xref: /sqlite-3.40.0/src/expr.c (revision c56fac74)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_BLOB;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_BLOB;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_BLOB;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_BLOB:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   if( pParse->nErr ) return;
401   exprSetHeight(p);
402   sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404 
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410   int nHeight = 0;
411   heightOfSelect(p, &nHeight);
412   return nHeight;
413 }
414 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422   }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426 
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it.  Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc().  The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performed.  The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case:  If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken.  Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
449   int op,                 /* Expression opcode */
450   const Token *pToken,    /* Token argument.  Might be NULL */
451   int dequote             /* True to dequote */
452 ){
453   Expr *pNew;
454   int nExtra = 0;
455   int iValue = 0;
456 
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     pNew->op = (u8)op;
467     pNew->iAgg = -1;
468     if( pToken ){
469       if( nExtra==0 ){
470         pNew->flags |= EP_IntValue;
471         pNew->u.iValue = iValue;
472       }else{
473         int c;
474         pNew->u.zToken = (char*)&pNew[1];
475         assert( pToken->z!=0 || pToken->n==0 );
476         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477         pNew->u.zToken[pToken->n] = 0;
478         if( dequote && nExtra>=3
479              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480           sqlite3Dequote(pNew->u.zToken);
481           if( c=='"' ) pNew->flags |= EP_DblQuoted;
482         }
483       }
484     }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486     pNew->nHeight = 1;
487 #endif
488   }
489   return pNew;
490 }
491 
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
498   int op,                 /* Expression opcode */
499   const char *zToken      /* Token argument.  Might be NULL */
500 ){
501   Token x;
502   x.z = zToken;
503   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504   return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506 
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514   sqlite3 *db,
515   Expr *pRoot,
516   Expr *pLeft,
517   Expr *pRight
518 ){
519   if( pRoot==0 ){
520     assert( db->mallocFailed );
521     sqlite3ExprDelete(db, pLeft);
522     sqlite3ExprDelete(db, pRight);
523   }else{
524     if( pRight ){
525       pRoot->pRight = pRight;
526       pRoot->flags |= EP_Propagate & pRight->flags;
527     }
528     if( pLeft ){
529       pRoot->pLeft = pLeft;
530       pRoot->flags |= EP_Propagate & pLeft->flags;
531     }
532     exprSetHeight(pRoot);
533   }
534 }
535 
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL.  Return a pointer to the new
540 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544   Parse *pParse,          /* Parsing context */
545   int op,                 /* Expression opcode */
546   Expr *pLeft,            /* Left operand */
547   Expr *pRight,           /* Right operand */
548   const Token *pToken     /* Argument token */
549 ){
550   Expr *p;
551   if( op==TK_AND && pParse->nErr==0 ){
552     /* Take advantage of short-circuit false optimization for AND */
553     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554   }else{
555     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
556     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557   }
558   if( p ) {
559     sqlite3ExprCheckHeight(pParse, p->nHeight);
560   }
561   return p;
562 }
563 
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1.  If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization.  If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579   int v = 0;
580   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582   return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585   int v = 0;
586   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588   return v==0;
589 }
590 
591 /*
592 ** Join two expressions using an AND operator.  If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600   if( pLeft==0 ){
601     return pRight;
602   }else if( pRight==0 ){
603     return pLeft;
604   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605     sqlite3ExprDelete(db, pLeft);
606     sqlite3ExprDelete(db, pRight);
607     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608   }else{
609     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611     return pNew;
612   }
613 }
614 
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620   Expr *pNew;
621   sqlite3 *db = pParse->db;
622   assert( pToken );
623   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624   if( pNew==0 ){
625     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626     return 0;
627   }
628   pNew->x.pList = pList;
629   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630   sqlite3ExprSetHeightAndFlags(pParse, pNew);
631   return pNew;
632 }
633 
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard.  Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651   sqlite3 *db = pParse->db;
652   const char *z;
653 
654   if( pExpr==0 ) return;
655   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656   z = pExpr->u.zToken;
657   assert( z!=0 );
658   assert( z[0]!=0 );
659   if( z[1]==0 ){
660     /* Wildcard of the form "?".  Assign the next variable number */
661     assert( z[0]=='?' );
662     pExpr->iColumn = (ynVar)(++pParse->nVar);
663   }else{
664     ynVar x = 0;
665     u32 n = sqlite3Strlen30(z);
666     if( z[0]=='?' ){
667       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
668       ** use it as the variable number */
669       i64 i;
670       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671       pExpr->iColumn = x = (ynVar)i;
672       testcase( i==0 );
673       testcase( i==1 );
674       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679         x = 0;
680       }
681       if( i>pParse->nVar ){
682         pParse->nVar = (int)i;
683       }
684     }else{
685       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
686       ** number as the prior appearance of the same name, or if the name
687       ** has never appeared before, reuse the same variable number
688       */
689       ynVar i;
690       for(i=0; i<pParse->nzVar; i++){
691         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692           pExpr->iColumn = x = (ynVar)i+1;
693           break;
694         }
695       }
696       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697     }
698     if( x>0 ){
699       if( x>pParse->nzVar ){
700         char **a;
701         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702         if( a==0 ) return;  /* Error reported through db->mallocFailed */
703         pParse->azVar = a;
704         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705         pParse->nzVar = x;
706       }
707       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708         sqlite3DbFree(db, pParse->azVar[x-1]);
709         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710       }
711     }
712   }
713   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714     sqlite3ErrorMsg(pParse, "too many SQL variables");
715   }
716 }
717 
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722   if( p==0 ) return;
723   /* Sanity check: Assert that the IntValue is non-negative if it exists */
724   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725   if( !ExprHasProperty(p, EP_TokenOnly) ){
726     /* The Expr.x union is never used at the same time as Expr.pRight */
727     assert( p->x.pList==0 || p->pRight==0 );
728     sqlite3ExprDelete(db, p->pLeft);
729     sqlite3ExprDelete(db, p->pRight);
730     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731     if( ExprHasProperty(p, EP_xIsSelect) ){
732       sqlite3SelectDelete(db, p->x.pSelect);
733     }else{
734       sqlite3ExprListDelete(db, p->x.pList);
735     }
736   }
737   if( !ExprHasProperty(p, EP_Static) ){
738     sqlite3DbFree(db, p);
739   }
740 }
741 
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750   return EXPR_FULLSIZE;
751 }
752 
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree.  They differ in
756 ** how much of the tree is measured.
757 **
758 **     dupedExprStructSize()     Size of only the Expr structure
759 **     dupedExprNodeSize()       Size of Expr + space for token
760 **     dupedExprSize()           Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 **      EXPR_FULLSIZE
770 **      EXPR_REDUCEDSIZE   | EP_Reduced
771 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff.  The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced.  Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
783 ** to reduce a pristine expression tree from the parser.  The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788   int nSize;
789   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790   assert( EXPR_FULLSIZE<=0xfff );
791   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792   if( 0==(flags&EXPRDUP_REDUCE) ){
793     nSize = EXPR_FULLSIZE;
794   }else{
795     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796     assert( !ExprHasProperty(p, EP_FromJoin) );
797     assert( !ExprHasProperty(p, EP_MemToken) );
798     assert( !ExprHasProperty(p, EP_NoReduce) );
799     if( p->pLeft || p->x.pList ){
800       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801     }else{
802       assert( p->pRight==0 );
803       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804     }
805   }
806   return nSize;
807 }
808 
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815   int nByte = dupedExprStructSize(p, flags) & 0xfff;
816   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817     nByte += sqlite3Strlen30(p->u.zToken)+1;
818   }
819   return ROUND8(nByte);
820 }
821 
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836   int nByte = 0;
837   if( p ){
838     nByte = dupedExprNodeSize(p, flags);
839     if( flags&EXPRDUP_REDUCE ){
840       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841     }
842   }
843   return nByte;
844 }
845 
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855   Expr *pNew = 0;                      /* Value to return */
856   if( p ){
857     const int isReduced = (flags&EXPRDUP_REDUCE);
858     u8 *zAlloc;
859     u32 staticFlag = 0;
860 
861     assert( pzBuffer==0 || isReduced );
862 
863     /* Figure out where to write the new Expr structure. */
864     if( pzBuffer ){
865       zAlloc = *pzBuffer;
866       staticFlag = EP_Static;
867     }else{
868       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
869     }
870     pNew = (Expr *)zAlloc;
871 
872     if( pNew ){
873       /* Set nNewSize to the size allocated for the structure pointed to
874       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
875       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
876       ** by the copy of the p->u.zToken string (if any).
877       */
878       const unsigned nStructSize = dupedExprStructSize(p, flags);
879       const int nNewSize = nStructSize & 0xfff;
880       int nToken;
881       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
882         nToken = sqlite3Strlen30(p->u.zToken) + 1;
883       }else{
884         nToken = 0;
885       }
886       if( isReduced ){
887         assert( ExprHasProperty(p, EP_Reduced)==0 );
888         memcpy(zAlloc, p, nNewSize);
889       }else{
890         int nSize = exprStructSize(p);
891         memcpy(zAlloc, p, nSize);
892         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
893       }
894 
895       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
896       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
897       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
898       pNew->flags |= staticFlag;
899 
900       /* Copy the p->u.zToken string, if any. */
901       if( nToken ){
902         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
903         memcpy(zToken, p->u.zToken, nToken);
904       }
905 
906       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
907         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
908         if( ExprHasProperty(p, EP_xIsSelect) ){
909           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
910         }else{
911           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
912         }
913       }
914 
915       /* Fill in pNew->pLeft and pNew->pRight. */
916       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
917         zAlloc += dupedExprNodeSize(p, flags);
918         if( ExprHasProperty(pNew, EP_Reduced) ){
919           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
920           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
921         }
922         if( pzBuffer ){
923           *pzBuffer = zAlloc;
924         }
925       }else{
926         if( !ExprHasProperty(p, EP_TokenOnly) ){
927           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
928           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
929         }
930       }
931 
932     }
933   }
934   return pNew;
935 }
936 
937 /*
938 ** Create and return a deep copy of the object passed as the second
939 ** argument. If an OOM condition is encountered, NULL is returned
940 ** and the db->mallocFailed flag set.
941 */
942 #ifndef SQLITE_OMIT_CTE
943 static With *withDup(sqlite3 *db, With *p){
944   With *pRet = 0;
945   if( p ){
946     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
947     pRet = sqlite3DbMallocZero(db, nByte);
948     if( pRet ){
949       int i;
950       pRet->nCte = p->nCte;
951       for(i=0; i<p->nCte; i++){
952         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
953         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
954         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
955       }
956     }
957   }
958   return pRet;
959 }
960 #else
961 # define withDup(x,y) 0
962 #endif
963 
964 /*
965 ** The following group of routines make deep copies of expressions,
966 ** expression lists, ID lists, and select statements.  The copies can
967 ** be deleted (by being passed to their respective ...Delete() routines)
968 ** without effecting the originals.
969 **
970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
972 ** by subsequent calls to sqlite*ListAppend() routines.
973 **
974 ** Any tables that the SrcList might point to are not duplicated.
975 **
976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
978 ** truncated version of the usual Expr structure that will be stored as
979 ** part of the in-memory representation of the database schema.
980 */
981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
982   return exprDup(db, p, flags, 0);
983 }
984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
985   ExprList *pNew;
986   struct ExprList_item *pItem, *pOldItem;
987   int i;
988   if( p==0 ) return 0;
989   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
990   if( pNew==0 ) return 0;
991   pNew->nExpr = i = p->nExpr;
992   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
993   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
994   if( pItem==0 ){
995     sqlite3DbFree(db, pNew);
996     return 0;
997   }
998   pOldItem = p->a;
999   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1000     Expr *pOldExpr = pOldItem->pExpr;
1001     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1002     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1003     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1004     pItem->sortOrder = pOldItem->sortOrder;
1005     pItem->done = 0;
1006     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1007     pItem->u = pOldItem->u;
1008   }
1009   return pNew;
1010 }
1011 
1012 /*
1013 ** If cursors, triggers, views and subqueries are all omitted from
1014 ** the build, then none of the following routines, except for
1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1016 ** called with a NULL argument.
1017 */
1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1019  || !defined(SQLITE_OMIT_SUBQUERY)
1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1021   SrcList *pNew;
1022   int i;
1023   int nByte;
1024   if( p==0 ) return 0;
1025   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1026   pNew = sqlite3DbMallocRaw(db, nByte );
1027   if( pNew==0 ) return 0;
1028   pNew->nSrc = pNew->nAlloc = p->nSrc;
1029   for(i=0; i<p->nSrc; i++){
1030     struct SrcList_item *pNewItem = &pNew->a[i];
1031     struct SrcList_item *pOldItem = &p->a[i];
1032     Table *pTab;
1033     pNewItem->pSchema = pOldItem->pSchema;
1034     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1035     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1036     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1037     pNewItem->fg = pOldItem->fg;
1038     pNewItem->iCursor = pOldItem->iCursor;
1039     pNewItem->addrFillSub = pOldItem->addrFillSub;
1040     pNewItem->regReturn = pOldItem->regReturn;
1041     if( pNewItem->fg.isIndexedBy ){
1042       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1043     }
1044     pNewItem->pIBIndex = pOldItem->pIBIndex;
1045     if( pNewItem->fg.isTabFunc ){
1046       pNewItem->u1.pFuncArg =
1047           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1048     }
1049     pTab = pNewItem->pTab = pOldItem->pTab;
1050     if( pTab ){
1051       pTab->nRef++;
1052     }
1053     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1054     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1055     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1056     pNewItem->colUsed = pOldItem->colUsed;
1057   }
1058   return pNew;
1059 }
1060 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1061   IdList *pNew;
1062   int i;
1063   if( p==0 ) return 0;
1064   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1065   if( pNew==0 ) return 0;
1066   pNew->nId = p->nId;
1067   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1068   if( pNew->a==0 ){
1069     sqlite3DbFree(db, pNew);
1070     return 0;
1071   }
1072   /* Note that because the size of the allocation for p->a[] is not
1073   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1074   ** on the duplicate created by this function. */
1075   for(i=0; i<p->nId; i++){
1076     struct IdList_item *pNewItem = &pNew->a[i];
1077     struct IdList_item *pOldItem = &p->a[i];
1078     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1079     pNewItem->idx = pOldItem->idx;
1080   }
1081   return pNew;
1082 }
1083 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1084   Select *pNew, *pPrior;
1085   if( p==0 ) return 0;
1086   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1087   if( pNew==0 ) return 0;
1088   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1089   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1090   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1091   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1092   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1093   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1094   pNew->op = p->op;
1095   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1096   if( pPrior ) pPrior->pNext = pNew;
1097   pNew->pNext = 0;
1098   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1099   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1100   pNew->iLimit = 0;
1101   pNew->iOffset = 0;
1102   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1103   pNew->addrOpenEphm[0] = -1;
1104   pNew->addrOpenEphm[1] = -1;
1105   pNew->nSelectRow = p->nSelectRow;
1106   pNew->pWith = withDup(db, p->pWith);
1107   sqlite3SelectSetName(pNew, p->zSelName);
1108   return pNew;
1109 }
1110 #else
1111 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1112   assert( p==0 );
1113   return 0;
1114 }
1115 #endif
1116 
1117 
1118 /*
1119 ** Add a new element to the end of an expression list.  If pList is
1120 ** initially NULL, then create a new expression list.
1121 **
1122 ** If a memory allocation error occurs, the entire list is freed and
1123 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1124 ** that the new entry was successfully appended.
1125 */
1126 ExprList *sqlite3ExprListAppend(
1127   Parse *pParse,          /* Parsing context */
1128   ExprList *pList,        /* List to which to append. Might be NULL */
1129   Expr *pExpr             /* Expression to be appended. Might be NULL */
1130 ){
1131   sqlite3 *db = pParse->db;
1132   if( pList==0 ){
1133     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1134     if( pList==0 ){
1135       goto no_mem;
1136     }
1137     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1138     if( pList->a==0 ) goto no_mem;
1139   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1140     struct ExprList_item *a;
1141     assert( pList->nExpr>0 );
1142     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1143     if( a==0 ){
1144       goto no_mem;
1145     }
1146     pList->a = a;
1147   }
1148   assert( pList->a!=0 );
1149   if( 1 ){
1150     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1151     memset(pItem, 0, sizeof(*pItem));
1152     pItem->pExpr = pExpr;
1153   }
1154   return pList;
1155 
1156 no_mem:
1157   /* Avoid leaking memory if malloc has failed. */
1158   sqlite3ExprDelete(db, pExpr);
1159   sqlite3ExprListDelete(db, pList);
1160   return 0;
1161 }
1162 
1163 /*
1164 ** Set the sort order for the last element on the given ExprList.
1165 */
1166 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1167   if( p==0 ) return;
1168   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1169   assert( p->nExpr>0 );
1170   if( iSortOrder<0 ){
1171     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1172     return;
1173   }
1174   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1175 }
1176 
1177 /*
1178 ** Set the ExprList.a[].zName element of the most recently added item
1179 ** on the expression list.
1180 **
1181 ** pList might be NULL following an OOM error.  But pName should never be
1182 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1183 ** is set.
1184 */
1185 void sqlite3ExprListSetName(
1186   Parse *pParse,          /* Parsing context */
1187   ExprList *pList,        /* List to which to add the span. */
1188   Token *pName,           /* Name to be added */
1189   int dequote             /* True to cause the name to be dequoted */
1190 ){
1191   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1192   if( pList ){
1193     struct ExprList_item *pItem;
1194     assert( pList->nExpr>0 );
1195     pItem = &pList->a[pList->nExpr-1];
1196     assert( pItem->zName==0 );
1197     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1198     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1199   }
1200 }
1201 
1202 /*
1203 ** Set the ExprList.a[].zSpan element of the most recently added item
1204 ** on the expression list.
1205 **
1206 ** pList might be NULL following an OOM error.  But pSpan should never be
1207 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1208 ** is set.
1209 */
1210 void sqlite3ExprListSetSpan(
1211   Parse *pParse,          /* Parsing context */
1212   ExprList *pList,        /* List to which to add the span. */
1213   ExprSpan *pSpan         /* The span to be added */
1214 ){
1215   sqlite3 *db = pParse->db;
1216   assert( pList!=0 || db->mallocFailed!=0 );
1217   if( pList ){
1218     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1219     assert( pList->nExpr>0 );
1220     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1221     sqlite3DbFree(db, pItem->zSpan);
1222     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1223                                     (int)(pSpan->zEnd - pSpan->zStart));
1224   }
1225 }
1226 
1227 /*
1228 ** If the expression list pEList contains more than iLimit elements,
1229 ** leave an error message in pParse.
1230 */
1231 void sqlite3ExprListCheckLength(
1232   Parse *pParse,
1233   ExprList *pEList,
1234   const char *zObject
1235 ){
1236   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1237   testcase( pEList && pEList->nExpr==mx );
1238   testcase( pEList && pEList->nExpr==mx+1 );
1239   if( pEList && pEList->nExpr>mx ){
1240     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1241   }
1242 }
1243 
1244 /*
1245 ** Delete an entire expression list.
1246 */
1247 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1248   int i;
1249   struct ExprList_item *pItem;
1250   if( pList==0 ) return;
1251   assert( pList->a!=0 || pList->nExpr==0 );
1252   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1253     sqlite3ExprDelete(db, pItem->pExpr);
1254     sqlite3DbFree(db, pItem->zName);
1255     sqlite3DbFree(db, pItem->zSpan);
1256   }
1257   sqlite3DbFree(db, pList->a);
1258   sqlite3DbFree(db, pList);
1259 }
1260 
1261 /*
1262 ** Return the bitwise-OR of all Expr.flags fields in the given
1263 ** ExprList.
1264 */
1265 u32 sqlite3ExprListFlags(const ExprList *pList){
1266   int i;
1267   u32 m = 0;
1268   if( pList ){
1269     for(i=0; i<pList->nExpr; i++){
1270        Expr *pExpr = pList->a[i].pExpr;
1271        if( ALWAYS(pExpr) ) m |= pExpr->flags;
1272     }
1273   }
1274   return m;
1275 }
1276 
1277 /*
1278 ** These routines are Walker callbacks used to check expressions to
1279 ** see if they are "constant" for some definition of constant.  The
1280 ** Walker.eCode value determines the type of "constant" we are looking
1281 ** for.
1282 **
1283 ** These callback routines are used to implement the following:
1284 **
1285 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1286 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1287 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1288 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1289 **
1290 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1291 ** is found to not be a constant.
1292 **
1293 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1294 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1295 ** an existing schema and 4 when processing a new statement.  A bound
1296 ** parameter raises an error for new statements, but is silently converted
1297 ** to NULL for existing schemas.  This allows sqlite_master tables that
1298 ** contain a bound parameter because they were generated by older versions
1299 ** of SQLite to be parsed by newer versions of SQLite without raising a
1300 ** malformed schema error.
1301 */
1302 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1303 
1304   /* If pWalker->eCode is 2 then any term of the expression that comes from
1305   ** the ON or USING clauses of a left join disqualifies the expression
1306   ** from being considered constant. */
1307   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1308     pWalker->eCode = 0;
1309     return WRC_Abort;
1310   }
1311 
1312   switch( pExpr->op ){
1313     /* Consider functions to be constant if all their arguments are constant
1314     ** and either pWalker->eCode==4 or 5 or the function has the
1315     ** SQLITE_FUNC_CONST flag. */
1316     case TK_FUNCTION:
1317       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1318         return WRC_Continue;
1319       }else{
1320         pWalker->eCode = 0;
1321         return WRC_Abort;
1322       }
1323     case TK_ID:
1324     case TK_COLUMN:
1325     case TK_AGG_FUNCTION:
1326     case TK_AGG_COLUMN:
1327       testcase( pExpr->op==TK_ID );
1328       testcase( pExpr->op==TK_COLUMN );
1329       testcase( pExpr->op==TK_AGG_FUNCTION );
1330       testcase( pExpr->op==TK_AGG_COLUMN );
1331       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1332         return WRC_Continue;
1333       }else{
1334         pWalker->eCode = 0;
1335         return WRC_Abort;
1336       }
1337     case TK_VARIABLE:
1338       if( pWalker->eCode==5 ){
1339         /* Silently convert bound parameters that appear inside of CREATE
1340         ** statements into a NULL when parsing the CREATE statement text out
1341         ** of the sqlite_master table */
1342         pExpr->op = TK_NULL;
1343       }else if( pWalker->eCode==4 ){
1344         /* A bound parameter in a CREATE statement that originates from
1345         ** sqlite3_prepare() causes an error */
1346         pWalker->eCode = 0;
1347         return WRC_Abort;
1348       }
1349       /* Fall through */
1350     default:
1351       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1352       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1353       return WRC_Continue;
1354   }
1355 }
1356 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1357   UNUSED_PARAMETER(NotUsed);
1358   pWalker->eCode = 0;
1359   return WRC_Abort;
1360 }
1361 static int exprIsConst(Expr *p, int initFlag, int iCur){
1362   Walker w;
1363   memset(&w, 0, sizeof(w));
1364   w.eCode = initFlag;
1365   w.xExprCallback = exprNodeIsConstant;
1366   w.xSelectCallback = selectNodeIsConstant;
1367   w.u.iCur = iCur;
1368   sqlite3WalkExpr(&w, p);
1369   return w.eCode;
1370 }
1371 
1372 /*
1373 ** Walk an expression tree.  Return non-zero if the expression is constant
1374 ** and 0 if it involves variables or function calls.
1375 **
1376 ** For the purposes of this function, a double-quoted string (ex: "abc")
1377 ** is considered a variable but a single-quoted string (ex: 'abc') is
1378 ** a constant.
1379 */
1380 int sqlite3ExprIsConstant(Expr *p){
1381   return exprIsConst(p, 1, 0);
1382 }
1383 
1384 /*
1385 ** Walk an expression tree.  Return non-zero if the expression is constant
1386 ** that does no originate from the ON or USING clauses of a join.
1387 ** Return 0 if it involves variables or function calls or terms from
1388 ** an ON or USING clause.
1389 */
1390 int sqlite3ExprIsConstantNotJoin(Expr *p){
1391   return exprIsConst(p, 2, 0);
1392 }
1393 
1394 /*
1395 ** Walk an expression tree.  Return non-zero if the expression is constant
1396 ** for any single row of the table with cursor iCur.  In other words, the
1397 ** expression must not refer to any non-deterministic function nor any
1398 ** table other than iCur.
1399 */
1400 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1401   return exprIsConst(p, 3, iCur);
1402 }
1403 
1404 /*
1405 ** Walk an expression tree.  Return non-zero if the expression is constant
1406 ** or a function call with constant arguments.  Return and 0 if there
1407 ** are any variables.
1408 **
1409 ** For the purposes of this function, a double-quoted string (ex: "abc")
1410 ** is considered a variable but a single-quoted string (ex: 'abc') is
1411 ** a constant.
1412 */
1413 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1414   assert( isInit==0 || isInit==1 );
1415   return exprIsConst(p, 4+isInit, 0);
1416 }
1417 
1418 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1419 /*
1420 ** Walk an expression tree.  Return 1 if the expression contains a
1421 ** subquery of some kind.  Return 0 if there are no subqueries.
1422 */
1423 int sqlite3ExprContainsSubquery(Expr *p){
1424   Walker w;
1425   memset(&w, 0, sizeof(w));
1426   w.eCode = 1;
1427   w.xExprCallback = sqlite3ExprWalkNoop;
1428   w.xSelectCallback = selectNodeIsConstant;
1429   sqlite3WalkExpr(&w, p);
1430   return w.eCode==0;
1431 }
1432 #endif
1433 
1434 /*
1435 ** If the expression p codes a constant integer that is small enough
1436 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1437 ** in *pValue.  If the expression is not an integer or if it is too big
1438 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1439 */
1440 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1441   int rc = 0;
1442 
1443   /* If an expression is an integer literal that fits in a signed 32-bit
1444   ** integer, then the EP_IntValue flag will have already been set */
1445   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1446            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1447 
1448   if( p->flags & EP_IntValue ){
1449     *pValue = p->u.iValue;
1450     return 1;
1451   }
1452   switch( p->op ){
1453     case TK_UPLUS: {
1454       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1455       break;
1456     }
1457     case TK_UMINUS: {
1458       int v;
1459       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1460         assert( v!=(-2147483647-1) );
1461         *pValue = -v;
1462         rc = 1;
1463       }
1464       break;
1465     }
1466     default: break;
1467   }
1468   return rc;
1469 }
1470 
1471 /*
1472 ** Return FALSE if there is no chance that the expression can be NULL.
1473 **
1474 ** If the expression might be NULL or if the expression is too complex
1475 ** to tell return TRUE.
1476 **
1477 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1478 ** when we know that a value cannot be NULL.  Hence, a false positive
1479 ** (returning TRUE when in fact the expression can never be NULL) might
1480 ** be a small performance hit but is otherwise harmless.  On the other
1481 ** hand, a false negative (returning FALSE when the result could be NULL)
1482 ** will likely result in an incorrect answer.  So when in doubt, return
1483 ** TRUE.
1484 */
1485 int sqlite3ExprCanBeNull(const Expr *p){
1486   u8 op;
1487   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1488   op = p->op;
1489   if( op==TK_REGISTER ) op = p->op2;
1490   switch( op ){
1491     case TK_INTEGER:
1492     case TK_STRING:
1493     case TK_FLOAT:
1494     case TK_BLOB:
1495       return 0;
1496     case TK_COLUMN:
1497       assert( p->pTab!=0 );
1498       return ExprHasProperty(p, EP_CanBeNull) ||
1499              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1500     default:
1501       return 1;
1502   }
1503 }
1504 
1505 /*
1506 ** Return TRUE if the given expression is a constant which would be
1507 ** unchanged by OP_Affinity with the affinity given in the second
1508 ** argument.
1509 **
1510 ** This routine is used to determine if the OP_Affinity operation
1511 ** can be omitted.  When in doubt return FALSE.  A false negative
1512 ** is harmless.  A false positive, however, can result in the wrong
1513 ** answer.
1514 */
1515 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1516   u8 op;
1517   if( aff==SQLITE_AFF_BLOB ) return 1;
1518   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1519   op = p->op;
1520   if( op==TK_REGISTER ) op = p->op2;
1521   switch( op ){
1522     case TK_INTEGER: {
1523       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1524     }
1525     case TK_FLOAT: {
1526       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1527     }
1528     case TK_STRING: {
1529       return aff==SQLITE_AFF_TEXT;
1530     }
1531     case TK_BLOB: {
1532       return 1;
1533     }
1534     case TK_COLUMN: {
1535       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1536       return p->iColumn<0
1537           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1538     }
1539     default: {
1540       return 0;
1541     }
1542   }
1543 }
1544 
1545 /*
1546 ** Return TRUE if the given string is a row-id column name.
1547 */
1548 int sqlite3IsRowid(const char *z){
1549   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1550   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1551   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1552   return 0;
1553 }
1554 
1555 /*
1556 ** Return true if we are able to the IN operator optimization on a
1557 ** query of the form
1558 **
1559 **       x IN (SELECT ...)
1560 **
1561 ** Where the SELECT... clause is as specified by the parameter to this
1562 ** routine.
1563 **
1564 ** The Select object passed in has already been preprocessed and no
1565 ** errors have been found.
1566 */
1567 #ifndef SQLITE_OMIT_SUBQUERY
1568 static int isCandidateForInOpt(Select *p){
1569   SrcList *pSrc;
1570   ExprList *pEList;
1571   Table *pTab;
1572   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1573   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1574   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1575     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1576     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1577     return 0; /* No DISTINCT keyword and no aggregate functions */
1578   }
1579   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1580   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1581   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1582   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1583   pSrc = p->pSrc;
1584   assert( pSrc!=0 );
1585   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1586   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1587   pTab = pSrc->a[0].pTab;
1588   if( NEVER(pTab==0) ) return 0;
1589   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1590   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1591   pEList = p->pEList;
1592   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1593   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1594   return 1;
1595 }
1596 #endif /* SQLITE_OMIT_SUBQUERY */
1597 
1598 /*
1599 ** Code an OP_Once instruction and allocate space for its flag. Return the
1600 ** address of the new instruction.
1601 */
1602 int sqlite3CodeOnce(Parse *pParse){
1603   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1604   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1605 }
1606 
1607 /*
1608 ** Generate code that checks the left-most column of index table iCur to see if
1609 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1610 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1611 ** to be set to NULL if iCur contains one or more NULL values.
1612 */
1613 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1614   int addr1;
1615   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1616   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1617   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1618   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1619   VdbeComment((v, "first_entry_in(%d)", iCur));
1620   sqlite3VdbeJumpHere(v, addr1);
1621 }
1622 
1623 
1624 #ifndef SQLITE_OMIT_SUBQUERY
1625 /*
1626 ** The argument is an IN operator with a list (not a subquery) on the
1627 ** right-hand side.  Return TRUE if that list is constant.
1628 */
1629 static int sqlite3InRhsIsConstant(Expr *pIn){
1630   Expr *pLHS;
1631   int res;
1632   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1633   pLHS = pIn->pLeft;
1634   pIn->pLeft = 0;
1635   res = sqlite3ExprIsConstant(pIn);
1636   pIn->pLeft = pLHS;
1637   return res;
1638 }
1639 #endif
1640 
1641 /*
1642 ** This function is used by the implementation of the IN (...) operator.
1643 ** The pX parameter is the expression on the RHS of the IN operator, which
1644 ** might be either a list of expressions or a subquery.
1645 **
1646 ** The job of this routine is to find or create a b-tree object that can
1647 ** be used either to test for membership in the RHS set or to iterate through
1648 ** all members of the RHS set, skipping duplicates.
1649 **
1650 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1651 ** and pX->iTable is set to the index of that cursor.
1652 **
1653 ** The returned value of this function indicates the b-tree type, as follows:
1654 **
1655 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1656 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1657 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1658 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1659 **                         populated epheremal table.
1660 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1661 **                         implemented as a sequence of comparisons.
1662 **
1663 ** An existing b-tree might be used if the RHS expression pX is a simple
1664 ** subquery such as:
1665 **
1666 **     SELECT <column> FROM <table>
1667 **
1668 ** If the RHS of the IN operator is a list or a more complex subquery, then
1669 ** an ephemeral table might need to be generated from the RHS and then
1670 ** pX->iTable made to point to the ephemeral table instead of an
1671 ** existing table.
1672 **
1673 ** The inFlags parameter must contain exactly one of the bits
1674 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1675 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1676 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1677 ** IN index will be used to loop over all values of the RHS of the
1678 ** IN operator.
1679 **
1680 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1681 ** through the set members) then the b-tree must not contain duplicates.
1682 ** An epheremal table must be used unless the selected <column> is guaranteed
1683 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1684 ** has a UNIQUE constraint or UNIQUE index.
1685 **
1686 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1687 ** for fast set membership tests) then an epheremal table must
1688 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1689 ** be found with <column> as its left-most column.
1690 **
1691 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1692 ** if the RHS of the IN operator is a list (not a subquery) then this
1693 ** routine might decide that creating an ephemeral b-tree for membership
1694 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1695 ** calling routine should implement the IN operator using a sequence
1696 ** of Eq or Ne comparison operations.
1697 **
1698 ** When the b-tree is being used for membership tests, the calling function
1699 ** might need to know whether or not the RHS side of the IN operator
1700 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1701 ** if there is any chance that the (...) might contain a NULL value at
1702 ** runtime, then a register is allocated and the register number written
1703 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1704 ** NULL value, then *prRhsHasNull is left unchanged.
1705 **
1706 ** If a register is allocated and its location stored in *prRhsHasNull, then
1707 ** the value in that register will be NULL if the b-tree contains one or more
1708 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1709 ** NULL values.
1710 */
1711 #ifndef SQLITE_OMIT_SUBQUERY
1712 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1713   Select *p;                            /* SELECT to the right of IN operator */
1714   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1715   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1716   int mustBeUnique;                     /* True if RHS must be unique */
1717   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1718 
1719   assert( pX->op==TK_IN );
1720   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1721 
1722   /* Check to see if an existing table or index can be used to
1723   ** satisfy the query.  This is preferable to generating a new
1724   ** ephemeral table.
1725   */
1726   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1727   if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1728     sqlite3 *db = pParse->db;              /* Database connection */
1729     Table *pTab;                           /* Table <table>. */
1730     Expr *pExpr;                           /* Expression <column> */
1731     i16 iCol;                              /* Index of column <column> */
1732     i16 iDb;                               /* Database idx for pTab */
1733 
1734     assert( p );                        /* Because of isCandidateForInOpt(p) */
1735     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1736     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1737     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1738     pTab = p->pSrc->a[0].pTab;
1739     pExpr = p->pEList->a[0].pExpr;
1740     iCol = (i16)pExpr->iColumn;
1741 
1742     /* Code an OP_Transaction and OP_TableLock for <table>. */
1743     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1744     sqlite3CodeVerifySchema(pParse, iDb);
1745     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1746 
1747     /* This function is only called from two places. In both cases the vdbe
1748     ** has already been allocated. So assume sqlite3GetVdbe() is always
1749     ** successful here.
1750     */
1751     assert(v);
1752     if( iCol<0 ){
1753       int iAddr = sqlite3CodeOnce(pParse);
1754       VdbeCoverage(v);
1755 
1756       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1757       eType = IN_INDEX_ROWID;
1758 
1759       sqlite3VdbeJumpHere(v, iAddr);
1760     }else{
1761       Index *pIdx;                         /* Iterator variable */
1762 
1763       /* The collation sequence used by the comparison. If an index is to
1764       ** be used in place of a temp-table, it must be ordered according
1765       ** to this collation sequence.  */
1766       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1767 
1768       /* Check that the affinity that will be used to perform the
1769       ** comparison is the same as the affinity of the column. If
1770       ** it is not, it is not possible to use any index.
1771       */
1772       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1773 
1774       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1775         if( (pIdx->aiColumn[0]==iCol)
1776          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1777          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1778         ){
1779           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1780           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1781           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1782           VdbeComment((v, "%s", pIdx->zName));
1783           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1784           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1785 
1786           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1787             *prRhsHasNull = ++pParse->nMem;
1788             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1789           }
1790           sqlite3VdbeJumpHere(v, iAddr);
1791         }
1792       }
1793     }
1794   }
1795 
1796   /* If no preexisting index is available for the IN clause
1797   ** and IN_INDEX_NOOP is an allowed reply
1798   ** and the RHS of the IN operator is a list, not a subquery
1799   ** and the RHS is not contant or has two or fewer terms,
1800   ** then it is not worth creating an ephemeral table to evaluate
1801   ** the IN operator so return IN_INDEX_NOOP.
1802   */
1803   if( eType==0
1804    && (inFlags & IN_INDEX_NOOP_OK)
1805    && !ExprHasProperty(pX, EP_xIsSelect)
1806    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1807   ){
1808     eType = IN_INDEX_NOOP;
1809   }
1810 
1811 
1812   if( eType==0 ){
1813     /* Could not find an existing table or index to use as the RHS b-tree.
1814     ** We will have to generate an ephemeral table to do the job.
1815     */
1816     u32 savedNQueryLoop = pParse->nQueryLoop;
1817     int rMayHaveNull = 0;
1818     eType = IN_INDEX_EPH;
1819     if( inFlags & IN_INDEX_LOOP ){
1820       pParse->nQueryLoop = 0;
1821       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1822         eType = IN_INDEX_ROWID;
1823       }
1824     }else if( prRhsHasNull ){
1825       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1826     }
1827     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1828     pParse->nQueryLoop = savedNQueryLoop;
1829   }else{
1830     pX->iTable = iTab;
1831   }
1832   return eType;
1833 }
1834 #endif
1835 
1836 /*
1837 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1838 ** or IN operators.  Examples:
1839 **
1840 **     (SELECT a FROM b)          -- subquery
1841 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1842 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1843 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1844 **
1845 ** The pExpr parameter describes the expression that contains the IN
1846 ** operator or subquery.
1847 **
1848 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1849 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1850 ** to some integer key column of a table B-Tree. In this case, use an
1851 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1852 ** (slower) variable length keys B-Tree.
1853 **
1854 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1855 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1856 ** All this routine does is initialize the register given by rMayHaveNull
1857 ** to NULL.  Calling routines will take care of changing this register
1858 ** value to non-NULL if the RHS is NULL-free.
1859 **
1860 ** For a SELECT or EXISTS operator, return the register that holds the
1861 ** result.  For IN operators or if an error occurs, the return value is 0.
1862 */
1863 #ifndef SQLITE_OMIT_SUBQUERY
1864 int sqlite3CodeSubselect(
1865   Parse *pParse,          /* Parsing context */
1866   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1867   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1868   int isRowid             /* If true, LHS of IN operator is a rowid */
1869 ){
1870   int jmpIfDynamic = -1;                      /* One-time test address */
1871   int rReg = 0;                           /* Register storing resulting */
1872   Vdbe *v = sqlite3GetVdbe(pParse);
1873   if( NEVER(v==0) ) return 0;
1874   sqlite3ExprCachePush(pParse);
1875 
1876   /* This code must be run in its entirety every time it is encountered
1877   ** if any of the following is true:
1878   **
1879   **    *  The right-hand side is a correlated subquery
1880   **    *  The right-hand side is an expression list containing variables
1881   **    *  We are inside a trigger
1882   **
1883   ** If all of the above are false, then we can run this code just once
1884   ** save the results, and reuse the same result on subsequent invocations.
1885   */
1886   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1887     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1888   }
1889 
1890 #ifndef SQLITE_OMIT_EXPLAIN
1891   if( pParse->explain==2 ){
1892     char *zMsg = sqlite3MPrintf(
1893         pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
1894         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1895     );
1896     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1897   }
1898 #endif
1899 
1900   switch( pExpr->op ){
1901     case TK_IN: {
1902       char affinity;              /* Affinity of the LHS of the IN */
1903       int addr;                   /* Address of OP_OpenEphemeral instruction */
1904       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1905       KeyInfo *pKeyInfo = 0;      /* Key information */
1906 
1907       affinity = sqlite3ExprAffinity(pLeft);
1908 
1909       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1910       ** expression it is handled the same way.  An ephemeral table is
1911       ** filled with single-field index keys representing the results
1912       ** from the SELECT or the <exprlist>.
1913       **
1914       ** If the 'x' expression is a column value, or the SELECT...
1915       ** statement returns a column value, then the affinity of that
1916       ** column is used to build the index keys. If both 'x' and the
1917       ** SELECT... statement are columns, then numeric affinity is used
1918       ** if either column has NUMERIC or INTEGER affinity. If neither
1919       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1920       ** is used.
1921       */
1922       pExpr->iTable = pParse->nTab++;
1923       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1924       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1925 
1926       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1927         /* Case 1:     expr IN (SELECT ...)
1928         **
1929         ** Generate code to write the results of the select into the temporary
1930         ** table allocated and opened above.
1931         */
1932         Select *pSelect = pExpr->x.pSelect;
1933         SelectDest dest;
1934         ExprList *pEList;
1935 
1936         assert( !isRowid );
1937         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1938         dest.affSdst = (u8)affinity;
1939         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1940         pSelect->iLimit = 0;
1941         testcase( pSelect->selFlags & SF_Distinct );
1942         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1943         if( sqlite3Select(pParse, pSelect, &dest) ){
1944           sqlite3KeyInfoUnref(pKeyInfo);
1945           return 0;
1946         }
1947         pEList = pSelect->pEList;
1948         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1949         assert( pEList!=0 );
1950         assert( pEList->nExpr>0 );
1951         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1952         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1953                                                          pEList->a[0].pExpr);
1954       }else if( ALWAYS(pExpr->x.pList!=0) ){
1955         /* Case 2:     expr IN (exprlist)
1956         **
1957         ** For each expression, build an index key from the evaluation and
1958         ** store it in the temporary table. If <expr> is a column, then use
1959         ** that columns affinity when building index keys. If <expr> is not
1960         ** a column, use numeric affinity.
1961         */
1962         int i;
1963         ExprList *pList = pExpr->x.pList;
1964         struct ExprList_item *pItem;
1965         int r1, r2, r3;
1966 
1967         if( !affinity ){
1968           affinity = SQLITE_AFF_BLOB;
1969         }
1970         if( pKeyInfo ){
1971           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1972           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1973         }
1974 
1975         /* Loop through each expression in <exprlist>. */
1976         r1 = sqlite3GetTempReg(pParse);
1977         r2 = sqlite3GetTempReg(pParse);
1978         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1979         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1980           Expr *pE2 = pItem->pExpr;
1981           int iValToIns;
1982 
1983           /* If the expression is not constant then we will need to
1984           ** disable the test that was generated above that makes sure
1985           ** this code only executes once.  Because for a non-constant
1986           ** expression we need to rerun this code each time.
1987           */
1988           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1989             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1990             jmpIfDynamic = -1;
1991           }
1992 
1993           /* Evaluate the expression and insert it into the temp table */
1994           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1995             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1996           }else{
1997             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1998             if( isRowid ){
1999               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2000                                 sqlite3VdbeCurrentAddr(v)+2);
2001               VdbeCoverage(v);
2002               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2003             }else{
2004               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2005               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2006               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2007             }
2008           }
2009         }
2010         sqlite3ReleaseTempReg(pParse, r1);
2011         sqlite3ReleaseTempReg(pParse, r2);
2012       }
2013       if( pKeyInfo ){
2014         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2015       }
2016       break;
2017     }
2018 
2019     case TK_EXISTS:
2020     case TK_SELECT:
2021     default: {
2022       /* If this has to be a scalar SELECT.  Generate code to put the
2023       ** value of this select in a memory cell and record the number
2024       ** of the memory cell in iColumn.  If this is an EXISTS, write
2025       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2026       ** and record that memory cell in iColumn.
2027       */
2028       Select *pSel;                         /* SELECT statement to encode */
2029       SelectDest dest;                      /* How to deal with SELECt result */
2030 
2031       testcase( pExpr->op==TK_EXISTS );
2032       testcase( pExpr->op==TK_SELECT );
2033       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2034 
2035       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2036       pSel = pExpr->x.pSelect;
2037       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2038       if( pExpr->op==TK_SELECT ){
2039         dest.eDest = SRT_Mem;
2040         dest.iSdst = dest.iSDParm;
2041         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2042         VdbeComment((v, "Init subquery result"));
2043       }else{
2044         dest.eDest = SRT_Exists;
2045         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2046         VdbeComment((v, "Init EXISTS result"));
2047       }
2048       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2049       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2050                                   &sqlite3IntTokens[1]);
2051       pSel->iLimit = 0;
2052       pSel->selFlags &= ~SF_MultiValue;
2053       if( sqlite3Select(pParse, pSel, &dest) ){
2054         return 0;
2055       }
2056       rReg = dest.iSDParm;
2057       ExprSetVVAProperty(pExpr, EP_NoReduce);
2058       break;
2059     }
2060   }
2061 
2062   if( rHasNullFlag ){
2063     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2064   }
2065 
2066   if( jmpIfDynamic>=0 ){
2067     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2068   }
2069   sqlite3ExprCachePop(pParse);
2070 
2071   return rReg;
2072 }
2073 #endif /* SQLITE_OMIT_SUBQUERY */
2074 
2075 #ifndef SQLITE_OMIT_SUBQUERY
2076 /*
2077 ** Generate code for an IN expression.
2078 **
2079 **      x IN (SELECT ...)
2080 **      x IN (value, value, ...)
2081 **
2082 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2083 ** is an array of zero or more values.  The expression is true if the LHS is
2084 ** contained within the RHS.  The value of the expression is unknown (NULL)
2085 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2086 ** RHS contains one or more NULL values.
2087 **
2088 ** This routine generates code that jumps to destIfFalse if the LHS is not
2089 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2090 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2091 ** within the RHS then fall through.
2092 */
2093 static void sqlite3ExprCodeIN(
2094   Parse *pParse,        /* Parsing and code generating context */
2095   Expr *pExpr,          /* The IN expression */
2096   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2097   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2098 ){
2099   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2100   char affinity;        /* Comparison affinity to use */
2101   int eType;            /* Type of the RHS */
2102   int r1;               /* Temporary use register */
2103   Vdbe *v;              /* Statement under construction */
2104 
2105   /* Compute the RHS.   After this step, the table with cursor
2106   ** pExpr->iTable will contains the values that make up the RHS.
2107   */
2108   v = pParse->pVdbe;
2109   assert( v!=0 );       /* OOM detected prior to this routine */
2110   VdbeNoopComment((v, "begin IN expr"));
2111   eType = sqlite3FindInIndex(pParse, pExpr,
2112                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2113                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2114 
2115   /* Figure out the affinity to use to create a key from the results
2116   ** of the expression. affinityStr stores a static string suitable for
2117   ** P4 of OP_MakeRecord.
2118   */
2119   affinity = comparisonAffinity(pExpr);
2120 
2121   /* Code the LHS, the <expr> from "<expr> IN (...)".
2122   */
2123   sqlite3ExprCachePush(pParse);
2124   r1 = sqlite3GetTempReg(pParse);
2125   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2126 
2127   /* If sqlite3FindInIndex() did not find or create an index that is
2128   ** suitable for evaluating the IN operator, then evaluate using a
2129   ** sequence of comparisons.
2130   */
2131   if( eType==IN_INDEX_NOOP ){
2132     ExprList *pList = pExpr->x.pList;
2133     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2134     int labelOk = sqlite3VdbeMakeLabel(v);
2135     int r2, regToFree;
2136     int regCkNull = 0;
2137     int ii;
2138     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2139     if( destIfNull!=destIfFalse ){
2140       regCkNull = sqlite3GetTempReg(pParse);
2141       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2142     }
2143     for(ii=0; ii<pList->nExpr; ii++){
2144       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2145       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2146         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2147       }
2148       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2149         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2150                           (void*)pColl, P4_COLLSEQ);
2151         VdbeCoverageIf(v, ii<pList->nExpr-1);
2152         VdbeCoverageIf(v, ii==pList->nExpr-1);
2153         sqlite3VdbeChangeP5(v, affinity);
2154       }else{
2155         assert( destIfNull==destIfFalse );
2156         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2157                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2158         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2159       }
2160       sqlite3ReleaseTempReg(pParse, regToFree);
2161     }
2162     if( regCkNull ){
2163       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2164       sqlite3VdbeGoto(v, destIfFalse);
2165     }
2166     sqlite3VdbeResolveLabel(v, labelOk);
2167     sqlite3ReleaseTempReg(pParse, regCkNull);
2168   }else{
2169 
2170     /* If the LHS is NULL, then the result is either false or NULL depending
2171     ** on whether the RHS is empty or not, respectively.
2172     */
2173     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2174       if( destIfNull==destIfFalse ){
2175         /* Shortcut for the common case where the false and NULL outcomes are
2176         ** the same. */
2177         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2178       }else{
2179         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2180         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2181         VdbeCoverage(v);
2182         sqlite3VdbeGoto(v, destIfNull);
2183         sqlite3VdbeJumpHere(v, addr1);
2184       }
2185     }
2186 
2187     if( eType==IN_INDEX_ROWID ){
2188       /* In this case, the RHS is the ROWID of table b-tree
2189       */
2190       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2191       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2192       VdbeCoverage(v);
2193     }else{
2194       /* In this case, the RHS is an index b-tree.
2195       */
2196       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2197 
2198       /* If the set membership test fails, then the result of the
2199       ** "x IN (...)" expression must be either 0 or NULL. If the set
2200       ** contains no NULL values, then the result is 0. If the set
2201       ** contains one or more NULL values, then the result of the
2202       ** expression is also NULL.
2203       */
2204       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2205       if( rRhsHasNull==0 ){
2206         /* This branch runs if it is known at compile time that the RHS
2207         ** cannot contain NULL values. This happens as the result
2208         ** of a "NOT NULL" constraint in the database schema.
2209         **
2210         ** Also run this branch if NULL is equivalent to FALSE
2211         ** for this particular IN operator.
2212         */
2213         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2214         VdbeCoverage(v);
2215       }else{
2216         /* In this branch, the RHS of the IN might contain a NULL and
2217         ** the presence of a NULL on the RHS makes a difference in the
2218         ** outcome.
2219         */
2220         int addr1;
2221 
2222         /* First check to see if the LHS is contained in the RHS.  If so,
2223         ** then the answer is TRUE the presence of NULLs in the RHS does
2224         ** not matter.  If the LHS is not contained in the RHS, then the
2225         ** answer is NULL if the RHS contains NULLs and the answer is
2226         ** FALSE if the RHS is NULL-free.
2227         */
2228         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2229         VdbeCoverage(v);
2230         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2231         VdbeCoverage(v);
2232         sqlite3VdbeGoto(v, destIfFalse);
2233         sqlite3VdbeJumpHere(v, addr1);
2234       }
2235     }
2236   }
2237   sqlite3ReleaseTempReg(pParse, r1);
2238   sqlite3ExprCachePop(pParse);
2239   VdbeComment((v, "end IN expr"));
2240 }
2241 #endif /* SQLITE_OMIT_SUBQUERY */
2242 
2243 #ifndef SQLITE_OMIT_FLOATING_POINT
2244 /*
2245 ** Generate an instruction that will put the floating point
2246 ** value described by z[0..n-1] into register iMem.
2247 **
2248 ** The z[] string will probably not be zero-terminated.  But the
2249 ** z[n] character is guaranteed to be something that does not look
2250 ** like the continuation of the number.
2251 */
2252 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2253   if( ALWAYS(z!=0) ){
2254     double value;
2255     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2256     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2257     if( negateFlag ) value = -value;
2258     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2259   }
2260 }
2261 #endif
2262 
2263 
2264 /*
2265 ** Generate an instruction that will put the integer describe by
2266 ** text z[0..n-1] into register iMem.
2267 **
2268 ** Expr.u.zToken is always UTF8 and zero-terminated.
2269 */
2270 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2271   Vdbe *v = pParse->pVdbe;
2272   if( pExpr->flags & EP_IntValue ){
2273     int i = pExpr->u.iValue;
2274     assert( i>=0 );
2275     if( negFlag ) i = -i;
2276     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2277   }else{
2278     int c;
2279     i64 value;
2280     const char *z = pExpr->u.zToken;
2281     assert( z!=0 );
2282     c = sqlite3DecOrHexToI64(z, &value);
2283     if( c==0 || (c==2 && negFlag) ){
2284       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2285       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2286     }else{
2287 #ifdef SQLITE_OMIT_FLOATING_POINT
2288       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2289 #else
2290 #ifndef SQLITE_OMIT_HEX_INTEGER
2291       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2292         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2293       }else
2294 #endif
2295       {
2296         codeReal(v, z, negFlag, iMem);
2297       }
2298 #endif
2299     }
2300   }
2301 }
2302 
2303 /*
2304 ** Clear a cache entry.
2305 */
2306 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2307   if( p->tempReg ){
2308     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2309       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2310     }
2311     p->tempReg = 0;
2312   }
2313 }
2314 
2315 
2316 /*
2317 ** Record in the column cache that a particular column from a
2318 ** particular table is stored in a particular register.
2319 */
2320 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2321   int i;
2322   int minLru;
2323   int idxLru;
2324   struct yColCache *p;
2325 
2326   /* Unless an error has occurred, register numbers are always positive. */
2327   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2328   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2329 
2330   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2331   ** for testing only - to verify that SQLite always gets the same answer
2332   ** with and without the column cache.
2333   */
2334   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2335 
2336   /* First replace any existing entry.
2337   **
2338   ** Actually, the way the column cache is currently used, we are guaranteed
2339   ** that the object will never already be in cache.  Verify this guarantee.
2340   */
2341 #ifndef NDEBUG
2342   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2343     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2344   }
2345 #endif
2346 
2347   /* Find an empty slot and replace it */
2348   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2349     if( p->iReg==0 ){
2350       p->iLevel = pParse->iCacheLevel;
2351       p->iTable = iTab;
2352       p->iColumn = iCol;
2353       p->iReg = iReg;
2354       p->tempReg = 0;
2355       p->lru = pParse->iCacheCnt++;
2356       return;
2357     }
2358   }
2359 
2360   /* Replace the last recently used */
2361   minLru = 0x7fffffff;
2362   idxLru = -1;
2363   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2364     if( p->lru<minLru ){
2365       idxLru = i;
2366       minLru = p->lru;
2367     }
2368   }
2369   if( ALWAYS(idxLru>=0) ){
2370     p = &pParse->aColCache[idxLru];
2371     p->iLevel = pParse->iCacheLevel;
2372     p->iTable = iTab;
2373     p->iColumn = iCol;
2374     p->iReg = iReg;
2375     p->tempReg = 0;
2376     p->lru = pParse->iCacheCnt++;
2377     return;
2378   }
2379 }
2380 
2381 /*
2382 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2383 ** Purge the range of registers from the column cache.
2384 */
2385 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2386   int i;
2387   int iLast = iReg + nReg - 1;
2388   struct yColCache *p;
2389   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2390     int r = p->iReg;
2391     if( r>=iReg && r<=iLast ){
2392       cacheEntryClear(pParse, p);
2393       p->iReg = 0;
2394     }
2395   }
2396 }
2397 
2398 /*
2399 ** Remember the current column cache context.  Any new entries added
2400 ** added to the column cache after this call are removed when the
2401 ** corresponding pop occurs.
2402 */
2403 void sqlite3ExprCachePush(Parse *pParse){
2404   pParse->iCacheLevel++;
2405 #ifdef SQLITE_DEBUG
2406   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2407     printf("PUSH to %d\n", pParse->iCacheLevel);
2408   }
2409 #endif
2410 }
2411 
2412 /*
2413 ** Remove from the column cache any entries that were added since the
2414 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2415 ** the cache to the state it was in prior the most recent Push.
2416 */
2417 void sqlite3ExprCachePop(Parse *pParse){
2418   int i;
2419   struct yColCache *p;
2420   assert( pParse->iCacheLevel>=1 );
2421   pParse->iCacheLevel--;
2422 #ifdef SQLITE_DEBUG
2423   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2424     printf("POP  to %d\n", pParse->iCacheLevel);
2425   }
2426 #endif
2427   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2428     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2429       cacheEntryClear(pParse, p);
2430       p->iReg = 0;
2431     }
2432   }
2433 }
2434 
2435 /*
2436 ** When a cached column is reused, make sure that its register is
2437 ** no longer available as a temp register.  ticket #3879:  that same
2438 ** register might be in the cache in multiple places, so be sure to
2439 ** get them all.
2440 */
2441 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2442   int i;
2443   struct yColCache *p;
2444   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2445     if( p->iReg==iReg ){
2446       p->tempReg = 0;
2447     }
2448   }
2449 }
2450 
2451 /* Generate code that will load into register regOut a value that is
2452 ** appropriate for the iIdxCol-th column of index pIdx.
2453 */
2454 void sqlite3ExprCodeLoadIndexColumn(
2455   Parse *pParse,  /* The parsing context */
2456   Index *pIdx,    /* The index whose column is to be loaded */
2457   int iTabCur,    /* Cursor pointing to a table row */
2458   int iIdxCol,    /* The column of the index to be loaded */
2459   int regOut      /* Store the index column value in this register */
2460 ){
2461   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2462   if( iTabCol==XN_EXPR ){
2463     assert( pIdx->aColExpr );
2464     assert( pIdx->aColExpr->nExpr>iIdxCol );
2465     pParse->iSelfTab = iTabCur;
2466     sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2467   }else{
2468     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2469                                     iTabCol, regOut);
2470   }
2471 }
2472 
2473 /*
2474 ** Generate code to extract the value of the iCol-th column of a table.
2475 */
2476 void sqlite3ExprCodeGetColumnOfTable(
2477   Vdbe *v,        /* The VDBE under construction */
2478   Table *pTab,    /* The table containing the value */
2479   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2480   int iCol,       /* Index of the column to extract */
2481   int regOut      /* Extract the value into this register */
2482 ){
2483   if( iCol<0 || iCol==pTab->iPKey ){
2484     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2485   }else{
2486     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2487     int x = iCol;
2488     if( !HasRowid(pTab) ){
2489       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2490     }
2491     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2492   }
2493   if( iCol>=0 ){
2494     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2495   }
2496 }
2497 
2498 /*
2499 ** Generate code that will extract the iColumn-th column from
2500 ** table pTab and store the column value in a register.
2501 **
2502 ** An effort is made to store the column value in register iReg.  This
2503 ** is not garanteeed for GetColumn() - the result can be stored in
2504 ** any register.  But the result is guaranteed to land in register iReg
2505 ** for GetColumnToReg().
2506 **
2507 ** There must be an open cursor to pTab in iTable when this routine
2508 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2509 */
2510 int sqlite3ExprCodeGetColumn(
2511   Parse *pParse,   /* Parsing and code generating context */
2512   Table *pTab,     /* Description of the table we are reading from */
2513   int iColumn,     /* Index of the table column */
2514   int iTable,      /* The cursor pointing to the table */
2515   int iReg,        /* Store results here */
2516   u8 p5            /* P5 value for OP_Column + FLAGS */
2517 ){
2518   Vdbe *v = pParse->pVdbe;
2519   int i;
2520   struct yColCache *p;
2521 
2522   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2523     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2524       p->lru = pParse->iCacheCnt++;
2525       sqlite3ExprCachePinRegister(pParse, p->iReg);
2526       return p->iReg;
2527     }
2528   }
2529   assert( v!=0 );
2530   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2531   if( p5 ){
2532     sqlite3VdbeChangeP5(v, p5);
2533   }else{
2534     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2535   }
2536   return iReg;
2537 }
2538 void sqlite3ExprCodeGetColumnToReg(
2539   Parse *pParse,   /* Parsing and code generating context */
2540   Table *pTab,     /* Description of the table we are reading from */
2541   int iColumn,     /* Index of the table column */
2542   int iTable,      /* The cursor pointing to the table */
2543   int iReg         /* Store results here */
2544 ){
2545   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2546   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2547 }
2548 
2549 
2550 /*
2551 ** Clear all column cache entries.
2552 */
2553 void sqlite3ExprCacheClear(Parse *pParse){
2554   int i;
2555   struct yColCache *p;
2556 
2557 #if SQLITE_DEBUG
2558   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2559     printf("CLEAR\n");
2560   }
2561 #endif
2562   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2563     if( p->iReg ){
2564       cacheEntryClear(pParse, p);
2565       p->iReg = 0;
2566     }
2567   }
2568 }
2569 
2570 /*
2571 ** Record the fact that an affinity change has occurred on iCount
2572 ** registers starting with iStart.
2573 */
2574 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2575   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2576 }
2577 
2578 /*
2579 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2580 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2581 */
2582 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2583   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2584   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2585   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2586 }
2587 
2588 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2589 /*
2590 ** Return true if any register in the range iFrom..iTo (inclusive)
2591 ** is used as part of the column cache.
2592 **
2593 ** This routine is used within assert() and testcase() macros only
2594 ** and does not appear in a normal build.
2595 */
2596 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2597   int i;
2598   struct yColCache *p;
2599   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2600     int r = p->iReg;
2601     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2602   }
2603   return 0;
2604 }
2605 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2606 
2607 /*
2608 ** Convert an expression node to a TK_REGISTER
2609 */
2610 static void exprToRegister(Expr *p, int iReg){
2611   p->op2 = p->op;
2612   p->op = TK_REGISTER;
2613   p->iTable = iReg;
2614   ExprClearProperty(p, EP_Skip);
2615 }
2616 
2617 /*
2618 ** Generate code into the current Vdbe to evaluate the given
2619 ** expression.  Attempt to store the results in register "target".
2620 ** Return the register where results are stored.
2621 **
2622 ** With this routine, there is no guarantee that results will
2623 ** be stored in target.  The result might be stored in some other
2624 ** register if it is convenient to do so.  The calling function
2625 ** must check the return code and move the results to the desired
2626 ** register.
2627 */
2628 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2629   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2630   int op;                   /* The opcode being coded */
2631   int inReg = target;       /* Results stored in register inReg */
2632   int regFree1 = 0;         /* If non-zero free this temporary register */
2633   int regFree2 = 0;         /* If non-zero free this temporary register */
2634   int r1, r2, r3, r4;       /* Various register numbers */
2635   sqlite3 *db = pParse->db; /* The database connection */
2636   Expr tempX;               /* Temporary expression node */
2637 
2638   assert( target>0 && target<=pParse->nMem );
2639   if( v==0 ){
2640     assert( pParse->db->mallocFailed );
2641     return 0;
2642   }
2643 
2644   if( pExpr==0 ){
2645     op = TK_NULL;
2646   }else{
2647     op = pExpr->op;
2648   }
2649   switch( op ){
2650     case TK_AGG_COLUMN: {
2651       AggInfo *pAggInfo = pExpr->pAggInfo;
2652       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2653       if( !pAggInfo->directMode ){
2654         assert( pCol->iMem>0 );
2655         inReg = pCol->iMem;
2656         break;
2657       }else if( pAggInfo->useSortingIdx ){
2658         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2659                               pCol->iSorterColumn, target);
2660         break;
2661       }
2662       /* Otherwise, fall thru into the TK_COLUMN case */
2663     }
2664     case TK_COLUMN: {
2665       int iTab = pExpr->iTable;
2666       if( iTab<0 ){
2667         if( pParse->ckBase>0 ){
2668           /* Generating CHECK constraints or inserting into partial index */
2669           inReg = pExpr->iColumn + pParse->ckBase;
2670           break;
2671         }else{
2672           /* Coding an expression that is part of an index where column names
2673           ** in the index refer to the table to which the index belongs */
2674           iTab = pParse->iSelfTab;
2675         }
2676       }
2677       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2678                                pExpr->iColumn, iTab, target,
2679                                pExpr->op2);
2680       break;
2681     }
2682     case TK_INTEGER: {
2683       codeInteger(pParse, pExpr, 0, target);
2684       break;
2685     }
2686 #ifndef SQLITE_OMIT_FLOATING_POINT
2687     case TK_FLOAT: {
2688       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2689       codeReal(v, pExpr->u.zToken, 0, target);
2690       break;
2691     }
2692 #endif
2693     case TK_STRING: {
2694       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2695       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2696       break;
2697     }
2698     case TK_NULL: {
2699       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2700       break;
2701     }
2702 #ifndef SQLITE_OMIT_BLOB_LITERAL
2703     case TK_BLOB: {
2704       int n;
2705       const char *z;
2706       char *zBlob;
2707       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2708       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2709       assert( pExpr->u.zToken[1]=='\'' );
2710       z = &pExpr->u.zToken[2];
2711       n = sqlite3Strlen30(z) - 1;
2712       assert( z[n]=='\'' );
2713       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2714       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2715       break;
2716     }
2717 #endif
2718     case TK_VARIABLE: {
2719       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2720       assert( pExpr->u.zToken!=0 );
2721       assert( pExpr->u.zToken[0]!=0 );
2722       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2723       if( pExpr->u.zToken[1]!=0 ){
2724         assert( pExpr->u.zToken[0]=='?'
2725              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2726         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2727       }
2728       break;
2729     }
2730     case TK_REGISTER: {
2731       inReg = pExpr->iTable;
2732       break;
2733     }
2734 #ifndef SQLITE_OMIT_CAST
2735     case TK_CAST: {
2736       /* Expressions of the form:   CAST(pLeft AS token) */
2737       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2738       if( inReg!=target ){
2739         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2740         inReg = target;
2741       }
2742       sqlite3VdbeAddOp2(v, OP_Cast, target,
2743                         sqlite3AffinityType(pExpr->u.zToken, 0));
2744       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2745       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2746       break;
2747     }
2748 #endif /* SQLITE_OMIT_CAST */
2749     case TK_LT:
2750     case TK_LE:
2751     case TK_GT:
2752     case TK_GE:
2753     case TK_NE:
2754     case TK_EQ: {
2755       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2756       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2757       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2758                   r1, r2, inReg, SQLITE_STOREP2);
2759       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2760       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2761       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2762       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2763       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2764       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2765       testcase( regFree1==0 );
2766       testcase( regFree2==0 );
2767       break;
2768     }
2769     case TK_IS:
2770     case TK_ISNOT: {
2771       testcase( op==TK_IS );
2772       testcase( op==TK_ISNOT );
2773       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2774       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2775       op = (op==TK_IS) ? TK_EQ : TK_NE;
2776       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2777                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2778       VdbeCoverageIf(v, op==TK_EQ);
2779       VdbeCoverageIf(v, op==TK_NE);
2780       testcase( regFree1==0 );
2781       testcase( regFree2==0 );
2782       break;
2783     }
2784     case TK_AND:
2785     case TK_OR:
2786     case TK_PLUS:
2787     case TK_STAR:
2788     case TK_MINUS:
2789     case TK_REM:
2790     case TK_BITAND:
2791     case TK_BITOR:
2792     case TK_SLASH:
2793     case TK_LSHIFT:
2794     case TK_RSHIFT:
2795     case TK_CONCAT: {
2796       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2797       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2798       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2799       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2800       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2801       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2802       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2803       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2804       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2805       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2806       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2807       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2808       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2809       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2810       testcase( regFree1==0 );
2811       testcase( regFree2==0 );
2812       break;
2813     }
2814     case TK_UMINUS: {
2815       Expr *pLeft = pExpr->pLeft;
2816       assert( pLeft );
2817       if( pLeft->op==TK_INTEGER ){
2818         codeInteger(pParse, pLeft, 1, target);
2819 #ifndef SQLITE_OMIT_FLOATING_POINT
2820       }else if( pLeft->op==TK_FLOAT ){
2821         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2822         codeReal(v, pLeft->u.zToken, 1, target);
2823 #endif
2824       }else{
2825         tempX.op = TK_INTEGER;
2826         tempX.flags = EP_IntValue|EP_TokenOnly;
2827         tempX.u.iValue = 0;
2828         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2829         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2830         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2831         testcase( regFree2==0 );
2832       }
2833       inReg = target;
2834       break;
2835     }
2836     case TK_BITNOT:
2837     case TK_NOT: {
2838       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2839       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2840       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2841       testcase( regFree1==0 );
2842       inReg = target;
2843       sqlite3VdbeAddOp2(v, op, r1, inReg);
2844       break;
2845     }
2846     case TK_ISNULL:
2847     case TK_NOTNULL: {
2848       int addr;
2849       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2850       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2851       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2852       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2853       testcase( regFree1==0 );
2854       addr = sqlite3VdbeAddOp1(v, op, r1);
2855       VdbeCoverageIf(v, op==TK_ISNULL);
2856       VdbeCoverageIf(v, op==TK_NOTNULL);
2857       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2858       sqlite3VdbeJumpHere(v, addr);
2859       break;
2860     }
2861     case TK_AGG_FUNCTION: {
2862       AggInfo *pInfo = pExpr->pAggInfo;
2863       if( pInfo==0 ){
2864         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2865         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2866       }else{
2867         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2868       }
2869       break;
2870     }
2871     case TK_FUNCTION: {
2872       ExprList *pFarg;       /* List of function arguments */
2873       int nFarg;             /* Number of function arguments */
2874       FuncDef *pDef;         /* The function definition object */
2875       int nId;               /* Length of the function name in bytes */
2876       const char *zId;       /* The function name */
2877       u32 constMask = 0;     /* Mask of function arguments that are constant */
2878       int i;                 /* Loop counter */
2879       u8 enc = ENC(db);      /* The text encoding used by this database */
2880       CollSeq *pColl = 0;    /* A collating sequence */
2881 
2882       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2883       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2884         pFarg = 0;
2885       }else{
2886         pFarg = pExpr->x.pList;
2887       }
2888       nFarg = pFarg ? pFarg->nExpr : 0;
2889       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2890       zId = pExpr->u.zToken;
2891       nId = sqlite3Strlen30(zId);
2892       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2893       if( pDef==0 || pDef->xFunc==0 ){
2894         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2895         break;
2896       }
2897 
2898       /* Attempt a direct implementation of the built-in COALESCE() and
2899       ** IFNULL() functions.  This avoids unnecessary evaluation of
2900       ** arguments past the first non-NULL argument.
2901       */
2902       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2903         int endCoalesce = sqlite3VdbeMakeLabel(v);
2904         assert( nFarg>=2 );
2905         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2906         for(i=1; i<nFarg; i++){
2907           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2908           VdbeCoverage(v);
2909           sqlite3ExprCacheRemove(pParse, target, 1);
2910           sqlite3ExprCachePush(pParse);
2911           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2912           sqlite3ExprCachePop(pParse);
2913         }
2914         sqlite3VdbeResolveLabel(v, endCoalesce);
2915         break;
2916       }
2917 
2918       /* The UNLIKELY() function is a no-op.  The result is the value
2919       ** of the first argument.
2920       */
2921       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2922         assert( nFarg>=1 );
2923         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2924         break;
2925       }
2926 
2927       for(i=0; i<nFarg; i++){
2928         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2929           testcase( i==31 );
2930           constMask |= MASKBIT32(i);
2931         }
2932         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2933           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2934         }
2935       }
2936       if( pFarg ){
2937         if( constMask ){
2938           r1 = pParse->nMem+1;
2939           pParse->nMem += nFarg;
2940         }else{
2941           r1 = sqlite3GetTempRange(pParse, nFarg);
2942         }
2943 
2944         /* For length() and typeof() functions with a column argument,
2945         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2946         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2947         ** loading.
2948         */
2949         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2950           u8 exprOp;
2951           assert( nFarg==1 );
2952           assert( pFarg->a[0].pExpr!=0 );
2953           exprOp = pFarg->a[0].pExpr->op;
2954           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2955             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2956             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2957             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2958             pFarg->a[0].pExpr->op2 =
2959                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2960           }
2961         }
2962 
2963         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2964         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
2965                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2966         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2967       }else{
2968         r1 = 0;
2969       }
2970 #ifndef SQLITE_OMIT_VIRTUALTABLE
2971       /* Possibly overload the function if the first argument is
2972       ** a virtual table column.
2973       **
2974       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2975       ** second argument, not the first, as the argument to test to
2976       ** see if it is a column in a virtual table.  This is done because
2977       ** the left operand of infix functions (the operand we want to
2978       ** control overloading) ends up as the second argument to the
2979       ** function.  The expression "A glob B" is equivalent to
2980       ** "glob(B,A).  We want to use the A in "A glob B" to test
2981       ** for function overloading.  But we use the B term in "glob(B,A)".
2982       */
2983       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2984         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2985       }else if( nFarg>0 ){
2986         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2987       }
2988 #endif
2989       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2990         if( !pColl ) pColl = db->pDfltColl;
2991         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2992       }
2993       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
2994                         (char*)pDef, P4_FUNCDEF);
2995       sqlite3VdbeChangeP5(v, (u8)nFarg);
2996       if( nFarg && constMask==0 ){
2997         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2998       }
2999       break;
3000     }
3001 #ifndef SQLITE_OMIT_SUBQUERY
3002     case TK_EXISTS:
3003     case TK_SELECT: {
3004       testcase( op==TK_EXISTS );
3005       testcase( op==TK_SELECT );
3006       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3007       break;
3008     }
3009     case TK_IN: {
3010       int destIfFalse = sqlite3VdbeMakeLabel(v);
3011       int destIfNull = sqlite3VdbeMakeLabel(v);
3012       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3013       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3014       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3015       sqlite3VdbeResolveLabel(v, destIfFalse);
3016       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3017       sqlite3VdbeResolveLabel(v, destIfNull);
3018       break;
3019     }
3020 #endif /* SQLITE_OMIT_SUBQUERY */
3021 
3022 
3023     /*
3024     **    x BETWEEN y AND z
3025     **
3026     ** This is equivalent to
3027     **
3028     **    x>=y AND x<=z
3029     **
3030     ** X is stored in pExpr->pLeft.
3031     ** Y is stored in pExpr->pList->a[0].pExpr.
3032     ** Z is stored in pExpr->pList->a[1].pExpr.
3033     */
3034     case TK_BETWEEN: {
3035       Expr *pLeft = pExpr->pLeft;
3036       struct ExprList_item *pLItem = pExpr->x.pList->a;
3037       Expr *pRight = pLItem->pExpr;
3038 
3039       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3040       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3041       testcase( regFree1==0 );
3042       testcase( regFree2==0 );
3043       r3 = sqlite3GetTempReg(pParse);
3044       r4 = sqlite3GetTempReg(pParse);
3045       codeCompare(pParse, pLeft, pRight, OP_Ge,
3046                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3047       pLItem++;
3048       pRight = pLItem->pExpr;
3049       sqlite3ReleaseTempReg(pParse, regFree2);
3050       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3051       testcase( regFree2==0 );
3052       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3053       VdbeCoverage(v);
3054       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3055       sqlite3ReleaseTempReg(pParse, r3);
3056       sqlite3ReleaseTempReg(pParse, r4);
3057       break;
3058     }
3059     case TK_COLLATE:
3060     case TK_UPLUS: {
3061       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3062       break;
3063     }
3064 
3065     case TK_TRIGGER: {
3066       /* If the opcode is TK_TRIGGER, then the expression is a reference
3067       ** to a column in the new.* or old.* pseudo-tables available to
3068       ** trigger programs. In this case Expr.iTable is set to 1 for the
3069       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3070       ** is set to the column of the pseudo-table to read, or to -1 to
3071       ** read the rowid field.
3072       **
3073       ** The expression is implemented using an OP_Param opcode. The p1
3074       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3075       ** to reference another column of the old.* pseudo-table, where
3076       ** i is the index of the column. For a new.rowid reference, p1 is
3077       ** set to (n+1), where n is the number of columns in each pseudo-table.
3078       ** For a reference to any other column in the new.* pseudo-table, p1
3079       ** is set to (n+2+i), where n and i are as defined previously. For
3080       ** example, if the table on which triggers are being fired is
3081       ** declared as:
3082       **
3083       **   CREATE TABLE t1(a, b);
3084       **
3085       ** Then p1 is interpreted as follows:
3086       **
3087       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3088       **   p1==1   ->    old.a         p1==4   ->    new.a
3089       **   p1==2   ->    old.b         p1==5   ->    new.b
3090       */
3091       Table *pTab = pExpr->pTab;
3092       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3093 
3094       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3095       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3096       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3097       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3098 
3099       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3100       VdbeComment((v, "%s.%s -> $%d",
3101         (pExpr->iTable ? "new" : "old"),
3102         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3103         target
3104       ));
3105 
3106 #ifndef SQLITE_OMIT_FLOATING_POINT
3107       /* If the column has REAL affinity, it may currently be stored as an
3108       ** integer. Use OP_RealAffinity to make sure it is really real.
3109       **
3110       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3111       ** floating point when extracting it from the record.  */
3112       if( pExpr->iColumn>=0
3113        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3114       ){
3115         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3116       }
3117 #endif
3118       break;
3119     }
3120 
3121 
3122     /*
3123     ** Form A:
3124     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3125     **
3126     ** Form B:
3127     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3128     **
3129     ** Form A is can be transformed into the equivalent form B as follows:
3130     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3131     **        WHEN x=eN THEN rN ELSE y END
3132     **
3133     ** X (if it exists) is in pExpr->pLeft.
3134     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3135     ** odd.  The Y is also optional.  If the number of elements in x.pList
3136     ** is even, then Y is omitted and the "otherwise" result is NULL.
3137     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3138     **
3139     ** The result of the expression is the Ri for the first matching Ei,
3140     ** or if there is no matching Ei, the ELSE term Y, or if there is
3141     ** no ELSE term, NULL.
3142     */
3143     default: assert( op==TK_CASE ); {
3144       int endLabel;                     /* GOTO label for end of CASE stmt */
3145       int nextCase;                     /* GOTO label for next WHEN clause */
3146       int nExpr;                        /* 2x number of WHEN terms */
3147       int i;                            /* Loop counter */
3148       ExprList *pEList;                 /* List of WHEN terms */
3149       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3150       Expr opCompare;                   /* The X==Ei expression */
3151       Expr *pX;                         /* The X expression */
3152       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3153       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3154 
3155       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3156       assert(pExpr->x.pList->nExpr > 0);
3157       pEList = pExpr->x.pList;
3158       aListelem = pEList->a;
3159       nExpr = pEList->nExpr;
3160       endLabel = sqlite3VdbeMakeLabel(v);
3161       if( (pX = pExpr->pLeft)!=0 ){
3162         tempX = *pX;
3163         testcase( pX->op==TK_COLUMN );
3164         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3165         testcase( regFree1==0 );
3166         opCompare.op = TK_EQ;
3167         opCompare.pLeft = &tempX;
3168         pTest = &opCompare;
3169         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3170         ** The value in regFree1 might get SCopy-ed into the file result.
3171         ** So make sure that the regFree1 register is not reused for other
3172         ** purposes and possibly overwritten.  */
3173         regFree1 = 0;
3174       }
3175       for(i=0; i<nExpr-1; i=i+2){
3176         sqlite3ExprCachePush(pParse);
3177         if( pX ){
3178           assert( pTest!=0 );
3179           opCompare.pRight = aListelem[i].pExpr;
3180         }else{
3181           pTest = aListelem[i].pExpr;
3182         }
3183         nextCase = sqlite3VdbeMakeLabel(v);
3184         testcase( pTest->op==TK_COLUMN );
3185         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3186         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3187         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3188         sqlite3VdbeGoto(v, endLabel);
3189         sqlite3ExprCachePop(pParse);
3190         sqlite3VdbeResolveLabel(v, nextCase);
3191       }
3192       if( (nExpr&1)!=0 ){
3193         sqlite3ExprCachePush(pParse);
3194         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3195         sqlite3ExprCachePop(pParse);
3196       }else{
3197         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3198       }
3199       assert( db->mallocFailed || pParse->nErr>0
3200            || pParse->iCacheLevel==iCacheLevel );
3201       sqlite3VdbeResolveLabel(v, endLabel);
3202       break;
3203     }
3204 #ifndef SQLITE_OMIT_TRIGGER
3205     case TK_RAISE: {
3206       assert( pExpr->affinity==OE_Rollback
3207            || pExpr->affinity==OE_Abort
3208            || pExpr->affinity==OE_Fail
3209            || pExpr->affinity==OE_Ignore
3210       );
3211       if( !pParse->pTriggerTab ){
3212         sqlite3ErrorMsg(pParse,
3213                        "RAISE() may only be used within a trigger-program");
3214         return 0;
3215       }
3216       if( pExpr->affinity==OE_Abort ){
3217         sqlite3MayAbort(pParse);
3218       }
3219       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3220       if( pExpr->affinity==OE_Ignore ){
3221         sqlite3VdbeAddOp4(
3222             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3223         VdbeCoverage(v);
3224       }else{
3225         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3226                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3227       }
3228 
3229       break;
3230     }
3231 #endif
3232   }
3233   sqlite3ReleaseTempReg(pParse, regFree1);
3234   sqlite3ReleaseTempReg(pParse, regFree2);
3235   return inReg;
3236 }
3237 
3238 /*
3239 ** Factor out the code of the given expression to initialization time.
3240 */
3241 void sqlite3ExprCodeAtInit(
3242   Parse *pParse,    /* Parsing context */
3243   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3244   int regDest,      /* Store the value in this register */
3245   u8 reusable       /* True if this expression is reusable */
3246 ){
3247   ExprList *p;
3248   assert( ConstFactorOk(pParse) );
3249   p = pParse->pConstExpr;
3250   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3251   p = sqlite3ExprListAppend(pParse, p, pExpr);
3252   if( p ){
3253      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3254      pItem->u.iConstExprReg = regDest;
3255      pItem->reusable = reusable;
3256   }
3257   pParse->pConstExpr = p;
3258 }
3259 
3260 /*
3261 ** Generate code to evaluate an expression and store the results
3262 ** into a register.  Return the register number where the results
3263 ** are stored.
3264 **
3265 ** If the register is a temporary register that can be deallocated,
3266 ** then write its number into *pReg.  If the result register is not
3267 ** a temporary, then set *pReg to zero.
3268 **
3269 ** If pExpr is a constant, then this routine might generate this
3270 ** code to fill the register in the initialization section of the
3271 ** VDBE program, in order to factor it out of the evaluation loop.
3272 */
3273 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3274   int r2;
3275   pExpr = sqlite3ExprSkipCollate(pExpr);
3276   if( ConstFactorOk(pParse)
3277    && pExpr->op!=TK_REGISTER
3278    && sqlite3ExprIsConstantNotJoin(pExpr)
3279   ){
3280     ExprList *p = pParse->pConstExpr;
3281     int i;
3282     *pReg  = 0;
3283     if( p ){
3284       struct ExprList_item *pItem;
3285       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3286         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3287           return pItem->u.iConstExprReg;
3288         }
3289       }
3290     }
3291     r2 = ++pParse->nMem;
3292     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3293   }else{
3294     int r1 = sqlite3GetTempReg(pParse);
3295     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3296     if( r2==r1 ){
3297       *pReg = r1;
3298     }else{
3299       sqlite3ReleaseTempReg(pParse, r1);
3300       *pReg = 0;
3301     }
3302   }
3303   return r2;
3304 }
3305 
3306 /*
3307 ** Generate code that will evaluate expression pExpr and store the
3308 ** results in register target.  The results are guaranteed to appear
3309 ** in register target.
3310 */
3311 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3312   int inReg;
3313 
3314   assert( target>0 && target<=pParse->nMem );
3315   if( pExpr && pExpr->op==TK_REGISTER ){
3316     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3317   }else{
3318     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3319     assert( pParse->pVdbe || pParse->db->mallocFailed );
3320     if( inReg!=target && pParse->pVdbe ){
3321       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3322     }
3323   }
3324 }
3325 
3326 /*
3327 ** Generate code that will evaluate expression pExpr and store the
3328 ** results in register target.  The results are guaranteed to appear
3329 ** in register target.  If the expression is constant, then this routine
3330 ** might choose to code the expression at initialization time.
3331 */
3332 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3333   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3334     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3335   }else{
3336     sqlite3ExprCode(pParse, pExpr, target);
3337   }
3338 }
3339 
3340 /*
3341 ** Generate code that evaluates the given expression and puts the result
3342 ** in register target.
3343 **
3344 ** Also make a copy of the expression results into another "cache" register
3345 ** and modify the expression so that the next time it is evaluated,
3346 ** the result is a copy of the cache register.
3347 **
3348 ** This routine is used for expressions that are used multiple
3349 ** times.  They are evaluated once and the results of the expression
3350 ** are reused.
3351 */
3352 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3353   Vdbe *v = pParse->pVdbe;
3354   int iMem;
3355 
3356   assert( target>0 );
3357   assert( pExpr->op!=TK_REGISTER );
3358   sqlite3ExprCode(pParse, pExpr, target);
3359   iMem = ++pParse->nMem;
3360   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3361   exprToRegister(pExpr, iMem);
3362 }
3363 
3364 /*
3365 ** Generate code that pushes the value of every element of the given
3366 ** expression list into a sequence of registers beginning at target.
3367 **
3368 ** Return the number of elements evaluated.
3369 **
3370 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3371 ** filled using OP_SCopy.  OP_Copy must be used instead.
3372 **
3373 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3374 ** factored out into initialization code.
3375 **
3376 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3377 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3378 ** in registers at srcReg, and so the value can be copied from there.
3379 */
3380 int sqlite3ExprCodeExprList(
3381   Parse *pParse,     /* Parsing context */
3382   ExprList *pList,   /* The expression list to be coded */
3383   int target,        /* Where to write results */
3384   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3385   u8 flags           /* SQLITE_ECEL_* flags */
3386 ){
3387   struct ExprList_item *pItem;
3388   int i, j, n;
3389   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3390   Vdbe *v = pParse->pVdbe;
3391   assert( pList!=0 );
3392   assert( target>0 );
3393   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3394   n = pList->nExpr;
3395   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3396   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3397     Expr *pExpr = pItem->pExpr;
3398     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3399       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3400     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3401       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3402     }else{
3403       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3404       if( inReg!=target+i ){
3405         VdbeOp *pOp;
3406         if( copyOp==OP_Copy
3407          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3408          && pOp->p1+pOp->p3+1==inReg
3409          && pOp->p2+pOp->p3+1==target+i
3410         ){
3411           pOp->p3++;
3412         }else{
3413           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3414         }
3415       }
3416     }
3417   }
3418   return n;
3419 }
3420 
3421 /*
3422 ** Generate code for a BETWEEN operator.
3423 **
3424 **    x BETWEEN y AND z
3425 **
3426 ** The above is equivalent to
3427 **
3428 **    x>=y AND x<=z
3429 **
3430 ** Code it as such, taking care to do the common subexpression
3431 ** elimination of x.
3432 */
3433 static void exprCodeBetween(
3434   Parse *pParse,    /* Parsing and code generating context */
3435   Expr *pExpr,      /* The BETWEEN expression */
3436   int dest,         /* Jump here if the jump is taken */
3437   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3438   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3439 ){
3440   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3441   Expr compLeft;    /* The  x>=y  term */
3442   Expr compRight;   /* The  x<=z  term */
3443   Expr exprX;       /* The  x  subexpression */
3444   int regFree1 = 0; /* Temporary use register */
3445 
3446   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3447   exprX = *pExpr->pLeft;
3448   exprAnd.op = TK_AND;
3449   exprAnd.pLeft = &compLeft;
3450   exprAnd.pRight = &compRight;
3451   compLeft.op = TK_GE;
3452   compLeft.pLeft = &exprX;
3453   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3454   compRight.op = TK_LE;
3455   compRight.pLeft = &exprX;
3456   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3457   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3458   if( jumpIfTrue ){
3459     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3460   }else{
3461     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3462   }
3463   sqlite3ReleaseTempReg(pParse, regFree1);
3464 
3465   /* Ensure adequate test coverage */
3466   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3467   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3468   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3469   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3470   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3471   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3472   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3473   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3474 }
3475 
3476 /*
3477 ** Generate code for a boolean expression such that a jump is made
3478 ** to the label "dest" if the expression is true but execution
3479 ** continues straight thru if the expression is false.
3480 **
3481 ** If the expression evaluates to NULL (neither true nor false), then
3482 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3483 **
3484 ** This code depends on the fact that certain token values (ex: TK_EQ)
3485 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3486 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3487 ** the make process cause these values to align.  Assert()s in the code
3488 ** below verify that the numbers are aligned correctly.
3489 */
3490 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3491   Vdbe *v = pParse->pVdbe;
3492   int op = 0;
3493   int regFree1 = 0;
3494   int regFree2 = 0;
3495   int r1, r2;
3496 
3497   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3498   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3499   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3500   op = pExpr->op;
3501   switch( op ){
3502     case TK_AND: {
3503       int d2 = sqlite3VdbeMakeLabel(v);
3504       testcase( jumpIfNull==0 );
3505       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3506       sqlite3ExprCachePush(pParse);
3507       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3508       sqlite3VdbeResolveLabel(v, d2);
3509       sqlite3ExprCachePop(pParse);
3510       break;
3511     }
3512     case TK_OR: {
3513       testcase( jumpIfNull==0 );
3514       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3515       sqlite3ExprCachePush(pParse);
3516       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3517       sqlite3ExprCachePop(pParse);
3518       break;
3519     }
3520     case TK_NOT: {
3521       testcase( jumpIfNull==0 );
3522       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3523       break;
3524     }
3525     case TK_LT:
3526     case TK_LE:
3527     case TK_GT:
3528     case TK_GE:
3529     case TK_NE:
3530     case TK_EQ: {
3531       testcase( jumpIfNull==0 );
3532       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3533       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3534       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3535                   r1, r2, dest, jumpIfNull);
3536       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3537       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3538       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3539       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3540       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3541       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3542       testcase( regFree1==0 );
3543       testcase( regFree2==0 );
3544       break;
3545     }
3546     case TK_IS:
3547     case TK_ISNOT: {
3548       testcase( op==TK_IS );
3549       testcase( op==TK_ISNOT );
3550       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3551       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3552       op = (op==TK_IS) ? TK_EQ : TK_NE;
3553       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3554                   r1, r2, dest, SQLITE_NULLEQ);
3555       VdbeCoverageIf(v, op==TK_EQ);
3556       VdbeCoverageIf(v, op==TK_NE);
3557       testcase( regFree1==0 );
3558       testcase( regFree2==0 );
3559       break;
3560     }
3561     case TK_ISNULL:
3562     case TK_NOTNULL: {
3563       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3564       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3565       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3566       sqlite3VdbeAddOp2(v, op, r1, dest);
3567       VdbeCoverageIf(v, op==TK_ISNULL);
3568       VdbeCoverageIf(v, op==TK_NOTNULL);
3569       testcase( regFree1==0 );
3570       break;
3571     }
3572     case TK_BETWEEN: {
3573       testcase( jumpIfNull==0 );
3574       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3575       break;
3576     }
3577 #ifndef SQLITE_OMIT_SUBQUERY
3578     case TK_IN: {
3579       int destIfFalse = sqlite3VdbeMakeLabel(v);
3580       int destIfNull = jumpIfNull ? dest : destIfFalse;
3581       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3582       sqlite3VdbeGoto(v, dest);
3583       sqlite3VdbeResolveLabel(v, destIfFalse);
3584       break;
3585     }
3586 #endif
3587     default: {
3588       if( exprAlwaysTrue(pExpr) ){
3589         sqlite3VdbeGoto(v, dest);
3590       }else if( exprAlwaysFalse(pExpr) ){
3591         /* No-op */
3592       }else{
3593         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3594         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3595         VdbeCoverage(v);
3596         testcase( regFree1==0 );
3597         testcase( jumpIfNull==0 );
3598       }
3599       break;
3600     }
3601   }
3602   sqlite3ReleaseTempReg(pParse, regFree1);
3603   sqlite3ReleaseTempReg(pParse, regFree2);
3604 }
3605 
3606 /*
3607 ** Generate code for a boolean expression such that a jump is made
3608 ** to the label "dest" if the expression is false but execution
3609 ** continues straight thru if the expression is true.
3610 **
3611 ** If the expression evaluates to NULL (neither true nor false) then
3612 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3613 ** is 0.
3614 */
3615 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3616   Vdbe *v = pParse->pVdbe;
3617   int op = 0;
3618   int regFree1 = 0;
3619   int regFree2 = 0;
3620   int r1, r2;
3621 
3622   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3623   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3624   if( pExpr==0 )    return;
3625 
3626   /* The value of pExpr->op and op are related as follows:
3627   **
3628   **       pExpr->op            op
3629   **       ---------          ----------
3630   **       TK_ISNULL          OP_NotNull
3631   **       TK_NOTNULL         OP_IsNull
3632   **       TK_NE              OP_Eq
3633   **       TK_EQ              OP_Ne
3634   **       TK_GT              OP_Le
3635   **       TK_LE              OP_Gt
3636   **       TK_GE              OP_Lt
3637   **       TK_LT              OP_Ge
3638   **
3639   ** For other values of pExpr->op, op is undefined and unused.
3640   ** The value of TK_ and OP_ constants are arranged such that we
3641   ** can compute the mapping above using the following expression.
3642   ** Assert()s verify that the computation is correct.
3643   */
3644   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3645 
3646   /* Verify correct alignment of TK_ and OP_ constants
3647   */
3648   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3649   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3650   assert( pExpr->op!=TK_NE || op==OP_Eq );
3651   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3652   assert( pExpr->op!=TK_LT || op==OP_Ge );
3653   assert( pExpr->op!=TK_LE || op==OP_Gt );
3654   assert( pExpr->op!=TK_GT || op==OP_Le );
3655   assert( pExpr->op!=TK_GE || op==OP_Lt );
3656 
3657   switch( pExpr->op ){
3658     case TK_AND: {
3659       testcase( jumpIfNull==0 );
3660       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3661       sqlite3ExprCachePush(pParse);
3662       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3663       sqlite3ExprCachePop(pParse);
3664       break;
3665     }
3666     case TK_OR: {
3667       int d2 = sqlite3VdbeMakeLabel(v);
3668       testcase( jumpIfNull==0 );
3669       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3670       sqlite3ExprCachePush(pParse);
3671       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3672       sqlite3VdbeResolveLabel(v, d2);
3673       sqlite3ExprCachePop(pParse);
3674       break;
3675     }
3676     case TK_NOT: {
3677       testcase( jumpIfNull==0 );
3678       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3679       break;
3680     }
3681     case TK_LT:
3682     case TK_LE:
3683     case TK_GT:
3684     case TK_GE:
3685     case TK_NE:
3686     case TK_EQ: {
3687       testcase( jumpIfNull==0 );
3688       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3689       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3690       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3691                   r1, r2, dest, jumpIfNull);
3692       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3693       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3694       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3695       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3696       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3697       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3698       testcase( regFree1==0 );
3699       testcase( regFree2==0 );
3700       break;
3701     }
3702     case TK_IS:
3703     case TK_ISNOT: {
3704       testcase( pExpr->op==TK_IS );
3705       testcase( pExpr->op==TK_ISNOT );
3706       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3707       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3708       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3709       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3710                   r1, r2, dest, SQLITE_NULLEQ);
3711       VdbeCoverageIf(v, op==TK_EQ);
3712       VdbeCoverageIf(v, op==TK_NE);
3713       testcase( regFree1==0 );
3714       testcase( regFree2==0 );
3715       break;
3716     }
3717     case TK_ISNULL:
3718     case TK_NOTNULL: {
3719       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3720       sqlite3VdbeAddOp2(v, op, r1, dest);
3721       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3722       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3723       testcase( regFree1==0 );
3724       break;
3725     }
3726     case TK_BETWEEN: {
3727       testcase( jumpIfNull==0 );
3728       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3729       break;
3730     }
3731 #ifndef SQLITE_OMIT_SUBQUERY
3732     case TK_IN: {
3733       if( jumpIfNull ){
3734         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3735       }else{
3736         int destIfNull = sqlite3VdbeMakeLabel(v);
3737         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3738         sqlite3VdbeResolveLabel(v, destIfNull);
3739       }
3740       break;
3741     }
3742 #endif
3743     default: {
3744       if( exprAlwaysFalse(pExpr) ){
3745         sqlite3VdbeGoto(v, dest);
3746       }else if( exprAlwaysTrue(pExpr) ){
3747         /* no-op */
3748       }else{
3749         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3750         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3751         VdbeCoverage(v);
3752         testcase( regFree1==0 );
3753         testcase( jumpIfNull==0 );
3754       }
3755       break;
3756     }
3757   }
3758   sqlite3ReleaseTempReg(pParse, regFree1);
3759   sqlite3ReleaseTempReg(pParse, regFree2);
3760 }
3761 
3762 /*
3763 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3764 ** code generation, and that copy is deleted after code generation. This
3765 ** ensures that the original pExpr is unchanged.
3766 */
3767 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3768   sqlite3 *db = pParse->db;
3769   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3770   if( db->mallocFailed==0 ){
3771     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3772   }
3773   sqlite3ExprDelete(db, pCopy);
3774 }
3775 
3776 
3777 /*
3778 ** Do a deep comparison of two expression trees.  Return 0 if the two
3779 ** expressions are completely identical.  Return 1 if they differ only
3780 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3781 ** other than the top-level COLLATE operator.
3782 **
3783 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3784 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3785 **
3786 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3787 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3788 **
3789 ** Sometimes this routine will return 2 even if the two expressions
3790 ** really are equivalent.  If we cannot prove that the expressions are
3791 ** identical, we return 2 just to be safe.  So if this routine
3792 ** returns 2, then you do not really know for certain if the two
3793 ** expressions are the same.  But if you get a 0 or 1 return, then you
3794 ** can be sure the expressions are the same.  In the places where
3795 ** this routine is used, it does not hurt to get an extra 2 - that
3796 ** just might result in some slightly slower code.  But returning
3797 ** an incorrect 0 or 1 could lead to a malfunction.
3798 */
3799 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3800   u32 combinedFlags;
3801   if( pA==0 || pB==0 ){
3802     return pB==pA ? 0 : 2;
3803   }
3804   combinedFlags = pA->flags | pB->flags;
3805   if( combinedFlags & EP_IntValue ){
3806     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3807       return 0;
3808     }
3809     return 2;
3810   }
3811   if( pA->op!=pB->op ){
3812     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3813       return 1;
3814     }
3815     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3816       return 1;
3817     }
3818     return 2;
3819   }
3820   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3821     if( pA->op==TK_FUNCTION ){
3822       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3823     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3824       return pA->op==TK_COLLATE ? 1 : 2;
3825     }
3826   }
3827   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3828   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3829     if( combinedFlags & EP_xIsSelect ) return 2;
3830     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3831     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3832     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3833     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3834       if( pA->iColumn!=pB->iColumn ) return 2;
3835       if( pA->iTable!=pB->iTable
3836        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3837     }
3838   }
3839   return 0;
3840 }
3841 
3842 /*
3843 ** Compare two ExprList objects.  Return 0 if they are identical and
3844 ** non-zero if they differ in any way.
3845 **
3846 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3847 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3848 **
3849 ** This routine might return non-zero for equivalent ExprLists.  The
3850 ** only consequence will be disabled optimizations.  But this routine
3851 ** must never return 0 if the two ExprList objects are different, or
3852 ** a malfunction will result.
3853 **
3854 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3855 ** always differs from a non-NULL pointer.
3856 */
3857 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3858   int i;
3859   if( pA==0 && pB==0 ) return 0;
3860   if( pA==0 || pB==0 ) return 1;
3861   if( pA->nExpr!=pB->nExpr ) return 1;
3862   for(i=0; i<pA->nExpr; i++){
3863     Expr *pExprA = pA->a[i].pExpr;
3864     Expr *pExprB = pB->a[i].pExpr;
3865     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3866     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3867   }
3868   return 0;
3869 }
3870 
3871 /*
3872 ** Return true if we can prove the pE2 will always be true if pE1 is
3873 ** true.  Return false if we cannot complete the proof or if pE2 might
3874 ** be false.  Examples:
3875 **
3876 **     pE1: x==5       pE2: x==5             Result: true
3877 **     pE1: x>0        pE2: x==5             Result: false
3878 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3879 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3880 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3881 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3882 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3883 **
3884 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3885 ** Expr.iTable<0 then assume a table number given by iTab.
3886 **
3887 ** When in doubt, return false.  Returning true might give a performance
3888 ** improvement.  Returning false might cause a performance reduction, but
3889 ** it will always give the correct answer and is hence always safe.
3890 */
3891 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3892   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3893     return 1;
3894   }
3895   if( pE2->op==TK_OR
3896    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3897              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3898   ){
3899     return 1;
3900   }
3901   if( pE2->op==TK_NOTNULL
3902    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3903    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3904   ){
3905     return 1;
3906   }
3907   return 0;
3908 }
3909 
3910 /*
3911 ** An instance of the following structure is used by the tree walker
3912 ** to count references to table columns in the arguments of an
3913 ** aggregate function, in order to implement the
3914 ** sqlite3FunctionThisSrc() routine.
3915 */
3916 struct SrcCount {
3917   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3918   int nThis;       /* Number of references to columns in pSrcList */
3919   int nOther;      /* Number of references to columns in other FROM clauses */
3920 };
3921 
3922 /*
3923 ** Count the number of references to columns.
3924 */
3925 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3926   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3927   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3928   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3929   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3930   ** NEVER() will need to be removed. */
3931   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3932     int i;
3933     struct SrcCount *p = pWalker->u.pSrcCount;
3934     SrcList *pSrc = p->pSrc;
3935     int nSrc = pSrc ? pSrc->nSrc : 0;
3936     for(i=0; i<nSrc; i++){
3937       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3938     }
3939     if( i<nSrc ){
3940       p->nThis++;
3941     }else{
3942       p->nOther++;
3943     }
3944   }
3945   return WRC_Continue;
3946 }
3947 
3948 /*
3949 ** Determine if any of the arguments to the pExpr Function reference
3950 ** pSrcList.  Return true if they do.  Also return true if the function
3951 ** has no arguments or has only constant arguments.  Return false if pExpr
3952 ** references columns but not columns of tables found in pSrcList.
3953 */
3954 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3955   Walker w;
3956   struct SrcCount cnt;
3957   assert( pExpr->op==TK_AGG_FUNCTION );
3958   memset(&w, 0, sizeof(w));
3959   w.xExprCallback = exprSrcCount;
3960   w.u.pSrcCount = &cnt;
3961   cnt.pSrc = pSrcList;
3962   cnt.nThis = 0;
3963   cnt.nOther = 0;
3964   sqlite3WalkExprList(&w, pExpr->x.pList);
3965   return cnt.nThis>0 || cnt.nOther==0;
3966 }
3967 
3968 /*
3969 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3970 ** the new element.  Return a negative number if malloc fails.
3971 */
3972 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3973   int i;
3974   pInfo->aCol = sqlite3ArrayAllocate(
3975        db,
3976        pInfo->aCol,
3977        sizeof(pInfo->aCol[0]),
3978        &pInfo->nColumn,
3979        &i
3980   );
3981   return i;
3982 }
3983 
3984 /*
3985 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3986 ** the new element.  Return a negative number if malloc fails.
3987 */
3988 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3989   int i;
3990   pInfo->aFunc = sqlite3ArrayAllocate(
3991        db,
3992        pInfo->aFunc,
3993        sizeof(pInfo->aFunc[0]),
3994        &pInfo->nFunc,
3995        &i
3996   );
3997   return i;
3998 }
3999 
4000 /*
4001 ** This is the xExprCallback for a tree walker.  It is used to
4002 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4003 ** for additional information.
4004 */
4005 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4006   int i;
4007   NameContext *pNC = pWalker->u.pNC;
4008   Parse *pParse = pNC->pParse;
4009   SrcList *pSrcList = pNC->pSrcList;
4010   AggInfo *pAggInfo = pNC->pAggInfo;
4011 
4012   switch( pExpr->op ){
4013     case TK_AGG_COLUMN:
4014     case TK_COLUMN: {
4015       testcase( pExpr->op==TK_AGG_COLUMN );
4016       testcase( pExpr->op==TK_COLUMN );
4017       /* Check to see if the column is in one of the tables in the FROM
4018       ** clause of the aggregate query */
4019       if( ALWAYS(pSrcList!=0) ){
4020         struct SrcList_item *pItem = pSrcList->a;
4021         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4022           struct AggInfo_col *pCol;
4023           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4024           if( pExpr->iTable==pItem->iCursor ){
4025             /* If we reach this point, it means that pExpr refers to a table
4026             ** that is in the FROM clause of the aggregate query.
4027             **
4028             ** Make an entry for the column in pAggInfo->aCol[] if there
4029             ** is not an entry there already.
4030             */
4031             int k;
4032             pCol = pAggInfo->aCol;
4033             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4034               if( pCol->iTable==pExpr->iTable &&
4035                   pCol->iColumn==pExpr->iColumn ){
4036                 break;
4037               }
4038             }
4039             if( (k>=pAggInfo->nColumn)
4040              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4041             ){
4042               pCol = &pAggInfo->aCol[k];
4043               pCol->pTab = pExpr->pTab;
4044               pCol->iTable = pExpr->iTable;
4045               pCol->iColumn = pExpr->iColumn;
4046               pCol->iMem = ++pParse->nMem;
4047               pCol->iSorterColumn = -1;
4048               pCol->pExpr = pExpr;
4049               if( pAggInfo->pGroupBy ){
4050                 int j, n;
4051                 ExprList *pGB = pAggInfo->pGroupBy;
4052                 struct ExprList_item *pTerm = pGB->a;
4053                 n = pGB->nExpr;
4054                 for(j=0; j<n; j++, pTerm++){
4055                   Expr *pE = pTerm->pExpr;
4056                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4057                       pE->iColumn==pExpr->iColumn ){
4058                     pCol->iSorterColumn = j;
4059                     break;
4060                   }
4061                 }
4062               }
4063               if( pCol->iSorterColumn<0 ){
4064                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4065               }
4066             }
4067             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4068             ** because it was there before or because we just created it).
4069             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4070             ** pAggInfo->aCol[] entry.
4071             */
4072             ExprSetVVAProperty(pExpr, EP_NoReduce);
4073             pExpr->pAggInfo = pAggInfo;
4074             pExpr->op = TK_AGG_COLUMN;
4075             pExpr->iAgg = (i16)k;
4076             break;
4077           } /* endif pExpr->iTable==pItem->iCursor */
4078         } /* end loop over pSrcList */
4079       }
4080       return WRC_Prune;
4081     }
4082     case TK_AGG_FUNCTION: {
4083       if( (pNC->ncFlags & NC_InAggFunc)==0
4084        && pWalker->walkerDepth==pExpr->op2
4085       ){
4086         /* Check to see if pExpr is a duplicate of another aggregate
4087         ** function that is already in the pAggInfo structure
4088         */
4089         struct AggInfo_func *pItem = pAggInfo->aFunc;
4090         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4091           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4092             break;
4093           }
4094         }
4095         if( i>=pAggInfo->nFunc ){
4096           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4097           */
4098           u8 enc = ENC(pParse->db);
4099           i = addAggInfoFunc(pParse->db, pAggInfo);
4100           if( i>=0 ){
4101             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4102             pItem = &pAggInfo->aFunc[i];
4103             pItem->pExpr = pExpr;
4104             pItem->iMem = ++pParse->nMem;
4105             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4106             pItem->pFunc = sqlite3FindFunction(pParse->db,
4107                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4108                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4109             if( pExpr->flags & EP_Distinct ){
4110               pItem->iDistinct = pParse->nTab++;
4111             }else{
4112               pItem->iDistinct = -1;
4113             }
4114           }
4115         }
4116         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4117         */
4118         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4119         ExprSetVVAProperty(pExpr, EP_NoReduce);
4120         pExpr->iAgg = (i16)i;
4121         pExpr->pAggInfo = pAggInfo;
4122         return WRC_Prune;
4123       }else{
4124         return WRC_Continue;
4125       }
4126     }
4127   }
4128   return WRC_Continue;
4129 }
4130 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4131   UNUSED_PARAMETER(pWalker);
4132   UNUSED_PARAMETER(pSelect);
4133   return WRC_Continue;
4134 }
4135 
4136 /*
4137 ** Analyze the pExpr expression looking for aggregate functions and
4138 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4139 ** points to.  Additional entries are made on the AggInfo object as
4140 ** necessary.
4141 **
4142 ** This routine should only be called after the expression has been
4143 ** analyzed by sqlite3ResolveExprNames().
4144 */
4145 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4146   Walker w;
4147   memset(&w, 0, sizeof(w));
4148   w.xExprCallback = analyzeAggregate;
4149   w.xSelectCallback = analyzeAggregatesInSelect;
4150   w.u.pNC = pNC;
4151   assert( pNC->pSrcList!=0 );
4152   sqlite3WalkExpr(&w, pExpr);
4153 }
4154 
4155 /*
4156 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4157 ** expression list.  Return the number of errors.
4158 **
4159 ** If an error is found, the analysis is cut short.
4160 */
4161 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4162   struct ExprList_item *pItem;
4163   int i;
4164   if( pList ){
4165     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4166       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4167     }
4168   }
4169 }
4170 
4171 /*
4172 ** Allocate a single new register for use to hold some intermediate result.
4173 */
4174 int sqlite3GetTempReg(Parse *pParse){
4175   if( pParse->nTempReg==0 ){
4176     return ++pParse->nMem;
4177   }
4178   return pParse->aTempReg[--pParse->nTempReg];
4179 }
4180 
4181 /*
4182 ** Deallocate a register, making available for reuse for some other
4183 ** purpose.
4184 **
4185 ** If a register is currently being used by the column cache, then
4186 ** the deallocation is deferred until the column cache line that uses
4187 ** the register becomes stale.
4188 */
4189 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4190   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4191     int i;
4192     struct yColCache *p;
4193     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4194       if( p->iReg==iReg ){
4195         p->tempReg = 1;
4196         return;
4197       }
4198     }
4199     pParse->aTempReg[pParse->nTempReg++] = iReg;
4200   }
4201 }
4202 
4203 /*
4204 ** Allocate or deallocate a block of nReg consecutive registers
4205 */
4206 int sqlite3GetTempRange(Parse *pParse, int nReg){
4207   int i, n;
4208   i = pParse->iRangeReg;
4209   n = pParse->nRangeReg;
4210   if( nReg<=n ){
4211     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4212     pParse->iRangeReg += nReg;
4213     pParse->nRangeReg -= nReg;
4214   }else{
4215     i = pParse->nMem+1;
4216     pParse->nMem += nReg;
4217   }
4218   return i;
4219 }
4220 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4221   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4222   if( nReg>pParse->nRangeReg ){
4223     pParse->nRangeReg = nReg;
4224     pParse->iRangeReg = iReg;
4225   }
4226 }
4227 
4228 /*
4229 ** Mark all temporary registers as being unavailable for reuse.
4230 */
4231 void sqlite3ClearTempRegCache(Parse *pParse){
4232   pParse->nTempReg = 0;
4233   pParse->nRangeReg = 0;
4234 }
4235