1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op = pExpr->op; 35 if( op==TK_SELECT ){ 36 assert( pExpr->flags&EP_xIsSelect ); 37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 38 } 39 #ifndef SQLITE_OMIT_CAST 40 if( op==TK_CAST ){ 41 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 42 return sqlite3AffinityType(pExpr->u.zToken); 43 } 44 #endif 45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 46 && pExpr->pTab!=0 47 ){ 48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 49 ** a TK_COLUMN but was previously evaluated and cached in a register */ 50 int j = pExpr->iColumn; 51 if( j<0 ) return SQLITE_AFF_INTEGER; 52 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 53 return pExpr->pTab->aCol[j].affinity; 54 } 55 return pExpr->affinity; 56 } 57 58 /* 59 ** Set the explicit collating sequence for an expression to the 60 ** collating sequence supplied in the second argument. 61 */ 62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){ 63 if( pExpr && pColl ){ 64 pExpr->pColl = pColl; 65 pExpr->flags |= EP_ExpCollate; 66 } 67 return pExpr; 68 } 69 70 /* 71 ** Set the collating sequence for expression pExpr to be the collating 72 ** sequence named by pToken. Return a pointer to the revised expression. 73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 74 ** flag. An explicit collating sequence will override implicit 75 ** collating sequences. 76 */ 77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 78 char *zColl = 0; /* Dequoted name of collation sequence */ 79 CollSeq *pColl; 80 sqlite3 *db = pParse->db; 81 zColl = sqlite3NameFromToken(db, pCollName); 82 pColl = sqlite3LocateCollSeq(pParse, zColl); 83 sqlite3ExprSetColl(pExpr, pColl); 84 sqlite3DbFree(db, zColl); 85 return pExpr; 86 } 87 88 /* 89 ** Return the default collation sequence for the expression pExpr. If 90 ** there is no default collation type, return 0. 91 */ 92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 93 CollSeq *pColl = 0; 94 Expr *p = pExpr; 95 while( p ){ 96 int op; 97 pColl = p->pColl; 98 if( pColl ) break; 99 op = p->op; 100 if( p->pTab!=0 && ( 101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER 102 )){ 103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 104 ** a TK_COLUMN but was previously evaluated and cached in a register */ 105 const char *zColl; 106 int j = p->iColumn; 107 if( j>=0 ){ 108 sqlite3 *db = pParse->db; 109 zColl = p->pTab->aCol[j].zColl; 110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 111 pExpr->pColl = pColl; 112 } 113 break; 114 } 115 if( op!=TK_CAST && op!=TK_UPLUS ){ 116 break; 117 } 118 p = p->pLeft; 119 } 120 if( sqlite3CheckCollSeq(pParse, pColl) ){ 121 pColl = 0; 122 } 123 return pColl; 124 } 125 126 /* 127 ** pExpr is an operand of a comparison operator. aff2 is the 128 ** type affinity of the other operand. This routine returns the 129 ** type affinity that should be used for the comparison operator. 130 */ 131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 132 char aff1 = sqlite3ExprAffinity(pExpr); 133 if( aff1 && aff2 ){ 134 /* Both sides of the comparison are columns. If one has numeric 135 ** affinity, use that. Otherwise use no affinity. 136 */ 137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 138 return SQLITE_AFF_NUMERIC; 139 }else{ 140 return SQLITE_AFF_NONE; 141 } 142 }else if( !aff1 && !aff2 ){ 143 /* Neither side of the comparison is a column. Compare the 144 ** results directly. 145 */ 146 return SQLITE_AFF_NONE; 147 }else{ 148 /* One side is a column, the other is not. Use the columns affinity. */ 149 assert( aff1==0 || aff2==0 ); 150 return (aff1 + aff2); 151 } 152 } 153 154 /* 155 ** pExpr is a comparison operator. Return the type affinity that should 156 ** be applied to both operands prior to doing the comparison. 157 */ 158 static char comparisonAffinity(Expr *pExpr){ 159 char aff; 160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 163 assert( pExpr->pLeft ); 164 aff = sqlite3ExprAffinity(pExpr->pLeft); 165 if( pExpr->pRight ){ 166 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 169 }else if( !aff ){ 170 aff = SQLITE_AFF_NONE; 171 } 172 return aff; 173 } 174 175 /* 176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 177 ** idx_affinity is the affinity of an indexed column. Return true 178 ** if the index with affinity idx_affinity may be used to implement 179 ** the comparison in pExpr. 180 */ 181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 182 char aff = comparisonAffinity(pExpr); 183 switch( aff ){ 184 case SQLITE_AFF_NONE: 185 return 1; 186 case SQLITE_AFF_TEXT: 187 return idx_affinity==SQLITE_AFF_TEXT; 188 default: 189 return sqlite3IsNumericAffinity(idx_affinity); 190 } 191 } 192 193 /* 194 ** Return the P5 value that should be used for a binary comparison 195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 196 */ 197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 198 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 200 return aff; 201 } 202 203 /* 204 ** Return a pointer to the collation sequence that should be used by 205 ** a binary comparison operator comparing pLeft and pRight. 206 ** 207 ** If the left hand expression has a collating sequence type, then it is 208 ** used. Otherwise the collation sequence for the right hand expression 209 ** is used, or the default (BINARY) if neither expression has a collating 210 ** type. 211 ** 212 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 213 ** it is not considered. 214 */ 215 CollSeq *sqlite3BinaryCompareCollSeq( 216 Parse *pParse, 217 Expr *pLeft, 218 Expr *pRight 219 ){ 220 CollSeq *pColl; 221 assert( pLeft ); 222 if( pLeft->flags & EP_ExpCollate ){ 223 assert( pLeft->pColl ); 224 pColl = pLeft->pColl; 225 }else if( pRight && pRight->flags & EP_ExpCollate ){ 226 assert( pRight->pColl ); 227 pColl = pRight->pColl; 228 }else{ 229 pColl = sqlite3ExprCollSeq(pParse, pLeft); 230 if( !pColl ){ 231 pColl = sqlite3ExprCollSeq(pParse, pRight); 232 } 233 } 234 return pColl; 235 } 236 237 /* 238 ** Generate code for a comparison operator. 239 */ 240 static int codeCompare( 241 Parse *pParse, /* The parsing (and code generating) context */ 242 Expr *pLeft, /* The left operand */ 243 Expr *pRight, /* The right operand */ 244 int opcode, /* The comparison opcode */ 245 int in1, int in2, /* Register holding operands */ 246 int dest, /* Jump here if true. */ 247 int jumpIfNull /* If true, jump if either operand is NULL */ 248 ){ 249 int p5; 250 int addr; 251 CollSeq *p4; 252 253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 256 (void*)p4, P4_COLLSEQ); 257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 258 return addr; 259 } 260 261 #if SQLITE_MAX_EXPR_DEPTH>0 262 /* 263 ** Check that argument nHeight is less than or equal to the maximum 264 ** expression depth allowed. If it is not, leave an error message in 265 ** pParse. 266 */ 267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 268 int rc = SQLITE_OK; 269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 270 if( nHeight>mxHeight ){ 271 sqlite3ErrorMsg(pParse, 272 "Expression tree is too large (maximum depth %d)", mxHeight 273 ); 274 rc = SQLITE_ERROR; 275 } 276 return rc; 277 } 278 279 /* The following three functions, heightOfExpr(), heightOfExprList() 280 ** and heightOfSelect(), are used to determine the maximum height 281 ** of any expression tree referenced by the structure passed as the 282 ** first argument. 283 ** 284 ** If this maximum height is greater than the current value pointed 285 ** to by pnHeight, the second parameter, then set *pnHeight to that 286 ** value. 287 */ 288 static void heightOfExpr(Expr *p, int *pnHeight){ 289 if( p ){ 290 if( p->nHeight>*pnHeight ){ 291 *pnHeight = p->nHeight; 292 } 293 } 294 } 295 static void heightOfExprList(ExprList *p, int *pnHeight){ 296 if( p ){ 297 int i; 298 for(i=0; i<p->nExpr; i++){ 299 heightOfExpr(p->a[i].pExpr, pnHeight); 300 } 301 } 302 } 303 static void heightOfSelect(Select *p, int *pnHeight){ 304 if( p ){ 305 heightOfExpr(p->pWhere, pnHeight); 306 heightOfExpr(p->pHaving, pnHeight); 307 heightOfExpr(p->pLimit, pnHeight); 308 heightOfExpr(p->pOffset, pnHeight); 309 heightOfExprList(p->pEList, pnHeight); 310 heightOfExprList(p->pGroupBy, pnHeight); 311 heightOfExprList(p->pOrderBy, pnHeight); 312 heightOfSelect(p->pPrior, pnHeight); 313 } 314 } 315 316 /* 317 ** Set the Expr.nHeight variable in the structure passed as an 318 ** argument. An expression with no children, Expr.pList or 319 ** Expr.pSelect member has a height of 1. Any other expression 320 ** has a height equal to the maximum height of any other 321 ** referenced Expr plus one. 322 */ 323 static void exprSetHeight(Expr *p){ 324 int nHeight = 0; 325 heightOfExpr(p->pLeft, &nHeight); 326 heightOfExpr(p->pRight, &nHeight); 327 if( ExprHasProperty(p, EP_xIsSelect) ){ 328 heightOfSelect(p->x.pSelect, &nHeight); 329 }else{ 330 heightOfExprList(p->x.pList, &nHeight); 331 } 332 p->nHeight = nHeight + 1; 333 } 334 335 /* 336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 337 ** the height is greater than the maximum allowed expression depth, 338 ** leave an error in pParse. 339 */ 340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 341 exprSetHeight(p); 342 sqlite3ExprCheckHeight(pParse, p->nHeight); 343 } 344 345 /* 346 ** Return the maximum height of any expression tree referenced 347 ** by the select statement passed as an argument. 348 */ 349 int sqlite3SelectExprHeight(Select *p){ 350 int nHeight = 0; 351 heightOfSelect(p, &nHeight); 352 return nHeight; 353 } 354 #else 355 #define exprSetHeight(y) 356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 357 358 /* 359 ** This routine is the core allocator for Expr nodes. 360 ** 361 ** Construct a new expression node and return a pointer to it. Memory 362 ** for this node and for the pToken argument is a single allocation 363 ** obtained from sqlite3DbMalloc(). The calling function 364 ** is responsible for making sure the node eventually gets freed. 365 ** 366 ** If dequote is true, then the token (if it exists) is dequoted. 367 ** If dequote is false, no dequoting is performance. The deQuote 368 ** parameter is ignored if pToken is NULL or if the token does not 369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 370 ** then the EP_DblQuoted flag is set on the expression node. 371 ** 372 ** Special case: If op==TK_INTEGER and pToken points to a string that 373 ** can be translated into a 32-bit integer, then the token is not 374 ** stored in u.zToken. Instead, the integer values is written 375 ** into u.iValue and the EP_IntValue flag is set. No extra storage 376 ** is allocated to hold the integer text and the dequote flag is ignored. 377 */ 378 Expr *sqlite3ExprAlloc( 379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 380 int op, /* Expression opcode */ 381 const Token *pToken, /* Token argument. Might be NULL */ 382 int dequote /* True to dequote */ 383 ){ 384 Expr *pNew; 385 int nExtra = 0; 386 int iValue = 0; 387 388 if( pToken ){ 389 if( op!=TK_INTEGER || pToken->z==0 390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 391 nExtra = pToken->n+1; 392 assert( iValue>=0 ); 393 } 394 } 395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 396 if( pNew ){ 397 pNew->op = (u8)op; 398 pNew->iAgg = -1; 399 if( pToken ){ 400 if( nExtra==0 ){ 401 pNew->flags |= EP_IntValue; 402 pNew->u.iValue = iValue; 403 }else{ 404 int c; 405 pNew->u.zToken = (char*)&pNew[1]; 406 assert( pToken->z!=0 || pToken->n==0 ); 407 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 408 pNew->u.zToken[pToken->n] = 0; 409 if( dequote && nExtra>=3 410 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 411 sqlite3Dequote(pNew->u.zToken); 412 if( c=='"' ) pNew->flags |= EP_DblQuoted; 413 } 414 } 415 } 416 #if SQLITE_MAX_EXPR_DEPTH>0 417 pNew->nHeight = 1; 418 #endif 419 } 420 return pNew; 421 } 422 423 /* 424 ** Allocate a new expression node from a zero-terminated token that has 425 ** already been dequoted. 426 */ 427 Expr *sqlite3Expr( 428 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 429 int op, /* Expression opcode */ 430 const char *zToken /* Token argument. Might be NULL */ 431 ){ 432 Token x; 433 x.z = zToken; 434 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 435 return sqlite3ExprAlloc(db, op, &x, 0); 436 } 437 438 /* 439 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 440 ** 441 ** If pRoot==NULL that means that a memory allocation error has occurred. 442 ** In that case, delete the subtrees pLeft and pRight. 443 */ 444 void sqlite3ExprAttachSubtrees( 445 sqlite3 *db, 446 Expr *pRoot, 447 Expr *pLeft, 448 Expr *pRight 449 ){ 450 if( pRoot==0 ){ 451 assert( db->mallocFailed ); 452 sqlite3ExprDelete(db, pLeft); 453 sqlite3ExprDelete(db, pRight); 454 }else{ 455 if( pRight ){ 456 pRoot->pRight = pRight; 457 if( pRight->flags & EP_ExpCollate ){ 458 pRoot->flags |= EP_ExpCollate; 459 pRoot->pColl = pRight->pColl; 460 } 461 } 462 if( pLeft ){ 463 pRoot->pLeft = pLeft; 464 if( pLeft->flags & EP_ExpCollate ){ 465 pRoot->flags |= EP_ExpCollate; 466 pRoot->pColl = pLeft->pColl; 467 } 468 } 469 exprSetHeight(pRoot); 470 } 471 } 472 473 /* 474 ** Allocate a Expr node which joins as many as two subtrees. 475 ** 476 ** One or both of the subtrees can be NULL. Return a pointer to the new 477 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 478 ** free the subtrees and return NULL. 479 */ 480 Expr *sqlite3PExpr( 481 Parse *pParse, /* Parsing context */ 482 int op, /* Expression opcode */ 483 Expr *pLeft, /* Left operand */ 484 Expr *pRight, /* Right operand */ 485 const Token *pToken /* Argument token */ 486 ){ 487 Expr *p; 488 if( op==TK_AND && pLeft && pRight ){ 489 /* Take advantage of short-circuit false optimization for AND */ 490 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 491 }else{ 492 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 493 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 494 } 495 if( p ) { 496 sqlite3ExprCheckHeight(pParse, p->nHeight); 497 } 498 return p; 499 } 500 501 /* 502 ** Return 1 if an expression must be FALSE in all cases and 0 if the 503 ** expression might be true. This is an optimization. If is OK to 504 ** return 0 here even if the expression really is always false (a 505 ** false negative). But it is a bug to return 1 if the expression 506 ** might be true in some rare circumstances (a false positive.) 507 ** 508 ** Note that if the expression is part of conditional for a 509 ** LEFT JOIN, then we cannot determine at compile-time whether or not 510 ** is it true or false, so always return 0. 511 */ 512 static int exprAlwaysFalse(Expr *p){ 513 int v = 0; 514 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 515 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 516 return v==0; 517 } 518 519 /* 520 ** Join two expressions using an AND operator. If either expression is 521 ** NULL, then just return the other expression. 522 ** 523 ** If one side or the other of the AND is known to be false, then instead 524 ** of returning an AND expression, just return a constant expression with 525 ** a value of false. 526 */ 527 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 528 if( pLeft==0 ){ 529 return pRight; 530 }else if( pRight==0 ){ 531 return pLeft; 532 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 533 sqlite3ExprDelete(db, pLeft); 534 sqlite3ExprDelete(db, pRight); 535 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 536 }else{ 537 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 538 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 539 return pNew; 540 } 541 } 542 543 /* 544 ** Construct a new expression node for a function with multiple 545 ** arguments. 546 */ 547 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 548 Expr *pNew; 549 sqlite3 *db = pParse->db; 550 assert( pToken ); 551 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 552 if( pNew==0 ){ 553 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 554 return 0; 555 } 556 pNew->x.pList = pList; 557 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 558 sqlite3ExprSetHeight(pParse, pNew); 559 return pNew; 560 } 561 562 /* 563 ** Assign a variable number to an expression that encodes a wildcard 564 ** in the original SQL statement. 565 ** 566 ** Wildcards consisting of a single "?" are assigned the next sequential 567 ** variable number. 568 ** 569 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 570 ** sure "nnn" is not too be to avoid a denial of service attack when 571 ** the SQL statement comes from an external source. 572 ** 573 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 574 ** as the previous instance of the same wildcard. Or if this is the first 575 ** instance of the wildcard, the next sequenial variable number is 576 ** assigned. 577 */ 578 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 579 sqlite3 *db = pParse->db; 580 const char *z; 581 582 if( pExpr==0 ) return; 583 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 584 z = pExpr->u.zToken; 585 assert( z!=0 ); 586 assert( z[0]!=0 ); 587 if( z[1]==0 ){ 588 /* Wildcard of the form "?". Assign the next variable number */ 589 assert( z[0]=='?' ); 590 pExpr->iColumn = (ynVar)(++pParse->nVar); 591 }else{ 592 ynVar x = 0; 593 u32 n = sqlite3Strlen30(z); 594 if( z[0]=='?' ){ 595 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 596 ** use it as the variable number */ 597 i64 i; 598 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 599 pExpr->iColumn = x = (ynVar)i; 600 testcase( i==0 ); 601 testcase( i==1 ); 602 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 603 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 604 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 605 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 606 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 607 x = 0; 608 } 609 if( i>pParse->nVar ){ 610 pParse->nVar = (int)i; 611 } 612 }else{ 613 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 614 ** number as the prior appearance of the same name, or if the name 615 ** has never appeared before, reuse the same variable number 616 */ 617 ynVar i; 618 for(i=0; i<pParse->nzVar; i++){ 619 if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){ 620 pExpr->iColumn = x = (ynVar)i+1; 621 break; 622 } 623 } 624 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 625 } 626 if( x>0 ){ 627 if( x>pParse->nzVar ){ 628 char **a; 629 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 630 if( a==0 ) return; /* Error reported through db->mallocFailed */ 631 pParse->azVar = a; 632 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 633 pParse->nzVar = x; 634 } 635 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 636 sqlite3DbFree(db, pParse->azVar[x-1]); 637 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 638 } 639 } 640 } 641 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 642 sqlite3ErrorMsg(pParse, "too many SQL variables"); 643 } 644 } 645 646 /* 647 ** Recursively delete an expression tree. 648 */ 649 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 650 if( p==0 ) return; 651 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 652 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 653 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 654 sqlite3ExprDelete(db, p->pLeft); 655 sqlite3ExprDelete(db, p->pRight); 656 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){ 657 sqlite3DbFree(db, p->u.zToken); 658 } 659 if( ExprHasProperty(p, EP_xIsSelect) ){ 660 sqlite3SelectDelete(db, p->x.pSelect); 661 }else{ 662 sqlite3ExprListDelete(db, p->x.pList); 663 } 664 } 665 if( !ExprHasProperty(p, EP_Static) ){ 666 sqlite3DbFree(db, p); 667 } 668 } 669 670 /* 671 ** Return the number of bytes allocated for the expression structure 672 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 673 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 674 */ 675 static int exprStructSize(Expr *p){ 676 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 677 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 678 return EXPR_FULLSIZE; 679 } 680 681 /* 682 ** The dupedExpr*Size() routines each return the number of bytes required 683 ** to store a copy of an expression or expression tree. They differ in 684 ** how much of the tree is measured. 685 ** 686 ** dupedExprStructSize() Size of only the Expr structure 687 ** dupedExprNodeSize() Size of Expr + space for token 688 ** dupedExprSize() Expr + token + subtree components 689 ** 690 *************************************************************************** 691 ** 692 ** The dupedExprStructSize() function returns two values OR-ed together: 693 ** (1) the space required for a copy of the Expr structure only and 694 ** (2) the EP_xxx flags that indicate what the structure size should be. 695 ** The return values is always one of: 696 ** 697 ** EXPR_FULLSIZE 698 ** EXPR_REDUCEDSIZE | EP_Reduced 699 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 700 ** 701 ** The size of the structure can be found by masking the return value 702 ** of this routine with 0xfff. The flags can be found by masking the 703 ** return value with EP_Reduced|EP_TokenOnly. 704 ** 705 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 706 ** (unreduced) Expr objects as they or originally constructed by the parser. 707 ** During expression analysis, extra information is computed and moved into 708 ** later parts of teh Expr object and that extra information might get chopped 709 ** off if the expression is reduced. Note also that it does not work to 710 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 711 ** to reduce a pristine expression tree from the parser. The implementation 712 ** of dupedExprStructSize() contain multiple assert() statements that attempt 713 ** to enforce this constraint. 714 */ 715 static int dupedExprStructSize(Expr *p, int flags){ 716 int nSize; 717 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 718 if( 0==(flags&EXPRDUP_REDUCE) ){ 719 nSize = EXPR_FULLSIZE; 720 }else{ 721 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 722 assert( !ExprHasProperty(p, EP_FromJoin) ); 723 assert( (p->flags2 & EP2_MallocedToken)==0 ); 724 assert( (p->flags2 & EP2_Irreducible)==0 ); 725 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 726 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 727 }else{ 728 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 729 } 730 } 731 return nSize; 732 } 733 734 /* 735 ** This function returns the space in bytes required to store the copy 736 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 737 ** string is defined.) 738 */ 739 static int dupedExprNodeSize(Expr *p, int flags){ 740 int nByte = dupedExprStructSize(p, flags) & 0xfff; 741 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 742 nByte += sqlite3Strlen30(p->u.zToken)+1; 743 } 744 return ROUND8(nByte); 745 } 746 747 /* 748 ** Return the number of bytes required to create a duplicate of the 749 ** expression passed as the first argument. The second argument is a 750 ** mask containing EXPRDUP_XXX flags. 751 ** 752 ** The value returned includes space to create a copy of the Expr struct 753 ** itself and the buffer referred to by Expr.u.zToken, if any. 754 ** 755 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 756 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 757 ** and Expr.pRight variables (but not for any structures pointed to or 758 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 759 */ 760 static int dupedExprSize(Expr *p, int flags){ 761 int nByte = 0; 762 if( p ){ 763 nByte = dupedExprNodeSize(p, flags); 764 if( flags&EXPRDUP_REDUCE ){ 765 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 766 } 767 } 768 return nByte; 769 } 770 771 /* 772 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 773 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 774 ** to store the copy of expression p, the copies of p->u.zToken 775 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 776 ** if any. Before returning, *pzBuffer is set to the first byte passed the 777 ** portion of the buffer copied into by this function. 778 */ 779 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 780 Expr *pNew = 0; /* Value to return */ 781 if( p ){ 782 const int isReduced = (flags&EXPRDUP_REDUCE); 783 u8 *zAlloc; 784 u32 staticFlag = 0; 785 786 assert( pzBuffer==0 || isReduced ); 787 788 /* Figure out where to write the new Expr structure. */ 789 if( pzBuffer ){ 790 zAlloc = *pzBuffer; 791 staticFlag = EP_Static; 792 }else{ 793 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 794 } 795 pNew = (Expr *)zAlloc; 796 797 if( pNew ){ 798 /* Set nNewSize to the size allocated for the structure pointed to 799 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 800 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 801 ** by the copy of the p->u.zToken string (if any). 802 */ 803 const unsigned nStructSize = dupedExprStructSize(p, flags); 804 const int nNewSize = nStructSize & 0xfff; 805 int nToken; 806 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 807 nToken = sqlite3Strlen30(p->u.zToken) + 1; 808 }else{ 809 nToken = 0; 810 } 811 if( isReduced ){ 812 assert( ExprHasProperty(p, EP_Reduced)==0 ); 813 memcpy(zAlloc, p, nNewSize); 814 }else{ 815 int nSize = exprStructSize(p); 816 memcpy(zAlloc, p, nSize); 817 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 818 } 819 820 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 821 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 822 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 823 pNew->flags |= staticFlag; 824 825 /* Copy the p->u.zToken string, if any. */ 826 if( nToken ){ 827 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 828 memcpy(zToken, p->u.zToken, nToken); 829 } 830 831 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 832 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 833 if( ExprHasProperty(p, EP_xIsSelect) ){ 834 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 835 }else{ 836 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 837 } 838 } 839 840 /* Fill in pNew->pLeft and pNew->pRight. */ 841 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 842 zAlloc += dupedExprNodeSize(p, flags); 843 if( ExprHasProperty(pNew, EP_Reduced) ){ 844 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 845 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 846 } 847 if( pzBuffer ){ 848 *pzBuffer = zAlloc; 849 } 850 }else{ 851 pNew->flags2 = 0; 852 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){ 853 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 854 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 855 } 856 } 857 858 } 859 } 860 return pNew; 861 } 862 863 /* 864 ** The following group of routines make deep copies of expressions, 865 ** expression lists, ID lists, and select statements. The copies can 866 ** be deleted (by being passed to their respective ...Delete() routines) 867 ** without effecting the originals. 868 ** 869 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 870 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 871 ** by subsequent calls to sqlite*ListAppend() routines. 872 ** 873 ** Any tables that the SrcList might point to are not duplicated. 874 ** 875 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 876 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 877 ** truncated version of the usual Expr structure that will be stored as 878 ** part of the in-memory representation of the database schema. 879 */ 880 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 881 return exprDup(db, p, flags, 0); 882 } 883 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 884 ExprList *pNew; 885 struct ExprList_item *pItem, *pOldItem; 886 int i; 887 if( p==0 ) return 0; 888 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 889 if( pNew==0 ) return 0; 890 pNew->iECursor = 0; 891 pNew->nExpr = i = p->nExpr; 892 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 893 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 894 if( pItem==0 ){ 895 sqlite3DbFree(db, pNew); 896 return 0; 897 } 898 pOldItem = p->a; 899 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 900 Expr *pOldExpr = pOldItem->pExpr; 901 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 902 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 903 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 904 pItem->sortOrder = pOldItem->sortOrder; 905 pItem->done = 0; 906 pItem->iOrderByCol = pOldItem->iOrderByCol; 907 pItem->iAlias = pOldItem->iAlias; 908 } 909 return pNew; 910 } 911 912 /* 913 ** If cursors, triggers, views and subqueries are all omitted from 914 ** the build, then none of the following routines, except for 915 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 916 ** called with a NULL argument. 917 */ 918 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 919 || !defined(SQLITE_OMIT_SUBQUERY) 920 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 921 SrcList *pNew; 922 int i; 923 int nByte; 924 if( p==0 ) return 0; 925 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 926 pNew = sqlite3DbMallocRaw(db, nByte ); 927 if( pNew==0 ) return 0; 928 pNew->nSrc = pNew->nAlloc = p->nSrc; 929 for(i=0; i<p->nSrc; i++){ 930 struct SrcList_item *pNewItem = &pNew->a[i]; 931 struct SrcList_item *pOldItem = &p->a[i]; 932 Table *pTab; 933 pNewItem->pSchema = pOldItem->pSchema; 934 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 935 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 936 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 937 pNewItem->jointype = pOldItem->jointype; 938 pNewItem->iCursor = pOldItem->iCursor; 939 pNewItem->addrFillSub = pOldItem->addrFillSub; 940 pNewItem->regReturn = pOldItem->regReturn; 941 pNewItem->isCorrelated = pOldItem->isCorrelated; 942 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 943 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 944 pNewItem->notIndexed = pOldItem->notIndexed; 945 pNewItem->pIndex = pOldItem->pIndex; 946 pTab = pNewItem->pTab = pOldItem->pTab; 947 if( pTab ){ 948 pTab->nRef++; 949 } 950 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 951 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 952 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 953 pNewItem->colUsed = pOldItem->colUsed; 954 } 955 return pNew; 956 } 957 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 958 IdList *pNew; 959 int i; 960 if( p==0 ) return 0; 961 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 962 if( pNew==0 ) return 0; 963 pNew->nId = p->nId; 964 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 965 if( pNew->a==0 ){ 966 sqlite3DbFree(db, pNew); 967 return 0; 968 } 969 /* Note that because the size of the allocation for p->a[] is not 970 ** necessarily a power of two, sqlite3IdListAppend() may not be called 971 ** on the duplicate created by this function. */ 972 for(i=0; i<p->nId; i++){ 973 struct IdList_item *pNewItem = &pNew->a[i]; 974 struct IdList_item *pOldItem = &p->a[i]; 975 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 976 pNewItem->idx = pOldItem->idx; 977 } 978 return pNew; 979 } 980 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 981 Select *pNew, *pPrior; 982 if( p==0 ) return 0; 983 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 984 if( pNew==0 ) return 0; 985 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 986 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 987 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 988 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 989 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 990 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 991 pNew->op = p->op; 992 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 993 if( pPrior ) pPrior->pNext = pNew; 994 pNew->pNext = 0; 995 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 996 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 997 pNew->iLimit = 0; 998 pNew->iOffset = 0; 999 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1000 pNew->pRightmost = 0; 1001 pNew->addrOpenEphm[0] = -1; 1002 pNew->addrOpenEphm[1] = -1; 1003 pNew->addrOpenEphm[2] = -1; 1004 return pNew; 1005 } 1006 #else 1007 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1008 assert( p==0 ); 1009 return 0; 1010 } 1011 #endif 1012 1013 1014 /* 1015 ** Add a new element to the end of an expression list. If pList is 1016 ** initially NULL, then create a new expression list. 1017 ** 1018 ** If a memory allocation error occurs, the entire list is freed and 1019 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1020 ** that the new entry was successfully appended. 1021 */ 1022 ExprList *sqlite3ExprListAppend( 1023 Parse *pParse, /* Parsing context */ 1024 ExprList *pList, /* List to which to append. Might be NULL */ 1025 Expr *pExpr /* Expression to be appended. Might be NULL */ 1026 ){ 1027 sqlite3 *db = pParse->db; 1028 if( pList==0 ){ 1029 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1030 if( pList==0 ){ 1031 goto no_mem; 1032 } 1033 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1034 if( pList->a==0 ) goto no_mem; 1035 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1036 struct ExprList_item *a; 1037 assert( pList->nExpr>0 ); 1038 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1039 if( a==0 ){ 1040 goto no_mem; 1041 } 1042 pList->a = a; 1043 } 1044 assert( pList->a!=0 ); 1045 if( 1 ){ 1046 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1047 memset(pItem, 0, sizeof(*pItem)); 1048 pItem->pExpr = pExpr; 1049 } 1050 return pList; 1051 1052 no_mem: 1053 /* Avoid leaking memory if malloc has failed. */ 1054 sqlite3ExprDelete(db, pExpr); 1055 sqlite3ExprListDelete(db, pList); 1056 return 0; 1057 } 1058 1059 /* 1060 ** Set the ExprList.a[].zName element of the most recently added item 1061 ** on the expression list. 1062 ** 1063 ** pList might be NULL following an OOM error. But pName should never be 1064 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1065 ** is set. 1066 */ 1067 void sqlite3ExprListSetName( 1068 Parse *pParse, /* Parsing context */ 1069 ExprList *pList, /* List to which to add the span. */ 1070 Token *pName, /* Name to be added */ 1071 int dequote /* True to cause the name to be dequoted */ 1072 ){ 1073 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1074 if( pList ){ 1075 struct ExprList_item *pItem; 1076 assert( pList->nExpr>0 ); 1077 pItem = &pList->a[pList->nExpr-1]; 1078 assert( pItem->zName==0 ); 1079 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1080 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1081 } 1082 } 1083 1084 /* 1085 ** Set the ExprList.a[].zSpan element of the most recently added item 1086 ** on the expression list. 1087 ** 1088 ** pList might be NULL following an OOM error. But pSpan should never be 1089 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1090 ** is set. 1091 */ 1092 void sqlite3ExprListSetSpan( 1093 Parse *pParse, /* Parsing context */ 1094 ExprList *pList, /* List to which to add the span. */ 1095 ExprSpan *pSpan /* The span to be added */ 1096 ){ 1097 sqlite3 *db = pParse->db; 1098 assert( pList!=0 || db->mallocFailed!=0 ); 1099 if( pList ){ 1100 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1101 assert( pList->nExpr>0 ); 1102 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1103 sqlite3DbFree(db, pItem->zSpan); 1104 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1105 (int)(pSpan->zEnd - pSpan->zStart)); 1106 } 1107 } 1108 1109 /* 1110 ** If the expression list pEList contains more than iLimit elements, 1111 ** leave an error message in pParse. 1112 */ 1113 void sqlite3ExprListCheckLength( 1114 Parse *pParse, 1115 ExprList *pEList, 1116 const char *zObject 1117 ){ 1118 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1119 testcase( pEList && pEList->nExpr==mx ); 1120 testcase( pEList && pEList->nExpr==mx+1 ); 1121 if( pEList && pEList->nExpr>mx ){ 1122 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1123 } 1124 } 1125 1126 /* 1127 ** Delete an entire expression list. 1128 */ 1129 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1130 int i; 1131 struct ExprList_item *pItem; 1132 if( pList==0 ) return; 1133 assert( pList->a!=0 || pList->nExpr==0 ); 1134 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1135 sqlite3ExprDelete(db, pItem->pExpr); 1136 sqlite3DbFree(db, pItem->zName); 1137 sqlite3DbFree(db, pItem->zSpan); 1138 } 1139 sqlite3DbFree(db, pList->a); 1140 sqlite3DbFree(db, pList); 1141 } 1142 1143 /* 1144 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1145 ** to an integer. These routines are checking an expression to see 1146 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1147 ** not constant. 1148 ** 1149 ** These callback routines are used to implement the following: 1150 ** 1151 ** sqlite3ExprIsConstant() 1152 ** sqlite3ExprIsConstantNotJoin() 1153 ** sqlite3ExprIsConstantOrFunction() 1154 ** 1155 */ 1156 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1157 1158 /* If pWalker->u.i is 3 then any term of the expression that comes from 1159 ** the ON or USING clauses of a join disqualifies the expression 1160 ** from being considered constant. */ 1161 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1162 pWalker->u.i = 0; 1163 return WRC_Abort; 1164 } 1165 1166 switch( pExpr->op ){ 1167 /* Consider functions to be constant if all their arguments are constant 1168 ** and pWalker->u.i==2 */ 1169 case TK_FUNCTION: 1170 if( pWalker->u.i==2 ) return 0; 1171 /* Fall through */ 1172 case TK_ID: 1173 case TK_COLUMN: 1174 case TK_AGG_FUNCTION: 1175 case TK_AGG_COLUMN: 1176 testcase( pExpr->op==TK_ID ); 1177 testcase( pExpr->op==TK_COLUMN ); 1178 testcase( pExpr->op==TK_AGG_FUNCTION ); 1179 testcase( pExpr->op==TK_AGG_COLUMN ); 1180 pWalker->u.i = 0; 1181 return WRC_Abort; 1182 default: 1183 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1184 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1185 return WRC_Continue; 1186 } 1187 } 1188 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1189 UNUSED_PARAMETER(NotUsed); 1190 pWalker->u.i = 0; 1191 return WRC_Abort; 1192 } 1193 static int exprIsConst(Expr *p, int initFlag){ 1194 Walker w; 1195 w.u.i = initFlag; 1196 w.xExprCallback = exprNodeIsConstant; 1197 w.xSelectCallback = selectNodeIsConstant; 1198 sqlite3WalkExpr(&w, p); 1199 return w.u.i; 1200 } 1201 1202 /* 1203 ** Walk an expression tree. Return 1 if the expression is constant 1204 ** and 0 if it involves variables or function calls. 1205 ** 1206 ** For the purposes of this function, a double-quoted string (ex: "abc") 1207 ** is considered a variable but a single-quoted string (ex: 'abc') is 1208 ** a constant. 1209 */ 1210 int sqlite3ExprIsConstant(Expr *p){ 1211 return exprIsConst(p, 1); 1212 } 1213 1214 /* 1215 ** Walk an expression tree. Return 1 if the expression is constant 1216 ** that does no originate from the ON or USING clauses of a join. 1217 ** Return 0 if it involves variables or function calls or terms from 1218 ** an ON or USING clause. 1219 */ 1220 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1221 return exprIsConst(p, 3); 1222 } 1223 1224 /* 1225 ** Walk an expression tree. Return 1 if the expression is constant 1226 ** or a function call with constant arguments. Return and 0 if there 1227 ** are any variables. 1228 ** 1229 ** For the purposes of this function, a double-quoted string (ex: "abc") 1230 ** is considered a variable but a single-quoted string (ex: 'abc') is 1231 ** a constant. 1232 */ 1233 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1234 return exprIsConst(p, 2); 1235 } 1236 1237 /* 1238 ** If the expression p codes a constant integer that is small enough 1239 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1240 ** in *pValue. If the expression is not an integer or if it is too big 1241 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1242 */ 1243 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1244 int rc = 0; 1245 1246 /* If an expression is an integer literal that fits in a signed 32-bit 1247 ** integer, then the EP_IntValue flag will have already been set */ 1248 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1249 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1250 1251 if( p->flags & EP_IntValue ){ 1252 *pValue = p->u.iValue; 1253 return 1; 1254 } 1255 switch( p->op ){ 1256 case TK_UPLUS: { 1257 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1258 break; 1259 } 1260 case TK_UMINUS: { 1261 int v; 1262 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1263 *pValue = -v; 1264 rc = 1; 1265 } 1266 break; 1267 } 1268 default: break; 1269 } 1270 return rc; 1271 } 1272 1273 /* 1274 ** Return FALSE if there is no chance that the expression can be NULL. 1275 ** 1276 ** If the expression might be NULL or if the expression is too complex 1277 ** to tell return TRUE. 1278 ** 1279 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1280 ** when we know that a value cannot be NULL. Hence, a false positive 1281 ** (returning TRUE when in fact the expression can never be NULL) might 1282 ** be a small performance hit but is otherwise harmless. On the other 1283 ** hand, a false negative (returning FALSE when the result could be NULL) 1284 ** will likely result in an incorrect answer. So when in doubt, return 1285 ** TRUE. 1286 */ 1287 int sqlite3ExprCanBeNull(const Expr *p){ 1288 u8 op; 1289 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1290 op = p->op; 1291 if( op==TK_REGISTER ) op = p->op2; 1292 switch( op ){ 1293 case TK_INTEGER: 1294 case TK_STRING: 1295 case TK_FLOAT: 1296 case TK_BLOB: 1297 return 0; 1298 default: 1299 return 1; 1300 } 1301 } 1302 1303 /* 1304 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1305 ** to location iDest if the value in iReg is NULL. The value in iReg 1306 ** was computed by pExpr. If we can look at pExpr at compile-time and 1307 ** determine that it can never generate a NULL, then the OP_IsNull operation 1308 ** can be omitted. 1309 */ 1310 void sqlite3ExprCodeIsNullJump( 1311 Vdbe *v, /* The VDBE under construction */ 1312 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1313 int iReg, /* Test the value in this register for NULL */ 1314 int iDest /* Jump here if the value is null */ 1315 ){ 1316 if( sqlite3ExprCanBeNull(pExpr) ){ 1317 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1318 } 1319 } 1320 1321 /* 1322 ** Return TRUE if the given expression is a constant which would be 1323 ** unchanged by OP_Affinity with the affinity given in the second 1324 ** argument. 1325 ** 1326 ** This routine is used to determine if the OP_Affinity operation 1327 ** can be omitted. When in doubt return FALSE. A false negative 1328 ** is harmless. A false positive, however, can result in the wrong 1329 ** answer. 1330 */ 1331 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1332 u8 op; 1333 if( aff==SQLITE_AFF_NONE ) return 1; 1334 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1335 op = p->op; 1336 if( op==TK_REGISTER ) op = p->op2; 1337 switch( op ){ 1338 case TK_INTEGER: { 1339 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1340 } 1341 case TK_FLOAT: { 1342 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1343 } 1344 case TK_STRING: { 1345 return aff==SQLITE_AFF_TEXT; 1346 } 1347 case TK_BLOB: { 1348 return 1; 1349 } 1350 case TK_COLUMN: { 1351 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1352 return p->iColumn<0 1353 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1354 } 1355 default: { 1356 return 0; 1357 } 1358 } 1359 } 1360 1361 /* 1362 ** Return TRUE if the given string is a row-id column name. 1363 */ 1364 int sqlite3IsRowid(const char *z){ 1365 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1366 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1367 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1368 return 0; 1369 } 1370 1371 /* 1372 ** Return true if we are able to the IN operator optimization on a 1373 ** query of the form 1374 ** 1375 ** x IN (SELECT ...) 1376 ** 1377 ** Where the SELECT... clause is as specified by the parameter to this 1378 ** routine. 1379 ** 1380 ** The Select object passed in has already been preprocessed and no 1381 ** errors have been found. 1382 */ 1383 #ifndef SQLITE_OMIT_SUBQUERY 1384 static int isCandidateForInOpt(Select *p){ 1385 SrcList *pSrc; 1386 ExprList *pEList; 1387 Table *pTab; 1388 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1389 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1390 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1391 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1392 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1393 return 0; /* No DISTINCT keyword and no aggregate functions */ 1394 } 1395 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1396 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1397 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1398 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1399 pSrc = p->pSrc; 1400 assert( pSrc!=0 ); 1401 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1402 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1403 pTab = pSrc->a[0].pTab; 1404 if( NEVER(pTab==0) ) return 0; 1405 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1406 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1407 pEList = p->pEList; 1408 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1409 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1410 return 1; 1411 } 1412 #endif /* SQLITE_OMIT_SUBQUERY */ 1413 1414 /* 1415 ** Code an OP_Once instruction and allocate space for its flag. Return the 1416 ** address of the new instruction. 1417 */ 1418 int sqlite3CodeOnce(Parse *pParse){ 1419 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1420 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1421 } 1422 1423 /* 1424 ** This function is used by the implementation of the IN (...) operator. 1425 ** The pX parameter is the expression on the RHS of the IN operator, which 1426 ** might be either a list of expressions or a subquery. 1427 ** 1428 ** The job of this routine is to find or create a b-tree object that can 1429 ** be used either to test for membership in the RHS set or to iterate through 1430 ** all members of the RHS set, skipping duplicates. 1431 ** 1432 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1433 ** and pX->iTable is set to the index of that cursor. 1434 ** 1435 ** The returned value of this function indicates the b-tree type, as follows: 1436 ** 1437 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1438 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1439 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1440 ** populated epheremal table. 1441 ** 1442 ** An existing b-tree might be used if the RHS expression pX is a simple 1443 ** subquery such as: 1444 ** 1445 ** SELECT <column> FROM <table> 1446 ** 1447 ** If the RHS of the IN operator is a list or a more complex subquery, then 1448 ** an ephemeral table might need to be generated from the RHS and then 1449 ** pX->iTable made to point to the ephermeral table instead of an 1450 ** existing table. 1451 ** 1452 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1453 ** through the set members, skipping any duplicates. In this case an 1454 ** epheremal table must be used unless the selected <column> is guaranteed 1455 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1456 ** has a UNIQUE constraint or UNIQUE index. 1457 ** 1458 ** If the prNotFound parameter is not 0, then the b-tree will be used 1459 ** for fast set membership tests. In this case an epheremal table must 1460 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1461 ** be found with <column> as its left-most column. 1462 ** 1463 ** When the b-tree is being used for membership tests, the calling function 1464 ** needs to know whether or not the structure contains an SQL NULL 1465 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1466 ** If there is any chance that the (...) might contain a NULL value at 1467 ** runtime, then a register is allocated and the register number written 1468 ** to *prNotFound. If there is no chance that the (...) contains a 1469 ** NULL value, then *prNotFound is left unchanged. 1470 ** 1471 ** If a register is allocated and its location stored in *prNotFound, then 1472 ** its initial value is NULL. If the (...) does not remain constant 1473 ** for the duration of the query (i.e. the SELECT within the (...) 1474 ** is a correlated subquery) then the value of the allocated register is 1475 ** reset to NULL each time the subquery is rerun. This allows the 1476 ** caller to use vdbe code equivalent to the following: 1477 ** 1478 ** if( register==NULL ){ 1479 ** has_null = <test if data structure contains null> 1480 ** register = 1 1481 ** } 1482 ** 1483 ** in order to avoid running the <test if data structure contains null> 1484 ** test more often than is necessary. 1485 */ 1486 #ifndef SQLITE_OMIT_SUBQUERY 1487 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1488 Select *p; /* SELECT to the right of IN operator */ 1489 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1490 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1491 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1492 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1493 1494 assert( pX->op==TK_IN ); 1495 1496 /* Check to see if an existing table or index can be used to 1497 ** satisfy the query. This is preferable to generating a new 1498 ** ephemeral table. 1499 */ 1500 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1501 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1502 sqlite3 *db = pParse->db; /* Database connection */ 1503 Table *pTab; /* Table <table>. */ 1504 Expr *pExpr; /* Expression <column> */ 1505 int iCol; /* Index of column <column> */ 1506 int iDb; /* Database idx for pTab */ 1507 1508 assert( p ); /* Because of isCandidateForInOpt(p) */ 1509 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1510 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1511 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1512 pTab = p->pSrc->a[0].pTab; 1513 pExpr = p->pEList->a[0].pExpr; 1514 iCol = pExpr->iColumn; 1515 1516 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1517 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1518 sqlite3CodeVerifySchema(pParse, iDb); 1519 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1520 1521 /* This function is only called from two places. In both cases the vdbe 1522 ** has already been allocated. So assume sqlite3GetVdbe() is always 1523 ** successful here. 1524 */ 1525 assert(v); 1526 if( iCol<0 ){ 1527 int iAddr; 1528 1529 iAddr = sqlite3CodeOnce(pParse); 1530 1531 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1532 eType = IN_INDEX_ROWID; 1533 1534 sqlite3VdbeJumpHere(v, iAddr); 1535 }else{ 1536 Index *pIdx; /* Iterator variable */ 1537 1538 /* The collation sequence used by the comparison. If an index is to 1539 ** be used in place of a temp-table, it must be ordered according 1540 ** to this collation sequence. */ 1541 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1542 1543 /* Check that the affinity that will be used to perform the 1544 ** comparison is the same as the affinity of the column. If 1545 ** it is not, it is not possible to use any index. 1546 */ 1547 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1548 1549 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1550 if( (pIdx->aiColumn[0]==iCol) 1551 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1552 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1553 ){ 1554 int iAddr; 1555 char *pKey; 1556 1557 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1558 iAddr = sqlite3CodeOnce(pParse); 1559 1560 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1561 pKey,P4_KEYINFO_HANDOFF); 1562 VdbeComment((v, "%s", pIdx->zName)); 1563 eType = IN_INDEX_INDEX; 1564 1565 sqlite3VdbeJumpHere(v, iAddr); 1566 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1567 *prNotFound = ++pParse->nMem; 1568 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1569 } 1570 } 1571 } 1572 } 1573 } 1574 1575 if( eType==0 ){ 1576 /* Could not found an existing table or index to use as the RHS b-tree. 1577 ** We will have to generate an ephemeral table to do the job. 1578 */ 1579 double savedNQueryLoop = pParse->nQueryLoop; 1580 int rMayHaveNull = 0; 1581 eType = IN_INDEX_EPH; 1582 if( prNotFound ){ 1583 *prNotFound = rMayHaveNull = ++pParse->nMem; 1584 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1585 }else{ 1586 testcase( pParse->nQueryLoop>(double)1 ); 1587 pParse->nQueryLoop = (double)1; 1588 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1589 eType = IN_INDEX_ROWID; 1590 } 1591 } 1592 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1593 pParse->nQueryLoop = savedNQueryLoop; 1594 }else{ 1595 pX->iTable = iTab; 1596 } 1597 return eType; 1598 } 1599 #endif 1600 1601 /* 1602 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1603 ** or IN operators. Examples: 1604 ** 1605 ** (SELECT a FROM b) -- subquery 1606 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1607 ** x IN (4,5,11) -- IN operator with list on right-hand side 1608 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1609 ** 1610 ** The pExpr parameter describes the expression that contains the IN 1611 ** operator or subquery. 1612 ** 1613 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1614 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1615 ** to some integer key column of a table B-Tree. In this case, use an 1616 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1617 ** (slower) variable length keys B-Tree. 1618 ** 1619 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1620 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1621 ** Furthermore, the IN is in a WHERE clause and that we really want 1622 ** to iterate over the RHS of the IN operator in order to quickly locate 1623 ** all corresponding LHS elements. All this routine does is initialize 1624 ** the register given by rMayHaveNull to NULL. Calling routines will take 1625 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1626 ** 1627 ** If rMayHaveNull is zero, that means that the subquery is being used 1628 ** for membership testing only. There is no need to initialize any 1629 ** registers to indicate the presense or absence of NULLs on the RHS. 1630 ** 1631 ** For a SELECT or EXISTS operator, return the register that holds the 1632 ** result. For IN operators or if an error occurs, the return value is 0. 1633 */ 1634 #ifndef SQLITE_OMIT_SUBQUERY 1635 int sqlite3CodeSubselect( 1636 Parse *pParse, /* Parsing context */ 1637 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1638 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1639 int isRowid /* If true, LHS of IN operator is a rowid */ 1640 ){ 1641 int testAddr = -1; /* One-time test address */ 1642 int rReg = 0; /* Register storing resulting */ 1643 Vdbe *v = sqlite3GetVdbe(pParse); 1644 if( NEVER(v==0) ) return 0; 1645 sqlite3ExprCachePush(pParse); 1646 1647 /* This code must be run in its entirety every time it is encountered 1648 ** if any of the following is true: 1649 ** 1650 ** * The right-hand side is a correlated subquery 1651 ** * The right-hand side is an expression list containing variables 1652 ** * We are inside a trigger 1653 ** 1654 ** If all of the above are false, then we can run this code just once 1655 ** save the results, and reuse the same result on subsequent invocations. 1656 */ 1657 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){ 1658 testAddr = sqlite3CodeOnce(pParse); 1659 } 1660 1661 #ifndef SQLITE_OMIT_EXPLAIN 1662 if( pParse->explain==2 ){ 1663 char *zMsg = sqlite3MPrintf( 1664 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1665 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1666 ); 1667 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1668 } 1669 #endif 1670 1671 switch( pExpr->op ){ 1672 case TK_IN: { 1673 char affinity; /* Affinity of the LHS of the IN */ 1674 KeyInfo keyInfo; /* Keyinfo for the generated table */ 1675 static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ 1676 int addr; /* Address of OP_OpenEphemeral instruction */ 1677 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1678 1679 if( rMayHaveNull ){ 1680 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1681 } 1682 1683 affinity = sqlite3ExprAffinity(pLeft); 1684 1685 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1686 ** expression it is handled the same way. An ephemeral table is 1687 ** filled with single-field index keys representing the results 1688 ** from the SELECT or the <exprlist>. 1689 ** 1690 ** If the 'x' expression is a column value, or the SELECT... 1691 ** statement returns a column value, then the affinity of that 1692 ** column is used to build the index keys. If both 'x' and the 1693 ** SELECT... statement are columns, then numeric affinity is used 1694 ** if either column has NUMERIC or INTEGER affinity. If neither 1695 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1696 ** is used. 1697 */ 1698 pExpr->iTable = pParse->nTab++; 1699 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1700 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1701 memset(&keyInfo, 0, sizeof(keyInfo)); 1702 keyInfo.nField = 1; 1703 keyInfo.aSortOrder = &sortOrder; 1704 1705 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1706 /* Case 1: expr IN (SELECT ...) 1707 ** 1708 ** Generate code to write the results of the select into the temporary 1709 ** table allocated and opened above. 1710 */ 1711 SelectDest dest; 1712 ExprList *pEList; 1713 1714 assert( !isRowid ); 1715 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1716 dest.affSdst = (u8)affinity; 1717 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1718 pExpr->x.pSelect->iLimit = 0; 1719 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1720 return 0; 1721 } 1722 pEList = pExpr->x.pSelect->pEList; 1723 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 1724 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1725 pEList->a[0].pExpr); 1726 } 1727 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1728 /* Case 2: expr IN (exprlist) 1729 ** 1730 ** For each expression, build an index key from the evaluation and 1731 ** store it in the temporary table. If <expr> is a column, then use 1732 ** that columns affinity when building index keys. If <expr> is not 1733 ** a column, use numeric affinity. 1734 */ 1735 int i; 1736 ExprList *pList = pExpr->x.pList; 1737 struct ExprList_item *pItem; 1738 int r1, r2, r3; 1739 1740 if( !affinity ){ 1741 affinity = SQLITE_AFF_NONE; 1742 } 1743 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1744 keyInfo.aSortOrder = &sortOrder; 1745 1746 /* Loop through each expression in <exprlist>. */ 1747 r1 = sqlite3GetTempReg(pParse); 1748 r2 = sqlite3GetTempReg(pParse); 1749 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1750 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1751 Expr *pE2 = pItem->pExpr; 1752 int iValToIns; 1753 1754 /* If the expression is not constant then we will need to 1755 ** disable the test that was generated above that makes sure 1756 ** this code only executes once. Because for a non-constant 1757 ** expression we need to rerun this code each time. 1758 */ 1759 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1760 sqlite3VdbeChangeToNoop(v, testAddr); 1761 testAddr = -1; 1762 } 1763 1764 /* Evaluate the expression and insert it into the temp table */ 1765 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1766 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1767 }else{ 1768 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1769 if( isRowid ){ 1770 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1771 sqlite3VdbeCurrentAddr(v)+2); 1772 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1773 }else{ 1774 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1775 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1776 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1777 } 1778 } 1779 } 1780 sqlite3ReleaseTempReg(pParse, r1); 1781 sqlite3ReleaseTempReg(pParse, r2); 1782 } 1783 if( !isRowid ){ 1784 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1785 } 1786 break; 1787 } 1788 1789 case TK_EXISTS: 1790 case TK_SELECT: 1791 default: { 1792 /* If this has to be a scalar SELECT. Generate code to put the 1793 ** value of this select in a memory cell and record the number 1794 ** of the memory cell in iColumn. If this is an EXISTS, write 1795 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1796 ** and record that memory cell in iColumn. 1797 */ 1798 Select *pSel; /* SELECT statement to encode */ 1799 SelectDest dest; /* How to deal with SELECt result */ 1800 1801 testcase( pExpr->op==TK_EXISTS ); 1802 testcase( pExpr->op==TK_SELECT ); 1803 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1804 1805 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1806 pSel = pExpr->x.pSelect; 1807 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1808 if( pExpr->op==TK_SELECT ){ 1809 dest.eDest = SRT_Mem; 1810 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1811 VdbeComment((v, "Init subquery result")); 1812 }else{ 1813 dest.eDest = SRT_Exists; 1814 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1815 VdbeComment((v, "Init EXISTS result")); 1816 } 1817 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1818 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1819 &sqlite3IntTokens[1]); 1820 pSel->iLimit = 0; 1821 if( sqlite3Select(pParse, pSel, &dest) ){ 1822 return 0; 1823 } 1824 rReg = dest.iSDParm; 1825 ExprSetIrreducible(pExpr); 1826 break; 1827 } 1828 } 1829 1830 if( testAddr>=0 ){ 1831 sqlite3VdbeJumpHere(v, testAddr); 1832 } 1833 sqlite3ExprCachePop(pParse, 1); 1834 1835 return rReg; 1836 } 1837 #endif /* SQLITE_OMIT_SUBQUERY */ 1838 1839 #ifndef SQLITE_OMIT_SUBQUERY 1840 /* 1841 ** Generate code for an IN expression. 1842 ** 1843 ** x IN (SELECT ...) 1844 ** x IN (value, value, ...) 1845 ** 1846 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1847 ** is an array of zero or more values. The expression is true if the LHS is 1848 ** contained within the RHS. The value of the expression is unknown (NULL) 1849 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1850 ** RHS contains one or more NULL values. 1851 ** 1852 ** This routine generates code will jump to destIfFalse if the LHS is not 1853 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1854 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1855 ** within the RHS then fall through. 1856 */ 1857 static void sqlite3ExprCodeIN( 1858 Parse *pParse, /* Parsing and code generating context */ 1859 Expr *pExpr, /* The IN expression */ 1860 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1861 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1862 ){ 1863 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1864 char affinity; /* Comparison affinity to use */ 1865 int eType; /* Type of the RHS */ 1866 int r1; /* Temporary use register */ 1867 Vdbe *v; /* Statement under construction */ 1868 1869 /* Compute the RHS. After this step, the table with cursor 1870 ** pExpr->iTable will contains the values that make up the RHS. 1871 */ 1872 v = pParse->pVdbe; 1873 assert( v!=0 ); /* OOM detected prior to this routine */ 1874 VdbeNoopComment((v, "begin IN expr")); 1875 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1876 1877 /* Figure out the affinity to use to create a key from the results 1878 ** of the expression. affinityStr stores a static string suitable for 1879 ** P4 of OP_MakeRecord. 1880 */ 1881 affinity = comparisonAffinity(pExpr); 1882 1883 /* Code the LHS, the <expr> from "<expr> IN (...)". 1884 */ 1885 sqlite3ExprCachePush(pParse); 1886 r1 = sqlite3GetTempReg(pParse); 1887 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1888 1889 /* If the LHS is NULL, then the result is either false or NULL depending 1890 ** on whether the RHS is empty or not, respectively. 1891 */ 1892 if( destIfNull==destIfFalse ){ 1893 /* Shortcut for the common case where the false and NULL outcomes are 1894 ** the same. */ 1895 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1896 }else{ 1897 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1898 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1899 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1900 sqlite3VdbeJumpHere(v, addr1); 1901 } 1902 1903 if( eType==IN_INDEX_ROWID ){ 1904 /* In this case, the RHS is the ROWID of table b-tree 1905 */ 1906 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1907 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1908 }else{ 1909 /* In this case, the RHS is an index b-tree. 1910 */ 1911 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1912 1913 /* If the set membership test fails, then the result of the 1914 ** "x IN (...)" expression must be either 0 or NULL. If the set 1915 ** contains no NULL values, then the result is 0. If the set 1916 ** contains one or more NULL values, then the result of the 1917 ** expression is also NULL. 1918 */ 1919 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1920 /* This branch runs if it is known at compile time that the RHS 1921 ** cannot contain NULL values. This happens as the result 1922 ** of a "NOT NULL" constraint in the database schema. 1923 ** 1924 ** Also run this branch if NULL is equivalent to FALSE 1925 ** for this particular IN operator. 1926 */ 1927 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1928 1929 }else{ 1930 /* In this branch, the RHS of the IN might contain a NULL and 1931 ** the presence of a NULL on the RHS makes a difference in the 1932 ** outcome. 1933 */ 1934 int j1, j2, j3; 1935 1936 /* First check to see if the LHS is contained in the RHS. If so, 1937 ** then the presence of NULLs in the RHS does not matter, so jump 1938 ** over all of the code that follows. 1939 */ 1940 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 1941 1942 /* Here we begin generating code that runs if the LHS is not 1943 ** contained within the RHS. Generate additional code that 1944 ** tests the RHS for NULLs. If the RHS contains a NULL then 1945 ** jump to destIfNull. If there are no NULLs in the RHS then 1946 ** jump to destIfFalse. 1947 */ 1948 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 1949 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 1950 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 1951 sqlite3VdbeJumpHere(v, j3); 1952 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 1953 sqlite3VdbeJumpHere(v, j2); 1954 1955 /* Jump to the appropriate target depending on whether or not 1956 ** the RHS contains a NULL 1957 */ 1958 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 1959 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 1960 1961 /* The OP_Found at the top of this branch jumps here when true, 1962 ** causing the overall IN expression evaluation to fall through. 1963 */ 1964 sqlite3VdbeJumpHere(v, j1); 1965 } 1966 } 1967 sqlite3ReleaseTempReg(pParse, r1); 1968 sqlite3ExprCachePop(pParse, 1); 1969 VdbeComment((v, "end IN expr")); 1970 } 1971 #endif /* SQLITE_OMIT_SUBQUERY */ 1972 1973 /* 1974 ** Duplicate an 8-byte value 1975 */ 1976 static char *dup8bytes(Vdbe *v, const char *in){ 1977 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1978 if( out ){ 1979 memcpy(out, in, 8); 1980 } 1981 return out; 1982 } 1983 1984 #ifndef SQLITE_OMIT_FLOATING_POINT 1985 /* 1986 ** Generate an instruction that will put the floating point 1987 ** value described by z[0..n-1] into register iMem. 1988 ** 1989 ** The z[] string will probably not be zero-terminated. But the 1990 ** z[n] character is guaranteed to be something that does not look 1991 ** like the continuation of the number. 1992 */ 1993 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 1994 if( ALWAYS(z!=0) ){ 1995 double value; 1996 char *zV; 1997 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 1998 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 1999 if( negateFlag ) value = -value; 2000 zV = dup8bytes(v, (char*)&value); 2001 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2002 } 2003 } 2004 #endif 2005 2006 2007 /* 2008 ** Generate an instruction that will put the integer describe by 2009 ** text z[0..n-1] into register iMem. 2010 ** 2011 ** Expr.u.zToken is always UTF8 and zero-terminated. 2012 */ 2013 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2014 Vdbe *v = pParse->pVdbe; 2015 if( pExpr->flags & EP_IntValue ){ 2016 int i = pExpr->u.iValue; 2017 assert( i>=0 ); 2018 if( negFlag ) i = -i; 2019 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2020 }else{ 2021 int c; 2022 i64 value; 2023 const char *z = pExpr->u.zToken; 2024 assert( z!=0 ); 2025 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2026 if( c==0 || (c==2 && negFlag) ){ 2027 char *zV; 2028 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2029 zV = dup8bytes(v, (char*)&value); 2030 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2031 }else{ 2032 #ifdef SQLITE_OMIT_FLOATING_POINT 2033 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2034 #else 2035 codeReal(v, z, negFlag, iMem); 2036 #endif 2037 } 2038 } 2039 } 2040 2041 /* 2042 ** Clear a cache entry. 2043 */ 2044 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2045 if( p->tempReg ){ 2046 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2047 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2048 } 2049 p->tempReg = 0; 2050 } 2051 } 2052 2053 2054 /* 2055 ** Record in the column cache that a particular column from a 2056 ** particular table is stored in a particular register. 2057 */ 2058 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2059 int i; 2060 int minLru; 2061 int idxLru; 2062 struct yColCache *p; 2063 2064 assert( iReg>0 ); /* Register numbers are always positive */ 2065 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2066 2067 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2068 ** for testing only - to verify that SQLite always gets the same answer 2069 ** with and without the column cache. 2070 */ 2071 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2072 2073 /* First replace any existing entry. 2074 ** 2075 ** Actually, the way the column cache is currently used, we are guaranteed 2076 ** that the object will never already be in cache. Verify this guarantee. 2077 */ 2078 #ifndef NDEBUG 2079 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2080 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2081 } 2082 #endif 2083 2084 /* Find an empty slot and replace it */ 2085 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2086 if( p->iReg==0 ){ 2087 p->iLevel = pParse->iCacheLevel; 2088 p->iTable = iTab; 2089 p->iColumn = iCol; 2090 p->iReg = iReg; 2091 p->tempReg = 0; 2092 p->lru = pParse->iCacheCnt++; 2093 return; 2094 } 2095 } 2096 2097 /* Replace the last recently used */ 2098 minLru = 0x7fffffff; 2099 idxLru = -1; 2100 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2101 if( p->lru<minLru ){ 2102 idxLru = i; 2103 minLru = p->lru; 2104 } 2105 } 2106 if( ALWAYS(idxLru>=0) ){ 2107 p = &pParse->aColCache[idxLru]; 2108 p->iLevel = pParse->iCacheLevel; 2109 p->iTable = iTab; 2110 p->iColumn = iCol; 2111 p->iReg = iReg; 2112 p->tempReg = 0; 2113 p->lru = pParse->iCacheCnt++; 2114 return; 2115 } 2116 } 2117 2118 /* 2119 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2120 ** Purge the range of registers from the column cache. 2121 */ 2122 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2123 int i; 2124 int iLast = iReg + nReg - 1; 2125 struct yColCache *p; 2126 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2127 int r = p->iReg; 2128 if( r>=iReg && r<=iLast ){ 2129 cacheEntryClear(pParse, p); 2130 p->iReg = 0; 2131 } 2132 } 2133 } 2134 2135 /* 2136 ** Remember the current column cache context. Any new entries added 2137 ** added to the column cache after this call are removed when the 2138 ** corresponding pop occurs. 2139 */ 2140 void sqlite3ExprCachePush(Parse *pParse){ 2141 pParse->iCacheLevel++; 2142 } 2143 2144 /* 2145 ** Remove from the column cache any entries that were added since the 2146 ** the previous N Push operations. In other words, restore the cache 2147 ** to the state it was in N Pushes ago. 2148 */ 2149 void sqlite3ExprCachePop(Parse *pParse, int N){ 2150 int i; 2151 struct yColCache *p; 2152 assert( N>0 ); 2153 assert( pParse->iCacheLevel>=N ); 2154 pParse->iCacheLevel -= N; 2155 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2156 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2157 cacheEntryClear(pParse, p); 2158 p->iReg = 0; 2159 } 2160 } 2161 } 2162 2163 /* 2164 ** When a cached column is reused, make sure that its register is 2165 ** no longer available as a temp register. ticket #3879: that same 2166 ** register might be in the cache in multiple places, so be sure to 2167 ** get them all. 2168 */ 2169 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2170 int i; 2171 struct yColCache *p; 2172 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2173 if( p->iReg==iReg ){ 2174 p->tempReg = 0; 2175 } 2176 } 2177 } 2178 2179 /* 2180 ** Generate code to extract the value of the iCol-th column of a table. 2181 */ 2182 void sqlite3ExprCodeGetColumnOfTable( 2183 Vdbe *v, /* The VDBE under construction */ 2184 Table *pTab, /* The table containing the value */ 2185 int iTabCur, /* The cursor for this table */ 2186 int iCol, /* Index of the column to extract */ 2187 int regOut /* Extract the valud into this register */ 2188 ){ 2189 if( iCol<0 || iCol==pTab->iPKey ){ 2190 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2191 }else{ 2192 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2193 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut); 2194 } 2195 if( iCol>=0 ){ 2196 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2197 } 2198 } 2199 2200 /* 2201 ** Generate code that will extract the iColumn-th column from 2202 ** table pTab and store the column value in a register. An effort 2203 ** is made to store the column value in register iReg, but this is 2204 ** not guaranteed. The location of the column value is returned. 2205 ** 2206 ** There must be an open cursor to pTab in iTable when this routine 2207 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2208 */ 2209 int sqlite3ExprCodeGetColumn( 2210 Parse *pParse, /* Parsing and code generating context */ 2211 Table *pTab, /* Description of the table we are reading from */ 2212 int iColumn, /* Index of the table column */ 2213 int iTable, /* The cursor pointing to the table */ 2214 int iReg, /* Store results here */ 2215 u8 p5 /* P5 value for OP_Column */ 2216 ){ 2217 Vdbe *v = pParse->pVdbe; 2218 int i; 2219 struct yColCache *p; 2220 2221 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2222 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2223 p->lru = pParse->iCacheCnt++; 2224 sqlite3ExprCachePinRegister(pParse, p->iReg); 2225 return p->iReg; 2226 } 2227 } 2228 assert( v!=0 ); 2229 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2230 if( p5 ){ 2231 sqlite3VdbeChangeP5(v, p5); 2232 }else{ 2233 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2234 } 2235 return iReg; 2236 } 2237 2238 /* 2239 ** Clear all column cache entries. 2240 */ 2241 void sqlite3ExprCacheClear(Parse *pParse){ 2242 int i; 2243 struct yColCache *p; 2244 2245 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2246 if( p->iReg ){ 2247 cacheEntryClear(pParse, p); 2248 p->iReg = 0; 2249 } 2250 } 2251 } 2252 2253 /* 2254 ** Record the fact that an affinity change has occurred on iCount 2255 ** registers starting with iStart. 2256 */ 2257 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2258 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2259 } 2260 2261 /* 2262 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2263 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2264 */ 2265 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2266 int i; 2267 struct yColCache *p; 2268 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2269 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2270 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2271 int x = p->iReg; 2272 if( x>=iFrom && x<iFrom+nReg ){ 2273 p->iReg += iTo-iFrom; 2274 } 2275 } 2276 } 2277 2278 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2279 /* 2280 ** Return true if any register in the range iFrom..iTo (inclusive) 2281 ** is used as part of the column cache. 2282 ** 2283 ** This routine is used within assert() and testcase() macros only 2284 ** and does not appear in a normal build. 2285 */ 2286 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2287 int i; 2288 struct yColCache *p; 2289 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2290 int r = p->iReg; 2291 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2292 } 2293 return 0; 2294 } 2295 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2296 2297 /* 2298 ** Generate code into the current Vdbe to evaluate the given 2299 ** expression. Attempt to store the results in register "target". 2300 ** Return the register where results are stored. 2301 ** 2302 ** With this routine, there is no guarantee that results will 2303 ** be stored in target. The result might be stored in some other 2304 ** register if it is convenient to do so. The calling function 2305 ** must check the return code and move the results to the desired 2306 ** register. 2307 */ 2308 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2309 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2310 int op; /* The opcode being coded */ 2311 int inReg = target; /* Results stored in register inReg */ 2312 int regFree1 = 0; /* If non-zero free this temporary register */ 2313 int regFree2 = 0; /* If non-zero free this temporary register */ 2314 int r1, r2, r3, r4; /* Various register numbers */ 2315 sqlite3 *db = pParse->db; /* The database connection */ 2316 2317 assert( target>0 && target<=pParse->nMem ); 2318 if( v==0 ){ 2319 assert( pParse->db->mallocFailed ); 2320 return 0; 2321 } 2322 2323 if( pExpr==0 ){ 2324 op = TK_NULL; 2325 }else{ 2326 op = pExpr->op; 2327 } 2328 switch( op ){ 2329 case TK_AGG_COLUMN: { 2330 AggInfo *pAggInfo = pExpr->pAggInfo; 2331 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2332 if( !pAggInfo->directMode ){ 2333 assert( pCol->iMem>0 ); 2334 inReg = pCol->iMem; 2335 break; 2336 }else if( pAggInfo->useSortingIdx ){ 2337 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2338 pCol->iSorterColumn, target); 2339 break; 2340 } 2341 /* Otherwise, fall thru into the TK_COLUMN case */ 2342 } 2343 case TK_COLUMN: { 2344 if( pExpr->iTable<0 ){ 2345 /* This only happens when coding check constraints */ 2346 assert( pParse->ckBase>0 ); 2347 inReg = pExpr->iColumn + pParse->ckBase; 2348 }else{ 2349 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2350 pExpr->iColumn, pExpr->iTable, target, 2351 pExpr->op2); 2352 } 2353 break; 2354 } 2355 case TK_INTEGER: { 2356 codeInteger(pParse, pExpr, 0, target); 2357 break; 2358 } 2359 #ifndef SQLITE_OMIT_FLOATING_POINT 2360 case TK_FLOAT: { 2361 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2362 codeReal(v, pExpr->u.zToken, 0, target); 2363 break; 2364 } 2365 #endif 2366 case TK_STRING: { 2367 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2368 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2369 break; 2370 } 2371 case TK_NULL: { 2372 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2373 break; 2374 } 2375 #ifndef SQLITE_OMIT_BLOB_LITERAL 2376 case TK_BLOB: { 2377 int n; 2378 const char *z; 2379 char *zBlob; 2380 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2381 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2382 assert( pExpr->u.zToken[1]=='\'' ); 2383 z = &pExpr->u.zToken[2]; 2384 n = sqlite3Strlen30(z) - 1; 2385 assert( z[n]=='\'' ); 2386 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2387 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2388 break; 2389 } 2390 #endif 2391 case TK_VARIABLE: { 2392 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2393 assert( pExpr->u.zToken!=0 ); 2394 assert( pExpr->u.zToken[0]!=0 ); 2395 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2396 if( pExpr->u.zToken[1]!=0 ){ 2397 assert( pExpr->u.zToken[0]=='?' 2398 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2399 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2400 } 2401 break; 2402 } 2403 case TK_REGISTER: { 2404 inReg = pExpr->iTable; 2405 break; 2406 } 2407 case TK_AS: { 2408 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2409 break; 2410 } 2411 #ifndef SQLITE_OMIT_CAST 2412 case TK_CAST: { 2413 /* Expressions of the form: CAST(pLeft AS token) */ 2414 int aff, to_op; 2415 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2416 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2417 aff = sqlite3AffinityType(pExpr->u.zToken); 2418 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2419 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2420 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2421 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2422 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2423 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2424 testcase( to_op==OP_ToText ); 2425 testcase( to_op==OP_ToBlob ); 2426 testcase( to_op==OP_ToNumeric ); 2427 testcase( to_op==OP_ToInt ); 2428 testcase( to_op==OP_ToReal ); 2429 if( inReg!=target ){ 2430 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2431 inReg = target; 2432 } 2433 sqlite3VdbeAddOp1(v, to_op, inReg); 2434 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2435 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2436 break; 2437 } 2438 #endif /* SQLITE_OMIT_CAST */ 2439 case TK_LT: 2440 case TK_LE: 2441 case TK_GT: 2442 case TK_GE: 2443 case TK_NE: 2444 case TK_EQ: { 2445 assert( TK_LT==OP_Lt ); 2446 assert( TK_LE==OP_Le ); 2447 assert( TK_GT==OP_Gt ); 2448 assert( TK_GE==OP_Ge ); 2449 assert( TK_EQ==OP_Eq ); 2450 assert( TK_NE==OP_Ne ); 2451 testcase( op==TK_LT ); 2452 testcase( op==TK_LE ); 2453 testcase( op==TK_GT ); 2454 testcase( op==TK_GE ); 2455 testcase( op==TK_EQ ); 2456 testcase( op==TK_NE ); 2457 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2458 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2459 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2460 r1, r2, inReg, SQLITE_STOREP2); 2461 testcase( regFree1==0 ); 2462 testcase( regFree2==0 ); 2463 break; 2464 } 2465 case TK_IS: 2466 case TK_ISNOT: { 2467 testcase( op==TK_IS ); 2468 testcase( op==TK_ISNOT ); 2469 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2470 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2471 op = (op==TK_IS) ? TK_EQ : TK_NE; 2472 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2473 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2474 testcase( regFree1==0 ); 2475 testcase( regFree2==0 ); 2476 break; 2477 } 2478 case TK_AND: 2479 case TK_OR: 2480 case TK_PLUS: 2481 case TK_STAR: 2482 case TK_MINUS: 2483 case TK_REM: 2484 case TK_BITAND: 2485 case TK_BITOR: 2486 case TK_SLASH: 2487 case TK_LSHIFT: 2488 case TK_RSHIFT: 2489 case TK_CONCAT: { 2490 assert( TK_AND==OP_And ); 2491 assert( TK_OR==OP_Or ); 2492 assert( TK_PLUS==OP_Add ); 2493 assert( TK_MINUS==OP_Subtract ); 2494 assert( TK_REM==OP_Remainder ); 2495 assert( TK_BITAND==OP_BitAnd ); 2496 assert( TK_BITOR==OP_BitOr ); 2497 assert( TK_SLASH==OP_Divide ); 2498 assert( TK_LSHIFT==OP_ShiftLeft ); 2499 assert( TK_RSHIFT==OP_ShiftRight ); 2500 assert( TK_CONCAT==OP_Concat ); 2501 testcase( op==TK_AND ); 2502 testcase( op==TK_OR ); 2503 testcase( op==TK_PLUS ); 2504 testcase( op==TK_MINUS ); 2505 testcase( op==TK_REM ); 2506 testcase( op==TK_BITAND ); 2507 testcase( op==TK_BITOR ); 2508 testcase( op==TK_SLASH ); 2509 testcase( op==TK_LSHIFT ); 2510 testcase( op==TK_RSHIFT ); 2511 testcase( op==TK_CONCAT ); 2512 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2513 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2514 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2515 testcase( regFree1==0 ); 2516 testcase( regFree2==0 ); 2517 break; 2518 } 2519 case TK_UMINUS: { 2520 Expr *pLeft = pExpr->pLeft; 2521 assert( pLeft ); 2522 if( pLeft->op==TK_INTEGER ){ 2523 codeInteger(pParse, pLeft, 1, target); 2524 #ifndef SQLITE_OMIT_FLOATING_POINT 2525 }else if( pLeft->op==TK_FLOAT ){ 2526 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2527 codeReal(v, pLeft->u.zToken, 1, target); 2528 #endif 2529 }else{ 2530 regFree1 = r1 = sqlite3GetTempReg(pParse); 2531 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2532 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2533 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2534 testcase( regFree2==0 ); 2535 } 2536 inReg = target; 2537 break; 2538 } 2539 case TK_BITNOT: 2540 case TK_NOT: { 2541 assert( TK_BITNOT==OP_BitNot ); 2542 assert( TK_NOT==OP_Not ); 2543 testcase( op==TK_BITNOT ); 2544 testcase( op==TK_NOT ); 2545 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2546 testcase( regFree1==0 ); 2547 inReg = target; 2548 sqlite3VdbeAddOp2(v, op, r1, inReg); 2549 break; 2550 } 2551 case TK_ISNULL: 2552 case TK_NOTNULL: { 2553 int addr; 2554 assert( TK_ISNULL==OP_IsNull ); 2555 assert( TK_NOTNULL==OP_NotNull ); 2556 testcase( op==TK_ISNULL ); 2557 testcase( op==TK_NOTNULL ); 2558 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2559 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2560 testcase( regFree1==0 ); 2561 addr = sqlite3VdbeAddOp1(v, op, r1); 2562 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2563 sqlite3VdbeJumpHere(v, addr); 2564 break; 2565 } 2566 case TK_AGG_FUNCTION: { 2567 AggInfo *pInfo = pExpr->pAggInfo; 2568 if( pInfo==0 ){ 2569 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2570 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2571 }else{ 2572 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2573 } 2574 break; 2575 } 2576 case TK_CONST_FUNC: 2577 case TK_FUNCTION: { 2578 ExprList *pFarg; /* List of function arguments */ 2579 int nFarg; /* Number of function arguments */ 2580 FuncDef *pDef; /* The function definition object */ 2581 int nId; /* Length of the function name in bytes */ 2582 const char *zId; /* The function name */ 2583 int constMask = 0; /* Mask of function arguments that are constant */ 2584 int i; /* Loop counter */ 2585 u8 enc = ENC(db); /* The text encoding used by this database */ 2586 CollSeq *pColl = 0; /* A collating sequence */ 2587 2588 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2589 testcase( op==TK_CONST_FUNC ); 2590 testcase( op==TK_FUNCTION ); 2591 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 2592 pFarg = 0; 2593 }else{ 2594 pFarg = pExpr->x.pList; 2595 } 2596 nFarg = pFarg ? pFarg->nExpr : 0; 2597 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2598 zId = pExpr->u.zToken; 2599 nId = sqlite3Strlen30(zId); 2600 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2601 if( pDef==0 ){ 2602 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2603 break; 2604 } 2605 2606 /* Attempt a direct implementation of the built-in COALESCE() and 2607 ** IFNULL() functions. This avoids unnecessary evalation of 2608 ** arguments past the first non-NULL argument. 2609 */ 2610 if( pDef->flags & SQLITE_FUNC_COALESCE ){ 2611 int endCoalesce = sqlite3VdbeMakeLabel(v); 2612 assert( nFarg>=2 ); 2613 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2614 for(i=1; i<nFarg; i++){ 2615 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2616 sqlite3ExprCacheRemove(pParse, target, 1); 2617 sqlite3ExprCachePush(pParse); 2618 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2619 sqlite3ExprCachePop(pParse, 1); 2620 } 2621 sqlite3VdbeResolveLabel(v, endCoalesce); 2622 break; 2623 } 2624 2625 2626 if( pFarg ){ 2627 r1 = sqlite3GetTempRange(pParse, nFarg); 2628 2629 /* For length() and typeof() functions with a column argument, 2630 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2631 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2632 ** loading. 2633 */ 2634 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2635 u8 exprOp; 2636 assert( nFarg==1 ); 2637 assert( pFarg->a[0].pExpr!=0 ); 2638 exprOp = pFarg->a[0].pExpr->op; 2639 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2640 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2641 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2642 testcase( pDef->flags==SQLITE_FUNC_LENGTH ); 2643 pFarg->a[0].pExpr->op2 = pDef->flags; 2644 } 2645 } 2646 2647 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2648 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1); 2649 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2650 }else{ 2651 r1 = 0; 2652 } 2653 #ifndef SQLITE_OMIT_VIRTUALTABLE 2654 /* Possibly overload the function if the first argument is 2655 ** a virtual table column. 2656 ** 2657 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2658 ** second argument, not the first, as the argument to test to 2659 ** see if it is a column in a virtual table. This is done because 2660 ** the left operand of infix functions (the operand we want to 2661 ** control overloading) ends up as the second argument to the 2662 ** function. The expression "A glob B" is equivalent to 2663 ** "glob(B,A). We want to use the A in "A glob B" to test 2664 ** for function overloading. But we use the B term in "glob(B,A)". 2665 */ 2666 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2667 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2668 }else if( nFarg>0 ){ 2669 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2670 } 2671 #endif 2672 for(i=0; i<nFarg; i++){ 2673 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2674 constMask |= (1<<i); 2675 } 2676 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2677 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2678 } 2679 } 2680 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2681 if( !pColl ) pColl = db->pDfltColl; 2682 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2683 } 2684 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2685 (char*)pDef, P4_FUNCDEF); 2686 sqlite3VdbeChangeP5(v, (u8)nFarg); 2687 if( nFarg ){ 2688 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2689 } 2690 break; 2691 } 2692 #ifndef SQLITE_OMIT_SUBQUERY 2693 case TK_EXISTS: 2694 case TK_SELECT: { 2695 testcase( op==TK_EXISTS ); 2696 testcase( op==TK_SELECT ); 2697 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2698 break; 2699 } 2700 case TK_IN: { 2701 int destIfFalse = sqlite3VdbeMakeLabel(v); 2702 int destIfNull = sqlite3VdbeMakeLabel(v); 2703 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2704 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2705 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2706 sqlite3VdbeResolveLabel(v, destIfFalse); 2707 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2708 sqlite3VdbeResolveLabel(v, destIfNull); 2709 break; 2710 } 2711 #endif /* SQLITE_OMIT_SUBQUERY */ 2712 2713 2714 /* 2715 ** x BETWEEN y AND z 2716 ** 2717 ** This is equivalent to 2718 ** 2719 ** x>=y AND x<=z 2720 ** 2721 ** X is stored in pExpr->pLeft. 2722 ** Y is stored in pExpr->pList->a[0].pExpr. 2723 ** Z is stored in pExpr->pList->a[1].pExpr. 2724 */ 2725 case TK_BETWEEN: { 2726 Expr *pLeft = pExpr->pLeft; 2727 struct ExprList_item *pLItem = pExpr->x.pList->a; 2728 Expr *pRight = pLItem->pExpr; 2729 2730 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2731 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2732 testcase( regFree1==0 ); 2733 testcase( regFree2==0 ); 2734 r3 = sqlite3GetTempReg(pParse); 2735 r4 = sqlite3GetTempReg(pParse); 2736 codeCompare(pParse, pLeft, pRight, OP_Ge, 2737 r1, r2, r3, SQLITE_STOREP2); 2738 pLItem++; 2739 pRight = pLItem->pExpr; 2740 sqlite3ReleaseTempReg(pParse, regFree2); 2741 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2742 testcase( regFree2==0 ); 2743 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2744 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2745 sqlite3ReleaseTempReg(pParse, r3); 2746 sqlite3ReleaseTempReg(pParse, r4); 2747 break; 2748 } 2749 case TK_UPLUS: { 2750 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2751 break; 2752 } 2753 2754 case TK_TRIGGER: { 2755 /* If the opcode is TK_TRIGGER, then the expression is a reference 2756 ** to a column in the new.* or old.* pseudo-tables available to 2757 ** trigger programs. In this case Expr.iTable is set to 1 for the 2758 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2759 ** is set to the column of the pseudo-table to read, or to -1 to 2760 ** read the rowid field. 2761 ** 2762 ** The expression is implemented using an OP_Param opcode. The p1 2763 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2764 ** to reference another column of the old.* pseudo-table, where 2765 ** i is the index of the column. For a new.rowid reference, p1 is 2766 ** set to (n+1), where n is the number of columns in each pseudo-table. 2767 ** For a reference to any other column in the new.* pseudo-table, p1 2768 ** is set to (n+2+i), where n and i are as defined previously. For 2769 ** example, if the table on which triggers are being fired is 2770 ** declared as: 2771 ** 2772 ** CREATE TABLE t1(a, b); 2773 ** 2774 ** Then p1 is interpreted as follows: 2775 ** 2776 ** p1==0 -> old.rowid p1==3 -> new.rowid 2777 ** p1==1 -> old.a p1==4 -> new.a 2778 ** p1==2 -> old.b p1==5 -> new.b 2779 */ 2780 Table *pTab = pExpr->pTab; 2781 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2782 2783 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2784 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2785 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2786 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2787 2788 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2789 VdbeComment((v, "%s.%s -> $%d", 2790 (pExpr->iTable ? "new" : "old"), 2791 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2792 target 2793 )); 2794 2795 #ifndef SQLITE_OMIT_FLOATING_POINT 2796 /* If the column has REAL affinity, it may currently be stored as an 2797 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2798 if( pExpr->iColumn>=0 2799 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2800 ){ 2801 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2802 } 2803 #endif 2804 break; 2805 } 2806 2807 2808 /* 2809 ** Form A: 2810 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2811 ** 2812 ** Form B: 2813 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2814 ** 2815 ** Form A is can be transformed into the equivalent form B as follows: 2816 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2817 ** WHEN x=eN THEN rN ELSE y END 2818 ** 2819 ** X (if it exists) is in pExpr->pLeft. 2820 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2821 ** ELSE clause and no other term matches, then the result of the 2822 ** exprssion is NULL. 2823 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2824 ** 2825 ** The result of the expression is the Ri for the first matching Ei, 2826 ** or if there is no matching Ei, the ELSE term Y, or if there is 2827 ** no ELSE term, NULL. 2828 */ 2829 default: assert( op==TK_CASE ); { 2830 int endLabel; /* GOTO label for end of CASE stmt */ 2831 int nextCase; /* GOTO label for next WHEN clause */ 2832 int nExpr; /* 2x number of WHEN terms */ 2833 int i; /* Loop counter */ 2834 ExprList *pEList; /* List of WHEN terms */ 2835 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2836 Expr opCompare; /* The X==Ei expression */ 2837 Expr cacheX; /* Cached expression X */ 2838 Expr *pX; /* The X expression */ 2839 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2840 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2841 2842 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2843 assert((pExpr->x.pList->nExpr % 2) == 0); 2844 assert(pExpr->x.pList->nExpr > 0); 2845 pEList = pExpr->x.pList; 2846 aListelem = pEList->a; 2847 nExpr = pEList->nExpr; 2848 endLabel = sqlite3VdbeMakeLabel(v); 2849 if( (pX = pExpr->pLeft)!=0 ){ 2850 cacheX = *pX; 2851 testcase( pX->op==TK_COLUMN ); 2852 testcase( pX->op==TK_REGISTER ); 2853 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2854 testcase( regFree1==0 ); 2855 cacheX.op = TK_REGISTER; 2856 opCompare.op = TK_EQ; 2857 opCompare.pLeft = &cacheX; 2858 pTest = &opCompare; 2859 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2860 ** The value in regFree1 might get SCopy-ed into the file result. 2861 ** So make sure that the regFree1 register is not reused for other 2862 ** purposes and possibly overwritten. */ 2863 regFree1 = 0; 2864 } 2865 for(i=0; i<nExpr; i=i+2){ 2866 sqlite3ExprCachePush(pParse); 2867 if( pX ){ 2868 assert( pTest!=0 ); 2869 opCompare.pRight = aListelem[i].pExpr; 2870 }else{ 2871 pTest = aListelem[i].pExpr; 2872 } 2873 nextCase = sqlite3VdbeMakeLabel(v); 2874 testcase( pTest->op==TK_COLUMN ); 2875 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2876 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2877 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2878 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2879 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2880 sqlite3ExprCachePop(pParse, 1); 2881 sqlite3VdbeResolveLabel(v, nextCase); 2882 } 2883 if( pExpr->pRight ){ 2884 sqlite3ExprCachePush(pParse); 2885 sqlite3ExprCode(pParse, pExpr->pRight, target); 2886 sqlite3ExprCachePop(pParse, 1); 2887 }else{ 2888 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2889 } 2890 assert( db->mallocFailed || pParse->nErr>0 2891 || pParse->iCacheLevel==iCacheLevel ); 2892 sqlite3VdbeResolveLabel(v, endLabel); 2893 break; 2894 } 2895 #ifndef SQLITE_OMIT_TRIGGER 2896 case TK_RAISE: { 2897 assert( pExpr->affinity==OE_Rollback 2898 || pExpr->affinity==OE_Abort 2899 || pExpr->affinity==OE_Fail 2900 || pExpr->affinity==OE_Ignore 2901 ); 2902 if( !pParse->pTriggerTab ){ 2903 sqlite3ErrorMsg(pParse, 2904 "RAISE() may only be used within a trigger-program"); 2905 return 0; 2906 } 2907 if( pExpr->affinity==OE_Abort ){ 2908 sqlite3MayAbort(pParse); 2909 } 2910 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2911 if( pExpr->affinity==OE_Ignore ){ 2912 sqlite3VdbeAddOp4( 2913 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 2914 }else{ 2915 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0); 2916 } 2917 2918 break; 2919 } 2920 #endif 2921 } 2922 sqlite3ReleaseTempReg(pParse, regFree1); 2923 sqlite3ReleaseTempReg(pParse, regFree2); 2924 return inReg; 2925 } 2926 2927 /* 2928 ** Generate code to evaluate an expression and store the results 2929 ** into a register. Return the register number where the results 2930 ** are stored. 2931 ** 2932 ** If the register is a temporary register that can be deallocated, 2933 ** then write its number into *pReg. If the result register is not 2934 ** a temporary, then set *pReg to zero. 2935 */ 2936 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2937 int r1 = sqlite3GetTempReg(pParse); 2938 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2939 if( r2==r1 ){ 2940 *pReg = r1; 2941 }else{ 2942 sqlite3ReleaseTempReg(pParse, r1); 2943 *pReg = 0; 2944 } 2945 return r2; 2946 } 2947 2948 /* 2949 ** Generate code that will evaluate expression pExpr and store the 2950 ** results in register target. The results are guaranteed to appear 2951 ** in register target. 2952 */ 2953 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2954 int inReg; 2955 2956 assert( target>0 && target<=pParse->nMem ); 2957 if( pExpr && pExpr->op==TK_REGISTER ){ 2958 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 2959 }else{ 2960 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2961 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2962 if( inReg!=target && pParse->pVdbe ){ 2963 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2964 } 2965 } 2966 return target; 2967 } 2968 2969 /* 2970 ** Generate code that evalutes the given expression and puts the result 2971 ** in register target. 2972 ** 2973 ** Also make a copy of the expression results into another "cache" register 2974 ** and modify the expression so that the next time it is evaluated, 2975 ** the result is a copy of the cache register. 2976 ** 2977 ** This routine is used for expressions that are used multiple 2978 ** times. They are evaluated once and the results of the expression 2979 ** are reused. 2980 */ 2981 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2982 Vdbe *v = pParse->pVdbe; 2983 int inReg; 2984 inReg = sqlite3ExprCode(pParse, pExpr, target); 2985 assert( target>0 ); 2986 /* This routine is called for terms to INSERT or UPDATE. And the only 2987 ** other place where expressions can be converted into TK_REGISTER is 2988 ** in WHERE clause processing. So as currently implemented, there is 2989 ** no way for a TK_REGISTER to exist here. But it seems prudent to 2990 ** keep the ALWAYS() in case the conditions above change with future 2991 ** modifications or enhancements. */ 2992 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 2993 int iMem; 2994 iMem = ++pParse->nMem; 2995 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2996 pExpr->iTable = iMem; 2997 pExpr->op2 = pExpr->op; 2998 pExpr->op = TK_REGISTER; 2999 } 3000 return inReg; 3001 } 3002 3003 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3004 /* 3005 ** Generate a human-readable explanation of an expression tree. 3006 */ 3007 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3008 int op; /* The opcode being coded */ 3009 const char *zBinOp = 0; /* Binary operator */ 3010 const char *zUniOp = 0; /* Unary operator */ 3011 if( pExpr==0 ){ 3012 op = TK_NULL; 3013 }else{ 3014 op = pExpr->op; 3015 } 3016 switch( op ){ 3017 case TK_AGG_COLUMN: { 3018 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3019 pExpr->iTable, pExpr->iColumn); 3020 break; 3021 } 3022 case TK_COLUMN: { 3023 if( pExpr->iTable<0 ){ 3024 /* This only happens when coding check constraints */ 3025 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3026 }else{ 3027 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3028 pExpr->iTable, pExpr->iColumn); 3029 } 3030 break; 3031 } 3032 case TK_INTEGER: { 3033 if( pExpr->flags & EP_IntValue ){ 3034 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3035 }else{ 3036 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3037 } 3038 break; 3039 } 3040 #ifndef SQLITE_OMIT_FLOATING_POINT 3041 case TK_FLOAT: { 3042 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3043 break; 3044 } 3045 #endif 3046 case TK_STRING: { 3047 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3048 break; 3049 } 3050 case TK_NULL: { 3051 sqlite3ExplainPrintf(pOut,"NULL"); 3052 break; 3053 } 3054 #ifndef SQLITE_OMIT_BLOB_LITERAL 3055 case TK_BLOB: { 3056 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3057 break; 3058 } 3059 #endif 3060 case TK_VARIABLE: { 3061 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3062 pExpr->u.zToken, pExpr->iColumn); 3063 break; 3064 } 3065 case TK_REGISTER: { 3066 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3067 break; 3068 } 3069 case TK_AS: { 3070 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3071 break; 3072 } 3073 #ifndef SQLITE_OMIT_CAST 3074 case TK_CAST: { 3075 /* Expressions of the form: CAST(pLeft AS token) */ 3076 const char *zAff = "unk"; 3077 switch( sqlite3AffinityType(pExpr->u.zToken) ){ 3078 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3079 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3080 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3081 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3082 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3083 } 3084 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3085 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3086 sqlite3ExplainPrintf(pOut, ")"); 3087 break; 3088 } 3089 #endif /* SQLITE_OMIT_CAST */ 3090 case TK_LT: zBinOp = "LT"; break; 3091 case TK_LE: zBinOp = "LE"; break; 3092 case TK_GT: zBinOp = "GT"; break; 3093 case TK_GE: zBinOp = "GE"; break; 3094 case TK_NE: zBinOp = "NE"; break; 3095 case TK_EQ: zBinOp = "EQ"; break; 3096 case TK_IS: zBinOp = "IS"; break; 3097 case TK_ISNOT: zBinOp = "ISNOT"; break; 3098 case TK_AND: zBinOp = "AND"; break; 3099 case TK_OR: zBinOp = "OR"; break; 3100 case TK_PLUS: zBinOp = "ADD"; break; 3101 case TK_STAR: zBinOp = "MUL"; break; 3102 case TK_MINUS: zBinOp = "SUB"; break; 3103 case TK_REM: zBinOp = "REM"; break; 3104 case TK_BITAND: zBinOp = "BITAND"; break; 3105 case TK_BITOR: zBinOp = "BITOR"; break; 3106 case TK_SLASH: zBinOp = "DIV"; break; 3107 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3108 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3109 case TK_CONCAT: zBinOp = "CONCAT"; break; 3110 3111 case TK_UMINUS: zUniOp = "UMINUS"; break; 3112 case TK_UPLUS: zUniOp = "UPLUS"; break; 3113 case TK_BITNOT: zUniOp = "BITNOT"; break; 3114 case TK_NOT: zUniOp = "NOT"; break; 3115 case TK_ISNULL: zUniOp = "ISNULL"; break; 3116 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3117 3118 case TK_AGG_FUNCTION: 3119 case TK_CONST_FUNC: 3120 case TK_FUNCTION: { 3121 ExprList *pFarg; /* List of function arguments */ 3122 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){ 3123 pFarg = 0; 3124 }else{ 3125 pFarg = pExpr->x.pList; 3126 } 3127 if( op==TK_AGG_FUNCTION ){ 3128 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3129 pExpr->op2, pExpr->u.zToken); 3130 }else{ 3131 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3132 } 3133 if( pFarg ){ 3134 sqlite3ExplainExprList(pOut, pFarg); 3135 } 3136 sqlite3ExplainPrintf(pOut, ")"); 3137 break; 3138 } 3139 #ifndef SQLITE_OMIT_SUBQUERY 3140 case TK_EXISTS: { 3141 sqlite3ExplainPrintf(pOut, "EXISTS("); 3142 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3143 sqlite3ExplainPrintf(pOut,")"); 3144 break; 3145 } 3146 case TK_SELECT: { 3147 sqlite3ExplainPrintf(pOut, "("); 3148 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3149 sqlite3ExplainPrintf(pOut, ")"); 3150 break; 3151 } 3152 case TK_IN: { 3153 sqlite3ExplainPrintf(pOut, "IN("); 3154 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3155 sqlite3ExplainPrintf(pOut, ","); 3156 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3157 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3158 }else{ 3159 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3160 } 3161 sqlite3ExplainPrintf(pOut, ")"); 3162 break; 3163 } 3164 #endif /* SQLITE_OMIT_SUBQUERY */ 3165 3166 /* 3167 ** x BETWEEN y AND z 3168 ** 3169 ** This is equivalent to 3170 ** 3171 ** x>=y AND x<=z 3172 ** 3173 ** X is stored in pExpr->pLeft. 3174 ** Y is stored in pExpr->pList->a[0].pExpr. 3175 ** Z is stored in pExpr->pList->a[1].pExpr. 3176 */ 3177 case TK_BETWEEN: { 3178 Expr *pX = pExpr->pLeft; 3179 Expr *pY = pExpr->x.pList->a[0].pExpr; 3180 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3181 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3182 sqlite3ExplainExpr(pOut, pX); 3183 sqlite3ExplainPrintf(pOut, ","); 3184 sqlite3ExplainExpr(pOut, pY); 3185 sqlite3ExplainPrintf(pOut, ","); 3186 sqlite3ExplainExpr(pOut, pZ); 3187 sqlite3ExplainPrintf(pOut, ")"); 3188 break; 3189 } 3190 case TK_TRIGGER: { 3191 /* If the opcode is TK_TRIGGER, then the expression is a reference 3192 ** to a column in the new.* or old.* pseudo-tables available to 3193 ** trigger programs. In this case Expr.iTable is set to 1 for the 3194 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3195 ** is set to the column of the pseudo-table to read, or to -1 to 3196 ** read the rowid field. 3197 */ 3198 sqlite3ExplainPrintf(pOut, "%s(%d)", 3199 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3200 break; 3201 } 3202 case TK_CASE: { 3203 sqlite3ExplainPrintf(pOut, "CASE("); 3204 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3205 sqlite3ExplainPrintf(pOut, ","); 3206 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3207 break; 3208 } 3209 #ifndef SQLITE_OMIT_TRIGGER 3210 case TK_RAISE: { 3211 const char *zType = "unk"; 3212 switch( pExpr->affinity ){ 3213 case OE_Rollback: zType = "rollback"; break; 3214 case OE_Abort: zType = "abort"; break; 3215 case OE_Fail: zType = "fail"; break; 3216 case OE_Ignore: zType = "ignore"; break; 3217 } 3218 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3219 break; 3220 } 3221 #endif 3222 } 3223 if( zBinOp ){ 3224 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3225 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3226 sqlite3ExplainPrintf(pOut,","); 3227 sqlite3ExplainExpr(pOut, pExpr->pRight); 3228 sqlite3ExplainPrintf(pOut,")"); 3229 }else if( zUniOp ){ 3230 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3231 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3232 sqlite3ExplainPrintf(pOut,")"); 3233 } 3234 } 3235 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3236 3237 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3238 /* 3239 ** Generate a human-readable explanation of an expression list. 3240 */ 3241 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3242 int i; 3243 if( pList==0 || pList->nExpr==0 ){ 3244 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3245 return; 3246 }else if( pList->nExpr==1 ){ 3247 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3248 }else{ 3249 sqlite3ExplainPush(pOut); 3250 for(i=0; i<pList->nExpr; i++){ 3251 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3252 sqlite3ExplainPush(pOut); 3253 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3254 sqlite3ExplainPop(pOut); 3255 if( i<pList->nExpr-1 ){ 3256 sqlite3ExplainNL(pOut); 3257 } 3258 } 3259 sqlite3ExplainPop(pOut); 3260 } 3261 } 3262 #endif /* SQLITE_DEBUG */ 3263 3264 /* 3265 ** Return TRUE if pExpr is an constant expression that is appropriate 3266 ** for factoring out of a loop. Appropriate expressions are: 3267 ** 3268 ** * Any expression that evaluates to two or more opcodes. 3269 ** 3270 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 3271 ** or OP_Variable that does not need to be placed in a 3272 ** specific register. 3273 ** 3274 ** There is no point in factoring out single-instruction constant 3275 ** expressions that need to be placed in a particular register. 3276 ** We could factor them out, but then we would end up adding an 3277 ** OP_SCopy instruction to move the value into the correct register 3278 ** later. We might as well just use the original instruction and 3279 ** avoid the OP_SCopy. 3280 */ 3281 static int isAppropriateForFactoring(Expr *p){ 3282 if( !sqlite3ExprIsConstantNotJoin(p) ){ 3283 return 0; /* Only constant expressions are appropriate for factoring */ 3284 } 3285 if( (p->flags & EP_FixedDest)==0 ){ 3286 return 1; /* Any constant without a fixed destination is appropriate */ 3287 } 3288 while( p->op==TK_UPLUS ) p = p->pLeft; 3289 switch( p->op ){ 3290 #ifndef SQLITE_OMIT_BLOB_LITERAL 3291 case TK_BLOB: 3292 #endif 3293 case TK_VARIABLE: 3294 case TK_INTEGER: 3295 case TK_FLOAT: 3296 case TK_NULL: 3297 case TK_STRING: { 3298 testcase( p->op==TK_BLOB ); 3299 testcase( p->op==TK_VARIABLE ); 3300 testcase( p->op==TK_INTEGER ); 3301 testcase( p->op==TK_FLOAT ); 3302 testcase( p->op==TK_NULL ); 3303 testcase( p->op==TK_STRING ); 3304 /* Single-instruction constants with a fixed destination are 3305 ** better done in-line. If we factor them, they will just end 3306 ** up generating an OP_SCopy to move the value to the destination 3307 ** register. */ 3308 return 0; 3309 } 3310 case TK_UMINUS: { 3311 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 3312 return 0; 3313 } 3314 break; 3315 } 3316 default: { 3317 break; 3318 } 3319 } 3320 return 1; 3321 } 3322 3323 /* 3324 ** If pExpr is a constant expression that is appropriate for 3325 ** factoring out of a loop, then evaluate the expression 3326 ** into a register and convert the expression into a TK_REGISTER 3327 ** expression. 3328 */ 3329 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 3330 Parse *pParse = pWalker->pParse; 3331 switch( pExpr->op ){ 3332 case TK_IN: 3333 case TK_REGISTER: { 3334 return WRC_Prune; 3335 } 3336 case TK_FUNCTION: 3337 case TK_AGG_FUNCTION: 3338 case TK_CONST_FUNC: { 3339 /* The arguments to a function have a fixed destination. 3340 ** Mark them this way to avoid generated unneeded OP_SCopy 3341 ** instructions. 3342 */ 3343 ExprList *pList = pExpr->x.pList; 3344 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3345 if( pList ){ 3346 int i = pList->nExpr; 3347 struct ExprList_item *pItem = pList->a; 3348 for(; i>0; i--, pItem++){ 3349 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest; 3350 } 3351 } 3352 break; 3353 } 3354 } 3355 if( isAppropriateForFactoring(pExpr) ){ 3356 int r1 = ++pParse->nMem; 3357 int r2; 3358 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3359 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); 3360 pExpr->op2 = pExpr->op; 3361 pExpr->op = TK_REGISTER; 3362 pExpr->iTable = r2; 3363 return WRC_Prune; 3364 } 3365 return WRC_Continue; 3366 } 3367 3368 /* 3369 ** Preevaluate constant subexpressions within pExpr and store the 3370 ** results in registers. Modify pExpr so that the constant subexpresions 3371 ** are TK_REGISTER opcodes that refer to the precomputed values. 3372 ** 3373 ** This routine is a no-op if the jump to the cookie-check code has 3374 ** already occur. Since the cookie-check jump is generated prior to 3375 ** any other serious processing, this check ensures that there is no 3376 ** way to accidently bypass the constant initializations. 3377 ** 3378 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization 3379 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS) 3380 ** interface. This allows test logic to verify that the same answer is 3381 ** obtained for queries regardless of whether or not constants are 3382 ** precomputed into registers or if they are inserted in-line. 3383 */ 3384 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 3385 Walker w; 3386 if( pParse->cookieGoto ) return; 3387 if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return; 3388 w.xExprCallback = evalConstExpr; 3389 w.xSelectCallback = 0; 3390 w.pParse = pParse; 3391 sqlite3WalkExpr(&w, pExpr); 3392 } 3393 3394 3395 /* 3396 ** Generate code that pushes the value of every element of the given 3397 ** expression list into a sequence of registers beginning at target. 3398 ** 3399 ** Return the number of elements evaluated. 3400 */ 3401 int sqlite3ExprCodeExprList( 3402 Parse *pParse, /* Parsing context */ 3403 ExprList *pList, /* The expression list to be coded */ 3404 int target, /* Where to write results */ 3405 int doHardCopy /* Make a hard copy of every element */ 3406 ){ 3407 struct ExprList_item *pItem; 3408 int i, n; 3409 assert( pList!=0 ); 3410 assert( target>0 ); 3411 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3412 n = pList->nExpr; 3413 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3414 Expr *pExpr = pItem->pExpr; 3415 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3416 if( inReg!=target+i ){ 3417 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy, 3418 inReg, target+i); 3419 } 3420 } 3421 return n; 3422 } 3423 3424 /* 3425 ** Generate code for a BETWEEN operator. 3426 ** 3427 ** x BETWEEN y AND z 3428 ** 3429 ** The above is equivalent to 3430 ** 3431 ** x>=y AND x<=z 3432 ** 3433 ** Code it as such, taking care to do the common subexpression 3434 ** elementation of x. 3435 */ 3436 static void exprCodeBetween( 3437 Parse *pParse, /* Parsing and code generating context */ 3438 Expr *pExpr, /* The BETWEEN expression */ 3439 int dest, /* Jump here if the jump is taken */ 3440 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3441 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3442 ){ 3443 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3444 Expr compLeft; /* The x>=y term */ 3445 Expr compRight; /* The x<=z term */ 3446 Expr exprX; /* The x subexpression */ 3447 int regFree1 = 0; /* Temporary use register */ 3448 3449 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3450 exprX = *pExpr->pLeft; 3451 exprAnd.op = TK_AND; 3452 exprAnd.pLeft = &compLeft; 3453 exprAnd.pRight = &compRight; 3454 compLeft.op = TK_GE; 3455 compLeft.pLeft = &exprX; 3456 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3457 compRight.op = TK_LE; 3458 compRight.pLeft = &exprX; 3459 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3460 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 3461 exprX.op = TK_REGISTER; 3462 if( jumpIfTrue ){ 3463 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3464 }else{ 3465 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3466 } 3467 sqlite3ReleaseTempReg(pParse, regFree1); 3468 3469 /* Ensure adequate test coverage */ 3470 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3471 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3472 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3473 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3474 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3475 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3476 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3477 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3478 } 3479 3480 /* 3481 ** Generate code for a boolean expression such that a jump is made 3482 ** to the label "dest" if the expression is true but execution 3483 ** continues straight thru if the expression is false. 3484 ** 3485 ** If the expression evaluates to NULL (neither true nor false), then 3486 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3487 ** 3488 ** This code depends on the fact that certain token values (ex: TK_EQ) 3489 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3490 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3491 ** the make process cause these values to align. Assert()s in the code 3492 ** below verify that the numbers are aligned correctly. 3493 */ 3494 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3495 Vdbe *v = pParse->pVdbe; 3496 int op = 0; 3497 int regFree1 = 0; 3498 int regFree2 = 0; 3499 int r1, r2; 3500 3501 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3502 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3503 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3504 op = pExpr->op; 3505 switch( op ){ 3506 case TK_AND: { 3507 int d2 = sqlite3VdbeMakeLabel(v); 3508 testcase( jumpIfNull==0 ); 3509 sqlite3ExprCachePush(pParse); 3510 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3511 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3512 sqlite3VdbeResolveLabel(v, d2); 3513 sqlite3ExprCachePop(pParse, 1); 3514 break; 3515 } 3516 case TK_OR: { 3517 testcase( jumpIfNull==0 ); 3518 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3519 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3520 break; 3521 } 3522 case TK_NOT: { 3523 testcase( jumpIfNull==0 ); 3524 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3525 break; 3526 } 3527 case TK_LT: 3528 case TK_LE: 3529 case TK_GT: 3530 case TK_GE: 3531 case TK_NE: 3532 case TK_EQ: { 3533 assert( TK_LT==OP_Lt ); 3534 assert( TK_LE==OP_Le ); 3535 assert( TK_GT==OP_Gt ); 3536 assert( TK_GE==OP_Ge ); 3537 assert( TK_EQ==OP_Eq ); 3538 assert( TK_NE==OP_Ne ); 3539 testcase( op==TK_LT ); 3540 testcase( op==TK_LE ); 3541 testcase( op==TK_GT ); 3542 testcase( op==TK_GE ); 3543 testcase( op==TK_EQ ); 3544 testcase( op==TK_NE ); 3545 testcase( jumpIfNull==0 ); 3546 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3547 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3548 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3549 r1, r2, dest, jumpIfNull); 3550 testcase( regFree1==0 ); 3551 testcase( regFree2==0 ); 3552 break; 3553 } 3554 case TK_IS: 3555 case TK_ISNOT: { 3556 testcase( op==TK_IS ); 3557 testcase( op==TK_ISNOT ); 3558 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3559 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3560 op = (op==TK_IS) ? TK_EQ : TK_NE; 3561 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3562 r1, r2, dest, SQLITE_NULLEQ); 3563 testcase( regFree1==0 ); 3564 testcase( regFree2==0 ); 3565 break; 3566 } 3567 case TK_ISNULL: 3568 case TK_NOTNULL: { 3569 assert( TK_ISNULL==OP_IsNull ); 3570 assert( TK_NOTNULL==OP_NotNull ); 3571 testcase( op==TK_ISNULL ); 3572 testcase( op==TK_NOTNULL ); 3573 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3574 sqlite3VdbeAddOp2(v, op, r1, dest); 3575 testcase( regFree1==0 ); 3576 break; 3577 } 3578 case TK_BETWEEN: { 3579 testcase( jumpIfNull==0 ); 3580 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3581 break; 3582 } 3583 #ifndef SQLITE_OMIT_SUBQUERY 3584 case TK_IN: { 3585 int destIfFalse = sqlite3VdbeMakeLabel(v); 3586 int destIfNull = jumpIfNull ? dest : destIfFalse; 3587 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3588 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3589 sqlite3VdbeResolveLabel(v, destIfFalse); 3590 break; 3591 } 3592 #endif 3593 default: { 3594 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3595 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3596 testcase( regFree1==0 ); 3597 testcase( jumpIfNull==0 ); 3598 break; 3599 } 3600 } 3601 sqlite3ReleaseTempReg(pParse, regFree1); 3602 sqlite3ReleaseTempReg(pParse, regFree2); 3603 } 3604 3605 /* 3606 ** Generate code for a boolean expression such that a jump is made 3607 ** to the label "dest" if the expression is false but execution 3608 ** continues straight thru if the expression is true. 3609 ** 3610 ** If the expression evaluates to NULL (neither true nor false) then 3611 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3612 ** is 0. 3613 */ 3614 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3615 Vdbe *v = pParse->pVdbe; 3616 int op = 0; 3617 int regFree1 = 0; 3618 int regFree2 = 0; 3619 int r1, r2; 3620 3621 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3622 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */ 3623 if( pExpr==0 ) return; 3624 3625 /* The value of pExpr->op and op are related as follows: 3626 ** 3627 ** pExpr->op op 3628 ** --------- ---------- 3629 ** TK_ISNULL OP_NotNull 3630 ** TK_NOTNULL OP_IsNull 3631 ** TK_NE OP_Eq 3632 ** TK_EQ OP_Ne 3633 ** TK_GT OP_Le 3634 ** TK_LE OP_Gt 3635 ** TK_GE OP_Lt 3636 ** TK_LT OP_Ge 3637 ** 3638 ** For other values of pExpr->op, op is undefined and unused. 3639 ** The value of TK_ and OP_ constants are arranged such that we 3640 ** can compute the mapping above using the following expression. 3641 ** Assert()s verify that the computation is correct. 3642 */ 3643 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3644 3645 /* Verify correct alignment of TK_ and OP_ constants 3646 */ 3647 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3648 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3649 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3650 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3651 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3652 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3653 assert( pExpr->op!=TK_GT || op==OP_Le ); 3654 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3655 3656 switch( pExpr->op ){ 3657 case TK_AND: { 3658 testcase( jumpIfNull==0 ); 3659 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3660 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3661 break; 3662 } 3663 case TK_OR: { 3664 int d2 = sqlite3VdbeMakeLabel(v); 3665 testcase( jumpIfNull==0 ); 3666 sqlite3ExprCachePush(pParse); 3667 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3668 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3669 sqlite3VdbeResolveLabel(v, d2); 3670 sqlite3ExprCachePop(pParse, 1); 3671 break; 3672 } 3673 case TK_NOT: { 3674 testcase( jumpIfNull==0 ); 3675 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3676 break; 3677 } 3678 case TK_LT: 3679 case TK_LE: 3680 case TK_GT: 3681 case TK_GE: 3682 case TK_NE: 3683 case TK_EQ: { 3684 testcase( op==TK_LT ); 3685 testcase( op==TK_LE ); 3686 testcase( op==TK_GT ); 3687 testcase( op==TK_GE ); 3688 testcase( op==TK_EQ ); 3689 testcase( op==TK_NE ); 3690 testcase( jumpIfNull==0 ); 3691 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3692 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3693 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3694 r1, r2, dest, jumpIfNull); 3695 testcase( regFree1==0 ); 3696 testcase( regFree2==0 ); 3697 break; 3698 } 3699 case TK_IS: 3700 case TK_ISNOT: { 3701 testcase( pExpr->op==TK_IS ); 3702 testcase( pExpr->op==TK_ISNOT ); 3703 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3704 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3705 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3706 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3707 r1, r2, dest, SQLITE_NULLEQ); 3708 testcase( regFree1==0 ); 3709 testcase( regFree2==0 ); 3710 break; 3711 } 3712 case TK_ISNULL: 3713 case TK_NOTNULL: { 3714 testcase( op==TK_ISNULL ); 3715 testcase( op==TK_NOTNULL ); 3716 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3717 sqlite3VdbeAddOp2(v, op, r1, dest); 3718 testcase( regFree1==0 ); 3719 break; 3720 } 3721 case TK_BETWEEN: { 3722 testcase( jumpIfNull==0 ); 3723 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3724 break; 3725 } 3726 #ifndef SQLITE_OMIT_SUBQUERY 3727 case TK_IN: { 3728 if( jumpIfNull ){ 3729 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3730 }else{ 3731 int destIfNull = sqlite3VdbeMakeLabel(v); 3732 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3733 sqlite3VdbeResolveLabel(v, destIfNull); 3734 } 3735 break; 3736 } 3737 #endif 3738 default: { 3739 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3740 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3741 testcase( regFree1==0 ); 3742 testcase( jumpIfNull==0 ); 3743 break; 3744 } 3745 } 3746 sqlite3ReleaseTempReg(pParse, regFree1); 3747 sqlite3ReleaseTempReg(pParse, regFree2); 3748 } 3749 3750 /* 3751 ** Do a deep comparison of two expression trees. Return 0 if the two 3752 ** expressions are completely identical. Return 1 if they differ only 3753 ** by a COLLATE operator at the top level. Return 2 if there are differences 3754 ** other than the top-level COLLATE operator. 3755 ** 3756 ** Sometimes this routine will return 2 even if the two expressions 3757 ** really are equivalent. If we cannot prove that the expressions are 3758 ** identical, we return 2 just to be safe. So if this routine 3759 ** returns 2, then you do not really know for certain if the two 3760 ** expressions are the same. But if you get a 0 or 1 return, then you 3761 ** can be sure the expressions are the same. In the places where 3762 ** this routine is used, it does not hurt to get an extra 2 - that 3763 ** just might result in some slightly slower code. But returning 3764 ** an incorrect 0 or 1 could lead to a malfunction. 3765 */ 3766 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3767 if( pA==0||pB==0 ){ 3768 return pB==pA ? 0 : 2; 3769 } 3770 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); 3771 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); 3772 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3773 return 2; 3774 } 3775 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3776 if( pA->op!=pB->op ) return 2; 3777 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; 3778 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; 3779 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; 3780 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; 3781 if( ExprHasProperty(pA, EP_IntValue) ){ 3782 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ 3783 return 2; 3784 } 3785 }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ 3786 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; 3787 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3788 return 2; 3789 } 3790 } 3791 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1; 3792 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2; 3793 return 0; 3794 } 3795 3796 /* 3797 ** Compare two ExprList objects. Return 0 if they are identical and 3798 ** non-zero if they differ in any way. 3799 ** 3800 ** This routine might return non-zero for equivalent ExprLists. The 3801 ** only consequence will be disabled optimizations. But this routine 3802 ** must never return 0 if the two ExprList objects are different, or 3803 ** a malfunction will result. 3804 ** 3805 ** Two NULL pointers are considered to be the same. But a NULL pointer 3806 ** always differs from a non-NULL pointer. 3807 */ 3808 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ 3809 int i; 3810 if( pA==0 && pB==0 ) return 0; 3811 if( pA==0 || pB==0 ) return 1; 3812 if( pA->nExpr!=pB->nExpr ) return 1; 3813 for(i=0; i<pA->nExpr; i++){ 3814 Expr *pExprA = pA->a[i].pExpr; 3815 Expr *pExprB = pB->a[i].pExpr; 3816 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3817 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; 3818 } 3819 return 0; 3820 } 3821 3822 /* 3823 ** An instance of the following structure is used by the tree walker 3824 ** to count references to table columns in the arguments of an 3825 ** aggregate function, in order to implement the 3826 ** sqlite3FunctionThisSrc() routine. 3827 */ 3828 struct SrcCount { 3829 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3830 int nThis; /* Number of references to columns in pSrcList */ 3831 int nOther; /* Number of references to columns in other FROM clauses */ 3832 }; 3833 3834 /* 3835 ** Count the number of references to columns. 3836 */ 3837 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3838 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3839 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3840 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3841 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3842 ** NEVER() will need to be removed. */ 3843 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3844 int i; 3845 struct SrcCount *p = pWalker->u.pSrcCount; 3846 SrcList *pSrc = p->pSrc; 3847 for(i=0; i<pSrc->nSrc; i++){ 3848 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3849 } 3850 if( i<pSrc->nSrc ){ 3851 p->nThis++; 3852 }else{ 3853 p->nOther++; 3854 } 3855 } 3856 return WRC_Continue; 3857 } 3858 3859 /* 3860 ** Determine if any of the arguments to the pExpr Function reference 3861 ** pSrcList. Return true if they do. Also return true if the function 3862 ** has no arguments or has only constant arguments. Return false if pExpr 3863 ** references columns but not columns of tables found in pSrcList. 3864 */ 3865 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3866 Walker w; 3867 struct SrcCount cnt; 3868 assert( pExpr->op==TK_AGG_FUNCTION ); 3869 memset(&w, 0, sizeof(w)); 3870 w.xExprCallback = exprSrcCount; 3871 w.u.pSrcCount = &cnt; 3872 cnt.pSrc = pSrcList; 3873 cnt.nThis = 0; 3874 cnt.nOther = 0; 3875 sqlite3WalkExprList(&w, pExpr->x.pList); 3876 return cnt.nThis>0 || cnt.nOther==0; 3877 } 3878 3879 /* 3880 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3881 ** the new element. Return a negative number if malloc fails. 3882 */ 3883 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3884 int i; 3885 pInfo->aCol = sqlite3ArrayAllocate( 3886 db, 3887 pInfo->aCol, 3888 sizeof(pInfo->aCol[0]), 3889 &pInfo->nColumn, 3890 &i 3891 ); 3892 return i; 3893 } 3894 3895 /* 3896 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3897 ** the new element. Return a negative number if malloc fails. 3898 */ 3899 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3900 int i; 3901 pInfo->aFunc = sqlite3ArrayAllocate( 3902 db, 3903 pInfo->aFunc, 3904 sizeof(pInfo->aFunc[0]), 3905 &pInfo->nFunc, 3906 &i 3907 ); 3908 return i; 3909 } 3910 3911 /* 3912 ** This is the xExprCallback for a tree walker. It is used to 3913 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3914 ** for additional information. 3915 */ 3916 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3917 int i; 3918 NameContext *pNC = pWalker->u.pNC; 3919 Parse *pParse = pNC->pParse; 3920 SrcList *pSrcList = pNC->pSrcList; 3921 AggInfo *pAggInfo = pNC->pAggInfo; 3922 3923 switch( pExpr->op ){ 3924 case TK_AGG_COLUMN: 3925 case TK_COLUMN: { 3926 testcase( pExpr->op==TK_AGG_COLUMN ); 3927 testcase( pExpr->op==TK_COLUMN ); 3928 /* Check to see if the column is in one of the tables in the FROM 3929 ** clause of the aggregate query */ 3930 if( ALWAYS(pSrcList!=0) ){ 3931 struct SrcList_item *pItem = pSrcList->a; 3932 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3933 struct AggInfo_col *pCol; 3934 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3935 if( pExpr->iTable==pItem->iCursor ){ 3936 /* If we reach this point, it means that pExpr refers to a table 3937 ** that is in the FROM clause of the aggregate query. 3938 ** 3939 ** Make an entry for the column in pAggInfo->aCol[] if there 3940 ** is not an entry there already. 3941 */ 3942 int k; 3943 pCol = pAggInfo->aCol; 3944 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3945 if( pCol->iTable==pExpr->iTable && 3946 pCol->iColumn==pExpr->iColumn ){ 3947 break; 3948 } 3949 } 3950 if( (k>=pAggInfo->nColumn) 3951 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3952 ){ 3953 pCol = &pAggInfo->aCol[k]; 3954 pCol->pTab = pExpr->pTab; 3955 pCol->iTable = pExpr->iTable; 3956 pCol->iColumn = pExpr->iColumn; 3957 pCol->iMem = ++pParse->nMem; 3958 pCol->iSorterColumn = -1; 3959 pCol->pExpr = pExpr; 3960 if( pAggInfo->pGroupBy ){ 3961 int j, n; 3962 ExprList *pGB = pAggInfo->pGroupBy; 3963 struct ExprList_item *pTerm = pGB->a; 3964 n = pGB->nExpr; 3965 for(j=0; j<n; j++, pTerm++){ 3966 Expr *pE = pTerm->pExpr; 3967 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3968 pE->iColumn==pExpr->iColumn ){ 3969 pCol->iSorterColumn = j; 3970 break; 3971 } 3972 } 3973 } 3974 if( pCol->iSorterColumn<0 ){ 3975 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3976 } 3977 } 3978 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3979 ** because it was there before or because we just created it). 3980 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3981 ** pAggInfo->aCol[] entry. 3982 */ 3983 ExprSetIrreducible(pExpr); 3984 pExpr->pAggInfo = pAggInfo; 3985 pExpr->op = TK_AGG_COLUMN; 3986 pExpr->iAgg = (i16)k; 3987 break; 3988 } /* endif pExpr->iTable==pItem->iCursor */ 3989 } /* end loop over pSrcList */ 3990 } 3991 return WRC_Prune; 3992 } 3993 case TK_AGG_FUNCTION: { 3994 if( (pNC->ncFlags & NC_InAggFunc)==0 3995 && pWalker->walkerDepth==pExpr->op2 3996 ){ 3997 /* Check to see if pExpr is a duplicate of another aggregate 3998 ** function that is already in the pAggInfo structure 3999 */ 4000 struct AggInfo_func *pItem = pAggInfo->aFunc; 4001 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4002 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ 4003 break; 4004 } 4005 } 4006 if( i>=pAggInfo->nFunc ){ 4007 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4008 */ 4009 u8 enc = ENC(pParse->db); 4010 i = addAggInfoFunc(pParse->db, pAggInfo); 4011 if( i>=0 ){ 4012 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4013 pItem = &pAggInfo->aFunc[i]; 4014 pItem->pExpr = pExpr; 4015 pItem->iMem = ++pParse->nMem; 4016 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4017 pItem->pFunc = sqlite3FindFunction(pParse->db, 4018 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4019 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4020 if( pExpr->flags & EP_Distinct ){ 4021 pItem->iDistinct = pParse->nTab++; 4022 }else{ 4023 pItem->iDistinct = -1; 4024 } 4025 } 4026 } 4027 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4028 */ 4029 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4030 ExprSetIrreducible(pExpr); 4031 pExpr->iAgg = (i16)i; 4032 pExpr->pAggInfo = pAggInfo; 4033 return WRC_Prune; 4034 }else{ 4035 return WRC_Continue; 4036 } 4037 } 4038 } 4039 return WRC_Continue; 4040 } 4041 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4042 UNUSED_PARAMETER(pWalker); 4043 UNUSED_PARAMETER(pSelect); 4044 return WRC_Continue; 4045 } 4046 4047 /* 4048 ** Analyze the pExpr expression looking for aggregate functions and 4049 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4050 ** points to. Additional entries are made on the AggInfo object as 4051 ** necessary. 4052 ** 4053 ** This routine should only be called after the expression has been 4054 ** analyzed by sqlite3ResolveExprNames(). 4055 */ 4056 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4057 Walker w; 4058 memset(&w, 0, sizeof(w)); 4059 w.xExprCallback = analyzeAggregate; 4060 w.xSelectCallback = analyzeAggregatesInSelect; 4061 w.u.pNC = pNC; 4062 assert( pNC->pSrcList!=0 ); 4063 sqlite3WalkExpr(&w, pExpr); 4064 } 4065 4066 /* 4067 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4068 ** expression list. Return the number of errors. 4069 ** 4070 ** If an error is found, the analysis is cut short. 4071 */ 4072 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4073 struct ExprList_item *pItem; 4074 int i; 4075 if( pList ){ 4076 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4077 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4078 } 4079 } 4080 } 4081 4082 /* 4083 ** Allocate a single new register for use to hold some intermediate result. 4084 */ 4085 int sqlite3GetTempReg(Parse *pParse){ 4086 if( pParse->nTempReg==0 ){ 4087 return ++pParse->nMem; 4088 } 4089 return pParse->aTempReg[--pParse->nTempReg]; 4090 } 4091 4092 /* 4093 ** Deallocate a register, making available for reuse for some other 4094 ** purpose. 4095 ** 4096 ** If a register is currently being used by the column cache, then 4097 ** the dallocation is deferred until the column cache line that uses 4098 ** the register becomes stale. 4099 */ 4100 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4101 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4102 int i; 4103 struct yColCache *p; 4104 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4105 if( p->iReg==iReg ){ 4106 p->tempReg = 1; 4107 return; 4108 } 4109 } 4110 pParse->aTempReg[pParse->nTempReg++] = iReg; 4111 } 4112 } 4113 4114 /* 4115 ** Allocate or deallocate a block of nReg consecutive registers 4116 */ 4117 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4118 int i, n; 4119 i = pParse->iRangeReg; 4120 n = pParse->nRangeReg; 4121 if( nReg<=n ){ 4122 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4123 pParse->iRangeReg += nReg; 4124 pParse->nRangeReg -= nReg; 4125 }else{ 4126 i = pParse->nMem+1; 4127 pParse->nMem += nReg; 4128 } 4129 return i; 4130 } 4131 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4132 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4133 if( nReg>pParse->nRangeReg ){ 4134 pParse->nRangeReg = nReg; 4135 pParse->iRangeReg = iReg; 4136 } 4137 } 4138 4139 /* 4140 ** Mark all temporary registers as being unavailable for reuse. 4141 */ 4142 void sqlite3ClearTempRegCache(Parse *pParse){ 4143 pParse->nTempReg = 0; 4144 pParse->nRangeReg = 0; 4145 } 4146