1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; 774 if( ExprUseXSelect(p) ){ 775 heightOfSelect(p->x.pSelect, &nHeight); 776 }else if( p->x.pList ){ 777 heightOfExprList(p->x.pList, &nHeight); 778 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 779 } 780 p->nHeight = nHeight + 1; 781 } 782 783 /* 784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 785 ** the height is greater than the maximum allowed expression depth, 786 ** leave an error in pParse. 787 ** 788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 789 ** Expr.flags. 790 */ 791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 792 if( pParse->nErr ) return; 793 exprSetHeight(p); 794 sqlite3ExprCheckHeight(pParse, p->nHeight); 795 } 796 797 /* 798 ** Return the maximum height of any expression tree referenced 799 ** by the select statement passed as an argument. 800 */ 801 int sqlite3SelectExprHeight(const Select *p){ 802 int nHeight = 0; 803 heightOfSelect(p, &nHeight); 804 return nHeight; 805 } 806 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 807 /* 808 ** Propagate all EP_Propagate flags from the Expr.x.pList into 809 ** Expr.flags. 810 */ 811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 812 if( pParse->nErr ) return; 813 if( p && ExprUseXList(p) && p->x.pList ){ 814 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 815 } 816 } 817 #define exprSetHeight(y) 818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 819 820 /* 821 ** This routine is the core allocator for Expr nodes. 822 ** 823 ** Construct a new expression node and return a pointer to it. Memory 824 ** for this node and for the pToken argument is a single allocation 825 ** obtained from sqlite3DbMalloc(). The calling function 826 ** is responsible for making sure the node eventually gets freed. 827 ** 828 ** If dequote is true, then the token (if it exists) is dequoted. 829 ** If dequote is false, no dequoting is performed. The deQuote 830 ** parameter is ignored if pToken is NULL or if the token does not 831 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 832 ** then the EP_DblQuoted flag is set on the expression node. 833 ** 834 ** Special case: If op==TK_INTEGER and pToken points to a string that 835 ** can be translated into a 32-bit integer, then the token is not 836 ** stored in u.zToken. Instead, the integer values is written 837 ** into u.iValue and the EP_IntValue flag is set. No extra storage 838 ** is allocated to hold the integer text and the dequote flag is ignored. 839 */ 840 Expr *sqlite3ExprAlloc( 841 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 842 int op, /* Expression opcode */ 843 const Token *pToken, /* Token argument. Might be NULL */ 844 int dequote /* True to dequote */ 845 ){ 846 Expr *pNew; 847 int nExtra = 0; 848 int iValue = 0; 849 850 assert( db!=0 ); 851 if( pToken ){ 852 if( op!=TK_INTEGER || pToken->z==0 853 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 854 nExtra = pToken->n+1; 855 assert( iValue>=0 ); 856 } 857 } 858 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 859 if( pNew ){ 860 memset(pNew, 0, sizeof(Expr)); 861 pNew->op = (u8)op; 862 pNew->iAgg = -1; 863 if( pToken ){ 864 if( nExtra==0 ){ 865 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 866 pNew->u.iValue = iValue; 867 }else{ 868 pNew->u.zToken = (char*)&pNew[1]; 869 assert( pToken->z!=0 || pToken->n==0 ); 870 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 871 pNew->u.zToken[pToken->n] = 0; 872 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 873 sqlite3DequoteExpr(pNew); 874 } 875 } 876 } 877 #if SQLITE_MAX_EXPR_DEPTH>0 878 pNew->nHeight = 1; 879 #endif 880 } 881 return pNew; 882 } 883 884 /* 885 ** Allocate a new expression node from a zero-terminated token that has 886 ** already been dequoted. 887 */ 888 Expr *sqlite3Expr( 889 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 890 int op, /* Expression opcode */ 891 const char *zToken /* Token argument. Might be NULL */ 892 ){ 893 Token x; 894 x.z = zToken; 895 x.n = sqlite3Strlen30(zToken); 896 return sqlite3ExprAlloc(db, op, &x, 0); 897 } 898 899 /* 900 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 901 ** 902 ** If pRoot==NULL that means that a memory allocation error has occurred. 903 ** In that case, delete the subtrees pLeft and pRight. 904 */ 905 void sqlite3ExprAttachSubtrees( 906 sqlite3 *db, 907 Expr *pRoot, 908 Expr *pLeft, 909 Expr *pRight 910 ){ 911 if( pRoot==0 ){ 912 assert( db->mallocFailed ); 913 sqlite3ExprDelete(db, pLeft); 914 sqlite3ExprDelete(db, pRight); 915 }else{ 916 if( pRight ){ 917 pRoot->pRight = pRight; 918 pRoot->flags |= EP_Propagate & pRight->flags; 919 } 920 if( pLeft ){ 921 pRoot->pLeft = pLeft; 922 pRoot->flags |= EP_Propagate & pLeft->flags; 923 } 924 exprSetHeight(pRoot); 925 } 926 } 927 928 /* 929 ** Allocate an Expr node which joins as many as two subtrees. 930 ** 931 ** One or both of the subtrees can be NULL. Return a pointer to the new 932 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 933 ** free the subtrees and return NULL. 934 */ 935 Expr *sqlite3PExpr( 936 Parse *pParse, /* Parsing context */ 937 int op, /* Expression opcode */ 938 Expr *pLeft, /* Left operand */ 939 Expr *pRight /* Right operand */ 940 ){ 941 Expr *p; 942 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 943 if( p ){ 944 memset(p, 0, sizeof(Expr)); 945 p->op = op & 0xff; 946 p->iAgg = -1; 947 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 948 sqlite3ExprCheckHeight(pParse, p->nHeight); 949 }else{ 950 sqlite3ExprDelete(pParse->db, pLeft); 951 sqlite3ExprDelete(pParse->db, pRight); 952 } 953 return p; 954 } 955 956 /* 957 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 958 ** do a memory allocation failure) then delete the pSelect object. 959 */ 960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 961 if( pExpr ){ 962 pExpr->x.pSelect = pSelect; 963 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 964 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 965 }else{ 966 assert( pParse->db->mallocFailed ); 967 sqlite3SelectDelete(pParse->db, pSelect); 968 } 969 } 970 971 /* 972 ** Expression list pEList is a list of vector values. This function 973 ** converts the contents of pEList to a VALUES(...) Select statement 974 ** returning 1 row for each element of the list. For example, the 975 ** expression list: 976 ** 977 ** ( (1,2), (3,4) (5,6) ) 978 ** 979 ** is translated to the equivalent of: 980 ** 981 ** VALUES(1,2), (3,4), (5,6) 982 ** 983 ** Each of the vector values in pEList must contain exactly nElem terms. 984 ** If a list element that is not a vector or does not contain nElem terms, 985 ** an error message is left in pParse. 986 ** 987 ** This is used as part of processing IN(...) expressions with a list 988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 989 */ 990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 991 int ii; 992 Select *pRet = 0; 993 assert( nElem>1 ); 994 for(ii=0; ii<pEList->nExpr; ii++){ 995 Select *pSel; 996 Expr *pExpr = pEList->a[ii].pExpr; 997 int nExprElem; 998 if( pExpr->op==TK_VECTOR ){ 999 assert( ExprUseXList(pExpr) ); 1000 nExprElem = pExpr->x.pList->nExpr; 1001 }else{ 1002 nExprElem = 1; 1003 } 1004 if( nExprElem!=nElem ){ 1005 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1006 nExprElem, nExprElem>1?"s":"", nElem 1007 ); 1008 break; 1009 } 1010 assert( ExprUseXList(pExpr) ); 1011 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1012 pExpr->x.pList = 0; 1013 if( pSel ){ 1014 if( pRet ){ 1015 pSel->op = TK_ALL; 1016 pSel->pPrior = pRet; 1017 } 1018 pRet = pSel; 1019 } 1020 } 1021 1022 if( pRet && pRet->pPrior ){ 1023 pRet->selFlags |= SF_MultiValue; 1024 } 1025 sqlite3ExprListDelete(pParse->db, pEList); 1026 return pRet; 1027 } 1028 1029 /* 1030 ** Join two expressions using an AND operator. If either expression is 1031 ** NULL, then just return the other expression. 1032 ** 1033 ** If one side or the other of the AND is known to be false, then instead 1034 ** of returning an AND expression, just return a constant expression with 1035 ** a value of false. 1036 */ 1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1038 sqlite3 *db = pParse->db; 1039 if( pLeft==0 ){ 1040 return pRight; 1041 }else if( pRight==0 ){ 1042 return pLeft; 1043 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1044 && !IN_RENAME_OBJECT 1045 ){ 1046 sqlite3ExprDeferredDelete(pParse, pLeft); 1047 sqlite3ExprDeferredDelete(pParse, pRight); 1048 return sqlite3Expr(db, TK_INTEGER, "0"); 1049 }else{ 1050 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1051 } 1052 } 1053 1054 /* 1055 ** Construct a new expression node for a function with multiple 1056 ** arguments. 1057 */ 1058 Expr *sqlite3ExprFunction( 1059 Parse *pParse, /* Parsing context */ 1060 ExprList *pList, /* Argument list */ 1061 const Token *pToken, /* Name of the function */ 1062 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1063 ){ 1064 Expr *pNew; 1065 sqlite3 *db = pParse->db; 1066 assert( pToken ); 1067 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1068 if( pNew==0 ){ 1069 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1070 return 0; 1071 } 1072 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 1073 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1074 if( pList 1075 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1076 && !pParse->nested 1077 ){ 1078 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1079 } 1080 pNew->x.pList = pList; 1081 ExprSetProperty(pNew, EP_HasFunc); 1082 assert( ExprUseXList(pNew) ); 1083 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1084 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1085 return pNew; 1086 } 1087 1088 /* 1089 ** Check to see if a function is usable according to current access 1090 ** rules: 1091 ** 1092 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1093 ** 1094 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1095 ** top-level SQL 1096 ** 1097 ** If the function is not usable, create an error. 1098 */ 1099 void sqlite3ExprFunctionUsable( 1100 Parse *pParse, /* Parsing and code generating context */ 1101 const Expr *pExpr, /* The function invocation */ 1102 const FuncDef *pDef /* The function being invoked */ 1103 ){ 1104 assert( !IN_RENAME_OBJECT ); 1105 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1106 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1107 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1108 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1109 ){ 1110 /* Functions prohibited in triggers and views if: 1111 ** (1) tagged with SQLITE_DIRECTONLY 1112 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1113 ** is tagged with SQLITE_FUNC_UNSAFE) and 1114 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1115 ** that the schema is possibly tainted). 1116 */ 1117 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1118 } 1119 } 1120 } 1121 1122 /* 1123 ** Assign a variable number to an expression that encodes a wildcard 1124 ** in the original SQL statement. 1125 ** 1126 ** Wildcards consisting of a single "?" are assigned the next sequential 1127 ** variable number. 1128 ** 1129 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1130 ** sure "nnn" is not too big to avoid a denial of service attack when 1131 ** the SQL statement comes from an external source. 1132 ** 1133 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1134 ** as the previous instance of the same wildcard. Or if this is the first 1135 ** instance of the wildcard, the next sequential variable number is 1136 ** assigned. 1137 */ 1138 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1139 sqlite3 *db = pParse->db; 1140 const char *z; 1141 ynVar x; 1142 1143 if( pExpr==0 ) return; 1144 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1145 z = pExpr->u.zToken; 1146 assert( z!=0 ); 1147 assert( z[0]!=0 ); 1148 assert( n==(u32)sqlite3Strlen30(z) ); 1149 if( z[1]==0 ){ 1150 /* Wildcard of the form "?". Assign the next variable number */ 1151 assert( z[0]=='?' ); 1152 x = (ynVar)(++pParse->nVar); 1153 }else{ 1154 int doAdd = 0; 1155 if( z[0]=='?' ){ 1156 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1157 ** use it as the variable number */ 1158 i64 i; 1159 int bOk; 1160 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1161 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1162 bOk = 1; 1163 }else{ 1164 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1165 } 1166 testcase( i==0 ); 1167 testcase( i==1 ); 1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1169 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1170 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1171 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1172 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1173 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1174 return; 1175 } 1176 x = (ynVar)i; 1177 if( x>pParse->nVar ){ 1178 pParse->nVar = (int)x; 1179 doAdd = 1; 1180 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1181 doAdd = 1; 1182 } 1183 }else{ 1184 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1185 ** number as the prior appearance of the same name, or if the name 1186 ** has never appeared before, reuse the same variable number 1187 */ 1188 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1189 if( x==0 ){ 1190 x = (ynVar)(++pParse->nVar); 1191 doAdd = 1; 1192 } 1193 } 1194 if( doAdd ){ 1195 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1196 } 1197 } 1198 pExpr->iColumn = x; 1199 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1200 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1201 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1202 } 1203 } 1204 1205 /* 1206 ** Recursively delete an expression tree. 1207 */ 1208 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1209 assert( p!=0 ); 1210 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1211 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1212 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1213 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1214 #ifdef SQLITE_DEBUG 1215 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1216 assert( p->pLeft==0 ); 1217 assert( p->pRight==0 ); 1218 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1219 assert( !ExprUseXList(p) || p->x.pList==0 ); 1220 } 1221 #endif 1222 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1223 /* The Expr.x union is never used at the same time as Expr.pRight */ 1224 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1225 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1226 if( p->pRight ){ 1227 assert( !ExprHasProperty(p, EP_WinFunc) ); 1228 sqlite3ExprDeleteNN(db, p->pRight); 1229 }else if( ExprUseXSelect(p) ){ 1230 assert( !ExprHasProperty(p, EP_WinFunc) ); 1231 sqlite3SelectDelete(db, p->x.pSelect); 1232 }else{ 1233 sqlite3ExprListDelete(db, p->x.pList); 1234 #ifndef SQLITE_OMIT_WINDOWFUNC 1235 if( ExprHasProperty(p, EP_WinFunc) ){ 1236 sqlite3WindowDelete(db, p->y.pWin); 1237 } 1238 #endif 1239 } 1240 } 1241 if( ExprHasProperty(p, EP_MemToken) ){ 1242 assert( !ExprHasProperty(p, EP_IntValue) ); 1243 sqlite3DbFree(db, p->u.zToken); 1244 } 1245 if( !ExprHasProperty(p, EP_Static) ){ 1246 sqlite3DbFreeNN(db, p); 1247 } 1248 } 1249 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1250 if( p ) sqlite3ExprDeleteNN(db, p); 1251 } 1252 1253 /* 1254 ** Clear both elements of an OnOrUsing object 1255 */ 1256 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1257 if( p==0 ){ 1258 /* Nothing to clear */ 1259 }else if( p->pOn ){ 1260 sqlite3ExprDeleteNN(db, p->pOn); 1261 }else if( p->pUsing ){ 1262 sqlite3IdListDelete(db, p->pUsing); 1263 } 1264 } 1265 1266 /* 1267 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1268 ** This is similar to sqlite3ExprDelete() except that the delete is 1269 ** deferred untilthe pParse is deleted. 1270 ** 1271 ** The pExpr might be deleted immediately on an OOM error. 1272 ** 1273 ** The deferred delete is (currently) implemented by adding the 1274 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1275 */ 1276 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1277 pParse->pConstExpr = 1278 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 1279 } 1280 1281 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1282 ** expression. 1283 */ 1284 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1285 if( p ){ 1286 if( IN_RENAME_OBJECT ){ 1287 sqlite3RenameExprUnmap(pParse, p); 1288 } 1289 sqlite3ExprDeleteNN(pParse->db, p); 1290 } 1291 } 1292 1293 /* 1294 ** Return the number of bytes allocated for the expression structure 1295 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1296 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1297 */ 1298 static int exprStructSize(const Expr *p){ 1299 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1300 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1301 return EXPR_FULLSIZE; 1302 } 1303 1304 /* 1305 ** The dupedExpr*Size() routines each return the number of bytes required 1306 ** to store a copy of an expression or expression tree. They differ in 1307 ** how much of the tree is measured. 1308 ** 1309 ** dupedExprStructSize() Size of only the Expr structure 1310 ** dupedExprNodeSize() Size of Expr + space for token 1311 ** dupedExprSize() Expr + token + subtree components 1312 ** 1313 *************************************************************************** 1314 ** 1315 ** The dupedExprStructSize() function returns two values OR-ed together: 1316 ** (1) the space required for a copy of the Expr structure only and 1317 ** (2) the EP_xxx flags that indicate what the structure size should be. 1318 ** The return values is always one of: 1319 ** 1320 ** EXPR_FULLSIZE 1321 ** EXPR_REDUCEDSIZE | EP_Reduced 1322 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1323 ** 1324 ** The size of the structure can be found by masking the return value 1325 ** of this routine with 0xfff. The flags can be found by masking the 1326 ** return value with EP_Reduced|EP_TokenOnly. 1327 ** 1328 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1329 ** (unreduced) Expr objects as they or originally constructed by the parser. 1330 ** During expression analysis, extra information is computed and moved into 1331 ** later parts of the Expr object and that extra information might get chopped 1332 ** off if the expression is reduced. Note also that it does not work to 1333 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1334 ** to reduce a pristine expression tree from the parser. The implementation 1335 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1336 ** to enforce this constraint. 1337 */ 1338 static int dupedExprStructSize(const Expr *p, int flags){ 1339 int nSize; 1340 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1341 assert( EXPR_FULLSIZE<=0xfff ); 1342 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1343 if( 0==flags || p->op==TK_SELECT_COLUMN 1344 #ifndef SQLITE_OMIT_WINDOWFUNC 1345 || ExprHasProperty(p, EP_WinFunc) 1346 #endif 1347 ){ 1348 nSize = EXPR_FULLSIZE; 1349 }else{ 1350 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1351 assert( !ExprHasProperty(p, EP_OuterON) ); 1352 assert( !ExprHasProperty(p, EP_MemToken) ); 1353 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1354 if( p->pLeft || p->x.pList ){ 1355 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1356 }else{ 1357 assert( p->pRight==0 ); 1358 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1359 } 1360 } 1361 return nSize; 1362 } 1363 1364 /* 1365 ** This function returns the space in bytes required to store the copy 1366 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1367 ** string is defined.) 1368 */ 1369 static int dupedExprNodeSize(const Expr *p, int flags){ 1370 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1371 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1372 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1373 } 1374 return ROUND8(nByte); 1375 } 1376 1377 /* 1378 ** Return the number of bytes required to create a duplicate of the 1379 ** expression passed as the first argument. The second argument is a 1380 ** mask containing EXPRDUP_XXX flags. 1381 ** 1382 ** The value returned includes space to create a copy of the Expr struct 1383 ** itself and the buffer referred to by Expr.u.zToken, if any. 1384 ** 1385 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1386 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1387 ** and Expr.pRight variables (but not for any structures pointed to or 1388 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1389 */ 1390 static int dupedExprSize(const Expr *p, int flags){ 1391 int nByte = 0; 1392 if( p ){ 1393 nByte = dupedExprNodeSize(p, flags); 1394 if( flags&EXPRDUP_REDUCE ){ 1395 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1396 } 1397 } 1398 return nByte; 1399 } 1400 1401 /* 1402 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1403 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1404 ** to store the copy of expression p, the copies of p->u.zToken 1405 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1406 ** if any. Before returning, *pzBuffer is set to the first byte past the 1407 ** portion of the buffer copied into by this function. 1408 */ 1409 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1410 Expr *pNew; /* Value to return */ 1411 u8 *zAlloc; /* Memory space from which to build Expr object */ 1412 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1413 1414 assert( db!=0 ); 1415 assert( p ); 1416 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1417 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1418 1419 /* Figure out where to write the new Expr structure. */ 1420 if( pzBuffer ){ 1421 zAlloc = *pzBuffer; 1422 staticFlag = EP_Static; 1423 assert( zAlloc!=0 ); 1424 }else{ 1425 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1426 staticFlag = 0; 1427 } 1428 pNew = (Expr *)zAlloc; 1429 1430 if( pNew ){ 1431 /* Set nNewSize to the size allocated for the structure pointed to 1432 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1433 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1434 ** by the copy of the p->u.zToken string (if any). 1435 */ 1436 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1437 const int nNewSize = nStructSize & 0xfff; 1438 int nToken; 1439 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1440 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1441 }else{ 1442 nToken = 0; 1443 } 1444 if( dupFlags ){ 1445 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1446 memcpy(zAlloc, p, nNewSize); 1447 }else{ 1448 u32 nSize = (u32)exprStructSize(p); 1449 memcpy(zAlloc, p, nSize); 1450 if( nSize<EXPR_FULLSIZE ){ 1451 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1452 } 1453 } 1454 1455 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1456 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1457 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1458 pNew->flags |= staticFlag; 1459 ExprClearVVAProperties(pNew); 1460 if( dupFlags ){ 1461 ExprSetVVAProperty(pNew, EP_Immutable); 1462 } 1463 1464 /* Copy the p->u.zToken string, if any. */ 1465 if( nToken ){ 1466 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1467 memcpy(zToken, p->u.zToken, nToken); 1468 } 1469 1470 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1471 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1472 if( ExprUseXSelect(p) ){ 1473 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1474 }else{ 1475 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1476 } 1477 } 1478 1479 /* Fill in pNew->pLeft and pNew->pRight. */ 1480 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1481 zAlloc += dupedExprNodeSize(p, dupFlags); 1482 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1483 pNew->pLeft = p->pLeft ? 1484 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1485 pNew->pRight = p->pRight ? 1486 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1487 } 1488 #ifndef SQLITE_OMIT_WINDOWFUNC 1489 if( ExprHasProperty(p, EP_WinFunc) ){ 1490 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1491 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1492 } 1493 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1494 if( pzBuffer ){ 1495 *pzBuffer = zAlloc; 1496 } 1497 }else{ 1498 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1499 if( pNew->op==TK_SELECT_COLUMN ){ 1500 pNew->pLeft = p->pLeft; 1501 assert( p->pRight==0 || p->pRight==p->pLeft 1502 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1503 }else{ 1504 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1505 } 1506 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1507 } 1508 } 1509 } 1510 return pNew; 1511 } 1512 1513 /* 1514 ** Create and return a deep copy of the object passed as the second 1515 ** argument. If an OOM condition is encountered, NULL is returned 1516 ** and the db->mallocFailed flag set. 1517 */ 1518 #ifndef SQLITE_OMIT_CTE 1519 With *sqlite3WithDup(sqlite3 *db, With *p){ 1520 With *pRet = 0; 1521 if( p ){ 1522 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1523 pRet = sqlite3DbMallocZero(db, nByte); 1524 if( pRet ){ 1525 int i; 1526 pRet->nCte = p->nCte; 1527 for(i=0; i<p->nCte; i++){ 1528 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1529 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1530 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1531 pRet->a[i].eM10d = p->a[i].eM10d; 1532 } 1533 } 1534 } 1535 return pRet; 1536 } 1537 #else 1538 # define sqlite3WithDup(x,y) 0 1539 #endif 1540 1541 #ifndef SQLITE_OMIT_WINDOWFUNC 1542 /* 1543 ** The gatherSelectWindows() procedure and its helper routine 1544 ** gatherSelectWindowsCallback() are used to scan all the expressions 1545 ** an a newly duplicated SELECT statement and gather all of the Window 1546 ** objects found there, assembling them onto the linked list at Select->pWin. 1547 */ 1548 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1549 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1550 Select *pSelect = pWalker->u.pSelect; 1551 Window *pWin = pExpr->y.pWin; 1552 assert( pWin ); 1553 assert( IsWindowFunc(pExpr) ); 1554 assert( pWin->ppThis==0 ); 1555 sqlite3WindowLink(pSelect, pWin); 1556 } 1557 return WRC_Continue; 1558 } 1559 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1560 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1561 } 1562 static void gatherSelectWindows(Select *p){ 1563 Walker w; 1564 w.xExprCallback = gatherSelectWindowsCallback; 1565 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1566 w.xSelectCallback2 = 0; 1567 w.pParse = 0; 1568 w.u.pSelect = p; 1569 sqlite3WalkSelect(&w, p); 1570 } 1571 #endif 1572 1573 1574 /* 1575 ** The following group of routines make deep copies of expressions, 1576 ** expression lists, ID lists, and select statements. The copies can 1577 ** be deleted (by being passed to their respective ...Delete() routines) 1578 ** without effecting the originals. 1579 ** 1580 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1581 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1582 ** by subsequent calls to sqlite*ListAppend() routines. 1583 ** 1584 ** Any tables that the SrcList might point to are not duplicated. 1585 ** 1586 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1587 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1588 ** truncated version of the usual Expr structure that will be stored as 1589 ** part of the in-memory representation of the database schema. 1590 */ 1591 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1592 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1593 return p ? exprDup(db, p, flags, 0) : 0; 1594 } 1595 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1596 ExprList *pNew; 1597 struct ExprList_item *pItem; 1598 const struct ExprList_item *pOldItem; 1599 int i; 1600 Expr *pPriorSelectColOld = 0; 1601 Expr *pPriorSelectColNew = 0; 1602 assert( db!=0 ); 1603 if( p==0 ) return 0; 1604 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1605 if( pNew==0 ) return 0; 1606 pNew->nExpr = p->nExpr; 1607 pNew->nAlloc = p->nAlloc; 1608 pItem = pNew->a; 1609 pOldItem = p->a; 1610 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1611 Expr *pOldExpr = pOldItem->pExpr; 1612 Expr *pNewExpr; 1613 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1614 if( pOldExpr 1615 && pOldExpr->op==TK_SELECT_COLUMN 1616 && (pNewExpr = pItem->pExpr)!=0 1617 ){ 1618 if( pNewExpr->pRight ){ 1619 pPriorSelectColOld = pOldExpr->pRight; 1620 pPriorSelectColNew = pNewExpr->pRight; 1621 pNewExpr->pLeft = pNewExpr->pRight; 1622 }else{ 1623 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1624 pPriorSelectColOld = pOldExpr->pLeft; 1625 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1626 pNewExpr->pRight = pPriorSelectColNew; 1627 } 1628 pNewExpr->pLeft = pPriorSelectColNew; 1629 } 1630 } 1631 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1632 pItem->fg = pOldItem->fg; 1633 pItem->fg.done = 0; 1634 pItem->u = pOldItem->u; 1635 } 1636 return pNew; 1637 } 1638 1639 /* 1640 ** If cursors, triggers, views and subqueries are all omitted from 1641 ** the build, then none of the following routines, except for 1642 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1643 ** called with a NULL argument. 1644 */ 1645 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1646 || !defined(SQLITE_OMIT_SUBQUERY) 1647 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1648 SrcList *pNew; 1649 int i; 1650 int nByte; 1651 assert( db!=0 ); 1652 if( p==0 ) return 0; 1653 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1654 pNew = sqlite3DbMallocRawNN(db, nByte ); 1655 if( pNew==0 ) return 0; 1656 pNew->nSrc = pNew->nAlloc = p->nSrc; 1657 for(i=0; i<p->nSrc; i++){ 1658 SrcItem *pNewItem = &pNew->a[i]; 1659 const SrcItem *pOldItem = &p->a[i]; 1660 Table *pTab; 1661 pNewItem->pSchema = pOldItem->pSchema; 1662 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1663 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1664 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1665 pNewItem->fg = pOldItem->fg; 1666 pNewItem->iCursor = pOldItem->iCursor; 1667 pNewItem->addrFillSub = pOldItem->addrFillSub; 1668 pNewItem->regReturn = pOldItem->regReturn; 1669 if( pNewItem->fg.isIndexedBy ){ 1670 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1671 } 1672 pNewItem->u2 = pOldItem->u2; 1673 if( pNewItem->fg.isCte ){ 1674 pNewItem->u2.pCteUse->nUse++; 1675 } 1676 if( pNewItem->fg.isTabFunc ){ 1677 pNewItem->u1.pFuncArg = 1678 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1679 } 1680 pTab = pNewItem->pTab = pOldItem->pTab; 1681 if( pTab ){ 1682 pTab->nTabRef++; 1683 } 1684 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1685 if( pOldItem->fg.isUsing ){ 1686 assert( pNewItem->fg.isUsing ); 1687 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1688 }else{ 1689 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1690 } 1691 pNewItem->colUsed = pOldItem->colUsed; 1692 } 1693 return pNew; 1694 } 1695 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1696 IdList *pNew; 1697 int i; 1698 assert( db!=0 ); 1699 if( p==0 ) return 0; 1700 assert( p->eU4!=EU4_EXPR ); 1701 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1702 if( pNew==0 ) return 0; 1703 pNew->nId = p->nId; 1704 pNew->eU4 = p->eU4; 1705 for(i=0; i<p->nId; i++){ 1706 struct IdList_item *pNewItem = &pNew->a[i]; 1707 const struct IdList_item *pOldItem = &p->a[i]; 1708 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1709 pNewItem->u4 = pOldItem->u4; 1710 } 1711 return pNew; 1712 } 1713 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1714 Select *pRet = 0; 1715 Select *pNext = 0; 1716 Select **pp = &pRet; 1717 const Select *p; 1718 1719 assert( db!=0 ); 1720 for(p=pDup; p; p=p->pPrior){ 1721 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1722 if( pNew==0 ) break; 1723 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1724 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1725 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1726 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1727 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1728 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1729 pNew->op = p->op; 1730 pNew->pNext = pNext; 1731 pNew->pPrior = 0; 1732 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1733 pNew->iLimit = 0; 1734 pNew->iOffset = 0; 1735 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1736 pNew->addrOpenEphm[0] = -1; 1737 pNew->addrOpenEphm[1] = -1; 1738 pNew->nSelectRow = p->nSelectRow; 1739 pNew->pWith = sqlite3WithDup(db, p->pWith); 1740 #ifndef SQLITE_OMIT_WINDOWFUNC 1741 pNew->pWin = 0; 1742 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1743 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1744 #endif 1745 pNew->selId = p->selId; 1746 if( db->mallocFailed ){ 1747 /* Any prior OOM might have left the Select object incomplete. 1748 ** Delete the whole thing rather than allow an incomplete Select 1749 ** to be used by the code generator. */ 1750 pNew->pNext = 0; 1751 sqlite3SelectDelete(db, pNew); 1752 break; 1753 } 1754 *pp = pNew; 1755 pp = &pNew->pPrior; 1756 pNext = pNew; 1757 } 1758 1759 return pRet; 1760 } 1761 #else 1762 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1763 assert( p==0 ); 1764 return 0; 1765 } 1766 #endif 1767 1768 1769 /* 1770 ** Add a new element to the end of an expression list. If pList is 1771 ** initially NULL, then create a new expression list. 1772 ** 1773 ** The pList argument must be either NULL or a pointer to an ExprList 1774 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1775 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1776 ** Reason: This routine assumes that the number of slots in pList->a[] 1777 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1778 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1779 ** 1780 ** If a memory allocation error occurs, the entire list is freed and 1781 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1782 ** that the new entry was successfully appended. 1783 */ 1784 static const struct ExprList_item zeroItem = {0}; 1785 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1786 sqlite3 *db, /* Database handle. Used for memory allocation */ 1787 Expr *pExpr /* Expression to be appended. Might be NULL */ 1788 ){ 1789 struct ExprList_item *pItem; 1790 ExprList *pList; 1791 1792 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1793 if( pList==0 ){ 1794 sqlite3ExprDelete(db, pExpr); 1795 return 0; 1796 } 1797 pList->nAlloc = 4; 1798 pList->nExpr = 1; 1799 pItem = &pList->a[0]; 1800 *pItem = zeroItem; 1801 pItem->pExpr = pExpr; 1802 return pList; 1803 } 1804 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1805 sqlite3 *db, /* Database handle. Used for memory allocation */ 1806 ExprList *pList, /* List to which to append. Might be NULL */ 1807 Expr *pExpr /* Expression to be appended. Might be NULL */ 1808 ){ 1809 struct ExprList_item *pItem; 1810 ExprList *pNew; 1811 pList->nAlloc *= 2; 1812 pNew = sqlite3DbRealloc(db, pList, 1813 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1814 if( pNew==0 ){ 1815 sqlite3ExprListDelete(db, pList); 1816 sqlite3ExprDelete(db, pExpr); 1817 return 0; 1818 }else{ 1819 pList = pNew; 1820 } 1821 pItem = &pList->a[pList->nExpr++]; 1822 *pItem = zeroItem; 1823 pItem->pExpr = pExpr; 1824 return pList; 1825 } 1826 ExprList *sqlite3ExprListAppend( 1827 Parse *pParse, /* Parsing context */ 1828 ExprList *pList, /* List to which to append. Might be NULL */ 1829 Expr *pExpr /* Expression to be appended. Might be NULL */ 1830 ){ 1831 struct ExprList_item *pItem; 1832 if( pList==0 ){ 1833 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1834 } 1835 if( pList->nAlloc<pList->nExpr+1 ){ 1836 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1837 } 1838 pItem = &pList->a[pList->nExpr++]; 1839 *pItem = zeroItem; 1840 pItem->pExpr = pExpr; 1841 return pList; 1842 } 1843 1844 /* 1845 ** pColumns and pExpr form a vector assignment which is part of the SET 1846 ** clause of an UPDATE statement. Like this: 1847 ** 1848 ** (a,b,c) = (expr1,expr2,expr3) 1849 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1850 ** 1851 ** For each term of the vector assignment, append new entries to the 1852 ** expression list pList. In the case of a subquery on the RHS, append 1853 ** TK_SELECT_COLUMN expressions. 1854 */ 1855 ExprList *sqlite3ExprListAppendVector( 1856 Parse *pParse, /* Parsing context */ 1857 ExprList *pList, /* List to which to append. Might be NULL */ 1858 IdList *pColumns, /* List of names of LHS of the assignment */ 1859 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1860 ){ 1861 sqlite3 *db = pParse->db; 1862 int n; 1863 int i; 1864 int iFirst = pList ? pList->nExpr : 0; 1865 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1866 ** exit prior to this routine being invoked */ 1867 if( NEVER(pColumns==0) ) goto vector_append_error; 1868 if( pExpr==0 ) goto vector_append_error; 1869 1870 /* If the RHS is a vector, then we can immediately check to see that 1871 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1872 ** wildcards ("*") in the result set of the SELECT must be expanded before 1873 ** we can do the size check, so defer the size check until code generation. 1874 */ 1875 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1876 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1877 pColumns->nId, n); 1878 goto vector_append_error; 1879 } 1880 1881 for(i=0; i<pColumns->nId; i++){ 1882 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1883 assert( pSubExpr!=0 || db->mallocFailed ); 1884 if( pSubExpr==0 ) continue; 1885 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1886 if( pList ){ 1887 assert( pList->nExpr==iFirst+i+1 ); 1888 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1889 pColumns->a[i].zName = 0; 1890 } 1891 } 1892 1893 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1894 Expr *pFirst = pList->a[iFirst].pExpr; 1895 assert( pFirst!=0 ); 1896 assert( pFirst->op==TK_SELECT_COLUMN ); 1897 1898 /* Store the SELECT statement in pRight so it will be deleted when 1899 ** sqlite3ExprListDelete() is called */ 1900 pFirst->pRight = pExpr; 1901 pExpr = 0; 1902 1903 /* Remember the size of the LHS in iTable so that we can check that 1904 ** the RHS and LHS sizes match during code generation. */ 1905 pFirst->iTable = pColumns->nId; 1906 } 1907 1908 vector_append_error: 1909 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1910 sqlite3IdListDelete(db, pColumns); 1911 return pList; 1912 } 1913 1914 /* 1915 ** Set the sort order for the last element on the given ExprList. 1916 */ 1917 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1918 struct ExprList_item *pItem; 1919 if( p==0 ) return; 1920 assert( p->nExpr>0 ); 1921 1922 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1923 assert( iSortOrder==SQLITE_SO_UNDEFINED 1924 || iSortOrder==SQLITE_SO_ASC 1925 || iSortOrder==SQLITE_SO_DESC 1926 ); 1927 assert( eNulls==SQLITE_SO_UNDEFINED 1928 || eNulls==SQLITE_SO_ASC 1929 || eNulls==SQLITE_SO_DESC 1930 ); 1931 1932 pItem = &p->a[p->nExpr-1]; 1933 assert( pItem->fg.bNulls==0 ); 1934 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1935 iSortOrder = SQLITE_SO_ASC; 1936 } 1937 pItem->fg.sortFlags = (u8)iSortOrder; 1938 1939 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1940 pItem->fg.bNulls = 1; 1941 if( iSortOrder!=eNulls ){ 1942 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 1943 } 1944 } 1945 } 1946 1947 /* 1948 ** Set the ExprList.a[].zEName element of the most recently added item 1949 ** on the expression list. 1950 ** 1951 ** pList might be NULL following an OOM error. But pName should never be 1952 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1953 ** is set. 1954 */ 1955 void sqlite3ExprListSetName( 1956 Parse *pParse, /* Parsing context */ 1957 ExprList *pList, /* List to which to add the span. */ 1958 const Token *pName, /* Name to be added */ 1959 int dequote /* True to cause the name to be dequoted */ 1960 ){ 1961 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1962 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1963 if( pList ){ 1964 struct ExprList_item *pItem; 1965 assert( pList->nExpr>0 ); 1966 pItem = &pList->a[pList->nExpr-1]; 1967 assert( pItem->zEName==0 ); 1968 assert( pItem->fg.eEName==ENAME_NAME ); 1969 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1970 if( dequote ){ 1971 /* If dequote==0, then pName->z does not point to part of a DDL 1972 ** statement handled by the parser. And so no token need be added 1973 ** to the token-map. */ 1974 sqlite3Dequote(pItem->zEName); 1975 if( IN_RENAME_OBJECT ){ 1976 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1977 } 1978 } 1979 } 1980 } 1981 1982 /* 1983 ** Set the ExprList.a[].zSpan element of the most recently added item 1984 ** on the expression list. 1985 ** 1986 ** pList might be NULL following an OOM error. But pSpan should never be 1987 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1988 ** is set. 1989 */ 1990 void sqlite3ExprListSetSpan( 1991 Parse *pParse, /* Parsing context */ 1992 ExprList *pList, /* List to which to add the span. */ 1993 const char *zStart, /* Start of the span */ 1994 const char *zEnd /* End of the span */ 1995 ){ 1996 sqlite3 *db = pParse->db; 1997 assert( pList!=0 || db->mallocFailed!=0 ); 1998 if( pList ){ 1999 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2000 assert( pList->nExpr>0 ); 2001 if( pItem->zEName==0 ){ 2002 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2003 pItem->fg.eEName = ENAME_SPAN; 2004 } 2005 } 2006 } 2007 2008 /* 2009 ** If the expression list pEList contains more than iLimit elements, 2010 ** leave an error message in pParse. 2011 */ 2012 void sqlite3ExprListCheckLength( 2013 Parse *pParse, 2014 ExprList *pEList, 2015 const char *zObject 2016 ){ 2017 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2018 testcase( pEList && pEList->nExpr==mx ); 2019 testcase( pEList && pEList->nExpr==mx+1 ); 2020 if( pEList && pEList->nExpr>mx ){ 2021 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2022 } 2023 } 2024 2025 /* 2026 ** Delete an entire expression list. 2027 */ 2028 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2029 int i = pList->nExpr; 2030 struct ExprList_item *pItem = pList->a; 2031 assert( pList->nExpr>0 ); 2032 do{ 2033 sqlite3ExprDelete(db, pItem->pExpr); 2034 sqlite3DbFree(db, pItem->zEName); 2035 pItem++; 2036 }while( --i>0 ); 2037 sqlite3DbFreeNN(db, pList); 2038 } 2039 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2040 if( pList ) exprListDeleteNN(db, pList); 2041 } 2042 2043 /* 2044 ** Return the bitwise-OR of all Expr.flags fields in the given 2045 ** ExprList. 2046 */ 2047 u32 sqlite3ExprListFlags(const ExprList *pList){ 2048 int i; 2049 u32 m = 0; 2050 assert( pList!=0 ); 2051 for(i=0; i<pList->nExpr; i++){ 2052 Expr *pExpr = pList->a[i].pExpr; 2053 assert( pExpr!=0 ); 2054 m |= pExpr->flags; 2055 } 2056 return m; 2057 } 2058 2059 /* 2060 ** This is a SELECT-node callback for the expression walker that 2061 ** always "fails". By "fail" in this case, we mean set 2062 ** pWalker->eCode to zero and abort. 2063 ** 2064 ** This callback is used by multiple expression walkers. 2065 */ 2066 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2067 UNUSED_PARAMETER(NotUsed); 2068 pWalker->eCode = 0; 2069 return WRC_Abort; 2070 } 2071 2072 /* 2073 ** Check the input string to see if it is "true" or "false" (in any case). 2074 ** 2075 ** If the string is.... Return 2076 ** "true" EP_IsTrue 2077 ** "false" EP_IsFalse 2078 ** anything else 0 2079 */ 2080 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2081 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2082 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2083 return 0; 2084 } 2085 2086 2087 /* 2088 ** If the input expression is an ID with the name "true" or "false" 2089 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2090 ** the conversion happened, and zero if the expression is unaltered. 2091 */ 2092 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2093 u32 v; 2094 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2095 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2096 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2097 ){ 2098 pExpr->op = TK_TRUEFALSE; 2099 ExprSetProperty(pExpr, v); 2100 return 1; 2101 } 2102 return 0; 2103 } 2104 2105 /* 2106 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2107 ** and 0 if it is FALSE. 2108 */ 2109 int sqlite3ExprTruthValue(const Expr *pExpr){ 2110 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2111 assert( pExpr->op==TK_TRUEFALSE ); 2112 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2113 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2114 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2115 return pExpr->u.zToken[4]==0; 2116 } 2117 2118 /* 2119 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2120 ** terms that are always true or false. Return the simplified expression. 2121 ** Or return the original expression if no simplification is possible. 2122 ** 2123 ** Examples: 2124 ** 2125 ** (x<10) AND true => (x<10) 2126 ** (x<10) AND false => false 2127 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2128 ** (x<10) AND (y=22 OR true) => (x<10) 2129 ** (y=22) OR true => true 2130 */ 2131 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2132 assert( pExpr!=0 ); 2133 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2134 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2135 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2136 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2137 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2138 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2139 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2140 } 2141 } 2142 return pExpr; 2143 } 2144 2145 2146 /* 2147 ** These routines are Walker callbacks used to check expressions to 2148 ** see if they are "constant" for some definition of constant. The 2149 ** Walker.eCode value determines the type of "constant" we are looking 2150 ** for. 2151 ** 2152 ** These callback routines are used to implement the following: 2153 ** 2154 ** sqlite3ExprIsConstant() pWalker->eCode==1 2155 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2156 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2157 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2158 ** 2159 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2160 ** is found to not be a constant. 2161 ** 2162 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2163 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2164 ** when parsing an existing schema out of the sqlite_schema table and 4 2165 ** when processing a new CREATE TABLE statement. A bound parameter raises 2166 ** an error for new statements, but is silently converted 2167 ** to NULL for existing schemas. This allows sqlite_schema tables that 2168 ** contain a bound parameter because they were generated by older versions 2169 ** of SQLite to be parsed by newer versions of SQLite without raising a 2170 ** malformed schema error. 2171 */ 2172 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2173 2174 /* If pWalker->eCode is 2 then any term of the expression that comes from 2175 ** the ON or USING clauses of an outer join disqualifies the expression 2176 ** from being considered constant. */ 2177 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 2178 pWalker->eCode = 0; 2179 return WRC_Abort; 2180 } 2181 2182 switch( pExpr->op ){ 2183 /* Consider functions to be constant if all their arguments are constant 2184 ** and either pWalker->eCode==4 or 5 or the function has the 2185 ** SQLITE_FUNC_CONST flag. */ 2186 case TK_FUNCTION: 2187 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2188 && !ExprHasProperty(pExpr, EP_WinFunc) 2189 ){ 2190 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2191 return WRC_Continue; 2192 }else{ 2193 pWalker->eCode = 0; 2194 return WRC_Abort; 2195 } 2196 case TK_ID: 2197 /* Convert "true" or "false" in a DEFAULT clause into the 2198 ** appropriate TK_TRUEFALSE operator */ 2199 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2200 return WRC_Prune; 2201 } 2202 /* no break */ deliberate_fall_through 2203 case TK_COLUMN: 2204 case TK_AGG_FUNCTION: 2205 case TK_AGG_COLUMN: 2206 testcase( pExpr->op==TK_ID ); 2207 testcase( pExpr->op==TK_COLUMN ); 2208 testcase( pExpr->op==TK_AGG_FUNCTION ); 2209 testcase( pExpr->op==TK_AGG_COLUMN ); 2210 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2211 return WRC_Continue; 2212 } 2213 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2214 return WRC_Continue; 2215 } 2216 /* no break */ deliberate_fall_through 2217 case TK_IF_NULL_ROW: 2218 case TK_REGISTER: 2219 case TK_DOT: 2220 testcase( pExpr->op==TK_REGISTER ); 2221 testcase( pExpr->op==TK_IF_NULL_ROW ); 2222 testcase( pExpr->op==TK_DOT ); 2223 pWalker->eCode = 0; 2224 return WRC_Abort; 2225 case TK_VARIABLE: 2226 if( pWalker->eCode==5 ){ 2227 /* Silently convert bound parameters that appear inside of CREATE 2228 ** statements into a NULL when parsing the CREATE statement text out 2229 ** of the sqlite_schema table */ 2230 pExpr->op = TK_NULL; 2231 }else if( pWalker->eCode==4 ){ 2232 /* A bound parameter in a CREATE statement that originates from 2233 ** sqlite3_prepare() causes an error */ 2234 pWalker->eCode = 0; 2235 return WRC_Abort; 2236 } 2237 /* no break */ deliberate_fall_through 2238 default: 2239 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2240 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2241 return WRC_Continue; 2242 } 2243 } 2244 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2245 Walker w; 2246 w.eCode = initFlag; 2247 w.xExprCallback = exprNodeIsConstant; 2248 w.xSelectCallback = sqlite3SelectWalkFail; 2249 #ifdef SQLITE_DEBUG 2250 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2251 #endif 2252 w.u.iCur = iCur; 2253 sqlite3WalkExpr(&w, p); 2254 return w.eCode; 2255 } 2256 2257 /* 2258 ** Walk an expression tree. Return non-zero if the expression is constant 2259 ** and 0 if it involves variables or function calls. 2260 ** 2261 ** For the purposes of this function, a double-quoted string (ex: "abc") 2262 ** is considered a variable but a single-quoted string (ex: 'abc') is 2263 ** a constant. 2264 */ 2265 int sqlite3ExprIsConstant(Expr *p){ 2266 return exprIsConst(p, 1, 0); 2267 } 2268 2269 /* 2270 ** Walk an expression tree. Return non-zero if 2271 ** 2272 ** (1) the expression is constant, and 2273 ** (2) the expression does originate in the ON or USING clause 2274 ** of a LEFT JOIN, and 2275 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2276 ** operands created by the constant propagation optimization. 2277 ** 2278 ** When this routine returns true, it indicates that the expression 2279 ** can be added to the pParse->pConstExpr list and evaluated once when 2280 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2281 */ 2282 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2283 return exprIsConst(p, 2, 0); 2284 } 2285 2286 /* 2287 ** Walk an expression tree. Return non-zero if the expression is constant 2288 ** for any single row of the table with cursor iCur. In other words, the 2289 ** expression must not refer to any non-deterministic function nor any 2290 ** table other than iCur. 2291 */ 2292 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2293 return exprIsConst(p, 3, iCur); 2294 } 2295 2296 /* 2297 ** Check pExpr to see if it is an invariant constraint on data source pSrc. 2298 ** This is an optimization. False negatives will perhaps cause slower 2299 ** queries, but false positives will yield incorrect answers. So when in 2300 ** doubt, return 0. 2301 ** 2302 ** To be an invariant constraint, the following must be true: 2303 ** 2304 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 2305 ** 2306 ** (2) pExpr cannot use subqueries or non-deterministic functions. 2307 ** 2308 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 2309 ** (Is there some way to relax this constraint?) 2310 ** 2311 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 2312 ** (4a) pExpr must come from an ON clause.. 2313 (4b) and specifically the ON clause associated with the LEFT JOIN. 2314 ** 2315 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 2316 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 2317 ** clause, not an ON clause. 2318 */ 2319 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ 2320 if( pSrc->fg.jointype & JT_LTORJ ){ 2321 return 0; /* rule (3) */ 2322 } 2323 if( pSrc->fg.jointype & JT_LEFT ){ 2324 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 2325 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 2326 }else{ 2327 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 2328 } 2329 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 2330 } 2331 2332 2333 /* 2334 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2335 */ 2336 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2337 ExprList *pGroupBy = pWalker->u.pGroupBy; 2338 int i; 2339 2340 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2341 ** it constant. */ 2342 for(i=0; i<pGroupBy->nExpr; i++){ 2343 Expr *p = pGroupBy->a[i].pExpr; 2344 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2345 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2346 if( sqlite3IsBinary(pColl) ){ 2347 return WRC_Prune; 2348 } 2349 } 2350 } 2351 2352 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2353 if( ExprUseXSelect(pExpr) ){ 2354 pWalker->eCode = 0; 2355 return WRC_Abort; 2356 } 2357 2358 return exprNodeIsConstant(pWalker, pExpr); 2359 } 2360 2361 /* 2362 ** Walk the expression tree passed as the first argument. Return non-zero 2363 ** if the expression consists entirely of constants or copies of terms 2364 ** in pGroupBy that sort with the BINARY collation sequence. 2365 ** 2366 ** This routine is used to determine if a term of the HAVING clause can 2367 ** be promoted into the WHERE clause. In order for such a promotion to work, 2368 ** the value of the HAVING clause term must be the same for all members of 2369 ** a "group". The requirement that the GROUP BY term must be BINARY 2370 ** assumes that no other collating sequence will have a finer-grained 2371 ** grouping than binary. In other words (A=B COLLATE binary) implies 2372 ** A=B in every other collating sequence. The requirement that the 2373 ** GROUP BY be BINARY is stricter than necessary. It would also work 2374 ** to promote HAVING clauses that use the same alternative collating 2375 ** sequence as the GROUP BY term, but that is much harder to check, 2376 ** alternative collating sequences are uncommon, and this is only an 2377 ** optimization, so we take the easy way out and simply require the 2378 ** GROUP BY to use the BINARY collating sequence. 2379 */ 2380 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2381 Walker w; 2382 w.eCode = 1; 2383 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2384 w.xSelectCallback = 0; 2385 w.u.pGroupBy = pGroupBy; 2386 w.pParse = pParse; 2387 sqlite3WalkExpr(&w, p); 2388 return w.eCode; 2389 } 2390 2391 /* 2392 ** Walk an expression tree for the DEFAULT field of a column definition 2393 ** in a CREATE TABLE statement. Return non-zero if the expression is 2394 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2395 ** the expression is constant or a function call with constant arguments. 2396 ** Return and 0 if there are any variables. 2397 ** 2398 ** isInit is true when parsing from sqlite_schema. isInit is false when 2399 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2400 ** (such as ? or $abc) in the expression are converted into NULL. When 2401 ** isInit is false, parameters raise an error. Parameters should not be 2402 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2403 ** allowed it, so we need to support it when reading sqlite_schema for 2404 ** backwards compatibility. 2405 ** 2406 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2407 ** 2408 ** For the purposes of this function, a double-quoted string (ex: "abc") 2409 ** is considered a variable but a single-quoted string (ex: 'abc') is 2410 ** a constant. 2411 */ 2412 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2413 assert( isInit==0 || isInit==1 ); 2414 return exprIsConst(p, 4+isInit, 0); 2415 } 2416 2417 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2418 /* 2419 ** Walk an expression tree. Return 1 if the expression contains a 2420 ** subquery of some kind. Return 0 if there are no subqueries. 2421 */ 2422 int sqlite3ExprContainsSubquery(Expr *p){ 2423 Walker w; 2424 w.eCode = 1; 2425 w.xExprCallback = sqlite3ExprWalkNoop; 2426 w.xSelectCallback = sqlite3SelectWalkFail; 2427 #ifdef SQLITE_DEBUG 2428 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2429 #endif 2430 sqlite3WalkExpr(&w, p); 2431 return w.eCode==0; 2432 } 2433 #endif 2434 2435 /* 2436 ** If the expression p codes a constant integer that is small enough 2437 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2438 ** in *pValue. If the expression is not an integer or if it is too big 2439 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2440 */ 2441 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2442 int rc = 0; 2443 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2444 2445 /* If an expression is an integer literal that fits in a signed 32-bit 2446 ** integer, then the EP_IntValue flag will have already been set */ 2447 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2448 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2449 2450 if( p->flags & EP_IntValue ){ 2451 *pValue = p->u.iValue; 2452 return 1; 2453 } 2454 switch( p->op ){ 2455 case TK_UPLUS: { 2456 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2457 break; 2458 } 2459 case TK_UMINUS: { 2460 int v = 0; 2461 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2462 assert( ((unsigned int)v)!=0x80000000 ); 2463 *pValue = -v; 2464 rc = 1; 2465 } 2466 break; 2467 } 2468 default: break; 2469 } 2470 return rc; 2471 } 2472 2473 /* 2474 ** Return FALSE if there is no chance that the expression can be NULL. 2475 ** 2476 ** If the expression might be NULL or if the expression is too complex 2477 ** to tell return TRUE. 2478 ** 2479 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2480 ** when we know that a value cannot be NULL. Hence, a false positive 2481 ** (returning TRUE when in fact the expression can never be NULL) might 2482 ** be a small performance hit but is otherwise harmless. On the other 2483 ** hand, a false negative (returning FALSE when the result could be NULL) 2484 ** will likely result in an incorrect answer. So when in doubt, return 2485 ** TRUE. 2486 */ 2487 int sqlite3ExprCanBeNull(const Expr *p){ 2488 u8 op; 2489 assert( p!=0 ); 2490 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2491 p = p->pLeft; 2492 assert( p!=0 ); 2493 } 2494 op = p->op; 2495 if( op==TK_REGISTER ) op = p->op2; 2496 switch( op ){ 2497 case TK_INTEGER: 2498 case TK_STRING: 2499 case TK_FLOAT: 2500 case TK_BLOB: 2501 return 0; 2502 case TK_COLUMN: 2503 assert( ExprUseYTab(p) ); 2504 return ExprHasProperty(p, EP_CanBeNull) || 2505 p->y.pTab==0 || /* Reference to column of index on expression */ 2506 (p->iColumn>=0 2507 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2508 && p->y.pTab->aCol[p->iColumn].notNull==0); 2509 default: 2510 return 1; 2511 } 2512 } 2513 2514 /* 2515 ** Return TRUE if the given expression is a constant which would be 2516 ** unchanged by OP_Affinity with the affinity given in the second 2517 ** argument. 2518 ** 2519 ** This routine is used to determine if the OP_Affinity operation 2520 ** can be omitted. When in doubt return FALSE. A false negative 2521 ** is harmless. A false positive, however, can result in the wrong 2522 ** answer. 2523 */ 2524 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2525 u8 op; 2526 int unaryMinus = 0; 2527 if( aff==SQLITE_AFF_BLOB ) return 1; 2528 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2529 if( p->op==TK_UMINUS ) unaryMinus = 1; 2530 p = p->pLeft; 2531 } 2532 op = p->op; 2533 if( op==TK_REGISTER ) op = p->op2; 2534 switch( op ){ 2535 case TK_INTEGER: { 2536 return aff>=SQLITE_AFF_NUMERIC; 2537 } 2538 case TK_FLOAT: { 2539 return aff>=SQLITE_AFF_NUMERIC; 2540 } 2541 case TK_STRING: { 2542 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2543 } 2544 case TK_BLOB: { 2545 return !unaryMinus; 2546 } 2547 case TK_COLUMN: { 2548 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2549 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2550 } 2551 default: { 2552 return 0; 2553 } 2554 } 2555 } 2556 2557 /* 2558 ** Return TRUE if the given string is a row-id column name. 2559 */ 2560 int sqlite3IsRowid(const char *z){ 2561 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2562 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2563 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2564 return 0; 2565 } 2566 2567 /* 2568 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2569 ** that can be simplified to a direct table access, then return 2570 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2571 ** or if the SELECT statement needs to be manifested into a transient 2572 ** table, then return NULL. 2573 */ 2574 #ifndef SQLITE_OMIT_SUBQUERY 2575 static Select *isCandidateForInOpt(const Expr *pX){ 2576 Select *p; 2577 SrcList *pSrc; 2578 ExprList *pEList; 2579 Table *pTab; 2580 int i; 2581 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2582 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2583 p = pX->x.pSelect; 2584 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2585 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2586 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2587 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2588 return 0; /* No DISTINCT keyword and no aggregate functions */ 2589 } 2590 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2591 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2592 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2593 pSrc = p->pSrc; 2594 assert( pSrc!=0 ); 2595 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2596 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2597 pTab = pSrc->a[0].pTab; 2598 assert( pTab!=0 ); 2599 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2600 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2601 pEList = p->pEList; 2602 assert( pEList!=0 ); 2603 /* All SELECT results must be columns. */ 2604 for(i=0; i<pEList->nExpr; i++){ 2605 Expr *pRes = pEList->a[i].pExpr; 2606 if( pRes->op!=TK_COLUMN ) return 0; 2607 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2608 } 2609 return p; 2610 } 2611 #endif /* SQLITE_OMIT_SUBQUERY */ 2612 2613 #ifndef SQLITE_OMIT_SUBQUERY 2614 /* 2615 ** Generate code that checks the left-most column of index table iCur to see if 2616 ** it contains any NULL entries. Cause the register at regHasNull to be set 2617 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2618 ** to be set to NULL if iCur contains one or more NULL values. 2619 */ 2620 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2621 int addr1; 2622 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2623 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2624 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2625 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2626 VdbeComment((v, "first_entry_in(%d)", iCur)); 2627 sqlite3VdbeJumpHere(v, addr1); 2628 } 2629 #endif 2630 2631 2632 #ifndef SQLITE_OMIT_SUBQUERY 2633 /* 2634 ** The argument is an IN operator with a list (not a subquery) on the 2635 ** right-hand side. Return TRUE if that list is constant. 2636 */ 2637 static int sqlite3InRhsIsConstant(Expr *pIn){ 2638 Expr *pLHS; 2639 int res; 2640 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2641 pLHS = pIn->pLeft; 2642 pIn->pLeft = 0; 2643 res = sqlite3ExprIsConstant(pIn); 2644 pIn->pLeft = pLHS; 2645 return res; 2646 } 2647 #endif 2648 2649 /* 2650 ** This function is used by the implementation of the IN (...) operator. 2651 ** The pX parameter is the expression on the RHS of the IN operator, which 2652 ** might be either a list of expressions or a subquery. 2653 ** 2654 ** The job of this routine is to find or create a b-tree object that can 2655 ** be used either to test for membership in the RHS set or to iterate through 2656 ** all members of the RHS set, skipping duplicates. 2657 ** 2658 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2659 ** and the *piTab parameter is set to the index of that cursor. 2660 ** 2661 ** The returned value of this function indicates the b-tree type, as follows: 2662 ** 2663 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2664 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2665 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2666 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2667 ** populated epheremal table. 2668 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2669 ** implemented as a sequence of comparisons. 2670 ** 2671 ** An existing b-tree might be used if the RHS expression pX is a simple 2672 ** subquery such as: 2673 ** 2674 ** SELECT <column1>, <column2>... FROM <table> 2675 ** 2676 ** If the RHS of the IN operator is a list or a more complex subquery, then 2677 ** an ephemeral table might need to be generated from the RHS and then 2678 ** pX->iTable made to point to the ephemeral table instead of an 2679 ** existing table. In this case, the creation and initialization of the 2680 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag 2681 ** will be set on pX and the pX->y.sub fields will be set to show where 2682 ** the subroutine is coded. 2683 ** 2684 ** The inFlags parameter must contain, at a minimum, one of the bits 2685 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2686 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2687 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2688 ** be used to loop over all values of the RHS of the IN operator. 2689 ** 2690 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2691 ** through the set members) then the b-tree must not contain duplicates. 2692 ** An epheremal table will be created unless the selected columns are guaranteed 2693 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2694 ** a UNIQUE constraint or index. 2695 ** 2696 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2697 ** for fast set membership tests) then an epheremal table must 2698 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2699 ** index can be found with the specified <columns> as its left-most. 2700 ** 2701 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2702 ** if the RHS of the IN operator is a list (not a subquery) then this 2703 ** routine might decide that creating an ephemeral b-tree for membership 2704 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2705 ** calling routine should implement the IN operator using a sequence 2706 ** of Eq or Ne comparison operations. 2707 ** 2708 ** When the b-tree is being used for membership tests, the calling function 2709 ** might need to know whether or not the RHS side of the IN operator 2710 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2711 ** if there is any chance that the (...) might contain a NULL value at 2712 ** runtime, then a register is allocated and the register number written 2713 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2714 ** NULL value, then *prRhsHasNull is left unchanged. 2715 ** 2716 ** If a register is allocated and its location stored in *prRhsHasNull, then 2717 ** the value in that register will be NULL if the b-tree contains one or more 2718 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2719 ** NULL values. 2720 ** 2721 ** If the aiMap parameter is not NULL, it must point to an array containing 2722 ** one element for each column returned by the SELECT statement on the RHS 2723 ** of the IN(...) operator. The i'th entry of the array is populated with the 2724 ** offset of the index column that matches the i'th column returned by the 2725 ** SELECT. For example, if the expression and selected index are: 2726 ** 2727 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2728 ** CREATE INDEX i1 ON t1(b, c, a); 2729 ** 2730 ** then aiMap[] is populated with {2, 0, 1}. 2731 */ 2732 #ifndef SQLITE_OMIT_SUBQUERY 2733 int sqlite3FindInIndex( 2734 Parse *pParse, /* Parsing context */ 2735 Expr *pX, /* The IN expression */ 2736 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2737 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2738 int *aiMap, /* Mapping from Index fields to RHS fields */ 2739 int *piTab /* OUT: index to use */ 2740 ){ 2741 Select *p; /* SELECT to the right of IN operator */ 2742 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2743 int iTab; /* Cursor of the RHS table */ 2744 int mustBeUnique; /* True if RHS must be unique */ 2745 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2746 2747 assert( pX->op==TK_IN ); 2748 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2749 iTab = pParse->nTab++; 2750 2751 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2752 ** whether or not the SELECT result contains NULL values, check whether 2753 ** or not NULL is actually possible (it may not be, for example, due 2754 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2755 ** set prRhsHasNull to 0 before continuing. */ 2756 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2757 int i; 2758 ExprList *pEList = pX->x.pSelect->pEList; 2759 for(i=0; i<pEList->nExpr; i++){ 2760 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2761 } 2762 if( i==pEList->nExpr ){ 2763 prRhsHasNull = 0; 2764 } 2765 } 2766 2767 /* Check to see if an existing table or index can be used to 2768 ** satisfy the query. This is preferable to generating a new 2769 ** ephemeral table. */ 2770 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2771 sqlite3 *db = pParse->db; /* Database connection */ 2772 Table *pTab; /* Table <table>. */ 2773 int iDb; /* Database idx for pTab */ 2774 ExprList *pEList = p->pEList; 2775 int nExpr = pEList->nExpr; 2776 2777 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2778 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2779 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2780 pTab = p->pSrc->a[0].pTab; 2781 2782 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2783 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2784 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2785 sqlite3CodeVerifySchema(pParse, iDb); 2786 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2787 2788 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2789 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2790 /* The "x IN (SELECT rowid FROM table)" case */ 2791 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2792 VdbeCoverage(v); 2793 2794 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2795 eType = IN_INDEX_ROWID; 2796 ExplainQueryPlan((pParse, 0, 2797 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2798 sqlite3VdbeJumpHere(v, iAddr); 2799 }else{ 2800 Index *pIdx; /* Iterator variable */ 2801 int affinity_ok = 1; 2802 int i; 2803 2804 /* Check that the affinity that will be used to perform each 2805 ** comparison is the same as the affinity of each column in table 2806 ** on the RHS of the IN operator. If it not, it is not possible to 2807 ** use any index of the RHS table. */ 2808 for(i=0; i<nExpr && affinity_ok; i++){ 2809 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2810 int iCol = pEList->a[i].pExpr->iColumn; 2811 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2812 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2813 testcase( cmpaff==SQLITE_AFF_BLOB ); 2814 testcase( cmpaff==SQLITE_AFF_TEXT ); 2815 switch( cmpaff ){ 2816 case SQLITE_AFF_BLOB: 2817 break; 2818 case SQLITE_AFF_TEXT: 2819 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2820 ** other has no affinity and the other side is TEXT. Hence, 2821 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2822 ** and for the term on the LHS of the IN to have no affinity. */ 2823 assert( idxaff==SQLITE_AFF_TEXT ); 2824 break; 2825 default: 2826 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2827 } 2828 } 2829 2830 if( affinity_ok ){ 2831 /* Search for an existing index that will work for this IN operator */ 2832 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2833 Bitmask colUsed; /* Columns of the index used */ 2834 Bitmask mCol; /* Mask for the current column */ 2835 if( pIdx->nColumn<nExpr ) continue; 2836 if( pIdx->pPartIdxWhere!=0 ) continue; 2837 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2838 ** BITMASK(nExpr) without overflowing */ 2839 testcase( pIdx->nColumn==BMS-2 ); 2840 testcase( pIdx->nColumn==BMS-1 ); 2841 if( pIdx->nColumn>=BMS-1 ) continue; 2842 if( mustBeUnique ){ 2843 if( pIdx->nKeyCol>nExpr 2844 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2845 ){ 2846 continue; /* This index is not unique over the IN RHS columns */ 2847 } 2848 } 2849 2850 colUsed = 0; /* Columns of index used so far */ 2851 for(i=0; i<nExpr; i++){ 2852 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2853 Expr *pRhs = pEList->a[i].pExpr; 2854 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2855 int j; 2856 2857 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2858 for(j=0; j<nExpr; j++){ 2859 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2860 assert( pIdx->azColl[j] ); 2861 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2862 continue; 2863 } 2864 break; 2865 } 2866 if( j==nExpr ) break; 2867 mCol = MASKBIT(j); 2868 if( mCol & colUsed ) break; /* Each column used only once */ 2869 colUsed |= mCol; 2870 if( aiMap ) aiMap[i] = j; 2871 } 2872 2873 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2874 if( colUsed==(MASKBIT(nExpr)-1) ){ 2875 /* If we reach this point, that means the index pIdx is usable */ 2876 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2877 ExplainQueryPlan((pParse, 0, 2878 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2879 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2880 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2881 VdbeComment((v, "%s", pIdx->zName)); 2882 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2883 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2884 2885 if( prRhsHasNull ){ 2886 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2887 i64 mask = (1<<nExpr)-1; 2888 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2889 iTab, 0, 0, (u8*)&mask, P4_INT64); 2890 #endif 2891 *prRhsHasNull = ++pParse->nMem; 2892 if( nExpr==1 ){ 2893 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2894 } 2895 } 2896 sqlite3VdbeJumpHere(v, iAddr); 2897 } 2898 } /* End loop over indexes */ 2899 } /* End if( affinity_ok ) */ 2900 } /* End if not an rowid index */ 2901 } /* End attempt to optimize using an index */ 2902 2903 /* If no preexisting index is available for the IN clause 2904 ** and IN_INDEX_NOOP is an allowed reply 2905 ** and the RHS of the IN operator is a list, not a subquery 2906 ** and the RHS is not constant or has two or fewer terms, 2907 ** then it is not worth creating an ephemeral table to evaluate 2908 ** the IN operator so return IN_INDEX_NOOP. 2909 */ 2910 if( eType==0 2911 && (inFlags & IN_INDEX_NOOP_OK) 2912 && ExprUseXList(pX) 2913 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2914 ){ 2915 pParse->nTab--; /* Back out the allocation of the unused cursor */ 2916 iTab = -1; /* Cursor is not allocated */ 2917 eType = IN_INDEX_NOOP; 2918 } 2919 2920 if( eType==0 ){ 2921 /* Could not find an existing table or index to use as the RHS b-tree. 2922 ** We will have to generate an ephemeral table to do the job. 2923 */ 2924 u32 savedNQueryLoop = pParse->nQueryLoop; 2925 int rMayHaveNull = 0; 2926 eType = IN_INDEX_EPH; 2927 if( inFlags & IN_INDEX_LOOP ){ 2928 pParse->nQueryLoop = 0; 2929 }else if( prRhsHasNull ){ 2930 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2931 } 2932 assert( pX->op==TK_IN ); 2933 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2934 if( rMayHaveNull ){ 2935 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2936 } 2937 pParse->nQueryLoop = savedNQueryLoop; 2938 } 2939 2940 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2941 int i, n; 2942 n = sqlite3ExprVectorSize(pX->pLeft); 2943 for(i=0; i<n; i++) aiMap[i] = i; 2944 } 2945 *piTab = iTab; 2946 return eType; 2947 } 2948 #endif 2949 2950 #ifndef SQLITE_OMIT_SUBQUERY 2951 /* 2952 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2953 ** function allocates and returns a nul-terminated string containing 2954 ** the affinities to be used for each column of the comparison. 2955 ** 2956 ** It is the responsibility of the caller to ensure that the returned 2957 ** string is eventually freed using sqlite3DbFree(). 2958 */ 2959 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2960 Expr *pLeft = pExpr->pLeft; 2961 int nVal = sqlite3ExprVectorSize(pLeft); 2962 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2963 char *zRet; 2964 2965 assert( pExpr->op==TK_IN ); 2966 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2967 if( zRet ){ 2968 int i; 2969 for(i=0; i<nVal; i++){ 2970 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2971 char a = sqlite3ExprAffinity(pA); 2972 if( pSelect ){ 2973 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2974 }else{ 2975 zRet[i] = a; 2976 } 2977 } 2978 zRet[nVal] = '\0'; 2979 } 2980 return zRet; 2981 } 2982 #endif 2983 2984 #ifndef SQLITE_OMIT_SUBQUERY 2985 /* 2986 ** Load the Parse object passed as the first argument with an error 2987 ** message of the form: 2988 ** 2989 ** "sub-select returns N columns - expected M" 2990 */ 2991 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2992 if( pParse->nErr==0 ){ 2993 const char *zFmt = "sub-select returns %d columns - expected %d"; 2994 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2995 } 2996 } 2997 #endif 2998 2999 /* 3000 ** Expression pExpr is a vector that has been used in a context where 3001 ** it is not permitted. If pExpr is a sub-select vector, this routine 3002 ** loads the Parse object with a message of the form: 3003 ** 3004 ** "sub-select returns N columns - expected 1" 3005 ** 3006 ** Or, if it is a regular scalar vector: 3007 ** 3008 ** "row value misused" 3009 */ 3010 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 3011 #ifndef SQLITE_OMIT_SUBQUERY 3012 if( ExprUseXSelect(pExpr) ){ 3013 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 3014 }else 3015 #endif 3016 { 3017 sqlite3ErrorMsg(pParse, "row value misused"); 3018 } 3019 } 3020 3021 #ifndef SQLITE_OMIT_SUBQUERY 3022 /* 3023 ** Generate code that will construct an ephemeral table containing all terms 3024 ** in the RHS of an IN operator. The IN operator can be in either of two 3025 ** forms: 3026 ** 3027 ** x IN (4,5,11) -- IN operator with list on right-hand side 3028 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 3029 ** 3030 ** The pExpr parameter is the IN operator. The cursor number for the 3031 ** constructed ephermeral table is returned. The first time the ephemeral 3032 ** table is computed, the cursor number is also stored in pExpr->iTable, 3033 ** however the cursor number returned might not be the same, as it might 3034 ** have been duplicated using OP_OpenDup. 3035 ** 3036 ** If the LHS expression ("x" in the examples) is a column value, or 3037 ** the SELECT statement returns a column value, then the affinity of that 3038 ** column is used to build the index keys. If both 'x' and the 3039 ** SELECT... statement are columns, then numeric affinity is used 3040 ** if either column has NUMERIC or INTEGER affinity. If neither 3041 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3042 ** is used. 3043 */ 3044 void sqlite3CodeRhsOfIN( 3045 Parse *pParse, /* Parsing context */ 3046 Expr *pExpr, /* The IN operator */ 3047 int iTab /* Use this cursor number */ 3048 ){ 3049 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3050 int addr; /* Address of OP_OpenEphemeral instruction */ 3051 Expr *pLeft; /* the LHS of the IN operator */ 3052 KeyInfo *pKeyInfo = 0; /* Key information */ 3053 int nVal; /* Size of vector pLeft */ 3054 Vdbe *v; /* The prepared statement under construction */ 3055 3056 v = pParse->pVdbe; 3057 assert( v!=0 ); 3058 3059 /* The evaluation of the IN must be repeated every time it 3060 ** is encountered if any of the following is true: 3061 ** 3062 ** * The right-hand side is a correlated subquery 3063 ** * The right-hand side is an expression list containing variables 3064 ** * We are inside a trigger 3065 ** 3066 ** If all of the above are false, then we can compute the RHS just once 3067 ** and reuse it many names. 3068 */ 3069 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3070 /* Reuse of the RHS is allowed */ 3071 /* If this routine has already been coded, but the previous code 3072 ** might not have been invoked yet, so invoke it now as a subroutine. 3073 */ 3074 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3075 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3076 if( ExprUseXSelect(pExpr) ){ 3077 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3078 pExpr->x.pSelect->selId)); 3079 } 3080 assert( ExprUseYSub(pExpr) ); 3081 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3082 pExpr->y.sub.iAddr); 3083 assert( iTab!=pExpr->iTable ); 3084 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3085 sqlite3VdbeJumpHere(v, addrOnce); 3086 return; 3087 } 3088 3089 /* Begin coding the subroutine */ 3090 assert( !ExprUseYWin(pExpr) ); 3091 ExprSetProperty(pExpr, EP_Subrtn); 3092 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3093 pExpr->y.sub.regReturn = ++pParse->nMem; 3094 pExpr->y.sub.iAddr = 3095 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3096 3097 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3098 } 3099 3100 /* Check to see if this is a vector IN operator */ 3101 pLeft = pExpr->pLeft; 3102 nVal = sqlite3ExprVectorSize(pLeft); 3103 3104 /* Construct the ephemeral table that will contain the content of 3105 ** RHS of the IN operator. 3106 */ 3107 pExpr->iTable = iTab; 3108 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3109 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3110 if( ExprUseXSelect(pExpr) ){ 3111 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3112 }else{ 3113 VdbeComment((v, "RHS of IN operator")); 3114 } 3115 #endif 3116 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3117 3118 if( ExprUseXSelect(pExpr) ){ 3119 /* Case 1: expr IN (SELECT ...) 3120 ** 3121 ** Generate code to write the results of the select into the temporary 3122 ** table allocated and opened above. 3123 */ 3124 Select *pSelect = pExpr->x.pSelect; 3125 ExprList *pEList = pSelect->pEList; 3126 3127 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3128 addrOnce?"":"CORRELATED ", pSelect->selId 3129 )); 3130 /* If the LHS and RHS of the IN operator do not match, that 3131 ** error will have been caught long before we reach this point. */ 3132 if( ALWAYS(pEList->nExpr==nVal) ){ 3133 Select *pCopy; 3134 SelectDest dest; 3135 int i; 3136 int rc; 3137 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3138 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3139 pSelect->iLimit = 0; 3140 testcase( pSelect->selFlags & SF_Distinct ); 3141 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3142 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3143 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3144 sqlite3SelectDelete(pParse->db, pCopy); 3145 sqlite3DbFree(pParse->db, dest.zAffSdst); 3146 if( rc ){ 3147 sqlite3KeyInfoUnref(pKeyInfo); 3148 return; 3149 } 3150 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3151 assert( pEList!=0 ); 3152 assert( pEList->nExpr>0 ); 3153 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3154 for(i=0; i<nVal; i++){ 3155 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3156 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3157 pParse, p, pEList->a[i].pExpr 3158 ); 3159 } 3160 } 3161 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3162 /* Case 2: expr IN (exprlist) 3163 ** 3164 ** For each expression, build an index key from the evaluation and 3165 ** store it in the temporary table. If <expr> is a column, then use 3166 ** that columns affinity when building index keys. If <expr> is not 3167 ** a column, use numeric affinity. 3168 */ 3169 char affinity; /* Affinity of the LHS of the IN */ 3170 int i; 3171 ExprList *pList = pExpr->x.pList; 3172 struct ExprList_item *pItem; 3173 int r1, r2; 3174 affinity = sqlite3ExprAffinity(pLeft); 3175 if( affinity<=SQLITE_AFF_NONE ){ 3176 affinity = SQLITE_AFF_BLOB; 3177 }else if( affinity==SQLITE_AFF_REAL ){ 3178 affinity = SQLITE_AFF_NUMERIC; 3179 } 3180 if( pKeyInfo ){ 3181 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3182 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3183 } 3184 3185 /* Loop through each expression in <exprlist>. */ 3186 r1 = sqlite3GetTempReg(pParse); 3187 r2 = sqlite3GetTempReg(pParse); 3188 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3189 Expr *pE2 = pItem->pExpr; 3190 3191 /* If the expression is not constant then we will need to 3192 ** disable the test that was generated above that makes sure 3193 ** this code only executes once. Because for a non-constant 3194 ** expression we need to rerun this code each time. 3195 */ 3196 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3197 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3198 sqlite3VdbeChangeToNoop(v, addrOnce); 3199 ExprClearProperty(pExpr, EP_Subrtn); 3200 addrOnce = 0; 3201 } 3202 3203 /* Evaluate the expression and insert it into the temp table */ 3204 sqlite3ExprCode(pParse, pE2, r1); 3205 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3206 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3207 } 3208 sqlite3ReleaseTempReg(pParse, r1); 3209 sqlite3ReleaseTempReg(pParse, r2); 3210 } 3211 if( pKeyInfo ){ 3212 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3213 } 3214 if( addrOnce ){ 3215 sqlite3VdbeJumpHere(v, addrOnce); 3216 /* Subroutine return */ 3217 assert( ExprUseYSub(pExpr) ); 3218 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3219 || pParse->nErr ); 3220 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3221 pExpr->y.sub.iAddr, 1); 3222 VdbeCoverage(v); 3223 sqlite3ClearTempRegCache(pParse); 3224 } 3225 } 3226 #endif /* SQLITE_OMIT_SUBQUERY */ 3227 3228 /* 3229 ** Generate code for scalar subqueries used as a subquery expression 3230 ** or EXISTS operator: 3231 ** 3232 ** (SELECT a FROM b) -- subquery 3233 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3234 ** 3235 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3236 ** 3237 ** Return the register that holds the result. For a multi-column SELECT, 3238 ** the result is stored in a contiguous array of registers and the 3239 ** return value is the register of the left-most result column. 3240 ** Return 0 if an error occurs. 3241 */ 3242 #ifndef SQLITE_OMIT_SUBQUERY 3243 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3244 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3245 int rReg = 0; /* Register storing resulting */ 3246 Select *pSel; /* SELECT statement to encode */ 3247 SelectDest dest; /* How to deal with SELECT result */ 3248 int nReg; /* Registers to allocate */ 3249 Expr *pLimit; /* New limit expression */ 3250 3251 Vdbe *v = pParse->pVdbe; 3252 assert( v!=0 ); 3253 if( pParse->nErr ) return 0; 3254 testcase( pExpr->op==TK_EXISTS ); 3255 testcase( pExpr->op==TK_SELECT ); 3256 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3257 assert( ExprUseXSelect(pExpr) ); 3258 pSel = pExpr->x.pSelect; 3259 3260 /* If this routine has already been coded, then invoke it as a 3261 ** subroutine. */ 3262 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3263 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3264 assert( ExprUseYSub(pExpr) ); 3265 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3266 pExpr->y.sub.iAddr); 3267 return pExpr->iTable; 3268 } 3269 3270 /* Begin coding the subroutine */ 3271 assert( !ExprUseYWin(pExpr) ); 3272 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3273 ExprSetProperty(pExpr, EP_Subrtn); 3274 pExpr->y.sub.regReturn = ++pParse->nMem; 3275 pExpr->y.sub.iAddr = 3276 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3277 3278 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3279 ** is encountered if any of the following is true: 3280 ** 3281 ** * The right-hand side is a correlated subquery 3282 ** * The right-hand side is an expression list containing variables 3283 ** * We are inside a trigger 3284 ** 3285 ** If all of the above are false, then we can run this code just once 3286 ** save the results, and reuse the same result on subsequent invocations. 3287 */ 3288 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3289 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3290 } 3291 3292 /* For a SELECT, generate code to put the values for all columns of 3293 ** the first row into an array of registers and return the index of 3294 ** the first register. 3295 ** 3296 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3297 ** into a register and return that register number. 3298 ** 3299 ** In both cases, the query is augmented with "LIMIT 1". Any 3300 ** preexisting limit is discarded in place of the new LIMIT 1. 3301 */ 3302 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3303 addrOnce?"":"CORRELATED ", pSel->selId)); 3304 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3305 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3306 pParse->nMem += nReg; 3307 if( pExpr->op==TK_SELECT ){ 3308 dest.eDest = SRT_Mem; 3309 dest.iSdst = dest.iSDParm; 3310 dest.nSdst = nReg; 3311 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3312 VdbeComment((v, "Init subquery result")); 3313 }else{ 3314 dest.eDest = SRT_Exists; 3315 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3316 VdbeComment((v, "Init EXISTS result")); 3317 } 3318 if( pSel->pLimit ){ 3319 /* The subquery already has a limit. If the pre-existing limit is X 3320 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3321 sqlite3 *db = pParse->db; 3322 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3323 if( pLimit ){ 3324 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3325 pLimit = sqlite3PExpr(pParse, TK_NE, 3326 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3327 } 3328 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3329 pSel->pLimit->pLeft = pLimit; 3330 }else{ 3331 /* If there is no pre-existing limit add a limit of 1 */ 3332 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3333 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3334 } 3335 pSel->iLimit = 0; 3336 if( sqlite3Select(pParse, pSel, &dest) ){ 3337 pExpr->op2 = pExpr->op; 3338 pExpr->op = TK_ERROR; 3339 return 0; 3340 } 3341 pExpr->iTable = rReg = dest.iSDParm; 3342 ExprSetVVAProperty(pExpr, EP_NoReduce); 3343 if( addrOnce ){ 3344 sqlite3VdbeJumpHere(v, addrOnce); 3345 } 3346 3347 /* Subroutine return */ 3348 assert( ExprUseYSub(pExpr) ); 3349 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3350 || pParse->nErr ); 3351 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3352 pExpr->y.sub.iAddr, 1); 3353 VdbeCoverage(v); 3354 sqlite3ClearTempRegCache(pParse); 3355 return rReg; 3356 } 3357 #endif /* SQLITE_OMIT_SUBQUERY */ 3358 3359 #ifndef SQLITE_OMIT_SUBQUERY 3360 /* 3361 ** Expr pIn is an IN(...) expression. This function checks that the 3362 ** sub-select on the RHS of the IN() operator has the same number of 3363 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3364 ** a sub-query, that the LHS is a vector of size 1. 3365 */ 3366 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3367 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3368 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3369 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3370 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3371 return 1; 3372 } 3373 }else if( nVector!=1 ){ 3374 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3375 return 1; 3376 } 3377 return 0; 3378 } 3379 #endif 3380 3381 #ifndef SQLITE_OMIT_SUBQUERY 3382 /* 3383 ** Generate code for an IN expression. 3384 ** 3385 ** x IN (SELECT ...) 3386 ** x IN (value, value, ...) 3387 ** 3388 ** The left-hand side (LHS) is a scalar or vector expression. The 3389 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3390 ** subquery. If the RHS is a subquery, the number of result columns must 3391 ** match the number of columns in the vector on the LHS. If the RHS is 3392 ** a list of values, the LHS must be a scalar. 3393 ** 3394 ** The IN operator is true if the LHS value is contained within the RHS. 3395 ** The result is false if the LHS is definitely not in the RHS. The 3396 ** result is NULL if the presence of the LHS in the RHS cannot be 3397 ** determined due to NULLs. 3398 ** 3399 ** This routine generates code that jumps to destIfFalse if the LHS is not 3400 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3401 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3402 ** within the RHS then fall through. 3403 ** 3404 ** See the separate in-operator.md documentation file in the canonical 3405 ** SQLite source tree for additional information. 3406 */ 3407 static void sqlite3ExprCodeIN( 3408 Parse *pParse, /* Parsing and code generating context */ 3409 Expr *pExpr, /* The IN expression */ 3410 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3411 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3412 ){ 3413 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3414 int eType; /* Type of the RHS */ 3415 int rLhs; /* Register(s) holding the LHS values */ 3416 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3417 Vdbe *v; /* Statement under construction */ 3418 int *aiMap = 0; /* Map from vector field to index column */ 3419 char *zAff = 0; /* Affinity string for comparisons */ 3420 int nVector; /* Size of vectors for this IN operator */ 3421 int iDummy; /* Dummy parameter to exprCodeVector() */ 3422 Expr *pLeft; /* The LHS of the IN operator */ 3423 int i; /* loop counter */ 3424 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3425 int destStep6 = 0; /* Start of code for Step 6 */ 3426 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3427 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3428 int addrTop; /* Top of the step-6 loop */ 3429 int iTab = 0; /* Index to use */ 3430 u8 okConstFactor = pParse->okConstFactor; 3431 3432 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3433 pLeft = pExpr->pLeft; 3434 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3435 zAff = exprINAffinity(pParse, pExpr); 3436 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3437 aiMap = (int*)sqlite3DbMallocZero( 3438 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3439 ); 3440 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3441 3442 /* Attempt to compute the RHS. After this step, if anything other than 3443 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3444 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3445 ** the RHS has not yet been coded. */ 3446 v = pParse->pVdbe; 3447 assert( v!=0 ); /* OOM detected prior to this routine */ 3448 VdbeNoopComment((v, "begin IN expr")); 3449 eType = sqlite3FindInIndex(pParse, pExpr, 3450 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3451 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3452 aiMap, &iTab); 3453 3454 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3455 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3456 ); 3457 #ifdef SQLITE_DEBUG 3458 /* Confirm that aiMap[] contains nVector integer values between 0 and 3459 ** nVector-1. */ 3460 for(i=0; i<nVector; i++){ 3461 int j, cnt; 3462 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3463 assert( cnt==1 ); 3464 } 3465 #endif 3466 3467 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3468 ** vector, then it is stored in an array of nVector registers starting 3469 ** at r1. 3470 ** 3471 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3472 ** so that the fields are in the same order as an existing index. The 3473 ** aiMap[] array contains a mapping from the original LHS field order to 3474 ** the field order that matches the RHS index. 3475 ** 3476 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3477 ** even if it is constant, as OP_Affinity may be used on the register 3478 ** by code generated below. */ 3479 assert( pParse->okConstFactor==okConstFactor ); 3480 pParse->okConstFactor = 0; 3481 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3482 pParse->okConstFactor = okConstFactor; 3483 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3484 if( i==nVector ){ 3485 /* LHS fields are not reordered */ 3486 rLhs = rLhsOrig; 3487 }else{ 3488 /* Need to reorder the LHS fields according to aiMap */ 3489 rLhs = sqlite3GetTempRange(pParse, nVector); 3490 for(i=0; i<nVector; i++){ 3491 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3492 } 3493 } 3494 3495 /* If sqlite3FindInIndex() did not find or create an index that is 3496 ** suitable for evaluating the IN operator, then evaluate using a 3497 ** sequence of comparisons. 3498 ** 3499 ** This is step (1) in the in-operator.md optimized algorithm. 3500 */ 3501 if( eType==IN_INDEX_NOOP ){ 3502 ExprList *pList; 3503 CollSeq *pColl; 3504 int labelOk = sqlite3VdbeMakeLabel(pParse); 3505 int r2, regToFree; 3506 int regCkNull = 0; 3507 int ii; 3508 assert( ExprUseXList(pExpr) ); 3509 pList = pExpr->x.pList; 3510 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3511 if( destIfNull!=destIfFalse ){ 3512 regCkNull = sqlite3GetTempReg(pParse); 3513 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3514 } 3515 for(ii=0; ii<pList->nExpr; ii++){ 3516 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3517 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3518 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3519 } 3520 sqlite3ReleaseTempReg(pParse, regToFree); 3521 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3522 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3523 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3524 (void*)pColl, P4_COLLSEQ); 3525 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3526 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3527 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3528 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3529 sqlite3VdbeChangeP5(v, zAff[0]); 3530 }else{ 3531 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3532 assert( destIfNull==destIfFalse ); 3533 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3534 (void*)pColl, P4_COLLSEQ); 3535 VdbeCoverageIf(v, op==OP_Ne); 3536 VdbeCoverageIf(v, op==OP_IsNull); 3537 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3538 } 3539 } 3540 if( regCkNull ){ 3541 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3542 sqlite3VdbeGoto(v, destIfFalse); 3543 } 3544 sqlite3VdbeResolveLabel(v, labelOk); 3545 sqlite3ReleaseTempReg(pParse, regCkNull); 3546 goto sqlite3ExprCodeIN_finished; 3547 } 3548 3549 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3550 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3551 ** We will then skip the binary search of the RHS. 3552 */ 3553 if( destIfNull==destIfFalse ){ 3554 destStep2 = destIfFalse; 3555 }else{ 3556 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3557 } 3558 for(i=0; i<nVector; i++){ 3559 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3560 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3561 if( sqlite3ExprCanBeNull(p) ){ 3562 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3563 VdbeCoverage(v); 3564 } 3565 } 3566 3567 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3568 ** of the RHS using the LHS as a probe. If found, the result is 3569 ** true. 3570 */ 3571 if( eType==IN_INDEX_ROWID ){ 3572 /* In this case, the RHS is the ROWID of table b-tree and so we also 3573 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3574 ** into a single opcode. */ 3575 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3576 VdbeCoverage(v); 3577 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3578 }else{ 3579 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3580 if( destIfFalse==destIfNull ){ 3581 /* Combine Step 3 and Step 5 into a single opcode */ 3582 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3583 rLhs, nVector); VdbeCoverage(v); 3584 goto sqlite3ExprCodeIN_finished; 3585 } 3586 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3587 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3588 rLhs, nVector); VdbeCoverage(v); 3589 } 3590 3591 /* Step 4. If the RHS is known to be non-NULL and we did not find 3592 ** an match on the search above, then the result must be FALSE. 3593 */ 3594 if( rRhsHasNull && nVector==1 ){ 3595 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3596 VdbeCoverage(v); 3597 } 3598 3599 /* Step 5. If we do not care about the difference between NULL and 3600 ** FALSE, then just return false. 3601 */ 3602 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3603 3604 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3605 ** If any comparison is NULL, then the result is NULL. If all 3606 ** comparisons are FALSE then the final result is FALSE. 3607 ** 3608 ** For a scalar LHS, it is sufficient to check just the first row 3609 ** of the RHS. 3610 */ 3611 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3612 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3613 VdbeCoverage(v); 3614 if( nVector>1 ){ 3615 destNotNull = sqlite3VdbeMakeLabel(pParse); 3616 }else{ 3617 /* For nVector==1, combine steps 6 and 7 by immediately returning 3618 ** FALSE if the first comparison is not NULL */ 3619 destNotNull = destIfFalse; 3620 } 3621 for(i=0; i<nVector; i++){ 3622 Expr *p; 3623 CollSeq *pColl; 3624 int r3 = sqlite3GetTempReg(pParse); 3625 p = sqlite3VectorFieldSubexpr(pLeft, i); 3626 pColl = sqlite3ExprCollSeq(pParse, p); 3627 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3628 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3629 (void*)pColl, P4_COLLSEQ); 3630 VdbeCoverage(v); 3631 sqlite3ReleaseTempReg(pParse, r3); 3632 } 3633 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3634 if( nVector>1 ){ 3635 sqlite3VdbeResolveLabel(v, destNotNull); 3636 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3637 VdbeCoverage(v); 3638 3639 /* Step 7: If we reach this point, we know that the result must 3640 ** be false. */ 3641 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3642 } 3643 3644 /* Jumps here in order to return true. */ 3645 sqlite3VdbeJumpHere(v, addrTruthOp); 3646 3647 sqlite3ExprCodeIN_finished: 3648 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3649 VdbeComment((v, "end IN expr")); 3650 sqlite3ExprCodeIN_oom_error: 3651 sqlite3DbFree(pParse->db, aiMap); 3652 sqlite3DbFree(pParse->db, zAff); 3653 } 3654 #endif /* SQLITE_OMIT_SUBQUERY */ 3655 3656 #ifndef SQLITE_OMIT_FLOATING_POINT 3657 /* 3658 ** Generate an instruction that will put the floating point 3659 ** value described by z[0..n-1] into register iMem. 3660 ** 3661 ** The z[] string will probably not be zero-terminated. But the 3662 ** z[n] character is guaranteed to be something that does not look 3663 ** like the continuation of the number. 3664 */ 3665 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3666 if( ALWAYS(z!=0) ){ 3667 double value; 3668 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3669 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3670 if( negateFlag ) value = -value; 3671 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3672 } 3673 } 3674 #endif 3675 3676 3677 /* 3678 ** Generate an instruction that will put the integer describe by 3679 ** text z[0..n-1] into register iMem. 3680 ** 3681 ** Expr.u.zToken is always UTF8 and zero-terminated. 3682 */ 3683 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3684 Vdbe *v = pParse->pVdbe; 3685 if( pExpr->flags & EP_IntValue ){ 3686 int i = pExpr->u.iValue; 3687 assert( i>=0 ); 3688 if( negFlag ) i = -i; 3689 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3690 }else{ 3691 int c; 3692 i64 value; 3693 const char *z = pExpr->u.zToken; 3694 assert( z!=0 ); 3695 c = sqlite3DecOrHexToI64(z, &value); 3696 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3697 #ifdef SQLITE_OMIT_FLOATING_POINT 3698 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3699 #else 3700 #ifndef SQLITE_OMIT_HEX_INTEGER 3701 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3702 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3703 negFlag?"-":"",pExpr); 3704 }else 3705 #endif 3706 { 3707 codeReal(v, z, negFlag, iMem); 3708 } 3709 #endif 3710 }else{ 3711 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3712 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3713 } 3714 } 3715 } 3716 3717 3718 /* Generate code that will load into register regOut a value that is 3719 ** appropriate for the iIdxCol-th column of index pIdx. 3720 */ 3721 void sqlite3ExprCodeLoadIndexColumn( 3722 Parse *pParse, /* The parsing context */ 3723 Index *pIdx, /* The index whose column is to be loaded */ 3724 int iTabCur, /* Cursor pointing to a table row */ 3725 int iIdxCol, /* The column of the index to be loaded */ 3726 int regOut /* Store the index column value in this register */ 3727 ){ 3728 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3729 if( iTabCol==XN_EXPR ){ 3730 assert( pIdx->aColExpr ); 3731 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3732 pParse->iSelfTab = iTabCur + 1; 3733 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3734 pParse->iSelfTab = 0; 3735 }else{ 3736 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3737 iTabCol, regOut); 3738 } 3739 } 3740 3741 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3742 /* 3743 ** Generate code that will compute the value of generated column pCol 3744 ** and store the result in register regOut 3745 */ 3746 void sqlite3ExprCodeGeneratedColumn( 3747 Parse *pParse, /* Parsing context */ 3748 Table *pTab, /* Table containing the generated column */ 3749 Column *pCol, /* The generated column */ 3750 int regOut /* Put the result in this register */ 3751 ){ 3752 int iAddr; 3753 Vdbe *v = pParse->pVdbe; 3754 assert( v!=0 ); 3755 assert( pParse->iSelfTab!=0 ); 3756 if( pParse->iSelfTab>0 ){ 3757 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3758 }else{ 3759 iAddr = 0; 3760 } 3761 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3762 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3763 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3764 } 3765 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3766 } 3767 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3768 3769 /* 3770 ** Generate code to extract the value of the iCol-th column of a table. 3771 */ 3772 void sqlite3ExprCodeGetColumnOfTable( 3773 Vdbe *v, /* Parsing context */ 3774 Table *pTab, /* The table containing the value */ 3775 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3776 int iCol, /* Index of the column to extract */ 3777 int regOut /* Extract the value into this register */ 3778 ){ 3779 Column *pCol; 3780 assert( v!=0 ); 3781 if( pTab==0 ){ 3782 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3783 return; 3784 } 3785 if( iCol<0 || iCol==pTab->iPKey ){ 3786 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3787 VdbeComment((v, "%s.rowid", pTab->zName)); 3788 }else{ 3789 int op; 3790 int x; 3791 if( IsVirtual(pTab) ){ 3792 op = OP_VColumn; 3793 x = iCol; 3794 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3795 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3796 Parse *pParse = sqlite3VdbeParser(v); 3797 if( pCol->colFlags & COLFLAG_BUSY ){ 3798 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3799 pCol->zCnName); 3800 }else{ 3801 int savedSelfTab = pParse->iSelfTab; 3802 pCol->colFlags |= COLFLAG_BUSY; 3803 pParse->iSelfTab = iTabCur+1; 3804 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3805 pParse->iSelfTab = savedSelfTab; 3806 pCol->colFlags &= ~COLFLAG_BUSY; 3807 } 3808 return; 3809 #endif 3810 }else if( !HasRowid(pTab) ){ 3811 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3812 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3813 op = OP_Column; 3814 }else{ 3815 x = sqlite3TableColumnToStorage(pTab,iCol); 3816 testcase( x!=iCol ); 3817 op = OP_Column; 3818 } 3819 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3820 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3821 } 3822 } 3823 3824 /* 3825 ** Generate code that will extract the iColumn-th column from 3826 ** table pTab and store the column value in register iReg. 3827 ** 3828 ** There must be an open cursor to pTab in iTable when this routine 3829 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3830 */ 3831 int sqlite3ExprCodeGetColumn( 3832 Parse *pParse, /* Parsing and code generating context */ 3833 Table *pTab, /* Description of the table we are reading from */ 3834 int iColumn, /* Index of the table column */ 3835 int iTable, /* The cursor pointing to the table */ 3836 int iReg, /* Store results here */ 3837 u8 p5 /* P5 value for OP_Column + FLAGS */ 3838 ){ 3839 assert( pParse->pVdbe!=0 ); 3840 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3841 if( p5 ){ 3842 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3843 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3844 } 3845 return iReg; 3846 } 3847 3848 /* 3849 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3850 ** over to iTo..iTo+nReg-1. 3851 */ 3852 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3853 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3854 } 3855 3856 /* 3857 ** Convert a scalar expression node to a TK_REGISTER referencing 3858 ** register iReg. The caller must ensure that iReg already contains 3859 ** the correct value for the expression. 3860 */ 3861 static void exprToRegister(Expr *pExpr, int iReg){ 3862 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3863 if( NEVER(p==0) ) return; 3864 p->op2 = p->op; 3865 p->op = TK_REGISTER; 3866 p->iTable = iReg; 3867 ExprClearProperty(p, EP_Skip); 3868 } 3869 3870 /* 3871 ** Evaluate an expression (either a vector or a scalar expression) and store 3872 ** the result in continguous temporary registers. Return the index of 3873 ** the first register used to store the result. 3874 ** 3875 ** If the returned result register is a temporary scalar, then also write 3876 ** that register number into *piFreeable. If the returned result register 3877 ** is not a temporary or if the expression is a vector set *piFreeable 3878 ** to 0. 3879 */ 3880 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3881 int iResult; 3882 int nResult = sqlite3ExprVectorSize(p); 3883 if( nResult==1 ){ 3884 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3885 }else{ 3886 *piFreeable = 0; 3887 if( p->op==TK_SELECT ){ 3888 #if SQLITE_OMIT_SUBQUERY 3889 iResult = 0; 3890 #else 3891 iResult = sqlite3CodeSubselect(pParse, p); 3892 #endif 3893 }else{ 3894 int i; 3895 iResult = pParse->nMem+1; 3896 pParse->nMem += nResult; 3897 assert( ExprUseXList(p) ); 3898 for(i=0; i<nResult; i++){ 3899 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3900 } 3901 } 3902 } 3903 return iResult; 3904 } 3905 3906 /* 3907 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3908 ** so that a subsequent copy will not be merged into this one. 3909 */ 3910 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3911 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3912 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3913 } 3914 } 3915 3916 /* 3917 ** Generate code to implement special SQL functions that are implemented 3918 ** in-line rather than by using the usual callbacks. 3919 */ 3920 static int exprCodeInlineFunction( 3921 Parse *pParse, /* Parsing context */ 3922 ExprList *pFarg, /* List of function arguments */ 3923 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3924 int target /* Store function result in this register */ 3925 ){ 3926 int nFarg; 3927 Vdbe *v = pParse->pVdbe; 3928 assert( v!=0 ); 3929 assert( pFarg!=0 ); 3930 nFarg = pFarg->nExpr; 3931 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3932 switch( iFuncId ){ 3933 case INLINEFUNC_coalesce: { 3934 /* Attempt a direct implementation of the built-in COALESCE() and 3935 ** IFNULL() functions. This avoids unnecessary evaluation of 3936 ** arguments past the first non-NULL argument. 3937 */ 3938 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3939 int i; 3940 assert( nFarg>=2 ); 3941 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3942 for(i=1; i<nFarg; i++){ 3943 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3944 VdbeCoverage(v); 3945 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3946 } 3947 setDoNotMergeFlagOnCopy(v); 3948 sqlite3VdbeResolveLabel(v, endCoalesce); 3949 break; 3950 } 3951 case INLINEFUNC_iif: { 3952 Expr caseExpr; 3953 memset(&caseExpr, 0, sizeof(caseExpr)); 3954 caseExpr.op = TK_CASE; 3955 caseExpr.x.pList = pFarg; 3956 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3957 } 3958 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3959 case INLINEFUNC_sqlite_offset: { 3960 Expr *pArg = pFarg->a[0].pExpr; 3961 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 3962 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3963 }else{ 3964 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3965 } 3966 break; 3967 } 3968 #endif 3969 default: { 3970 /* The UNLIKELY() function is a no-op. The result is the value 3971 ** of the first argument. 3972 */ 3973 assert( nFarg==1 || nFarg==2 ); 3974 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3975 break; 3976 } 3977 3978 /*********************************************************************** 3979 ** Test-only SQL functions that are only usable if enabled 3980 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3981 */ 3982 #if !defined(SQLITE_UNTESTABLE) 3983 case INLINEFUNC_expr_compare: { 3984 /* Compare two expressions using sqlite3ExprCompare() */ 3985 assert( nFarg==2 ); 3986 sqlite3VdbeAddOp2(v, OP_Integer, 3987 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3988 target); 3989 break; 3990 } 3991 3992 case INLINEFUNC_expr_implies_expr: { 3993 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3994 assert( nFarg==2 ); 3995 sqlite3VdbeAddOp2(v, OP_Integer, 3996 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3997 target); 3998 break; 3999 } 4000 4001 case INLINEFUNC_implies_nonnull_row: { 4002 /* REsult of sqlite3ExprImpliesNonNullRow() */ 4003 Expr *pA1; 4004 assert( nFarg==2 ); 4005 pA1 = pFarg->a[1].pExpr; 4006 if( pA1->op==TK_COLUMN ){ 4007 sqlite3VdbeAddOp2(v, OP_Integer, 4008 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 4009 target); 4010 }else{ 4011 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4012 } 4013 break; 4014 } 4015 4016 case INLINEFUNC_affinity: { 4017 /* The AFFINITY() function evaluates to a string that describes 4018 ** the type affinity of the argument. This is used for testing of 4019 ** the SQLite type logic. 4020 */ 4021 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 4022 char aff; 4023 assert( nFarg==1 ); 4024 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 4025 sqlite3VdbeLoadString(v, target, 4026 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 4027 break; 4028 } 4029 #endif /* !defined(SQLITE_UNTESTABLE) */ 4030 } 4031 return target; 4032 } 4033 4034 4035 /* 4036 ** Generate code into the current Vdbe to evaluate the given 4037 ** expression. Attempt to store the results in register "target". 4038 ** Return the register where results are stored. 4039 ** 4040 ** With this routine, there is no guarantee that results will 4041 ** be stored in target. The result might be stored in some other 4042 ** register if it is convenient to do so. The calling function 4043 ** must check the return code and move the results to the desired 4044 ** register. 4045 */ 4046 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4047 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4048 int op; /* The opcode being coded */ 4049 int inReg = target; /* Results stored in register inReg */ 4050 int regFree1 = 0; /* If non-zero free this temporary register */ 4051 int regFree2 = 0; /* If non-zero free this temporary register */ 4052 int r1, r2; /* Various register numbers */ 4053 Expr tempX; /* Temporary expression node */ 4054 int p5 = 0; 4055 4056 assert( target>0 && target<=pParse->nMem ); 4057 assert( v!=0 ); 4058 4059 expr_code_doover: 4060 if( pExpr==0 ){ 4061 op = TK_NULL; 4062 }else{ 4063 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4064 op = pExpr->op; 4065 } 4066 switch( op ){ 4067 case TK_AGG_COLUMN: { 4068 AggInfo *pAggInfo = pExpr->pAggInfo; 4069 struct AggInfo_col *pCol; 4070 assert( pAggInfo!=0 ); 4071 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4072 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4073 if( !pAggInfo->directMode ){ 4074 assert( pCol->iMem>0 ); 4075 return pCol->iMem; 4076 }else if( pAggInfo->useSortingIdx ){ 4077 Table *pTab = pCol->pTab; 4078 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4079 pCol->iSorterColumn, target); 4080 if( pCol->iColumn<0 ){ 4081 VdbeComment((v,"%s.rowid",pTab->zName)); 4082 }else{ 4083 VdbeComment((v,"%s.%s", 4084 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4085 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4086 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4087 } 4088 } 4089 return target; 4090 } 4091 /* Otherwise, fall thru into the TK_COLUMN case */ 4092 /* no break */ deliberate_fall_through 4093 } 4094 case TK_COLUMN: { 4095 int iTab = pExpr->iTable; 4096 int iReg; 4097 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4098 /* This COLUMN expression is really a constant due to WHERE clause 4099 ** constraints, and that constant is coded by the pExpr->pLeft 4100 ** expresssion. However, make sure the constant has the correct 4101 ** datatype by applying the Affinity of the table column to the 4102 ** constant. 4103 */ 4104 int aff; 4105 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4106 assert( ExprUseYTab(pExpr) ); 4107 if( pExpr->y.pTab ){ 4108 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4109 }else{ 4110 aff = pExpr->affExpr; 4111 } 4112 if( aff>SQLITE_AFF_BLOB ){ 4113 static const char zAff[] = "B\000C\000D\000E"; 4114 assert( SQLITE_AFF_BLOB=='A' ); 4115 assert( SQLITE_AFF_TEXT=='B' ); 4116 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4117 &zAff[(aff-'B')*2], P4_STATIC); 4118 } 4119 return iReg; 4120 } 4121 if( iTab<0 ){ 4122 if( pParse->iSelfTab<0 ){ 4123 /* Other columns in the same row for CHECK constraints or 4124 ** generated columns or for inserting into partial index. 4125 ** The row is unpacked into registers beginning at 4126 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4127 ** immediately prior to the first column. 4128 */ 4129 Column *pCol; 4130 Table *pTab; 4131 int iSrc; 4132 int iCol = pExpr->iColumn; 4133 assert( ExprUseYTab(pExpr) ); 4134 pTab = pExpr->y.pTab; 4135 assert( pTab!=0 ); 4136 assert( iCol>=XN_ROWID ); 4137 assert( iCol<pTab->nCol ); 4138 if( iCol<0 ){ 4139 return -1-pParse->iSelfTab; 4140 } 4141 pCol = pTab->aCol + iCol; 4142 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4143 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4144 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4145 if( pCol->colFlags & COLFLAG_GENERATED ){ 4146 if( pCol->colFlags & COLFLAG_BUSY ){ 4147 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4148 pCol->zCnName); 4149 return 0; 4150 } 4151 pCol->colFlags |= COLFLAG_BUSY; 4152 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4153 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4154 } 4155 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4156 return iSrc; 4157 }else 4158 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4159 if( pCol->affinity==SQLITE_AFF_REAL ){ 4160 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4161 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4162 return target; 4163 }else{ 4164 return iSrc; 4165 } 4166 }else{ 4167 /* Coding an expression that is part of an index where column names 4168 ** in the index refer to the table to which the index belongs */ 4169 iTab = pParse->iSelfTab - 1; 4170 } 4171 } 4172 assert( ExprUseYTab(pExpr) ); 4173 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4174 pExpr->iColumn, iTab, target, 4175 pExpr->op2); 4176 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4177 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4178 } 4179 return iReg; 4180 } 4181 case TK_INTEGER: { 4182 codeInteger(pParse, pExpr, 0, target); 4183 return target; 4184 } 4185 case TK_TRUEFALSE: { 4186 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4187 return target; 4188 } 4189 #ifndef SQLITE_OMIT_FLOATING_POINT 4190 case TK_FLOAT: { 4191 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4192 codeReal(v, pExpr->u.zToken, 0, target); 4193 return target; 4194 } 4195 #endif 4196 case TK_STRING: { 4197 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4198 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4199 return target; 4200 } 4201 default: { 4202 /* Make NULL the default case so that if a bug causes an illegal 4203 ** Expr node to be passed into this function, it will be handled 4204 ** sanely and not crash. But keep the assert() to bring the problem 4205 ** to the attention of the developers. */ 4206 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4207 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4208 return target; 4209 } 4210 #ifndef SQLITE_OMIT_BLOB_LITERAL 4211 case TK_BLOB: { 4212 int n; 4213 const char *z; 4214 char *zBlob; 4215 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4216 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4217 assert( pExpr->u.zToken[1]=='\'' ); 4218 z = &pExpr->u.zToken[2]; 4219 n = sqlite3Strlen30(z) - 1; 4220 assert( z[n]=='\'' ); 4221 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4222 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4223 return target; 4224 } 4225 #endif 4226 case TK_VARIABLE: { 4227 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4228 assert( pExpr->u.zToken!=0 ); 4229 assert( pExpr->u.zToken[0]!=0 ); 4230 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4231 if( pExpr->u.zToken[1]!=0 ){ 4232 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4233 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4234 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4235 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4236 } 4237 return target; 4238 } 4239 case TK_REGISTER: { 4240 return pExpr->iTable; 4241 } 4242 #ifndef SQLITE_OMIT_CAST 4243 case TK_CAST: { 4244 /* Expressions of the form: CAST(pLeft AS token) */ 4245 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4246 if( inReg!=target ){ 4247 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4248 inReg = target; 4249 } 4250 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4251 sqlite3VdbeAddOp2(v, OP_Cast, target, 4252 sqlite3AffinityType(pExpr->u.zToken, 0)); 4253 return inReg; 4254 } 4255 #endif /* SQLITE_OMIT_CAST */ 4256 case TK_IS: 4257 case TK_ISNOT: 4258 op = (op==TK_IS) ? TK_EQ : TK_NE; 4259 p5 = SQLITE_NULLEQ; 4260 /* fall-through */ 4261 case TK_LT: 4262 case TK_LE: 4263 case TK_GT: 4264 case TK_GE: 4265 case TK_NE: 4266 case TK_EQ: { 4267 Expr *pLeft = pExpr->pLeft; 4268 if( sqlite3ExprIsVector(pLeft) ){ 4269 codeVectorCompare(pParse, pExpr, target, op, p5); 4270 }else{ 4271 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4272 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4273 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4274 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4275 sqlite3VdbeCurrentAddr(v)+2, p5, 4276 ExprHasProperty(pExpr,EP_Commuted)); 4277 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4278 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4279 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4280 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4281 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4282 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4283 if( p5==SQLITE_NULLEQ ){ 4284 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4285 }else{ 4286 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4287 } 4288 testcase( regFree1==0 ); 4289 testcase( regFree2==0 ); 4290 } 4291 break; 4292 } 4293 case TK_AND: 4294 case TK_OR: 4295 case TK_PLUS: 4296 case TK_STAR: 4297 case TK_MINUS: 4298 case TK_REM: 4299 case TK_BITAND: 4300 case TK_BITOR: 4301 case TK_SLASH: 4302 case TK_LSHIFT: 4303 case TK_RSHIFT: 4304 case TK_CONCAT: { 4305 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4306 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4307 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4308 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4309 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4310 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4311 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4312 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4313 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4314 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4315 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4316 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4317 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4318 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4319 testcase( regFree1==0 ); 4320 testcase( regFree2==0 ); 4321 break; 4322 } 4323 case TK_UMINUS: { 4324 Expr *pLeft = pExpr->pLeft; 4325 assert( pLeft ); 4326 if( pLeft->op==TK_INTEGER ){ 4327 codeInteger(pParse, pLeft, 1, target); 4328 return target; 4329 #ifndef SQLITE_OMIT_FLOATING_POINT 4330 }else if( pLeft->op==TK_FLOAT ){ 4331 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4332 codeReal(v, pLeft->u.zToken, 1, target); 4333 return target; 4334 #endif 4335 }else{ 4336 tempX.op = TK_INTEGER; 4337 tempX.flags = EP_IntValue|EP_TokenOnly; 4338 tempX.u.iValue = 0; 4339 ExprClearVVAProperties(&tempX); 4340 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4341 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4342 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4343 testcase( regFree2==0 ); 4344 } 4345 break; 4346 } 4347 case TK_BITNOT: 4348 case TK_NOT: { 4349 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4350 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4351 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4352 testcase( regFree1==0 ); 4353 sqlite3VdbeAddOp2(v, op, r1, inReg); 4354 break; 4355 } 4356 case TK_TRUTH: { 4357 int isTrue; /* IS TRUE or IS NOT TRUE */ 4358 int bNormal; /* IS TRUE or IS FALSE */ 4359 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4360 testcase( regFree1==0 ); 4361 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4362 bNormal = pExpr->op2==TK_IS; 4363 testcase( isTrue && bNormal); 4364 testcase( !isTrue && bNormal); 4365 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4366 break; 4367 } 4368 case TK_ISNULL: 4369 case TK_NOTNULL: { 4370 int addr; 4371 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4372 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4373 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4374 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4375 testcase( regFree1==0 ); 4376 addr = sqlite3VdbeAddOp1(v, op, r1); 4377 VdbeCoverageIf(v, op==TK_ISNULL); 4378 VdbeCoverageIf(v, op==TK_NOTNULL); 4379 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4380 sqlite3VdbeJumpHere(v, addr); 4381 break; 4382 } 4383 case TK_AGG_FUNCTION: { 4384 AggInfo *pInfo = pExpr->pAggInfo; 4385 if( pInfo==0 4386 || NEVER(pExpr->iAgg<0) 4387 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4388 ){ 4389 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4390 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4391 }else{ 4392 return pInfo->aFunc[pExpr->iAgg].iMem; 4393 } 4394 break; 4395 } 4396 case TK_FUNCTION: { 4397 ExprList *pFarg; /* List of function arguments */ 4398 int nFarg; /* Number of function arguments */ 4399 FuncDef *pDef; /* The function definition object */ 4400 const char *zId; /* The function name */ 4401 u32 constMask = 0; /* Mask of function arguments that are constant */ 4402 int i; /* Loop counter */ 4403 sqlite3 *db = pParse->db; /* The database connection */ 4404 u8 enc = ENC(db); /* The text encoding used by this database */ 4405 CollSeq *pColl = 0; /* A collating sequence */ 4406 4407 #ifndef SQLITE_OMIT_WINDOWFUNC 4408 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4409 return pExpr->y.pWin->regResult; 4410 } 4411 #endif 4412 4413 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4414 /* SQL functions can be expensive. So try to avoid running them 4415 ** multiple times if we know they always give the same result */ 4416 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4417 } 4418 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4419 assert( ExprUseXList(pExpr) ); 4420 pFarg = pExpr->x.pList; 4421 nFarg = pFarg ? pFarg->nExpr : 0; 4422 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4423 zId = pExpr->u.zToken; 4424 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4425 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4426 if( pDef==0 && pParse->explain ){ 4427 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4428 } 4429 #endif 4430 if( pDef==0 || pDef->xFinalize!=0 ){ 4431 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4432 break; 4433 } 4434 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4435 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4436 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4437 return exprCodeInlineFunction(pParse, pFarg, 4438 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4439 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4440 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4441 } 4442 4443 for(i=0; i<nFarg; i++){ 4444 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4445 testcase( i==31 ); 4446 constMask |= MASKBIT32(i); 4447 } 4448 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4449 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4450 } 4451 } 4452 if( pFarg ){ 4453 if( constMask ){ 4454 r1 = pParse->nMem+1; 4455 pParse->nMem += nFarg; 4456 }else{ 4457 r1 = sqlite3GetTempRange(pParse, nFarg); 4458 } 4459 4460 /* For length() and typeof() functions with a column argument, 4461 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4462 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4463 ** loading. 4464 */ 4465 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4466 u8 exprOp; 4467 assert( nFarg==1 ); 4468 assert( pFarg->a[0].pExpr!=0 ); 4469 exprOp = pFarg->a[0].pExpr->op; 4470 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4471 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4472 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4473 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4474 pFarg->a[0].pExpr->op2 = 4475 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4476 } 4477 } 4478 4479 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4480 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4481 }else{ 4482 r1 = 0; 4483 } 4484 #ifndef SQLITE_OMIT_VIRTUALTABLE 4485 /* Possibly overload the function if the first argument is 4486 ** a virtual table column. 4487 ** 4488 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4489 ** second argument, not the first, as the argument to test to 4490 ** see if it is a column in a virtual table. This is done because 4491 ** the left operand of infix functions (the operand we want to 4492 ** control overloading) ends up as the second argument to the 4493 ** function. The expression "A glob B" is equivalent to 4494 ** "glob(B,A). We want to use the A in "A glob B" to test 4495 ** for function overloading. But we use the B term in "glob(B,A)". 4496 */ 4497 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4498 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4499 }else if( nFarg>0 ){ 4500 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4501 } 4502 #endif 4503 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4504 if( !pColl ) pColl = db->pDfltColl; 4505 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4506 } 4507 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4508 pDef, pExpr->op2); 4509 if( nFarg ){ 4510 if( constMask==0 ){ 4511 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4512 }else{ 4513 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4514 } 4515 } 4516 return target; 4517 } 4518 #ifndef SQLITE_OMIT_SUBQUERY 4519 case TK_EXISTS: 4520 case TK_SELECT: { 4521 int nCol; 4522 testcase( op==TK_EXISTS ); 4523 testcase( op==TK_SELECT ); 4524 if( pParse->db->mallocFailed ){ 4525 return 0; 4526 }else if( op==TK_SELECT 4527 && ALWAYS( ExprUseXSelect(pExpr) ) 4528 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4529 ){ 4530 sqlite3SubselectError(pParse, nCol, 1); 4531 }else{ 4532 return sqlite3CodeSubselect(pParse, pExpr); 4533 } 4534 break; 4535 } 4536 case TK_SELECT_COLUMN: { 4537 int n; 4538 Expr *pLeft = pExpr->pLeft; 4539 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4540 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4541 pLeft->op2 = pParse->withinRJSubrtn; 4542 } 4543 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4544 n = sqlite3ExprVectorSize(pLeft); 4545 if( pExpr->iTable!=n ){ 4546 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4547 pExpr->iTable, n); 4548 } 4549 return pLeft->iTable + pExpr->iColumn; 4550 } 4551 case TK_IN: { 4552 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4553 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4554 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4555 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4556 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4557 sqlite3VdbeResolveLabel(v, destIfFalse); 4558 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4559 sqlite3VdbeResolveLabel(v, destIfNull); 4560 return target; 4561 } 4562 #endif /* SQLITE_OMIT_SUBQUERY */ 4563 4564 4565 /* 4566 ** x BETWEEN y AND z 4567 ** 4568 ** This is equivalent to 4569 ** 4570 ** x>=y AND x<=z 4571 ** 4572 ** X is stored in pExpr->pLeft. 4573 ** Y is stored in pExpr->pList->a[0].pExpr. 4574 ** Z is stored in pExpr->pList->a[1].pExpr. 4575 */ 4576 case TK_BETWEEN: { 4577 exprCodeBetween(pParse, pExpr, target, 0, 0); 4578 return target; 4579 } 4580 case TK_COLLATE: { 4581 if( !ExprHasProperty(pExpr, EP_Collate) 4582 && ALWAYS(pExpr->pLeft) 4583 && pExpr->pLeft->op==TK_FUNCTION 4584 ){ 4585 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4586 if( inReg!=target ){ 4587 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4588 inReg = target; 4589 } 4590 sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); 4591 return inReg; 4592 }else{ 4593 pExpr = pExpr->pLeft; 4594 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 4595 } 4596 } 4597 case TK_SPAN: 4598 case TK_UPLUS: { 4599 pExpr = pExpr->pLeft; 4600 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4601 } 4602 4603 case TK_TRIGGER: { 4604 /* If the opcode is TK_TRIGGER, then the expression is a reference 4605 ** to a column in the new.* or old.* pseudo-tables available to 4606 ** trigger programs. In this case Expr.iTable is set to 1 for the 4607 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4608 ** is set to the column of the pseudo-table to read, or to -1 to 4609 ** read the rowid field. 4610 ** 4611 ** The expression is implemented using an OP_Param opcode. The p1 4612 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4613 ** to reference another column of the old.* pseudo-table, where 4614 ** i is the index of the column. For a new.rowid reference, p1 is 4615 ** set to (n+1), where n is the number of columns in each pseudo-table. 4616 ** For a reference to any other column in the new.* pseudo-table, p1 4617 ** is set to (n+2+i), where n and i are as defined previously. For 4618 ** example, if the table on which triggers are being fired is 4619 ** declared as: 4620 ** 4621 ** CREATE TABLE t1(a, b); 4622 ** 4623 ** Then p1 is interpreted as follows: 4624 ** 4625 ** p1==0 -> old.rowid p1==3 -> new.rowid 4626 ** p1==1 -> old.a p1==4 -> new.a 4627 ** p1==2 -> old.b p1==5 -> new.b 4628 */ 4629 Table *pTab; 4630 int iCol; 4631 int p1; 4632 4633 assert( ExprUseYTab(pExpr) ); 4634 pTab = pExpr->y.pTab; 4635 iCol = pExpr->iColumn; 4636 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4637 + sqlite3TableColumnToStorage(pTab, iCol); 4638 4639 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4640 assert( iCol>=-1 && iCol<pTab->nCol ); 4641 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4642 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4643 4644 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4645 VdbeComment((v, "r[%d]=%s.%s", target, 4646 (pExpr->iTable ? "new" : "old"), 4647 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4648 )); 4649 4650 #ifndef SQLITE_OMIT_FLOATING_POINT 4651 /* If the column has REAL affinity, it may currently be stored as an 4652 ** integer. Use OP_RealAffinity to make sure it is really real. 4653 ** 4654 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4655 ** floating point when extracting it from the record. */ 4656 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4657 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4658 } 4659 #endif 4660 break; 4661 } 4662 4663 case TK_VECTOR: { 4664 sqlite3ErrorMsg(pParse, "row value misused"); 4665 break; 4666 } 4667 4668 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4669 ** that derive from the right-hand table of a LEFT JOIN. The 4670 ** Expr.iTable value is the table number for the right-hand table. 4671 ** The expression is only evaluated if that table is not currently 4672 ** on a LEFT JOIN NULL row. 4673 */ 4674 case TK_IF_NULL_ROW: { 4675 int addrINR; 4676 u8 okConstFactor = pParse->okConstFactor; 4677 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4678 /* Temporarily disable factoring of constant expressions, since 4679 ** even though expressions may appear to be constant, they are not 4680 ** really constant because they originate from the right-hand side 4681 ** of a LEFT JOIN. */ 4682 pParse->okConstFactor = 0; 4683 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4684 pParse->okConstFactor = okConstFactor; 4685 sqlite3VdbeJumpHere(v, addrINR); 4686 sqlite3VdbeChangeP3(v, addrINR, inReg); 4687 break; 4688 } 4689 4690 /* 4691 ** Form A: 4692 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4693 ** 4694 ** Form B: 4695 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4696 ** 4697 ** Form A is can be transformed into the equivalent form B as follows: 4698 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4699 ** WHEN x=eN THEN rN ELSE y END 4700 ** 4701 ** X (if it exists) is in pExpr->pLeft. 4702 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4703 ** odd. The Y is also optional. If the number of elements in x.pList 4704 ** is even, then Y is omitted and the "otherwise" result is NULL. 4705 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4706 ** 4707 ** The result of the expression is the Ri for the first matching Ei, 4708 ** or if there is no matching Ei, the ELSE term Y, or if there is 4709 ** no ELSE term, NULL. 4710 */ 4711 case TK_CASE: { 4712 int endLabel; /* GOTO label for end of CASE stmt */ 4713 int nextCase; /* GOTO label for next WHEN clause */ 4714 int nExpr; /* 2x number of WHEN terms */ 4715 int i; /* Loop counter */ 4716 ExprList *pEList; /* List of WHEN terms */ 4717 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4718 Expr opCompare; /* The X==Ei expression */ 4719 Expr *pX; /* The X expression */ 4720 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4721 Expr *pDel = 0; 4722 sqlite3 *db = pParse->db; 4723 4724 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4725 assert(pExpr->x.pList->nExpr > 0); 4726 pEList = pExpr->x.pList; 4727 aListelem = pEList->a; 4728 nExpr = pEList->nExpr; 4729 endLabel = sqlite3VdbeMakeLabel(pParse); 4730 if( (pX = pExpr->pLeft)!=0 ){ 4731 pDel = sqlite3ExprDup(db, pX, 0); 4732 if( db->mallocFailed ){ 4733 sqlite3ExprDelete(db, pDel); 4734 break; 4735 } 4736 testcase( pX->op==TK_COLUMN ); 4737 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4738 testcase( regFree1==0 ); 4739 memset(&opCompare, 0, sizeof(opCompare)); 4740 opCompare.op = TK_EQ; 4741 opCompare.pLeft = pDel; 4742 pTest = &opCompare; 4743 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4744 ** The value in regFree1 might get SCopy-ed into the file result. 4745 ** So make sure that the regFree1 register is not reused for other 4746 ** purposes and possibly overwritten. */ 4747 regFree1 = 0; 4748 } 4749 for(i=0; i<nExpr-1; i=i+2){ 4750 if( pX ){ 4751 assert( pTest!=0 ); 4752 opCompare.pRight = aListelem[i].pExpr; 4753 }else{ 4754 pTest = aListelem[i].pExpr; 4755 } 4756 nextCase = sqlite3VdbeMakeLabel(pParse); 4757 testcase( pTest->op==TK_COLUMN ); 4758 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4759 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4760 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4761 sqlite3VdbeGoto(v, endLabel); 4762 sqlite3VdbeResolveLabel(v, nextCase); 4763 } 4764 if( (nExpr&1)!=0 ){ 4765 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4766 }else{ 4767 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4768 } 4769 sqlite3ExprDelete(db, pDel); 4770 setDoNotMergeFlagOnCopy(v); 4771 sqlite3VdbeResolveLabel(v, endLabel); 4772 break; 4773 } 4774 #ifndef SQLITE_OMIT_TRIGGER 4775 case TK_RAISE: { 4776 assert( pExpr->affExpr==OE_Rollback 4777 || pExpr->affExpr==OE_Abort 4778 || pExpr->affExpr==OE_Fail 4779 || pExpr->affExpr==OE_Ignore 4780 ); 4781 if( !pParse->pTriggerTab && !pParse->nested ){ 4782 sqlite3ErrorMsg(pParse, 4783 "RAISE() may only be used within a trigger-program"); 4784 return 0; 4785 } 4786 if( pExpr->affExpr==OE_Abort ){ 4787 sqlite3MayAbort(pParse); 4788 } 4789 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4790 if( pExpr->affExpr==OE_Ignore ){ 4791 sqlite3VdbeAddOp4( 4792 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4793 VdbeCoverage(v); 4794 }else{ 4795 sqlite3HaltConstraint(pParse, 4796 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4797 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4798 } 4799 4800 break; 4801 } 4802 #endif 4803 } 4804 sqlite3ReleaseTempReg(pParse, regFree1); 4805 sqlite3ReleaseTempReg(pParse, regFree2); 4806 return inReg; 4807 } 4808 4809 /* 4810 ** Generate code that will evaluate expression pExpr just one time 4811 ** per prepared statement execution. 4812 ** 4813 ** If the expression uses functions (that might throw an exception) then 4814 ** guard them with an OP_Once opcode to ensure that the code is only executed 4815 ** once. If no functions are involved, then factor the code out and put it at 4816 ** the end of the prepared statement in the initialization section. 4817 ** 4818 ** If regDest>=0 then the result is always stored in that register and the 4819 ** result is not reusable. If regDest<0 then this routine is free to 4820 ** store the value whereever it wants. The register where the expression 4821 ** is stored is returned. When regDest<0, two identical expressions might 4822 ** code to the same register, if they do not contain function calls and hence 4823 ** are factored out into the initialization section at the end of the 4824 ** prepared statement. 4825 */ 4826 int sqlite3ExprCodeRunJustOnce( 4827 Parse *pParse, /* Parsing context */ 4828 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4829 int regDest /* Store the value in this register */ 4830 ){ 4831 ExprList *p; 4832 assert( ConstFactorOk(pParse) ); 4833 p = pParse->pConstExpr; 4834 if( regDest<0 && p ){ 4835 struct ExprList_item *pItem; 4836 int i; 4837 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4838 if( pItem->fg.reusable 4839 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 4840 ){ 4841 return pItem->u.iConstExprReg; 4842 } 4843 } 4844 } 4845 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4846 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4847 Vdbe *v = pParse->pVdbe; 4848 int addr; 4849 assert( v ); 4850 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4851 pParse->okConstFactor = 0; 4852 if( !pParse->db->mallocFailed ){ 4853 if( regDest<0 ) regDest = ++pParse->nMem; 4854 sqlite3ExprCode(pParse, pExpr, regDest); 4855 } 4856 pParse->okConstFactor = 1; 4857 sqlite3ExprDelete(pParse->db, pExpr); 4858 sqlite3VdbeJumpHere(v, addr); 4859 }else{ 4860 p = sqlite3ExprListAppend(pParse, p, pExpr); 4861 if( p ){ 4862 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4863 pItem->fg.reusable = regDest<0; 4864 if( regDest<0 ) regDest = ++pParse->nMem; 4865 pItem->u.iConstExprReg = regDest; 4866 } 4867 pParse->pConstExpr = p; 4868 } 4869 return regDest; 4870 } 4871 4872 /* 4873 ** Generate code to evaluate an expression and store the results 4874 ** into a register. Return the register number where the results 4875 ** are stored. 4876 ** 4877 ** If the register is a temporary register that can be deallocated, 4878 ** then write its number into *pReg. If the result register is not 4879 ** a temporary, then set *pReg to zero. 4880 ** 4881 ** If pExpr is a constant, then this routine might generate this 4882 ** code to fill the register in the initialization section of the 4883 ** VDBE program, in order to factor it out of the evaluation loop. 4884 */ 4885 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4886 int r2; 4887 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4888 if( ConstFactorOk(pParse) 4889 && ALWAYS(pExpr!=0) 4890 && pExpr->op!=TK_REGISTER 4891 && sqlite3ExprIsConstantNotJoin(pExpr) 4892 ){ 4893 *pReg = 0; 4894 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4895 }else{ 4896 int r1 = sqlite3GetTempReg(pParse); 4897 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4898 if( r2==r1 ){ 4899 *pReg = r1; 4900 }else{ 4901 sqlite3ReleaseTempReg(pParse, r1); 4902 *pReg = 0; 4903 } 4904 } 4905 return r2; 4906 } 4907 4908 /* 4909 ** Generate code that will evaluate expression pExpr and store the 4910 ** results in register target. The results are guaranteed to appear 4911 ** in register target. 4912 */ 4913 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4914 int inReg; 4915 4916 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4917 assert( target>0 && target<=pParse->nMem ); 4918 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4919 if( pParse->pVdbe==0 ) return; 4920 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4921 if( inReg!=target ){ 4922 u8 op; 4923 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 4924 op = OP_Copy; 4925 }else{ 4926 op = OP_SCopy; 4927 } 4928 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4929 } 4930 } 4931 4932 /* 4933 ** Make a transient copy of expression pExpr and then code it using 4934 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4935 ** except that the input expression is guaranteed to be unchanged. 4936 */ 4937 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4938 sqlite3 *db = pParse->db; 4939 pExpr = sqlite3ExprDup(db, pExpr, 0); 4940 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4941 sqlite3ExprDelete(db, pExpr); 4942 } 4943 4944 /* 4945 ** Generate code that will evaluate expression pExpr and store the 4946 ** results in register target. The results are guaranteed to appear 4947 ** in register target. If the expression is constant, then this routine 4948 ** might choose to code the expression at initialization time. 4949 */ 4950 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4951 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4952 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4953 }else{ 4954 sqlite3ExprCodeCopy(pParse, pExpr, target); 4955 } 4956 } 4957 4958 /* 4959 ** Generate code that pushes the value of every element of the given 4960 ** expression list into a sequence of registers beginning at target. 4961 ** 4962 ** Return the number of elements evaluated. The number returned will 4963 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4964 ** is defined. 4965 ** 4966 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4967 ** filled using OP_SCopy. OP_Copy must be used instead. 4968 ** 4969 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4970 ** factored out into initialization code. 4971 ** 4972 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4973 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4974 ** in registers at srcReg, and so the value can be copied from there. 4975 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4976 ** are simply omitted rather than being copied from srcReg. 4977 */ 4978 int sqlite3ExprCodeExprList( 4979 Parse *pParse, /* Parsing context */ 4980 ExprList *pList, /* The expression list to be coded */ 4981 int target, /* Where to write results */ 4982 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4983 u8 flags /* SQLITE_ECEL_* flags */ 4984 ){ 4985 struct ExprList_item *pItem; 4986 int i, j, n; 4987 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4988 Vdbe *v = pParse->pVdbe; 4989 assert( pList!=0 ); 4990 assert( target>0 ); 4991 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4992 n = pList->nExpr; 4993 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4994 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4995 Expr *pExpr = pItem->pExpr; 4996 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4997 if( pItem->fg.bSorterRef ){ 4998 i--; 4999 n--; 5000 }else 5001 #endif 5002 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 5003 if( flags & SQLITE_ECEL_OMITREF ){ 5004 i--; 5005 n--; 5006 }else{ 5007 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 5008 } 5009 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 5010 && sqlite3ExprIsConstantNotJoin(pExpr) 5011 ){ 5012 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 5013 }else{ 5014 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 5015 if( inReg!=target+i ){ 5016 VdbeOp *pOp; 5017 if( copyOp==OP_Copy 5018 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 5019 && pOp->p1+pOp->p3+1==inReg 5020 && pOp->p2+pOp->p3+1==target+i 5021 && pOp->p5==0 /* The do-not-merge flag must be clear */ 5022 ){ 5023 pOp->p3++; 5024 }else{ 5025 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 5026 } 5027 } 5028 } 5029 } 5030 return n; 5031 } 5032 5033 /* 5034 ** Generate code for a BETWEEN operator. 5035 ** 5036 ** x BETWEEN y AND z 5037 ** 5038 ** The above is equivalent to 5039 ** 5040 ** x>=y AND x<=z 5041 ** 5042 ** Code it as such, taking care to do the common subexpression 5043 ** elimination of x. 5044 ** 5045 ** The xJumpIf parameter determines details: 5046 ** 5047 ** NULL: Store the boolean result in reg[dest] 5048 ** sqlite3ExprIfTrue: Jump to dest if true 5049 ** sqlite3ExprIfFalse: Jump to dest if false 5050 ** 5051 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 5052 */ 5053 static void exprCodeBetween( 5054 Parse *pParse, /* Parsing and code generating context */ 5055 Expr *pExpr, /* The BETWEEN expression */ 5056 int dest, /* Jump destination or storage location */ 5057 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5058 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5059 ){ 5060 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5061 Expr compLeft; /* The x>=y term */ 5062 Expr compRight; /* The x<=z term */ 5063 int regFree1 = 0; /* Temporary use register */ 5064 Expr *pDel = 0; 5065 sqlite3 *db = pParse->db; 5066 5067 memset(&compLeft, 0, sizeof(Expr)); 5068 memset(&compRight, 0, sizeof(Expr)); 5069 memset(&exprAnd, 0, sizeof(Expr)); 5070 5071 assert( ExprUseXList(pExpr) ); 5072 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5073 if( db->mallocFailed==0 ){ 5074 exprAnd.op = TK_AND; 5075 exprAnd.pLeft = &compLeft; 5076 exprAnd.pRight = &compRight; 5077 compLeft.op = TK_GE; 5078 compLeft.pLeft = pDel; 5079 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5080 compRight.op = TK_LE; 5081 compRight.pLeft = pDel; 5082 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5083 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5084 if( xJump ){ 5085 xJump(pParse, &exprAnd, dest, jumpIfNull); 5086 }else{ 5087 /* Mark the expression is being from the ON or USING clause of a join 5088 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5089 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5090 ** for clarity, but we are out of bits in the Expr.flags field so we 5091 ** have to reuse the EP_OuterON bit. Bummer. */ 5092 pDel->flags |= EP_OuterON; 5093 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5094 } 5095 sqlite3ReleaseTempReg(pParse, regFree1); 5096 } 5097 sqlite3ExprDelete(db, pDel); 5098 5099 /* Ensure adequate test coverage */ 5100 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5101 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5102 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5103 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5104 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5105 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5106 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5107 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5108 testcase( xJump==0 ); 5109 } 5110 5111 /* 5112 ** Generate code for a boolean expression such that a jump is made 5113 ** to the label "dest" if the expression is true but execution 5114 ** continues straight thru if the expression is false. 5115 ** 5116 ** If the expression evaluates to NULL (neither true nor false), then 5117 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5118 ** 5119 ** This code depends on the fact that certain token values (ex: TK_EQ) 5120 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5121 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5122 ** the make process cause these values to align. Assert()s in the code 5123 ** below verify that the numbers are aligned correctly. 5124 */ 5125 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5126 Vdbe *v = pParse->pVdbe; 5127 int op = 0; 5128 int regFree1 = 0; 5129 int regFree2 = 0; 5130 int r1, r2; 5131 5132 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5133 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5134 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5135 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5136 op = pExpr->op; 5137 switch( op ){ 5138 case TK_AND: 5139 case TK_OR: { 5140 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5141 if( pAlt!=pExpr ){ 5142 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5143 }else if( op==TK_AND ){ 5144 int d2 = sqlite3VdbeMakeLabel(pParse); 5145 testcase( jumpIfNull==0 ); 5146 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5147 jumpIfNull^SQLITE_JUMPIFNULL); 5148 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5149 sqlite3VdbeResolveLabel(v, d2); 5150 }else{ 5151 testcase( jumpIfNull==0 ); 5152 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5153 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5154 } 5155 break; 5156 } 5157 case TK_NOT: { 5158 testcase( jumpIfNull==0 ); 5159 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5160 break; 5161 } 5162 case TK_TRUTH: { 5163 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5164 int isTrue; /* IS TRUE or IS NOT TRUE */ 5165 testcase( jumpIfNull==0 ); 5166 isNot = pExpr->op2==TK_ISNOT; 5167 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5168 testcase( isTrue && isNot ); 5169 testcase( !isTrue && isNot ); 5170 if( isTrue ^ isNot ){ 5171 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5172 isNot ? SQLITE_JUMPIFNULL : 0); 5173 }else{ 5174 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5175 isNot ? SQLITE_JUMPIFNULL : 0); 5176 } 5177 break; 5178 } 5179 case TK_IS: 5180 case TK_ISNOT: 5181 testcase( op==TK_IS ); 5182 testcase( op==TK_ISNOT ); 5183 op = (op==TK_IS) ? TK_EQ : TK_NE; 5184 jumpIfNull = SQLITE_NULLEQ; 5185 /* no break */ deliberate_fall_through 5186 case TK_LT: 5187 case TK_LE: 5188 case TK_GT: 5189 case TK_GE: 5190 case TK_NE: 5191 case TK_EQ: { 5192 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5193 testcase( jumpIfNull==0 ); 5194 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5195 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5196 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5197 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5198 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5199 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5200 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5201 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5202 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5203 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5204 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5205 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5206 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5207 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5208 testcase( regFree1==0 ); 5209 testcase( regFree2==0 ); 5210 break; 5211 } 5212 case TK_ISNULL: 5213 case TK_NOTNULL: { 5214 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5215 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5216 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5217 sqlite3VdbeAddOp2(v, op, r1, dest); 5218 VdbeCoverageIf(v, op==TK_ISNULL); 5219 VdbeCoverageIf(v, op==TK_NOTNULL); 5220 testcase( regFree1==0 ); 5221 break; 5222 } 5223 case TK_BETWEEN: { 5224 testcase( jumpIfNull==0 ); 5225 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5226 break; 5227 } 5228 #ifndef SQLITE_OMIT_SUBQUERY 5229 case TK_IN: { 5230 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5231 int destIfNull = jumpIfNull ? dest : destIfFalse; 5232 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5233 sqlite3VdbeGoto(v, dest); 5234 sqlite3VdbeResolveLabel(v, destIfFalse); 5235 break; 5236 } 5237 #endif 5238 default: { 5239 default_expr: 5240 if( ExprAlwaysTrue(pExpr) ){ 5241 sqlite3VdbeGoto(v, dest); 5242 }else if( ExprAlwaysFalse(pExpr) ){ 5243 /* No-op */ 5244 }else{ 5245 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5246 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5247 VdbeCoverage(v); 5248 testcase( regFree1==0 ); 5249 testcase( jumpIfNull==0 ); 5250 } 5251 break; 5252 } 5253 } 5254 sqlite3ReleaseTempReg(pParse, regFree1); 5255 sqlite3ReleaseTempReg(pParse, regFree2); 5256 } 5257 5258 /* 5259 ** Generate code for a boolean expression such that a jump is made 5260 ** to the label "dest" if the expression is false but execution 5261 ** continues straight thru if the expression is true. 5262 ** 5263 ** If the expression evaluates to NULL (neither true nor false) then 5264 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5265 ** is 0. 5266 */ 5267 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5268 Vdbe *v = pParse->pVdbe; 5269 int op = 0; 5270 int regFree1 = 0; 5271 int regFree2 = 0; 5272 int r1, r2; 5273 5274 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5275 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5276 if( pExpr==0 ) return; 5277 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5278 5279 /* The value of pExpr->op and op are related as follows: 5280 ** 5281 ** pExpr->op op 5282 ** --------- ---------- 5283 ** TK_ISNULL OP_NotNull 5284 ** TK_NOTNULL OP_IsNull 5285 ** TK_NE OP_Eq 5286 ** TK_EQ OP_Ne 5287 ** TK_GT OP_Le 5288 ** TK_LE OP_Gt 5289 ** TK_GE OP_Lt 5290 ** TK_LT OP_Ge 5291 ** 5292 ** For other values of pExpr->op, op is undefined and unused. 5293 ** The value of TK_ and OP_ constants are arranged such that we 5294 ** can compute the mapping above using the following expression. 5295 ** Assert()s verify that the computation is correct. 5296 */ 5297 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5298 5299 /* Verify correct alignment of TK_ and OP_ constants 5300 */ 5301 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5302 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5303 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5304 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5305 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5306 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5307 assert( pExpr->op!=TK_GT || op==OP_Le ); 5308 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5309 5310 switch( pExpr->op ){ 5311 case TK_AND: 5312 case TK_OR: { 5313 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5314 if( pAlt!=pExpr ){ 5315 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5316 }else if( pExpr->op==TK_AND ){ 5317 testcase( jumpIfNull==0 ); 5318 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5319 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5320 }else{ 5321 int d2 = sqlite3VdbeMakeLabel(pParse); 5322 testcase( jumpIfNull==0 ); 5323 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5324 jumpIfNull^SQLITE_JUMPIFNULL); 5325 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5326 sqlite3VdbeResolveLabel(v, d2); 5327 } 5328 break; 5329 } 5330 case TK_NOT: { 5331 testcase( jumpIfNull==0 ); 5332 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5333 break; 5334 } 5335 case TK_TRUTH: { 5336 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5337 int isTrue; /* IS TRUE or IS NOT TRUE */ 5338 testcase( jumpIfNull==0 ); 5339 isNot = pExpr->op2==TK_ISNOT; 5340 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5341 testcase( isTrue && isNot ); 5342 testcase( !isTrue && isNot ); 5343 if( isTrue ^ isNot ){ 5344 /* IS TRUE and IS NOT FALSE */ 5345 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5346 isNot ? 0 : SQLITE_JUMPIFNULL); 5347 5348 }else{ 5349 /* IS FALSE and IS NOT TRUE */ 5350 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5351 isNot ? 0 : SQLITE_JUMPIFNULL); 5352 } 5353 break; 5354 } 5355 case TK_IS: 5356 case TK_ISNOT: 5357 testcase( pExpr->op==TK_IS ); 5358 testcase( pExpr->op==TK_ISNOT ); 5359 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5360 jumpIfNull = SQLITE_NULLEQ; 5361 /* no break */ deliberate_fall_through 5362 case TK_LT: 5363 case TK_LE: 5364 case TK_GT: 5365 case TK_GE: 5366 case TK_NE: 5367 case TK_EQ: { 5368 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5369 testcase( jumpIfNull==0 ); 5370 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5371 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5372 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5373 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5374 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5375 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5376 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5377 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5378 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5379 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5380 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5381 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5382 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5383 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5384 testcase( regFree1==0 ); 5385 testcase( regFree2==0 ); 5386 break; 5387 } 5388 case TK_ISNULL: 5389 case TK_NOTNULL: { 5390 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5391 sqlite3VdbeAddOp2(v, op, r1, dest); 5392 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5393 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5394 testcase( regFree1==0 ); 5395 break; 5396 } 5397 case TK_BETWEEN: { 5398 testcase( jumpIfNull==0 ); 5399 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5400 break; 5401 } 5402 #ifndef SQLITE_OMIT_SUBQUERY 5403 case TK_IN: { 5404 if( jumpIfNull ){ 5405 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5406 }else{ 5407 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5408 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5409 sqlite3VdbeResolveLabel(v, destIfNull); 5410 } 5411 break; 5412 } 5413 #endif 5414 default: { 5415 default_expr: 5416 if( ExprAlwaysFalse(pExpr) ){ 5417 sqlite3VdbeGoto(v, dest); 5418 }else if( ExprAlwaysTrue(pExpr) ){ 5419 /* no-op */ 5420 }else{ 5421 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5422 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5423 VdbeCoverage(v); 5424 testcase( regFree1==0 ); 5425 testcase( jumpIfNull==0 ); 5426 } 5427 break; 5428 } 5429 } 5430 sqlite3ReleaseTempReg(pParse, regFree1); 5431 sqlite3ReleaseTempReg(pParse, regFree2); 5432 } 5433 5434 /* 5435 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5436 ** code generation, and that copy is deleted after code generation. This 5437 ** ensures that the original pExpr is unchanged. 5438 */ 5439 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5440 sqlite3 *db = pParse->db; 5441 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5442 if( db->mallocFailed==0 ){ 5443 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5444 } 5445 sqlite3ExprDelete(db, pCopy); 5446 } 5447 5448 /* 5449 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5450 ** type of expression. 5451 ** 5452 ** If pExpr is a simple SQL value - an integer, real, string, blob 5453 ** or NULL value - then the VDBE currently being prepared is configured 5454 ** to re-prepare each time a new value is bound to variable pVar. 5455 ** 5456 ** Additionally, if pExpr is a simple SQL value and the value is the 5457 ** same as that currently bound to variable pVar, non-zero is returned. 5458 ** Otherwise, if the values are not the same or if pExpr is not a simple 5459 ** SQL value, zero is returned. 5460 */ 5461 static int exprCompareVariable( 5462 const Parse *pParse, 5463 const Expr *pVar, 5464 const Expr *pExpr 5465 ){ 5466 int res = 0; 5467 int iVar; 5468 sqlite3_value *pL, *pR = 0; 5469 5470 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5471 if( pR ){ 5472 iVar = pVar->iColumn; 5473 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5474 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5475 if( pL ){ 5476 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5477 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5478 } 5479 res = 0==sqlite3MemCompare(pL, pR, 0); 5480 } 5481 sqlite3ValueFree(pR); 5482 sqlite3ValueFree(pL); 5483 } 5484 5485 return res; 5486 } 5487 5488 /* 5489 ** Do a deep comparison of two expression trees. Return 0 if the two 5490 ** expressions are completely identical. Return 1 if they differ only 5491 ** by a COLLATE operator at the top level. Return 2 if there are differences 5492 ** other than the top-level COLLATE operator. 5493 ** 5494 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5495 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5496 ** 5497 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5498 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5499 ** 5500 ** Sometimes this routine will return 2 even if the two expressions 5501 ** really are equivalent. If we cannot prove that the expressions are 5502 ** identical, we return 2 just to be safe. So if this routine 5503 ** returns 2, then you do not really know for certain if the two 5504 ** expressions are the same. But if you get a 0 or 1 return, then you 5505 ** can be sure the expressions are the same. In the places where 5506 ** this routine is used, it does not hurt to get an extra 2 - that 5507 ** just might result in some slightly slower code. But returning 5508 ** an incorrect 0 or 1 could lead to a malfunction. 5509 ** 5510 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5511 ** pParse->pReprepare can be matched against literals in pB. The 5512 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5513 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5514 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5515 ** pB causes a return value of 2. 5516 */ 5517 int sqlite3ExprCompare( 5518 const Parse *pParse, 5519 const Expr *pA, 5520 const Expr *pB, 5521 int iTab 5522 ){ 5523 u32 combinedFlags; 5524 if( pA==0 || pB==0 ){ 5525 return pB==pA ? 0 : 2; 5526 } 5527 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5528 return 0; 5529 } 5530 combinedFlags = pA->flags | pB->flags; 5531 if( combinedFlags & EP_IntValue ){ 5532 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5533 return 0; 5534 } 5535 return 2; 5536 } 5537 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5538 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5539 return 1; 5540 } 5541 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5542 return 1; 5543 } 5544 return 2; 5545 } 5546 assert( !ExprHasProperty(pA, EP_IntValue) ); 5547 assert( !ExprHasProperty(pB, EP_IntValue) ); 5548 if( pA->u.zToken ){ 5549 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5550 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5551 #ifndef SQLITE_OMIT_WINDOWFUNC 5552 assert( pA->op==pB->op ); 5553 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5554 return 2; 5555 } 5556 if( ExprHasProperty(pA,EP_WinFunc) ){ 5557 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5558 return 2; 5559 } 5560 } 5561 #endif 5562 }else if( pA->op==TK_NULL ){ 5563 return 0; 5564 }else if( pA->op==TK_COLLATE ){ 5565 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5566 }else 5567 if( pB->u.zToken!=0 5568 && pA->op!=TK_COLUMN 5569 && pA->op!=TK_AGG_COLUMN 5570 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5571 ){ 5572 return 2; 5573 } 5574 } 5575 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5576 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5577 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5578 if( combinedFlags & EP_xIsSelect ) return 2; 5579 if( (combinedFlags & EP_FixedCol)==0 5580 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5581 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5582 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5583 if( pA->op!=TK_STRING 5584 && pA->op!=TK_TRUEFALSE 5585 && ALWAYS((combinedFlags & EP_Reduced)==0) 5586 ){ 5587 if( pA->iColumn!=pB->iColumn ) return 2; 5588 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5589 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5590 return 2; 5591 } 5592 } 5593 } 5594 return 0; 5595 } 5596 5597 /* 5598 ** Compare two ExprList objects. Return 0 if they are identical, 1 5599 ** if they are certainly different, or 2 if it is not possible to 5600 ** determine if they are identical or not. 5601 ** 5602 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5603 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5604 ** 5605 ** This routine might return non-zero for equivalent ExprLists. The 5606 ** only consequence will be disabled optimizations. But this routine 5607 ** must never return 0 if the two ExprList objects are different, or 5608 ** a malfunction will result. 5609 ** 5610 ** Two NULL pointers are considered to be the same. But a NULL pointer 5611 ** always differs from a non-NULL pointer. 5612 */ 5613 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5614 int i; 5615 if( pA==0 && pB==0 ) return 0; 5616 if( pA==0 || pB==0 ) return 1; 5617 if( pA->nExpr!=pB->nExpr ) return 1; 5618 for(i=0; i<pA->nExpr; i++){ 5619 int res; 5620 Expr *pExprA = pA->a[i].pExpr; 5621 Expr *pExprB = pB->a[i].pExpr; 5622 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 5623 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5624 } 5625 return 0; 5626 } 5627 5628 /* 5629 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5630 ** are ignored. 5631 */ 5632 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5633 return sqlite3ExprCompare(0, 5634 sqlite3ExprSkipCollateAndLikely(pA), 5635 sqlite3ExprSkipCollateAndLikely(pB), 5636 iTab); 5637 } 5638 5639 /* 5640 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5641 ** 5642 ** Or if seenNot is true, return non-zero if Expr p can only be 5643 ** non-NULL if pNN is not NULL 5644 */ 5645 static int exprImpliesNotNull( 5646 const Parse *pParse,/* Parsing context */ 5647 const Expr *p, /* The expression to be checked */ 5648 const Expr *pNN, /* The expression that is NOT NULL */ 5649 int iTab, /* Table being evaluated */ 5650 int seenNot /* Return true only if p can be any non-NULL value */ 5651 ){ 5652 assert( p ); 5653 assert( pNN ); 5654 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5655 return pNN->op!=TK_NULL; 5656 } 5657 switch( p->op ){ 5658 case TK_IN: { 5659 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5660 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5661 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5662 } 5663 case TK_BETWEEN: { 5664 ExprList *pList; 5665 assert( ExprUseXList(p) ); 5666 pList = p->x.pList; 5667 assert( pList!=0 ); 5668 assert( pList->nExpr==2 ); 5669 if( seenNot ) return 0; 5670 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5671 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5672 ){ 5673 return 1; 5674 } 5675 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5676 } 5677 case TK_EQ: 5678 case TK_NE: 5679 case TK_LT: 5680 case TK_LE: 5681 case TK_GT: 5682 case TK_GE: 5683 case TK_PLUS: 5684 case TK_MINUS: 5685 case TK_BITOR: 5686 case TK_LSHIFT: 5687 case TK_RSHIFT: 5688 case TK_CONCAT: 5689 seenNot = 1; 5690 /* no break */ deliberate_fall_through 5691 case TK_STAR: 5692 case TK_REM: 5693 case TK_BITAND: 5694 case TK_SLASH: { 5695 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5696 /* no break */ deliberate_fall_through 5697 } 5698 case TK_SPAN: 5699 case TK_COLLATE: 5700 case TK_UPLUS: 5701 case TK_UMINUS: { 5702 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5703 } 5704 case TK_TRUTH: { 5705 if( seenNot ) return 0; 5706 if( p->op2!=TK_IS ) return 0; 5707 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5708 } 5709 case TK_BITNOT: 5710 case TK_NOT: { 5711 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5712 } 5713 } 5714 return 0; 5715 } 5716 5717 /* 5718 ** Return true if we can prove the pE2 will always be true if pE1 is 5719 ** true. Return false if we cannot complete the proof or if pE2 might 5720 ** be false. Examples: 5721 ** 5722 ** pE1: x==5 pE2: x==5 Result: true 5723 ** pE1: x>0 pE2: x==5 Result: false 5724 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5725 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5726 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5727 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5728 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5729 ** 5730 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5731 ** Expr.iTable<0 then assume a table number given by iTab. 5732 ** 5733 ** If pParse is not NULL, then the values of bound variables in pE1 are 5734 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5735 ** modified to record which bound variables are referenced. If pParse 5736 ** is NULL, then false will be returned if pE1 contains any bound variables. 5737 ** 5738 ** When in doubt, return false. Returning true might give a performance 5739 ** improvement. Returning false might cause a performance reduction, but 5740 ** it will always give the correct answer and is hence always safe. 5741 */ 5742 int sqlite3ExprImpliesExpr( 5743 const Parse *pParse, 5744 const Expr *pE1, 5745 const Expr *pE2, 5746 int iTab 5747 ){ 5748 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5749 return 1; 5750 } 5751 if( pE2->op==TK_OR 5752 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5753 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5754 ){ 5755 return 1; 5756 } 5757 if( pE2->op==TK_NOTNULL 5758 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5759 ){ 5760 return 1; 5761 } 5762 return 0; 5763 } 5764 5765 /* 5766 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5767 ** If the expression node requires that the table at pWalker->iCur 5768 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5769 ** 5770 ** This routine controls an optimization. False positives (setting 5771 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5772 ** (never setting pWalker->eCode) is a harmless missed optimization. 5773 */ 5774 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5775 testcase( pExpr->op==TK_AGG_COLUMN ); 5776 testcase( pExpr->op==TK_AGG_FUNCTION ); 5777 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 5778 switch( pExpr->op ){ 5779 case TK_ISNOT: 5780 case TK_ISNULL: 5781 case TK_NOTNULL: 5782 case TK_IS: 5783 case TK_OR: 5784 case TK_VECTOR: 5785 case TK_CASE: 5786 case TK_IN: 5787 case TK_FUNCTION: 5788 case TK_TRUTH: 5789 testcase( pExpr->op==TK_ISNOT ); 5790 testcase( pExpr->op==TK_ISNULL ); 5791 testcase( pExpr->op==TK_NOTNULL ); 5792 testcase( pExpr->op==TK_IS ); 5793 testcase( pExpr->op==TK_OR ); 5794 testcase( pExpr->op==TK_VECTOR ); 5795 testcase( pExpr->op==TK_CASE ); 5796 testcase( pExpr->op==TK_IN ); 5797 testcase( pExpr->op==TK_FUNCTION ); 5798 testcase( pExpr->op==TK_TRUTH ); 5799 return WRC_Prune; 5800 case TK_COLUMN: 5801 if( pWalker->u.iCur==pExpr->iTable ){ 5802 pWalker->eCode = 1; 5803 return WRC_Abort; 5804 } 5805 return WRC_Prune; 5806 5807 case TK_AND: 5808 if( pWalker->eCode==0 ){ 5809 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5810 if( pWalker->eCode ){ 5811 pWalker->eCode = 0; 5812 sqlite3WalkExpr(pWalker, pExpr->pRight); 5813 } 5814 } 5815 return WRC_Prune; 5816 5817 case TK_BETWEEN: 5818 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5819 assert( pWalker->eCode ); 5820 return WRC_Abort; 5821 } 5822 return WRC_Prune; 5823 5824 /* Virtual tables are allowed to use constraints like x=NULL. So 5825 ** a term of the form x=y does not prove that y is not null if x 5826 ** is the column of a virtual table */ 5827 case TK_EQ: 5828 case TK_NE: 5829 case TK_LT: 5830 case TK_LE: 5831 case TK_GT: 5832 case TK_GE: { 5833 Expr *pLeft = pExpr->pLeft; 5834 Expr *pRight = pExpr->pRight; 5835 testcase( pExpr->op==TK_EQ ); 5836 testcase( pExpr->op==TK_NE ); 5837 testcase( pExpr->op==TK_LT ); 5838 testcase( pExpr->op==TK_LE ); 5839 testcase( pExpr->op==TK_GT ); 5840 testcase( pExpr->op==TK_GE ); 5841 /* The y.pTab=0 assignment in wherecode.c always happens after the 5842 ** impliesNotNullRow() test */ 5843 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5844 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5845 if( (pLeft->op==TK_COLUMN 5846 && pLeft->y.pTab!=0 5847 && IsVirtual(pLeft->y.pTab)) 5848 || (pRight->op==TK_COLUMN 5849 && pRight->y.pTab!=0 5850 && IsVirtual(pRight->y.pTab)) 5851 ){ 5852 return WRC_Prune; 5853 } 5854 /* no break */ deliberate_fall_through 5855 } 5856 default: 5857 return WRC_Continue; 5858 } 5859 } 5860 5861 /* 5862 ** Return true (non-zero) if expression p can only be true if at least 5863 ** one column of table iTab is non-null. In other words, return true 5864 ** if expression p will always be NULL or false if every column of iTab 5865 ** is NULL. 5866 ** 5867 ** False negatives are acceptable. In other words, it is ok to return 5868 ** zero even if expression p will never be true of every column of iTab 5869 ** is NULL. A false negative is merely a missed optimization opportunity. 5870 ** 5871 ** False positives are not allowed, however. A false positive may result 5872 ** in an incorrect answer. 5873 ** 5874 ** Terms of p that are marked with EP_OuterON (and hence that come from 5875 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5876 ** 5877 ** This routine is used to check if a LEFT JOIN can be converted into 5878 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5879 ** clause requires that some column of the right table of the LEFT JOIN 5880 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5881 ** ordinary join. 5882 */ 5883 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5884 Walker w; 5885 p = sqlite3ExprSkipCollateAndLikely(p); 5886 if( p==0 ) return 0; 5887 if( p->op==TK_NOTNULL ){ 5888 p = p->pLeft; 5889 }else{ 5890 while( p->op==TK_AND ){ 5891 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5892 p = p->pRight; 5893 } 5894 } 5895 w.xExprCallback = impliesNotNullRow; 5896 w.xSelectCallback = 0; 5897 w.xSelectCallback2 = 0; 5898 w.eCode = 0; 5899 w.u.iCur = iTab; 5900 sqlite3WalkExpr(&w, p); 5901 return w.eCode; 5902 } 5903 5904 /* 5905 ** An instance of the following structure is used by the tree walker 5906 ** to determine if an expression can be evaluated by reference to the 5907 ** index only, without having to do a search for the corresponding 5908 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5909 ** is the cursor for the table. 5910 */ 5911 struct IdxCover { 5912 Index *pIdx; /* The index to be tested for coverage */ 5913 int iCur; /* Cursor number for the table corresponding to the index */ 5914 }; 5915 5916 /* 5917 ** Check to see if there are references to columns in table 5918 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5919 ** pWalker->u.pIdxCover->pIdx. 5920 */ 5921 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5922 if( pExpr->op==TK_COLUMN 5923 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5924 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5925 ){ 5926 pWalker->eCode = 1; 5927 return WRC_Abort; 5928 } 5929 return WRC_Continue; 5930 } 5931 5932 /* 5933 ** Determine if an index pIdx on table with cursor iCur contains will 5934 ** the expression pExpr. Return true if the index does cover the 5935 ** expression and false if the pExpr expression references table columns 5936 ** that are not found in the index pIdx. 5937 ** 5938 ** An index covering an expression means that the expression can be 5939 ** evaluated using only the index and without having to lookup the 5940 ** corresponding table entry. 5941 */ 5942 int sqlite3ExprCoveredByIndex( 5943 Expr *pExpr, /* The index to be tested */ 5944 int iCur, /* The cursor number for the corresponding table */ 5945 Index *pIdx /* The index that might be used for coverage */ 5946 ){ 5947 Walker w; 5948 struct IdxCover xcov; 5949 memset(&w, 0, sizeof(w)); 5950 xcov.iCur = iCur; 5951 xcov.pIdx = pIdx; 5952 w.xExprCallback = exprIdxCover; 5953 w.u.pIdxCover = &xcov; 5954 sqlite3WalkExpr(&w, pExpr); 5955 return !w.eCode; 5956 } 5957 5958 5959 /* Structure used to pass information throught the Walker in order to 5960 ** implement sqlite3ReferencesSrcList(). 5961 */ 5962 struct RefSrcList { 5963 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 5964 SrcList *pRef; /* Looking for references to these tables */ 5965 i64 nExclude; /* Number of tables to exclude from the search */ 5966 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 5967 }; 5968 5969 /* 5970 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 5971 ** 5972 ** When entering a new subquery on the pExpr argument, add all FROM clause 5973 ** entries for that subquery to the exclude list. 5974 ** 5975 ** When leaving the subquery, remove those entries from the exclude list. 5976 */ 5977 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 5978 struct RefSrcList *p = pWalker->u.pRefSrcList; 5979 SrcList *pSrc = pSelect->pSrc; 5980 i64 i, j; 5981 int *piNew; 5982 if( pSrc->nSrc==0 ) return WRC_Continue; 5983 j = p->nExclude; 5984 p->nExclude += pSrc->nSrc; 5985 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 5986 if( piNew==0 ){ 5987 p->nExclude = 0; 5988 return WRC_Abort; 5989 }else{ 5990 p->aiExclude = piNew; 5991 } 5992 for(i=0; i<pSrc->nSrc; i++, j++){ 5993 p->aiExclude[j] = pSrc->a[i].iCursor; 5994 } 5995 return WRC_Continue; 5996 } 5997 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 5998 struct RefSrcList *p = pWalker->u.pRefSrcList; 5999 SrcList *pSrc = pSelect->pSrc; 6000 if( p->nExclude ){ 6001 assert( p->nExclude>=pSrc->nSrc ); 6002 p->nExclude -= pSrc->nSrc; 6003 } 6004 } 6005 6006 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 6007 ** 6008 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 6009 ** of the tables shown in RefSrcList.pRef. 6010 ** 6011 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 6012 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 6013 */ 6014 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 6015 if( pExpr->op==TK_COLUMN 6016 || pExpr->op==TK_AGG_COLUMN 6017 ){ 6018 int i; 6019 struct RefSrcList *p = pWalker->u.pRefSrcList; 6020 SrcList *pSrc = p->pRef; 6021 int nSrc = pSrc ? pSrc->nSrc : 0; 6022 for(i=0; i<nSrc; i++){ 6023 if( pExpr->iTable==pSrc->a[i].iCursor ){ 6024 pWalker->eCode |= 1; 6025 return WRC_Continue; 6026 } 6027 } 6028 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 6029 if( i>=p->nExclude ){ 6030 pWalker->eCode |= 2; 6031 } 6032 } 6033 return WRC_Continue; 6034 } 6035 6036 /* 6037 ** Check to see if pExpr references any tables in pSrcList. 6038 ** Possible return values: 6039 ** 6040 ** 1 pExpr does references a table in pSrcList. 6041 ** 6042 ** 0 pExpr references some table that is not defined in either 6043 ** pSrcList or in subqueries of pExpr itself. 6044 ** 6045 ** -1 pExpr only references no tables at all, or it only 6046 ** references tables defined in subqueries of pExpr itself. 6047 ** 6048 ** As currently used, pExpr is always an aggregate function call. That 6049 ** fact is exploited for efficiency. 6050 */ 6051 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 6052 Walker w; 6053 struct RefSrcList x; 6054 memset(&w, 0, sizeof(w)); 6055 memset(&x, 0, sizeof(x)); 6056 w.xExprCallback = exprRefToSrcList; 6057 w.xSelectCallback = selectRefEnter; 6058 w.xSelectCallback2 = selectRefLeave; 6059 w.u.pRefSrcList = &x; 6060 x.db = pParse->db; 6061 x.pRef = pSrcList; 6062 assert( pExpr->op==TK_AGG_FUNCTION ); 6063 assert( ExprUseXList(pExpr) ); 6064 sqlite3WalkExprList(&w, pExpr->x.pList); 6065 #ifndef SQLITE_OMIT_WINDOWFUNC 6066 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6067 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6068 } 6069 #endif 6070 sqlite3DbFree(pParse->db, x.aiExclude); 6071 if( w.eCode & 0x01 ){ 6072 return 1; 6073 }else if( w.eCode ){ 6074 return 0; 6075 }else{ 6076 return -1; 6077 } 6078 } 6079 6080 /* 6081 ** This is a Walker expression node callback. 6082 ** 6083 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6084 ** object that is referenced does not refer directly to the Expr. If 6085 ** it does, make a copy. This is done because the pExpr argument is 6086 ** subject to change. 6087 ** 6088 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6089 ** This will cause the expression to be deleted automatically when the 6090 ** Parse object is destroyed, but the zero register number means that it 6091 ** will not generate any code in the preamble. 6092 */ 6093 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6094 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6095 && pExpr->pAggInfo!=0 6096 ){ 6097 AggInfo *pAggInfo = pExpr->pAggInfo; 6098 int iAgg = pExpr->iAgg; 6099 Parse *pParse = pWalker->pParse; 6100 sqlite3 *db = pParse->db; 6101 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 6102 if( pExpr->op==TK_AGG_COLUMN ){ 6103 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6104 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6105 pExpr = sqlite3ExprDup(db, pExpr, 0); 6106 if( pExpr ){ 6107 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6108 sqlite3ExprDeferredDelete(pParse, pExpr); 6109 } 6110 } 6111 }else{ 6112 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6113 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6114 pExpr = sqlite3ExprDup(db, pExpr, 0); 6115 if( pExpr ){ 6116 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6117 sqlite3ExprDeferredDelete(pParse, pExpr); 6118 } 6119 } 6120 } 6121 } 6122 return WRC_Continue; 6123 } 6124 6125 /* 6126 ** Initialize a Walker object so that will persist AggInfo entries referenced 6127 ** by the tree that is walked. 6128 */ 6129 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6130 memset(pWalker, 0, sizeof(*pWalker)); 6131 pWalker->pParse = pParse; 6132 pWalker->xExprCallback = agginfoPersistExprCb; 6133 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6134 } 6135 6136 /* 6137 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6138 ** the new element. Return a negative number if malloc fails. 6139 */ 6140 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6141 int i; 6142 pInfo->aCol = sqlite3ArrayAllocate( 6143 db, 6144 pInfo->aCol, 6145 sizeof(pInfo->aCol[0]), 6146 &pInfo->nColumn, 6147 &i 6148 ); 6149 return i; 6150 } 6151 6152 /* 6153 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6154 ** the new element. Return a negative number if malloc fails. 6155 */ 6156 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6157 int i; 6158 pInfo->aFunc = sqlite3ArrayAllocate( 6159 db, 6160 pInfo->aFunc, 6161 sizeof(pInfo->aFunc[0]), 6162 &pInfo->nFunc, 6163 &i 6164 ); 6165 return i; 6166 } 6167 6168 /* 6169 ** This is the xExprCallback for a tree walker. It is used to 6170 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6171 ** for additional information. 6172 */ 6173 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6174 int i; 6175 NameContext *pNC = pWalker->u.pNC; 6176 Parse *pParse = pNC->pParse; 6177 SrcList *pSrcList = pNC->pSrcList; 6178 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6179 6180 assert( pNC->ncFlags & NC_UAggInfo ); 6181 switch( pExpr->op ){ 6182 case TK_AGG_COLUMN: 6183 case TK_COLUMN: { 6184 testcase( pExpr->op==TK_AGG_COLUMN ); 6185 testcase( pExpr->op==TK_COLUMN ); 6186 /* Check to see if the column is in one of the tables in the FROM 6187 ** clause of the aggregate query */ 6188 if( ALWAYS(pSrcList!=0) ){ 6189 SrcItem *pItem = pSrcList->a; 6190 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6191 struct AggInfo_col *pCol; 6192 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6193 if( pExpr->iTable==pItem->iCursor ){ 6194 /* If we reach this point, it means that pExpr refers to a table 6195 ** that is in the FROM clause of the aggregate query. 6196 ** 6197 ** Make an entry for the column in pAggInfo->aCol[] if there 6198 ** is not an entry there already. 6199 */ 6200 int k; 6201 pCol = pAggInfo->aCol; 6202 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6203 if( pCol->iTable==pExpr->iTable && 6204 pCol->iColumn==pExpr->iColumn ){ 6205 break; 6206 } 6207 } 6208 if( (k>=pAggInfo->nColumn) 6209 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6210 ){ 6211 pCol = &pAggInfo->aCol[k]; 6212 assert( ExprUseYTab(pExpr) ); 6213 pCol->pTab = pExpr->y.pTab; 6214 pCol->iTable = pExpr->iTable; 6215 pCol->iColumn = pExpr->iColumn; 6216 pCol->iMem = ++pParse->nMem; 6217 pCol->iSorterColumn = -1; 6218 pCol->pCExpr = pExpr; 6219 if( pAggInfo->pGroupBy ){ 6220 int j, n; 6221 ExprList *pGB = pAggInfo->pGroupBy; 6222 struct ExprList_item *pTerm = pGB->a; 6223 n = pGB->nExpr; 6224 for(j=0; j<n; j++, pTerm++){ 6225 Expr *pE = pTerm->pExpr; 6226 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 6227 pE->iColumn==pExpr->iColumn ){ 6228 pCol->iSorterColumn = j; 6229 break; 6230 } 6231 } 6232 } 6233 if( pCol->iSorterColumn<0 ){ 6234 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6235 } 6236 } 6237 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6238 ** because it was there before or because we just created it). 6239 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6240 ** pAggInfo->aCol[] entry. 6241 */ 6242 ExprSetVVAProperty(pExpr, EP_NoReduce); 6243 pExpr->pAggInfo = pAggInfo; 6244 pExpr->op = TK_AGG_COLUMN; 6245 pExpr->iAgg = (i16)k; 6246 break; 6247 } /* endif pExpr->iTable==pItem->iCursor */ 6248 } /* end loop over pSrcList */ 6249 } 6250 return WRC_Prune; 6251 } 6252 case TK_AGG_FUNCTION: { 6253 if( (pNC->ncFlags & NC_InAggFunc)==0 6254 && pWalker->walkerDepth==pExpr->op2 6255 ){ 6256 /* Check to see if pExpr is a duplicate of another aggregate 6257 ** function that is already in the pAggInfo structure 6258 */ 6259 struct AggInfo_func *pItem = pAggInfo->aFunc; 6260 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6261 if( pItem->pFExpr==pExpr ) break; 6262 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6263 break; 6264 } 6265 } 6266 if( i>=pAggInfo->nFunc ){ 6267 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6268 */ 6269 u8 enc = ENC(pParse->db); 6270 i = addAggInfoFunc(pParse->db, pAggInfo); 6271 if( i>=0 ){ 6272 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6273 pItem = &pAggInfo->aFunc[i]; 6274 pItem->pFExpr = pExpr; 6275 pItem->iMem = ++pParse->nMem; 6276 assert( ExprUseUToken(pExpr) ); 6277 pItem->pFunc = sqlite3FindFunction(pParse->db, 6278 pExpr->u.zToken, 6279 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6280 if( pExpr->flags & EP_Distinct ){ 6281 pItem->iDistinct = pParse->nTab++; 6282 }else{ 6283 pItem->iDistinct = -1; 6284 } 6285 } 6286 } 6287 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6288 */ 6289 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6290 ExprSetVVAProperty(pExpr, EP_NoReduce); 6291 pExpr->iAgg = (i16)i; 6292 pExpr->pAggInfo = pAggInfo; 6293 return WRC_Prune; 6294 }else{ 6295 return WRC_Continue; 6296 } 6297 } 6298 } 6299 return WRC_Continue; 6300 } 6301 6302 /* 6303 ** Analyze the pExpr expression looking for aggregate functions and 6304 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6305 ** points to. Additional entries are made on the AggInfo object as 6306 ** necessary. 6307 ** 6308 ** This routine should only be called after the expression has been 6309 ** analyzed by sqlite3ResolveExprNames(). 6310 */ 6311 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6312 Walker w; 6313 w.xExprCallback = analyzeAggregate; 6314 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6315 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6316 w.walkerDepth = 0; 6317 w.u.pNC = pNC; 6318 w.pParse = 0; 6319 assert( pNC->pSrcList!=0 ); 6320 sqlite3WalkExpr(&w, pExpr); 6321 } 6322 6323 /* 6324 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6325 ** expression list. Return the number of errors. 6326 ** 6327 ** If an error is found, the analysis is cut short. 6328 */ 6329 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6330 struct ExprList_item *pItem; 6331 int i; 6332 if( pList ){ 6333 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6334 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6335 } 6336 } 6337 } 6338 6339 /* 6340 ** Allocate a single new register for use to hold some intermediate result. 6341 */ 6342 int sqlite3GetTempReg(Parse *pParse){ 6343 if( pParse->nTempReg==0 ){ 6344 return ++pParse->nMem; 6345 } 6346 return pParse->aTempReg[--pParse->nTempReg]; 6347 } 6348 6349 /* 6350 ** Deallocate a register, making available for reuse for some other 6351 ** purpose. 6352 */ 6353 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6354 if( iReg ){ 6355 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6356 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6357 pParse->aTempReg[pParse->nTempReg++] = iReg; 6358 } 6359 } 6360 } 6361 6362 /* 6363 ** Allocate or deallocate a block of nReg consecutive registers. 6364 */ 6365 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6366 int i, n; 6367 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6368 i = pParse->iRangeReg; 6369 n = pParse->nRangeReg; 6370 if( nReg<=n ){ 6371 pParse->iRangeReg += nReg; 6372 pParse->nRangeReg -= nReg; 6373 }else{ 6374 i = pParse->nMem+1; 6375 pParse->nMem += nReg; 6376 } 6377 return i; 6378 } 6379 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6380 if( nReg==1 ){ 6381 sqlite3ReleaseTempReg(pParse, iReg); 6382 return; 6383 } 6384 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6385 if( nReg>pParse->nRangeReg ){ 6386 pParse->nRangeReg = nReg; 6387 pParse->iRangeReg = iReg; 6388 } 6389 } 6390 6391 /* 6392 ** Mark all temporary registers as being unavailable for reuse. 6393 ** 6394 ** Always invoke this procedure after coding a subroutine or co-routine 6395 ** that might be invoked from other parts of the code, to ensure that 6396 ** the sub/co-routine does not use registers in common with the code that 6397 ** invokes the sub/co-routine. 6398 */ 6399 void sqlite3ClearTempRegCache(Parse *pParse){ 6400 pParse->nTempReg = 0; 6401 pParse->nRangeReg = 0; 6402 } 6403 6404 /* 6405 ** Validate that no temporary register falls within the range of 6406 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6407 ** statements. 6408 */ 6409 #ifdef SQLITE_DEBUG 6410 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6411 int i; 6412 if( pParse->nRangeReg>0 6413 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6414 && pParse->iRangeReg <= iLast 6415 ){ 6416 return 0; 6417 } 6418 for(i=0; i<pParse->nTempReg; i++){ 6419 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6420 return 0; 6421 } 6422 } 6423 return 1; 6424 } 6425 #endif /* SQLITE_DEBUG */ 6426