1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_CAST || op==TK_UPLUS ){ 145 p = p->pLeft; 146 continue; 147 } 148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 150 break; 151 } 152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 153 || op==TK_REGISTER || op==TK_TRIGGER) 154 && p->pTab!=0 155 ){ 156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 157 ** a TK_COLUMN but was previously evaluated and cached in a register */ 158 int j = p->iColumn; 159 if( j>=0 ){ 160 const char *zColl = p->pTab->aCol[j].zColl; 161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 162 } 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 if( i>0 ) sqlite3ExprCachePush(pParse); 585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 594 sqlite3ReleaseTempReg(pParse, regFree1); 595 sqlite3ReleaseTempReg(pParse, regFree2); 596 if( i>0 ) sqlite3ExprCachePop(pParse); 597 if( i==nLeft-1 ){ 598 break; 599 } 600 if( opx==TK_EQ ){ 601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else if( opx==TK_NE ){ 604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 605 p5 |= SQLITE_KEEPNULL; 606 }else{ 607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 609 VdbeCoverageIf(v, op==TK_LT); 610 VdbeCoverageIf(v, op==TK_GT); 611 VdbeCoverageIf(v, op==TK_LE); 612 VdbeCoverageIf(v, op==TK_GE); 613 if( i==nLeft-2 ) opx = op; 614 } 615 } 616 sqlite3VdbeResolveLabel(v, addrDone); 617 } 618 619 #if SQLITE_MAX_EXPR_DEPTH>0 620 /* 621 ** Check that argument nHeight is less than or equal to the maximum 622 ** expression depth allowed. If it is not, leave an error message in 623 ** pParse. 624 */ 625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 626 int rc = SQLITE_OK; 627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 628 if( nHeight>mxHeight ){ 629 sqlite3ErrorMsg(pParse, 630 "Expression tree is too large (maximum depth %d)", mxHeight 631 ); 632 rc = SQLITE_ERROR; 633 } 634 return rc; 635 } 636 637 /* The following three functions, heightOfExpr(), heightOfExprList() 638 ** and heightOfSelect(), are used to determine the maximum height 639 ** of any expression tree referenced by the structure passed as the 640 ** first argument. 641 ** 642 ** If this maximum height is greater than the current value pointed 643 ** to by pnHeight, the second parameter, then set *pnHeight to that 644 ** value. 645 */ 646 static void heightOfExpr(Expr *p, int *pnHeight){ 647 if( p ){ 648 if( p->nHeight>*pnHeight ){ 649 *pnHeight = p->nHeight; 650 } 651 } 652 } 653 static void heightOfExprList(ExprList *p, int *pnHeight){ 654 if( p ){ 655 int i; 656 for(i=0; i<p->nExpr; i++){ 657 heightOfExpr(p->a[i].pExpr, pnHeight); 658 } 659 } 660 } 661 static void heightOfSelect(Select *p, int *pnHeight){ 662 if( p ){ 663 heightOfExpr(p->pWhere, pnHeight); 664 heightOfExpr(p->pHaving, pnHeight); 665 heightOfExpr(p->pLimit, pnHeight); 666 heightOfExprList(p->pEList, pnHeight); 667 heightOfExprList(p->pGroupBy, pnHeight); 668 heightOfExprList(p->pOrderBy, pnHeight); 669 heightOfSelect(p->pPrior, pnHeight); 670 } 671 } 672 673 /* 674 ** Set the Expr.nHeight variable in the structure passed as an 675 ** argument. An expression with no children, Expr.pList or 676 ** Expr.pSelect member has a height of 1. Any other expression 677 ** has a height equal to the maximum height of any other 678 ** referenced Expr plus one. 679 ** 680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 681 ** if appropriate. 682 */ 683 static void exprSetHeight(Expr *p){ 684 int nHeight = 0; 685 heightOfExpr(p->pLeft, &nHeight); 686 heightOfExpr(p->pRight, &nHeight); 687 if( ExprHasProperty(p, EP_xIsSelect) ){ 688 heightOfSelect(p->x.pSelect, &nHeight); 689 }else if( p->x.pList ){ 690 heightOfExprList(p->x.pList, &nHeight); 691 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 692 } 693 p->nHeight = nHeight + 1; 694 } 695 696 /* 697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 698 ** the height is greater than the maximum allowed expression depth, 699 ** leave an error in pParse. 700 ** 701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 702 ** Expr.flags. 703 */ 704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 705 if( pParse->nErr ) return; 706 exprSetHeight(p); 707 sqlite3ExprCheckHeight(pParse, p->nHeight); 708 } 709 710 /* 711 ** Return the maximum height of any expression tree referenced 712 ** by the select statement passed as an argument. 713 */ 714 int sqlite3SelectExprHeight(Select *p){ 715 int nHeight = 0; 716 heightOfSelect(p, &nHeight); 717 return nHeight; 718 } 719 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 720 /* 721 ** Propagate all EP_Propagate flags from the Expr.x.pList into 722 ** Expr.flags. 723 */ 724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 725 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 726 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 727 } 728 } 729 #define exprSetHeight(y) 730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 731 732 /* 733 ** This routine is the core allocator for Expr nodes. 734 ** 735 ** Construct a new expression node and return a pointer to it. Memory 736 ** for this node and for the pToken argument is a single allocation 737 ** obtained from sqlite3DbMalloc(). The calling function 738 ** is responsible for making sure the node eventually gets freed. 739 ** 740 ** If dequote is true, then the token (if it exists) is dequoted. 741 ** If dequote is false, no dequoting is performed. The deQuote 742 ** parameter is ignored if pToken is NULL or if the token does not 743 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 744 ** then the EP_DblQuoted flag is set on the expression node. 745 ** 746 ** Special case: If op==TK_INTEGER and pToken points to a string that 747 ** can be translated into a 32-bit integer, then the token is not 748 ** stored in u.zToken. Instead, the integer values is written 749 ** into u.iValue and the EP_IntValue flag is set. No extra storage 750 ** is allocated to hold the integer text and the dequote flag is ignored. 751 */ 752 Expr *sqlite3ExprAlloc( 753 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 754 int op, /* Expression opcode */ 755 const Token *pToken, /* Token argument. Might be NULL */ 756 int dequote /* True to dequote */ 757 ){ 758 Expr *pNew; 759 int nExtra = 0; 760 int iValue = 0; 761 762 assert( db!=0 ); 763 if( pToken ){ 764 if( op!=TK_INTEGER || pToken->z==0 765 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 766 nExtra = pToken->n+1; 767 assert( iValue>=0 ); 768 } 769 } 770 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 771 if( pNew ){ 772 memset(pNew, 0, sizeof(Expr)); 773 pNew->op = (u8)op; 774 pNew->iAgg = -1; 775 if( pToken ){ 776 if( nExtra==0 ){ 777 pNew->flags |= EP_IntValue|EP_Leaf; 778 pNew->u.iValue = iValue; 779 }else{ 780 pNew->u.zToken = (char*)&pNew[1]; 781 assert( pToken->z!=0 || pToken->n==0 ); 782 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 783 pNew->u.zToken[pToken->n] = 0; 784 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 785 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 786 sqlite3Dequote(pNew->u.zToken); 787 } 788 } 789 } 790 #if SQLITE_MAX_EXPR_DEPTH>0 791 pNew->nHeight = 1; 792 #endif 793 } 794 return pNew; 795 } 796 797 /* 798 ** Allocate a new expression node from a zero-terminated token that has 799 ** already been dequoted. 800 */ 801 Expr *sqlite3Expr( 802 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 803 int op, /* Expression opcode */ 804 const char *zToken /* Token argument. Might be NULL */ 805 ){ 806 Token x; 807 x.z = zToken; 808 x.n = sqlite3Strlen30(zToken); 809 return sqlite3ExprAlloc(db, op, &x, 0); 810 } 811 812 /* 813 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 814 ** 815 ** If pRoot==NULL that means that a memory allocation error has occurred. 816 ** In that case, delete the subtrees pLeft and pRight. 817 */ 818 void sqlite3ExprAttachSubtrees( 819 sqlite3 *db, 820 Expr *pRoot, 821 Expr *pLeft, 822 Expr *pRight 823 ){ 824 if( pRoot==0 ){ 825 assert( db->mallocFailed ); 826 sqlite3ExprDelete(db, pLeft); 827 sqlite3ExprDelete(db, pRight); 828 }else{ 829 if( pRight ){ 830 pRoot->pRight = pRight; 831 pRoot->flags |= EP_Propagate & pRight->flags; 832 } 833 if( pLeft ){ 834 pRoot->pLeft = pLeft; 835 pRoot->flags |= EP_Propagate & pLeft->flags; 836 } 837 exprSetHeight(pRoot); 838 } 839 } 840 841 /* 842 ** Allocate an Expr node which joins as many as two subtrees. 843 ** 844 ** One or both of the subtrees can be NULL. Return a pointer to the new 845 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 846 ** free the subtrees and return NULL. 847 */ 848 Expr *sqlite3PExpr( 849 Parse *pParse, /* Parsing context */ 850 int op, /* Expression opcode */ 851 Expr *pLeft, /* Left operand */ 852 Expr *pRight /* Right operand */ 853 ){ 854 Expr *p; 855 if( op==TK_AND && pParse->nErr==0 ){ 856 /* Take advantage of short-circuit false optimization for AND */ 857 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 858 }else{ 859 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 860 if( p ){ 861 memset(p, 0, sizeof(Expr)); 862 p->op = op & TKFLG_MASK; 863 p->iAgg = -1; 864 } 865 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 866 } 867 if( p ) { 868 sqlite3ExprCheckHeight(pParse, p->nHeight); 869 } 870 return p; 871 } 872 873 /* 874 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 875 ** do a memory allocation failure) then delete the pSelect object. 876 */ 877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 878 if( pExpr ){ 879 pExpr->x.pSelect = pSelect; 880 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 881 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 882 }else{ 883 assert( pParse->db->mallocFailed ); 884 sqlite3SelectDelete(pParse->db, pSelect); 885 } 886 } 887 888 889 /* 890 ** If the expression is always either TRUE or FALSE (respectively), 891 ** then return 1. If one cannot determine the truth value of the 892 ** expression at compile-time return 0. 893 ** 894 ** This is an optimization. If is OK to return 0 here even if 895 ** the expression really is always false or false (a false negative). 896 ** But it is a bug to return 1 if the expression might have different 897 ** boolean values in different circumstances (a false positive.) 898 ** 899 ** Note that if the expression is part of conditional for a 900 ** LEFT JOIN, then we cannot determine at compile-time whether or not 901 ** is it true or false, so always return 0. 902 */ 903 static int exprAlwaysTrue(Expr *p){ 904 int v = 0; 905 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 906 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 907 return v!=0; 908 } 909 static int exprAlwaysFalse(Expr *p){ 910 int v = 0; 911 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 912 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 913 return v==0; 914 } 915 916 /* 917 ** Join two expressions using an AND operator. If either expression is 918 ** NULL, then just return the other expression. 919 ** 920 ** If one side or the other of the AND is known to be false, then instead 921 ** of returning an AND expression, just return a constant expression with 922 ** a value of false. 923 */ 924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 925 if( pLeft==0 ){ 926 return pRight; 927 }else if( pRight==0 ){ 928 return pLeft; 929 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 930 sqlite3ExprDelete(db, pLeft); 931 sqlite3ExprDelete(db, pRight); 932 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 933 }else{ 934 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 935 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 936 return pNew; 937 } 938 } 939 940 /* 941 ** Construct a new expression node for a function with multiple 942 ** arguments. 943 */ 944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 945 Expr *pNew; 946 sqlite3 *db = pParse->db; 947 assert( pToken ); 948 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 949 if( pNew==0 ){ 950 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 951 return 0; 952 } 953 pNew->x.pList = pList; 954 ExprSetProperty(pNew, EP_HasFunc); 955 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 956 sqlite3ExprSetHeightAndFlags(pParse, pNew); 957 return pNew; 958 } 959 960 /* 961 ** Assign a variable number to an expression that encodes a wildcard 962 ** in the original SQL statement. 963 ** 964 ** Wildcards consisting of a single "?" are assigned the next sequential 965 ** variable number. 966 ** 967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 968 ** sure "nnn" is not too big to avoid a denial of service attack when 969 ** the SQL statement comes from an external source. 970 ** 971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 972 ** as the previous instance of the same wildcard. Or if this is the first 973 ** instance of the wildcard, the next sequential variable number is 974 ** assigned. 975 */ 976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 977 sqlite3 *db = pParse->db; 978 const char *z; 979 ynVar x; 980 981 if( pExpr==0 ) return; 982 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 983 z = pExpr->u.zToken; 984 assert( z!=0 ); 985 assert( z[0]!=0 ); 986 assert( n==(u32)sqlite3Strlen30(z) ); 987 if( z[1]==0 ){ 988 /* Wildcard of the form "?". Assign the next variable number */ 989 assert( z[0]=='?' ); 990 x = (ynVar)(++pParse->nVar); 991 }else{ 992 int doAdd = 0; 993 if( z[0]=='?' ){ 994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 995 ** use it as the variable number */ 996 i64 i; 997 int bOk; 998 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 999 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1000 bOk = 1; 1001 }else{ 1002 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1003 } 1004 testcase( i==0 ); 1005 testcase( i==1 ); 1006 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1008 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1009 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1010 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1011 return; 1012 } 1013 x = (ynVar)i; 1014 if( x>pParse->nVar ){ 1015 pParse->nVar = (int)x; 1016 doAdd = 1; 1017 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1018 doAdd = 1; 1019 } 1020 }else{ 1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1022 ** number as the prior appearance of the same name, or if the name 1023 ** has never appeared before, reuse the same variable number 1024 */ 1025 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1026 if( x==0 ){ 1027 x = (ynVar)(++pParse->nVar); 1028 doAdd = 1; 1029 } 1030 } 1031 if( doAdd ){ 1032 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1033 } 1034 } 1035 pExpr->iColumn = x; 1036 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1037 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1038 } 1039 } 1040 1041 /* 1042 ** Recursively delete an expression tree. 1043 */ 1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1045 assert( p!=0 ); 1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1047 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1048 #ifdef SQLITE_DEBUG 1049 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1050 assert( p->pLeft==0 ); 1051 assert( p->pRight==0 ); 1052 assert( p->x.pSelect==0 ); 1053 } 1054 #endif 1055 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1056 /* The Expr.x union is never used at the same time as Expr.pRight */ 1057 assert( p->x.pList==0 || p->pRight==0 ); 1058 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1059 if( p->pRight ){ 1060 sqlite3ExprDeleteNN(db, p->pRight); 1061 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1062 sqlite3SelectDelete(db, p->x.pSelect); 1063 }else{ 1064 sqlite3ExprListDelete(db, p->x.pList); 1065 } 1066 } 1067 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1068 if( !ExprHasProperty(p, EP_Static) ){ 1069 sqlite3DbFreeNN(db, p); 1070 } 1071 } 1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1073 if( p ) sqlite3ExprDeleteNN(db, p); 1074 } 1075 1076 /* 1077 ** Return the number of bytes allocated for the expression structure 1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1080 */ 1081 static int exprStructSize(Expr *p){ 1082 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1083 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1084 return EXPR_FULLSIZE; 1085 } 1086 1087 /* 1088 ** The dupedExpr*Size() routines each return the number of bytes required 1089 ** to store a copy of an expression or expression tree. They differ in 1090 ** how much of the tree is measured. 1091 ** 1092 ** dupedExprStructSize() Size of only the Expr structure 1093 ** dupedExprNodeSize() Size of Expr + space for token 1094 ** dupedExprSize() Expr + token + subtree components 1095 ** 1096 *************************************************************************** 1097 ** 1098 ** The dupedExprStructSize() function returns two values OR-ed together: 1099 ** (1) the space required for a copy of the Expr structure only and 1100 ** (2) the EP_xxx flags that indicate what the structure size should be. 1101 ** The return values is always one of: 1102 ** 1103 ** EXPR_FULLSIZE 1104 ** EXPR_REDUCEDSIZE | EP_Reduced 1105 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1106 ** 1107 ** The size of the structure can be found by masking the return value 1108 ** of this routine with 0xfff. The flags can be found by masking the 1109 ** return value with EP_Reduced|EP_TokenOnly. 1110 ** 1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1112 ** (unreduced) Expr objects as they or originally constructed by the parser. 1113 ** During expression analysis, extra information is computed and moved into 1114 ** later parts of teh Expr object and that extra information might get chopped 1115 ** off if the expression is reduced. Note also that it does not work to 1116 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1117 ** to reduce a pristine expression tree from the parser. The implementation 1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1119 ** to enforce this constraint. 1120 */ 1121 static int dupedExprStructSize(Expr *p, int flags){ 1122 int nSize; 1123 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1124 assert( EXPR_FULLSIZE<=0xfff ); 1125 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1126 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 if( pzBuffer ){ 1263 *pzBuffer = zAlloc; 1264 } 1265 }else{ 1266 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1267 if( pNew->op==TK_SELECT_COLUMN ){ 1268 pNew->pLeft = p->pLeft; 1269 assert( p->iColumn==0 || p->pRight==0 ); 1270 assert( p->pRight==0 || p->pRight==p->pLeft ); 1271 }else{ 1272 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1273 } 1274 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1275 } 1276 } 1277 } 1278 return pNew; 1279 } 1280 1281 /* 1282 ** Create and return a deep copy of the object passed as the second 1283 ** argument. If an OOM condition is encountered, NULL is returned 1284 ** and the db->mallocFailed flag set. 1285 */ 1286 #ifndef SQLITE_OMIT_CTE 1287 static With *withDup(sqlite3 *db, With *p){ 1288 With *pRet = 0; 1289 if( p ){ 1290 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1291 pRet = sqlite3DbMallocZero(db, nByte); 1292 if( pRet ){ 1293 int i; 1294 pRet->nCte = p->nCte; 1295 for(i=0; i<p->nCte; i++){ 1296 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1297 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1298 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1299 } 1300 } 1301 } 1302 return pRet; 1303 } 1304 #else 1305 # define withDup(x,y) 0 1306 #endif 1307 1308 /* 1309 ** The following group of routines make deep copies of expressions, 1310 ** expression lists, ID lists, and select statements. The copies can 1311 ** be deleted (by being passed to their respective ...Delete() routines) 1312 ** without effecting the originals. 1313 ** 1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1316 ** by subsequent calls to sqlite*ListAppend() routines. 1317 ** 1318 ** Any tables that the SrcList might point to are not duplicated. 1319 ** 1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1322 ** truncated version of the usual Expr structure that will be stored as 1323 ** part of the in-memory representation of the database schema. 1324 */ 1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1326 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1327 return p ? exprDup(db, p, flags, 0) : 0; 1328 } 1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1330 ExprList *pNew; 1331 struct ExprList_item *pItem, *pOldItem; 1332 int i; 1333 Expr *pPriorSelectCol = 0; 1334 assert( db!=0 ); 1335 if( p==0 ) return 0; 1336 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1337 if( pNew==0 ) return 0; 1338 pNew->nExpr = p->nExpr; 1339 pItem = pNew->a; 1340 pOldItem = p->a; 1341 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1342 Expr *pOldExpr = pOldItem->pExpr; 1343 Expr *pNewExpr; 1344 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1345 if( pOldExpr 1346 && pOldExpr->op==TK_SELECT_COLUMN 1347 && (pNewExpr = pItem->pExpr)!=0 1348 ){ 1349 assert( pNewExpr->iColumn==0 || i>0 ); 1350 if( pNewExpr->iColumn==0 ){ 1351 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1352 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1353 }else{ 1354 assert( i>0 ); 1355 assert( pItem[-1].pExpr!=0 ); 1356 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1357 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1358 pNewExpr->pLeft = pPriorSelectCol; 1359 } 1360 } 1361 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1362 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1363 pItem->sortOrder = pOldItem->sortOrder; 1364 pItem->done = 0; 1365 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1366 pItem->u = pOldItem->u; 1367 } 1368 return pNew; 1369 } 1370 1371 /* 1372 ** If cursors, triggers, views and subqueries are all omitted from 1373 ** the build, then none of the following routines, except for 1374 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1375 ** called with a NULL argument. 1376 */ 1377 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1378 || !defined(SQLITE_OMIT_SUBQUERY) 1379 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1380 SrcList *pNew; 1381 int i; 1382 int nByte; 1383 assert( db!=0 ); 1384 if( p==0 ) return 0; 1385 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1386 pNew = sqlite3DbMallocRawNN(db, nByte ); 1387 if( pNew==0 ) return 0; 1388 pNew->nSrc = pNew->nAlloc = p->nSrc; 1389 for(i=0; i<p->nSrc; i++){ 1390 struct SrcList_item *pNewItem = &pNew->a[i]; 1391 struct SrcList_item *pOldItem = &p->a[i]; 1392 Table *pTab; 1393 pNewItem->pSchema = pOldItem->pSchema; 1394 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1395 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1396 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1397 pNewItem->fg = pOldItem->fg; 1398 pNewItem->iCursor = pOldItem->iCursor; 1399 pNewItem->addrFillSub = pOldItem->addrFillSub; 1400 pNewItem->regReturn = pOldItem->regReturn; 1401 if( pNewItem->fg.isIndexedBy ){ 1402 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1403 } 1404 pNewItem->pIBIndex = pOldItem->pIBIndex; 1405 if( pNewItem->fg.isTabFunc ){ 1406 pNewItem->u1.pFuncArg = 1407 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1408 } 1409 pTab = pNewItem->pTab = pOldItem->pTab; 1410 if( pTab ){ 1411 pTab->nTabRef++; 1412 } 1413 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1414 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1415 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1416 pNewItem->colUsed = pOldItem->colUsed; 1417 } 1418 return pNew; 1419 } 1420 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1421 IdList *pNew; 1422 int i; 1423 assert( db!=0 ); 1424 if( p==0 ) return 0; 1425 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1426 if( pNew==0 ) return 0; 1427 pNew->nId = p->nId; 1428 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1429 if( pNew->a==0 ){ 1430 sqlite3DbFreeNN(db, pNew); 1431 return 0; 1432 } 1433 /* Note that because the size of the allocation for p->a[] is not 1434 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1435 ** on the duplicate created by this function. */ 1436 for(i=0; i<p->nId; i++){ 1437 struct IdList_item *pNewItem = &pNew->a[i]; 1438 struct IdList_item *pOldItem = &p->a[i]; 1439 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1440 pNewItem->idx = pOldItem->idx; 1441 } 1442 return pNew; 1443 } 1444 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1445 Select *pRet = 0; 1446 Select *pNext = 0; 1447 Select **pp = &pRet; 1448 Select *p; 1449 1450 assert( db!=0 ); 1451 for(p=pDup; p; p=p->pPrior){ 1452 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1453 if( pNew==0 ) break; 1454 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1455 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1456 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1457 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1458 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1459 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1460 pNew->op = p->op; 1461 pNew->pNext = pNext; 1462 pNew->pPrior = 0; 1463 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1464 pNew->iLimit = 0; 1465 pNew->iOffset = 0; 1466 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1467 pNew->addrOpenEphm[0] = -1; 1468 pNew->addrOpenEphm[1] = -1; 1469 pNew->nSelectRow = p->nSelectRow; 1470 pNew->pWith = withDup(db, p->pWith); 1471 sqlite3SelectSetName(pNew, p->zSelName); 1472 *pp = pNew; 1473 pp = &pNew->pPrior; 1474 pNext = pNew; 1475 } 1476 1477 return pRet; 1478 } 1479 #else 1480 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1481 assert( p==0 ); 1482 return 0; 1483 } 1484 #endif 1485 1486 1487 /* 1488 ** Add a new element to the end of an expression list. If pList is 1489 ** initially NULL, then create a new expression list. 1490 ** 1491 ** The pList argument must be either NULL or a pointer to an ExprList 1492 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1493 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1494 ** Reason: This routine assumes that the number of slots in pList->a[] 1495 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1496 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1497 ** 1498 ** If a memory allocation error occurs, the entire list is freed and 1499 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1500 ** that the new entry was successfully appended. 1501 */ 1502 ExprList *sqlite3ExprListAppend( 1503 Parse *pParse, /* Parsing context */ 1504 ExprList *pList, /* List to which to append. Might be NULL */ 1505 Expr *pExpr /* Expression to be appended. Might be NULL */ 1506 ){ 1507 struct ExprList_item *pItem; 1508 sqlite3 *db = pParse->db; 1509 assert( db!=0 ); 1510 if( pList==0 ){ 1511 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1512 if( pList==0 ){ 1513 goto no_mem; 1514 } 1515 pList->nExpr = 0; 1516 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1517 ExprList *pNew; 1518 pNew = sqlite3DbRealloc(db, pList, 1519 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1520 if( pNew==0 ){ 1521 goto no_mem; 1522 } 1523 pList = pNew; 1524 } 1525 pItem = &pList->a[pList->nExpr++]; 1526 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1527 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1528 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1529 pItem->pExpr = pExpr; 1530 return pList; 1531 1532 no_mem: 1533 /* Avoid leaking memory if malloc has failed. */ 1534 sqlite3ExprDelete(db, pExpr); 1535 sqlite3ExprListDelete(db, pList); 1536 return 0; 1537 } 1538 1539 /* 1540 ** pColumns and pExpr form a vector assignment which is part of the SET 1541 ** clause of an UPDATE statement. Like this: 1542 ** 1543 ** (a,b,c) = (expr1,expr2,expr3) 1544 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1545 ** 1546 ** For each term of the vector assignment, append new entries to the 1547 ** expression list pList. In the case of a subquery on the RHS, append 1548 ** TK_SELECT_COLUMN expressions. 1549 */ 1550 ExprList *sqlite3ExprListAppendVector( 1551 Parse *pParse, /* Parsing context */ 1552 ExprList *pList, /* List to which to append. Might be NULL */ 1553 IdList *pColumns, /* List of names of LHS of the assignment */ 1554 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1555 ){ 1556 sqlite3 *db = pParse->db; 1557 int n; 1558 int i; 1559 int iFirst = pList ? pList->nExpr : 0; 1560 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1561 ** exit prior to this routine being invoked */ 1562 if( NEVER(pColumns==0) ) goto vector_append_error; 1563 if( pExpr==0 ) goto vector_append_error; 1564 1565 /* If the RHS is a vector, then we can immediately check to see that 1566 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1567 ** wildcards ("*") in the result set of the SELECT must be expanded before 1568 ** we can do the size check, so defer the size check until code generation. 1569 */ 1570 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1571 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1572 pColumns->nId, n); 1573 goto vector_append_error; 1574 } 1575 1576 for(i=0; i<pColumns->nId; i++){ 1577 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1578 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1579 if( pList ){ 1580 assert( pList->nExpr==iFirst+i+1 ); 1581 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1582 pColumns->a[i].zName = 0; 1583 } 1584 } 1585 1586 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1587 Expr *pFirst = pList->a[iFirst].pExpr; 1588 assert( pFirst!=0 ); 1589 assert( pFirst->op==TK_SELECT_COLUMN ); 1590 1591 /* Store the SELECT statement in pRight so it will be deleted when 1592 ** sqlite3ExprListDelete() is called */ 1593 pFirst->pRight = pExpr; 1594 pExpr = 0; 1595 1596 /* Remember the size of the LHS in iTable so that we can check that 1597 ** the RHS and LHS sizes match during code generation. */ 1598 pFirst->iTable = pColumns->nId; 1599 } 1600 1601 vector_append_error: 1602 sqlite3ExprDelete(db, pExpr); 1603 sqlite3IdListDelete(db, pColumns); 1604 return pList; 1605 } 1606 1607 /* 1608 ** Set the sort order for the last element on the given ExprList. 1609 */ 1610 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1611 if( p==0 ) return; 1612 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1613 assert( p->nExpr>0 ); 1614 if( iSortOrder<0 ){ 1615 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1616 return; 1617 } 1618 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1619 } 1620 1621 /* 1622 ** Set the ExprList.a[].zName element of the most recently added item 1623 ** on the expression list. 1624 ** 1625 ** pList might be NULL following an OOM error. But pName should never be 1626 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1627 ** is set. 1628 */ 1629 void sqlite3ExprListSetName( 1630 Parse *pParse, /* Parsing context */ 1631 ExprList *pList, /* List to which to add the span. */ 1632 Token *pName, /* Name to be added */ 1633 int dequote /* True to cause the name to be dequoted */ 1634 ){ 1635 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1636 if( pList ){ 1637 struct ExprList_item *pItem; 1638 assert( pList->nExpr>0 ); 1639 pItem = &pList->a[pList->nExpr-1]; 1640 assert( pItem->zName==0 ); 1641 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1642 if( dequote ) sqlite3Dequote(pItem->zName); 1643 } 1644 } 1645 1646 /* 1647 ** Set the ExprList.a[].zSpan element of the most recently added item 1648 ** on the expression list. 1649 ** 1650 ** pList might be NULL following an OOM error. But pSpan should never be 1651 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1652 ** is set. 1653 */ 1654 void sqlite3ExprListSetSpan( 1655 Parse *pParse, /* Parsing context */ 1656 ExprList *pList, /* List to which to add the span. */ 1657 ExprSpan *pSpan /* The span to be added */ 1658 ){ 1659 sqlite3 *db = pParse->db; 1660 assert( pList!=0 || db->mallocFailed!=0 ); 1661 if( pList ){ 1662 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1663 assert( pList->nExpr>0 ); 1664 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1665 sqlite3DbFree(db, pItem->zSpan); 1666 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1667 (int)(pSpan->zEnd - pSpan->zStart)); 1668 } 1669 } 1670 1671 /* 1672 ** If the expression list pEList contains more than iLimit elements, 1673 ** leave an error message in pParse. 1674 */ 1675 void sqlite3ExprListCheckLength( 1676 Parse *pParse, 1677 ExprList *pEList, 1678 const char *zObject 1679 ){ 1680 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1681 testcase( pEList && pEList->nExpr==mx ); 1682 testcase( pEList && pEList->nExpr==mx+1 ); 1683 if( pEList && pEList->nExpr>mx ){ 1684 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1685 } 1686 } 1687 1688 /* 1689 ** Delete an entire expression list. 1690 */ 1691 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1692 int i = pList->nExpr; 1693 struct ExprList_item *pItem = pList->a; 1694 assert( pList->nExpr>0 ); 1695 do{ 1696 sqlite3ExprDelete(db, pItem->pExpr); 1697 sqlite3DbFree(db, pItem->zName); 1698 sqlite3DbFree(db, pItem->zSpan); 1699 pItem++; 1700 }while( --i>0 ); 1701 sqlite3DbFreeNN(db, pList); 1702 } 1703 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1704 if( pList ) exprListDeleteNN(db, pList); 1705 } 1706 1707 /* 1708 ** Return the bitwise-OR of all Expr.flags fields in the given 1709 ** ExprList. 1710 */ 1711 u32 sqlite3ExprListFlags(const ExprList *pList){ 1712 int i; 1713 u32 m = 0; 1714 assert( pList!=0 ); 1715 for(i=0; i<pList->nExpr; i++){ 1716 Expr *pExpr = pList->a[i].pExpr; 1717 assert( pExpr!=0 ); 1718 m |= pExpr->flags; 1719 } 1720 return m; 1721 } 1722 1723 /* 1724 ** This is a SELECT-node callback for the expression walker that 1725 ** always "fails". By "fail" in this case, we mean set 1726 ** pWalker->eCode to zero and abort. 1727 ** 1728 ** This callback is used by multiple expression walkers. 1729 */ 1730 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1731 UNUSED_PARAMETER(NotUsed); 1732 pWalker->eCode = 0; 1733 return WRC_Abort; 1734 } 1735 1736 /* 1737 ** These routines are Walker callbacks used to check expressions to 1738 ** see if they are "constant" for some definition of constant. The 1739 ** Walker.eCode value determines the type of "constant" we are looking 1740 ** for. 1741 ** 1742 ** These callback routines are used to implement the following: 1743 ** 1744 ** sqlite3ExprIsConstant() pWalker->eCode==1 1745 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1746 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1747 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1748 ** 1749 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1750 ** is found to not be a constant. 1751 ** 1752 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1753 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1754 ** an existing schema and 4 when processing a new statement. A bound 1755 ** parameter raises an error for new statements, but is silently converted 1756 ** to NULL for existing schemas. This allows sqlite_master tables that 1757 ** contain a bound parameter because they were generated by older versions 1758 ** of SQLite to be parsed by newer versions of SQLite without raising a 1759 ** malformed schema error. 1760 */ 1761 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1762 1763 /* If pWalker->eCode is 2 then any term of the expression that comes from 1764 ** the ON or USING clauses of a left join disqualifies the expression 1765 ** from being considered constant. */ 1766 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1767 pWalker->eCode = 0; 1768 return WRC_Abort; 1769 } 1770 1771 switch( pExpr->op ){ 1772 /* Consider functions to be constant if all their arguments are constant 1773 ** and either pWalker->eCode==4 or 5 or the function has the 1774 ** SQLITE_FUNC_CONST flag. */ 1775 case TK_FUNCTION: 1776 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1777 return WRC_Continue; 1778 }else{ 1779 pWalker->eCode = 0; 1780 return WRC_Abort; 1781 } 1782 case TK_ID: 1783 case TK_COLUMN: 1784 case TK_AGG_FUNCTION: 1785 case TK_AGG_COLUMN: 1786 testcase( pExpr->op==TK_ID ); 1787 testcase( pExpr->op==TK_COLUMN ); 1788 testcase( pExpr->op==TK_AGG_FUNCTION ); 1789 testcase( pExpr->op==TK_AGG_COLUMN ); 1790 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1791 return WRC_Continue; 1792 } 1793 /* Fall through */ 1794 case TK_IF_NULL_ROW: 1795 testcase( pExpr->op==TK_IF_NULL_ROW ); 1796 pWalker->eCode = 0; 1797 return WRC_Abort; 1798 case TK_VARIABLE: 1799 if( pWalker->eCode==5 ){ 1800 /* Silently convert bound parameters that appear inside of CREATE 1801 ** statements into a NULL when parsing the CREATE statement text out 1802 ** of the sqlite_master table */ 1803 pExpr->op = TK_NULL; 1804 }else if( pWalker->eCode==4 ){ 1805 /* A bound parameter in a CREATE statement that originates from 1806 ** sqlite3_prepare() causes an error */ 1807 pWalker->eCode = 0; 1808 return WRC_Abort; 1809 } 1810 /* Fall through */ 1811 default: 1812 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */ 1813 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */ 1814 return WRC_Continue; 1815 } 1816 } 1817 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1818 Walker w; 1819 w.eCode = initFlag; 1820 w.xExprCallback = exprNodeIsConstant; 1821 w.xSelectCallback = sqlite3SelectWalkFail; 1822 #ifdef SQLITE_DEBUG 1823 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1824 #endif 1825 w.u.iCur = iCur; 1826 sqlite3WalkExpr(&w, p); 1827 return w.eCode; 1828 } 1829 1830 /* 1831 ** Walk an expression tree. Return non-zero if the expression is constant 1832 ** and 0 if it involves variables or function calls. 1833 ** 1834 ** For the purposes of this function, a double-quoted string (ex: "abc") 1835 ** is considered a variable but a single-quoted string (ex: 'abc') is 1836 ** a constant. 1837 */ 1838 int sqlite3ExprIsConstant(Expr *p){ 1839 return exprIsConst(p, 1, 0); 1840 } 1841 1842 /* 1843 ** Walk an expression tree. Return non-zero if the expression is constant 1844 ** that does no originate from the ON or USING clauses of a join. 1845 ** Return 0 if it involves variables or function calls or terms from 1846 ** an ON or USING clause. 1847 */ 1848 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1849 return exprIsConst(p, 2, 0); 1850 } 1851 1852 /* 1853 ** Walk an expression tree. Return non-zero if the expression is constant 1854 ** for any single row of the table with cursor iCur. In other words, the 1855 ** expression must not refer to any non-deterministic function nor any 1856 ** table other than iCur. 1857 */ 1858 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1859 return exprIsConst(p, 3, iCur); 1860 } 1861 1862 1863 /* 1864 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1865 */ 1866 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1867 ExprList *pGroupBy = pWalker->u.pGroupBy; 1868 int i; 1869 1870 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1871 ** it constant. */ 1872 for(i=0; i<pGroupBy->nExpr; i++){ 1873 Expr *p = pGroupBy->a[i].pExpr; 1874 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1875 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1876 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1877 return WRC_Prune; 1878 } 1879 } 1880 } 1881 1882 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1883 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1884 pWalker->eCode = 0; 1885 return WRC_Abort; 1886 } 1887 1888 return exprNodeIsConstant(pWalker, pExpr); 1889 } 1890 1891 /* 1892 ** Walk the expression tree passed as the first argument. Return non-zero 1893 ** if the expression consists entirely of constants or copies of terms 1894 ** in pGroupBy that sort with the BINARY collation sequence. 1895 ** 1896 ** This routine is used to determine if a term of the HAVING clause can 1897 ** be promoted into the WHERE clause. In order for such a promotion to work, 1898 ** the value of the HAVING clause term must be the same for all members of 1899 ** a "group". The requirement that the GROUP BY term must be BINARY 1900 ** assumes that no other collating sequence will have a finer-grained 1901 ** grouping than binary. In other words (A=B COLLATE binary) implies 1902 ** A=B in every other collating sequence. The requirement that the 1903 ** GROUP BY be BINARY is stricter than necessary. It would also work 1904 ** to promote HAVING clauses that use the same alternative collating 1905 ** sequence as the GROUP BY term, but that is much harder to check, 1906 ** alternative collating sequences are uncommon, and this is only an 1907 ** optimization, so we take the easy way out and simply require the 1908 ** GROUP BY to use the BINARY collating sequence. 1909 */ 1910 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1911 Walker w; 1912 w.eCode = 1; 1913 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1914 w.xSelectCallback = 0; 1915 w.u.pGroupBy = pGroupBy; 1916 w.pParse = pParse; 1917 sqlite3WalkExpr(&w, p); 1918 return w.eCode; 1919 } 1920 1921 /* 1922 ** Walk an expression tree. Return non-zero if the expression is constant 1923 ** or a function call with constant arguments. Return and 0 if there 1924 ** are any variables. 1925 ** 1926 ** For the purposes of this function, a double-quoted string (ex: "abc") 1927 ** is considered a variable but a single-quoted string (ex: 'abc') is 1928 ** a constant. 1929 */ 1930 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1931 assert( isInit==0 || isInit==1 ); 1932 return exprIsConst(p, 4+isInit, 0); 1933 } 1934 1935 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1936 /* 1937 ** Walk an expression tree. Return 1 if the expression contains a 1938 ** subquery of some kind. Return 0 if there are no subqueries. 1939 */ 1940 int sqlite3ExprContainsSubquery(Expr *p){ 1941 Walker w; 1942 w.eCode = 1; 1943 w.xExprCallback = sqlite3ExprWalkNoop; 1944 w.xSelectCallback = sqlite3SelectWalkFail; 1945 #ifdef SQLITE_DEBUG 1946 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1947 #endif 1948 sqlite3WalkExpr(&w, p); 1949 return w.eCode==0; 1950 } 1951 #endif 1952 1953 /* 1954 ** If the expression p codes a constant integer that is small enough 1955 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1956 ** in *pValue. If the expression is not an integer or if it is too big 1957 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1958 */ 1959 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1960 int rc = 0; 1961 if( p==0 ) return 0; /* Can only happen following on OOM */ 1962 1963 /* If an expression is an integer literal that fits in a signed 32-bit 1964 ** integer, then the EP_IntValue flag will have already been set */ 1965 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1966 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1967 1968 if( p->flags & EP_IntValue ){ 1969 *pValue = p->u.iValue; 1970 return 1; 1971 } 1972 switch( p->op ){ 1973 case TK_UPLUS: { 1974 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1975 break; 1976 } 1977 case TK_UMINUS: { 1978 int v; 1979 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1980 assert( v!=(-2147483647-1) ); 1981 *pValue = -v; 1982 rc = 1; 1983 } 1984 break; 1985 } 1986 default: break; 1987 } 1988 return rc; 1989 } 1990 1991 /* 1992 ** Return FALSE if there is no chance that the expression can be NULL. 1993 ** 1994 ** If the expression might be NULL or if the expression is too complex 1995 ** to tell return TRUE. 1996 ** 1997 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1998 ** when we know that a value cannot be NULL. Hence, a false positive 1999 ** (returning TRUE when in fact the expression can never be NULL) might 2000 ** be a small performance hit but is otherwise harmless. On the other 2001 ** hand, a false negative (returning FALSE when the result could be NULL) 2002 ** will likely result in an incorrect answer. So when in doubt, return 2003 ** TRUE. 2004 */ 2005 int sqlite3ExprCanBeNull(const Expr *p){ 2006 u8 op; 2007 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2008 op = p->op; 2009 if( op==TK_REGISTER ) op = p->op2; 2010 switch( op ){ 2011 case TK_INTEGER: 2012 case TK_STRING: 2013 case TK_FLOAT: 2014 case TK_BLOB: 2015 return 0; 2016 case TK_COLUMN: 2017 return ExprHasProperty(p, EP_CanBeNull) || 2018 p->pTab==0 || /* Reference to column of index on expression */ 2019 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 2020 default: 2021 return 1; 2022 } 2023 } 2024 2025 /* 2026 ** Return TRUE if the given expression is a constant which would be 2027 ** unchanged by OP_Affinity with the affinity given in the second 2028 ** argument. 2029 ** 2030 ** This routine is used to determine if the OP_Affinity operation 2031 ** can be omitted. When in doubt return FALSE. A false negative 2032 ** is harmless. A false positive, however, can result in the wrong 2033 ** answer. 2034 */ 2035 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2036 u8 op; 2037 if( aff==SQLITE_AFF_BLOB ) return 1; 2038 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2039 op = p->op; 2040 if( op==TK_REGISTER ) op = p->op2; 2041 switch( op ){ 2042 case TK_INTEGER: { 2043 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2044 } 2045 case TK_FLOAT: { 2046 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2047 } 2048 case TK_STRING: { 2049 return aff==SQLITE_AFF_TEXT; 2050 } 2051 case TK_BLOB: { 2052 return 1; 2053 } 2054 case TK_COLUMN: { 2055 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2056 return p->iColumn<0 2057 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2058 } 2059 default: { 2060 return 0; 2061 } 2062 } 2063 } 2064 2065 /* 2066 ** Return TRUE if the given string is a row-id column name. 2067 */ 2068 int sqlite3IsRowid(const char *z){ 2069 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2070 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2071 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2072 return 0; 2073 } 2074 2075 /* 2076 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2077 ** that can be simplified to a direct table access, then return 2078 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2079 ** or if the SELECT statement needs to be manifested into a transient 2080 ** table, then return NULL. 2081 */ 2082 #ifndef SQLITE_OMIT_SUBQUERY 2083 static Select *isCandidateForInOpt(Expr *pX){ 2084 Select *p; 2085 SrcList *pSrc; 2086 ExprList *pEList; 2087 Table *pTab; 2088 int i; 2089 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2090 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2091 p = pX->x.pSelect; 2092 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2093 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2094 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2095 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2096 return 0; /* No DISTINCT keyword and no aggregate functions */ 2097 } 2098 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2099 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2100 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2101 pSrc = p->pSrc; 2102 assert( pSrc!=0 ); 2103 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2104 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2105 pTab = pSrc->a[0].pTab; 2106 assert( pTab!=0 ); 2107 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2108 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2109 pEList = p->pEList; 2110 assert( pEList!=0 ); 2111 /* All SELECT results must be columns. */ 2112 for(i=0; i<pEList->nExpr; i++){ 2113 Expr *pRes = pEList->a[i].pExpr; 2114 if( pRes->op!=TK_COLUMN ) return 0; 2115 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2116 } 2117 return p; 2118 } 2119 #endif /* SQLITE_OMIT_SUBQUERY */ 2120 2121 #ifndef SQLITE_OMIT_SUBQUERY 2122 /* 2123 ** Generate code that checks the left-most column of index table iCur to see if 2124 ** it contains any NULL entries. Cause the register at regHasNull to be set 2125 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2126 ** to be set to NULL if iCur contains one or more NULL values. 2127 */ 2128 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2129 int addr1; 2130 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2131 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2132 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2133 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2134 VdbeComment((v, "first_entry_in(%d)", iCur)); 2135 sqlite3VdbeJumpHere(v, addr1); 2136 } 2137 #endif 2138 2139 2140 #ifndef SQLITE_OMIT_SUBQUERY 2141 /* 2142 ** The argument is an IN operator with a list (not a subquery) on the 2143 ** right-hand side. Return TRUE if that list is constant. 2144 */ 2145 static int sqlite3InRhsIsConstant(Expr *pIn){ 2146 Expr *pLHS; 2147 int res; 2148 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2149 pLHS = pIn->pLeft; 2150 pIn->pLeft = 0; 2151 res = sqlite3ExprIsConstant(pIn); 2152 pIn->pLeft = pLHS; 2153 return res; 2154 } 2155 #endif 2156 2157 /* 2158 ** This function is used by the implementation of the IN (...) operator. 2159 ** The pX parameter is the expression on the RHS of the IN operator, which 2160 ** might be either a list of expressions or a subquery. 2161 ** 2162 ** The job of this routine is to find or create a b-tree object that can 2163 ** be used either to test for membership in the RHS set or to iterate through 2164 ** all members of the RHS set, skipping duplicates. 2165 ** 2166 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2167 ** and pX->iTable is set to the index of that cursor. 2168 ** 2169 ** The returned value of this function indicates the b-tree type, as follows: 2170 ** 2171 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2172 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2173 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2174 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2175 ** populated epheremal table. 2176 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2177 ** implemented as a sequence of comparisons. 2178 ** 2179 ** An existing b-tree might be used if the RHS expression pX is a simple 2180 ** subquery such as: 2181 ** 2182 ** SELECT <column1>, <column2>... FROM <table> 2183 ** 2184 ** If the RHS of the IN operator is a list or a more complex subquery, then 2185 ** an ephemeral table might need to be generated from the RHS and then 2186 ** pX->iTable made to point to the ephemeral table instead of an 2187 ** existing table. 2188 ** 2189 ** The inFlags parameter must contain, at a minimum, one of the bits 2190 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2191 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2192 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2193 ** be used to loop over all values of the RHS of the IN operator. 2194 ** 2195 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2196 ** through the set members) then the b-tree must not contain duplicates. 2197 ** An epheremal table will be created unless the selected columns are guaranteed 2198 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2199 ** a UNIQUE constraint or index. 2200 ** 2201 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2202 ** for fast set membership tests) then an epheremal table must 2203 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2204 ** index can be found with the specified <columns> as its left-most. 2205 ** 2206 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2207 ** if the RHS of the IN operator is a list (not a subquery) then this 2208 ** routine might decide that creating an ephemeral b-tree for membership 2209 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2210 ** calling routine should implement the IN operator using a sequence 2211 ** of Eq or Ne comparison operations. 2212 ** 2213 ** When the b-tree is being used for membership tests, the calling function 2214 ** might need to know whether or not the RHS side of the IN operator 2215 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2216 ** if there is any chance that the (...) might contain a NULL value at 2217 ** runtime, then a register is allocated and the register number written 2218 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2219 ** NULL value, then *prRhsHasNull is left unchanged. 2220 ** 2221 ** If a register is allocated and its location stored in *prRhsHasNull, then 2222 ** the value in that register will be NULL if the b-tree contains one or more 2223 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2224 ** NULL values. 2225 ** 2226 ** If the aiMap parameter is not NULL, it must point to an array containing 2227 ** one element for each column returned by the SELECT statement on the RHS 2228 ** of the IN(...) operator. The i'th entry of the array is populated with the 2229 ** offset of the index column that matches the i'th column returned by the 2230 ** SELECT. For example, if the expression and selected index are: 2231 ** 2232 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2233 ** CREATE INDEX i1 ON t1(b, c, a); 2234 ** 2235 ** then aiMap[] is populated with {2, 0, 1}. 2236 */ 2237 #ifndef SQLITE_OMIT_SUBQUERY 2238 int sqlite3FindInIndex( 2239 Parse *pParse, /* Parsing context */ 2240 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2241 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2242 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2243 int *aiMap /* Mapping from Index fields to RHS fields */ 2244 ){ 2245 Select *p; /* SELECT to the right of IN operator */ 2246 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2247 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2248 int mustBeUnique; /* True if RHS must be unique */ 2249 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2250 2251 assert( pX->op==TK_IN ); 2252 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2253 2254 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2255 ** whether or not the SELECT result contains NULL values, check whether 2256 ** or not NULL is actually possible (it may not be, for example, due 2257 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2258 ** set prRhsHasNull to 0 before continuing. */ 2259 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2260 int i; 2261 ExprList *pEList = pX->x.pSelect->pEList; 2262 for(i=0; i<pEList->nExpr; i++){ 2263 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2264 } 2265 if( i==pEList->nExpr ){ 2266 prRhsHasNull = 0; 2267 } 2268 } 2269 2270 /* Check to see if an existing table or index can be used to 2271 ** satisfy the query. This is preferable to generating a new 2272 ** ephemeral table. */ 2273 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2274 sqlite3 *db = pParse->db; /* Database connection */ 2275 Table *pTab; /* Table <table>. */ 2276 i16 iDb; /* Database idx for pTab */ 2277 ExprList *pEList = p->pEList; 2278 int nExpr = pEList->nExpr; 2279 2280 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2281 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2282 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2283 pTab = p->pSrc->a[0].pTab; 2284 2285 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2286 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2287 sqlite3CodeVerifySchema(pParse, iDb); 2288 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2289 2290 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2291 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2292 /* The "x IN (SELECT rowid FROM table)" case */ 2293 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2294 VdbeCoverage(v); 2295 2296 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2297 eType = IN_INDEX_ROWID; 2298 2299 sqlite3VdbeJumpHere(v, iAddr); 2300 }else{ 2301 Index *pIdx; /* Iterator variable */ 2302 int affinity_ok = 1; 2303 int i; 2304 2305 /* Check that the affinity that will be used to perform each 2306 ** comparison is the same as the affinity of each column in table 2307 ** on the RHS of the IN operator. If it not, it is not possible to 2308 ** use any index of the RHS table. */ 2309 for(i=0; i<nExpr && affinity_ok; i++){ 2310 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2311 int iCol = pEList->a[i].pExpr->iColumn; 2312 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2313 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2314 testcase( cmpaff==SQLITE_AFF_BLOB ); 2315 testcase( cmpaff==SQLITE_AFF_TEXT ); 2316 switch( cmpaff ){ 2317 case SQLITE_AFF_BLOB: 2318 break; 2319 case SQLITE_AFF_TEXT: 2320 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2321 ** other has no affinity and the other side is TEXT. Hence, 2322 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2323 ** and for the term on the LHS of the IN to have no affinity. */ 2324 assert( idxaff==SQLITE_AFF_TEXT ); 2325 break; 2326 default: 2327 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2328 } 2329 } 2330 2331 if( affinity_ok ){ 2332 /* Search for an existing index that will work for this IN operator */ 2333 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2334 Bitmask colUsed; /* Columns of the index used */ 2335 Bitmask mCol; /* Mask for the current column */ 2336 if( pIdx->nColumn<nExpr ) continue; 2337 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2338 ** BITMASK(nExpr) without overflowing */ 2339 testcase( pIdx->nColumn==BMS-2 ); 2340 testcase( pIdx->nColumn==BMS-1 ); 2341 if( pIdx->nColumn>=BMS-1 ) continue; 2342 if( mustBeUnique ){ 2343 if( pIdx->nKeyCol>nExpr 2344 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2345 ){ 2346 continue; /* This index is not unique over the IN RHS columns */ 2347 } 2348 } 2349 2350 colUsed = 0; /* Columns of index used so far */ 2351 for(i=0; i<nExpr; i++){ 2352 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2353 Expr *pRhs = pEList->a[i].pExpr; 2354 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2355 int j; 2356 2357 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2358 for(j=0; j<nExpr; j++){ 2359 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2360 assert( pIdx->azColl[j] ); 2361 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2362 continue; 2363 } 2364 break; 2365 } 2366 if( j==nExpr ) break; 2367 mCol = MASKBIT(j); 2368 if( mCol & colUsed ) break; /* Each column used only once */ 2369 colUsed |= mCol; 2370 if( aiMap ) aiMap[i] = j; 2371 } 2372 2373 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2374 if( colUsed==(MASKBIT(nExpr)-1) ){ 2375 /* If we reach this point, that means the index pIdx is usable */ 2376 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2377 #ifndef SQLITE_OMIT_EXPLAIN 2378 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2379 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2380 P4_DYNAMIC); 2381 #endif 2382 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2383 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2384 VdbeComment((v, "%s", pIdx->zName)); 2385 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2386 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2387 2388 if( prRhsHasNull ){ 2389 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2390 i64 mask = (1<<nExpr)-1; 2391 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2392 iTab, 0, 0, (u8*)&mask, P4_INT64); 2393 #endif 2394 *prRhsHasNull = ++pParse->nMem; 2395 if( nExpr==1 ){ 2396 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2397 } 2398 } 2399 sqlite3VdbeJumpHere(v, iAddr); 2400 } 2401 } /* End loop over indexes */ 2402 } /* End if( affinity_ok ) */ 2403 } /* End if not an rowid index */ 2404 } /* End attempt to optimize using an index */ 2405 2406 /* If no preexisting index is available for the IN clause 2407 ** and IN_INDEX_NOOP is an allowed reply 2408 ** and the RHS of the IN operator is a list, not a subquery 2409 ** and the RHS is not constant or has two or fewer terms, 2410 ** then it is not worth creating an ephemeral table to evaluate 2411 ** the IN operator so return IN_INDEX_NOOP. 2412 */ 2413 if( eType==0 2414 && (inFlags & IN_INDEX_NOOP_OK) 2415 && !ExprHasProperty(pX, EP_xIsSelect) 2416 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2417 ){ 2418 eType = IN_INDEX_NOOP; 2419 } 2420 2421 if( eType==0 ){ 2422 /* Could not find an existing table or index to use as the RHS b-tree. 2423 ** We will have to generate an ephemeral table to do the job. 2424 */ 2425 u32 savedNQueryLoop = pParse->nQueryLoop; 2426 int rMayHaveNull = 0; 2427 eType = IN_INDEX_EPH; 2428 if( inFlags & IN_INDEX_LOOP ){ 2429 pParse->nQueryLoop = 0; 2430 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2431 eType = IN_INDEX_ROWID; 2432 } 2433 }else if( prRhsHasNull ){ 2434 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2435 } 2436 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2437 pParse->nQueryLoop = savedNQueryLoop; 2438 }else{ 2439 pX->iTable = iTab; 2440 } 2441 2442 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2443 int i, n; 2444 n = sqlite3ExprVectorSize(pX->pLeft); 2445 for(i=0; i<n; i++) aiMap[i] = i; 2446 } 2447 return eType; 2448 } 2449 #endif 2450 2451 #ifndef SQLITE_OMIT_SUBQUERY 2452 /* 2453 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2454 ** function allocates and returns a nul-terminated string containing 2455 ** the affinities to be used for each column of the comparison. 2456 ** 2457 ** It is the responsibility of the caller to ensure that the returned 2458 ** string is eventually freed using sqlite3DbFree(). 2459 */ 2460 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2461 Expr *pLeft = pExpr->pLeft; 2462 int nVal = sqlite3ExprVectorSize(pLeft); 2463 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2464 char *zRet; 2465 2466 assert( pExpr->op==TK_IN ); 2467 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2468 if( zRet ){ 2469 int i; 2470 for(i=0; i<nVal; i++){ 2471 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2472 char a = sqlite3ExprAffinity(pA); 2473 if( pSelect ){ 2474 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2475 }else{ 2476 zRet[i] = a; 2477 } 2478 } 2479 zRet[nVal] = '\0'; 2480 } 2481 return zRet; 2482 } 2483 #endif 2484 2485 #ifndef SQLITE_OMIT_SUBQUERY 2486 /* 2487 ** Load the Parse object passed as the first argument with an error 2488 ** message of the form: 2489 ** 2490 ** "sub-select returns N columns - expected M" 2491 */ 2492 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2493 const char *zFmt = "sub-select returns %d columns - expected %d"; 2494 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2495 } 2496 #endif 2497 2498 /* 2499 ** Expression pExpr is a vector that has been used in a context where 2500 ** it is not permitted. If pExpr is a sub-select vector, this routine 2501 ** loads the Parse object with a message of the form: 2502 ** 2503 ** "sub-select returns N columns - expected 1" 2504 ** 2505 ** Or, if it is a regular scalar vector: 2506 ** 2507 ** "row value misused" 2508 */ 2509 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2510 #ifndef SQLITE_OMIT_SUBQUERY 2511 if( pExpr->flags & EP_xIsSelect ){ 2512 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2513 }else 2514 #endif 2515 { 2516 sqlite3ErrorMsg(pParse, "row value misused"); 2517 } 2518 } 2519 2520 /* 2521 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2522 ** or IN operators. Examples: 2523 ** 2524 ** (SELECT a FROM b) -- subquery 2525 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2526 ** x IN (4,5,11) -- IN operator with list on right-hand side 2527 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2528 ** 2529 ** The pExpr parameter describes the expression that contains the IN 2530 ** operator or subquery. 2531 ** 2532 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2533 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2534 ** to some integer key column of a table B-Tree. In this case, use an 2535 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2536 ** (slower) variable length keys B-Tree. 2537 ** 2538 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2539 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2540 ** All this routine does is initialize the register given by rMayHaveNull 2541 ** to NULL. Calling routines will take care of changing this register 2542 ** value to non-NULL if the RHS is NULL-free. 2543 ** 2544 ** For a SELECT or EXISTS operator, return the register that holds the 2545 ** result. For a multi-column SELECT, the result is stored in a contiguous 2546 ** array of registers and the return value is the register of the left-most 2547 ** result column. Return 0 for IN operators or if an error occurs. 2548 */ 2549 #ifndef SQLITE_OMIT_SUBQUERY 2550 int sqlite3CodeSubselect( 2551 Parse *pParse, /* Parsing context */ 2552 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2553 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2554 int isRowid /* If true, LHS of IN operator is a rowid */ 2555 ){ 2556 int jmpIfDynamic = -1; /* One-time test address */ 2557 int rReg = 0; /* Register storing resulting */ 2558 Vdbe *v = sqlite3GetVdbe(pParse); 2559 if( NEVER(v==0) ) return 0; 2560 sqlite3ExprCachePush(pParse); 2561 2562 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2563 ** is encountered if any of the following is true: 2564 ** 2565 ** * The right-hand side is a correlated subquery 2566 ** * The right-hand side is an expression list containing variables 2567 ** * We are inside a trigger 2568 ** 2569 ** If all of the above are false, then we can run this code just once 2570 ** save the results, and reuse the same result on subsequent invocations. 2571 */ 2572 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2573 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2574 } 2575 2576 #ifndef SQLITE_OMIT_EXPLAIN 2577 if( pParse->explain==2 ){ 2578 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2579 jmpIfDynamic>=0?"":"CORRELATED ", 2580 pExpr->op==TK_IN?"LIST":"SCALAR", 2581 pParse->iNextSelectId 2582 ); 2583 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2584 } 2585 #endif 2586 2587 switch( pExpr->op ){ 2588 case TK_IN: { 2589 int addr; /* Address of OP_OpenEphemeral instruction */ 2590 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2591 KeyInfo *pKeyInfo = 0; /* Key information */ 2592 int nVal; /* Size of vector pLeft */ 2593 2594 nVal = sqlite3ExprVectorSize(pLeft); 2595 assert( !isRowid || nVal==1 ); 2596 2597 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2598 ** expression it is handled the same way. An ephemeral table is 2599 ** filled with index keys representing the results from the 2600 ** SELECT or the <exprlist>. 2601 ** 2602 ** If the 'x' expression is a column value, or the SELECT... 2603 ** statement returns a column value, then the affinity of that 2604 ** column is used to build the index keys. If both 'x' and the 2605 ** SELECT... statement are columns, then numeric affinity is used 2606 ** if either column has NUMERIC or INTEGER affinity. If neither 2607 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2608 ** is used. 2609 */ 2610 pExpr->iTable = pParse->nTab++; 2611 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2612 pExpr->iTable, (isRowid?0:nVal)); 2613 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2614 2615 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2616 /* Case 1: expr IN (SELECT ...) 2617 ** 2618 ** Generate code to write the results of the select into the temporary 2619 ** table allocated and opened above. 2620 */ 2621 Select *pSelect = pExpr->x.pSelect; 2622 ExprList *pEList = pSelect->pEList; 2623 2624 assert( !isRowid ); 2625 /* If the LHS and RHS of the IN operator do not match, that 2626 ** error will have been caught long before we reach this point. */ 2627 if( ALWAYS(pEList->nExpr==nVal) ){ 2628 SelectDest dest; 2629 int i; 2630 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2631 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2632 pSelect->iLimit = 0; 2633 testcase( pSelect->selFlags & SF_Distinct ); 2634 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2635 if( sqlite3Select(pParse, pSelect, &dest) ){ 2636 sqlite3DbFree(pParse->db, dest.zAffSdst); 2637 sqlite3KeyInfoUnref(pKeyInfo); 2638 return 0; 2639 } 2640 sqlite3DbFree(pParse->db, dest.zAffSdst); 2641 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2642 assert( pEList!=0 ); 2643 assert( pEList->nExpr>0 ); 2644 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2645 for(i=0; i<nVal; i++){ 2646 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2647 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2648 pParse, p, pEList->a[i].pExpr 2649 ); 2650 } 2651 } 2652 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2653 /* Case 2: expr IN (exprlist) 2654 ** 2655 ** For each expression, build an index key from the evaluation and 2656 ** store it in the temporary table. If <expr> is a column, then use 2657 ** that columns affinity when building index keys. If <expr> is not 2658 ** a column, use numeric affinity. 2659 */ 2660 char affinity; /* Affinity of the LHS of the IN */ 2661 int i; 2662 ExprList *pList = pExpr->x.pList; 2663 struct ExprList_item *pItem; 2664 int r1, r2, r3; 2665 2666 affinity = sqlite3ExprAffinity(pLeft); 2667 if( !affinity ){ 2668 affinity = SQLITE_AFF_BLOB; 2669 } 2670 if( pKeyInfo ){ 2671 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2672 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2673 } 2674 2675 /* Loop through each expression in <exprlist>. */ 2676 r1 = sqlite3GetTempReg(pParse); 2677 r2 = sqlite3GetTempReg(pParse); 2678 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2679 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2680 Expr *pE2 = pItem->pExpr; 2681 int iValToIns; 2682 2683 /* If the expression is not constant then we will need to 2684 ** disable the test that was generated above that makes sure 2685 ** this code only executes once. Because for a non-constant 2686 ** expression we need to rerun this code each time. 2687 */ 2688 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2689 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2690 jmpIfDynamic = -1; 2691 } 2692 2693 /* Evaluate the expression and insert it into the temp table */ 2694 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2695 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2696 }else{ 2697 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2698 if( isRowid ){ 2699 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2700 sqlite3VdbeCurrentAddr(v)+2); 2701 VdbeCoverage(v); 2702 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2703 }else{ 2704 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2705 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2706 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2707 } 2708 } 2709 } 2710 sqlite3ReleaseTempReg(pParse, r1); 2711 sqlite3ReleaseTempReg(pParse, r2); 2712 } 2713 if( pKeyInfo ){ 2714 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2715 } 2716 break; 2717 } 2718 2719 case TK_EXISTS: 2720 case TK_SELECT: 2721 default: { 2722 /* Case 3: (SELECT ... FROM ...) 2723 ** or: EXISTS(SELECT ... FROM ...) 2724 ** 2725 ** For a SELECT, generate code to put the values for all columns of 2726 ** the first row into an array of registers and return the index of 2727 ** the first register. 2728 ** 2729 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2730 ** into a register and return that register number. 2731 ** 2732 ** In both cases, the query is augmented with "LIMIT 1". Any 2733 ** preexisting limit is discarded in place of the new LIMIT 1. 2734 */ 2735 Select *pSel; /* SELECT statement to encode */ 2736 SelectDest dest; /* How to deal with SELECT result */ 2737 int nReg; /* Registers to allocate */ 2738 Expr *pLimit; /* New limit expression */ 2739 2740 testcase( pExpr->op==TK_EXISTS ); 2741 testcase( pExpr->op==TK_SELECT ); 2742 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2743 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2744 2745 pSel = pExpr->x.pSelect; 2746 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2747 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2748 pParse->nMem += nReg; 2749 if( pExpr->op==TK_SELECT ){ 2750 dest.eDest = SRT_Mem; 2751 dest.iSdst = dest.iSDParm; 2752 dest.nSdst = nReg; 2753 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2754 VdbeComment((v, "Init subquery result")); 2755 }else{ 2756 dest.eDest = SRT_Exists; 2757 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2758 VdbeComment((v, "Init EXISTS result")); 2759 } 2760 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2761 if( pSel->pLimit ){ 2762 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2763 pSel->pLimit->pLeft = pLimit; 2764 }else{ 2765 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2766 } 2767 pSel->iLimit = 0; 2768 pSel->selFlags &= ~SF_MultiValue; 2769 if( sqlite3Select(pParse, pSel, &dest) ){ 2770 return 0; 2771 } 2772 rReg = dest.iSDParm; 2773 ExprSetVVAProperty(pExpr, EP_NoReduce); 2774 break; 2775 } 2776 } 2777 2778 if( rHasNullFlag ){ 2779 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2780 } 2781 2782 if( jmpIfDynamic>=0 ){ 2783 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2784 } 2785 sqlite3ExprCachePop(pParse); 2786 2787 return rReg; 2788 } 2789 #endif /* SQLITE_OMIT_SUBQUERY */ 2790 2791 #ifndef SQLITE_OMIT_SUBQUERY 2792 /* 2793 ** Expr pIn is an IN(...) expression. This function checks that the 2794 ** sub-select on the RHS of the IN() operator has the same number of 2795 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2796 ** a sub-query, that the LHS is a vector of size 1. 2797 */ 2798 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2799 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2800 if( (pIn->flags & EP_xIsSelect) ){ 2801 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2802 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2803 return 1; 2804 } 2805 }else if( nVector!=1 ){ 2806 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2807 return 1; 2808 } 2809 return 0; 2810 } 2811 #endif 2812 2813 #ifndef SQLITE_OMIT_SUBQUERY 2814 /* 2815 ** Generate code for an IN expression. 2816 ** 2817 ** x IN (SELECT ...) 2818 ** x IN (value, value, ...) 2819 ** 2820 ** The left-hand side (LHS) is a scalar or vector expression. The 2821 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2822 ** subquery. If the RHS is a subquery, the number of result columns must 2823 ** match the number of columns in the vector on the LHS. If the RHS is 2824 ** a list of values, the LHS must be a scalar. 2825 ** 2826 ** The IN operator is true if the LHS value is contained within the RHS. 2827 ** The result is false if the LHS is definitely not in the RHS. The 2828 ** result is NULL if the presence of the LHS in the RHS cannot be 2829 ** determined due to NULLs. 2830 ** 2831 ** This routine generates code that jumps to destIfFalse if the LHS is not 2832 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2833 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2834 ** within the RHS then fall through. 2835 ** 2836 ** See the separate in-operator.md documentation file in the canonical 2837 ** SQLite source tree for additional information. 2838 */ 2839 static void sqlite3ExprCodeIN( 2840 Parse *pParse, /* Parsing and code generating context */ 2841 Expr *pExpr, /* The IN expression */ 2842 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2843 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2844 ){ 2845 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2846 int eType; /* Type of the RHS */ 2847 int rLhs; /* Register(s) holding the LHS values */ 2848 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2849 Vdbe *v; /* Statement under construction */ 2850 int *aiMap = 0; /* Map from vector field to index column */ 2851 char *zAff = 0; /* Affinity string for comparisons */ 2852 int nVector; /* Size of vectors for this IN operator */ 2853 int iDummy; /* Dummy parameter to exprCodeVector() */ 2854 Expr *pLeft; /* The LHS of the IN operator */ 2855 int i; /* loop counter */ 2856 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2857 int destStep6 = 0; /* Start of code for Step 6 */ 2858 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2859 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2860 int addrTop; /* Top of the step-6 loop */ 2861 2862 pLeft = pExpr->pLeft; 2863 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2864 zAff = exprINAffinity(pParse, pExpr); 2865 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2866 aiMap = (int*)sqlite3DbMallocZero( 2867 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2868 ); 2869 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2870 2871 /* Attempt to compute the RHS. After this step, if anything other than 2872 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2873 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2874 ** the RHS has not yet been coded. */ 2875 v = pParse->pVdbe; 2876 assert( v!=0 ); /* OOM detected prior to this routine */ 2877 VdbeNoopComment((v, "begin IN expr")); 2878 eType = sqlite3FindInIndex(pParse, pExpr, 2879 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2880 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2881 2882 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2883 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2884 ); 2885 #ifdef SQLITE_DEBUG 2886 /* Confirm that aiMap[] contains nVector integer values between 0 and 2887 ** nVector-1. */ 2888 for(i=0; i<nVector; i++){ 2889 int j, cnt; 2890 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2891 assert( cnt==1 ); 2892 } 2893 #endif 2894 2895 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2896 ** vector, then it is stored in an array of nVector registers starting 2897 ** at r1. 2898 ** 2899 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2900 ** so that the fields are in the same order as an existing index. The 2901 ** aiMap[] array contains a mapping from the original LHS field order to 2902 ** the field order that matches the RHS index. 2903 */ 2904 sqlite3ExprCachePush(pParse); 2905 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2906 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2907 if( i==nVector ){ 2908 /* LHS fields are not reordered */ 2909 rLhs = rLhsOrig; 2910 }else{ 2911 /* Need to reorder the LHS fields according to aiMap */ 2912 rLhs = sqlite3GetTempRange(pParse, nVector); 2913 for(i=0; i<nVector; i++){ 2914 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2915 } 2916 } 2917 2918 /* If sqlite3FindInIndex() did not find or create an index that is 2919 ** suitable for evaluating the IN operator, then evaluate using a 2920 ** sequence of comparisons. 2921 ** 2922 ** This is step (1) in the in-operator.md optimized algorithm. 2923 */ 2924 if( eType==IN_INDEX_NOOP ){ 2925 ExprList *pList = pExpr->x.pList; 2926 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2927 int labelOk = sqlite3VdbeMakeLabel(v); 2928 int r2, regToFree; 2929 int regCkNull = 0; 2930 int ii; 2931 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2932 if( destIfNull!=destIfFalse ){ 2933 regCkNull = sqlite3GetTempReg(pParse); 2934 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2935 } 2936 for(ii=0; ii<pList->nExpr; ii++){ 2937 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2938 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2939 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2940 } 2941 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2942 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2943 (void*)pColl, P4_COLLSEQ); 2944 VdbeCoverageIf(v, ii<pList->nExpr-1); 2945 VdbeCoverageIf(v, ii==pList->nExpr-1); 2946 sqlite3VdbeChangeP5(v, zAff[0]); 2947 }else{ 2948 assert( destIfNull==destIfFalse ); 2949 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2950 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2951 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2952 } 2953 sqlite3ReleaseTempReg(pParse, regToFree); 2954 } 2955 if( regCkNull ){ 2956 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2957 sqlite3VdbeGoto(v, destIfFalse); 2958 } 2959 sqlite3VdbeResolveLabel(v, labelOk); 2960 sqlite3ReleaseTempReg(pParse, regCkNull); 2961 goto sqlite3ExprCodeIN_finished; 2962 } 2963 2964 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2965 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2966 ** We will then skip the binary search of the RHS. 2967 */ 2968 if( destIfNull==destIfFalse ){ 2969 destStep2 = destIfFalse; 2970 }else{ 2971 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2972 } 2973 for(i=0; i<nVector; i++){ 2974 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2975 if( sqlite3ExprCanBeNull(p) ){ 2976 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2977 VdbeCoverage(v); 2978 } 2979 } 2980 2981 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2982 ** of the RHS using the LHS as a probe. If found, the result is 2983 ** true. 2984 */ 2985 if( eType==IN_INDEX_ROWID ){ 2986 /* In this case, the RHS is the ROWID of table b-tree and so we also 2987 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2988 ** into a single opcode. */ 2989 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2990 VdbeCoverage(v); 2991 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2992 }else{ 2993 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2994 if( destIfFalse==destIfNull ){ 2995 /* Combine Step 3 and Step 5 into a single opcode */ 2996 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2997 rLhs, nVector); VdbeCoverage(v); 2998 goto sqlite3ExprCodeIN_finished; 2999 } 3000 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3001 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3002 rLhs, nVector); VdbeCoverage(v); 3003 } 3004 3005 /* Step 4. If the RHS is known to be non-NULL and we did not find 3006 ** an match on the search above, then the result must be FALSE. 3007 */ 3008 if( rRhsHasNull && nVector==1 ){ 3009 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3010 VdbeCoverage(v); 3011 } 3012 3013 /* Step 5. If we do not care about the difference between NULL and 3014 ** FALSE, then just return false. 3015 */ 3016 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3017 3018 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3019 ** If any comparison is NULL, then the result is NULL. If all 3020 ** comparisons are FALSE then the final result is FALSE. 3021 ** 3022 ** For a scalar LHS, it is sufficient to check just the first row 3023 ** of the RHS. 3024 */ 3025 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3026 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3027 VdbeCoverage(v); 3028 if( nVector>1 ){ 3029 destNotNull = sqlite3VdbeMakeLabel(v); 3030 }else{ 3031 /* For nVector==1, combine steps 6 and 7 by immediately returning 3032 ** FALSE if the first comparison is not NULL */ 3033 destNotNull = destIfFalse; 3034 } 3035 for(i=0; i<nVector; i++){ 3036 Expr *p; 3037 CollSeq *pColl; 3038 int r3 = sqlite3GetTempReg(pParse); 3039 p = sqlite3VectorFieldSubexpr(pLeft, i); 3040 pColl = sqlite3ExprCollSeq(pParse, p); 3041 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3042 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3043 (void*)pColl, P4_COLLSEQ); 3044 VdbeCoverage(v); 3045 sqlite3ReleaseTempReg(pParse, r3); 3046 } 3047 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3048 if( nVector>1 ){ 3049 sqlite3VdbeResolveLabel(v, destNotNull); 3050 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3051 VdbeCoverage(v); 3052 3053 /* Step 7: If we reach this point, we know that the result must 3054 ** be false. */ 3055 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3056 } 3057 3058 /* Jumps here in order to return true. */ 3059 sqlite3VdbeJumpHere(v, addrTruthOp); 3060 3061 sqlite3ExprCodeIN_finished: 3062 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3063 sqlite3ExprCachePop(pParse); 3064 VdbeComment((v, "end IN expr")); 3065 sqlite3ExprCodeIN_oom_error: 3066 sqlite3DbFree(pParse->db, aiMap); 3067 sqlite3DbFree(pParse->db, zAff); 3068 } 3069 #endif /* SQLITE_OMIT_SUBQUERY */ 3070 3071 #ifndef SQLITE_OMIT_FLOATING_POINT 3072 /* 3073 ** Generate an instruction that will put the floating point 3074 ** value described by z[0..n-1] into register iMem. 3075 ** 3076 ** The z[] string will probably not be zero-terminated. But the 3077 ** z[n] character is guaranteed to be something that does not look 3078 ** like the continuation of the number. 3079 */ 3080 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3081 if( ALWAYS(z!=0) ){ 3082 double value; 3083 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3084 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3085 if( negateFlag ) value = -value; 3086 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3087 } 3088 } 3089 #endif 3090 3091 3092 /* 3093 ** Generate an instruction that will put the integer describe by 3094 ** text z[0..n-1] into register iMem. 3095 ** 3096 ** Expr.u.zToken is always UTF8 and zero-terminated. 3097 */ 3098 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3099 Vdbe *v = pParse->pVdbe; 3100 if( pExpr->flags & EP_IntValue ){ 3101 int i = pExpr->u.iValue; 3102 assert( i>=0 ); 3103 if( negFlag ) i = -i; 3104 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3105 }else{ 3106 int c; 3107 i64 value; 3108 const char *z = pExpr->u.zToken; 3109 assert( z!=0 ); 3110 c = sqlite3DecOrHexToI64(z, &value); 3111 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3112 #ifdef SQLITE_OMIT_FLOATING_POINT 3113 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3114 #else 3115 #ifndef SQLITE_OMIT_HEX_INTEGER 3116 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3117 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3118 }else 3119 #endif 3120 { 3121 codeReal(v, z, negFlag, iMem); 3122 } 3123 #endif 3124 }else{ 3125 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3126 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3127 } 3128 } 3129 } 3130 3131 /* 3132 ** Erase column-cache entry number i 3133 */ 3134 static void cacheEntryClear(Parse *pParse, int i){ 3135 if( pParse->aColCache[i].tempReg ){ 3136 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3137 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3138 } 3139 } 3140 pParse->nColCache--; 3141 if( i<pParse->nColCache ){ 3142 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3143 } 3144 } 3145 3146 3147 /* 3148 ** Record in the column cache that a particular column from a 3149 ** particular table is stored in a particular register. 3150 */ 3151 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3152 int i; 3153 int minLru; 3154 int idxLru; 3155 struct yColCache *p; 3156 3157 /* Unless an error has occurred, register numbers are always positive. */ 3158 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3159 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3160 3161 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3162 ** for testing only - to verify that SQLite always gets the same answer 3163 ** with and without the column cache. 3164 */ 3165 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3166 3167 /* First replace any existing entry. 3168 ** 3169 ** Actually, the way the column cache is currently used, we are guaranteed 3170 ** that the object will never already be in cache. Verify this guarantee. 3171 */ 3172 #ifndef NDEBUG 3173 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3174 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3175 } 3176 #endif 3177 3178 /* If the cache is already full, delete the least recently used entry */ 3179 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3180 minLru = 0x7fffffff; 3181 idxLru = -1; 3182 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3183 if( p->lru<minLru ){ 3184 idxLru = i; 3185 minLru = p->lru; 3186 } 3187 } 3188 p = &pParse->aColCache[idxLru]; 3189 }else{ 3190 p = &pParse->aColCache[pParse->nColCache++]; 3191 } 3192 3193 /* Add the new entry to the end of the cache */ 3194 p->iLevel = pParse->iCacheLevel; 3195 p->iTable = iTab; 3196 p->iColumn = iCol; 3197 p->iReg = iReg; 3198 p->tempReg = 0; 3199 p->lru = pParse->iCacheCnt++; 3200 } 3201 3202 /* 3203 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3204 ** Purge the range of registers from the column cache. 3205 */ 3206 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3207 int i = 0; 3208 while( i<pParse->nColCache ){ 3209 struct yColCache *p = &pParse->aColCache[i]; 3210 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3211 cacheEntryClear(pParse, i); 3212 }else{ 3213 i++; 3214 } 3215 } 3216 } 3217 3218 /* 3219 ** Remember the current column cache context. Any new entries added 3220 ** added to the column cache after this call are removed when the 3221 ** corresponding pop occurs. 3222 */ 3223 void sqlite3ExprCachePush(Parse *pParse){ 3224 pParse->iCacheLevel++; 3225 #ifdef SQLITE_DEBUG 3226 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3227 printf("PUSH to %d\n", pParse->iCacheLevel); 3228 } 3229 #endif 3230 } 3231 3232 /* 3233 ** Remove from the column cache any entries that were added since the 3234 ** the previous sqlite3ExprCachePush operation. In other words, restore 3235 ** the cache to the state it was in prior the most recent Push. 3236 */ 3237 void sqlite3ExprCachePop(Parse *pParse){ 3238 int i = 0; 3239 assert( pParse->iCacheLevel>=1 ); 3240 pParse->iCacheLevel--; 3241 #ifdef SQLITE_DEBUG 3242 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3243 printf("POP to %d\n", pParse->iCacheLevel); 3244 } 3245 #endif 3246 while( i<pParse->nColCache ){ 3247 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3248 cacheEntryClear(pParse, i); 3249 }else{ 3250 i++; 3251 } 3252 } 3253 } 3254 3255 /* 3256 ** When a cached column is reused, make sure that its register is 3257 ** no longer available as a temp register. ticket #3879: that same 3258 ** register might be in the cache in multiple places, so be sure to 3259 ** get them all. 3260 */ 3261 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3262 int i; 3263 struct yColCache *p; 3264 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3265 if( p->iReg==iReg ){ 3266 p->tempReg = 0; 3267 } 3268 } 3269 } 3270 3271 /* Generate code that will load into register regOut a value that is 3272 ** appropriate for the iIdxCol-th column of index pIdx. 3273 */ 3274 void sqlite3ExprCodeLoadIndexColumn( 3275 Parse *pParse, /* The parsing context */ 3276 Index *pIdx, /* The index whose column is to be loaded */ 3277 int iTabCur, /* Cursor pointing to a table row */ 3278 int iIdxCol, /* The column of the index to be loaded */ 3279 int regOut /* Store the index column value in this register */ 3280 ){ 3281 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3282 if( iTabCol==XN_EXPR ){ 3283 assert( pIdx->aColExpr ); 3284 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3285 pParse->iSelfTab = iTabCur + 1; 3286 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3287 pParse->iSelfTab = 0; 3288 }else{ 3289 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3290 iTabCol, regOut); 3291 } 3292 } 3293 3294 /* 3295 ** Generate code to extract the value of the iCol-th column of a table. 3296 */ 3297 void sqlite3ExprCodeGetColumnOfTable( 3298 Vdbe *v, /* The VDBE under construction */ 3299 Table *pTab, /* The table containing the value */ 3300 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3301 int iCol, /* Index of the column to extract */ 3302 int regOut /* Extract the value into this register */ 3303 ){ 3304 if( pTab==0 ){ 3305 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3306 return; 3307 } 3308 if( iCol<0 || iCol==pTab->iPKey ){ 3309 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3310 }else{ 3311 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3312 int x = iCol; 3313 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3314 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3315 } 3316 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3317 } 3318 if( iCol>=0 ){ 3319 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3320 } 3321 } 3322 3323 /* 3324 ** Generate code that will extract the iColumn-th column from 3325 ** table pTab and store the column value in a register. 3326 ** 3327 ** An effort is made to store the column value in register iReg. This 3328 ** is not garanteeed for GetColumn() - the result can be stored in 3329 ** any register. But the result is guaranteed to land in register iReg 3330 ** for GetColumnToReg(). 3331 ** 3332 ** There must be an open cursor to pTab in iTable when this routine 3333 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3334 */ 3335 int sqlite3ExprCodeGetColumn( 3336 Parse *pParse, /* Parsing and code generating context */ 3337 Table *pTab, /* Description of the table we are reading from */ 3338 int iColumn, /* Index of the table column */ 3339 int iTable, /* The cursor pointing to the table */ 3340 int iReg, /* Store results here */ 3341 u8 p5 /* P5 value for OP_Column + FLAGS */ 3342 ){ 3343 Vdbe *v = pParse->pVdbe; 3344 int i; 3345 struct yColCache *p; 3346 3347 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3348 if( p->iTable==iTable && p->iColumn==iColumn ){ 3349 p->lru = pParse->iCacheCnt++; 3350 sqlite3ExprCachePinRegister(pParse, p->iReg); 3351 return p->iReg; 3352 } 3353 } 3354 assert( v!=0 ); 3355 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3356 if( p5 ){ 3357 sqlite3VdbeChangeP5(v, p5); 3358 }else{ 3359 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3360 } 3361 return iReg; 3362 } 3363 void sqlite3ExprCodeGetColumnToReg( 3364 Parse *pParse, /* Parsing and code generating context */ 3365 Table *pTab, /* Description of the table we are reading from */ 3366 int iColumn, /* Index of the table column */ 3367 int iTable, /* The cursor pointing to the table */ 3368 int iReg /* Store results here */ 3369 ){ 3370 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3371 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3372 } 3373 3374 3375 /* 3376 ** Clear all column cache entries. 3377 */ 3378 void sqlite3ExprCacheClear(Parse *pParse){ 3379 int i; 3380 3381 #ifdef SQLITE_DEBUG 3382 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3383 printf("CLEAR\n"); 3384 } 3385 #endif 3386 for(i=0; i<pParse->nColCache; i++){ 3387 if( pParse->aColCache[i].tempReg 3388 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3389 ){ 3390 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3391 } 3392 } 3393 pParse->nColCache = 0; 3394 } 3395 3396 /* 3397 ** Record the fact that an affinity change has occurred on iCount 3398 ** registers starting with iStart. 3399 */ 3400 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3401 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3402 } 3403 3404 /* 3405 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3406 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3407 */ 3408 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3409 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3410 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3411 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3412 } 3413 3414 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3415 /* 3416 ** Return true if any register in the range iFrom..iTo (inclusive) 3417 ** is used as part of the column cache. 3418 ** 3419 ** This routine is used within assert() and testcase() macros only 3420 ** and does not appear in a normal build. 3421 */ 3422 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3423 int i; 3424 struct yColCache *p; 3425 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3426 int r = p->iReg; 3427 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3428 } 3429 return 0; 3430 } 3431 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3432 3433 3434 /* 3435 ** Convert a scalar expression node to a TK_REGISTER referencing 3436 ** register iReg. The caller must ensure that iReg already contains 3437 ** the correct value for the expression. 3438 */ 3439 static void exprToRegister(Expr *p, int iReg){ 3440 p->op2 = p->op; 3441 p->op = TK_REGISTER; 3442 p->iTable = iReg; 3443 ExprClearProperty(p, EP_Skip); 3444 } 3445 3446 /* 3447 ** Evaluate an expression (either a vector or a scalar expression) and store 3448 ** the result in continguous temporary registers. Return the index of 3449 ** the first register used to store the result. 3450 ** 3451 ** If the returned result register is a temporary scalar, then also write 3452 ** that register number into *piFreeable. If the returned result register 3453 ** is not a temporary or if the expression is a vector set *piFreeable 3454 ** to 0. 3455 */ 3456 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3457 int iResult; 3458 int nResult = sqlite3ExprVectorSize(p); 3459 if( nResult==1 ){ 3460 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3461 }else{ 3462 *piFreeable = 0; 3463 if( p->op==TK_SELECT ){ 3464 #if SQLITE_OMIT_SUBQUERY 3465 iResult = 0; 3466 #else 3467 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3468 #endif 3469 }else{ 3470 int i; 3471 iResult = pParse->nMem+1; 3472 pParse->nMem += nResult; 3473 for(i=0; i<nResult; i++){ 3474 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3475 } 3476 } 3477 } 3478 return iResult; 3479 } 3480 3481 3482 /* 3483 ** Generate code into the current Vdbe to evaluate the given 3484 ** expression. Attempt to store the results in register "target". 3485 ** Return the register where results are stored. 3486 ** 3487 ** With this routine, there is no guarantee that results will 3488 ** be stored in target. The result might be stored in some other 3489 ** register if it is convenient to do so. The calling function 3490 ** must check the return code and move the results to the desired 3491 ** register. 3492 */ 3493 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3494 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3495 int op; /* The opcode being coded */ 3496 int inReg = target; /* Results stored in register inReg */ 3497 int regFree1 = 0; /* If non-zero free this temporary register */ 3498 int regFree2 = 0; /* If non-zero free this temporary register */ 3499 int r1, r2; /* Various register numbers */ 3500 Expr tempX; /* Temporary expression node */ 3501 int p5 = 0; 3502 3503 assert( target>0 && target<=pParse->nMem ); 3504 if( v==0 ){ 3505 assert( pParse->db->mallocFailed ); 3506 return 0; 3507 } 3508 3509 if( pExpr==0 ){ 3510 op = TK_NULL; 3511 }else{ 3512 op = pExpr->op; 3513 } 3514 switch( op ){ 3515 case TK_AGG_COLUMN: { 3516 AggInfo *pAggInfo = pExpr->pAggInfo; 3517 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3518 if( !pAggInfo->directMode ){ 3519 assert( pCol->iMem>0 ); 3520 return pCol->iMem; 3521 }else if( pAggInfo->useSortingIdx ){ 3522 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3523 pCol->iSorterColumn, target); 3524 return target; 3525 } 3526 /* Otherwise, fall thru into the TK_COLUMN case */ 3527 } 3528 case TK_COLUMN: { 3529 int iTab = pExpr->iTable; 3530 if( iTab<0 ){ 3531 if( pParse->iSelfTab<0 ){ 3532 /* Generating CHECK constraints or inserting into partial index */ 3533 return pExpr->iColumn - pParse->iSelfTab; 3534 }else{ 3535 /* Coding an expression that is part of an index where column names 3536 ** in the index refer to the table to which the index belongs */ 3537 iTab = pParse->iSelfTab - 1; 3538 } 3539 } 3540 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3541 pExpr->iColumn, iTab, target, 3542 pExpr->op2); 3543 } 3544 case TK_INTEGER: { 3545 codeInteger(pParse, pExpr, 0, target); 3546 return target; 3547 } 3548 #ifndef SQLITE_OMIT_FLOATING_POINT 3549 case TK_FLOAT: { 3550 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3551 codeReal(v, pExpr->u.zToken, 0, target); 3552 return target; 3553 } 3554 #endif 3555 case TK_STRING: { 3556 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3557 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3558 return target; 3559 } 3560 case TK_NULL: { 3561 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3562 return target; 3563 } 3564 #ifndef SQLITE_OMIT_BLOB_LITERAL 3565 case TK_BLOB: { 3566 int n; 3567 const char *z; 3568 char *zBlob; 3569 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3570 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3571 assert( pExpr->u.zToken[1]=='\'' ); 3572 z = &pExpr->u.zToken[2]; 3573 n = sqlite3Strlen30(z) - 1; 3574 assert( z[n]=='\'' ); 3575 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3576 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3577 return target; 3578 } 3579 #endif 3580 case TK_VARIABLE: { 3581 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3582 assert( pExpr->u.zToken!=0 ); 3583 assert( pExpr->u.zToken[0]!=0 ); 3584 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3585 if( pExpr->u.zToken[1]!=0 ){ 3586 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3587 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3588 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3589 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3590 } 3591 return target; 3592 } 3593 case TK_REGISTER: { 3594 return pExpr->iTable; 3595 } 3596 #ifndef SQLITE_OMIT_CAST 3597 case TK_CAST: { 3598 /* Expressions of the form: CAST(pLeft AS token) */ 3599 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3600 if( inReg!=target ){ 3601 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3602 inReg = target; 3603 } 3604 sqlite3VdbeAddOp2(v, OP_Cast, target, 3605 sqlite3AffinityType(pExpr->u.zToken, 0)); 3606 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3607 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3608 return inReg; 3609 } 3610 #endif /* SQLITE_OMIT_CAST */ 3611 case TK_IS: 3612 case TK_ISNOT: 3613 op = (op==TK_IS) ? TK_EQ : TK_NE; 3614 p5 = SQLITE_NULLEQ; 3615 /* fall-through */ 3616 case TK_LT: 3617 case TK_LE: 3618 case TK_GT: 3619 case TK_GE: 3620 case TK_NE: 3621 case TK_EQ: { 3622 Expr *pLeft = pExpr->pLeft; 3623 if( sqlite3ExprIsVector(pLeft) ){ 3624 codeVectorCompare(pParse, pExpr, target, op, p5); 3625 }else{ 3626 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3627 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3628 codeCompare(pParse, pLeft, pExpr->pRight, op, 3629 r1, r2, inReg, SQLITE_STOREP2 | p5); 3630 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3631 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3632 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3633 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3634 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3635 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3636 testcase( regFree1==0 ); 3637 testcase( regFree2==0 ); 3638 } 3639 break; 3640 } 3641 case TK_AND: 3642 case TK_OR: 3643 case TK_PLUS: 3644 case TK_STAR: 3645 case TK_MINUS: 3646 case TK_REM: 3647 case TK_BITAND: 3648 case TK_BITOR: 3649 case TK_SLASH: 3650 case TK_LSHIFT: 3651 case TK_RSHIFT: 3652 case TK_CONCAT: { 3653 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3654 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3655 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3656 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3657 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3658 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3659 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3660 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3661 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3662 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3663 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3664 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3665 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3666 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3667 testcase( regFree1==0 ); 3668 testcase( regFree2==0 ); 3669 break; 3670 } 3671 case TK_UMINUS: { 3672 Expr *pLeft = pExpr->pLeft; 3673 assert( pLeft ); 3674 if( pLeft->op==TK_INTEGER ){ 3675 codeInteger(pParse, pLeft, 1, target); 3676 return target; 3677 #ifndef SQLITE_OMIT_FLOATING_POINT 3678 }else if( pLeft->op==TK_FLOAT ){ 3679 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3680 codeReal(v, pLeft->u.zToken, 1, target); 3681 return target; 3682 #endif 3683 }else{ 3684 tempX.op = TK_INTEGER; 3685 tempX.flags = EP_IntValue|EP_TokenOnly; 3686 tempX.u.iValue = 0; 3687 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3688 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3689 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3690 testcase( regFree2==0 ); 3691 } 3692 break; 3693 } 3694 case TK_BITNOT: 3695 case TK_NOT: { 3696 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3697 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3698 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3699 testcase( regFree1==0 ); 3700 sqlite3VdbeAddOp2(v, op, r1, inReg); 3701 break; 3702 } 3703 case TK_ISNULL: 3704 case TK_NOTNULL: { 3705 int addr; 3706 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3707 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3708 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3709 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3710 testcase( regFree1==0 ); 3711 addr = sqlite3VdbeAddOp1(v, op, r1); 3712 VdbeCoverageIf(v, op==TK_ISNULL); 3713 VdbeCoverageIf(v, op==TK_NOTNULL); 3714 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3715 sqlite3VdbeJumpHere(v, addr); 3716 break; 3717 } 3718 case TK_AGG_FUNCTION: { 3719 AggInfo *pInfo = pExpr->pAggInfo; 3720 if( pInfo==0 ){ 3721 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3722 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3723 }else{ 3724 return pInfo->aFunc[pExpr->iAgg].iMem; 3725 } 3726 break; 3727 } 3728 case TK_FUNCTION: { 3729 ExprList *pFarg; /* List of function arguments */ 3730 int nFarg; /* Number of function arguments */ 3731 FuncDef *pDef; /* The function definition object */ 3732 const char *zId; /* The function name */ 3733 u32 constMask = 0; /* Mask of function arguments that are constant */ 3734 int i; /* Loop counter */ 3735 sqlite3 *db = pParse->db; /* The database connection */ 3736 u8 enc = ENC(db); /* The text encoding used by this database */ 3737 CollSeq *pColl = 0; /* A collating sequence */ 3738 3739 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3740 /* SQL functions can be expensive. So try to move constant functions 3741 ** out of the inner loop, even if that means an extra OP_Copy. */ 3742 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3743 } 3744 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3745 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3746 pFarg = 0; 3747 }else{ 3748 pFarg = pExpr->x.pList; 3749 } 3750 nFarg = pFarg ? pFarg->nExpr : 0; 3751 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3752 zId = pExpr->u.zToken; 3753 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3754 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3755 if( pDef==0 && pParse->explain ){ 3756 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3757 } 3758 #endif 3759 if( pDef==0 || pDef->xFinalize!=0 ){ 3760 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3761 break; 3762 } 3763 3764 /* Attempt a direct implementation of the built-in COALESCE() and 3765 ** IFNULL() functions. This avoids unnecessary evaluation of 3766 ** arguments past the first non-NULL argument. 3767 */ 3768 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3769 int endCoalesce = sqlite3VdbeMakeLabel(v); 3770 assert( nFarg>=2 ); 3771 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3772 for(i=1; i<nFarg; i++){ 3773 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3774 VdbeCoverage(v); 3775 sqlite3ExprCacheRemove(pParse, target, 1); 3776 sqlite3ExprCachePush(pParse); 3777 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3778 sqlite3ExprCachePop(pParse); 3779 } 3780 sqlite3VdbeResolveLabel(v, endCoalesce); 3781 break; 3782 } 3783 3784 /* The UNLIKELY() function is a no-op. The result is the value 3785 ** of the first argument. 3786 */ 3787 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3788 assert( nFarg>=1 ); 3789 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3790 } 3791 3792 #ifdef SQLITE_DEBUG 3793 /* The AFFINITY() function evaluates to a string that describes 3794 ** the type affinity of the argument. This is used for testing of 3795 ** the SQLite type logic. 3796 */ 3797 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3798 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3799 char aff; 3800 assert( nFarg==1 ); 3801 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3802 sqlite3VdbeLoadString(v, target, 3803 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3804 return target; 3805 } 3806 #endif 3807 3808 for(i=0; i<nFarg; i++){ 3809 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3810 testcase( i==31 ); 3811 constMask |= MASKBIT32(i); 3812 } 3813 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3814 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3815 } 3816 } 3817 if( pFarg ){ 3818 if( constMask ){ 3819 r1 = pParse->nMem+1; 3820 pParse->nMem += nFarg; 3821 }else{ 3822 r1 = sqlite3GetTempRange(pParse, nFarg); 3823 } 3824 3825 /* For length() and typeof() functions with a column argument, 3826 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3827 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3828 ** loading. 3829 */ 3830 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3831 u8 exprOp; 3832 assert( nFarg==1 ); 3833 assert( pFarg->a[0].pExpr!=0 ); 3834 exprOp = pFarg->a[0].pExpr->op; 3835 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3836 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3837 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3838 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3839 pFarg->a[0].pExpr->op2 = 3840 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3841 } 3842 } 3843 3844 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3845 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3846 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3847 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3848 }else{ 3849 r1 = 0; 3850 } 3851 #ifndef SQLITE_OMIT_VIRTUALTABLE 3852 /* Possibly overload the function if the first argument is 3853 ** a virtual table column. 3854 ** 3855 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3856 ** second argument, not the first, as the argument to test to 3857 ** see if it is a column in a virtual table. This is done because 3858 ** the left operand of infix functions (the operand we want to 3859 ** control overloading) ends up as the second argument to the 3860 ** function. The expression "A glob B" is equivalent to 3861 ** "glob(B,A). We want to use the A in "A glob B" to test 3862 ** for function overloading. But we use the B term in "glob(B,A)". 3863 */ 3864 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3865 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3866 }else if( nFarg>0 ){ 3867 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3868 } 3869 #endif 3870 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3871 if( !pColl ) pColl = db->pDfltColl; 3872 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3873 } 3874 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3875 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3876 sqlite3VdbeChangeP5(v, (u8)nFarg); 3877 if( nFarg && constMask==0 ){ 3878 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3879 } 3880 return target; 3881 } 3882 #ifndef SQLITE_OMIT_SUBQUERY 3883 case TK_EXISTS: 3884 case TK_SELECT: { 3885 int nCol; 3886 testcase( op==TK_EXISTS ); 3887 testcase( op==TK_SELECT ); 3888 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3889 sqlite3SubselectError(pParse, nCol, 1); 3890 }else{ 3891 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3892 } 3893 break; 3894 } 3895 case TK_SELECT_COLUMN: { 3896 int n; 3897 if( pExpr->pLeft->iTable==0 ){ 3898 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3899 } 3900 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3901 if( pExpr->iTable 3902 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3903 ){ 3904 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3905 pExpr->iTable, n); 3906 } 3907 return pExpr->pLeft->iTable + pExpr->iColumn; 3908 } 3909 case TK_IN: { 3910 int destIfFalse = sqlite3VdbeMakeLabel(v); 3911 int destIfNull = sqlite3VdbeMakeLabel(v); 3912 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3913 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3914 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3915 sqlite3VdbeResolveLabel(v, destIfFalse); 3916 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3917 sqlite3VdbeResolveLabel(v, destIfNull); 3918 return target; 3919 } 3920 #endif /* SQLITE_OMIT_SUBQUERY */ 3921 3922 3923 /* 3924 ** x BETWEEN y AND z 3925 ** 3926 ** This is equivalent to 3927 ** 3928 ** x>=y AND x<=z 3929 ** 3930 ** X is stored in pExpr->pLeft. 3931 ** Y is stored in pExpr->pList->a[0].pExpr. 3932 ** Z is stored in pExpr->pList->a[1].pExpr. 3933 */ 3934 case TK_BETWEEN: { 3935 exprCodeBetween(pParse, pExpr, target, 0, 0); 3936 return target; 3937 } 3938 case TK_SPAN: 3939 case TK_COLLATE: 3940 case TK_UPLUS: { 3941 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3942 } 3943 3944 case TK_TRIGGER: { 3945 /* If the opcode is TK_TRIGGER, then the expression is a reference 3946 ** to a column in the new.* or old.* pseudo-tables available to 3947 ** trigger programs. In this case Expr.iTable is set to 1 for the 3948 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3949 ** is set to the column of the pseudo-table to read, or to -1 to 3950 ** read the rowid field. 3951 ** 3952 ** The expression is implemented using an OP_Param opcode. The p1 3953 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3954 ** to reference another column of the old.* pseudo-table, where 3955 ** i is the index of the column. For a new.rowid reference, p1 is 3956 ** set to (n+1), where n is the number of columns in each pseudo-table. 3957 ** For a reference to any other column in the new.* pseudo-table, p1 3958 ** is set to (n+2+i), where n and i are as defined previously. For 3959 ** example, if the table on which triggers are being fired is 3960 ** declared as: 3961 ** 3962 ** CREATE TABLE t1(a, b); 3963 ** 3964 ** Then p1 is interpreted as follows: 3965 ** 3966 ** p1==0 -> old.rowid p1==3 -> new.rowid 3967 ** p1==1 -> old.a p1==4 -> new.a 3968 ** p1==2 -> old.b p1==5 -> new.b 3969 */ 3970 Table *pTab = pExpr->pTab; 3971 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3972 3973 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3974 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3975 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3976 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3977 3978 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3979 VdbeComment((v, "%s.%s -> $%d", 3980 (pExpr->iTable ? "new" : "old"), 3981 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3982 target 3983 )); 3984 3985 #ifndef SQLITE_OMIT_FLOATING_POINT 3986 /* If the column has REAL affinity, it may currently be stored as an 3987 ** integer. Use OP_RealAffinity to make sure it is really real. 3988 ** 3989 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3990 ** floating point when extracting it from the record. */ 3991 if( pExpr->iColumn>=0 3992 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3993 ){ 3994 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3995 } 3996 #endif 3997 break; 3998 } 3999 4000 case TK_VECTOR: { 4001 sqlite3ErrorMsg(pParse, "row value misused"); 4002 break; 4003 } 4004 4005 case TK_IF_NULL_ROW: { 4006 int addrINR; 4007 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4008 sqlite3ExprCachePush(pParse); 4009 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4010 sqlite3ExprCachePop(pParse); 4011 sqlite3VdbeJumpHere(v, addrINR); 4012 sqlite3VdbeChangeP3(v, addrINR, inReg); 4013 break; 4014 } 4015 4016 /* 4017 ** Form A: 4018 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4019 ** 4020 ** Form B: 4021 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4022 ** 4023 ** Form A is can be transformed into the equivalent form B as follows: 4024 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4025 ** WHEN x=eN THEN rN ELSE y END 4026 ** 4027 ** X (if it exists) is in pExpr->pLeft. 4028 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4029 ** odd. The Y is also optional. If the number of elements in x.pList 4030 ** is even, then Y is omitted and the "otherwise" result is NULL. 4031 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4032 ** 4033 ** The result of the expression is the Ri for the first matching Ei, 4034 ** or if there is no matching Ei, the ELSE term Y, or if there is 4035 ** no ELSE term, NULL. 4036 */ 4037 default: assert( op==TK_CASE ); { 4038 int endLabel; /* GOTO label for end of CASE stmt */ 4039 int nextCase; /* GOTO label for next WHEN clause */ 4040 int nExpr; /* 2x number of WHEN terms */ 4041 int i; /* Loop counter */ 4042 ExprList *pEList; /* List of WHEN terms */ 4043 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4044 Expr opCompare; /* The X==Ei expression */ 4045 Expr *pX; /* The X expression */ 4046 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4047 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4048 4049 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4050 assert(pExpr->x.pList->nExpr > 0); 4051 pEList = pExpr->x.pList; 4052 aListelem = pEList->a; 4053 nExpr = pEList->nExpr; 4054 endLabel = sqlite3VdbeMakeLabel(v); 4055 if( (pX = pExpr->pLeft)!=0 ){ 4056 tempX = *pX; 4057 testcase( pX->op==TK_COLUMN ); 4058 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4059 testcase( regFree1==0 ); 4060 memset(&opCompare, 0, sizeof(opCompare)); 4061 opCompare.op = TK_EQ; 4062 opCompare.pLeft = &tempX; 4063 pTest = &opCompare; 4064 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4065 ** The value in regFree1 might get SCopy-ed into the file result. 4066 ** So make sure that the regFree1 register is not reused for other 4067 ** purposes and possibly overwritten. */ 4068 regFree1 = 0; 4069 } 4070 for(i=0; i<nExpr-1; i=i+2){ 4071 sqlite3ExprCachePush(pParse); 4072 if( pX ){ 4073 assert( pTest!=0 ); 4074 opCompare.pRight = aListelem[i].pExpr; 4075 }else{ 4076 pTest = aListelem[i].pExpr; 4077 } 4078 nextCase = sqlite3VdbeMakeLabel(v); 4079 testcase( pTest->op==TK_COLUMN ); 4080 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4081 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4082 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4083 sqlite3VdbeGoto(v, endLabel); 4084 sqlite3ExprCachePop(pParse); 4085 sqlite3VdbeResolveLabel(v, nextCase); 4086 } 4087 if( (nExpr&1)!=0 ){ 4088 sqlite3ExprCachePush(pParse); 4089 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4090 sqlite3ExprCachePop(pParse); 4091 }else{ 4092 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4093 } 4094 assert( pParse->db->mallocFailed || pParse->nErr>0 4095 || pParse->iCacheLevel==iCacheLevel ); 4096 sqlite3VdbeResolveLabel(v, endLabel); 4097 break; 4098 } 4099 #ifndef SQLITE_OMIT_TRIGGER 4100 case TK_RAISE: { 4101 assert( pExpr->affinity==OE_Rollback 4102 || pExpr->affinity==OE_Abort 4103 || pExpr->affinity==OE_Fail 4104 || pExpr->affinity==OE_Ignore 4105 ); 4106 if( !pParse->pTriggerTab ){ 4107 sqlite3ErrorMsg(pParse, 4108 "RAISE() may only be used within a trigger-program"); 4109 return 0; 4110 } 4111 if( pExpr->affinity==OE_Abort ){ 4112 sqlite3MayAbort(pParse); 4113 } 4114 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4115 if( pExpr->affinity==OE_Ignore ){ 4116 sqlite3VdbeAddOp4( 4117 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4118 VdbeCoverage(v); 4119 }else{ 4120 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4121 pExpr->affinity, pExpr->u.zToken, 0, 0); 4122 } 4123 4124 break; 4125 } 4126 #endif 4127 } 4128 sqlite3ReleaseTempReg(pParse, regFree1); 4129 sqlite3ReleaseTempReg(pParse, regFree2); 4130 return inReg; 4131 } 4132 4133 /* 4134 ** Factor out the code of the given expression to initialization time. 4135 ** 4136 ** If regDest>=0 then the result is always stored in that register and the 4137 ** result is not reusable. If regDest<0 then this routine is free to 4138 ** store the value whereever it wants. The register where the expression 4139 ** is stored is returned. When regDest<0, two identical expressions will 4140 ** code to the same register. 4141 */ 4142 int sqlite3ExprCodeAtInit( 4143 Parse *pParse, /* Parsing context */ 4144 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4145 int regDest /* Store the value in this register */ 4146 ){ 4147 ExprList *p; 4148 assert( ConstFactorOk(pParse) ); 4149 p = pParse->pConstExpr; 4150 if( regDest<0 && p ){ 4151 struct ExprList_item *pItem; 4152 int i; 4153 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4154 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4155 return pItem->u.iConstExprReg; 4156 } 4157 } 4158 } 4159 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4160 p = sqlite3ExprListAppend(pParse, p, pExpr); 4161 if( p ){ 4162 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4163 pItem->reusable = regDest<0; 4164 if( regDest<0 ) regDest = ++pParse->nMem; 4165 pItem->u.iConstExprReg = regDest; 4166 } 4167 pParse->pConstExpr = p; 4168 return regDest; 4169 } 4170 4171 /* 4172 ** Generate code to evaluate an expression and store the results 4173 ** into a register. Return the register number where the results 4174 ** are stored. 4175 ** 4176 ** If the register is a temporary register that can be deallocated, 4177 ** then write its number into *pReg. If the result register is not 4178 ** a temporary, then set *pReg to zero. 4179 ** 4180 ** If pExpr is a constant, then this routine might generate this 4181 ** code to fill the register in the initialization section of the 4182 ** VDBE program, in order to factor it out of the evaluation loop. 4183 */ 4184 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4185 int r2; 4186 pExpr = sqlite3ExprSkipCollate(pExpr); 4187 if( ConstFactorOk(pParse) 4188 && pExpr->op!=TK_REGISTER 4189 && sqlite3ExprIsConstantNotJoin(pExpr) 4190 ){ 4191 *pReg = 0; 4192 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4193 }else{ 4194 int r1 = sqlite3GetTempReg(pParse); 4195 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4196 if( r2==r1 ){ 4197 *pReg = r1; 4198 }else{ 4199 sqlite3ReleaseTempReg(pParse, r1); 4200 *pReg = 0; 4201 } 4202 } 4203 return r2; 4204 } 4205 4206 /* 4207 ** Generate code that will evaluate expression pExpr and store the 4208 ** results in register target. The results are guaranteed to appear 4209 ** in register target. 4210 */ 4211 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4212 int inReg; 4213 4214 assert( target>0 && target<=pParse->nMem ); 4215 if( pExpr && pExpr->op==TK_REGISTER ){ 4216 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4217 }else{ 4218 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4219 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4220 if( inReg!=target && pParse->pVdbe ){ 4221 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4222 } 4223 } 4224 } 4225 4226 /* 4227 ** Make a transient copy of expression pExpr and then code it using 4228 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4229 ** except that the input expression is guaranteed to be unchanged. 4230 */ 4231 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4232 sqlite3 *db = pParse->db; 4233 pExpr = sqlite3ExprDup(db, pExpr, 0); 4234 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4235 sqlite3ExprDelete(db, pExpr); 4236 } 4237 4238 /* 4239 ** Generate code that will evaluate expression pExpr and store the 4240 ** results in register target. The results are guaranteed to appear 4241 ** in register target. If the expression is constant, then this routine 4242 ** might choose to code the expression at initialization time. 4243 */ 4244 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4245 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4246 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4247 }else{ 4248 sqlite3ExprCode(pParse, pExpr, target); 4249 } 4250 } 4251 4252 /* 4253 ** Generate code that evaluates the given expression and puts the result 4254 ** in register target. 4255 ** 4256 ** Also make a copy of the expression results into another "cache" register 4257 ** and modify the expression so that the next time it is evaluated, 4258 ** the result is a copy of the cache register. 4259 ** 4260 ** This routine is used for expressions that are used multiple 4261 ** times. They are evaluated once and the results of the expression 4262 ** are reused. 4263 */ 4264 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4265 Vdbe *v = pParse->pVdbe; 4266 int iMem; 4267 4268 assert( target>0 ); 4269 assert( pExpr->op!=TK_REGISTER ); 4270 sqlite3ExprCode(pParse, pExpr, target); 4271 iMem = ++pParse->nMem; 4272 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4273 exprToRegister(pExpr, iMem); 4274 } 4275 4276 /* 4277 ** Generate code that pushes the value of every element of the given 4278 ** expression list into a sequence of registers beginning at target. 4279 ** 4280 ** Return the number of elements evaluated. The number returned will 4281 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4282 ** is defined. 4283 ** 4284 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4285 ** filled using OP_SCopy. OP_Copy must be used instead. 4286 ** 4287 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4288 ** factored out into initialization code. 4289 ** 4290 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4291 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4292 ** in registers at srcReg, and so the value can be copied from there. 4293 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4294 ** are simply omitted rather than being copied from srcReg. 4295 */ 4296 int sqlite3ExprCodeExprList( 4297 Parse *pParse, /* Parsing context */ 4298 ExprList *pList, /* The expression list to be coded */ 4299 int target, /* Where to write results */ 4300 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4301 u8 flags /* SQLITE_ECEL_* flags */ 4302 ){ 4303 struct ExprList_item *pItem; 4304 int i, j, n; 4305 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4306 Vdbe *v = pParse->pVdbe; 4307 assert( pList!=0 ); 4308 assert( target>0 ); 4309 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4310 n = pList->nExpr; 4311 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4312 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4313 Expr *pExpr = pItem->pExpr; 4314 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4315 if( flags & SQLITE_ECEL_OMITREF ){ 4316 i--; 4317 n--; 4318 }else{ 4319 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4320 } 4321 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4322 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4323 }else{ 4324 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4325 if( inReg!=target+i ){ 4326 VdbeOp *pOp; 4327 if( copyOp==OP_Copy 4328 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4329 && pOp->p1+pOp->p3+1==inReg 4330 && pOp->p2+pOp->p3+1==target+i 4331 ){ 4332 pOp->p3++; 4333 }else{ 4334 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4335 } 4336 } 4337 } 4338 } 4339 return n; 4340 } 4341 4342 /* 4343 ** Generate code for a BETWEEN operator. 4344 ** 4345 ** x BETWEEN y AND z 4346 ** 4347 ** The above is equivalent to 4348 ** 4349 ** x>=y AND x<=z 4350 ** 4351 ** Code it as such, taking care to do the common subexpression 4352 ** elimination of x. 4353 ** 4354 ** The xJumpIf parameter determines details: 4355 ** 4356 ** NULL: Store the boolean result in reg[dest] 4357 ** sqlite3ExprIfTrue: Jump to dest if true 4358 ** sqlite3ExprIfFalse: Jump to dest if false 4359 ** 4360 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4361 */ 4362 static void exprCodeBetween( 4363 Parse *pParse, /* Parsing and code generating context */ 4364 Expr *pExpr, /* The BETWEEN expression */ 4365 int dest, /* Jump destination or storage location */ 4366 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4367 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4368 ){ 4369 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4370 Expr compLeft; /* The x>=y term */ 4371 Expr compRight; /* The x<=z term */ 4372 Expr exprX; /* The x subexpression */ 4373 int regFree1 = 0; /* Temporary use register */ 4374 4375 4376 memset(&compLeft, 0, sizeof(Expr)); 4377 memset(&compRight, 0, sizeof(Expr)); 4378 memset(&exprAnd, 0, sizeof(Expr)); 4379 4380 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4381 exprX = *pExpr->pLeft; 4382 exprAnd.op = TK_AND; 4383 exprAnd.pLeft = &compLeft; 4384 exprAnd.pRight = &compRight; 4385 compLeft.op = TK_GE; 4386 compLeft.pLeft = &exprX; 4387 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4388 compRight.op = TK_LE; 4389 compRight.pLeft = &exprX; 4390 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4391 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4392 if( xJump ){ 4393 xJump(pParse, &exprAnd, dest, jumpIfNull); 4394 }else{ 4395 /* Mark the expression is being from the ON or USING clause of a join 4396 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4397 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4398 ** for clarity, but we are out of bits in the Expr.flags field so we 4399 ** have to reuse the EP_FromJoin bit. Bummer. */ 4400 exprX.flags |= EP_FromJoin; 4401 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4402 } 4403 sqlite3ReleaseTempReg(pParse, regFree1); 4404 4405 /* Ensure adequate test coverage */ 4406 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4407 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4408 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4409 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4410 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4411 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4412 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4413 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4414 testcase( xJump==0 ); 4415 } 4416 4417 /* 4418 ** Generate code for a boolean expression such that a jump is made 4419 ** to the label "dest" if the expression is true but execution 4420 ** continues straight thru if the expression is false. 4421 ** 4422 ** If the expression evaluates to NULL (neither true nor false), then 4423 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4424 ** 4425 ** This code depends on the fact that certain token values (ex: TK_EQ) 4426 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4427 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4428 ** the make process cause these values to align. Assert()s in the code 4429 ** below verify that the numbers are aligned correctly. 4430 */ 4431 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4432 Vdbe *v = pParse->pVdbe; 4433 int op = 0; 4434 int regFree1 = 0; 4435 int regFree2 = 0; 4436 int r1, r2; 4437 4438 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4439 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4440 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4441 op = pExpr->op; 4442 switch( op ){ 4443 case TK_AND: { 4444 int d2 = sqlite3VdbeMakeLabel(v); 4445 testcase( jumpIfNull==0 ); 4446 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4447 sqlite3ExprCachePush(pParse); 4448 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4449 sqlite3VdbeResolveLabel(v, d2); 4450 sqlite3ExprCachePop(pParse); 4451 break; 4452 } 4453 case TK_OR: { 4454 testcase( jumpIfNull==0 ); 4455 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4456 sqlite3ExprCachePush(pParse); 4457 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4458 sqlite3ExprCachePop(pParse); 4459 break; 4460 } 4461 case TK_NOT: { 4462 testcase( jumpIfNull==0 ); 4463 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4464 break; 4465 } 4466 case TK_IS: 4467 case TK_ISNOT: 4468 testcase( op==TK_IS ); 4469 testcase( op==TK_ISNOT ); 4470 op = (op==TK_IS) ? TK_EQ : TK_NE; 4471 jumpIfNull = SQLITE_NULLEQ; 4472 /* Fall thru */ 4473 case TK_LT: 4474 case TK_LE: 4475 case TK_GT: 4476 case TK_GE: 4477 case TK_NE: 4478 case TK_EQ: { 4479 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4480 testcase( jumpIfNull==0 ); 4481 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4482 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4483 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4484 r1, r2, dest, jumpIfNull); 4485 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4486 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4487 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4488 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4489 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4490 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4491 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4492 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4493 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4494 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4495 testcase( regFree1==0 ); 4496 testcase( regFree2==0 ); 4497 break; 4498 } 4499 case TK_ISNULL: 4500 case TK_NOTNULL: { 4501 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4502 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4503 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4504 sqlite3VdbeAddOp2(v, op, r1, dest); 4505 VdbeCoverageIf(v, op==TK_ISNULL); 4506 VdbeCoverageIf(v, op==TK_NOTNULL); 4507 testcase( regFree1==0 ); 4508 break; 4509 } 4510 case TK_BETWEEN: { 4511 testcase( jumpIfNull==0 ); 4512 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4513 break; 4514 } 4515 #ifndef SQLITE_OMIT_SUBQUERY 4516 case TK_IN: { 4517 int destIfFalse = sqlite3VdbeMakeLabel(v); 4518 int destIfNull = jumpIfNull ? dest : destIfFalse; 4519 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4520 sqlite3VdbeGoto(v, dest); 4521 sqlite3VdbeResolveLabel(v, destIfFalse); 4522 break; 4523 } 4524 #endif 4525 default: { 4526 default_expr: 4527 if( exprAlwaysTrue(pExpr) ){ 4528 sqlite3VdbeGoto(v, dest); 4529 }else if( exprAlwaysFalse(pExpr) ){ 4530 /* No-op */ 4531 }else{ 4532 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4533 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4534 VdbeCoverage(v); 4535 testcase( regFree1==0 ); 4536 testcase( jumpIfNull==0 ); 4537 } 4538 break; 4539 } 4540 } 4541 sqlite3ReleaseTempReg(pParse, regFree1); 4542 sqlite3ReleaseTempReg(pParse, regFree2); 4543 } 4544 4545 /* 4546 ** Generate code for a boolean expression such that a jump is made 4547 ** to the label "dest" if the expression is false but execution 4548 ** continues straight thru if the expression is true. 4549 ** 4550 ** If the expression evaluates to NULL (neither true nor false) then 4551 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4552 ** is 0. 4553 */ 4554 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4555 Vdbe *v = pParse->pVdbe; 4556 int op = 0; 4557 int regFree1 = 0; 4558 int regFree2 = 0; 4559 int r1, r2; 4560 4561 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4562 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4563 if( pExpr==0 ) return; 4564 4565 /* The value of pExpr->op and op are related as follows: 4566 ** 4567 ** pExpr->op op 4568 ** --------- ---------- 4569 ** TK_ISNULL OP_NotNull 4570 ** TK_NOTNULL OP_IsNull 4571 ** TK_NE OP_Eq 4572 ** TK_EQ OP_Ne 4573 ** TK_GT OP_Le 4574 ** TK_LE OP_Gt 4575 ** TK_GE OP_Lt 4576 ** TK_LT OP_Ge 4577 ** 4578 ** For other values of pExpr->op, op is undefined and unused. 4579 ** The value of TK_ and OP_ constants are arranged such that we 4580 ** can compute the mapping above using the following expression. 4581 ** Assert()s verify that the computation is correct. 4582 */ 4583 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4584 4585 /* Verify correct alignment of TK_ and OP_ constants 4586 */ 4587 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4588 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4589 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4590 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4591 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4592 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4593 assert( pExpr->op!=TK_GT || op==OP_Le ); 4594 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4595 4596 switch( pExpr->op ){ 4597 case TK_AND: { 4598 testcase( jumpIfNull==0 ); 4599 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4600 sqlite3ExprCachePush(pParse); 4601 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4602 sqlite3ExprCachePop(pParse); 4603 break; 4604 } 4605 case TK_OR: { 4606 int d2 = sqlite3VdbeMakeLabel(v); 4607 testcase( jumpIfNull==0 ); 4608 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4609 sqlite3ExprCachePush(pParse); 4610 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4611 sqlite3VdbeResolveLabel(v, d2); 4612 sqlite3ExprCachePop(pParse); 4613 break; 4614 } 4615 case TK_NOT: { 4616 testcase( jumpIfNull==0 ); 4617 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4618 break; 4619 } 4620 case TK_IS: 4621 case TK_ISNOT: 4622 testcase( pExpr->op==TK_IS ); 4623 testcase( pExpr->op==TK_ISNOT ); 4624 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4625 jumpIfNull = SQLITE_NULLEQ; 4626 /* Fall thru */ 4627 case TK_LT: 4628 case TK_LE: 4629 case TK_GT: 4630 case TK_GE: 4631 case TK_NE: 4632 case TK_EQ: { 4633 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4634 testcase( jumpIfNull==0 ); 4635 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4636 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4637 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4638 r1, r2, dest, jumpIfNull); 4639 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4640 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4641 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4642 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4643 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4644 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4645 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4646 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4647 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4648 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4649 testcase( regFree1==0 ); 4650 testcase( regFree2==0 ); 4651 break; 4652 } 4653 case TK_ISNULL: 4654 case TK_NOTNULL: { 4655 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4656 sqlite3VdbeAddOp2(v, op, r1, dest); 4657 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4658 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4659 testcase( regFree1==0 ); 4660 break; 4661 } 4662 case TK_BETWEEN: { 4663 testcase( jumpIfNull==0 ); 4664 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4665 break; 4666 } 4667 #ifndef SQLITE_OMIT_SUBQUERY 4668 case TK_IN: { 4669 if( jumpIfNull ){ 4670 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4671 }else{ 4672 int destIfNull = sqlite3VdbeMakeLabel(v); 4673 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4674 sqlite3VdbeResolveLabel(v, destIfNull); 4675 } 4676 break; 4677 } 4678 #endif 4679 default: { 4680 default_expr: 4681 if( exprAlwaysFalse(pExpr) ){ 4682 sqlite3VdbeGoto(v, dest); 4683 }else if( exprAlwaysTrue(pExpr) ){ 4684 /* no-op */ 4685 }else{ 4686 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4687 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4688 VdbeCoverage(v); 4689 testcase( regFree1==0 ); 4690 testcase( jumpIfNull==0 ); 4691 } 4692 break; 4693 } 4694 } 4695 sqlite3ReleaseTempReg(pParse, regFree1); 4696 sqlite3ReleaseTempReg(pParse, regFree2); 4697 } 4698 4699 /* 4700 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4701 ** code generation, and that copy is deleted after code generation. This 4702 ** ensures that the original pExpr is unchanged. 4703 */ 4704 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4705 sqlite3 *db = pParse->db; 4706 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4707 if( db->mallocFailed==0 ){ 4708 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4709 } 4710 sqlite3ExprDelete(db, pCopy); 4711 } 4712 4713 /* 4714 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4715 ** type of expression. 4716 ** 4717 ** If pExpr is a simple SQL value - an integer, real, string, blob 4718 ** or NULL value - then the VDBE currently being prepared is configured 4719 ** to re-prepare each time a new value is bound to variable pVar. 4720 ** 4721 ** Additionally, if pExpr is a simple SQL value and the value is the 4722 ** same as that currently bound to variable pVar, non-zero is returned. 4723 ** Otherwise, if the values are not the same or if pExpr is not a simple 4724 ** SQL value, zero is returned. 4725 */ 4726 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4727 int res = 0; 4728 int iVar; 4729 sqlite3_value *pL, *pR = 0; 4730 4731 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4732 if( pR ){ 4733 iVar = pVar->iColumn; 4734 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4735 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4736 if( pL ){ 4737 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4738 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4739 } 4740 res = 0==sqlite3MemCompare(pL, pR, 0); 4741 } 4742 sqlite3ValueFree(pR); 4743 sqlite3ValueFree(pL); 4744 } 4745 4746 return res; 4747 } 4748 4749 /* 4750 ** Do a deep comparison of two expression trees. Return 0 if the two 4751 ** expressions are completely identical. Return 1 if they differ only 4752 ** by a COLLATE operator at the top level. Return 2 if there are differences 4753 ** other than the top-level COLLATE operator. 4754 ** 4755 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4756 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4757 ** 4758 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4759 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4760 ** 4761 ** Sometimes this routine will return 2 even if the two expressions 4762 ** really are equivalent. If we cannot prove that the expressions are 4763 ** identical, we return 2 just to be safe. So if this routine 4764 ** returns 2, then you do not really know for certain if the two 4765 ** expressions are the same. But if you get a 0 or 1 return, then you 4766 ** can be sure the expressions are the same. In the places where 4767 ** this routine is used, it does not hurt to get an extra 2 - that 4768 ** just might result in some slightly slower code. But returning 4769 ** an incorrect 0 or 1 could lead to a malfunction. 4770 ** 4771 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4772 ** pParse->pReprepare can be matched against literals in pB. The 4773 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4774 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4775 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4776 ** pB causes a return value of 2. 4777 */ 4778 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4779 u32 combinedFlags; 4780 if( pA==0 || pB==0 ){ 4781 return pB==pA ? 0 : 2; 4782 } 4783 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4784 return 0; 4785 } 4786 combinedFlags = pA->flags | pB->flags; 4787 if( combinedFlags & EP_IntValue ){ 4788 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4789 return 0; 4790 } 4791 return 2; 4792 } 4793 if( pA->op!=pB->op ){ 4794 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4795 return 1; 4796 } 4797 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4798 return 1; 4799 } 4800 return 2; 4801 } 4802 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4803 if( pA->op==TK_FUNCTION ){ 4804 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4805 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4806 return pA->op==TK_COLLATE ? 1 : 2; 4807 } 4808 } 4809 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4810 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4811 if( combinedFlags & EP_xIsSelect ) return 2; 4812 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4813 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4814 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4815 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4816 if( pA->iColumn!=pB->iColumn ) return 2; 4817 if( pA->iTable!=pB->iTable 4818 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4819 } 4820 } 4821 return 0; 4822 } 4823 4824 /* 4825 ** Compare two ExprList objects. Return 0 if they are identical and 4826 ** non-zero if they differ in any way. 4827 ** 4828 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4829 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4830 ** 4831 ** This routine might return non-zero for equivalent ExprLists. The 4832 ** only consequence will be disabled optimizations. But this routine 4833 ** must never return 0 if the two ExprList objects are different, or 4834 ** a malfunction will result. 4835 ** 4836 ** Two NULL pointers are considered to be the same. But a NULL pointer 4837 ** always differs from a non-NULL pointer. 4838 */ 4839 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4840 int i; 4841 if( pA==0 && pB==0 ) return 0; 4842 if( pA==0 || pB==0 ) return 1; 4843 if( pA->nExpr!=pB->nExpr ) return 1; 4844 for(i=0; i<pA->nExpr; i++){ 4845 Expr *pExprA = pA->a[i].pExpr; 4846 Expr *pExprB = pB->a[i].pExpr; 4847 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4848 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4849 } 4850 return 0; 4851 } 4852 4853 /* 4854 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4855 ** are ignored. 4856 */ 4857 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4858 return sqlite3ExprCompare(0, 4859 sqlite3ExprSkipCollate(pA), 4860 sqlite3ExprSkipCollate(pB), 4861 iTab); 4862 } 4863 4864 /* 4865 ** Return true if we can prove the pE2 will always be true if pE1 is 4866 ** true. Return false if we cannot complete the proof or if pE2 might 4867 ** be false. Examples: 4868 ** 4869 ** pE1: x==5 pE2: x==5 Result: true 4870 ** pE1: x>0 pE2: x==5 Result: false 4871 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4872 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4873 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4874 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4875 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4876 ** 4877 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4878 ** Expr.iTable<0 then assume a table number given by iTab. 4879 ** 4880 ** If pParse is not NULL, then the values of bound variables in pE1 are 4881 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4882 ** modified to record which bound variables are referenced. If pParse 4883 ** is NULL, then false will be returned if pE1 contains any bound variables. 4884 ** 4885 ** When in doubt, return false. Returning true might give a performance 4886 ** improvement. Returning false might cause a performance reduction, but 4887 ** it will always give the correct answer and is hence always safe. 4888 */ 4889 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4890 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4891 return 1; 4892 } 4893 if( pE2->op==TK_OR 4894 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4895 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4896 ){ 4897 return 1; 4898 } 4899 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4900 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4901 testcase( pX!=pE1->pLeft ); 4902 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4903 } 4904 return 0; 4905 } 4906 4907 /* 4908 ** An instance of the following structure is used by the tree walker 4909 ** to determine if an expression can be evaluated by reference to the 4910 ** index only, without having to do a search for the corresponding 4911 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4912 ** is the cursor for the table. 4913 */ 4914 struct IdxCover { 4915 Index *pIdx; /* The index to be tested for coverage */ 4916 int iCur; /* Cursor number for the table corresponding to the index */ 4917 }; 4918 4919 /* 4920 ** Check to see if there are references to columns in table 4921 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4922 ** pWalker->u.pIdxCover->pIdx. 4923 */ 4924 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4925 if( pExpr->op==TK_COLUMN 4926 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4927 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4928 ){ 4929 pWalker->eCode = 1; 4930 return WRC_Abort; 4931 } 4932 return WRC_Continue; 4933 } 4934 4935 /* 4936 ** Determine if an index pIdx on table with cursor iCur contains will 4937 ** the expression pExpr. Return true if the index does cover the 4938 ** expression and false if the pExpr expression references table columns 4939 ** that are not found in the index pIdx. 4940 ** 4941 ** An index covering an expression means that the expression can be 4942 ** evaluated using only the index and without having to lookup the 4943 ** corresponding table entry. 4944 */ 4945 int sqlite3ExprCoveredByIndex( 4946 Expr *pExpr, /* The index to be tested */ 4947 int iCur, /* The cursor number for the corresponding table */ 4948 Index *pIdx /* The index that might be used for coverage */ 4949 ){ 4950 Walker w; 4951 struct IdxCover xcov; 4952 memset(&w, 0, sizeof(w)); 4953 xcov.iCur = iCur; 4954 xcov.pIdx = pIdx; 4955 w.xExprCallback = exprIdxCover; 4956 w.u.pIdxCover = &xcov; 4957 sqlite3WalkExpr(&w, pExpr); 4958 return !w.eCode; 4959 } 4960 4961 4962 /* 4963 ** An instance of the following structure is used by the tree walker 4964 ** to count references to table columns in the arguments of an 4965 ** aggregate function, in order to implement the 4966 ** sqlite3FunctionThisSrc() routine. 4967 */ 4968 struct SrcCount { 4969 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4970 int nThis; /* Number of references to columns in pSrcList */ 4971 int nOther; /* Number of references to columns in other FROM clauses */ 4972 }; 4973 4974 /* 4975 ** Count the number of references to columns. 4976 */ 4977 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4978 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4979 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4980 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4981 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4982 ** NEVER() will need to be removed. */ 4983 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4984 int i; 4985 struct SrcCount *p = pWalker->u.pSrcCount; 4986 SrcList *pSrc = p->pSrc; 4987 int nSrc = pSrc ? pSrc->nSrc : 0; 4988 for(i=0; i<nSrc; i++){ 4989 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4990 } 4991 if( i<nSrc ){ 4992 p->nThis++; 4993 }else{ 4994 p->nOther++; 4995 } 4996 } 4997 return WRC_Continue; 4998 } 4999 5000 /* 5001 ** Determine if any of the arguments to the pExpr Function reference 5002 ** pSrcList. Return true if they do. Also return true if the function 5003 ** has no arguments or has only constant arguments. Return false if pExpr 5004 ** references columns but not columns of tables found in pSrcList. 5005 */ 5006 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5007 Walker w; 5008 struct SrcCount cnt; 5009 assert( pExpr->op==TK_AGG_FUNCTION ); 5010 w.xExprCallback = exprSrcCount; 5011 w.xSelectCallback = 0; 5012 w.u.pSrcCount = &cnt; 5013 cnt.pSrc = pSrcList; 5014 cnt.nThis = 0; 5015 cnt.nOther = 0; 5016 sqlite3WalkExprList(&w, pExpr->x.pList); 5017 return cnt.nThis>0 || cnt.nOther==0; 5018 } 5019 5020 /* 5021 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5022 ** the new element. Return a negative number if malloc fails. 5023 */ 5024 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5025 int i; 5026 pInfo->aCol = sqlite3ArrayAllocate( 5027 db, 5028 pInfo->aCol, 5029 sizeof(pInfo->aCol[0]), 5030 &pInfo->nColumn, 5031 &i 5032 ); 5033 return i; 5034 } 5035 5036 /* 5037 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5038 ** the new element. Return a negative number if malloc fails. 5039 */ 5040 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5041 int i; 5042 pInfo->aFunc = sqlite3ArrayAllocate( 5043 db, 5044 pInfo->aFunc, 5045 sizeof(pInfo->aFunc[0]), 5046 &pInfo->nFunc, 5047 &i 5048 ); 5049 return i; 5050 } 5051 5052 /* 5053 ** This is the xExprCallback for a tree walker. It is used to 5054 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5055 ** for additional information. 5056 */ 5057 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5058 int i; 5059 NameContext *pNC = pWalker->u.pNC; 5060 Parse *pParse = pNC->pParse; 5061 SrcList *pSrcList = pNC->pSrcList; 5062 AggInfo *pAggInfo = pNC->pAggInfo; 5063 5064 switch( pExpr->op ){ 5065 case TK_AGG_COLUMN: 5066 case TK_COLUMN: { 5067 testcase( pExpr->op==TK_AGG_COLUMN ); 5068 testcase( pExpr->op==TK_COLUMN ); 5069 /* Check to see if the column is in one of the tables in the FROM 5070 ** clause of the aggregate query */ 5071 if( ALWAYS(pSrcList!=0) ){ 5072 struct SrcList_item *pItem = pSrcList->a; 5073 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5074 struct AggInfo_col *pCol; 5075 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5076 if( pExpr->iTable==pItem->iCursor ){ 5077 /* If we reach this point, it means that pExpr refers to a table 5078 ** that is in the FROM clause of the aggregate query. 5079 ** 5080 ** Make an entry for the column in pAggInfo->aCol[] if there 5081 ** is not an entry there already. 5082 */ 5083 int k; 5084 pCol = pAggInfo->aCol; 5085 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5086 if( pCol->iTable==pExpr->iTable && 5087 pCol->iColumn==pExpr->iColumn ){ 5088 break; 5089 } 5090 } 5091 if( (k>=pAggInfo->nColumn) 5092 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5093 ){ 5094 pCol = &pAggInfo->aCol[k]; 5095 pCol->pTab = pExpr->pTab; 5096 pCol->iTable = pExpr->iTable; 5097 pCol->iColumn = pExpr->iColumn; 5098 pCol->iMem = ++pParse->nMem; 5099 pCol->iSorterColumn = -1; 5100 pCol->pExpr = pExpr; 5101 if( pAggInfo->pGroupBy ){ 5102 int j, n; 5103 ExprList *pGB = pAggInfo->pGroupBy; 5104 struct ExprList_item *pTerm = pGB->a; 5105 n = pGB->nExpr; 5106 for(j=0; j<n; j++, pTerm++){ 5107 Expr *pE = pTerm->pExpr; 5108 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5109 pE->iColumn==pExpr->iColumn ){ 5110 pCol->iSorterColumn = j; 5111 break; 5112 } 5113 } 5114 } 5115 if( pCol->iSorterColumn<0 ){ 5116 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5117 } 5118 } 5119 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5120 ** because it was there before or because we just created it). 5121 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5122 ** pAggInfo->aCol[] entry. 5123 */ 5124 ExprSetVVAProperty(pExpr, EP_NoReduce); 5125 pExpr->pAggInfo = pAggInfo; 5126 pExpr->op = TK_AGG_COLUMN; 5127 pExpr->iAgg = (i16)k; 5128 break; 5129 } /* endif pExpr->iTable==pItem->iCursor */ 5130 } /* end loop over pSrcList */ 5131 } 5132 return WRC_Prune; 5133 } 5134 case TK_AGG_FUNCTION: { 5135 if( (pNC->ncFlags & NC_InAggFunc)==0 5136 && pWalker->walkerDepth==pExpr->op2 5137 ){ 5138 /* Check to see if pExpr is a duplicate of another aggregate 5139 ** function that is already in the pAggInfo structure 5140 */ 5141 struct AggInfo_func *pItem = pAggInfo->aFunc; 5142 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5143 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5144 break; 5145 } 5146 } 5147 if( i>=pAggInfo->nFunc ){ 5148 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5149 */ 5150 u8 enc = ENC(pParse->db); 5151 i = addAggInfoFunc(pParse->db, pAggInfo); 5152 if( i>=0 ){ 5153 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5154 pItem = &pAggInfo->aFunc[i]; 5155 pItem->pExpr = pExpr; 5156 pItem->iMem = ++pParse->nMem; 5157 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5158 pItem->pFunc = sqlite3FindFunction(pParse->db, 5159 pExpr->u.zToken, 5160 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5161 if( pExpr->flags & EP_Distinct ){ 5162 pItem->iDistinct = pParse->nTab++; 5163 }else{ 5164 pItem->iDistinct = -1; 5165 } 5166 } 5167 } 5168 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5169 */ 5170 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5171 ExprSetVVAProperty(pExpr, EP_NoReduce); 5172 pExpr->iAgg = (i16)i; 5173 pExpr->pAggInfo = pAggInfo; 5174 return WRC_Prune; 5175 }else{ 5176 return WRC_Continue; 5177 } 5178 } 5179 } 5180 return WRC_Continue; 5181 } 5182 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5183 UNUSED_PARAMETER(pSelect); 5184 pWalker->walkerDepth++; 5185 return WRC_Continue; 5186 } 5187 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5188 UNUSED_PARAMETER(pSelect); 5189 pWalker->walkerDepth--; 5190 } 5191 5192 /* 5193 ** Analyze the pExpr expression looking for aggregate functions and 5194 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5195 ** points to. Additional entries are made on the AggInfo object as 5196 ** necessary. 5197 ** 5198 ** This routine should only be called after the expression has been 5199 ** analyzed by sqlite3ResolveExprNames(). 5200 */ 5201 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5202 Walker w; 5203 w.xExprCallback = analyzeAggregate; 5204 w.xSelectCallback = analyzeAggregatesInSelect; 5205 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5206 w.walkerDepth = 0; 5207 w.u.pNC = pNC; 5208 assert( pNC->pSrcList!=0 ); 5209 sqlite3WalkExpr(&w, pExpr); 5210 } 5211 5212 /* 5213 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5214 ** expression list. Return the number of errors. 5215 ** 5216 ** If an error is found, the analysis is cut short. 5217 */ 5218 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5219 struct ExprList_item *pItem; 5220 int i; 5221 if( pList ){ 5222 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5223 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5224 } 5225 } 5226 } 5227 5228 /* 5229 ** Allocate a single new register for use to hold some intermediate result. 5230 */ 5231 int sqlite3GetTempReg(Parse *pParse){ 5232 if( pParse->nTempReg==0 ){ 5233 return ++pParse->nMem; 5234 } 5235 return pParse->aTempReg[--pParse->nTempReg]; 5236 } 5237 5238 /* 5239 ** Deallocate a register, making available for reuse for some other 5240 ** purpose. 5241 ** 5242 ** If a register is currently being used by the column cache, then 5243 ** the deallocation is deferred until the column cache line that uses 5244 ** the register becomes stale. 5245 */ 5246 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5247 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5248 int i; 5249 struct yColCache *p; 5250 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5251 if( p->iReg==iReg ){ 5252 p->tempReg = 1; 5253 return; 5254 } 5255 } 5256 pParse->aTempReg[pParse->nTempReg++] = iReg; 5257 } 5258 } 5259 5260 /* 5261 ** Allocate or deallocate a block of nReg consecutive registers. 5262 */ 5263 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5264 int i, n; 5265 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5266 i = pParse->iRangeReg; 5267 n = pParse->nRangeReg; 5268 if( nReg<=n ){ 5269 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5270 pParse->iRangeReg += nReg; 5271 pParse->nRangeReg -= nReg; 5272 }else{ 5273 i = pParse->nMem+1; 5274 pParse->nMem += nReg; 5275 } 5276 return i; 5277 } 5278 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5279 if( nReg==1 ){ 5280 sqlite3ReleaseTempReg(pParse, iReg); 5281 return; 5282 } 5283 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5284 if( nReg>pParse->nRangeReg ){ 5285 pParse->nRangeReg = nReg; 5286 pParse->iRangeReg = iReg; 5287 } 5288 } 5289 5290 /* 5291 ** Mark all temporary registers as being unavailable for reuse. 5292 */ 5293 void sqlite3ClearTempRegCache(Parse *pParse){ 5294 pParse->nTempReg = 0; 5295 pParse->nRangeReg = 0; 5296 } 5297 5298 /* 5299 ** Validate that no temporary register falls within the range of 5300 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5301 ** statements. 5302 */ 5303 #ifdef SQLITE_DEBUG 5304 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5305 int i; 5306 if( pParse->nRangeReg>0 5307 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5308 && pParse->iRangeReg <= iLast 5309 ){ 5310 return 0; 5311 } 5312 for(i=0; i<pParse->nTempReg; i++){ 5313 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5314 return 0; 5315 } 5316 } 5317 return 1; 5318 } 5319 #endif /* SQLITE_DEBUG */ 5320