1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){ 57 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 58 } 59 if( op==TK_SELECT ){ 60 assert( pExpr->flags&EP_xIsSelect ); 61 assert( pExpr->x.pSelect!=0 ); 62 assert( pExpr->x.pSelect->pEList!=0 ); 63 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 64 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 65 } 66 #ifndef SQLITE_OMIT_CAST 67 if( op==TK_CAST ){ 68 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 69 return sqlite3AffinityType(pExpr->u.zToken, 0); 70 } 71 #endif 72 if( op==TK_SELECT_COLUMN ){ 73 assert( pExpr->pLeft->flags&EP_xIsSelect ); 74 assert( pExpr->iColumn < pExpr->iTable ); 75 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 76 return sqlite3ExprAffinity( 77 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 78 ); 79 } 80 if( op==TK_VECTOR ){ 81 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 82 } 83 return pExpr->affExpr; 84 } 85 86 /* 87 ** Set the collating sequence for expression pExpr to be the collating 88 ** sequence named by pToken. Return a pointer to a new Expr node that 89 ** implements the COLLATE operator. 90 ** 91 ** If a memory allocation error occurs, that fact is recorded in pParse->db 92 ** and the pExpr parameter is returned unchanged. 93 */ 94 Expr *sqlite3ExprAddCollateToken( 95 Parse *pParse, /* Parsing context */ 96 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 97 const Token *pCollName, /* Name of collating sequence */ 98 int dequote /* True to dequote pCollName */ 99 ){ 100 if( pCollName->n>0 ){ 101 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 102 if( pNew ){ 103 pNew->pLeft = pExpr; 104 pNew->flags |= EP_Collate|EP_Skip; 105 pExpr = pNew; 106 } 107 } 108 return pExpr; 109 } 110 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 111 Token s; 112 assert( zC!=0 ); 113 sqlite3TokenInit(&s, (char*)zC); 114 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 115 } 116 117 /* 118 ** Skip over any TK_COLLATE operators. 119 */ 120 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 121 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 122 assert( pExpr->op==TK_COLLATE ); 123 pExpr = pExpr->pLeft; 124 } 125 return pExpr; 126 } 127 128 /* 129 ** Skip over any TK_COLLATE operators and/or any unlikely() 130 ** or likelihood() or likely() functions at the root of an 131 ** expression. 132 */ 133 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 134 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 135 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 136 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 137 assert( pExpr->x.pList->nExpr>0 ); 138 assert( pExpr->op==TK_FUNCTION ); 139 pExpr = pExpr->x.pList->a[0].pExpr; 140 }else{ 141 assert( pExpr->op==TK_COLLATE ); 142 pExpr = pExpr->pLeft; 143 } 144 } 145 return pExpr; 146 } 147 148 /* 149 ** Return the collation sequence for the expression pExpr. If 150 ** there is no defined collating sequence, return NULL. 151 ** 152 ** See also: sqlite3ExprNNCollSeq() 153 ** 154 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 155 ** default collation if pExpr has no defined collation. 156 ** 157 ** The collating sequence might be determined by a COLLATE operator 158 ** or by the presence of a column with a defined collating sequence. 159 ** COLLATE operators take first precedence. Left operands take 160 ** precedence over right operands. 161 */ 162 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 163 sqlite3 *db = pParse->db; 164 CollSeq *pColl = 0; 165 const Expr *p = pExpr; 166 while( p ){ 167 int op = p->op; 168 if( op==TK_REGISTER ) op = p->op2; 169 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 170 && p->y.pTab!=0 171 ){ 172 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 173 ** a TK_COLUMN but was previously evaluated and cached in a register */ 174 int j = p->iColumn; 175 if( j>=0 ){ 176 const char *zColl = p->y.pTab->aCol[j].zColl; 177 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 178 } 179 break; 180 } 181 if( op==TK_CAST || op==TK_UPLUS ){ 182 p = p->pLeft; 183 continue; 184 } 185 if( op==TK_VECTOR ){ 186 p = p->x.pList->a[0].pExpr; 187 continue; 188 } 189 if( op==TK_COLLATE ){ 190 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 191 break; 192 } 193 if( p->flags & EP_Collate ){ 194 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 195 p = p->pLeft; 196 }else{ 197 Expr *pNext = p->pRight; 198 /* The Expr.x union is never used at the same time as Expr.pRight */ 199 assert( p->x.pList==0 || p->pRight==0 ); 200 if( p->x.pList!=0 201 && !db->mallocFailed 202 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 203 ){ 204 int i; 205 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 206 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 207 pNext = p->x.pList->a[i].pExpr; 208 break; 209 } 210 } 211 } 212 p = pNext; 213 } 214 }else{ 215 break; 216 } 217 } 218 if( sqlite3CheckCollSeq(pParse, pColl) ){ 219 pColl = 0; 220 } 221 return pColl; 222 } 223 224 /* 225 ** Return the collation sequence for the expression pExpr. If 226 ** there is no defined collating sequence, return a pointer to the 227 ** defautl collation sequence. 228 ** 229 ** See also: sqlite3ExprCollSeq() 230 ** 231 ** The sqlite3ExprCollSeq() routine works the same except that it 232 ** returns NULL if there is no defined collation. 233 */ 234 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 235 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 236 if( p==0 ) p = pParse->db->pDfltColl; 237 assert( p!=0 ); 238 return p; 239 } 240 241 /* 242 ** Return TRUE if the two expressions have equivalent collating sequences. 243 */ 244 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 245 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 246 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 247 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 248 } 249 250 /* 251 ** pExpr is an operand of a comparison operator. aff2 is the 252 ** type affinity of the other operand. This routine returns the 253 ** type affinity that should be used for the comparison operator. 254 */ 255 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 256 char aff1 = sqlite3ExprAffinity(pExpr); 257 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 258 /* Both sides of the comparison are columns. If one has numeric 259 ** affinity, use that. Otherwise use no affinity. 260 */ 261 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 262 return SQLITE_AFF_NUMERIC; 263 }else{ 264 return SQLITE_AFF_BLOB; 265 } 266 }else{ 267 /* One side is a column, the other is not. Use the columns affinity. */ 268 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 269 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 270 } 271 } 272 273 /* 274 ** pExpr is a comparison operator. Return the type affinity that should 275 ** be applied to both operands prior to doing the comparison. 276 */ 277 static char comparisonAffinity(const Expr *pExpr){ 278 char aff; 279 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 280 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 281 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 282 assert( pExpr->pLeft ); 283 aff = sqlite3ExprAffinity(pExpr->pLeft); 284 if( pExpr->pRight ){ 285 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 286 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 287 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 288 }else if( aff==0 ){ 289 aff = SQLITE_AFF_BLOB; 290 } 291 return aff; 292 } 293 294 /* 295 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 296 ** idx_affinity is the affinity of an indexed column. Return true 297 ** if the index with affinity idx_affinity may be used to implement 298 ** the comparison in pExpr. 299 */ 300 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 301 char aff = comparisonAffinity(pExpr); 302 if( aff<SQLITE_AFF_TEXT ){ 303 return 1; 304 } 305 if( aff==SQLITE_AFF_TEXT ){ 306 return idx_affinity==SQLITE_AFF_TEXT; 307 } 308 return sqlite3IsNumericAffinity(idx_affinity); 309 } 310 311 /* 312 ** Return the P5 value that should be used for a binary comparison 313 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 314 */ 315 static u8 binaryCompareP5( 316 const Expr *pExpr1, /* Left operand */ 317 const Expr *pExpr2, /* Right operand */ 318 int jumpIfNull /* Extra flags added to P5 */ 319 ){ 320 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 321 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 322 return aff; 323 } 324 325 /* 326 ** Return a pointer to the collation sequence that should be used by 327 ** a binary comparison operator comparing pLeft and pRight. 328 ** 329 ** If the left hand expression has a collating sequence type, then it is 330 ** used. Otherwise the collation sequence for the right hand expression 331 ** is used, or the default (BINARY) if neither expression has a collating 332 ** type. 333 ** 334 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 335 ** it is not considered. 336 */ 337 CollSeq *sqlite3BinaryCompareCollSeq( 338 Parse *pParse, 339 const Expr *pLeft, 340 const Expr *pRight 341 ){ 342 CollSeq *pColl; 343 assert( pLeft ); 344 if( pLeft->flags & EP_Collate ){ 345 pColl = sqlite3ExprCollSeq(pParse, pLeft); 346 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 347 pColl = sqlite3ExprCollSeq(pParse, pRight); 348 }else{ 349 pColl = sqlite3ExprCollSeq(pParse, pLeft); 350 if( !pColl ){ 351 pColl = sqlite3ExprCollSeq(pParse, pRight); 352 } 353 } 354 return pColl; 355 } 356 357 /* Expresssion p is a comparison operator. Return a collation sequence 358 ** appropriate for the comparison operator. 359 ** 360 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 361 ** However, if the OP_Commuted flag is set, then the order of the operands 362 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 363 ** correct collating sequence is found. 364 */ 365 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 366 if( ExprHasProperty(p, EP_Commuted) ){ 367 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 368 }else{ 369 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 370 } 371 } 372 373 /* 374 ** Generate code for a comparison operator. 375 */ 376 static int codeCompare( 377 Parse *pParse, /* The parsing (and code generating) context */ 378 Expr *pLeft, /* The left operand */ 379 Expr *pRight, /* The right operand */ 380 int opcode, /* The comparison opcode */ 381 int in1, int in2, /* Register holding operands */ 382 int dest, /* Jump here if true. */ 383 int jumpIfNull, /* If true, jump if either operand is NULL */ 384 int isCommuted /* The comparison has been commuted */ 385 ){ 386 int p5; 387 int addr; 388 CollSeq *p4; 389 390 if( pParse->nErr ) return 0; 391 if( isCommuted ){ 392 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 393 }else{ 394 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 395 } 396 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 397 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 398 (void*)p4, P4_COLLSEQ); 399 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 400 return addr; 401 } 402 403 /* 404 ** Return true if expression pExpr is a vector, or false otherwise. 405 ** 406 ** A vector is defined as any expression that results in two or more 407 ** columns of result. Every TK_VECTOR node is an vector because the 408 ** parser will not generate a TK_VECTOR with fewer than two entries. 409 ** But a TK_SELECT might be either a vector or a scalar. It is only 410 ** considered a vector if it has two or more result columns. 411 */ 412 int sqlite3ExprIsVector(Expr *pExpr){ 413 return sqlite3ExprVectorSize(pExpr)>1; 414 } 415 416 /* 417 ** If the expression passed as the only argument is of type TK_VECTOR 418 ** return the number of expressions in the vector. Or, if the expression 419 ** is a sub-select, return the number of columns in the sub-select. For 420 ** any other type of expression, return 1. 421 */ 422 int sqlite3ExprVectorSize(Expr *pExpr){ 423 u8 op = pExpr->op; 424 if( op==TK_REGISTER ) op = pExpr->op2; 425 if( op==TK_VECTOR ){ 426 return pExpr->x.pList->nExpr; 427 }else if( op==TK_SELECT ){ 428 return pExpr->x.pSelect->pEList->nExpr; 429 }else{ 430 return 1; 431 } 432 } 433 434 /* 435 ** Return a pointer to a subexpression of pVector that is the i-th 436 ** column of the vector (numbered starting with 0). The caller must 437 ** ensure that i is within range. 438 ** 439 ** If pVector is really a scalar (and "scalar" here includes subqueries 440 ** that return a single column!) then return pVector unmodified. 441 ** 442 ** pVector retains ownership of the returned subexpression. 443 ** 444 ** If the vector is a (SELECT ...) then the expression returned is 445 ** just the expression for the i-th term of the result set, and may 446 ** not be ready for evaluation because the table cursor has not yet 447 ** been positioned. 448 */ 449 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 450 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 451 if( sqlite3ExprIsVector(pVector) ){ 452 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 453 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 454 return pVector->x.pSelect->pEList->a[i].pExpr; 455 }else{ 456 return pVector->x.pList->a[i].pExpr; 457 } 458 } 459 return pVector; 460 } 461 462 /* 463 ** Compute and return a new Expr object which when passed to 464 ** sqlite3ExprCode() will generate all necessary code to compute 465 ** the iField-th column of the vector expression pVector. 466 ** 467 ** It is ok for pVector to be a scalar (as long as iField==0). 468 ** In that case, this routine works like sqlite3ExprDup(). 469 ** 470 ** The caller owns the returned Expr object and is responsible for 471 ** ensuring that the returned value eventually gets freed. 472 ** 473 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 474 ** then the returned object will reference pVector and so pVector must remain 475 ** valid for the life of the returned object. If pVector is a TK_VECTOR 476 ** or a scalar expression, then it can be deleted as soon as this routine 477 ** returns. 478 ** 479 ** A trick to cause a TK_SELECT pVector to be deleted together with 480 ** the returned Expr object is to attach the pVector to the pRight field 481 ** of the returned TK_SELECT_COLUMN Expr object. 482 */ 483 Expr *sqlite3ExprForVectorField( 484 Parse *pParse, /* Parsing context */ 485 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 486 int iField, /* Which column of the vector to return */ 487 int nField /* Total number of columns in the vector */ 488 ){ 489 Expr *pRet; 490 if( pVector->op==TK_SELECT ){ 491 assert( pVector->flags & EP_xIsSelect ); 492 /* The TK_SELECT_COLUMN Expr node: 493 ** 494 ** pLeft: pVector containing TK_SELECT. Not deleted. 495 ** pRight: not used. But recursively deleted. 496 ** iColumn: Index of a column in pVector 497 ** iTable: 0 or the number of columns on the LHS of an assignment 498 ** pLeft->iTable: First in an array of register holding result, or 0 499 ** if the result is not yet computed. 500 ** 501 ** sqlite3ExprDelete() specifically skips the recursive delete of 502 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 503 ** can be attached to pRight to cause this node to take ownership of 504 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 505 ** with the same pLeft pointer to the pVector, but only one of them 506 ** will own the pVector. 507 */ 508 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 509 if( pRet ){ 510 pRet->iTable = nField; 511 pRet->iColumn = iField; 512 pRet->pLeft = pVector; 513 } 514 }else{ 515 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 516 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 517 sqlite3RenameTokenRemap(pParse, pRet, pVector); 518 } 519 return pRet; 520 } 521 522 /* 523 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 524 ** it. Return the register in which the result is stored (or, if the 525 ** sub-select returns more than one column, the first in an array 526 ** of registers in which the result is stored). 527 ** 528 ** If pExpr is not a TK_SELECT expression, return 0. 529 */ 530 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 531 int reg = 0; 532 #ifndef SQLITE_OMIT_SUBQUERY 533 if( pExpr->op==TK_SELECT ){ 534 reg = sqlite3CodeSubselect(pParse, pExpr); 535 } 536 #endif 537 return reg; 538 } 539 540 /* 541 ** Argument pVector points to a vector expression - either a TK_VECTOR 542 ** or TK_SELECT that returns more than one column. This function returns 543 ** the register number of a register that contains the value of 544 ** element iField of the vector. 545 ** 546 ** If pVector is a TK_SELECT expression, then code for it must have 547 ** already been generated using the exprCodeSubselect() routine. In this 548 ** case parameter regSelect should be the first in an array of registers 549 ** containing the results of the sub-select. 550 ** 551 ** If pVector is of type TK_VECTOR, then code for the requested field 552 ** is generated. In this case (*pRegFree) may be set to the number of 553 ** a temporary register to be freed by the caller before returning. 554 ** 555 ** Before returning, output parameter (*ppExpr) is set to point to the 556 ** Expr object corresponding to element iElem of the vector. 557 */ 558 static int exprVectorRegister( 559 Parse *pParse, /* Parse context */ 560 Expr *pVector, /* Vector to extract element from */ 561 int iField, /* Field to extract from pVector */ 562 int regSelect, /* First in array of registers */ 563 Expr **ppExpr, /* OUT: Expression element */ 564 int *pRegFree /* OUT: Temp register to free */ 565 ){ 566 u8 op = pVector->op; 567 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 568 if( op==TK_REGISTER ){ 569 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 570 return pVector->iTable+iField; 571 } 572 if( op==TK_SELECT ){ 573 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 574 return regSelect+iField; 575 } 576 if( op==TK_VECTOR ){ 577 *ppExpr = pVector->x.pList->a[iField].pExpr; 578 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 579 } 580 return 0; 581 } 582 583 /* 584 ** Expression pExpr is a comparison between two vector values. Compute 585 ** the result of the comparison (1, 0, or NULL) and write that 586 ** result into register dest. 587 ** 588 ** The caller must satisfy the following preconditions: 589 ** 590 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 591 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 592 ** otherwise: op==pExpr->op and p5==0 593 */ 594 static void codeVectorCompare( 595 Parse *pParse, /* Code generator context */ 596 Expr *pExpr, /* The comparison operation */ 597 int dest, /* Write results into this register */ 598 u8 op, /* Comparison operator */ 599 u8 p5 /* SQLITE_NULLEQ or zero */ 600 ){ 601 Vdbe *v = pParse->pVdbe; 602 Expr *pLeft = pExpr->pLeft; 603 Expr *pRight = pExpr->pRight; 604 int nLeft = sqlite3ExprVectorSize(pLeft); 605 int i; 606 int regLeft = 0; 607 int regRight = 0; 608 u8 opx = op; 609 int addrCmp = 0; 610 int addrDone = sqlite3VdbeMakeLabel(pParse); 611 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 612 613 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 614 if( pParse->nErr ) return; 615 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 616 sqlite3ErrorMsg(pParse, "row value misused"); 617 return; 618 } 619 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 620 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 621 || pExpr->op==TK_LT || pExpr->op==TK_GT 622 || pExpr->op==TK_LE || pExpr->op==TK_GE 623 ); 624 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 625 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 626 assert( p5==0 || pExpr->op!=op ); 627 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 628 629 if( op==TK_LE ) opx = TK_LT; 630 if( op==TK_GE ) opx = TK_GT; 631 if( op==TK_NE ) opx = TK_EQ; 632 633 regLeft = exprCodeSubselect(pParse, pLeft); 634 regRight = exprCodeSubselect(pParse, pRight); 635 636 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 637 for(i=0; 1 /*Loop exits by "break"*/; i++){ 638 int regFree1 = 0, regFree2 = 0; 639 Expr *pL = 0, *pR = 0; 640 int r1, r2; 641 assert( i>=0 && i<nLeft ); 642 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 643 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 644 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 645 addrCmp = sqlite3VdbeCurrentAddr(v); 646 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 647 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 648 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 649 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 650 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 651 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 652 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 653 sqlite3ReleaseTempReg(pParse, regFree1); 654 sqlite3ReleaseTempReg(pParse, regFree2); 655 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 656 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 657 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 658 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 659 } 660 if( p5==SQLITE_NULLEQ ){ 661 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 662 }else{ 663 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 664 } 665 if( i==nLeft-1 ){ 666 break; 667 } 668 if( opx==TK_EQ ){ 669 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 670 }else{ 671 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 672 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 673 if( i==nLeft-2 ) opx = op; 674 } 675 } 676 sqlite3VdbeJumpHere(v, addrCmp); 677 sqlite3VdbeResolveLabel(v, addrDone); 678 if( op==TK_NE ){ 679 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 680 } 681 } 682 683 #if SQLITE_MAX_EXPR_DEPTH>0 684 /* 685 ** Check that argument nHeight is less than or equal to the maximum 686 ** expression depth allowed. If it is not, leave an error message in 687 ** pParse. 688 */ 689 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 690 int rc = SQLITE_OK; 691 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 692 if( nHeight>mxHeight ){ 693 sqlite3ErrorMsg(pParse, 694 "Expression tree is too large (maximum depth %d)", mxHeight 695 ); 696 rc = SQLITE_ERROR; 697 } 698 return rc; 699 } 700 701 /* The following three functions, heightOfExpr(), heightOfExprList() 702 ** and heightOfSelect(), are used to determine the maximum height 703 ** of any expression tree referenced by the structure passed as the 704 ** first argument. 705 ** 706 ** If this maximum height is greater than the current value pointed 707 ** to by pnHeight, the second parameter, then set *pnHeight to that 708 ** value. 709 */ 710 static void heightOfExpr(Expr *p, int *pnHeight){ 711 if( p ){ 712 if( p->nHeight>*pnHeight ){ 713 *pnHeight = p->nHeight; 714 } 715 } 716 } 717 static void heightOfExprList(ExprList *p, int *pnHeight){ 718 if( p ){ 719 int i; 720 for(i=0; i<p->nExpr; i++){ 721 heightOfExpr(p->a[i].pExpr, pnHeight); 722 } 723 } 724 } 725 static void heightOfSelect(Select *pSelect, int *pnHeight){ 726 Select *p; 727 for(p=pSelect; p; p=p->pPrior){ 728 heightOfExpr(p->pWhere, pnHeight); 729 heightOfExpr(p->pHaving, pnHeight); 730 heightOfExpr(p->pLimit, pnHeight); 731 heightOfExprList(p->pEList, pnHeight); 732 heightOfExprList(p->pGroupBy, pnHeight); 733 heightOfExprList(p->pOrderBy, pnHeight); 734 } 735 } 736 737 /* 738 ** Set the Expr.nHeight variable in the structure passed as an 739 ** argument. An expression with no children, Expr.pList or 740 ** Expr.pSelect member has a height of 1. Any other expression 741 ** has a height equal to the maximum height of any other 742 ** referenced Expr plus one. 743 ** 744 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 745 ** if appropriate. 746 */ 747 static void exprSetHeight(Expr *p){ 748 int nHeight = 0; 749 heightOfExpr(p->pLeft, &nHeight); 750 heightOfExpr(p->pRight, &nHeight); 751 if( ExprHasProperty(p, EP_xIsSelect) ){ 752 heightOfSelect(p->x.pSelect, &nHeight); 753 }else if( p->x.pList ){ 754 heightOfExprList(p->x.pList, &nHeight); 755 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 756 } 757 p->nHeight = nHeight + 1; 758 } 759 760 /* 761 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 762 ** the height is greater than the maximum allowed expression depth, 763 ** leave an error in pParse. 764 ** 765 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 766 ** Expr.flags. 767 */ 768 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 769 if( pParse->nErr ) return; 770 exprSetHeight(p); 771 sqlite3ExprCheckHeight(pParse, p->nHeight); 772 } 773 774 /* 775 ** Return the maximum height of any expression tree referenced 776 ** by the select statement passed as an argument. 777 */ 778 int sqlite3SelectExprHeight(Select *p){ 779 int nHeight = 0; 780 heightOfSelect(p, &nHeight); 781 return nHeight; 782 } 783 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 784 /* 785 ** Propagate all EP_Propagate flags from the Expr.x.pList into 786 ** Expr.flags. 787 */ 788 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 789 if( pParse->nErr ) return; 790 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 791 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 792 } 793 } 794 #define exprSetHeight(y) 795 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 796 797 /* 798 ** This routine is the core allocator for Expr nodes. 799 ** 800 ** Construct a new expression node and return a pointer to it. Memory 801 ** for this node and for the pToken argument is a single allocation 802 ** obtained from sqlite3DbMalloc(). The calling function 803 ** is responsible for making sure the node eventually gets freed. 804 ** 805 ** If dequote is true, then the token (if it exists) is dequoted. 806 ** If dequote is false, no dequoting is performed. The deQuote 807 ** parameter is ignored if pToken is NULL or if the token does not 808 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 809 ** then the EP_DblQuoted flag is set on the expression node. 810 ** 811 ** Special case: If op==TK_INTEGER and pToken points to a string that 812 ** can be translated into a 32-bit integer, then the token is not 813 ** stored in u.zToken. Instead, the integer values is written 814 ** into u.iValue and the EP_IntValue flag is set. No extra storage 815 ** is allocated to hold the integer text and the dequote flag is ignored. 816 */ 817 Expr *sqlite3ExprAlloc( 818 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 819 int op, /* Expression opcode */ 820 const Token *pToken, /* Token argument. Might be NULL */ 821 int dequote /* True to dequote */ 822 ){ 823 Expr *pNew; 824 int nExtra = 0; 825 int iValue = 0; 826 827 assert( db!=0 ); 828 if( pToken ){ 829 if( op!=TK_INTEGER || pToken->z==0 830 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 831 nExtra = pToken->n+1; 832 assert( iValue>=0 ); 833 } 834 } 835 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 836 if( pNew ){ 837 memset(pNew, 0, sizeof(Expr)); 838 pNew->op = (u8)op; 839 pNew->iAgg = -1; 840 if( pToken ){ 841 if( nExtra==0 ){ 842 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 843 pNew->u.iValue = iValue; 844 }else{ 845 pNew->u.zToken = (char*)&pNew[1]; 846 assert( pToken->z!=0 || pToken->n==0 ); 847 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 848 pNew->u.zToken[pToken->n] = 0; 849 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 850 sqlite3DequoteExpr(pNew); 851 } 852 } 853 } 854 #if SQLITE_MAX_EXPR_DEPTH>0 855 pNew->nHeight = 1; 856 #endif 857 } 858 return pNew; 859 } 860 861 /* 862 ** Allocate a new expression node from a zero-terminated token that has 863 ** already been dequoted. 864 */ 865 Expr *sqlite3Expr( 866 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 867 int op, /* Expression opcode */ 868 const char *zToken /* Token argument. Might be NULL */ 869 ){ 870 Token x; 871 x.z = zToken; 872 x.n = sqlite3Strlen30(zToken); 873 return sqlite3ExprAlloc(db, op, &x, 0); 874 } 875 876 /* 877 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 878 ** 879 ** If pRoot==NULL that means that a memory allocation error has occurred. 880 ** In that case, delete the subtrees pLeft and pRight. 881 */ 882 void sqlite3ExprAttachSubtrees( 883 sqlite3 *db, 884 Expr *pRoot, 885 Expr *pLeft, 886 Expr *pRight 887 ){ 888 if( pRoot==0 ){ 889 assert( db->mallocFailed ); 890 sqlite3ExprDelete(db, pLeft); 891 sqlite3ExprDelete(db, pRight); 892 }else{ 893 if( pRight ){ 894 pRoot->pRight = pRight; 895 pRoot->flags |= EP_Propagate & pRight->flags; 896 } 897 if( pLeft ){ 898 pRoot->pLeft = pLeft; 899 pRoot->flags |= EP_Propagate & pLeft->flags; 900 } 901 exprSetHeight(pRoot); 902 } 903 } 904 905 /* 906 ** Allocate an Expr node which joins as many as two subtrees. 907 ** 908 ** One or both of the subtrees can be NULL. Return a pointer to the new 909 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 910 ** free the subtrees and return NULL. 911 */ 912 Expr *sqlite3PExpr( 913 Parse *pParse, /* Parsing context */ 914 int op, /* Expression opcode */ 915 Expr *pLeft, /* Left operand */ 916 Expr *pRight /* Right operand */ 917 ){ 918 Expr *p; 919 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 920 if( p ){ 921 memset(p, 0, sizeof(Expr)); 922 p->op = op & 0xff; 923 p->iAgg = -1; 924 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 925 sqlite3ExprCheckHeight(pParse, p->nHeight); 926 }else{ 927 sqlite3ExprDelete(pParse->db, pLeft); 928 sqlite3ExprDelete(pParse->db, pRight); 929 } 930 return p; 931 } 932 933 /* 934 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 935 ** do a memory allocation failure) then delete the pSelect object. 936 */ 937 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 938 if( pExpr ){ 939 pExpr->x.pSelect = pSelect; 940 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 941 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 942 }else{ 943 assert( pParse->db->mallocFailed ); 944 sqlite3SelectDelete(pParse->db, pSelect); 945 } 946 } 947 948 /* 949 ** Expression list pEList is a list of vector values. This function 950 ** converts the contents of pEList to a VALUES(...) Select statement 951 ** returning 1 row for each element of the list. If there are any 952 ** non-vector expressions in the list, the corresponding row returned 953 ** by the values statement contains a single column, the value of 954 ** the non-vector expression itself. 955 ** 956 ** For example, the expression list: 957 ** 958 ** ( (1, 2), 3, (3, 4, 5) ) 959 ** 960 ** is translated to: 961 ** 962 ** VALUES(1, 2), (3), (3, 4, 5) 963 ** 964 ** This is used as part of processing IN(...) expressions with a list 965 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 966 */ 967 Select *sqlite3ExprListToValues(Parse *pParse, ExprList *pEList){ 968 int ii; 969 Select *pRet = 0; 970 for(ii=0; ii<pEList->nExpr; ii++){ 971 Select *pSel; 972 ExprList *pList; 973 Expr *pExpr = pEList->a[ii].pExpr; 974 if( pExpr->op==TK_VECTOR ){ 975 pList = pExpr->x.pList; 976 pExpr->x.pList = 0; 977 }else{ 978 pList = sqlite3ExprListAppend(pParse, 0, pExpr); 979 pEList->a[ii].pExpr = 0; 980 } 981 pSel = sqlite3SelectNew(pParse, pList, 0, 0, 0, 0, 0, SF_Values, 0); 982 if( pSel ){ 983 if( pRet ){ 984 pSel->op = TK_ALL; 985 pSel->pPrior = pRet; 986 } 987 pRet = pSel; 988 } 989 } 990 991 if( pRet && pRet->pPrior ){ 992 pRet->selFlags |= SF_MultiValue; 993 } 994 sqlite3ExprListDelete(pParse->db, pEList); 995 return pRet; 996 } 997 998 /* 999 ** Join two expressions using an AND operator. If either expression is 1000 ** NULL, then just return the other expression. 1001 ** 1002 ** If one side or the other of the AND is known to be false, then instead 1003 ** of returning an AND expression, just return a constant expression with 1004 ** a value of false. 1005 */ 1006 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1007 sqlite3 *db = pParse->db; 1008 if( pLeft==0 ){ 1009 return pRight; 1010 }else if( pRight==0 ){ 1011 return pLeft; 1012 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1013 && !IN_RENAME_OBJECT 1014 ){ 1015 sqlite3ExprDeferredDelete(pParse, pLeft); 1016 sqlite3ExprDeferredDelete(pParse, pRight); 1017 return sqlite3Expr(db, TK_INTEGER, "0"); 1018 }else{ 1019 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1020 } 1021 } 1022 1023 /* 1024 ** Construct a new expression node for a function with multiple 1025 ** arguments. 1026 */ 1027 Expr *sqlite3ExprFunction( 1028 Parse *pParse, /* Parsing context */ 1029 ExprList *pList, /* Argument list */ 1030 Token *pToken, /* Name of the function */ 1031 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1032 ){ 1033 Expr *pNew; 1034 sqlite3 *db = pParse->db; 1035 assert( pToken ); 1036 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1037 if( pNew==0 ){ 1038 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1039 return 0; 1040 } 1041 if( pList 1042 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1043 && !pParse->nested 1044 ){ 1045 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1046 } 1047 pNew->x.pList = pList; 1048 ExprSetProperty(pNew, EP_HasFunc); 1049 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1050 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1051 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1052 return pNew; 1053 } 1054 1055 /* 1056 ** Check to see if a function is usable according to current access 1057 ** rules: 1058 ** 1059 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1060 ** 1061 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1062 ** top-level SQL 1063 ** 1064 ** If the function is not usable, create an error. 1065 */ 1066 void sqlite3ExprFunctionUsable( 1067 Parse *pParse, /* Parsing and code generating context */ 1068 Expr *pExpr, /* The function invocation */ 1069 FuncDef *pDef /* The function being invoked */ 1070 ){ 1071 assert( !IN_RENAME_OBJECT ); 1072 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1073 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1074 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1075 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1076 ){ 1077 /* Functions prohibited in triggers and views if: 1078 ** (1) tagged with SQLITE_DIRECTONLY 1079 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1080 ** is tagged with SQLITE_FUNC_UNSAFE) and 1081 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1082 ** that the schema is possibly tainted). 1083 */ 1084 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1085 } 1086 } 1087 } 1088 1089 /* 1090 ** Assign a variable number to an expression that encodes a wildcard 1091 ** in the original SQL statement. 1092 ** 1093 ** Wildcards consisting of a single "?" are assigned the next sequential 1094 ** variable number. 1095 ** 1096 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1097 ** sure "nnn" is not too big to avoid a denial of service attack when 1098 ** the SQL statement comes from an external source. 1099 ** 1100 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1101 ** as the previous instance of the same wildcard. Or if this is the first 1102 ** instance of the wildcard, the next sequential variable number is 1103 ** assigned. 1104 */ 1105 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1106 sqlite3 *db = pParse->db; 1107 const char *z; 1108 ynVar x; 1109 1110 if( pExpr==0 ) return; 1111 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1112 z = pExpr->u.zToken; 1113 assert( z!=0 ); 1114 assert( z[0]!=0 ); 1115 assert( n==(u32)sqlite3Strlen30(z) ); 1116 if( z[1]==0 ){ 1117 /* Wildcard of the form "?". Assign the next variable number */ 1118 assert( z[0]=='?' ); 1119 x = (ynVar)(++pParse->nVar); 1120 }else{ 1121 int doAdd = 0; 1122 if( z[0]=='?' ){ 1123 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1124 ** use it as the variable number */ 1125 i64 i; 1126 int bOk; 1127 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1128 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1129 bOk = 1; 1130 }else{ 1131 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1132 } 1133 testcase( i==0 ); 1134 testcase( i==1 ); 1135 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1136 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1137 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1138 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1139 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1140 return; 1141 } 1142 x = (ynVar)i; 1143 if( x>pParse->nVar ){ 1144 pParse->nVar = (int)x; 1145 doAdd = 1; 1146 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1147 doAdd = 1; 1148 } 1149 }else{ 1150 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1151 ** number as the prior appearance of the same name, or if the name 1152 ** has never appeared before, reuse the same variable number 1153 */ 1154 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1155 if( x==0 ){ 1156 x = (ynVar)(++pParse->nVar); 1157 doAdd = 1; 1158 } 1159 } 1160 if( doAdd ){ 1161 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1162 } 1163 } 1164 pExpr->iColumn = x; 1165 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1166 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1167 } 1168 } 1169 1170 /* 1171 ** Recursively delete an expression tree. 1172 */ 1173 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1174 assert( p!=0 ); 1175 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1176 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1177 1178 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1179 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1180 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1181 #ifdef SQLITE_DEBUG 1182 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1183 assert( p->pLeft==0 ); 1184 assert( p->pRight==0 ); 1185 assert( p->x.pSelect==0 ); 1186 } 1187 #endif 1188 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1189 /* The Expr.x union is never used at the same time as Expr.pRight */ 1190 assert( p->x.pList==0 || p->pRight==0 ); 1191 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1192 if( p->pRight ){ 1193 assert( !ExprHasProperty(p, EP_WinFunc) ); 1194 sqlite3ExprDeleteNN(db, p->pRight); 1195 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1196 assert( !ExprHasProperty(p, EP_WinFunc) ); 1197 sqlite3SelectDelete(db, p->x.pSelect); 1198 }else{ 1199 sqlite3ExprListDelete(db, p->x.pList); 1200 #ifndef SQLITE_OMIT_WINDOWFUNC 1201 if( ExprHasProperty(p, EP_WinFunc) ){ 1202 sqlite3WindowDelete(db, p->y.pWin); 1203 } 1204 #endif 1205 } 1206 } 1207 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1208 if( !ExprHasProperty(p, EP_Static) ){ 1209 sqlite3DbFreeNN(db, p); 1210 } 1211 } 1212 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1213 if( p ) sqlite3ExprDeleteNN(db, p); 1214 } 1215 1216 1217 /* 1218 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1219 ** This is similar to sqlite3ExprDelete() except that the delete is 1220 ** deferred untilthe pParse is deleted. 1221 ** 1222 ** The pExpr might be deleted immediately on an OOM error. 1223 ** 1224 ** The deferred delete is (currently) implemented by adding the 1225 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1226 */ 1227 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1228 pParse->pConstExpr = 1229 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1230 } 1231 1232 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1233 ** expression. 1234 */ 1235 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1236 if( p ){ 1237 if( IN_RENAME_OBJECT ){ 1238 sqlite3RenameExprUnmap(pParse, p); 1239 } 1240 sqlite3ExprDeleteNN(pParse->db, p); 1241 } 1242 } 1243 1244 /* 1245 ** Return the number of bytes allocated for the expression structure 1246 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1247 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1248 */ 1249 static int exprStructSize(Expr *p){ 1250 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1251 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1252 return EXPR_FULLSIZE; 1253 } 1254 1255 /* 1256 ** The dupedExpr*Size() routines each return the number of bytes required 1257 ** to store a copy of an expression or expression tree. They differ in 1258 ** how much of the tree is measured. 1259 ** 1260 ** dupedExprStructSize() Size of only the Expr structure 1261 ** dupedExprNodeSize() Size of Expr + space for token 1262 ** dupedExprSize() Expr + token + subtree components 1263 ** 1264 *************************************************************************** 1265 ** 1266 ** The dupedExprStructSize() function returns two values OR-ed together: 1267 ** (1) the space required for a copy of the Expr structure only and 1268 ** (2) the EP_xxx flags that indicate what the structure size should be. 1269 ** The return values is always one of: 1270 ** 1271 ** EXPR_FULLSIZE 1272 ** EXPR_REDUCEDSIZE | EP_Reduced 1273 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1274 ** 1275 ** The size of the structure can be found by masking the return value 1276 ** of this routine with 0xfff. The flags can be found by masking the 1277 ** return value with EP_Reduced|EP_TokenOnly. 1278 ** 1279 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1280 ** (unreduced) Expr objects as they or originally constructed by the parser. 1281 ** During expression analysis, extra information is computed and moved into 1282 ** later parts of the Expr object and that extra information might get chopped 1283 ** off if the expression is reduced. Note also that it does not work to 1284 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1285 ** to reduce a pristine expression tree from the parser. The implementation 1286 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1287 ** to enforce this constraint. 1288 */ 1289 static int dupedExprStructSize(Expr *p, int flags){ 1290 int nSize; 1291 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1292 assert( EXPR_FULLSIZE<=0xfff ); 1293 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1294 if( 0==flags || p->op==TK_SELECT_COLUMN 1295 #ifndef SQLITE_OMIT_WINDOWFUNC 1296 || ExprHasProperty(p, EP_WinFunc) 1297 #endif 1298 ){ 1299 nSize = EXPR_FULLSIZE; 1300 }else{ 1301 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1302 assert( !ExprHasProperty(p, EP_FromJoin) ); 1303 assert( !ExprHasProperty(p, EP_MemToken) ); 1304 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1305 if( p->pLeft || p->x.pList ){ 1306 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1307 }else{ 1308 assert( p->pRight==0 ); 1309 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1310 } 1311 } 1312 return nSize; 1313 } 1314 1315 /* 1316 ** This function returns the space in bytes required to store the copy 1317 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1318 ** string is defined.) 1319 */ 1320 static int dupedExprNodeSize(Expr *p, int flags){ 1321 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1322 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1323 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1324 } 1325 return ROUND8(nByte); 1326 } 1327 1328 /* 1329 ** Return the number of bytes required to create a duplicate of the 1330 ** expression passed as the first argument. The second argument is a 1331 ** mask containing EXPRDUP_XXX flags. 1332 ** 1333 ** The value returned includes space to create a copy of the Expr struct 1334 ** itself and the buffer referred to by Expr.u.zToken, if any. 1335 ** 1336 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1337 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1338 ** and Expr.pRight variables (but not for any structures pointed to or 1339 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1340 */ 1341 static int dupedExprSize(Expr *p, int flags){ 1342 int nByte = 0; 1343 if( p ){ 1344 nByte = dupedExprNodeSize(p, flags); 1345 if( flags&EXPRDUP_REDUCE ){ 1346 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1347 } 1348 } 1349 return nByte; 1350 } 1351 1352 /* 1353 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1354 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1355 ** to store the copy of expression p, the copies of p->u.zToken 1356 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1357 ** if any. Before returning, *pzBuffer is set to the first byte past the 1358 ** portion of the buffer copied into by this function. 1359 */ 1360 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1361 Expr *pNew; /* Value to return */ 1362 u8 *zAlloc; /* Memory space from which to build Expr object */ 1363 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1364 1365 assert( db!=0 ); 1366 assert( p ); 1367 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1368 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1369 1370 /* Figure out where to write the new Expr structure. */ 1371 if( pzBuffer ){ 1372 zAlloc = *pzBuffer; 1373 staticFlag = EP_Static; 1374 assert( zAlloc!=0 ); 1375 }else{ 1376 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1377 staticFlag = 0; 1378 } 1379 pNew = (Expr *)zAlloc; 1380 1381 if( pNew ){ 1382 /* Set nNewSize to the size allocated for the structure pointed to 1383 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1384 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1385 ** by the copy of the p->u.zToken string (if any). 1386 */ 1387 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1388 const int nNewSize = nStructSize & 0xfff; 1389 int nToken; 1390 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1391 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1392 }else{ 1393 nToken = 0; 1394 } 1395 if( dupFlags ){ 1396 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1397 memcpy(zAlloc, p, nNewSize); 1398 }else{ 1399 u32 nSize = (u32)exprStructSize(p); 1400 memcpy(zAlloc, p, nSize); 1401 if( nSize<EXPR_FULLSIZE ){ 1402 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1403 } 1404 } 1405 1406 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1407 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1408 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1409 pNew->flags |= staticFlag; 1410 ExprClearVVAProperties(pNew); 1411 if( dupFlags ){ 1412 ExprSetVVAProperty(pNew, EP_Immutable); 1413 } 1414 1415 /* Copy the p->u.zToken string, if any. */ 1416 if( nToken ){ 1417 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1418 memcpy(zToken, p->u.zToken, nToken); 1419 } 1420 1421 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1422 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1423 if( ExprHasProperty(p, EP_xIsSelect) ){ 1424 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1425 }else{ 1426 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1427 } 1428 } 1429 1430 /* Fill in pNew->pLeft and pNew->pRight. */ 1431 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1432 zAlloc += dupedExprNodeSize(p, dupFlags); 1433 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1434 pNew->pLeft = p->pLeft ? 1435 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1436 pNew->pRight = p->pRight ? 1437 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1438 } 1439 #ifndef SQLITE_OMIT_WINDOWFUNC 1440 if( ExprHasProperty(p, EP_WinFunc) ){ 1441 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1442 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1443 } 1444 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1445 if( pzBuffer ){ 1446 *pzBuffer = zAlloc; 1447 } 1448 }else{ 1449 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1450 if( pNew->op==TK_SELECT_COLUMN ){ 1451 pNew->pLeft = p->pLeft; 1452 assert( p->pRight==0 || p->pRight==p->pLeft 1453 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1454 }else{ 1455 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1456 } 1457 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1458 } 1459 } 1460 } 1461 return pNew; 1462 } 1463 1464 /* 1465 ** Create and return a deep copy of the object passed as the second 1466 ** argument. If an OOM condition is encountered, NULL is returned 1467 ** and the db->mallocFailed flag set. 1468 */ 1469 #ifndef SQLITE_OMIT_CTE 1470 With *sqlite3WithDup(sqlite3 *db, With *p){ 1471 With *pRet = 0; 1472 if( p ){ 1473 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1474 pRet = sqlite3DbMallocZero(db, nByte); 1475 if( pRet ){ 1476 int i; 1477 pRet->nCte = p->nCte; 1478 for(i=0; i<p->nCte; i++){ 1479 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1480 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1481 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1482 } 1483 } 1484 } 1485 return pRet; 1486 } 1487 #else 1488 # define sqlite3WithDup(x,y) 0 1489 #endif 1490 1491 #ifndef SQLITE_OMIT_WINDOWFUNC 1492 /* 1493 ** The gatherSelectWindows() procedure and its helper routine 1494 ** gatherSelectWindowsCallback() are used to scan all the expressions 1495 ** an a newly duplicated SELECT statement and gather all of the Window 1496 ** objects found there, assembling them onto the linked list at Select->pWin. 1497 */ 1498 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1499 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1500 Select *pSelect = pWalker->u.pSelect; 1501 Window *pWin = pExpr->y.pWin; 1502 assert( pWin ); 1503 assert( IsWindowFunc(pExpr) ); 1504 assert( pWin->ppThis==0 ); 1505 sqlite3WindowLink(pSelect, pWin); 1506 } 1507 return WRC_Continue; 1508 } 1509 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1510 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1511 } 1512 static void gatherSelectWindows(Select *p){ 1513 Walker w; 1514 w.xExprCallback = gatherSelectWindowsCallback; 1515 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1516 w.xSelectCallback2 = 0; 1517 w.pParse = 0; 1518 w.u.pSelect = p; 1519 sqlite3WalkSelect(&w, p); 1520 } 1521 #endif 1522 1523 1524 /* 1525 ** The following group of routines make deep copies of expressions, 1526 ** expression lists, ID lists, and select statements. The copies can 1527 ** be deleted (by being passed to their respective ...Delete() routines) 1528 ** without effecting the originals. 1529 ** 1530 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1531 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1532 ** by subsequent calls to sqlite*ListAppend() routines. 1533 ** 1534 ** Any tables that the SrcList might point to are not duplicated. 1535 ** 1536 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1537 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1538 ** truncated version of the usual Expr structure that will be stored as 1539 ** part of the in-memory representation of the database schema. 1540 */ 1541 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1542 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1543 return p ? exprDup(db, p, flags, 0) : 0; 1544 } 1545 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1546 ExprList *pNew; 1547 struct ExprList_item *pItem, *pOldItem; 1548 int i; 1549 Expr *pPriorSelectColOld = 0; 1550 Expr *pPriorSelectColNew = 0; 1551 assert( db!=0 ); 1552 if( p==0 ) return 0; 1553 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1554 if( pNew==0 ) return 0; 1555 pNew->nExpr = p->nExpr; 1556 pNew->nAlloc = p->nAlloc; 1557 pItem = pNew->a; 1558 pOldItem = p->a; 1559 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1560 Expr *pOldExpr = pOldItem->pExpr; 1561 Expr *pNewExpr; 1562 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1563 if( pOldExpr 1564 && pOldExpr->op==TK_SELECT_COLUMN 1565 && (pNewExpr = pItem->pExpr)!=0 1566 ){ 1567 if( pNewExpr->pRight ){ 1568 pPriorSelectColOld = pOldExpr->pRight; 1569 pPriorSelectColNew = pNewExpr->pRight; 1570 pNewExpr->pLeft = pNewExpr->pRight; 1571 }else{ 1572 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1573 pPriorSelectColOld = pOldExpr->pLeft; 1574 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1575 pNewExpr->pRight = pPriorSelectColNew; 1576 } 1577 pNewExpr->pLeft = pPriorSelectColNew; 1578 } 1579 } 1580 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1581 pItem->sortFlags = pOldItem->sortFlags; 1582 pItem->eEName = pOldItem->eEName; 1583 pItem->done = 0; 1584 pItem->bNulls = pOldItem->bNulls; 1585 pItem->bSorterRef = pOldItem->bSorterRef; 1586 pItem->u = pOldItem->u; 1587 } 1588 return pNew; 1589 } 1590 1591 /* 1592 ** If cursors, triggers, views and subqueries are all omitted from 1593 ** the build, then none of the following routines, except for 1594 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1595 ** called with a NULL argument. 1596 */ 1597 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1598 || !defined(SQLITE_OMIT_SUBQUERY) 1599 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1600 SrcList *pNew; 1601 int i; 1602 int nByte; 1603 assert( db!=0 ); 1604 if( p==0 ) return 0; 1605 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1606 pNew = sqlite3DbMallocRawNN(db, nByte ); 1607 if( pNew==0 ) return 0; 1608 pNew->nSrc = pNew->nAlloc = p->nSrc; 1609 for(i=0; i<p->nSrc; i++){ 1610 SrcItem *pNewItem = &pNew->a[i]; 1611 SrcItem *pOldItem = &p->a[i]; 1612 Table *pTab; 1613 pNewItem->pSchema = pOldItem->pSchema; 1614 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1615 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1616 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1617 pNewItem->fg = pOldItem->fg; 1618 pNewItem->iCursor = pOldItem->iCursor; 1619 pNewItem->addrFillSub = pOldItem->addrFillSub; 1620 pNewItem->regReturn = pOldItem->regReturn; 1621 if( pNewItem->fg.isIndexedBy ){ 1622 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1623 } 1624 pNewItem->u2 = pOldItem->u2; 1625 if( pNewItem->fg.isCte ){ 1626 pNewItem->u2.pCteUse->nUse++; 1627 } 1628 if( pNewItem->fg.isTabFunc ){ 1629 pNewItem->u1.pFuncArg = 1630 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1631 } 1632 pTab = pNewItem->pTab = pOldItem->pTab; 1633 if( pTab ){ 1634 pTab->nTabRef++; 1635 } 1636 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1637 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1638 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1639 pNewItem->colUsed = pOldItem->colUsed; 1640 } 1641 return pNew; 1642 } 1643 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1644 IdList *pNew; 1645 int i; 1646 assert( db!=0 ); 1647 if( p==0 ) return 0; 1648 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1649 if( pNew==0 ) return 0; 1650 pNew->nId = p->nId; 1651 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1652 if( pNew->a==0 ){ 1653 sqlite3DbFreeNN(db, pNew); 1654 return 0; 1655 } 1656 /* Note that because the size of the allocation for p->a[] is not 1657 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1658 ** on the duplicate created by this function. */ 1659 for(i=0; i<p->nId; i++){ 1660 struct IdList_item *pNewItem = &pNew->a[i]; 1661 struct IdList_item *pOldItem = &p->a[i]; 1662 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1663 pNewItem->idx = pOldItem->idx; 1664 } 1665 return pNew; 1666 } 1667 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1668 Select *pRet = 0; 1669 Select *pNext = 0; 1670 Select **pp = &pRet; 1671 Select *p; 1672 1673 assert( db!=0 ); 1674 for(p=pDup; p; p=p->pPrior){ 1675 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1676 if( pNew==0 ) break; 1677 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1678 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1679 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1680 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1681 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1682 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1683 pNew->op = p->op; 1684 pNew->pNext = pNext; 1685 pNew->pPrior = 0; 1686 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1687 pNew->iLimit = 0; 1688 pNew->iOffset = 0; 1689 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1690 pNew->addrOpenEphm[0] = -1; 1691 pNew->addrOpenEphm[1] = -1; 1692 pNew->nSelectRow = p->nSelectRow; 1693 pNew->pWith = sqlite3WithDup(db, p->pWith); 1694 #ifndef SQLITE_OMIT_WINDOWFUNC 1695 pNew->pWin = 0; 1696 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1697 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1698 #endif 1699 pNew->selId = p->selId; 1700 if( db->mallocFailed ){ 1701 /* Any prior OOM might have left the Select object incomplete. 1702 ** Delete the whole thing rather than allow an incomplete Select 1703 ** to be used by the code generator. */ 1704 pNew->pNext = 0; 1705 sqlite3SelectDelete(db, pNew); 1706 break; 1707 } 1708 *pp = pNew; 1709 pp = &pNew->pPrior; 1710 pNext = pNew; 1711 } 1712 1713 return pRet; 1714 } 1715 #else 1716 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1717 assert( p==0 ); 1718 return 0; 1719 } 1720 #endif 1721 1722 1723 /* 1724 ** Add a new element to the end of an expression list. If pList is 1725 ** initially NULL, then create a new expression list. 1726 ** 1727 ** The pList argument must be either NULL or a pointer to an ExprList 1728 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1729 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1730 ** Reason: This routine assumes that the number of slots in pList->a[] 1731 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1732 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1733 ** 1734 ** If a memory allocation error occurs, the entire list is freed and 1735 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1736 ** that the new entry was successfully appended. 1737 */ 1738 static const struct ExprList_item zeroItem = {0}; 1739 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1740 sqlite3 *db, /* Database handle. Used for memory allocation */ 1741 Expr *pExpr /* Expression to be appended. Might be NULL */ 1742 ){ 1743 struct ExprList_item *pItem; 1744 ExprList *pList; 1745 1746 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1747 if( pList==0 ){ 1748 sqlite3ExprDelete(db, pExpr); 1749 return 0; 1750 } 1751 pList->nAlloc = 4; 1752 pList->nExpr = 1; 1753 pItem = &pList->a[0]; 1754 *pItem = zeroItem; 1755 pItem->pExpr = pExpr; 1756 return pList; 1757 } 1758 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1759 sqlite3 *db, /* Database handle. Used for memory allocation */ 1760 ExprList *pList, /* List to which to append. Might be NULL */ 1761 Expr *pExpr /* Expression to be appended. Might be NULL */ 1762 ){ 1763 struct ExprList_item *pItem; 1764 ExprList *pNew; 1765 pList->nAlloc *= 2; 1766 pNew = sqlite3DbRealloc(db, pList, 1767 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1768 if( pNew==0 ){ 1769 sqlite3ExprListDelete(db, pList); 1770 sqlite3ExprDelete(db, pExpr); 1771 return 0; 1772 }else{ 1773 pList = pNew; 1774 } 1775 pItem = &pList->a[pList->nExpr++]; 1776 *pItem = zeroItem; 1777 pItem->pExpr = pExpr; 1778 return pList; 1779 } 1780 ExprList *sqlite3ExprListAppend( 1781 Parse *pParse, /* Parsing context */ 1782 ExprList *pList, /* List to which to append. Might be NULL */ 1783 Expr *pExpr /* Expression to be appended. Might be NULL */ 1784 ){ 1785 struct ExprList_item *pItem; 1786 if( pList==0 ){ 1787 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1788 } 1789 if( pList->nAlloc<pList->nExpr+1 ){ 1790 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1791 } 1792 pItem = &pList->a[pList->nExpr++]; 1793 *pItem = zeroItem; 1794 pItem->pExpr = pExpr; 1795 return pList; 1796 } 1797 1798 /* 1799 ** pColumns and pExpr form a vector assignment which is part of the SET 1800 ** clause of an UPDATE statement. Like this: 1801 ** 1802 ** (a,b,c) = (expr1,expr2,expr3) 1803 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1804 ** 1805 ** For each term of the vector assignment, append new entries to the 1806 ** expression list pList. In the case of a subquery on the RHS, append 1807 ** TK_SELECT_COLUMN expressions. 1808 */ 1809 ExprList *sqlite3ExprListAppendVector( 1810 Parse *pParse, /* Parsing context */ 1811 ExprList *pList, /* List to which to append. Might be NULL */ 1812 IdList *pColumns, /* List of names of LHS of the assignment */ 1813 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1814 ){ 1815 sqlite3 *db = pParse->db; 1816 int n; 1817 int i; 1818 int iFirst = pList ? pList->nExpr : 0; 1819 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1820 ** exit prior to this routine being invoked */ 1821 if( NEVER(pColumns==0) ) goto vector_append_error; 1822 if( pExpr==0 ) goto vector_append_error; 1823 1824 /* If the RHS is a vector, then we can immediately check to see that 1825 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1826 ** wildcards ("*") in the result set of the SELECT must be expanded before 1827 ** we can do the size check, so defer the size check until code generation. 1828 */ 1829 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1830 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1831 pColumns->nId, n); 1832 goto vector_append_error; 1833 } 1834 1835 for(i=0; i<pColumns->nId; i++){ 1836 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1837 assert( pSubExpr!=0 || db->mallocFailed ); 1838 if( pSubExpr==0 ) continue; 1839 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1840 if( pList ){ 1841 assert( pList->nExpr==iFirst+i+1 ); 1842 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1843 pColumns->a[i].zName = 0; 1844 } 1845 } 1846 1847 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1848 Expr *pFirst = pList->a[iFirst].pExpr; 1849 assert( pFirst!=0 ); 1850 assert( pFirst->op==TK_SELECT_COLUMN ); 1851 1852 /* Store the SELECT statement in pRight so it will be deleted when 1853 ** sqlite3ExprListDelete() is called */ 1854 pFirst->pRight = pExpr; 1855 pExpr = 0; 1856 1857 /* Remember the size of the LHS in iTable so that we can check that 1858 ** the RHS and LHS sizes match during code generation. */ 1859 pFirst->iTable = pColumns->nId; 1860 } 1861 1862 vector_append_error: 1863 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1864 sqlite3IdListDelete(db, pColumns); 1865 return pList; 1866 } 1867 1868 /* 1869 ** Set the sort order for the last element on the given ExprList. 1870 */ 1871 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1872 struct ExprList_item *pItem; 1873 if( p==0 ) return; 1874 assert( p->nExpr>0 ); 1875 1876 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1877 assert( iSortOrder==SQLITE_SO_UNDEFINED 1878 || iSortOrder==SQLITE_SO_ASC 1879 || iSortOrder==SQLITE_SO_DESC 1880 ); 1881 assert( eNulls==SQLITE_SO_UNDEFINED 1882 || eNulls==SQLITE_SO_ASC 1883 || eNulls==SQLITE_SO_DESC 1884 ); 1885 1886 pItem = &p->a[p->nExpr-1]; 1887 assert( pItem->bNulls==0 ); 1888 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1889 iSortOrder = SQLITE_SO_ASC; 1890 } 1891 pItem->sortFlags = (u8)iSortOrder; 1892 1893 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1894 pItem->bNulls = 1; 1895 if( iSortOrder!=eNulls ){ 1896 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1897 } 1898 } 1899 } 1900 1901 /* 1902 ** Set the ExprList.a[].zEName element of the most recently added item 1903 ** on the expression list. 1904 ** 1905 ** pList might be NULL following an OOM error. But pName should never be 1906 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1907 ** is set. 1908 */ 1909 void sqlite3ExprListSetName( 1910 Parse *pParse, /* Parsing context */ 1911 ExprList *pList, /* List to which to add the span. */ 1912 Token *pName, /* Name to be added */ 1913 int dequote /* True to cause the name to be dequoted */ 1914 ){ 1915 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1916 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1917 if( pList ){ 1918 struct ExprList_item *pItem; 1919 assert( pList->nExpr>0 ); 1920 pItem = &pList->a[pList->nExpr-1]; 1921 assert( pItem->zEName==0 ); 1922 assert( pItem->eEName==ENAME_NAME ); 1923 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1924 if( dequote ){ 1925 /* If dequote==0, then pName->z does not point to part of a DDL 1926 ** statement handled by the parser. And so no token need be added 1927 ** to the token-map. */ 1928 sqlite3Dequote(pItem->zEName); 1929 if( IN_RENAME_OBJECT ){ 1930 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1931 } 1932 } 1933 } 1934 } 1935 1936 /* 1937 ** Set the ExprList.a[].zSpan element of the most recently added item 1938 ** on the expression list. 1939 ** 1940 ** pList might be NULL following an OOM error. But pSpan should never be 1941 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1942 ** is set. 1943 */ 1944 void sqlite3ExprListSetSpan( 1945 Parse *pParse, /* Parsing context */ 1946 ExprList *pList, /* List to which to add the span. */ 1947 const char *zStart, /* Start of the span */ 1948 const char *zEnd /* End of the span */ 1949 ){ 1950 sqlite3 *db = pParse->db; 1951 assert( pList!=0 || db->mallocFailed!=0 ); 1952 if( pList ){ 1953 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1954 assert( pList->nExpr>0 ); 1955 if( pItem->zEName==0 ){ 1956 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1957 pItem->eEName = ENAME_SPAN; 1958 } 1959 } 1960 } 1961 1962 /* 1963 ** If the expression list pEList contains more than iLimit elements, 1964 ** leave an error message in pParse. 1965 */ 1966 void sqlite3ExprListCheckLength( 1967 Parse *pParse, 1968 ExprList *pEList, 1969 const char *zObject 1970 ){ 1971 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1972 testcase( pEList && pEList->nExpr==mx ); 1973 testcase( pEList && pEList->nExpr==mx+1 ); 1974 if( pEList && pEList->nExpr>mx ){ 1975 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1976 } 1977 } 1978 1979 /* 1980 ** Delete an entire expression list. 1981 */ 1982 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1983 int i = pList->nExpr; 1984 struct ExprList_item *pItem = pList->a; 1985 assert( pList->nExpr>0 ); 1986 do{ 1987 sqlite3ExprDelete(db, pItem->pExpr); 1988 sqlite3DbFree(db, pItem->zEName); 1989 pItem++; 1990 }while( --i>0 ); 1991 sqlite3DbFreeNN(db, pList); 1992 } 1993 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1994 if( pList ) exprListDeleteNN(db, pList); 1995 } 1996 1997 /* 1998 ** Return the bitwise-OR of all Expr.flags fields in the given 1999 ** ExprList. 2000 */ 2001 u32 sqlite3ExprListFlags(const ExprList *pList){ 2002 int i; 2003 u32 m = 0; 2004 assert( pList!=0 ); 2005 for(i=0; i<pList->nExpr; i++){ 2006 Expr *pExpr = pList->a[i].pExpr; 2007 assert( pExpr!=0 ); 2008 m |= pExpr->flags; 2009 } 2010 return m; 2011 } 2012 2013 /* 2014 ** This is a SELECT-node callback for the expression walker that 2015 ** always "fails". By "fail" in this case, we mean set 2016 ** pWalker->eCode to zero and abort. 2017 ** 2018 ** This callback is used by multiple expression walkers. 2019 */ 2020 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2021 UNUSED_PARAMETER(NotUsed); 2022 pWalker->eCode = 0; 2023 return WRC_Abort; 2024 } 2025 2026 /* 2027 ** Check the input string to see if it is "true" or "false" (in any case). 2028 ** 2029 ** If the string is.... Return 2030 ** "true" EP_IsTrue 2031 ** "false" EP_IsFalse 2032 ** anything else 0 2033 */ 2034 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2035 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2036 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2037 return 0; 2038 } 2039 2040 2041 /* 2042 ** If the input expression is an ID with the name "true" or "false" 2043 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2044 ** the conversion happened, and zero if the expression is unaltered. 2045 */ 2046 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2047 u32 v; 2048 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2049 if( !ExprHasProperty(pExpr, EP_Quoted) 2050 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2051 ){ 2052 pExpr->op = TK_TRUEFALSE; 2053 ExprSetProperty(pExpr, v); 2054 return 1; 2055 } 2056 return 0; 2057 } 2058 2059 /* 2060 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2061 ** and 0 if it is FALSE. 2062 */ 2063 int sqlite3ExprTruthValue(const Expr *pExpr){ 2064 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2065 assert( pExpr->op==TK_TRUEFALSE ); 2066 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2067 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2068 return pExpr->u.zToken[4]==0; 2069 } 2070 2071 /* 2072 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2073 ** terms that are always true or false. Return the simplified expression. 2074 ** Or return the original expression if no simplification is possible. 2075 ** 2076 ** Examples: 2077 ** 2078 ** (x<10) AND true => (x<10) 2079 ** (x<10) AND false => false 2080 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2081 ** (x<10) AND (y=22 OR true) => (x<10) 2082 ** (y=22) OR true => true 2083 */ 2084 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2085 assert( pExpr!=0 ); 2086 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2087 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2088 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2089 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2090 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2091 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2092 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2093 } 2094 } 2095 return pExpr; 2096 } 2097 2098 2099 /* 2100 ** These routines are Walker callbacks used to check expressions to 2101 ** see if they are "constant" for some definition of constant. The 2102 ** Walker.eCode value determines the type of "constant" we are looking 2103 ** for. 2104 ** 2105 ** These callback routines are used to implement the following: 2106 ** 2107 ** sqlite3ExprIsConstant() pWalker->eCode==1 2108 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2109 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2110 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2111 ** 2112 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2113 ** is found to not be a constant. 2114 ** 2115 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2116 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2117 ** when parsing an existing schema out of the sqlite_schema table and 4 2118 ** when processing a new CREATE TABLE statement. A bound parameter raises 2119 ** an error for new statements, but is silently converted 2120 ** to NULL for existing schemas. This allows sqlite_schema tables that 2121 ** contain a bound parameter because they were generated by older versions 2122 ** of SQLite to be parsed by newer versions of SQLite without raising a 2123 ** malformed schema error. 2124 */ 2125 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2126 2127 /* If pWalker->eCode is 2 then any term of the expression that comes from 2128 ** the ON or USING clauses of a left join disqualifies the expression 2129 ** from being considered constant. */ 2130 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2131 pWalker->eCode = 0; 2132 return WRC_Abort; 2133 } 2134 2135 switch( pExpr->op ){ 2136 /* Consider functions to be constant if all their arguments are constant 2137 ** and either pWalker->eCode==4 or 5 or the function has the 2138 ** SQLITE_FUNC_CONST flag. */ 2139 case TK_FUNCTION: 2140 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2141 && !ExprHasProperty(pExpr, EP_WinFunc) 2142 ){ 2143 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2144 return WRC_Continue; 2145 }else{ 2146 pWalker->eCode = 0; 2147 return WRC_Abort; 2148 } 2149 case TK_ID: 2150 /* Convert "true" or "false" in a DEFAULT clause into the 2151 ** appropriate TK_TRUEFALSE operator */ 2152 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2153 return WRC_Prune; 2154 } 2155 /* no break */ deliberate_fall_through 2156 case TK_COLUMN: 2157 case TK_AGG_FUNCTION: 2158 case TK_AGG_COLUMN: 2159 testcase( pExpr->op==TK_ID ); 2160 testcase( pExpr->op==TK_COLUMN ); 2161 testcase( pExpr->op==TK_AGG_FUNCTION ); 2162 testcase( pExpr->op==TK_AGG_COLUMN ); 2163 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2164 return WRC_Continue; 2165 } 2166 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2167 return WRC_Continue; 2168 } 2169 /* no break */ deliberate_fall_through 2170 case TK_IF_NULL_ROW: 2171 case TK_REGISTER: 2172 case TK_DOT: 2173 testcase( pExpr->op==TK_REGISTER ); 2174 testcase( pExpr->op==TK_IF_NULL_ROW ); 2175 testcase( pExpr->op==TK_DOT ); 2176 pWalker->eCode = 0; 2177 return WRC_Abort; 2178 case TK_VARIABLE: 2179 if( pWalker->eCode==5 ){ 2180 /* Silently convert bound parameters that appear inside of CREATE 2181 ** statements into a NULL when parsing the CREATE statement text out 2182 ** of the sqlite_schema table */ 2183 pExpr->op = TK_NULL; 2184 }else if( pWalker->eCode==4 ){ 2185 /* A bound parameter in a CREATE statement that originates from 2186 ** sqlite3_prepare() causes an error */ 2187 pWalker->eCode = 0; 2188 return WRC_Abort; 2189 } 2190 /* no break */ deliberate_fall_through 2191 default: 2192 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2193 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2194 return WRC_Continue; 2195 } 2196 } 2197 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2198 Walker w; 2199 w.eCode = initFlag; 2200 w.xExprCallback = exprNodeIsConstant; 2201 w.xSelectCallback = sqlite3SelectWalkFail; 2202 #ifdef SQLITE_DEBUG 2203 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2204 #endif 2205 w.u.iCur = iCur; 2206 sqlite3WalkExpr(&w, p); 2207 return w.eCode; 2208 } 2209 2210 /* 2211 ** Walk an expression tree. Return non-zero if the expression is constant 2212 ** and 0 if it involves variables or function calls. 2213 ** 2214 ** For the purposes of this function, a double-quoted string (ex: "abc") 2215 ** is considered a variable but a single-quoted string (ex: 'abc') is 2216 ** a constant. 2217 */ 2218 int sqlite3ExprIsConstant(Expr *p){ 2219 return exprIsConst(p, 1, 0); 2220 } 2221 2222 /* 2223 ** Walk an expression tree. Return non-zero if 2224 ** 2225 ** (1) the expression is constant, and 2226 ** (2) the expression does originate in the ON or USING clause 2227 ** of a LEFT JOIN, and 2228 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2229 ** operands created by the constant propagation optimization. 2230 ** 2231 ** When this routine returns true, it indicates that the expression 2232 ** can be added to the pParse->pConstExpr list and evaluated once when 2233 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2234 */ 2235 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2236 return exprIsConst(p, 2, 0); 2237 } 2238 2239 /* 2240 ** Walk an expression tree. Return non-zero if the expression is constant 2241 ** for any single row of the table with cursor iCur. In other words, the 2242 ** expression must not refer to any non-deterministic function nor any 2243 ** table other than iCur. 2244 */ 2245 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2246 return exprIsConst(p, 3, iCur); 2247 } 2248 2249 2250 /* 2251 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2252 */ 2253 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2254 ExprList *pGroupBy = pWalker->u.pGroupBy; 2255 int i; 2256 2257 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2258 ** it constant. */ 2259 for(i=0; i<pGroupBy->nExpr; i++){ 2260 Expr *p = pGroupBy->a[i].pExpr; 2261 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2262 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2263 if( sqlite3IsBinary(pColl) ){ 2264 return WRC_Prune; 2265 } 2266 } 2267 } 2268 2269 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2270 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2271 pWalker->eCode = 0; 2272 return WRC_Abort; 2273 } 2274 2275 return exprNodeIsConstant(pWalker, pExpr); 2276 } 2277 2278 /* 2279 ** Walk the expression tree passed as the first argument. Return non-zero 2280 ** if the expression consists entirely of constants or copies of terms 2281 ** in pGroupBy that sort with the BINARY collation sequence. 2282 ** 2283 ** This routine is used to determine if a term of the HAVING clause can 2284 ** be promoted into the WHERE clause. In order for such a promotion to work, 2285 ** the value of the HAVING clause term must be the same for all members of 2286 ** a "group". The requirement that the GROUP BY term must be BINARY 2287 ** assumes that no other collating sequence will have a finer-grained 2288 ** grouping than binary. In other words (A=B COLLATE binary) implies 2289 ** A=B in every other collating sequence. The requirement that the 2290 ** GROUP BY be BINARY is stricter than necessary. It would also work 2291 ** to promote HAVING clauses that use the same alternative collating 2292 ** sequence as the GROUP BY term, but that is much harder to check, 2293 ** alternative collating sequences are uncommon, and this is only an 2294 ** optimization, so we take the easy way out and simply require the 2295 ** GROUP BY to use the BINARY collating sequence. 2296 */ 2297 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2298 Walker w; 2299 w.eCode = 1; 2300 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2301 w.xSelectCallback = 0; 2302 w.u.pGroupBy = pGroupBy; 2303 w.pParse = pParse; 2304 sqlite3WalkExpr(&w, p); 2305 return w.eCode; 2306 } 2307 2308 /* 2309 ** Walk an expression tree for the DEFAULT field of a column definition 2310 ** in a CREATE TABLE statement. Return non-zero if the expression is 2311 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2312 ** the expression is constant or a function call with constant arguments. 2313 ** Return and 0 if there are any variables. 2314 ** 2315 ** isInit is true when parsing from sqlite_schema. isInit is false when 2316 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2317 ** (such as ? or $abc) in the expression are converted into NULL. When 2318 ** isInit is false, parameters raise an error. Parameters should not be 2319 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2320 ** allowed it, so we need to support it when reading sqlite_schema for 2321 ** backwards compatibility. 2322 ** 2323 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2324 ** 2325 ** For the purposes of this function, a double-quoted string (ex: "abc") 2326 ** is considered a variable but a single-quoted string (ex: 'abc') is 2327 ** a constant. 2328 */ 2329 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2330 assert( isInit==0 || isInit==1 ); 2331 return exprIsConst(p, 4+isInit, 0); 2332 } 2333 2334 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2335 /* 2336 ** Walk an expression tree. Return 1 if the expression contains a 2337 ** subquery of some kind. Return 0 if there are no subqueries. 2338 */ 2339 int sqlite3ExprContainsSubquery(Expr *p){ 2340 Walker w; 2341 w.eCode = 1; 2342 w.xExprCallback = sqlite3ExprWalkNoop; 2343 w.xSelectCallback = sqlite3SelectWalkFail; 2344 #ifdef SQLITE_DEBUG 2345 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2346 #endif 2347 sqlite3WalkExpr(&w, p); 2348 return w.eCode==0; 2349 } 2350 #endif 2351 2352 /* 2353 ** If the expression p codes a constant integer that is small enough 2354 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2355 ** in *pValue. If the expression is not an integer or if it is too big 2356 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2357 */ 2358 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2359 int rc = 0; 2360 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2361 2362 /* If an expression is an integer literal that fits in a signed 32-bit 2363 ** integer, then the EP_IntValue flag will have already been set */ 2364 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2365 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2366 2367 if( p->flags & EP_IntValue ){ 2368 *pValue = p->u.iValue; 2369 return 1; 2370 } 2371 switch( p->op ){ 2372 case TK_UPLUS: { 2373 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2374 break; 2375 } 2376 case TK_UMINUS: { 2377 int v; 2378 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2379 assert( v!=(-2147483647-1) ); 2380 *pValue = -v; 2381 rc = 1; 2382 } 2383 break; 2384 } 2385 default: break; 2386 } 2387 return rc; 2388 } 2389 2390 /* 2391 ** Return FALSE if there is no chance that the expression can be NULL. 2392 ** 2393 ** If the expression might be NULL or if the expression is too complex 2394 ** to tell return TRUE. 2395 ** 2396 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2397 ** when we know that a value cannot be NULL. Hence, a false positive 2398 ** (returning TRUE when in fact the expression can never be NULL) might 2399 ** be a small performance hit but is otherwise harmless. On the other 2400 ** hand, a false negative (returning FALSE when the result could be NULL) 2401 ** will likely result in an incorrect answer. So when in doubt, return 2402 ** TRUE. 2403 */ 2404 int sqlite3ExprCanBeNull(const Expr *p){ 2405 u8 op; 2406 assert( p!=0 ); 2407 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2408 p = p->pLeft; 2409 assert( p!=0 ); 2410 } 2411 op = p->op; 2412 if( op==TK_REGISTER ) op = p->op2; 2413 switch( op ){ 2414 case TK_INTEGER: 2415 case TK_STRING: 2416 case TK_FLOAT: 2417 case TK_BLOB: 2418 return 0; 2419 case TK_COLUMN: 2420 return ExprHasProperty(p, EP_CanBeNull) || 2421 p->y.pTab==0 || /* Reference to column of index on expression */ 2422 (p->iColumn>=0 2423 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2424 && p->y.pTab->aCol[p->iColumn].notNull==0); 2425 default: 2426 return 1; 2427 } 2428 } 2429 2430 /* 2431 ** Return TRUE if the given expression is a constant which would be 2432 ** unchanged by OP_Affinity with the affinity given in the second 2433 ** argument. 2434 ** 2435 ** This routine is used to determine if the OP_Affinity operation 2436 ** can be omitted. When in doubt return FALSE. A false negative 2437 ** is harmless. A false positive, however, can result in the wrong 2438 ** answer. 2439 */ 2440 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2441 u8 op; 2442 int unaryMinus = 0; 2443 if( aff==SQLITE_AFF_BLOB ) return 1; 2444 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2445 if( p->op==TK_UMINUS ) unaryMinus = 1; 2446 p = p->pLeft; 2447 } 2448 op = p->op; 2449 if( op==TK_REGISTER ) op = p->op2; 2450 switch( op ){ 2451 case TK_INTEGER: { 2452 return aff>=SQLITE_AFF_NUMERIC; 2453 } 2454 case TK_FLOAT: { 2455 return aff>=SQLITE_AFF_NUMERIC; 2456 } 2457 case TK_STRING: { 2458 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2459 } 2460 case TK_BLOB: { 2461 return !unaryMinus; 2462 } 2463 case TK_COLUMN: { 2464 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2465 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2466 } 2467 default: { 2468 return 0; 2469 } 2470 } 2471 } 2472 2473 /* 2474 ** Return TRUE if the given string is a row-id column name. 2475 */ 2476 int sqlite3IsRowid(const char *z){ 2477 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2478 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2479 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2480 return 0; 2481 } 2482 2483 /* 2484 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2485 ** that can be simplified to a direct table access, then return 2486 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2487 ** or if the SELECT statement needs to be manifested into a transient 2488 ** table, then return NULL. 2489 */ 2490 #ifndef SQLITE_OMIT_SUBQUERY 2491 static Select *isCandidateForInOpt(Expr *pX){ 2492 Select *p; 2493 SrcList *pSrc; 2494 ExprList *pEList; 2495 Table *pTab; 2496 int i; 2497 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2498 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2499 p = pX->x.pSelect; 2500 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2501 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2502 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2503 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2504 return 0; /* No DISTINCT keyword and no aggregate functions */ 2505 } 2506 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2507 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2508 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2509 pSrc = p->pSrc; 2510 assert( pSrc!=0 ); 2511 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2512 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2513 pTab = pSrc->a[0].pTab; 2514 assert( pTab!=0 ); 2515 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2516 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2517 pEList = p->pEList; 2518 assert( pEList!=0 ); 2519 /* All SELECT results must be columns. */ 2520 for(i=0; i<pEList->nExpr; i++){ 2521 Expr *pRes = pEList->a[i].pExpr; 2522 if( pRes->op!=TK_COLUMN ) return 0; 2523 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2524 } 2525 return p; 2526 } 2527 #endif /* SQLITE_OMIT_SUBQUERY */ 2528 2529 #ifndef SQLITE_OMIT_SUBQUERY 2530 /* 2531 ** Generate code that checks the left-most column of index table iCur to see if 2532 ** it contains any NULL entries. Cause the register at regHasNull to be set 2533 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2534 ** to be set to NULL if iCur contains one or more NULL values. 2535 */ 2536 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2537 int addr1; 2538 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2539 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2540 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2541 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2542 VdbeComment((v, "first_entry_in(%d)", iCur)); 2543 sqlite3VdbeJumpHere(v, addr1); 2544 } 2545 #endif 2546 2547 2548 #ifndef SQLITE_OMIT_SUBQUERY 2549 /* 2550 ** The argument is an IN operator with a list (not a subquery) on the 2551 ** right-hand side. Return TRUE if that list is constant. 2552 */ 2553 static int sqlite3InRhsIsConstant(Expr *pIn){ 2554 Expr *pLHS; 2555 int res; 2556 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2557 pLHS = pIn->pLeft; 2558 pIn->pLeft = 0; 2559 res = sqlite3ExprIsConstant(pIn); 2560 pIn->pLeft = pLHS; 2561 return res; 2562 } 2563 #endif 2564 2565 /* 2566 ** This function is used by the implementation of the IN (...) operator. 2567 ** The pX parameter is the expression on the RHS of the IN operator, which 2568 ** might be either a list of expressions or a subquery. 2569 ** 2570 ** The job of this routine is to find or create a b-tree object that can 2571 ** be used either to test for membership in the RHS set or to iterate through 2572 ** all members of the RHS set, skipping duplicates. 2573 ** 2574 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2575 ** and pX->iTable is set to the index of that cursor. 2576 ** 2577 ** The returned value of this function indicates the b-tree type, as follows: 2578 ** 2579 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2580 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2581 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2582 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2583 ** populated epheremal table. 2584 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2585 ** implemented as a sequence of comparisons. 2586 ** 2587 ** An existing b-tree might be used if the RHS expression pX is a simple 2588 ** subquery such as: 2589 ** 2590 ** SELECT <column1>, <column2>... FROM <table> 2591 ** 2592 ** If the RHS of the IN operator is a list or a more complex subquery, then 2593 ** an ephemeral table might need to be generated from the RHS and then 2594 ** pX->iTable made to point to the ephemeral table instead of an 2595 ** existing table. 2596 ** 2597 ** The inFlags parameter must contain, at a minimum, one of the bits 2598 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2599 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2600 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2601 ** be used to loop over all values of the RHS of the IN operator. 2602 ** 2603 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2604 ** through the set members) then the b-tree must not contain duplicates. 2605 ** An epheremal table will be created unless the selected columns are guaranteed 2606 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2607 ** a UNIQUE constraint or index. 2608 ** 2609 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2610 ** for fast set membership tests) then an epheremal table must 2611 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2612 ** index can be found with the specified <columns> as its left-most. 2613 ** 2614 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2615 ** if the RHS of the IN operator is a list (not a subquery) then this 2616 ** routine might decide that creating an ephemeral b-tree for membership 2617 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2618 ** calling routine should implement the IN operator using a sequence 2619 ** of Eq or Ne comparison operations. 2620 ** 2621 ** When the b-tree is being used for membership tests, the calling function 2622 ** might need to know whether or not the RHS side of the IN operator 2623 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2624 ** if there is any chance that the (...) might contain a NULL value at 2625 ** runtime, then a register is allocated and the register number written 2626 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2627 ** NULL value, then *prRhsHasNull is left unchanged. 2628 ** 2629 ** If a register is allocated and its location stored in *prRhsHasNull, then 2630 ** the value in that register will be NULL if the b-tree contains one or more 2631 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2632 ** NULL values. 2633 ** 2634 ** If the aiMap parameter is not NULL, it must point to an array containing 2635 ** one element for each column returned by the SELECT statement on the RHS 2636 ** of the IN(...) operator. The i'th entry of the array is populated with the 2637 ** offset of the index column that matches the i'th column returned by the 2638 ** SELECT. For example, if the expression and selected index are: 2639 ** 2640 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2641 ** CREATE INDEX i1 ON t1(b, c, a); 2642 ** 2643 ** then aiMap[] is populated with {2, 0, 1}. 2644 */ 2645 #ifndef SQLITE_OMIT_SUBQUERY 2646 int sqlite3FindInIndex( 2647 Parse *pParse, /* Parsing context */ 2648 Expr *pX, /* The IN expression */ 2649 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2650 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2651 int *aiMap, /* Mapping from Index fields to RHS fields */ 2652 int *piTab /* OUT: index to use */ 2653 ){ 2654 Select *p; /* SELECT to the right of IN operator */ 2655 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2656 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2657 int mustBeUnique; /* True if RHS must be unique */ 2658 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2659 2660 assert( pX->op==TK_IN ); 2661 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2662 2663 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2664 ** whether or not the SELECT result contains NULL values, check whether 2665 ** or not NULL is actually possible (it may not be, for example, due 2666 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2667 ** set prRhsHasNull to 0 before continuing. */ 2668 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2669 int i; 2670 ExprList *pEList = pX->x.pSelect->pEList; 2671 for(i=0; i<pEList->nExpr; i++){ 2672 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2673 } 2674 if( i==pEList->nExpr ){ 2675 prRhsHasNull = 0; 2676 } 2677 } 2678 2679 /* Check to see if an existing table or index can be used to 2680 ** satisfy the query. This is preferable to generating a new 2681 ** ephemeral table. */ 2682 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2683 sqlite3 *db = pParse->db; /* Database connection */ 2684 Table *pTab; /* Table <table>. */ 2685 int iDb; /* Database idx for pTab */ 2686 ExprList *pEList = p->pEList; 2687 int nExpr = pEList->nExpr; 2688 2689 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2690 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2691 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2692 pTab = p->pSrc->a[0].pTab; 2693 2694 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2695 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2696 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2697 sqlite3CodeVerifySchema(pParse, iDb); 2698 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2699 2700 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2701 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2702 /* The "x IN (SELECT rowid FROM table)" case */ 2703 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2704 VdbeCoverage(v); 2705 2706 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2707 eType = IN_INDEX_ROWID; 2708 ExplainQueryPlan((pParse, 0, 2709 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2710 sqlite3VdbeJumpHere(v, iAddr); 2711 }else{ 2712 Index *pIdx; /* Iterator variable */ 2713 int affinity_ok = 1; 2714 int i; 2715 2716 /* Check that the affinity that will be used to perform each 2717 ** comparison is the same as the affinity of each column in table 2718 ** on the RHS of the IN operator. If it not, it is not possible to 2719 ** use any index of the RHS table. */ 2720 for(i=0; i<nExpr && affinity_ok; i++){ 2721 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2722 int iCol = pEList->a[i].pExpr->iColumn; 2723 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2724 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2725 testcase( cmpaff==SQLITE_AFF_BLOB ); 2726 testcase( cmpaff==SQLITE_AFF_TEXT ); 2727 switch( cmpaff ){ 2728 case SQLITE_AFF_BLOB: 2729 break; 2730 case SQLITE_AFF_TEXT: 2731 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2732 ** other has no affinity and the other side is TEXT. Hence, 2733 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2734 ** and for the term on the LHS of the IN to have no affinity. */ 2735 assert( idxaff==SQLITE_AFF_TEXT ); 2736 break; 2737 default: 2738 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2739 } 2740 } 2741 2742 if( affinity_ok ){ 2743 /* Search for an existing index that will work for this IN operator */ 2744 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2745 Bitmask colUsed; /* Columns of the index used */ 2746 Bitmask mCol; /* Mask for the current column */ 2747 if( pIdx->nColumn<nExpr ) continue; 2748 if( pIdx->pPartIdxWhere!=0 ) continue; 2749 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2750 ** BITMASK(nExpr) without overflowing */ 2751 testcase( pIdx->nColumn==BMS-2 ); 2752 testcase( pIdx->nColumn==BMS-1 ); 2753 if( pIdx->nColumn>=BMS-1 ) continue; 2754 if( mustBeUnique ){ 2755 if( pIdx->nKeyCol>nExpr 2756 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2757 ){ 2758 continue; /* This index is not unique over the IN RHS columns */ 2759 } 2760 } 2761 2762 colUsed = 0; /* Columns of index used so far */ 2763 for(i=0; i<nExpr; i++){ 2764 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2765 Expr *pRhs = pEList->a[i].pExpr; 2766 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2767 int j; 2768 2769 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2770 for(j=0; j<nExpr; j++){ 2771 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2772 assert( pIdx->azColl[j] ); 2773 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2774 continue; 2775 } 2776 break; 2777 } 2778 if( j==nExpr ) break; 2779 mCol = MASKBIT(j); 2780 if( mCol & colUsed ) break; /* Each column used only once */ 2781 colUsed |= mCol; 2782 if( aiMap ) aiMap[i] = j; 2783 } 2784 2785 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2786 if( colUsed==(MASKBIT(nExpr)-1) ){ 2787 /* If we reach this point, that means the index pIdx is usable */ 2788 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2789 ExplainQueryPlan((pParse, 0, 2790 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2791 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2792 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2793 VdbeComment((v, "%s", pIdx->zName)); 2794 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2795 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2796 2797 if( prRhsHasNull ){ 2798 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2799 i64 mask = (1<<nExpr)-1; 2800 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2801 iTab, 0, 0, (u8*)&mask, P4_INT64); 2802 #endif 2803 *prRhsHasNull = ++pParse->nMem; 2804 if( nExpr==1 ){ 2805 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2806 } 2807 } 2808 sqlite3VdbeJumpHere(v, iAddr); 2809 } 2810 } /* End loop over indexes */ 2811 } /* End if( affinity_ok ) */ 2812 } /* End if not an rowid index */ 2813 } /* End attempt to optimize using an index */ 2814 2815 /* If no preexisting index is available for the IN clause 2816 ** and IN_INDEX_NOOP is an allowed reply 2817 ** and the RHS of the IN operator is a list, not a subquery 2818 ** and the RHS is not constant or has two or fewer terms, 2819 ** then it is not worth creating an ephemeral table to evaluate 2820 ** the IN operator so return IN_INDEX_NOOP. 2821 */ 2822 if( eType==0 2823 && (inFlags & IN_INDEX_NOOP_OK) 2824 && !ExprHasProperty(pX, EP_xIsSelect) 2825 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2826 ){ 2827 eType = IN_INDEX_NOOP; 2828 } 2829 2830 if( eType==0 ){ 2831 /* Could not find an existing table or index to use as the RHS b-tree. 2832 ** We will have to generate an ephemeral table to do the job. 2833 */ 2834 u32 savedNQueryLoop = pParse->nQueryLoop; 2835 int rMayHaveNull = 0; 2836 eType = IN_INDEX_EPH; 2837 if( inFlags & IN_INDEX_LOOP ){ 2838 pParse->nQueryLoop = 0; 2839 }else if( prRhsHasNull ){ 2840 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2841 } 2842 assert( pX->op==TK_IN ); 2843 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2844 if( rMayHaveNull ){ 2845 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2846 } 2847 pParse->nQueryLoop = savedNQueryLoop; 2848 } 2849 2850 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2851 int i, n; 2852 n = sqlite3ExprVectorSize(pX->pLeft); 2853 for(i=0; i<n; i++) aiMap[i] = i; 2854 } 2855 *piTab = iTab; 2856 return eType; 2857 } 2858 #endif 2859 2860 #ifndef SQLITE_OMIT_SUBQUERY 2861 /* 2862 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2863 ** function allocates and returns a nul-terminated string containing 2864 ** the affinities to be used for each column of the comparison. 2865 ** 2866 ** It is the responsibility of the caller to ensure that the returned 2867 ** string is eventually freed using sqlite3DbFree(). 2868 */ 2869 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2870 Expr *pLeft = pExpr->pLeft; 2871 int nVal = sqlite3ExprVectorSize(pLeft); 2872 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2873 char *zRet; 2874 2875 assert( pExpr->op==TK_IN ); 2876 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2877 if( zRet ){ 2878 int i; 2879 for(i=0; i<nVal; i++){ 2880 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2881 char a = sqlite3ExprAffinity(pA); 2882 if( pSelect ){ 2883 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2884 }else{ 2885 zRet[i] = a; 2886 } 2887 } 2888 zRet[nVal] = '\0'; 2889 } 2890 return zRet; 2891 } 2892 #endif 2893 2894 #ifndef SQLITE_OMIT_SUBQUERY 2895 /* 2896 ** Load the Parse object passed as the first argument with an error 2897 ** message of the form: 2898 ** 2899 ** "sub-select returns N columns - expected M" 2900 */ 2901 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2902 if( pParse->nErr==0 ){ 2903 const char *zFmt = "sub-select returns %d columns - expected %d"; 2904 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2905 } 2906 } 2907 #endif 2908 2909 /* 2910 ** Expression pExpr is a vector that has been used in a context where 2911 ** it is not permitted. If pExpr is a sub-select vector, this routine 2912 ** loads the Parse object with a message of the form: 2913 ** 2914 ** "sub-select returns N columns - expected 1" 2915 ** 2916 ** Or, if it is a regular scalar vector: 2917 ** 2918 ** "row value misused" 2919 */ 2920 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2921 #ifndef SQLITE_OMIT_SUBQUERY 2922 if( pExpr->flags & EP_xIsSelect ){ 2923 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2924 }else 2925 #endif 2926 { 2927 sqlite3ErrorMsg(pParse, "row value misused"); 2928 } 2929 } 2930 2931 #ifndef SQLITE_OMIT_SUBQUERY 2932 /* 2933 ** Generate code that will construct an ephemeral table containing all terms 2934 ** in the RHS of an IN operator. The IN operator can be in either of two 2935 ** forms: 2936 ** 2937 ** x IN (4,5,11) -- IN operator with list on right-hand side 2938 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2939 ** 2940 ** The pExpr parameter is the IN operator. The cursor number for the 2941 ** constructed ephermeral table is returned. The first time the ephemeral 2942 ** table is computed, the cursor number is also stored in pExpr->iTable, 2943 ** however the cursor number returned might not be the same, as it might 2944 ** have been duplicated using OP_OpenDup. 2945 ** 2946 ** If the LHS expression ("x" in the examples) is a column value, or 2947 ** the SELECT statement returns a column value, then the affinity of that 2948 ** column is used to build the index keys. If both 'x' and the 2949 ** SELECT... statement are columns, then numeric affinity is used 2950 ** if either column has NUMERIC or INTEGER affinity. If neither 2951 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2952 ** is used. 2953 */ 2954 void sqlite3CodeRhsOfIN( 2955 Parse *pParse, /* Parsing context */ 2956 Expr *pExpr, /* The IN operator */ 2957 int iTab /* Use this cursor number */ 2958 ){ 2959 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2960 int addr; /* Address of OP_OpenEphemeral instruction */ 2961 Expr *pLeft; /* the LHS of the IN operator */ 2962 KeyInfo *pKeyInfo = 0; /* Key information */ 2963 int nVal; /* Size of vector pLeft */ 2964 Vdbe *v; /* The prepared statement under construction */ 2965 2966 v = pParse->pVdbe; 2967 assert( v!=0 ); 2968 2969 /* The evaluation of the IN must be repeated every time it 2970 ** is encountered if any of the following is true: 2971 ** 2972 ** * The right-hand side is a correlated subquery 2973 ** * The right-hand side is an expression list containing variables 2974 ** * We are inside a trigger 2975 ** 2976 ** If all of the above are false, then we can compute the RHS just once 2977 ** and reuse it many names. 2978 */ 2979 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2980 /* Reuse of the RHS is allowed */ 2981 /* If this routine has already been coded, but the previous code 2982 ** might not have been invoked yet, so invoke it now as a subroutine. 2983 */ 2984 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2985 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2986 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2987 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2988 pExpr->x.pSelect->selId)); 2989 } 2990 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2991 pExpr->y.sub.iAddr); 2992 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2993 sqlite3VdbeJumpHere(v, addrOnce); 2994 return; 2995 } 2996 2997 /* Begin coding the subroutine */ 2998 ExprSetProperty(pExpr, EP_Subrtn); 2999 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3000 pExpr->y.sub.regReturn = ++pParse->nMem; 3001 pExpr->y.sub.iAddr = 3002 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3003 VdbeComment((v, "return address")); 3004 3005 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3006 } 3007 3008 /* Check to see if this is a vector IN operator */ 3009 pLeft = pExpr->pLeft; 3010 nVal = sqlite3ExprVectorSize(pLeft); 3011 3012 /* Construct the ephemeral table that will contain the content of 3013 ** RHS of the IN operator. 3014 */ 3015 pExpr->iTable = iTab; 3016 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3017 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3018 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3019 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3020 }else{ 3021 VdbeComment((v, "RHS of IN operator")); 3022 } 3023 #endif 3024 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3025 3026 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3027 /* Case 1: expr IN (SELECT ...) 3028 ** 3029 ** Generate code to write the results of the select into the temporary 3030 ** table allocated and opened above. 3031 */ 3032 Select *pSelect = pExpr->x.pSelect; 3033 ExprList *pEList = pSelect->pEList; 3034 3035 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3036 addrOnce?"":"CORRELATED ", pSelect->selId 3037 )); 3038 /* If the LHS and RHS of the IN operator do not match, that 3039 ** error will have been caught long before we reach this point. */ 3040 if( ALWAYS(pEList->nExpr==nVal) ){ 3041 Select *pCopy; 3042 SelectDest dest; 3043 int i; 3044 int rc; 3045 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3046 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3047 pSelect->iLimit = 0; 3048 testcase( pSelect->selFlags & SF_Distinct ); 3049 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3050 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3051 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3052 sqlite3SelectDelete(pParse->db, pCopy); 3053 sqlite3DbFree(pParse->db, dest.zAffSdst); 3054 if( rc ){ 3055 sqlite3KeyInfoUnref(pKeyInfo); 3056 return; 3057 } 3058 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3059 assert( pEList!=0 ); 3060 assert( pEList->nExpr>0 ); 3061 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3062 for(i=0; i<nVal; i++){ 3063 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3064 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3065 pParse, p, pEList->a[i].pExpr 3066 ); 3067 } 3068 } 3069 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3070 /* Case 2: expr IN (exprlist) 3071 ** 3072 ** For each expression, build an index key from the evaluation and 3073 ** store it in the temporary table. If <expr> is a column, then use 3074 ** that columns affinity when building index keys. If <expr> is not 3075 ** a column, use numeric affinity. 3076 */ 3077 char affinity; /* Affinity of the LHS of the IN */ 3078 int i; 3079 ExprList *pList = pExpr->x.pList; 3080 struct ExprList_item *pItem; 3081 int r1, r2; 3082 affinity = sqlite3ExprAffinity(pLeft); 3083 if( affinity<=SQLITE_AFF_NONE ){ 3084 affinity = SQLITE_AFF_BLOB; 3085 }else if( affinity==SQLITE_AFF_REAL ){ 3086 affinity = SQLITE_AFF_NUMERIC; 3087 } 3088 if( pKeyInfo ){ 3089 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3090 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3091 } 3092 3093 /* Loop through each expression in <exprlist>. */ 3094 r1 = sqlite3GetTempReg(pParse); 3095 r2 = sqlite3GetTempReg(pParse); 3096 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3097 Expr *pE2 = pItem->pExpr; 3098 3099 /* If the expression is not constant then we will need to 3100 ** disable the test that was generated above that makes sure 3101 ** this code only executes once. Because for a non-constant 3102 ** expression we need to rerun this code each time. 3103 */ 3104 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3105 sqlite3VdbeChangeToNoop(v, addrOnce); 3106 ExprClearProperty(pExpr, EP_Subrtn); 3107 addrOnce = 0; 3108 } 3109 3110 /* Evaluate the expression and insert it into the temp table */ 3111 sqlite3ExprCode(pParse, pE2, r1); 3112 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3113 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3114 } 3115 sqlite3ReleaseTempReg(pParse, r1); 3116 sqlite3ReleaseTempReg(pParse, r2); 3117 } 3118 if( pKeyInfo ){ 3119 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3120 } 3121 if( addrOnce ){ 3122 sqlite3VdbeJumpHere(v, addrOnce); 3123 /* Subroutine return */ 3124 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3125 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3126 sqlite3ClearTempRegCache(pParse); 3127 } 3128 } 3129 #endif /* SQLITE_OMIT_SUBQUERY */ 3130 3131 /* 3132 ** Generate code for scalar subqueries used as a subquery expression 3133 ** or EXISTS operator: 3134 ** 3135 ** (SELECT a FROM b) -- subquery 3136 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3137 ** 3138 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3139 ** 3140 ** Return the register that holds the result. For a multi-column SELECT, 3141 ** the result is stored in a contiguous array of registers and the 3142 ** return value is the register of the left-most result column. 3143 ** Return 0 if an error occurs. 3144 */ 3145 #ifndef SQLITE_OMIT_SUBQUERY 3146 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3147 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3148 int rReg = 0; /* Register storing resulting */ 3149 Select *pSel; /* SELECT statement to encode */ 3150 SelectDest dest; /* How to deal with SELECT result */ 3151 int nReg; /* Registers to allocate */ 3152 Expr *pLimit; /* New limit expression */ 3153 3154 Vdbe *v = pParse->pVdbe; 3155 assert( v!=0 ); 3156 if( pParse->nErr ) return 0; 3157 testcase( pExpr->op==TK_EXISTS ); 3158 testcase( pExpr->op==TK_SELECT ); 3159 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3160 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3161 pSel = pExpr->x.pSelect; 3162 3163 /* If this routine has already been coded, then invoke it as a 3164 ** subroutine. */ 3165 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3166 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3167 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3168 pExpr->y.sub.iAddr); 3169 return pExpr->iTable; 3170 } 3171 3172 /* Begin coding the subroutine */ 3173 ExprSetProperty(pExpr, EP_Subrtn); 3174 pExpr->y.sub.regReturn = ++pParse->nMem; 3175 pExpr->y.sub.iAddr = 3176 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3177 VdbeComment((v, "return address")); 3178 3179 3180 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3181 ** is encountered if any of the following is true: 3182 ** 3183 ** * The right-hand side is a correlated subquery 3184 ** * The right-hand side is an expression list containing variables 3185 ** * We are inside a trigger 3186 ** 3187 ** If all of the above are false, then we can run this code just once 3188 ** save the results, and reuse the same result on subsequent invocations. 3189 */ 3190 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3191 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3192 } 3193 3194 /* For a SELECT, generate code to put the values for all columns of 3195 ** the first row into an array of registers and return the index of 3196 ** the first register. 3197 ** 3198 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3199 ** into a register and return that register number. 3200 ** 3201 ** In both cases, the query is augmented with "LIMIT 1". Any 3202 ** preexisting limit is discarded in place of the new LIMIT 1. 3203 */ 3204 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3205 addrOnce?"":"CORRELATED ", pSel->selId)); 3206 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3207 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3208 pParse->nMem += nReg; 3209 if( pExpr->op==TK_SELECT ){ 3210 dest.eDest = SRT_Mem; 3211 dest.iSdst = dest.iSDParm; 3212 dest.nSdst = nReg; 3213 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3214 VdbeComment((v, "Init subquery result")); 3215 }else{ 3216 dest.eDest = SRT_Exists; 3217 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3218 VdbeComment((v, "Init EXISTS result")); 3219 } 3220 if( pSel->pLimit ){ 3221 /* The subquery already has a limit. If the pre-existing limit is X 3222 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3223 sqlite3 *db = pParse->db; 3224 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3225 if( pLimit ){ 3226 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3227 pLimit = sqlite3PExpr(pParse, TK_NE, 3228 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3229 } 3230 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3231 pSel->pLimit->pLeft = pLimit; 3232 }else{ 3233 /* If there is no pre-existing limit add a limit of 1 */ 3234 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3235 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3236 } 3237 pSel->iLimit = 0; 3238 if( sqlite3Select(pParse, pSel, &dest) ){ 3239 if( pParse->nErr ){ 3240 pExpr->op2 = pExpr->op; 3241 pExpr->op = TK_ERROR; 3242 } 3243 return 0; 3244 } 3245 pExpr->iTable = rReg = dest.iSDParm; 3246 ExprSetVVAProperty(pExpr, EP_NoReduce); 3247 if( addrOnce ){ 3248 sqlite3VdbeJumpHere(v, addrOnce); 3249 } 3250 3251 /* Subroutine return */ 3252 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3253 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3254 sqlite3ClearTempRegCache(pParse); 3255 return rReg; 3256 } 3257 #endif /* SQLITE_OMIT_SUBQUERY */ 3258 3259 #ifndef SQLITE_OMIT_SUBQUERY 3260 /* 3261 ** Expr pIn is an IN(...) expression. This function checks that the 3262 ** sub-select on the RHS of the IN() operator has the same number of 3263 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3264 ** a sub-query, that the LHS is a vector of size 1. 3265 */ 3266 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3267 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3268 if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){ 3269 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3270 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3271 return 1; 3272 } 3273 }else if( nVector!=1 ){ 3274 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3275 return 1; 3276 } 3277 return 0; 3278 } 3279 #endif 3280 3281 #ifndef SQLITE_OMIT_SUBQUERY 3282 /* 3283 ** Generate code for an IN expression. 3284 ** 3285 ** x IN (SELECT ...) 3286 ** x IN (value, value, ...) 3287 ** 3288 ** The left-hand side (LHS) is a scalar or vector expression. The 3289 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3290 ** subquery. If the RHS is a subquery, the number of result columns must 3291 ** match the number of columns in the vector on the LHS. If the RHS is 3292 ** a list of values, the LHS must be a scalar. 3293 ** 3294 ** The IN operator is true if the LHS value is contained within the RHS. 3295 ** The result is false if the LHS is definitely not in the RHS. The 3296 ** result is NULL if the presence of the LHS in the RHS cannot be 3297 ** determined due to NULLs. 3298 ** 3299 ** This routine generates code that jumps to destIfFalse if the LHS is not 3300 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3301 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3302 ** within the RHS then fall through. 3303 ** 3304 ** See the separate in-operator.md documentation file in the canonical 3305 ** SQLite source tree for additional information. 3306 */ 3307 static void sqlite3ExprCodeIN( 3308 Parse *pParse, /* Parsing and code generating context */ 3309 Expr *pExpr, /* The IN expression */ 3310 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3311 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3312 ){ 3313 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3314 int eType; /* Type of the RHS */ 3315 int rLhs; /* Register(s) holding the LHS values */ 3316 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3317 Vdbe *v; /* Statement under construction */ 3318 int *aiMap = 0; /* Map from vector field to index column */ 3319 char *zAff = 0; /* Affinity string for comparisons */ 3320 int nVector; /* Size of vectors for this IN operator */ 3321 int iDummy; /* Dummy parameter to exprCodeVector() */ 3322 Expr *pLeft; /* The LHS of the IN operator */ 3323 int i; /* loop counter */ 3324 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3325 int destStep6 = 0; /* Start of code for Step 6 */ 3326 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3327 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3328 int addrTop; /* Top of the step-6 loop */ 3329 int iTab = 0; /* Index to use */ 3330 u8 okConstFactor = pParse->okConstFactor; 3331 3332 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3333 pLeft = pExpr->pLeft; 3334 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3335 zAff = exprINAffinity(pParse, pExpr); 3336 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3337 aiMap = (int*)sqlite3DbMallocZero( 3338 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3339 ); 3340 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3341 3342 /* Attempt to compute the RHS. After this step, if anything other than 3343 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3344 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3345 ** the RHS has not yet been coded. */ 3346 v = pParse->pVdbe; 3347 assert( v!=0 ); /* OOM detected prior to this routine */ 3348 VdbeNoopComment((v, "begin IN expr")); 3349 eType = sqlite3FindInIndex(pParse, pExpr, 3350 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3351 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3352 aiMap, &iTab); 3353 3354 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3355 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3356 ); 3357 #ifdef SQLITE_DEBUG 3358 /* Confirm that aiMap[] contains nVector integer values between 0 and 3359 ** nVector-1. */ 3360 for(i=0; i<nVector; i++){ 3361 int j, cnt; 3362 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3363 assert( cnt==1 ); 3364 } 3365 #endif 3366 3367 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3368 ** vector, then it is stored in an array of nVector registers starting 3369 ** at r1. 3370 ** 3371 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3372 ** so that the fields are in the same order as an existing index. The 3373 ** aiMap[] array contains a mapping from the original LHS field order to 3374 ** the field order that matches the RHS index. 3375 ** 3376 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3377 ** even if it is constant, as OP_Affinity may be used on the register 3378 ** by code generated below. */ 3379 assert( pParse->okConstFactor==okConstFactor ); 3380 pParse->okConstFactor = 0; 3381 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3382 pParse->okConstFactor = okConstFactor; 3383 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3384 if( i==nVector ){ 3385 /* LHS fields are not reordered */ 3386 rLhs = rLhsOrig; 3387 }else{ 3388 /* Need to reorder the LHS fields according to aiMap */ 3389 rLhs = sqlite3GetTempRange(pParse, nVector); 3390 for(i=0; i<nVector; i++){ 3391 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3392 } 3393 } 3394 3395 /* If sqlite3FindInIndex() did not find or create an index that is 3396 ** suitable for evaluating the IN operator, then evaluate using a 3397 ** sequence of comparisons. 3398 ** 3399 ** This is step (1) in the in-operator.md optimized algorithm. 3400 */ 3401 if( eType==IN_INDEX_NOOP ){ 3402 ExprList *pList = pExpr->x.pList; 3403 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3404 int labelOk = sqlite3VdbeMakeLabel(pParse); 3405 int r2, regToFree; 3406 int regCkNull = 0; 3407 int ii; 3408 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3409 if( destIfNull!=destIfFalse ){ 3410 regCkNull = sqlite3GetTempReg(pParse); 3411 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3412 } 3413 for(ii=0; ii<pList->nExpr; ii++){ 3414 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3415 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3416 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3417 } 3418 sqlite3ReleaseTempReg(pParse, regToFree); 3419 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3420 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3421 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3422 (void*)pColl, P4_COLLSEQ); 3423 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3424 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3425 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3426 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3427 sqlite3VdbeChangeP5(v, zAff[0]); 3428 }else{ 3429 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3430 assert( destIfNull==destIfFalse ); 3431 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3432 (void*)pColl, P4_COLLSEQ); 3433 VdbeCoverageIf(v, op==OP_Ne); 3434 VdbeCoverageIf(v, op==OP_IsNull); 3435 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3436 } 3437 } 3438 if( regCkNull ){ 3439 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3440 sqlite3VdbeGoto(v, destIfFalse); 3441 } 3442 sqlite3VdbeResolveLabel(v, labelOk); 3443 sqlite3ReleaseTempReg(pParse, regCkNull); 3444 goto sqlite3ExprCodeIN_finished; 3445 } 3446 3447 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3448 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3449 ** We will then skip the binary search of the RHS. 3450 */ 3451 if( destIfNull==destIfFalse ){ 3452 destStep2 = destIfFalse; 3453 }else{ 3454 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3455 } 3456 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3457 for(i=0; i<nVector; i++){ 3458 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3459 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3460 if( sqlite3ExprCanBeNull(p) ){ 3461 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3462 VdbeCoverage(v); 3463 } 3464 } 3465 3466 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3467 ** of the RHS using the LHS as a probe. If found, the result is 3468 ** true. 3469 */ 3470 if( eType==IN_INDEX_ROWID ){ 3471 /* In this case, the RHS is the ROWID of table b-tree and so we also 3472 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3473 ** into a single opcode. */ 3474 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3475 VdbeCoverage(v); 3476 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3477 }else{ 3478 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3479 if( destIfFalse==destIfNull ){ 3480 /* Combine Step 3 and Step 5 into a single opcode */ 3481 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3482 rLhs, nVector); VdbeCoverage(v); 3483 goto sqlite3ExprCodeIN_finished; 3484 } 3485 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3486 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3487 rLhs, nVector); VdbeCoverage(v); 3488 } 3489 3490 /* Step 4. If the RHS is known to be non-NULL and we did not find 3491 ** an match on the search above, then the result must be FALSE. 3492 */ 3493 if( rRhsHasNull && nVector==1 ){ 3494 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3495 VdbeCoverage(v); 3496 } 3497 3498 /* Step 5. If we do not care about the difference between NULL and 3499 ** FALSE, then just return false. 3500 */ 3501 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3502 3503 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3504 ** If any comparison is NULL, then the result is NULL. If all 3505 ** comparisons are FALSE then the final result is FALSE. 3506 ** 3507 ** For a scalar LHS, it is sufficient to check just the first row 3508 ** of the RHS. 3509 */ 3510 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3511 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3512 VdbeCoverage(v); 3513 if( nVector>1 ){ 3514 destNotNull = sqlite3VdbeMakeLabel(pParse); 3515 }else{ 3516 /* For nVector==1, combine steps 6 and 7 by immediately returning 3517 ** FALSE if the first comparison is not NULL */ 3518 destNotNull = destIfFalse; 3519 } 3520 for(i=0; i<nVector; i++){ 3521 Expr *p; 3522 CollSeq *pColl; 3523 int r3 = sqlite3GetTempReg(pParse); 3524 p = sqlite3VectorFieldSubexpr(pLeft, i); 3525 pColl = sqlite3ExprCollSeq(pParse, p); 3526 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3527 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3528 (void*)pColl, P4_COLLSEQ); 3529 VdbeCoverage(v); 3530 sqlite3ReleaseTempReg(pParse, r3); 3531 } 3532 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3533 if( nVector>1 ){ 3534 sqlite3VdbeResolveLabel(v, destNotNull); 3535 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3536 VdbeCoverage(v); 3537 3538 /* Step 7: If we reach this point, we know that the result must 3539 ** be false. */ 3540 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3541 } 3542 3543 /* Jumps here in order to return true. */ 3544 sqlite3VdbeJumpHere(v, addrTruthOp); 3545 3546 sqlite3ExprCodeIN_finished: 3547 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3548 VdbeComment((v, "end IN expr")); 3549 sqlite3ExprCodeIN_oom_error: 3550 sqlite3DbFree(pParse->db, aiMap); 3551 sqlite3DbFree(pParse->db, zAff); 3552 } 3553 #endif /* SQLITE_OMIT_SUBQUERY */ 3554 3555 #ifndef SQLITE_OMIT_FLOATING_POINT 3556 /* 3557 ** Generate an instruction that will put the floating point 3558 ** value described by z[0..n-1] into register iMem. 3559 ** 3560 ** The z[] string will probably not be zero-terminated. But the 3561 ** z[n] character is guaranteed to be something that does not look 3562 ** like the continuation of the number. 3563 */ 3564 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3565 if( ALWAYS(z!=0) ){ 3566 double value; 3567 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3568 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3569 if( negateFlag ) value = -value; 3570 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3571 } 3572 } 3573 #endif 3574 3575 3576 /* 3577 ** Generate an instruction that will put the integer describe by 3578 ** text z[0..n-1] into register iMem. 3579 ** 3580 ** Expr.u.zToken is always UTF8 and zero-terminated. 3581 */ 3582 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3583 Vdbe *v = pParse->pVdbe; 3584 if( pExpr->flags & EP_IntValue ){ 3585 int i = pExpr->u.iValue; 3586 assert( i>=0 ); 3587 if( negFlag ) i = -i; 3588 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3589 }else{ 3590 int c; 3591 i64 value; 3592 const char *z = pExpr->u.zToken; 3593 assert( z!=0 ); 3594 c = sqlite3DecOrHexToI64(z, &value); 3595 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3596 #ifdef SQLITE_OMIT_FLOATING_POINT 3597 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3598 #else 3599 #ifndef SQLITE_OMIT_HEX_INTEGER 3600 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3601 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3602 }else 3603 #endif 3604 { 3605 codeReal(v, z, negFlag, iMem); 3606 } 3607 #endif 3608 }else{ 3609 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3610 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3611 } 3612 } 3613 } 3614 3615 3616 /* Generate code that will load into register regOut a value that is 3617 ** appropriate for the iIdxCol-th column of index pIdx. 3618 */ 3619 void sqlite3ExprCodeLoadIndexColumn( 3620 Parse *pParse, /* The parsing context */ 3621 Index *pIdx, /* The index whose column is to be loaded */ 3622 int iTabCur, /* Cursor pointing to a table row */ 3623 int iIdxCol, /* The column of the index to be loaded */ 3624 int regOut /* Store the index column value in this register */ 3625 ){ 3626 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3627 if( iTabCol==XN_EXPR ){ 3628 assert( pIdx->aColExpr ); 3629 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3630 pParse->iSelfTab = iTabCur + 1; 3631 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3632 pParse->iSelfTab = 0; 3633 }else{ 3634 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3635 iTabCol, regOut); 3636 } 3637 } 3638 3639 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3640 /* 3641 ** Generate code that will compute the value of generated column pCol 3642 ** and store the result in register regOut 3643 */ 3644 void sqlite3ExprCodeGeneratedColumn( 3645 Parse *pParse, 3646 Column *pCol, 3647 int regOut 3648 ){ 3649 int iAddr; 3650 Vdbe *v = pParse->pVdbe; 3651 assert( v!=0 ); 3652 assert( pParse->iSelfTab!=0 ); 3653 if( pParse->iSelfTab>0 ){ 3654 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3655 }else{ 3656 iAddr = 0; 3657 } 3658 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3659 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3660 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3661 } 3662 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3663 } 3664 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3665 3666 /* 3667 ** Generate code to extract the value of the iCol-th column of a table. 3668 */ 3669 void sqlite3ExprCodeGetColumnOfTable( 3670 Vdbe *v, /* Parsing context */ 3671 Table *pTab, /* The table containing the value */ 3672 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3673 int iCol, /* Index of the column to extract */ 3674 int regOut /* Extract the value into this register */ 3675 ){ 3676 Column *pCol; 3677 assert( v!=0 ); 3678 if( pTab==0 ){ 3679 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3680 return; 3681 } 3682 if( iCol<0 || iCol==pTab->iPKey ){ 3683 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3684 }else{ 3685 int op; 3686 int x; 3687 if( IsVirtual(pTab) ){ 3688 op = OP_VColumn; 3689 x = iCol; 3690 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3691 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3692 Parse *pParse = sqlite3VdbeParser(v); 3693 if( pCol->colFlags & COLFLAG_BUSY ){ 3694 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3695 }else{ 3696 int savedSelfTab = pParse->iSelfTab; 3697 pCol->colFlags |= COLFLAG_BUSY; 3698 pParse->iSelfTab = iTabCur+1; 3699 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3700 pParse->iSelfTab = savedSelfTab; 3701 pCol->colFlags &= ~COLFLAG_BUSY; 3702 } 3703 return; 3704 #endif 3705 }else if( !HasRowid(pTab) ){ 3706 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3707 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3708 op = OP_Column; 3709 }else{ 3710 x = sqlite3TableColumnToStorage(pTab,iCol); 3711 testcase( x!=iCol ); 3712 op = OP_Column; 3713 } 3714 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3715 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3716 } 3717 } 3718 3719 /* 3720 ** Generate code that will extract the iColumn-th column from 3721 ** table pTab and store the column value in register iReg. 3722 ** 3723 ** There must be an open cursor to pTab in iTable when this routine 3724 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3725 */ 3726 int sqlite3ExprCodeGetColumn( 3727 Parse *pParse, /* Parsing and code generating context */ 3728 Table *pTab, /* Description of the table we are reading from */ 3729 int iColumn, /* Index of the table column */ 3730 int iTable, /* The cursor pointing to the table */ 3731 int iReg, /* Store results here */ 3732 u8 p5 /* P5 value for OP_Column + FLAGS */ 3733 ){ 3734 assert( pParse->pVdbe!=0 ); 3735 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3736 if( p5 ){ 3737 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3738 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3739 } 3740 return iReg; 3741 } 3742 3743 /* 3744 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3745 ** over to iTo..iTo+nReg-1. 3746 */ 3747 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3748 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3749 } 3750 3751 /* 3752 ** Convert a scalar expression node to a TK_REGISTER referencing 3753 ** register iReg. The caller must ensure that iReg already contains 3754 ** the correct value for the expression. 3755 */ 3756 static void exprToRegister(Expr *pExpr, int iReg){ 3757 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3758 if( NEVER(p==0) ) return; 3759 p->op2 = p->op; 3760 p->op = TK_REGISTER; 3761 p->iTable = iReg; 3762 ExprClearProperty(p, EP_Skip); 3763 } 3764 3765 /* 3766 ** Evaluate an expression (either a vector or a scalar expression) and store 3767 ** the result in continguous temporary registers. Return the index of 3768 ** the first register used to store the result. 3769 ** 3770 ** If the returned result register is a temporary scalar, then also write 3771 ** that register number into *piFreeable. If the returned result register 3772 ** is not a temporary or if the expression is a vector set *piFreeable 3773 ** to 0. 3774 */ 3775 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3776 int iResult; 3777 int nResult = sqlite3ExprVectorSize(p); 3778 if( nResult==1 ){ 3779 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3780 }else{ 3781 *piFreeable = 0; 3782 if( p->op==TK_SELECT ){ 3783 #if SQLITE_OMIT_SUBQUERY 3784 iResult = 0; 3785 #else 3786 iResult = sqlite3CodeSubselect(pParse, p); 3787 #endif 3788 }else{ 3789 int i; 3790 iResult = pParse->nMem+1; 3791 pParse->nMem += nResult; 3792 for(i=0; i<nResult; i++){ 3793 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3794 } 3795 } 3796 } 3797 return iResult; 3798 } 3799 3800 /* 3801 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3802 ** so that a subsequent copy will not be merged into this one. 3803 */ 3804 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3805 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3806 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3807 } 3808 } 3809 3810 /* 3811 ** Generate code to implement special SQL functions that are implemented 3812 ** in-line rather than by using the usual callbacks. 3813 */ 3814 static int exprCodeInlineFunction( 3815 Parse *pParse, /* Parsing context */ 3816 ExprList *pFarg, /* List of function arguments */ 3817 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3818 int target /* Store function result in this register */ 3819 ){ 3820 int nFarg; 3821 Vdbe *v = pParse->pVdbe; 3822 assert( v!=0 ); 3823 assert( pFarg!=0 ); 3824 nFarg = pFarg->nExpr; 3825 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3826 switch( iFuncId ){ 3827 case INLINEFUNC_coalesce: { 3828 /* Attempt a direct implementation of the built-in COALESCE() and 3829 ** IFNULL() functions. This avoids unnecessary evaluation of 3830 ** arguments past the first non-NULL argument. 3831 */ 3832 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3833 int i; 3834 assert( nFarg>=2 ); 3835 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3836 for(i=1; i<nFarg; i++){ 3837 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3838 VdbeCoverage(v); 3839 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3840 } 3841 setDoNotMergeFlagOnCopy(v); 3842 sqlite3VdbeResolveLabel(v, endCoalesce); 3843 break; 3844 } 3845 case INLINEFUNC_iif: { 3846 Expr caseExpr; 3847 memset(&caseExpr, 0, sizeof(caseExpr)); 3848 caseExpr.op = TK_CASE; 3849 caseExpr.x.pList = pFarg; 3850 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3851 } 3852 3853 default: { 3854 /* The UNLIKELY() function is a no-op. The result is the value 3855 ** of the first argument. 3856 */ 3857 assert( nFarg==1 || nFarg==2 ); 3858 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3859 break; 3860 } 3861 3862 /*********************************************************************** 3863 ** Test-only SQL functions that are only usable if enabled 3864 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3865 */ 3866 case INLINEFUNC_expr_compare: { 3867 /* Compare two expressions using sqlite3ExprCompare() */ 3868 assert( nFarg==2 ); 3869 sqlite3VdbeAddOp2(v, OP_Integer, 3870 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3871 target); 3872 break; 3873 } 3874 3875 case INLINEFUNC_expr_implies_expr: { 3876 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3877 assert( nFarg==2 ); 3878 sqlite3VdbeAddOp2(v, OP_Integer, 3879 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3880 target); 3881 break; 3882 } 3883 3884 case INLINEFUNC_implies_nonnull_row: { 3885 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3886 Expr *pA1; 3887 assert( nFarg==2 ); 3888 pA1 = pFarg->a[1].pExpr; 3889 if( pA1->op==TK_COLUMN ){ 3890 sqlite3VdbeAddOp2(v, OP_Integer, 3891 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3892 target); 3893 }else{ 3894 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3895 } 3896 break; 3897 } 3898 3899 #ifdef SQLITE_DEBUG 3900 case INLINEFUNC_affinity: { 3901 /* The AFFINITY() function evaluates to a string that describes 3902 ** the type affinity of the argument. This is used for testing of 3903 ** the SQLite type logic. 3904 */ 3905 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3906 char aff; 3907 assert( nFarg==1 ); 3908 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3909 sqlite3VdbeLoadString(v, target, 3910 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3911 break; 3912 } 3913 #endif 3914 } 3915 return target; 3916 } 3917 3918 3919 /* 3920 ** Generate code into the current Vdbe to evaluate the given 3921 ** expression. Attempt to store the results in register "target". 3922 ** Return the register where results are stored. 3923 ** 3924 ** With this routine, there is no guarantee that results will 3925 ** be stored in target. The result might be stored in some other 3926 ** register if it is convenient to do so. The calling function 3927 ** must check the return code and move the results to the desired 3928 ** register. 3929 */ 3930 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3931 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3932 int op; /* The opcode being coded */ 3933 int inReg = target; /* Results stored in register inReg */ 3934 int regFree1 = 0; /* If non-zero free this temporary register */ 3935 int regFree2 = 0; /* If non-zero free this temporary register */ 3936 int r1, r2; /* Various register numbers */ 3937 Expr tempX; /* Temporary expression node */ 3938 int p5 = 0; 3939 3940 assert( target>0 && target<=pParse->nMem ); 3941 assert( v!=0 ); 3942 3943 expr_code_doover: 3944 if( pExpr==0 ){ 3945 op = TK_NULL; 3946 }else{ 3947 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3948 op = pExpr->op; 3949 } 3950 switch( op ){ 3951 case TK_AGG_COLUMN: { 3952 AggInfo *pAggInfo = pExpr->pAggInfo; 3953 struct AggInfo_col *pCol; 3954 assert( pAggInfo!=0 ); 3955 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3956 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3957 if( !pAggInfo->directMode ){ 3958 assert( pCol->iMem>0 ); 3959 return pCol->iMem; 3960 }else if( pAggInfo->useSortingIdx ){ 3961 Table *pTab = pCol->pTab; 3962 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3963 pCol->iSorterColumn, target); 3964 if( pCol->iColumn<0 ){ 3965 VdbeComment((v,"%s.rowid",pTab->zName)); 3966 }else{ 3967 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3968 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3969 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3970 } 3971 } 3972 return target; 3973 } 3974 /* Otherwise, fall thru into the TK_COLUMN case */ 3975 /* no break */ deliberate_fall_through 3976 } 3977 case TK_COLUMN: { 3978 int iTab = pExpr->iTable; 3979 int iReg; 3980 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3981 /* This COLUMN expression is really a constant due to WHERE clause 3982 ** constraints, and that constant is coded by the pExpr->pLeft 3983 ** expresssion. However, make sure the constant has the correct 3984 ** datatype by applying the Affinity of the table column to the 3985 ** constant. 3986 */ 3987 int aff; 3988 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3989 if( pExpr->y.pTab ){ 3990 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3991 }else{ 3992 aff = pExpr->affExpr; 3993 } 3994 if( aff>SQLITE_AFF_BLOB ){ 3995 static const char zAff[] = "B\000C\000D\000E"; 3996 assert( SQLITE_AFF_BLOB=='A' ); 3997 assert( SQLITE_AFF_TEXT=='B' ); 3998 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3999 &zAff[(aff-'B')*2], P4_STATIC); 4000 } 4001 return iReg; 4002 } 4003 if( iTab<0 ){ 4004 if( pParse->iSelfTab<0 ){ 4005 /* Other columns in the same row for CHECK constraints or 4006 ** generated columns or for inserting into partial index. 4007 ** The row is unpacked into registers beginning at 4008 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4009 ** immediately prior to the first column. 4010 */ 4011 Column *pCol; 4012 Table *pTab = pExpr->y.pTab; 4013 int iSrc; 4014 int iCol = pExpr->iColumn; 4015 assert( pTab!=0 ); 4016 assert( iCol>=XN_ROWID ); 4017 assert( iCol<pTab->nCol ); 4018 if( iCol<0 ){ 4019 return -1-pParse->iSelfTab; 4020 } 4021 pCol = pTab->aCol + iCol; 4022 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4023 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4024 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4025 if( pCol->colFlags & COLFLAG_GENERATED ){ 4026 if( pCol->colFlags & COLFLAG_BUSY ){ 4027 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4028 pCol->zName); 4029 return 0; 4030 } 4031 pCol->colFlags |= COLFLAG_BUSY; 4032 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4033 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 4034 } 4035 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4036 return iSrc; 4037 }else 4038 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4039 if( pCol->affinity==SQLITE_AFF_REAL ){ 4040 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4041 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4042 return target; 4043 }else{ 4044 return iSrc; 4045 } 4046 }else{ 4047 /* Coding an expression that is part of an index where column names 4048 ** in the index refer to the table to which the index belongs */ 4049 iTab = pParse->iSelfTab - 1; 4050 } 4051 } 4052 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4053 pExpr->iColumn, iTab, target, 4054 pExpr->op2); 4055 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4056 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4057 } 4058 return iReg; 4059 } 4060 case TK_INTEGER: { 4061 codeInteger(pParse, pExpr, 0, target); 4062 return target; 4063 } 4064 case TK_TRUEFALSE: { 4065 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4066 return target; 4067 } 4068 #ifndef SQLITE_OMIT_FLOATING_POINT 4069 case TK_FLOAT: { 4070 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4071 codeReal(v, pExpr->u.zToken, 0, target); 4072 return target; 4073 } 4074 #endif 4075 case TK_STRING: { 4076 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4077 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4078 return target; 4079 } 4080 default: { 4081 /* Make NULL the default case so that if a bug causes an illegal 4082 ** Expr node to be passed into this function, it will be handled 4083 ** sanely and not crash. But keep the assert() to bring the problem 4084 ** to the attention of the developers. */ 4085 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4086 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4087 return target; 4088 } 4089 #ifndef SQLITE_OMIT_BLOB_LITERAL 4090 case TK_BLOB: { 4091 int n; 4092 const char *z; 4093 char *zBlob; 4094 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4095 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4096 assert( pExpr->u.zToken[1]=='\'' ); 4097 z = &pExpr->u.zToken[2]; 4098 n = sqlite3Strlen30(z) - 1; 4099 assert( z[n]=='\'' ); 4100 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4101 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4102 return target; 4103 } 4104 #endif 4105 case TK_VARIABLE: { 4106 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4107 assert( pExpr->u.zToken!=0 ); 4108 assert( pExpr->u.zToken[0]!=0 ); 4109 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4110 if( pExpr->u.zToken[1]!=0 ){ 4111 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4112 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4113 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4114 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4115 } 4116 return target; 4117 } 4118 case TK_REGISTER: { 4119 return pExpr->iTable; 4120 } 4121 #ifndef SQLITE_OMIT_CAST 4122 case TK_CAST: { 4123 /* Expressions of the form: CAST(pLeft AS token) */ 4124 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4125 if( inReg!=target ){ 4126 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4127 inReg = target; 4128 } 4129 sqlite3VdbeAddOp2(v, OP_Cast, target, 4130 sqlite3AffinityType(pExpr->u.zToken, 0)); 4131 return inReg; 4132 } 4133 #endif /* SQLITE_OMIT_CAST */ 4134 case TK_IS: 4135 case TK_ISNOT: 4136 op = (op==TK_IS) ? TK_EQ : TK_NE; 4137 p5 = SQLITE_NULLEQ; 4138 /* fall-through */ 4139 case TK_LT: 4140 case TK_LE: 4141 case TK_GT: 4142 case TK_GE: 4143 case TK_NE: 4144 case TK_EQ: { 4145 Expr *pLeft = pExpr->pLeft; 4146 if( sqlite3ExprIsVector(pLeft) ){ 4147 codeVectorCompare(pParse, pExpr, target, op, p5); 4148 }else{ 4149 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4150 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4151 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4152 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4153 sqlite3VdbeCurrentAddr(v)+2, p5, 4154 ExprHasProperty(pExpr,EP_Commuted)); 4155 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4156 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4157 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4158 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4159 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4160 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4161 if( p5==SQLITE_NULLEQ ){ 4162 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4163 }else{ 4164 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4165 } 4166 testcase( regFree1==0 ); 4167 testcase( regFree2==0 ); 4168 } 4169 break; 4170 } 4171 case TK_AND: 4172 case TK_OR: 4173 case TK_PLUS: 4174 case TK_STAR: 4175 case TK_MINUS: 4176 case TK_REM: 4177 case TK_BITAND: 4178 case TK_BITOR: 4179 case TK_SLASH: 4180 case TK_LSHIFT: 4181 case TK_RSHIFT: 4182 case TK_CONCAT: { 4183 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4184 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4185 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4186 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4187 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4188 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4189 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4190 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4191 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4192 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4193 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4194 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4195 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4196 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4197 testcase( regFree1==0 ); 4198 testcase( regFree2==0 ); 4199 break; 4200 } 4201 case TK_UMINUS: { 4202 Expr *pLeft = pExpr->pLeft; 4203 assert( pLeft ); 4204 if( pLeft->op==TK_INTEGER ){ 4205 codeInteger(pParse, pLeft, 1, target); 4206 return target; 4207 #ifndef SQLITE_OMIT_FLOATING_POINT 4208 }else if( pLeft->op==TK_FLOAT ){ 4209 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4210 codeReal(v, pLeft->u.zToken, 1, target); 4211 return target; 4212 #endif 4213 }else{ 4214 tempX.op = TK_INTEGER; 4215 tempX.flags = EP_IntValue|EP_TokenOnly; 4216 tempX.u.iValue = 0; 4217 ExprClearVVAProperties(&tempX); 4218 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4219 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4220 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4221 testcase( regFree2==0 ); 4222 } 4223 break; 4224 } 4225 case TK_BITNOT: 4226 case TK_NOT: { 4227 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4228 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4229 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4230 testcase( regFree1==0 ); 4231 sqlite3VdbeAddOp2(v, op, r1, inReg); 4232 break; 4233 } 4234 case TK_TRUTH: { 4235 int isTrue; /* IS TRUE or IS NOT TRUE */ 4236 int bNormal; /* IS TRUE or IS FALSE */ 4237 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4238 testcase( regFree1==0 ); 4239 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4240 bNormal = pExpr->op2==TK_IS; 4241 testcase( isTrue && bNormal); 4242 testcase( !isTrue && bNormal); 4243 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4244 break; 4245 } 4246 case TK_ISNULL: 4247 case TK_NOTNULL: { 4248 int addr; 4249 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4250 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4251 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4252 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4253 testcase( regFree1==0 ); 4254 addr = sqlite3VdbeAddOp1(v, op, r1); 4255 VdbeCoverageIf(v, op==TK_ISNULL); 4256 VdbeCoverageIf(v, op==TK_NOTNULL); 4257 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4258 sqlite3VdbeJumpHere(v, addr); 4259 break; 4260 } 4261 case TK_AGG_FUNCTION: { 4262 AggInfo *pInfo = pExpr->pAggInfo; 4263 if( pInfo==0 4264 || NEVER(pExpr->iAgg<0) 4265 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4266 ){ 4267 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4268 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4269 }else{ 4270 return pInfo->aFunc[pExpr->iAgg].iMem; 4271 } 4272 break; 4273 } 4274 case TK_FUNCTION: { 4275 ExprList *pFarg; /* List of function arguments */ 4276 int nFarg; /* Number of function arguments */ 4277 FuncDef *pDef; /* The function definition object */ 4278 const char *zId; /* The function name */ 4279 u32 constMask = 0; /* Mask of function arguments that are constant */ 4280 int i; /* Loop counter */ 4281 sqlite3 *db = pParse->db; /* The database connection */ 4282 u8 enc = ENC(db); /* The text encoding used by this database */ 4283 CollSeq *pColl = 0; /* A collating sequence */ 4284 4285 #ifndef SQLITE_OMIT_WINDOWFUNC 4286 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4287 return pExpr->y.pWin->regResult; 4288 } 4289 #endif 4290 4291 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4292 /* SQL functions can be expensive. So try to avoid running them 4293 ** multiple times if we know they always give the same result */ 4294 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4295 } 4296 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4297 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4298 pFarg = pExpr->x.pList; 4299 nFarg = pFarg ? pFarg->nExpr : 0; 4300 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4301 zId = pExpr->u.zToken; 4302 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4303 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4304 if( pDef==0 && pParse->explain ){ 4305 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4306 } 4307 #endif 4308 if( pDef==0 || pDef->xFinalize!=0 ){ 4309 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4310 break; 4311 } 4312 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4313 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4314 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4315 return exprCodeInlineFunction(pParse, pFarg, 4316 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4317 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4318 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4319 } 4320 4321 for(i=0; i<nFarg; i++){ 4322 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4323 testcase( i==31 ); 4324 constMask |= MASKBIT32(i); 4325 } 4326 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4327 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4328 } 4329 } 4330 if( pFarg ){ 4331 if( constMask ){ 4332 r1 = pParse->nMem+1; 4333 pParse->nMem += nFarg; 4334 }else{ 4335 r1 = sqlite3GetTempRange(pParse, nFarg); 4336 } 4337 4338 /* For length() and typeof() functions with a column argument, 4339 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4340 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4341 ** loading. 4342 */ 4343 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4344 u8 exprOp; 4345 assert( nFarg==1 ); 4346 assert( pFarg->a[0].pExpr!=0 ); 4347 exprOp = pFarg->a[0].pExpr->op; 4348 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4349 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4350 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4351 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4352 pFarg->a[0].pExpr->op2 = 4353 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4354 } 4355 } 4356 4357 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4358 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4359 }else{ 4360 r1 = 0; 4361 } 4362 #ifndef SQLITE_OMIT_VIRTUALTABLE 4363 /* Possibly overload the function if the first argument is 4364 ** a virtual table column. 4365 ** 4366 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4367 ** second argument, not the first, as the argument to test to 4368 ** see if it is a column in a virtual table. This is done because 4369 ** the left operand of infix functions (the operand we want to 4370 ** control overloading) ends up as the second argument to the 4371 ** function. The expression "A glob B" is equivalent to 4372 ** "glob(B,A). We want to use the A in "A glob B" to test 4373 ** for function overloading. But we use the B term in "glob(B,A)". 4374 */ 4375 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4376 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4377 }else if( nFarg>0 ){ 4378 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4379 } 4380 #endif 4381 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4382 if( !pColl ) pColl = db->pDfltColl; 4383 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4384 } 4385 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4386 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4387 Expr *pArg = pFarg->a[0].pExpr; 4388 if( pArg->op==TK_COLUMN ){ 4389 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4390 }else{ 4391 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4392 } 4393 }else 4394 #endif 4395 { 4396 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4397 pDef, pExpr->op2); 4398 } 4399 if( nFarg ){ 4400 if( constMask==0 ){ 4401 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4402 }else{ 4403 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4404 } 4405 } 4406 return target; 4407 } 4408 #ifndef SQLITE_OMIT_SUBQUERY 4409 case TK_EXISTS: 4410 case TK_SELECT: { 4411 int nCol; 4412 testcase( op==TK_EXISTS ); 4413 testcase( op==TK_SELECT ); 4414 if( pParse->db->mallocFailed ){ 4415 return 0; 4416 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4417 sqlite3SubselectError(pParse, nCol, 1); 4418 }else{ 4419 return sqlite3CodeSubselect(pParse, pExpr); 4420 } 4421 break; 4422 } 4423 case TK_SELECT_COLUMN: { 4424 int n; 4425 if( pExpr->pLeft->iTable==0 ){ 4426 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4427 } 4428 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR ); 4429 n = sqlite3ExprVectorSize(pExpr->pLeft); 4430 if( pExpr->iTable!=n ){ 4431 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4432 pExpr->iTable, n); 4433 } 4434 return pExpr->pLeft->iTable + pExpr->iColumn; 4435 } 4436 case TK_IN: { 4437 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4438 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4439 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4440 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4441 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4442 sqlite3VdbeResolveLabel(v, destIfFalse); 4443 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4444 sqlite3VdbeResolveLabel(v, destIfNull); 4445 return target; 4446 } 4447 #endif /* SQLITE_OMIT_SUBQUERY */ 4448 4449 4450 /* 4451 ** x BETWEEN y AND z 4452 ** 4453 ** This is equivalent to 4454 ** 4455 ** x>=y AND x<=z 4456 ** 4457 ** X is stored in pExpr->pLeft. 4458 ** Y is stored in pExpr->pList->a[0].pExpr. 4459 ** Z is stored in pExpr->pList->a[1].pExpr. 4460 */ 4461 case TK_BETWEEN: { 4462 exprCodeBetween(pParse, pExpr, target, 0, 0); 4463 return target; 4464 } 4465 case TK_SPAN: 4466 case TK_COLLATE: 4467 case TK_UPLUS: { 4468 pExpr = pExpr->pLeft; 4469 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4470 } 4471 4472 case TK_TRIGGER: { 4473 /* If the opcode is TK_TRIGGER, then the expression is a reference 4474 ** to a column in the new.* or old.* pseudo-tables available to 4475 ** trigger programs. In this case Expr.iTable is set to 1 for the 4476 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4477 ** is set to the column of the pseudo-table to read, or to -1 to 4478 ** read the rowid field. 4479 ** 4480 ** The expression is implemented using an OP_Param opcode. The p1 4481 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4482 ** to reference another column of the old.* pseudo-table, where 4483 ** i is the index of the column. For a new.rowid reference, p1 is 4484 ** set to (n+1), where n is the number of columns in each pseudo-table. 4485 ** For a reference to any other column in the new.* pseudo-table, p1 4486 ** is set to (n+2+i), where n and i are as defined previously. For 4487 ** example, if the table on which triggers are being fired is 4488 ** declared as: 4489 ** 4490 ** CREATE TABLE t1(a, b); 4491 ** 4492 ** Then p1 is interpreted as follows: 4493 ** 4494 ** p1==0 -> old.rowid p1==3 -> new.rowid 4495 ** p1==1 -> old.a p1==4 -> new.a 4496 ** p1==2 -> old.b p1==5 -> new.b 4497 */ 4498 Table *pTab = pExpr->y.pTab; 4499 int iCol = pExpr->iColumn; 4500 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4501 + sqlite3TableColumnToStorage(pTab, iCol); 4502 4503 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4504 assert( iCol>=-1 && iCol<pTab->nCol ); 4505 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4506 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4507 4508 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4509 VdbeComment((v, "r[%d]=%s.%s", target, 4510 (pExpr->iTable ? "new" : "old"), 4511 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4512 )); 4513 4514 #ifndef SQLITE_OMIT_FLOATING_POINT 4515 /* If the column has REAL affinity, it may currently be stored as an 4516 ** integer. Use OP_RealAffinity to make sure it is really real. 4517 ** 4518 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4519 ** floating point when extracting it from the record. */ 4520 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4521 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4522 } 4523 #endif 4524 break; 4525 } 4526 4527 case TK_VECTOR: { 4528 sqlite3ErrorMsg(pParse, "row value misused"); 4529 break; 4530 } 4531 4532 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4533 ** that derive from the right-hand table of a LEFT JOIN. The 4534 ** Expr.iTable value is the table number for the right-hand table. 4535 ** The expression is only evaluated if that table is not currently 4536 ** on a LEFT JOIN NULL row. 4537 */ 4538 case TK_IF_NULL_ROW: { 4539 int addrINR; 4540 u8 okConstFactor = pParse->okConstFactor; 4541 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4542 /* Temporarily disable factoring of constant expressions, since 4543 ** even though expressions may appear to be constant, they are not 4544 ** really constant because they originate from the right-hand side 4545 ** of a LEFT JOIN. */ 4546 pParse->okConstFactor = 0; 4547 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4548 pParse->okConstFactor = okConstFactor; 4549 sqlite3VdbeJumpHere(v, addrINR); 4550 sqlite3VdbeChangeP3(v, addrINR, inReg); 4551 break; 4552 } 4553 4554 /* 4555 ** Form A: 4556 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4557 ** 4558 ** Form B: 4559 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4560 ** 4561 ** Form A is can be transformed into the equivalent form B as follows: 4562 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4563 ** WHEN x=eN THEN rN ELSE y END 4564 ** 4565 ** X (if it exists) is in pExpr->pLeft. 4566 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4567 ** odd. The Y is also optional. If the number of elements in x.pList 4568 ** is even, then Y is omitted and the "otherwise" result is NULL. 4569 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4570 ** 4571 ** The result of the expression is the Ri for the first matching Ei, 4572 ** or if there is no matching Ei, the ELSE term Y, or if there is 4573 ** no ELSE term, NULL. 4574 */ 4575 case TK_CASE: { 4576 int endLabel; /* GOTO label for end of CASE stmt */ 4577 int nextCase; /* GOTO label for next WHEN clause */ 4578 int nExpr; /* 2x number of WHEN terms */ 4579 int i; /* Loop counter */ 4580 ExprList *pEList; /* List of WHEN terms */ 4581 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4582 Expr opCompare; /* The X==Ei expression */ 4583 Expr *pX; /* The X expression */ 4584 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4585 Expr *pDel = 0; 4586 sqlite3 *db = pParse->db; 4587 4588 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4589 assert(pExpr->x.pList->nExpr > 0); 4590 pEList = pExpr->x.pList; 4591 aListelem = pEList->a; 4592 nExpr = pEList->nExpr; 4593 endLabel = sqlite3VdbeMakeLabel(pParse); 4594 if( (pX = pExpr->pLeft)!=0 ){ 4595 pDel = sqlite3ExprDup(db, pX, 0); 4596 if( db->mallocFailed ){ 4597 sqlite3ExprDelete(db, pDel); 4598 break; 4599 } 4600 testcase( pX->op==TK_COLUMN ); 4601 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4602 testcase( regFree1==0 ); 4603 memset(&opCompare, 0, sizeof(opCompare)); 4604 opCompare.op = TK_EQ; 4605 opCompare.pLeft = pDel; 4606 pTest = &opCompare; 4607 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4608 ** The value in regFree1 might get SCopy-ed into the file result. 4609 ** So make sure that the regFree1 register is not reused for other 4610 ** purposes and possibly overwritten. */ 4611 regFree1 = 0; 4612 } 4613 for(i=0; i<nExpr-1; i=i+2){ 4614 if( pX ){ 4615 assert( pTest!=0 ); 4616 opCompare.pRight = aListelem[i].pExpr; 4617 }else{ 4618 pTest = aListelem[i].pExpr; 4619 } 4620 nextCase = sqlite3VdbeMakeLabel(pParse); 4621 testcase( pTest->op==TK_COLUMN ); 4622 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4623 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4624 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4625 sqlite3VdbeGoto(v, endLabel); 4626 sqlite3VdbeResolveLabel(v, nextCase); 4627 } 4628 if( (nExpr&1)!=0 ){ 4629 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4630 }else{ 4631 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4632 } 4633 sqlite3ExprDelete(db, pDel); 4634 setDoNotMergeFlagOnCopy(v); 4635 sqlite3VdbeResolveLabel(v, endLabel); 4636 break; 4637 } 4638 #ifndef SQLITE_OMIT_TRIGGER 4639 case TK_RAISE: { 4640 assert( pExpr->affExpr==OE_Rollback 4641 || pExpr->affExpr==OE_Abort 4642 || pExpr->affExpr==OE_Fail 4643 || pExpr->affExpr==OE_Ignore 4644 ); 4645 if( !pParse->pTriggerTab && !pParse->nested ){ 4646 sqlite3ErrorMsg(pParse, 4647 "RAISE() may only be used within a trigger-program"); 4648 return 0; 4649 } 4650 if( pExpr->affExpr==OE_Abort ){ 4651 sqlite3MayAbort(pParse); 4652 } 4653 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4654 if( pExpr->affExpr==OE_Ignore ){ 4655 sqlite3VdbeAddOp4( 4656 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4657 VdbeCoverage(v); 4658 }else{ 4659 sqlite3HaltConstraint(pParse, 4660 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4661 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4662 } 4663 4664 break; 4665 } 4666 #endif 4667 } 4668 sqlite3ReleaseTempReg(pParse, regFree1); 4669 sqlite3ReleaseTempReg(pParse, regFree2); 4670 return inReg; 4671 } 4672 4673 /* 4674 ** Generate code that will evaluate expression pExpr just one time 4675 ** per prepared statement execution. 4676 ** 4677 ** If the expression uses functions (that might throw an exception) then 4678 ** guard them with an OP_Once opcode to ensure that the code is only executed 4679 ** once. If no functions are involved, then factor the code out and put it at 4680 ** the end of the prepared statement in the initialization section. 4681 ** 4682 ** If regDest>=0 then the result is always stored in that register and the 4683 ** result is not reusable. If regDest<0 then this routine is free to 4684 ** store the value whereever it wants. The register where the expression 4685 ** is stored is returned. When regDest<0, two identical expressions might 4686 ** code to the same register, if they do not contain function calls and hence 4687 ** are factored out into the initialization section at the end of the 4688 ** prepared statement. 4689 */ 4690 int sqlite3ExprCodeRunJustOnce( 4691 Parse *pParse, /* Parsing context */ 4692 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4693 int regDest /* Store the value in this register */ 4694 ){ 4695 ExprList *p; 4696 assert( ConstFactorOk(pParse) ); 4697 p = pParse->pConstExpr; 4698 if( regDest<0 && p ){ 4699 struct ExprList_item *pItem; 4700 int i; 4701 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4702 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4703 return pItem->u.iConstExprReg; 4704 } 4705 } 4706 } 4707 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4708 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4709 Vdbe *v = pParse->pVdbe; 4710 int addr; 4711 assert( v ); 4712 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4713 pParse->okConstFactor = 0; 4714 if( !pParse->db->mallocFailed ){ 4715 if( regDest<0 ) regDest = ++pParse->nMem; 4716 sqlite3ExprCode(pParse, pExpr, regDest); 4717 } 4718 pParse->okConstFactor = 1; 4719 sqlite3ExprDelete(pParse->db, pExpr); 4720 sqlite3VdbeJumpHere(v, addr); 4721 }else{ 4722 p = sqlite3ExprListAppend(pParse, p, pExpr); 4723 if( p ){ 4724 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4725 pItem->reusable = regDest<0; 4726 if( regDest<0 ) regDest = ++pParse->nMem; 4727 pItem->u.iConstExprReg = regDest; 4728 } 4729 pParse->pConstExpr = p; 4730 } 4731 return regDest; 4732 } 4733 4734 /* 4735 ** Generate code to evaluate an expression and store the results 4736 ** into a register. Return the register number where the results 4737 ** are stored. 4738 ** 4739 ** If the register is a temporary register that can be deallocated, 4740 ** then write its number into *pReg. If the result register is not 4741 ** a temporary, then set *pReg to zero. 4742 ** 4743 ** If pExpr is a constant, then this routine might generate this 4744 ** code to fill the register in the initialization section of the 4745 ** VDBE program, in order to factor it out of the evaluation loop. 4746 */ 4747 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4748 int r2; 4749 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4750 if( ConstFactorOk(pParse) 4751 && ALWAYS(pExpr!=0) 4752 && pExpr->op!=TK_REGISTER 4753 && sqlite3ExprIsConstantNotJoin(pExpr) 4754 ){ 4755 *pReg = 0; 4756 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4757 }else{ 4758 int r1 = sqlite3GetTempReg(pParse); 4759 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4760 if( r2==r1 ){ 4761 *pReg = r1; 4762 }else{ 4763 sqlite3ReleaseTempReg(pParse, r1); 4764 *pReg = 0; 4765 } 4766 } 4767 return r2; 4768 } 4769 4770 /* 4771 ** Generate code that will evaluate expression pExpr and store the 4772 ** results in register target. The results are guaranteed to appear 4773 ** in register target. 4774 */ 4775 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4776 int inReg; 4777 4778 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4779 assert( target>0 && target<=pParse->nMem ); 4780 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4781 if( pParse->pVdbe==0 ) return; 4782 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4783 if( inReg!=target ){ 4784 u8 op; 4785 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4786 op = OP_Copy; 4787 }else{ 4788 op = OP_SCopy; 4789 } 4790 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4791 } 4792 } 4793 4794 /* 4795 ** Make a transient copy of expression pExpr and then code it using 4796 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4797 ** except that the input expression is guaranteed to be unchanged. 4798 */ 4799 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4800 sqlite3 *db = pParse->db; 4801 pExpr = sqlite3ExprDup(db, pExpr, 0); 4802 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4803 sqlite3ExprDelete(db, pExpr); 4804 } 4805 4806 /* 4807 ** Generate code that will evaluate expression pExpr and store the 4808 ** results in register target. The results are guaranteed to appear 4809 ** in register target. If the expression is constant, then this routine 4810 ** might choose to code the expression at initialization time. 4811 */ 4812 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4813 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4814 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4815 }else{ 4816 sqlite3ExprCodeCopy(pParse, pExpr, target); 4817 } 4818 } 4819 4820 /* 4821 ** Generate code that pushes the value of every element of the given 4822 ** expression list into a sequence of registers beginning at target. 4823 ** 4824 ** Return the number of elements evaluated. The number returned will 4825 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4826 ** is defined. 4827 ** 4828 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4829 ** filled using OP_SCopy. OP_Copy must be used instead. 4830 ** 4831 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4832 ** factored out into initialization code. 4833 ** 4834 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4835 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4836 ** in registers at srcReg, and so the value can be copied from there. 4837 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4838 ** are simply omitted rather than being copied from srcReg. 4839 */ 4840 int sqlite3ExprCodeExprList( 4841 Parse *pParse, /* Parsing context */ 4842 ExprList *pList, /* The expression list to be coded */ 4843 int target, /* Where to write results */ 4844 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4845 u8 flags /* SQLITE_ECEL_* flags */ 4846 ){ 4847 struct ExprList_item *pItem; 4848 int i, j, n; 4849 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4850 Vdbe *v = pParse->pVdbe; 4851 assert( pList!=0 ); 4852 assert( target>0 ); 4853 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4854 n = pList->nExpr; 4855 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4856 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4857 Expr *pExpr = pItem->pExpr; 4858 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4859 if( pItem->bSorterRef ){ 4860 i--; 4861 n--; 4862 }else 4863 #endif 4864 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4865 if( flags & SQLITE_ECEL_OMITREF ){ 4866 i--; 4867 n--; 4868 }else{ 4869 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4870 } 4871 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4872 && sqlite3ExprIsConstantNotJoin(pExpr) 4873 ){ 4874 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4875 }else{ 4876 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4877 if( inReg!=target+i ){ 4878 VdbeOp *pOp; 4879 if( copyOp==OP_Copy 4880 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4881 && pOp->p1+pOp->p3+1==inReg 4882 && pOp->p2+pOp->p3+1==target+i 4883 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4884 ){ 4885 pOp->p3++; 4886 }else{ 4887 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4888 } 4889 } 4890 } 4891 } 4892 return n; 4893 } 4894 4895 /* 4896 ** Generate code for a BETWEEN operator. 4897 ** 4898 ** x BETWEEN y AND z 4899 ** 4900 ** The above is equivalent to 4901 ** 4902 ** x>=y AND x<=z 4903 ** 4904 ** Code it as such, taking care to do the common subexpression 4905 ** elimination of x. 4906 ** 4907 ** The xJumpIf parameter determines details: 4908 ** 4909 ** NULL: Store the boolean result in reg[dest] 4910 ** sqlite3ExprIfTrue: Jump to dest if true 4911 ** sqlite3ExprIfFalse: Jump to dest if false 4912 ** 4913 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4914 */ 4915 static void exprCodeBetween( 4916 Parse *pParse, /* Parsing and code generating context */ 4917 Expr *pExpr, /* The BETWEEN expression */ 4918 int dest, /* Jump destination or storage location */ 4919 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4920 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4921 ){ 4922 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4923 Expr compLeft; /* The x>=y term */ 4924 Expr compRight; /* The x<=z term */ 4925 int regFree1 = 0; /* Temporary use register */ 4926 Expr *pDel = 0; 4927 sqlite3 *db = pParse->db; 4928 4929 memset(&compLeft, 0, sizeof(Expr)); 4930 memset(&compRight, 0, sizeof(Expr)); 4931 memset(&exprAnd, 0, sizeof(Expr)); 4932 4933 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4934 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4935 if( db->mallocFailed==0 ){ 4936 exprAnd.op = TK_AND; 4937 exprAnd.pLeft = &compLeft; 4938 exprAnd.pRight = &compRight; 4939 compLeft.op = TK_GE; 4940 compLeft.pLeft = pDel; 4941 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4942 compRight.op = TK_LE; 4943 compRight.pLeft = pDel; 4944 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4945 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4946 if( xJump ){ 4947 xJump(pParse, &exprAnd, dest, jumpIfNull); 4948 }else{ 4949 /* Mark the expression is being from the ON or USING clause of a join 4950 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4951 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4952 ** for clarity, but we are out of bits in the Expr.flags field so we 4953 ** have to reuse the EP_FromJoin bit. Bummer. */ 4954 pDel->flags |= EP_FromJoin; 4955 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4956 } 4957 sqlite3ReleaseTempReg(pParse, regFree1); 4958 } 4959 sqlite3ExprDelete(db, pDel); 4960 4961 /* Ensure adequate test coverage */ 4962 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4963 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4964 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4965 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4966 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4967 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4968 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4969 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4970 testcase( xJump==0 ); 4971 } 4972 4973 /* 4974 ** Generate code for a boolean expression such that a jump is made 4975 ** to the label "dest" if the expression is true but execution 4976 ** continues straight thru if the expression is false. 4977 ** 4978 ** If the expression evaluates to NULL (neither true nor false), then 4979 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4980 ** 4981 ** This code depends on the fact that certain token values (ex: TK_EQ) 4982 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4983 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4984 ** the make process cause these values to align. Assert()s in the code 4985 ** below verify that the numbers are aligned correctly. 4986 */ 4987 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4988 Vdbe *v = pParse->pVdbe; 4989 int op = 0; 4990 int regFree1 = 0; 4991 int regFree2 = 0; 4992 int r1, r2; 4993 4994 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4995 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4996 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4997 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4998 op = pExpr->op; 4999 switch( op ){ 5000 case TK_AND: 5001 case TK_OR: { 5002 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5003 if( pAlt!=pExpr ){ 5004 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5005 }else if( op==TK_AND ){ 5006 int d2 = sqlite3VdbeMakeLabel(pParse); 5007 testcase( jumpIfNull==0 ); 5008 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5009 jumpIfNull^SQLITE_JUMPIFNULL); 5010 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5011 sqlite3VdbeResolveLabel(v, d2); 5012 }else{ 5013 testcase( jumpIfNull==0 ); 5014 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5015 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5016 } 5017 break; 5018 } 5019 case TK_NOT: { 5020 testcase( jumpIfNull==0 ); 5021 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5022 break; 5023 } 5024 case TK_TRUTH: { 5025 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5026 int isTrue; /* IS TRUE or IS NOT TRUE */ 5027 testcase( jumpIfNull==0 ); 5028 isNot = pExpr->op2==TK_ISNOT; 5029 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5030 testcase( isTrue && isNot ); 5031 testcase( !isTrue && isNot ); 5032 if( isTrue ^ isNot ){ 5033 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5034 isNot ? SQLITE_JUMPIFNULL : 0); 5035 }else{ 5036 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5037 isNot ? SQLITE_JUMPIFNULL : 0); 5038 } 5039 break; 5040 } 5041 case TK_IS: 5042 case TK_ISNOT: 5043 testcase( op==TK_IS ); 5044 testcase( op==TK_ISNOT ); 5045 op = (op==TK_IS) ? TK_EQ : TK_NE; 5046 jumpIfNull = SQLITE_NULLEQ; 5047 /* no break */ deliberate_fall_through 5048 case TK_LT: 5049 case TK_LE: 5050 case TK_GT: 5051 case TK_GE: 5052 case TK_NE: 5053 case TK_EQ: { 5054 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5055 testcase( jumpIfNull==0 ); 5056 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5057 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5058 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5059 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5060 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5061 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5062 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5063 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5064 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5065 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5066 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5067 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5068 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5069 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5070 testcase( regFree1==0 ); 5071 testcase( regFree2==0 ); 5072 break; 5073 } 5074 case TK_ISNULL: 5075 case TK_NOTNULL: { 5076 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5077 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5078 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5079 sqlite3VdbeAddOp2(v, op, r1, dest); 5080 VdbeCoverageIf(v, op==TK_ISNULL); 5081 VdbeCoverageIf(v, op==TK_NOTNULL); 5082 testcase( regFree1==0 ); 5083 break; 5084 } 5085 case TK_BETWEEN: { 5086 testcase( jumpIfNull==0 ); 5087 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5088 break; 5089 } 5090 #ifndef SQLITE_OMIT_SUBQUERY 5091 case TK_IN: { 5092 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5093 int destIfNull = jumpIfNull ? dest : destIfFalse; 5094 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5095 sqlite3VdbeGoto(v, dest); 5096 sqlite3VdbeResolveLabel(v, destIfFalse); 5097 break; 5098 } 5099 #endif 5100 default: { 5101 default_expr: 5102 if( ExprAlwaysTrue(pExpr) ){ 5103 sqlite3VdbeGoto(v, dest); 5104 }else if( ExprAlwaysFalse(pExpr) ){ 5105 /* No-op */ 5106 }else{ 5107 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5108 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5109 VdbeCoverage(v); 5110 testcase( regFree1==0 ); 5111 testcase( jumpIfNull==0 ); 5112 } 5113 break; 5114 } 5115 } 5116 sqlite3ReleaseTempReg(pParse, regFree1); 5117 sqlite3ReleaseTempReg(pParse, regFree2); 5118 } 5119 5120 /* 5121 ** Generate code for a boolean expression such that a jump is made 5122 ** to the label "dest" if the expression is false but execution 5123 ** continues straight thru if the expression is true. 5124 ** 5125 ** If the expression evaluates to NULL (neither true nor false) then 5126 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5127 ** is 0. 5128 */ 5129 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5130 Vdbe *v = pParse->pVdbe; 5131 int op = 0; 5132 int regFree1 = 0; 5133 int regFree2 = 0; 5134 int r1, r2; 5135 5136 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5137 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5138 if( pExpr==0 ) return; 5139 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5140 5141 /* The value of pExpr->op and op are related as follows: 5142 ** 5143 ** pExpr->op op 5144 ** --------- ---------- 5145 ** TK_ISNULL OP_NotNull 5146 ** TK_NOTNULL OP_IsNull 5147 ** TK_NE OP_Eq 5148 ** TK_EQ OP_Ne 5149 ** TK_GT OP_Le 5150 ** TK_LE OP_Gt 5151 ** TK_GE OP_Lt 5152 ** TK_LT OP_Ge 5153 ** 5154 ** For other values of pExpr->op, op is undefined and unused. 5155 ** The value of TK_ and OP_ constants are arranged such that we 5156 ** can compute the mapping above using the following expression. 5157 ** Assert()s verify that the computation is correct. 5158 */ 5159 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5160 5161 /* Verify correct alignment of TK_ and OP_ constants 5162 */ 5163 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5164 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5165 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5166 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5167 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5168 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5169 assert( pExpr->op!=TK_GT || op==OP_Le ); 5170 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5171 5172 switch( pExpr->op ){ 5173 case TK_AND: 5174 case TK_OR: { 5175 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5176 if( pAlt!=pExpr ){ 5177 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5178 }else if( pExpr->op==TK_AND ){ 5179 testcase( jumpIfNull==0 ); 5180 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5181 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5182 }else{ 5183 int d2 = sqlite3VdbeMakeLabel(pParse); 5184 testcase( jumpIfNull==0 ); 5185 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5186 jumpIfNull^SQLITE_JUMPIFNULL); 5187 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5188 sqlite3VdbeResolveLabel(v, d2); 5189 } 5190 break; 5191 } 5192 case TK_NOT: { 5193 testcase( jumpIfNull==0 ); 5194 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5195 break; 5196 } 5197 case TK_TRUTH: { 5198 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5199 int isTrue; /* IS TRUE or IS NOT TRUE */ 5200 testcase( jumpIfNull==0 ); 5201 isNot = pExpr->op2==TK_ISNOT; 5202 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5203 testcase( isTrue && isNot ); 5204 testcase( !isTrue && isNot ); 5205 if( isTrue ^ isNot ){ 5206 /* IS TRUE and IS NOT FALSE */ 5207 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5208 isNot ? 0 : SQLITE_JUMPIFNULL); 5209 5210 }else{ 5211 /* IS FALSE and IS NOT TRUE */ 5212 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5213 isNot ? 0 : SQLITE_JUMPIFNULL); 5214 } 5215 break; 5216 } 5217 case TK_IS: 5218 case TK_ISNOT: 5219 testcase( pExpr->op==TK_IS ); 5220 testcase( pExpr->op==TK_ISNOT ); 5221 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5222 jumpIfNull = SQLITE_NULLEQ; 5223 /* no break */ deliberate_fall_through 5224 case TK_LT: 5225 case TK_LE: 5226 case TK_GT: 5227 case TK_GE: 5228 case TK_NE: 5229 case TK_EQ: { 5230 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5231 testcase( jumpIfNull==0 ); 5232 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5233 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5234 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5235 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5236 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5237 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5238 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5239 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5240 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5241 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5242 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5243 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5244 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5245 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5246 testcase( regFree1==0 ); 5247 testcase( regFree2==0 ); 5248 break; 5249 } 5250 case TK_ISNULL: 5251 case TK_NOTNULL: { 5252 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5253 sqlite3VdbeAddOp2(v, op, r1, dest); 5254 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5255 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5256 testcase( regFree1==0 ); 5257 break; 5258 } 5259 case TK_BETWEEN: { 5260 testcase( jumpIfNull==0 ); 5261 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5262 break; 5263 } 5264 #ifndef SQLITE_OMIT_SUBQUERY 5265 case TK_IN: { 5266 if( jumpIfNull ){ 5267 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5268 }else{ 5269 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5270 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5271 sqlite3VdbeResolveLabel(v, destIfNull); 5272 } 5273 break; 5274 } 5275 #endif 5276 default: { 5277 default_expr: 5278 if( ExprAlwaysFalse(pExpr) ){ 5279 sqlite3VdbeGoto(v, dest); 5280 }else if( ExprAlwaysTrue(pExpr) ){ 5281 /* no-op */ 5282 }else{ 5283 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5284 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5285 VdbeCoverage(v); 5286 testcase( regFree1==0 ); 5287 testcase( jumpIfNull==0 ); 5288 } 5289 break; 5290 } 5291 } 5292 sqlite3ReleaseTempReg(pParse, regFree1); 5293 sqlite3ReleaseTempReg(pParse, regFree2); 5294 } 5295 5296 /* 5297 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5298 ** code generation, and that copy is deleted after code generation. This 5299 ** ensures that the original pExpr is unchanged. 5300 */ 5301 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5302 sqlite3 *db = pParse->db; 5303 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5304 if( db->mallocFailed==0 ){ 5305 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5306 } 5307 sqlite3ExprDelete(db, pCopy); 5308 } 5309 5310 /* 5311 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5312 ** type of expression. 5313 ** 5314 ** If pExpr is a simple SQL value - an integer, real, string, blob 5315 ** or NULL value - then the VDBE currently being prepared is configured 5316 ** to re-prepare each time a new value is bound to variable pVar. 5317 ** 5318 ** Additionally, if pExpr is a simple SQL value and the value is the 5319 ** same as that currently bound to variable pVar, non-zero is returned. 5320 ** Otherwise, if the values are not the same or if pExpr is not a simple 5321 ** SQL value, zero is returned. 5322 */ 5323 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5324 int res = 0; 5325 int iVar; 5326 sqlite3_value *pL, *pR = 0; 5327 5328 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5329 if( pR ){ 5330 iVar = pVar->iColumn; 5331 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5332 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5333 if( pL ){ 5334 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5335 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5336 } 5337 res = 0==sqlite3MemCompare(pL, pR, 0); 5338 } 5339 sqlite3ValueFree(pR); 5340 sqlite3ValueFree(pL); 5341 } 5342 5343 return res; 5344 } 5345 5346 /* 5347 ** Do a deep comparison of two expression trees. Return 0 if the two 5348 ** expressions are completely identical. Return 1 if they differ only 5349 ** by a COLLATE operator at the top level. Return 2 if there are differences 5350 ** other than the top-level COLLATE operator. 5351 ** 5352 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5353 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5354 ** 5355 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5356 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5357 ** 5358 ** Sometimes this routine will return 2 even if the two expressions 5359 ** really are equivalent. If we cannot prove that the expressions are 5360 ** identical, we return 2 just to be safe. So if this routine 5361 ** returns 2, then you do not really know for certain if the two 5362 ** expressions are the same. But if you get a 0 or 1 return, then you 5363 ** can be sure the expressions are the same. In the places where 5364 ** this routine is used, it does not hurt to get an extra 2 - that 5365 ** just might result in some slightly slower code. But returning 5366 ** an incorrect 0 or 1 could lead to a malfunction. 5367 ** 5368 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5369 ** pParse->pReprepare can be matched against literals in pB. The 5370 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5371 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5372 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5373 ** pB causes a return value of 2. 5374 */ 5375 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5376 u32 combinedFlags; 5377 if( pA==0 || pB==0 ){ 5378 return pB==pA ? 0 : 2; 5379 } 5380 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5381 return 0; 5382 } 5383 combinedFlags = pA->flags | pB->flags; 5384 if( combinedFlags & EP_IntValue ){ 5385 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5386 return 0; 5387 } 5388 return 2; 5389 } 5390 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5391 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5392 return 1; 5393 } 5394 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5395 return 1; 5396 } 5397 return 2; 5398 } 5399 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5400 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5401 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5402 #ifndef SQLITE_OMIT_WINDOWFUNC 5403 assert( pA->op==pB->op ); 5404 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5405 return 2; 5406 } 5407 if( ExprHasProperty(pA,EP_WinFunc) ){ 5408 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5409 return 2; 5410 } 5411 } 5412 #endif 5413 }else if( pA->op==TK_NULL ){ 5414 return 0; 5415 }else if( pA->op==TK_COLLATE ){ 5416 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5417 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5418 return 2; 5419 } 5420 } 5421 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5422 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5423 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5424 if( combinedFlags & EP_xIsSelect ) return 2; 5425 if( (combinedFlags & EP_FixedCol)==0 5426 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5427 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5428 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5429 if( pA->op!=TK_STRING 5430 && pA->op!=TK_TRUEFALSE 5431 && ALWAYS((combinedFlags & EP_Reduced)==0) 5432 ){ 5433 if( pA->iColumn!=pB->iColumn ) return 2; 5434 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5435 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5436 return 2; 5437 } 5438 } 5439 } 5440 return 0; 5441 } 5442 5443 /* 5444 ** Compare two ExprList objects. Return 0 if they are identical, 1 5445 ** if they are certainly different, or 2 if it is not possible to 5446 ** determine if they are identical or not. 5447 ** 5448 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5449 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5450 ** 5451 ** This routine might return non-zero for equivalent ExprLists. The 5452 ** only consequence will be disabled optimizations. But this routine 5453 ** must never return 0 if the two ExprList objects are different, or 5454 ** a malfunction will result. 5455 ** 5456 ** Two NULL pointers are considered to be the same. But a NULL pointer 5457 ** always differs from a non-NULL pointer. 5458 */ 5459 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5460 int i; 5461 if( pA==0 && pB==0 ) return 0; 5462 if( pA==0 || pB==0 ) return 1; 5463 if( pA->nExpr!=pB->nExpr ) return 1; 5464 for(i=0; i<pA->nExpr; i++){ 5465 int res; 5466 Expr *pExprA = pA->a[i].pExpr; 5467 Expr *pExprB = pB->a[i].pExpr; 5468 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5469 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5470 } 5471 return 0; 5472 } 5473 5474 /* 5475 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5476 ** are ignored. 5477 */ 5478 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5479 return sqlite3ExprCompare(0, 5480 sqlite3ExprSkipCollateAndLikely(pA), 5481 sqlite3ExprSkipCollateAndLikely(pB), 5482 iTab); 5483 } 5484 5485 /* 5486 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5487 ** 5488 ** Or if seenNot is true, return non-zero if Expr p can only be 5489 ** non-NULL if pNN is not NULL 5490 */ 5491 static int exprImpliesNotNull( 5492 Parse *pParse, /* Parsing context */ 5493 Expr *p, /* The expression to be checked */ 5494 Expr *pNN, /* The expression that is NOT NULL */ 5495 int iTab, /* Table being evaluated */ 5496 int seenNot /* Return true only if p can be any non-NULL value */ 5497 ){ 5498 assert( p ); 5499 assert( pNN ); 5500 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5501 return pNN->op!=TK_NULL; 5502 } 5503 switch( p->op ){ 5504 case TK_IN: { 5505 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5506 assert( ExprHasProperty(p,EP_xIsSelect) 5507 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5508 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5509 } 5510 case TK_BETWEEN: { 5511 ExprList *pList = p->x.pList; 5512 assert( pList!=0 ); 5513 assert( pList->nExpr==2 ); 5514 if( seenNot ) return 0; 5515 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5516 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5517 ){ 5518 return 1; 5519 } 5520 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5521 } 5522 case TK_EQ: 5523 case TK_NE: 5524 case TK_LT: 5525 case TK_LE: 5526 case TK_GT: 5527 case TK_GE: 5528 case TK_PLUS: 5529 case TK_MINUS: 5530 case TK_BITOR: 5531 case TK_LSHIFT: 5532 case TK_RSHIFT: 5533 case TK_CONCAT: 5534 seenNot = 1; 5535 /* no break */ deliberate_fall_through 5536 case TK_STAR: 5537 case TK_REM: 5538 case TK_BITAND: 5539 case TK_SLASH: { 5540 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5541 /* no break */ deliberate_fall_through 5542 } 5543 case TK_SPAN: 5544 case TK_COLLATE: 5545 case TK_UPLUS: 5546 case TK_UMINUS: { 5547 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5548 } 5549 case TK_TRUTH: { 5550 if( seenNot ) return 0; 5551 if( p->op2!=TK_IS ) return 0; 5552 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5553 } 5554 case TK_BITNOT: 5555 case TK_NOT: { 5556 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5557 } 5558 } 5559 return 0; 5560 } 5561 5562 /* 5563 ** Return true if we can prove the pE2 will always be true if pE1 is 5564 ** true. Return false if we cannot complete the proof or if pE2 might 5565 ** be false. Examples: 5566 ** 5567 ** pE1: x==5 pE2: x==5 Result: true 5568 ** pE1: x>0 pE2: x==5 Result: false 5569 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5570 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5571 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5572 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5573 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5574 ** 5575 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5576 ** Expr.iTable<0 then assume a table number given by iTab. 5577 ** 5578 ** If pParse is not NULL, then the values of bound variables in pE1 are 5579 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5580 ** modified to record which bound variables are referenced. If pParse 5581 ** is NULL, then false will be returned if pE1 contains any bound variables. 5582 ** 5583 ** When in doubt, return false. Returning true might give a performance 5584 ** improvement. Returning false might cause a performance reduction, but 5585 ** it will always give the correct answer and is hence always safe. 5586 */ 5587 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5588 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5589 return 1; 5590 } 5591 if( pE2->op==TK_OR 5592 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5593 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5594 ){ 5595 return 1; 5596 } 5597 if( pE2->op==TK_NOTNULL 5598 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5599 ){ 5600 return 1; 5601 } 5602 return 0; 5603 } 5604 5605 /* 5606 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5607 ** If the expression node requires that the table at pWalker->iCur 5608 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5609 ** 5610 ** This routine controls an optimization. False positives (setting 5611 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5612 ** (never setting pWalker->eCode) is a harmless missed optimization. 5613 */ 5614 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5615 testcase( pExpr->op==TK_AGG_COLUMN ); 5616 testcase( pExpr->op==TK_AGG_FUNCTION ); 5617 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5618 switch( pExpr->op ){ 5619 case TK_ISNOT: 5620 case TK_ISNULL: 5621 case TK_NOTNULL: 5622 case TK_IS: 5623 case TK_OR: 5624 case TK_VECTOR: 5625 case TK_CASE: 5626 case TK_IN: 5627 case TK_FUNCTION: 5628 case TK_TRUTH: 5629 testcase( pExpr->op==TK_ISNOT ); 5630 testcase( pExpr->op==TK_ISNULL ); 5631 testcase( pExpr->op==TK_NOTNULL ); 5632 testcase( pExpr->op==TK_IS ); 5633 testcase( pExpr->op==TK_OR ); 5634 testcase( pExpr->op==TK_VECTOR ); 5635 testcase( pExpr->op==TK_CASE ); 5636 testcase( pExpr->op==TK_IN ); 5637 testcase( pExpr->op==TK_FUNCTION ); 5638 testcase( pExpr->op==TK_TRUTH ); 5639 return WRC_Prune; 5640 case TK_COLUMN: 5641 if( pWalker->u.iCur==pExpr->iTable ){ 5642 pWalker->eCode = 1; 5643 return WRC_Abort; 5644 } 5645 return WRC_Prune; 5646 5647 case TK_AND: 5648 if( pWalker->eCode==0 ){ 5649 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5650 if( pWalker->eCode ){ 5651 pWalker->eCode = 0; 5652 sqlite3WalkExpr(pWalker, pExpr->pRight); 5653 } 5654 } 5655 return WRC_Prune; 5656 5657 case TK_BETWEEN: 5658 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5659 assert( pWalker->eCode ); 5660 return WRC_Abort; 5661 } 5662 return WRC_Prune; 5663 5664 /* Virtual tables are allowed to use constraints like x=NULL. So 5665 ** a term of the form x=y does not prove that y is not null if x 5666 ** is the column of a virtual table */ 5667 case TK_EQ: 5668 case TK_NE: 5669 case TK_LT: 5670 case TK_LE: 5671 case TK_GT: 5672 case TK_GE: { 5673 Expr *pLeft = pExpr->pLeft; 5674 Expr *pRight = pExpr->pRight; 5675 testcase( pExpr->op==TK_EQ ); 5676 testcase( pExpr->op==TK_NE ); 5677 testcase( pExpr->op==TK_LT ); 5678 testcase( pExpr->op==TK_LE ); 5679 testcase( pExpr->op==TK_GT ); 5680 testcase( pExpr->op==TK_GE ); 5681 /* The y.pTab=0 assignment in wherecode.c always happens after the 5682 ** impliesNotNullRow() test */ 5683 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5684 && IsVirtual(pLeft->y.pTab)) 5685 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5686 && IsVirtual(pRight->y.pTab)) 5687 ){ 5688 return WRC_Prune; 5689 } 5690 /* no break */ deliberate_fall_through 5691 } 5692 default: 5693 return WRC_Continue; 5694 } 5695 } 5696 5697 /* 5698 ** Return true (non-zero) if expression p can only be true if at least 5699 ** one column of table iTab is non-null. In other words, return true 5700 ** if expression p will always be NULL or false if every column of iTab 5701 ** is NULL. 5702 ** 5703 ** False negatives are acceptable. In other words, it is ok to return 5704 ** zero even if expression p will never be true of every column of iTab 5705 ** is NULL. A false negative is merely a missed optimization opportunity. 5706 ** 5707 ** False positives are not allowed, however. A false positive may result 5708 ** in an incorrect answer. 5709 ** 5710 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5711 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5712 ** 5713 ** This routine is used to check if a LEFT JOIN can be converted into 5714 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5715 ** clause requires that some column of the right table of the LEFT JOIN 5716 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5717 ** ordinary join. 5718 */ 5719 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5720 Walker w; 5721 p = sqlite3ExprSkipCollateAndLikely(p); 5722 if( p==0 ) return 0; 5723 if( p->op==TK_NOTNULL ){ 5724 p = p->pLeft; 5725 }else{ 5726 while( p->op==TK_AND ){ 5727 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5728 p = p->pRight; 5729 } 5730 } 5731 w.xExprCallback = impliesNotNullRow; 5732 w.xSelectCallback = 0; 5733 w.xSelectCallback2 = 0; 5734 w.eCode = 0; 5735 w.u.iCur = iTab; 5736 sqlite3WalkExpr(&w, p); 5737 return w.eCode; 5738 } 5739 5740 /* 5741 ** An instance of the following structure is used by the tree walker 5742 ** to determine if an expression can be evaluated by reference to the 5743 ** index only, without having to do a search for the corresponding 5744 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5745 ** is the cursor for the table. 5746 */ 5747 struct IdxCover { 5748 Index *pIdx; /* The index to be tested for coverage */ 5749 int iCur; /* Cursor number for the table corresponding to the index */ 5750 }; 5751 5752 /* 5753 ** Check to see if there are references to columns in table 5754 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5755 ** pWalker->u.pIdxCover->pIdx. 5756 */ 5757 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5758 if( pExpr->op==TK_COLUMN 5759 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5760 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5761 ){ 5762 pWalker->eCode = 1; 5763 return WRC_Abort; 5764 } 5765 return WRC_Continue; 5766 } 5767 5768 /* 5769 ** Determine if an index pIdx on table with cursor iCur contains will 5770 ** the expression pExpr. Return true if the index does cover the 5771 ** expression and false if the pExpr expression references table columns 5772 ** that are not found in the index pIdx. 5773 ** 5774 ** An index covering an expression means that the expression can be 5775 ** evaluated using only the index and without having to lookup the 5776 ** corresponding table entry. 5777 */ 5778 int sqlite3ExprCoveredByIndex( 5779 Expr *pExpr, /* The index to be tested */ 5780 int iCur, /* The cursor number for the corresponding table */ 5781 Index *pIdx /* The index that might be used for coverage */ 5782 ){ 5783 Walker w; 5784 struct IdxCover xcov; 5785 memset(&w, 0, sizeof(w)); 5786 xcov.iCur = iCur; 5787 xcov.pIdx = pIdx; 5788 w.xExprCallback = exprIdxCover; 5789 w.u.pIdxCover = &xcov; 5790 sqlite3WalkExpr(&w, pExpr); 5791 return !w.eCode; 5792 } 5793 5794 5795 /* 5796 ** An instance of the following structure is used by the tree walker 5797 ** to count references to table columns in the arguments of an 5798 ** aggregate function, in order to implement the 5799 ** sqlite3FunctionThisSrc() routine. 5800 */ 5801 struct SrcCount { 5802 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5803 int iSrcInner; /* Smallest cursor number in this context */ 5804 int nThis; /* Number of references to columns in pSrcList */ 5805 int nOther; /* Number of references to columns in other FROM clauses */ 5806 }; 5807 5808 /* 5809 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5810 ** SELECT with a FROM clause encountered during this iteration, set 5811 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5812 ** the FROM cause. 5813 */ 5814 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5815 struct SrcCount *p = pWalker->u.pSrcCount; 5816 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5817 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5818 } 5819 return WRC_Continue; 5820 } 5821 5822 /* 5823 ** Count the number of references to columns. 5824 */ 5825 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5826 /* There was once a NEVER() on the second term on the grounds that 5827 ** sqlite3FunctionUsesThisSrc() was always called before 5828 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5829 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5830 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5831 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5832 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5833 int i; 5834 struct SrcCount *p = pWalker->u.pSrcCount; 5835 SrcList *pSrc = p->pSrc; 5836 int nSrc = pSrc ? pSrc->nSrc : 0; 5837 for(i=0; i<nSrc; i++){ 5838 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5839 } 5840 if( i<nSrc ){ 5841 p->nThis++; 5842 }else if( pExpr->iTable<p->iSrcInner ){ 5843 /* In a well-formed parse tree (no name resolution errors), 5844 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5845 ** outer context. Those are the only ones to count as "other" */ 5846 p->nOther++; 5847 } 5848 } 5849 return WRC_Continue; 5850 } 5851 5852 /* 5853 ** Determine if any of the arguments to the pExpr Function reference 5854 ** pSrcList. Return true if they do. Also return true if the function 5855 ** has no arguments or has only constant arguments. Return false if pExpr 5856 ** references columns but not columns of tables found in pSrcList. 5857 */ 5858 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5859 Walker w; 5860 struct SrcCount cnt; 5861 assert( pExpr->op==TK_AGG_FUNCTION ); 5862 memset(&w, 0, sizeof(w)); 5863 w.xExprCallback = exprSrcCount; 5864 w.xSelectCallback = selectSrcCount; 5865 w.u.pSrcCount = &cnt; 5866 cnt.pSrc = pSrcList; 5867 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5868 cnt.nThis = 0; 5869 cnt.nOther = 0; 5870 sqlite3WalkExprList(&w, pExpr->x.pList); 5871 #ifndef SQLITE_OMIT_WINDOWFUNC 5872 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5873 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5874 } 5875 #endif 5876 return cnt.nThis>0 || cnt.nOther==0; 5877 } 5878 5879 /* 5880 ** This is a Walker expression node callback. 5881 ** 5882 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5883 ** object that is referenced does not refer directly to the Expr. If 5884 ** it does, make a copy. This is done because the pExpr argument is 5885 ** subject to change. 5886 ** 5887 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5888 ** This will cause the expression to be deleted automatically when the 5889 ** Parse object is destroyed, but the zero register number means that it 5890 ** will not generate any code in the preamble. 5891 */ 5892 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5893 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5894 && pExpr->pAggInfo!=0 5895 ){ 5896 AggInfo *pAggInfo = pExpr->pAggInfo; 5897 int iAgg = pExpr->iAgg; 5898 Parse *pParse = pWalker->pParse; 5899 sqlite3 *db = pParse->db; 5900 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5901 if( pExpr->op==TK_AGG_COLUMN ){ 5902 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5903 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5904 pExpr = sqlite3ExprDup(db, pExpr, 0); 5905 if( pExpr ){ 5906 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5907 sqlite3ExprDeferredDelete(pParse, pExpr); 5908 } 5909 } 5910 }else{ 5911 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5912 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5913 pExpr = sqlite3ExprDup(db, pExpr, 0); 5914 if( pExpr ){ 5915 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5916 sqlite3ExprDeferredDelete(pParse, pExpr); 5917 } 5918 } 5919 } 5920 } 5921 return WRC_Continue; 5922 } 5923 5924 /* 5925 ** Initialize a Walker object so that will persist AggInfo entries referenced 5926 ** by the tree that is walked. 5927 */ 5928 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5929 memset(pWalker, 0, sizeof(*pWalker)); 5930 pWalker->pParse = pParse; 5931 pWalker->xExprCallback = agginfoPersistExprCb; 5932 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5933 } 5934 5935 /* 5936 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5937 ** the new element. Return a negative number if malloc fails. 5938 */ 5939 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5940 int i; 5941 pInfo->aCol = sqlite3ArrayAllocate( 5942 db, 5943 pInfo->aCol, 5944 sizeof(pInfo->aCol[0]), 5945 &pInfo->nColumn, 5946 &i 5947 ); 5948 return i; 5949 } 5950 5951 /* 5952 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5953 ** the new element. Return a negative number if malloc fails. 5954 */ 5955 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5956 int i; 5957 pInfo->aFunc = sqlite3ArrayAllocate( 5958 db, 5959 pInfo->aFunc, 5960 sizeof(pInfo->aFunc[0]), 5961 &pInfo->nFunc, 5962 &i 5963 ); 5964 return i; 5965 } 5966 5967 /* 5968 ** This is the xExprCallback for a tree walker. It is used to 5969 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5970 ** for additional information. 5971 */ 5972 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5973 int i; 5974 NameContext *pNC = pWalker->u.pNC; 5975 Parse *pParse = pNC->pParse; 5976 SrcList *pSrcList = pNC->pSrcList; 5977 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5978 5979 assert( pNC->ncFlags & NC_UAggInfo ); 5980 switch( pExpr->op ){ 5981 case TK_AGG_COLUMN: 5982 case TK_COLUMN: { 5983 testcase( pExpr->op==TK_AGG_COLUMN ); 5984 testcase( pExpr->op==TK_COLUMN ); 5985 /* Check to see if the column is in one of the tables in the FROM 5986 ** clause of the aggregate query */ 5987 if( ALWAYS(pSrcList!=0) ){ 5988 SrcItem *pItem = pSrcList->a; 5989 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5990 struct AggInfo_col *pCol; 5991 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5992 if( pExpr->iTable==pItem->iCursor ){ 5993 /* If we reach this point, it means that pExpr refers to a table 5994 ** that is in the FROM clause of the aggregate query. 5995 ** 5996 ** Make an entry for the column in pAggInfo->aCol[] if there 5997 ** is not an entry there already. 5998 */ 5999 int k; 6000 pCol = pAggInfo->aCol; 6001 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6002 if( pCol->iTable==pExpr->iTable && 6003 pCol->iColumn==pExpr->iColumn ){ 6004 break; 6005 } 6006 } 6007 if( (k>=pAggInfo->nColumn) 6008 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6009 ){ 6010 pCol = &pAggInfo->aCol[k]; 6011 pCol->pTab = pExpr->y.pTab; 6012 pCol->iTable = pExpr->iTable; 6013 pCol->iColumn = pExpr->iColumn; 6014 pCol->iMem = ++pParse->nMem; 6015 pCol->iSorterColumn = -1; 6016 pCol->pCExpr = pExpr; 6017 if( pAggInfo->pGroupBy ){ 6018 int j, n; 6019 ExprList *pGB = pAggInfo->pGroupBy; 6020 struct ExprList_item *pTerm = pGB->a; 6021 n = pGB->nExpr; 6022 for(j=0; j<n; j++, pTerm++){ 6023 Expr *pE = pTerm->pExpr; 6024 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6025 pE->iColumn==pExpr->iColumn ){ 6026 pCol->iSorterColumn = j; 6027 break; 6028 } 6029 } 6030 } 6031 if( pCol->iSorterColumn<0 ){ 6032 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6033 } 6034 } 6035 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6036 ** because it was there before or because we just created it). 6037 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6038 ** pAggInfo->aCol[] entry. 6039 */ 6040 ExprSetVVAProperty(pExpr, EP_NoReduce); 6041 pExpr->pAggInfo = pAggInfo; 6042 pExpr->op = TK_AGG_COLUMN; 6043 pExpr->iAgg = (i16)k; 6044 break; 6045 } /* endif pExpr->iTable==pItem->iCursor */ 6046 } /* end loop over pSrcList */ 6047 } 6048 return WRC_Prune; 6049 } 6050 case TK_AGG_FUNCTION: { 6051 if( (pNC->ncFlags & NC_InAggFunc)==0 6052 && pWalker->walkerDepth==pExpr->op2 6053 ){ 6054 /* Check to see if pExpr is a duplicate of another aggregate 6055 ** function that is already in the pAggInfo structure 6056 */ 6057 struct AggInfo_func *pItem = pAggInfo->aFunc; 6058 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6059 if( pItem->pFExpr==pExpr ) break; 6060 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6061 break; 6062 } 6063 } 6064 if( i>=pAggInfo->nFunc ){ 6065 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6066 */ 6067 u8 enc = ENC(pParse->db); 6068 i = addAggInfoFunc(pParse->db, pAggInfo); 6069 if( i>=0 ){ 6070 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6071 pItem = &pAggInfo->aFunc[i]; 6072 pItem->pFExpr = pExpr; 6073 pItem->iMem = ++pParse->nMem; 6074 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 6075 pItem->pFunc = sqlite3FindFunction(pParse->db, 6076 pExpr->u.zToken, 6077 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6078 if( pExpr->flags & EP_Distinct ){ 6079 pItem->iDistinct = pParse->nTab++; 6080 }else{ 6081 pItem->iDistinct = -1; 6082 } 6083 } 6084 } 6085 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6086 */ 6087 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6088 ExprSetVVAProperty(pExpr, EP_NoReduce); 6089 pExpr->iAgg = (i16)i; 6090 pExpr->pAggInfo = pAggInfo; 6091 return WRC_Prune; 6092 }else{ 6093 return WRC_Continue; 6094 } 6095 } 6096 } 6097 return WRC_Continue; 6098 } 6099 6100 /* 6101 ** Analyze the pExpr expression looking for aggregate functions and 6102 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6103 ** points to. Additional entries are made on the AggInfo object as 6104 ** necessary. 6105 ** 6106 ** This routine should only be called after the expression has been 6107 ** analyzed by sqlite3ResolveExprNames(). 6108 */ 6109 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6110 Walker w; 6111 w.xExprCallback = analyzeAggregate; 6112 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6113 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6114 w.walkerDepth = 0; 6115 w.u.pNC = pNC; 6116 w.pParse = 0; 6117 assert( pNC->pSrcList!=0 ); 6118 sqlite3WalkExpr(&w, pExpr); 6119 } 6120 6121 /* 6122 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6123 ** expression list. Return the number of errors. 6124 ** 6125 ** If an error is found, the analysis is cut short. 6126 */ 6127 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6128 struct ExprList_item *pItem; 6129 int i; 6130 if( pList ){ 6131 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6132 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6133 } 6134 } 6135 } 6136 6137 /* 6138 ** Allocate a single new register for use to hold some intermediate result. 6139 */ 6140 int sqlite3GetTempReg(Parse *pParse){ 6141 if( pParse->nTempReg==0 ){ 6142 return ++pParse->nMem; 6143 } 6144 return pParse->aTempReg[--pParse->nTempReg]; 6145 } 6146 6147 /* 6148 ** Deallocate a register, making available for reuse for some other 6149 ** purpose. 6150 */ 6151 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6152 if( iReg ){ 6153 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6154 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6155 pParse->aTempReg[pParse->nTempReg++] = iReg; 6156 } 6157 } 6158 } 6159 6160 /* 6161 ** Allocate or deallocate a block of nReg consecutive registers. 6162 */ 6163 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6164 int i, n; 6165 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6166 i = pParse->iRangeReg; 6167 n = pParse->nRangeReg; 6168 if( nReg<=n ){ 6169 pParse->iRangeReg += nReg; 6170 pParse->nRangeReg -= nReg; 6171 }else{ 6172 i = pParse->nMem+1; 6173 pParse->nMem += nReg; 6174 } 6175 return i; 6176 } 6177 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6178 if( nReg==1 ){ 6179 sqlite3ReleaseTempReg(pParse, iReg); 6180 return; 6181 } 6182 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6183 if( nReg>pParse->nRangeReg ){ 6184 pParse->nRangeReg = nReg; 6185 pParse->iRangeReg = iReg; 6186 } 6187 } 6188 6189 /* 6190 ** Mark all temporary registers as being unavailable for reuse. 6191 ** 6192 ** Always invoke this procedure after coding a subroutine or co-routine 6193 ** that might be invoked from other parts of the code, to ensure that 6194 ** the sub/co-routine does not use registers in common with the code that 6195 ** invokes the sub/co-routine. 6196 */ 6197 void sqlite3ClearTempRegCache(Parse *pParse){ 6198 pParse->nTempReg = 0; 6199 pParse->nRangeReg = 0; 6200 } 6201 6202 /* 6203 ** Validate that no temporary register falls within the range of 6204 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6205 ** statements. 6206 */ 6207 #ifdef SQLITE_DEBUG 6208 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6209 int i; 6210 if( pParse->nRangeReg>0 6211 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6212 && pParse->iRangeReg <= iLast 6213 ){ 6214 return 0; 6215 } 6216 for(i=0; i<pParse->nTempReg; i++){ 6217 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6218 return 0; 6219 } 6220 } 6221 return 1; 6222 } 6223 #endif /* SQLITE_DEBUG */ 6224