xref: /sqlite-3.40.0/src/expr.c (revision c59b7b1f)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
773   if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight;
774   if( ExprUseXSelect(p) ){
775     heightOfSelect(p->x.pSelect, &nHeight);
776   }else if( p->x.pList ){
777     heightOfExprList(p->x.pList, &nHeight);
778     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
779   }
780   p->nHeight = nHeight + 1;
781 }
782 
783 /*
784 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
785 ** the height is greater than the maximum allowed expression depth,
786 ** leave an error in pParse.
787 **
788 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
789 ** Expr.flags.
790 */
791 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
792   if( pParse->nErr ) return;
793   exprSetHeight(p);
794   sqlite3ExprCheckHeight(pParse, p->nHeight);
795 }
796 
797 /*
798 ** Return the maximum height of any expression tree referenced
799 ** by the select statement passed as an argument.
800 */
801 int sqlite3SelectExprHeight(const Select *p){
802   int nHeight = 0;
803   heightOfSelect(p, &nHeight);
804   return nHeight;
805 }
806 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
807 /*
808 ** Propagate all EP_Propagate flags from the Expr.x.pList into
809 ** Expr.flags.
810 */
811 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
812   if( pParse->nErr ) return;
813   if( p && ExprUseXList(p) && p->x.pList ){
814     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
815   }
816 }
817 #define exprSetHeight(y)
818 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
819 
820 /*
821 ** This routine is the core allocator for Expr nodes.
822 **
823 ** Construct a new expression node and return a pointer to it.  Memory
824 ** for this node and for the pToken argument is a single allocation
825 ** obtained from sqlite3DbMalloc().  The calling function
826 ** is responsible for making sure the node eventually gets freed.
827 **
828 ** If dequote is true, then the token (if it exists) is dequoted.
829 ** If dequote is false, no dequoting is performed.  The deQuote
830 ** parameter is ignored if pToken is NULL or if the token does not
831 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
832 ** then the EP_DblQuoted flag is set on the expression node.
833 **
834 ** Special case:  If op==TK_INTEGER and pToken points to a string that
835 ** can be translated into a 32-bit integer, then the token is not
836 ** stored in u.zToken.  Instead, the integer values is written
837 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
838 ** is allocated to hold the integer text and the dequote flag is ignored.
839 */
840 Expr *sqlite3ExprAlloc(
841   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
842   int op,                 /* Expression opcode */
843   const Token *pToken,    /* Token argument.  Might be NULL */
844   int dequote             /* True to dequote */
845 ){
846   Expr *pNew;
847   int nExtra = 0;
848   int iValue = 0;
849 
850   assert( db!=0 );
851   if( pToken ){
852     if( op!=TK_INTEGER || pToken->z==0
853           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
854       nExtra = pToken->n+1;
855       assert( iValue>=0 );
856     }
857   }
858   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
859   if( pNew ){
860     memset(pNew, 0, sizeof(Expr));
861     pNew->op = (u8)op;
862     pNew->iAgg = -1;
863     if( pToken ){
864       if( nExtra==0 ){
865         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
866         pNew->u.iValue = iValue;
867       }else{
868         pNew->u.zToken = (char*)&pNew[1];
869         assert( pToken->z!=0 || pToken->n==0 );
870         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
871         pNew->u.zToken[pToken->n] = 0;
872         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
873           sqlite3DequoteExpr(pNew);
874         }
875       }
876     }
877 #if SQLITE_MAX_EXPR_DEPTH>0
878     pNew->nHeight = 1;
879 #endif
880   }
881   return pNew;
882 }
883 
884 /*
885 ** Allocate a new expression node from a zero-terminated token that has
886 ** already been dequoted.
887 */
888 Expr *sqlite3Expr(
889   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
890   int op,                 /* Expression opcode */
891   const char *zToken      /* Token argument.  Might be NULL */
892 ){
893   Token x;
894   x.z = zToken;
895   x.n = sqlite3Strlen30(zToken);
896   return sqlite3ExprAlloc(db, op, &x, 0);
897 }
898 
899 /*
900 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
901 **
902 ** If pRoot==NULL that means that a memory allocation error has occurred.
903 ** In that case, delete the subtrees pLeft and pRight.
904 */
905 void sqlite3ExprAttachSubtrees(
906   sqlite3 *db,
907   Expr *pRoot,
908   Expr *pLeft,
909   Expr *pRight
910 ){
911   if( pRoot==0 ){
912     assert( db->mallocFailed );
913     sqlite3ExprDelete(db, pLeft);
914     sqlite3ExprDelete(db, pRight);
915   }else{
916     if( pRight ){
917       pRoot->pRight = pRight;
918       pRoot->flags |= EP_Propagate & pRight->flags;
919     }
920     if( pLeft ){
921       pRoot->pLeft = pLeft;
922       pRoot->flags |= EP_Propagate & pLeft->flags;
923     }
924     exprSetHeight(pRoot);
925   }
926 }
927 
928 /*
929 ** Allocate an Expr node which joins as many as two subtrees.
930 **
931 ** One or both of the subtrees can be NULL.  Return a pointer to the new
932 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
933 ** free the subtrees and return NULL.
934 */
935 Expr *sqlite3PExpr(
936   Parse *pParse,          /* Parsing context */
937   int op,                 /* Expression opcode */
938   Expr *pLeft,            /* Left operand */
939   Expr *pRight            /* Right operand */
940 ){
941   Expr *p;
942   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
943   if( p ){
944     memset(p, 0, sizeof(Expr));
945     p->op = op & 0xff;
946     p->iAgg = -1;
947     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
948     sqlite3ExprCheckHeight(pParse, p->nHeight);
949   }else{
950     sqlite3ExprDelete(pParse->db, pLeft);
951     sqlite3ExprDelete(pParse->db, pRight);
952   }
953   return p;
954 }
955 
956 /*
957 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
958 ** do a memory allocation failure) then delete the pSelect object.
959 */
960 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
961   if( pExpr ){
962     pExpr->x.pSelect = pSelect;
963     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
964     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
965   }else{
966     assert( pParse->db->mallocFailed );
967     sqlite3SelectDelete(pParse->db, pSelect);
968   }
969 }
970 
971 /*
972 ** Expression list pEList is a list of vector values. This function
973 ** converts the contents of pEList to a VALUES(...) Select statement
974 ** returning 1 row for each element of the list. For example, the
975 ** expression list:
976 **
977 **   ( (1,2), (3,4) (5,6) )
978 **
979 ** is translated to the equivalent of:
980 **
981 **   VALUES(1,2), (3,4), (5,6)
982 **
983 ** Each of the vector values in pEList must contain exactly nElem terms.
984 ** If a list element that is not a vector or does not contain nElem terms,
985 ** an error message is left in pParse.
986 **
987 ** This is used as part of processing IN(...) expressions with a list
988 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
989 */
990 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
991   int ii;
992   Select *pRet = 0;
993   assert( nElem>1 );
994   for(ii=0; ii<pEList->nExpr; ii++){
995     Select *pSel;
996     Expr *pExpr = pEList->a[ii].pExpr;
997     int nExprElem;
998     if( pExpr->op==TK_VECTOR ){
999       assert( ExprUseXList(pExpr) );
1000       nExprElem = pExpr->x.pList->nExpr;
1001     }else{
1002       nExprElem = 1;
1003     }
1004     if( nExprElem!=nElem ){
1005       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1006           nExprElem, nExprElem>1?"s":"", nElem
1007       );
1008       break;
1009     }
1010     assert( ExprUseXList(pExpr) );
1011     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1012     pExpr->x.pList = 0;
1013     if( pSel ){
1014       if( pRet ){
1015         pSel->op = TK_ALL;
1016         pSel->pPrior = pRet;
1017       }
1018       pRet = pSel;
1019     }
1020   }
1021 
1022   if( pRet && pRet->pPrior ){
1023     pRet->selFlags |= SF_MultiValue;
1024   }
1025   sqlite3ExprListDelete(pParse->db, pEList);
1026   return pRet;
1027 }
1028 
1029 /*
1030 ** Join two expressions using an AND operator.  If either expression is
1031 ** NULL, then just return the other expression.
1032 **
1033 ** If one side or the other of the AND is known to be false, then instead
1034 ** of returning an AND expression, just return a constant expression with
1035 ** a value of false.
1036 */
1037 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1038   sqlite3 *db = pParse->db;
1039   if( pLeft==0  ){
1040     return pRight;
1041   }else if( pRight==0 ){
1042     return pLeft;
1043   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1044          && !IN_RENAME_OBJECT
1045   ){
1046     sqlite3ExprDeferredDelete(pParse, pLeft);
1047     sqlite3ExprDeferredDelete(pParse, pRight);
1048     return sqlite3Expr(db, TK_INTEGER, "0");
1049   }else{
1050     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1051   }
1052 }
1053 
1054 /*
1055 ** Construct a new expression node for a function with multiple
1056 ** arguments.
1057 */
1058 Expr *sqlite3ExprFunction(
1059   Parse *pParse,        /* Parsing context */
1060   ExprList *pList,      /* Argument list */
1061   const Token *pToken,  /* Name of the function */
1062   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1063 ){
1064   Expr *pNew;
1065   sqlite3 *db = pParse->db;
1066   assert( pToken );
1067   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1068   if( pNew==0 ){
1069     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1070     return 0;
1071   }
1072   assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1073   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1074   if( pList
1075    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1076    && !pParse->nested
1077   ){
1078     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1079   }
1080   pNew->x.pList = pList;
1081   ExprSetProperty(pNew, EP_HasFunc);
1082   assert( ExprUseXList(pNew) );
1083   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1084   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1085   return pNew;
1086 }
1087 
1088 /*
1089 ** Check to see if a function is usable according to current access
1090 ** rules:
1091 **
1092 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1093 **
1094 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1095 **                                top-level SQL
1096 **
1097 ** If the function is not usable, create an error.
1098 */
1099 void sqlite3ExprFunctionUsable(
1100   Parse *pParse,         /* Parsing and code generating context */
1101   const Expr *pExpr,     /* The function invocation */
1102   const FuncDef *pDef    /* The function being invoked */
1103 ){
1104   assert( !IN_RENAME_OBJECT );
1105   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1106   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1107     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1108      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1109     ){
1110       /* Functions prohibited in triggers and views if:
1111       **     (1) tagged with SQLITE_DIRECTONLY
1112       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1113       **         is tagged with SQLITE_FUNC_UNSAFE) and
1114       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1115       **         that the schema is possibly tainted).
1116       */
1117       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1118     }
1119   }
1120 }
1121 
1122 /*
1123 ** Assign a variable number to an expression that encodes a wildcard
1124 ** in the original SQL statement.
1125 **
1126 ** Wildcards consisting of a single "?" are assigned the next sequential
1127 ** variable number.
1128 **
1129 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1130 ** sure "nnn" is not too big to avoid a denial of service attack when
1131 ** the SQL statement comes from an external source.
1132 **
1133 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1134 ** as the previous instance of the same wildcard.  Or if this is the first
1135 ** instance of the wildcard, the next sequential variable number is
1136 ** assigned.
1137 */
1138 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1139   sqlite3 *db = pParse->db;
1140   const char *z;
1141   ynVar x;
1142 
1143   if( pExpr==0 ) return;
1144   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1145   z = pExpr->u.zToken;
1146   assert( z!=0 );
1147   assert( z[0]!=0 );
1148   assert( n==(u32)sqlite3Strlen30(z) );
1149   if( z[1]==0 ){
1150     /* Wildcard of the form "?".  Assign the next variable number */
1151     assert( z[0]=='?' );
1152     x = (ynVar)(++pParse->nVar);
1153   }else{
1154     int doAdd = 0;
1155     if( z[0]=='?' ){
1156       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1157       ** use it as the variable number */
1158       i64 i;
1159       int bOk;
1160       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1161         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1162         bOk = 1;
1163       }else{
1164         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1165       }
1166       testcase( i==0 );
1167       testcase( i==1 );
1168       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1169       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1170       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1171         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1172             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1173         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1174         return;
1175       }
1176       x = (ynVar)i;
1177       if( x>pParse->nVar ){
1178         pParse->nVar = (int)x;
1179         doAdd = 1;
1180       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1181         doAdd = 1;
1182       }
1183     }else{
1184       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1185       ** number as the prior appearance of the same name, or if the name
1186       ** has never appeared before, reuse the same variable number
1187       */
1188       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1189       if( x==0 ){
1190         x = (ynVar)(++pParse->nVar);
1191         doAdd = 1;
1192       }
1193     }
1194     if( doAdd ){
1195       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1196     }
1197   }
1198   pExpr->iColumn = x;
1199   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1200     sqlite3ErrorMsg(pParse, "too many SQL variables");
1201     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1202   }
1203 }
1204 
1205 /*
1206 ** Recursively delete an expression tree.
1207 */
1208 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1209   assert( p!=0 );
1210   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1211   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1212   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1213   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1214 #ifdef SQLITE_DEBUG
1215   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1216     assert( p->pLeft==0 );
1217     assert( p->pRight==0 );
1218     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1219     assert( !ExprUseXList(p) || p->x.pList==0 );
1220   }
1221 #endif
1222   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1223     /* The Expr.x union is never used at the same time as Expr.pRight */
1224     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1225     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1226     if( p->pRight ){
1227       assert( !ExprHasProperty(p, EP_WinFunc) );
1228       sqlite3ExprDeleteNN(db, p->pRight);
1229     }else if( ExprUseXSelect(p) ){
1230       assert( !ExprHasProperty(p, EP_WinFunc) );
1231       sqlite3SelectDelete(db, p->x.pSelect);
1232     }else{
1233       sqlite3ExprListDelete(db, p->x.pList);
1234 #ifndef SQLITE_OMIT_WINDOWFUNC
1235       if( ExprHasProperty(p, EP_WinFunc) ){
1236         sqlite3WindowDelete(db, p->y.pWin);
1237       }
1238 #endif
1239     }
1240   }
1241   if( ExprHasProperty(p, EP_MemToken) ){
1242     assert( !ExprHasProperty(p, EP_IntValue) );
1243     sqlite3DbFree(db, p->u.zToken);
1244   }
1245   if( !ExprHasProperty(p, EP_Static) ){
1246     sqlite3DbFreeNN(db, p);
1247   }
1248 }
1249 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1250   if( p ) sqlite3ExprDeleteNN(db, p);
1251 }
1252 
1253 /*
1254 ** Clear both elements of an OnOrUsing object
1255 */
1256 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1257   if( p==0 ){
1258     /* Nothing to clear */
1259   }else if( p->pOn ){
1260     sqlite3ExprDeleteNN(db, p->pOn);
1261   }else if( p->pUsing ){
1262     sqlite3IdListDelete(db, p->pUsing);
1263   }
1264 }
1265 
1266 /*
1267 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1268 ** This is similar to sqlite3ExprDelete() except that the delete is
1269 ** deferred untilthe pParse is deleted.
1270 **
1271 ** The pExpr might be deleted immediately on an OOM error.
1272 **
1273 ** The deferred delete is (currently) implemented by adding the
1274 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1275 */
1276 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1277   pParse->pConstExpr =
1278       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1279 }
1280 
1281 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1282 ** expression.
1283 */
1284 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1285   if( p ){
1286     if( IN_RENAME_OBJECT ){
1287       sqlite3RenameExprUnmap(pParse, p);
1288     }
1289     sqlite3ExprDeleteNN(pParse->db, p);
1290   }
1291 }
1292 
1293 /*
1294 ** Return the number of bytes allocated for the expression structure
1295 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1296 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1297 */
1298 static int exprStructSize(const Expr *p){
1299   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1300   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1301   return EXPR_FULLSIZE;
1302 }
1303 
1304 /*
1305 ** The dupedExpr*Size() routines each return the number of bytes required
1306 ** to store a copy of an expression or expression tree.  They differ in
1307 ** how much of the tree is measured.
1308 **
1309 **     dupedExprStructSize()     Size of only the Expr structure
1310 **     dupedExprNodeSize()       Size of Expr + space for token
1311 **     dupedExprSize()           Expr + token + subtree components
1312 **
1313 ***************************************************************************
1314 **
1315 ** The dupedExprStructSize() function returns two values OR-ed together:
1316 ** (1) the space required for a copy of the Expr structure only and
1317 ** (2) the EP_xxx flags that indicate what the structure size should be.
1318 ** The return values is always one of:
1319 **
1320 **      EXPR_FULLSIZE
1321 **      EXPR_REDUCEDSIZE   | EP_Reduced
1322 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1323 **
1324 ** The size of the structure can be found by masking the return value
1325 ** of this routine with 0xfff.  The flags can be found by masking the
1326 ** return value with EP_Reduced|EP_TokenOnly.
1327 **
1328 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1329 ** (unreduced) Expr objects as they or originally constructed by the parser.
1330 ** During expression analysis, extra information is computed and moved into
1331 ** later parts of the Expr object and that extra information might get chopped
1332 ** off if the expression is reduced.  Note also that it does not work to
1333 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1334 ** to reduce a pristine expression tree from the parser.  The implementation
1335 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1336 ** to enforce this constraint.
1337 */
1338 static int dupedExprStructSize(const Expr *p, int flags){
1339   int nSize;
1340   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1341   assert( EXPR_FULLSIZE<=0xfff );
1342   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1343   if( 0==flags || p->op==TK_SELECT_COLUMN
1344 #ifndef SQLITE_OMIT_WINDOWFUNC
1345    || ExprHasProperty(p, EP_WinFunc)
1346 #endif
1347   ){
1348     nSize = EXPR_FULLSIZE;
1349   }else{
1350     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1351     assert( !ExprHasProperty(p, EP_OuterON) );
1352     assert( !ExprHasProperty(p, EP_MemToken) );
1353     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1354     if( p->pLeft || p->x.pList ){
1355       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1356     }else{
1357       assert( p->pRight==0 );
1358       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1359     }
1360   }
1361   return nSize;
1362 }
1363 
1364 /*
1365 ** This function returns the space in bytes required to store the copy
1366 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1367 ** string is defined.)
1368 */
1369 static int dupedExprNodeSize(const Expr *p, int flags){
1370   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1371   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1372     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1373   }
1374   return ROUND8(nByte);
1375 }
1376 
1377 /*
1378 ** Return the number of bytes required to create a duplicate of the
1379 ** expression passed as the first argument. The second argument is a
1380 ** mask containing EXPRDUP_XXX flags.
1381 **
1382 ** The value returned includes space to create a copy of the Expr struct
1383 ** itself and the buffer referred to by Expr.u.zToken, if any.
1384 **
1385 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1386 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1387 ** and Expr.pRight variables (but not for any structures pointed to or
1388 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1389 */
1390 static int dupedExprSize(const Expr *p, int flags){
1391   int nByte = 0;
1392   if( p ){
1393     nByte = dupedExprNodeSize(p, flags);
1394     if( flags&EXPRDUP_REDUCE ){
1395       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1396     }
1397   }
1398   return nByte;
1399 }
1400 
1401 /*
1402 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1403 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1404 ** to store the copy of expression p, the copies of p->u.zToken
1405 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1406 ** if any. Before returning, *pzBuffer is set to the first byte past the
1407 ** portion of the buffer copied into by this function.
1408 */
1409 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1410   Expr *pNew;           /* Value to return */
1411   u8 *zAlloc;           /* Memory space from which to build Expr object */
1412   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1413 
1414   assert( db!=0 );
1415   assert( p );
1416   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1417   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1418 
1419   /* Figure out where to write the new Expr structure. */
1420   if( pzBuffer ){
1421     zAlloc = *pzBuffer;
1422     staticFlag = EP_Static;
1423     assert( zAlloc!=0 );
1424   }else{
1425     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1426     staticFlag = 0;
1427   }
1428   pNew = (Expr *)zAlloc;
1429 
1430   if( pNew ){
1431     /* Set nNewSize to the size allocated for the structure pointed to
1432     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1433     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1434     ** by the copy of the p->u.zToken string (if any).
1435     */
1436     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1437     const int nNewSize = nStructSize & 0xfff;
1438     int nToken;
1439     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1440       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1441     }else{
1442       nToken = 0;
1443     }
1444     if( dupFlags ){
1445       assert( ExprHasProperty(p, EP_Reduced)==0 );
1446       memcpy(zAlloc, p, nNewSize);
1447     }else{
1448       u32 nSize = (u32)exprStructSize(p);
1449       memcpy(zAlloc, p, nSize);
1450       if( nSize<EXPR_FULLSIZE ){
1451         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1452       }
1453     }
1454 
1455     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1456     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1457     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1458     pNew->flags |= staticFlag;
1459     ExprClearVVAProperties(pNew);
1460     if( dupFlags ){
1461       ExprSetVVAProperty(pNew, EP_Immutable);
1462     }
1463 
1464     /* Copy the p->u.zToken string, if any. */
1465     if( nToken ){
1466       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1467       memcpy(zToken, p->u.zToken, nToken);
1468     }
1469 
1470     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1471       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1472       if( ExprUseXSelect(p) ){
1473         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1474       }else{
1475         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1476       }
1477     }
1478 
1479     /* Fill in pNew->pLeft and pNew->pRight. */
1480     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1481       zAlloc += dupedExprNodeSize(p, dupFlags);
1482       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1483         pNew->pLeft = p->pLeft ?
1484                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1485         pNew->pRight = p->pRight ?
1486                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1487       }
1488 #ifndef SQLITE_OMIT_WINDOWFUNC
1489       if( ExprHasProperty(p, EP_WinFunc) ){
1490         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1491         assert( ExprHasProperty(pNew, EP_WinFunc) );
1492       }
1493 #endif /* SQLITE_OMIT_WINDOWFUNC */
1494       if( pzBuffer ){
1495         *pzBuffer = zAlloc;
1496       }
1497     }else{
1498       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1499         if( pNew->op==TK_SELECT_COLUMN ){
1500           pNew->pLeft = p->pLeft;
1501           assert( p->pRight==0  || p->pRight==p->pLeft
1502                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1503         }else{
1504           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1505         }
1506         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1507       }
1508     }
1509   }
1510   return pNew;
1511 }
1512 
1513 /*
1514 ** Create and return a deep copy of the object passed as the second
1515 ** argument. If an OOM condition is encountered, NULL is returned
1516 ** and the db->mallocFailed flag set.
1517 */
1518 #ifndef SQLITE_OMIT_CTE
1519 With *sqlite3WithDup(sqlite3 *db, With *p){
1520   With *pRet = 0;
1521   if( p ){
1522     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1523     pRet = sqlite3DbMallocZero(db, nByte);
1524     if( pRet ){
1525       int i;
1526       pRet->nCte = p->nCte;
1527       for(i=0; i<p->nCte; i++){
1528         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1529         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1530         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1531         pRet->a[i].eM10d = p->a[i].eM10d;
1532       }
1533     }
1534   }
1535   return pRet;
1536 }
1537 #else
1538 # define sqlite3WithDup(x,y) 0
1539 #endif
1540 
1541 #ifndef SQLITE_OMIT_WINDOWFUNC
1542 /*
1543 ** The gatherSelectWindows() procedure and its helper routine
1544 ** gatherSelectWindowsCallback() are used to scan all the expressions
1545 ** an a newly duplicated SELECT statement and gather all of the Window
1546 ** objects found there, assembling them onto the linked list at Select->pWin.
1547 */
1548 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1549   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1550     Select *pSelect = pWalker->u.pSelect;
1551     Window *pWin = pExpr->y.pWin;
1552     assert( pWin );
1553     assert( IsWindowFunc(pExpr) );
1554     assert( pWin->ppThis==0 );
1555     sqlite3WindowLink(pSelect, pWin);
1556   }
1557   return WRC_Continue;
1558 }
1559 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1560   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1561 }
1562 static void gatherSelectWindows(Select *p){
1563   Walker w;
1564   w.xExprCallback = gatherSelectWindowsCallback;
1565   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1566   w.xSelectCallback2 = 0;
1567   w.pParse = 0;
1568   w.u.pSelect = p;
1569   sqlite3WalkSelect(&w, p);
1570 }
1571 #endif
1572 
1573 
1574 /*
1575 ** The following group of routines make deep copies of expressions,
1576 ** expression lists, ID lists, and select statements.  The copies can
1577 ** be deleted (by being passed to their respective ...Delete() routines)
1578 ** without effecting the originals.
1579 **
1580 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1581 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1582 ** by subsequent calls to sqlite*ListAppend() routines.
1583 **
1584 ** Any tables that the SrcList might point to are not duplicated.
1585 **
1586 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1587 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1588 ** truncated version of the usual Expr structure that will be stored as
1589 ** part of the in-memory representation of the database schema.
1590 */
1591 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1592   assert( flags==0 || flags==EXPRDUP_REDUCE );
1593   return p ? exprDup(db, p, flags, 0) : 0;
1594 }
1595 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1596   ExprList *pNew;
1597   struct ExprList_item *pItem;
1598   const struct ExprList_item *pOldItem;
1599   int i;
1600   Expr *pPriorSelectColOld = 0;
1601   Expr *pPriorSelectColNew = 0;
1602   assert( db!=0 );
1603   if( p==0 ) return 0;
1604   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1605   if( pNew==0 ) return 0;
1606   pNew->nExpr = p->nExpr;
1607   pNew->nAlloc = p->nAlloc;
1608   pItem = pNew->a;
1609   pOldItem = p->a;
1610   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1611     Expr *pOldExpr = pOldItem->pExpr;
1612     Expr *pNewExpr;
1613     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1614     if( pOldExpr
1615      && pOldExpr->op==TK_SELECT_COLUMN
1616      && (pNewExpr = pItem->pExpr)!=0
1617     ){
1618       if( pNewExpr->pRight ){
1619         pPriorSelectColOld = pOldExpr->pRight;
1620         pPriorSelectColNew = pNewExpr->pRight;
1621         pNewExpr->pLeft = pNewExpr->pRight;
1622       }else{
1623         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1624           pPriorSelectColOld = pOldExpr->pLeft;
1625           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1626           pNewExpr->pRight = pPriorSelectColNew;
1627         }
1628         pNewExpr->pLeft = pPriorSelectColNew;
1629       }
1630     }
1631     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1632     pItem->fg = pOldItem->fg;
1633     pItem->fg.done = 0;
1634     pItem->u = pOldItem->u;
1635   }
1636   return pNew;
1637 }
1638 
1639 /*
1640 ** If cursors, triggers, views and subqueries are all omitted from
1641 ** the build, then none of the following routines, except for
1642 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1643 ** called with a NULL argument.
1644 */
1645 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1646  || !defined(SQLITE_OMIT_SUBQUERY)
1647 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1648   SrcList *pNew;
1649   int i;
1650   int nByte;
1651   assert( db!=0 );
1652   if( p==0 ) return 0;
1653   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1654   pNew = sqlite3DbMallocRawNN(db, nByte );
1655   if( pNew==0 ) return 0;
1656   pNew->nSrc = pNew->nAlloc = p->nSrc;
1657   for(i=0; i<p->nSrc; i++){
1658     SrcItem *pNewItem = &pNew->a[i];
1659     const SrcItem *pOldItem = &p->a[i];
1660     Table *pTab;
1661     pNewItem->pSchema = pOldItem->pSchema;
1662     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1663     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1664     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1665     pNewItem->fg = pOldItem->fg;
1666     pNewItem->iCursor = pOldItem->iCursor;
1667     pNewItem->addrFillSub = pOldItem->addrFillSub;
1668     pNewItem->regReturn = pOldItem->regReturn;
1669     if( pNewItem->fg.isIndexedBy ){
1670       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1671     }
1672     pNewItem->u2 = pOldItem->u2;
1673     if( pNewItem->fg.isCte ){
1674       pNewItem->u2.pCteUse->nUse++;
1675     }
1676     if( pNewItem->fg.isTabFunc ){
1677       pNewItem->u1.pFuncArg =
1678           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1679     }
1680     pTab = pNewItem->pTab = pOldItem->pTab;
1681     if( pTab ){
1682       pTab->nTabRef++;
1683     }
1684     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1685     if( pOldItem->fg.isUsing ){
1686       assert( pNewItem->fg.isUsing );
1687       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1688     }else{
1689       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1690     }
1691     pNewItem->colUsed = pOldItem->colUsed;
1692   }
1693   return pNew;
1694 }
1695 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1696   IdList *pNew;
1697   int i;
1698   assert( db!=0 );
1699   if( p==0 ) return 0;
1700   assert( p->eU4!=EU4_EXPR );
1701   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1702   if( pNew==0 ) return 0;
1703   pNew->nId = p->nId;
1704   pNew->eU4 = p->eU4;
1705   for(i=0; i<p->nId; i++){
1706     struct IdList_item *pNewItem = &pNew->a[i];
1707     const struct IdList_item *pOldItem = &p->a[i];
1708     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1709     pNewItem->u4 = pOldItem->u4;
1710   }
1711   return pNew;
1712 }
1713 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1714   Select *pRet = 0;
1715   Select *pNext = 0;
1716   Select **pp = &pRet;
1717   const Select *p;
1718 
1719   assert( db!=0 );
1720   for(p=pDup; p; p=p->pPrior){
1721     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1722     if( pNew==0 ) break;
1723     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1724     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1725     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1726     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1727     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1728     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1729     pNew->op = p->op;
1730     pNew->pNext = pNext;
1731     pNew->pPrior = 0;
1732     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1733     pNew->iLimit = 0;
1734     pNew->iOffset = 0;
1735     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1736     pNew->addrOpenEphm[0] = -1;
1737     pNew->addrOpenEphm[1] = -1;
1738     pNew->nSelectRow = p->nSelectRow;
1739     pNew->pWith = sqlite3WithDup(db, p->pWith);
1740 #ifndef SQLITE_OMIT_WINDOWFUNC
1741     pNew->pWin = 0;
1742     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1743     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1744 #endif
1745     pNew->selId = p->selId;
1746     if( db->mallocFailed ){
1747       /* Any prior OOM might have left the Select object incomplete.
1748       ** Delete the whole thing rather than allow an incomplete Select
1749       ** to be used by the code generator. */
1750       pNew->pNext = 0;
1751       sqlite3SelectDelete(db, pNew);
1752       break;
1753     }
1754     *pp = pNew;
1755     pp = &pNew->pPrior;
1756     pNext = pNew;
1757   }
1758 
1759   return pRet;
1760 }
1761 #else
1762 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1763   assert( p==0 );
1764   return 0;
1765 }
1766 #endif
1767 
1768 
1769 /*
1770 ** Add a new element to the end of an expression list.  If pList is
1771 ** initially NULL, then create a new expression list.
1772 **
1773 ** The pList argument must be either NULL or a pointer to an ExprList
1774 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1775 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1776 ** Reason:  This routine assumes that the number of slots in pList->a[]
1777 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1778 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1779 **
1780 ** If a memory allocation error occurs, the entire list is freed and
1781 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1782 ** that the new entry was successfully appended.
1783 */
1784 static const struct ExprList_item zeroItem = {0};
1785 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1786   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1787   Expr *pExpr             /* Expression to be appended. Might be NULL */
1788 ){
1789   struct ExprList_item *pItem;
1790   ExprList *pList;
1791 
1792   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1793   if( pList==0 ){
1794     sqlite3ExprDelete(db, pExpr);
1795     return 0;
1796   }
1797   pList->nAlloc = 4;
1798   pList->nExpr = 1;
1799   pItem = &pList->a[0];
1800   *pItem = zeroItem;
1801   pItem->pExpr = pExpr;
1802   return pList;
1803 }
1804 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1805   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1806   ExprList *pList,        /* List to which to append. Might be NULL */
1807   Expr *pExpr             /* Expression to be appended. Might be NULL */
1808 ){
1809   struct ExprList_item *pItem;
1810   ExprList *pNew;
1811   pList->nAlloc *= 2;
1812   pNew = sqlite3DbRealloc(db, pList,
1813        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1814   if( pNew==0 ){
1815     sqlite3ExprListDelete(db, pList);
1816     sqlite3ExprDelete(db, pExpr);
1817     return 0;
1818   }else{
1819     pList = pNew;
1820   }
1821   pItem = &pList->a[pList->nExpr++];
1822   *pItem = zeroItem;
1823   pItem->pExpr = pExpr;
1824   return pList;
1825 }
1826 ExprList *sqlite3ExprListAppend(
1827   Parse *pParse,          /* Parsing context */
1828   ExprList *pList,        /* List to which to append. Might be NULL */
1829   Expr *pExpr             /* Expression to be appended. Might be NULL */
1830 ){
1831   struct ExprList_item *pItem;
1832   if( pList==0 ){
1833     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1834   }
1835   if( pList->nAlloc<pList->nExpr+1 ){
1836     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1837   }
1838   pItem = &pList->a[pList->nExpr++];
1839   *pItem = zeroItem;
1840   pItem->pExpr = pExpr;
1841   return pList;
1842 }
1843 
1844 /*
1845 ** pColumns and pExpr form a vector assignment which is part of the SET
1846 ** clause of an UPDATE statement.  Like this:
1847 **
1848 **        (a,b,c) = (expr1,expr2,expr3)
1849 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1850 **
1851 ** For each term of the vector assignment, append new entries to the
1852 ** expression list pList.  In the case of a subquery on the RHS, append
1853 ** TK_SELECT_COLUMN expressions.
1854 */
1855 ExprList *sqlite3ExprListAppendVector(
1856   Parse *pParse,         /* Parsing context */
1857   ExprList *pList,       /* List to which to append. Might be NULL */
1858   IdList *pColumns,      /* List of names of LHS of the assignment */
1859   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1860 ){
1861   sqlite3 *db = pParse->db;
1862   int n;
1863   int i;
1864   int iFirst = pList ? pList->nExpr : 0;
1865   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1866   ** exit prior to this routine being invoked */
1867   if( NEVER(pColumns==0) ) goto vector_append_error;
1868   if( pExpr==0 ) goto vector_append_error;
1869 
1870   /* If the RHS is a vector, then we can immediately check to see that
1871   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1872   ** wildcards ("*") in the result set of the SELECT must be expanded before
1873   ** we can do the size check, so defer the size check until code generation.
1874   */
1875   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1876     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1877                     pColumns->nId, n);
1878     goto vector_append_error;
1879   }
1880 
1881   for(i=0; i<pColumns->nId; i++){
1882     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1883     assert( pSubExpr!=0 || db->mallocFailed );
1884     if( pSubExpr==0 ) continue;
1885     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1886     if( pList ){
1887       assert( pList->nExpr==iFirst+i+1 );
1888       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1889       pColumns->a[i].zName = 0;
1890     }
1891   }
1892 
1893   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1894     Expr *pFirst = pList->a[iFirst].pExpr;
1895     assert( pFirst!=0 );
1896     assert( pFirst->op==TK_SELECT_COLUMN );
1897 
1898     /* Store the SELECT statement in pRight so it will be deleted when
1899     ** sqlite3ExprListDelete() is called */
1900     pFirst->pRight = pExpr;
1901     pExpr = 0;
1902 
1903     /* Remember the size of the LHS in iTable so that we can check that
1904     ** the RHS and LHS sizes match during code generation. */
1905     pFirst->iTable = pColumns->nId;
1906   }
1907 
1908 vector_append_error:
1909   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1910   sqlite3IdListDelete(db, pColumns);
1911   return pList;
1912 }
1913 
1914 /*
1915 ** Set the sort order for the last element on the given ExprList.
1916 */
1917 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1918   struct ExprList_item *pItem;
1919   if( p==0 ) return;
1920   assert( p->nExpr>0 );
1921 
1922   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1923   assert( iSortOrder==SQLITE_SO_UNDEFINED
1924        || iSortOrder==SQLITE_SO_ASC
1925        || iSortOrder==SQLITE_SO_DESC
1926   );
1927   assert( eNulls==SQLITE_SO_UNDEFINED
1928        || eNulls==SQLITE_SO_ASC
1929        || eNulls==SQLITE_SO_DESC
1930   );
1931 
1932   pItem = &p->a[p->nExpr-1];
1933   assert( pItem->fg.bNulls==0 );
1934   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1935     iSortOrder = SQLITE_SO_ASC;
1936   }
1937   pItem->fg.sortFlags = (u8)iSortOrder;
1938 
1939   if( eNulls!=SQLITE_SO_UNDEFINED ){
1940     pItem->fg.bNulls = 1;
1941     if( iSortOrder!=eNulls ){
1942       pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
1943     }
1944   }
1945 }
1946 
1947 /*
1948 ** Set the ExprList.a[].zEName element of the most recently added item
1949 ** on the expression list.
1950 **
1951 ** pList might be NULL following an OOM error.  But pName should never be
1952 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1953 ** is set.
1954 */
1955 void sqlite3ExprListSetName(
1956   Parse *pParse,          /* Parsing context */
1957   ExprList *pList,        /* List to which to add the span. */
1958   const Token *pName,     /* Name to be added */
1959   int dequote             /* True to cause the name to be dequoted */
1960 ){
1961   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1962   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1963   if( pList ){
1964     struct ExprList_item *pItem;
1965     assert( pList->nExpr>0 );
1966     pItem = &pList->a[pList->nExpr-1];
1967     assert( pItem->zEName==0 );
1968     assert( pItem->fg.eEName==ENAME_NAME );
1969     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1970     if( dequote ){
1971       /* If dequote==0, then pName->z does not point to part of a DDL
1972       ** statement handled by the parser. And so no token need be added
1973       ** to the token-map.  */
1974       sqlite3Dequote(pItem->zEName);
1975       if( IN_RENAME_OBJECT ){
1976         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1977       }
1978     }
1979   }
1980 }
1981 
1982 /*
1983 ** Set the ExprList.a[].zSpan element of the most recently added item
1984 ** on the expression list.
1985 **
1986 ** pList might be NULL following an OOM error.  But pSpan should never be
1987 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1988 ** is set.
1989 */
1990 void sqlite3ExprListSetSpan(
1991   Parse *pParse,          /* Parsing context */
1992   ExprList *pList,        /* List to which to add the span. */
1993   const char *zStart,     /* Start of the span */
1994   const char *zEnd        /* End of the span */
1995 ){
1996   sqlite3 *db = pParse->db;
1997   assert( pList!=0 || db->mallocFailed!=0 );
1998   if( pList ){
1999     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2000     assert( pList->nExpr>0 );
2001     if( pItem->zEName==0 ){
2002       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2003       pItem->fg.eEName = ENAME_SPAN;
2004     }
2005   }
2006 }
2007 
2008 /*
2009 ** If the expression list pEList contains more than iLimit elements,
2010 ** leave an error message in pParse.
2011 */
2012 void sqlite3ExprListCheckLength(
2013   Parse *pParse,
2014   ExprList *pEList,
2015   const char *zObject
2016 ){
2017   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2018   testcase( pEList && pEList->nExpr==mx );
2019   testcase( pEList && pEList->nExpr==mx+1 );
2020   if( pEList && pEList->nExpr>mx ){
2021     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2022   }
2023 }
2024 
2025 /*
2026 ** Delete an entire expression list.
2027 */
2028 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2029   int i = pList->nExpr;
2030   struct ExprList_item *pItem =  pList->a;
2031   assert( pList->nExpr>0 );
2032   do{
2033     sqlite3ExprDelete(db, pItem->pExpr);
2034     sqlite3DbFree(db, pItem->zEName);
2035     pItem++;
2036   }while( --i>0 );
2037   sqlite3DbFreeNN(db, pList);
2038 }
2039 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2040   if( pList ) exprListDeleteNN(db, pList);
2041 }
2042 
2043 /*
2044 ** Return the bitwise-OR of all Expr.flags fields in the given
2045 ** ExprList.
2046 */
2047 u32 sqlite3ExprListFlags(const ExprList *pList){
2048   int i;
2049   u32 m = 0;
2050   assert( pList!=0 );
2051   for(i=0; i<pList->nExpr; i++){
2052      Expr *pExpr = pList->a[i].pExpr;
2053      assert( pExpr!=0 );
2054      m |= pExpr->flags;
2055   }
2056   return m;
2057 }
2058 
2059 /*
2060 ** This is a SELECT-node callback for the expression walker that
2061 ** always "fails".  By "fail" in this case, we mean set
2062 ** pWalker->eCode to zero and abort.
2063 **
2064 ** This callback is used by multiple expression walkers.
2065 */
2066 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2067   UNUSED_PARAMETER(NotUsed);
2068   pWalker->eCode = 0;
2069   return WRC_Abort;
2070 }
2071 
2072 /*
2073 ** Check the input string to see if it is "true" or "false" (in any case).
2074 **
2075 **       If the string is....           Return
2076 **         "true"                         EP_IsTrue
2077 **         "false"                        EP_IsFalse
2078 **         anything else                  0
2079 */
2080 u32 sqlite3IsTrueOrFalse(const char *zIn){
2081   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2082   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2083   return 0;
2084 }
2085 
2086 
2087 /*
2088 ** If the input expression is an ID with the name "true" or "false"
2089 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2090 ** the conversion happened, and zero if the expression is unaltered.
2091 */
2092 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2093   u32 v;
2094   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2095   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2096    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2097   ){
2098     pExpr->op = TK_TRUEFALSE;
2099     ExprSetProperty(pExpr, v);
2100     return 1;
2101   }
2102   return 0;
2103 }
2104 
2105 /*
2106 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2107 ** and 0 if it is FALSE.
2108 */
2109 int sqlite3ExprTruthValue(const Expr *pExpr){
2110   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2111   assert( pExpr->op==TK_TRUEFALSE );
2112   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2113   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2114        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2115   return pExpr->u.zToken[4]==0;
2116 }
2117 
2118 /*
2119 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2120 ** terms that are always true or false.  Return the simplified expression.
2121 ** Or return the original expression if no simplification is possible.
2122 **
2123 ** Examples:
2124 **
2125 **     (x<10) AND true                =>   (x<10)
2126 **     (x<10) AND false               =>   false
2127 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2128 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2129 **     (y=22) OR true                 =>   true
2130 */
2131 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2132   assert( pExpr!=0 );
2133   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2134     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2135     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2136     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2137       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2138     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2139       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2140     }
2141   }
2142   return pExpr;
2143 }
2144 
2145 
2146 /*
2147 ** These routines are Walker callbacks used to check expressions to
2148 ** see if they are "constant" for some definition of constant.  The
2149 ** Walker.eCode value determines the type of "constant" we are looking
2150 ** for.
2151 **
2152 ** These callback routines are used to implement the following:
2153 **
2154 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2155 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2156 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2157 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2158 **
2159 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2160 ** is found to not be a constant.
2161 **
2162 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2163 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2164 ** when parsing an existing schema out of the sqlite_schema table and 4
2165 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2166 ** an error for new statements, but is silently converted
2167 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2168 ** contain a bound parameter because they were generated by older versions
2169 ** of SQLite to be parsed by newer versions of SQLite without raising a
2170 ** malformed schema error.
2171 */
2172 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2173 
2174   /* If pWalker->eCode is 2 then any term of the expression that comes from
2175   ** the ON or USING clauses of an outer join disqualifies the expression
2176   ** from being considered constant. */
2177   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2178     pWalker->eCode = 0;
2179     return WRC_Abort;
2180   }
2181 
2182   switch( pExpr->op ){
2183     /* Consider functions to be constant if all their arguments are constant
2184     ** and either pWalker->eCode==4 or 5 or the function has the
2185     ** SQLITE_FUNC_CONST flag. */
2186     case TK_FUNCTION:
2187       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2188        && !ExprHasProperty(pExpr, EP_WinFunc)
2189       ){
2190         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2191         return WRC_Continue;
2192       }else{
2193         pWalker->eCode = 0;
2194         return WRC_Abort;
2195       }
2196     case TK_ID:
2197       /* Convert "true" or "false" in a DEFAULT clause into the
2198       ** appropriate TK_TRUEFALSE operator */
2199       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2200         return WRC_Prune;
2201       }
2202       /* no break */ deliberate_fall_through
2203     case TK_COLUMN:
2204     case TK_AGG_FUNCTION:
2205     case TK_AGG_COLUMN:
2206       testcase( pExpr->op==TK_ID );
2207       testcase( pExpr->op==TK_COLUMN );
2208       testcase( pExpr->op==TK_AGG_FUNCTION );
2209       testcase( pExpr->op==TK_AGG_COLUMN );
2210       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2211         return WRC_Continue;
2212       }
2213       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2214         return WRC_Continue;
2215       }
2216       /* no break */ deliberate_fall_through
2217     case TK_IF_NULL_ROW:
2218     case TK_REGISTER:
2219     case TK_DOT:
2220       testcase( pExpr->op==TK_REGISTER );
2221       testcase( pExpr->op==TK_IF_NULL_ROW );
2222       testcase( pExpr->op==TK_DOT );
2223       pWalker->eCode = 0;
2224       return WRC_Abort;
2225     case TK_VARIABLE:
2226       if( pWalker->eCode==5 ){
2227         /* Silently convert bound parameters that appear inside of CREATE
2228         ** statements into a NULL when parsing the CREATE statement text out
2229         ** of the sqlite_schema table */
2230         pExpr->op = TK_NULL;
2231       }else if( pWalker->eCode==4 ){
2232         /* A bound parameter in a CREATE statement that originates from
2233         ** sqlite3_prepare() causes an error */
2234         pWalker->eCode = 0;
2235         return WRC_Abort;
2236       }
2237       /* no break */ deliberate_fall_through
2238     default:
2239       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2240       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2241       return WRC_Continue;
2242   }
2243 }
2244 static int exprIsConst(Expr *p, int initFlag, int iCur){
2245   Walker w;
2246   w.eCode = initFlag;
2247   w.xExprCallback = exprNodeIsConstant;
2248   w.xSelectCallback = sqlite3SelectWalkFail;
2249 #ifdef SQLITE_DEBUG
2250   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2251 #endif
2252   w.u.iCur = iCur;
2253   sqlite3WalkExpr(&w, p);
2254   return w.eCode;
2255 }
2256 
2257 /*
2258 ** Walk an expression tree.  Return non-zero if the expression is constant
2259 ** and 0 if it involves variables or function calls.
2260 **
2261 ** For the purposes of this function, a double-quoted string (ex: "abc")
2262 ** is considered a variable but a single-quoted string (ex: 'abc') is
2263 ** a constant.
2264 */
2265 int sqlite3ExprIsConstant(Expr *p){
2266   return exprIsConst(p, 1, 0);
2267 }
2268 
2269 /*
2270 ** Walk an expression tree.  Return non-zero if
2271 **
2272 **   (1) the expression is constant, and
2273 **   (2) the expression does originate in the ON or USING clause
2274 **       of a LEFT JOIN, and
2275 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2276 **       operands created by the constant propagation optimization.
2277 **
2278 ** When this routine returns true, it indicates that the expression
2279 ** can be added to the pParse->pConstExpr list and evaluated once when
2280 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2281 */
2282 int sqlite3ExprIsConstantNotJoin(Expr *p){
2283   return exprIsConst(p, 2, 0);
2284 }
2285 
2286 /*
2287 ** Walk an expression tree.  Return non-zero if the expression is constant
2288 ** for any single row of the table with cursor iCur.  In other words, the
2289 ** expression must not refer to any non-deterministic function nor any
2290 ** table other than iCur.
2291 */
2292 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2293   return exprIsConst(p, 3, iCur);
2294 }
2295 
2296 /*
2297 ** Check pExpr to see if it is an invariant constraint on data source pSrc.
2298 ** This is an optimization.  False negatives will perhaps cause slower
2299 ** queries, but false positives will yield incorrect answers.  So when in
2300 ** doubt, return 0.
2301 **
2302 ** To be an invariant constraint, the following must be true:
2303 **
2304 **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
2305 **
2306 **   (2)  pExpr cannot use subqueries or non-deterministic functions.
2307 **
2308 **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
2309 **        (Is there some way to relax this constraint?)
2310 **
2311 **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
2312 **         (4a)  pExpr must come from an ON clause..
2313            (4b)  and specifically the ON clause associated with the LEFT JOIN.
2314 **
2315 **   (5)  If pSrc is not the right operand of a LEFT JOIN or the left
2316 **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
2317 **        clause, not an ON clause.
2318 */
2319 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
2320   if( pSrc->fg.jointype & JT_LTORJ ){
2321     return 0;  /* rule (3) */
2322   }
2323   if( pSrc->fg.jointype & JT_LEFT ){
2324     if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
2325     if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
2326   }else{
2327     if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
2328   }
2329   return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2330 }
2331 
2332 
2333 /*
2334 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2335 */
2336 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2337   ExprList *pGroupBy = pWalker->u.pGroupBy;
2338   int i;
2339 
2340   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2341   ** it constant.  */
2342   for(i=0; i<pGroupBy->nExpr; i++){
2343     Expr *p = pGroupBy->a[i].pExpr;
2344     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2345       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2346       if( sqlite3IsBinary(pColl) ){
2347         return WRC_Prune;
2348       }
2349     }
2350   }
2351 
2352   /* Check if pExpr is a sub-select. If so, consider it variable. */
2353   if( ExprUseXSelect(pExpr) ){
2354     pWalker->eCode = 0;
2355     return WRC_Abort;
2356   }
2357 
2358   return exprNodeIsConstant(pWalker, pExpr);
2359 }
2360 
2361 /*
2362 ** Walk the expression tree passed as the first argument. Return non-zero
2363 ** if the expression consists entirely of constants or copies of terms
2364 ** in pGroupBy that sort with the BINARY collation sequence.
2365 **
2366 ** This routine is used to determine if a term of the HAVING clause can
2367 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2368 ** the value of the HAVING clause term must be the same for all members of
2369 ** a "group".  The requirement that the GROUP BY term must be BINARY
2370 ** assumes that no other collating sequence will have a finer-grained
2371 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2372 ** A=B in every other collating sequence.  The requirement that the
2373 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2374 ** to promote HAVING clauses that use the same alternative collating
2375 ** sequence as the GROUP BY term, but that is much harder to check,
2376 ** alternative collating sequences are uncommon, and this is only an
2377 ** optimization, so we take the easy way out and simply require the
2378 ** GROUP BY to use the BINARY collating sequence.
2379 */
2380 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2381   Walker w;
2382   w.eCode = 1;
2383   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2384   w.xSelectCallback = 0;
2385   w.u.pGroupBy = pGroupBy;
2386   w.pParse = pParse;
2387   sqlite3WalkExpr(&w, p);
2388   return w.eCode;
2389 }
2390 
2391 /*
2392 ** Walk an expression tree for the DEFAULT field of a column definition
2393 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2394 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2395 ** the expression is constant or a function call with constant arguments.
2396 ** Return and 0 if there are any variables.
2397 **
2398 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2399 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2400 ** (such as ? or $abc) in the expression are converted into NULL.  When
2401 ** isInit is false, parameters raise an error.  Parameters should not be
2402 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2403 ** allowed it, so we need to support it when reading sqlite_schema for
2404 ** backwards compatibility.
2405 **
2406 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2407 **
2408 ** For the purposes of this function, a double-quoted string (ex: "abc")
2409 ** is considered a variable but a single-quoted string (ex: 'abc') is
2410 ** a constant.
2411 */
2412 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2413   assert( isInit==0 || isInit==1 );
2414   return exprIsConst(p, 4+isInit, 0);
2415 }
2416 
2417 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2418 /*
2419 ** Walk an expression tree.  Return 1 if the expression contains a
2420 ** subquery of some kind.  Return 0 if there are no subqueries.
2421 */
2422 int sqlite3ExprContainsSubquery(Expr *p){
2423   Walker w;
2424   w.eCode = 1;
2425   w.xExprCallback = sqlite3ExprWalkNoop;
2426   w.xSelectCallback = sqlite3SelectWalkFail;
2427 #ifdef SQLITE_DEBUG
2428   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2429 #endif
2430   sqlite3WalkExpr(&w, p);
2431   return w.eCode==0;
2432 }
2433 #endif
2434 
2435 /*
2436 ** If the expression p codes a constant integer that is small enough
2437 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2438 ** in *pValue.  If the expression is not an integer or if it is too big
2439 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2440 */
2441 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2442   int rc = 0;
2443   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2444 
2445   /* If an expression is an integer literal that fits in a signed 32-bit
2446   ** integer, then the EP_IntValue flag will have already been set */
2447   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2448            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2449 
2450   if( p->flags & EP_IntValue ){
2451     *pValue = p->u.iValue;
2452     return 1;
2453   }
2454   switch( p->op ){
2455     case TK_UPLUS: {
2456       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2457       break;
2458     }
2459     case TK_UMINUS: {
2460       int v = 0;
2461       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2462         assert( ((unsigned int)v)!=0x80000000 );
2463         *pValue = -v;
2464         rc = 1;
2465       }
2466       break;
2467     }
2468     default: break;
2469   }
2470   return rc;
2471 }
2472 
2473 /*
2474 ** Return FALSE if there is no chance that the expression can be NULL.
2475 **
2476 ** If the expression might be NULL or if the expression is too complex
2477 ** to tell return TRUE.
2478 **
2479 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2480 ** when we know that a value cannot be NULL.  Hence, a false positive
2481 ** (returning TRUE when in fact the expression can never be NULL) might
2482 ** be a small performance hit but is otherwise harmless.  On the other
2483 ** hand, a false negative (returning FALSE when the result could be NULL)
2484 ** will likely result in an incorrect answer.  So when in doubt, return
2485 ** TRUE.
2486 */
2487 int sqlite3ExprCanBeNull(const Expr *p){
2488   u8 op;
2489   assert( p!=0 );
2490   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2491     p = p->pLeft;
2492     assert( p!=0 );
2493   }
2494   op = p->op;
2495   if( op==TK_REGISTER ) op = p->op2;
2496   switch( op ){
2497     case TK_INTEGER:
2498     case TK_STRING:
2499     case TK_FLOAT:
2500     case TK_BLOB:
2501       return 0;
2502     case TK_COLUMN:
2503       assert( ExprUseYTab(p) );
2504       return ExprHasProperty(p, EP_CanBeNull) ||
2505              p->y.pTab==0 ||  /* Reference to column of index on expression */
2506              (p->iColumn>=0
2507               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2508               && p->y.pTab->aCol[p->iColumn].notNull==0);
2509     default:
2510       return 1;
2511   }
2512 }
2513 
2514 /*
2515 ** Return TRUE if the given expression is a constant which would be
2516 ** unchanged by OP_Affinity with the affinity given in the second
2517 ** argument.
2518 **
2519 ** This routine is used to determine if the OP_Affinity operation
2520 ** can be omitted.  When in doubt return FALSE.  A false negative
2521 ** is harmless.  A false positive, however, can result in the wrong
2522 ** answer.
2523 */
2524 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2525   u8 op;
2526   int unaryMinus = 0;
2527   if( aff==SQLITE_AFF_BLOB ) return 1;
2528   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2529     if( p->op==TK_UMINUS ) unaryMinus = 1;
2530     p = p->pLeft;
2531   }
2532   op = p->op;
2533   if( op==TK_REGISTER ) op = p->op2;
2534   switch( op ){
2535     case TK_INTEGER: {
2536       return aff>=SQLITE_AFF_NUMERIC;
2537     }
2538     case TK_FLOAT: {
2539       return aff>=SQLITE_AFF_NUMERIC;
2540     }
2541     case TK_STRING: {
2542       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2543     }
2544     case TK_BLOB: {
2545       return !unaryMinus;
2546     }
2547     case TK_COLUMN: {
2548       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2549       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2550     }
2551     default: {
2552       return 0;
2553     }
2554   }
2555 }
2556 
2557 /*
2558 ** Return TRUE if the given string is a row-id column name.
2559 */
2560 int sqlite3IsRowid(const char *z){
2561   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2562   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2563   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2564   return 0;
2565 }
2566 
2567 /*
2568 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2569 ** that can be simplified to a direct table access, then return
2570 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2571 ** or if the SELECT statement needs to be manifested into a transient
2572 ** table, then return NULL.
2573 */
2574 #ifndef SQLITE_OMIT_SUBQUERY
2575 static Select *isCandidateForInOpt(const Expr *pX){
2576   Select *p;
2577   SrcList *pSrc;
2578   ExprList *pEList;
2579   Table *pTab;
2580   int i;
2581   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2582   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2583   p = pX->x.pSelect;
2584   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2585   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2586     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2587     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2588     return 0; /* No DISTINCT keyword and no aggregate functions */
2589   }
2590   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2591   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2592   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2593   pSrc = p->pSrc;
2594   assert( pSrc!=0 );
2595   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2596   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2597   pTab = pSrc->a[0].pTab;
2598   assert( pTab!=0 );
2599   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2600   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2601   pEList = p->pEList;
2602   assert( pEList!=0 );
2603   /* All SELECT results must be columns. */
2604   for(i=0; i<pEList->nExpr; i++){
2605     Expr *pRes = pEList->a[i].pExpr;
2606     if( pRes->op!=TK_COLUMN ) return 0;
2607     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2608   }
2609   return p;
2610 }
2611 #endif /* SQLITE_OMIT_SUBQUERY */
2612 
2613 #ifndef SQLITE_OMIT_SUBQUERY
2614 /*
2615 ** Generate code that checks the left-most column of index table iCur to see if
2616 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2617 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2618 ** to be set to NULL if iCur contains one or more NULL values.
2619 */
2620 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2621   int addr1;
2622   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2623   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2624   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2625   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2626   VdbeComment((v, "first_entry_in(%d)", iCur));
2627   sqlite3VdbeJumpHere(v, addr1);
2628 }
2629 #endif
2630 
2631 
2632 #ifndef SQLITE_OMIT_SUBQUERY
2633 /*
2634 ** The argument is an IN operator with a list (not a subquery) on the
2635 ** right-hand side.  Return TRUE if that list is constant.
2636 */
2637 static int sqlite3InRhsIsConstant(Expr *pIn){
2638   Expr *pLHS;
2639   int res;
2640   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2641   pLHS = pIn->pLeft;
2642   pIn->pLeft = 0;
2643   res = sqlite3ExprIsConstant(pIn);
2644   pIn->pLeft = pLHS;
2645   return res;
2646 }
2647 #endif
2648 
2649 /*
2650 ** This function is used by the implementation of the IN (...) operator.
2651 ** The pX parameter is the expression on the RHS of the IN operator, which
2652 ** might be either a list of expressions or a subquery.
2653 **
2654 ** The job of this routine is to find or create a b-tree object that can
2655 ** be used either to test for membership in the RHS set or to iterate through
2656 ** all members of the RHS set, skipping duplicates.
2657 **
2658 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2659 ** and the *piTab parameter is set to the index of that cursor.
2660 **
2661 ** The returned value of this function indicates the b-tree type, as follows:
2662 **
2663 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2664 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2665 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2666 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2667 **                         populated epheremal table.
2668 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2669 **                         implemented as a sequence of comparisons.
2670 **
2671 ** An existing b-tree might be used if the RHS expression pX is a simple
2672 ** subquery such as:
2673 **
2674 **     SELECT <column1>, <column2>... FROM <table>
2675 **
2676 ** If the RHS of the IN operator is a list or a more complex subquery, then
2677 ** an ephemeral table might need to be generated from the RHS and then
2678 ** pX->iTable made to point to the ephemeral table instead of an
2679 ** existing table.  In this case, the creation and initialization of the
2680 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2681 ** will be set on pX and the pX->y.sub fields will be set to show where
2682 ** the subroutine is coded.
2683 **
2684 ** The inFlags parameter must contain, at a minimum, one of the bits
2685 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2686 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2687 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2688 ** be used to loop over all values of the RHS of the IN operator.
2689 **
2690 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2691 ** through the set members) then the b-tree must not contain duplicates.
2692 ** An epheremal table will be created unless the selected columns are guaranteed
2693 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2694 ** a UNIQUE constraint or index.
2695 **
2696 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2697 ** for fast set membership tests) then an epheremal table must
2698 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2699 ** index can be found with the specified <columns> as its left-most.
2700 **
2701 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2702 ** if the RHS of the IN operator is a list (not a subquery) then this
2703 ** routine might decide that creating an ephemeral b-tree for membership
2704 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2705 ** calling routine should implement the IN operator using a sequence
2706 ** of Eq or Ne comparison operations.
2707 **
2708 ** When the b-tree is being used for membership tests, the calling function
2709 ** might need to know whether or not the RHS side of the IN operator
2710 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2711 ** if there is any chance that the (...) might contain a NULL value at
2712 ** runtime, then a register is allocated and the register number written
2713 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2714 ** NULL value, then *prRhsHasNull is left unchanged.
2715 **
2716 ** If a register is allocated and its location stored in *prRhsHasNull, then
2717 ** the value in that register will be NULL if the b-tree contains one or more
2718 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2719 ** NULL values.
2720 **
2721 ** If the aiMap parameter is not NULL, it must point to an array containing
2722 ** one element for each column returned by the SELECT statement on the RHS
2723 ** of the IN(...) operator. The i'th entry of the array is populated with the
2724 ** offset of the index column that matches the i'th column returned by the
2725 ** SELECT. For example, if the expression and selected index are:
2726 **
2727 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2728 **   CREATE INDEX i1 ON t1(b, c, a);
2729 **
2730 ** then aiMap[] is populated with {2, 0, 1}.
2731 */
2732 #ifndef SQLITE_OMIT_SUBQUERY
2733 int sqlite3FindInIndex(
2734   Parse *pParse,             /* Parsing context */
2735   Expr *pX,                  /* The IN expression */
2736   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2737   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2738   int *aiMap,                /* Mapping from Index fields to RHS fields */
2739   int *piTab                 /* OUT: index to use */
2740 ){
2741   Select *p;                            /* SELECT to the right of IN operator */
2742   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2743   int iTab;                             /* Cursor of the RHS table */
2744   int mustBeUnique;                     /* True if RHS must be unique */
2745   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2746 
2747   assert( pX->op==TK_IN );
2748   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2749   iTab = pParse->nTab++;
2750 
2751   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2752   ** whether or not the SELECT result contains NULL values, check whether
2753   ** or not NULL is actually possible (it may not be, for example, due
2754   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2755   ** set prRhsHasNull to 0 before continuing.  */
2756   if( prRhsHasNull && ExprUseXSelect(pX) ){
2757     int i;
2758     ExprList *pEList = pX->x.pSelect->pEList;
2759     for(i=0; i<pEList->nExpr; i++){
2760       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2761     }
2762     if( i==pEList->nExpr ){
2763       prRhsHasNull = 0;
2764     }
2765   }
2766 
2767   /* Check to see if an existing table or index can be used to
2768   ** satisfy the query.  This is preferable to generating a new
2769   ** ephemeral table.  */
2770   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2771     sqlite3 *db = pParse->db;              /* Database connection */
2772     Table *pTab;                           /* Table <table>. */
2773     int iDb;                               /* Database idx for pTab */
2774     ExprList *pEList = p->pEList;
2775     int nExpr = pEList->nExpr;
2776 
2777     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2778     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2779     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2780     pTab = p->pSrc->a[0].pTab;
2781 
2782     /* Code an OP_Transaction and OP_TableLock for <table>. */
2783     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2784     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2785     sqlite3CodeVerifySchema(pParse, iDb);
2786     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2787 
2788     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2789     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2790       /* The "x IN (SELECT rowid FROM table)" case */
2791       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2792       VdbeCoverage(v);
2793 
2794       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2795       eType = IN_INDEX_ROWID;
2796       ExplainQueryPlan((pParse, 0,
2797             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2798       sqlite3VdbeJumpHere(v, iAddr);
2799     }else{
2800       Index *pIdx;                         /* Iterator variable */
2801       int affinity_ok = 1;
2802       int i;
2803 
2804       /* Check that the affinity that will be used to perform each
2805       ** comparison is the same as the affinity of each column in table
2806       ** on the RHS of the IN operator.  If it not, it is not possible to
2807       ** use any index of the RHS table.  */
2808       for(i=0; i<nExpr && affinity_ok; i++){
2809         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2810         int iCol = pEList->a[i].pExpr->iColumn;
2811         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2812         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2813         testcase( cmpaff==SQLITE_AFF_BLOB );
2814         testcase( cmpaff==SQLITE_AFF_TEXT );
2815         switch( cmpaff ){
2816           case SQLITE_AFF_BLOB:
2817             break;
2818           case SQLITE_AFF_TEXT:
2819             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2820             ** other has no affinity and the other side is TEXT.  Hence,
2821             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2822             ** and for the term on the LHS of the IN to have no affinity. */
2823             assert( idxaff==SQLITE_AFF_TEXT );
2824             break;
2825           default:
2826             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2827         }
2828       }
2829 
2830       if( affinity_ok ){
2831         /* Search for an existing index that will work for this IN operator */
2832         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2833           Bitmask colUsed;      /* Columns of the index used */
2834           Bitmask mCol;         /* Mask for the current column */
2835           if( pIdx->nColumn<nExpr ) continue;
2836           if( pIdx->pPartIdxWhere!=0 ) continue;
2837           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2838           ** BITMASK(nExpr) without overflowing */
2839           testcase( pIdx->nColumn==BMS-2 );
2840           testcase( pIdx->nColumn==BMS-1 );
2841           if( pIdx->nColumn>=BMS-1 ) continue;
2842           if( mustBeUnique ){
2843             if( pIdx->nKeyCol>nExpr
2844              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2845             ){
2846               continue;  /* This index is not unique over the IN RHS columns */
2847             }
2848           }
2849 
2850           colUsed = 0;   /* Columns of index used so far */
2851           for(i=0; i<nExpr; i++){
2852             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2853             Expr *pRhs = pEList->a[i].pExpr;
2854             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2855             int j;
2856 
2857             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2858             for(j=0; j<nExpr; j++){
2859               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2860               assert( pIdx->azColl[j] );
2861               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2862                 continue;
2863               }
2864               break;
2865             }
2866             if( j==nExpr ) break;
2867             mCol = MASKBIT(j);
2868             if( mCol & colUsed ) break; /* Each column used only once */
2869             colUsed |= mCol;
2870             if( aiMap ) aiMap[i] = j;
2871           }
2872 
2873           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2874           if( colUsed==(MASKBIT(nExpr)-1) ){
2875             /* If we reach this point, that means the index pIdx is usable */
2876             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2877             ExplainQueryPlan((pParse, 0,
2878                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2879             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2880             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2881             VdbeComment((v, "%s", pIdx->zName));
2882             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2883             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2884 
2885             if( prRhsHasNull ){
2886 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2887               i64 mask = (1<<nExpr)-1;
2888               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2889                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2890 #endif
2891               *prRhsHasNull = ++pParse->nMem;
2892               if( nExpr==1 ){
2893                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2894               }
2895             }
2896             sqlite3VdbeJumpHere(v, iAddr);
2897           }
2898         } /* End loop over indexes */
2899       } /* End if( affinity_ok ) */
2900     } /* End if not an rowid index */
2901   } /* End attempt to optimize using an index */
2902 
2903   /* If no preexisting index is available for the IN clause
2904   ** and IN_INDEX_NOOP is an allowed reply
2905   ** and the RHS of the IN operator is a list, not a subquery
2906   ** and the RHS is not constant or has two or fewer terms,
2907   ** then it is not worth creating an ephemeral table to evaluate
2908   ** the IN operator so return IN_INDEX_NOOP.
2909   */
2910   if( eType==0
2911    && (inFlags & IN_INDEX_NOOP_OK)
2912    && ExprUseXList(pX)
2913    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2914   ){
2915     pParse->nTab--;  /* Back out the allocation of the unused cursor */
2916     iTab = -1;       /* Cursor is not allocated */
2917     eType = IN_INDEX_NOOP;
2918   }
2919 
2920   if( eType==0 ){
2921     /* Could not find an existing table or index to use as the RHS b-tree.
2922     ** We will have to generate an ephemeral table to do the job.
2923     */
2924     u32 savedNQueryLoop = pParse->nQueryLoop;
2925     int rMayHaveNull = 0;
2926     eType = IN_INDEX_EPH;
2927     if( inFlags & IN_INDEX_LOOP ){
2928       pParse->nQueryLoop = 0;
2929     }else if( prRhsHasNull ){
2930       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2931     }
2932     assert( pX->op==TK_IN );
2933     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2934     if( rMayHaveNull ){
2935       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2936     }
2937     pParse->nQueryLoop = savedNQueryLoop;
2938   }
2939 
2940   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2941     int i, n;
2942     n = sqlite3ExprVectorSize(pX->pLeft);
2943     for(i=0; i<n; i++) aiMap[i] = i;
2944   }
2945   *piTab = iTab;
2946   return eType;
2947 }
2948 #endif
2949 
2950 #ifndef SQLITE_OMIT_SUBQUERY
2951 /*
2952 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2953 ** function allocates and returns a nul-terminated string containing
2954 ** the affinities to be used for each column of the comparison.
2955 **
2956 ** It is the responsibility of the caller to ensure that the returned
2957 ** string is eventually freed using sqlite3DbFree().
2958 */
2959 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2960   Expr *pLeft = pExpr->pLeft;
2961   int nVal = sqlite3ExprVectorSize(pLeft);
2962   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2963   char *zRet;
2964 
2965   assert( pExpr->op==TK_IN );
2966   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2967   if( zRet ){
2968     int i;
2969     for(i=0; i<nVal; i++){
2970       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2971       char a = sqlite3ExprAffinity(pA);
2972       if( pSelect ){
2973         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2974       }else{
2975         zRet[i] = a;
2976       }
2977     }
2978     zRet[nVal] = '\0';
2979   }
2980   return zRet;
2981 }
2982 #endif
2983 
2984 #ifndef SQLITE_OMIT_SUBQUERY
2985 /*
2986 ** Load the Parse object passed as the first argument with an error
2987 ** message of the form:
2988 **
2989 **   "sub-select returns N columns - expected M"
2990 */
2991 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2992   if( pParse->nErr==0 ){
2993     const char *zFmt = "sub-select returns %d columns - expected %d";
2994     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2995   }
2996 }
2997 #endif
2998 
2999 /*
3000 ** Expression pExpr is a vector that has been used in a context where
3001 ** it is not permitted. If pExpr is a sub-select vector, this routine
3002 ** loads the Parse object with a message of the form:
3003 **
3004 **   "sub-select returns N columns - expected 1"
3005 **
3006 ** Or, if it is a regular scalar vector:
3007 **
3008 **   "row value misused"
3009 */
3010 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3011 #ifndef SQLITE_OMIT_SUBQUERY
3012   if( ExprUseXSelect(pExpr) ){
3013     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3014   }else
3015 #endif
3016   {
3017     sqlite3ErrorMsg(pParse, "row value misused");
3018   }
3019 }
3020 
3021 #ifndef SQLITE_OMIT_SUBQUERY
3022 /*
3023 ** Generate code that will construct an ephemeral table containing all terms
3024 ** in the RHS of an IN operator.  The IN operator can be in either of two
3025 ** forms:
3026 **
3027 **     x IN (4,5,11)              -- IN operator with list on right-hand side
3028 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
3029 **
3030 ** The pExpr parameter is the IN operator.  The cursor number for the
3031 ** constructed ephermeral table is returned.  The first time the ephemeral
3032 ** table is computed, the cursor number is also stored in pExpr->iTable,
3033 ** however the cursor number returned might not be the same, as it might
3034 ** have been duplicated using OP_OpenDup.
3035 **
3036 ** If the LHS expression ("x" in the examples) is a column value, or
3037 ** the SELECT statement returns a column value, then the affinity of that
3038 ** column is used to build the index keys. If both 'x' and the
3039 ** SELECT... statement are columns, then numeric affinity is used
3040 ** if either column has NUMERIC or INTEGER affinity. If neither
3041 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3042 ** is used.
3043 */
3044 void sqlite3CodeRhsOfIN(
3045   Parse *pParse,          /* Parsing context */
3046   Expr *pExpr,            /* The IN operator */
3047   int iTab                /* Use this cursor number */
3048 ){
3049   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3050   int addr;                   /* Address of OP_OpenEphemeral instruction */
3051   Expr *pLeft;                /* the LHS of the IN operator */
3052   KeyInfo *pKeyInfo = 0;      /* Key information */
3053   int nVal;                   /* Size of vector pLeft */
3054   Vdbe *v;                    /* The prepared statement under construction */
3055 
3056   v = pParse->pVdbe;
3057   assert( v!=0 );
3058 
3059   /* The evaluation of the IN must be repeated every time it
3060   ** is encountered if any of the following is true:
3061   **
3062   **    *  The right-hand side is a correlated subquery
3063   **    *  The right-hand side is an expression list containing variables
3064   **    *  We are inside a trigger
3065   **
3066   ** If all of the above are false, then we can compute the RHS just once
3067   ** and reuse it many names.
3068   */
3069   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3070     /* Reuse of the RHS is allowed */
3071     /* If this routine has already been coded, but the previous code
3072     ** might not have been invoked yet, so invoke it now as a subroutine.
3073     */
3074     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3075       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3076       if( ExprUseXSelect(pExpr) ){
3077         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3078               pExpr->x.pSelect->selId));
3079       }
3080       assert( ExprUseYSub(pExpr) );
3081       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3082                         pExpr->y.sub.iAddr);
3083       assert( iTab!=pExpr->iTable );
3084       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3085       sqlite3VdbeJumpHere(v, addrOnce);
3086       return;
3087     }
3088 
3089     /* Begin coding the subroutine */
3090     assert( !ExprUseYWin(pExpr) );
3091     ExprSetProperty(pExpr, EP_Subrtn);
3092     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3093     pExpr->y.sub.regReturn = ++pParse->nMem;
3094     pExpr->y.sub.iAddr =
3095       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3096 
3097     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3098   }
3099 
3100   /* Check to see if this is a vector IN operator */
3101   pLeft = pExpr->pLeft;
3102   nVal = sqlite3ExprVectorSize(pLeft);
3103 
3104   /* Construct the ephemeral table that will contain the content of
3105   ** RHS of the IN operator.
3106   */
3107   pExpr->iTable = iTab;
3108   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3109 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3110   if( ExprUseXSelect(pExpr) ){
3111     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3112   }else{
3113     VdbeComment((v, "RHS of IN operator"));
3114   }
3115 #endif
3116   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3117 
3118   if( ExprUseXSelect(pExpr) ){
3119     /* Case 1:     expr IN (SELECT ...)
3120     **
3121     ** Generate code to write the results of the select into the temporary
3122     ** table allocated and opened above.
3123     */
3124     Select *pSelect = pExpr->x.pSelect;
3125     ExprList *pEList = pSelect->pEList;
3126 
3127     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3128         addrOnce?"":"CORRELATED ", pSelect->selId
3129     ));
3130     /* If the LHS and RHS of the IN operator do not match, that
3131     ** error will have been caught long before we reach this point. */
3132     if( ALWAYS(pEList->nExpr==nVal) ){
3133       Select *pCopy;
3134       SelectDest dest;
3135       int i;
3136       int rc;
3137       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3138       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3139       pSelect->iLimit = 0;
3140       testcase( pSelect->selFlags & SF_Distinct );
3141       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3142       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3143       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3144       sqlite3SelectDelete(pParse->db, pCopy);
3145       sqlite3DbFree(pParse->db, dest.zAffSdst);
3146       if( rc ){
3147         sqlite3KeyInfoUnref(pKeyInfo);
3148         return;
3149       }
3150       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3151       assert( pEList!=0 );
3152       assert( pEList->nExpr>0 );
3153       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3154       for(i=0; i<nVal; i++){
3155         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3156         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3157             pParse, p, pEList->a[i].pExpr
3158         );
3159       }
3160     }
3161   }else if( ALWAYS(pExpr->x.pList!=0) ){
3162     /* Case 2:     expr IN (exprlist)
3163     **
3164     ** For each expression, build an index key from the evaluation and
3165     ** store it in the temporary table. If <expr> is a column, then use
3166     ** that columns affinity when building index keys. If <expr> is not
3167     ** a column, use numeric affinity.
3168     */
3169     char affinity;            /* Affinity of the LHS of the IN */
3170     int i;
3171     ExprList *pList = pExpr->x.pList;
3172     struct ExprList_item *pItem;
3173     int r1, r2;
3174     affinity = sqlite3ExprAffinity(pLeft);
3175     if( affinity<=SQLITE_AFF_NONE ){
3176       affinity = SQLITE_AFF_BLOB;
3177     }else if( affinity==SQLITE_AFF_REAL ){
3178       affinity = SQLITE_AFF_NUMERIC;
3179     }
3180     if( pKeyInfo ){
3181       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3182       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3183     }
3184 
3185     /* Loop through each expression in <exprlist>. */
3186     r1 = sqlite3GetTempReg(pParse);
3187     r2 = sqlite3GetTempReg(pParse);
3188     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3189       Expr *pE2 = pItem->pExpr;
3190 
3191       /* If the expression is not constant then we will need to
3192       ** disable the test that was generated above that makes sure
3193       ** this code only executes once.  Because for a non-constant
3194       ** expression we need to rerun this code each time.
3195       */
3196       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3197         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3198         sqlite3VdbeChangeToNoop(v, addrOnce);
3199         ExprClearProperty(pExpr, EP_Subrtn);
3200         addrOnce = 0;
3201       }
3202 
3203       /* Evaluate the expression and insert it into the temp table */
3204       sqlite3ExprCode(pParse, pE2, r1);
3205       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3206       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3207     }
3208     sqlite3ReleaseTempReg(pParse, r1);
3209     sqlite3ReleaseTempReg(pParse, r2);
3210   }
3211   if( pKeyInfo ){
3212     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3213   }
3214   if( addrOnce ){
3215     sqlite3VdbeJumpHere(v, addrOnce);
3216     /* Subroutine return */
3217     assert( ExprUseYSub(pExpr) );
3218     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3219             || pParse->nErr );
3220     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3221                       pExpr->y.sub.iAddr, 1);
3222     VdbeCoverage(v);
3223     sqlite3ClearTempRegCache(pParse);
3224   }
3225 }
3226 #endif /* SQLITE_OMIT_SUBQUERY */
3227 
3228 /*
3229 ** Generate code for scalar subqueries used as a subquery expression
3230 ** or EXISTS operator:
3231 **
3232 **     (SELECT a FROM b)          -- subquery
3233 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3234 **
3235 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3236 **
3237 ** Return the register that holds the result.  For a multi-column SELECT,
3238 ** the result is stored in a contiguous array of registers and the
3239 ** return value is the register of the left-most result column.
3240 ** Return 0 if an error occurs.
3241 */
3242 #ifndef SQLITE_OMIT_SUBQUERY
3243 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3244   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3245   int rReg = 0;               /* Register storing resulting */
3246   Select *pSel;               /* SELECT statement to encode */
3247   SelectDest dest;            /* How to deal with SELECT result */
3248   int nReg;                   /* Registers to allocate */
3249   Expr *pLimit;               /* New limit expression */
3250 
3251   Vdbe *v = pParse->pVdbe;
3252   assert( v!=0 );
3253   if( pParse->nErr ) return 0;
3254   testcase( pExpr->op==TK_EXISTS );
3255   testcase( pExpr->op==TK_SELECT );
3256   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3257   assert( ExprUseXSelect(pExpr) );
3258   pSel = pExpr->x.pSelect;
3259 
3260   /* If this routine has already been coded, then invoke it as a
3261   ** subroutine. */
3262   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3263     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3264     assert( ExprUseYSub(pExpr) );
3265     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3266                       pExpr->y.sub.iAddr);
3267     return pExpr->iTable;
3268   }
3269 
3270   /* Begin coding the subroutine */
3271   assert( !ExprUseYWin(pExpr) );
3272   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3273   ExprSetProperty(pExpr, EP_Subrtn);
3274   pExpr->y.sub.regReturn = ++pParse->nMem;
3275   pExpr->y.sub.iAddr =
3276     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3277 
3278   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3279   ** is encountered if any of the following is true:
3280   **
3281   **    *  The right-hand side is a correlated subquery
3282   **    *  The right-hand side is an expression list containing variables
3283   **    *  We are inside a trigger
3284   **
3285   ** If all of the above are false, then we can run this code just once
3286   ** save the results, and reuse the same result on subsequent invocations.
3287   */
3288   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3289     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3290   }
3291 
3292   /* For a SELECT, generate code to put the values for all columns of
3293   ** the first row into an array of registers and return the index of
3294   ** the first register.
3295   **
3296   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3297   ** into a register and return that register number.
3298   **
3299   ** In both cases, the query is augmented with "LIMIT 1".  Any
3300   ** preexisting limit is discarded in place of the new LIMIT 1.
3301   */
3302   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3303         addrOnce?"":"CORRELATED ", pSel->selId));
3304   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3305   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3306   pParse->nMem += nReg;
3307   if( pExpr->op==TK_SELECT ){
3308     dest.eDest = SRT_Mem;
3309     dest.iSdst = dest.iSDParm;
3310     dest.nSdst = nReg;
3311     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3312     VdbeComment((v, "Init subquery result"));
3313   }else{
3314     dest.eDest = SRT_Exists;
3315     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3316     VdbeComment((v, "Init EXISTS result"));
3317   }
3318   if( pSel->pLimit ){
3319     /* The subquery already has a limit.  If the pre-existing limit is X
3320     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3321     sqlite3 *db = pParse->db;
3322     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3323     if( pLimit ){
3324       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3325       pLimit = sqlite3PExpr(pParse, TK_NE,
3326                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3327     }
3328     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3329     pSel->pLimit->pLeft = pLimit;
3330   }else{
3331     /* If there is no pre-existing limit add a limit of 1 */
3332     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3333     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3334   }
3335   pSel->iLimit = 0;
3336   if( sqlite3Select(pParse, pSel, &dest) ){
3337     pExpr->op2 = pExpr->op;
3338     pExpr->op = TK_ERROR;
3339     return 0;
3340   }
3341   pExpr->iTable = rReg = dest.iSDParm;
3342   ExprSetVVAProperty(pExpr, EP_NoReduce);
3343   if( addrOnce ){
3344     sqlite3VdbeJumpHere(v, addrOnce);
3345   }
3346 
3347   /* Subroutine return */
3348   assert( ExprUseYSub(pExpr) );
3349   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3350           || pParse->nErr );
3351   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3352                     pExpr->y.sub.iAddr, 1);
3353   VdbeCoverage(v);
3354   sqlite3ClearTempRegCache(pParse);
3355   return rReg;
3356 }
3357 #endif /* SQLITE_OMIT_SUBQUERY */
3358 
3359 #ifndef SQLITE_OMIT_SUBQUERY
3360 /*
3361 ** Expr pIn is an IN(...) expression. This function checks that the
3362 ** sub-select on the RHS of the IN() operator has the same number of
3363 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3364 ** a sub-query, that the LHS is a vector of size 1.
3365 */
3366 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3367   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3368   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3369     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3370       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3371       return 1;
3372     }
3373   }else if( nVector!=1 ){
3374     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3375     return 1;
3376   }
3377   return 0;
3378 }
3379 #endif
3380 
3381 #ifndef SQLITE_OMIT_SUBQUERY
3382 /*
3383 ** Generate code for an IN expression.
3384 **
3385 **      x IN (SELECT ...)
3386 **      x IN (value, value, ...)
3387 **
3388 ** The left-hand side (LHS) is a scalar or vector expression.  The
3389 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3390 ** subquery.  If the RHS is a subquery, the number of result columns must
3391 ** match the number of columns in the vector on the LHS.  If the RHS is
3392 ** a list of values, the LHS must be a scalar.
3393 **
3394 ** The IN operator is true if the LHS value is contained within the RHS.
3395 ** The result is false if the LHS is definitely not in the RHS.  The
3396 ** result is NULL if the presence of the LHS in the RHS cannot be
3397 ** determined due to NULLs.
3398 **
3399 ** This routine generates code that jumps to destIfFalse if the LHS is not
3400 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3401 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3402 ** within the RHS then fall through.
3403 **
3404 ** See the separate in-operator.md documentation file in the canonical
3405 ** SQLite source tree for additional information.
3406 */
3407 static void sqlite3ExprCodeIN(
3408   Parse *pParse,        /* Parsing and code generating context */
3409   Expr *pExpr,          /* The IN expression */
3410   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3411   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3412 ){
3413   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3414   int eType;            /* Type of the RHS */
3415   int rLhs;             /* Register(s) holding the LHS values */
3416   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3417   Vdbe *v;              /* Statement under construction */
3418   int *aiMap = 0;       /* Map from vector field to index column */
3419   char *zAff = 0;       /* Affinity string for comparisons */
3420   int nVector;          /* Size of vectors for this IN operator */
3421   int iDummy;           /* Dummy parameter to exprCodeVector() */
3422   Expr *pLeft;          /* The LHS of the IN operator */
3423   int i;                /* loop counter */
3424   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3425   int destStep6 = 0;    /* Start of code for Step 6 */
3426   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3427   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3428   int addrTop;          /* Top of the step-6 loop */
3429   int iTab = 0;         /* Index to use */
3430   u8 okConstFactor = pParse->okConstFactor;
3431 
3432   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3433   pLeft = pExpr->pLeft;
3434   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3435   zAff = exprINAffinity(pParse, pExpr);
3436   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3437   aiMap = (int*)sqlite3DbMallocZero(
3438       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3439   );
3440   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3441 
3442   /* Attempt to compute the RHS. After this step, if anything other than
3443   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3444   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3445   ** the RHS has not yet been coded.  */
3446   v = pParse->pVdbe;
3447   assert( v!=0 );       /* OOM detected prior to this routine */
3448   VdbeNoopComment((v, "begin IN expr"));
3449   eType = sqlite3FindInIndex(pParse, pExpr,
3450                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3451                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3452                              aiMap, &iTab);
3453 
3454   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3455        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3456   );
3457 #ifdef SQLITE_DEBUG
3458   /* Confirm that aiMap[] contains nVector integer values between 0 and
3459   ** nVector-1. */
3460   for(i=0; i<nVector; i++){
3461     int j, cnt;
3462     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3463     assert( cnt==1 );
3464   }
3465 #endif
3466 
3467   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3468   ** vector, then it is stored in an array of nVector registers starting
3469   ** at r1.
3470   **
3471   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3472   ** so that the fields are in the same order as an existing index.   The
3473   ** aiMap[] array contains a mapping from the original LHS field order to
3474   ** the field order that matches the RHS index.
3475   **
3476   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3477   ** even if it is constant, as OP_Affinity may be used on the register
3478   ** by code generated below.  */
3479   assert( pParse->okConstFactor==okConstFactor );
3480   pParse->okConstFactor = 0;
3481   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3482   pParse->okConstFactor = okConstFactor;
3483   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3484   if( i==nVector ){
3485     /* LHS fields are not reordered */
3486     rLhs = rLhsOrig;
3487   }else{
3488     /* Need to reorder the LHS fields according to aiMap */
3489     rLhs = sqlite3GetTempRange(pParse, nVector);
3490     for(i=0; i<nVector; i++){
3491       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3492     }
3493   }
3494 
3495   /* If sqlite3FindInIndex() did not find or create an index that is
3496   ** suitable for evaluating the IN operator, then evaluate using a
3497   ** sequence of comparisons.
3498   **
3499   ** This is step (1) in the in-operator.md optimized algorithm.
3500   */
3501   if( eType==IN_INDEX_NOOP ){
3502     ExprList *pList;
3503     CollSeq *pColl;
3504     int labelOk = sqlite3VdbeMakeLabel(pParse);
3505     int r2, regToFree;
3506     int regCkNull = 0;
3507     int ii;
3508     assert( ExprUseXList(pExpr) );
3509     pList = pExpr->x.pList;
3510     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3511     if( destIfNull!=destIfFalse ){
3512       regCkNull = sqlite3GetTempReg(pParse);
3513       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3514     }
3515     for(ii=0; ii<pList->nExpr; ii++){
3516       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3517       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3518         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3519       }
3520       sqlite3ReleaseTempReg(pParse, regToFree);
3521       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3522         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3523         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3524                           (void*)pColl, P4_COLLSEQ);
3525         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3526         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3527         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3528         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3529         sqlite3VdbeChangeP5(v, zAff[0]);
3530       }else{
3531         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3532         assert( destIfNull==destIfFalse );
3533         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3534                           (void*)pColl, P4_COLLSEQ);
3535         VdbeCoverageIf(v, op==OP_Ne);
3536         VdbeCoverageIf(v, op==OP_IsNull);
3537         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3538       }
3539     }
3540     if( regCkNull ){
3541       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3542       sqlite3VdbeGoto(v, destIfFalse);
3543     }
3544     sqlite3VdbeResolveLabel(v, labelOk);
3545     sqlite3ReleaseTempReg(pParse, regCkNull);
3546     goto sqlite3ExprCodeIN_finished;
3547   }
3548 
3549   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3550   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3551   ** We will then skip the binary search of the RHS.
3552   */
3553   if( destIfNull==destIfFalse ){
3554     destStep2 = destIfFalse;
3555   }else{
3556     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3557   }
3558   for(i=0; i<nVector; i++){
3559     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3560     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3561     if( sqlite3ExprCanBeNull(p) ){
3562       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3563       VdbeCoverage(v);
3564     }
3565   }
3566 
3567   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3568   ** of the RHS using the LHS as a probe.  If found, the result is
3569   ** true.
3570   */
3571   if( eType==IN_INDEX_ROWID ){
3572     /* In this case, the RHS is the ROWID of table b-tree and so we also
3573     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3574     ** into a single opcode. */
3575     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3576     VdbeCoverage(v);
3577     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3578   }else{
3579     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3580     if( destIfFalse==destIfNull ){
3581       /* Combine Step 3 and Step 5 into a single opcode */
3582       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3583                            rLhs, nVector); VdbeCoverage(v);
3584       goto sqlite3ExprCodeIN_finished;
3585     }
3586     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3587     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3588                                       rLhs, nVector); VdbeCoverage(v);
3589   }
3590 
3591   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3592   ** an match on the search above, then the result must be FALSE.
3593   */
3594   if( rRhsHasNull && nVector==1 ){
3595     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3596     VdbeCoverage(v);
3597   }
3598 
3599   /* Step 5.  If we do not care about the difference between NULL and
3600   ** FALSE, then just return false.
3601   */
3602   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3603 
3604   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3605   ** If any comparison is NULL, then the result is NULL.  If all
3606   ** comparisons are FALSE then the final result is FALSE.
3607   **
3608   ** For a scalar LHS, it is sufficient to check just the first row
3609   ** of the RHS.
3610   */
3611   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3612   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3613   VdbeCoverage(v);
3614   if( nVector>1 ){
3615     destNotNull = sqlite3VdbeMakeLabel(pParse);
3616   }else{
3617     /* For nVector==1, combine steps 6 and 7 by immediately returning
3618     ** FALSE if the first comparison is not NULL */
3619     destNotNull = destIfFalse;
3620   }
3621   for(i=0; i<nVector; i++){
3622     Expr *p;
3623     CollSeq *pColl;
3624     int r3 = sqlite3GetTempReg(pParse);
3625     p = sqlite3VectorFieldSubexpr(pLeft, i);
3626     pColl = sqlite3ExprCollSeq(pParse, p);
3627     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3628     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3629                       (void*)pColl, P4_COLLSEQ);
3630     VdbeCoverage(v);
3631     sqlite3ReleaseTempReg(pParse, r3);
3632   }
3633   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3634   if( nVector>1 ){
3635     sqlite3VdbeResolveLabel(v, destNotNull);
3636     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3637     VdbeCoverage(v);
3638 
3639     /* Step 7:  If we reach this point, we know that the result must
3640     ** be false. */
3641     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3642   }
3643 
3644   /* Jumps here in order to return true. */
3645   sqlite3VdbeJumpHere(v, addrTruthOp);
3646 
3647 sqlite3ExprCodeIN_finished:
3648   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3649   VdbeComment((v, "end IN expr"));
3650 sqlite3ExprCodeIN_oom_error:
3651   sqlite3DbFree(pParse->db, aiMap);
3652   sqlite3DbFree(pParse->db, zAff);
3653 }
3654 #endif /* SQLITE_OMIT_SUBQUERY */
3655 
3656 #ifndef SQLITE_OMIT_FLOATING_POINT
3657 /*
3658 ** Generate an instruction that will put the floating point
3659 ** value described by z[0..n-1] into register iMem.
3660 **
3661 ** The z[] string will probably not be zero-terminated.  But the
3662 ** z[n] character is guaranteed to be something that does not look
3663 ** like the continuation of the number.
3664 */
3665 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3666   if( ALWAYS(z!=0) ){
3667     double value;
3668     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3669     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3670     if( negateFlag ) value = -value;
3671     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3672   }
3673 }
3674 #endif
3675 
3676 
3677 /*
3678 ** Generate an instruction that will put the integer describe by
3679 ** text z[0..n-1] into register iMem.
3680 **
3681 ** Expr.u.zToken is always UTF8 and zero-terminated.
3682 */
3683 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3684   Vdbe *v = pParse->pVdbe;
3685   if( pExpr->flags & EP_IntValue ){
3686     int i = pExpr->u.iValue;
3687     assert( i>=0 );
3688     if( negFlag ) i = -i;
3689     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3690   }else{
3691     int c;
3692     i64 value;
3693     const char *z = pExpr->u.zToken;
3694     assert( z!=0 );
3695     c = sqlite3DecOrHexToI64(z, &value);
3696     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3697 #ifdef SQLITE_OMIT_FLOATING_POINT
3698       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3699 #else
3700 #ifndef SQLITE_OMIT_HEX_INTEGER
3701       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3702         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3703                         negFlag?"-":"",pExpr);
3704       }else
3705 #endif
3706       {
3707         codeReal(v, z, negFlag, iMem);
3708       }
3709 #endif
3710     }else{
3711       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3712       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3713     }
3714   }
3715 }
3716 
3717 
3718 /* Generate code that will load into register regOut a value that is
3719 ** appropriate for the iIdxCol-th column of index pIdx.
3720 */
3721 void sqlite3ExprCodeLoadIndexColumn(
3722   Parse *pParse,  /* The parsing context */
3723   Index *pIdx,    /* The index whose column is to be loaded */
3724   int iTabCur,    /* Cursor pointing to a table row */
3725   int iIdxCol,    /* The column of the index to be loaded */
3726   int regOut      /* Store the index column value in this register */
3727 ){
3728   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3729   if( iTabCol==XN_EXPR ){
3730     assert( pIdx->aColExpr );
3731     assert( pIdx->aColExpr->nExpr>iIdxCol );
3732     pParse->iSelfTab = iTabCur + 1;
3733     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3734     pParse->iSelfTab = 0;
3735   }else{
3736     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3737                                     iTabCol, regOut);
3738   }
3739 }
3740 
3741 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3742 /*
3743 ** Generate code that will compute the value of generated column pCol
3744 ** and store the result in register regOut
3745 */
3746 void sqlite3ExprCodeGeneratedColumn(
3747   Parse *pParse,     /* Parsing context */
3748   Table *pTab,       /* Table containing the generated column */
3749   Column *pCol,      /* The generated column */
3750   int regOut         /* Put the result in this register */
3751 ){
3752   int iAddr;
3753   Vdbe *v = pParse->pVdbe;
3754   assert( v!=0 );
3755   assert( pParse->iSelfTab!=0 );
3756   if( pParse->iSelfTab>0 ){
3757     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3758   }else{
3759     iAddr = 0;
3760   }
3761   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3762   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3763     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3764   }
3765   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3766 }
3767 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3768 
3769 /*
3770 ** Generate code to extract the value of the iCol-th column of a table.
3771 */
3772 void sqlite3ExprCodeGetColumnOfTable(
3773   Vdbe *v,        /* Parsing context */
3774   Table *pTab,    /* The table containing the value */
3775   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3776   int iCol,       /* Index of the column to extract */
3777   int regOut      /* Extract the value into this register */
3778 ){
3779   Column *pCol;
3780   assert( v!=0 );
3781   if( pTab==0 ){
3782     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3783     return;
3784   }
3785   if( iCol<0 || iCol==pTab->iPKey ){
3786     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3787     VdbeComment((v, "%s.rowid", pTab->zName));
3788   }else{
3789     int op;
3790     int x;
3791     if( IsVirtual(pTab) ){
3792       op = OP_VColumn;
3793       x = iCol;
3794 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3795     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3796       Parse *pParse = sqlite3VdbeParser(v);
3797       if( pCol->colFlags & COLFLAG_BUSY ){
3798         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3799                         pCol->zCnName);
3800       }else{
3801         int savedSelfTab = pParse->iSelfTab;
3802         pCol->colFlags |= COLFLAG_BUSY;
3803         pParse->iSelfTab = iTabCur+1;
3804         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3805         pParse->iSelfTab = savedSelfTab;
3806         pCol->colFlags &= ~COLFLAG_BUSY;
3807       }
3808       return;
3809 #endif
3810     }else if( !HasRowid(pTab) ){
3811       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3812       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3813       op = OP_Column;
3814     }else{
3815       x = sqlite3TableColumnToStorage(pTab,iCol);
3816       testcase( x!=iCol );
3817       op = OP_Column;
3818     }
3819     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3820     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3821   }
3822 }
3823 
3824 /*
3825 ** Generate code that will extract the iColumn-th column from
3826 ** table pTab and store the column value in register iReg.
3827 **
3828 ** There must be an open cursor to pTab in iTable when this routine
3829 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3830 */
3831 int sqlite3ExprCodeGetColumn(
3832   Parse *pParse,   /* Parsing and code generating context */
3833   Table *pTab,     /* Description of the table we are reading from */
3834   int iColumn,     /* Index of the table column */
3835   int iTable,      /* The cursor pointing to the table */
3836   int iReg,        /* Store results here */
3837   u8 p5            /* P5 value for OP_Column + FLAGS */
3838 ){
3839   assert( pParse->pVdbe!=0 );
3840   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3841   if( p5 ){
3842     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3843     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3844   }
3845   return iReg;
3846 }
3847 
3848 /*
3849 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3850 ** over to iTo..iTo+nReg-1.
3851 */
3852 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3853   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3854 }
3855 
3856 /*
3857 ** Convert a scalar expression node to a TK_REGISTER referencing
3858 ** register iReg.  The caller must ensure that iReg already contains
3859 ** the correct value for the expression.
3860 */
3861 static void exprToRegister(Expr *pExpr, int iReg){
3862   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3863   if( NEVER(p==0) ) return;
3864   p->op2 = p->op;
3865   p->op = TK_REGISTER;
3866   p->iTable = iReg;
3867   ExprClearProperty(p, EP_Skip);
3868 }
3869 
3870 /*
3871 ** Evaluate an expression (either a vector or a scalar expression) and store
3872 ** the result in continguous temporary registers.  Return the index of
3873 ** the first register used to store the result.
3874 **
3875 ** If the returned result register is a temporary scalar, then also write
3876 ** that register number into *piFreeable.  If the returned result register
3877 ** is not a temporary or if the expression is a vector set *piFreeable
3878 ** to 0.
3879 */
3880 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3881   int iResult;
3882   int nResult = sqlite3ExprVectorSize(p);
3883   if( nResult==1 ){
3884     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3885   }else{
3886     *piFreeable = 0;
3887     if( p->op==TK_SELECT ){
3888 #if SQLITE_OMIT_SUBQUERY
3889       iResult = 0;
3890 #else
3891       iResult = sqlite3CodeSubselect(pParse, p);
3892 #endif
3893     }else{
3894       int i;
3895       iResult = pParse->nMem+1;
3896       pParse->nMem += nResult;
3897       assert( ExprUseXList(p) );
3898       for(i=0; i<nResult; i++){
3899         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3900       }
3901     }
3902   }
3903   return iResult;
3904 }
3905 
3906 /*
3907 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3908 ** so that a subsequent copy will not be merged into this one.
3909 */
3910 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3911   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3912     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3913   }
3914 }
3915 
3916 /*
3917 ** Generate code to implement special SQL functions that are implemented
3918 ** in-line rather than by using the usual callbacks.
3919 */
3920 static int exprCodeInlineFunction(
3921   Parse *pParse,        /* Parsing context */
3922   ExprList *pFarg,      /* List of function arguments */
3923   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3924   int target            /* Store function result in this register */
3925 ){
3926   int nFarg;
3927   Vdbe *v = pParse->pVdbe;
3928   assert( v!=0 );
3929   assert( pFarg!=0 );
3930   nFarg = pFarg->nExpr;
3931   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3932   switch( iFuncId ){
3933     case INLINEFUNC_coalesce: {
3934       /* Attempt a direct implementation of the built-in COALESCE() and
3935       ** IFNULL() functions.  This avoids unnecessary evaluation of
3936       ** arguments past the first non-NULL argument.
3937       */
3938       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3939       int i;
3940       assert( nFarg>=2 );
3941       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3942       for(i=1; i<nFarg; i++){
3943         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3944         VdbeCoverage(v);
3945         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3946       }
3947       setDoNotMergeFlagOnCopy(v);
3948       sqlite3VdbeResolveLabel(v, endCoalesce);
3949       break;
3950     }
3951     case INLINEFUNC_iif: {
3952       Expr caseExpr;
3953       memset(&caseExpr, 0, sizeof(caseExpr));
3954       caseExpr.op = TK_CASE;
3955       caseExpr.x.pList = pFarg;
3956       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3957     }
3958 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3959     case INLINEFUNC_sqlite_offset: {
3960       Expr *pArg = pFarg->a[0].pExpr;
3961       if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
3962         sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3963       }else{
3964         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3965       }
3966       break;
3967     }
3968 #endif
3969     default: {
3970       /* The UNLIKELY() function is a no-op.  The result is the value
3971       ** of the first argument.
3972       */
3973       assert( nFarg==1 || nFarg==2 );
3974       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3975       break;
3976     }
3977 
3978   /***********************************************************************
3979   ** Test-only SQL functions that are only usable if enabled
3980   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3981   */
3982 #if !defined(SQLITE_UNTESTABLE)
3983     case INLINEFUNC_expr_compare: {
3984       /* Compare two expressions using sqlite3ExprCompare() */
3985       assert( nFarg==2 );
3986       sqlite3VdbeAddOp2(v, OP_Integer,
3987          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3988          target);
3989       break;
3990     }
3991 
3992     case INLINEFUNC_expr_implies_expr: {
3993       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3994       assert( nFarg==2 );
3995       sqlite3VdbeAddOp2(v, OP_Integer,
3996          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3997          target);
3998       break;
3999     }
4000 
4001     case INLINEFUNC_implies_nonnull_row: {
4002       /* REsult of sqlite3ExprImpliesNonNullRow() */
4003       Expr *pA1;
4004       assert( nFarg==2 );
4005       pA1 = pFarg->a[1].pExpr;
4006       if( pA1->op==TK_COLUMN ){
4007         sqlite3VdbeAddOp2(v, OP_Integer,
4008            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
4009            target);
4010       }else{
4011         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4012       }
4013       break;
4014     }
4015 
4016     case INLINEFUNC_affinity: {
4017       /* The AFFINITY() function evaluates to a string that describes
4018       ** the type affinity of the argument.  This is used for testing of
4019       ** the SQLite type logic.
4020       */
4021       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
4022       char aff;
4023       assert( nFarg==1 );
4024       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4025       sqlite3VdbeLoadString(v, target,
4026               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4027       break;
4028     }
4029 #endif /* !defined(SQLITE_UNTESTABLE) */
4030   }
4031   return target;
4032 }
4033 
4034 
4035 /*
4036 ** Generate code into the current Vdbe to evaluate the given
4037 ** expression.  Attempt to store the results in register "target".
4038 ** Return the register where results are stored.
4039 **
4040 ** With this routine, there is no guarantee that results will
4041 ** be stored in target.  The result might be stored in some other
4042 ** register if it is convenient to do so.  The calling function
4043 ** must check the return code and move the results to the desired
4044 ** register.
4045 */
4046 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4047   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
4048   int op;                   /* The opcode being coded */
4049   int inReg = target;       /* Results stored in register inReg */
4050   int regFree1 = 0;         /* If non-zero free this temporary register */
4051   int regFree2 = 0;         /* If non-zero free this temporary register */
4052   int r1, r2;               /* Various register numbers */
4053   Expr tempX;               /* Temporary expression node */
4054   int p5 = 0;
4055 
4056   assert( target>0 && target<=pParse->nMem );
4057   assert( v!=0 );
4058 
4059 expr_code_doover:
4060   if( pExpr==0 ){
4061     op = TK_NULL;
4062   }else{
4063     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4064     op = pExpr->op;
4065   }
4066   switch( op ){
4067     case TK_AGG_COLUMN: {
4068       AggInfo *pAggInfo = pExpr->pAggInfo;
4069       struct AggInfo_col *pCol;
4070       assert( pAggInfo!=0 );
4071       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4072       pCol = &pAggInfo->aCol[pExpr->iAgg];
4073       if( !pAggInfo->directMode ){
4074         assert( pCol->iMem>0 );
4075         return pCol->iMem;
4076       }else if( pAggInfo->useSortingIdx ){
4077         Table *pTab = pCol->pTab;
4078         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4079                               pCol->iSorterColumn, target);
4080         if( pCol->iColumn<0 ){
4081           VdbeComment((v,"%s.rowid",pTab->zName));
4082         }else{
4083           VdbeComment((v,"%s.%s",
4084               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4085           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4086             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4087           }
4088         }
4089         return target;
4090       }
4091       /* Otherwise, fall thru into the TK_COLUMN case */
4092       /* no break */ deliberate_fall_through
4093     }
4094     case TK_COLUMN: {
4095       int iTab = pExpr->iTable;
4096       int iReg;
4097       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4098         /* This COLUMN expression is really a constant due to WHERE clause
4099         ** constraints, and that constant is coded by the pExpr->pLeft
4100         ** expresssion.  However, make sure the constant has the correct
4101         ** datatype by applying the Affinity of the table column to the
4102         ** constant.
4103         */
4104         int aff;
4105         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4106         assert( ExprUseYTab(pExpr) );
4107         if( pExpr->y.pTab ){
4108           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4109         }else{
4110           aff = pExpr->affExpr;
4111         }
4112         if( aff>SQLITE_AFF_BLOB ){
4113           static const char zAff[] = "B\000C\000D\000E";
4114           assert( SQLITE_AFF_BLOB=='A' );
4115           assert( SQLITE_AFF_TEXT=='B' );
4116           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4117                             &zAff[(aff-'B')*2], P4_STATIC);
4118         }
4119         return iReg;
4120       }
4121       if( iTab<0 ){
4122         if( pParse->iSelfTab<0 ){
4123           /* Other columns in the same row for CHECK constraints or
4124           ** generated columns or for inserting into partial index.
4125           ** The row is unpacked into registers beginning at
4126           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4127           ** immediately prior to the first column.
4128           */
4129           Column *pCol;
4130           Table *pTab;
4131           int iSrc;
4132           int iCol = pExpr->iColumn;
4133           assert( ExprUseYTab(pExpr) );
4134           pTab = pExpr->y.pTab;
4135           assert( pTab!=0 );
4136           assert( iCol>=XN_ROWID );
4137           assert( iCol<pTab->nCol );
4138           if( iCol<0 ){
4139             return -1-pParse->iSelfTab;
4140           }
4141           pCol = pTab->aCol + iCol;
4142           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4143           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4144 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4145           if( pCol->colFlags & COLFLAG_GENERATED ){
4146             if( pCol->colFlags & COLFLAG_BUSY ){
4147               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4148                               pCol->zCnName);
4149               return 0;
4150             }
4151             pCol->colFlags |= COLFLAG_BUSY;
4152             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4153               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4154             }
4155             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4156             return iSrc;
4157           }else
4158 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4159           if( pCol->affinity==SQLITE_AFF_REAL ){
4160             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4161             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4162             return target;
4163           }else{
4164             return iSrc;
4165           }
4166         }else{
4167           /* Coding an expression that is part of an index where column names
4168           ** in the index refer to the table to which the index belongs */
4169           iTab = pParse->iSelfTab - 1;
4170         }
4171       }
4172       assert( ExprUseYTab(pExpr) );
4173       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4174                                pExpr->iColumn, iTab, target,
4175                                pExpr->op2);
4176       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4177         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4178       }
4179       return iReg;
4180     }
4181     case TK_INTEGER: {
4182       codeInteger(pParse, pExpr, 0, target);
4183       return target;
4184     }
4185     case TK_TRUEFALSE: {
4186       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4187       return target;
4188     }
4189 #ifndef SQLITE_OMIT_FLOATING_POINT
4190     case TK_FLOAT: {
4191       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4192       codeReal(v, pExpr->u.zToken, 0, target);
4193       return target;
4194     }
4195 #endif
4196     case TK_STRING: {
4197       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4198       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4199       return target;
4200     }
4201     default: {
4202       /* Make NULL the default case so that if a bug causes an illegal
4203       ** Expr node to be passed into this function, it will be handled
4204       ** sanely and not crash.  But keep the assert() to bring the problem
4205       ** to the attention of the developers. */
4206       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4207       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4208       return target;
4209     }
4210 #ifndef SQLITE_OMIT_BLOB_LITERAL
4211     case TK_BLOB: {
4212       int n;
4213       const char *z;
4214       char *zBlob;
4215       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4216       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4217       assert( pExpr->u.zToken[1]=='\'' );
4218       z = &pExpr->u.zToken[2];
4219       n = sqlite3Strlen30(z) - 1;
4220       assert( z[n]=='\'' );
4221       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4222       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4223       return target;
4224     }
4225 #endif
4226     case TK_VARIABLE: {
4227       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4228       assert( pExpr->u.zToken!=0 );
4229       assert( pExpr->u.zToken[0]!=0 );
4230       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4231       if( pExpr->u.zToken[1]!=0 ){
4232         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4233         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4234         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4235         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4236       }
4237       return target;
4238     }
4239     case TK_REGISTER: {
4240       return pExpr->iTable;
4241     }
4242 #ifndef SQLITE_OMIT_CAST
4243     case TK_CAST: {
4244       /* Expressions of the form:   CAST(pLeft AS token) */
4245       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4246       if( inReg!=target ){
4247         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4248         inReg = target;
4249       }
4250       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4251       sqlite3VdbeAddOp2(v, OP_Cast, target,
4252                         sqlite3AffinityType(pExpr->u.zToken, 0));
4253       return inReg;
4254     }
4255 #endif /* SQLITE_OMIT_CAST */
4256     case TK_IS:
4257     case TK_ISNOT:
4258       op = (op==TK_IS) ? TK_EQ : TK_NE;
4259       p5 = SQLITE_NULLEQ;
4260       /* fall-through */
4261     case TK_LT:
4262     case TK_LE:
4263     case TK_GT:
4264     case TK_GE:
4265     case TK_NE:
4266     case TK_EQ: {
4267       Expr *pLeft = pExpr->pLeft;
4268       if( sqlite3ExprIsVector(pLeft) ){
4269         codeVectorCompare(pParse, pExpr, target, op, p5);
4270       }else{
4271         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4272         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4273         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4274         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4275             sqlite3VdbeCurrentAddr(v)+2, p5,
4276             ExprHasProperty(pExpr,EP_Commuted));
4277         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4278         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4279         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4280         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4281         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4282         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4283         if( p5==SQLITE_NULLEQ ){
4284           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4285         }else{
4286           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4287         }
4288         testcase( regFree1==0 );
4289         testcase( regFree2==0 );
4290       }
4291       break;
4292     }
4293     case TK_AND:
4294     case TK_OR:
4295     case TK_PLUS:
4296     case TK_STAR:
4297     case TK_MINUS:
4298     case TK_REM:
4299     case TK_BITAND:
4300     case TK_BITOR:
4301     case TK_SLASH:
4302     case TK_LSHIFT:
4303     case TK_RSHIFT:
4304     case TK_CONCAT: {
4305       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4306       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4307       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4308       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4309       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4310       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4311       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4312       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4313       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4314       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4315       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4316       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4317       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4318       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4319       testcase( regFree1==0 );
4320       testcase( regFree2==0 );
4321       break;
4322     }
4323     case TK_UMINUS: {
4324       Expr *pLeft = pExpr->pLeft;
4325       assert( pLeft );
4326       if( pLeft->op==TK_INTEGER ){
4327         codeInteger(pParse, pLeft, 1, target);
4328         return target;
4329 #ifndef SQLITE_OMIT_FLOATING_POINT
4330       }else if( pLeft->op==TK_FLOAT ){
4331         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4332         codeReal(v, pLeft->u.zToken, 1, target);
4333         return target;
4334 #endif
4335       }else{
4336         tempX.op = TK_INTEGER;
4337         tempX.flags = EP_IntValue|EP_TokenOnly;
4338         tempX.u.iValue = 0;
4339         ExprClearVVAProperties(&tempX);
4340         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4341         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4342         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4343         testcase( regFree2==0 );
4344       }
4345       break;
4346     }
4347     case TK_BITNOT:
4348     case TK_NOT: {
4349       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4350       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4351       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4352       testcase( regFree1==0 );
4353       sqlite3VdbeAddOp2(v, op, r1, inReg);
4354       break;
4355     }
4356     case TK_TRUTH: {
4357       int isTrue;    /* IS TRUE or IS NOT TRUE */
4358       int bNormal;   /* IS TRUE or IS FALSE */
4359       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4360       testcase( regFree1==0 );
4361       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4362       bNormal = pExpr->op2==TK_IS;
4363       testcase( isTrue && bNormal);
4364       testcase( !isTrue && bNormal);
4365       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4366       break;
4367     }
4368     case TK_ISNULL:
4369     case TK_NOTNULL: {
4370       int addr;
4371       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4372       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4373       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4374       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4375       testcase( regFree1==0 );
4376       addr = sqlite3VdbeAddOp1(v, op, r1);
4377       VdbeCoverageIf(v, op==TK_ISNULL);
4378       VdbeCoverageIf(v, op==TK_NOTNULL);
4379       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4380       sqlite3VdbeJumpHere(v, addr);
4381       break;
4382     }
4383     case TK_AGG_FUNCTION: {
4384       AggInfo *pInfo = pExpr->pAggInfo;
4385       if( pInfo==0
4386        || NEVER(pExpr->iAgg<0)
4387        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4388       ){
4389         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4390         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4391       }else{
4392         return pInfo->aFunc[pExpr->iAgg].iMem;
4393       }
4394       break;
4395     }
4396     case TK_FUNCTION: {
4397       ExprList *pFarg;       /* List of function arguments */
4398       int nFarg;             /* Number of function arguments */
4399       FuncDef *pDef;         /* The function definition object */
4400       const char *zId;       /* The function name */
4401       u32 constMask = 0;     /* Mask of function arguments that are constant */
4402       int i;                 /* Loop counter */
4403       sqlite3 *db = pParse->db;  /* The database connection */
4404       u8 enc = ENC(db);      /* The text encoding used by this database */
4405       CollSeq *pColl = 0;    /* A collating sequence */
4406 
4407 #ifndef SQLITE_OMIT_WINDOWFUNC
4408       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4409         return pExpr->y.pWin->regResult;
4410       }
4411 #endif
4412 
4413       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4414         /* SQL functions can be expensive. So try to avoid running them
4415         ** multiple times if we know they always give the same result */
4416         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4417       }
4418       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4419       assert( ExprUseXList(pExpr) );
4420       pFarg = pExpr->x.pList;
4421       nFarg = pFarg ? pFarg->nExpr : 0;
4422       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4423       zId = pExpr->u.zToken;
4424       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4425 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4426       if( pDef==0 && pParse->explain ){
4427         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4428       }
4429 #endif
4430       if( pDef==0 || pDef->xFinalize!=0 ){
4431         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4432         break;
4433       }
4434       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4435         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4436         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4437         return exprCodeInlineFunction(pParse, pFarg,
4438              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4439       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4440         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4441       }
4442 
4443       for(i=0; i<nFarg; i++){
4444         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4445           testcase( i==31 );
4446           constMask |= MASKBIT32(i);
4447         }
4448         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4449           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4450         }
4451       }
4452       if( pFarg ){
4453         if( constMask ){
4454           r1 = pParse->nMem+1;
4455           pParse->nMem += nFarg;
4456         }else{
4457           r1 = sqlite3GetTempRange(pParse, nFarg);
4458         }
4459 
4460         /* For length() and typeof() functions with a column argument,
4461         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4462         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4463         ** loading.
4464         */
4465         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4466           u8 exprOp;
4467           assert( nFarg==1 );
4468           assert( pFarg->a[0].pExpr!=0 );
4469           exprOp = pFarg->a[0].pExpr->op;
4470           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4471             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4472             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4473             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4474             pFarg->a[0].pExpr->op2 =
4475                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4476           }
4477         }
4478 
4479         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4480                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4481       }else{
4482         r1 = 0;
4483       }
4484 #ifndef SQLITE_OMIT_VIRTUALTABLE
4485       /* Possibly overload the function if the first argument is
4486       ** a virtual table column.
4487       **
4488       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4489       ** second argument, not the first, as the argument to test to
4490       ** see if it is a column in a virtual table.  This is done because
4491       ** the left operand of infix functions (the operand we want to
4492       ** control overloading) ends up as the second argument to the
4493       ** function.  The expression "A glob B" is equivalent to
4494       ** "glob(B,A).  We want to use the A in "A glob B" to test
4495       ** for function overloading.  But we use the B term in "glob(B,A)".
4496       */
4497       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4498         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4499       }else if( nFarg>0 ){
4500         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4501       }
4502 #endif
4503       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4504         if( !pColl ) pColl = db->pDfltColl;
4505         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4506       }
4507       sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4508                                  pDef, pExpr->op2);
4509       if( nFarg ){
4510         if( constMask==0 ){
4511           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4512         }else{
4513           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4514         }
4515       }
4516       return target;
4517     }
4518 #ifndef SQLITE_OMIT_SUBQUERY
4519     case TK_EXISTS:
4520     case TK_SELECT: {
4521       int nCol;
4522       testcase( op==TK_EXISTS );
4523       testcase( op==TK_SELECT );
4524       if( pParse->db->mallocFailed ){
4525         return 0;
4526       }else if( op==TK_SELECT
4527              && ALWAYS( ExprUseXSelect(pExpr) )
4528              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4529       ){
4530         sqlite3SubselectError(pParse, nCol, 1);
4531       }else{
4532         return sqlite3CodeSubselect(pParse, pExpr);
4533       }
4534       break;
4535     }
4536     case TK_SELECT_COLUMN: {
4537       int n;
4538       Expr *pLeft = pExpr->pLeft;
4539       if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4540         pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4541         pLeft->op2 = pParse->withinRJSubrtn;
4542       }
4543       assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4544       n = sqlite3ExprVectorSize(pLeft);
4545       if( pExpr->iTable!=n ){
4546         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4547                                 pExpr->iTable, n);
4548       }
4549       return pLeft->iTable + pExpr->iColumn;
4550     }
4551     case TK_IN: {
4552       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4553       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4554       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4555       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4556       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4557       sqlite3VdbeResolveLabel(v, destIfFalse);
4558       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4559       sqlite3VdbeResolveLabel(v, destIfNull);
4560       return target;
4561     }
4562 #endif /* SQLITE_OMIT_SUBQUERY */
4563 
4564 
4565     /*
4566     **    x BETWEEN y AND z
4567     **
4568     ** This is equivalent to
4569     **
4570     **    x>=y AND x<=z
4571     **
4572     ** X is stored in pExpr->pLeft.
4573     ** Y is stored in pExpr->pList->a[0].pExpr.
4574     ** Z is stored in pExpr->pList->a[1].pExpr.
4575     */
4576     case TK_BETWEEN: {
4577       exprCodeBetween(pParse, pExpr, target, 0, 0);
4578       return target;
4579     }
4580     case TK_COLLATE: {
4581       if( !ExprHasProperty(pExpr, EP_Collate)
4582        && ALWAYS(pExpr->pLeft)
4583        && pExpr->pLeft->op==TK_FUNCTION
4584       ){
4585         inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4586         if( inReg!=target ){
4587           sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4588           inReg = target;
4589         }
4590         sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
4591         return inReg;
4592       }else{
4593         pExpr = pExpr->pLeft;
4594         goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4595       }
4596     }
4597     case TK_SPAN:
4598     case TK_UPLUS: {
4599       pExpr = pExpr->pLeft;
4600       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4601     }
4602 
4603     case TK_TRIGGER: {
4604       /* If the opcode is TK_TRIGGER, then the expression is a reference
4605       ** to a column in the new.* or old.* pseudo-tables available to
4606       ** trigger programs. In this case Expr.iTable is set to 1 for the
4607       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4608       ** is set to the column of the pseudo-table to read, or to -1 to
4609       ** read the rowid field.
4610       **
4611       ** The expression is implemented using an OP_Param opcode. The p1
4612       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4613       ** to reference another column of the old.* pseudo-table, where
4614       ** i is the index of the column. For a new.rowid reference, p1 is
4615       ** set to (n+1), where n is the number of columns in each pseudo-table.
4616       ** For a reference to any other column in the new.* pseudo-table, p1
4617       ** is set to (n+2+i), where n and i are as defined previously. For
4618       ** example, if the table on which triggers are being fired is
4619       ** declared as:
4620       **
4621       **   CREATE TABLE t1(a, b);
4622       **
4623       ** Then p1 is interpreted as follows:
4624       **
4625       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4626       **   p1==1   ->    old.a         p1==4   ->    new.a
4627       **   p1==2   ->    old.b         p1==5   ->    new.b
4628       */
4629       Table *pTab;
4630       int iCol;
4631       int p1;
4632 
4633       assert( ExprUseYTab(pExpr) );
4634       pTab = pExpr->y.pTab;
4635       iCol = pExpr->iColumn;
4636       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4637                      + sqlite3TableColumnToStorage(pTab, iCol);
4638 
4639       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4640       assert( iCol>=-1 && iCol<pTab->nCol );
4641       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4642       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4643 
4644       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4645       VdbeComment((v, "r[%d]=%s.%s", target,
4646         (pExpr->iTable ? "new" : "old"),
4647         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4648       ));
4649 
4650 #ifndef SQLITE_OMIT_FLOATING_POINT
4651       /* If the column has REAL affinity, it may currently be stored as an
4652       ** integer. Use OP_RealAffinity to make sure it is really real.
4653       **
4654       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4655       ** floating point when extracting it from the record.  */
4656       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4657         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4658       }
4659 #endif
4660       break;
4661     }
4662 
4663     case TK_VECTOR: {
4664       sqlite3ErrorMsg(pParse, "row value misused");
4665       break;
4666     }
4667 
4668     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4669     ** that derive from the right-hand table of a LEFT JOIN.  The
4670     ** Expr.iTable value is the table number for the right-hand table.
4671     ** The expression is only evaluated if that table is not currently
4672     ** on a LEFT JOIN NULL row.
4673     */
4674     case TK_IF_NULL_ROW: {
4675       int addrINR;
4676       u8 okConstFactor = pParse->okConstFactor;
4677       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4678       /* Temporarily disable factoring of constant expressions, since
4679       ** even though expressions may appear to be constant, they are not
4680       ** really constant because they originate from the right-hand side
4681       ** of a LEFT JOIN. */
4682       pParse->okConstFactor = 0;
4683       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4684       pParse->okConstFactor = okConstFactor;
4685       sqlite3VdbeJumpHere(v, addrINR);
4686       sqlite3VdbeChangeP3(v, addrINR, inReg);
4687       break;
4688     }
4689 
4690     /*
4691     ** Form A:
4692     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4693     **
4694     ** Form B:
4695     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4696     **
4697     ** Form A is can be transformed into the equivalent form B as follows:
4698     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4699     **        WHEN x=eN THEN rN ELSE y END
4700     **
4701     ** X (if it exists) is in pExpr->pLeft.
4702     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4703     ** odd.  The Y is also optional.  If the number of elements in x.pList
4704     ** is even, then Y is omitted and the "otherwise" result is NULL.
4705     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4706     **
4707     ** The result of the expression is the Ri for the first matching Ei,
4708     ** or if there is no matching Ei, the ELSE term Y, or if there is
4709     ** no ELSE term, NULL.
4710     */
4711     case TK_CASE: {
4712       int endLabel;                     /* GOTO label for end of CASE stmt */
4713       int nextCase;                     /* GOTO label for next WHEN clause */
4714       int nExpr;                        /* 2x number of WHEN terms */
4715       int i;                            /* Loop counter */
4716       ExprList *pEList;                 /* List of WHEN terms */
4717       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4718       Expr opCompare;                   /* The X==Ei expression */
4719       Expr *pX;                         /* The X expression */
4720       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4721       Expr *pDel = 0;
4722       sqlite3 *db = pParse->db;
4723 
4724       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4725       assert(pExpr->x.pList->nExpr > 0);
4726       pEList = pExpr->x.pList;
4727       aListelem = pEList->a;
4728       nExpr = pEList->nExpr;
4729       endLabel = sqlite3VdbeMakeLabel(pParse);
4730       if( (pX = pExpr->pLeft)!=0 ){
4731         pDel = sqlite3ExprDup(db, pX, 0);
4732         if( db->mallocFailed ){
4733           sqlite3ExprDelete(db, pDel);
4734           break;
4735         }
4736         testcase( pX->op==TK_COLUMN );
4737         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4738         testcase( regFree1==0 );
4739         memset(&opCompare, 0, sizeof(opCompare));
4740         opCompare.op = TK_EQ;
4741         opCompare.pLeft = pDel;
4742         pTest = &opCompare;
4743         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4744         ** The value in regFree1 might get SCopy-ed into the file result.
4745         ** So make sure that the regFree1 register is not reused for other
4746         ** purposes and possibly overwritten.  */
4747         regFree1 = 0;
4748       }
4749       for(i=0; i<nExpr-1; i=i+2){
4750         if( pX ){
4751           assert( pTest!=0 );
4752           opCompare.pRight = aListelem[i].pExpr;
4753         }else{
4754           pTest = aListelem[i].pExpr;
4755         }
4756         nextCase = sqlite3VdbeMakeLabel(pParse);
4757         testcase( pTest->op==TK_COLUMN );
4758         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4759         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4760         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4761         sqlite3VdbeGoto(v, endLabel);
4762         sqlite3VdbeResolveLabel(v, nextCase);
4763       }
4764       if( (nExpr&1)!=0 ){
4765         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4766       }else{
4767         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4768       }
4769       sqlite3ExprDelete(db, pDel);
4770       setDoNotMergeFlagOnCopy(v);
4771       sqlite3VdbeResolveLabel(v, endLabel);
4772       break;
4773     }
4774 #ifndef SQLITE_OMIT_TRIGGER
4775     case TK_RAISE: {
4776       assert( pExpr->affExpr==OE_Rollback
4777            || pExpr->affExpr==OE_Abort
4778            || pExpr->affExpr==OE_Fail
4779            || pExpr->affExpr==OE_Ignore
4780       );
4781       if( !pParse->pTriggerTab && !pParse->nested ){
4782         sqlite3ErrorMsg(pParse,
4783                        "RAISE() may only be used within a trigger-program");
4784         return 0;
4785       }
4786       if( pExpr->affExpr==OE_Abort ){
4787         sqlite3MayAbort(pParse);
4788       }
4789       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4790       if( pExpr->affExpr==OE_Ignore ){
4791         sqlite3VdbeAddOp4(
4792             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4793         VdbeCoverage(v);
4794       }else{
4795         sqlite3HaltConstraint(pParse,
4796              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4797              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4798       }
4799 
4800       break;
4801     }
4802 #endif
4803   }
4804   sqlite3ReleaseTempReg(pParse, regFree1);
4805   sqlite3ReleaseTempReg(pParse, regFree2);
4806   return inReg;
4807 }
4808 
4809 /*
4810 ** Generate code that will evaluate expression pExpr just one time
4811 ** per prepared statement execution.
4812 **
4813 ** If the expression uses functions (that might throw an exception) then
4814 ** guard them with an OP_Once opcode to ensure that the code is only executed
4815 ** once. If no functions are involved, then factor the code out and put it at
4816 ** the end of the prepared statement in the initialization section.
4817 **
4818 ** If regDest>=0 then the result is always stored in that register and the
4819 ** result is not reusable.  If regDest<0 then this routine is free to
4820 ** store the value whereever it wants.  The register where the expression
4821 ** is stored is returned.  When regDest<0, two identical expressions might
4822 ** code to the same register, if they do not contain function calls and hence
4823 ** are factored out into the initialization section at the end of the
4824 ** prepared statement.
4825 */
4826 int sqlite3ExprCodeRunJustOnce(
4827   Parse *pParse,    /* Parsing context */
4828   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4829   int regDest       /* Store the value in this register */
4830 ){
4831   ExprList *p;
4832   assert( ConstFactorOk(pParse) );
4833   p = pParse->pConstExpr;
4834   if( regDest<0 && p ){
4835     struct ExprList_item *pItem;
4836     int i;
4837     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4838       if( pItem->fg.reusable
4839        && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
4840       ){
4841         return pItem->u.iConstExprReg;
4842       }
4843     }
4844   }
4845   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4846   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4847     Vdbe *v = pParse->pVdbe;
4848     int addr;
4849     assert( v );
4850     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4851     pParse->okConstFactor = 0;
4852     if( !pParse->db->mallocFailed ){
4853       if( regDest<0 ) regDest = ++pParse->nMem;
4854       sqlite3ExprCode(pParse, pExpr, regDest);
4855     }
4856     pParse->okConstFactor = 1;
4857     sqlite3ExprDelete(pParse->db, pExpr);
4858     sqlite3VdbeJumpHere(v, addr);
4859   }else{
4860     p = sqlite3ExprListAppend(pParse, p, pExpr);
4861     if( p ){
4862        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4863        pItem->fg.reusable = regDest<0;
4864        if( regDest<0 ) regDest = ++pParse->nMem;
4865        pItem->u.iConstExprReg = regDest;
4866     }
4867     pParse->pConstExpr = p;
4868   }
4869   return regDest;
4870 }
4871 
4872 /*
4873 ** Generate code to evaluate an expression and store the results
4874 ** into a register.  Return the register number where the results
4875 ** are stored.
4876 **
4877 ** If the register is a temporary register that can be deallocated,
4878 ** then write its number into *pReg.  If the result register is not
4879 ** a temporary, then set *pReg to zero.
4880 **
4881 ** If pExpr is a constant, then this routine might generate this
4882 ** code to fill the register in the initialization section of the
4883 ** VDBE program, in order to factor it out of the evaluation loop.
4884 */
4885 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4886   int r2;
4887   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4888   if( ConstFactorOk(pParse)
4889    && ALWAYS(pExpr!=0)
4890    && pExpr->op!=TK_REGISTER
4891    && sqlite3ExprIsConstantNotJoin(pExpr)
4892   ){
4893     *pReg  = 0;
4894     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4895   }else{
4896     int r1 = sqlite3GetTempReg(pParse);
4897     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4898     if( r2==r1 ){
4899       *pReg = r1;
4900     }else{
4901       sqlite3ReleaseTempReg(pParse, r1);
4902       *pReg = 0;
4903     }
4904   }
4905   return r2;
4906 }
4907 
4908 /*
4909 ** Generate code that will evaluate expression pExpr and store the
4910 ** results in register target.  The results are guaranteed to appear
4911 ** in register target.
4912 */
4913 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4914   int inReg;
4915 
4916   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4917   assert( target>0 && target<=pParse->nMem );
4918   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4919   if( pParse->pVdbe==0 ) return;
4920   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4921   if( inReg!=target ){
4922     u8 op;
4923     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4924       op = OP_Copy;
4925     }else{
4926       op = OP_SCopy;
4927     }
4928     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4929   }
4930 }
4931 
4932 /*
4933 ** Make a transient copy of expression pExpr and then code it using
4934 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4935 ** except that the input expression is guaranteed to be unchanged.
4936 */
4937 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4938   sqlite3 *db = pParse->db;
4939   pExpr = sqlite3ExprDup(db, pExpr, 0);
4940   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4941   sqlite3ExprDelete(db, pExpr);
4942 }
4943 
4944 /*
4945 ** Generate code that will evaluate expression pExpr and store the
4946 ** results in register target.  The results are guaranteed to appear
4947 ** in register target.  If the expression is constant, then this routine
4948 ** might choose to code the expression at initialization time.
4949 */
4950 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4951   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4952     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4953   }else{
4954     sqlite3ExprCodeCopy(pParse, pExpr, target);
4955   }
4956 }
4957 
4958 /*
4959 ** Generate code that pushes the value of every element of the given
4960 ** expression list into a sequence of registers beginning at target.
4961 **
4962 ** Return the number of elements evaluated.  The number returned will
4963 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4964 ** is defined.
4965 **
4966 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4967 ** filled using OP_SCopy.  OP_Copy must be used instead.
4968 **
4969 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4970 ** factored out into initialization code.
4971 **
4972 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4973 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4974 ** in registers at srcReg, and so the value can be copied from there.
4975 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4976 ** are simply omitted rather than being copied from srcReg.
4977 */
4978 int sqlite3ExprCodeExprList(
4979   Parse *pParse,     /* Parsing context */
4980   ExprList *pList,   /* The expression list to be coded */
4981   int target,        /* Where to write results */
4982   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4983   u8 flags           /* SQLITE_ECEL_* flags */
4984 ){
4985   struct ExprList_item *pItem;
4986   int i, j, n;
4987   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4988   Vdbe *v = pParse->pVdbe;
4989   assert( pList!=0 );
4990   assert( target>0 );
4991   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4992   n = pList->nExpr;
4993   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4994   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4995     Expr *pExpr = pItem->pExpr;
4996 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4997     if( pItem->fg.bSorterRef ){
4998       i--;
4999       n--;
5000     }else
5001 #endif
5002     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5003       if( flags & SQLITE_ECEL_OMITREF ){
5004         i--;
5005         n--;
5006       }else{
5007         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5008       }
5009     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5010            && sqlite3ExprIsConstantNotJoin(pExpr)
5011     ){
5012       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5013     }else{
5014       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5015       if( inReg!=target+i ){
5016         VdbeOp *pOp;
5017         if( copyOp==OP_Copy
5018          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
5019          && pOp->p1+pOp->p3+1==inReg
5020          && pOp->p2+pOp->p3+1==target+i
5021          && pOp->p5==0  /* The do-not-merge flag must be clear */
5022         ){
5023           pOp->p3++;
5024         }else{
5025           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5026         }
5027       }
5028     }
5029   }
5030   return n;
5031 }
5032 
5033 /*
5034 ** Generate code for a BETWEEN operator.
5035 **
5036 **    x BETWEEN y AND z
5037 **
5038 ** The above is equivalent to
5039 **
5040 **    x>=y AND x<=z
5041 **
5042 ** Code it as such, taking care to do the common subexpression
5043 ** elimination of x.
5044 **
5045 ** The xJumpIf parameter determines details:
5046 **
5047 **    NULL:                   Store the boolean result in reg[dest]
5048 **    sqlite3ExprIfTrue:      Jump to dest if true
5049 **    sqlite3ExprIfFalse:     Jump to dest if false
5050 **
5051 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5052 */
5053 static void exprCodeBetween(
5054   Parse *pParse,    /* Parsing and code generating context */
5055   Expr *pExpr,      /* The BETWEEN expression */
5056   int dest,         /* Jump destination or storage location */
5057   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5058   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5059 ){
5060   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5061   Expr compLeft;    /* The  x>=y  term */
5062   Expr compRight;   /* The  x<=z  term */
5063   int regFree1 = 0; /* Temporary use register */
5064   Expr *pDel = 0;
5065   sqlite3 *db = pParse->db;
5066 
5067   memset(&compLeft, 0, sizeof(Expr));
5068   memset(&compRight, 0, sizeof(Expr));
5069   memset(&exprAnd, 0, sizeof(Expr));
5070 
5071   assert( ExprUseXList(pExpr) );
5072   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5073   if( db->mallocFailed==0 ){
5074     exprAnd.op = TK_AND;
5075     exprAnd.pLeft = &compLeft;
5076     exprAnd.pRight = &compRight;
5077     compLeft.op = TK_GE;
5078     compLeft.pLeft = pDel;
5079     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5080     compRight.op = TK_LE;
5081     compRight.pLeft = pDel;
5082     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5083     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5084     if( xJump ){
5085       xJump(pParse, &exprAnd, dest, jumpIfNull);
5086     }else{
5087       /* Mark the expression is being from the ON or USING clause of a join
5088       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5089       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5090       ** for clarity, but we are out of bits in the Expr.flags field so we
5091       ** have to reuse the EP_OuterON bit.  Bummer. */
5092       pDel->flags |= EP_OuterON;
5093       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5094     }
5095     sqlite3ReleaseTempReg(pParse, regFree1);
5096   }
5097   sqlite3ExprDelete(db, pDel);
5098 
5099   /* Ensure adequate test coverage */
5100   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5101   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5102   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5103   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5104   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5105   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5106   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5107   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5108   testcase( xJump==0 );
5109 }
5110 
5111 /*
5112 ** Generate code for a boolean expression such that a jump is made
5113 ** to the label "dest" if the expression is true but execution
5114 ** continues straight thru if the expression is false.
5115 **
5116 ** If the expression evaluates to NULL (neither true nor false), then
5117 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5118 **
5119 ** This code depends on the fact that certain token values (ex: TK_EQ)
5120 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5121 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5122 ** the make process cause these values to align.  Assert()s in the code
5123 ** below verify that the numbers are aligned correctly.
5124 */
5125 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5126   Vdbe *v = pParse->pVdbe;
5127   int op = 0;
5128   int regFree1 = 0;
5129   int regFree2 = 0;
5130   int r1, r2;
5131 
5132   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5133   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5134   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5135   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5136   op = pExpr->op;
5137   switch( op ){
5138     case TK_AND:
5139     case TK_OR: {
5140       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5141       if( pAlt!=pExpr ){
5142         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5143       }else if( op==TK_AND ){
5144         int d2 = sqlite3VdbeMakeLabel(pParse);
5145         testcase( jumpIfNull==0 );
5146         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5147                            jumpIfNull^SQLITE_JUMPIFNULL);
5148         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5149         sqlite3VdbeResolveLabel(v, d2);
5150       }else{
5151         testcase( jumpIfNull==0 );
5152         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5153         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5154       }
5155       break;
5156     }
5157     case TK_NOT: {
5158       testcase( jumpIfNull==0 );
5159       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5160       break;
5161     }
5162     case TK_TRUTH: {
5163       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5164       int isTrue;     /* IS TRUE or IS NOT TRUE */
5165       testcase( jumpIfNull==0 );
5166       isNot = pExpr->op2==TK_ISNOT;
5167       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5168       testcase( isTrue && isNot );
5169       testcase( !isTrue && isNot );
5170       if( isTrue ^ isNot ){
5171         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5172                           isNot ? SQLITE_JUMPIFNULL : 0);
5173       }else{
5174         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5175                            isNot ? SQLITE_JUMPIFNULL : 0);
5176       }
5177       break;
5178     }
5179     case TK_IS:
5180     case TK_ISNOT:
5181       testcase( op==TK_IS );
5182       testcase( op==TK_ISNOT );
5183       op = (op==TK_IS) ? TK_EQ : TK_NE;
5184       jumpIfNull = SQLITE_NULLEQ;
5185       /* no break */ deliberate_fall_through
5186     case TK_LT:
5187     case TK_LE:
5188     case TK_GT:
5189     case TK_GE:
5190     case TK_NE:
5191     case TK_EQ: {
5192       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5193       testcase( jumpIfNull==0 );
5194       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5195       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5196       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5197                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5198       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5199       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5200       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5201       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5202       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5203       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5204       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5205       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5206       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5207       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5208       testcase( regFree1==0 );
5209       testcase( regFree2==0 );
5210       break;
5211     }
5212     case TK_ISNULL:
5213     case TK_NOTNULL: {
5214       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5215       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5216       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5217       sqlite3VdbeAddOp2(v, op, r1, dest);
5218       VdbeCoverageIf(v, op==TK_ISNULL);
5219       VdbeCoverageIf(v, op==TK_NOTNULL);
5220       testcase( regFree1==0 );
5221       break;
5222     }
5223     case TK_BETWEEN: {
5224       testcase( jumpIfNull==0 );
5225       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5226       break;
5227     }
5228 #ifndef SQLITE_OMIT_SUBQUERY
5229     case TK_IN: {
5230       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5231       int destIfNull = jumpIfNull ? dest : destIfFalse;
5232       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5233       sqlite3VdbeGoto(v, dest);
5234       sqlite3VdbeResolveLabel(v, destIfFalse);
5235       break;
5236     }
5237 #endif
5238     default: {
5239     default_expr:
5240       if( ExprAlwaysTrue(pExpr) ){
5241         sqlite3VdbeGoto(v, dest);
5242       }else if( ExprAlwaysFalse(pExpr) ){
5243         /* No-op */
5244       }else{
5245         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5246         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5247         VdbeCoverage(v);
5248         testcase( regFree1==0 );
5249         testcase( jumpIfNull==0 );
5250       }
5251       break;
5252     }
5253   }
5254   sqlite3ReleaseTempReg(pParse, regFree1);
5255   sqlite3ReleaseTempReg(pParse, regFree2);
5256 }
5257 
5258 /*
5259 ** Generate code for a boolean expression such that a jump is made
5260 ** to the label "dest" if the expression is false but execution
5261 ** continues straight thru if the expression is true.
5262 **
5263 ** If the expression evaluates to NULL (neither true nor false) then
5264 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5265 ** is 0.
5266 */
5267 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5268   Vdbe *v = pParse->pVdbe;
5269   int op = 0;
5270   int regFree1 = 0;
5271   int regFree2 = 0;
5272   int r1, r2;
5273 
5274   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5275   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5276   if( pExpr==0 )    return;
5277   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5278 
5279   /* The value of pExpr->op and op are related as follows:
5280   **
5281   **       pExpr->op            op
5282   **       ---------          ----------
5283   **       TK_ISNULL          OP_NotNull
5284   **       TK_NOTNULL         OP_IsNull
5285   **       TK_NE              OP_Eq
5286   **       TK_EQ              OP_Ne
5287   **       TK_GT              OP_Le
5288   **       TK_LE              OP_Gt
5289   **       TK_GE              OP_Lt
5290   **       TK_LT              OP_Ge
5291   **
5292   ** For other values of pExpr->op, op is undefined and unused.
5293   ** The value of TK_ and OP_ constants are arranged such that we
5294   ** can compute the mapping above using the following expression.
5295   ** Assert()s verify that the computation is correct.
5296   */
5297   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5298 
5299   /* Verify correct alignment of TK_ and OP_ constants
5300   */
5301   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5302   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5303   assert( pExpr->op!=TK_NE || op==OP_Eq );
5304   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5305   assert( pExpr->op!=TK_LT || op==OP_Ge );
5306   assert( pExpr->op!=TK_LE || op==OP_Gt );
5307   assert( pExpr->op!=TK_GT || op==OP_Le );
5308   assert( pExpr->op!=TK_GE || op==OP_Lt );
5309 
5310   switch( pExpr->op ){
5311     case TK_AND:
5312     case TK_OR: {
5313       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5314       if( pAlt!=pExpr ){
5315         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5316       }else if( pExpr->op==TK_AND ){
5317         testcase( jumpIfNull==0 );
5318         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5319         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5320       }else{
5321         int d2 = sqlite3VdbeMakeLabel(pParse);
5322         testcase( jumpIfNull==0 );
5323         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5324                           jumpIfNull^SQLITE_JUMPIFNULL);
5325         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5326         sqlite3VdbeResolveLabel(v, d2);
5327       }
5328       break;
5329     }
5330     case TK_NOT: {
5331       testcase( jumpIfNull==0 );
5332       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5333       break;
5334     }
5335     case TK_TRUTH: {
5336       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5337       int isTrue;  /* IS TRUE or IS NOT TRUE */
5338       testcase( jumpIfNull==0 );
5339       isNot = pExpr->op2==TK_ISNOT;
5340       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5341       testcase( isTrue && isNot );
5342       testcase( !isTrue && isNot );
5343       if( isTrue ^ isNot ){
5344         /* IS TRUE and IS NOT FALSE */
5345         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5346                            isNot ? 0 : SQLITE_JUMPIFNULL);
5347 
5348       }else{
5349         /* IS FALSE and IS NOT TRUE */
5350         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5351                           isNot ? 0 : SQLITE_JUMPIFNULL);
5352       }
5353       break;
5354     }
5355     case TK_IS:
5356     case TK_ISNOT:
5357       testcase( pExpr->op==TK_IS );
5358       testcase( pExpr->op==TK_ISNOT );
5359       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5360       jumpIfNull = SQLITE_NULLEQ;
5361       /* no break */ deliberate_fall_through
5362     case TK_LT:
5363     case TK_LE:
5364     case TK_GT:
5365     case TK_GE:
5366     case TK_NE:
5367     case TK_EQ: {
5368       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5369       testcase( jumpIfNull==0 );
5370       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5371       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5372       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5373                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5374       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5375       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5376       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5377       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5378       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5379       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5380       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5381       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5382       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5383       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5384       testcase( regFree1==0 );
5385       testcase( regFree2==0 );
5386       break;
5387     }
5388     case TK_ISNULL:
5389     case TK_NOTNULL: {
5390       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5391       sqlite3VdbeAddOp2(v, op, r1, dest);
5392       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5393       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5394       testcase( regFree1==0 );
5395       break;
5396     }
5397     case TK_BETWEEN: {
5398       testcase( jumpIfNull==0 );
5399       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5400       break;
5401     }
5402 #ifndef SQLITE_OMIT_SUBQUERY
5403     case TK_IN: {
5404       if( jumpIfNull ){
5405         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5406       }else{
5407         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5408         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5409         sqlite3VdbeResolveLabel(v, destIfNull);
5410       }
5411       break;
5412     }
5413 #endif
5414     default: {
5415     default_expr:
5416       if( ExprAlwaysFalse(pExpr) ){
5417         sqlite3VdbeGoto(v, dest);
5418       }else if( ExprAlwaysTrue(pExpr) ){
5419         /* no-op */
5420       }else{
5421         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5422         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5423         VdbeCoverage(v);
5424         testcase( regFree1==0 );
5425         testcase( jumpIfNull==0 );
5426       }
5427       break;
5428     }
5429   }
5430   sqlite3ReleaseTempReg(pParse, regFree1);
5431   sqlite3ReleaseTempReg(pParse, regFree2);
5432 }
5433 
5434 /*
5435 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5436 ** code generation, and that copy is deleted after code generation. This
5437 ** ensures that the original pExpr is unchanged.
5438 */
5439 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5440   sqlite3 *db = pParse->db;
5441   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5442   if( db->mallocFailed==0 ){
5443     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5444   }
5445   sqlite3ExprDelete(db, pCopy);
5446 }
5447 
5448 /*
5449 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5450 ** type of expression.
5451 **
5452 ** If pExpr is a simple SQL value - an integer, real, string, blob
5453 ** or NULL value - then the VDBE currently being prepared is configured
5454 ** to re-prepare each time a new value is bound to variable pVar.
5455 **
5456 ** Additionally, if pExpr is a simple SQL value and the value is the
5457 ** same as that currently bound to variable pVar, non-zero is returned.
5458 ** Otherwise, if the values are not the same or if pExpr is not a simple
5459 ** SQL value, zero is returned.
5460 */
5461 static int exprCompareVariable(
5462   const Parse *pParse,
5463   const Expr *pVar,
5464   const Expr *pExpr
5465 ){
5466   int res = 0;
5467   int iVar;
5468   sqlite3_value *pL, *pR = 0;
5469 
5470   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5471   if( pR ){
5472     iVar = pVar->iColumn;
5473     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5474     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5475     if( pL ){
5476       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5477         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5478       }
5479       res =  0==sqlite3MemCompare(pL, pR, 0);
5480     }
5481     sqlite3ValueFree(pR);
5482     sqlite3ValueFree(pL);
5483   }
5484 
5485   return res;
5486 }
5487 
5488 /*
5489 ** Do a deep comparison of two expression trees.  Return 0 if the two
5490 ** expressions are completely identical.  Return 1 if they differ only
5491 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5492 ** other than the top-level COLLATE operator.
5493 **
5494 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5495 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5496 **
5497 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5498 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5499 **
5500 ** Sometimes this routine will return 2 even if the two expressions
5501 ** really are equivalent.  If we cannot prove that the expressions are
5502 ** identical, we return 2 just to be safe.  So if this routine
5503 ** returns 2, then you do not really know for certain if the two
5504 ** expressions are the same.  But if you get a 0 or 1 return, then you
5505 ** can be sure the expressions are the same.  In the places where
5506 ** this routine is used, it does not hurt to get an extra 2 - that
5507 ** just might result in some slightly slower code.  But returning
5508 ** an incorrect 0 or 1 could lead to a malfunction.
5509 **
5510 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5511 ** pParse->pReprepare can be matched against literals in pB.  The
5512 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5513 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5514 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5515 ** pB causes a return value of 2.
5516 */
5517 int sqlite3ExprCompare(
5518   const Parse *pParse,
5519   const Expr *pA,
5520   const Expr *pB,
5521   int iTab
5522 ){
5523   u32 combinedFlags;
5524   if( pA==0 || pB==0 ){
5525     return pB==pA ? 0 : 2;
5526   }
5527   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5528     return 0;
5529   }
5530   combinedFlags = pA->flags | pB->flags;
5531   if( combinedFlags & EP_IntValue ){
5532     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5533       return 0;
5534     }
5535     return 2;
5536   }
5537   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5538     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5539       return 1;
5540     }
5541     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5542       return 1;
5543     }
5544     return 2;
5545   }
5546   assert( !ExprHasProperty(pA, EP_IntValue) );
5547   assert( !ExprHasProperty(pB, EP_IntValue) );
5548   if( pA->u.zToken ){
5549     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5550       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5551 #ifndef SQLITE_OMIT_WINDOWFUNC
5552       assert( pA->op==pB->op );
5553       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5554         return 2;
5555       }
5556       if( ExprHasProperty(pA,EP_WinFunc) ){
5557         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5558           return 2;
5559         }
5560       }
5561 #endif
5562     }else if( pA->op==TK_NULL ){
5563       return 0;
5564     }else if( pA->op==TK_COLLATE ){
5565       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5566     }else
5567     if( pB->u.zToken!=0
5568      && pA->op!=TK_COLUMN
5569      && pA->op!=TK_AGG_COLUMN
5570      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5571     ){
5572       return 2;
5573     }
5574   }
5575   if( (pA->flags & (EP_Distinct|EP_Commuted))
5576      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5577   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5578     if( combinedFlags & EP_xIsSelect ) return 2;
5579     if( (combinedFlags & EP_FixedCol)==0
5580      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5581     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5582     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5583     if( pA->op!=TK_STRING
5584      && pA->op!=TK_TRUEFALSE
5585      && ALWAYS((combinedFlags & EP_Reduced)==0)
5586     ){
5587       if( pA->iColumn!=pB->iColumn ) return 2;
5588       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5589       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5590         return 2;
5591       }
5592     }
5593   }
5594   return 0;
5595 }
5596 
5597 /*
5598 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5599 ** if they are certainly different, or 2 if it is not possible to
5600 ** determine if they are identical or not.
5601 **
5602 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5603 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5604 **
5605 ** This routine might return non-zero for equivalent ExprLists.  The
5606 ** only consequence will be disabled optimizations.  But this routine
5607 ** must never return 0 if the two ExprList objects are different, or
5608 ** a malfunction will result.
5609 **
5610 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5611 ** always differs from a non-NULL pointer.
5612 */
5613 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5614   int i;
5615   if( pA==0 && pB==0 ) return 0;
5616   if( pA==0 || pB==0 ) return 1;
5617   if( pA->nExpr!=pB->nExpr ) return 1;
5618   for(i=0; i<pA->nExpr; i++){
5619     int res;
5620     Expr *pExprA = pA->a[i].pExpr;
5621     Expr *pExprB = pB->a[i].pExpr;
5622     if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
5623     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5624   }
5625   return 0;
5626 }
5627 
5628 /*
5629 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5630 ** are ignored.
5631 */
5632 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5633   return sqlite3ExprCompare(0,
5634              sqlite3ExprSkipCollateAndLikely(pA),
5635              sqlite3ExprSkipCollateAndLikely(pB),
5636              iTab);
5637 }
5638 
5639 /*
5640 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5641 **
5642 ** Or if seenNot is true, return non-zero if Expr p can only be
5643 ** non-NULL if pNN is not NULL
5644 */
5645 static int exprImpliesNotNull(
5646   const Parse *pParse,/* Parsing context */
5647   const Expr *p,      /* The expression to be checked */
5648   const Expr *pNN,    /* The expression that is NOT NULL */
5649   int iTab,           /* Table being evaluated */
5650   int seenNot         /* Return true only if p can be any non-NULL value */
5651 ){
5652   assert( p );
5653   assert( pNN );
5654   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5655     return pNN->op!=TK_NULL;
5656   }
5657   switch( p->op ){
5658     case TK_IN: {
5659       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5660       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5661       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5662     }
5663     case TK_BETWEEN: {
5664       ExprList *pList;
5665       assert( ExprUseXList(p) );
5666       pList = p->x.pList;
5667       assert( pList!=0 );
5668       assert( pList->nExpr==2 );
5669       if( seenNot ) return 0;
5670       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5671        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5672       ){
5673         return 1;
5674       }
5675       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5676     }
5677     case TK_EQ:
5678     case TK_NE:
5679     case TK_LT:
5680     case TK_LE:
5681     case TK_GT:
5682     case TK_GE:
5683     case TK_PLUS:
5684     case TK_MINUS:
5685     case TK_BITOR:
5686     case TK_LSHIFT:
5687     case TK_RSHIFT:
5688     case TK_CONCAT:
5689       seenNot = 1;
5690       /* no break */ deliberate_fall_through
5691     case TK_STAR:
5692     case TK_REM:
5693     case TK_BITAND:
5694     case TK_SLASH: {
5695       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5696       /* no break */ deliberate_fall_through
5697     }
5698     case TK_SPAN:
5699     case TK_COLLATE:
5700     case TK_UPLUS:
5701     case TK_UMINUS: {
5702       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5703     }
5704     case TK_TRUTH: {
5705       if( seenNot ) return 0;
5706       if( p->op2!=TK_IS ) return 0;
5707       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5708     }
5709     case TK_BITNOT:
5710     case TK_NOT: {
5711       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5712     }
5713   }
5714   return 0;
5715 }
5716 
5717 /*
5718 ** Return true if we can prove the pE2 will always be true if pE1 is
5719 ** true.  Return false if we cannot complete the proof or if pE2 might
5720 ** be false.  Examples:
5721 **
5722 **     pE1: x==5       pE2: x==5             Result: true
5723 **     pE1: x>0        pE2: x==5             Result: false
5724 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5725 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5726 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5727 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5728 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5729 **
5730 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5731 ** Expr.iTable<0 then assume a table number given by iTab.
5732 **
5733 ** If pParse is not NULL, then the values of bound variables in pE1 are
5734 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5735 ** modified to record which bound variables are referenced.  If pParse
5736 ** is NULL, then false will be returned if pE1 contains any bound variables.
5737 **
5738 ** When in doubt, return false.  Returning true might give a performance
5739 ** improvement.  Returning false might cause a performance reduction, but
5740 ** it will always give the correct answer and is hence always safe.
5741 */
5742 int sqlite3ExprImpliesExpr(
5743   const Parse *pParse,
5744   const Expr *pE1,
5745   const Expr *pE2,
5746   int iTab
5747 ){
5748   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5749     return 1;
5750   }
5751   if( pE2->op==TK_OR
5752    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5753              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5754   ){
5755     return 1;
5756   }
5757   if( pE2->op==TK_NOTNULL
5758    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5759   ){
5760     return 1;
5761   }
5762   return 0;
5763 }
5764 
5765 /*
5766 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5767 ** If the expression node requires that the table at pWalker->iCur
5768 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5769 **
5770 ** This routine controls an optimization.  False positives (setting
5771 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5772 ** (never setting pWalker->eCode) is a harmless missed optimization.
5773 */
5774 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5775   testcase( pExpr->op==TK_AGG_COLUMN );
5776   testcase( pExpr->op==TK_AGG_FUNCTION );
5777   if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
5778   switch( pExpr->op ){
5779     case TK_ISNOT:
5780     case TK_ISNULL:
5781     case TK_NOTNULL:
5782     case TK_IS:
5783     case TK_OR:
5784     case TK_VECTOR:
5785     case TK_CASE:
5786     case TK_IN:
5787     case TK_FUNCTION:
5788     case TK_TRUTH:
5789       testcase( pExpr->op==TK_ISNOT );
5790       testcase( pExpr->op==TK_ISNULL );
5791       testcase( pExpr->op==TK_NOTNULL );
5792       testcase( pExpr->op==TK_IS );
5793       testcase( pExpr->op==TK_OR );
5794       testcase( pExpr->op==TK_VECTOR );
5795       testcase( pExpr->op==TK_CASE );
5796       testcase( pExpr->op==TK_IN );
5797       testcase( pExpr->op==TK_FUNCTION );
5798       testcase( pExpr->op==TK_TRUTH );
5799       return WRC_Prune;
5800     case TK_COLUMN:
5801       if( pWalker->u.iCur==pExpr->iTable ){
5802         pWalker->eCode = 1;
5803         return WRC_Abort;
5804       }
5805       return WRC_Prune;
5806 
5807     case TK_AND:
5808       if( pWalker->eCode==0 ){
5809         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5810         if( pWalker->eCode ){
5811           pWalker->eCode = 0;
5812           sqlite3WalkExpr(pWalker, pExpr->pRight);
5813         }
5814       }
5815       return WRC_Prune;
5816 
5817     case TK_BETWEEN:
5818       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5819         assert( pWalker->eCode );
5820         return WRC_Abort;
5821       }
5822       return WRC_Prune;
5823 
5824     /* Virtual tables are allowed to use constraints like x=NULL.  So
5825     ** a term of the form x=y does not prove that y is not null if x
5826     ** is the column of a virtual table */
5827     case TK_EQ:
5828     case TK_NE:
5829     case TK_LT:
5830     case TK_LE:
5831     case TK_GT:
5832     case TK_GE: {
5833       Expr *pLeft = pExpr->pLeft;
5834       Expr *pRight = pExpr->pRight;
5835       testcase( pExpr->op==TK_EQ );
5836       testcase( pExpr->op==TK_NE );
5837       testcase( pExpr->op==TK_LT );
5838       testcase( pExpr->op==TK_LE );
5839       testcase( pExpr->op==TK_GT );
5840       testcase( pExpr->op==TK_GE );
5841       /* The y.pTab=0 assignment in wherecode.c always happens after the
5842       ** impliesNotNullRow() test */
5843       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5844       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5845       if( (pLeft->op==TK_COLUMN
5846            && pLeft->y.pTab!=0
5847            && IsVirtual(pLeft->y.pTab))
5848        || (pRight->op==TK_COLUMN
5849            && pRight->y.pTab!=0
5850            && IsVirtual(pRight->y.pTab))
5851       ){
5852         return WRC_Prune;
5853       }
5854       /* no break */ deliberate_fall_through
5855     }
5856     default:
5857       return WRC_Continue;
5858   }
5859 }
5860 
5861 /*
5862 ** Return true (non-zero) if expression p can only be true if at least
5863 ** one column of table iTab is non-null.  In other words, return true
5864 ** if expression p will always be NULL or false if every column of iTab
5865 ** is NULL.
5866 **
5867 ** False negatives are acceptable.  In other words, it is ok to return
5868 ** zero even if expression p will never be true of every column of iTab
5869 ** is NULL.  A false negative is merely a missed optimization opportunity.
5870 **
5871 ** False positives are not allowed, however.  A false positive may result
5872 ** in an incorrect answer.
5873 **
5874 ** Terms of p that are marked with EP_OuterON (and hence that come from
5875 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
5876 **
5877 ** This routine is used to check if a LEFT JOIN can be converted into
5878 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5879 ** clause requires that some column of the right table of the LEFT JOIN
5880 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5881 ** ordinary join.
5882 */
5883 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5884   Walker w;
5885   p = sqlite3ExprSkipCollateAndLikely(p);
5886   if( p==0 ) return 0;
5887   if( p->op==TK_NOTNULL ){
5888     p = p->pLeft;
5889   }else{
5890     while( p->op==TK_AND ){
5891       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5892       p = p->pRight;
5893     }
5894   }
5895   w.xExprCallback = impliesNotNullRow;
5896   w.xSelectCallback = 0;
5897   w.xSelectCallback2 = 0;
5898   w.eCode = 0;
5899   w.u.iCur = iTab;
5900   sqlite3WalkExpr(&w, p);
5901   return w.eCode;
5902 }
5903 
5904 /*
5905 ** An instance of the following structure is used by the tree walker
5906 ** to determine if an expression can be evaluated by reference to the
5907 ** index only, without having to do a search for the corresponding
5908 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5909 ** is the cursor for the table.
5910 */
5911 struct IdxCover {
5912   Index *pIdx;     /* The index to be tested for coverage */
5913   int iCur;        /* Cursor number for the table corresponding to the index */
5914 };
5915 
5916 /*
5917 ** Check to see if there are references to columns in table
5918 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5919 ** pWalker->u.pIdxCover->pIdx.
5920 */
5921 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5922   if( pExpr->op==TK_COLUMN
5923    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5924    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5925   ){
5926     pWalker->eCode = 1;
5927     return WRC_Abort;
5928   }
5929   return WRC_Continue;
5930 }
5931 
5932 /*
5933 ** Determine if an index pIdx on table with cursor iCur contains will
5934 ** the expression pExpr.  Return true if the index does cover the
5935 ** expression and false if the pExpr expression references table columns
5936 ** that are not found in the index pIdx.
5937 **
5938 ** An index covering an expression means that the expression can be
5939 ** evaluated using only the index and without having to lookup the
5940 ** corresponding table entry.
5941 */
5942 int sqlite3ExprCoveredByIndex(
5943   Expr *pExpr,        /* The index to be tested */
5944   int iCur,           /* The cursor number for the corresponding table */
5945   Index *pIdx         /* The index that might be used for coverage */
5946 ){
5947   Walker w;
5948   struct IdxCover xcov;
5949   memset(&w, 0, sizeof(w));
5950   xcov.iCur = iCur;
5951   xcov.pIdx = pIdx;
5952   w.xExprCallback = exprIdxCover;
5953   w.u.pIdxCover = &xcov;
5954   sqlite3WalkExpr(&w, pExpr);
5955   return !w.eCode;
5956 }
5957 
5958 
5959 /* Structure used to pass information throught the Walker in order to
5960 ** implement sqlite3ReferencesSrcList().
5961 */
5962 struct RefSrcList {
5963   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
5964   SrcList *pRef;       /* Looking for references to these tables */
5965   i64 nExclude;        /* Number of tables to exclude from the search */
5966   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
5967 };
5968 
5969 /*
5970 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5971 **
5972 ** When entering a new subquery on the pExpr argument, add all FROM clause
5973 ** entries for that subquery to the exclude list.
5974 **
5975 ** When leaving the subquery, remove those entries from the exclude list.
5976 */
5977 static int selectRefEnter(Walker *pWalker, Select *pSelect){
5978   struct RefSrcList *p = pWalker->u.pRefSrcList;
5979   SrcList *pSrc = pSelect->pSrc;
5980   i64 i, j;
5981   int *piNew;
5982   if( pSrc->nSrc==0 ) return WRC_Continue;
5983   j = p->nExclude;
5984   p->nExclude += pSrc->nSrc;
5985   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
5986   if( piNew==0 ){
5987     p->nExclude = 0;
5988     return WRC_Abort;
5989   }else{
5990     p->aiExclude = piNew;
5991   }
5992   for(i=0; i<pSrc->nSrc; i++, j++){
5993      p->aiExclude[j] = pSrc->a[i].iCursor;
5994   }
5995   return WRC_Continue;
5996 }
5997 static void selectRefLeave(Walker *pWalker, Select *pSelect){
5998   struct RefSrcList *p = pWalker->u.pRefSrcList;
5999   SrcList *pSrc = pSelect->pSrc;
6000   if( p->nExclude ){
6001     assert( p->nExclude>=pSrc->nSrc );
6002     p->nExclude -= pSrc->nSrc;
6003   }
6004 }
6005 
6006 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6007 **
6008 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6009 ** of the tables shown in RefSrcList.pRef.
6010 **
6011 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6012 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6013 */
6014 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6015   if( pExpr->op==TK_COLUMN
6016    || pExpr->op==TK_AGG_COLUMN
6017   ){
6018     int i;
6019     struct RefSrcList *p = pWalker->u.pRefSrcList;
6020     SrcList *pSrc = p->pRef;
6021     int nSrc = pSrc ? pSrc->nSrc : 0;
6022     for(i=0; i<nSrc; i++){
6023       if( pExpr->iTable==pSrc->a[i].iCursor ){
6024         pWalker->eCode |= 1;
6025         return WRC_Continue;
6026       }
6027     }
6028     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6029     if( i>=p->nExclude ){
6030       pWalker->eCode |= 2;
6031     }
6032   }
6033   return WRC_Continue;
6034 }
6035 
6036 /*
6037 ** Check to see if pExpr references any tables in pSrcList.
6038 ** Possible return values:
6039 **
6040 **    1         pExpr does references a table in pSrcList.
6041 **
6042 **    0         pExpr references some table that is not defined in either
6043 **              pSrcList or in subqueries of pExpr itself.
6044 **
6045 **   -1         pExpr only references no tables at all, or it only
6046 **              references tables defined in subqueries of pExpr itself.
6047 **
6048 ** As currently used, pExpr is always an aggregate function call.  That
6049 ** fact is exploited for efficiency.
6050 */
6051 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6052   Walker w;
6053   struct RefSrcList x;
6054   memset(&w, 0, sizeof(w));
6055   memset(&x, 0, sizeof(x));
6056   w.xExprCallback = exprRefToSrcList;
6057   w.xSelectCallback = selectRefEnter;
6058   w.xSelectCallback2 = selectRefLeave;
6059   w.u.pRefSrcList = &x;
6060   x.db = pParse->db;
6061   x.pRef = pSrcList;
6062   assert( pExpr->op==TK_AGG_FUNCTION );
6063   assert( ExprUseXList(pExpr) );
6064   sqlite3WalkExprList(&w, pExpr->x.pList);
6065 #ifndef SQLITE_OMIT_WINDOWFUNC
6066   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6067     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6068   }
6069 #endif
6070   sqlite3DbFree(pParse->db, x.aiExclude);
6071   if( w.eCode & 0x01 ){
6072     return 1;
6073   }else if( w.eCode ){
6074     return 0;
6075   }else{
6076     return -1;
6077   }
6078 }
6079 
6080 /*
6081 ** This is a Walker expression node callback.
6082 **
6083 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6084 ** object that is referenced does not refer directly to the Expr.  If
6085 ** it does, make a copy.  This is done because the pExpr argument is
6086 ** subject to change.
6087 **
6088 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6089 ** This will cause the expression to be deleted automatically when the
6090 ** Parse object is destroyed, but the zero register number means that it
6091 ** will not generate any code in the preamble.
6092 */
6093 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6094   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6095    && pExpr->pAggInfo!=0
6096   ){
6097     AggInfo *pAggInfo = pExpr->pAggInfo;
6098     int iAgg = pExpr->iAgg;
6099     Parse *pParse = pWalker->pParse;
6100     sqlite3 *db = pParse->db;
6101     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
6102     if( pExpr->op==TK_AGG_COLUMN ){
6103       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6104       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6105         pExpr = sqlite3ExprDup(db, pExpr, 0);
6106         if( pExpr ){
6107           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6108           sqlite3ExprDeferredDelete(pParse, pExpr);
6109         }
6110       }
6111     }else{
6112       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6113       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6114         pExpr = sqlite3ExprDup(db, pExpr, 0);
6115         if( pExpr ){
6116           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6117           sqlite3ExprDeferredDelete(pParse, pExpr);
6118         }
6119       }
6120     }
6121   }
6122   return WRC_Continue;
6123 }
6124 
6125 /*
6126 ** Initialize a Walker object so that will persist AggInfo entries referenced
6127 ** by the tree that is walked.
6128 */
6129 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6130   memset(pWalker, 0, sizeof(*pWalker));
6131   pWalker->pParse = pParse;
6132   pWalker->xExprCallback = agginfoPersistExprCb;
6133   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6134 }
6135 
6136 /*
6137 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6138 ** the new element.  Return a negative number if malloc fails.
6139 */
6140 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6141   int i;
6142   pInfo->aCol = sqlite3ArrayAllocate(
6143        db,
6144        pInfo->aCol,
6145        sizeof(pInfo->aCol[0]),
6146        &pInfo->nColumn,
6147        &i
6148   );
6149   return i;
6150 }
6151 
6152 /*
6153 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6154 ** the new element.  Return a negative number if malloc fails.
6155 */
6156 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6157   int i;
6158   pInfo->aFunc = sqlite3ArrayAllocate(
6159        db,
6160        pInfo->aFunc,
6161        sizeof(pInfo->aFunc[0]),
6162        &pInfo->nFunc,
6163        &i
6164   );
6165   return i;
6166 }
6167 
6168 /*
6169 ** This is the xExprCallback for a tree walker.  It is used to
6170 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6171 ** for additional information.
6172 */
6173 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6174   int i;
6175   NameContext *pNC = pWalker->u.pNC;
6176   Parse *pParse = pNC->pParse;
6177   SrcList *pSrcList = pNC->pSrcList;
6178   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6179 
6180   assert( pNC->ncFlags & NC_UAggInfo );
6181   switch( pExpr->op ){
6182     case TK_AGG_COLUMN:
6183     case TK_COLUMN: {
6184       testcase( pExpr->op==TK_AGG_COLUMN );
6185       testcase( pExpr->op==TK_COLUMN );
6186       /* Check to see if the column is in one of the tables in the FROM
6187       ** clause of the aggregate query */
6188       if( ALWAYS(pSrcList!=0) ){
6189         SrcItem *pItem = pSrcList->a;
6190         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6191           struct AggInfo_col *pCol;
6192           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6193           if( pExpr->iTable==pItem->iCursor ){
6194             /* If we reach this point, it means that pExpr refers to a table
6195             ** that is in the FROM clause of the aggregate query.
6196             **
6197             ** Make an entry for the column in pAggInfo->aCol[] if there
6198             ** is not an entry there already.
6199             */
6200             int k;
6201             pCol = pAggInfo->aCol;
6202             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6203               if( pCol->iTable==pExpr->iTable &&
6204                   pCol->iColumn==pExpr->iColumn ){
6205                 break;
6206               }
6207             }
6208             if( (k>=pAggInfo->nColumn)
6209              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6210             ){
6211               pCol = &pAggInfo->aCol[k];
6212               assert( ExprUseYTab(pExpr) );
6213               pCol->pTab = pExpr->y.pTab;
6214               pCol->iTable = pExpr->iTable;
6215               pCol->iColumn = pExpr->iColumn;
6216               pCol->iMem = ++pParse->nMem;
6217               pCol->iSorterColumn = -1;
6218               pCol->pCExpr = pExpr;
6219               if( pAggInfo->pGroupBy ){
6220                 int j, n;
6221                 ExprList *pGB = pAggInfo->pGroupBy;
6222                 struct ExprList_item *pTerm = pGB->a;
6223                 n = pGB->nExpr;
6224                 for(j=0; j<n; j++, pTerm++){
6225                   Expr *pE = pTerm->pExpr;
6226                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6227                       pE->iColumn==pExpr->iColumn ){
6228                     pCol->iSorterColumn = j;
6229                     break;
6230                   }
6231                 }
6232               }
6233               if( pCol->iSorterColumn<0 ){
6234                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6235               }
6236             }
6237             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6238             ** because it was there before or because we just created it).
6239             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6240             ** pAggInfo->aCol[] entry.
6241             */
6242             ExprSetVVAProperty(pExpr, EP_NoReduce);
6243             pExpr->pAggInfo = pAggInfo;
6244             pExpr->op = TK_AGG_COLUMN;
6245             pExpr->iAgg = (i16)k;
6246             break;
6247           } /* endif pExpr->iTable==pItem->iCursor */
6248         } /* end loop over pSrcList */
6249       }
6250       return WRC_Prune;
6251     }
6252     case TK_AGG_FUNCTION: {
6253       if( (pNC->ncFlags & NC_InAggFunc)==0
6254        && pWalker->walkerDepth==pExpr->op2
6255       ){
6256         /* Check to see if pExpr is a duplicate of another aggregate
6257         ** function that is already in the pAggInfo structure
6258         */
6259         struct AggInfo_func *pItem = pAggInfo->aFunc;
6260         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6261           if( pItem->pFExpr==pExpr ) break;
6262           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6263             break;
6264           }
6265         }
6266         if( i>=pAggInfo->nFunc ){
6267           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6268           */
6269           u8 enc = ENC(pParse->db);
6270           i = addAggInfoFunc(pParse->db, pAggInfo);
6271           if( i>=0 ){
6272             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6273             pItem = &pAggInfo->aFunc[i];
6274             pItem->pFExpr = pExpr;
6275             pItem->iMem = ++pParse->nMem;
6276             assert( ExprUseUToken(pExpr) );
6277             pItem->pFunc = sqlite3FindFunction(pParse->db,
6278                    pExpr->u.zToken,
6279                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6280             if( pExpr->flags & EP_Distinct ){
6281               pItem->iDistinct = pParse->nTab++;
6282             }else{
6283               pItem->iDistinct = -1;
6284             }
6285           }
6286         }
6287         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6288         */
6289         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6290         ExprSetVVAProperty(pExpr, EP_NoReduce);
6291         pExpr->iAgg = (i16)i;
6292         pExpr->pAggInfo = pAggInfo;
6293         return WRC_Prune;
6294       }else{
6295         return WRC_Continue;
6296       }
6297     }
6298   }
6299   return WRC_Continue;
6300 }
6301 
6302 /*
6303 ** Analyze the pExpr expression looking for aggregate functions and
6304 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6305 ** points to.  Additional entries are made on the AggInfo object as
6306 ** necessary.
6307 **
6308 ** This routine should only be called after the expression has been
6309 ** analyzed by sqlite3ResolveExprNames().
6310 */
6311 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6312   Walker w;
6313   w.xExprCallback = analyzeAggregate;
6314   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6315   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6316   w.walkerDepth = 0;
6317   w.u.pNC = pNC;
6318   w.pParse = 0;
6319   assert( pNC->pSrcList!=0 );
6320   sqlite3WalkExpr(&w, pExpr);
6321 }
6322 
6323 /*
6324 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6325 ** expression list.  Return the number of errors.
6326 **
6327 ** If an error is found, the analysis is cut short.
6328 */
6329 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6330   struct ExprList_item *pItem;
6331   int i;
6332   if( pList ){
6333     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6334       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6335     }
6336   }
6337 }
6338 
6339 /*
6340 ** Allocate a single new register for use to hold some intermediate result.
6341 */
6342 int sqlite3GetTempReg(Parse *pParse){
6343   if( pParse->nTempReg==0 ){
6344     return ++pParse->nMem;
6345   }
6346   return pParse->aTempReg[--pParse->nTempReg];
6347 }
6348 
6349 /*
6350 ** Deallocate a register, making available for reuse for some other
6351 ** purpose.
6352 */
6353 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6354   if( iReg ){
6355     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6356     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6357       pParse->aTempReg[pParse->nTempReg++] = iReg;
6358     }
6359   }
6360 }
6361 
6362 /*
6363 ** Allocate or deallocate a block of nReg consecutive registers.
6364 */
6365 int sqlite3GetTempRange(Parse *pParse, int nReg){
6366   int i, n;
6367   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6368   i = pParse->iRangeReg;
6369   n = pParse->nRangeReg;
6370   if( nReg<=n ){
6371     pParse->iRangeReg += nReg;
6372     pParse->nRangeReg -= nReg;
6373   }else{
6374     i = pParse->nMem+1;
6375     pParse->nMem += nReg;
6376   }
6377   return i;
6378 }
6379 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6380   if( nReg==1 ){
6381     sqlite3ReleaseTempReg(pParse, iReg);
6382     return;
6383   }
6384   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6385   if( nReg>pParse->nRangeReg ){
6386     pParse->nRangeReg = nReg;
6387     pParse->iRangeReg = iReg;
6388   }
6389 }
6390 
6391 /*
6392 ** Mark all temporary registers as being unavailable for reuse.
6393 **
6394 ** Always invoke this procedure after coding a subroutine or co-routine
6395 ** that might be invoked from other parts of the code, to ensure that
6396 ** the sub/co-routine does not use registers in common with the code that
6397 ** invokes the sub/co-routine.
6398 */
6399 void sqlite3ClearTempRegCache(Parse *pParse){
6400   pParse->nTempReg = 0;
6401   pParse->nRangeReg = 0;
6402 }
6403 
6404 /*
6405 ** Validate that no temporary register falls within the range of
6406 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6407 ** statements.
6408 */
6409 #ifdef SQLITE_DEBUG
6410 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6411   int i;
6412   if( pParse->nRangeReg>0
6413    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6414    && pParse->iRangeReg <= iLast
6415   ){
6416      return 0;
6417   }
6418   for(i=0; i<pParse->nTempReg; i++){
6419     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6420       return 0;
6421     }
6422   }
6423   return 1;
6424 }
6425 #endif /* SQLITE_DEBUG */
6426