1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** The collating sequence might be determined by a COLLATE operator 128 ** or by the presence of a column with a defined collating sequence. 129 ** COLLATE operators take first precedence. Left operands take 130 ** precedence over right operands. 131 */ 132 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 133 sqlite3 *db = pParse->db; 134 CollSeq *pColl = 0; 135 Expr *p = pExpr; 136 while( p ){ 137 int op = p->op; 138 if( p->flags & EP_Generic ) break; 139 if( op==TK_CAST || op==TK_UPLUS ){ 140 p = p->pLeft; 141 continue; 142 } 143 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 144 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 145 break; 146 } 147 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 148 || op==TK_REGISTER || op==TK_TRIGGER) 149 && p->pTab!=0 150 ){ 151 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 152 ** a TK_COLUMN but was previously evaluated and cached in a register */ 153 int j = p->iColumn; 154 if( j>=0 ){ 155 const char *zColl = p->pTab->aCol[j].zColl; 156 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 157 } 158 break; 159 } 160 if( p->flags & EP_Collate ){ 161 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 162 p = p->pLeft; 163 }else{ 164 Expr *pNext = p->pRight; 165 /* The Expr.x union is never used at the same time as Expr.pRight */ 166 assert( p->x.pList==0 || p->pRight==0 ); 167 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 168 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 169 ** least one EP_Collate. Thus the following two ALWAYS. */ 170 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 171 int i; 172 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 173 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 174 pNext = p->x.pList->a[i].pExpr; 175 break; 176 } 177 } 178 } 179 p = pNext; 180 } 181 }else{ 182 break; 183 } 184 } 185 if( sqlite3CheckCollSeq(pParse, pColl) ){ 186 pColl = 0; 187 } 188 return pColl; 189 } 190 191 /* 192 ** pExpr is an operand of a comparison operator. aff2 is the 193 ** type affinity of the other operand. This routine returns the 194 ** type affinity that should be used for the comparison operator. 195 */ 196 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 197 char aff1 = sqlite3ExprAffinity(pExpr); 198 if( aff1 && aff2 ){ 199 /* Both sides of the comparison are columns. If one has numeric 200 ** affinity, use that. Otherwise use no affinity. 201 */ 202 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 203 return SQLITE_AFF_NUMERIC; 204 }else{ 205 return SQLITE_AFF_BLOB; 206 } 207 }else if( !aff1 && !aff2 ){ 208 /* Neither side of the comparison is a column. Compare the 209 ** results directly. 210 */ 211 return SQLITE_AFF_BLOB; 212 }else{ 213 /* One side is a column, the other is not. Use the columns affinity. */ 214 assert( aff1==0 || aff2==0 ); 215 return (aff1 + aff2); 216 } 217 } 218 219 /* 220 ** pExpr is a comparison operator. Return the type affinity that should 221 ** be applied to both operands prior to doing the comparison. 222 */ 223 static char comparisonAffinity(Expr *pExpr){ 224 char aff; 225 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 226 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 227 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 228 assert( pExpr->pLeft ); 229 aff = sqlite3ExprAffinity(pExpr->pLeft); 230 if( pExpr->pRight ){ 231 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 232 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 233 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 234 }else if( aff==0 ){ 235 aff = SQLITE_AFF_BLOB; 236 } 237 return aff; 238 } 239 240 /* 241 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 242 ** idx_affinity is the affinity of an indexed column. Return true 243 ** if the index with affinity idx_affinity may be used to implement 244 ** the comparison in pExpr. 245 */ 246 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 247 char aff = comparisonAffinity(pExpr); 248 switch( aff ){ 249 case SQLITE_AFF_BLOB: 250 return 1; 251 case SQLITE_AFF_TEXT: 252 return idx_affinity==SQLITE_AFF_TEXT; 253 default: 254 return sqlite3IsNumericAffinity(idx_affinity); 255 } 256 } 257 258 /* 259 ** Return the P5 value that should be used for a binary comparison 260 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 261 */ 262 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 263 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 264 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 265 return aff; 266 } 267 268 /* 269 ** Return a pointer to the collation sequence that should be used by 270 ** a binary comparison operator comparing pLeft and pRight. 271 ** 272 ** If the left hand expression has a collating sequence type, then it is 273 ** used. Otherwise the collation sequence for the right hand expression 274 ** is used, or the default (BINARY) if neither expression has a collating 275 ** type. 276 ** 277 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 278 ** it is not considered. 279 */ 280 CollSeq *sqlite3BinaryCompareCollSeq( 281 Parse *pParse, 282 Expr *pLeft, 283 Expr *pRight 284 ){ 285 CollSeq *pColl; 286 assert( pLeft ); 287 if( pLeft->flags & EP_Collate ){ 288 pColl = sqlite3ExprCollSeq(pParse, pLeft); 289 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 290 pColl = sqlite3ExprCollSeq(pParse, pRight); 291 }else{ 292 pColl = sqlite3ExprCollSeq(pParse, pLeft); 293 if( !pColl ){ 294 pColl = sqlite3ExprCollSeq(pParse, pRight); 295 } 296 } 297 return pColl; 298 } 299 300 /* 301 ** Generate code for a comparison operator. 302 */ 303 static int codeCompare( 304 Parse *pParse, /* The parsing (and code generating) context */ 305 Expr *pLeft, /* The left operand */ 306 Expr *pRight, /* The right operand */ 307 int opcode, /* The comparison opcode */ 308 int in1, int in2, /* Register holding operands */ 309 int dest, /* Jump here if true. */ 310 int jumpIfNull /* If true, jump if either operand is NULL */ 311 ){ 312 int p5; 313 int addr; 314 CollSeq *p4; 315 316 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 317 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 318 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 319 (void*)p4, P4_COLLSEQ); 320 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 321 return addr; 322 } 323 324 /* 325 ** Return true if expression pExpr is a vector, or false otherwise. 326 ** 327 ** A vector is defined as any expression that results in two or more 328 ** columns of result. Every TK_VECTOR node is an vector because the 329 ** parser will not generate a TK_VECTOR with fewer than two entries. 330 ** But a TK_SELECT might be either a vector or a scalar. It is only 331 ** considered a vector if it has two or more result columns. 332 */ 333 int sqlite3ExprIsVector(Expr *pExpr){ 334 return sqlite3ExprVectorSize(pExpr)>1; 335 } 336 337 /* 338 ** If the expression passed as the only argument is of type TK_VECTOR 339 ** return the number of expressions in the vector. Or, if the expression 340 ** is a sub-select, return the number of columns in the sub-select. For 341 ** any other type of expression, return 1. 342 */ 343 int sqlite3ExprVectorSize(Expr *pExpr){ 344 u8 op = pExpr->op; 345 if( op==TK_REGISTER ) op = pExpr->op2; 346 if( op==TK_VECTOR ){ 347 return pExpr->x.pList->nExpr; 348 }else if( op==TK_SELECT ){ 349 return pExpr->x.pSelect->pEList->nExpr; 350 }else{ 351 return 1; 352 } 353 } 354 355 /* 356 ** Return a pointer to a subexpression of pVector that is the i-th 357 ** column of the vector (numbered starting with 0). The caller must 358 ** ensure that i is within range. 359 ** 360 ** If pVector is really a scalar (and "scalar" here includes subqueries 361 ** that return a single column!) then return pVector unmodified. 362 ** 363 ** pVector retains ownership of the returned subexpression. 364 ** 365 ** If the vector is a (SELECT ...) then the expression returned is 366 ** just the expression for the i-th term of the result set, and may 367 ** not be ready for evaluation because the table cursor has not yet 368 ** been positioned. 369 */ 370 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 371 assert( i<sqlite3ExprVectorSize(pVector) ); 372 if( sqlite3ExprIsVector(pVector) ){ 373 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 374 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 375 return pVector->x.pSelect->pEList->a[i].pExpr; 376 }else{ 377 return pVector->x.pList->a[i].pExpr; 378 } 379 } 380 return pVector; 381 } 382 383 /* 384 ** Compute and return a new Expr object which when passed to 385 ** sqlite3ExprCode() will generate all necessary code to compute 386 ** the iField-th column of the vector expression pVector. 387 ** 388 ** It is ok for pVector to be a scalar (as long as iField==0). 389 ** In that case, this routine works like sqlite3ExprDup(). 390 ** 391 ** The caller owns the returned Expr object and is responsible for 392 ** ensuring that the returned value eventually gets freed. 393 ** 394 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 395 ** then the returned object will reference pVector and so pVector must remain 396 ** valid for the life of the returned object. If pVector is a TK_VECTOR 397 ** or a scalar expression, then it can be deleted as soon as this routine 398 ** returns. 399 ** 400 ** A trick to cause a TK_SELECT pVector to be deleted together with 401 ** the returned Expr object is to attach the pVector to the pRight field 402 ** of the returned TK_SELECT_COLUMN Expr object. 403 */ 404 Expr *sqlite3ExprForVectorField( 405 Parse *pParse, /* Parsing context */ 406 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 407 int iField /* Which column of the vector to return */ 408 ){ 409 Expr *pRet; 410 if( pVector->op==TK_SELECT ){ 411 assert( pVector->flags & EP_xIsSelect ); 412 /* The TK_SELECT_COLUMN Expr node: 413 ** 414 ** pLeft: pVector containing TK_SELECT. Not deleted. 415 ** pRight: not used. But recursively deleted. 416 ** iColumn: Index of a column in pVector 417 ** iTable: 0 or the number of columns on the LHS of an assignment 418 ** pLeft->iTable: First in an array of register holding result, or 0 419 ** if the result is not yet computed. 420 ** 421 ** sqlite3ExprDelete() specifically skips the recursive delete of 422 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 423 ** can be attached to pRight to cause this node to take ownership of 424 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 425 ** with the same pLeft pointer to the pVector, but only one of them 426 ** will own the pVector. 427 */ 428 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 429 if( pRet ){ 430 pRet->iColumn = iField; 431 pRet->pLeft = pVector; 432 } 433 assert( pRet==0 || pRet->iTable==0 ); 434 }else{ 435 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 436 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 437 } 438 return pRet; 439 } 440 441 /* 442 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 443 ** it. Return the register in which the result is stored (or, if the 444 ** sub-select returns more than one column, the first in an array 445 ** of registers in which the result is stored). 446 ** 447 ** If pExpr is not a TK_SELECT expression, return 0. 448 */ 449 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 450 int reg = 0; 451 #ifndef SQLITE_OMIT_SUBQUERY 452 if( pExpr->op==TK_SELECT ){ 453 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 454 } 455 #endif 456 return reg; 457 } 458 459 /* 460 ** Argument pVector points to a vector expression - either a TK_VECTOR 461 ** or TK_SELECT that returns more than one column. This function returns 462 ** the register number of a register that contains the value of 463 ** element iField of the vector. 464 ** 465 ** If pVector is a TK_SELECT expression, then code for it must have 466 ** already been generated using the exprCodeSubselect() routine. In this 467 ** case parameter regSelect should be the first in an array of registers 468 ** containing the results of the sub-select. 469 ** 470 ** If pVector is of type TK_VECTOR, then code for the requested field 471 ** is generated. In this case (*pRegFree) may be set to the number of 472 ** a temporary register to be freed by the caller before returning. 473 ** 474 ** Before returning, output parameter (*ppExpr) is set to point to the 475 ** Expr object corresponding to element iElem of the vector. 476 */ 477 static int exprVectorRegister( 478 Parse *pParse, /* Parse context */ 479 Expr *pVector, /* Vector to extract element from */ 480 int iField, /* Field to extract from pVector */ 481 int regSelect, /* First in array of registers */ 482 Expr **ppExpr, /* OUT: Expression element */ 483 int *pRegFree /* OUT: Temp register to free */ 484 ){ 485 u8 op = pVector->op; 486 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 487 if( op==TK_REGISTER ){ 488 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 489 return pVector->iTable+iField; 490 } 491 if( op==TK_SELECT ){ 492 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 493 return regSelect+iField; 494 } 495 *ppExpr = pVector->x.pList->a[iField].pExpr; 496 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 497 } 498 499 /* 500 ** Expression pExpr is a comparison between two vector values. Compute 501 ** the result of the comparison (1, 0, or NULL) and write that 502 ** result into register dest. 503 ** 504 ** The caller must satisfy the following preconditions: 505 ** 506 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 507 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 508 ** otherwise: op==pExpr->op and p5==0 509 */ 510 static void codeVectorCompare( 511 Parse *pParse, /* Code generator context */ 512 Expr *pExpr, /* The comparison operation */ 513 int dest, /* Write results into this register */ 514 u8 op, /* Comparison operator */ 515 u8 p5 /* SQLITE_NULLEQ or zero */ 516 ){ 517 Vdbe *v = pParse->pVdbe; 518 Expr *pLeft = pExpr->pLeft; 519 Expr *pRight = pExpr->pRight; 520 int nLeft = sqlite3ExprVectorSize(pLeft); 521 int i; 522 int regLeft = 0; 523 int regRight = 0; 524 u8 opx = op; 525 int addrDone = sqlite3VdbeMakeLabel(v); 526 527 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 528 sqlite3ErrorMsg(pParse, "row value misused"); 529 return; 530 } 531 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 532 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 533 || pExpr->op==TK_LT || pExpr->op==TK_GT 534 || pExpr->op==TK_LE || pExpr->op==TK_GE 535 ); 536 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 537 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 538 assert( p5==0 || pExpr->op!=op ); 539 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 540 541 p5 |= SQLITE_STOREP2; 542 if( opx==TK_LE ) opx = TK_LT; 543 if( opx==TK_GE ) opx = TK_GT; 544 545 regLeft = exprCodeSubselect(pParse, pLeft); 546 regRight = exprCodeSubselect(pParse, pRight); 547 548 for(i=0; 1 /*Loop exits by "break"*/; i++){ 549 int regFree1 = 0, regFree2 = 0; 550 Expr *pL, *pR; 551 int r1, r2; 552 assert( i>=0 && i<nLeft ); 553 if( i>0 ) sqlite3ExprCachePush(pParse); 554 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 555 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 556 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 557 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 558 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 559 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 560 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 561 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 562 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 563 sqlite3ReleaseTempReg(pParse, regFree1); 564 sqlite3ReleaseTempReg(pParse, regFree2); 565 if( i>0 ) sqlite3ExprCachePop(pParse); 566 if( i==nLeft-1 ){ 567 break; 568 } 569 if( opx==TK_EQ ){ 570 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 571 p5 |= SQLITE_KEEPNULL; 572 }else if( opx==TK_NE ){ 573 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 574 p5 |= SQLITE_KEEPNULL; 575 }else{ 576 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 577 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 578 VdbeCoverageIf(v, op==TK_LT); 579 VdbeCoverageIf(v, op==TK_GT); 580 VdbeCoverageIf(v, op==TK_LE); 581 VdbeCoverageIf(v, op==TK_GE); 582 if( i==nLeft-2 ) opx = op; 583 } 584 } 585 sqlite3VdbeResolveLabel(v, addrDone); 586 } 587 588 #if SQLITE_MAX_EXPR_DEPTH>0 589 /* 590 ** Check that argument nHeight is less than or equal to the maximum 591 ** expression depth allowed. If it is not, leave an error message in 592 ** pParse. 593 */ 594 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 595 int rc = SQLITE_OK; 596 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 597 if( nHeight>mxHeight ){ 598 sqlite3ErrorMsg(pParse, 599 "Expression tree is too large (maximum depth %d)", mxHeight 600 ); 601 rc = SQLITE_ERROR; 602 } 603 return rc; 604 } 605 606 /* The following three functions, heightOfExpr(), heightOfExprList() 607 ** and heightOfSelect(), are used to determine the maximum height 608 ** of any expression tree referenced by the structure passed as the 609 ** first argument. 610 ** 611 ** If this maximum height is greater than the current value pointed 612 ** to by pnHeight, the second parameter, then set *pnHeight to that 613 ** value. 614 */ 615 static void heightOfExpr(Expr *p, int *pnHeight){ 616 if( p ){ 617 if( p->nHeight>*pnHeight ){ 618 *pnHeight = p->nHeight; 619 } 620 } 621 } 622 static void heightOfExprList(ExprList *p, int *pnHeight){ 623 if( p ){ 624 int i; 625 for(i=0; i<p->nExpr; i++){ 626 heightOfExpr(p->a[i].pExpr, pnHeight); 627 } 628 } 629 } 630 static void heightOfSelect(Select *p, int *pnHeight){ 631 if( p ){ 632 heightOfExpr(p->pWhere, pnHeight); 633 heightOfExpr(p->pHaving, pnHeight); 634 heightOfExpr(p->pLimit, pnHeight); 635 heightOfExpr(p->pOffset, pnHeight); 636 heightOfExprList(p->pEList, pnHeight); 637 heightOfExprList(p->pGroupBy, pnHeight); 638 heightOfExprList(p->pOrderBy, pnHeight); 639 heightOfSelect(p->pPrior, pnHeight); 640 } 641 } 642 643 /* 644 ** Set the Expr.nHeight variable in the structure passed as an 645 ** argument. An expression with no children, Expr.pList or 646 ** Expr.pSelect member has a height of 1. Any other expression 647 ** has a height equal to the maximum height of any other 648 ** referenced Expr plus one. 649 ** 650 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 651 ** if appropriate. 652 */ 653 static void exprSetHeight(Expr *p){ 654 int nHeight = 0; 655 heightOfExpr(p->pLeft, &nHeight); 656 heightOfExpr(p->pRight, &nHeight); 657 if( ExprHasProperty(p, EP_xIsSelect) ){ 658 heightOfSelect(p->x.pSelect, &nHeight); 659 }else if( p->x.pList ){ 660 heightOfExprList(p->x.pList, &nHeight); 661 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 662 } 663 p->nHeight = nHeight + 1; 664 } 665 666 /* 667 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 668 ** the height is greater than the maximum allowed expression depth, 669 ** leave an error in pParse. 670 ** 671 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 672 ** Expr.flags. 673 */ 674 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 675 if( pParse->nErr ) return; 676 exprSetHeight(p); 677 sqlite3ExprCheckHeight(pParse, p->nHeight); 678 } 679 680 /* 681 ** Return the maximum height of any expression tree referenced 682 ** by the select statement passed as an argument. 683 */ 684 int sqlite3SelectExprHeight(Select *p){ 685 int nHeight = 0; 686 heightOfSelect(p, &nHeight); 687 return nHeight; 688 } 689 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 690 /* 691 ** Propagate all EP_Propagate flags from the Expr.x.pList into 692 ** Expr.flags. 693 */ 694 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 695 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 696 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 697 } 698 } 699 #define exprSetHeight(y) 700 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 701 702 /* 703 ** This routine is the core allocator for Expr nodes. 704 ** 705 ** Construct a new expression node and return a pointer to it. Memory 706 ** for this node and for the pToken argument is a single allocation 707 ** obtained from sqlite3DbMalloc(). The calling function 708 ** is responsible for making sure the node eventually gets freed. 709 ** 710 ** If dequote is true, then the token (if it exists) is dequoted. 711 ** If dequote is false, no dequoting is performed. The deQuote 712 ** parameter is ignored if pToken is NULL or if the token does not 713 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 714 ** then the EP_DblQuoted flag is set on the expression node. 715 ** 716 ** Special case: If op==TK_INTEGER and pToken points to a string that 717 ** can be translated into a 32-bit integer, then the token is not 718 ** stored in u.zToken. Instead, the integer values is written 719 ** into u.iValue and the EP_IntValue flag is set. No extra storage 720 ** is allocated to hold the integer text and the dequote flag is ignored. 721 */ 722 Expr *sqlite3ExprAlloc( 723 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 724 int op, /* Expression opcode */ 725 const Token *pToken, /* Token argument. Might be NULL */ 726 int dequote /* True to dequote */ 727 ){ 728 Expr *pNew; 729 int nExtra = 0; 730 int iValue = 0; 731 732 assert( db!=0 ); 733 if( pToken ){ 734 if( op!=TK_INTEGER || pToken->z==0 735 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 736 nExtra = pToken->n+1; 737 assert( iValue>=0 ); 738 } 739 } 740 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 741 if( pNew ){ 742 memset(pNew, 0, sizeof(Expr)); 743 pNew->op = (u8)op; 744 pNew->iAgg = -1; 745 if( pToken ){ 746 if( nExtra==0 ){ 747 pNew->flags |= EP_IntValue; 748 pNew->u.iValue = iValue; 749 }else{ 750 pNew->u.zToken = (char*)&pNew[1]; 751 assert( pToken->z!=0 || pToken->n==0 ); 752 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 753 pNew->u.zToken[pToken->n] = 0; 754 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 755 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 756 sqlite3Dequote(pNew->u.zToken); 757 } 758 } 759 } 760 #if SQLITE_MAX_EXPR_DEPTH>0 761 pNew->nHeight = 1; 762 #endif 763 } 764 return pNew; 765 } 766 767 /* 768 ** Allocate a new expression node from a zero-terminated token that has 769 ** already been dequoted. 770 */ 771 Expr *sqlite3Expr( 772 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 773 int op, /* Expression opcode */ 774 const char *zToken /* Token argument. Might be NULL */ 775 ){ 776 Token x; 777 x.z = zToken; 778 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 779 return sqlite3ExprAlloc(db, op, &x, 0); 780 } 781 782 /* 783 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 784 ** 785 ** If pRoot==NULL that means that a memory allocation error has occurred. 786 ** In that case, delete the subtrees pLeft and pRight. 787 */ 788 void sqlite3ExprAttachSubtrees( 789 sqlite3 *db, 790 Expr *pRoot, 791 Expr *pLeft, 792 Expr *pRight 793 ){ 794 if( pRoot==0 ){ 795 assert( db->mallocFailed ); 796 sqlite3ExprDelete(db, pLeft); 797 sqlite3ExprDelete(db, pRight); 798 }else{ 799 if( pRight ){ 800 pRoot->pRight = pRight; 801 pRoot->flags |= EP_Propagate & pRight->flags; 802 } 803 if( pLeft ){ 804 pRoot->pLeft = pLeft; 805 pRoot->flags |= EP_Propagate & pLeft->flags; 806 } 807 exprSetHeight(pRoot); 808 } 809 } 810 811 /* 812 ** Allocate an Expr node which joins as many as two subtrees. 813 ** 814 ** One or both of the subtrees can be NULL. Return a pointer to the new 815 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 816 ** free the subtrees and return NULL. 817 */ 818 Expr *sqlite3PExpr( 819 Parse *pParse, /* Parsing context */ 820 int op, /* Expression opcode */ 821 Expr *pLeft, /* Left operand */ 822 Expr *pRight /* Right operand */ 823 ){ 824 Expr *p; 825 if( op==TK_AND && pParse->nErr==0 ){ 826 /* Take advantage of short-circuit false optimization for AND */ 827 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 828 }else{ 829 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 830 if( p ){ 831 memset(p, 0, sizeof(Expr)); 832 p->op = op & TKFLG_MASK; 833 p->iAgg = -1; 834 } 835 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 836 } 837 if( p ) { 838 sqlite3ExprCheckHeight(pParse, p->nHeight); 839 } 840 return p; 841 } 842 843 /* 844 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 845 ** do a memory allocation failure) then delete the pSelect object. 846 */ 847 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 848 if( pExpr ){ 849 pExpr->x.pSelect = pSelect; 850 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 851 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 852 }else{ 853 assert( pParse->db->mallocFailed ); 854 sqlite3SelectDelete(pParse->db, pSelect); 855 } 856 } 857 858 859 /* 860 ** If the expression is always either TRUE or FALSE (respectively), 861 ** then return 1. If one cannot determine the truth value of the 862 ** expression at compile-time return 0. 863 ** 864 ** This is an optimization. If is OK to return 0 here even if 865 ** the expression really is always false or false (a false negative). 866 ** But it is a bug to return 1 if the expression might have different 867 ** boolean values in different circumstances (a false positive.) 868 ** 869 ** Note that if the expression is part of conditional for a 870 ** LEFT JOIN, then we cannot determine at compile-time whether or not 871 ** is it true or false, so always return 0. 872 */ 873 static int exprAlwaysTrue(Expr *p){ 874 int v = 0; 875 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 876 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 877 return v!=0; 878 } 879 static int exprAlwaysFalse(Expr *p){ 880 int v = 0; 881 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 882 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 883 return v==0; 884 } 885 886 /* 887 ** Join two expressions using an AND operator. If either expression is 888 ** NULL, then just return the other expression. 889 ** 890 ** If one side or the other of the AND is known to be false, then instead 891 ** of returning an AND expression, just return a constant expression with 892 ** a value of false. 893 */ 894 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 895 if( pLeft==0 ){ 896 return pRight; 897 }else if( pRight==0 ){ 898 return pLeft; 899 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 900 sqlite3ExprDelete(db, pLeft); 901 sqlite3ExprDelete(db, pRight); 902 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 903 }else{ 904 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 905 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 906 return pNew; 907 } 908 } 909 910 /* 911 ** Construct a new expression node for a function with multiple 912 ** arguments. 913 */ 914 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 915 Expr *pNew; 916 sqlite3 *db = pParse->db; 917 assert( pToken ); 918 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 919 if( pNew==0 ){ 920 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 921 return 0; 922 } 923 pNew->x.pList = pList; 924 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 925 sqlite3ExprSetHeightAndFlags(pParse, pNew); 926 return pNew; 927 } 928 929 /* 930 ** Assign a variable number to an expression that encodes a wildcard 931 ** in the original SQL statement. 932 ** 933 ** Wildcards consisting of a single "?" are assigned the next sequential 934 ** variable number. 935 ** 936 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 937 ** sure "nnn" is not too big to avoid a denial of service attack when 938 ** the SQL statement comes from an external source. 939 ** 940 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 941 ** as the previous instance of the same wildcard. Or if this is the first 942 ** instance of the wildcard, the next sequential variable number is 943 ** assigned. 944 */ 945 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 946 sqlite3 *db = pParse->db; 947 const char *z; 948 ynVar x; 949 950 if( pExpr==0 ) return; 951 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 952 z = pExpr->u.zToken; 953 assert( z!=0 ); 954 assert( z[0]!=0 ); 955 assert( n==(u32)sqlite3Strlen30(z) ); 956 if( z[1]==0 ){ 957 /* Wildcard of the form "?". Assign the next variable number */ 958 assert( z[0]=='?' ); 959 x = (ynVar)(++pParse->nVar); 960 }else{ 961 int doAdd = 0; 962 if( z[0]=='?' ){ 963 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 964 ** use it as the variable number */ 965 i64 i; 966 int bOk; 967 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 968 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 969 bOk = 1; 970 }else{ 971 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 972 } 973 testcase( i==0 ); 974 testcase( i==1 ); 975 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 976 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 977 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 978 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 979 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 980 return; 981 } 982 x = (ynVar)i; 983 if( x>pParse->nVar ){ 984 pParse->nVar = (int)x; 985 doAdd = 1; 986 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 987 doAdd = 1; 988 } 989 }else{ 990 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 991 ** number as the prior appearance of the same name, or if the name 992 ** has never appeared before, reuse the same variable number 993 */ 994 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 995 if( x==0 ){ 996 x = (ynVar)(++pParse->nVar); 997 doAdd = 1; 998 } 999 } 1000 if( doAdd ){ 1001 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1002 } 1003 } 1004 pExpr->iColumn = x; 1005 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1006 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1007 } 1008 } 1009 1010 /* 1011 ** Recursively delete an expression tree. 1012 */ 1013 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1014 assert( p!=0 ); 1015 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1016 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1017 #ifdef SQLITE_DEBUG 1018 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1019 assert( p->pLeft==0 ); 1020 assert( p->pRight==0 ); 1021 assert( p->x.pSelect==0 ); 1022 } 1023 #endif 1024 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1025 /* The Expr.x union is never used at the same time as Expr.pRight */ 1026 assert( p->x.pList==0 || p->pRight==0 ); 1027 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1028 sqlite3ExprDelete(db, p->pRight); 1029 if( ExprHasProperty(p, EP_xIsSelect) ){ 1030 sqlite3SelectDelete(db, p->x.pSelect); 1031 }else{ 1032 sqlite3ExprListDelete(db, p->x.pList); 1033 } 1034 } 1035 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1036 if( !ExprHasProperty(p, EP_Static) ){ 1037 sqlite3DbFreeNN(db, p); 1038 } 1039 } 1040 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1041 if( p ) sqlite3ExprDeleteNN(db, p); 1042 } 1043 1044 /* 1045 ** Return the number of bytes allocated for the expression structure 1046 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1047 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1048 */ 1049 static int exprStructSize(Expr *p){ 1050 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1051 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1052 return EXPR_FULLSIZE; 1053 } 1054 1055 /* 1056 ** The dupedExpr*Size() routines each return the number of bytes required 1057 ** to store a copy of an expression or expression tree. They differ in 1058 ** how much of the tree is measured. 1059 ** 1060 ** dupedExprStructSize() Size of only the Expr structure 1061 ** dupedExprNodeSize() Size of Expr + space for token 1062 ** dupedExprSize() Expr + token + subtree components 1063 ** 1064 *************************************************************************** 1065 ** 1066 ** The dupedExprStructSize() function returns two values OR-ed together: 1067 ** (1) the space required for a copy of the Expr structure only and 1068 ** (2) the EP_xxx flags that indicate what the structure size should be. 1069 ** The return values is always one of: 1070 ** 1071 ** EXPR_FULLSIZE 1072 ** EXPR_REDUCEDSIZE | EP_Reduced 1073 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1074 ** 1075 ** The size of the structure can be found by masking the return value 1076 ** of this routine with 0xfff. The flags can be found by masking the 1077 ** return value with EP_Reduced|EP_TokenOnly. 1078 ** 1079 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1080 ** (unreduced) Expr objects as they or originally constructed by the parser. 1081 ** During expression analysis, extra information is computed and moved into 1082 ** later parts of teh Expr object and that extra information might get chopped 1083 ** off if the expression is reduced. Note also that it does not work to 1084 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1085 ** to reduce a pristine expression tree from the parser. The implementation 1086 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1087 ** to enforce this constraint. 1088 */ 1089 static int dupedExprStructSize(Expr *p, int flags){ 1090 int nSize; 1091 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1092 assert( EXPR_FULLSIZE<=0xfff ); 1093 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1094 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1095 nSize = EXPR_FULLSIZE; 1096 }else{ 1097 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1098 assert( !ExprHasProperty(p, EP_FromJoin) ); 1099 assert( !ExprHasProperty(p, EP_MemToken) ); 1100 assert( !ExprHasProperty(p, EP_NoReduce) ); 1101 if( p->pLeft || p->x.pList ){ 1102 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1103 }else{ 1104 assert( p->pRight==0 ); 1105 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1106 } 1107 } 1108 return nSize; 1109 } 1110 1111 /* 1112 ** This function returns the space in bytes required to store the copy 1113 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1114 ** string is defined.) 1115 */ 1116 static int dupedExprNodeSize(Expr *p, int flags){ 1117 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1118 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1119 nByte += sqlite3Strlen30(p->u.zToken)+1; 1120 } 1121 return ROUND8(nByte); 1122 } 1123 1124 /* 1125 ** Return the number of bytes required to create a duplicate of the 1126 ** expression passed as the first argument. The second argument is a 1127 ** mask containing EXPRDUP_XXX flags. 1128 ** 1129 ** The value returned includes space to create a copy of the Expr struct 1130 ** itself and the buffer referred to by Expr.u.zToken, if any. 1131 ** 1132 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1133 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1134 ** and Expr.pRight variables (but not for any structures pointed to or 1135 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1136 */ 1137 static int dupedExprSize(Expr *p, int flags){ 1138 int nByte = 0; 1139 if( p ){ 1140 nByte = dupedExprNodeSize(p, flags); 1141 if( flags&EXPRDUP_REDUCE ){ 1142 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1143 } 1144 } 1145 return nByte; 1146 } 1147 1148 /* 1149 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1150 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1151 ** to store the copy of expression p, the copies of p->u.zToken 1152 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1153 ** if any. Before returning, *pzBuffer is set to the first byte past the 1154 ** portion of the buffer copied into by this function. 1155 */ 1156 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1157 Expr *pNew; /* Value to return */ 1158 u8 *zAlloc; /* Memory space from which to build Expr object */ 1159 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1160 1161 assert( db!=0 ); 1162 assert( p ); 1163 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1164 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1165 1166 /* Figure out where to write the new Expr structure. */ 1167 if( pzBuffer ){ 1168 zAlloc = *pzBuffer; 1169 staticFlag = EP_Static; 1170 }else{ 1171 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1172 staticFlag = 0; 1173 } 1174 pNew = (Expr *)zAlloc; 1175 1176 if( pNew ){ 1177 /* Set nNewSize to the size allocated for the structure pointed to 1178 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1179 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1180 ** by the copy of the p->u.zToken string (if any). 1181 */ 1182 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1183 const int nNewSize = nStructSize & 0xfff; 1184 int nToken; 1185 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1186 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1187 }else{ 1188 nToken = 0; 1189 } 1190 if( dupFlags ){ 1191 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1192 memcpy(zAlloc, p, nNewSize); 1193 }else{ 1194 u32 nSize = (u32)exprStructSize(p); 1195 memcpy(zAlloc, p, nSize); 1196 if( nSize<EXPR_FULLSIZE ){ 1197 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1198 } 1199 } 1200 1201 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1202 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1203 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1204 pNew->flags |= staticFlag; 1205 1206 /* Copy the p->u.zToken string, if any. */ 1207 if( nToken ){ 1208 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1209 memcpy(zToken, p->u.zToken, nToken); 1210 } 1211 1212 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1213 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1214 if( ExprHasProperty(p, EP_xIsSelect) ){ 1215 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1216 }else{ 1217 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1218 } 1219 } 1220 1221 /* Fill in pNew->pLeft and pNew->pRight. */ 1222 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1223 zAlloc += dupedExprNodeSize(p, dupFlags); 1224 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1225 pNew->pLeft = p->pLeft ? 1226 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1227 pNew->pRight = p->pRight ? 1228 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1229 } 1230 if( pzBuffer ){ 1231 *pzBuffer = zAlloc; 1232 } 1233 }else{ 1234 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1235 if( pNew->op==TK_SELECT_COLUMN ){ 1236 pNew->pLeft = p->pLeft; 1237 assert( p->iColumn==0 || p->pRight==0 ); 1238 assert( p->pRight==0 || p->pRight==p->pLeft ); 1239 }else{ 1240 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1241 } 1242 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1243 } 1244 } 1245 } 1246 return pNew; 1247 } 1248 1249 /* 1250 ** Create and return a deep copy of the object passed as the second 1251 ** argument. If an OOM condition is encountered, NULL is returned 1252 ** and the db->mallocFailed flag set. 1253 */ 1254 #ifndef SQLITE_OMIT_CTE 1255 static With *withDup(sqlite3 *db, With *p){ 1256 With *pRet = 0; 1257 if( p ){ 1258 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1259 pRet = sqlite3DbMallocZero(db, nByte); 1260 if( pRet ){ 1261 int i; 1262 pRet->nCte = p->nCte; 1263 for(i=0; i<p->nCte; i++){ 1264 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1265 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1266 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1267 } 1268 } 1269 } 1270 return pRet; 1271 } 1272 #else 1273 # define withDup(x,y) 0 1274 #endif 1275 1276 /* 1277 ** The following group of routines make deep copies of expressions, 1278 ** expression lists, ID lists, and select statements. The copies can 1279 ** be deleted (by being passed to their respective ...Delete() routines) 1280 ** without effecting the originals. 1281 ** 1282 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1283 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1284 ** by subsequent calls to sqlite*ListAppend() routines. 1285 ** 1286 ** Any tables that the SrcList might point to are not duplicated. 1287 ** 1288 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1289 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1290 ** truncated version of the usual Expr structure that will be stored as 1291 ** part of the in-memory representation of the database schema. 1292 */ 1293 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1294 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1295 return p ? exprDup(db, p, flags, 0) : 0; 1296 } 1297 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1298 ExprList *pNew; 1299 struct ExprList_item *pItem, *pOldItem; 1300 int i; 1301 Expr *pPriorSelectCol = 0; 1302 assert( db!=0 ); 1303 if( p==0 ) return 0; 1304 pNew = sqlite3DbMallocRawNN(db, 1305 sizeof(*pNew)+sizeof(pNew->a[0])*(p->nExpr-1) ); 1306 if( pNew==0 ) return 0; 1307 pNew->nAlloc = pNew->nExpr = p->nExpr; 1308 pItem = pNew->a; 1309 pOldItem = p->a; 1310 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1311 Expr *pOldExpr = pOldItem->pExpr; 1312 Expr *pNewExpr; 1313 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1314 if( pOldExpr 1315 && pOldExpr->op==TK_SELECT_COLUMN 1316 && (pNewExpr = pItem->pExpr)!=0 1317 ){ 1318 assert( pNewExpr->iColumn==0 || i>0 ); 1319 if( pNewExpr->iColumn==0 ){ 1320 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1321 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1322 }else{ 1323 assert( i>0 ); 1324 assert( pItem[-1].pExpr!=0 ); 1325 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1326 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1327 pNewExpr->pLeft = pPriorSelectCol; 1328 } 1329 } 1330 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1331 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1332 pItem->sortOrder = pOldItem->sortOrder; 1333 pItem->done = 0; 1334 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1335 pItem->u = pOldItem->u; 1336 } 1337 return pNew; 1338 } 1339 1340 /* 1341 ** If cursors, triggers, views and subqueries are all omitted from 1342 ** the build, then none of the following routines, except for 1343 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1344 ** called with a NULL argument. 1345 */ 1346 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1347 || !defined(SQLITE_OMIT_SUBQUERY) 1348 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1349 SrcList *pNew; 1350 int i; 1351 int nByte; 1352 assert( db!=0 ); 1353 if( p==0 ) return 0; 1354 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1355 pNew = sqlite3DbMallocRawNN(db, nByte ); 1356 if( pNew==0 ) return 0; 1357 pNew->nSrc = pNew->nAlloc = p->nSrc; 1358 for(i=0; i<p->nSrc; i++){ 1359 struct SrcList_item *pNewItem = &pNew->a[i]; 1360 struct SrcList_item *pOldItem = &p->a[i]; 1361 Table *pTab; 1362 pNewItem->pSchema = pOldItem->pSchema; 1363 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1364 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1365 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1366 pNewItem->fg = pOldItem->fg; 1367 pNewItem->iCursor = pOldItem->iCursor; 1368 pNewItem->addrFillSub = pOldItem->addrFillSub; 1369 pNewItem->regReturn = pOldItem->regReturn; 1370 if( pNewItem->fg.isIndexedBy ){ 1371 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1372 } 1373 pNewItem->pIBIndex = pOldItem->pIBIndex; 1374 if( pNewItem->fg.isTabFunc ){ 1375 pNewItem->u1.pFuncArg = 1376 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1377 } 1378 pTab = pNewItem->pTab = pOldItem->pTab; 1379 if( pTab ){ 1380 pTab->nTabRef++; 1381 } 1382 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1383 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1384 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1385 pNewItem->colUsed = pOldItem->colUsed; 1386 } 1387 return pNew; 1388 } 1389 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1390 IdList *pNew; 1391 int i; 1392 assert( db!=0 ); 1393 if( p==0 ) return 0; 1394 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1395 if( pNew==0 ) return 0; 1396 pNew->nId = p->nId; 1397 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1398 if( pNew->a==0 ){ 1399 sqlite3DbFreeNN(db, pNew); 1400 return 0; 1401 } 1402 /* Note that because the size of the allocation for p->a[] is not 1403 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1404 ** on the duplicate created by this function. */ 1405 for(i=0; i<p->nId; i++){ 1406 struct IdList_item *pNewItem = &pNew->a[i]; 1407 struct IdList_item *pOldItem = &p->a[i]; 1408 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1409 pNewItem->idx = pOldItem->idx; 1410 } 1411 return pNew; 1412 } 1413 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1414 Select *pRet = 0; 1415 Select *pNext = 0; 1416 Select **pp = &pRet; 1417 Select *p; 1418 1419 assert( db!=0 ); 1420 for(p=pDup; p; p=p->pPrior){ 1421 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1422 if( pNew==0 ) break; 1423 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1424 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1425 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1426 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1427 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1428 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1429 pNew->op = p->op; 1430 pNew->pNext = pNext; 1431 pNew->pPrior = 0; 1432 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1433 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1434 pNew->iLimit = 0; 1435 pNew->iOffset = 0; 1436 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1437 pNew->addrOpenEphm[0] = -1; 1438 pNew->addrOpenEphm[1] = -1; 1439 pNew->nSelectRow = p->nSelectRow; 1440 pNew->pWith = withDup(db, p->pWith); 1441 sqlite3SelectSetName(pNew, p->zSelName); 1442 *pp = pNew; 1443 pp = &pNew->pPrior; 1444 pNext = pNew; 1445 } 1446 1447 return pRet; 1448 } 1449 #else 1450 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1451 assert( p==0 ); 1452 return 0; 1453 } 1454 #endif 1455 1456 1457 /* 1458 ** Add a new element to the end of an expression list. If pList is 1459 ** initially NULL, then create a new expression list. 1460 ** 1461 ** If a memory allocation error occurs, the entire list is freed and 1462 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1463 ** that the new entry was successfully appended. 1464 */ 1465 ExprList *sqlite3ExprListAppend( 1466 Parse *pParse, /* Parsing context */ 1467 ExprList *pList, /* List to which to append. Might be NULL */ 1468 Expr *pExpr /* Expression to be appended. Might be NULL */ 1469 ){ 1470 struct ExprList_item *pItem; 1471 sqlite3 *db = pParse->db; 1472 assert( db!=0 ); 1473 if( pList==0 ){ 1474 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1475 if( pList==0 ){ 1476 goto no_mem; 1477 } 1478 pList->nExpr = 0; 1479 pList->nAlloc = 1; 1480 }else if( pList->nExpr==pList->nAlloc ){ 1481 ExprList *pNew; 1482 pNew = sqlite3DbRealloc(db, pList, 1483 sizeof(*pList)+(2*pList->nAlloc - 1)*sizeof(pList->a[0])); 1484 if( pNew==0 ){ 1485 goto no_mem; 1486 } 1487 pList = pNew; 1488 pList->nAlloc *= 2; 1489 } 1490 pItem = &pList->a[pList->nExpr++]; 1491 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1492 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1493 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1494 pItem->pExpr = pExpr; 1495 return pList; 1496 1497 no_mem: 1498 /* Avoid leaking memory if malloc has failed. */ 1499 sqlite3ExprDelete(db, pExpr); 1500 sqlite3ExprListDelete(db, pList); 1501 return 0; 1502 } 1503 1504 /* 1505 ** pColumns and pExpr form a vector assignment which is part of the SET 1506 ** clause of an UPDATE statement. Like this: 1507 ** 1508 ** (a,b,c) = (expr1,expr2,expr3) 1509 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1510 ** 1511 ** For each term of the vector assignment, append new entries to the 1512 ** expression list pList. In the case of a subquery on the RHS, append 1513 ** TK_SELECT_COLUMN expressions. 1514 */ 1515 ExprList *sqlite3ExprListAppendVector( 1516 Parse *pParse, /* Parsing context */ 1517 ExprList *pList, /* List to which to append. Might be NULL */ 1518 IdList *pColumns, /* List of names of LHS of the assignment */ 1519 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1520 ){ 1521 sqlite3 *db = pParse->db; 1522 int n; 1523 int i; 1524 int iFirst = pList ? pList->nExpr : 0; 1525 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1526 ** exit prior to this routine being invoked */ 1527 if( NEVER(pColumns==0) ) goto vector_append_error; 1528 if( pExpr==0 ) goto vector_append_error; 1529 1530 /* If the RHS is a vector, then we can immediately check to see that 1531 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1532 ** wildcards ("*") in the result set of the SELECT must be expanded before 1533 ** we can do the size check, so defer the size check until code generation. 1534 */ 1535 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1536 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1537 pColumns->nId, n); 1538 goto vector_append_error; 1539 } 1540 1541 for(i=0; i<pColumns->nId; i++){ 1542 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1543 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1544 if( pList ){ 1545 assert( pList->nExpr==iFirst+i+1 ); 1546 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1547 pColumns->a[i].zName = 0; 1548 } 1549 } 1550 1551 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1552 Expr *pFirst = pList->a[iFirst].pExpr; 1553 assert( pFirst!=0 ); 1554 assert( pFirst->op==TK_SELECT_COLUMN ); 1555 1556 /* Store the SELECT statement in pRight so it will be deleted when 1557 ** sqlite3ExprListDelete() is called */ 1558 pFirst->pRight = pExpr; 1559 pExpr = 0; 1560 1561 /* Remember the size of the LHS in iTable so that we can check that 1562 ** the RHS and LHS sizes match during code generation. */ 1563 pFirst->iTable = pColumns->nId; 1564 } 1565 1566 vector_append_error: 1567 sqlite3ExprDelete(db, pExpr); 1568 sqlite3IdListDelete(db, pColumns); 1569 return pList; 1570 } 1571 1572 /* 1573 ** Set the sort order for the last element on the given ExprList. 1574 */ 1575 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1576 if( p==0 ) return; 1577 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1578 assert( p->nExpr>0 ); 1579 if( iSortOrder<0 ){ 1580 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1581 return; 1582 } 1583 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1584 } 1585 1586 /* 1587 ** Set the ExprList.a[].zName element of the most recently added item 1588 ** on the expression list. 1589 ** 1590 ** pList might be NULL following an OOM error. But pName should never be 1591 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1592 ** is set. 1593 */ 1594 void sqlite3ExprListSetName( 1595 Parse *pParse, /* Parsing context */ 1596 ExprList *pList, /* List to which to add the span. */ 1597 Token *pName, /* Name to be added */ 1598 int dequote /* True to cause the name to be dequoted */ 1599 ){ 1600 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1601 if( pList ){ 1602 struct ExprList_item *pItem; 1603 assert( pList->nExpr>0 ); 1604 pItem = &pList->a[pList->nExpr-1]; 1605 assert( pItem->zName==0 ); 1606 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1607 if( dequote ) sqlite3Dequote(pItem->zName); 1608 } 1609 } 1610 1611 /* 1612 ** Set the ExprList.a[].zSpan element of the most recently added item 1613 ** on the expression list. 1614 ** 1615 ** pList might be NULL following an OOM error. But pSpan should never be 1616 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1617 ** is set. 1618 */ 1619 void sqlite3ExprListSetSpan( 1620 Parse *pParse, /* Parsing context */ 1621 ExprList *pList, /* List to which to add the span. */ 1622 ExprSpan *pSpan /* The span to be added */ 1623 ){ 1624 sqlite3 *db = pParse->db; 1625 assert( pList!=0 || db->mallocFailed!=0 ); 1626 if( pList ){ 1627 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1628 assert( pList->nExpr>0 ); 1629 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1630 sqlite3DbFree(db, pItem->zSpan); 1631 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1632 (int)(pSpan->zEnd - pSpan->zStart)); 1633 } 1634 } 1635 1636 /* 1637 ** If the expression list pEList contains more than iLimit elements, 1638 ** leave an error message in pParse. 1639 */ 1640 void sqlite3ExprListCheckLength( 1641 Parse *pParse, 1642 ExprList *pEList, 1643 const char *zObject 1644 ){ 1645 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1646 testcase( pEList && pEList->nExpr==mx ); 1647 testcase( pEList && pEList->nExpr==mx+1 ); 1648 if( pEList && pEList->nExpr>mx ){ 1649 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1650 } 1651 } 1652 1653 /* 1654 ** Delete an entire expression list. 1655 */ 1656 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1657 int i = pList->nExpr; 1658 struct ExprList_item *pItem = pList->a; 1659 assert( pList->nExpr>0 ); 1660 do{ 1661 sqlite3ExprDelete(db, pItem->pExpr); 1662 sqlite3DbFree(db, pItem->zName); 1663 sqlite3DbFree(db, pItem->zSpan); 1664 pItem++; 1665 }while( --i>0 ); 1666 sqlite3DbFreeNN(db, pList); 1667 } 1668 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1669 if( pList ) exprListDeleteNN(db, pList); 1670 } 1671 1672 /* 1673 ** Return the bitwise-OR of all Expr.flags fields in the given 1674 ** ExprList. 1675 */ 1676 u32 sqlite3ExprListFlags(const ExprList *pList){ 1677 int i; 1678 u32 m = 0; 1679 if( pList ){ 1680 for(i=0; i<pList->nExpr; i++){ 1681 Expr *pExpr = pList->a[i].pExpr; 1682 assert( pExpr!=0 ); 1683 m |= pExpr->flags; 1684 } 1685 } 1686 return m; 1687 } 1688 1689 /* 1690 ** These routines are Walker callbacks used to check expressions to 1691 ** see if they are "constant" for some definition of constant. The 1692 ** Walker.eCode value determines the type of "constant" we are looking 1693 ** for. 1694 ** 1695 ** These callback routines are used to implement the following: 1696 ** 1697 ** sqlite3ExprIsConstant() pWalker->eCode==1 1698 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1699 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1700 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1701 ** 1702 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1703 ** is found to not be a constant. 1704 ** 1705 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1706 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1707 ** an existing schema and 4 when processing a new statement. A bound 1708 ** parameter raises an error for new statements, but is silently converted 1709 ** to NULL for existing schemas. This allows sqlite_master tables that 1710 ** contain a bound parameter because they were generated by older versions 1711 ** of SQLite to be parsed by newer versions of SQLite without raising a 1712 ** malformed schema error. 1713 */ 1714 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1715 1716 /* If pWalker->eCode is 2 then any term of the expression that comes from 1717 ** the ON or USING clauses of a left join disqualifies the expression 1718 ** from being considered constant. */ 1719 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1720 pWalker->eCode = 0; 1721 return WRC_Abort; 1722 } 1723 1724 switch( pExpr->op ){ 1725 /* Consider functions to be constant if all their arguments are constant 1726 ** and either pWalker->eCode==4 or 5 or the function has the 1727 ** SQLITE_FUNC_CONST flag. */ 1728 case TK_FUNCTION: 1729 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1730 return WRC_Continue; 1731 }else{ 1732 pWalker->eCode = 0; 1733 return WRC_Abort; 1734 } 1735 case TK_ID: 1736 case TK_COLUMN: 1737 case TK_AGG_FUNCTION: 1738 case TK_AGG_COLUMN: 1739 testcase( pExpr->op==TK_ID ); 1740 testcase( pExpr->op==TK_COLUMN ); 1741 testcase( pExpr->op==TK_AGG_FUNCTION ); 1742 testcase( pExpr->op==TK_AGG_COLUMN ); 1743 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1744 return WRC_Continue; 1745 } 1746 /* Fall through */ 1747 case TK_IF_NULL_ROW: 1748 testcase( pExpr->op==TK_IF_NULL_ROW ); 1749 pWalker->eCode = 0; 1750 return WRC_Abort; 1751 case TK_VARIABLE: 1752 if( pWalker->eCode==5 ){ 1753 /* Silently convert bound parameters that appear inside of CREATE 1754 ** statements into a NULL when parsing the CREATE statement text out 1755 ** of the sqlite_master table */ 1756 pExpr->op = TK_NULL; 1757 }else if( pWalker->eCode==4 ){ 1758 /* A bound parameter in a CREATE statement that originates from 1759 ** sqlite3_prepare() causes an error */ 1760 pWalker->eCode = 0; 1761 return WRC_Abort; 1762 } 1763 /* Fall through */ 1764 default: 1765 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1766 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1767 return WRC_Continue; 1768 } 1769 } 1770 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1771 UNUSED_PARAMETER(NotUsed); 1772 pWalker->eCode = 0; 1773 return WRC_Abort; 1774 } 1775 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1776 Walker w; 1777 w.eCode = initFlag; 1778 w.xExprCallback = exprNodeIsConstant; 1779 w.xSelectCallback = selectNodeIsConstant; 1780 #ifdef SQLITE_DEBUG 1781 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1782 #endif 1783 w.u.iCur = iCur; 1784 sqlite3WalkExpr(&w, p); 1785 return w.eCode; 1786 } 1787 1788 /* 1789 ** Walk an expression tree. Return non-zero if the expression is constant 1790 ** and 0 if it involves variables or function calls. 1791 ** 1792 ** For the purposes of this function, a double-quoted string (ex: "abc") 1793 ** is considered a variable but a single-quoted string (ex: 'abc') is 1794 ** a constant. 1795 */ 1796 int sqlite3ExprIsConstant(Expr *p){ 1797 return exprIsConst(p, 1, 0); 1798 } 1799 1800 /* 1801 ** Walk an expression tree. Return non-zero if the expression is constant 1802 ** that does no originate from the ON or USING clauses of a join. 1803 ** Return 0 if it involves variables or function calls or terms from 1804 ** an ON or USING clause. 1805 */ 1806 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1807 return exprIsConst(p, 2, 0); 1808 } 1809 1810 /* 1811 ** Walk an expression tree. Return non-zero if the expression is constant 1812 ** for any single row of the table with cursor iCur. In other words, the 1813 ** expression must not refer to any non-deterministic function nor any 1814 ** table other than iCur. 1815 */ 1816 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1817 return exprIsConst(p, 3, iCur); 1818 } 1819 1820 1821 /* 1822 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1823 */ 1824 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1825 ExprList *pGroupBy = pWalker->u.pGroupBy; 1826 int i; 1827 1828 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1829 ** it constant. */ 1830 for(i=0; i<pGroupBy->nExpr; i++){ 1831 Expr *p = pGroupBy->a[i].pExpr; 1832 if( sqlite3ExprCompare(pExpr, p, -1)<2 ){ 1833 CollSeq *pColl = sqlite3ExprCollSeq(pWalker->pParse, p); 1834 if( pColl==0 || sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1835 return WRC_Prune; 1836 } 1837 } 1838 } 1839 1840 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1841 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1842 pWalker->eCode = 0; 1843 return WRC_Abort; 1844 } 1845 1846 return exprNodeIsConstant(pWalker, pExpr); 1847 } 1848 1849 /* 1850 ** Walk the expression tree passed as the first argument. Return non-zero 1851 ** if the expression consists entirely of constants or copies of terms 1852 ** in pGroupBy that sort with the BINARY collation sequence. 1853 ** 1854 ** This routine is used to determine if a term of the HAVING clause can 1855 ** be promoted into the WHERE clause. In order for such a promotion to work, 1856 ** the value of the HAVING clause term must be the same for all members of 1857 ** a "group". The requirement that the GROUP BY term must be BINARY 1858 ** assumes that no other collating sequence will have a finer-grained 1859 ** grouping than binary. In other words (A=B COLLATE binary) implies 1860 ** A=B in every other collating sequence. The requirement that the 1861 ** GROUP BY be BINARY is stricter than necessary. It would also work 1862 ** to promote HAVING clauses that use the same alternative collating 1863 ** sequence as the GROUP BY term, but that is much harder to check, 1864 ** alternative collating sequences are uncommon, and this is only an 1865 ** optimization, so we take the easy way out and simply require the 1866 ** GROUP BY to use the BINARY collating sequence. 1867 */ 1868 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1869 Walker w; 1870 w.eCode = 1; 1871 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1872 w.xSelectCallback = 0; 1873 w.u.pGroupBy = pGroupBy; 1874 w.pParse = pParse; 1875 sqlite3WalkExpr(&w, p); 1876 return w.eCode; 1877 } 1878 1879 /* 1880 ** Walk an expression tree. Return non-zero if the expression is constant 1881 ** or a function call with constant arguments. Return and 0 if there 1882 ** are any variables. 1883 ** 1884 ** For the purposes of this function, a double-quoted string (ex: "abc") 1885 ** is considered a variable but a single-quoted string (ex: 'abc') is 1886 ** a constant. 1887 */ 1888 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1889 assert( isInit==0 || isInit==1 ); 1890 return exprIsConst(p, 4+isInit, 0); 1891 } 1892 1893 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1894 /* 1895 ** Walk an expression tree. Return 1 if the expression contains a 1896 ** subquery of some kind. Return 0 if there are no subqueries. 1897 */ 1898 int sqlite3ExprContainsSubquery(Expr *p){ 1899 Walker w; 1900 w.eCode = 1; 1901 w.xExprCallback = sqlite3ExprWalkNoop; 1902 w.xSelectCallback = selectNodeIsConstant; 1903 #ifdef SQLITE_DEBUG 1904 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1905 #endif 1906 sqlite3WalkExpr(&w, p); 1907 return w.eCode==0; 1908 } 1909 #endif 1910 1911 /* 1912 ** If the expression p codes a constant integer that is small enough 1913 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1914 ** in *pValue. If the expression is not an integer or if it is too big 1915 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1916 */ 1917 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1918 int rc = 0; 1919 if( p==0 ) return 0; /* Can only happen following on OOM */ 1920 1921 /* If an expression is an integer literal that fits in a signed 32-bit 1922 ** integer, then the EP_IntValue flag will have already been set */ 1923 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1924 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1925 1926 if( p->flags & EP_IntValue ){ 1927 *pValue = p->u.iValue; 1928 return 1; 1929 } 1930 switch( p->op ){ 1931 case TK_UPLUS: { 1932 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1933 break; 1934 } 1935 case TK_UMINUS: { 1936 int v; 1937 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1938 assert( v!=(-2147483647-1) ); 1939 *pValue = -v; 1940 rc = 1; 1941 } 1942 break; 1943 } 1944 default: break; 1945 } 1946 return rc; 1947 } 1948 1949 /* 1950 ** Return FALSE if there is no chance that the expression can be NULL. 1951 ** 1952 ** If the expression might be NULL or if the expression is too complex 1953 ** to tell return TRUE. 1954 ** 1955 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1956 ** when we know that a value cannot be NULL. Hence, a false positive 1957 ** (returning TRUE when in fact the expression can never be NULL) might 1958 ** be a small performance hit but is otherwise harmless. On the other 1959 ** hand, a false negative (returning FALSE when the result could be NULL) 1960 ** will likely result in an incorrect answer. So when in doubt, return 1961 ** TRUE. 1962 */ 1963 int sqlite3ExprCanBeNull(const Expr *p){ 1964 u8 op; 1965 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1966 op = p->op; 1967 if( op==TK_REGISTER ) op = p->op2; 1968 switch( op ){ 1969 case TK_INTEGER: 1970 case TK_STRING: 1971 case TK_FLOAT: 1972 case TK_BLOB: 1973 return 0; 1974 case TK_COLUMN: 1975 assert( p->pTab!=0 ); 1976 return ExprHasProperty(p, EP_CanBeNull) || 1977 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1978 default: 1979 return 1; 1980 } 1981 } 1982 1983 /* 1984 ** Return TRUE if the given expression is a constant which would be 1985 ** unchanged by OP_Affinity with the affinity given in the second 1986 ** argument. 1987 ** 1988 ** This routine is used to determine if the OP_Affinity operation 1989 ** can be omitted. When in doubt return FALSE. A false negative 1990 ** is harmless. A false positive, however, can result in the wrong 1991 ** answer. 1992 */ 1993 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1994 u8 op; 1995 if( aff==SQLITE_AFF_BLOB ) return 1; 1996 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1997 op = p->op; 1998 if( op==TK_REGISTER ) op = p->op2; 1999 switch( op ){ 2000 case TK_INTEGER: { 2001 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2002 } 2003 case TK_FLOAT: { 2004 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2005 } 2006 case TK_STRING: { 2007 return aff==SQLITE_AFF_TEXT; 2008 } 2009 case TK_BLOB: { 2010 return 1; 2011 } 2012 case TK_COLUMN: { 2013 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2014 return p->iColumn<0 2015 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2016 } 2017 default: { 2018 return 0; 2019 } 2020 } 2021 } 2022 2023 /* 2024 ** Return TRUE if the given string is a row-id column name. 2025 */ 2026 int sqlite3IsRowid(const char *z){ 2027 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2028 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2029 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2030 return 0; 2031 } 2032 2033 /* 2034 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2035 ** that can be simplified to a direct table access, then return 2036 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2037 ** or if the SELECT statement needs to be manifested into a transient 2038 ** table, then return NULL. 2039 */ 2040 #ifndef SQLITE_OMIT_SUBQUERY 2041 static Select *isCandidateForInOpt(Expr *pX){ 2042 Select *p; 2043 SrcList *pSrc; 2044 ExprList *pEList; 2045 Table *pTab; 2046 int i; 2047 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2048 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2049 p = pX->x.pSelect; 2050 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2051 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2052 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2053 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2054 return 0; /* No DISTINCT keyword and no aggregate functions */ 2055 } 2056 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2057 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2058 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 2059 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2060 pSrc = p->pSrc; 2061 assert( pSrc!=0 ); 2062 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2063 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2064 pTab = pSrc->a[0].pTab; 2065 assert( pTab!=0 ); 2066 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2067 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2068 pEList = p->pEList; 2069 assert( pEList!=0 ); 2070 /* All SELECT results must be columns. */ 2071 for(i=0; i<pEList->nExpr; i++){ 2072 Expr *pRes = pEList->a[i].pExpr; 2073 if( pRes->op!=TK_COLUMN ) return 0; 2074 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2075 } 2076 return p; 2077 } 2078 #endif /* SQLITE_OMIT_SUBQUERY */ 2079 2080 #ifndef SQLITE_OMIT_SUBQUERY 2081 /* 2082 ** Generate code that checks the left-most column of index table iCur to see if 2083 ** it contains any NULL entries. Cause the register at regHasNull to be set 2084 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2085 ** to be set to NULL if iCur contains one or more NULL values. 2086 */ 2087 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2088 int addr1; 2089 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2090 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2091 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2092 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2093 VdbeComment((v, "first_entry_in(%d)", iCur)); 2094 sqlite3VdbeJumpHere(v, addr1); 2095 } 2096 #endif 2097 2098 2099 #ifndef SQLITE_OMIT_SUBQUERY 2100 /* 2101 ** The argument is an IN operator with a list (not a subquery) on the 2102 ** right-hand side. Return TRUE if that list is constant. 2103 */ 2104 static int sqlite3InRhsIsConstant(Expr *pIn){ 2105 Expr *pLHS; 2106 int res; 2107 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2108 pLHS = pIn->pLeft; 2109 pIn->pLeft = 0; 2110 res = sqlite3ExprIsConstant(pIn); 2111 pIn->pLeft = pLHS; 2112 return res; 2113 } 2114 #endif 2115 2116 /* 2117 ** This function is used by the implementation of the IN (...) operator. 2118 ** The pX parameter is the expression on the RHS of the IN operator, which 2119 ** might be either a list of expressions or a subquery. 2120 ** 2121 ** The job of this routine is to find or create a b-tree object that can 2122 ** be used either to test for membership in the RHS set or to iterate through 2123 ** all members of the RHS set, skipping duplicates. 2124 ** 2125 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2126 ** and pX->iTable is set to the index of that cursor. 2127 ** 2128 ** The returned value of this function indicates the b-tree type, as follows: 2129 ** 2130 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2131 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2132 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2133 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2134 ** populated epheremal table. 2135 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2136 ** implemented as a sequence of comparisons. 2137 ** 2138 ** An existing b-tree might be used if the RHS expression pX is a simple 2139 ** subquery such as: 2140 ** 2141 ** SELECT <column1>, <column2>... FROM <table> 2142 ** 2143 ** If the RHS of the IN operator is a list or a more complex subquery, then 2144 ** an ephemeral table might need to be generated from the RHS and then 2145 ** pX->iTable made to point to the ephemeral table instead of an 2146 ** existing table. 2147 ** 2148 ** The inFlags parameter must contain exactly one of the bits 2149 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2150 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2151 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2152 ** IN index will be used to loop over all values of the RHS of the 2153 ** IN operator. 2154 ** 2155 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2156 ** through the set members) then the b-tree must not contain duplicates. 2157 ** An epheremal table must be used unless the selected columns are guaranteed 2158 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2159 ** a UNIQUE constraint or index. 2160 ** 2161 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2162 ** for fast set membership tests) then an epheremal table must 2163 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2164 ** index can be found with the specified <columns> as its left-most. 2165 ** 2166 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2167 ** if the RHS of the IN operator is a list (not a subquery) then this 2168 ** routine might decide that creating an ephemeral b-tree for membership 2169 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2170 ** calling routine should implement the IN operator using a sequence 2171 ** of Eq or Ne comparison operations. 2172 ** 2173 ** When the b-tree is being used for membership tests, the calling function 2174 ** might need to know whether or not the RHS side of the IN operator 2175 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2176 ** if there is any chance that the (...) might contain a NULL value at 2177 ** runtime, then a register is allocated and the register number written 2178 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2179 ** NULL value, then *prRhsHasNull is left unchanged. 2180 ** 2181 ** If a register is allocated and its location stored in *prRhsHasNull, then 2182 ** the value in that register will be NULL if the b-tree contains one or more 2183 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2184 ** NULL values. 2185 ** 2186 ** If the aiMap parameter is not NULL, it must point to an array containing 2187 ** one element for each column returned by the SELECT statement on the RHS 2188 ** of the IN(...) operator. The i'th entry of the array is populated with the 2189 ** offset of the index column that matches the i'th column returned by the 2190 ** SELECT. For example, if the expression and selected index are: 2191 ** 2192 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2193 ** CREATE INDEX i1 ON t1(b, c, a); 2194 ** 2195 ** then aiMap[] is populated with {2, 0, 1}. 2196 */ 2197 #ifndef SQLITE_OMIT_SUBQUERY 2198 int sqlite3FindInIndex( 2199 Parse *pParse, /* Parsing context */ 2200 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2201 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2202 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2203 int *aiMap /* Mapping from Index fields to RHS fields */ 2204 ){ 2205 Select *p; /* SELECT to the right of IN operator */ 2206 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2207 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2208 int mustBeUnique; /* True if RHS must be unique */ 2209 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2210 2211 assert( pX->op==TK_IN ); 2212 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2213 2214 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2215 ** whether or not the SELECT result contains NULL values, check whether 2216 ** or not NULL is actually possible (it may not be, for example, due 2217 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2218 ** set prRhsHasNull to 0 before continuing. */ 2219 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2220 int i; 2221 ExprList *pEList = pX->x.pSelect->pEList; 2222 for(i=0; i<pEList->nExpr; i++){ 2223 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2224 } 2225 if( i==pEList->nExpr ){ 2226 prRhsHasNull = 0; 2227 } 2228 } 2229 2230 /* Check to see if an existing table or index can be used to 2231 ** satisfy the query. This is preferable to generating a new 2232 ** ephemeral table. */ 2233 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2234 sqlite3 *db = pParse->db; /* Database connection */ 2235 Table *pTab; /* Table <table>. */ 2236 i16 iDb; /* Database idx for pTab */ 2237 ExprList *pEList = p->pEList; 2238 int nExpr = pEList->nExpr; 2239 2240 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2241 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2242 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2243 pTab = p->pSrc->a[0].pTab; 2244 2245 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2246 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2247 sqlite3CodeVerifySchema(pParse, iDb); 2248 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2249 2250 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2251 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2252 /* The "x IN (SELECT rowid FROM table)" case */ 2253 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2254 VdbeCoverage(v); 2255 2256 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2257 eType = IN_INDEX_ROWID; 2258 2259 sqlite3VdbeJumpHere(v, iAddr); 2260 }else{ 2261 Index *pIdx; /* Iterator variable */ 2262 int affinity_ok = 1; 2263 int i; 2264 2265 /* Check that the affinity that will be used to perform each 2266 ** comparison is the same as the affinity of each column in table 2267 ** on the RHS of the IN operator. If it not, it is not possible to 2268 ** use any index of the RHS table. */ 2269 for(i=0; i<nExpr && affinity_ok; i++){ 2270 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2271 int iCol = pEList->a[i].pExpr->iColumn; 2272 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2273 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2274 testcase( cmpaff==SQLITE_AFF_BLOB ); 2275 testcase( cmpaff==SQLITE_AFF_TEXT ); 2276 switch( cmpaff ){ 2277 case SQLITE_AFF_BLOB: 2278 break; 2279 case SQLITE_AFF_TEXT: 2280 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2281 ** other has no affinity and the other side is TEXT. Hence, 2282 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2283 ** and for the term on the LHS of the IN to have no affinity. */ 2284 assert( idxaff==SQLITE_AFF_TEXT ); 2285 break; 2286 default: 2287 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2288 } 2289 } 2290 2291 if( affinity_ok ){ 2292 /* Search for an existing index that will work for this IN operator */ 2293 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2294 Bitmask colUsed; /* Columns of the index used */ 2295 Bitmask mCol; /* Mask for the current column */ 2296 if( pIdx->nColumn<nExpr ) continue; 2297 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2298 ** BITMASK(nExpr) without overflowing */ 2299 testcase( pIdx->nColumn==BMS-2 ); 2300 testcase( pIdx->nColumn==BMS-1 ); 2301 if( pIdx->nColumn>=BMS-1 ) continue; 2302 if( mustBeUnique ){ 2303 if( pIdx->nKeyCol>nExpr 2304 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2305 ){ 2306 continue; /* This index is not unique over the IN RHS columns */ 2307 } 2308 } 2309 2310 colUsed = 0; /* Columns of index used so far */ 2311 for(i=0; i<nExpr; i++){ 2312 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2313 Expr *pRhs = pEList->a[i].pExpr; 2314 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2315 int j; 2316 2317 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2318 for(j=0; j<nExpr; j++){ 2319 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2320 assert( pIdx->azColl[j] ); 2321 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2322 continue; 2323 } 2324 break; 2325 } 2326 if( j==nExpr ) break; 2327 mCol = MASKBIT(j); 2328 if( mCol & colUsed ) break; /* Each column used only once */ 2329 colUsed |= mCol; 2330 if( aiMap ) aiMap[i] = j; 2331 } 2332 2333 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2334 if( colUsed==(MASKBIT(nExpr)-1) ){ 2335 /* If we reach this point, that means the index pIdx is usable */ 2336 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2337 #ifndef SQLITE_OMIT_EXPLAIN 2338 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2339 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2340 P4_DYNAMIC); 2341 #endif 2342 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2343 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2344 VdbeComment((v, "%s", pIdx->zName)); 2345 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2346 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2347 2348 if( prRhsHasNull ){ 2349 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2350 i64 mask = (1<<nExpr)-1; 2351 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2352 iTab, 0, 0, (u8*)&mask, P4_INT64); 2353 #endif 2354 *prRhsHasNull = ++pParse->nMem; 2355 if( nExpr==1 ){ 2356 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2357 } 2358 } 2359 sqlite3VdbeJumpHere(v, iAddr); 2360 } 2361 } /* End loop over indexes */ 2362 } /* End if( affinity_ok ) */ 2363 } /* End if not an rowid index */ 2364 } /* End attempt to optimize using an index */ 2365 2366 /* If no preexisting index is available for the IN clause 2367 ** and IN_INDEX_NOOP is an allowed reply 2368 ** and the RHS of the IN operator is a list, not a subquery 2369 ** and the RHS is not constant or has two or fewer terms, 2370 ** then it is not worth creating an ephemeral table to evaluate 2371 ** the IN operator so return IN_INDEX_NOOP. 2372 */ 2373 if( eType==0 2374 && (inFlags & IN_INDEX_NOOP_OK) 2375 && !ExprHasProperty(pX, EP_xIsSelect) 2376 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2377 ){ 2378 eType = IN_INDEX_NOOP; 2379 } 2380 2381 if( eType==0 ){ 2382 /* Could not find an existing table or index to use as the RHS b-tree. 2383 ** We will have to generate an ephemeral table to do the job. 2384 */ 2385 u32 savedNQueryLoop = pParse->nQueryLoop; 2386 int rMayHaveNull = 0; 2387 eType = IN_INDEX_EPH; 2388 if( inFlags & IN_INDEX_LOOP ){ 2389 pParse->nQueryLoop = 0; 2390 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2391 eType = IN_INDEX_ROWID; 2392 } 2393 }else if( prRhsHasNull ){ 2394 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2395 } 2396 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2397 pParse->nQueryLoop = savedNQueryLoop; 2398 }else{ 2399 pX->iTable = iTab; 2400 } 2401 2402 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2403 int i, n; 2404 n = sqlite3ExprVectorSize(pX->pLeft); 2405 for(i=0; i<n; i++) aiMap[i] = i; 2406 } 2407 return eType; 2408 } 2409 #endif 2410 2411 #ifndef SQLITE_OMIT_SUBQUERY 2412 /* 2413 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2414 ** function allocates and returns a nul-terminated string containing 2415 ** the affinities to be used for each column of the comparison. 2416 ** 2417 ** It is the responsibility of the caller to ensure that the returned 2418 ** string is eventually freed using sqlite3DbFree(). 2419 */ 2420 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2421 Expr *pLeft = pExpr->pLeft; 2422 int nVal = sqlite3ExprVectorSize(pLeft); 2423 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2424 char *zRet; 2425 2426 assert( pExpr->op==TK_IN ); 2427 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2428 if( zRet ){ 2429 int i; 2430 for(i=0; i<nVal; i++){ 2431 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2432 char a = sqlite3ExprAffinity(pA); 2433 if( pSelect ){ 2434 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2435 }else{ 2436 zRet[i] = a; 2437 } 2438 } 2439 zRet[nVal] = '\0'; 2440 } 2441 return zRet; 2442 } 2443 #endif 2444 2445 #ifndef SQLITE_OMIT_SUBQUERY 2446 /* 2447 ** Load the Parse object passed as the first argument with an error 2448 ** message of the form: 2449 ** 2450 ** "sub-select returns N columns - expected M" 2451 */ 2452 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2453 const char *zFmt = "sub-select returns %d columns - expected %d"; 2454 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2455 } 2456 #endif 2457 2458 /* 2459 ** Expression pExpr is a vector that has been used in a context where 2460 ** it is not permitted. If pExpr is a sub-select vector, this routine 2461 ** loads the Parse object with a message of the form: 2462 ** 2463 ** "sub-select returns N columns - expected 1" 2464 ** 2465 ** Or, if it is a regular scalar vector: 2466 ** 2467 ** "row value misused" 2468 */ 2469 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2470 #ifndef SQLITE_OMIT_SUBQUERY 2471 if( pExpr->flags & EP_xIsSelect ){ 2472 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2473 }else 2474 #endif 2475 { 2476 sqlite3ErrorMsg(pParse, "row value misused"); 2477 } 2478 } 2479 2480 /* 2481 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2482 ** or IN operators. Examples: 2483 ** 2484 ** (SELECT a FROM b) -- subquery 2485 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2486 ** x IN (4,5,11) -- IN operator with list on right-hand side 2487 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2488 ** 2489 ** The pExpr parameter describes the expression that contains the IN 2490 ** operator or subquery. 2491 ** 2492 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2493 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2494 ** to some integer key column of a table B-Tree. In this case, use an 2495 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2496 ** (slower) variable length keys B-Tree. 2497 ** 2498 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2499 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2500 ** All this routine does is initialize the register given by rMayHaveNull 2501 ** to NULL. Calling routines will take care of changing this register 2502 ** value to non-NULL if the RHS is NULL-free. 2503 ** 2504 ** For a SELECT or EXISTS operator, return the register that holds the 2505 ** result. For a multi-column SELECT, the result is stored in a contiguous 2506 ** array of registers and the return value is the register of the left-most 2507 ** result column. Return 0 for IN operators or if an error occurs. 2508 */ 2509 #ifndef SQLITE_OMIT_SUBQUERY 2510 int sqlite3CodeSubselect( 2511 Parse *pParse, /* Parsing context */ 2512 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2513 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2514 int isRowid /* If true, LHS of IN operator is a rowid */ 2515 ){ 2516 int jmpIfDynamic = -1; /* One-time test address */ 2517 int rReg = 0; /* Register storing resulting */ 2518 Vdbe *v = sqlite3GetVdbe(pParse); 2519 if( NEVER(v==0) ) return 0; 2520 sqlite3ExprCachePush(pParse); 2521 2522 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2523 ** is encountered if any of the following is true: 2524 ** 2525 ** * The right-hand side is a correlated subquery 2526 ** * The right-hand side is an expression list containing variables 2527 ** * We are inside a trigger 2528 ** 2529 ** If all of the above are false, then we can run this code just once 2530 ** save the results, and reuse the same result on subsequent invocations. 2531 */ 2532 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2533 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2534 } 2535 2536 #ifndef SQLITE_OMIT_EXPLAIN 2537 if( pParse->explain==2 ){ 2538 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2539 jmpIfDynamic>=0?"":"CORRELATED ", 2540 pExpr->op==TK_IN?"LIST":"SCALAR", 2541 pParse->iNextSelectId 2542 ); 2543 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2544 } 2545 #endif 2546 2547 switch( pExpr->op ){ 2548 case TK_IN: { 2549 int addr; /* Address of OP_OpenEphemeral instruction */ 2550 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2551 KeyInfo *pKeyInfo = 0; /* Key information */ 2552 int nVal; /* Size of vector pLeft */ 2553 2554 nVal = sqlite3ExprVectorSize(pLeft); 2555 assert( !isRowid || nVal==1 ); 2556 2557 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2558 ** expression it is handled the same way. An ephemeral table is 2559 ** filled with index keys representing the results from the 2560 ** SELECT or the <exprlist>. 2561 ** 2562 ** If the 'x' expression is a column value, or the SELECT... 2563 ** statement returns a column value, then the affinity of that 2564 ** column is used to build the index keys. If both 'x' and the 2565 ** SELECT... statement are columns, then numeric affinity is used 2566 ** if either column has NUMERIC or INTEGER affinity. If neither 2567 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2568 ** is used. 2569 */ 2570 pExpr->iTable = pParse->nTab++; 2571 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2572 pExpr->iTable, (isRowid?0:nVal)); 2573 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2574 2575 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2576 /* Case 1: expr IN (SELECT ...) 2577 ** 2578 ** Generate code to write the results of the select into the temporary 2579 ** table allocated and opened above. 2580 */ 2581 Select *pSelect = pExpr->x.pSelect; 2582 ExprList *pEList = pSelect->pEList; 2583 2584 assert( !isRowid ); 2585 /* If the LHS and RHS of the IN operator do not match, that 2586 ** error will have been caught long before we reach this point. */ 2587 if( ALWAYS(pEList->nExpr==nVal) ){ 2588 SelectDest dest; 2589 int i; 2590 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2591 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2592 pSelect->iLimit = 0; 2593 testcase( pSelect->selFlags & SF_Distinct ); 2594 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2595 if( sqlite3Select(pParse, pSelect, &dest) ){ 2596 sqlite3DbFree(pParse->db, dest.zAffSdst); 2597 sqlite3KeyInfoUnref(pKeyInfo); 2598 return 0; 2599 } 2600 sqlite3DbFree(pParse->db, dest.zAffSdst); 2601 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2602 assert( pEList!=0 ); 2603 assert( pEList->nExpr>0 ); 2604 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2605 for(i=0; i<nVal; i++){ 2606 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2607 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2608 pParse, p, pEList->a[i].pExpr 2609 ); 2610 } 2611 } 2612 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2613 /* Case 2: expr IN (exprlist) 2614 ** 2615 ** For each expression, build an index key from the evaluation and 2616 ** store it in the temporary table. If <expr> is a column, then use 2617 ** that columns affinity when building index keys. If <expr> is not 2618 ** a column, use numeric affinity. 2619 */ 2620 char affinity; /* Affinity of the LHS of the IN */ 2621 int i; 2622 ExprList *pList = pExpr->x.pList; 2623 struct ExprList_item *pItem; 2624 int r1, r2, r3; 2625 2626 affinity = sqlite3ExprAffinity(pLeft); 2627 if( !affinity ){ 2628 affinity = SQLITE_AFF_BLOB; 2629 } 2630 if( pKeyInfo ){ 2631 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2632 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2633 } 2634 2635 /* Loop through each expression in <exprlist>. */ 2636 r1 = sqlite3GetTempReg(pParse); 2637 r2 = sqlite3GetTempReg(pParse); 2638 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 2639 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2640 Expr *pE2 = pItem->pExpr; 2641 int iValToIns; 2642 2643 /* If the expression is not constant then we will need to 2644 ** disable the test that was generated above that makes sure 2645 ** this code only executes once. Because for a non-constant 2646 ** expression we need to rerun this code each time. 2647 */ 2648 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2649 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2650 jmpIfDynamic = -1; 2651 } 2652 2653 /* Evaluate the expression and insert it into the temp table */ 2654 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2655 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2656 }else{ 2657 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2658 if( isRowid ){ 2659 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2660 sqlite3VdbeCurrentAddr(v)+2); 2661 VdbeCoverage(v); 2662 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2663 }else{ 2664 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2665 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2666 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2667 } 2668 } 2669 } 2670 sqlite3ReleaseTempReg(pParse, r1); 2671 sqlite3ReleaseTempReg(pParse, r2); 2672 } 2673 if( pKeyInfo ){ 2674 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2675 } 2676 break; 2677 } 2678 2679 case TK_EXISTS: 2680 case TK_SELECT: 2681 default: { 2682 /* Case 3: (SELECT ... FROM ...) 2683 ** or: EXISTS(SELECT ... FROM ...) 2684 ** 2685 ** For a SELECT, generate code to put the values for all columns of 2686 ** the first row into an array of registers and return the index of 2687 ** the first register. 2688 ** 2689 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2690 ** into a register and return that register number. 2691 ** 2692 ** In both cases, the query is augmented with "LIMIT 1". Any 2693 ** preexisting limit is discarded in place of the new LIMIT 1. 2694 */ 2695 Select *pSel; /* SELECT statement to encode */ 2696 SelectDest dest; /* How to deal with SELECT result */ 2697 int nReg; /* Registers to allocate */ 2698 2699 testcase( pExpr->op==TK_EXISTS ); 2700 testcase( pExpr->op==TK_SELECT ); 2701 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2702 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2703 2704 pSel = pExpr->x.pSelect; 2705 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2706 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2707 pParse->nMem += nReg; 2708 if( pExpr->op==TK_SELECT ){ 2709 dest.eDest = SRT_Mem; 2710 dest.iSdst = dest.iSDParm; 2711 dest.nSdst = nReg; 2712 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2713 VdbeComment((v, "Init subquery result")); 2714 }else{ 2715 dest.eDest = SRT_Exists; 2716 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2717 VdbeComment((v, "Init EXISTS result")); 2718 } 2719 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2720 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2721 &sqlite3IntTokens[1], 0); 2722 pSel->iLimit = 0; 2723 pSel->selFlags &= ~SF_MultiValue; 2724 if( sqlite3Select(pParse, pSel, &dest) ){ 2725 return 0; 2726 } 2727 rReg = dest.iSDParm; 2728 ExprSetVVAProperty(pExpr, EP_NoReduce); 2729 break; 2730 } 2731 } 2732 2733 if( rHasNullFlag ){ 2734 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2735 } 2736 2737 if( jmpIfDynamic>=0 ){ 2738 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2739 } 2740 sqlite3ExprCachePop(pParse); 2741 2742 return rReg; 2743 } 2744 #endif /* SQLITE_OMIT_SUBQUERY */ 2745 2746 #ifndef SQLITE_OMIT_SUBQUERY 2747 /* 2748 ** Expr pIn is an IN(...) expression. This function checks that the 2749 ** sub-select on the RHS of the IN() operator has the same number of 2750 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2751 ** a sub-query, that the LHS is a vector of size 1. 2752 */ 2753 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2754 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2755 if( (pIn->flags & EP_xIsSelect) ){ 2756 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2757 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2758 return 1; 2759 } 2760 }else if( nVector!=1 ){ 2761 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2762 return 1; 2763 } 2764 return 0; 2765 } 2766 #endif 2767 2768 #ifndef SQLITE_OMIT_SUBQUERY 2769 /* 2770 ** Generate code for an IN expression. 2771 ** 2772 ** x IN (SELECT ...) 2773 ** x IN (value, value, ...) 2774 ** 2775 ** The left-hand side (LHS) is a scalar or vector expression. The 2776 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2777 ** subquery. If the RHS is a subquery, the number of result columns must 2778 ** match the number of columns in the vector on the LHS. If the RHS is 2779 ** a list of values, the LHS must be a scalar. 2780 ** 2781 ** The IN operator is true if the LHS value is contained within the RHS. 2782 ** The result is false if the LHS is definitely not in the RHS. The 2783 ** result is NULL if the presence of the LHS in the RHS cannot be 2784 ** determined due to NULLs. 2785 ** 2786 ** This routine generates code that jumps to destIfFalse if the LHS is not 2787 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2788 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2789 ** within the RHS then fall through. 2790 ** 2791 ** See the separate in-operator.md documentation file in the canonical 2792 ** SQLite source tree for additional information. 2793 */ 2794 static void sqlite3ExprCodeIN( 2795 Parse *pParse, /* Parsing and code generating context */ 2796 Expr *pExpr, /* The IN expression */ 2797 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2798 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2799 ){ 2800 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2801 int eType; /* Type of the RHS */ 2802 int rLhs; /* Register(s) holding the LHS values */ 2803 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2804 Vdbe *v; /* Statement under construction */ 2805 int *aiMap = 0; /* Map from vector field to index column */ 2806 char *zAff = 0; /* Affinity string for comparisons */ 2807 int nVector; /* Size of vectors for this IN operator */ 2808 int iDummy; /* Dummy parameter to exprCodeVector() */ 2809 Expr *pLeft; /* The LHS of the IN operator */ 2810 int i; /* loop counter */ 2811 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2812 int destStep6 = 0; /* Start of code for Step 6 */ 2813 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2814 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2815 int addrTop; /* Top of the step-6 loop */ 2816 2817 pLeft = pExpr->pLeft; 2818 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2819 zAff = exprINAffinity(pParse, pExpr); 2820 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2821 aiMap = (int*)sqlite3DbMallocZero( 2822 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2823 ); 2824 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2825 2826 /* Attempt to compute the RHS. After this step, if anything other than 2827 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2828 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2829 ** the RHS has not yet been coded. */ 2830 v = pParse->pVdbe; 2831 assert( v!=0 ); /* OOM detected prior to this routine */ 2832 VdbeNoopComment((v, "begin IN expr")); 2833 eType = sqlite3FindInIndex(pParse, pExpr, 2834 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2835 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2836 2837 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2838 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2839 ); 2840 #ifdef SQLITE_DEBUG 2841 /* Confirm that aiMap[] contains nVector integer values between 0 and 2842 ** nVector-1. */ 2843 for(i=0; i<nVector; i++){ 2844 int j, cnt; 2845 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2846 assert( cnt==1 ); 2847 } 2848 #endif 2849 2850 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2851 ** vector, then it is stored in an array of nVector registers starting 2852 ** at r1. 2853 ** 2854 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2855 ** so that the fields are in the same order as an existing index. The 2856 ** aiMap[] array contains a mapping from the original LHS field order to 2857 ** the field order that matches the RHS index. 2858 */ 2859 sqlite3ExprCachePush(pParse); 2860 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2861 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2862 if( i==nVector ){ 2863 /* LHS fields are not reordered */ 2864 rLhs = rLhsOrig; 2865 }else{ 2866 /* Need to reorder the LHS fields according to aiMap */ 2867 rLhs = sqlite3GetTempRange(pParse, nVector); 2868 for(i=0; i<nVector; i++){ 2869 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2870 } 2871 } 2872 2873 /* If sqlite3FindInIndex() did not find or create an index that is 2874 ** suitable for evaluating the IN operator, then evaluate using a 2875 ** sequence of comparisons. 2876 ** 2877 ** This is step (1) in the in-operator.md optimized algorithm. 2878 */ 2879 if( eType==IN_INDEX_NOOP ){ 2880 ExprList *pList = pExpr->x.pList; 2881 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2882 int labelOk = sqlite3VdbeMakeLabel(v); 2883 int r2, regToFree; 2884 int regCkNull = 0; 2885 int ii; 2886 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2887 if( destIfNull!=destIfFalse ){ 2888 regCkNull = sqlite3GetTempReg(pParse); 2889 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2890 } 2891 for(ii=0; ii<pList->nExpr; ii++){ 2892 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2893 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2894 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2895 } 2896 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2897 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2898 (void*)pColl, P4_COLLSEQ); 2899 VdbeCoverageIf(v, ii<pList->nExpr-1); 2900 VdbeCoverageIf(v, ii==pList->nExpr-1); 2901 sqlite3VdbeChangeP5(v, zAff[0]); 2902 }else{ 2903 assert( destIfNull==destIfFalse ); 2904 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2905 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2906 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2907 } 2908 sqlite3ReleaseTempReg(pParse, regToFree); 2909 } 2910 if( regCkNull ){ 2911 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2912 sqlite3VdbeGoto(v, destIfFalse); 2913 } 2914 sqlite3VdbeResolveLabel(v, labelOk); 2915 sqlite3ReleaseTempReg(pParse, regCkNull); 2916 goto sqlite3ExprCodeIN_finished; 2917 } 2918 2919 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2920 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2921 ** We will then skip the binary search of the RHS. 2922 */ 2923 if( destIfNull==destIfFalse ){ 2924 destStep2 = destIfFalse; 2925 }else{ 2926 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2927 } 2928 for(i=0; i<nVector; i++){ 2929 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2930 if( sqlite3ExprCanBeNull(p) ){ 2931 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2932 VdbeCoverage(v); 2933 } 2934 } 2935 2936 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2937 ** of the RHS using the LHS as a probe. If found, the result is 2938 ** true. 2939 */ 2940 if( eType==IN_INDEX_ROWID ){ 2941 /* In this case, the RHS is the ROWID of table b-tree and so we also 2942 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2943 ** into a single opcode. */ 2944 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2945 VdbeCoverage(v); 2946 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2947 }else{ 2948 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2949 if( destIfFalse==destIfNull ){ 2950 /* Combine Step 3 and Step 5 into a single opcode */ 2951 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2952 rLhs, nVector); VdbeCoverage(v); 2953 goto sqlite3ExprCodeIN_finished; 2954 } 2955 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2956 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 2957 rLhs, nVector); VdbeCoverage(v); 2958 } 2959 2960 /* Step 4. If the RHS is known to be non-NULL and we did not find 2961 ** an match on the search above, then the result must be FALSE. 2962 */ 2963 if( rRhsHasNull && nVector==1 ){ 2964 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 2965 VdbeCoverage(v); 2966 } 2967 2968 /* Step 5. If we do not care about the difference between NULL and 2969 ** FALSE, then just return false. 2970 */ 2971 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 2972 2973 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 2974 ** If any comparison is NULL, then the result is NULL. If all 2975 ** comparisons are FALSE then the final result is FALSE. 2976 ** 2977 ** For a scalar LHS, it is sufficient to check just the first row 2978 ** of the RHS. 2979 */ 2980 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 2981 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2982 VdbeCoverage(v); 2983 if( nVector>1 ){ 2984 destNotNull = sqlite3VdbeMakeLabel(v); 2985 }else{ 2986 /* For nVector==1, combine steps 6 and 7 by immediately returning 2987 ** FALSE if the first comparison is not NULL */ 2988 destNotNull = destIfFalse; 2989 } 2990 for(i=0; i<nVector; i++){ 2991 Expr *p; 2992 CollSeq *pColl; 2993 int r3 = sqlite3GetTempReg(pParse); 2994 p = sqlite3VectorFieldSubexpr(pLeft, i); 2995 pColl = sqlite3ExprCollSeq(pParse, p); 2996 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 2997 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 2998 (void*)pColl, P4_COLLSEQ); 2999 VdbeCoverage(v); 3000 sqlite3ReleaseTempReg(pParse, r3); 3001 } 3002 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3003 if( nVector>1 ){ 3004 sqlite3VdbeResolveLabel(v, destNotNull); 3005 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3006 VdbeCoverage(v); 3007 3008 /* Step 7: If we reach this point, we know that the result must 3009 ** be false. */ 3010 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3011 } 3012 3013 /* Jumps here in order to return true. */ 3014 sqlite3VdbeJumpHere(v, addrTruthOp); 3015 3016 sqlite3ExprCodeIN_finished: 3017 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3018 sqlite3ExprCachePop(pParse); 3019 VdbeComment((v, "end IN expr")); 3020 sqlite3ExprCodeIN_oom_error: 3021 sqlite3DbFree(pParse->db, aiMap); 3022 sqlite3DbFree(pParse->db, zAff); 3023 } 3024 #endif /* SQLITE_OMIT_SUBQUERY */ 3025 3026 #ifndef SQLITE_OMIT_FLOATING_POINT 3027 /* 3028 ** Generate an instruction that will put the floating point 3029 ** value described by z[0..n-1] into register iMem. 3030 ** 3031 ** The z[] string will probably not be zero-terminated. But the 3032 ** z[n] character is guaranteed to be something that does not look 3033 ** like the continuation of the number. 3034 */ 3035 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3036 if( ALWAYS(z!=0) ){ 3037 double value; 3038 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3039 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3040 if( negateFlag ) value = -value; 3041 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3042 } 3043 } 3044 #endif 3045 3046 3047 /* 3048 ** Generate an instruction that will put the integer describe by 3049 ** text z[0..n-1] into register iMem. 3050 ** 3051 ** Expr.u.zToken is always UTF8 and zero-terminated. 3052 */ 3053 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3054 Vdbe *v = pParse->pVdbe; 3055 if( pExpr->flags & EP_IntValue ){ 3056 int i = pExpr->u.iValue; 3057 assert( i>=0 ); 3058 if( negFlag ) i = -i; 3059 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3060 }else{ 3061 int c; 3062 i64 value; 3063 const char *z = pExpr->u.zToken; 3064 assert( z!=0 ); 3065 c = sqlite3DecOrHexToI64(z, &value); 3066 if( c==1 || (c==2 && !negFlag) || (negFlag && value==SMALLEST_INT64)){ 3067 #ifdef SQLITE_OMIT_FLOATING_POINT 3068 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3069 #else 3070 #ifndef SQLITE_OMIT_HEX_INTEGER 3071 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3072 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3073 }else 3074 #endif 3075 { 3076 codeReal(v, z, negFlag, iMem); 3077 } 3078 #endif 3079 }else{ 3080 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 3081 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3082 } 3083 } 3084 } 3085 3086 /* 3087 ** Erase column-cache entry number i 3088 */ 3089 static void cacheEntryClear(Parse *pParse, int i){ 3090 if( pParse->aColCache[i].tempReg ){ 3091 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3092 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3093 } 3094 } 3095 pParse->nColCache--; 3096 if( i<pParse->nColCache ){ 3097 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3098 } 3099 } 3100 3101 3102 /* 3103 ** Record in the column cache that a particular column from a 3104 ** particular table is stored in a particular register. 3105 */ 3106 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3107 int i; 3108 int minLru; 3109 int idxLru; 3110 struct yColCache *p; 3111 3112 /* Unless an error has occurred, register numbers are always positive. */ 3113 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3114 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3115 3116 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3117 ** for testing only - to verify that SQLite always gets the same answer 3118 ** with and without the column cache. 3119 */ 3120 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3121 3122 /* First replace any existing entry. 3123 ** 3124 ** Actually, the way the column cache is currently used, we are guaranteed 3125 ** that the object will never already be in cache. Verify this guarantee. 3126 */ 3127 #ifndef NDEBUG 3128 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3129 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3130 } 3131 #endif 3132 3133 /* If the cache is already full, delete the least recently used entry */ 3134 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3135 minLru = 0x7fffffff; 3136 idxLru = -1; 3137 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3138 if( p->lru<minLru ){ 3139 idxLru = i; 3140 minLru = p->lru; 3141 } 3142 } 3143 p = &pParse->aColCache[idxLru]; 3144 }else{ 3145 p = &pParse->aColCache[pParse->nColCache++]; 3146 } 3147 3148 /* Add the new entry to the end of the cache */ 3149 p->iLevel = pParse->iCacheLevel; 3150 p->iTable = iTab; 3151 p->iColumn = iCol; 3152 p->iReg = iReg; 3153 p->tempReg = 0; 3154 p->lru = pParse->iCacheCnt++; 3155 } 3156 3157 /* 3158 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3159 ** Purge the range of registers from the column cache. 3160 */ 3161 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3162 int i = 0; 3163 while( i<pParse->nColCache ){ 3164 struct yColCache *p = &pParse->aColCache[i]; 3165 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3166 cacheEntryClear(pParse, i); 3167 }else{ 3168 i++; 3169 } 3170 } 3171 } 3172 3173 /* 3174 ** Remember the current column cache context. Any new entries added 3175 ** added to the column cache after this call are removed when the 3176 ** corresponding pop occurs. 3177 */ 3178 void sqlite3ExprCachePush(Parse *pParse){ 3179 pParse->iCacheLevel++; 3180 #ifdef SQLITE_DEBUG 3181 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3182 printf("PUSH to %d\n", pParse->iCacheLevel); 3183 } 3184 #endif 3185 } 3186 3187 /* 3188 ** Remove from the column cache any entries that were added since the 3189 ** the previous sqlite3ExprCachePush operation. In other words, restore 3190 ** the cache to the state it was in prior the most recent Push. 3191 */ 3192 void sqlite3ExprCachePop(Parse *pParse){ 3193 int i = 0; 3194 assert( pParse->iCacheLevel>=1 ); 3195 pParse->iCacheLevel--; 3196 #ifdef SQLITE_DEBUG 3197 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3198 printf("POP to %d\n", pParse->iCacheLevel); 3199 } 3200 #endif 3201 while( i<pParse->nColCache ){ 3202 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3203 cacheEntryClear(pParse, i); 3204 }else{ 3205 i++; 3206 } 3207 } 3208 } 3209 3210 /* 3211 ** When a cached column is reused, make sure that its register is 3212 ** no longer available as a temp register. ticket #3879: that same 3213 ** register might be in the cache in multiple places, so be sure to 3214 ** get them all. 3215 */ 3216 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3217 int i; 3218 struct yColCache *p; 3219 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3220 if( p->iReg==iReg ){ 3221 p->tempReg = 0; 3222 } 3223 } 3224 } 3225 3226 /* Generate code that will load into register regOut a value that is 3227 ** appropriate for the iIdxCol-th column of index pIdx. 3228 */ 3229 void sqlite3ExprCodeLoadIndexColumn( 3230 Parse *pParse, /* The parsing context */ 3231 Index *pIdx, /* The index whose column is to be loaded */ 3232 int iTabCur, /* Cursor pointing to a table row */ 3233 int iIdxCol, /* The column of the index to be loaded */ 3234 int regOut /* Store the index column value in this register */ 3235 ){ 3236 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3237 if( iTabCol==XN_EXPR ){ 3238 assert( pIdx->aColExpr ); 3239 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3240 pParse->iSelfTab = iTabCur; 3241 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3242 }else{ 3243 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3244 iTabCol, regOut); 3245 } 3246 } 3247 3248 /* 3249 ** Generate code to extract the value of the iCol-th column of a table. 3250 */ 3251 void sqlite3ExprCodeGetColumnOfTable( 3252 Vdbe *v, /* The VDBE under construction */ 3253 Table *pTab, /* The table containing the value */ 3254 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3255 int iCol, /* Index of the column to extract */ 3256 int regOut /* Extract the value into this register */ 3257 ){ 3258 if( pTab==0 ){ 3259 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3260 return; 3261 } 3262 if( iCol<0 || iCol==pTab->iPKey ){ 3263 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3264 }else{ 3265 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3266 int x = iCol; 3267 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3268 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3269 } 3270 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3271 } 3272 if( iCol>=0 ){ 3273 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3274 } 3275 } 3276 3277 /* 3278 ** Generate code that will extract the iColumn-th column from 3279 ** table pTab and store the column value in a register. 3280 ** 3281 ** An effort is made to store the column value in register iReg. This 3282 ** is not garanteeed for GetColumn() - the result can be stored in 3283 ** any register. But the result is guaranteed to land in register iReg 3284 ** for GetColumnToReg(). 3285 ** 3286 ** There must be an open cursor to pTab in iTable when this routine 3287 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3288 */ 3289 int sqlite3ExprCodeGetColumn( 3290 Parse *pParse, /* Parsing and code generating context */ 3291 Table *pTab, /* Description of the table we are reading from */ 3292 int iColumn, /* Index of the table column */ 3293 int iTable, /* The cursor pointing to the table */ 3294 int iReg, /* Store results here */ 3295 u8 p5 /* P5 value for OP_Column + FLAGS */ 3296 ){ 3297 Vdbe *v = pParse->pVdbe; 3298 int i; 3299 struct yColCache *p; 3300 3301 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3302 if( p->iTable==iTable && p->iColumn==iColumn ){ 3303 p->lru = pParse->iCacheCnt++; 3304 sqlite3ExprCachePinRegister(pParse, p->iReg); 3305 return p->iReg; 3306 } 3307 } 3308 assert( v!=0 ); 3309 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3310 if( p5 ){ 3311 sqlite3VdbeChangeP5(v, p5); 3312 }else{ 3313 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3314 } 3315 return iReg; 3316 } 3317 void sqlite3ExprCodeGetColumnToReg( 3318 Parse *pParse, /* Parsing and code generating context */ 3319 Table *pTab, /* Description of the table we are reading from */ 3320 int iColumn, /* Index of the table column */ 3321 int iTable, /* The cursor pointing to the table */ 3322 int iReg /* Store results here */ 3323 ){ 3324 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3325 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3326 } 3327 3328 3329 /* 3330 ** Clear all column cache entries. 3331 */ 3332 void sqlite3ExprCacheClear(Parse *pParse){ 3333 int i; 3334 3335 #ifdef SQLITE_DEBUG 3336 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3337 printf("CLEAR\n"); 3338 } 3339 #endif 3340 for(i=0; i<pParse->nColCache; i++){ 3341 if( pParse->aColCache[i].tempReg 3342 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3343 ){ 3344 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3345 } 3346 } 3347 pParse->nColCache = 0; 3348 } 3349 3350 /* 3351 ** Record the fact that an affinity change has occurred on iCount 3352 ** registers starting with iStart. 3353 */ 3354 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3355 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3356 } 3357 3358 /* 3359 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3360 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3361 */ 3362 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3363 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3364 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3365 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3366 } 3367 3368 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3369 /* 3370 ** Return true if any register in the range iFrom..iTo (inclusive) 3371 ** is used as part of the column cache. 3372 ** 3373 ** This routine is used within assert() and testcase() macros only 3374 ** and does not appear in a normal build. 3375 */ 3376 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3377 int i; 3378 struct yColCache *p; 3379 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3380 int r = p->iReg; 3381 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3382 } 3383 return 0; 3384 } 3385 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3386 3387 3388 /* 3389 ** Convert a scalar expression node to a TK_REGISTER referencing 3390 ** register iReg. The caller must ensure that iReg already contains 3391 ** the correct value for the expression. 3392 */ 3393 static void exprToRegister(Expr *p, int iReg){ 3394 p->op2 = p->op; 3395 p->op = TK_REGISTER; 3396 p->iTable = iReg; 3397 ExprClearProperty(p, EP_Skip); 3398 } 3399 3400 /* 3401 ** Evaluate an expression (either a vector or a scalar expression) and store 3402 ** the result in continguous temporary registers. Return the index of 3403 ** the first register used to store the result. 3404 ** 3405 ** If the returned result register is a temporary scalar, then also write 3406 ** that register number into *piFreeable. If the returned result register 3407 ** is not a temporary or if the expression is a vector set *piFreeable 3408 ** to 0. 3409 */ 3410 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3411 int iResult; 3412 int nResult = sqlite3ExprVectorSize(p); 3413 if( nResult==1 ){ 3414 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3415 }else{ 3416 *piFreeable = 0; 3417 if( p->op==TK_SELECT ){ 3418 #if SQLITE_OMIT_SUBQUERY 3419 iResult = 0; 3420 #else 3421 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3422 #endif 3423 }else{ 3424 int i; 3425 iResult = pParse->nMem+1; 3426 pParse->nMem += nResult; 3427 for(i=0; i<nResult; i++){ 3428 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3429 } 3430 } 3431 } 3432 return iResult; 3433 } 3434 3435 3436 /* 3437 ** Generate code into the current Vdbe to evaluate the given 3438 ** expression. Attempt to store the results in register "target". 3439 ** Return the register where results are stored. 3440 ** 3441 ** With this routine, there is no guarantee that results will 3442 ** be stored in target. The result might be stored in some other 3443 ** register if it is convenient to do so. The calling function 3444 ** must check the return code and move the results to the desired 3445 ** register. 3446 */ 3447 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3448 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3449 int op; /* The opcode being coded */ 3450 int inReg = target; /* Results stored in register inReg */ 3451 int regFree1 = 0; /* If non-zero free this temporary register */ 3452 int regFree2 = 0; /* If non-zero free this temporary register */ 3453 int r1, r2; /* Various register numbers */ 3454 Expr tempX; /* Temporary expression node */ 3455 int p5 = 0; 3456 3457 assert( target>0 && target<=pParse->nMem ); 3458 if( v==0 ){ 3459 assert( pParse->db->mallocFailed ); 3460 return 0; 3461 } 3462 3463 if( pExpr==0 ){ 3464 op = TK_NULL; 3465 }else{ 3466 op = pExpr->op; 3467 } 3468 switch( op ){ 3469 case TK_AGG_COLUMN: { 3470 AggInfo *pAggInfo = pExpr->pAggInfo; 3471 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3472 if( !pAggInfo->directMode ){ 3473 assert( pCol->iMem>0 ); 3474 return pCol->iMem; 3475 }else if( pAggInfo->useSortingIdx ){ 3476 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3477 pCol->iSorterColumn, target); 3478 return target; 3479 } 3480 /* Otherwise, fall thru into the TK_COLUMN case */ 3481 } 3482 case TK_COLUMN: { 3483 int iTab = pExpr->iTable; 3484 if( iTab<0 ){ 3485 if( pParse->ckBase>0 ){ 3486 /* Generating CHECK constraints or inserting into partial index */ 3487 return pExpr->iColumn + pParse->ckBase; 3488 }else{ 3489 /* Coding an expression that is part of an index where column names 3490 ** in the index refer to the table to which the index belongs */ 3491 iTab = pParse->iSelfTab; 3492 } 3493 } 3494 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3495 pExpr->iColumn, iTab, target, 3496 pExpr->op2); 3497 } 3498 case TK_INTEGER: { 3499 codeInteger(pParse, pExpr, 0, target); 3500 return target; 3501 } 3502 #ifndef SQLITE_OMIT_FLOATING_POINT 3503 case TK_FLOAT: { 3504 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3505 codeReal(v, pExpr->u.zToken, 0, target); 3506 return target; 3507 } 3508 #endif 3509 case TK_STRING: { 3510 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3511 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3512 return target; 3513 } 3514 case TK_NULL: { 3515 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3516 return target; 3517 } 3518 #ifndef SQLITE_OMIT_BLOB_LITERAL 3519 case TK_BLOB: { 3520 int n; 3521 const char *z; 3522 char *zBlob; 3523 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3524 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3525 assert( pExpr->u.zToken[1]=='\'' ); 3526 z = &pExpr->u.zToken[2]; 3527 n = sqlite3Strlen30(z) - 1; 3528 assert( z[n]=='\'' ); 3529 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3530 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3531 return target; 3532 } 3533 #endif 3534 case TK_VARIABLE: { 3535 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3536 assert( pExpr->u.zToken!=0 ); 3537 assert( pExpr->u.zToken[0]!=0 ); 3538 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3539 if( pExpr->u.zToken[1]!=0 ){ 3540 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3541 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3542 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3543 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3544 } 3545 return target; 3546 } 3547 case TK_REGISTER: { 3548 return pExpr->iTable; 3549 } 3550 #ifndef SQLITE_OMIT_CAST 3551 case TK_CAST: { 3552 /* Expressions of the form: CAST(pLeft AS token) */ 3553 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3554 if( inReg!=target ){ 3555 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3556 inReg = target; 3557 } 3558 sqlite3VdbeAddOp2(v, OP_Cast, target, 3559 sqlite3AffinityType(pExpr->u.zToken, 0)); 3560 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3561 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3562 return inReg; 3563 } 3564 #endif /* SQLITE_OMIT_CAST */ 3565 case TK_IS: 3566 case TK_ISNOT: 3567 op = (op==TK_IS) ? TK_EQ : TK_NE; 3568 p5 = SQLITE_NULLEQ; 3569 /* fall-through */ 3570 case TK_LT: 3571 case TK_LE: 3572 case TK_GT: 3573 case TK_GE: 3574 case TK_NE: 3575 case TK_EQ: { 3576 Expr *pLeft = pExpr->pLeft; 3577 if( sqlite3ExprIsVector(pLeft) ){ 3578 codeVectorCompare(pParse, pExpr, target, op, p5); 3579 }else{ 3580 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3581 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3582 codeCompare(pParse, pLeft, pExpr->pRight, op, 3583 r1, r2, inReg, SQLITE_STOREP2 | p5); 3584 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3585 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3586 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3587 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3588 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3589 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3590 testcase( regFree1==0 ); 3591 testcase( regFree2==0 ); 3592 } 3593 break; 3594 } 3595 case TK_AND: 3596 case TK_OR: 3597 case TK_PLUS: 3598 case TK_STAR: 3599 case TK_MINUS: 3600 case TK_REM: 3601 case TK_BITAND: 3602 case TK_BITOR: 3603 case TK_SLASH: 3604 case TK_LSHIFT: 3605 case TK_RSHIFT: 3606 case TK_CONCAT: { 3607 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3608 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3609 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3610 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3611 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3612 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3613 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3614 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3615 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3616 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3617 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3618 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3619 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3620 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3621 testcase( regFree1==0 ); 3622 testcase( regFree2==0 ); 3623 break; 3624 } 3625 case TK_UMINUS: { 3626 Expr *pLeft = pExpr->pLeft; 3627 assert( pLeft ); 3628 if( pLeft->op==TK_INTEGER ){ 3629 codeInteger(pParse, pLeft, 1, target); 3630 return target; 3631 #ifndef SQLITE_OMIT_FLOATING_POINT 3632 }else if( pLeft->op==TK_FLOAT ){ 3633 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3634 codeReal(v, pLeft->u.zToken, 1, target); 3635 return target; 3636 #endif 3637 }else{ 3638 tempX.op = TK_INTEGER; 3639 tempX.flags = EP_IntValue|EP_TokenOnly; 3640 tempX.u.iValue = 0; 3641 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3642 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3643 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3644 testcase( regFree2==0 ); 3645 } 3646 break; 3647 } 3648 case TK_BITNOT: 3649 case TK_NOT: { 3650 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3651 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3652 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3653 testcase( regFree1==0 ); 3654 sqlite3VdbeAddOp2(v, op, r1, inReg); 3655 break; 3656 } 3657 case TK_ISNULL: 3658 case TK_NOTNULL: { 3659 int addr; 3660 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3661 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3662 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3663 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3664 testcase( regFree1==0 ); 3665 addr = sqlite3VdbeAddOp1(v, op, r1); 3666 VdbeCoverageIf(v, op==TK_ISNULL); 3667 VdbeCoverageIf(v, op==TK_NOTNULL); 3668 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3669 sqlite3VdbeJumpHere(v, addr); 3670 break; 3671 } 3672 case TK_AGG_FUNCTION: { 3673 AggInfo *pInfo = pExpr->pAggInfo; 3674 if( pInfo==0 ){ 3675 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3676 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3677 }else{ 3678 return pInfo->aFunc[pExpr->iAgg].iMem; 3679 } 3680 break; 3681 } 3682 case TK_FUNCTION: { 3683 ExprList *pFarg; /* List of function arguments */ 3684 int nFarg; /* Number of function arguments */ 3685 FuncDef *pDef; /* The function definition object */ 3686 const char *zId; /* The function name */ 3687 u32 constMask = 0; /* Mask of function arguments that are constant */ 3688 int i; /* Loop counter */ 3689 sqlite3 *db = pParse->db; /* The database connection */ 3690 u8 enc = ENC(db); /* The text encoding used by this database */ 3691 CollSeq *pColl = 0; /* A collating sequence */ 3692 3693 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3694 /* SQL functions can be expensive. So try to move constant functions 3695 ** out of the inner loop, even if that means an extra OP_Copy. */ 3696 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3697 } 3698 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3699 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3700 pFarg = 0; 3701 }else{ 3702 pFarg = pExpr->x.pList; 3703 } 3704 nFarg = pFarg ? pFarg->nExpr : 0; 3705 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3706 zId = pExpr->u.zToken; 3707 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3708 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3709 if( pDef==0 && pParse->explain ){ 3710 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3711 } 3712 #endif 3713 if( pDef==0 || pDef->xFinalize!=0 ){ 3714 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3715 break; 3716 } 3717 3718 /* Attempt a direct implementation of the built-in COALESCE() and 3719 ** IFNULL() functions. This avoids unnecessary evaluation of 3720 ** arguments past the first non-NULL argument. 3721 */ 3722 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3723 int endCoalesce = sqlite3VdbeMakeLabel(v); 3724 assert( nFarg>=2 ); 3725 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3726 for(i=1; i<nFarg; i++){ 3727 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3728 VdbeCoverage(v); 3729 sqlite3ExprCacheRemove(pParse, target, 1); 3730 sqlite3ExprCachePush(pParse); 3731 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3732 sqlite3ExprCachePop(pParse); 3733 } 3734 sqlite3VdbeResolveLabel(v, endCoalesce); 3735 break; 3736 } 3737 3738 /* The UNLIKELY() function is a no-op. The result is the value 3739 ** of the first argument. 3740 */ 3741 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3742 assert( nFarg>=1 ); 3743 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3744 } 3745 3746 #ifdef SQLITE_DEBUG 3747 /* The AFFINITY() function evaluates to a string that describes 3748 ** the type affinity of the argument. This is used for testing of 3749 ** the SQLite type logic. 3750 */ 3751 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3752 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3753 char aff; 3754 assert( nFarg==1 ); 3755 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3756 sqlite3VdbeLoadString(v, target, 3757 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3758 return target; 3759 } 3760 #endif 3761 3762 for(i=0; i<nFarg; i++){ 3763 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3764 testcase( i==31 ); 3765 constMask |= MASKBIT32(i); 3766 } 3767 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3768 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3769 } 3770 } 3771 if( pFarg ){ 3772 if( constMask ){ 3773 r1 = pParse->nMem+1; 3774 pParse->nMem += nFarg; 3775 }else{ 3776 r1 = sqlite3GetTempRange(pParse, nFarg); 3777 } 3778 3779 /* For length() and typeof() functions with a column argument, 3780 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3781 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3782 ** loading. 3783 */ 3784 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3785 u8 exprOp; 3786 assert( nFarg==1 ); 3787 assert( pFarg->a[0].pExpr!=0 ); 3788 exprOp = pFarg->a[0].pExpr->op; 3789 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3790 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3791 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3792 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3793 pFarg->a[0].pExpr->op2 = 3794 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3795 } 3796 } 3797 3798 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3799 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3800 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3801 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3802 }else{ 3803 r1 = 0; 3804 } 3805 #ifndef SQLITE_OMIT_VIRTUALTABLE 3806 /* Possibly overload the function if the first argument is 3807 ** a virtual table column. 3808 ** 3809 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3810 ** second argument, not the first, as the argument to test to 3811 ** see if it is a column in a virtual table. This is done because 3812 ** the left operand of infix functions (the operand we want to 3813 ** control overloading) ends up as the second argument to the 3814 ** function. The expression "A glob B" is equivalent to 3815 ** "glob(B,A). We want to use the A in "A glob B" to test 3816 ** for function overloading. But we use the B term in "glob(B,A)". 3817 */ 3818 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3819 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3820 }else if( nFarg>0 ){ 3821 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3822 } 3823 #endif 3824 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3825 if( !pColl ) pColl = db->pDfltColl; 3826 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3827 } 3828 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3829 (char*)pDef, P4_FUNCDEF); 3830 sqlite3VdbeChangeP5(v, (u8)nFarg); 3831 if( nFarg && constMask==0 ){ 3832 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3833 } 3834 return target; 3835 } 3836 #ifndef SQLITE_OMIT_SUBQUERY 3837 case TK_EXISTS: 3838 case TK_SELECT: { 3839 int nCol; 3840 testcase( op==TK_EXISTS ); 3841 testcase( op==TK_SELECT ); 3842 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3843 sqlite3SubselectError(pParse, nCol, 1); 3844 }else{ 3845 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3846 } 3847 break; 3848 } 3849 case TK_SELECT_COLUMN: { 3850 int n; 3851 if( pExpr->pLeft->iTable==0 ){ 3852 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3853 } 3854 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3855 if( pExpr->iTable 3856 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3857 ){ 3858 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3859 pExpr->iTable, n); 3860 } 3861 return pExpr->pLeft->iTable + pExpr->iColumn; 3862 } 3863 case TK_IN: { 3864 int destIfFalse = sqlite3VdbeMakeLabel(v); 3865 int destIfNull = sqlite3VdbeMakeLabel(v); 3866 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3867 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3868 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3869 sqlite3VdbeResolveLabel(v, destIfFalse); 3870 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3871 sqlite3VdbeResolveLabel(v, destIfNull); 3872 return target; 3873 } 3874 #endif /* SQLITE_OMIT_SUBQUERY */ 3875 3876 3877 /* 3878 ** x BETWEEN y AND z 3879 ** 3880 ** This is equivalent to 3881 ** 3882 ** x>=y AND x<=z 3883 ** 3884 ** X is stored in pExpr->pLeft. 3885 ** Y is stored in pExpr->pList->a[0].pExpr. 3886 ** Z is stored in pExpr->pList->a[1].pExpr. 3887 */ 3888 case TK_BETWEEN: { 3889 exprCodeBetween(pParse, pExpr, target, 0, 0); 3890 return target; 3891 } 3892 case TK_SPAN: 3893 case TK_COLLATE: 3894 case TK_UPLUS: { 3895 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3896 } 3897 3898 case TK_TRIGGER: { 3899 /* If the opcode is TK_TRIGGER, then the expression is a reference 3900 ** to a column in the new.* or old.* pseudo-tables available to 3901 ** trigger programs. In this case Expr.iTable is set to 1 for the 3902 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3903 ** is set to the column of the pseudo-table to read, or to -1 to 3904 ** read the rowid field. 3905 ** 3906 ** The expression is implemented using an OP_Param opcode. The p1 3907 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3908 ** to reference another column of the old.* pseudo-table, where 3909 ** i is the index of the column. For a new.rowid reference, p1 is 3910 ** set to (n+1), where n is the number of columns in each pseudo-table. 3911 ** For a reference to any other column in the new.* pseudo-table, p1 3912 ** is set to (n+2+i), where n and i are as defined previously. For 3913 ** example, if the table on which triggers are being fired is 3914 ** declared as: 3915 ** 3916 ** CREATE TABLE t1(a, b); 3917 ** 3918 ** Then p1 is interpreted as follows: 3919 ** 3920 ** p1==0 -> old.rowid p1==3 -> new.rowid 3921 ** p1==1 -> old.a p1==4 -> new.a 3922 ** p1==2 -> old.b p1==5 -> new.b 3923 */ 3924 Table *pTab = pExpr->pTab; 3925 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3926 3927 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3928 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3929 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3930 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3931 3932 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3933 VdbeComment((v, "%s.%s -> $%d", 3934 (pExpr->iTable ? "new" : "old"), 3935 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3936 target 3937 )); 3938 3939 #ifndef SQLITE_OMIT_FLOATING_POINT 3940 /* If the column has REAL affinity, it may currently be stored as an 3941 ** integer. Use OP_RealAffinity to make sure it is really real. 3942 ** 3943 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3944 ** floating point when extracting it from the record. */ 3945 if( pExpr->iColumn>=0 3946 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3947 ){ 3948 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3949 } 3950 #endif 3951 break; 3952 } 3953 3954 case TK_VECTOR: { 3955 sqlite3ErrorMsg(pParse, "row value misused"); 3956 break; 3957 } 3958 3959 case TK_IF_NULL_ROW: { 3960 int addrINR; 3961 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 3962 sqlite3ExprCachePush(pParse); 3963 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3964 sqlite3ExprCachePop(pParse); 3965 sqlite3VdbeJumpHere(v, addrINR); 3966 sqlite3VdbeChangeP3(v, addrINR, inReg); 3967 break; 3968 } 3969 3970 /* 3971 ** Form A: 3972 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3973 ** 3974 ** Form B: 3975 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3976 ** 3977 ** Form A is can be transformed into the equivalent form B as follows: 3978 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3979 ** WHEN x=eN THEN rN ELSE y END 3980 ** 3981 ** X (if it exists) is in pExpr->pLeft. 3982 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3983 ** odd. The Y is also optional. If the number of elements in x.pList 3984 ** is even, then Y is omitted and the "otherwise" result is NULL. 3985 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3986 ** 3987 ** The result of the expression is the Ri for the first matching Ei, 3988 ** or if there is no matching Ei, the ELSE term Y, or if there is 3989 ** no ELSE term, NULL. 3990 */ 3991 default: assert( op==TK_CASE ); { 3992 int endLabel; /* GOTO label for end of CASE stmt */ 3993 int nextCase; /* GOTO label for next WHEN clause */ 3994 int nExpr; /* 2x number of WHEN terms */ 3995 int i; /* Loop counter */ 3996 ExprList *pEList; /* List of WHEN terms */ 3997 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3998 Expr opCompare; /* The X==Ei expression */ 3999 Expr *pX; /* The X expression */ 4000 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4001 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4002 4003 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4004 assert(pExpr->x.pList->nExpr > 0); 4005 pEList = pExpr->x.pList; 4006 aListelem = pEList->a; 4007 nExpr = pEList->nExpr; 4008 endLabel = sqlite3VdbeMakeLabel(v); 4009 if( (pX = pExpr->pLeft)!=0 ){ 4010 tempX = *pX; 4011 testcase( pX->op==TK_COLUMN ); 4012 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4013 testcase( regFree1==0 ); 4014 memset(&opCompare, 0, sizeof(opCompare)); 4015 opCompare.op = TK_EQ; 4016 opCompare.pLeft = &tempX; 4017 pTest = &opCompare; 4018 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4019 ** The value in regFree1 might get SCopy-ed into the file result. 4020 ** So make sure that the regFree1 register is not reused for other 4021 ** purposes and possibly overwritten. */ 4022 regFree1 = 0; 4023 } 4024 for(i=0; i<nExpr-1; i=i+2){ 4025 sqlite3ExprCachePush(pParse); 4026 if( pX ){ 4027 assert( pTest!=0 ); 4028 opCompare.pRight = aListelem[i].pExpr; 4029 }else{ 4030 pTest = aListelem[i].pExpr; 4031 } 4032 nextCase = sqlite3VdbeMakeLabel(v); 4033 testcase( pTest->op==TK_COLUMN ); 4034 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4035 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4036 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4037 sqlite3VdbeGoto(v, endLabel); 4038 sqlite3ExprCachePop(pParse); 4039 sqlite3VdbeResolveLabel(v, nextCase); 4040 } 4041 if( (nExpr&1)!=0 ){ 4042 sqlite3ExprCachePush(pParse); 4043 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4044 sqlite3ExprCachePop(pParse); 4045 }else{ 4046 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4047 } 4048 assert( pParse->db->mallocFailed || pParse->nErr>0 4049 || pParse->iCacheLevel==iCacheLevel ); 4050 sqlite3VdbeResolveLabel(v, endLabel); 4051 break; 4052 } 4053 #ifndef SQLITE_OMIT_TRIGGER 4054 case TK_RAISE: { 4055 assert( pExpr->affinity==OE_Rollback 4056 || pExpr->affinity==OE_Abort 4057 || pExpr->affinity==OE_Fail 4058 || pExpr->affinity==OE_Ignore 4059 ); 4060 if( !pParse->pTriggerTab ){ 4061 sqlite3ErrorMsg(pParse, 4062 "RAISE() may only be used within a trigger-program"); 4063 return 0; 4064 } 4065 if( pExpr->affinity==OE_Abort ){ 4066 sqlite3MayAbort(pParse); 4067 } 4068 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4069 if( pExpr->affinity==OE_Ignore ){ 4070 sqlite3VdbeAddOp4( 4071 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4072 VdbeCoverage(v); 4073 }else{ 4074 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4075 pExpr->affinity, pExpr->u.zToken, 0, 0); 4076 } 4077 4078 break; 4079 } 4080 #endif 4081 } 4082 sqlite3ReleaseTempReg(pParse, regFree1); 4083 sqlite3ReleaseTempReg(pParse, regFree2); 4084 return inReg; 4085 } 4086 4087 /* 4088 ** Factor out the code of the given expression to initialization time. 4089 ** 4090 ** If regDest>=0 then the result is always stored in that register and the 4091 ** result is not reusable. If regDest<0 then this routine is free to 4092 ** store the value whereever it wants. The register where the expression 4093 ** is stored is returned. When regDest<0, two identical expressions will 4094 ** code to the same register. 4095 */ 4096 int sqlite3ExprCodeAtInit( 4097 Parse *pParse, /* Parsing context */ 4098 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4099 int regDest /* Store the value in this register */ 4100 ){ 4101 ExprList *p; 4102 assert( ConstFactorOk(pParse) ); 4103 p = pParse->pConstExpr; 4104 if( regDest<0 && p ){ 4105 struct ExprList_item *pItem; 4106 int i; 4107 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4108 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 4109 return pItem->u.iConstExprReg; 4110 } 4111 } 4112 } 4113 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4114 p = sqlite3ExprListAppend(pParse, p, pExpr); 4115 if( p ){ 4116 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4117 pItem->reusable = regDest<0; 4118 if( regDest<0 ) regDest = ++pParse->nMem; 4119 pItem->u.iConstExprReg = regDest; 4120 } 4121 pParse->pConstExpr = p; 4122 return regDest; 4123 } 4124 4125 /* 4126 ** Generate code to evaluate an expression and store the results 4127 ** into a register. Return the register number where the results 4128 ** are stored. 4129 ** 4130 ** If the register is a temporary register that can be deallocated, 4131 ** then write its number into *pReg. If the result register is not 4132 ** a temporary, then set *pReg to zero. 4133 ** 4134 ** If pExpr is a constant, then this routine might generate this 4135 ** code to fill the register in the initialization section of the 4136 ** VDBE program, in order to factor it out of the evaluation loop. 4137 */ 4138 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4139 int r2; 4140 pExpr = sqlite3ExprSkipCollate(pExpr); 4141 if( ConstFactorOk(pParse) 4142 && pExpr->op!=TK_REGISTER 4143 && sqlite3ExprIsConstantNotJoin(pExpr) 4144 ){ 4145 *pReg = 0; 4146 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4147 }else{ 4148 int r1 = sqlite3GetTempReg(pParse); 4149 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4150 if( r2==r1 ){ 4151 *pReg = r1; 4152 }else{ 4153 sqlite3ReleaseTempReg(pParse, r1); 4154 *pReg = 0; 4155 } 4156 } 4157 return r2; 4158 } 4159 4160 /* 4161 ** Generate code that will evaluate expression pExpr and store the 4162 ** results in register target. The results are guaranteed to appear 4163 ** in register target. 4164 */ 4165 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4166 int inReg; 4167 4168 assert( target>0 && target<=pParse->nMem ); 4169 if( pExpr && pExpr->op==TK_REGISTER ){ 4170 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4171 }else{ 4172 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4173 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4174 if( inReg!=target && pParse->pVdbe ){ 4175 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4176 } 4177 } 4178 } 4179 4180 /* 4181 ** Make a transient copy of expression pExpr and then code it using 4182 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4183 ** except that the input expression is guaranteed to be unchanged. 4184 */ 4185 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4186 sqlite3 *db = pParse->db; 4187 pExpr = sqlite3ExprDup(db, pExpr, 0); 4188 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4189 sqlite3ExprDelete(db, pExpr); 4190 } 4191 4192 /* 4193 ** Generate code that will evaluate expression pExpr and store the 4194 ** results in register target. The results are guaranteed to appear 4195 ** in register target. If the expression is constant, then this routine 4196 ** might choose to code the expression at initialization time. 4197 */ 4198 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4199 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4200 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4201 }else{ 4202 sqlite3ExprCode(pParse, pExpr, target); 4203 } 4204 } 4205 4206 /* 4207 ** Generate code that evaluates the given expression and puts the result 4208 ** in register target. 4209 ** 4210 ** Also make a copy of the expression results into another "cache" register 4211 ** and modify the expression so that the next time it is evaluated, 4212 ** the result is a copy of the cache register. 4213 ** 4214 ** This routine is used for expressions that are used multiple 4215 ** times. They are evaluated once and the results of the expression 4216 ** are reused. 4217 */ 4218 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4219 Vdbe *v = pParse->pVdbe; 4220 int iMem; 4221 4222 assert( target>0 ); 4223 assert( pExpr->op!=TK_REGISTER ); 4224 sqlite3ExprCode(pParse, pExpr, target); 4225 iMem = ++pParse->nMem; 4226 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4227 exprToRegister(pExpr, iMem); 4228 } 4229 4230 /* 4231 ** Generate code that pushes the value of every element of the given 4232 ** expression list into a sequence of registers beginning at target. 4233 ** 4234 ** Return the number of elements evaluated. 4235 ** 4236 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4237 ** filled using OP_SCopy. OP_Copy must be used instead. 4238 ** 4239 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4240 ** factored out into initialization code. 4241 ** 4242 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4243 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4244 ** in registers at srcReg, and so the value can be copied from there. 4245 */ 4246 int sqlite3ExprCodeExprList( 4247 Parse *pParse, /* Parsing context */ 4248 ExprList *pList, /* The expression list to be coded */ 4249 int target, /* Where to write results */ 4250 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4251 u8 flags /* SQLITE_ECEL_* flags */ 4252 ){ 4253 struct ExprList_item *pItem; 4254 int i, j, n; 4255 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4256 Vdbe *v = pParse->pVdbe; 4257 assert( pList!=0 ); 4258 assert( target>0 ); 4259 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4260 n = pList->nExpr; 4261 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4262 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4263 Expr *pExpr = pItem->pExpr; 4264 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4265 if( flags & SQLITE_ECEL_OMITREF ){ 4266 i--; 4267 n--; 4268 }else{ 4269 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4270 } 4271 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4272 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4273 }else{ 4274 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4275 if( inReg!=target+i ){ 4276 VdbeOp *pOp; 4277 if( copyOp==OP_Copy 4278 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4279 && pOp->p1+pOp->p3+1==inReg 4280 && pOp->p2+pOp->p3+1==target+i 4281 ){ 4282 pOp->p3++; 4283 }else{ 4284 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4285 } 4286 } 4287 } 4288 } 4289 return n; 4290 } 4291 4292 /* 4293 ** Generate code for a BETWEEN operator. 4294 ** 4295 ** x BETWEEN y AND z 4296 ** 4297 ** The above is equivalent to 4298 ** 4299 ** x>=y AND x<=z 4300 ** 4301 ** Code it as such, taking care to do the common subexpression 4302 ** elimination of x. 4303 ** 4304 ** The xJumpIf parameter determines details: 4305 ** 4306 ** NULL: Store the boolean result in reg[dest] 4307 ** sqlite3ExprIfTrue: Jump to dest if true 4308 ** sqlite3ExprIfFalse: Jump to dest if false 4309 ** 4310 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4311 */ 4312 static void exprCodeBetween( 4313 Parse *pParse, /* Parsing and code generating context */ 4314 Expr *pExpr, /* The BETWEEN expression */ 4315 int dest, /* Jump destination or storage location */ 4316 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4317 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4318 ){ 4319 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4320 Expr compLeft; /* The x>=y term */ 4321 Expr compRight; /* The x<=z term */ 4322 Expr exprX; /* The x subexpression */ 4323 int regFree1 = 0; /* Temporary use register */ 4324 4325 4326 memset(&compLeft, 0, sizeof(Expr)); 4327 memset(&compRight, 0, sizeof(Expr)); 4328 memset(&exprAnd, 0, sizeof(Expr)); 4329 4330 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4331 exprX = *pExpr->pLeft; 4332 exprAnd.op = TK_AND; 4333 exprAnd.pLeft = &compLeft; 4334 exprAnd.pRight = &compRight; 4335 compLeft.op = TK_GE; 4336 compLeft.pLeft = &exprX; 4337 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4338 compRight.op = TK_LE; 4339 compRight.pLeft = &exprX; 4340 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4341 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4342 if( xJump ){ 4343 xJump(pParse, &exprAnd, dest, jumpIfNull); 4344 }else{ 4345 /* Mark the expression is being from the ON or USING clause of a join 4346 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4347 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4348 ** for clarity, but we are out of bits in the Expr.flags field so we 4349 ** have to reuse the EP_FromJoin bit. Bummer. */ 4350 exprX.flags |= EP_FromJoin; 4351 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4352 } 4353 sqlite3ReleaseTempReg(pParse, regFree1); 4354 4355 /* Ensure adequate test coverage */ 4356 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4357 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4358 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4359 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4360 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4361 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4362 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4363 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4364 testcase( xJump==0 ); 4365 } 4366 4367 /* 4368 ** Generate code for a boolean expression such that a jump is made 4369 ** to the label "dest" if the expression is true but execution 4370 ** continues straight thru if the expression is false. 4371 ** 4372 ** If the expression evaluates to NULL (neither true nor false), then 4373 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4374 ** 4375 ** This code depends on the fact that certain token values (ex: TK_EQ) 4376 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4377 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4378 ** the make process cause these values to align. Assert()s in the code 4379 ** below verify that the numbers are aligned correctly. 4380 */ 4381 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4382 Vdbe *v = pParse->pVdbe; 4383 int op = 0; 4384 int regFree1 = 0; 4385 int regFree2 = 0; 4386 int r1, r2; 4387 4388 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4389 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4390 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4391 op = pExpr->op; 4392 switch( op ){ 4393 case TK_AND: { 4394 int d2 = sqlite3VdbeMakeLabel(v); 4395 testcase( jumpIfNull==0 ); 4396 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4397 sqlite3ExprCachePush(pParse); 4398 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4399 sqlite3VdbeResolveLabel(v, d2); 4400 sqlite3ExprCachePop(pParse); 4401 break; 4402 } 4403 case TK_OR: { 4404 testcase( jumpIfNull==0 ); 4405 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4406 sqlite3ExprCachePush(pParse); 4407 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4408 sqlite3ExprCachePop(pParse); 4409 break; 4410 } 4411 case TK_NOT: { 4412 testcase( jumpIfNull==0 ); 4413 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4414 break; 4415 } 4416 case TK_IS: 4417 case TK_ISNOT: 4418 testcase( op==TK_IS ); 4419 testcase( op==TK_ISNOT ); 4420 op = (op==TK_IS) ? TK_EQ : TK_NE; 4421 jumpIfNull = SQLITE_NULLEQ; 4422 /* Fall thru */ 4423 case TK_LT: 4424 case TK_LE: 4425 case TK_GT: 4426 case TK_GE: 4427 case TK_NE: 4428 case TK_EQ: { 4429 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4430 testcase( jumpIfNull==0 ); 4431 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4432 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4433 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4434 r1, r2, dest, jumpIfNull); 4435 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4436 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4437 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4438 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4439 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4440 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4441 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4442 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4443 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4444 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4445 testcase( regFree1==0 ); 4446 testcase( regFree2==0 ); 4447 break; 4448 } 4449 case TK_ISNULL: 4450 case TK_NOTNULL: { 4451 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4452 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4453 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4454 sqlite3VdbeAddOp2(v, op, r1, dest); 4455 VdbeCoverageIf(v, op==TK_ISNULL); 4456 VdbeCoverageIf(v, op==TK_NOTNULL); 4457 testcase( regFree1==0 ); 4458 break; 4459 } 4460 case TK_BETWEEN: { 4461 testcase( jumpIfNull==0 ); 4462 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4463 break; 4464 } 4465 #ifndef SQLITE_OMIT_SUBQUERY 4466 case TK_IN: { 4467 int destIfFalse = sqlite3VdbeMakeLabel(v); 4468 int destIfNull = jumpIfNull ? dest : destIfFalse; 4469 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4470 sqlite3VdbeGoto(v, dest); 4471 sqlite3VdbeResolveLabel(v, destIfFalse); 4472 break; 4473 } 4474 #endif 4475 default: { 4476 default_expr: 4477 if( exprAlwaysTrue(pExpr) ){ 4478 sqlite3VdbeGoto(v, dest); 4479 }else if( exprAlwaysFalse(pExpr) ){ 4480 /* No-op */ 4481 }else{ 4482 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4483 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4484 VdbeCoverage(v); 4485 testcase( regFree1==0 ); 4486 testcase( jumpIfNull==0 ); 4487 } 4488 break; 4489 } 4490 } 4491 sqlite3ReleaseTempReg(pParse, regFree1); 4492 sqlite3ReleaseTempReg(pParse, regFree2); 4493 } 4494 4495 /* 4496 ** Generate code for a boolean expression such that a jump is made 4497 ** to the label "dest" if the expression is false but execution 4498 ** continues straight thru if the expression is true. 4499 ** 4500 ** If the expression evaluates to NULL (neither true nor false) then 4501 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4502 ** is 0. 4503 */ 4504 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4505 Vdbe *v = pParse->pVdbe; 4506 int op = 0; 4507 int regFree1 = 0; 4508 int regFree2 = 0; 4509 int r1, r2; 4510 4511 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4512 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4513 if( pExpr==0 ) return; 4514 4515 /* The value of pExpr->op and op are related as follows: 4516 ** 4517 ** pExpr->op op 4518 ** --------- ---------- 4519 ** TK_ISNULL OP_NotNull 4520 ** TK_NOTNULL OP_IsNull 4521 ** TK_NE OP_Eq 4522 ** TK_EQ OP_Ne 4523 ** TK_GT OP_Le 4524 ** TK_LE OP_Gt 4525 ** TK_GE OP_Lt 4526 ** TK_LT OP_Ge 4527 ** 4528 ** For other values of pExpr->op, op is undefined and unused. 4529 ** The value of TK_ and OP_ constants are arranged such that we 4530 ** can compute the mapping above using the following expression. 4531 ** Assert()s verify that the computation is correct. 4532 */ 4533 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4534 4535 /* Verify correct alignment of TK_ and OP_ constants 4536 */ 4537 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4538 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4539 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4540 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4541 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4542 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4543 assert( pExpr->op!=TK_GT || op==OP_Le ); 4544 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4545 4546 switch( pExpr->op ){ 4547 case TK_AND: { 4548 testcase( jumpIfNull==0 ); 4549 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4550 sqlite3ExprCachePush(pParse); 4551 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4552 sqlite3ExprCachePop(pParse); 4553 break; 4554 } 4555 case TK_OR: { 4556 int d2 = sqlite3VdbeMakeLabel(v); 4557 testcase( jumpIfNull==0 ); 4558 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4559 sqlite3ExprCachePush(pParse); 4560 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4561 sqlite3VdbeResolveLabel(v, d2); 4562 sqlite3ExprCachePop(pParse); 4563 break; 4564 } 4565 case TK_NOT: { 4566 testcase( jumpIfNull==0 ); 4567 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4568 break; 4569 } 4570 case TK_IS: 4571 case TK_ISNOT: 4572 testcase( pExpr->op==TK_IS ); 4573 testcase( pExpr->op==TK_ISNOT ); 4574 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4575 jumpIfNull = SQLITE_NULLEQ; 4576 /* Fall thru */ 4577 case TK_LT: 4578 case TK_LE: 4579 case TK_GT: 4580 case TK_GE: 4581 case TK_NE: 4582 case TK_EQ: { 4583 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4584 testcase( jumpIfNull==0 ); 4585 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4586 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4587 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4588 r1, r2, dest, jumpIfNull); 4589 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4590 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4591 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4592 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4593 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4594 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4595 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4596 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4597 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4598 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4599 testcase( regFree1==0 ); 4600 testcase( regFree2==0 ); 4601 break; 4602 } 4603 case TK_ISNULL: 4604 case TK_NOTNULL: { 4605 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4606 sqlite3VdbeAddOp2(v, op, r1, dest); 4607 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4608 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4609 testcase( regFree1==0 ); 4610 break; 4611 } 4612 case TK_BETWEEN: { 4613 testcase( jumpIfNull==0 ); 4614 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4615 break; 4616 } 4617 #ifndef SQLITE_OMIT_SUBQUERY 4618 case TK_IN: { 4619 if( jumpIfNull ){ 4620 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4621 }else{ 4622 int destIfNull = sqlite3VdbeMakeLabel(v); 4623 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4624 sqlite3VdbeResolveLabel(v, destIfNull); 4625 } 4626 break; 4627 } 4628 #endif 4629 default: { 4630 default_expr: 4631 if( exprAlwaysFalse(pExpr) ){ 4632 sqlite3VdbeGoto(v, dest); 4633 }else if( exprAlwaysTrue(pExpr) ){ 4634 /* no-op */ 4635 }else{ 4636 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4637 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4638 VdbeCoverage(v); 4639 testcase( regFree1==0 ); 4640 testcase( jumpIfNull==0 ); 4641 } 4642 break; 4643 } 4644 } 4645 sqlite3ReleaseTempReg(pParse, regFree1); 4646 sqlite3ReleaseTempReg(pParse, regFree2); 4647 } 4648 4649 /* 4650 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4651 ** code generation, and that copy is deleted after code generation. This 4652 ** ensures that the original pExpr is unchanged. 4653 */ 4654 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4655 sqlite3 *db = pParse->db; 4656 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4657 if( db->mallocFailed==0 ){ 4658 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4659 } 4660 sqlite3ExprDelete(db, pCopy); 4661 } 4662 4663 4664 /* 4665 ** Do a deep comparison of two expression trees. Return 0 if the two 4666 ** expressions are completely identical. Return 1 if they differ only 4667 ** by a COLLATE operator at the top level. Return 2 if there are differences 4668 ** other than the top-level COLLATE operator. 4669 ** 4670 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4671 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4672 ** 4673 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4674 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4675 ** 4676 ** Sometimes this routine will return 2 even if the two expressions 4677 ** really are equivalent. If we cannot prove that the expressions are 4678 ** identical, we return 2 just to be safe. So if this routine 4679 ** returns 2, then you do not really know for certain if the two 4680 ** expressions are the same. But if you get a 0 or 1 return, then you 4681 ** can be sure the expressions are the same. In the places where 4682 ** this routine is used, it does not hurt to get an extra 2 - that 4683 ** just might result in some slightly slower code. But returning 4684 ** an incorrect 0 or 1 could lead to a malfunction. 4685 */ 4686 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 4687 u32 combinedFlags; 4688 if( pA==0 || pB==0 ){ 4689 return pB==pA ? 0 : 2; 4690 } 4691 combinedFlags = pA->flags | pB->flags; 4692 if( combinedFlags & EP_IntValue ){ 4693 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4694 return 0; 4695 } 4696 return 2; 4697 } 4698 if( pA->op!=pB->op ){ 4699 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 4700 return 1; 4701 } 4702 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 4703 return 1; 4704 } 4705 return 2; 4706 } 4707 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4708 if( pA->op==TK_FUNCTION ){ 4709 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4710 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4711 return pA->op==TK_COLLATE ? 1 : 2; 4712 } 4713 } 4714 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4715 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4716 if( combinedFlags & EP_xIsSelect ) return 2; 4717 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 4718 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 4719 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4720 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4721 if( pA->iColumn!=pB->iColumn ) return 2; 4722 if( pA->iTable!=pB->iTable 4723 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4724 } 4725 } 4726 return 0; 4727 } 4728 4729 /* 4730 ** Compare two ExprList objects. Return 0 if they are identical and 4731 ** non-zero if they differ in any way. 4732 ** 4733 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4734 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4735 ** 4736 ** This routine might return non-zero for equivalent ExprLists. The 4737 ** only consequence will be disabled optimizations. But this routine 4738 ** must never return 0 if the two ExprList objects are different, or 4739 ** a malfunction will result. 4740 ** 4741 ** Two NULL pointers are considered to be the same. But a NULL pointer 4742 ** always differs from a non-NULL pointer. 4743 */ 4744 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4745 int i; 4746 if( pA==0 && pB==0 ) return 0; 4747 if( pA==0 || pB==0 ) return 1; 4748 if( pA->nExpr!=pB->nExpr ) return 1; 4749 for(i=0; i<pA->nExpr; i++){ 4750 Expr *pExprA = pA->a[i].pExpr; 4751 Expr *pExprB = pB->a[i].pExpr; 4752 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4753 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4754 } 4755 return 0; 4756 } 4757 4758 /* 4759 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4760 ** are ignored. 4761 */ 4762 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4763 return sqlite3ExprCompare( 4764 sqlite3ExprSkipCollate(pA), 4765 sqlite3ExprSkipCollate(pB), 4766 iTab); 4767 } 4768 4769 /* 4770 ** Return true if we can prove the pE2 will always be true if pE1 is 4771 ** true. Return false if we cannot complete the proof or if pE2 might 4772 ** be false. Examples: 4773 ** 4774 ** pE1: x==5 pE2: x==5 Result: true 4775 ** pE1: x>0 pE2: x==5 Result: false 4776 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4777 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4778 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4779 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4780 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4781 ** 4782 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4783 ** Expr.iTable<0 then assume a table number given by iTab. 4784 ** 4785 ** When in doubt, return false. Returning true might give a performance 4786 ** improvement. Returning false might cause a performance reduction, but 4787 ** it will always give the correct answer and is hence always safe. 4788 */ 4789 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4790 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4791 return 1; 4792 } 4793 if( pE2->op==TK_OR 4794 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4795 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4796 ){ 4797 return 1; 4798 } 4799 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4800 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4801 testcase( pX!=pE1->pLeft ); 4802 if( sqlite3ExprCompare(pX, pE2->pLeft, iTab)==0 ) return 1; 4803 } 4804 return 0; 4805 } 4806 4807 /* 4808 ** An instance of the following structure is used by the tree walker 4809 ** to determine if an expression can be evaluated by reference to the 4810 ** index only, without having to do a search for the corresponding 4811 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4812 ** is the cursor for the table. 4813 */ 4814 struct IdxCover { 4815 Index *pIdx; /* The index to be tested for coverage */ 4816 int iCur; /* Cursor number for the table corresponding to the index */ 4817 }; 4818 4819 /* 4820 ** Check to see if there are references to columns in table 4821 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4822 ** pWalker->u.pIdxCover->pIdx. 4823 */ 4824 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4825 if( pExpr->op==TK_COLUMN 4826 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4827 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4828 ){ 4829 pWalker->eCode = 1; 4830 return WRC_Abort; 4831 } 4832 return WRC_Continue; 4833 } 4834 4835 /* 4836 ** Determine if an index pIdx on table with cursor iCur contains will 4837 ** the expression pExpr. Return true if the index does cover the 4838 ** expression and false if the pExpr expression references table columns 4839 ** that are not found in the index pIdx. 4840 ** 4841 ** An index covering an expression means that the expression can be 4842 ** evaluated using only the index and without having to lookup the 4843 ** corresponding table entry. 4844 */ 4845 int sqlite3ExprCoveredByIndex( 4846 Expr *pExpr, /* The index to be tested */ 4847 int iCur, /* The cursor number for the corresponding table */ 4848 Index *pIdx /* The index that might be used for coverage */ 4849 ){ 4850 Walker w; 4851 struct IdxCover xcov; 4852 memset(&w, 0, sizeof(w)); 4853 xcov.iCur = iCur; 4854 xcov.pIdx = pIdx; 4855 w.xExprCallback = exprIdxCover; 4856 w.u.pIdxCover = &xcov; 4857 sqlite3WalkExpr(&w, pExpr); 4858 return !w.eCode; 4859 } 4860 4861 4862 /* 4863 ** An instance of the following structure is used by the tree walker 4864 ** to count references to table columns in the arguments of an 4865 ** aggregate function, in order to implement the 4866 ** sqlite3FunctionThisSrc() routine. 4867 */ 4868 struct SrcCount { 4869 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4870 int nThis; /* Number of references to columns in pSrcList */ 4871 int nOther; /* Number of references to columns in other FROM clauses */ 4872 }; 4873 4874 /* 4875 ** Count the number of references to columns. 4876 */ 4877 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4878 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4879 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4880 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4881 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4882 ** NEVER() will need to be removed. */ 4883 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4884 int i; 4885 struct SrcCount *p = pWalker->u.pSrcCount; 4886 SrcList *pSrc = p->pSrc; 4887 int nSrc = pSrc ? pSrc->nSrc : 0; 4888 for(i=0; i<nSrc; i++){ 4889 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4890 } 4891 if( i<nSrc ){ 4892 p->nThis++; 4893 }else{ 4894 p->nOther++; 4895 } 4896 } 4897 return WRC_Continue; 4898 } 4899 4900 /* 4901 ** Determine if any of the arguments to the pExpr Function reference 4902 ** pSrcList. Return true if they do. Also return true if the function 4903 ** has no arguments or has only constant arguments. Return false if pExpr 4904 ** references columns but not columns of tables found in pSrcList. 4905 */ 4906 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4907 Walker w; 4908 struct SrcCount cnt; 4909 assert( pExpr->op==TK_AGG_FUNCTION ); 4910 w.xExprCallback = exprSrcCount; 4911 w.xSelectCallback = 0; 4912 w.u.pSrcCount = &cnt; 4913 cnt.pSrc = pSrcList; 4914 cnt.nThis = 0; 4915 cnt.nOther = 0; 4916 sqlite3WalkExprList(&w, pExpr->x.pList); 4917 return cnt.nThis>0 || cnt.nOther==0; 4918 } 4919 4920 /* 4921 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4922 ** the new element. Return a negative number if malloc fails. 4923 */ 4924 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4925 int i; 4926 pInfo->aCol = sqlite3ArrayAllocate( 4927 db, 4928 pInfo->aCol, 4929 sizeof(pInfo->aCol[0]), 4930 &pInfo->nColumn, 4931 &i 4932 ); 4933 return i; 4934 } 4935 4936 /* 4937 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4938 ** the new element. Return a negative number if malloc fails. 4939 */ 4940 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4941 int i; 4942 pInfo->aFunc = sqlite3ArrayAllocate( 4943 db, 4944 pInfo->aFunc, 4945 sizeof(pInfo->aFunc[0]), 4946 &pInfo->nFunc, 4947 &i 4948 ); 4949 return i; 4950 } 4951 4952 /* 4953 ** This is the xExprCallback for a tree walker. It is used to 4954 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4955 ** for additional information. 4956 */ 4957 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4958 int i; 4959 NameContext *pNC = pWalker->u.pNC; 4960 Parse *pParse = pNC->pParse; 4961 SrcList *pSrcList = pNC->pSrcList; 4962 AggInfo *pAggInfo = pNC->pAggInfo; 4963 4964 switch( pExpr->op ){ 4965 case TK_AGG_COLUMN: 4966 case TK_COLUMN: { 4967 testcase( pExpr->op==TK_AGG_COLUMN ); 4968 testcase( pExpr->op==TK_COLUMN ); 4969 /* Check to see if the column is in one of the tables in the FROM 4970 ** clause of the aggregate query */ 4971 if( ALWAYS(pSrcList!=0) ){ 4972 struct SrcList_item *pItem = pSrcList->a; 4973 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4974 struct AggInfo_col *pCol; 4975 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4976 if( pExpr->iTable==pItem->iCursor ){ 4977 /* If we reach this point, it means that pExpr refers to a table 4978 ** that is in the FROM clause of the aggregate query. 4979 ** 4980 ** Make an entry for the column in pAggInfo->aCol[] if there 4981 ** is not an entry there already. 4982 */ 4983 int k; 4984 pCol = pAggInfo->aCol; 4985 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4986 if( pCol->iTable==pExpr->iTable && 4987 pCol->iColumn==pExpr->iColumn ){ 4988 break; 4989 } 4990 } 4991 if( (k>=pAggInfo->nColumn) 4992 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4993 ){ 4994 pCol = &pAggInfo->aCol[k]; 4995 pCol->pTab = pExpr->pTab; 4996 pCol->iTable = pExpr->iTable; 4997 pCol->iColumn = pExpr->iColumn; 4998 pCol->iMem = ++pParse->nMem; 4999 pCol->iSorterColumn = -1; 5000 pCol->pExpr = pExpr; 5001 if( pAggInfo->pGroupBy ){ 5002 int j, n; 5003 ExprList *pGB = pAggInfo->pGroupBy; 5004 struct ExprList_item *pTerm = pGB->a; 5005 n = pGB->nExpr; 5006 for(j=0; j<n; j++, pTerm++){ 5007 Expr *pE = pTerm->pExpr; 5008 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5009 pE->iColumn==pExpr->iColumn ){ 5010 pCol->iSorterColumn = j; 5011 break; 5012 } 5013 } 5014 } 5015 if( pCol->iSorterColumn<0 ){ 5016 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5017 } 5018 } 5019 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5020 ** because it was there before or because we just created it). 5021 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5022 ** pAggInfo->aCol[] entry. 5023 */ 5024 ExprSetVVAProperty(pExpr, EP_NoReduce); 5025 pExpr->pAggInfo = pAggInfo; 5026 pExpr->op = TK_AGG_COLUMN; 5027 pExpr->iAgg = (i16)k; 5028 break; 5029 } /* endif pExpr->iTable==pItem->iCursor */ 5030 } /* end loop over pSrcList */ 5031 } 5032 return WRC_Prune; 5033 } 5034 case TK_AGG_FUNCTION: { 5035 if( (pNC->ncFlags & NC_InAggFunc)==0 5036 && pWalker->walkerDepth==pExpr->op2 5037 ){ 5038 /* Check to see if pExpr is a duplicate of another aggregate 5039 ** function that is already in the pAggInfo structure 5040 */ 5041 struct AggInfo_func *pItem = pAggInfo->aFunc; 5042 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5043 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 5044 break; 5045 } 5046 } 5047 if( i>=pAggInfo->nFunc ){ 5048 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5049 */ 5050 u8 enc = ENC(pParse->db); 5051 i = addAggInfoFunc(pParse->db, pAggInfo); 5052 if( i>=0 ){ 5053 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5054 pItem = &pAggInfo->aFunc[i]; 5055 pItem->pExpr = pExpr; 5056 pItem->iMem = ++pParse->nMem; 5057 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5058 pItem->pFunc = sqlite3FindFunction(pParse->db, 5059 pExpr->u.zToken, 5060 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5061 if( pExpr->flags & EP_Distinct ){ 5062 pItem->iDistinct = pParse->nTab++; 5063 }else{ 5064 pItem->iDistinct = -1; 5065 } 5066 } 5067 } 5068 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5069 */ 5070 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5071 ExprSetVVAProperty(pExpr, EP_NoReduce); 5072 pExpr->iAgg = (i16)i; 5073 pExpr->pAggInfo = pAggInfo; 5074 return WRC_Prune; 5075 }else{ 5076 return WRC_Continue; 5077 } 5078 } 5079 } 5080 return WRC_Continue; 5081 } 5082 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5083 UNUSED_PARAMETER(pSelect); 5084 pWalker->walkerDepth++; 5085 return WRC_Continue; 5086 } 5087 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5088 UNUSED_PARAMETER(pSelect); 5089 pWalker->walkerDepth--; 5090 } 5091 5092 /* 5093 ** Analyze the pExpr expression looking for aggregate functions and 5094 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5095 ** points to. Additional entries are made on the AggInfo object as 5096 ** necessary. 5097 ** 5098 ** This routine should only be called after the expression has been 5099 ** analyzed by sqlite3ResolveExprNames(). 5100 */ 5101 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5102 Walker w; 5103 w.xExprCallback = analyzeAggregate; 5104 w.xSelectCallback = analyzeAggregatesInSelect; 5105 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5106 w.walkerDepth = 0; 5107 w.u.pNC = pNC; 5108 assert( pNC->pSrcList!=0 ); 5109 sqlite3WalkExpr(&w, pExpr); 5110 } 5111 5112 /* 5113 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5114 ** expression list. Return the number of errors. 5115 ** 5116 ** If an error is found, the analysis is cut short. 5117 */ 5118 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5119 struct ExprList_item *pItem; 5120 int i; 5121 if( pList ){ 5122 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5123 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5124 } 5125 } 5126 } 5127 5128 /* 5129 ** Allocate a single new register for use to hold some intermediate result. 5130 */ 5131 int sqlite3GetTempReg(Parse *pParse){ 5132 if( pParse->nTempReg==0 ){ 5133 return ++pParse->nMem; 5134 } 5135 return pParse->aTempReg[--pParse->nTempReg]; 5136 } 5137 5138 /* 5139 ** Deallocate a register, making available for reuse for some other 5140 ** purpose. 5141 ** 5142 ** If a register is currently being used by the column cache, then 5143 ** the deallocation is deferred until the column cache line that uses 5144 ** the register becomes stale. 5145 */ 5146 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5147 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5148 int i; 5149 struct yColCache *p; 5150 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5151 if( p->iReg==iReg ){ 5152 p->tempReg = 1; 5153 return; 5154 } 5155 } 5156 pParse->aTempReg[pParse->nTempReg++] = iReg; 5157 } 5158 } 5159 5160 /* 5161 ** Allocate or deallocate a block of nReg consecutive registers. 5162 */ 5163 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5164 int i, n; 5165 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5166 i = pParse->iRangeReg; 5167 n = pParse->nRangeReg; 5168 if( nReg<=n ){ 5169 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5170 pParse->iRangeReg += nReg; 5171 pParse->nRangeReg -= nReg; 5172 }else{ 5173 i = pParse->nMem+1; 5174 pParse->nMem += nReg; 5175 } 5176 return i; 5177 } 5178 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5179 if( nReg==1 ){ 5180 sqlite3ReleaseTempReg(pParse, iReg); 5181 return; 5182 } 5183 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5184 if( nReg>pParse->nRangeReg ){ 5185 pParse->nRangeReg = nReg; 5186 pParse->iRangeReg = iReg; 5187 } 5188 } 5189 5190 /* 5191 ** Mark all temporary registers as being unavailable for reuse. 5192 */ 5193 void sqlite3ClearTempRegCache(Parse *pParse){ 5194 pParse->nTempReg = 0; 5195 pParse->nRangeReg = 0; 5196 } 5197 5198 /* 5199 ** Validate that no temporary register falls within the range of 5200 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5201 ** statements. 5202 */ 5203 #ifdef SQLITE_DEBUG 5204 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5205 int i; 5206 if( pParse->nRangeReg>0 5207 && pParse->iRangeReg+pParse->nRangeReg<iLast 5208 && pParse->iRangeReg>=iFirst 5209 ){ 5210 return 0; 5211 } 5212 for(i=0; i<pParse->nTempReg; i++){ 5213 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5214 return 0; 5215 } 5216 } 5217 return 1; 5218 } 5219 #endif /* SQLITE_DEBUG */ 5220