xref: /sqlite-3.40.0/src/expr.c (revision cc285c5a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName   /* Name of collating sequence */
73 ){
74   if( pCollName->n>0 ){
75     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
76     if( pNew ){
77       pNew->pLeft = pExpr;
78       pNew->flags |= EP_Collate|EP_Skip;
79       pExpr = pNew;
80     }
81   }
82   return pExpr;
83 }
84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
85   Token s;
86   assert( zC!=0 );
87   s.z = zC;
88   s.n = sqlite3Strlen30(s.z);
89   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
90 }
91 
92 /*
93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
94 ** or likelihood() function at the root of an expression.
95 */
96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
97   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
98     if( ExprHasProperty(pExpr, EP_Unlikely) ){
99       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
100       assert( pExpr->x.pList->nExpr>0 );
101       assert( pExpr->op==TK_FUNCTION );
102       pExpr = pExpr->x.pList->a[0].pExpr;
103     }else{
104       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
105       pExpr = pExpr->pLeft;
106     }
107   }
108   return pExpr;
109 }
110 
111 /*
112 ** Return the collation sequence for the expression pExpr. If
113 ** there is no defined collating sequence, return NULL.
114 **
115 ** The collating sequence might be determined by a COLLATE operator
116 ** or by the presence of a column with a defined collating sequence.
117 ** COLLATE operators take first precedence.  Left operands take
118 ** precedence over right operands.
119 */
120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
121   sqlite3 *db = pParse->db;
122   CollSeq *pColl = 0;
123   Expr *p = pExpr;
124   while( p ){
125     int op = p->op;
126     if( p->flags & EP_Generic ) break;
127     if( op==TK_CAST || op==TK_UPLUS ){
128       p = p->pLeft;
129       continue;
130     }
131     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
132       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
133       break;
134     }
135     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
136           || op==TK_REGISTER || op==TK_TRIGGER)
137      && p->pTab!=0
138     ){
139       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
140       ** a TK_COLUMN but was previously evaluated and cached in a register */
141       int j = p->iColumn;
142       if( j>=0 ){
143         const char *zColl = p->pTab->aCol[j].zColl;
144         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
145       }
146       break;
147     }
148     if( p->flags & EP_Collate ){
149       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
150         p = p->pLeft;
151       }else{
152         Expr *pNext  = p->pRight;
153         /* The Expr.x union is never used at the same time as Expr.pRight */
154         assert( p->x.pList==0 || p->pRight==0 );
155         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
156         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
157         ** least one EP_Collate. Thus the following two ALWAYS. */
158         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
159           int i;
160           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
161             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
162               pNext = p->x.pList->a[i].pExpr;
163               break;
164             }
165           }
166         }
167         p = pNext;
168       }
169     }else{
170       break;
171     }
172   }
173   if( sqlite3CheckCollSeq(pParse, pColl) ){
174     pColl = 0;
175   }
176   return pColl;
177 }
178 
179 /*
180 ** pExpr is an operand of a comparison operator.  aff2 is the
181 ** type affinity of the other operand.  This routine returns the
182 ** type affinity that should be used for the comparison operator.
183 */
184 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
185   char aff1 = sqlite3ExprAffinity(pExpr);
186   if( aff1 && aff2 ){
187     /* Both sides of the comparison are columns. If one has numeric
188     ** affinity, use that. Otherwise use no affinity.
189     */
190     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
191       return SQLITE_AFF_NUMERIC;
192     }else{
193       return SQLITE_AFF_NONE;
194     }
195   }else if( !aff1 && !aff2 ){
196     /* Neither side of the comparison is a column.  Compare the
197     ** results directly.
198     */
199     return SQLITE_AFF_NONE;
200   }else{
201     /* One side is a column, the other is not. Use the columns affinity. */
202     assert( aff1==0 || aff2==0 );
203     return (aff1 + aff2);
204   }
205 }
206 
207 /*
208 ** pExpr is a comparison operator.  Return the type affinity that should
209 ** be applied to both operands prior to doing the comparison.
210 */
211 static char comparisonAffinity(Expr *pExpr){
212   char aff;
213   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
214           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
215           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
216   assert( pExpr->pLeft );
217   aff = sqlite3ExprAffinity(pExpr->pLeft);
218   if( pExpr->pRight ){
219     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
220   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
221     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
222   }else if( !aff ){
223     aff = SQLITE_AFF_NONE;
224   }
225   return aff;
226 }
227 
228 /*
229 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
230 ** idx_affinity is the affinity of an indexed column. Return true
231 ** if the index with affinity idx_affinity may be used to implement
232 ** the comparison in pExpr.
233 */
234 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
235   char aff = comparisonAffinity(pExpr);
236   switch( aff ){
237     case SQLITE_AFF_NONE:
238       return 1;
239     case SQLITE_AFF_TEXT:
240       return idx_affinity==SQLITE_AFF_TEXT;
241     default:
242       return sqlite3IsNumericAffinity(idx_affinity);
243   }
244 }
245 
246 /*
247 ** Return the P5 value that should be used for a binary comparison
248 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
249 */
250 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
251   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
252   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
253   return aff;
254 }
255 
256 /*
257 ** Return a pointer to the collation sequence that should be used by
258 ** a binary comparison operator comparing pLeft and pRight.
259 **
260 ** If the left hand expression has a collating sequence type, then it is
261 ** used. Otherwise the collation sequence for the right hand expression
262 ** is used, or the default (BINARY) if neither expression has a collating
263 ** type.
264 **
265 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
266 ** it is not considered.
267 */
268 CollSeq *sqlite3BinaryCompareCollSeq(
269   Parse *pParse,
270   Expr *pLeft,
271   Expr *pRight
272 ){
273   CollSeq *pColl;
274   assert( pLeft );
275   if( pLeft->flags & EP_Collate ){
276     pColl = sqlite3ExprCollSeq(pParse, pLeft);
277   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
278     pColl = sqlite3ExprCollSeq(pParse, pRight);
279   }else{
280     pColl = sqlite3ExprCollSeq(pParse, pLeft);
281     if( !pColl ){
282       pColl = sqlite3ExprCollSeq(pParse, pRight);
283     }
284   }
285   return pColl;
286 }
287 
288 /*
289 ** Generate code for a comparison operator.
290 */
291 static int codeCompare(
292   Parse *pParse,    /* The parsing (and code generating) context */
293   Expr *pLeft,      /* The left operand */
294   Expr *pRight,     /* The right operand */
295   int opcode,       /* The comparison opcode */
296   int in1, int in2, /* Register holding operands */
297   int dest,         /* Jump here if true.  */
298   int jumpIfNull    /* If true, jump if either operand is NULL */
299 ){
300   int p5;
301   int addr;
302   CollSeq *p4;
303 
304   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
305   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
306   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
307                            (void*)p4, P4_COLLSEQ);
308   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
309   return addr;
310 }
311 
312 #if SQLITE_MAX_EXPR_DEPTH>0
313 /*
314 ** Check that argument nHeight is less than or equal to the maximum
315 ** expression depth allowed. If it is not, leave an error message in
316 ** pParse.
317 */
318 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
319   int rc = SQLITE_OK;
320   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
321   if( nHeight>mxHeight ){
322     sqlite3ErrorMsg(pParse,
323        "Expression tree is too large (maximum depth %d)", mxHeight
324     );
325     rc = SQLITE_ERROR;
326   }
327   return rc;
328 }
329 
330 /* The following three functions, heightOfExpr(), heightOfExprList()
331 ** and heightOfSelect(), are used to determine the maximum height
332 ** of any expression tree referenced by the structure passed as the
333 ** first argument.
334 **
335 ** If this maximum height is greater than the current value pointed
336 ** to by pnHeight, the second parameter, then set *pnHeight to that
337 ** value.
338 */
339 static void heightOfExpr(Expr *p, int *pnHeight){
340   if( p ){
341     if( p->nHeight>*pnHeight ){
342       *pnHeight = p->nHeight;
343     }
344   }
345 }
346 static void heightOfExprList(ExprList *p, int *pnHeight){
347   if( p ){
348     int i;
349     for(i=0; i<p->nExpr; i++){
350       heightOfExpr(p->a[i].pExpr, pnHeight);
351     }
352   }
353 }
354 static void heightOfSelect(Select *p, int *pnHeight){
355   if( p ){
356     heightOfExpr(p->pWhere, pnHeight);
357     heightOfExpr(p->pHaving, pnHeight);
358     heightOfExpr(p->pLimit, pnHeight);
359     heightOfExpr(p->pOffset, pnHeight);
360     heightOfExprList(p->pEList, pnHeight);
361     heightOfExprList(p->pGroupBy, pnHeight);
362     heightOfExprList(p->pOrderBy, pnHeight);
363     heightOfSelect(p->pPrior, pnHeight);
364   }
365 }
366 
367 /*
368 ** Set the Expr.nHeight variable in the structure passed as an
369 ** argument. An expression with no children, Expr.pList or
370 ** Expr.pSelect member has a height of 1. Any other expression
371 ** has a height equal to the maximum height of any other
372 ** referenced Expr plus one.
373 **
374 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
375 ** if appropriate.
376 */
377 static void exprSetHeight(Expr *p){
378   int nHeight = 0;
379   heightOfExpr(p->pLeft, &nHeight);
380   heightOfExpr(p->pRight, &nHeight);
381   if( ExprHasProperty(p, EP_xIsSelect) ){
382     heightOfSelect(p->x.pSelect, &nHeight);
383   }else if( p->x.pList ){
384     heightOfExprList(p->x.pList, &nHeight);
385     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
386   }
387   p->nHeight = nHeight + 1;
388 }
389 
390 /*
391 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
392 ** the height is greater than the maximum allowed expression depth,
393 ** leave an error in pParse.
394 **
395 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
396 ** Expr.flags.
397 */
398 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
399   exprSetHeight(p);
400   sqlite3ExprCheckHeight(pParse, p->nHeight);
401 }
402 
403 /*
404 ** Return the maximum height of any expression tree referenced
405 ** by the select statement passed as an argument.
406 */
407 int sqlite3SelectExprHeight(Select *p){
408   int nHeight = 0;
409   heightOfSelect(p, &nHeight);
410   return nHeight;
411 }
412 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
413 /*
414 ** Propagate all EP_Propagate flags from the Expr.x.pList into
415 ** Expr.flags.
416 */
417 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
418   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
419     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
420   }
421 }
422 #define exprSetHeight(y)
423 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
424 
425 /*
426 ** This routine is the core allocator for Expr nodes.
427 **
428 ** Construct a new expression node and return a pointer to it.  Memory
429 ** for this node and for the pToken argument is a single allocation
430 ** obtained from sqlite3DbMalloc().  The calling function
431 ** is responsible for making sure the node eventually gets freed.
432 **
433 ** If dequote is true, then the token (if it exists) is dequoted.
434 ** If dequote is false, no dequoting is performance.  The deQuote
435 ** parameter is ignored if pToken is NULL or if the token does not
436 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
437 ** then the EP_DblQuoted flag is set on the expression node.
438 **
439 ** Special case:  If op==TK_INTEGER and pToken points to a string that
440 ** can be translated into a 32-bit integer, then the token is not
441 ** stored in u.zToken.  Instead, the integer values is written
442 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
443 ** is allocated to hold the integer text and the dequote flag is ignored.
444 */
445 Expr *sqlite3ExprAlloc(
446   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
447   int op,                 /* Expression opcode */
448   const Token *pToken,    /* Token argument.  Might be NULL */
449   int dequote             /* True to dequote */
450 ){
451   Expr *pNew;
452   int nExtra = 0;
453   int iValue = 0;
454 
455   if( pToken ){
456     if( op!=TK_INTEGER || pToken->z==0
457           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
458       nExtra = pToken->n+1;
459       assert( iValue>=0 );
460     }
461   }
462   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
463   if( pNew ){
464     pNew->op = (u8)op;
465     pNew->iAgg = -1;
466     if( pToken ){
467       if( nExtra==0 ){
468         pNew->flags |= EP_IntValue;
469         pNew->u.iValue = iValue;
470       }else{
471         int c;
472         pNew->u.zToken = (char*)&pNew[1];
473         assert( pToken->z!=0 || pToken->n==0 );
474         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
475         pNew->u.zToken[pToken->n] = 0;
476         if( dequote && nExtra>=3
477              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
478           sqlite3Dequote(pNew->u.zToken);
479           if( c=='"' ) pNew->flags |= EP_DblQuoted;
480         }
481       }
482     }
483 #if SQLITE_MAX_EXPR_DEPTH>0
484     pNew->nHeight = 1;
485 #endif
486   }
487   return pNew;
488 }
489 
490 /*
491 ** Allocate a new expression node from a zero-terminated token that has
492 ** already been dequoted.
493 */
494 Expr *sqlite3Expr(
495   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
496   int op,                 /* Expression opcode */
497   const char *zToken      /* Token argument.  Might be NULL */
498 ){
499   Token x;
500   x.z = zToken;
501   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
502   return sqlite3ExprAlloc(db, op, &x, 0);
503 }
504 
505 /*
506 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
507 **
508 ** If pRoot==NULL that means that a memory allocation error has occurred.
509 ** In that case, delete the subtrees pLeft and pRight.
510 */
511 void sqlite3ExprAttachSubtrees(
512   sqlite3 *db,
513   Expr *pRoot,
514   Expr *pLeft,
515   Expr *pRight
516 ){
517   if( pRoot==0 ){
518     assert( db->mallocFailed );
519     sqlite3ExprDelete(db, pLeft);
520     sqlite3ExprDelete(db, pRight);
521   }else{
522     if( pRight ){
523       pRoot->pRight = pRight;
524       pRoot->flags |= EP_Propagate & pRight->flags;
525     }
526     if( pLeft ){
527       pRoot->pLeft = pLeft;
528       pRoot->flags |= EP_Propagate & pLeft->flags;
529     }
530     exprSetHeight(pRoot);
531   }
532 }
533 
534 /*
535 ** Allocate an Expr node which joins as many as two subtrees.
536 **
537 ** One or both of the subtrees can be NULL.  Return a pointer to the new
538 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
539 ** free the subtrees and return NULL.
540 */
541 Expr *sqlite3PExpr(
542   Parse *pParse,          /* Parsing context */
543   int op,                 /* Expression opcode */
544   Expr *pLeft,            /* Left operand */
545   Expr *pRight,           /* Right operand */
546   const Token *pToken     /* Argument token */
547 ){
548   Expr *p;
549   if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
550     /* Take advantage of short-circuit false optimization for AND */
551     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
552   }else{
553     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
554     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
555   }
556   if( p ) {
557     sqlite3ExprCheckHeight(pParse, p->nHeight);
558   }
559   return p;
560 }
561 
562 /*
563 ** If the expression is always either TRUE or FALSE (respectively),
564 ** then return 1.  If one cannot determine the truth value of the
565 ** expression at compile-time return 0.
566 **
567 ** This is an optimization.  If is OK to return 0 here even if
568 ** the expression really is always false or false (a false negative).
569 ** But it is a bug to return 1 if the expression might have different
570 ** boolean values in different circumstances (a false positive.)
571 **
572 ** Note that if the expression is part of conditional for a
573 ** LEFT JOIN, then we cannot determine at compile-time whether or not
574 ** is it true or false, so always return 0.
575 */
576 static int exprAlwaysTrue(Expr *p){
577   int v = 0;
578   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
579   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
580   return v!=0;
581 }
582 static int exprAlwaysFalse(Expr *p){
583   int v = 0;
584   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
585   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
586   return v==0;
587 }
588 
589 /*
590 ** Join two expressions using an AND operator.  If either expression is
591 ** NULL, then just return the other expression.
592 **
593 ** If one side or the other of the AND is known to be false, then instead
594 ** of returning an AND expression, just return a constant expression with
595 ** a value of false.
596 */
597 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
598   if( pLeft==0 ){
599     return pRight;
600   }else if( pRight==0 ){
601     return pLeft;
602   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
603     sqlite3ExprDelete(db, pLeft);
604     sqlite3ExprDelete(db, pRight);
605     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
606   }else{
607     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
608     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
609     return pNew;
610   }
611 }
612 
613 /*
614 ** Construct a new expression node for a function with multiple
615 ** arguments.
616 */
617 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
618   Expr *pNew;
619   sqlite3 *db = pParse->db;
620   assert( pToken );
621   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
622   if( pNew==0 ){
623     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
624     return 0;
625   }
626   pNew->x.pList = pList;
627   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
628   sqlite3ExprSetHeightAndFlags(pParse, pNew);
629   return pNew;
630 }
631 
632 /*
633 ** Assign a variable number to an expression that encodes a wildcard
634 ** in the original SQL statement.
635 **
636 ** Wildcards consisting of a single "?" are assigned the next sequential
637 ** variable number.
638 **
639 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
640 ** sure "nnn" is not too be to avoid a denial of service attack when
641 ** the SQL statement comes from an external source.
642 **
643 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
644 ** as the previous instance of the same wildcard.  Or if this is the first
645 ** instance of the wildcard, the next sequential variable number is
646 ** assigned.
647 */
648 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
649   sqlite3 *db = pParse->db;
650   const char *z;
651 
652   if( pExpr==0 ) return;
653   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
654   z = pExpr->u.zToken;
655   assert( z!=0 );
656   assert( z[0]!=0 );
657   if( z[1]==0 ){
658     /* Wildcard of the form "?".  Assign the next variable number */
659     assert( z[0]=='?' );
660     pExpr->iColumn = (ynVar)(++pParse->nVar);
661   }else{
662     ynVar x = 0;
663     u32 n = sqlite3Strlen30(z);
664     if( z[0]=='?' ){
665       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
666       ** use it as the variable number */
667       i64 i;
668       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
669       pExpr->iColumn = x = (ynVar)i;
670       testcase( i==0 );
671       testcase( i==1 );
672       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
673       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
674       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
675         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
676             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
677         x = 0;
678       }
679       if( i>pParse->nVar ){
680         pParse->nVar = (int)i;
681       }
682     }else{
683       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
684       ** number as the prior appearance of the same name, or if the name
685       ** has never appeared before, reuse the same variable number
686       */
687       ynVar i;
688       for(i=0; i<pParse->nzVar; i++){
689         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
690           pExpr->iColumn = x = (ynVar)i+1;
691           break;
692         }
693       }
694       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
695     }
696     if( x>0 ){
697       if( x>pParse->nzVar ){
698         char **a;
699         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
700         if( a==0 ) return;  /* Error reported through db->mallocFailed */
701         pParse->azVar = a;
702         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
703         pParse->nzVar = x;
704       }
705       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
706         sqlite3DbFree(db, pParse->azVar[x-1]);
707         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
708       }
709     }
710   }
711   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
712     sqlite3ErrorMsg(pParse, "too many SQL variables");
713   }
714 }
715 
716 /*
717 ** Recursively delete an expression tree.
718 */
719 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
720   if( p==0 ) return;
721   /* Sanity check: Assert that the IntValue is non-negative if it exists */
722   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
723   if( !ExprHasProperty(p, EP_TokenOnly) ){
724     /* The Expr.x union is never used at the same time as Expr.pRight */
725     assert( p->x.pList==0 || p->pRight==0 );
726     sqlite3ExprDelete(db, p->pLeft);
727     sqlite3ExprDelete(db, p->pRight);
728     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
729     if( ExprHasProperty(p, EP_xIsSelect) ){
730       sqlite3SelectDelete(db, p->x.pSelect);
731     }else{
732       sqlite3ExprListDelete(db, p->x.pList);
733     }
734   }
735   if( !ExprHasProperty(p, EP_Static) ){
736     sqlite3DbFree(db, p);
737   }
738 }
739 
740 /*
741 ** Return the number of bytes allocated for the expression structure
742 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
743 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
744 */
745 static int exprStructSize(Expr *p){
746   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
747   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
748   return EXPR_FULLSIZE;
749 }
750 
751 /*
752 ** The dupedExpr*Size() routines each return the number of bytes required
753 ** to store a copy of an expression or expression tree.  They differ in
754 ** how much of the tree is measured.
755 **
756 **     dupedExprStructSize()     Size of only the Expr structure
757 **     dupedExprNodeSize()       Size of Expr + space for token
758 **     dupedExprSize()           Expr + token + subtree components
759 **
760 ***************************************************************************
761 **
762 ** The dupedExprStructSize() function returns two values OR-ed together:
763 ** (1) the space required for a copy of the Expr structure only and
764 ** (2) the EP_xxx flags that indicate what the structure size should be.
765 ** The return values is always one of:
766 **
767 **      EXPR_FULLSIZE
768 **      EXPR_REDUCEDSIZE   | EP_Reduced
769 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
770 **
771 ** The size of the structure can be found by masking the return value
772 ** of this routine with 0xfff.  The flags can be found by masking the
773 ** return value with EP_Reduced|EP_TokenOnly.
774 **
775 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
776 ** (unreduced) Expr objects as they or originally constructed by the parser.
777 ** During expression analysis, extra information is computed and moved into
778 ** later parts of teh Expr object and that extra information might get chopped
779 ** off if the expression is reduced.  Note also that it does not work to
780 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
781 ** to reduce a pristine expression tree from the parser.  The implementation
782 ** of dupedExprStructSize() contain multiple assert() statements that attempt
783 ** to enforce this constraint.
784 */
785 static int dupedExprStructSize(Expr *p, int flags){
786   int nSize;
787   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
788   assert( EXPR_FULLSIZE<=0xfff );
789   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
790   if( 0==(flags&EXPRDUP_REDUCE) ){
791     nSize = EXPR_FULLSIZE;
792   }else{
793     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
794     assert( !ExprHasProperty(p, EP_FromJoin) );
795     assert( !ExprHasProperty(p, EP_MemToken) );
796     assert( !ExprHasProperty(p, EP_NoReduce) );
797     if( p->pLeft || p->x.pList ){
798       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
799     }else{
800       assert( p->pRight==0 );
801       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
802     }
803   }
804   return nSize;
805 }
806 
807 /*
808 ** This function returns the space in bytes required to store the copy
809 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
810 ** string is defined.)
811 */
812 static int dupedExprNodeSize(Expr *p, int flags){
813   int nByte = dupedExprStructSize(p, flags) & 0xfff;
814   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
815     nByte += sqlite3Strlen30(p->u.zToken)+1;
816   }
817   return ROUND8(nByte);
818 }
819 
820 /*
821 ** Return the number of bytes required to create a duplicate of the
822 ** expression passed as the first argument. The second argument is a
823 ** mask containing EXPRDUP_XXX flags.
824 **
825 ** The value returned includes space to create a copy of the Expr struct
826 ** itself and the buffer referred to by Expr.u.zToken, if any.
827 **
828 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
829 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
830 ** and Expr.pRight variables (but not for any structures pointed to or
831 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
832 */
833 static int dupedExprSize(Expr *p, int flags){
834   int nByte = 0;
835   if( p ){
836     nByte = dupedExprNodeSize(p, flags);
837     if( flags&EXPRDUP_REDUCE ){
838       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
839     }
840   }
841   return nByte;
842 }
843 
844 /*
845 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
846 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
847 ** to store the copy of expression p, the copies of p->u.zToken
848 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
849 ** if any. Before returning, *pzBuffer is set to the first byte past the
850 ** portion of the buffer copied into by this function.
851 */
852 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
853   Expr *pNew = 0;                      /* Value to return */
854   if( p ){
855     const int isReduced = (flags&EXPRDUP_REDUCE);
856     u8 *zAlloc;
857     u32 staticFlag = 0;
858 
859     assert( pzBuffer==0 || isReduced );
860 
861     /* Figure out where to write the new Expr structure. */
862     if( pzBuffer ){
863       zAlloc = *pzBuffer;
864       staticFlag = EP_Static;
865     }else{
866       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
867     }
868     pNew = (Expr *)zAlloc;
869 
870     if( pNew ){
871       /* Set nNewSize to the size allocated for the structure pointed to
872       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
873       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
874       ** by the copy of the p->u.zToken string (if any).
875       */
876       const unsigned nStructSize = dupedExprStructSize(p, flags);
877       const int nNewSize = nStructSize & 0xfff;
878       int nToken;
879       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
880         nToken = sqlite3Strlen30(p->u.zToken) + 1;
881       }else{
882         nToken = 0;
883       }
884       if( isReduced ){
885         assert( ExprHasProperty(p, EP_Reduced)==0 );
886         memcpy(zAlloc, p, nNewSize);
887       }else{
888         int nSize = exprStructSize(p);
889         memcpy(zAlloc, p, nSize);
890         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
891       }
892 
893       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
894       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
895       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
896       pNew->flags |= staticFlag;
897 
898       /* Copy the p->u.zToken string, if any. */
899       if( nToken ){
900         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
901         memcpy(zToken, p->u.zToken, nToken);
902       }
903 
904       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
905         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
906         if( ExprHasProperty(p, EP_xIsSelect) ){
907           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
908         }else{
909           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
910         }
911       }
912 
913       /* Fill in pNew->pLeft and pNew->pRight. */
914       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
915         zAlloc += dupedExprNodeSize(p, flags);
916         if( ExprHasProperty(pNew, EP_Reduced) ){
917           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
918           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
919         }
920         if( pzBuffer ){
921           *pzBuffer = zAlloc;
922         }
923       }else{
924         if( !ExprHasProperty(p, EP_TokenOnly) ){
925           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
926           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
927         }
928       }
929 
930     }
931   }
932   return pNew;
933 }
934 
935 /*
936 ** Create and return a deep copy of the object passed as the second
937 ** argument. If an OOM condition is encountered, NULL is returned
938 ** and the db->mallocFailed flag set.
939 */
940 #ifndef SQLITE_OMIT_CTE
941 static With *withDup(sqlite3 *db, With *p){
942   With *pRet = 0;
943   if( p ){
944     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
945     pRet = sqlite3DbMallocZero(db, nByte);
946     if( pRet ){
947       int i;
948       pRet->nCte = p->nCte;
949       for(i=0; i<p->nCte; i++){
950         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
951         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
952         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
953       }
954     }
955   }
956   return pRet;
957 }
958 #else
959 # define withDup(x,y) 0
960 #endif
961 
962 /*
963 ** The following group of routines make deep copies of expressions,
964 ** expression lists, ID lists, and select statements.  The copies can
965 ** be deleted (by being passed to their respective ...Delete() routines)
966 ** without effecting the originals.
967 **
968 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
969 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
970 ** by subsequent calls to sqlite*ListAppend() routines.
971 **
972 ** Any tables that the SrcList might point to are not duplicated.
973 **
974 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
975 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
976 ** truncated version of the usual Expr structure that will be stored as
977 ** part of the in-memory representation of the database schema.
978 */
979 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
980   return exprDup(db, p, flags, 0);
981 }
982 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
983   ExprList *pNew;
984   struct ExprList_item *pItem, *pOldItem;
985   int i;
986   if( p==0 ) return 0;
987   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
988   if( pNew==0 ) return 0;
989   pNew->nExpr = i = p->nExpr;
990   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
991   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
992   if( pItem==0 ){
993     sqlite3DbFree(db, pNew);
994     return 0;
995   }
996   pOldItem = p->a;
997   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
998     Expr *pOldExpr = pOldItem->pExpr;
999     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1000     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1001     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1002     pItem->sortOrder = pOldItem->sortOrder;
1003     pItem->done = 0;
1004     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1005     pItem->u = pOldItem->u;
1006   }
1007   return pNew;
1008 }
1009 
1010 /*
1011 ** If cursors, triggers, views and subqueries are all omitted from
1012 ** the build, then none of the following routines, except for
1013 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1014 ** called with a NULL argument.
1015 */
1016 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1017  || !defined(SQLITE_OMIT_SUBQUERY)
1018 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1019   SrcList *pNew;
1020   int i;
1021   int nByte;
1022   if( p==0 ) return 0;
1023   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1024   pNew = sqlite3DbMallocRaw(db, nByte );
1025   if( pNew==0 ) return 0;
1026   pNew->nSrc = pNew->nAlloc = p->nSrc;
1027   for(i=0; i<p->nSrc; i++){
1028     struct SrcList_item *pNewItem = &pNew->a[i];
1029     struct SrcList_item *pOldItem = &p->a[i];
1030     Table *pTab;
1031     pNewItem->pSchema = pOldItem->pSchema;
1032     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1033     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1034     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1035     pNewItem->jointype = pOldItem->jointype;
1036     pNewItem->iCursor = pOldItem->iCursor;
1037     pNewItem->addrFillSub = pOldItem->addrFillSub;
1038     pNewItem->regReturn = pOldItem->regReturn;
1039     pNewItem->isCorrelated = pOldItem->isCorrelated;
1040     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1041     pNewItem->isRecursive = pOldItem->isRecursive;
1042     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1043     pNewItem->notIndexed = pOldItem->notIndexed;
1044     pNewItem->pIndex = pOldItem->pIndex;
1045     pTab = pNewItem->pTab = pOldItem->pTab;
1046     if( pTab ){
1047       pTab->nRef++;
1048     }
1049     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1050     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1051     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1052     pNewItem->colUsed = pOldItem->colUsed;
1053   }
1054   return pNew;
1055 }
1056 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1057   IdList *pNew;
1058   int i;
1059   if( p==0 ) return 0;
1060   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1061   if( pNew==0 ) return 0;
1062   pNew->nId = p->nId;
1063   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1064   if( pNew->a==0 ){
1065     sqlite3DbFree(db, pNew);
1066     return 0;
1067   }
1068   /* Note that because the size of the allocation for p->a[] is not
1069   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1070   ** on the duplicate created by this function. */
1071   for(i=0; i<p->nId; i++){
1072     struct IdList_item *pNewItem = &pNew->a[i];
1073     struct IdList_item *pOldItem = &p->a[i];
1074     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1075     pNewItem->idx = pOldItem->idx;
1076   }
1077   return pNew;
1078 }
1079 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1080   Select *pNew, *pPrior;
1081   if( p==0 ) return 0;
1082   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1083   if( pNew==0 ) return 0;
1084   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1085   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1086   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1087   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1088   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1089   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1090   pNew->op = p->op;
1091   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1092   if( pPrior ) pPrior->pNext = pNew;
1093   pNew->pNext = 0;
1094   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1095   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1096   pNew->iLimit = 0;
1097   pNew->iOffset = 0;
1098   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1099   pNew->addrOpenEphm[0] = -1;
1100   pNew->addrOpenEphm[1] = -1;
1101   pNew->nSelectRow = p->nSelectRow;
1102   pNew->pWith = withDup(db, p->pWith);
1103   sqlite3SelectSetName(pNew, p->zSelName);
1104   return pNew;
1105 }
1106 #else
1107 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1108   assert( p==0 );
1109   return 0;
1110 }
1111 #endif
1112 
1113 
1114 /*
1115 ** Add a new element to the end of an expression list.  If pList is
1116 ** initially NULL, then create a new expression list.
1117 **
1118 ** If a memory allocation error occurs, the entire list is freed and
1119 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1120 ** that the new entry was successfully appended.
1121 */
1122 ExprList *sqlite3ExprListAppend(
1123   Parse *pParse,          /* Parsing context */
1124   ExprList *pList,        /* List to which to append. Might be NULL */
1125   Expr *pExpr             /* Expression to be appended. Might be NULL */
1126 ){
1127   sqlite3 *db = pParse->db;
1128   if( pList==0 ){
1129     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1130     if( pList==0 ){
1131       goto no_mem;
1132     }
1133     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1134     if( pList->a==0 ) goto no_mem;
1135   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1136     struct ExprList_item *a;
1137     assert( pList->nExpr>0 );
1138     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1139     if( a==0 ){
1140       goto no_mem;
1141     }
1142     pList->a = a;
1143   }
1144   assert( pList->a!=0 );
1145   if( 1 ){
1146     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1147     memset(pItem, 0, sizeof(*pItem));
1148     pItem->pExpr = pExpr;
1149   }
1150   return pList;
1151 
1152 no_mem:
1153   /* Avoid leaking memory if malloc has failed. */
1154   sqlite3ExprDelete(db, pExpr);
1155   sqlite3ExprListDelete(db, pList);
1156   return 0;
1157 }
1158 
1159 /*
1160 ** Set the ExprList.a[].zName element of the most recently added item
1161 ** on the expression list.
1162 **
1163 ** pList might be NULL following an OOM error.  But pName should never be
1164 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1165 ** is set.
1166 */
1167 void sqlite3ExprListSetName(
1168   Parse *pParse,          /* Parsing context */
1169   ExprList *pList,        /* List to which to add the span. */
1170   Token *pName,           /* Name to be added */
1171   int dequote             /* True to cause the name to be dequoted */
1172 ){
1173   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1174   if( pList ){
1175     struct ExprList_item *pItem;
1176     assert( pList->nExpr>0 );
1177     pItem = &pList->a[pList->nExpr-1];
1178     assert( pItem->zName==0 );
1179     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1180     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1181   }
1182 }
1183 
1184 /*
1185 ** Set the ExprList.a[].zSpan element of the most recently added item
1186 ** on the expression list.
1187 **
1188 ** pList might be NULL following an OOM error.  But pSpan should never be
1189 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1190 ** is set.
1191 */
1192 void sqlite3ExprListSetSpan(
1193   Parse *pParse,          /* Parsing context */
1194   ExprList *pList,        /* List to which to add the span. */
1195   ExprSpan *pSpan         /* The span to be added */
1196 ){
1197   sqlite3 *db = pParse->db;
1198   assert( pList!=0 || db->mallocFailed!=0 );
1199   if( pList ){
1200     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1201     assert( pList->nExpr>0 );
1202     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1203     sqlite3DbFree(db, pItem->zSpan);
1204     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1205                                     (int)(pSpan->zEnd - pSpan->zStart));
1206   }
1207 }
1208 
1209 /*
1210 ** If the expression list pEList contains more than iLimit elements,
1211 ** leave an error message in pParse.
1212 */
1213 void sqlite3ExprListCheckLength(
1214   Parse *pParse,
1215   ExprList *pEList,
1216   const char *zObject
1217 ){
1218   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1219   testcase( pEList && pEList->nExpr==mx );
1220   testcase( pEList && pEList->nExpr==mx+1 );
1221   if( pEList && pEList->nExpr>mx ){
1222     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1223   }
1224 }
1225 
1226 /*
1227 ** Delete an entire expression list.
1228 */
1229 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1230   int i;
1231   struct ExprList_item *pItem;
1232   if( pList==0 ) return;
1233   assert( pList->a!=0 || pList->nExpr==0 );
1234   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1235     sqlite3ExprDelete(db, pItem->pExpr);
1236     sqlite3DbFree(db, pItem->zName);
1237     sqlite3DbFree(db, pItem->zSpan);
1238   }
1239   sqlite3DbFree(db, pList->a);
1240   sqlite3DbFree(db, pList);
1241 }
1242 
1243 /*
1244 ** Return the bitwise-OR of all Expr.flags fields in the given
1245 ** ExprList.
1246 */
1247 u32 sqlite3ExprListFlags(const ExprList *pList){
1248   int i;
1249   u32 m = 0;
1250   if( pList ){
1251     for(i=0; i<pList->nExpr; i++){
1252        m |= pList->a[i].pExpr->flags;
1253     }
1254   }
1255   return m;
1256 }
1257 
1258 /*
1259 ** These routines are Walker callbacks used to check expressions to
1260 ** see if they are "constant" for some definition of constant.  The
1261 ** Walker.eCode value determines the type of "constant" we are looking
1262 ** for.
1263 **
1264 ** These callback routines are used to implement the following:
1265 **
1266 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1267 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1268 **     sqlite3ExprRefOneTableOnly()             pWalker->eCode==3
1269 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1270 **
1271 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1272 ** is found to not be a constant.
1273 **
1274 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1275 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1276 ** an existing schema and 4 when processing a new statement.  A bound
1277 ** parameter raises an error for new statements, but is silently converted
1278 ** to NULL for existing schemas.  This allows sqlite_master tables that
1279 ** contain a bound parameter because they were generated by older versions
1280 ** of SQLite to be parsed by newer versions of SQLite without raising a
1281 ** malformed schema error.
1282 */
1283 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1284 
1285   /* If pWalker->eCode is 2 then any term of the expression that comes from
1286   ** the ON or USING clauses of a left join disqualifies the expression
1287   ** from being considered constant. */
1288   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1289     pWalker->eCode = 0;
1290     return WRC_Abort;
1291   }
1292 
1293   switch( pExpr->op ){
1294     /* Consider functions to be constant if all their arguments are constant
1295     ** and either pWalker->eCode==4 or 5 or the function has the
1296     ** SQLITE_FUNC_CONST flag. */
1297     case TK_FUNCTION:
1298       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1299         return WRC_Continue;
1300       }else{
1301         pWalker->eCode = 0;
1302         return WRC_Abort;
1303       }
1304     case TK_ID:
1305     case TK_COLUMN:
1306     case TK_AGG_FUNCTION:
1307     case TK_AGG_COLUMN:
1308       testcase( pExpr->op==TK_ID );
1309       testcase( pExpr->op==TK_COLUMN );
1310       testcase( pExpr->op==TK_AGG_FUNCTION );
1311       testcase( pExpr->op==TK_AGG_COLUMN );
1312       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1313         return WRC_Continue;
1314       }else{
1315         pWalker->eCode = 0;
1316         return WRC_Abort;
1317       }
1318     case TK_VARIABLE:
1319       if( pWalker->eCode==5 ){
1320         /* Silently convert bound parameters that appear inside of CREATE
1321         ** statements into a NULL when parsing the CREATE statement text out
1322         ** of the sqlite_master table */
1323         pExpr->op = TK_NULL;
1324       }else if( pWalker->eCode==4 ){
1325         /* A bound parameter in a CREATE statement that originates from
1326         ** sqlite3_prepare() causes an error */
1327         pWalker->eCode = 0;
1328         return WRC_Abort;
1329       }
1330       /* Fall through */
1331     default:
1332       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1333       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1334       return WRC_Continue;
1335   }
1336 }
1337 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1338   UNUSED_PARAMETER(NotUsed);
1339   pWalker->eCode = 0;
1340   return WRC_Abort;
1341 }
1342 static int exprIsConst(Expr *p, int initFlag, int iCur){
1343   Walker w;
1344   memset(&w, 0, sizeof(w));
1345   w.eCode = initFlag;
1346   w.xExprCallback = exprNodeIsConstant;
1347   w.xSelectCallback = selectNodeIsConstant;
1348   w.u.iCur = iCur;
1349   sqlite3WalkExpr(&w, p);
1350   return w.eCode;
1351 }
1352 
1353 /*
1354 ** Walk an expression tree.  Return non-zero if the expression is constant
1355 ** and 0 if it involves variables or function calls.
1356 **
1357 ** For the purposes of this function, a double-quoted string (ex: "abc")
1358 ** is considered a variable but a single-quoted string (ex: 'abc') is
1359 ** a constant.
1360 */
1361 int sqlite3ExprIsConstant(Expr *p){
1362   return exprIsConst(p, 1, 0);
1363 }
1364 
1365 /*
1366 ** Walk an expression tree.  Return non-zero if the expression is constant
1367 ** that does no originate from the ON or USING clauses of a join.
1368 ** Return 0 if it involves variables or function calls or terms from
1369 ** an ON or USING clause.
1370 */
1371 int sqlite3ExprIsConstantNotJoin(Expr *p){
1372   return exprIsConst(p, 2, 0);
1373 }
1374 
1375 /*
1376 ** Walk an expression tree.  Return non-zero if the expression constant
1377 ** for any single row of the table with cursor iCur.  In other words, the
1378 ** expression must not refer to any non-deterministic function nor any
1379 ** table other than iCur.
1380 */
1381 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1382   return exprIsConst(p, 3, iCur);
1383 }
1384 
1385 /*
1386 ** Walk an expression tree.  Return non-zero if the expression is constant
1387 ** or a function call with constant arguments.  Return and 0 if there
1388 ** are any variables.
1389 **
1390 ** For the purposes of this function, a double-quoted string (ex: "abc")
1391 ** is considered a variable but a single-quoted string (ex: 'abc') is
1392 ** a constant.
1393 */
1394 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1395   assert( isInit==0 || isInit==1 );
1396   return exprIsConst(p, 4+isInit, 0);
1397 }
1398 
1399 /*
1400 ** If the expression p codes a constant integer that is small enough
1401 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1402 ** in *pValue.  If the expression is not an integer or if it is too big
1403 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1404 */
1405 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1406   int rc = 0;
1407 
1408   /* If an expression is an integer literal that fits in a signed 32-bit
1409   ** integer, then the EP_IntValue flag will have already been set */
1410   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1411            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1412 
1413   if( p->flags & EP_IntValue ){
1414     *pValue = p->u.iValue;
1415     return 1;
1416   }
1417   switch( p->op ){
1418     case TK_UPLUS: {
1419       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1420       break;
1421     }
1422     case TK_UMINUS: {
1423       int v;
1424       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1425         assert( v!=(-2147483647-1) );
1426         *pValue = -v;
1427         rc = 1;
1428       }
1429       break;
1430     }
1431     default: break;
1432   }
1433   return rc;
1434 }
1435 
1436 /*
1437 ** Return FALSE if there is no chance that the expression can be NULL.
1438 **
1439 ** If the expression might be NULL or if the expression is too complex
1440 ** to tell return TRUE.
1441 **
1442 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1443 ** when we know that a value cannot be NULL.  Hence, a false positive
1444 ** (returning TRUE when in fact the expression can never be NULL) might
1445 ** be a small performance hit but is otherwise harmless.  On the other
1446 ** hand, a false negative (returning FALSE when the result could be NULL)
1447 ** will likely result in an incorrect answer.  So when in doubt, return
1448 ** TRUE.
1449 */
1450 int sqlite3ExprCanBeNull(const Expr *p){
1451   u8 op;
1452   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1453   op = p->op;
1454   if( op==TK_REGISTER ) op = p->op2;
1455   switch( op ){
1456     case TK_INTEGER:
1457     case TK_STRING:
1458     case TK_FLOAT:
1459     case TK_BLOB:
1460       return 0;
1461     case TK_COLUMN:
1462       assert( p->pTab!=0 );
1463       return ExprHasProperty(p, EP_CanBeNull) ||
1464              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1465     default:
1466       return 1;
1467   }
1468 }
1469 
1470 /*
1471 ** Return TRUE if the given expression is a constant which would be
1472 ** unchanged by OP_Affinity with the affinity given in the second
1473 ** argument.
1474 **
1475 ** This routine is used to determine if the OP_Affinity operation
1476 ** can be omitted.  When in doubt return FALSE.  A false negative
1477 ** is harmless.  A false positive, however, can result in the wrong
1478 ** answer.
1479 */
1480 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1481   u8 op;
1482   if( aff==SQLITE_AFF_NONE ) return 1;
1483   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1484   op = p->op;
1485   if( op==TK_REGISTER ) op = p->op2;
1486   switch( op ){
1487     case TK_INTEGER: {
1488       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1489     }
1490     case TK_FLOAT: {
1491       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1492     }
1493     case TK_STRING: {
1494       return aff==SQLITE_AFF_TEXT;
1495     }
1496     case TK_BLOB: {
1497       return 1;
1498     }
1499     case TK_COLUMN: {
1500       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1501       return p->iColumn<0
1502           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1503     }
1504     default: {
1505       return 0;
1506     }
1507   }
1508 }
1509 
1510 /*
1511 ** Return TRUE if the given string is a row-id column name.
1512 */
1513 int sqlite3IsRowid(const char *z){
1514   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1515   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1516   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1517   return 0;
1518 }
1519 
1520 /*
1521 ** Return true if we are able to the IN operator optimization on a
1522 ** query of the form
1523 **
1524 **       x IN (SELECT ...)
1525 **
1526 ** Where the SELECT... clause is as specified by the parameter to this
1527 ** routine.
1528 **
1529 ** The Select object passed in has already been preprocessed and no
1530 ** errors have been found.
1531 */
1532 #ifndef SQLITE_OMIT_SUBQUERY
1533 static int isCandidateForInOpt(Select *p){
1534   SrcList *pSrc;
1535   ExprList *pEList;
1536   Table *pTab;
1537   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1538   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1539   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1540     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1541     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1542     return 0; /* No DISTINCT keyword and no aggregate functions */
1543   }
1544   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1545   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1546   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1547   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1548   pSrc = p->pSrc;
1549   assert( pSrc!=0 );
1550   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1551   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1552   pTab = pSrc->a[0].pTab;
1553   if( NEVER(pTab==0) ) return 0;
1554   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1555   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1556   pEList = p->pEList;
1557   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1558   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1559   return 1;
1560 }
1561 #endif /* SQLITE_OMIT_SUBQUERY */
1562 
1563 /*
1564 ** Code an OP_Once instruction and allocate space for its flag. Return the
1565 ** address of the new instruction.
1566 */
1567 int sqlite3CodeOnce(Parse *pParse){
1568   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1569   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1570 }
1571 
1572 /*
1573 ** Generate code that checks the left-most column of index table iCur to see if
1574 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1575 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1576 ** to be set to NULL if iCur contains one or more NULL values.
1577 */
1578 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1579   int j1;
1580   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1581   j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1582   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1583   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1584   VdbeComment((v, "first_entry_in(%d)", iCur));
1585   sqlite3VdbeJumpHere(v, j1);
1586 }
1587 
1588 
1589 #ifndef SQLITE_OMIT_SUBQUERY
1590 /*
1591 ** The argument is an IN operator with a list (not a subquery) on the
1592 ** right-hand side.  Return TRUE if that list is constant.
1593 */
1594 static int sqlite3InRhsIsConstant(Expr *pIn){
1595   Expr *pLHS;
1596   int res;
1597   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1598   pLHS = pIn->pLeft;
1599   pIn->pLeft = 0;
1600   res = sqlite3ExprIsConstant(pIn);
1601   pIn->pLeft = pLHS;
1602   return res;
1603 }
1604 #endif
1605 
1606 /*
1607 ** This function is used by the implementation of the IN (...) operator.
1608 ** The pX parameter is the expression on the RHS of the IN operator, which
1609 ** might be either a list of expressions or a subquery.
1610 **
1611 ** The job of this routine is to find or create a b-tree object that can
1612 ** be used either to test for membership in the RHS set or to iterate through
1613 ** all members of the RHS set, skipping duplicates.
1614 **
1615 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1616 ** and pX->iTable is set to the index of that cursor.
1617 **
1618 ** The returned value of this function indicates the b-tree type, as follows:
1619 **
1620 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1621 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1622 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1623 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1624 **                         populated epheremal table.
1625 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1626 **                         implemented as a sequence of comparisons.
1627 **
1628 ** An existing b-tree might be used if the RHS expression pX is a simple
1629 ** subquery such as:
1630 **
1631 **     SELECT <column> FROM <table>
1632 **
1633 ** If the RHS of the IN operator is a list or a more complex subquery, then
1634 ** an ephemeral table might need to be generated from the RHS and then
1635 ** pX->iTable made to point to the ephemeral table instead of an
1636 ** existing table.
1637 **
1638 ** The inFlags parameter must contain exactly one of the bits
1639 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1640 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1641 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1642 ** IN index will be used to loop over all values of the RHS of the
1643 ** IN operator.
1644 **
1645 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1646 ** through the set members) then the b-tree must not contain duplicates.
1647 ** An epheremal table must be used unless the selected <column> is guaranteed
1648 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1649 ** has a UNIQUE constraint or UNIQUE index.
1650 **
1651 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1652 ** for fast set membership tests) then an epheremal table must
1653 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1654 ** be found with <column> as its left-most column.
1655 **
1656 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1657 ** if the RHS of the IN operator is a list (not a subquery) then this
1658 ** routine might decide that creating an ephemeral b-tree for membership
1659 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1660 ** calling routine should implement the IN operator using a sequence
1661 ** of Eq or Ne comparison operations.
1662 **
1663 ** When the b-tree is being used for membership tests, the calling function
1664 ** might need to know whether or not the RHS side of the IN operator
1665 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1666 ** if there is any chance that the (...) might contain a NULL value at
1667 ** runtime, then a register is allocated and the register number written
1668 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1669 ** NULL value, then *prRhsHasNull is left unchanged.
1670 **
1671 ** If a register is allocated and its location stored in *prRhsHasNull, then
1672 ** the value in that register will be NULL if the b-tree contains one or more
1673 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1674 ** NULL values.
1675 */
1676 #ifndef SQLITE_OMIT_SUBQUERY
1677 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1678   Select *p;                            /* SELECT to the right of IN operator */
1679   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1680   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1681   int mustBeUnique;                     /* True if RHS must be unique */
1682   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1683 
1684   assert( pX->op==TK_IN );
1685   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1686 
1687   /* Check to see if an existing table or index can be used to
1688   ** satisfy the query.  This is preferable to generating a new
1689   ** ephemeral table.
1690   */
1691   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1692   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1693     sqlite3 *db = pParse->db;              /* Database connection */
1694     Table *pTab;                           /* Table <table>. */
1695     Expr *pExpr;                           /* Expression <column> */
1696     i16 iCol;                              /* Index of column <column> */
1697     i16 iDb;                               /* Database idx for pTab */
1698 
1699     assert( p );                        /* Because of isCandidateForInOpt(p) */
1700     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1701     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1702     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1703     pTab = p->pSrc->a[0].pTab;
1704     pExpr = p->pEList->a[0].pExpr;
1705     iCol = (i16)pExpr->iColumn;
1706 
1707     /* Code an OP_Transaction and OP_TableLock for <table>. */
1708     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1709     sqlite3CodeVerifySchema(pParse, iDb);
1710     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1711 
1712     /* This function is only called from two places. In both cases the vdbe
1713     ** has already been allocated. So assume sqlite3GetVdbe() is always
1714     ** successful here.
1715     */
1716     assert(v);
1717     if( iCol<0 ){
1718       int iAddr = sqlite3CodeOnce(pParse);
1719       VdbeCoverage(v);
1720 
1721       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1722       eType = IN_INDEX_ROWID;
1723 
1724       sqlite3VdbeJumpHere(v, iAddr);
1725     }else{
1726       Index *pIdx;                         /* Iterator variable */
1727 
1728       /* The collation sequence used by the comparison. If an index is to
1729       ** be used in place of a temp-table, it must be ordered according
1730       ** to this collation sequence.  */
1731       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1732 
1733       /* Check that the affinity that will be used to perform the
1734       ** comparison is the same as the affinity of the column. If
1735       ** it is not, it is not possible to use any index.
1736       */
1737       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1738 
1739       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1740         if( (pIdx->aiColumn[0]==iCol)
1741          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1742          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1743         ){
1744           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1745           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1746           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1747           VdbeComment((v, "%s", pIdx->zName));
1748           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1749           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1750 
1751           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1752             *prRhsHasNull = ++pParse->nMem;
1753             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1754           }
1755           sqlite3VdbeJumpHere(v, iAddr);
1756         }
1757       }
1758     }
1759   }
1760 
1761   /* If no preexisting index is available for the IN clause
1762   ** and IN_INDEX_NOOP is an allowed reply
1763   ** and the RHS of the IN operator is a list, not a subquery
1764   ** and the RHS is not contant or has two or fewer terms,
1765   ** then it is not worth creating an ephemeral table to evaluate
1766   ** the IN operator so return IN_INDEX_NOOP.
1767   */
1768   if( eType==0
1769    && (inFlags & IN_INDEX_NOOP_OK)
1770    && !ExprHasProperty(pX, EP_xIsSelect)
1771    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1772   ){
1773     eType = IN_INDEX_NOOP;
1774   }
1775 
1776 
1777   if( eType==0 ){
1778     /* Could not find an existing table or index to use as the RHS b-tree.
1779     ** We will have to generate an ephemeral table to do the job.
1780     */
1781     u32 savedNQueryLoop = pParse->nQueryLoop;
1782     int rMayHaveNull = 0;
1783     eType = IN_INDEX_EPH;
1784     if( inFlags & IN_INDEX_LOOP ){
1785       pParse->nQueryLoop = 0;
1786       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1787         eType = IN_INDEX_ROWID;
1788       }
1789     }else if( prRhsHasNull ){
1790       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1791     }
1792     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1793     pParse->nQueryLoop = savedNQueryLoop;
1794   }else{
1795     pX->iTable = iTab;
1796   }
1797   return eType;
1798 }
1799 #endif
1800 
1801 /*
1802 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1803 ** or IN operators.  Examples:
1804 **
1805 **     (SELECT a FROM b)          -- subquery
1806 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1807 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1808 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1809 **
1810 ** The pExpr parameter describes the expression that contains the IN
1811 ** operator or subquery.
1812 **
1813 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1814 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1815 ** to some integer key column of a table B-Tree. In this case, use an
1816 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1817 ** (slower) variable length keys B-Tree.
1818 **
1819 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1820 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1821 ** All this routine does is initialize the register given by rMayHaveNull
1822 ** to NULL.  Calling routines will take care of changing this register
1823 ** value to non-NULL if the RHS is NULL-free.
1824 **
1825 ** For a SELECT or EXISTS operator, return the register that holds the
1826 ** result.  For IN operators or if an error occurs, the return value is 0.
1827 */
1828 #ifndef SQLITE_OMIT_SUBQUERY
1829 int sqlite3CodeSubselect(
1830   Parse *pParse,          /* Parsing context */
1831   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1832   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1833   int isRowid             /* If true, LHS of IN operator is a rowid */
1834 ){
1835   int jmpIfDynamic = -1;                      /* One-time test address */
1836   int rReg = 0;                           /* Register storing resulting */
1837   Vdbe *v = sqlite3GetVdbe(pParse);
1838   if( NEVER(v==0) ) return 0;
1839   sqlite3ExprCachePush(pParse);
1840 
1841   /* This code must be run in its entirety every time it is encountered
1842   ** if any of the following is true:
1843   **
1844   **    *  The right-hand side is a correlated subquery
1845   **    *  The right-hand side is an expression list containing variables
1846   **    *  We are inside a trigger
1847   **
1848   ** If all of the above are false, then we can run this code just once
1849   ** save the results, and reuse the same result on subsequent invocations.
1850   */
1851   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1852     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1853   }
1854 
1855 #ifndef SQLITE_OMIT_EXPLAIN
1856   if( pParse->explain==2 ){
1857     char *zMsg = sqlite3MPrintf(
1858         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1859         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1860     );
1861     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1862   }
1863 #endif
1864 
1865   switch( pExpr->op ){
1866     case TK_IN: {
1867       char affinity;              /* Affinity of the LHS of the IN */
1868       int addr;                   /* Address of OP_OpenEphemeral instruction */
1869       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1870       KeyInfo *pKeyInfo = 0;      /* Key information */
1871 
1872       affinity = sqlite3ExprAffinity(pLeft);
1873 
1874       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1875       ** expression it is handled the same way.  An ephemeral table is
1876       ** filled with single-field index keys representing the results
1877       ** from the SELECT or the <exprlist>.
1878       **
1879       ** If the 'x' expression is a column value, or the SELECT...
1880       ** statement returns a column value, then the affinity of that
1881       ** column is used to build the index keys. If both 'x' and the
1882       ** SELECT... statement are columns, then numeric affinity is used
1883       ** if either column has NUMERIC or INTEGER affinity. If neither
1884       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1885       ** is used.
1886       */
1887       pExpr->iTable = pParse->nTab++;
1888       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1889       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1890 
1891       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1892         /* Case 1:     expr IN (SELECT ...)
1893         **
1894         ** Generate code to write the results of the select into the temporary
1895         ** table allocated and opened above.
1896         */
1897         Select *pSelect = pExpr->x.pSelect;
1898         SelectDest dest;
1899         ExprList *pEList;
1900 
1901         assert( !isRowid );
1902         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1903         dest.affSdst = (u8)affinity;
1904         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1905         pSelect->iLimit = 0;
1906         testcase( pSelect->selFlags & SF_Distinct );
1907         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1908         if( sqlite3Select(pParse, pSelect, &dest) ){
1909           sqlite3KeyInfoUnref(pKeyInfo);
1910           return 0;
1911         }
1912         pEList = pSelect->pEList;
1913         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1914         assert( pEList!=0 );
1915         assert( pEList->nExpr>0 );
1916         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1917         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1918                                                          pEList->a[0].pExpr);
1919       }else if( ALWAYS(pExpr->x.pList!=0) ){
1920         /* Case 2:     expr IN (exprlist)
1921         **
1922         ** For each expression, build an index key from the evaluation and
1923         ** store it in the temporary table. If <expr> is a column, then use
1924         ** that columns affinity when building index keys. If <expr> is not
1925         ** a column, use numeric affinity.
1926         */
1927         int i;
1928         ExprList *pList = pExpr->x.pList;
1929         struct ExprList_item *pItem;
1930         int r1, r2, r3;
1931 
1932         if( !affinity ){
1933           affinity = SQLITE_AFF_NONE;
1934         }
1935         if( pKeyInfo ){
1936           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1937           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1938         }
1939 
1940         /* Loop through each expression in <exprlist>. */
1941         r1 = sqlite3GetTempReg(pParse);
1942         r2 = sqlite3GetTempReg(pParse);
1943         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1944         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1945           Expr *pE2 = pItem->pExpr;
1946           int iValToIns;
1947 
1948           /* If the expression is not constant then we will need to
1949           ** disable the test that was generated above that makes sure
1950           ** this code only executes once.  Because for a non-constant
1951           ** expression we need to rerun this code each time.
1952           */
1953           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1954             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1955             jmpIfDynamic = -1;
1956           }
1957 
1958           /* Evaluate the expression and insert it into the temp table */
1959           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1960             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1961           }else{
1962             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1963             if( isRowid ){
1964               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1965                                 sqlite3VdbeCurrentAddr(v)+2);
1966               VdbeCoverage(v);
1967               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1968             }else{
1969               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1970               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1971               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1972             }
1973           }
1974         }
1975         sqlite3ReleaseTempReg(pParse, r1);
1976         sqlite3ReleaseTempReg(pParse, r2);
1977       }
1978       if( pKeyInfo ){
1979         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1980       }
1981       break;
1982     }
1983 
1984     case TK_EXISTS:
1985     case TK_SELECT:
1986     default: {
1987       /* If this has to be a scalar SELECT.  Generate code to put the
1988       ** value of this select in a memory cell and record the number
1989       ** of the memory cell in iColumn.  If this is an EXISTS, write
1990       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1991       ** and record that memory cell in iColumn.
1992       */
1993       Select *pSel;                         /* SELECT statement to encode */
1994       SelectDest dest;                      /* How to deal with SELECt result */
1995 
1996       testcase( pExpr->op==TK_EXISTS );
1997       testcase( pExpr->op==TK_SELECT );
1998       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1999 
2000       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2001       pSel = pExpr->x.pSelect;
2002       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2003       if( pExpr->op==TK_SELECT ){
2004         dest.eDest = SRT_Mem;
2005         dest.iSdst = dest.iSDParm;
2006         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2007         VdbeComment((v, "Init subquery result"));
2008       }else{
2009         dest.eDest = SRT_Exists;
2010         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2011         VdbeComment((v, "Init EXISTS result"));
2012       }
2013       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2014       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2015                                   &sqlite3IntTokens[1]);
2016       pSel->iLimit = 0;
2017       if( sqlite3Select(pParse, pSel, &dest) ){
2018         return 0;
2019       }
2020       rReg = dest.iSDParm;
2021       ExprSetVVAProperty(pExpr, EP_NoReduce);
2022       break;
2023     }
2024   }
2025 
2026   if( rHasNullFlag ){
2027     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2028   }
2029 
2030   if( jmpIfDynamic>=0 ){
2031     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2032   }
2033   sqlite3ExprCachePop(pParse);
2034 
2035   return rReg;
2036 }
2037 #endif /* SQLITE_OMIT_SUBQUERY */
2038 
2039 #ifndef SQLITE_OMIT_SUBQUERY
2040 /*
2041 ** Generate code for an IN expression.
2042 **
2043 **      x IN (SELECT ...)
2044 **      x IN (value, value, ...)
2045 **
2046 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2047 ** is an array of zero or more values.  The expression is true if the LHS is
2048 ** contained within the RHS.  The value of the expression is unknown (NULL)
2049 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2050 ** RHS contains one or more NULL values.
2051 **
2052 ** This routine generates code that jumps to destIfFalse if the LHS is not
2053 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2054 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2055 ** within the RHS then fall through.
2056 */
2057 static void sqlite3ExprCodeIN(
2058   Parse *pParse,        /* Parsing and code generating context */
2059   Expr *pExpr,          /* The IN expression */
2060   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2061   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2062 ){
2063   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2064   char affinity;        /* Comparison affinity to use */
2065   int eType;            /* Type of the RHS */
2066   int r1;               /* Temporary use register */
2067   Vdbe *v;              /* Statement under construction */
2068 
2069   /* Compute the RHS.   After this step, the table with cursor
2070   ** pExpr->iTable will contains the values that make up the RHS.
2071   */
2072   v = pParse->pVdbe;
2073   assert( v!=0 );       /* OOM detected prior to this routine */
2074   VdbeNoopComment((v, "begin IN expr"));
2075   eType = sqlite3FindInIndex(pParse, pExpr,
2076                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2077                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2078 
2079   /* Figure out the affinity to use to create a key from the results
2080   ** of the expression. affinityStr stores a static string suitable for
2081   ** P4 of OP_MakeRecord.
2082   */
2083   affinity = comparisonAffinity(pExpr);
2084 
2085   /* Code the LHS, the <expr> from "<expr> IN (...)".
2086   */
2087   sqlite3ExprCachePush(pParse);
2088   r1 = sqlite3GetTempReg(pParse);
2089   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2090 
2091   /* If sqlite3FindInIndex() did not find or create an index that is
2092   ** suitable for evaluating the IN operator, then evaluate using a
2093   ** sequence of comparisons.
2094   */
2095   if( eType==IN_INDEX_NOOP ){
2096     ExprList *pList = pExpr->x.pList;
2097     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2098     int labelOk = sqlite3VdbeMakeLabel(v);
2099     int r2, regToFree;
2100     int regCkNull = 0;
2101     int ii;
2102     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2103     if( destIfNull!=destIfFalse ){
2104       regCkNull = sqlite3GetTempReg(pParse);
2105       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2106     }
2107     for(ii=0; ii<pList->nExpr; ii++){
2108       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2109       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2110         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2111       }
2112       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2113         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2114                           (void*)pColl, P4_COLLSEQ);
2115         VdbeCoverageIf(v, ii<pList->nExpr-1);
2116         VdbeCoverageIf(v, ii==pList->nExpr-1);
2117         sqlite3VdbeChangeP5(v, affinity);
2118       }else{
2119         assert( destIfNull==destIfFalse );
2120         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2121                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2122         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2123       }
2124       sqlite3ReleaseTempReg(pParse, regToFree);
2125     }
2126     if( regCkNull ){
2127       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2128       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2129     }
2130     sqlite3VdbeResolveLabel(v, labelOk);
2131     sqlite3ReleaseTempReg(pParse, regCkNull);
2132   }else{
2133 
2134     /* If the LHS is NULL, then the result is either false or NULL depending
2135     ** on whether the RHS is empty or not, respectively.
2136     */
2137     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2138       if( destIfNull==destIfFalse ){
2139         /* Shortcut for the common case where the false and NULL outcomes are
2140         ** the same. */
2141         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2142       }else{
2143         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2144         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2145         VdbeCoverage(v);
2146         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
2147         sqlite3VdbeJumpHere(v, addr1);
2148       }
2149     }
2150 
2151     if( eType==IN_INDEX_ROWID ){
2152       /* In this case, the RHS is the ROWID of table b-tree
2153       */
2154       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2155       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2156       VdbeCoverage(v);
2157     }else{
2158       /* In this case, the RHS is an index b-tree.
2159       */
2160       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2161 
2162       /* If the set membership test fails, then the result of the
2163       ** "x IN (...)" expression must be either 0 or NULL. If the set
2164       ** contains no NULL values, then the result is 0. If the set
2165       ** contains one or more NULL values, then the result of the
2166       ** expression is also NULL.
2167       */
2168       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2169       if( rRhsHasNull==0 ){
2170         /* This branch runs if it is known at compile time that the RHS
2171         ** cannot contain NULL values. This happens as the result
2172         ** of a "NOT NULL" constraint in the database schema.
2173         **
2174         ** Also run this branch if NULL is equivalent to FALSE
2175         ** for this particular IN operator.
2176         */
2177         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2178         VdbeCoverage(v);
2179       }else{
2180         /* In this branch, the RHS of the IN might contain a NULL and
2181         ** the presence of a NULL on the RHS makes a difference in the
2182         ** outcome.
2183         */
2184         int j1;
2185 
2186         /* First check to see if the LHS is contained in the RHS.  If so,
2187         ** then the answer is TRUE the presence of NULLs in the RHS does
2188         ** not matter.  If the LHS is not contained in the RHS, then the
2189         ** answer is NULL if the RHS contains NULLs and the answer is
2190         ** FALSE if the RHS is NULL-free.
2191         */
2192         j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2193         VdbeCoverage(v);
2194         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2195         VdbeCoverage(v);
2196         sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2197         sqlite3VdbeJumpHere(v, j1);
2198       }
2199     }
2200   }
2201   sqlite3ReleaseTempReg(pParse, r1);
2202   sqlite3ExprCachePop(pParse);
2203   VdbeComment((v, "end IN expr"));
2204 }
2205 #endif /* SQLITE_OMIT_SUBQUERY */
2206 
2207 /*
2208 ** Duplicate an 8-byte value
2209 */
2210 static char *dup8bytes(Vdbe *v, const char *in){
2211   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2212   if( out ){
2213     memcpy(out, in, 8);
2214   }
2215   return out;
2216 }
2217 
2218 #ifndef SQLITE_OMIT_FLOATING_POINT
2219 /*
2220 ** Generate an instruction that will put the floating point
2221 ** value described by z[0..n-1] into register iMem.
2222 **
2223 ** The z[] string will probably not be zero-terminated.  But the
2224 ** z[n] character is guaranteed to be something that does not look
2225 ** like the continuation of the number.
2226 */
2227 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2228   if( ALWAYS(z!=0) ){
2229     double value;
2230     char *zV;
2231     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2232     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2233     if( negateFlag ) value = -value;
2234     zV = dup8bytes(v, (char*)&value);
2235     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2236   }
2237 }
2238 #endif
2239 
2240 
2241 /*
2242 ** Generate an instruction that will put the integer describe by
2243 ** text z[0..n-1] into register iMem.
2244 **
2245 ** Expr.u.zToken is always UTF8 and zero-terminated.
2246 */
2247 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2248   Vdbe *v = pParse->pVdbe;
2249   if( pExpr->flags & EP_IntValue ){
2250     int i = pExpr->u.iValue;
2251     assert( i>=0 );
2252     if( negFlag ) i = -i;
2253     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2254   }else{
2255     int c;
2256     i64 value;
2257     const char *z = pExpr->u.zToken;
2258     assert( z!=0 );
2259     c = sqlite3DecOrHexToI64(z, &value);
2260     if( c==0 || (c==2 && negFlag) ){
2261       char *zV;
2262       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2263       zV = dup8bytes(v, (char*)&value);
2264       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2265     }else{
2266 #ifdef SQLITE_OMIT_FLOATING_POINT
2267       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2268 #else
2269 #ifndef SQLITE_OMIT_HEX_INTEGER
2270       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2271         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2272       }else
2273 #endif
2274       {
2275         codeReal(v, z, negFlag, iMem);
2276       }
2277 #endif
2278     }
2279   }
2280 }
2281 
2282 /*
2283 ** Clear a cache entry.
2284 */
2285 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2286   if( p->tempReg ){
2287     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2288       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2289     }
2290     p->tempReg = 0;
2291   }
2292 }
2293 
2294 
2295 /*
2296 ** Record in the column cache that a particular column from a
2297 ** particular table is stored in a particular register.
2298 */
2299 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2300   int i;
2301   int minLru;
2302   int idxLru;
2303   struct yColCache *p;
2304 
2305   /* Unless an error has occurred, register numbers are always positive. */
2306   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2307   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2308 
2309   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2310   ** for testing only - to verify that SQLite always gets the same answer
2311   ** with and without the column cache.
2312   */
2313   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2314 
2315   /* First replace any existing entry.
2316   **
2317   ** Actually, the way the column cache is currently used, we are guaranteed
2318   ** that the object will never already be in cache.  Verify this guarantee.
2319   */
2320 #ifndef NDEBUG
2321   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2322     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2323   }
2324 #endif
2325 
2326   /* Find an empty slot and replace it */
2327   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2328     if( p->iReg==0 ){
2329       p->iLevel = pParse->iCacheLevel;
2330       p->iTable = iTab;
2331       p->iColumn = iCol;
2332       p->iReg = iReg;
2333       p->tempReg = 0;
2334       p->lru = pParse->iCacheCnt++;
2335       return;
2336     }
2337   }
2338 
2339   /* Replace the last recently used */
2340   minLru = 0x7fffffff;
2341   idxLru = -1;
2342   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2343     if( p->lru<minLru ){
2344       idxLru = i;
2345       minLru = p->lru;
2346     }
2347   }
2348   if( ALWAYS(idxLru>=0) ){
2349     p = &pParse->aColCache[idxLru];
2350     p->iLevel = pParse->iCacheLevel;
2351     p->iTable = iTab;
2352     p->iColumn = iCol;
2353     p->iReg = iReg;
2354     p->tempReg = 0;
2355     p->lru = pParse->iCacheCnt++;
2356     return;
2357   }
2358 }
2359 
2360 /*
2361 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2362 ** Purge the range of registers from the column cache.
2363 */
2364 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2365   int i;
2366   int iLast = iReg + nReg - 1;
2367   struct yColCache *p;
2368   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2369     int r = p->iReg;
2370     if( r>=iReg && r<=iLast ){
2371       cacheEntryClear(pParse, p);
2372       p->iReg = 0;
2373     }
2374   }
2375 }
2376 
2377 /*
2378 ** Remember the current column cache context.  Any new entries added
2379 ** added to the column cache after this call are removed when the
2380 ** corresponding pop occurs.
2381 */
2382 void sqlite3ExprCachePush(Parse *pParse){
2383   pParse->iCacheLevel++;
2384 #ifdef SQLITE_DEBUG
2385   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2386     printf("PUSH to %d\n", pParse->iCacheLevel);
2387   }
2388 #endif
2389 }
2390 
2391 /*
2392 ** Remove from the column cache any entries that were added since the
2393 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2394 ** the cache to the state it was in prior the most recent Push.
2395 */
2396 void sqlite3ExprCachePop(Parse *pParse){
2397   int i;
2398   struct yColCache *p;
2399   assert( pParse->iCacheLevel>=1 );
2400   pParse->iCacheLevel--;
2401 #ifdef SQLITE_DEBUG
2402   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2403     printf("POP  to %d\n", pParse->iCacheLevel);
2404   }
2405 #endif
2406   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2407     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2408       cacheEntryClear(pParse, p);
2409       p->iReg = 0;
2410     }
2411   }
2412 }
2413 
2414 /*
2415 ** When a cached column is reused, make sure that its register is
2416 ** no longer available as a temp register.  ticket #3879:  that same
2417 ** register might be in the cache in multiple places, so be sure to
2418 ** get them all.
2419 */
2420 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2421   int i;
2422   struct yColCache *p;
2423   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2424     if( p->iReg==iReg ){
2425       p->tempReg = 0;
2426     }
2427   }
2428 }
2429 
2430 /*
2431 ** Generate code to extract the value of the iCol-th column of a table.
2432 */
2433 void sqlite3ExprCodeGetColumnOfTable(
2434   Vdbe *v,        /* The VDBE under construction */
2435   Table *pTab,    /* The table containing the value */
2436   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2437   int iCol,       /* Index of the column to extract */
2438   int regOut      /* Extract the value into this register */
2439 ){
2440   if( iCol<0 || iCol==pTab->iPKey ){
2441     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2442   }else{
2443     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2444     int x = iCol;
2445     if( !HasRowid(pTab) ){
2446       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2447     }
2448     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2449   }
2450   if( iCol>=0 ){
2451     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2452   }
2453 }
2454 
2455 /*
2456 ** Generate code that will extract the iColumn-th column from
2457 ** table pTab and store the column value in a register.  An effort
2458 ** is made to store the column value in register iReg, but this is
2459 ** not guaranteed.  The location of the column value is returned.
2460 **
2461 ** There must be an open cursor to pTab in iTable when this routine
2462 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2463 */
2464 int sqlite3ExprCodeGetColumn(
2465   Parse *pParse,   /* Parsing and code generating context */
2466   Table *pTab,     /* Description of the table we are reading from */
2467   int iColumn,     /* Index of the table column */
2468   int iTable,      /* The cursor pointing to the table */
2469   int iReg,        /* Store results here */
2470   u8 p5            /* P5 value for OP_Column */
2471 ){
2472   Vdbe *v = pParse->pVdbe;
2473   int i;
2474   struct yColCache *p;
2475 
2476   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2477     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2478       p->lru = pParse->iCacheCnt++;
2479       sqlite3ExprCachePinRegister(pParse, p->iReg);
2480       return p->iReg;
2481     }
2482   }
2483   assert( v!=0 );
2484   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2485   if( p5 ){
2486     sqlite3VdbeChangeP5(v, p5);
2487   }else{
2488     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2489   }
2490   return iReg;
2491 }
2492 
2493 /*
2494 ** Clear all column cache entries.
2495 */
2496 void sqlite3ExprCacheClear(Parse *pParse){
2497   int i;
2498   struct yColCache *p;
2499 
2500 #if SQLITE_DEBUG
2501   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2502     printf("CLEAR\n");
2503   }
2504 #endif
2505   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2506     if( p->iReg ){
2507       cacheEntryClear(pParse, p);
2508       p->iReg = 0;
2509     }
2510   }
2511 }
2512 
2513 /*
2514 ** Record the fact that an affinity change has occurred on iCount
2515 ** registers starting with iStart.
2516 */
2517 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2518   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2519 }
2520 
2521 /*
2522 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2523 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2524 */
2525 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2526   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2527   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2528   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2529 }
2530 
2531 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2532 /*
2533 ** Return true if any register in the range iFrom..iTo (inclusive)
2534 ** is used as part of the column cache.
2535 **
2536 ** This routine is used within assert() and testcase() macros only
2537 ** and does not appear in a normal build.
2538 */
2539 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2540   int i;
2541   struct yColCache *p;
2542   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2543     int r = p->iReg;
2544     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2545   }
2546   return 0;
2547 }
2548 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2549 
2550 /*
2551 ** Convert an expression node to a TK_REGISTER
2552 */
2553 static void exprToRegister(Expr *p, int iReg){
2554   p->op2 = p->op;
2555   p->op = TK_REGISTER;
2556   p->iTable = iReg;
2557   ExprClearProperty(p, EP_Skip);
2558 }
2559 
2560 /*
2561 ** Generate code into the current Vdbe to evaluate the given
2562 ** expression.  Attempt to store the results in register "target".
2563 ** Return the register where results are stored.
2564 **
2565 ** With this routine, there is no guarantee that results will
2566 ** be stored in target.  The result might be stored in some other
2567 ** register if it is convenient to do so.  The calling function
2568 ** must check the return code and move the results to the desired
2569 ** register.
2570 */
2571 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2572   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2573   int op;                   /* The opcode being coded */
2574   int inReg = target;       /* Results stored in register inReg */
2575   int regFree1 = 0;         /* If non-zero free this temporary register */
2576   int regFree2 = 0;         /* If non-zero free this temporary register */
2577   int r1, r2, r3, r4;       /* Various register numbers */
2578   sqlite3 *db = pParse->db; /* The database connection */
2579   Expr tempX;               /* Temporary expression node */
2580 
2581   assert( target>0 && target<=pParse->nMem );
2582   if( v==0 ){
2583     assert( pParse->db->mallocFailed );
2584     return 0;
2585   }
2586 
2587   if( pExpr==0 ){
2588     op = TK_NULL;
2589   }else{
2590     op = pExpr->op;
2591   }
2592   switch( op ){
2593     case TK_AGG_COLUMN: {
2594       AggInfo *pAggInfo = pExpr->pAggInfo;
2595       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2596       if( !pAggInfo->directMode ){
2597         assert( pCol->iMem>0 );
2598         inReg = pCol->iMem;
2599         break;
2600       }else if( pAggInfo->useSortingIdx ){
2601         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2602                               pCol->iSorterColumn, target);
2603         break;
2604       }
2605       /* Otherwise, fall thru into the TK_COLUMN case */
2606     }
2607     case TK_COLUMN: {
2608       int iTab = pExpr->iTable;
2609       if( iTab<0 ){
2610         if( pParse->ckBase>0 ){
2611           /* Generating CHECK constraints or inserting into partial index */
2612           inReg = pExpr->iColumn + pParse->ckBase;
2613           break;
2614         }else{
2615           /* Deleting from a partial index */
2616           iTab = pParse->iPartIdxTab;
2617         }
2618       }
2619       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2620                                pExpr->iColumn, iTab, target,
2621                                pExpr->op2);
2622       break;
2623     }
2624     case TK_INTEGER: {
2625       codeInteger(pParse, pExpr, 0, target);
2626       break;
2627     }
2628 #ifndef SQLITE_OMIT_FLOATING_POINT
2629     case TK_FLOAT: {
2630       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2631       codeReal(v, pExpr->u.zToken, 0, target);
2632       break;
2633     }
2634 #endif
2635     case TK_STRING: {
2636       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2637       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2638       break;
2639     }
2640     case TK_NULL: {
2641       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2642       break;
2643     }
2644 #ifndef SQLITE_OMIT_BLOB_LITERAL
2645     case TK_BLOB: {
2646       int n;
2647       const char *z;
2648       char *zBlob;
2649       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2650       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2651       assert( pExpr->u.zToken[1]=='\'' );
2652       z = &pExpr->u.zToken[2];
2653       n = sqlite3Strlen30(z) - 1;
2654       assert( z[n]=='\'' );
2655       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2656       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2657       break;
2658     }
2659 #endif
2660     case TK_VARIABLE: {
2661       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2662       assert( pExpr->u.zToken!=0 );
2663       assert( pExpr->u.zToken[0]!=0 );
2664       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2665       if( pExpr->u.zToken[1]!=0 ){
2666         assert( pExpr->u.zToken[0]=='?'
2667              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2668         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2669       }
2670       break;
2671     }
2672     case TK_REGISTER: {
2673       inReg = pExpr->iTable;
2674       break;
2675     }
2676     case TK_AS: {
2677       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2678       break;
2679     }
2680 #ifndef SQLITE_OMIT_CAST
2681     case TK_CAST: {
2682       /* Expressions of the form:   CAST(pLeft AS token) */
2683       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2684       if( inReg!=target ){
2685         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2686         inReg = target;
2687       }
2688       sqlite3VdbeAddOp2(v, OP_Cast, target,
2689                         sqlite3AffinityType(pExpr->u.zToken, 0));
2690       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2691       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2692       break;
2693     }
2694 #endif /* SQLITE_OMIT_CAST */
2695     case TK_LT:
2696     case TK_LE:
2697     case TK_GT:
2698     case TK_GE:
2699     case TK_NE:
2700     case TK_EQ: {
2701       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2702       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2703       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2704                   r1, r2, inReg, SQLITE_STOREP2);
2705       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2706       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2707       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2708       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2709       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2710       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2711       testcase( regFree1==0 );
2712       testcase( regFree2==0 );
2713       break;
2714     }
2715     case TK_IS:
2716     case TK_ISNOT: {
2717       testcase( op==TK_IS );
2718       testcase( op==TK_ISNOT );
2719       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2720       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2721       op = (op==TK_IS) ? TK_EQ : TK_NE;
2722       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2723                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2724       VdbeCoverageIf(v, op==TK_EQ);
2725       VdbeCoverageIf(v, op==TK_NE);
2726       testcase( regFree1==0 );
2727       testcase( regFree2==0 );
2728       break;
2729     }
2730     case TK_AND:
2731     case TK_OR:
2732     case TK_PLUS:
2733     case TK_STAR:
2734     case TK_MINUS:
2735     case TK_REM:
2736     case TK_BITAND:
2737     case TK_BITOR:
2738     case TK_SLASH:
2739     case TK_LSHIFT:
2740     case TK_RSHIFT:
2741     case TK_CONCAT: {
2742       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2743       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2744       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2745       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2746       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2747       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2748       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2749       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2750       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2751       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2752       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2753       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2754       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2755       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2756       testcase( regFree1==0 );
2757       testcase( regFree2==0 );
2758       break;
2759     }
2760     case TK_UMINUS: {
2761       Expr *pLeft = pExpr->pLeft;
2762       assert( pLeft );
2763       if( pLeft->op==TK_INTEGER ){
2764         codeInteger(pParse, pLeft, 1, target);
2765 #ifndef SQLITE_OMIT_FLOATING_POINT
2766       }else if( pLeft->op==TK_FLOAT ){
2767         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2768         codeReal(v, pLeft->u.zToken, 1, target);
2769 #endif
2770       }else{
2771         tempX.op = TK_INTEGER;
2772         tempX.flags = EP_IntValue|EP_TokenOnly;
2773         tempX.u.iValue = 0;
2774         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2775         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2776         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2777         testcase( regFree2==0 );
2778       }
2779       inReg = target;
2780       break;
2781     }
2782     case TK_BITNOT:
2783     case TK_NOT: {
2784       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2785       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2786       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2787       testcase( regFree1==0 );
2788       inReg = target;
2789       sqlite3VdbeAddOp2(v, op, r1, inReg);
2790       break;
2791     }
2792     case TK_ISNULL:
2793     case TK_NOTNULL: {
2794       int addr;
2795       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2796       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2797       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2798       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2799       testcase( regFree1==0 );
2800       addr = sqlite3VdbeAddOp1(v, op, r1);
2801       VdbeCoverageIf(v, op==TK_ISNULL);
2802       VdbeCoverageIf(v, op==TK_NOTNULL);
2803       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2804       sqlite3VdbeJumpHere(v, addr);
2805       break;
2806     }
2807     case TK_AGG_FUNCTION: {
2808       AggInfo *pInfo = pExpr->pAggInfo;
2809       if( pInfo==0 ){
2810         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2811         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2812       }else{
2813         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2814       }
2815       break;
2816     }
2817     case TK_FUNCTION: {
2818       ExprList *pFarg;       /* List of function arguments */
2819       int nFarg;             /* Number of function arguments */
2820       FuncDef *pDef;         /* The function definition object */
2821       int nId;               /* Length of the function name in bytes */
2822       const char *zId;       /* The function name */
2823       u32 constMask = 0;     /* Mask of function arguments that are constant */
2824       int i;                 /* Loop counter */
2825       u8 enc = ENC(db);      /* The text encoding used by this database */
2826       CollSeq *pColl = 0;    /* A collating sequence */
2827 
2828       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2829       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2830         pFarg = 0;
2831       }else{
2832         pFarg = pExpr->x.pList;
2833       }
2834       nFarg = pFarg ? pFarg->nExpr : 0;
2835       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2836       zId = pExpr->u.zToken;
2837       nId = sqlite3Strlen30(zId);
2838       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2839       if( pDef==0 || pDef->xFunc==0 ){
2840         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2841         break;
2842       }
2843 
2844       /* Attempt a direct implementation of the built-in COALESCE() and
2845       ** IFNULL() functions.  This avoids unnecessary evaluation of
2846       ** arguments past the first non-NULL argument.
2847       */
2848       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2849         int endCoalesce = sqlite3VdbeMakeLabel(v);
2850         assert( nFarg>=2 );
2851         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2852         for(i=1; i<nFarg; i++){
2853           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2854           VdbeCoverage(v);
2855           sqlite3ExprCacheRemove(pParse, target, 1);
2856           sqlite3ExprCachePush(pParse);
2857           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2858           sqlite3ExprCachePop(pParse);
2859         }
2860         sqlite3VdbeResolveLabel(v, endCoalesce);
2861         break;
2862       }
2863 
2864       /* The UNLIKELY() function is a no-op.  The result is the value
2865       ** of the first argument.
2866       */
2867       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2868         assert( nFarg>=1 );
2869         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2870         break;
2871       }
2872 
2873       for(i=0; i<nFarg; i++){
2874         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2875           testcase( i==31 );
2876           constMask |= MASKBIT32(i);
2877         }
2878         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2879           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2880         }
2881       }
2882       if( pFarg ){
2883         if( constMask ){
2884           r1 = pParse->nMem+1;
2885           pParse->nMem += nFarg;
2886         }else{
2887           r1 = sqlite3GetTempRange(pParse, nFarg);
2888         }
2889 
2890         /* For length() and typeof() functions with a column argument,
2891         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2892         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2893         ** loading.
2894         */
2895         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2896           u8 exprOp;
2897           assert( nFarg==1 );
2898           assert( pFarg->a[0].pExpr!=0 );
2899           exprOp = pFarg->a[0].pExpr->op;
2900           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2901             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2902             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2903             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2904             pFarg->a[0].pExpr->op2 =
2905                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2906           }
2907         }
2908 
2909         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2910         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2911                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2912         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2913       }else{
2914         r1 = 0;
2915       }
2916 #ifndef SQLITE_OMIT_VIRTUALTABLE
2917       /* Possibly overload the function if the first argument is
2918       ** a virtual table column.
2919       **
2920       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2921       ** second argument, not the first, as the argument to test to
2922       ** see if it is a column in a virtual table.  This is done because
2923       ** the left operand of infix functions (the operand we want to
2924       ** control overloading) ends up as the second argument to the
2925       ** function.  The expression "A glob B" is equivalent to
2926       ** "glob(B,A).  We want to use the A in "A glob B" to test
2927       ** for function overloading.  But we use the B term in "glob(B,A)".
2928       */
2929       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2930         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2931       }else if( nFarg>0 ){
2932         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2933       }
2934 #endif
2935       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2936         if( !pColl ) pColl = db->pDfltColl;
2937         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2938       }
2939       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2940                         (char*)pDef, P4_FUNCDEF);
2941       sqlite3VdbeChangeP5(v, (u8)nFarg);
2942       if( nFarg && constMask==0 ){
2943         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2944       }
2945       break;
2946     }
2947 #ifndef SQLITE_OMIT_SUBQUERY
2948     case TK_EXISTS:
2949     case TK_SELECT: {
2950       testcase( op==TK_EXISTS );
2951       testcase( op==TK_SELECT );
2952       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2953       break;
2954     }
2955     case TK_IN: {
2956       int destIfFalse = sqlite3VdbeMakeLabel(v);
2957       int destIfNull = sqlite3VdbeMakeLabel(v);
2958       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2959       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2960       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2961       sqlite3VdbeResolveLabel(v, destIfFalse);
2962       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2963       sqlite3VdbeResolveLabel(v, destIfNull);
2964       break;
2965     }
2966 #endif /* SQLITE_OMIT_SUBQUERY */
2967 
2968 
2969     /*
2970     **    x BETWEEN y AND z
2971     **
2972     ** This is equivalent to
2973     **
2974     **    x>=y AND x<=z
2975     **
2976     ** X is stored in pExpr->pLeft.
2977     ** Y is stored in pExpr->pList->a[0].pExpr.
2978     ** Z is stored in pExpr->pList->a[1].pExpr.
2979     */
2980     case TK_BETWEEN: {
2981       Expr *pLeft = pExpr->pLeft;
2982       struct ExprList_item *pLItem = pExpr->x.pList->a;
2983       Expr *pRight = pLItem->pExpr;
2984 
2985       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2986       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2987       testcase( regFree1==0 );
2988       testcase( regFree2==0 );
2989       r3 = sqlite3GetTempReg(pParse);
2990       r4 = sqlite3GetTempReg(pParse);
2991       codeCompare(pParse, pLeft, pRight, OP_Ge,
2992                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
2993       pLItem++;
2994       pRight = pLItem->pExpr;
2995       sqlite3ReleaseTempReg(pParse, regFree2);
2996       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2997       testcase( regFree2==0 );
2998       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2999       VdbeCoverage(v);
3000       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3001       sqlite3ReleaseTempReg(pParse, r3);
3002       sqlite3ReleaseTempReg(pParse, r4);
3003       break;
3004     }
3005     case TK_COLLATE:
3006     case TK_UPLUS: {
3007       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3008       break;
3009     }
3010 
3011     case TK_TRIGGER: {
3012       /* If the opcode is TK_TRIGGER, then the expression is a reference
3013       ** to a column in the new.* or old.* pseudo-tables available to
3014       ** trigger programs. In this case Expr.iTable is set to 1 for the
3015       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3016       ** is set to the column of the pseudo-table to read, or to -1 to
3017       ** read the rowid field.
3018       **
3019       ** The expression is implemented using an OP_Param opcode. The p1
3020       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3021       ** to reference another column of the old.* pseudo-table, where
3022       ** i is the index of the column. For a new.rowid reference, p1 is
3023       ** set to (n+1), where n is the number of columns in each pseudo-table.
3024       ** For a reference to any other column in the new.* pseudo-table, p1
3025       ** is set to (n+2+i), where n and i are as defined previously. For
3026       ** example, if the table on which triggers are being fired is
3027       ** declared as:
3028       **
3029       **   CREATE TABLE t1(a, b);
3030       **
3031       ** Then p1 is interpreted as follows:
3032       **
3033       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3034       **   p1==1   ->    old.a         p1==4   ->    new.a
3035       **   p1==2   ->    old.b         p1==5   ->    new.b
3036       */
3037       Table *pTab = pExpr->pTab;
3038       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3039 
3040       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3041       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3042       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3043       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3044 
3045       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3046       VdbeComment((v, "%s.%s -> $%d",
3047         (pExpr->iTable ? "new" : "old"),
3048         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3049         target
3050       ));
3051 
3052 #ifndef SQLITE_OMIT_FLOATING_POINT
3053       /* If the column has REAL affinity, it may currently be stored as an
3054       ** integer. Use OP_RealAffinity to make sure it is really real.
3055       **
3056       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3057       ** floating point when extracting it from the record.  */
3058       if( pExpr->iColumn>=0
3059        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3060       ){
3061         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3062       }
3063 #endif
3064       break;
3065     }
3066 
3067 
3068     /*
3069     ** Form A:
3070     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3071     **
3072     ** Form B:
3073     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3074     **
3075     ** Form A is can be transformed into the equivalent form B as follows:
3076     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3077     **        WHEN x=eN THEN rN ELSE y END
3078     **
3079     ** X (if it exists) is in pExpr->pLeft.
3080     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3081     ** odd.  The Y is also optional.  If the number of elements in x.pList
3082     ** is even, then Y is omitted and the "otherwise" result is NULL.
3083     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3084     **
3085     ** The result of the expression is the Ri for the first matching Ei,
3086     ** or if there is no matching Ei, the ELSE term Y, or if there is
3087     ** no ELSE term, NULL.
3088     */
3089     default: assert( op==TK_CASE ); {
3090       int endLabel;                     /* GOTO label for end of CASE stmt */
3091       int nextCase;                     /* GOTO label for next WHEN clause */
3092       int nExpr;                        /* 2x number of WHEN terms */
3093       int i;                            /* Loop counter */
3094       ExprList *pEList;                 /* List of WHEN terms */
3095       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3096       Expr opCompare;                   /* The X==Ei expression */
3097       Expr *pX;                         /* The X expression */
3098       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3099       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3100 
3101       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3102       assert(pExpr->x.pList->nExpr > 0);
3103       pEList = pExpr->x.pList;
3104       aListelem = pEList->a;
3105       nExpr = pEList->nExpr;
3106       endLabel = sqlite3VdbeMakeLabel(v);
3107       if( (pX = pExpr->pLeft)!=0 ){
3108         tempX = *pX;
3109         testcase( pX->op==TK_COLUMN );
3110         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3111         testcase( regFree1==0 );
3112         opCompare.op = TK_EQ;
3113         opCompare.pLeft = &tempX;
3114         pTest = &opCompare;
3115         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3116         ** The value in regFree1 might get SCopy-ed into the file result.
3117         ** So make sure that the regFree1 register is not reused for other
3118         ** purposes and possibly overwritten.  */
3119         regFree1 = 0;
3120       }
3121       for(i=0; i<nExpr-1; i=i+2){
3122         sqlite3ExprCachePush(pParse);
3123         if( pX ){
3124           assert( pTest!=0 );
3125           opCompare.pRight = aListelem[i].pExpr;
3126         }else{
3127           pTest = aListelem[i].pExpr;
3128         }
3129         nextCase = sqlite3VdbeMakeLabel(v);
3130         testcase( pTest->op==TK_COLUMN );
3131         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3132         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3133         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3134         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
3135         sqlite3ExprCachePop(pParse);
3136         sqlite3VdbeResolveLabel(v, nextCase);
3137       }
3138       if( (nExpr&1)!=0 ){
3139         sqlite3ExprCachePush(pParse);
3140         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3141         sqlite3ExprCachePop(pParse);
3142       }else{
3143         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3144       }
3145       assert( db->mallocFailed || pParse->nErr>0
3146            || pParse->iCacheLevel==iCacheLevel );
3147       sqlite3VdbeResolveLabel(v, endLabel);
3148       break;
3149     }
3150 #ifndef SQLITE_OMIT_TRIGGER
3151     case TK_RAISE: {
3152       assert( pExpr->affinity==OE_Rollback
3153            || pExpr->affinity==OE_Abort
3154            || pExpr->affinity==OE_Fail
3155            || pExpr->affinity==OE_Ignore
3156       );
3157       if( !pParse->pTriggerTab ){
3158         sqlite3ErrorMsg(pParse,
3159                        "RAISE() may only be used within a trigger-program");
3160         return 0;
3161       }
3162       if( pExpr->affinity==OE_Abort ){
3163         sqlite3MayAbort(pParse);
3164       }
3165       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3166       if( pExpr->affinity==OE_Ignore ){
3167         sqlite3VdbeAddOp4(
3168             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3169         VdbeCoverage(v);
3170       }else{
3171         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3172                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3173       }
3174 
3175       break;
3176     }
3177 #endif
3178   }
3179   sqlite3ReleaseTempReg(pParse, regFree1);
3180   sqlite3ReleaseTempReg(pParse, regFree2);
3181   return inReg;
3182 }
3183 
3184 /*
3185 ** Factor out the code of the given expression to initialization time.
3186 */
3187 void sqlite3ExprCodeAtInit(
3188   Parse *pParse,    /* Parsing context */
3189   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3190   int regDest,      /* Store the value in this register */
3191   u8 reusable       /* True if this expression is reusable */
3192 ){
3193   ExprList *p;
3194   assert( ConstFactorOk(pParse) );
3195   p = pParse->pConstExpr;
3196   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3197   p = sqlite3ExprListAppend(pParse, p, pExpr);
3198   if( p ){
3199      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3200      pItem->u.iConstExprReg = regDest;
3201      pItem->reusable = reusable;
3202   }
3203   pParse->pConstExpr = p;
3204 }
3205 
3206 /*
3207 ** Generate code to evaluate an expression and store the results
3208 ** into a register.  Return the register number where the results
3209 ** are stored.
3210 **
3211 ** If the register is a temporary register that can be deallocated,
3212 ** then write its number into *pReg.  If the result register is not
3213 ** a temporary, then set *pReg to zero.
3214 **
3215 ** If pExpr is a constant, then this routine might generate this
3216 ** code to fill the register in the initialization section of the
3217 ** VDBE program, in order to factor it out of the evaluation loop.
3218 */
3219 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3220   int r2;
3221   pExpr = sqlite3ExprSkipCollate(pExpr);
3222   if( ConstFactorOk(pParse)
3223    && pExpr->op!=TK_REGISTER
3224    && sqlite3ExprIsConstantNotJoin(pExpr)
3225   ){
3226     ExprList *p = pParse->pConstExpr;
3227     int i;
3228     *pReg  = 0;
3229     if( p ){
3230       struct ExprList_item *pItem;
3231       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3232         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3233           return pItem->u.iConstExprReg;
3234         }
3235       }
3236     }
3237     r2 = ++pParse->nMem;
3238     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3239   }else{
3240     int r1 = sqlite3GetTempReg(pParse);
3241     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3242     if( r2==r1 ){
3243       *pReg = r1;
3244     }else{
3245       sqlite3ReleaseTempReg(pParse, r1);
3246       *pReg = 0;
3247     }
3248   }
3249   return r2;
3250 }
3251 
3252 /*
3253 ** Generate code that will evaluate expression pExpr and store the
3254 ** results in register target.  The results are guaranteed to appear
3255 ** in register target.
3256 */
3257 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3258   int inReg;
3259 
3260   assert( target>0 && target<=pParse->nMem );
3261   if( pExpr && pExpr->op==TK_REGISTER ){
3262     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3263   }else{
3264     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3265     assert( pParse->pVdbe || pParse->db->mallocFailed );
3266     if( inReg!=target && pParse->pVdbe ){
3267       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3268     }
3269   }
3270 }
3271 
3272 /*
3273 ** Generate code that will evaluate expression pExpr and store the
3274 ** results in register target.  The results are guaranteed to appear
3275 ** in register target.  If the expression is constant, then this routine
3276 ** might choose to code the expression at initialization time.
3277 */
3278 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3279   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3280     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3281   }else{
3282     sqlite3ExprCode(pParse, pExpr, target);
3283   }
3284 }
3285 
3286 /*
3287 ** Generate code that evaluates the given expression and puts the result
3288 ** in register target.
3289 **
3290 ** Also make a copy of the expression results into another "cache" register
3291 ** and modify the expression so that the next time it is evaluated,
3292 ** the result is a copy of the cache register.
3293 **
3294 ** This routine is used for expressions that are used multiple
3295 ** times.  They are evaluated once and the results of the expression
3296 ** are reused.
3297 */
3298 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3299   Vdbe *v = pParse->pVdbe;
3300   int iMem;
3301 
3302   assert( target>0 );
3303   assert( pExpr->op!=TK_REGISTER );
3304   sqlite3ExprCode(pParse, pExpr, target);
3305   iMem = ++pParse->nMem;
3306   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3307   exprToRegister(pExpr, iMem);
3308 }
3309 
3310 #ifdef SQLITE_DEBUG
3311 /*
3312 ** Generate a human-readable explanation of an expression tree.
3313 */
3314 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
3315   const char *zBinOp = 0;   /* Binary operator */
3316   const char *zUniOp = 0;   /* Unary operator */
3317   pView = sqlite3TreeViewPush(pView, moreToFollow);
3318   if( pExpr==0 ){
3319     sqlite3TreeViewLine(pView, "nil");
3320     sqlite3TreeViewPop(pView);
3321     return;
3322   }
3323   switch( pExpr->op ){
3324     case TK_AGG_COLUMN: {
3325       sqlite3TreeViewLine(pView, "AGG{%d:%d}",
3326             pExpr->iTable, pExpr->iColumn);
3327       break;
3328     }
3329     case TK_COLUMN: {
3330       if( pExpr->iTable<0 ){
3331         /* This only happens when coding check constraints */
3332         sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn);
3333       }else{
3334         sqlite3TreeViewLine(pView, "{%d:%d}",
3335                              pExpr->iTable, pExpr->iColumn);
3336       }
3337       break;
3338     }
3339     case TK_INTEGER: {
3340       if( pExpr->flags & EP_IntValue ){
3341         sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue);
3342       }else{
3343         sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken);
3344       }
3345       break;
3346     }
3347 #ifndef SQLITE_OMIT_FLOATING_POINT
3348     case TK_FLOAT: {
3349       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3350       break;
3351     }
3352 #endif
3353     case TK_STRING: {
3354       sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken);
3355       break;
3356     }
3357     case TK_NULL: {
3358       sqlite3TreeViewLine(pView,"NULL");
3359       break;
3360     }
3361 #ifndef SQLITE_OMIT_BLOB_LITERAL
3362     case TK_BLOB: {
3363       sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken);
3364       break;
3365     }
3366 #endif
3367     case TK_VARIABLE: {
3368       sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)",
3369                           pExpr->u.zToken, pExpr->iColumn);
3370       break;
3371     }
3372     case TK_REGISTER: {
3373       sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable);
3374       break;
3375     }
3376     case TK_AS: {
3377       sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken);
3378       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3379       break;
3380     }
3381     case TK_ID: {
3382       sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken);
3383       break;
3384     }
3385 #ifndef SQLITE_OMIT_CAST
3386     case TK_CAST: {
3387       /* Expressions of the form:   CAST(pLeft AS token) */
3388       sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken);
3389       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3390       break;
3391     }
3392 #endif /* SQLITE_OMIT_CAST */
3393     case TK_LT:      zBinOp = "LT";     break;
3394     case TK_LE:      zBinOp = "LE";     break;
3395     case TK_GT:      zBinOp = "GT";     break;
3396     case TK_GE:      zBinOp = "GE";     break;
3397     case TK_NE:      zBinOp = "NE";     break;
3398     case TK_EQ:      zBinOp = "EQ";     break;
3399     case TK_IS:      zBinOp = "IS";     break;
3400     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3401     case TK_AND:     zBinOp = "AND";    break;
3402     case TK_OR:      zBinOp = "OR";     break;
3403     case TK_PLUS:    zBinOp = "ADD";    break;
3404     case TK_STAR:    zBinOp = "MUL";    break;
3405     case TK_MINUS:   zBinOp = "SUB";    break;
3406     case TK_REM:     zBinOp = "REM";    break;
3407     case TK_BITAND:  zBinOp = "BITAND"; break;
3408     case TK_BITOR:   zBinOp = "BITOR";  break;
3409     case TK_SLASH:   zBinOp = "DIV";    break;
3410     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3411     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3412     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3413     case TK_DOT:     zBinOp = "DOT";    break;
3414 
3415     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3416     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3417     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3418     case TK_NOT:     zUniOp = "NOT";    break;
3419     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3420     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3421 
3422     case TK_COLLATE: {
3423       sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken);
3424       sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3425       break;
3426     }
3427 
3428     case TK_AGG_FUNCTION:
3429     case TK_FUNCTION: {
3430       ExprList *pFarg;       /* List of function arguments */
3431       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3432         pFarg = 0;
3433       }else{
3434         pFarg = pExpr->x.pList;
3435       }
3436       if( pExpr->op==TK_AGG_FUNCTION ){
3437         sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
3438                              pExpr->op2, pExpr->u.zToken);
3439       }else{
3440         sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken);
3441       }
3442       if( pFarg ){
3443         sqlite3TreeViewExprList(pView, pFarg, 0, 0);
3444       }
3445       break;
3446     }
3447 #ifndef SQLITE_OMIT_SUBQUERY
3448     case TK_EXISTS: {
3449       sqlite3TreeViewLine(pView, "EXISTS-expr");
3450       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3451       break;
3452     }
3453     case TK_SELECT: {
3454       sqlite3TreeViewLine(pView, "SELECT-expr");
3455       sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3456       break;
3457     }
3458     case TK_IN: {
3459       sqlite3TreeViewLine(pView, "IN");
3460       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3461       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3462         sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0);
3463       }else{
3464         sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3465       }
3466       break;
3467     }
3468 #endif /* SQLITE_OMIT_SUBQUERY */
3469 
3470     /*
3471     **    x BETWEEN y AND z
3472     **
3473     ** This is equivalent to
3474     **
3475     **    x>=y AND x<=z
3476     **
3477     ** X is stored in pExpr->pLeft.
3478     ** Y is stored in pExpr->pList->a[0].pExpr.
3479     ** Z is stored in pExpr->pList->a[1].pExpr.
3480     */
3481     case TK_BETWEEN: {
3482       Expr *pX = pExpr->pLeft;
3483       Expr *pY = pExpr->x.pList->a[0].pExpr;
3484       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3485       sqlite3TreeViewLine(pView, "BETWEEN");
3486       sqlite3TreeViewExpr(pView, pX, 1);
3487       sqlite3TreeViewExpr(pView, pY, 1);
3488       sqlite3TreeViewExpr(pView, pZ, 0);
3489       break;
3490     }
3491     case TK_TRIGGER: {
3492       /* If the opcode is TK_TRIGGER, then the expression is a reference
3493       ** to a column in the new.* or old.* pseudo-tables available to
3494       ** trigger programs. In this case Expr.iTable is set to 1 for the
3495       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3496       ** is set to the column of the pseudo-table to read, or to -1 to
3497       ** read the rowid field.
3498       */
3499       sqlite3TreeViewLine(pView, "%s(%d)",
3500           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3501       break;
3502     }
3503     case TK_CASE: {
3504       sqlite3TreeViewLine(pView, "CASE");
3505       sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3506       sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0);
3507       break;
3508     }
3509 #ifndef SQLITE_OMIT_TRIGGER
3510     case TK_RAISE: {
3511       const char *zType = "unk";
3512       switch( pExpr->affinity ){
3513         case OE_Rollback:   zType = "rollback";  break;
3514         case OE_Abort:      zType = "abort";     break;
3515         case OE_Fail:       zType = "fail";      break;
3516         case OE_Ignore:     zType = "ignore";    break;
3517       }
3518       sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken);
3519       break;
3520     }
3521 #endif
3522     default: {
3523       sqlite3TreeViewLine(pView, "op=%d", pExpr->op);
3524       break;
3525     }
3526   }
3527   if( zBinOp ){
3528     sqlite3TreeViewLine(pView, "%s", zBinOp);
3529     sqlite3TreeViewExpr(pView, pExpr->pLeft, 1);
3530     sqlite3TreeViewExpr(pView, pExpr->pRight, 0);
3531   }else if( zUniOp ){
3532     sqlite3TreeViewLine(pView, "%s", zUniOp);
3533     sqlite3TreeViewExpr(pView, pExpr->pLeft, 0);
3534   }
3535   sqlite3TreeViewPop(pView);
3536 }
3537 #endif /* SQLITE_DEBUG */
3538 
3539 #ifdef SQLITE_DEBUG
3540 /*
3541 ** Generate a human-readable explanation of an expression list.
3542 */
3543 void sqlite3TreeViewExprList(
3544   TreeView *pView,
3545   const ExprList *pList,
3546   u8 moreToFollow,
3547   const char *zLabel
3548 ){
3549   int i;
3550   pView = sqlite3TreeViewPush(pView, moreToFollow);
3551   if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST";
3552   if( pList==0 ){
3553     sqlite3TreeViewLine(pView, "%s (empty)", zLabel);
3554   }else{
3555     sqlite3TreeViewLine(pView, "%s", zLabel);
3556     for(i=0; i<pList->nExpr; i++){
3557       sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1);
3558 #if 0
3559      if( pList->a[i].zName ){
3560         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3561       }
3562       if( pList->a[i].bSpanIsTab ){
3563         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3564       }
3565 #endif
3566     }
3567   }
3568   sqlite3TreeViewPop(pView);
3569 }
3570 #endif /* SQLITE_DEBUG */
3571 
3572 /*
3573 ** Generate code that pushes the value of every element of the given
3574 ** expression list into a sequence of registers beginning at target.
3575 **
3576 ** Return the number of elements evaluated.
3577 **
3578 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3579 ** filled using OP_SCopy.  OP_Copy must be used instead.
3580 **
3581 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3582 ** factored out into initialization code.
3583 */
3584 int sqlite3ExprCodeExprList(
3585   Parse *pParse,     /* Parsing context */
3586   ExprList *pList,   /* The expression list to be coded */
3587   int target,        /* Where to write results */
3588   u8 flags           /* SQLITE_ECEL_* flags */
3589 ){
3590   struct ExprList_item *pItem;
3591   int i, n;
3592   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3593   assert( pList!=0 );
3594   assert( target>0 );
3595   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3596   n = pList->nExpr;
3597   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3598   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3599     Expr *pExpr = pItem->pExpr;
3600     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3601       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3602     }else{
3603       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3604       if( inReg!=target+i ){
3605         VdbeOp *pOp;
3606         Vdbe *v = pParse->pVdbe;
3607         if( copyOp==OP_Copy
3608          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3609          && pOp->p1+pOp->p3+1==inReg
3610          && pOp->p2+pOp->p3+1==target+i
3611         ){
3612           pOp->p3++;
3613         }else{
3614           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3615         }
3616       }
3617     }
3618   }
3619   return n;
3620 }
3621 
3622 /*
3623 ** Generate code for a BETWEEN operator.
3624 **
3625 **    x BETWEEN y AND z
3626 **
3627 ** The above is equivalent to
3628 **
3629 **    x>=y AND x<=z
3630 **
3631 ** Code it as such, taking care to do the common subexpression
3632 ** elimination of x.
3633 */
3634 static void exprCodeBetween(
3635   Parse *pParse,    /* Parsing and code generating context */
3636   Expr *pExpr,      /* The BETWEEN expression */
3637   int dest,         /* Jump here if the jump is taken */
3638   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3639   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3640 ){
3641   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3642   Expr compLeft;    /* The  x>=y  term */
3643   Expr compRight;   /* The  x<=z  term */
3644   Expr exprX;       /* The  x  subexpression */
3645   int regFree1 = 0; /* Temporary use register */
3646 
3647   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3648   exprX = *pExpr->pLeft;
3649   exprAnd.op = TK_AND;
3650   exprAnd.pLeft = &compLeft;
3651   exprAnd.pRight = &compRight;
3652   compLeft.op = TK_GE;
3653   compLeft.pLeft = &exprX;
3654   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3655   compRight.op = TK_LE;
3656   compRight.pLeft = &exprX;
3657   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3658   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3659   if( jumpIfTrue ){
3660     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3661   }else{
3662     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3663   }
3664   sqlite3ReleaseTempReg(pParse, regFree1);
3665 
3666   /* Ensure adequate test coverage */
3667   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3668   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3669   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3670   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3671   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3672   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3673   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3674   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3675 }
3676 
3677 /*
3678 ** Generate code for a boolean expression such that a jump is made
3679 ** to the label "dest" if the expression is true but execution
3680 ** continues straight thru if the expression is false.
3681 **
3682 ** If the expression evaluates to NULL (neither true nor false), then
3683 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3684 **
3685 ** This code depends on the fact that certain token values (ex: TK_EQ)
3686 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3687 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3688 ** the make process cause these values to align.  Assert()s in the code
3689 ** below verify that the numbers are aligned correctly.
3690 */
3691 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3692   Vdbe *v = pParse->pVdbe;
3693   int op = 0;
3694   int regFree1 = 0;
3695   int regFree2 = 0;
3696   int r1, r2;
3697 
3698   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3699   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3700   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3701   op = pExpr->op;
3702   switch( op ){
3703     case TK_AND: {
3704       int d2 = sqlite3VdbeMakeLabel(v);
3705       testcase( jumpIfNull==0 );
3706       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3707       sqlite3ExprCachePush(pParse);
3708       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3709       sqlite3VdbeResolveLabel(v, d2);
3710       sqlite3ExprCachePop(pParse);
3711       break;
3712     }
3713     case TK_OR: {
3714       testcase( jumpIfNull==0 );
3715       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3716       sqlite3ExprCachePush(pParse);
3717       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3718       sqlite3ExprCachePop(pParse);
3719       break;
3720     }
3721     case TK_NOT: {
3722       testcase( jumpIfNull==0 );
3723       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3724       break;
3725     }
3726     case TK_LT:
3727     case TK_LE:
3728     case TK_GT:
3729     case TK_GE:
3730     case TK_NE:
3731     case TK_EQ: {
3732       testcase( jumpIfNull==0 );
3733       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3734       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3735       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3736                   r1, r2, dest, jumpIfNull);
3737       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3738       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3739       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3740       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3741       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3742       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3743       testcase( regFree1==0 );
3744       testcase( regFree2==0 );
3745       break;
3746     }
3747     case TK_IS:
3748     case TK_ISNOT: {
3749       testcase( op==TK_IS );
3750       testcase( op==TK_ISNOT );
3751       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3752       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3753       op = (op==TK_IS) ? TK_EQ : TK_NE;
3754       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3755                   r1, r2, dest, SQLITE_NULLEQ);
3756       VdbeCoverageIf(v, op==TK_EQ);
3757       VdbeCoverageIf(v, op==TK_NE);
3758       testcase( regFree1==0 );
3759       testcase( regFree2==0 );
3760       break;
3761     }
3762     case TK_ISNULL:
3763     case TK_NOTNULL: {
3764       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3765       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3766       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3767       sqlite3VdbeAddOp2(v, op, r1, dest);
3768       VdbeCoverageIf(v, op==TK_ISNULL);
3769       VdbeCoverageIf(v, op==TK_NOTNULL);
3770       testcase( regFree1==0 );
3771       break;
3772     }
3773     case TK_BETWEEN: {
3774       testcase( jumpIfNull==0 );
3775       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3776       break;
3777     }
3778 #ifndef SQLITE_OMIT_SUBQUERY
3779     case TK_IN: {
3780       int destIfFalse = sqlite3VdbeMakeLabel(v);
3781       int destIfNull = jumpIfNull ? dest : destIfFalse;
3782       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3783       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3784       sqlite3VdbeResolveLabel(v, destIfFalse);
3785       break;
3786     }
3787 #endif
3788     default: {
3789       if( exprAlwaysTrue(pExpr) ){
3790         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3791       }else if( exprAlwaysFalse(pExpr) ){
3792         /* No-op */
3793       }else{
3794         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3795         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3796         VdbeCoverage(v);
3797         testcase( regFree1==0 );
3798         testcase( jumpIfNull==0 );
3799       }
3800       break;
3801     }
3802   }
3803   sqlite3ReleaseTempReg(pParse, regFree1);
3804   sqlite3ReleaseTempReg(pParse, regFree2);
3805 }
3806 
3807 /*
3808 ** Generate code for a boolean expression such that a jump is made
3809 ** to the label "dest" if the expression is false but execution
3810 ** continues straight thru if the expression is true.
3811 **
3812 ** If the expression evaluates to NULL (neither true nor false) then
3813 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3814 ** is 0.
3815 */
3816 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3817   Vdbe *v = pParse->pVdbe;
3818   int op = 0;
3819   int regFree1 = 0;
3820   int regFree2 = 0;
3821   int r1, r2;
3822 
3823   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3824   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3825   if( pExpr==0 )    return;
3826 
3827   /* The value of pExpr->op and op are related as follows:
3828   **
3829   **       pExpr->op            op
3830   **       ---------          ----------
3831   **       TK_ISNULL          OP_NotNull
3832   **       TK_NOTNULL         OP_IsNull
3833   **       TK_NE              OP_Eq
3834   **       TK_EQ              OP_Ne
3835   **       TK_GT              OP_Le
3836   **       TK_LE              OP_Gt
3837   **       TK_GE              OP_Lt
3838   **       TK_LT              OP_Ge
3839   **
3840   ** For other values of pExpr->op, op is undefined and unused.
3841   ** The value of TK_ and OP_ constants are arranged such that we
3842   ** can compute the mapping above using the following expression.
3843   ** Assert()s verify that the computation is correct.
3844   */
3845   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3846 
3847   /* Verify correct alignment of TK_ and OP_ constants
3848   */
3849   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3850   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3851   assert( pExpr->op!=TK_NE || op==OP_Eq );
3852   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3853   assert( pExpr->op!=TK_LT || op==OP_Ge );
3854   assert( pExpr->op!=TK_LE || op==OP_Gt );
3855   assert( pExpr->op!=TK_GT || op==OP_Le );
3856   assert( pExpr->op!=TK_GE || op==OP_Lt );
3857 
3858   switch( pExpr->op ){
3859     case TK_AND: {
3860       testcase( jumpIfNull==0 );
3861       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3862       sqlite3ExprCachePush(pParse);
3863       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3864       sqlite3ExprCachePop(pParse);
3865       break;
3866     }
3867     case TK_OR: {
3868       int d2 = sqlite3VdbeMakeLabel(v);
3869       testcase( jumpIfNull==0 );
3870       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3871       sqlite3ExprCachePush(pParse);
3872       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3873       sqlite3VdbeResolveLabel(v, d2);
3874       sqlite3ExprCachePop(pParse);
3875       break;
3876     }
3877     case TK_NOT: {
3878       testcase( jumpIfNull==0 );
3879       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3880       break;
3881     }
3882     case TK_LT:
3883     case TK_LE:
3884     case TK_GT:
3885     case TK_GE:
3886     case TK_NE:
3887     case TK_EQ: {
3888       testcase( jumpIfNull==0 );
3889       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3890       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3891       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3892                   r1, r2, dest, jumpIfNull);
3893       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3894       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3895       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3896       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3897       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3898       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3899       testcase( regFree1==0 );
3900       testcase( regFree2==0 );
3901       break;
3902     }
3903     case TK_IS:
3904     case TK_ISNOT: {
3905       testcase( pExpr->op==TK_IS );
3906       testcase( pExpr->op==TK_ISNOT );
3907       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3908       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3909       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3910       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3911                   r1, r2, dest, SQLITE_NULLEQ);
3912       VdbeCoverageIf(v, op==TK_EQ);
3913       VdbeCoverageIf(v, op==TK_NE);
3914       testcase( regFree1==0 );
3915       testcase( regFree2==0 );
3916       break;
3917     }
3918     case TK_ISNULL:
3919     case TK_NOTNULL: {
3920       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3921       sqlite3VdbeAddOp2(v, op, r1, dest);
3922       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3923       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3924       testcase( regFree1==0 );
3925       break;
3926     }
3927     case TK_BETWEEN: {
3928       testcase( jumpIfNull==0 );
3929       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3930       break;
3931     }
3932 #ifndef SQLITE_OMIT_SUBQUERY
3933     case TK_IN: {
3934       if( jumpIfNull ){
3935         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3936       }else{
3937         int destIfNull = sqlite3VdbeMakeLabel(v);
3938         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3939         sqlite3VdbeResolveLabel(v, destIfNull);
3940       }
3941       break;
3942     }
3943 #endif
3944     default: {
3945       if( exprAlwaysFalse(pExpr) ){
3946         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3947       }else if( exprAlwaysTrue(pExpr) ){
3948         /* no-op */
3949       }else{
3950         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3951         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3952         VdbeCoverage(v);
3953         testcase( regFree1==0 );
3954         testcase( jumpIfNull==0 );
3955       }
3956       break;
3957     }
3958   }
3959   sqlite3ReleaseTempReg(pParse, regFree1);
3960   sqlite3ReleaseTempReg(pParse, regFree2);
3961 }
3962 
3963 /*
3964 ** Do a deep comparison of two expression trees.  Return 0 if the two
3965 ** expressions are completely identical.  Return 1 if they differ only
3966 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3967 ** other than the top-level COLLATE operator.
3968 **
3969 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3970 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3971 **
3972 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3973 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3974 **
3975 ** Sometimes this routine will return 2 even if the two expressions
3976 ** really are equivalent.  If we cannot prove that the expressions are
3977 ** identical, we return 2 just to be safe.  So if this routine
3978 ** returns 2, then you do not really know for certain if the two
3979 ** expressions are the same.  But if you get a 0 or 1 return, then you
3980 ** can be sure the expressions are the same.  In the places where
3981 ** this routine is used, it does not hurt to get an extra 2 - that
3982 ** just might result in some slightly slower code.  But returning
3983 ** an incorrect 0 or 1 could lead to a malfunction.
3984 */
3985 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3986   u32 combinedFlags;
3987   if( pA==0 || pB==0 ){
3988     return pB==pA ? 0 : 2;
3989   }
3990   combinedFlags = pA->flags | pB->flags;
3991   if( combinedFlags & EP_IntValue ){
3992     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3993       return 0;
3994     }
3995     return 2;
3996   }
3997   if( pA->op!=pB->op ){
3998     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3999       return 1;
4000     }
4001     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
4002       return 1;
4003     }
4004     return 2;
4005   }
4006   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
4007     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4008       return pA->op==TK_COLLATE ? 1 : 2;
4009     }
4010   }
4011   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4012   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4013     if( combinedFlags & EP_xIsSelect ) return 2;
4014     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
4015     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
4016     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4017     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
4018       if( pA->iColumn!=pB->iColumn ) return 2;
4019       if( pA->iTable!=pB->iTable
4020        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4021     }
4022   }
4023   return 0;
4024 }
4025 
4026 /*
4027 ** Compare two ExprList objects.  Return 0 if they are identical and
4028 ** non-zero if they differ in any way.
4029 **
4030 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4031 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4032 **
4033 ** This routine might return non-zero for equivalent ExprLists.  The
4034 ** only consequence will be disabled optimizations.  But this routine
4035 ** must never return 0 if the two ExprList objects are different, or
4036 ** a malfunction will result.
4037 **
4038 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4039 ** always differs from a non-NULL pointer.
4040 */
4041 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4042   int i;
4043   if( pA==0 && pB==0 ) return 0;
4044   if( pA==0 || pB==0 ) return 1;
4045   if( pA->nExpr!=pB->nExpr ) return 1;
4046   for(i=0; i<pA->nExpr; i++){
4047     Expr *pExprA = pA->a[i].pExpr;
4048     Expr *pExprB = pB->a[i].pExpr;
4049     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4050     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
4051   }
4052   return 0;
4053 }
4054 
4055 /*
4056 ** Return true if we can prove the pE2 will always be true if pE1 is
4057 ** true.  Return false if we cannot complete the proof or if pE2 might
4058 ** be false.  Examples:
4059 **
4060 **     pE1: x==5       pE2: x==5             Result: true
4061 **     pE1: x>0        pE2: x==5             Result: false
4062 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4063 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4064 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4065 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4066 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4067 **
4068 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4069 ** Expr.iTable<0 then assume a table number given by iTab.
4070 **
4071 ** When in doubt, return false.  Returning true might give a performance
4072 ** improvement.  Returning false might cause a performance reduction, but
4073 ** it will always give the correct answer and is hence always safe.
4074 */
4075 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
4076   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
4077     return 1;
4078   }
4079   if( pE2->op==TK_OR
4080    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
4081              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
4082   ){
4083     return 1;
4084   }
4085   if( pE2->op==TK_NOTNULL
4086    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
4087    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
4088   ){
4089     return 1;
4090   }
4091   return 0;
4092 }
4093 
4094 /*
4095 ** An instance of the following structure is used by the tree walker
4096 ** to count references to table columns in the arguments of an
4097 ** aggregate function, in order to implement the
4098 ** sqlite3FunctionThisSrc() routine.
4099 */
4100 struct SrcCount {
4101   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4102   int nThis;       /* Number of references to columns in pSrcList */
4103   int nOther;      /* Number of references to columns in other FROM clauses */
4104 };
4105 
4106 /*
4107 ** Count the number of references to columns.
4108 */
4109 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4110   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4111   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4112   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4113   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4114   ** NEVER() will need to be removed. */
4115   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4116     int i;
4117     struct SrcCount *p = pWalker->u.pSrcCount;
4118     SrcList *pSrc = p->pSrc;
4119     int nSrc = pSrc ? pSrc->nSrc : 0;
4120     for(i=0; i<nSrc; i++){
4121       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4122     }
4123     if( i<nSrc ){
4124       p->nThis++;
4125     }else{
4126       p->nOther++;
4127     }
4128   }
4129   return WRC_Continue;
4130 }
4131 
4132 /*
4133 ** Determine if any of the arguments to the pExpr Function reference
4134 ** pSrcList.  Return true if they do.  Also return true if the function
4135 ** has no arguments or has only constant arguments.  Return false if pExpr
4136 ** references columns but not columns of tables found in pSrcList.
4137 */
4138 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4139   Walker w;
4140   struct SrcCount cnt;
4141   assert( pExpr->op==TK_AGG_FUNCTION );
4142   memset(&w, 0, sizeof(w));
4143   w.xExprCallback = exprSrcCount;
4144   w.u.pSrcCount = &cnt;
4145   cnt.pSrc = pSrcList;
4146   cnt.nThis = 0;
4147   cnt.nOther = 0;
4148   sqlite3WalkExprList(&w, pExpr->x.pList);
4149   return cnt.nThis>0 || cnt.nOther==0;
4150 }
4151 
4152 /*
4153 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4154 ** the new element.  Return a negative number if malloc fails.
4155 */
4156 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4157   int i;
4158   pInfo->aCol = sqlite3ArrayAllocate(
4159        db,
4160        pInfo->aCol,
4161        sizeof(pInfo->aCol[0]),
4162        &pInfo->nColumn,
4163        &i
4164   );
4165   return i;
4166 }
4167 
4168 /*
4169 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4170 ** the new element.  Return a negative number if malloc fails.
4171 */
4172 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4173   int i;
4174   pInfo->aFunc = sqlite3ArrayAllocate(
4175        db,
4176        pInfo->aFunc,
4177        sizeof(pInfo->aFunc[0]),
4178        &pInfo->nFunc,
4179        &i
4180   );
4181   return i;
4182 }
4183 
4184 /*
4185 ** This is the xExprCallback for a tree walker.  It is used to
4186 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4187 ** for additional information.
4188 */
4189 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4190   int i;
4191   NameContext *pNC = pWalker->u.pNC;
4192   Parse *pParse = pNC->pParse;
4193   SrcList *pSrcList = pNC->pSrcList;
4194   AggInfo *pAggInfo = pNC->pAggInfo;
4195 
4196   switch( pExpr->op ){
4197     case TK_AGG_COLUMN:
4198     case TK_COLUMN: {
4199       testcase( pExpr->op==TK_AGG_COLUMN );
4200       testcase( pExpr->op==TK_COLUMN );
4201       /* Check to see if the column is in one of the tables in the FROM
4202       ** clause of the aggregate query */
4203       if( ALWAYS(pSrcList!=0) ){
4204         struct SrcList_item *pItem = pSrcList->a;
4205         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4206           struct AggInfo_col *pCol;
4207           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4208           if( pExpr->iTable==pItem->iCursor ){
4209             /* If we reach this point, it means that pExpr refers to a table
4210             ** that is in the FROM clause of the aggregate query.
4211             **
4212             ** Make an entry for the column in pAggInfo->aCol[] if there
4213             ** is not an entry there already.
4214             */
4215             int k;
4216             pCol = pAggInfo->aCol;
4217             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4218               if( pCol->iTable==pExpr->iTable &&
4219                   pCol->iColumn==pExpr->iColumn ){
4220                 break;
4221               }
4222             }
4223             if( (k>=pAggInfo->nColumn)
4224              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4225             ){
4226               pCol = &pAggInfo->aCol[k];
4227               pCol->pTab = pExpr->pTab;
4228               pCol->iTable = pExpr->iTable;
4229               pCol->iColumn = pExpr->iColumn;
4230               pCol->iMem = ++pParse->nMem;
4231               pCol->iSorterColumn = -1;
4232               pCol->pExpr = pExpr;
4233               if( pAggInfo->pGroupBy ){
4234                 int j, n;
4235                 ExprList *pGB = pAggInfo->pGroupBy;
4236                 struct ExprList_item *pTerm = pGB->a;
4237                 n = pGB->nExpr;
4238                 for(j=0; j<n; j++, pTerm++){
4239                   Expr *pE = pTerm->pExpr;
4240                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4241                       pE->iColumn==pExpr->iColumn ){
4242                     pCol->iSorterColumn = j;
4243                     break;
4244                   }
4245                 }
4246               }
4247               if( pCol->iSorterColumn<0 ){
4248                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4249               }
4250             }
4251             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4252             ** because it was there before or because we just created it).
4253             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4254             ** pAggInfo->aCol[] entry.
4255             */
4256             ExprSetVVAProperty(pExpr, EP_NoReduce);
4257             pExpr->pAggInfo = pAggInfo;
4258             pExpr->op = TK_AGG_COLUMN;
4259             pExpr->iAgg = (i16)k;
4260             break;
4261           } /* endif pExpr->iTable==pItem->iCursor */
4262         } /* end loop over pSrcList */
4263       }
4264       return WRC_Prune;
4265     }
4266     case TK_AGG_FUNCTION: {
4267       if( (pNC->ncFlags & NC_InAggFunc)==0
4268        && pWalker->walkerDepth==pExpr->op2
4269       ){
4270         /* Check to see if pExpr is a duplicate of another aggregate
4271         ** function that is already in the pAggInfo structure
4272         */
4273         struct AggInfo_func *pItem = pAggInfo->aFunc;
4274         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4275           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4276             break;
4277           }
4278         }
4279         if( i>=pAggInfo->nFunc ){
4280           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4281           */
4282           u8 enc = ENC(pParse->db);
4283           i = addAggInfoFunc(pParse->db, pAggInfo);
4284           if( i>=0 ){
4285             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4286             pItem = &pAggInfo->aFunc[i];
4287             pItem->pExpr = pExpr;
4288             pItem->iMem = ++pParse->nMem;
4289             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4290             pItem->pFunc = sqlite3FindFunction(pParse->db,
4291                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4292                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4293             if( pExpr->flags & EP_Distinct ){
4294               pItem->iDistinct = pParse->nTab++;
4295             }else{
4296               pItem->iDistinct = -1;
4297             }
4298           }
4299         }
4300         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4301         */
4302         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4303         ExprSetVVAProperty(pExpr, EP_NoReduce);
4304         pExpr->iAgg = (i16)i;
4305         pExpr->pAggInfo = pAggInfo;
4306         return WRC_Prune;
4307       }else{
4308         return WRC_Continue;
4309       }
4310     }
4311   }
4312   return WRC_Continue;
4313 }
4314 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4315   UNUSED_PARAMETER(pWalker);
4316   UNUSED_PARAMETER(pSelect);
4317   return WRC_Continue;
4318 }
4319 
4320 /*
4321 ** Analyze the pExpr expression looking for aggregate functions and
4322 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4323 ** points to.  Additional entries are made on the AggInfo object as
4324 ** necessary.
4325 **
4326 ** This routine should only be called after the expression has been
4327 ** analyzed by sqlite3ResolveExprNames().
4328 */
4329 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4330   Walker w;
4331   memset(&w, 0, sizeof(w));
4332   w.xExprCallback = analyzeAggregate;
4333   w.xSelectCallback = analyzeAggregatesInSelect;
4334   w.u.pNC = pNC;
4335   assert( pNC->pSrcList!=0 );
4336   sqlite3WalkExpr(&w, pExpr);
4337 }
4338 
4339 /*
4340 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4341 ** expression list.  Return the number of errors.
4342 **
4343 ** If an error is found, the analysis is cut short.
4344 */
4345 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4346   struct ExprList_item *pItem;
4347   int i;
4348   if( pList ){
4349     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4350       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4351     }
4352   }
4353 }
4354 
4355 /*
4356 ** Allocate a single new register for use to hold some intermediate result.
4357 */
4358 int sqlite3GetTempReg(Parse *pParse){
4359   if( pParse->nTempReg==0 ){
4360     return ++pParse->nMem;
4361   }
4362   return pParse->aTempReg[--pParse->nTempReg];
4363 }
4364 
4365 /*
4366 ** Deallocate a register, making available for reuse for some other
4367 ** purpose.
4368 **
4369 ** If a register is currently being used by the column cache, then
4370 ** the deallocation is deferred until the column cache line that uses
4371 ** the register becomes stale.
4372 */
4373 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4374   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4375     int i;
4376     struct yColCache *p;
4377     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4378       if( p->iReg==iReg ){
4379         p->tempReg = 1;
4380         return;
4381       }
4382     }
4383     pParse->aTempReg[pParse->nTempReg++] = iReg;
4384   }
4385 }
4386 
4387 /*
4388 ** Allocate or deallocate a block of nReg consecutive registers
4389 */
4390 int sqlite3GetTempRange(Parse *pParse, int nReg){
4391   int i, n;
4392   i = pParse->iRangeReg;
4393   n = pParse->nRangeReg;
4394   if( nReg<=n ){
4395     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4396     pParse->iRangeReg += nReg;
4397     pParse->nRangeReg -= nReg;
4398   }else{
4399     i = pParse->nMem+1;
4400     pParse->nMem += nReg;
4401   }
4402   return i;
4403 }
4404 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4405   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4406   if( nReg>pParse->nRangeReg ){
4407     pParse->nRangeReg = nReg;
4408     pParse->iRangeReg = iReg;
4409   }
4410 }
4411 
4412 /*
4413 ** Mark all temporary registers as being unavailable for reuse.
4414 */
4415 void sqlite3ClearTempRegCache(Parse *pParse){
4416   pParse->nTempReg = 0;
4417   pParse->nRangeReg = 0;
4418 }
4419