xref: /sqlite-3.40.0/src/expr.c (revision c5c07079)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op = pExpr->op;
35   if( op==TK_SELECT ){
36     assert( pExpr->flags&EP_xIsSelect );
37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38   }
39 #ifndef SQLITE_OMIT_CAST
40   if( op==TK_CAST ){
41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
42     return sqlite3AffinityType(pExpr->u.zToken);
43   }
44 #endif
45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46    && pExpr->pTab!=0
47   ){
48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49     ** a TK_COLUMN but was previously evaluated and cached in a register */
50     int j = pExpr->iColumn;
51     if( j<0 ) return SQLITE_AFF_INTEGER;
52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
53     return pExpr->pTab->aCol[j].affinity;
54   }
55   return pExpr->affinity;
56 }
57 
58 /*
59 ** Set the explicit collating sequence for an expression to the
60 ** collating sequence supplied in the second argument.
61 */
62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63   if( pExpr && pColl ){
64     pExpr->pColl = pColl;
65     pExpr->flags |= EP_ExpCollate;
66   }
67   return pExpr;
68 }
69 
70 /*
71 ** Set the collating sequence for expression pExpr to be the collating
72 ** sequence named by pToken.   Return a pointer to the revised expression.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
74 ** flag.  An explicit collating sequence will override implicit
75 ** collating sequences.
76 */
77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78   char *zColl = 0;            /* Dequoted name of collation sequence */
79   CollSeq *pColl;
80   sqlite3 *db = pParse->db;
81   zColl = sqlite3NameFromToken(db, pCollName);
82   pColl = sqlite3LocateCollSeq(pParse, zColl);
83   sqlite3ExprSetColl(pExpr, pColl);
84   sqlite3DbFree(db, zColl);
85   return pExpr;
86 }
87 
88 /*
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
91 */
92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93   CollSeq *pColl = 0;
94   Expr *p = pExpr;
95   while( p ){
96     int op;
97     pColl = p->pColl;
98     if( pColl ) break;
99     op = p->op;
100     if( p->pTab!=0 && (
101         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102     )){
103       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104       ** a TK_COLUMN but was previously evaluated and cached in a register */
105       const char *zColl;
106       int j = p->iColumn;
107       if( j>=0 ){
108         sqlite3 *db = pParse->db;
109         zColl = p->pTab->aCol[j].zColl;
110         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111         pExpr->pColl = pColl;
112       }
113       break;
114     }
115     if( op!=TK_CAST && op!=TK_UPLUS ){
116       break;
117     }
118     p = p->pLeft;
119   }
120   if( sqlite3CheckCollSeq(pParse, pColl) ){
121     pColl = 0;
122   }
123   return pColl;
124 }
125 
126 /*
127 ** pExpr is an operand of a comparison operator.  aff2 is the
128 ** type affinity of the other operand.  This routine returns the
129 ** type affinity that should be used for the comparison operator.
130 */
131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132   char aff1 = sqlite3ExprAffinity(pExpr);
133   if( aff1 && aff2 ){
134     /* Both sides of the comparison are columns. If one has numeric
135     ** affinity, use that. Otherwise use no affinity.
136     */
137     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138       return SQLITE_AFF_NUMERIC;
139     }else{
140       return SQLITE_AFF_NONE;
141     }
142   }else if( !aff1 && !aff2 ){
143     /* Neither side of the comparison is a column.  Compare the
144     ** results directly.
145     */
146     return SQLITE_AFF_NONE;
147   }else{
148     /* One side is a column, the other is not. Use the columns affinity. */
149     assert( aff1==0 || aff2==0 );
150     return (aff1 + aff2);
151   }
152 }
153 
154 /*
155 ** pExpr is a comparison operator.  Return the type affinity that should
156 ** be applied to both operands prior to doing the comparison.
157 */
158 static char comparisonAffinity(Expr *pExpr){
159   char aff;
160   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163   assert( pExpr->pLeft );
164   aff = sqlite3ExprAffinity(pExpr->pLeft);
165   if( pExpr->pRight ){
166     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169   }else if( !aff ){
170     aff = SQLITE_AFF_NONE;
171   }
172   return aff;
173 }
174 
175 /*
176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177 ** idx_affinity is the affinity of an indexed column. Return true
178 ** if the index with affinity idx_affinity may be used to implement
179 ** the comparison in pExpr.
180 */
181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182   char aff = comparisonAffinity(pExpr);
183   switch( aff ){
184     case SQLITE_AFF_NONE:
185       return 1;
186     case SQLITE_AFF_TEXT:
187       return idx_affinity==SQLITE_AFF_TEXT;
188     default:
189       return sqlite3IsNumericAffinity(idx_affinity);
190   }
191 }
192 
193 /*
194 ** Return the P5 value that should be used for a binary comparison
195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196 */
197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200   return aff;
201 }
202 
203 /*
204 ** Return a pointer to the collation sequence that should be used by
205 ** a binary comparison operator comparing pLeft and pRight.
206 **
207 ** If the left hand expression has a collating sequence type, then it is
208 ** used. Otherwise the collation sequence for the right hand expression
209 ** is used, or the default (BINARY) if neither expression has a collating
210 ** type.
211 **
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered.
214 */
215 CollSeq *sqlite3BinaryCompareCollSeq(
216   Parse *pParse,
217   Expr *pLeft,
218   Expr *pRight
219 ){
220   CollSeq *pColl;
221   assert( pLeft );
222   if( pLeft->flags & EP_ExpCollate ){
223     assert( pLeft->pColl );
224     pColl = pLeft->pColl;
225   }else if( pRight && pRight->flags & EP_ExpCollate ){
226     assert( pRight->pColl );
227     pColl = pRight->pColl;
228   }else{
229     pColl = sqlite3ExprCollSeq(pParse, pLeft);
230     if( !pColl ){
231       pColl = sqlite3ExprCollSeq(pParse, pRight);
232     }
233   }
234   return pColl;
235 }
236 
237 /*
238 ** Generate code for a comparison operator.
239 */
240 static int codeCompare(
241   Parse *pParse,    /* The parsing (and code generating) context */
242   Expr *pLeft,      /* The left operand */
243   Expr *pRight,     /* The right operand */
244   int opcode,       /* The comparison opcode */
245   int in1, int in2, /* Register holding operands */
246   int dest,         /* Jump here if true.  */
247   int jumpIfNull    /* If true, jump if either operand is NULL */
248 ){
249   int p5;
250   int addr;
251   CollSeq *p4;
252 
253   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256                            (void*)p4, P4_COLLSEQ);
257   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258   return addr;
259 }
260 
261 #if SQLITE_MAX_EXPR_DEPTH>0
262 /*
263 ** Check that argument nHeight is less than or equal to the maximum
264 ** expression depth allowed. If it is not, leave an error message in
265 ** pParse.
266 */
267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268   int rc = SQLITE_OK;
269   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270   if( nHeight>mxHeight ){
271     sqlite3ErrorMsg(pParse,
272        "Expression tree is too large (maximum depth %d)", mxHeight
273     );
274     rc = SQLITE_ERROR;
275   }
276   return rc;
277 }
278 
279 /* The following three functions, heightOfExpr(), heightOfExprList()
280 ** and heightOfSelect(), are used to determine the maximum height
281 ** of any expression tree referenced by the structure passed as the
282 ** first argument.
283 **
284 ** If this maximum height is greater than the current value pointed
285 ** to by pnHeight, the second parameter, then set *pnHeight to that
286 ** value.
287 */
288 static void heightOfExpr(Expr *p, int *pnHeight){
289   if( p ){
290     if( p->nHeight>*pnHeight ){
291       *pnHeight = p->nHeight;
292     }
293   }
294 }
295 static void heightOfExprList(ExprList *p, int *pnHeight){
296   if( p ){
297     int i;
298     for(i=0; i<p->nExpr; i++){
299       heightOfExpr(p->a[i].pExpr, pnHeight);
300     }
301   }
302 }
303 static void heightOfSelect(Select *p, int *pnHeight){
304   if( p ){
305     heightOfExpr(p->pWhere, pnHeight);
306     heightOfExpr(p->pHaving, pnHeight);
307     heightOfExpr(p->pLimit, pnHeight);
308     heightOfExpr(p->pOffset, pnHeight);
309     heightOfExprList(p->pEList, pnHeight);
310     heightOfExprList(p->pGroupBy, pnHeight);
311     heightOfExprList(p->pOrderBy, pnHeight);
312     heightOfSelect(p->pPrior, pnHeight);
313   }
314 }
315 
316 /*
317 ** Set the Expr.nHeight variable in the structure passed as an
318 ** argument. An expression with no children, Expr.pList or
319 ** Expr.pSelect member has a height of 1. Any other expression
320 ** has a height equal to the maximum height of any other
321 ** referenced Expr plus one.
322 */
323 static void exprSetHeight(Expr *p){
324   int nHeight = 0;
325   heightOfExpr(p->pLeft, &nHeight);
326   heightOfExpr(p->pRight, &nHeight);
327   if( ExprHasProperty(p, EP_xIsSelect) ){
328     heightOfSelect(p->x.pSelect, &nHeight);
329   }else{
330     heightOfExprList(p->x.pList, &nHeight);
331   }
332   p->nHeight = nHeight + 1;
333 }
334 
335 /*
336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
337 ** the height is greater than the maximum allowed expression depth,
338 ** leave an error in pParse.
339 */
340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341   exprSetHeight(p);
342   sqlite3ExprCheckHeight(pParse, p->nHeight);
343 }
344 
345 /*
346 ** Return the maximum height of any expression tree referenced
347 ** by the select statement passed as an argument.
348 */
349 int sqlite3SelectExprHeight(Select *p){
350   int nHeight = 0;
351   heightOfSelect(p, &nHeight);
352   return nHeight;
353 }
354 #else
355   #define exprSetHeight(y)
356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357 
358 /*
359 ** This routine is the core allocator for Expr nodes.
360 **
361 ** Construct a new expression node and return a pointer to it.  Memory
362 ** for this node and for the pToken argument is a single allocation
363 ** obtained from sqlite3DbMalloc().  The calling function
364 ** is responsible for making sure the node eventually gets freed.
365 **
366 ** If dequote is true, then the token (if it exists) is dequoted.
367 ** If dequote is false, no dequoting is performance.  The deQuote
368 ** parameter is ignored if pToken is NULL or if the token does not
369 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
370 ** then the EP_DblQuoted flag is set on the expression node.
371 **
372 ** Special case:  If op==TK_INTEGER and pToken points to a string that
373 ** can be translated into a 32-bit integer, then the token is not
374 ** stored in u.zToken.  Instead, the integer values is written
375 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
376 ** is allocated to hold the integer text and the dequote flag is ignored.
377 */
378 Expr *sqlite3ExprAlloc(
379   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
380   int op,                 /* Expression opcode */
381   const Token *pToken,    /* Token argument.  Might be NULL */
382   int dequote             /* True to dequote */
383 ){
384   Expr *pNew;
385   int nExtra = 0;
386   int iValue = 0;
387 
388   if( pToken ){
389     if( op!=TK_INTEGER || pToken->z==0
390           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391       nExtra = pToken->n+1;
392       assert( iValue>=0 );
393     }
394   }
395   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396   if( pNew ){
397     pNew->op = (u8)op;
398     pNew->iAgg = -1;
399     if( pToken ){
400       if( nExtra==0 ){
401         pNew->flags |= EP_IntValue;
402         pNew->u.iValue = iValue;
403       }else{
404         int c;
405         pNew->u.zToken = (char*)&pNew[1];
406         assert( pToken->z!=0 || pToken->n==0 );
407         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
408         pNew->u.zToken[pToken->n] = 0;
409         if( dequote && nExtra>=3
410              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
411           sqlite3Dequote(pNew->u.zToken);
412           if( c=='"' ) pNew->flags |= EP_DblQuoted;
413         }
414       }
415     }
416 #if SQLITE_MAX_EXPR_DEPTH>0
417     pNew->nHeight = 1;
418 #endif
419   }
420   return pNew;
421 }
422 
423 /*
424 ** Allocate a new expression node from a zero-terminated token that has
425 ** already been dequoted.
426 */
427 Expr *sqlite3Expr(
428   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
429   int op,                 /* Expression opcode */
430   const char *zToken      /* Token argument.  Might be NULL */
431 ){
432   Token x;
433   x.z = zToken;
434   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
435   return sqlite3ExprAlloc(db, op, &x, 0);
436 }
437 
438 /*
439 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
440 **
441 ** If pRoot==NULL that means that a memory allocation error has occurred.
442 ** In that case, delete the subtrees pLeft and pRight.
443 */
444 void sqlite3ExprAttachSubtrees(
445   sqlite3 *db,
446   Expr *pRoot,
447   Expr *pLeft,
448   Expr *pRight
449 ){
450   if( pRoot==0 ){
451     assert( db->mallocFailed );
452     sqlite3ExprDelete(db, pLeft);
453     sqlite3ExprDelete(db, pRight);
454   }else{
455     if( pRight ){
456       pRoot->pRight = pRight;
457       if( pRight->flags & EP_ExpCollate ){
458         pRoot->flags |= EP_ExpCollate;
459         pRoot->pColl = pRight->pColl;
460       }
461     }
462     if( pLeft ){
463       pRoot->pLeft = pLeft;
464       if( pLeft->flags & EP_ExpCollate ){
465         pRoot->flags |= EP_ExpCollate;
466         pRoot->pColl = pLeft->pColl;
467       }
468     }
469     exprSetHeight(pRoot);
470   }
471 }
472 
473 /*
474 ** Allocate a Expr node which joins as many as two subtrees.
475 **
476 ** One or both of the subtrees can be NULL.  Return a pointer to the new
477 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
478 ** free the subtrees and return NULL.
479 */
480 Expr *sqlite3PExpr(
481   Parse *pParse,          /* Parsing context */
482   int op,                 /* Expression opcode */
483   Expr *pLeft,            /* Left operand */
484   Expr *pRight,           /* Right operand */
485   const Token *pToken     /* Argument token */
486 ){
487   Expr *p;
488   if( op==TK_AND && pLeft && pRight ){
489     /* Take advantage of short-circuit false optimization for AND */
490     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
491   }else{
492     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
493     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
494   }
495   if( p ) {
496     sqlite3ExprCheckHeight(pParse, p->nHeight);
497   }
498   return p;
499 }
500 
501 /*
502 ** Return 1 if an expression must be FALSE in all cases and 0 if the
503 ** expression might be true.  This is an optimization.  If is OK to
504 ** return 0 here even if the expression really is always false (a
505 ** false negative).  But it is a bug to return 1 if the expression
506 ** might be true in some rare circumstances (a false positive.)
507 **
508 ** Note that if the expression is part of conditional for a
509 ** LEFT JOIN, then we cannot determine at compile-time whether or not
510 ** is it true or false, so always return 0.
511 */
512 static int exprAlwaysFalse(Expr *p){
513   int v = 0;
514   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
515   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
516   return v==0;
517 }
518 
519 /*
520 ** Join two expressions using an AND operator.  If either expression is
521 ** NULL, then just return the other expression.
522 **
523 ** If one side or the other of the AND is known to be false, then instead
524 ** of returning an AND expression, just return a constant expression with
525 ** a value of false.
526 */
527 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
528   if( pLeft==0 ){
529     return pRight;
530   }else if( pRight==0 ){
531     return pLeft;
532   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
533     sqlite3ExprDelete(db, pLeft);
534     sqlite3ExprDelete(db, pRight);
535     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
536   }else{
537     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
538     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
539     return pNew;
540   }
541 }
542 
543 /*
544 ** Construct a new expression node for a function with multiple
545 ** arguments.
546 */
547 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
548   Expr *pNew;
549   sqlite3 *db = pParse->db;
550   assert( pToken );
551   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
552   if( pNew==0 ){
553     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
554     return 0;
555   }
556   pNew->x.pList = pList;
557   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
558   sqlite3ExprSetHeight(pParse, pNew);
559   return pNew;
560 }
561 
562 /*
563 ** Assign a variable number to an expression that encodes a wildcard
564 ** in the original SQL statement.
565 **
566 ** Wildcards consisting of a single "?" are assigned the next sequential
567 ** variable number.
568 **
569 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
570 ** sure "nnn" is not too be to avoid a denial of service attack when
571 ** the SQL statement comes from an external source.
572 **
573 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
574 ** as the previous instance of the same wildcard.  Or if this is the first
575 ** instance of the wildcard, the next sequenial variable number is
576 ** assigned.
577 */
578 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
579   sqlite3 *db = pParse->db;
580   const char *z;
581 
582   if( pExpr==0 ) return;
583   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
584   z = pExpr->u.zToken;
585   assert( z!=0 );
586   assert( z[0]!=0 );
587   if( z[1]==0 ){
588     /* Wildcard of the form "?".  Assign the next variable number */
589     assert( z[0]=='?' );
590     pExpr->iColumn = (ynVar)(++pParse->nVar);
591   }else{
592     ynVar x = 0;
593     u32 n = sqlite3Strlen30(z);
594     if( z[0]=='?' ){
595       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
596       ** use it as the variable number */
597       i64 i;
598       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
599       pExpr->iColumn = x = (ynVar)i;
600       testcase( i==0 );
601       testcase( i==1 );
602       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
603       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
604       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
605         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
606             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
607         x = 0;
608       }
609       if( i>pParse->nVar ){
610         pParse->nVar = (int)i;
611       }
612     }else{
613       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
614       ** number as the prior appearance of the same name, or if the name
615       ** has never appeared before, reuse the same variable number
616       */
617       ynVar i;
618       for(i=0; i<pParse->nzVar; i++){
619         if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){
620           pExpr->iColumn = x = (ynVar)i+1;
621           break;
622         }
623       }
624       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
625     }
626     if( x>0 ){
627       if( x>pParse->nzVar ){
628         char **a;
629         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
630         if( a==0 ) return;  /* Error reported through db->mallocFailed */
631         pParse->azVar = a;
632         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
633         pParse->nzVar = x;
634       }
635       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
636         sqlite3DbFree(db, pParse->azVar[x-1]);
637         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
638       }
639     }
640   }
641   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
642     sqlite3ErrorMsg(pParse, "too many SQL variables");
643   }
644 }
645 
646 /*
647 ** Recursively delete an expression tree.
648 */
649 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
650   if( p==0 ) return;
651   /* Sanity check: Assert that the IntValue is non-negative if it exists */
652   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
653   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
654     sqlite3ExprDelete(db, p->pLeft);
655     sqlite3ExprDelete(db, p->pRight);
656     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
657       sqlite3DbFree(db, p->u.zToken);
658     }
659     if( ExprHasProperty(p, EP_xIsSelect) ){
660       sqlite3SelectDelete(db, p->x.pSelect);
661     }else{
662       sqlite3ExprListDelete(db, p->x.pList);
663     }
664   }
665   if( !ExprHasProperty(p, EP_Static) ){
666     sqlite3DbFree(db, p);
667   }
668 }
669 
670 /*
671 ** Return the number of bytes allocated for the expression structure
672 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
673 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
674 */
675 static int exprStructSize(Expr *p){
676   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
677   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
678   return EXPR_FULLSIZE;
679 }
680 
681 /*
682 ** The dupedExpr*Size() routines each return the number of bytes required
683 ** to store a copy of an expression or expression tree.  They differ in
684 ** how much of the tree is measured.
685 **
686 **     dupedExprStructSize()     Size of only the Expr structure
687 **     dupedExprNodeSize()       Size of Expr + space for token
688 **     dupedExprSize()           Expr + token + subtree components
689 **
690 ***************************************************************************
691 **
692 ** The dupedExprStructSize() function returns two values OR-ed together:
693 ** (1) the space required for a copy of the Expr structure only and
694 ** (2) the EP_xxx flags that indicate what the structure size should be.
695 ** The return values is always one of:
696 **
697 **      EXPR_FULLSIZE
698 **      EXPR_REDUCEDSIZE   | EP_Reduced
699 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
700 **
701 ** The size of the structure can be found by masking the return value
702 ** of this routine with 0xfff.  The flags can be found by masking the
703 ** return value with EP_Reduced|EP_TokenOnly.
704 **
705 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
706 ** (unreduced) Expr objects as they or originally constructed by the parser.
707 ** During expression analysis, extra information is computed and moved into
708 ** later parts of teh Expr object and that extra information might get chopped
709 ** off if the expression is reduced.  Note also that it does not work to
710 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
711 ** to reduce a pristine expression tree from the parser.  The implementation
712 ** of dupedExprStructSize() contain multiple assert() statements that attempt
713 ** to enforce this constraint.
714 */
715 static int dupedExprStructSize(Expr *p, int flags){
716   int nSize;
717   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
718   if( 0==(flags&EXPRDUP_REDUCE) ){
719     nSize = EXPR_FULLSIZE;
720   }else{
721     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
722     assert( !ExprHasProperty(p, EP_FromJoin) );
723     assert( (p->flags2 & EP2_MallocedToken)==0 );
724     assert( (p->flags2 & EP2_Irreducible)==0 );
725     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
726       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
727     }else{
728       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
729     }
730   }
731   return nSize;
732 }
733 
734 /*
735 ** This function returns the space in bytes required to store the copy
736 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
737 ** string is defined.)
738 */
739 static int dupedExprNodeSize(Expr *p, int flags){
740   int nByte = dupedExprStructSize(p, flags) & 0xfff;
741   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
742     nByte += sqlite3Strlen30(p->u.zToken)+1;
743   }
744   return ROUND8(nByte);
745 }
746 
747 /*
748 ** Return the number of bytes required to create a duplicate of the
749 ** expression passed as the first argument. The second argument is a
750 ** mask containing EXPRDUP_XXX flags.
751 **
752 ** The value returned includes space to create a copy of the Expr struct
753 ** itself and the buffer referred to by Expr.u.zToken, if any.
754 **
755 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
756 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
757 ** and Expr.pRight variables (but not for any structures pointed to or
758 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
759 */
760 static int dupedExprSize(Expr *p, int flags){
761   int nByte = 0;
762   if( p ){
763     nByte = dupedExprNodeSize(p, flags);
764     if( flags&EXPRDUP_REDUCE ){
765       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
766     }
767   }
768   return nByte;
769 }
770 
771 /*
772 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
773 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
774 ** to store the copy of expression p, the copies of p->u.zToken
775 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
776 ** if any. Before returning, *pzBuffer is set to the first byte passed the
777 ** portion of the buffer copied into by this function.
778 */
779 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
780   Expr *pNew = 0;                      /* Value to return */
781   if( p ){
782     const int isReduced = (flags&EXPRDUP_REDUCE);
783     u8 *zAlloc;
784     u32 staticFlag = 0;
785 
786     assert( pzBuffer==0 || isReduced );
787 
788     /* Figure out where to write the new Expr structure. */
789     if( pzBuffer ){
790       zAlloc = *pzBuffer;
791       staticFlag = EP_Static;
792     }else{
793       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
794     }
795     pNew = (Expr *)zAlloc;
796 
797     if( pNew ){
798       /* Set nNewSize to the size allocated for the structure pointed to
799       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
800       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
801       ** by the copy of the p->u.zToken string (if any).
802       */
803       const unsigned nStructSize = dupedExprStructSize(p, flags);
804       const int nNewSize = nStructSize & 0xfff;
805       int nToken;
806       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
807         nToken = sqlite3Strlen30(p->u.zToken) + 1;
808       }else{
809         nToken = 0;
810       }
811       if( isReduced ){
812         assert( ExprHasProperty(p, EP_Reduced)==0 );
813         memcpy(zAlloc, p, nNewSize);
814       }else{
815         int nSize = exprStructSize(p);
816         memcpy(zAlloc, p, nSize);
817         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
818       }
819 
820       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
821       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
822       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
823       pNew->flags |= staticFlag;
824 
825       /* Copy the p->u.zToken string, if any. */
826       if( nToken ){
827         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
828         memcpy(zToken, p->u.zToken, nToken);
829       }
830 
831       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
832         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
833         if( ExprHasProperty(p, EP_xIsSelect) ){
834           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
835         }else{
836           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
837         }
838       }
839 
840       /* Fill in pNew->pLeft and pNew->pRight. */
841       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
842         zAlloc += dupedExprNodeSize(p, flags);
843         if( ExprHasProperty(pNew, EP_Reduced) ){
844           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
845           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
846         }
847         if( pzBuffer ){
848           *pzBuffer = zAlloc;
849         }
850       }else{
851         pNew->flags2 = 0;
852         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
853           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
854           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
855         }
856       }
857 
858     }
859   }
860   return pNew;
861 }
862 
863 /*
864 ** The following group of routines make deep copies of expressions,
865 ** expression lists, ID lists, and select statements.  The copies can
866 ** be deleted (by being passed to their respective ...Delete() routines)
867 ** without effecting the originals.
868 **
869 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
870 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
871 ** by subsequent calls to sqlite*ListAppend() routines.
872 **
873 ** Any tables that the SrcList might point to are not duplicated.
874 **
875 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
876 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
877 ** truncated version of the usual Expr structure that will be stored as
878 ** part of the in-memory representation of the database schema.
879 */
880 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
881   return exprDup(db, p, flags, 0);
882 }
883 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
884   ExprList *pNew;
885   struct ExprList_item *pItem, *pOldItem;
886   int i;
887   if( p==0 ) return 0;
888   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
889   if( pNew==0 ) return 0;
890   pNew->iECursor = 0;
891   pNew->nExpr = i = p->nExpr;
892   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
893   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
894   if( pItem==0 ){
895     sqlite3DbFree(db, pNew);
896     return 0;
897   }
898   pOldItem = p->a;
899   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
900     Expr *pOldExpr = pOldItem->pExpr;
901     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
902     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
903     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
904     pItem->sortOrder = pOldItem->sortOrder;
905     pItem->done = 0;
906     pItem->iOrderByCol = pOldItem->iOrderByCol;
907     pItem->iAlias = pOldItem->iAlias;
908   }
909   return pNew;
910 }
911 
912 /*
913 ** If cursors, triggers, views and subqueries are all omitted from
914 ** the build, then none of the following routines, except for
915 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
916 ** called with a NULL argument.
917 */
918 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
919  || !defined(SQLITE_OMIT_SUBQUERY)
920 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
921   SrcList *pNew;
922   int i;
923   int nByte;
924   if( p==0 ) return 0;
925   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
926   pNew = sqlite3DbMallocRaw(db, nByte );
927   if( pNew==0 ) return 0;
928   pNew->nSrc = pNew->nAlloc = p->nSrc;
929   for(i=0; i<p->nSrc; i++){
930     struct SrcList_item *pNewItem = &pNew->a[i];
931     struct SrcList_item *pOldItem = &p->a[i];
932     Table *pTab;
933     pNewItem->pSchema = pOldItem->pSchema;
934     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
935     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
936     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
937     pNewItem->jointype = pOldItem->jointype;
938     pNewItem->iCursor = pOldItem->iCursor;
939     pNewItem->addrFillSub = pOldItem->addrFillSub;
940     pNewItem->regReturn = pOldItem->regReturn;
941     pNewItem->isCorrelated = pOldItem->isCorrelated;
942     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
943     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
944     pNewItem->notIndexed = pOldItem->notIndexed;
945     pNewItem->pIndex = pOldItem->pIndex;
946     pTab = pNewItem->pTab = pOldItem->pTab;
947     if( pTab ){
948       pTab->nRef++;
949     }
950     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
951     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
952     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
953     pNewItem->colUsed = pOldItem->colUsed;
954   }
955   return pNew;
956 }
957 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
958   IdList *pNew;
959   int i;
960   if( p==0 ) return 0;
961   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
962   if( pNew==0 ) return 0;
963   pNew->nId = p->nId;
964   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
965   if( pNew->a==0 ){
966     sqlite3DbFree(db, pNew);
967     return 0;
968   }
969   /* Note that because the size of the allocation for p->a[] is not
970   ** necessarily a power of two, sqlite3IdListAppend() may not be called
971   ** on the duplicate created by this function. */
972   for(i=0; i<p->nId; i++){
973     struct IdList_item *pNewItem = &pNew->a[i];
974     struct IdList_item *pOldItem = &p->a[i];
975     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
976     pNewItem->idx = pOldItem->idx;
977   }
978   return pNew;
979 }
980 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
981   Select *pNew, *pPrior;
982   if( p==0 ) return 0;
983   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
984   if( pNew==0 ) return 0;
985   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
986   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
987   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
988   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
989   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
990   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
991   pNew->op = p->op;
992   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
993   if( pPrior ) pPrior->pNext = pNew;
994   pNew->pNext = 0;
995   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
996   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
997   pNew->iLimit = 0;
998   pNew->iOffset = 0;
999   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1000   pNew->pRightmost = 0;
1001   pNew->addrOpenEphm[0] = -1;
1002   pNew->addrOpenEphm[1] = -1;
1003   pNew->addrOpenEphm[2] = -1;
1004   return pNew;
1005 }
1006 #else
1007 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1008   assert( p==0 );
1009   return 0;
1010 }
1011 #endif
1012 
1013 
1014 /*
1015 ** Add a new element to the end of an expression list.  If pList is
1016 ** initially NULL, then create a new expression list.
1017 **
1018 ** If a memory allocation error occurs, the entire list is freed and
1019 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1020 ** that the new entry was successfully appended.
1021 */
1022 ExprList *sqlite3ExprListAppend(
1023   Parse *pParse,          /* Parsing context */
1024   ExprList *pList,        /* List to which to append. Might be NULL */
1025   Expr *pExpr             /* Expression to be appended. Might be NULL */
1026 ){
1027   sqlite3 *db = pParse->db;
1028   if( pList==0 ){
1029     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1030     if( pList==0 ){
1031       goto no_mem;
1032     }
1033     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1034     if( pList->a==0 ) goto no_mem;
1035   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1036     struct ExprList_item *a;
1037     assert( pList->nExpr>0 );
1038     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1039     if( a==0 ){
1040       goto no_mem;
1041     }
1042     pList->a = a;
1043   }
1044   assert( pList->a!=0 );
1045   if( 1 ){
1046     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1047     memset(pItem, 0, sizeof(*pItem));
1048     pItem->pExpr = pExpr;
1049   }
1050   return pList;
1051 
1052 no_mem:
1053   /* Avoid leaking memory if malloc has failed. */
1054   sqlite3ExprDelete(db, pExpr);
1055   sqlite3ExprListDelete(db, pList);
1056   return 0;
1057 }
1058 
1059 /*
1060 ** Set the ExprList.a[].zName element of the most recently added item
1061 ** on the expression list.
1062 **
1063 ** pList might be NULL following an OOM error.  But pName should never be
1064 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1065 ** is set.
1066 */
1067 void sqlite3ExprListSetName(
1068   Parse *pParse,          /* Parsing context */
1069   ExprList *pList,        /* List to which to add the span. */
1070   Token *pName,           /* Name to be added */
1071   int dequote             /* True to cause the name to be dequoted */
1072 ){
1073   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1074   if( pList ){
1075     struct ExprList_item *pItem;
1076     assert( pList->nExpr>0 );
1077     pItem = &pList->a[pList->nExpr-1];
1078     assert( pItem->zName==0 );
1079     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1080     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1081   }
1082 }
1083 
1084 /*
1085 ** Set the ExprList.a[].zSpan element of the most recently added item
1086 ** on the expression list.
1087 **
1088 ** pList might be NULL following an OOM error.  But pSpan should never be
1089 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1090 ** is set.
1091 */
1092 void sqlite3ExprListSetSpan(
1093   Parse *pParse,          /* Parsing context */
1094   ExprList *pList,        /* List to which to add the span. */
1095   ExprSpan *pSpan         /* The span to be added */
1096 ){
1097   sqlite3 *db = pParse->db;
1098   assert( pList!=0 || db->mallocFailed!=0 );
1099   if( pList ){
1100     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1101     assert( pList->nExpr>0 );
1102     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1103     sqlite3DbFree(db, pItem->zSpan);
1104     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1105                                     (int)(pSpan->zEnd - pSpan->zStart));
1106   }
1107 }
1108 
1109 /*
1110 ** If the expression list pEList contains more than iLimit elements,
1111 ** leave an error message in pParse.
1112 */
1113 void sqlite3ExprListCheckLength(
1114   Parse *pParse,
1115   ExprList *pEList,
1116   const char *zObject
1117 ){
1118   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1119   testcase( pEList && pEList->nExpr==mx );
1120   testcase( pEList && pEList->nExpr==mx+1 );
1121   if( pEList && pEList->nExpr>mx ){
1122     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1123   }
1124 }
1125 
1126 /*
1127 ** Delete an entire expression list.
1128 */
1129 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1130   int i;
1131   struct ExprList_item *pItem;
1132   if( pList==0 ) return;
1133   assert( pList->a!=0 || pList->nExpr==0 );
1134   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1135     sqlite3ExprDelete(db, pItem->pExpr);
1136     sqlite3DbFree(db, pItem->zName);
1137     sqlite3DbFree(db, pItem->zSpan);
1138   }
1139   sqlite3DbFree(db, pList->a);
1140   sqlite3DbFree(db, pList);
1141 }
1142 
1143 /*
1144 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1145 ** to an integer.  These routines are checking an expression to see
1146 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1147 ** not constant.
1148 **
1149 ** These callback routines are used to implement the following:
1150 **
1151 **     sqlite3ExprIsConstant()
1152 **     sqlite3ExprIsConstantNotJoin()
1153 **     sqlite3ExprIsConstantOrFunction()
1154 **
1155 */
1156 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1157 
1158   /* If pWalker->u.i is 3 then any term of the expression that comes from
1159   ** the ON or USING clauses of a join disqualifies the expression
1160   ** from being considered constant. */
1161   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1162     pWalker->u.i = 0;
1163     return WRC_Abort;
1164   }
1165 
1166   switch( pExpr->op ){
1167     /* Consider functions to be constant if all their arguments are constant
1168     ** and pWalker->u.i==2 */
1169     case TK_FUNCTION:
1170       if( pWalker->u.i==2 ) return 0;
1171       /* Fall through */
1172     case TK_ID:
1173     case TK_COLUMN:
1174     case TK_AGG_FUNCTION:
1175     case TK_AGG_COLUMN:
1176       testcase( pExpr->op==TK_ID );
1177       testcase( pExpr->op==TK_COLUMN );
1178       testcase( pExpr->op==TK_AGG_FUNCTION );
1179       testcase( pExpr->op==TK_AGG_COLUMN );
1180       pWalker->u.i = 0;
1181       return WRC_Abort;
1182     default:
1183       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1184       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1185       return WRC_Continue;
1186   }
1187 }
1188 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1189   UNUSED_PARAMETER(NotUsed);
1190   pWalker->u.i = 0;
1191   return WRC_Abort;
1192 }
1193 static int exprIsConst(Expr *p, int initFlag){
1194   Walker w;
1195   w.u.i = initFlag;
1196   w.xExprCallback = exprNodeIsConstant;
1197   w.xSelectCallback = selectNodeIsConstant;
1198   sqlite3WalkExpr(&w, p);
1199   return w.u.i;
1200 }
1201 
1202 /*
1203 ** Walk an expression tree.  Return 1 if the expression is constant
1204 ** and 0 if it involves variables or function calls.
1205 **
1206 ** For the purposes of this function, a double-quoted string (ex: "abc")
1207 ** is considered a variable but a single-quoted string (ex: 'abc') is
1208 ** a constant.
1209 */
1210 int sqlite3ExprIsConstant(Expr *p){
1211   return exprIsConst(p, 1);
1212 }
1213 
1214 /*
1215 ** Walk an expression tree.  Return 1 if the expression is constant
1216 ** that does no originate from the ON or USING clauses of a join.
1217 ** Return 0 if it involves variables or function calls or terms from
1218 ** an ON or USING clause.
1219 */
1220 int sqlite3ExprIsConstantNotJoin(Expr *p){
1221   return exprIsConst(p, 3);
1222 }
1223 
1224 /*
1225 ** Walk an expression tree.  Return 1 if the expression is constant
1226 ** or a function call with constant arguments.  Return and 0 if there
1227 ** are any variables.
1228 **
1229 ** For the purposes of this function, a double-quoted string (ex: "abc")
1230 ** is considered a variable but a single-quoted string (ex: 'abc') is
1231 ** a constant.
1232 */
1233 int sqlite3ExprIsConstantOrFunction(Expr *p){
1234   return exprIsConst(p, 2);
1235 }
1236 
1237 /*
1238 ** If the expression p codes a constant integer that is small enough
1239 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1240 ** in *pValue.  If the expression is not an integer or if it is too big
1241 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1242 */
1243 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1244   int rc = 0;
1245 
1246   /* If an expression is an integer literal that fits in a signed 32-bit
1247   ** integer, then the EP_IntValue flag will have already been set */
1248   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1249            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1250 
1251   if( p->flags & EP_IntValue ){
1252     *pValue = p->u.iValue;
1253     return 1;
1254   }
1255   switch( p->op ){
1256     case TK_UPLUS: {
1257       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1258       break;
1259     }
1260     case TK_UMINUS: {
1261       int v;
1262       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1263         *pValue = -v;
1264         rc = 1;
1265       }
1266       break;
1267     }
1268     default: break;
1269   }
1270   return rc;
1271 }
1272 
1273 /*
1274 ** Return FALSE if there is no chance that the expression can be NULL.
1275 **
1276 ** If the expression might be NULL or if the expression is too complex
1277 ** to tell return TRUE.
1278 **
1279 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1280 ** when we know that a value cannot be NULL.  Hence, a false positive
1281 ** (returning TRUE when in fact the expression can never be NULL) might
1282 ** be a small performance hit but is otherwise harmless.  On the other
1283 ** hand, a false negative (returning FALSE when the result could be NULL)
1284 ** will likely result in an incorrect answer.  So when in doubt, return
1285 ** TRUE.
1286 */
1287 int sqlite3ExprCanBeNull(const Expr *p){
1288   u8 op;
1289   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1290   op = p->op;
1291   if( op==TK_REGISTER ) op = p->op2;
1292   switch( op ){
1293     case TK_INTEGER:
1294     case TK_STRING:
1295     case TK_FLOAT:
1296     case TK_BLOB:
1297       return 0;
1298     default:
1299       return 1;
1300   }
1301 }
1302 
1303 /*
1304 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1305 ** to location iDest if the value in iReg is NULL.  The value in iReg
1306 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1307 ** determine that it can never generate a NULL, then the OP_IsNull operation
1308 ** can be omitted.
1309 */
1310 void sqlite3ExprCodeIsNullJump(
1311   Vdbe *v,            /* The VDBE under construction */
1312   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1313   int iReg,           /* Test the value in this register for NULL */
1314   int iDest           /* Jump here if the value is null */
1315 ){
1316   if( sqlite3ExprCanBeNull(pExpr) ){
1317     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1318   }
1319 }
1320 
1321 /*
1322 ** Return TRUE if the given expression is a constant which would be
1323 ** unchanged by OP_Affinity with the affinity given in the second
1324 ** argument.
1325 **
1326 ** This routine is used to determine if the OP_Affinity operation
1327 ** can be omitted.  When in doubt return FALSE.  A false negative
1328 ** is harmless.  A false positive, however, can result in the wrong
1329 ** answer.
1330 */
1331 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1332   u8 op;
1333   if( aff==SQLITE_AFF_NONE ) return 1;
1334   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1335   op = p->op;
1336   if( op==TK_REGISTER ) op = p->op2;
1337   switch( op ){
1338     case TK_INTEGER: {
1339       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1340     }
1341     case TK_FLOAT: {
1342       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1343     }
1344     case TK_STRING: {
1345       return aff==SQLITE_AFF_TEXT;
1346     }
1347     case TK_BLOB: {
1348       return 1;
1349     }
1350     case TK_COLUMN: {
1351       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1352       return p->iColumn<0
1353           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1354     }
1355     default: {
1356       return 0;
1357     }
1358   }
1359 }
1360 
1361 /*
1362 ** Return TRUE if the given string is a row-id column name.
1363 */
1364 int sqlite3IsRowid(const char *z){
1365   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1366   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1367   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1368   return 0;
1369 }
1370 
1371 /*
1372 ** Return true if we are able to the IN operator optimization on a
1373 ** query of the form
1374 **
1375 **       x IN (SELECT ...)
1376 **
1377 ** Where the SELECT... clause is as specified by the parameter to this
1378 ** routine.
1379 **
1380 ** The Select object passed in has already been preprocessed and no
1381 ** errors have been found.
1382 */
1383 #ifndef SQLITE_OMIT_SUBQUERY
1384 static int isCandidateForInOpt(Select *p){
1385   SrcList *pSrc;
1386   ExprList *pEList;
1387   Table *pTab;
1388   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1389   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1390   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1391     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1392     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1393     return 0; /* No DISTINCT keyword and no aggregate functions */
1394   }
1395   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1396   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1397   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1398   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1399   pSrc = p->pSrc;
1400   assert( pSrc!=0 );
1401   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1402   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1403   pTab = pSrc->a[0].pTab;
1404   if( NEVER(pTab==0) ) return 0;
1405   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1406   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1407   pEList = p->pEList;
1408   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1409   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1410   return 1;
1411 }
1412 #endif /* SQLITE_OMIT_SUBQUERY */
1413 
1414 /*
1415 ** Code an OP_Once instruction and allocate space for its flag. Return the
1416 ** address of the new instruction.
1417 */
1418 int sqlite3CodeOnce(Parse *pParse){
1419   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1420   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1421 }
1422 
1423 /*
1424 ** This function is used by the implementation of the IN (...) operator.
1425 ** The pX parameter is the expression on the RHS of the IN operator, which
1426 ** might be either a list of expressions or a subquery.
1427 **
1428 ** The job of this routine is to find or create a b-tree object that can
1429 ** be used either to test for membership in the RHS set or to iterate through
1430 ** all members of the RHS set, skipping duplicates.
1431 **
1432 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1433 ** and pX->iTable is set to the index of that cursor.
1434 **
1435 ** The returned value of this function indicates the b-tree type, as follows:
1436 **
1437 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1438 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1439 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1440 **                    populated epheremal table.
1441 **
1442 ** An existing b-tree might be used if the RHS expression pX is a simple
1443 ** subquery such as:
1444 **
1445 **     SELECT <column> FROM <table>
1446 **
1447 ** If the RHS of the IN operator is a list or a more complex subquery, then
1448 ** an ephemeral table might need to be generated from the RHS and then
1449 ** pX->iTable made to point to the ephermeral table instead of an
1450 ** existing table.
1451 **
1452 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1453 ** through the set members, skipping any duplicates. In this case an
1454 ** epheremal table must be used unless the selected <column> is guaranteed
1455 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1456 ** has a UNIQUE constraint or UNIQUE index.
1457 **
1458 ** If the prNotFound parameter is not 0, then the b-tree will be used
1459 ** for fast set membership tests. In this case an epheremal table must
1460 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1461 ** be found with <column> as its left-most column.
1462 **
1463 ** When the b-tree is being used for membership tests, the calling function
1464 ** needs to know whether or not the structure contains an SQL NULL
1465 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1466 ** If there is any chance that the (...) might contain a NULL value at
1467 ** runtime, then a register is allocated and the register number written
1468 ** to *prNotFound. If there is no chance that the (...) contains a
1469 ** NULL value, then *prNotFound is left unchanged.
1470 **
1471 ** If a register is allocated and its location stored in *prNotFound, then
1472 ** its initial value is NULL.  If the (...) does not remain constant
1473 ** for the duration of the query (i.e. the SELECT within the (...)
1474 ** is a correlated subquery) then the value of the allocated register is
1475 ** reset to NULL each time the subquery is rerun. This allows the
1476 ** caller to use vdbe code equivalent to the following:
1477 **
1478 **   if( register==NULL ){
1479 **     has_null = <test if data structure contains null>
1480 **     register = 1
1481 **   }
1482 **
1483 ** in order to avoid running the <test if data structure contains null>
1484 ** test more often than is necessary.
1485 */
1486 #ifndef SQLITE_OMIT_SUBQUERY
1487 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1488   Select *p;                            /* SELECT to the right of IN operator */
1489   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1490   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1491   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1492   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1493 
1494   assert( pX->op==TK_IN );
1495 
1496   /* Check to see if an existing table or index can be used to
1497   ** satisfy the query.  This is preferable to generating a new
1498   ** ephemeral table.
1499   */
1500   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1501   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1502     sqlite3 *db = pParse->db;              /* Database connection */
1503     Table *pTab;                           /* Table <table>. */
1504     Expr *pExpr;                           /* Expression <column> */
1505     int iCol;                              /* Index of column <column> */
1506     int iDb;                               /* Database idx for pTab */
1507 
1508     assert( p );                        /* Because of isCandidateForInOpt(p) */
1509     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1510     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1511     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1512     pTab = p->pSrc->a[0].pTab;
1513     pExpr = p->pEList->a[0].pExpr;
1514     iCol = pExpr->iColumn;
1515 
1516     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1517     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1518     sqlite3CodeVerifySchema(pParse, iDb);
1519     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1520 
1521     /* This function is only called from two places. In both cases the vdbe
1522     ** has already been allocated. So assume sqlite3GetVdbe() is always
1523     ** successful here.
1524     */
1525     assert(v);
1526     if( iCol<0 ){
1527       int iAddr;
1528 
1529       iAddr = sqlite3CodeOnce(pParse);
1530 
1531       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1532       eType = IN_INDEX_ROWID;
1533 
1534       sqlite3VdbeJumpHere(v, iAddr);
1535     }else{
1536       Index *pIdx;                         /* Iterator variable */
1537 
1538       /* The collation sequence used by the comparison. If an index is to
1539       ** be used in place of a temp-table, it must be ordered according
1540       ** to this collation sequence.  */
1541       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1542 
1543       /* Check that the affinity that will be used to perform the
1544       ** comparison is the same as the affinity of the column. If
1545       ** it is not, it is not possible to use any index.
1546       */
1547       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1548 
1549       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1550         if( (pIdx->aiColumn[0]==iCol)
1551          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1552          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1553         ){
1554           int iAddr;
1555           char *pKey;
1556 
1557           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1558           iAddr = sqlite3CodeOnce(pParse);
1559 
1560           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1561                                pKey,P4_KEYINFO_HANDOFF);
1562           VdbeComment((v, "%s", pIdx->zName));
1563           eType = IN_INDEX_INDEX;
1564 
1565           sqlite3VdbeJumpHere(v, iAddr);
1566           if( prNotFound && !pTab->aCol[iCol].notNull ){
1567             *prNotFound = ++pParse->nMem;
1568             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1569           }
1570         }
1571       }
1572     }
1573   }
1574 
1575   if( eType==0 ){
1576     /* Could not found an existing table or index to use as the RHS b-tree.
1577     ** We will have to generate an ephemeral table to do the job.
1578     */
1579     double savedNQueryLoop = pParse->nQueryLoop;
1580     int rMayHaveNull = 0;
1581     eType = IN_INDEX_EPH;
1582     if( prNotFound ){
1583       *prNotFound = rMayHaveNull = ++pParse->nMem;
1584       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1585     }else{
1586       testcase( pParse->nQueryLoop>(double)1 );
1587       pParse->nQueryLoop = (double)1;
1588       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1589         eType = IN_INDEX_ROWID;
1590       }
1591     }
1592     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1593     pParse->nQueryLoop = savedNQueryLoop;
1594   }else{
1595     pX->iTable = iTab;
1596   }
1597   return eType;
1598 }
1599 #endif
1600 
1601 /*
1602 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1603 ** or IN operators.  Examples:
1604 **
1605 **     (SELECT a FROM b)          -- subquery
1606 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1607 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1608 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1609 **
1610 ** The pExpr parameter describes the expression that contains the IN
1611 ** operator or subquery.
1612 **
1613 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1614 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1615 ** to some integer key column of a table B-Tree. In this case, use an
1616 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1617 ** (slower) variable length keys B-Tree.
1618 **
1619 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1620 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1621 ** Furthermore, the IN is in a WHERE clause and that we really want
1622 ** to iterate over the RHS of the IN operator in order to quickly locate
1623 ** all corresponding LHS elements.  All this routine does is initialize
1624 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1625 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1626 **
1627 ** If rMayHaveNull is zero, that means that the subquery is being used
1628 ** for membership testing only.  There is no need to initialize any
1629 ** registers to indicate the presense or absence of NULLs on the RHS.
1630 **
1631 ** For a SELECT or EXISTS operator, return the register that holds the
1632 ** result.  For IN operators or if an error occurs, the return value is 0.
1633 */
1634 #ifndef SQLITE_OMIT_SUBQUERY
1635 int sqlite3CodeSubselect(
1636   Parse *pParse,          /* Parsing context */
1637   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1638   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1639   int isRowid             /* If true, LHS of IN operator is a rowid */
1640 ){
1641   int testAddr = -1;                      /* One-time test address */
1642   int rReg = 0;                           /* Register storing resulting */
1643   Vdbe *v = sqlite3GetVdbe(pParse);
1644   if( NEVER(v==0) ) return 0;
1645   sqlite3ExprCachePush(pParse);
1646 
1647   /* This code must be run in its entirety every time it is encountered
1648   ** if any of the following is true:
1649   **
1650   **    *  The right-hand side is a correlated subquery
1651   **    *  The right-hand side is an expression list containing variables
1652   **    *  We are inside a trigger
1653   **
1654   ** If all of the above are false, then we can run this code just once
1655   ** save the results, and reuse the same result on subsequent invocations.
1656   */
1657   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
1658     testAddr = sqlite3CodeOnce(pParse);
1659   }
1660 
1661 #ifndef SQLITE_OMIT_EXPLAIN
1662   if( pParse->explain==2 ){
1663     char *zMsg = sqlite3MPrintf(
1664         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1665         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1666     );
1667     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1668   }
1669 #endif
1670 
1671   switch( pExpr->op ){
1672     case TK_IN: {
1673       char affinity;              /* Affinity of the LHS of the IN */
1674       KeyInfo keyInfo;            /* Keyinfo for the generated table */
1675       static u8 sortOrder = 0;    /* Fake aSortOrder for keyInfo */
1676       int addr;                   /* Address of OP_OpenEphemeral instruction */
1677       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1678 
1679       if( rMayHaveNull ){
1680         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1681       }
1682 
1683       affinity = sqlite3ExprAffinity(pLeft);
1684 
1685       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1686       ** expression it is handled the same way.  An ephemeral table is
1687       ** filled with single-field index keys representing the results
1688       ** from the SELECT or the <exprlist>.
1689       **
1690       ** If the 'x' expression is a column value, or the SELECT...
1691       ** statement returns a column value, then the affinity of that
1692       ** column is used to build the index keys. If both 'x' and the
1693       ** SELECT... statement are columns, then numeric affinity is used
1694       ** if either column has NUMERIC or INTEGER affinity. If neither
1695       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1696       ** is used.
1697       */
1698       pExpr->iTable = pParse->nTab++;
1699       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1700       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1701       memset(&keyInfo, 0, sizeof(keyInfo));
1702       keyInfo.nField = 1;
1703       keyInfo.aSortOrder = &sortOrder;
1704 
1705       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1706         /* Case 1:     expr IN (SELECT ...)
1707         **
1708         ** Generate code to write the results of the select into the temporary
1709         ** table allocated and opened above.
1710         */
1711         SelectDest dest;
1712         ExprList *pEList;
1713 
1714         assert( !isRowid );
1715         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1716         dest.affSdst = (u8)affinity;
1717         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1718         pExpr->x.pSelect->iLimit = 0;
1719         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1720           return 0;
1721         }
1722         pEList = pExpr->x.pSelect->pEList;
1723         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1724           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1725               pEList->a[0].pExpr);
1726         }
1727       }else if( ALWAYS(pExpr->x.pList!=0) ){
1728         /* Case 2:     expr IN (exprlist)
1729         **
1730         ** For each expression, build an index key from the evaluation and
1731         ** store it in the temporary table. If <expr> is a column, then use
1732         ** that columns affinity when building index keys. If <expr> is not
1733         ** a column, use numeric affinity.
1734         */
1735         int i;
1736         ExprList *pList = pExpr->x.pList;
1737         struct ExprList_item *pItem;
1738         int r1, r2, r3;
1739 
1740         if( !affinity ){
1741           affinity = SQLITE_AFF_NONE;
1742         }
1743         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1744         keyInfo.aSortOrder = &sortOrder;
1745 
1746         /* Loop through each expression in <exprlist>. */
1747         r1 = sqlite3GetTempReg(pParse);
1748         r2 = sqlite3GetTempReg(pParse);
1749         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1750         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1751           Expr *pE2 = pItem->pExpr;
1752           int iValToIns;
1753 
1754           /* If the expression is not constant then we will need to
1755           ** disable the test that was generated above that makes sure
1756           ** this code only executes once.  Because for a non-constant
1757           ** expression we need to rerun this code each time.
1758           */
1759           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1760             sqlite3VdbeChangeToNoop(v, testAddr);
1761             testAddr = -1;
1762           }
1763 
1764           /* Evaluate the expression and insert it into the temp table */
1765           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1766             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1767           }else{
1768             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1769             if( isRowid ){
1770               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1771                                 sqlite3VdbeCurrentAddr(v)+2);
1772               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1773             }else{
1774               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1775               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1776               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1777             }
1778           }
1779         }
1780         sqlite3ReleaseTempReg(pParse, r1);
1781         sqlite3ReleaseTempReg(pParse, r2);
1782       }
1783       if( !isRowid ){
1784         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1785       }
1786       break;
1787     }
1788 
1789     case TK_EXISTS:
1790     case TK_SELECT:
1791     default: {
1792       /* If this has to be a scalar SELECT.  Generate code to put the
1793       ** value of this select in a memory cell and record the number
1794       ** of the memory cell in iColumn.  If this is an EXISTS, write
1795       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1796       ** and record that memory cell in iColumn.
1797       */
1798       Select *pSel;                         /* SELECT statement to encode */
1799       SelectDest dest;                      /* How to deal with SELECt result */
1800 
1801       testcase( pExpr->op==TK_EXISTS );
1802       testcase( pExpr->op==TK_SELECT );
1803       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1804 
1805       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1806       pSel = pExpr->x.pSelect;
1807       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1808       if( pExpr->op==TK_SELECT ){
1809         dest.eDest = SRT_Mem;
1810         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1811         VdbeComment((v, "Init subquery result"));
1812       }else{
1813         dest.eDest = SRT_Exists;
1814         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1815         VdbeComment((v, "Init EXISTS result"));
1816       }
1817       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1818       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1819                                   &sqlite3IntTokens[1]);
1820       pSel->iLimit = 0;
1821       if( sqlite3Select(pParse, pSel, &dest) ){
1822         return 0;
1823       }
1824       rReg = dest.iSDParm;
1825       ExprSetIrreducible(pExpr);
1826       break;
1827     }
1828   }
1829 
1830   if( testAddr>=0 ){
1831     sqlite3VdbeJumpHere(v, testAddr);
1832   }
1833   sqlite3ExprCachePop(pParse, 1);
1834 
1835   return rReg;
1836 }
1837 #endif /* SQLITE_OMIT_SUBQUERY */
1838 
1839 #ifndef SQLITE_OMIT_SUBQUERY
1840 /*
1841 ** Generate code for an IN expression.
1842 **
1843 **      x IN (SELECT ...)
1844 **      x IN (value, value, ...)
1845 **
1846 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1847 ** is an array of zero or more values.  The expression is true if the LHS is
1848 ** contained within the RHS.  The value of the expression is unknown (NULL)
1849 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1850 ** RHS contains one or more NULL values.
1851 **
1852 ** This routine generates code will jump to destIfFalse if the LHS is not
1853 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1854 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1855 ** within the RHS then fall through.
1856 */
1857 static void sqlite3ExprCodeIN(
1858   Parse *pParse,        /* Parsing and code generating context */
1859   Expr *pExpr,          /* The IN expression */
1860   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1861   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1862 ){
1863   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1864   char affinity;        /* Comparison affinity to use */
1865   int eType;            /* Type of the RHS */
1866   int r1;               /* Temporary use register */
1867   Vdbe *v;              /* Statement under construction */
1868 
1869   /* Compute the RHS.   After this step, the table with cursor
1870   ** pExpr->iTable will contains the values that make up the RHS.
1871   */
1872   v = pParse->pVdbe;
1873   assert( v!=0 );       /* OOM detected prior to this routine */
1874   VdbeNoopComment((v, "begin IN expr"));
1875   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1876 
1877   /* Figure out the affinity to use to create a key from the results
1878   ** of the expression. affinityStr stores a static string suitable for
1879   ** P4 of OP_MakeRecord.
1880   */
1881   affinity = comparisonAffinity(pExpr);
1882 
1883   /* Code the LHS, the <expr> from "<expr> IN (...)".
1884   */
1885   sqlite3ExprCachePush(pParse);
1886   r1 = sqlite3GetTempReg(pParse);
1887   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1888 
1889   /* If the LHS is NULL, then the result is either false or NULL depending
1890   ** on whether the RHS is empty or not, respectively.
1891   */
1892   if( destIfNull==destIfFalse ){
1893     /* Shortcut for the common case where the false and NULL outcomes are
1894     ** the same. */
1895     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1896   }else{
1897     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1898     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1899     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1900     sqlite3VdbeJumpHere(v, addr1);
1901   }
1902 
1903   if( eType==IN_INDEX_ROWID ){
1904     /* In this case, the RHS is the ROWID of table b-tree
1905     */
1906     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1907     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1908   }else{
1909     /* In this case, the RHS is an index b-tree.
1910     */
1911     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1912 
1913     /* If the set membership test fails, then the result of the
1914     ** "x IN (...)" expression must be either 0 or NULL. If the set
1915     ** contains no NULL values, then the result is 0. If the set
1916     ** contains one or more NULL values, then the result of the
1917     ** expression is also NULL.
1918     */
1919     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1920       /* This branch runs if it is known at compile time that the RHS
1921       ** cannot contain NULL values. This happens as the result
1922       ** of a "NOT NULL" constraint in the database schema.
1923       **
1924       ** Also run this branch if NULL is equivalent to FALSE
1925       ** for this particular IN operator.
1926       */
1927       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1928 
1929     }else{
1930       /* In this branch, the RHS of the IN might contain a NULL and
1931       ** the presence of a NULL on the RHS makes a difference in the
1932       ** outcome.
1933       */
1934       int j1, j2, j3;
1935 
1936       /* First check to see if the LHS is contained in the RHS.  If so,
1937       ** then the presence of NULLs in the RHS does not matter, so jump
1938       ** over all of the code that follows.
1939       */
1940       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1941 
1942       /* Here we begin generating code that runs if the LHS is not
1943       ** contained within the RHS.  Generate additional code that
1944       ** tests the RHS for NULLs.  If the RHS contains a NULL then
1945       ** jump to destIfNull.  If there are no NULLs in the RHS then
1946       ** jump to destIfFalse.
1947       */
1948       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1949       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1950       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1951       sqlite3VdbeJumpHere(v, j3);
1952       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1953       sqlite3VdbeJumpHere(v, j2);
1954 
1955       /* Jump to the appropriate target depending on whether or not
1956       ** the RHS contains a NULL
1957       */
1958       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1959       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1960 
1961       /* The OP_Found at the top of this branch jumps here when true,
1962       ** causing the overall IN expression evaluation to fall through.
1963       */
1964       sqlite3VdbeJumpHere(v, j1);
1965     }
1966   }
1967   sqlite3ReleaseTempReg(pParse, r1);
1968   sqlite3ExprCachePop(pParse, 1);
1969   VdbeComment((v, "end IN expr"));
1970 }
1971 #endif /* SQLITE_OMIT_SUBQUERY */
1972 
1973 /*
1974 ** Duplicate an 8-byte value
1975 */
1976 static char *dup8bytes(Vdbe *v, const char *in){
1977   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1978   if( out ){
1979     memcpy(out, in, 8);
1980   }
1981   return out;
1982 }
1983 
1984 #ifndef SQLITE_OMIT_FLOATING_POINT
1985 /*
1986 ** Generate an instruction that will put the floating point
1987 ** value described by z[0..n-1] into register iMem.
1988 **
1989 ** The z[] string will probably not be zero-terminated.  But the
1990 ** z[n] character is guaranteed to be something that does not look
1991 ** like the continuation of the number.
1992 */
1993 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1994   if( ALWAYS(z!=0) ){
1995     double value;
1996     char *zV;
1997     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1998     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1999     if( negateFlag ) value = -value;
2000     zV = dup8bytes(v, (char*)&value);
2001     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2002   }
2003 }
2004 #endif
2005 
2006 
2007 /*
2008 ** Generate an instruction that will put the integer describe by
2009 ** text z[0..n-1] into register iMem.
2010 **
2011 ** Expr.u.zToken is always UTF8 and zero-terminated.
2012 */
2013 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2014   Vdbe *v = pParse->pVdbe;
2015   if( pExpr->flags & EP_IntValue ){
2016     int i = pExpr->u.iValue;
2017     assert( i>=0 );
2018     if( negFlag ) i = -i;
2019     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2020   }else{
2021     int c;
2022     i64 value;
2023     const char *z = pExpr->u.zToken;
2024     assert( z!=0 );
2025     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2026     if( c==0 || (c==2 && negFlag) ){
2027       char *zV;
2028       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2029       zV = dup8bytes(v, (char*)&value);
2030       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2031     }else{
2032 #ifdef SQLITE_OMIT_FLOATING_POINT
2033       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2034 #else
2035       codeReal(v, z, negFlag, iMem);
2036 #endif
2037     }
2038   }
2039 }
2040 
2041 /*
2042 ** Clear a cache entry.
2043 */
2044 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2045   if( p->tempReg ){
2046     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2047       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2048     }
2049     p->tempReg = 0;
2050   }
2051 }
2052 
2053 
2054 /*
2055 ** Record in the column cache that a particular column from a
2056 ** particular table is stored in a particular register.
2057 */
2058 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2059   int i;
2060   int minLru;
2061   int idxLru;
2062   struct yColCache *p;
2063 
2064   assert( iReg>0 );  /* Register numbers are always positive */
2065   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2066 
2067   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2068   ** for testing only - to verify that SQLite always gets the same answer
2069   ** with and without the column cache.
2070   */
2071   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2072 
2073   /* First replace any existing entry.
2074   **
2075   ** Actually, the way the column cache is currently used, we are guaranteed
2076   ** that the object will never already be in cache.  Verify this guarantee.
2077   */
2078 #ifndef NDEBUG
2079   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2080     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2081   }
2082 #endif
2083 
2084   /* Find an empty slot and replace it */
2085   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2086     if( p->iReg==0 ){
2087       p->iLevel = pParse->iCacheLevel;
2088       p->iTable = iTab;
2089       p->iColumn = iCol;
2090       p->iReg = iReg;
2091       p->tempReg = 0;
2092       p->lru = pParse->iCacheCnt++;
2093       return;
2094     }
2095   }
2096 
2097   /* Replace the last recently used */
2098   minLru = 0x7fffffff;
2099   idxLru = -1;
2100   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2101     if( p->lru<minLru ){
2102       idxLru = i;
2103       minLru = p->lru;
2104     }
2105   }
2106   if( ALWAYS(idxLru>=0) ){
2107     p = &pParse->aColCache[idxLru];
2108     p->iLevel = pParse->iCacheLevel;
2109     p->iTable = iTab;
2110     p->iColumn = iCol;
2111     p->iReg = iReg;
2112     p->tempReg = 0;
2113     p->lru = pParse->iCacheCnt++;
2114     return;
2115   }
2116 }
2117 
2118 /*
2119 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2120 ** Purge the range of registers from the column cache.
2121 */
2122 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2123   int i;
2124   int iLast = iReg + nReg - 1;
2125   struct yColCache *p;
2126   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2127     int r = p->iReg;
2128     if( r>=iReg && r<=iLast ){
2129       cacheEntryClear(pParse, p);
2130       p->iReg = 0;
2131     }
2132   }
2133 }
2134 
2135 /*
2136 ** Remember the current column cache context.  Any new entries added
2137 ** added to the column cache after this call are removed when the
2138 ** corresponding pop occurs.
2139 */
2140 void sqlite3ExprCachePush(Parse *pParse){
2141   pParse->iCacheLevel++;
2142 }
2143 
2144 /*
2145 ** Remove from the column cache any entries that were added since the
2146 ** the previous N Push operations.  In other words, restore the cache
2147 ** to the state it was in N Pushes ago.
2148 */
2149 void sqlite3ExprCachePop(Parse *pParse, int N){
2150   int i;
2151   struct yColCache *p;
2152   assert( N>0 );
2153   assert( pParse->iCacheLevel>=N );
2154   pParse->iCacheLevel -= N;
2155   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2156     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2157       cacheEntryClear(pParse, p);
2158       p->iReg = 0;
2159     }
2160   }
2161 }
2162 
2163 /*
2164 ** When a cached column is reused, make sure that its register is
2165 ** no longer available as a temp register.  ticket #3879:  that same
2166 ** register might be in the cache in multiple places, so be sure to
2167 ** get them all.
2168 */
2169 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2170   int i;
2171   struct yColCache *p;
2172   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2173     if( p->iReg==iReg ){
2174       p->tempReg = 0;
2175     }
2176   }
2177 }
2178 
2179 /*
2180 ** Generate code to extract the value of the iCol-th column of a table.
2181 */
2182 void sqlite3ExprCodeGetColumnOfTable(
2183   Vdbe *v,        /* The VDBE under construction */
2184   Table *pTab,    /* The table containing the value */
2185   int iTabCur,    /* The cursor for this table */
2186   int iCol,       /* Index of the column to extract */
2187   int regOut      /* Extract the valud into this register */
2188 ){
2189   if( iCol<0 || iCol==pTab->iPKey ){
2190     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2191   }else{
2192     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2193     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2194   }
2195   if( iCol>=0 ){
2196     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2197   }
2198 }
2199 
2200 /*
2201 ** Generate code that will extract the iColumn-th column from
2202 ** table pTab and store the column value in a register.  An effort
2203 ** is made to store the column value in register iReg, but this is
2204 ** not guaranteed.  The location of the column value is returned.
2205 **
2206 ** There must be an open cursor to pTab in iTable when this routine
2207 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2208 */
2209 int sqlite3ExprCodeGetColumn(
2210   Parse *pParse,   /* Parsing and code generating context */
2211   Table *pTab,     /* Description of the table we are reading from */
2212   int iColumn,     /* Index of the table column */
2213   int iTable,      /* The cursor pointing to the table */
2214   int iReg,        /* Store results here */
2215   u8 p5            /* P5 value for OP_Column */
2216 ){
2217   Vdbe *v = pParse->pVdbe;
2218   int i;
2219   struct yColCache *p;
2220 
2221   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2222     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2223       p->lru = pParse->iCacheCnt++;
2224       sqlite3ExprCachePinRegister(pParse, p->iReg);
2225       return p->iReg;
2226     }
2227   }
2228   assert( v!=0 );
2229   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2230   if( p5 ){
2231     sqlite3VdbeChangeP5(v, p5);
2232   }else{
2233     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2234   }
2235   return iReg;
2236 }
2237 
2238 /*
2239 ** Clear all column cache entries.
2240 */
2241 void sqlite3ExprCacheClear(Parse *pParse){
2242   int i;
2243   struct yColCache *p;
2244 
2245   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2246     if( p->iReg ){
2247       cacheEntryClear(pParse, p);
2248       p->iReg = 0;
2249     }
2250   }
2251 }
2252 
2253 /*
2254 ** Record the fact that an affinity change has occurred on iCount
2255 ** registers starting with iStart.
2256 */
2257 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2258   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2259 }
2260 
2261 /*
2262 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2263 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2264 */
2265 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2266   int i;
2267   struct yColCache *p;
2268   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2269   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
2270   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2271     int x = p->iReg;
2272     if( x>=iFrom && x<iFrom+nReg ){
2273       p->iReg += iTo-iFrom;
2274     }
2275   }
2276 }
2277 
2278 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2279 /*
2280 ** Return true if any register in the range iFrom..iTo (inclusive)
2281 ** is used as part of the column cache.
2282 **
2283 ** This routine is used within assert() and testcase() macros only
2284 ** and does not appear in a normal build.
2285 */
2286 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2287   int i;
2288   struct yColCache *p;
2289   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2290     int r = p->iReg;
2291     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2292   }
2293   return 0;
2294 }
2295 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2296 
2297 /*
2298 ** Generate code into the current Vdbe to evaluate the given
2299 ** expression.  Attempt to store the results in register "target".
2300 ** Return the register where results are stored.
2301 **
2302 ** With this routine, there is no guarantee that results will
2303 ** be stored in target.  The result might be stored in some other
2304 ** register if it is convenient to do so.  The calling function
2305 ** must check the return code and move the results to the desired
2306 ** register.
2307 */
2308 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2309   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2310   int op;                   /* The opcode being coded */
2311   int inReg = target;       /* Results stored in register inReg */
2312   int regFree1 = 0;         /* If non-zero free this temporary register */
2313   int regFree2 = 0;         /* If non-zero free this temporary register */
2314   int r1, r2, r3, r4;       /* Various register numbers */
2315   sqlite3 *db = pParse->db; /* The database connection */
2316 
2317   assert( target>0 && target<=pParse->nMem );
2318   if( v==0 ){
2319     assert( pParse->db->mallocFailed );
2320     return 0;
2321   }
2322 
2323   if( pExpr==0 ){
2324     op = TK_NULL;
2325   }else{
2326     op = pExpr->op;
2327   }
2328   switch( op ){
2329     case TK_AGG_COLUMN: {
2330       AggInfo *pAggInfo = pExpr->pAggInfo;
2331       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2332       if( !pAggInfo->directMode ){
2333         assert( pCol->iMem>0 );
2334         inReg = pCol->iMem;
2335         break;
2336       }else if( pAggInfo->useSortingIdx ){
2337         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2338                               pCol->iSorterColumn, target);
2339         break;
2340       }
2341       /* Otherwise, fall thru into the TK_COLUMN case */
2342     }
2343     case TK_COLUMN: {
2344       if( pExpr->iTable<0 ){
2345         /* This only happens when coding check constraints */
2346         assert( pParse->ckBase>0 );
2347         inReg = pExpr->iColumn + pParse->ckBase;
2348       }else{
2349         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2350                                  pExpr->iColumn, pExpr->iTable, target,
2351                                  pExpr->op2);
2352       }
2353       break;
2354     }
2355     case TK_INTEGER: {
2356       codeInteger(pParse, pExpr, 0, target);
2357       break;
2358     }
2359 #ifndef SQLITE_OMIT_FLOATING_POINT
2360     case TK_FLOAT: {
2361       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2362       codeReal(v, pExpr->u.zToken, 0, target);
2363       break;
2364     }
2365 #endif
2366     case TK_STRING: {
2367       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2368       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2369       break;
2370     }
2371     case TK_NULL: {
2372       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2373       break;
2374     }
2375 #ifndef SQLITE_OMIT_BLOB_LITERAL
2376     case TK_BLOB: {
2377       int n;
2378       const char *z;
2379       char *zBlob;
2380       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2381       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2382       assert( pExpr->u.zToken[1]=='\'' );
2383       z = &pExpr->u.zToken[2];
2384       n = sqlite3Strlen30(z) - 1;
2385       assert( z[n]=='\'' );
2386       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2387       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2388       break;
2389     }
2390 #endif
2391     case TK_VARIABLE: {
2392       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2393       assert( pExpr->u.zToken!=0 );
2394       assert( pExpr->u.zToken[0]!=0 );
2395       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2396       if( pExpr->u.zToken[1]!=0 ){
2397         assert( pExpr->u.zToken[0]=='?'
2398              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2399         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2400       }
2401       break;
2402     }
2403     case TK_REGISTER: {
2404       inReg = pExpr->iTable;
2405       break;
2406     }
2407     case TK_AS: {
2408       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2409       break;
2410     }
2411 #ifndef SQLITE_OMIT_CAST
2412     case TK_CAST: {
2413       /* Expressions of the form:   CAST(pLeft AS token) */
2414       int aff, to_op;
2415       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2416       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2417       aff = sqlite3AffinityType(pExpr->u.zToken);
2418       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2419       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2420       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2421       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2422       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2423       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2424       testcase( to_op==OP_ToText );
2425       testcase( to_op==OP_ToBlob );
2426       testcase( to_op==OP_ToNumeric );
2427       testcase( to_op==OP_ToInt );
2428       testcase( to_op==OP_ToReal );
2429       if( inReg!=target ){
2430         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2431         inReg = target;
2432       }
2433       sqlite3VdbeAddOp1(v, to_op, inReg);
2434       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2435       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2436       break;
2437     }
2438 #endif /* SQLITE_OMIT_CAST */
2439     case TK_LT:
2440     case TK_LE:
2441     case TK_GT:
2442     case TK_GE:
2443     case TK_NE:
2444     case TK_EQ: {
2445       assert( TK_LT==OP_Lt );
2446       assert( TK_LE==OP_Le );
2447       assert( TK_GT==OP_Gt );
2448       assert( TK_GE==OP_Ge );
2449       assert( TK_EQ==OP_Eq );
2450       assert( TK_NE==OP_Ne );
2451       testcase( op==TK_LT );
2452       testcase( op==TK_LE );
2453       testcase( op==TK_GT );
2454       testcase( op==TK_GE );
2455       testcase( op==TK_EQ );
2456       testcase( op==TK_NE );
2457       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2458       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2459       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2460                   r1, r2, inReg, SQLITE_STOREP2);
2461       testcase( regFree1==0 );
2462       testcase( regFree2==0 );
2463       break;
2464     }
2465     case TK_IS:
2466     case TK_ISNOT: {
2467       testcase( op==TK_IS );
2468       testcase( op==TK_ISNOT );
2469       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2470       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2471       op = (op==TK_IS) ? TK_EQ : TK_NE;
2472       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2473                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2474       testcase( regFree1==0 );
2475       testcase( regFree2==0 );
2476       break;
2477     }
2478     case TK_AND:
2479     case TK_OR:
2480     case TK_PLUS:
2481     case TK_STAR:
2482     case TK_MINUS:
2483     case TK_REM:
2484     case TK_BITAND:
2485     case TK_BITOR:
2486     case TK_SLASH:
2487     case TK_LSHIFT:
2488     case TK_RSHIFT:
2489     case TK_CONCAT: {
2490       assert( TK_AND==OP_And );
2491       assert( TK_OR==OP_Or );
2492       assert( TK_PLUS==OP_Add );
2493       assert( TK_MINUS==OP_Subtract );
2494       assert( TK_REM==OP_Remainder );
2495       assert( TK_BITAND==OP_BitAnd );
2496       assert( TK_BITOR==OP_BitOr );
2497       assert( TK_SLASH==OP_Divide );
2498       assert( TK_LSHIFT==OP_ShiftLeft );
2499       assert( TK_RSHIFT==OP_ShiftRight );
2500       assert( TK_CONCAT==OP_Concat );
2501       testcase( op==TK_AND );
2502       testcase( op==TK_OR );
2503       testcase( op==TK_PLUS );
2504       testcase( op==TK_MINUS );
2505       testcase( op==TK_REM );
2506       testcase( op==TK_BITAND );
2507       testcase( op==TK_BITOR );
2508       testcase( op==TK_SLASH );
2509       testcase( op==TK_LSHIFT );
2510       testcase( op==TK_RSHIFT );
2511       testcase( op==TK_CONCAT );
2512       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2513       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2514       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2515       testcase( regFree1==0 );
2516       testcase( regFree2==0 );
2517       break;
2518     }
2519     case TK_UMINUS: {
2520       Expr *pLeft = pExpr->pLeft;
2521       assert( pLeft );
2522       if( pLeft->op==TK_INTEGER ){
2523         codeInteger(pParse, pLeft, 1, target);
2524 #ifndef SQLITE_OMIT_FLOATING_POINT
2525       }else if( pLeft->op==TK_FLOAT ){
2526         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2527         codeReal(v, pLeft->u.zToken, 1, target);
2528 #endif
2529       }else{
2530         regFree1 = r1 = sqlite3GetTempReg(pParse);
2531         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2532         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2533         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2534         testcase( regFree2==0 );
2535       }
2536       inReg = target;
2537       break;
2538     }
2539     case TK_BITNOT:
2540     case TK_NOT: {
2541       assert( TK_BITNOT==OP_BitNot );
2542       assert( TK_NOT==OP_Not );
2543       testcase( op==TK_BITNOT );
2544       testcase( op==TK_NOT );
2545       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2546       testcase( regFree1==0 );
2547       inReg = target;
2548       sqlite3VdbeAddOp2(v, op, r1, inReg);
2549       break;
2550     }
2551     case TK_ISNULL:
2552     case TK_NOTNULL: {
2553       int addr;
2554       assert( TK_ISNULL==OP_IsNull );
2555       assert( TK_NOTNULL==OP_NotNull );
2556       testcase( op==TK_ISNULL );
2557       testcase( op==TK_NOTNULL );
2558       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2559       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2560       testcase( regFree1==0 );
2561       addr = sqlite3VdbeAddOp1(v, op, r1);
2562       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2563       sqlite3VdbeJumpHere(v, addr);
2564       break;
2565     }
2566     case TK_AGG_FUNCTION: {
2567       AggInfo *pInfo = pExpr->pAggInfo;
2568       if( pInfo==0 ){
2569         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2570         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2571       }else{
2572         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2573       }
2574       break;
2575     }
2576     case TK_CONST_FUNC:
2577     case TK_FUNCTION: {
2578       ExprList *pFarg;       /* List of function arguments */
2579       int nFarg;             /* Number of function arguments */
2580       FuncDef *pDef;         /* The function definition object */
2581       int nId;               /* Length of the function name in bytes */
2582       const char *zId;       /* The function name */
2583       int constMask = 0;     /* Mask of function arguments that are constant */
2584       int i;                 /* Loop counter */
2585       u8 enc = ENC(db);      /* The text encoding used by this database */
2586       CollSeq *pColl = 0;    /* A collating sequence */
2587 
2588       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2589       testcase( op==TK_CONST_FUNC );
2590       testcase( op==TK_FUNCTION );
2591       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2592         pFarg = 0;
2593       }else{
2594         pFarg = pExpr->x.pList;
2595       }
2596       nFarg = pFarg ? pFarg->nExpr : 0;
2597       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2598       zId = pExpr->u.zToken;
2599       nId = sqlite3Strlen30(zId);
2600       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2601       if( pDef==0 ){
2602         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2603         break;
2604       }
2605 
2606       /* Attempt a direct implementation of the built-in COALESCE() and
2607       ** IFNULL() functions.  This avoids unnecessary evalation of
2608       ** arguments past the first non-NULL argument.
2609       */
2610       if( pDef->flags & SQLITE_FUNC_COALESCE ){
2611         int endCoalesce = sqlite3VdbeMakeLabel(v);
2612         assert( nFarg>=2 );
2613         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2614         for(i=1; i<nFarg; i++){
2615           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2616           sqlite3ExprCacheRemove(pParse, target, 1);
2617           sqlite3ExprCachePush(pParse);
2618           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2619           sqlite3ExprCachePop(pParse, 1);
2620         }
2621         sqlite3VdbeResolveLabel(v, endCoalesce);
2622         break;
2623       }
2624 
2625 
2626       if( pFarg ){
2627         r1 = sqlite3GetTempRange(pParse, nFarg);
2628 
2629         /* For length() and typeof() functions with a column argument,
2630         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2631         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2632         ** loading.
2633         */
2634         if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2635           u8 exprOp;
2636           assert( nFarg==1 );
2637           assert( pFarg->a[0].pExpr!=0 );
2638           exprOp = pFarg->a[0].pExpr->op;
2639           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2640             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2641             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2642             testcase( pDef->flags==SQLITE_FUNC_LENGTH );
2643             pFarg->a[0].pExpr->op2 = pDef->flags;
2644           }
2645         }
2646 
2647         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2648         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2649         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2650       }else{
2651         r1 = 0;
2652       }
2653 #ifndef SQLITE_OMIT_VIRTUALTABLE
2654       /* Possibly overload the function if the first argument is
2655       ** a virtual table column.
2656       **
2657       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2658       ** second argument, not the first, as the argument to test to
2659       ** see if it is a column in a virtual table.  This is done because
2660       ** the left operand of infix functions (the operand we want to
2661       ** control overloading) ends up as the second argument to the
2662       ** function.  The expression "A glob B" is equivalent to
2663       ** "glob(B,A).  We want to use the A in "A glob B" to test
2664       ** for function overloading.  But we use the B term in "glob(B,A)".
2665       */
2666       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2667         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2668       }else if( nFarg>0 ){
2669         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2670       }
2671 #endif
2672       for(i=0; i<nFarg; i++){
2673         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2674           constMask |= (1<<i);
2675         }
2676         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2677           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2678         }
2679       }
2680       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2681         if( !pColl ) pColl = db->pDfltColl;
2682         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2683       }
2684       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2685                         (char*)pDef, P4_FUNCDEF);
2686       sqlite3VdbeChangeP5(v, (u8)nFarg);
2687       if( nFarg ){
2688         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2689       }
2690       break;
2691     }
2692 #ifndef SQLITE_OMIT_SUBQUERY
2693     case TK_EXISTS:
2694     case TK_SELECT: {
2695       testcase( op==TK_EXISTS );
2696       testcase( op==TK_SELECT );
2697       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2698       break;
2699     }
2700     case TK_IN: {
2701       int destIfFalse = sqlite3VdbeMakeLabel(v);
2702       int destIfNull = sqlite3VdbeMakeLabel(v);
2703       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2704       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2705       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2706       sqlite3VdbeResolveLabel(v, destIfFalse);
2707       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2708       sqlite3VdbeResolveLabel(v, destIfNull);
2709       break;
2710     }
2711 #endif /* SQLITE_OMIT_SUBQUERY */
2712 
2713 
2714     /*
2715     **    x BETWEEN y AND z
2716     **
2717     ** This is equivalent to
2718     **
2719     **    x>=y AND x<=z
2720     **
2721     ** X is stored in pExpr->pLeft.
2722     ** Y is stored in pExpr->pList->a[0].pExpr.
2723     ** Z is stored in pExpr->pList->a[1].pExpr.
2724     */
2725     case TK_BETWEEN: {
2726       Expr *pLeft = pExpr->pLeft;
2727       struct ExprList_item *pLItem = pExpr->x.pList->a;
2728       Expr *pRight = pLItem->pExpr;
2729 
2730       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2731       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2732       testcase( regFree1==0 );
2733       testcase( regFree2==0 );
2734       r3 = sqlite3GetTempReg(pParse);
2735       r4 = sqlite3GetTempReg(pParse);
2736       codeCompare(pParse, pLeft, pRight, OP_Ge,
2737                   r1, r2, r3, SQLITE_STOREP2);
2738       pLItem++;
2739       pRight = pLItem->pExpr;
2740       sqlite3ReleaseTempReg(pParse, regFree2);
2741       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2742       testcase( regFree2==0 );
2743       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2744       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2745       sqlite3ReleaseTempReg(pParse, r3);
2746       sqlite3ReleaseTempReg(pParse, r4);
2747       break;
2748     }
2749     case TK_UPLUS: {
2750       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2751       break;
2752     }
2753 
2754     case TK_TRIGGER: {
2755       /* If the opcode is TK_TRIGGER, then the expression is a reference
2756       ** to a column in the new.* or old.* pseudo-tables available to
2757       ** trigger programs. In this case Expr.iTable is set to 1 for the
2758       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2759       ** is set to the column of the pseudo-table to read, or to -1 to
2760       ** read the rowid field.
2761       **
2762       ** The expression is implemented using an OP_Param opcode. The p1
2763       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2764       ** to reference another column of the old.* pseudo-table, where
2765       ** i is the index of the column. For a new.rowid reference, p1 is
2766       ** set to (n+1), where n is the number of columns in each pseudo-table.
2767       ** For a reference to any other column in the new.* pseudo-table, p1
2768       ** is set to (n+2+i), where n and i are as defined previously. For
2769       ** example, if the table on which triggers are being fired is
2770       ** declared as:
2771       **
2772       **   CREATE TABLE t1(a, b);
2773       **
2774       ** Then p1 is interpreted as follows:
2775       **
2776       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2777       **   p1==1   ->    old.a         p1==4   ->    new.a
2778       **   p1==2   ->    old.b         p1==5   ->    new.b
2779       */
2780       Table *pTab = pExpr->pTab;
2781       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2782 
2783       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2784       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2785       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2786       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2787 
2788       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2789       VdbeComment((v, "%s.%s -> $%d",
2790         (pExpr->iTable ? "new" : "old"),
2791         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2792         target
2793       ));
2794 
2795 #ifndef SQLITE_OMIT_FLOATING_POINT
2796       /* If the column has REAL affinity, it may currently be stored as an
2797       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2798       if( pExpr->iColumn>=0
2799        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2800       ){
2801         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2802       }
2803 #endif
2804       break;
2805     }
2806 
2807 
2808     /*
2809     ** Form A:
2810     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2811     **
2812     ** Form B:
2813     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2814     **
2815     ** Form A is can be transformed into the equivalent form B as follows:
2816     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2817     **        WHEN x=eN THEN rN ELSE y END
2818     **
2819     ** X (if it exists) is in pExpr->pLeft.
2820     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2821     ** ELSE clause and no other term matches, then the result of the
2822     ** exprssion is NULL.
2823     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2824     **
2825     ** The result of the expression is the Ri for the first matching Ei,
2826     ** or if there is no matching Ei, the ELSE term Y, or if there is
2827     ** no ELSE term, NULL.
2828     */
2829     default: assert( op==TK_CASE ); {
2830       int endLabel;                     /* GOTO label for end of CASE stmt */
2831       int nextCase;                     /* GOTO label for next WHEN clause */
2832       int nExpr;                        /* 2x number of WHEN terms */
2833       int i;                            /* Loop counter */
2834       ExprList *pEList;                 /* List of WHEN terms */
2835       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2836       Expr opCompare;                   /* The X==Ei expression */
2837       Expr cacheX;                      /* Cached expression X */
2838       Expr *pX;                         /* The X expression */
2839       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2840       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2841 
2842       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2843       assert((pExpr->x.pList->nExpr % 2) == 0);
2844       assert(pExpr->x.pList->nExpr > 0);
2845       pEList = pExpr->x.pList;
2846       aListelem = pEList->a;
2847       nExpr = pEList->nExpr;
2848       endLabel = sqlite3VdbeMakeLabel(v);
2849       if( (pX = pExpr->pLeft)!=0 ){
2850         cacheX = *pX;
2851         testcase( pX->op==TK_COLUMN );
2852         testcase( pX->op==TK_REGISTER );
2853         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2854         testcase( regFree1==0 );
2855         cacheX.op = TK_REGISTER;
2856         opCompare.op = TK_EQ;
2857         opCompare.pLeft = &cacheX;
2858         pTest = &opCompare;
2859         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2860         ** The value in regFree1 might get SCopy-ed into the file result.
2861         ** So make sure that the regFree1 register is not reused for other
2862         ** purposes and possibly overwritten.  */
2863         regFree1 = 0;
2864       }
2865       for(i=0; i<nExpr; i=i+2){
2866         sqlite3ExprCachePush(pParse);
2867         if( pX ){
2868           assert( pTest!=0 );
2869           opCompare.pRight = aListelem[i].pExpr;
2870         }else{
2871           pTest = aListelem[i].pExpr;
2872         }
2873         nextCase = sqlite3VdbeMakeLabel(v);
2874         testcase( pTest->op==TK_COLUMN );
2875         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2876         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2877         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2878         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2879         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2880         sqlite3ExprCachePop(pParse, 1);
2881         sqlite3VdbeResolveLabel(v, nextCase);
2882       }
2883       if( pExpr->pRight ){
2884         sqlite3ExprCachePush(pParse);
2885         sqlite3ExprCode(pParse, pExpr->pRight, target);
2886         sqlite3ExprCachePop(pParse, 1);
2887       }else{
2888         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2889       }
2890       assert( db->mallocFailed || pParse->nErr>0
2891            || pParse->iCacheLevel==iCacheLevel );
2892       sqlite3VdbeResolveLabel(v, endLabel);
2893       break;
2894     }
2895 #ifndef SQLITE_OMIT_TRIGGER
2896     case TK_RAISE: {
2897       assert( pExpr->affinity==OE_Rollback
2898            || pExpr->affinity==OE_Abort
2899            || pExpr->affinity==OE_Fail
2900            || pExpr->affinity==OE_Ignore
2901       );
2902       if( !pParse->pTriggerTab ){
2903         sqlite3ErrorMsg(pParse,
2904                        "RAISE() may only be used within a trigger-program");
2905         return 0;
2906       }
2907       if( pExpr->affinity==OE_Abort ){
2908         sqlite3MayAbort(pParse);
2909       }
2910       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2911       if( pExpr->affinity==OE_Ignore ){
2912         sqlite3VdbeAddOp4(
2913             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2914       }else{
2915         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2916       }
2917 
2918       break;
2919     }
2920 #endif
2921   }
2922   sqlite3ReleaseTempReg(pParse, regFree1);
2923   sqlite3ReleaseTempReg(pParse, regFree2);
2924   return inReg;
2925 }
2926 
2927 /*
2928 ** Generate code to evaluate an expression and store the results
2929 ** into a register.  Return the register number where the results
2930 ** are stored.
2931 **
2932 ** If the register is a temporary register that can be deallocated,
2933 ** then write its number into *pReg.  If the result register is not
2934 ** a temporary, then set *pReg to zero.
2935 */
2936 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2937   int r1 = sqlite3GetTempReg(pParse);
2938   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2939   if( r2==r1 ){
2940     *pReg = r1;
2941   }else{
2942     sqlite3ReleaseTempReg(pParse, r1);
2943     *pReg = 0;
2944   }
2945   return r2;
2946 }
2947 
2948 /*
2949 ** Generate code that will evaluate expression pExpr and store the
2950 ** results in register target.  The results are guaranteed to appear
2951 ** in register target.
2952 */
2953 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2954   int inReg;
2955 
2956   assert( target>0 && target<=pParse->nMem );
2957   if( pExpr && pExpr->op==TK_REGISTER ){
2958     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2959   }else{
2960     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2961     assert( pParse->pVdbe || pParse->db->mallocFailed );
2962     if( inReg!=target && pParse->pVdbe ){
2963       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2964     }
2965   }
2966   return target;
2967 }
2968 
2969 /*
2970 ** Generate code that evalutes the given expression and puts the result
2971 ** in register target.
2972 **
2973 ** Also make a copy of the expression results into another "cache" register
2974 ** and modify the expression so that the next time it is evaluated,
2975 ** the result is a copy of the cache register.
2976 **
2977 ** This routine is used for expressions that are used multiple
2978 ** times.  They are evaluated once and the results of the expression
2979 ** are reused.
2980 */
2981 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2982   Vdbe *v = pParse->pVdbe;
2983   int inReg;
2984   inReg = sqlite3ExprCode(pParse, pExpr, target);
2985   assert( target>0 );
2986   /* This routine is called for terms to INSERT or UPDATE.  And the only
2987   ** other place where expressions can be converted into TK_REGISTER is
2988   ** in WHERE clause processing.  So as currently implemented, there is
2989   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
2990   ** keep the ALWAYS() in case the conditions above change with future
2991   ** modifications or enhancements. */
2992   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2993     int iMem;
2994     iMem = ++pParse->nMem;
2995     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2996     pExpr->iTable = iMem;
2997     pExpr->op2 = pExpr->op;
2998     pExpr->op = TK_REGISTER;
2999   }
3000   return inReg;
3001 }
3002 
3003 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3004 /*
3005 ** Generate a human-readable explanation of an expression tree.
3006 */
3007 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3008   int op;                   /* The opcode being coded */
3009   const char *zBinOp = 0;   /* Binary operator */
3010   const char *zUniOp = 0;   /* Unary operator */
3011   if( pExpr==0 ){
3012     op = TK_NULL;
3013   }else{
3014     op = pExpr->op;
3015   }
3016   switch( op ){
3017     case TK_AGG_COLUMN: {
3018       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3019             pExpr->iTable, pExpr->iColumn);
3020       break;
3021     }
3022     case TK_COLUMN: {
3023       if( pExpr->iTable<0 ){
3024         /* This only happens when coding check constraints */
3025         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3026       }else{
3027         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3028                              pExpr->iTable, pExpr->iColumn);
3029       }
3030       break;
3031     }
3032     case TK_INTEGER: {
3033       if( pExpr->flags & EP_IntValue ){
3034         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3035       }else{
3036         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3037       }
3038       break;
3039     }
3040 #ifndef SQLITE_OMIT_FLOATING_POINT
3041     case TK_FLOAT: {
3042       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3043       break;
3044     }
3045 #endif
3046     case TK_STRING: {
3047       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3048       break;
3049     }
3050     case TK_NULL: {
3051       sqlite3ExplainPrintf(pOut,"NULL");
3052       break;
3053     }
3054 #ifndef SQLITE_OMIT_BLOB_LITERAL
3055     case TK_BLOB: {
3056       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3057       break;
3058     }
3059 #endif
3060     case TK_VARIABLE: {
3061       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3062                            pExpr->u.zToken, pExpr->iColumn);
3063       break;
3064     }
3065     case TK_REGISTER: {
3066       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3067       break;
3068     }
3069     case TK_AS: {
3070       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3071       break;
3072     }
3073 #ifndef SQLITE_OMIT_CAST
3074     case TK_CAST: {
3075       /* Expressions of the form:   CAST(pLeft AS token) */
3076       const char *zAff = "unk";
3077       switch( sqlite3AffinityType(pExpr->u.zToken) ){
3078         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3079         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3080         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3081         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3082         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3083       }
3084       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3085       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3086       sqlite3ExplainPrintf(pOut, ")");
3087       break;
3088     }
3089 #endif /* SQLITE_OMIT_CAST */
3090     case TK_LT:      zBinOp = "LT";     break;
3091     case TK_LE:      zBinOp = "LE";     break;
3092     case TK_GT:      zBinOp = "GT";     break;
3093     case TK_GE:      zBinOp = "GE";     break;
3094     case TK_NE:      zBinOp = "NE";     break;
3095     case TK_EQ:      zBinOp = "EQ";     break;
3096     case TK_IS:      zBinOp = "IS";     break;
3097     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3098     case TK_AND:     zBinOp = "AND";    break;
3099     case TK_OR:      zBinOp = "OR";     break;
3100     case TK_PLUS:    zBinOp = "ADD";    break;
3101     case TK_STAR:    zBinOp = "MUL";    break;
3102     case TK_MINUS:   zBinOp = "SUB";    break;
3103     case TK_REM:     zBinOp = "REM";    break;
3104     case TK_BITAND:  zBinOp = "BITAND"; break;
3105     case TK_BITOR:   zBinOp = "BITOR";  break;
3106     case TK_SLASH:   zBinOp = "DIV";    break;
3107     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3108     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3109     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3110 
3111     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3112     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3113     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3114     case TK_NOT:     zUniOp = "NOT";    break;
3115     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3116     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3117 
3118     case TK_AGG_FUNCTION:
3119     case TK_CONST_FUNC:
3120     case TK_FUNCTION: {
3121       ExprList *pFarg;       /* List of function arguments */
3122       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
3123         pFarg = 0;
3124       }else{
3125         pFarg = pExpr->x.pList;
3126       }
3127       if( op==TK_AGG_FUNCTION ){
3128         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3129                              pExpr->op2, pExpr->u.zToken);
3130       }else{
3131         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3132       }
3133       if( pFarg ){
3134         sqlite3ExplainExprList(pOut, pFarg);
3135       }
3136       sqlite3ExplainPrintf(pOut, ")");
3137       break;
3138     }
3139 #ifndef SQLITE_OMIT_SUBQUERY
3140     case TK_EXISTS: {
3141       sqlite3ExplainPrintf(pOut, "EXISTS(");
3142       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3143       sqlite3ExplainPrintf(pOut,")");
3144       break;
3145     }
3146     case TK_SELECT: {
3147       sqlite3ExplainPrintf(pOut, "(");
3148       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3149       sqlite3ExplainPrintf(pOut, ")");
3150       break;
3151     }
3152     case TK_IN: {
3153       sqlite3ExplainPrintf(pOut, "IN(");
3154       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3155       sqlite3ExplainPrintf(pOut, ",");
3156       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3157         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3158       }else{
3159         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3160       }
3161       sqlite3ExplainPrintf(pOut, ")");
3162       break;
3163     }
3164 #endif /* SQLITE_OMIT_SUBQUERY */
3165 
3166     /*
3167     **    x BETWEEN y AND z
3168     **
3169     ** This is equivalent to
3170     **
3171     **    x>=y AND x<=z
3172     **
3173     ** X is stored in pExpr->pLeft.
3174     ** Y is stored in pExpr->pList->a[0].pExpr.
3175     ** Z is stored in pExpr->pList->a[1].pExpr.
3176     */
3177     case TK_BETWEEN: {
3178       Expr *pX = pExpr->pLeft;
3179       Expr *pY = pExpr->x.pList->a[0].pExpr;
3180       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3181       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3182       sqlite3ExplainExpr(pOut, pX);
3183       sqlite3ExplainPrintf(pOut, ",");
3184       sqlite3ExplainExpr(pOut, pY);
3185       sqlite3ExplainPrintf(pOut, ",");
3186       sqlite3ExplainExpr(pOut, pZ);
3187       sqlite3ExplainPrintf(pOut, ")");
3188       break;
3189     }
3190     case TK_TRIGGER: {
3191       /* If the opcode is TK_TRIGGER, then the expression is a reference
3192       ** to a column in the new.* or old.* pseudo-tables available to
3193       ** trigger programs. In this case Expr.iTable is set to 1 for the
3194       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3195       ** is set to the column of the pseudo-table to read, or to -1 to
3196       ** read the rowid field.
3197       */
3198       sqlite3ExplainPrintf(pOut, "%s(%d)",
3199           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3200       break;
3201     }
3202     case TK_CASE: {
3203       sqlite3ExplainPrintf(pOut, "CASE(");
3204       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3205       sqlite3ExplainPrintf(pOut, ",");
3206       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3207       break;
3208     }
3209 #ifndef SQLITE_OMIT_TRIGGER
3210     case TK_RAISE: {
3211       const char *zType = "unk";
3212       switch( pExpr->affinity ){
3213         case OE_Rollback:   zType = "rollback";  break;
3214         case OE_Abort:      zType = "abort";     break;
3215         case OE_Fail:       zType = "fail";      break;
3216         case OE_Ignore:     zType = "ignore";    break;
3217       }
3218       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3219       break;
3220     }
3221 #endif
3222   }
3223   if( zBinOp ){
3224     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3225     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3226     sqlite3ExplainPrintf(pOut,",");
3227     sqlite3ExplainExpr(pOut, pExpr->pRight);
3228     sqlite3ExplainPrintf(pOut,")");
3229   }else if( zUniOp ){
3230     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3231     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3232     sqlite3ExplainPrintf(pOut,")");
3233   }
3234 }
3235 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3236 
3237 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3238 /*
3239 ** Generate a human-readable explanation of an expression list.
3240 */
3241 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3242   int i;
3243   if( pList==0 || pList->nExpr==0 ){
3244     sqlite3ExplainPrintf(pOut, "(empty-list)");
3245     return;
3246   }else if( pList->nExpr==1 ){
3247     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3248   }else{
3249     sqlite3ExplainPush(pOut);
3250     for(i=0; i<pList->nExpr; i++){
3251       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3252       sqlite3ExplainPush(pOut);
3253       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3254       sqlite3ExplainPop(pOut);
3255       if( i<pList->nExpr-1 ){
3256         sqlite3ExplainNL(pOut);
3257       }
3258     }
3259     sqlite3ExplainPop(pOut);
3260   }
3261 }
3262 #endif /* SQLITE_DEBUG */
3263 
3264 /*
3265 ** Return TRUE if pExpr is an constant expression that is appropriate
3266 ** for factoring out of a loop.  Appropriate expressions are:
3267 **
3268 **    *  Any expression that evaluates to two or more opcodes.
3269 **
3270 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3271 **       or OP_Variable that does not need to be placed in a
3272 **       specific register.
3273 **
3274 ** There is no point in factoring out single-instruction constant
3275 ** expressions that need to be placed in a particular register.
3276 ** We could factor them out, but then we would end up adding an
3277 ** OP_SCopy instruction to move the value into the correct register
3278 ** later.  We might as well just use the original instruction and
3279 ** avoid the OP_SCopy.
3280 */
3281 static int isAppropriateForFactoring(Expr *p){
3282   if( !sqlite3ExprIsConstantNotJoin(p) ){
3283     return 0;  /* Only constant expressions are appropriate for factoring */
3284   }
3285   if( (p->flags & EP_FixedDest)==0 ){
3286     return 1;  /* Any constant without a fixed destination is appropriate */
3287   }
3288   while( p->op==TK_UPLUS ) p = p->pLeft;
3289   switch( p->op ){
3290 #ifndef SQLITE_OMIT_BLOB_LITERAL
3291     case TK_BLOB:
3292 #endif
3293     case TK_VARIABLE:
3294     case TK_INTEGER:
3295     case TK_FLOAT:
3296     case TK_NULL:
3297     case TK_STRING: {
3298       testcase( p->op==TK_BLOB );
3299       testcase( p->op==TK_VARIABLE );
3300       testcase( p->op==TK_INTEGER );
3301       testcase( p->op==TK_FLOAT );
3302       testcase( p->op==TK_NULL );
3303       testcase( p->op==TK_STRING );
3304       /* Single-instruction constants with a fixed destination are
3305       ** better done in-line.  If we factor them, they will just end
3306       ** up generating an OP_SCopy to move the value to the destination
3307       ** register. */
3308       return 0;
3309     }
3310     case TK_UMINUS: {
3311       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3312         return 0;
3313       }
3314       break;
3315     }
3316     default: {
3317       break;
3318     }
3319   }
3320   return 1;
3321 }
3322 
3323 /*
3324 ** If pExpr is a constant expression that is appropriate for
3325 ** factoring out of a loop, then evaluate the expression
3326 ** into a register and convert the expression into a TK_REGISTER
3327 ** expression.
3328 */
3329 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3330   Parse *pParse = pWalker->pParse;
3331   switch( pExpr->op ){
3332     case TK_IN:
3333     case TK_REGISTER: {
3334       return WRC_Prune;
3335     }
3336     case TK_FUNCTION:
3337     case TK_AGG_FUNCTION:
3338     case TK_CONST_FUNC: {
3339       /* The arguments to a function have a fixed destination.
3340       ** Mark them this way to avoid generated unneeded OP_SCopy
3341       ** instructions.
3342       */
3343       ExprList *pList = pExpr->x.pList;
3344       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3345       if( pList ){
3346         int i = pList->nExpr;
3347         struct ExprList_item *pItem = pList->a;
3348         for(; i>0; i--, pItem++){
3349           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3350         }
3351       }
3352       break;
3353     }
3354   }
3355   if( isAppropriateForFactoring(pExpr) ){
3356     int r1 = ++pParse->nMem;
3357     int r2;
3358     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3359     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3360     pExpr->op2 = pExpr->op;
3361     pExpr->op = TK_REGISTER;
3362     pExpr->iTable = r2;
3363     return WRC_Prune;
3364   }
3365   return WRC_Continue;
3366 }
3367 
3368 /*
3369 ** Preevaluate constant subexpressions within pExpr and store the
3370 ** results in registers.  Modify pExpr so that the constant subexpresions
3371 ** are TK_REGISTER opcodes that refer to the precomputed values.
3372 **
3373 ** This routine is a no-op if the jump to the cookie-check code has
3374 ** already occur.  Since the cookie-check jump is generated prior to
3375 ** any other serious processing, this check ensures that there is no
3376 ** way to accidently bypass the constant initializations.
3377 **
3378 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3379 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3380 ** interface.  This allows test logic to verify that the same answer is
3381 ** obtained for queries regardless of whether or not constants are
3382 ** precomputed into registers or if they are inserted in-line.
3383 */
3384 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3385   Walker w;
3386   if( pParse->cookieGoto ) return;
3387   if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return;
3388   w.xExprCallback = evalConstExpr;
3389   w.xSelectCallback = 0;
3390   w.pParse = pParse;
3391   sqlite3WalkExpr(&w, pExpr);
3392 }
3393 
3394 
3395 /*
3396 ** Generate code that pushes the value of every element of the given
3397 ** expression list into a sequence of registers beginning at target.
3398 **
3399 ** Return the number of elements evaluated.
3400 */
3401 int sqlite3ExprCodeExprList(
3402   Parse *pParse,     /* Parsing context */
3403   ExprList *pList,   /* The expression list to be coded */
3404   int target,        /* Where to write results */
3405   int doHardCopy     /* Make a hard copy of every element */
3406 ){
3407   struct ExprList_item *pItem;
3408   int i, n;
3409   assert( pList!=0 );
3410   assert( target>0 );
3411   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3412   n = pList->nExpr;
3413   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3414     Expr *pExpr = pItem->pExpr;
3415     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3416     if( inReg!=target+i ){
3417       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3418                         inReg, target+i);
3419     }
3420   }
3421   return n;
3422 }
3423 
3424 /*
3425 ** Generate code for a BETWEEN operator.
3426 **
3427 **    x BETWEEN y AND z
3428 **
3429 ** The above is equivalent to
3430 **
3431 **    x>=y AND x<=z
3432 **
3433 ** Code it as such, taking care to do the common subexpression
3434 ** elementation of x.
3435 */
3436 static void exprCodeBetween(
3437   Parse *pParse,    /* Parsing and code generating context */
3438   Expr *pExpr,      /* The BETWEEN expression */
3439   int dest,         /* Jump here if the jump is taken */
3440   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3441   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3442 ){
3443   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3444   Expr compLeft;    /* The  x>=y  term */
3445   Expr compRight;   /* The  x<=z  term */
3446   Expr exprX;       /* The  x  subexpression */
3447   int regFree1 = 0; /* Temporary use register */
3448 
3449   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3450   exprX = *pExpr->pLeft;
3451   exprAnd.op = TK_AND;
3452   exprAnd.pLeft = &compLeft;
3453   exprAnd.pRight = &compRight;
3454   compLeft.op = TK_GE;
3455   compLeft.pLeft = &exprX;
3456   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3457   compRight.op = TK_LE;
3458   compRight.pLeft = &exprX;
3459   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3460   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3461   exprX.op = TK_REGISTER;
3462   if( jumpIfTrue ){
3463     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3464   }else{
3465     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3466   }
3467   sqlite3ReleaseTempReg(pParse, regFree1);
3468 
3469   /* Ensure adequate test coverage */
3470   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3471   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3472   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3473   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3474   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3475   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3476   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3477   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3478 }
3479 
3480 /*
3481 ** Generate code for a boolean expression such that a jump is made
3482 ** to the label "dest" if the expression is true but execution
3483 ** continues straight thru if the expression is false.
3484 **
3485 ** If the expression evaluates to NULL (neither true nor false), then
3486 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3487 **
3488 ** This code depends on the fact that certain token values (ex: TK_EQ)
3489 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3490 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3491 ** the make process cause these values to align.  Assert()s in the code
3492 ** below verify that the numbers are aligned correctly.
3493 */
3494 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3495   Vdbe *v = pParse->pVdbe;
3496   int op = 0;
3497   int regFree1 = 0;
3498   int regFree2 = 0;
3499   int r1, r2;
3500 
3501   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3502   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
3503   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3504   op = pExpr->op;
3505   switch( op ){
3506     case TK_AND: {
3507       int d2 = sqlite3VdbeMakeLabel(v);
3508       testcase( jumpIfNull==0 );
3509       sqlite3ExprCachePush(pParse);
3510       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3511       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3512       sqlite3VdbeResolveLabel(v, d2);
3513       sqlite3ExprCachePop(pParse, 1);
3514       break;
3515     }
3516     case TK_OR: {
3517       testcase( jumpIfNull==0 );
3518       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3519       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3520       break;
3521     }
3522     case TK_NOT: {
3523       testcase( jumpIfNull==0 );
3524       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3525       break;
3526     }
3527     case TK_LT:
3528     case TK_LE:
3529     case TK_GT:
3530     case TK_GE:
3531     case TK_NE:
3532     case TK_EQ: {
3533       assert( TK_LT==OP_Lt );
3534       assert( TK_LE==OP_Le );
3535       assert( TK_GT==OP_Gt );
3536       assert( TK_GE==OP_Ge );
3537       assert( TK_EQ==OP_Eq );
3538       assert( TK_NE==OP_Ne );
3539       testcase( op==TK_LT );
3540       testcase( op==TK_LE );
3541       testcase( op==TK_GT );
3542       testcase( op==TK_GE );
3543       testcase( op==TK_EQ );
3544       testcase( op==TK_NE );
3545       testcase( jumpIfNull==0 );
3546       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3547       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3548       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3549                   r1, r2, dest, jumpIfNull);
3550       testcase( regFree1==0 );
3551       testcase( regFree2==0 );
3552       break;
3553     }
3554     case TK_IS:
3555     case TK_ISNOT: {
3556       testcase( op==TK_IS );
3557       testcase( op==TK_ISNOT );
3558       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3559       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3560       op = (op==TK_IS) ? TK_EQ : TK_NE;
3561       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3562                   r1, r2, dest, SQLITE_NULLEQ);
3563       testcase( regFree1==0 );
3564       testcase( regFree2==0 );
3565       break;
3566     }
3567     case TK_ISNULL:
3568     case TK_NOTNULL: {
3569       assert( TK_ISNULL==OP_IsNull );
3570       assert( TK_NOTNULL==OP_NotNull );
3571       testcase( op==TK_ISNULL );
3572       testcase( op==TK_NOTNULL );
3573       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3574       sqlite3VdbeAddOp2(v, op, r1, dest);
3575       testcase( regFree1==0 );
3576       break;
3577     }
3578     case TK_BETWEEN: {
3579       testcase( jumpIfNull==0 );
3580       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3581       break;
3582     }
3583 #ifndef SQLITE_OMIT_SUBQUERY
3584     case TK_IN: {
3585       int destIfFalse = sqlite3VdbeMakeLabel(v);
3586       int destIfNull = jumpIfNull ? dest : destIfFalse;
3587       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3588       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3589       sqlite3VdbeResolveLabel(v, destIfFalse);
3590       break;
3591     }
3592 #endif
3593     default: {
3594       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3595       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3596       testcase( regFree1==0 );
3597       testcase( jumpIfNull==0 );
3598       break;
3599     }
3600   }
3601   sqlite3ReleaseTempReg(pParse, regFree1);
3602   sqlite3ReleaseTempReg(pParse, regFree2);
3603 }
3604 
3605 /*
3606 ** Generate code for a boolean expression such that a jump is made
3607 ** to the label "dest" if the expression is false but execution
3608 ** continues straight thru if the expression is true.
3609 **
3610 ** If the expression evaluates to NULL (neither true nor false) then
3611 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3612 ** is 0.
3613 */
3614 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3615   Vdbe *v = pParse->pVdbe;
3616   int op = 0;
3617   int regFree1 = 0;
3618   int regFree2 = 0;
3619   int r1, r2;
3620 
3621   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3622   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3623   if( pExpr==0 )    return;
3624 
3625   /* The value of pExpr->op and op are related as follows:
3626   **
3627   **       pExpr->op            op
3628   **       ---------          ----------
3629   **       TK_ISNULL          OP_NotNull
3630   **       TK_NOTNULL         OP_IsNull
3631   **       TK_NE              OP_Eq
3632   **       TK_EQ              OP_Ne
3633   **       TK_GT              OP_Le
3634   **       TK_LE              OP_Gt
3635   **       TK_GE              OP_Lt
3636   **       TK_LT              OP_Ge
3637   **
3638   ** For other values of pExpr->op, op is undefined and unused.
3639   ** The value of TK_ and OP_ constants are arranged such that we
3640   ** can compute the mapping above using the following expression.
3641   ** Assert()s verify that the computation is correct.
3642   */
3643   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3644 
3645   /* Verify correct alignment of TK_ and OP_ constants
3646   */
3647   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3648   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3649   assert( pExpr->op!=TK_NE || op==OP_Eq );
3650   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3651   assert( pExpr->op!=TK_LT || op==OP_Ge );
3652   assert( pExpr->op!=TK_LE || op==OP_Gt );
3653   assert( pExpr->op!=TK_GT || op==OP_Le );
3654   assert( pExpr->op!=TK_GE || op==OP_Lt );
3655 
3656   switch( pExpr->op ){
3657     case TK_AND: {
3658       testcase( jumpIfNull==0 );
3659       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3660       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3661       break;
3662     }
3663     case TK_OR: {
3664       int d2 = sqlite3VdbeMakeLabel(v);
3665       testcase( jumpIfNull==0 );
3666       sqlite3ExprCachePush(pParse);
3667       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3668       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3669       sqlite3VdbeResolveLabel(v, d2);
3670       sqlite3ExprCachePop(pParse, 1);
3671       break;
3672     }
3673     case TK_NOT: {
3674       testcase( jumpIfNull==0 );
3675       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3676       break;
3677     }
3678     case TK_LT:
3679     case TK_LE:
3680     case TK_GT:
3681     case TK_GE:
3682     case TK_NE:
3683     case TK_EQ: {
3684       testcase( op==TK_LT );
3685       testcase( op==TK_LE );
3686       testcase( op==TK_GT );
3687       testcase( op==TK_GE );
3688       testcase( op==TK_EQ );
3689       testcase( op==TK_NE );
3690       testcase( jumpIfNull==0 );
3691       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3692       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3693       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3694                   r1, r2, dest, jumpIfNull);
3695       testcase( regFree1==0 );
3696       testcase( regFree2==0 );
3697       break;
3698     }
3699     case TK_IS:
3700     case TK_ISNOT: {
3701       testcase( pExpr->op==TK_IS );
3702       testcase( pExpr->op==TK_ISNOT );
3703       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3704       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3705       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3706       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3707                   r1, r2, dest, SQLITE_NULLEQ);
3708       testcase( regFree1==0 );
3709       testcase( regFree2==0 );
3710       break;
3711     }
3712     case TK_ISNULL:
3713     case TK_NOTNULL: {
3714       testcase( op==TK_ISNULL );
3715       testcase( op==TK_NOTNULL );
3716       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3717       sqlite3VdbeAddOp2(v, op, r1, dest);
3718       testcase( regFree1==0 );
3719       break;
3720     }
3721     case TK_BETWEEN: {
3722       testcase( jumpIfNull==0 );
3723       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3724       break;
3725     }
3726 #ifndef SQLITE_OMIT_SUBQUERY
3727     case TK_IN: {
3728       if( jumpIfNull ){
3729         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3730       }else{
3731         int destIfNull = sqlite3VdbeMakeLabel(v);
3732         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3733         sqlite3VdbeResolveLabel(v, destIfNull);
3734       }
3735       break;
3736     }
3737 #endif
3738     default: {
3739       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3740       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3741       testcase( regFree1==0 );
3742       testcase( jumpIfNull==0 );
3743       break;
3744     }
3745   }
3746   sqlite3ReleaseTempReg(pParse, regFree1);
3747   sqlite3ReleaseTempReg(pParse, regFree2);
3748 }
3749 
3750 /*
3751 ** Do a deep comparison of two expression trees.  Return 0 if the two
3752 ** expressions are completely identical.  Return 1 if they differ only
3753 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3754 ** other than the top-level COLLATE operator.
3755 **
3756 ** Sometimes this routine will return 2 even if the two expressions
3757 ** really are equivalent.  If we cannot prove that the expressions are
3758 ** identical, we return 2 just to be safe.  So if this routine
3759 ** returns 2, then you do not really know for certain if the two
3760 ** expressions are the same.  But if you get a 0 or 1 return, then you
3761 ** can be sure the expressions are the same.  In the places where
3762 ** this routine is used, it does not hurt to get an extra 2 - that
3763 ** just might result in some slightly slower code.  But returning
3764 ** an incorrect 0 or 1 could lead to a malfunction.
3765 */
3766 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3767   if( pA==0||pB==0 ){
3768     return pB==pA ? 0 : 2;
3769   }
3770   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3771   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3772   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3773     return 2;
3774   }
3775   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3776   if( pA->op!=pB->op ) return 2;
3777   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3778   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3779   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3780   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3781   if( ExprHasProperty(pA, EP_IntValue) ){
3782     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3783       return 2;
3784     }
3785   }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){
3786     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3787     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3788       return 2;
3789     }
3790   }
3791   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3792   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3793   return 0;
3794 }
3795 
3796 /*
3797 ** Compare two ExprList objects.  Return 0 if they are identical and
3798 ** non-zero if they differ in any way.
3799 **
3800 ** This routine might return non-zero for equivalent ExprLists.  The
3801 ** only consequence will be disabled optimizations.  But this routine
3802 ** must never return 0 if the two ExprList objects are different, or
3803 ** a malfunction will result.
3804 **
3805 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3806 ** always differs from a non-NULL pointer.
3807 */
3808 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3809   int i;
3810   if( pA==0 && pB==0 ) return 0;
3811   if( pA==0 || pB==0 ) return 1;
3812   if( pA->nExpr!=pB->nExpr ) return 1;
3813   for(i=0; i<pA->nExpr; i++){
3814     Expr *pExprA = pA->a[i].pExpr;
3815     Expr *pExprB = pB->a[i].pExpr;
3816     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3817     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3818   }
3819   return 0;
3820 }
3821 
3822 /*
3823 ** An instance of the following structure is used by the tree walker
3824 ** to count references to table columns in the arguments of an
3825 ** aggregate function, in order to implement the
3826 ** sqlite3FunctionThisSrc() routine.
3827 */
3828 struct SrcCount {
3829   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3830   int nThis;       /* Number of references to columns in pSrcList */
3831   int nOther;      /* Number of references to columns in other FROM clauses */
3832 };
3833 
3834 /*
3835 ** Count the number of references to columns.
3836 */
3837 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3838   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3839   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3840   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3841   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3842   ** NEVER() will need to be removed. */
3843   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3844     int i;
3845     struct SrcCount *p = pWalker->u.pSrcCount;
3846     SrcList *pSrc = p->pSrc;
3847     for(i=0; i<pSrc->nSrc; i++){
3848       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3849     }
3850     if( i<pSrc->nSrc ){
3851       p->nThis++;
3852     }else{
3853       p->nOther++;
3854     }
3855   }
3856   return WRC_Continue;
3857 }
3858 
3859 /*
3860 ** Determine if any of the arguments to the pExpr Function reference
3861 ** pSrcList.  Return true if they do.  Also return true if the function
3862 ** has no arguments or has only constant arguments.  Return false if pExpr
3863 ** references columns but not columns of tables found in pSrcList.
3864 */
3865 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3866   Walker w;
3867   struct SrcCount cnt;
3868   assert( pExpr->op==TK_AGG_FUNCTION );
3869   memset(&w, 0, sizeof(w));
3870   w.xExprCallback = exprSrcCount;
3871   w.u.pSrcCount = &cnt;
3872   cnt.pSrc = pSrcList;
3873   cnt.nThis = 0;
3874   cnt.nOther = 0;
3875   sqlite3WalkExprList(&w, pExpr->x.pList);
3876   return cnt.nThis>0 || cnt.nOther==0;
3877 }
3878 
3879 /*
3880 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3881 ** the new element.  Return a negative number if malloc fails.
3882 */
3883 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3884   int i;
3885   pInfo->aCol = sqlite3ArrayAllocate(
3886        db,
3887        pInfo->aCol,
3888        sizeof(pInfo->aCol[0]),
3889        &pInfo->nColumn,
3890        &i
3891   );
3892   return i;
3893 }
3894 
3895 /*
3896 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3897 ** the new element.  Return a negative number if malloc fails.
3898 */
3899 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3900   int i;
3901   pInfo->aFunc = sqlite3ArrayAllocate(
3902        db,
3903        pInfo->aFunc,
3904        sizeof(pInfo->aFunc[0]),
3905        &pInfo->nFunc,
3906        &i
3907   );
3908   return i;
3909 }
3910 
3911 /*
3912 ** This is the xExprCallback for a tree walker.  It is used to
3913 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3914 ** for additional information.
3915 */
3916 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3917   int i;
3918   NameContext *pNC = pWalker->u.pNC;
3919   Parse *pParse = pNC->pParse;
3920   SrcList *pSrcList = pNC->pSrcList;
3921   AggInfo *pAggInfo = pNC->pAggInfo;
3922 
3923   switch( pExpr->op ){
3924     case TK_AGG_COLUMN:
3925     case TK_COLUMN: {
3926       testcase( pExpr->op==TK_AGG_COLUMN );
3927       testcase( pExpr->op==TK_COLUMN );
3928       /* Check to see if the column is in one of the tables in the FROM
3929       ** clause of the aggregate query */
3930       if( ALWAYS(pSrcList!=0) ){
3931         struct SrcList_item *pItem = pSrcList->a;
3932         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3933           struct AggInfo_col *pCol;
3934           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3935           if( pExpr->iTable==pItem->iCursor ){
3936             /* If we reach this point, it means that pExpr refers to a table
3937             ** that is in the FROM clause of the aggregate query.
3938             **
3939             ** Make an entry for the column in pAggInfo->aCol[] if there
3940             ** is not an entry there already.
3941             */
3942             int k;
3943             pCol = pAggInfo->aCol;
3944             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3945               if( pCol->iTable==pExpr->iTable &&
3946                   pCol->iColumn==pExpr->iColumn ){
3947                 break;
3948               }
3949             }
3950             if( (k>=pAggInfo->nColumn)
3951              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3952             ){
3953               pCol = &pAggInfo->aCol[k];
3954               pCol->pTab = pExpr->pTab;
3955               pCol->iTable = pExpr->iTable;
3956               pCol->iColumn = pExpr->iColumn;
3957               pCol->iMem = ++pParse->nMem;
3958               pCol->iSorterColumn = -1;
3959               pCol->pExpr = pExpr;
3960               if( pAggInfo->pGroupBy ){
3961                 int j, n;
3962                 ExprList *pGB = pAggInfo->pGroupBy;
3963                 struct ExprList_item *pTerm = pGB->a;
3964                 n = pGB->nExpr;
3965                 for(j=0; j<n; j++, pTerm++){
3966                   Expr *pE = pTerm->pExpr;
3967                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3968                       pE->iColumn==pExpr->iColumn ){
3969                     pCol->iSorterColumn = j;
3970                     break;
3971                   }
3972                 }
3973               }
3974               if( pCol->iSorterColumn<0 ){
3975                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3976               }
3977             }
3978             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3979             ** because it was there before or because we just created it).
3980             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3981             ** pAggInfo->aCol[] entry.
3982             */
3983             ExprSetIrreducible(pExpr);
3984             pExpr->pAggInfo = pAggInfo;
3985             pExpr->op = TK_AGG_COLUMN;
3986             pExpr->iAgg = (i16)k;
3987             break;
3988           } /* endif pExpr->iTable==pItem->iCursor */
3989         } /* end loop over pSrcList */
3990       }
3991       return WRC_Prune;
3992     }
3993     case TK_AGG_FUNCTION: {
3994       if( (pNC->ncFlags & NC_InAggFunc)==0
3995        && pWalker->walkerDepth==pExpr->op2
3996       ){
3997         /* Check to see if pExpr is a duplicate of another aggregate
3998         ** function that is already in the pAggInfo structure
3999         */
4000         struct AggInfo_func *pItem = pAggInfo->aFunc;
4001         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4002           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
4003             break;
4004           }
4005         }
4006         if( i>=pAggInfo->nFunc ){
4007           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4008           */
4009           u8 enc = ENC(pParse->db);
4010           i = addAggInfoFunc(pParse->db, pAggInfo);
4011           if( i>=0 ){
4012             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4013             pItem = &pAggInfo->aFunc[i];
4014             pItem->pExpr = pExpr;
4015             pItem->iMem = ++pParse->nMem;
4016             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4017             pItem->pFunc = sqlite3FindFunction(pParse->db,
4018                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4019                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4020             if( pExpr->flags & EP_Distinct ){
4021               pItem->iDistinct = pParse->nTab++;
4022             }else{
4023               pItem->iDistinct = -1;
4024             }
4025           }
4026         }
4027         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4028         */
4029         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4030         ExprSetIrreducible(pExpr);
4031         pExpr->iAgg = (i16)i;
4032         pExpr->pAggInfo = pAggInfo;
4033         return WRC_Prune;
4034       }else{
4035         return WRC_Continue;
4036       }
4037     }
4038   }
4039   return WRC_Continue;
4040 }
4041 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4042   UNUSED_PARAMETER(pWalker);
4043   UNUSED_PARAMETER(pSelect);
4044   return WRC_Continue;
4045 }
4046 
4047 /*
4048 ** Analyze the pExpr expression looking for aggregate functions and
4049 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4050 ** points to.  Additional entries are made on the AggInfo object as
4051 ** necessary.
4052 **
4053 ** This routine should only be called after the expression has been
4054 ** analyzed by sqlite3ResolveExprNames().
4055 */
4056 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4057   Walker w;
4058   memset(&w, 0, sizeof(w));
4059   w.xExprCallback = analyzeAggregate;
4060   w.xSelectCallback = analyzeAggregatesInSelect;
4061   w.u.pNC = pNC;
4062   assert( pNC->pSrcList!=0 );
4063   sqlite3WalkExpr(&w, pExpr);
4064 }
4065 
4066 /*
4067 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4068 ** expression list.  Return the number of errors.
4069 **
4070 ** If an error is found, the analysis is cut short.
4071 */
4072 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4073   struct ExprList_item *pItem;
4074   int i;
4075   if( pList ){
4076     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4077       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4078     }
4079   }
4080 }
4081 
4082 /*
4083 ** Allocate a single new register for use to hold some intermediate result.
4084 */
4085 int sqlite3GetTempReg(Parse *pParse){
4086   if( pParse->nTempReg==0 ){
4087     return ++pParse->nMem;
4088   }
4089   return pParse->aTempReg[--pParse->nTempReg];
4090 }
4091 
4092 /*
4093 ** Deallocate a register, making available for reuse for some other
4094 ** purpose.
4095 **
4096 ** If a register is currently being used by the column cache, then
4097 ** the dallocation is deferred until the column cache line that uses
4098 ** the register becomes stale.
4099 */
4100 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4101   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4102     int i;
4103     struct yColCache *p;
4104     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4105       if( p->iReg==iReg ){
4106         p->tempReg = 1;
4107         return;
4108       }
4109     }
4110     pParse->aTempReg[pParse->nTempReg++] = iReg;
4111   }
4112 }
4113 
4114 /*
4115 ** Allocate or deallocate a block of nReg consecutive registers
4116 */
4117 int sqlite3GetTempRange(Parse *pParse, int nReg){
4118   int i, n;
4119   i = pParse->iRangeReg;
4120   n = pParse->nRangeReg;
4121   if( nReg<=n ){
4122     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4123     pParse->iRangeReg += nReg;
4124     pParse->nRangeReg -= nReg;
4125   }else{
4126     i = pParse->nMem+1;
4127     pParse->nMem += nReg;
4128   }
4129   return i;
4130 }
4131 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4132   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4133   if( nReg>pParse->nRangeReg ){
4134     pParse->nRangeReg = nReg;
4135     pParse->iRangeReg = iReg;
4136   }
4137 }
4138 
4139 /*
4140 ** Mark all temporary registers as being unavailable for reuse.
4141 */
4142 void sqlite3ClearTempRegCache(Parse *pParse){
4143   pParse->nTempReg = 0;
4144   pParse->nRangeReg = 0;
4145 }
4146