641 1642 /* Check that the affinity that will be used to perform the 1643 ** comparison is the same as the affinity of the column. If 1644 ** it is not, it is not possible to use any index. 1645 */ 1646 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1647 1648 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1649 if( (pIdx->aiColumn[0]==iCol) 1650 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1651 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1652 ){ 1653 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1654 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1655 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1656 VdbeComment((v, "%s", pIdx->zName)); 1657 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1658 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1659 1660 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1661 *prRhsHasNull = ++pParse->nMem; 1662 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1663 } 1664 sqlite3VdbeJumpHere(v, iAddr); 1665 } 1666 } 1667 } 1668 } 1669 1670 /* If no preexisting index is available for the IN clause 1671 ** and IN_INDEX_NOOP is an allowed reply 1672 ** and the RHS of the IN operator is a list, not a subquery 1673 ** and the RHS is not contant or has two or fewer terms, 1674 ** then it is not worth creating an ephemeral table to evaluate 1675 ** the IN operator so return IN_INDEX_NOOP. 1676 */ 1677 if( eType==0 1678 && (inFlags & IN_INDEX_NOOP_OK) 1679 && !ExprHasProperty(pX, EP_xIsSelect) 1680 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1681 ){ 1682 eType = IN_INDEX_NOOP; 1683 } 1684 1685 1686 if( eType==0 ){ 1687 /* Could not find an existing table or index to use as the RHS b-tree. 1688 ** We will have to generate an ephemeral table to do the job. 1689 */ 1690 u32 savedNQueryLoop = pParse->nQueryLoop; 1691 int rMayHaveNull = 0; 1692 eType = IN_INDEX_EPH; 1693 if( inFlags & IN_INDEX_LOOP ){ 1694 pParse->nQueryLoop = 0; 1695 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1696 eType = IN_INDEX_ROWID; 1697 } 1698 }else if( prRhsHasNull ){ 1699 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1700 } 1701 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1702 pParse->nQueryLoop = savedNQueryLoop; 1703 }else{ 1704 pX->iTable = iTab; 1705 } 1706 return eType; 1707 } 1708 #endif 1709 1710 /* 1711 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1712 ** or IN operators. Examples: 1713 ** 1714 ** (SELECT a FROM b) -- subquery 1715 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1716 ** x IN (4,5,11) -- IN operator with list on right-hand side 1717 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1718 ** 1719 ** The pExpr parameter describes the expression that contains the IN 1720 ** operator or subquery. 1721 ** 1722 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1723 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1724 ** to some integer key column of a table B-Tree. In this case, use an 1725 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1726 ** (slower) variable length keys B-Tree. 1727 ** 1728 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1729 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1730 ** All this routine does is initialize the register given by rMayHaveNull 1731 ** to NULL. Calling routines will take care of changing this register 1732 ** value to non-NULL if the RHS is NULL-free. 1733 ** 1734 ** For a SELECT or EXISTS operator, return the register that holds the 1735 ** result. For IN operators or if an error occurs, the return value is 0. 1736 */ 1737 #ifndef SQLITE_OMIT_SUBQUERY 1738 int sqlite3CodeSubselect( 1739 Parse *pParse, /* Parsing context */ 1740 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1741 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1742 int isRowid /* If true, LHS of IN operator is a rowid */ 1743 ){ 1744 int jmpIfDynamic = -1; /* One-time test address */ 1745 int rReg = 0; /* Register storing resulting */ 1746 Vdbe *v = sqlite3GetVdbe(pParse); 1747 if( NEVER(v==0) ) return 0; 1748 sqlite3ExprCachePush(pParse); 1749 1750 /* This code must be run in its entirety every time it is encountered 1751 ** if any of the following is true: 1752 ** 1753 ** * The right-hand side is a correlated subquery 1754 ** * The right-hand side is an expression list containing variables 1755 ** * We are inside a trigger 1756 ** 1757 ** If all of the above are false, then we can run this code just once 1758 ** save the results, and reuse the same result on subsequent invocations. 1759 */ 1760 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1761 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1762 } 1763 1764 #ifndef SQLITE_OMIT_EXPLAIN 1765 if( pParse->explain==2 ){ 1766 char *zMsg = sqlite3MPrintf( 1767 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1768 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1769 ); 1770 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1771 } 1772 #endif 1773 1774 switch( pExpr->op ){ 1775 case TK_IN: { 1776 char affinity; /* Affinity of the LHS of the IN */ 1777 int addr; /* Address of OP_OpenEphemeral instruction */ 1778 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1779 KeyInfo *pKeyInfo = 0; /* Key information */ 1780 1781 affinity = sqlite3ExprAffinity(pLeft); 1782 1783 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1784 ** expression it is handled the same way. An ephemeral table is 1785 ** filled with single-field index keys representing the results 1786 ** from the SELECT or the <exprlist>. 1787 ** 1788 ** If the 'x' expression is a column value, or the SELECT... 1789 ** statement returns a column value, then the affinity of that 1790 ** column is used to build the index keys. If both 'x' and the 1791 ** SELECT... statement are columns, then numeric affinity is used 1792 ** if either column has NUMERIC or INTEGER affinity. If neither 1793 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1794 ** is used. 1795 */ 1796 pExpr->iTable = pParse->nTab++; 1797 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1798 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1799 1800 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1801 /* Case 1: expr IN (SELECT ...) 1802 ** 1803 ** Generate code to write the results of the select into the temporary 1804 ** table allocated and opened above. 1805 */ 1806 Select *pSelect = pExpr->x.pSelect; 1807 SelectDest dest; 1808 ExprList *pEList; 1809 1810 assert( !isRowid ); 1811 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1812 dest.affSdst = (u8)affinity; 1813 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1814 pSelect->iLimit = 0; 1815 testcase( pSelect->selFlags & SF_Distinct ); 1816 pSelect->selFlags &= ~SF_Distinct; 1817 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1818 if( sqlite3Select(pParse, pSelect, &dest) ){ 1819 sqlite3KeyInfoUnref(pKeyInfo); 1820 return 0; 1821 } 1822 pEList = pSelect->pEList; 1823 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1824 assert( pEList!=0 ); 1825 assert( pEList->nExpr>0 ); 1826 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1827 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1828 pEList->a[0].pExpr); 1829 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1830 /* Case 2: expr IN (exprlist) 1831 ** 1832 ** For each expression, build an index key from the evaluation and 1833 ** store it in the temporary table. If <expr> is a column, then use 1834 ** that columns affinity when building index keys. If <expr> is not 1835 ** a column, use numeric affinity. 1836 */ 1837 int i; 1838 ExprList *pList = pExpr->x.pList; 1839 struct ExprList_item *pItem; 1840 int r1, r2, r3; 1841 1842 if( !affinity ){ 1843 affinity = SQLITE_AFF_NONE; 1844 } 1845 if( pKeyInfo ){ 1846 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1847 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1848 } 1849 1850 /* Loop through each expression in <exprlist>. */ 1851 r1 = sqlite3GetTempReg(pParse); 1852 r2 = sqlite3GetTempReg(pParse); 1853 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1854 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1855 Expr *pE2 = pItem->pExpr; 1856 int iValToIns; 1857 1858 /* If the expression is not constant then we will need to 1859 ** disable the test that was generated above that makes sure 1860 ** this code only executes once. Because for a non-constant 1861 ** expression we need to rerun this code each time. 1862 */ 1863 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1864 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1865 jmpIfDynamic = -1; 1866 } 1867 1868 /* Evaluate the expression and insert it into the temp table */ 1869 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1870 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1871 }else{ 1872 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1873 if( isRowid ){ 1874 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1875 sqlite3VdbeCurrentAddr(v)+2); 1876 VdbeCoverage(v); 1877 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1878 }else{ 1879 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1880 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1881 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1882 } 1883 } 1884 } 1885 sqlite3ReleaseTempReg(pParse, r1); 1886 sqlite3ReleaseTempReg(pParse, r2); 1887 } 1888 if( pKeyInfo ){ 1889 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1890 } 1891 break; 1892 } 1893 1894 case TK_EXISTS: 1895 case TK_SELECT: 1896 default: { 1897 /* If this has to be a scalar SELECT. Generate code to put the 1898 ** value of this select in a memory cell and record the number 1899 ** of the memory cell in iColumn. If this is an EXISTS, write 1900 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1901 ** and record that memory cell in iColumn. 1902 */ 1903 Select *pSel; /* SELECT statement to encode */ 1904 SelectDest dest; /* How to deal with SELECt result */ 1905 1906 testcase( pExpr->op==TK_EXISTS ); 1907 testcase( pExpr->op==TK_SELECT ); 1908 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1909 1910 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1911 pSel = pExpr->x.pSelect; 1912 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1913 if( pExpr->op==TK_SELECT ){ 1914 dest.eDest = SRT_Mem; 1915 dest.iSdst = dest.iSDParm; 1916 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1917 VdbeComment((v, "Init subquery result")); 1918 }else{ 1919 dest.eDest = SRT_Exists; 1920 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1921 VdbeComment((v, "Init EXISTS result")); 1922 } 1923 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1924 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1925 &sqlite3IntTokens[1]); 1926 pSel->iLimit = 0; 1927 if( sqlite3Select(pParse, pSel, &dest) ){ 1928 return 0; 1929 } 1930 rReg = dest.iSDParm; 1931 ExprSetVVAProperty(pExpr, EP_NoReduce); 1932 break; 1933 } 1934 } 1935 1936 if( rHasNullFlag ){ 1937 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 1938 } 1939 1940 if( jmpIfDynamic>=0 ){ 1941 sqlite3VdbeJumpHere(v, jmpIfDynamic); 1942 } 1943 sqlite3ExprCachePop(pParse); 1944 1945 return rReg; 1946 } 1947 #endif /* SQLITE_OMIT_SUBQUERY */ 1948 1949 #ifndef SQLITE_OMIT_SUBQUERY 1950 /* 1951 ** Generate code for an IN expression. 1952 ** 1953 ** x IN (SELECT ...) 1954 ** x IN (value, value, ...) 1955 ** 1956 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1957 ** is an array of zero or more values. The expression is true if the LHS is 1958 ** contained within the RHS. The value of the expression is unknown (NULL) 1959 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1960 ** RHS contains one or more NULL values. 1961 ** 1962 ** This routine generates code that jumps to destIfFalse if the LHS is not 1963 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1964 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1965 ** within the RHS then fall through. 1966 */ 1967 static void sqlite3ExprCodeIN( 1968 Parse *pParse, /* Parsing and code generating context */ 1969 Expr *pExpr, /* The IN expression */ 1970 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1971 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1972 ){ 1973 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1974 char affinity; /* Comparison affinity to use */ 1975 int eType; /* Type of the RHS */ 1976 int r1; /* Temporary use register */ 1977 Vdbe *v; /* Statement under construction */ 1978 1979 /* Compute the RHS. After this step, the table with cursor 1980 ** pExpr->iTable will contains the values that make up the RHS. 1981 */ 1982 v = pParse->pVdbe; 1983 assert( v!=0 ); /* OOM detected prior to this routine */ 1984 VdbeNoopComment((v, "begin IN expr")); 1985 eType = sqlite3FindInIndex(pParse, pExpr, 1986 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 1987 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 1988 1989 /* Figure out the affinity to use to create a key from the results 1990 ** of the expression. affinityStr stores a static string suitable for 1991 ** P4 of OP_MakeRecord. 1992 */ 1993 affinity = comparisonAffinity(pExpr); 1994 1995 /* Code the LHS, the <expr> from "<expr> IN (...)". 1996 */ 1997 sqlite3ExprCachePush(pParse); 1998 r1 = sqlite3GetTempReg(pParse); 1999 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2000 2001 /* If sqlite3FindInIndex() did not find or create an index that is 2002 ** suitable for evaluating the IN operator, then evaluate using a 2003 ** sequence of comparisons. 2004 */ 2005 if( eType==IN_INDEX_NOOP ){ 2006 ExprList *pList = pExpr->x.pList; 2007 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2008 int labelOk = sqlite3VdbeMakeLabel(v); 2009 int r2, regToFree; 2010 int regCkNull = 0; 2011 int ii; 2012 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2013 if( destIfNull!=destIfFalse ){ 2014 regCkNull = sqlite3GetTempReg(pParse); 2015 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2016 } 2017 for(ii=0; ii<pList->nExpr; ii++){ 2018 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2019 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2020 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2021 } 2022 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2023 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2024 (void*)pColl, P4_COLLSEQ); 2025 VdbeCoverageIf(v, ii<pList->nExpr-1); 2026 VdbeCoverageIf(v, ii==pList->nExpr-1); 2027 sqlite3VdbeChangeP5(v, affinity); 2028 }else{ 2029 assert( destIfNull==destIfFalse ); 2030 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2031 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2032 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2033 } 2034 sqlite3ReleaseTempReg(pParse, regToFree); 2035 } 2036 if( regCkNull ){ 2037 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2038 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2039 } 2040 sqlite3VdbeResolveLabel(v, labelOk); 2041 sqlite3ReleaseTempReg(pParse, regCkNull); 2042 }else{ 2043 2044 /* If the LHS is NULL, then the result is either false or NULL depending 2045 ** on whether the RHS is empty or not, respectively. 2046 */ 2047 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2048 if( destIfNull==destIfFalse ){ 2049 /* Shortcut for the common case where the false and NULL outcomes are 2050 ** the same. */ 2051 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2052 }else{ 2053 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2054 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2055 VdbeCoverage(v); 2056 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2057 sqlite3VdbeJumpHere(v, addr1); 2058 } 2059 } 2060 2061 if( eType==IN_INDEX_ROWID ){ 2062 /* In this case, the RHS is the ROWID of table b-tree 2063 */ 2064 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2065 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2066 VdbeCoverage(v); 2067 }else{ 2068 /* In this case, the RHS is an index b-tree. 2069 */ 2070 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2071 2072 /* If the set membership test fails, then the result of the 2073 ** "x IN (...)" expression must be either 0 or NULL. If the set 2074 ** contains no NULL values, then the result is 0. If the set 2075 ** contains one or more NULL values, then the result of the 2076 ** expression is also NULL. 2077 */ 2078 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2079 if( rRhsHasNull==0 ){ 2080 /* This branch runs if it is known at compile time that the RHS 2081 ** cannot contain NULL values. This happens as the result 2082 ** of a "NOT NULL" constraint in the database schema. 2083 ** 2084 ** Also run this branch if NULL is equivalent to FALSE 2085 ** for this particular IN operator. 2086 */ 2087 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2088 VdbeCoverage(v); 2089 }else{ 2090 /* In this branch, the RHS of the IN might contain a NULL and 2091 ** the presence of a NULL on the RHS makes a difference in the 2092 ** outcome. 2093 */ 2094 int j1; 2095 2096 /* First check to see if the LHS is contained in the RHS. If so, 2097 ** then the answer is TRUE the presence of NULLs in the RHS does 2098 ** not matter. If the LHS is not contained in the RHS, then the 2099 ** answer is NULL if the RHS contains NULLs and the answer is 2100 ** FALSE if the RHS is NULL-free. 2101 */ 2102 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2103 VdbeCoverage(v); 2104 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2105 VdbeCoverage(v); 2106 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2107 sqlite3VdbeJumpHere(v, j1); 2108 } 2109 } 2110 } 2111 sqlite3ReleaseTempReg(pParse, r1); 2112 sqlite3ExprCachePop(pParse); 2113 VdbeComment((v, "end IN expr")); 2114 } 2115 #endif /* SQLITE_OMIT_SUBQUERY */ 2116 2117 /* 2118 ** Duplicate an 8-byte value 2119 */ 2120 static char *dup8bytes(Vdbe *v, const char *in){ 2121 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2122 if( out ){ 2123 memcpy(out, in, 8); 2124 } 2125 return out; 2126 } 2127 2128 #ifndef SQLITE_OMIT_FLOATING_POINT 2129 /* 2130 ** Generate an instruction that will put the floating point 2131 ** value described by z[0..n-1] into register iMem. 2132 ** 2133 ** The z[] string will probably not be zero-terminated. But the 2134 ** z[n] character is guaranteed to be something that does not look 2135 ** like the continuation of the number. 2136 */ 2137 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2138 if( ALWAYS(z!=0) ){ 2139 double value; 2140 char *zV; 2141 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2142 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2143 if( negateFlag ) value = -value; 2144 zV = dup8bytes(v, (char*)&value); 2145 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2146 } 2147 } 2148 #endif 2149 2150 2151 /* 2152 ** Generate an instruction that will put the integer describe by 2153 ** text z[0..n-1] into register iMem. 2154 ** 2155 ** Expr.u.zToken is always UTF8 and zero-terminated. 2156 */ 2157 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2158 Vdbe *v = pParse->pVdbe; 2159 if( pExpr->flags & EP_IntValue ){ 2160 int i = pExpr->u.iValue; 2161 assert( i>=0 ); 2162 if( negFlag ) i = -i; 2163 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2164 }else{ 2165 int c; 2166 i64 value; 2167 const char *z = pExpr->u.zToken; 2168 assert( z!=0 ); 2169 c = sqlite3DecOrHexToI64(z, &value); 2170 if( c==0 || (c==2 && negFlag) ){ 2171 char *zV; 2172 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2173 zV = dup8bytes(v, (char*)&value); 2174 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2175 }else{ 2176 #ifdef SQLITE_OMIT_FLOATING_POINT 2177 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2178 #else 2179 #ifndef SQLITE_OMIT_HEX_INTEGER 2180 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2181 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2182 }else 2183 #endif 2184 { 2185 codeReal(v, z, negFlag, iMem); 2186 } 2187 #endif 2188 } 2189 } 2190 } 2191 2192 /* 2193 ** Clear a cache entry. 2194 */ 2195 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2196 if( p->tempReg ){ 2197 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2198 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2199 } 2200 p->tempReg = 0; 2201 } 2202 } 2203 2204 2205 /* 2206 ** Record in the column cache that a particular column from a 2207 ** particular table is stored in a particular register. 2208 */ 2209 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2210 int i; 2211 int minLru; 2212 int idxLru; 2213 struct yColCache *p; 2214 2215 assert( iReg>0 ); /* Register numbers are always positive */ 2216 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2217 2218 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2219 ** for testing only - to verify that SQLite always gets the same answer 2220 ** with and without the column cache. 2221 */ 2222 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2223 2224 /* First replace any existing entry. 2225 ** 2226 ** Actually, the way the column cache is currently used, we are guaranteed 2227 ** that the object will never already be in cache. Verify this guarantee. 2228 */ 2229 #ifndef NDEBUG 2230 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2231 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2232 } 2233 #endif 2234 2235 /* Find an empty slot and replace it */ 2236 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2237 if( p->iReg==0 ){ 2238 p->iLevel = pParse->iCacheLevel; 2239 p->iTable = iTab; 2240 p->iColumn = iCol; 2241 p->iReg = iReg; 2242 p->tempReg = 0; 2243 p->lru = pParse->iCacheCnt++; 2244 return; 2245 } 2246 } 2247 2248 /* Replace the last recently used */ 2249 minLru = 0x7fffffff; 2250 idxLru = -1; 2251 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2252 if( p->lru<minLru ){ 2253 idxLru = i; 2254 minLru = p->lru; 2255 } 2256 } 2257 if( ALWAYS(idxLru>=0) ){ 2258 p = &pParse->aColCache[idxLru]; 2259 p->iLevel = pParse->iCacheLevel; 2260 p->iTable = iTab; 2261 p->iColumn = iCol; 2262 p->iReg = iReg; 2263 p->tempReg = 0; 2264 p->lru = pParse->iCacheCnt++; 2265 return; 2266 } 2267 } 2268 2269 /* 2270 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2271 ** Purge the range of registers from the column cache. 2272 */ 2273 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2274 int i; 2275 int iLast = iReg + nReg - 1; 2276 struct yColCache *p; 2277 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2278 int r = p->iReg; 2279 if( r>=iReg && r<=iLast ){ 2280 cacheEntryClear(pParse, p); 2281 p->iReg = 0; 2282 } 2283 } 2284 } 2285 2286 /* 2287 ** Remember the current column cache context. Any new entries added 2288 ** added to the column cache after this call are removed when the 2289 ** corresponding pop occurs. 2290 */ 2291 void sqlite3ExprCachePush(Parse *pParse){ 2292 pParse->iCacheLevel++; 2293 #ifdef SQLITE_DEBUG 2294 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2295 printf("PUSH to %d\n", pParse->iCacheLevel); 2296 } 2297 #endif 2298 } 2299 2300 /* 2301 ** Remove from the column cache any entries that were added since the 2302 ** the previous sqlite3ExprCachePush operation. In other words, restore 2303 ** the cache to the state it was in prior the most recent Push. 2304 */ 2305 void sqlite3ExprCachePop(Parse *pParse){ 2306 int i; 2307 struct yColCache *p; 2308 assert( pParse->iCacheLevel>=1 ); 2309 pParse->iCacheLevel--; 2310 #ifdef SQLITE_DEBUG 2311 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2312 printf("POP to %d\n", pParse->iCacheLevel); 2313 } 2314 #endif 2315 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2316 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2317 cacheEntryClear(pParse, p); 2318 p->iReg = 0; 2319 } 2320 } 2321 } 2322 2323 /* 2324 ** When a cached column is reused, make sure that its register is 2325 ** no longer available as a temp register. ticket #3879: that same 2326 ** register might be in the cache in multiple places, so be sure to 2327 ** get them all. 2328 */ 2329 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2330 int i; 2331 struct yColCache *p; 2332 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2333 if( p->iReg==iReg ){ 2334 p->tempReg = 0; 2335 } 2336 } 2337 } 2338 2339 /* 2340 ** Generate code to extract the value of the iCol-th column of a table. 2341 */ 2342 void sqlite3ExprCodeGetColumnOfTable( 2343 Vdbe *v, /* The VDBE under construction */ 2344 Table *pTab, /* The table containing the value */ 2345 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2346 int iCol, /* Index of the column to extract */ 2347 int regOut /* Extract the value into this register */ 2348 ){ 2349 if( iCol<0 || iCol==pTab->iPKey ){ 2350 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2351 }else{ 2352 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2353 int x = iCol; 2354 if( !HasRowid(pTab) ){ 2355 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2356 } 2357 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2358 } 2359 if( iCol>=0 ){ 2360 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2361 } 2362 } 2363 2364 /* 2365 ** Generate code that will extract the iColumn-th column from 2366 ** table pTab and store the column value in a register. An effort 2367 ** is made to store the column value in register iReg, but this is 2368 ** not guaranteed. The location of the column value is returned. 2369 ** 2370 ** There must be an open cursor to pTab in iTable when this routine 2371 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2372 */ 2373 int sqlite3ExprCodeGetColumn( 2374 Parse *pParse, /* Parsing and code generating context */ 2375 Table *pTab, /* Description of the table we are reading from */ 2376 int iColumn, /* Index of the table column */ 2377 int iTable, /* The cursor pointing to the table */ 2378 int iReg, /* Store results here */ 2379 u8 p5 /* P5 value for OP_Column */ 2380 ){ 2381 Vdbe *v = pParse->pVdbe; 2382 int i; 2383 struct yColCache *p; 2384 2385 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2386 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2387 p->lru = pParse->iCacheCnt++; 2388 sqlite3ExprCachePinRegister(pParse, p->iReg); 2389 return p->iReg; 2390 } 2391 } 2392 assert( v!=0 ); 2393 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2394 if( p5 ){ 2395 sqlite3VdbeChangeP5(v, p5); 2396 }else{ 2397 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2398 } 2399 return iReg; 2400 } 2401 2402 /* 2403 ** Clear all column cache entries. 2404 */ 2405 void sqlite3ExprCacheClear(Parse *pParse){ 2406 int i; 2407 struct yColCache *p; 2408 2409 #if SQLITE_DEBUG 2410 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2411 printf("CLEAR\n"); 2412 } 2413 #endif 2414 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2415 if( p->iReg ){ 2416 cacheEntryClear(pParse, p); 2417 p->iReg = 0; 2418 } 2419 } 2420 } 2421 2422 /* 2423 ** Record the fact that an affinity change has occurred on iCount 2424 ** registers starting with iStart. 2425 */ 2426 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2427 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2428 } 2429 2430 /* 2431 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2432 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2433 */ 2434 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2435 int i; 2436 struct yColCache *p; 2437 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2438 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2439 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2440 int x = p->iReg; 2441 if( x>=iFrom && x<iFrom+nReg ){ 2442 p->iReg += iTo-iFrom; 2443 } 2444 } 2445 } 2446 2447 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2448 /* 2449 ** Return true if any register in the range iFrom..iTo (inclusive) 2450 ** is used as part of the column cache. 2451 ** 2452 ** This routine is used within assert() and testcase() macros only 2453 ** and does not appear in a normal build. 2454 */ 2455 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2456 int i; 2457 struct yColCache *p; 2458 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2459 int r = p->iReg; 2460 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2461 } 2462 return 0; 2463 } 2464 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2465 2466 /* 2467 ** Convert an expression node to a TK_REGISTER 2468 */ 2469 static void exprToRegister(Expr *p, int iReg){ 2470 p->op2 = p->op; 2471 p->op = TK_REGISTER; 2472 p->iTable = iReg; 2473 ExprClearProperty(p, EP_Skip); 2474 } 2475 2476 /* 2477 ** Generate code into the current Vdbe to evaluate the given 2478 ** expression. Attempt to store the results in register "target". 2479 ** Return the register where results are stored. 2480 ** 2481 ** With this routine, there is no guarantee that results will 2482 ** be stored in target. The result might be stored in some other 2483 ** register if it is convenient to do so. The calling function 2484 ** must check the return code and move the results to the desired 2485 ** register. 2486 */ 2487 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2488 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2489 int op; /* The opcode being coded */ 2490 int inReg = target; /* Results stored in register inReg */ 2491 int regFree1 = 0; /* If non-zero free this temporary register */ 2492 int regFree2 = 0; /* If non-zero free this temporary register */ 2493 int r1, r2, r3, r4; /* Various register numbers */ 2494 sqlite3 *db = pParse->db; /* The database connection */ 2495 Expr tempX; /* Temporary expression node */ 2496 2497 assert( target>0 && target<=pParse->nMem ); 2498 if( v==0 ){ 2499 assert( pParse->db->mallocFailed ); 2500 return 0; 2501 } 2502 2503 if( pExpr==0 ){ 2504 op = TK_NULL; 2505 }else{ 2506 op = pExpr->op; 2507 } 2508 switch( op ){ 2509 case TK_AGG_COLUMN: { 2510 AggInfo *pAggInfo = pExpr->pAggInfo; 2511 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2512 if( !pAggInfo->directMode ){ 2513 assert( pCol->iMem>0 ); 2514 inReg = pCol->iMem; 2515 break; 2516 }else if( pAggInfo->useSortingIdx ){ 2517 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2518 pCol->iSorterColumn, target); 2519 break; 2520 } 2521 /* Otherwise, fall thru into the TK_COLUMN case */ 2522 } 2523 case TK_COLUMN: { 2524 int iTab = pExpr->iTable; 2525 if( iTab<0 ){ 2526 if( pParse->ckBase>0 ){ 2527 /* Generating CHECK constraints or inserting into partial index */ 2528 inReg = pExpr->iColumn + pParse->ckBase; 2529 break; 2530 }else{ 2531 /* Deleting from a partial index */ 2532 iTab = pParse->iPartIdxTab; 2533 } 2534 } 2535 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2536 pExpr->iColumn, iTab, target, 2537 pExpr->op2); 2538 break; 2539 } 2540 case TK_INTEGER: { 2541 codeInteger(pParse, pExpr, 0, target); 2542 break; 2543 } 2544 #ifndef SQLITE_OMIT_FLOATING_POINT 2545 case TK_FLOAT: { 2546 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2547 codeReal(v, pExpr->u.zToken, 0, target); 2548 break; 2549 } 2550 #endif 2551 case TK_STRING: { 2552 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2553 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2554 break; 2555 } 2556 case TK_NULL: { 2557 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2558 break; 2559 } 2560 #ifndef SQLITE_OMIT_BLOB_LITERAL 2561 case TK_BLOB: { 2562 int n; 2563 const char *z; 2564 char *zBlob; 2565 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2566 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2567 assert( pExpr->u.zToken[1]=='\'' ); 2568 z = &pExpr->u.zToken[2]; 2569 n = sqlite3Strlen30(z) - 1; 2570 assert( z[n]=='\'' ); 2571 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2572 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2573 break; 2574 } 2575 #endif 2576 case TK_VARIABLE: { 2577 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2578 assert( pExpr->u.zToken!=0 ); 2579 assert( pExpr->u.zToken[0]!=0 ); 2580 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2581 if( pExpr->u.zToken[1]!=0 ){ 2582 assert( pExpr->u.zToken[0]=='?' 2583 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2584 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2585 } 2586 break; 2587 } 2588 case TK_REGISTER: { 2589 inReg = pExpr->iTable; 2590 break; 2591 } 2592 case TK_AS: { 2593 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2594 break; 2595 } 2596 #ifndef SQLITE_OMIT_CAST 2597 case TK_CAST: { 2598 /* Expressions of the form: CAST(pLeft AS token) */ 2599 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2600 if( inReg!=target ){ 2601 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2602 inReg = target; 2603 } 2604 sqlite3VdbeAddOp2(v, OP_Cast, target, 2605 sqlite3AffinityType(pExpr->u.zToken, 0)); 2606 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2607 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2608 break; 2609 } 2610 #endif /* SQLITE_OMIT_CAST */ 2611 case TK_LT: 2612 case TK_LE: 2613 case TK_GT: 2614 case TK_GE: 2615 case TK_NE: 2616 case TK_EQ: { 2617 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2618 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2619 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2620 r1, r2, inReg, SQLITE_STOREP2); 2621 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2622 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2623 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2624 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2625 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2626 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2627 testcase( regFree1==0 ); 2628 testcase( regFree2==0 ); 2629 break; 2630 } 2631 case TK_IS: 2632 case TK_ISNOT: { 2633 testcase( op==TK_IS ); 2634 testcase( op==TK_ISNOT ); 2635 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2636 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2637 op = (op==TK_IS) ? TK_EQ : TK_NE; 2638 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2639 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2640 VdbeCoverageIf(v, op==TK_EQ); 2641 VdbeCoverageIf(v, op==TK_NE); 2642 testcase( regFree1==0 ); 2643 testcase( regFree2==0 ); 2644 break; 2645 } 2646 case TK_AND: 2647 case TK_OR: 2648 case TK_PLUS: 2649 case TK_STAR: 2650 case TK_MINUS: 2651 case TK_REM: 2652 case TK_BITAND: 2653 case TK_BITOR: 2654 case TK_SLASH: 2655 case TK_LSHIFT: 2656 case TK_RSHIFT: 2657 case TK_CONCAT: { 2658 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2659 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2660 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2661 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2662 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2663 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2664 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2665 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2666 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2667 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2668 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2669 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2670 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2671 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2672 testcase( regFree1==0 ); 2673 testcase( regFree2==0 ); 2674 break; 2675 } 2676 case TK_UMINUS: { 2677 Expr *pLeft = pExpr->pLeft; 2678 assert( pLeft ); 2679 if( pLeft->op==TK_INTEGER ){ 2680 codeInteger(pParse, pLeft, 1, target); 2681 #ifndef SQLITE_OMIT_FLOATING_POINT 2682 }else if( pLeft->op==TK_FLOAT ){ 2683 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2684 codeReal(v, pLeft->u.zToken, 1, target); 2685 #endif 2686 }else{ 2687 tempX.op = TK_INTEGER; 2688 tempX.flags = EP_IntValue|EP_TokenOnly; 2689 tempX.u.iValue = 0; 2690 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2691 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2692 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2693 testcase( regFree2==0 ); 2694 } 2695 inReg = target; 2696 break; 2697 } 2698 case TK_BITNOT: 2699 case TK_NOT: { 2700 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2701 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2702 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2703 testcase( regFree1==0 ); 2704 inReg = target; 2705 sqlite3VdbeAddOp2(v, op, r1, inReg); 2706 break; 2707 } 2708 case TK_ISNULL: 2709 case TK_NOTNULL: { 2710 int addr; 2711 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2712 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2713 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2714 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2715 testcase( regFree1==0 ); 2716 addr = sqlite3VdbeAddOp1(v, op, r1); 2717 VdbeCoverageIf(v, op==TK_ISNULL); 2718 VdbeCoverageIf(v, op==TK_NOTNULL); 2719 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2720 sqlite3VdbeJumpHere(v, addr); 2721 break; 2722 } 2723 case TK_AGG_FUNCTION: { 2724 AggInfo *pInfo = pExpr->pAggInfo; 2725 if( pInfo==0 ){ 2726 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2727 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2728 }else{ 2729 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2730 } 2731 break; 2732 } 2733 case TK_FUNCTION: { 2734 ExprList *pFarg; /* List of function arguments */ 2735 int nFarg; /* Number of function arguments */ 2736 FuncDef *pDef; /* The function definition object */ 2737 int nId; /* Length of the function name in bytes */ 2738 const char *zId; /* The function name */ 2739 u32 constMask = 0; /* Mask of function arguments that are constant */ 2740 int i; /* Loop counter */ 2741 u8 enc = ENC(db); /* The text encoding used by this database */ 2742 CollSeq *pColl = 0; /* A collating sequence */ 2743 2744 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2745 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2746 pFarg = 0; 2747 }else{ 2748 pFarg = pExpr->x.pList; 2749 } 2750 nFarg = pFarg ? pFarg->nExpr : 0; 2751 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2752 zId = pExpr->u.zToken; 2753 nId = sqlite3Strlen30(zId); 2754 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2755 if( pDef==0 || pDef->xFunc==0 ){ 2756 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2757 break; 2758 } 2759 2760 /* Attempt a direct implementation of the built-in COALESCE() and 2761 ** IFNULL() functions. This avoids unnecessary evaluation of 2762 ** arguments past the first non-NULL argument. 2763 */ 2764 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2765 int endCoalesce = sqlite3VdbeMakeLabel(v); 2766 assert( nFarg>=2 ); 2767 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2768 for(i=1; i<nFarg; i++){ 2769 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2770 VdbeCoverage(v); 2771 sqlite3ExprCacheRemove(pParse, target, 1); 2772 sqlite3ExprCachePush(pParse); 2773 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2774 sqlite3ExprCachePop(pParse); 2775 } 2776 sqlite3VdbeResolveLabel(v, endCoalesce); 2777 break; 2778 } 2779 2780 /* The UNLIKELY() function is a no-op. The result is the value 2781 ** of the first argument. 2782 */ 2783 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2784 assert( nFarg>=1 ); 2785 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2786 break; 2787 } 2788 2789 for(i=0; i<nFarg; i++){ 2790 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2791 testcase( i==31 ); 2792 constMask |= MASKBIT32(i); 2793 } 2794 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2795 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2796 } 2797 } 2798 if( pFarg ){ 2799 if( constMask ){ 2800 r1 = pParse->nMem+1; 2801 pParse->nMem += nFarg; 2802 }else{ 2803 r1 = sqlite3GetTempRange(pParse, nFarg); 2804 } 2805 2806 /* For length() and typeof() functions with a column argument, 2807 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2808 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2809 ** loading. 2810 */ 2811 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2812 u8 exprOp; 2813 assert( nFarg==1 ); 2814 assert( pFarg->a[0].pExpr!=0 ); 2815 exprOp = pFarg->a[0].pExpr->op; 2816 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2817 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2818 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2819 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2820 pFarg->a[0].pExpr->op2 = 2821 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2822 } 2823 } 2824 2825 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2826 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2827 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2828 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2829 }else{ 2830 r1 = 0; 2831 } 2832 #ifndef SQLITE_OMIT_VIRTUALTABLE 2833 /* Possibly overload the function if the first argument is 2834 ** a virtual table column. 2835 ** 2836 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2837 ** second argument, not the first, as the argument to test to 2838 ** see if it is a column in a virtual table. This is done because 2839 ** the left operand of infix functions (the operand we want to 2840 ** control overloading) ends up as the second argument to the 2841 ** function. The expression "A glob B" is equivalent to 2842 ** "glob(B,A). We want to use the A in "A glob B" to test 2843 ** for function overloading. But we use the B term in "glob(B,A)". 2844 */ 2845 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2846 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2847 }else if( nFarg>0 ){ 2848 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2849 } 2850 #endif 2851 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2852 if( !pColl ) pColl = db->pDfltColl; 2853 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2854 } 2855 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2856 (char*)pDef, P4_FUNCDEF); 2857 sqlite3VdbeChangeP5(v, (u8)nFarg); 2858 if( nFarg && constMask==0 ){ 2859 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2860 } 2861 break; 2862 } 2863 #ifndef SQLITE_OMIT_SUBQUERY 2864 case TK_EXISTS: 2865 case TK_SELECT: { 2866 testcase( op==TK_EXISTS ); 2867 testcase( op==TK_SELECT ); 2868 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2869 break; 2870 } 2871 case TK_IN: { 2872 int destIfFalse = sqlite3VdbeMakeLabel(v); 2873 int destIfNull = sqlite3VdbeMakeLabel(v); 2874 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2875 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2876 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2877 sqlite3VdbeResolveLabel(v, destIfFalse); 2878 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2879 sqlite3VdbeResolveLabel(v, destIfNull); 2880 break; 2881 } 2882 #endif /* SQLITE_OMIT_SUBQUERY */ 2883 2884 2885 /* 2886 ** x BETWEEN y AND z 2887 ** 2888 ** This is equivalent to 2889 ** 2890 ** x>=y AND x<=z 2891 ** 2892 ** X is stored in pExpr->pLeft. 2893 ** Y is stored in pExpr->pList->a[0].pExpr. 2894 ** Z is stored in pExpr->pList->a[1].pExpr. 2895 */ 2896 case TK_BETWEEN: { 2897 Expr *pLeft = pExpr->pLeft; 2898 struct ExprList_item *pLItem = pExpr->x.pList->a; 2899 Expr *pRight = pLItem->pExpr; 2900 2901 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2902 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2903 testcase( regFree1==0 ); 2904 testcase( regFree2==0 ); 2905 r3 = sqlite3GetTempReg(pParse); 2906 r4 = sqlite3GetTempReg(pParse); 2907 codeCompare(pParse, pLeft, pRight, OP_Ge, 2908 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2909 pLItem++; 2910 pRight = pLItem->pExpr; 2911 sqlite3ReleaseTempReg(pParse, regFree2); 2912 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2913 testcase( regFree2==0 ); 2914 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2915 VdbeCoverage(v); 2916 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2917 sqlite3ReleaseTempReg(pParse, r3); 2918 sqlite3ReleaseTempReg(pParse, r4); 2919 break; 2920 } 2921 case TK_COLLATE: 2922 case TK_UPLUS: { 2923 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2924 break; 2925 } 2926 2927 case TK_TRIGGER: { 2928 /* If the opcode is TK_TRIGGER, then the expression is a reference 2929 ** to a column in the new.* or old.* pseudo-tables available to 2930 ** trigger programs. In this case Expr.iTable is set to 1 for the 2931 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2932 ** is set to the column of the pseudo-table to read, or to -1 to 2933 ** read the rowid field. 2934 ** 2935 ** The expression is implemented using an OP_Param opcode. The p1 2936 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2937 ** to reference another column of the old.* pseudo-table, where 2938 ** i is the index of the column. For a new.rowid reference, p1 is 2939 ** set to (n+1), where n is the number of columns in each pseudo-table. 2940 ** For a reference to any other column in the new.* pseudo-table, p1 2941 ** is set to (n+2+i), where n and i are as defined previously. For 2942 ** example, if the table on which triggers are being fired is 2943 ** declared as: 2944 ** 2945 ** CREATE TABLE t1(a, b); 2946 ** 2947 ** Then p1 is interpreted as follows: 2948 ** 2949 ** p1==0 -> old.rowid p1==3 -> new.rowid 2950 ** p1==1 -> old.a p1==4 -> new.a 2951 ** p1==2 -> old.b p1==5 -> new.b 2952 */ 2953 Table *pTab = pExpr->pTab; 2954 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2955 2956 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2957 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2958 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2959 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2960 2961 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2962 VdbeComment((v, "%s.%s -> $%d", 2963 (pExpr->iTable ? "new" : "old"), 2964 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2965 target 2966 )); 2967 2968 #ifndef SQLITE_OMIT_FLOATING_POINT 2969 /* If the column has REAL affinity, it may currently be stored as an 2970 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2971 if( pExpr->iColumn>=0 2972 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2973 ){ 2974 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2975 } 2976 #endif 2977 break; 2978 } 2979 2980 2981 /* 2982 ** Form A: 2983 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2984 ** 2985 ** Form B: 2986 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2987 ** 2988 ** Form A is can be transformed into the equivalent form B as follows: 2989 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2990 ** WHEN x=eN THEN rN ELSE y END 2991 ** 2992 ** X (if it exists) is in pExpr->pLeft. 2993 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 2994 ** odd. The Y is also optional. If the number of elements in x.pList 2995 ** is even, then Y is omitted and the "otherwise" result is NULL. 2996 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2997 ** 2998 ** The result of the expression is the Ri for the first matching Ei, 2999 ** or if there is no matching Ei, the ELSE term Y, or if there is 3000 ** no ELSE term, NULL. 3001 */ 3002 default: assert( op==TK_CASE ); { 3003 int endLabel; /* GOTO label for end of CASE stmt */ 3004 int nextCase; /* GOTO label for next WHEN clause */ 3005 int nExpr; /* 2x number of WHEN terms */ 3006 int i; /* Loop counter */ 3007 ExprList *pEList; /* List of WHEN terms */ 3008 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3009 Expr opCompare; /* The X==Ei expression */ 3010 Expr *pX; /* The X expression */ 3011 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3012 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3013 3014 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3015 assert(pExpr->x.pList->nExpr > 0); 3016 pEList = pExpr->x.pList; 3017 aListelem = pEList->a; 3018 nExpr = pEList->nExpr; 3019 endLabel = sqlite3VdbeMakeLabel(v); 3020 if( (pX = pExpr->pLeft)!=0 ){ 3021 tempX = *pX; 3022 testcase( pX->op==TK_COLUMN ); 3023 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3024 testcase( regFree1==0 ); 3025 opCompare.op = TK_EQ; 3026 opCompare.pLeft = &tempX; 3027 pTest = &opCompare; 3028 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3029 ** The value in regFree1 might get SCopy-ed into the file result. 3030 ** So make sure that the regFree1 register is not reused for other 3031 ** purposes and possibly overwritten. */ 3032 regFree1 = 0; 3033 } 3034 for(i=0; i<nExpr-1; i=i+2){ 3035 sqlite3ExprCachePush(pParse); 3036 if( pX ){ 3037 assert( pTest!=0 ); 3038 opCompare.pRight = aListelem[i].pExpr; 3039 }else{ 3040 pTest = aListelem[i].pExpr; 3041 } 3042 nextCase = sqlite3VdbeMakeLabel(v); 3043 testcase( pTest->op==TK_COLUMN ); 3044 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3045 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3046 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3047 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3048 sqlite3ExprCachePop(pParse); 3049 sqlite3VdbeResolveLabel(v, nextCase); 3050 } 3051 if( (nExpr&1)!=0 ){ 3052 sqlite3ExprCachePush(pParse); 3053 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3054 sqlite3ExprCachePop(pParse); 3055 }else{ 3056 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3057 } 3058 assert( db->mallocFailed || pParse->nErr>0 3059 || pParse->iCacheLevel==iCacheLevel ); 3060 sqlite3VdbeResolveLabel(v, endLabel); 3061 break; 3062 } 3063 #ifndef SQLITE_OMIT_TRIGGER 3064 case TK_RAISE: { 3065 assert( pExpr->affinity==OE_Rollback 3066 || pExpr->affinity==OE_Abort 3067 || pExpr->affinity==OE_Fail 3068 || pExpr->affinity==OE_Ignore 3069 ); 3070 if( !pParse->pTriggerTab ){ 3071 sqlite3ErrorMsg(pParse, 3072 "RAISE() may only be used within a trigger-program"); 3073 return 0; 3074 } 3075 if( pExpr->affinity==OE_Abort ){ 3076 sqlite3MayAbort(pParse); 3077 } 3078 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3079 if( pExpr->affinity==OE_Ignore ){ 3080 sqlite3VdbeAddOp4( 3081 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3082 VdbeCoverage(v); 3083 }else{ 3084 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3085 pExpr->affinity, pExpr->u.zToken, 0, 0); 3086 } 3087 3088 break; 3089 } 3090 #endif 3091 } 3092 sqlite3ReleaseTempReg(pParse, regFree1); 3093 sqlite3ReleaseTempReg(pParse, regFree2); 3094 return inReg; 3095 } 3096 3097 /* 3098 ** Factor out the code of the given expression to initialization time. 3099 */ 3100 void sqlite3ExprCodeAtInit( 3101 Parse *pParse, /* Parsing context */ 3102 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3103 int regDest, /* Store the value in this register */ 3104 u8 reusable /* True if this expression is reusable */ 3105 ){ 3106 ExprList *p; 3107 assert( ConstFactorOk(pParse) ); 3108 p = pParse->pConstExpr; 3109 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3110 p = sqlite3ExprListAppend(pParse, p, pExpr); 3111 if( p ){ 3112 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3113 pItem->u.iConstExprReg = regDest; 3114 pItem->reusable = reusable; 3115 } 3116 pParse->pConstExpr = p; 3117 } 3118 3119 /* 3120 ** Generate code to evaluate an expression and store the results 3121 ** into a register. Return the register number where the results 3122 ** are stored. 3123 ** 3124 ** If the register is a temporary register that can be deallocated, 3125 ** then write its number into *pReg. If the result register is not 3126 ** a temporary, then set *pReg to zero. 3127 ** 3128 ** If pExpr is a constant, then this routine might generate this 3129 ** code to fill the register in the initialization section of the 3130 ** VDBE program, in order to factor it out of the evaluation loop. 3131 */ 3132 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3133 int r2; 3134 pExpr = sqlite3ExprSkipCollate(pExpr); 3135 if( ConstFactorOk(pParse) 3136 && pExpr->op!=TK_REGISTER 3137 && sqlite3ExprIsConstantNotJoin(pExpr) 3138 ){ 3139 ExprList *p = pParse->pConstExpr; 3140 int i; 3141 *pReg = 0; 3142 if( p ){ 3143 struct ExprList_item *pItem; 3144 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3145 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3146 return pItem->u.iConstExprReg; 3147 } 3148 } 3149 } 3150 r2 = ++pParse->nMem; 3151 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3152 }else{ 3153 int r1 = sqlite3GetTempReg(pParse); 3154 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3155 if( r2==r1 ){ 3156 *pReg = r1; 3157 }else{ 3158 sqlite3ReleaseTempReg(pParse, r1); 3159 *pReg = 0; 3160 } 3161 } 3162 return r2; 3163 } 3164 3165 /* 3166 ** Generate code that will evaluate expression pExpr and store the 3167 ** results in register target. The results are guaranteed to appear 3168 ** in register target. 3169 */ 3170 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3171 int inReg; 3172 3173 assert( target>0 && target<=pParse->nMem ); 3174 if( pExpr && pExpr->op==TK_REGISTER ){ 3175 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3176 }else{ 3177 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3178 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3179 if( inReg!=target && pParse->pVdbe ){ 3180 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3181 } 3182 } 3183 } 3184 3185 /* 3186 ** Generate code that will evaluate expression pExpr and store the 3187 ** results in register target. The results are guaranteed to appear 3188 ** in register target. If the expression is constant, then this routine 3189 ** might choose to code the expression at initialization time. 3190 */ 3191 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3192 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3193 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3194 }else{ 3195 sqlite3ExprCode(pParse, pExpr, target); 3196 } 3197 } 3198 3199 /* 3200 ** Generate code that evaluates the given expression and puts the result 3201 ** in register target. 3202 ** 3203 ** Also make a copy of the expression results into another "cache" register 3204 ** and modify the expression so that the next time it is evaluated, 3205 ** the result is a copy of the cache register. 3206 ** 3207 ** This routine is used for expressions that are used multiple 3208 ** times. They are evaluated once and the results of the expression 3209 ** are reused. 3210 */ 3211 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3212 Vdbe *v = pParse->pVdbe; 3213 int iMem; 3214 3215 assert( target>0 ); 3216 assert( pExpr->op!=TK_REGISTER ); 3217 sqlite3ExprCode(pParse, pExpr, target); 3218 iMem = ++pParse->nMem; 3219 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3220 exprToRegister(pExpr, iMem); 3221 } 3222 3223 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3224 /* 3225 ** Generate a human-readable explanation of an expression tree. 3226 */ 3227 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3228 int op; /* The opcode being coded */ 3229 const char *zBinOp = 0; /* Binary operator */ 3230 const char *zUniOp = 0; /* Unary operator */ 3231 if( pExpr==0 ){ 3232 op = TK_NULL; 3233 }else{ 3234 op = pExpr->op; 3235 } 3236 switch( op ){ 3237 case TK_AGG_COLUMN: { 3238 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3239 pExpr->iTable, pExpr->iColumn); 3240 break; 3241 } 3242 case TK_COLUMN: { 3243 if( pExpr->iTable<0 ){ 3244 /* This only happens when coding check constraints */ 3245 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3246 }else{ 3247 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3248 pExpr->iTable, pExpr->iColumn); 3249 } 3250 break; 3251 } 3252 case TK_INTEGER: { 3253 if( pExpr->flags & EP_IntValue ){ 3254 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3255 }else{ 3256 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3257 } 3258 break; 3259 } 3260 #ifndef SQLITE_OMIT_FLOATING_POINT 3261 case TK_FLOAT: { 3262 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3263 break; 3264 } 3265 #endif 3266 case TK_STRING: { 3267 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3268 break; 3269 } 3270 case TK_NULL: { 3271 sqlite3ExplainPrintf(pOut,"NULL"); 3272 break; 3273 } 3274 #ifndef SQLITE_OMIT_BLOB_LITERAL 3275 case TK_BLOB: { 3276 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3277 break; 3278 } 3279 #endif 3280 case TK_VARIABLE: { 3281 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3282 pExpr->u.zToken, pExpr->iColumn); 3283 break; 3284 } 3285 case TK_REGISTER: { 3286 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3287 break; 3288 } 3289 case TK_AS: { 3290 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3291 break; 3292 } 3293 #ifndef SQLITE_OMIT_CAST 3294 case TK_CAST: { 3295 /* Expressions of the form: CAST(pLeft AS token) */ 3296 const char *zAff = "unk"; 3297 switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){ 3298 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3299 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3300 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3301 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3302 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3303 } 3304 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3305 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3306 sqlite3ExplainPrintf(pOut, ")"); 3307 break; 3308 } 3309 #endif /* SQLITE_OMIT_CAST */ 3310 case TK_LT: zBinOp = "LT"; break; 3311 case TK_LE: zBinOp = "LE"; break; 3312 case TK_GT: zBinOp = "GT"; break; 3313 case TK_GE: zBinOp = "GE"; break; 3314 case TK_NE: zBinOp = "NE"; break; 3315 case TK_EQ: zBinOp = "EQ"; break; 3316 case TK_IS: zBinOp = "IS"; break; 3317 case TK_ISNOT: zBinOp = "ISNOT"; break; 3318 case TK_AND: zBinOp = "AND"; break; 3319 case TK_OR: zBinOp = "OR"; break; 3320 case TK_PLUS: zBinOp = "ADD"; break; 3321 case TK_STAR: zBinOp = "MUL"; break; 3322 case TK_MINUS: zBinOp = "SUB"; break; 3323 case TK_REM: zBinOp = "REM"; break; 3324 case TK_BITAND: zBinOp = "BITAND"; break; 3325 case TK_BITOR: zBinOp = "BITOR"; break; 3326 case TK_SLASH: zBinOp = "DIV"; break; 3327 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3328 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3329 case TK_CONCAT: zBinOp = "CONCAT"; break; 3330 3331 case TK_UMINUS: zUniOp = "UMINUS"; break; 3332 case TK_UPLUS: zUniOp = "UPLUS"; break; 3333 case TK_BITNOT: zUniOp = "BITNOT"; break; 3334 case TK_NOT: zUniOp = "NOT"; break; 3335 case TK_ISNULL: zUniOp = "ISNULL"; break; 3336 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3337 3338 case TK_COLLATE: { 3339 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3340 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3341 break; 3342 } 3343 3344 case TK_AGG_FUNCTION: 3345 case TK_FUNCTION: { 3346 ExprList *pFarg; /* List of function arguments */ 3347 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3348 pFarg = 0; 3349 }else{ 3350 pFarg = pExpr->x.pList; 3351 } 3352 if( op==TK_AGG_FUNCTION ){ 3353 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3354 pExpr->op2, pExpr->u.zToken); 3355 }else{ 3356 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3357 } 3358 if( pFarg ){ 3359 sqlite3ExplainExprList(pOut, pFarg); 3360 } 3361 sqlite3ExplainPrintf(pOut, ")"); 3362 break; 3363 } 3364 #ifndef SQLITE_OMIT_SUBQUERY 3365 case TK_EXISTS: { 3366 sqlite3ExplainPrintf(pOut, "EXISTS("); 3367 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3368 sqlite3ExplainPrintf(pOut,")"); 3369 break; 3370 } 3371 case TK_SELECT: { 3372 sqlite3ExplainPrintf(pOut, "("); 3373 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3374 sqlite3ExplainPrintf(pOut, ")"); 3375 break; 3376 } 3377 case TK_IN: { 3378 sqlite3ExplainPrintf(pOut, "IN("); 3379 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3380 sqlite3ExplainPrintf(pOut, ","); 3381 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3382 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3383 }else{ 3384 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3385 } 3386 sqlite3ExplainPrintf(pOut, ")"); 3387 break; 3388 } 3389 #endif /* SQLITE_OMIT_SUBQUERY */ 3390 3391 /* 3392 ** x BETWEEN y AND z 3393 ** 3394 ** This is equivalent to 3395 ** 3396 ** x>=y AND x<=z 3397 ** 3398 ** X is stored in pExpr->pLeft. 3399 ** Y is stored in pExpr->pList->a[0].pExpr. 3400 ** Z is stored in pExpr->pList->a[1].pExpr. 3401 */ 3402 case TK_BETWEEN: { 3403 Expr *pX = pExpr->pLeft; 3404 Expr *pY = pExpr->x.pList->a[0].pExpr; 3405 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3406 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3407 sqlite3ExplainExpr(pOut, pX); 3408 sqlite3ExplainPrintf(pOut, ","); 3409 sqlite3ExplainExpr(pOut, pY); 3410 sqlite3ExplainPrintf(pOut, ","); 3411 sqlite3ExplainExpr(pOut, pZ); 3412 sqlite3ExplainPrintf(pOut, ")"); 3413 break; 3414 } 3415 case TK_TRIGGER: { 3416 /* If the opcode is TK_TRIGGER, then the expression is a reference 3417 ** to a column in the new.* or old.* pseudo-tables available to 3418 ** trigger programs. In this case Expr.iTable is set to 1 for the 3419 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3420 ** is set to the column of the pseudo-table to read, or to -1 to 3421 ** read the rowid field. 3422 */ 3423 sqlite3ExplainPrintf(pOut, "%s(%d)", 3424 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3425 break; 3426 } 3427 case TK_CASE: { 3428 sqlite3ExplainPrintf(pOut, "CASE("); 3429 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3430 sqlite3ExplainPrintf(pOut, ","); 3431 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3432 break; 3433 } 3434 #ifndef SQLITE_OMIT_TRIGGER 3435 case TK_RAISE: { 3436 const char *zType = "unk"; 3437 switch( pExpr->affinity ){ 3438 case OE_Rollback: zType = "rollback"; break; 3439 case OE_Abort: zType = "abort"; break; 3440 case OE_Fail: zType = "fail"; break; 3441 case OE_Ignore: zType = "ignore"; break; 3442 } 3443 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3444 break; 3445 } 3446 #endif 3447 } 3448 if( zBinOp ){ 3449 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3450 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3451 sqlite3ExplainPrintf(pOut,","); 3452 sqlite3ExplainExpr(pOut, pExpr->pRight); 3453 sqlite3ExplainPrintf(pOut,")"); 3454 }else if( zUniOp ){ 3455 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3456 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3457 sqlite3ExplainPrintf(pOut,")"); 3458 } 3459 } 3460 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3461 3462 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3463 /* 3464 ** Generate a human-readable explanation of an expression list. 3465 */ 3466 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3467 int i; 3468 if( pList==0 || pList->nExpr==0 ){ 3469 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3470 return; 3471 }else if( pList->nExpr==1 ){ 3472 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3473 }else{ 3474 sqlite3ExplainPush(pOut); 3475 for(i=0; i<pList->nExpr; i++){ 3476 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3477 sqlite3ExplainPush(pOut); 3478 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3479 sqlite3ExplainPop(pOut); 3480 if( pList->a[i].zName ){ 3481 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3482 } 3483 if( pList->a[i].bSpanIsTab ){ 3484 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3485 } 3486 if( i<pList->nExpr-1 ){ 3487 sqlite3ExplainNL(pOut); 3488 } 3489 } 3490 sqlite3ExplainPop(pOut); 3491 } 3492 } 3493 #endif /* SQLITE_DEBUG */ 3494 3495 /* 3496 ** Generate code that pushes the value of every element of the given 3497 ** expression list into a sequence of registers beginning at target. 3498 ** 3499 ** Return the number of elements evaluated. 3500 ** 3501 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3502 ** filled using OP_SCopy. OP_Copy must be used instead. 3503 ** 3504 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3505 ** factored out into initialization code. 3506 */ 3507 int sqlite3ExprCodeExprList( 3508 Parse *pParse, /* Parsing context */ 3509 ExprList *pList, /* The expression list to be coded */ 3510 int target, /* Where to write results */ 3511 u8 flags /* SQLITE_ECEL_* flags */ 3512 ){ 3513 struct ExprList_item *pItem; 3514 int i, n; 3515 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3516 assert( pList!=0 ); 3517 assert( target>0 ); 3518 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3519 n = pList->nExpr; 3520 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3521 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3522 Expr *pExpr = pItem->pExpr; 3523 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3524 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3525 }else{ 3526 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3527 if( inReg!=target+i ){ 3528 VdbeOp *pOp; 3529 Vdbe *v = pParse->pVdbe; 3530 if( copyOp==OP_Copy 3531 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3532 && pOp->p1+pOp->p3+1==inReg 3533 && pOp->p2+pOp->p3+1==target+i 3534 ){ 3535 pOp->p3++; 3536 }else{ 3537 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3538 } 3539 } 3540 } 3541 } 3542 return n; 3543 } 3544 3545 /* 3546 ** Generate code for a BETWEEN operator. 3547 ** 3548 ** x BETWEEN y AND z 3549 ** 3550 ** The above is equivalent to 3551 ** 3552 ** x>=y AND x<=z 3553 ** 3554 ** Code it as such, taking care to do the common subexpression 3555 ** elimination of x. 3556 */ 3557 static void exprCodeBetween( 3558 Parse *pParse, /* Parsing and code generating context */ 3559 Expr *pExpr, /* The BETWEEN expression */ 3560 int dest, /* Jump here if the jump is taken */ 3561 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3562 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3563 ){ 3564 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3565 Expr compLeft; /* The x>=y term */ 3566 Expr compRight; /* The x<=z term */ 3567 Expr exprX; /* The x subexpression */ 3568 int regFree1 = 0; /* Temporary use register */ 3569 3570 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3571 exprX = *pExpr->pLeft; 3572 exprAnd.op = TK_AND; 3573 exprAnd.pLeft = &compLeft; 3574 exprAnd.pRight = &compRight; 3575 compLeft.op = TK_GE; 3576 compLeft.pLeft = &exprX; 3577 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3578 compRight.op = TK_LE; 3579 compRight.pLeft = &exprX; 3580 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3581 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3582 if( jumpIfTrue ){ 3583 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3584 }else{ 3585 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3586 } 3587 sqlite3ReleaseTempReg(pParse, regFree1); 3588 3589 /* Ensure adequate test coverage */ 3590 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3591 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3592 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3593 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3594 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3595 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3596 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3597 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3598 } 3599 3600 /* 3601 ** Generate code for a boolean expression such that a jump is made 3602 ** to the label "dest" if the expression is true but execution 3603 ** continues straight thru if the expression is false. 3604 ** 3605 ** If the expression evaluates to NULL (neither true nor false), then 3606 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3607 ** 3608 ** This code depends on the fact that certain token values (ex: TK_EQ) 3609 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3610 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3611 ** the make process cause these values to align. Assert()s in the code 3612 ** below verify that the numbers are aligned correctly. 3613 */ 3614 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3615 Vdbe *v = pParse->pVdbe; 3616 int op = 0; 3617 int regFree1 = 0; 3618 int regFree2 = 0; 3619 int r1, r2; 3620 3621 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3622 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3623 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3624 op = pExpr->op; 3625 switch( op ){ 3626 case TK_AND: { 3627 int d2 = sqlite3VdbeMakeLabel(v); 3628 testcase( jumpIfNull==0 ); 3629 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3630 sqlite3ExprCachePush(pParse); 3631 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3632 sqlite3VdbeResolveLabel(v, d2); 3633 sqlite3ExprCachePop(pParse); 3634 break; 3635 } 3636 case TK_OR: { 3637 testcase( jumpIfNull==0 ); 3638 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3639 sqlite3ExprCachePush(pParse); 3640 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3641 sqlite3ExprCachePop(pParse); 3642 break; 3643 } 3644 case TK_NOT: { 3645 testcase( jumpIfNull==0 ); 3646 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3647 break; 3648 } 3649 case TK_LT: 3650 case TK_LE: 3651 case TK_GT: 3652 case TK_GE: 3653 case TK_NE: 3654 case TK_EQ: { 3655 testcase( jumpIfNull==0 ); 3656 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3657 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3658 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3659 r1, r2, dest, jumpIfNull); 3660 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3661 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3662 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3663 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3664 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3665 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3666 testcase( regFree1==0 ); 3667 testcase( regFree2==0 ); 3668 break; 3669 } 3670 case TK_IS: 3671 case TK_ISNOT: { 3672 testcase( op==TK_IS ); 3673 testcase( op==TK_ISNOT ); 3674 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3675 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3676 op = (op==TK_IS) ? TK_EQ : TK_NE; 3677 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3678 r1, r2, dest, SQLITE_NULLEQ); 3679 VdbeCoverageIf(v, op==TK_EQ); 3680 VdbeCoverageIf(v, op==TK_NE); 3681 testcase( regFree1==0 ); 3682 testcase( regFree2==0 ); 3683 break; 3684 } 3685 case TK_ISNULL: 3686 case TK_NOTNULL: { 3687 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3688 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3689 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3690 sqlite3VdbeAddOp2(v, op, r1, dest); 3691 VdbeCoverageIf(v, op==TK_ISNULL); 3692 VdbeCoverageIf(v, op==TK_NOTNULL); 3693 testcase( regFree1==0 ); 3694 break; 3695 } 3696 case TK_BETWEEN: { 3697 testcase( jumpIfNull==0 ); 3698 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3699 break; 3700 } 3701 #ifndef SQLITE_OMIT_SUBQUERY 3702 case TK_IN: { 3703 int destIfFalse = sqlite3VdbeMakeLabel(v); 3704 int destIfNull = jumpIfNull ? dest : destIfFalse; 3705 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3706 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3707 sqlite3VdbeResolveLabel(v, destIfFalse); 3708 break; 3709 } 3710 #endif 3711 default: { 3712 if( exprAlwaysTrue(pExpr) ){ 3713 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3714 }else if( exprAlwaysFalse(pExpr) ){ 3715 /* No-op */ 3716 }else{ 3717 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3718 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3719 VdbeCoverage(v); 3720 testcase( regFree1==0 ); 3721 testcase( jumpIfNull==0 ); 3722 } 3723 break; 3724 } 3725 } 3726 sqlite3ReleaseTempReg(pParse, regFree1); 3727 sqlite3ReleaseTempReg(pParse, regFree2); 3728 } 3729 3730 /* 3731 ** Generate code for a boolean expression such that a jump is made 3732 ** to the label "dest" if the expression is false but execution 3733 ** continues straight thru if the expression is true. 3734 ** 3735 ** If the expression evaluates to NULL (neither true nor false) then 3736 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3737 ** is 0. 3738 */ 3739 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3740 Vdbe *v = pParse->pVdbe; 3741 int op = 0; 3742 int regFree1 = 0; 3743 int regFree2 = 0; 3744 int r1, r2; 3745 3746 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3747 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3748 if( pExpr==0 ) return; 3749 3750 /* The value of pExpr->op and op are related as follows: 3751 ** 3752 ** pExpr->op op 3753 ** --------- ---------- 3754 ** TK_ISNULL OP_NotNull 3755 ** TK_NOTNULL OP_IsNull 3756 ** TK_NE OP_Eq 3757 ** TK_EQ OP_Ne 3758 ** TK_GT OP_Le 3759 ** TK_LE OP_Gt 3760 ** TK_GE OP_Lt 3761 ** TK_LT OP_Ge 3762 ** 3763 ** For other values of pExpr->op, op is undefined and unused. 3764 ** The value of TK_ and OP_ constants are arranged such that we 3765 ** can compute the mapping above using the following expression. 3766 ** Assert()s verify that the computation is correct. 3767 */ 3768 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3769 3770 /* Verify correct alignment of TK_ and OP_ constants 3771 */ 3772 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3773 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3774 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3775 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3776 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3777 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3778 assert( pExpr->op!=TK_GT || op==OP_Le ); 3779 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3780 3781 switch( pExpr->op ){ 3782 case TK_AND: { 3783 testcase( jumpIfNull==0 ); 3784 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3785 sqlite3ExprCachePush(pParse); 3786 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3787 sqlite3ExprCachePop(pParse); 3788 break; 3789 } 3790 case TK_OR: { 3791 int d2 = sqlite3VdbeMakeLabel(v); 3792 testcase( jumpIfNull==0 ); 3793 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3794 sqlite3ExprCachePush(pParse); 3795 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3796 sqlite3VdbeResolveLabel(v, d2); 3797 sqlite3ExprCachePop(pParse); 3798 break; 3799 } 3800 case TK_NOT: { 3801 testcase( jumpIfNull==0 ); 3802 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3803 break; 3804 } 3805 case TK_LT: 3806 case TK_LE: 3807 case TK_GT: 3808 case TK_GE: 3809 case TK_NE: 3810 case TK_EQ: { 3811 testcase( jumpIfNull==0 ); 3812 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3813 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3814 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3815 r1, r2, dest, jumpIfNull); 3816 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3817 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3818 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3819 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3820 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3821 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3822 testcase( regFree1==0 ); 3823 testcase( regFree2==0 ); 3824 break; 3825 } 3826 case TK_IS: 3827 case TK_ISNOT: { 3828 testcase( pExpr->op==TK_IS ); 3829 testcase( pExpr->op==TK_ISNOT ); 3830 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3831 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3832 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3833 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3834 r1, r2, dest, SQLITE_NULLEQ); 3835 VdbeCoverageIf(v, op==TK_EQ); 3836 VdbeCoverageIf(v, op==TK_NE); 3837 testcase( regFree1==0 ); 3838 testcase( regFree2==0 ); 3839 break; 3840 } 3841 case TK_ISNULL: 3842 case TK_NOTNULL: { 3843 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3844 sqlite3VdbeAddOp2(v, op, r1, dest); 3845 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3846 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3847 testcase( regFree1==0 ); 3848 break; 3849 } 3850 case TK_BETWEEN: { 3851 testcase( jumpIfNull==0 ); 3852 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3853 break; 3854 } 3855 #ifndef SQLITE_OMIT_SUBQUERY 3856 case TK_IN: { 3857 if( jumpIfNull ){ 3858 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3859 }else{ 3860 int destIfNull = sqlite3VdbeMakeLabel(v); 3861 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3862 sqlite3VdbeResolveLabel(v, destIfNull); 3863 } 3864 break; 3865 } 3866 #endif 3867 default: { 3868 if( exprAlwaysFalse(pExpr) ){ 3869 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3870 }else if( exprAlwaysTrue(pExpr) ){ 3871 /* no-op */ 3872 }else{ 3873 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3874 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3875 VdbeCoverage(v); 3876 testcase( regFree1==0 ); 3877 testcase( jumpIfNull==0 ); 3878 } 3879 break; 3880 } 3881 } 3882 sqlite3ReleaseTempReg(pParse, regFree1); 3883 sqlite3ReleaseTempReg(pParse, regFree2); 3884 } 3885 3886 /* 3887 ** Do a deep comparison of two expression trees. Return 0 if the two 3888 ** expressions are completely identical. Return 1 if they differ only 3889 ** by a COLLATE operator at the top level. Return 2 if there are differences 3890 ** other than the top-level COLLATE operator. 3891 ** 3892 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3893 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3894 ** 3895 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3896 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3897 ** 3898 ** Sometimes this routine will return 2 even if the two expressions 3899 ** really are equivalent. If we cannot prove that the expressions are 3900 ** identical, we return 2 just to be safe. So if this routine 3901 ** returns 2, then you do not really know for certain if the two 3902 ** expressions are the same. But if you get a 0 or 1 return, then you 3903 ** can be sure the expressions are the same. In the places where 3904 ** this routine is used, it does not hurt to get an extra 2 - that 3905 ** just might result in some slightly slower code. But returning 3906 ** an incorrect 0 or 1 could lead to a malfunction. 3907 */ 3908 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3909 u32 combinedFlags; 3910 if( pA==0 || pB==0 ){ 3911 return pB==pA ? 0 : 2; 3912 } 3913 combinedFlags = pA->flags | pB->flags; 3914 if( combinedFlags & EP_IntValue ){ 3915 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3916 return 0; 3917 } 3918 return 2; 3919 } 3920 if( pA->op!=pB->op ){ 3921 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3922 return 1; 3923 } 3924 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3925 return 1; 3926 } 3927 return 2; 3928 } 3929 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3930 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3931 return pA->op==TK_COLLATE ? 1 : 2; 3932 } 3933 } 3934 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3935 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3936 if( combinedFlags & EP_xIsSelect ) return 2; 3937 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3938 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3939 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3940 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 3941 if( pA->iColumn!=pB->iColumn ) return 2; 3942 if( pA->iTable!=pB->iTable 3943 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3944 } 3945 } 3946 return 0; 3947 } 3948 3949 /* 3950 ** Compare two ExprList objects. Return 0 if they are identical and 3951 ** non-zero if they differ in any way. 3952 ** 3953 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3954 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3955 ** 3956 ** This routine might return non-zero for equivalent ExprLists. The 3957 ** only consequence will be disabled optimizations. But this routine 3958 ** must never return 0 if the two ExprList objects are different, or 3959 ** a malfunction will result. 3960 ** 3961 ** Two NULL pointers are considered to be the same. But a NULL pointer 3962 ** always differs from a non-NULL pointer. 3963 */ 3964 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3965 int i; 3966 if( pA==0 && pB==0 ) return 0; 3967 if( pA==0 || pB==0 ) return 1; 3968 if( pA->nExpr!=pB->nExpr ) return 1; 3969 for(i=0; i<pA->nExpr; i++){ 3970 Expr *pExprA = pA->a[i].pExpr; 3971 Expr *pExprB = pB->a[i].pExpr; 3972 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3973 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3974 } 3975 return 0; 3976 } 3977 3978 /* 3979 ** Return true if we can prove the pE2 will always be true if pE1 is 3980 ** true. Return false if we cannot complete the proof or if pE2 might 3981 ** be false. Examples: 3982 ** 3983 ** pE1: x==5 pE2: x==5 Result: true 3984 ** pE1: x>0 pE2: x==5 Result: false 3985 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3986 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3987 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3988 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3989 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3990 ** 3991 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3992 ** Expr.iTable<0 then assume a table number given by iTab. 3993 ** 3994 ** When in doubt, return false. Returning true might give a performance 3995 ** improvement. Returning false might cause a performance reduction, but 3996 ** it will always give the correct answer and is hence always safe. 3997 */ 3998 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3999 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4000 return 1; 4001 } 4002 if( pE2->op==TK_OR 4003 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4004 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4005 ){ 4006 return 1; 4007 } 4008 if( pE2->op==TK_NOTNULL 4009 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 4010 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 4011 ){ 4012 return 1; 4013 } 4014 return 0; 4015 } 4016 4017 /* 4018 ** An instance of the following structure is used by the tree walker 4019 ** to count references to table columns in the arguments of an 4020 ** aggregate function, in order to implement the 4021 ** sqlite3FunctionThisSrc() routine. 4022 */ 4023 struct SrcCount { 4024 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4025 int nThis; /* Number of references to columns in pSrcList */ 4026 int nOther; /* Number of references to columns in other FROM clauses */ 4027 }; 4028 4029 /* 4030 ** Count the number of references to columns. 4031 */ 4032 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4033 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4034 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4035 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4036 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4037 ** NEVER() will need to be removed. */ 4038 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4039 int i; 4040 struct SrcCount *p = pWalker->u.pSrcCount; 4041 SrcList *pSrc = p->pSrc; 4042 for(i=0; i<pSrc->nSrc; i++){ 4043 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4044 } 4045 if( i<pSrc->nSrc ){ 4046 p->nThis++; 4047 }else{ 4048 p->nOther++; 4049 } 4050 } 4051 return WRC_Continue; 4052 } 4053 4054 /* 4055 ** Determine if any of the arguments to the pExpr Function reference 4056 ** pSrcList. Return true if they do. Also return true if the function 4057 ** has no arguments or has only constant arguments. Return false if pExpr 4058 ** references columns but not columns of tables found in pSrcList. 4059 */ 4060 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4061 Walker w; 4062 struct SrcCount cnt; 4063 assert( pExpr->op==TK_AGG_FUNCTION ); 4064 memset(&w, 0, sizeof(w)); 4065 w.xExprCallback = exprSrcCount; 4066 w.u.pSrcCount = &cnt; 4067 cnt.pSrc = pSrcList; 4068 cnt.nThis = 0; 4069 cnt.nOther = 0; 4070 sqlite3WalkExprList(&w, pExpr->x.pList); 4071 return cnt.nThis>0 || cnt.nOther==0; 4072 } 4073 4074 /* 4075 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4076 ** the new element. Return a negative number if malloc fails. 4077 */ 4078 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4079 int i; 4080 pInfo->aCol = sqlite3ArrayAllocate( 4081 db, 4082 pInfo->aCol, 4083 sizeof(pInfo->aCol[0]), 4084 &pInfo->nColumn, 4085 &i 4086 ); 4087 return i; 4088 } 4089 4090 /* 4091 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4092 ** the new element. Return a negative number if malloc fails. 4093 */ 4094 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4095 int i; 4096 pInfo->aFunc = sqlite3ArrayAllocate( 4097 db, 4098 pInfo->aFunc, 4099 sizeof(pInfo->aFunc[0]), 4100 &pInfo->nFunc, 4101 &i 4102 ); 4103 return i; 4104 } 4105 4106 /* 4107 ** This is the xExprCallback for a tree walker. It is used to 4108 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4109 ** for additional information. 4110 */ 4111 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4112 int i; 4113 NameContext *pNC = pWalker->u.pNC; 4114 Parse *pParse = pNC->pParse; 4115 SrcList *pSrcList = pNC->pSrcList; 4116 AggInfo *pAggInfo = pNC->pAggInfo; 4117 4118 switch( pExpr->op ){ 4119 case TK_AGG_COLUMN: 4120 case TK_COLUMN: { 4121 testcase( pExpr->op==TK_AGG_COLUMN ); 4122 testcase( pExpr->op==TK_COLUMN ); 4123 /* Check to see if the column is in one of the tables in the FROM 4124 ** clause of the aggregate query */ 4125 if( ALWAYS(pSrcList!=0) ){ 4126 struct SrcList_item *pItem = pSrcList->a; 4127 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4128 struct AggInfo_col *pCol; 4129 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4130 if( pExpr->iTable==pItem->iCursor ){ 4131 /* If we reach this point, it means that pExpr refers to a table 4132 ** that is in the FROM clause of the aggregate query. 4133 ** 4134 ** Make an entry for the column in pAggInfo->aCol[] if there 4135 ** is not an entry there already. 4136 */ 4137 int k; 4138 pCol = pAggInfo->aCol; 4139 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4140 if( pCol->iTable==pExpr->iTable && 4141 pCol->iColumn==pExpr->iColumn ){ 4142 break; 4143 } 4144 } 4145 if( (k>=pAggInfo->nColumn) 4146 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4147 ){ 4148 pCol = &pAggInfo->aCol[k]; 4149 pCol->pTab = pExpr->pTab; 4150 pCol->iTable = pExpr->iTable; 4151 pCol->iColumn = pExpr->iColumn; 4152 pCol->iMem = ++pParse->nMem; 4153 pCol->iSorterColumn = -1; 4154 pCol->pExpr = pExpr; 4155 if( pAggInfo->pGroupBy ){ 4156 int j, n; 4157 ExprList *pGB = pAggInfo->pGroupBy; 4158 struct ExprList_item *pTerm = pGB->a; 4159 n = pGB->nExpr; 4160 for(j=0; j<n; j++, pTerm++){ 4161 Expr *pE = pTerm->pExpr; 4162 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4163 pE->iColumn==pExpr->iColumn ){ 4164 pCol->iSorterColumn = j; 4165 break; 4166 } 4167 } 4168 } 4169 if( pCol->iSorterColumn<0 ){ 4170 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4171 } 4172 } 4173 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4174 ** because it was there before or because we just created it). 4175 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4176 ** pAggInfo->aCol[] entry. 4177 */ 4178 ExprSetVVAProperty(pExpr, EP_NoReduce); 4179 pExpr->pAggInfo = pAggInfo; 4180 pExpr->op = TK_AGG_COLUMN; 4181 pExpr->iAgg = (i16)k; 4182 break; 4183 } /* endif pExpr->iTable==pItem->iCursor */ 4184 } /* end loop over pSrcList */ 4185 } 4186 return WRC_Prune; 4187 } 4188 case TK_AGG_FUNCTION: { 4189 if( (pNC->ncFlags & NC_InAggFunc)==0 4190 && pWalker->walkerDepth==pExpr->op2 4191 ){ 4192 /* Check to see if pExpr is a duplicate of another aggregate 4193 ** function that is already in the pAggInfo structure 4194 */ 4195 struct AggInfo_func *pItem = pAggInfo->aFunc; 4196 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4197 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4198 break; 4199 } 4200 } 4201 if( i>=pAggInfo->nFunc ){ 4202 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4203 */ 4204 u8 enc = ENC(pParse->db); 4205 i = addAggInfoFunc(pParse->db, pAggInfo); 4206 if( i>=0 ){ 4207 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4208 pItem = &pAggInfo->aFunc[i]; 4209 pItem->pExpr = pExpr; 4210 pItem->iMem = ++pParse->nMem; 4211 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4212 pItem->pFunc = sqlite3FindFunction(pParse->db, 4213 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4214 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4215 if( pExpr->flags & EP_Distinct ){ 4216 pItem->iDistinct = pParse->nTab++; 4217 }else{ 4218 pItem->iDistinct = -1; 4219 } 4220 } 4221 } 4222 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4223 */ 4224 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4225 ExprSetVVAProperty(pExpr, EP_NoReduce); 4226 pExpr->iAgg = (i16)i; 4227 pExpr->pAggInfo = pAggInfo; 4228 return WRC_Prune; 4229 }else{ 4230 return WRC_Continue; 4231 } 4232 } 4233 } 4234 return WRC_Continue; 4235 } 4236 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4237 UNUSED_PARAMETER(pWalker); 4238 UNUSED_PARAMETER(pSelect); 4239 return WRC_Continue; 4240 } 4241 4242 /* 4243 ** Analyze the pExpr expression looking for aggregate functions and 4244 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4245 ** points to. Additional entries are made on the AggInfo object as 4246 ** necessary. 4247 ** 4248 ** This routine should only be called after the expression has been 4249 ** analyzed by sqlite3ResolveExprNames(). 4250 */ 4251 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4252 Walker w; 4253 memset(&w, 0, sizeof(w)); 4254 w.xExprCallback = analyzeAggregate; 4255 w.xSelectCallback = analyzeAggregatesInSelect; 4256 w.u.pNC = pNC; 4257 assert( pNC->pSrcList!=0 ); 4258 sqlite3WalkExpr(&w, pExpr); 4259 } 4260 4261 /* 4262 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4263 ** expression list. Return the number of errors. 4264 ** 4265 ** If an error is found, the analysis is cut short. 4266 */ 4267 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4268 struct ExprList_item *pItem; 4269 int i; 4270 if( pList ){ 4271 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4272 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4273 } 4274 } 4275 } 4276 4277 /* 4278 ** Allocate a single new register for use to hold some intermediate result. 4279 */ 4280 int sqlite3GetTempReg(Parse *pParse){ 4281 if( pParse->nTempReg==0 ){ 4282 return ++pParse->nMem; 4283 } 4284 return pParse->aTempReg[--pParse->nTempReg]; 4285 } 4286 4287 /* 4288 ** Deallocate a register, making available for reuse for some other 4289 ** purpose. 4290 ** 4291 ** If a register is currently being used by the column cache, then 4292 ** the deallocation is deferred until the column cache line that uses 4293 ** the register becomes stale. 4294 */ 4295 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4296 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4297 int i; 4298 struct yColCache *p; 4299 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4300 if( p->iReg==iReg ){ 4301 p->tempReg = 1; 4302 return; 4303 } 4304 } 4305 pParse->aTempReg[pParse->nTempReg++] = iReg; 4306 } 4307 } 4308 4309 /* 4310 ** Allocate or deallocate a block of nReg consecutive registers 4311 */ 4312 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4313 int i, n; 4314 i = pParse->iRangeReg; 4315 n = pParse->nRangeReg; 4316 if( nReg<=n ){ 4317 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4318 pParse->iRangeReg += nReg; 4319 pParse->nRangeReg -= nReg; 4320 }else{ 4321 i = pParse->nMem+1; 4322 pParse->nMem += nReg; 4323 } 4324 return i; 4325 } 4326 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4327 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4328 if( nReg>pParse->nRangeReg ){ 4329 pParse->nRangeReg = nReg; 4330 pParse->iRangeReg = iReg; 4331 } 4332 } 4333 4334 /* 4335 ** Mark all temporary registers as being unavailable for reuse. 4336 */ 4337 void sqlite3ClearTempRegCache(Parse *pParse){ 4338 pParse->nTempReg = 0; 4339 pParse->nRangeReg = 0; 4340 } 4341