1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_BLOB; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_BLOB; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_BLOB; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_BLOB: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performed. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 pNew->op = (u8)op; 467 pNew->iAgg = -1; 468 if( pToken ){ 469 if( nExtra==0 ){ 470 pNew->flags |= EP_IntValue; 471 pNew->u.iValue = iValue; 472 }else{ 473 int c; 474 pNew->u.zToken = (char*)&pNew[1]; 475 assert( pToken->z!=0 || pToken->n==0 ); 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 477 pNew->u.zToken[pToken->n] = 0; 478 if( dequote && nExtra>=3 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 480 sqlite3Dequote(pNew->u.zToken); 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; 482 } 483 } 484 } 485 #if SQLITE_MAX_EXPR_DEPTH>0 486 pNew->nHeight = 1; 487 #endif 488 } 489 return pNew; 490 } 491 492 /* 493 ** Allocate a new expression node from a zero-terminated token that has 494 ** already been dequoted. 495 */ 496 Expr *sqlite3Expr( 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 498 int op, /* Expression opcode */ 499 const char *zToken /* Token argument. Might be NULL */ 500 ){ 501 Token x; 502 x.z = zToken; 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 504 return sqlite3ExprAlloc(db, op, &x, 0); 505 } 506 507 /* 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 509 ** 510 ** If pRoot==NULL that means that a memory allocation error has occurred. 511 ** In that case, delete the subtrees pLeft and pRight. 512 */ 513 void sqlite3ExprAttachSubtrees( 514 sqlite3 *db, 515 Expr *pRoot, 516 Expr *pLeft, 517 Expr *pRight 518 ){ 519 if( pRoot==0 ){ 520 assert( db->mallocFailed ); 521 sqlite3ExprDelete(db, pLeft); 522 sqlite3ExprDelete(db, pRight); 523 }else{ 524 if( pRight ){ 525 pRoot->pRight = pRight; 526 pRoot->flags |= EP_Propagate & pRight->flags; 527 } 528 if( pLeft ){ 529 pRoot->pLeft = pLeft; 530 pRoot->flags |= EP_Propagate & pLeft->flags; 531 } 532 exprSetHeight(pRoot); 533 } 534 } 535 536 /* 537 ** Allocate an Expr node which joins as many as two subtrees. 538 ** 539 ** One or both of the subtrees can be NULL. Return a pointer to the new 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 541 ** free the subtrees and return NULL. 542 */ 543 Expr *sqlite3PExpr( 544 Parse *pParse, /* Parsing context */ 545 int op, /* Expression opcode */ 546 Expr *pLeft, /* Left operand */ 547 Expr *pRight, /* Right operand */ 548 const Token *pToken /* Argument token */ 549 ){ 550 Expr *p; 551 if( op==TK_AND && pParse->nErr==0 ){ 552 /* Take advantage of short-circuit false optimization for AND */ 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 554 }else{ 555 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 557 } 558 if( p ) { 559 sqlite3ExprCheckHeight(pParse, p->nHeight); 560 } 561 return p; 562 } 563 564 /* 565 ** If the expression is always either TRUE or FALSE (respectively), 566 ** then return 1. If one cannot determine the truth value of the 567 ** expression at compile-time return 0. 568 ** 569 ** This is an optimization. If is OK to return 0 here even if 570 ** the expression really is always false or false (a false negative). 571 ** But it is a bug to return 1 if the expression might have different 572 ** boolean values in different circumstances (a false positive.) 573 ** 574 ** Note that if the expression is part of conditional for a 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not 576 ** is it true or false, so always return 0. 577 */ 578 static int exprAlwaysTrue(Expr *p){ 579 int v = 0; 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 582 return v!=0; 583 } 584 static int exprAlwaysFalse(Expr *p){ 585 int v = 0; 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 588 return v==0; 589 } 590 591 /* 592 ** Join two expressions using an AND operator. If either expression is 593 ** NULL, then just return the other expression. 594 ** 595 ** If one side or the other of the AND is known to be false, then instead 596 ** of returning an AND expression, just return a constant expression with 597 ** a value of false. 598 */ 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 600 if( pLeft==0 ){ 601 return pRight; 602 }else if( pRight==0 ){ 603 return pLeft; 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 605 sqlite3ExprDelete(db, pLeft); 606 sqlite3ExprDelete(db, pRight); 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 608 }else{ 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 611 return pNew; 612 } 613 } 614 615 /* 616 ** Construct a new expression node for a function with multiple 617 ** arguments. 618 */ 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 620 Expr *pNew; 621 sqlite3 *db = pParse->db; 622 assert( pToken ); 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 624 if( pNew==0 ){ 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 626 return 0; 627 } 628 pNew->x.pList = pList; 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); 631 return pNew; 632 } 633 634 /* 635 ** Assign a variable number to an expression that encodes a wildcard 636 ** in the original SQL statement. 637 ** 638 ** Wildcards consisting of a single "?" are assigned the next sequential 639 ** variable number. 640 ** 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 642 ** sure "nnn" is not too be to avoid a denial of service attack when 643 ** the SQL statement comes from an external source. 644 ** 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 646 ** as the previous instance of the same wildcard. Or if this is the first 647 ** instance of the wildcard, the next sequential variable number is 648 ** assigned. 649 */ 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 651 sqlite3 *db = pParse->db; 652 const char *z; 653 654 if( pExpr==0 ) return; 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 656 z = pExpr->u.zToken; 657 assert( z!=0 ); 658 assert( z[0]!=0 ); 659 if( z[1]==0 ){ 660 /* Wildcard of the form "?". Assign the next variable number */ 661 assert( z[0]=='?' ); 662 pExpr->iColumn = (ynVar)(++pParse->nVar); 663 }else{ 664 ynVar x = 0; 665 u32 n = sqlite3Strlen30(z); 666 if( z[0]=='?' ){ 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 668 ** use it as the variable number */ 669 i64 i; 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 671 pExpr->iColumn = x = (ynVar)i; 672 testcase( i==0 ); 673 testcase( i==1 ); 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 679 x = 0; 680 } 681 if( i>pParse->nVar ){ 682 pParse->nVar = (int)i; 683 } 684 }else{ 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 686 ** number as the prior appearance of the same name, or if the name 687 ** has never appeared before, reuse the same variable number 688 */ 689 ynVar i; 690 for(i=0; i<pParse->nzVar; i++){ 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 692 pExpr->iColumn = x = (ynVar)i+1; 693 break; 694 } 695 } 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 697 } 698 if( x>0 ){ 699 if( x>pParse->nzVar ){ 700 char **a; 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ 703 pParse->azVar = a; 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 705 pParse->nzVar = x; 706 } 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 708 sqlite3DbFree(db, pParse->azVar[x-1]); 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 710 } 711 } 712 } 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); 715 } 716 } 717 718 /* 719 ** Recursively delete an expression tree. 720 */ 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 722 if( p==0 ) return; 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ 726 /* The Expr.x union is never used at the same time as Expr.pRight */ 727 assert( p->x.pList==0 || p->pRight==0 ); 728 sqlite3ExprDelete(db, p->pLeft); 729 sqlite3ExprDelete(db, p->pRight); 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 731 if( ExprHasProperty(p, EP_xIsSelect) ){ 732 sqlite3SelectDelete(db, p->x.pSelect); 733 }else{ 734 sqlite3ExprListDelete(db, p->x.pList); 735 } 736 } 737 if( !ExprHasProperty(p, EP_Static) ){ 738 sqlite3DbFree(db, p); 739 } 740 } 741 742 /* 743 ** Return the number of bytes allocated for the expression structure 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 746 */ 747 static int exprStructSize(Expr *p){ 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 750 return EXPR_FULLSIZE; 751 } 752 753 /* 754 ** The dupedExpr*Size() routines each return the number of bytes required 755 ** to store a copy of an expression or expression tree. They differ in 756 ** how much of the tree is measured. 757 ** 758 ** dupedExprStructSize() Size of only the Expr structure 759 ** dupedExprNodeSize() Size of Expr + space for token 760 ** dupedExprSize() Expr + token + subtree components 761 ** 762 *************************************************************************** 763 ** 764 ** The dupedExprStructSize() function returns two values OR-ed together: 765 ** (1) the space required for a copy of the Expr structure only and 766 ** (2) the EP_xxx flags that indicate what the structure size should be. 767 ** The return values is always one of: 768 ** 769 ** EXPR_FULLSIZE 770 ** EXPR_REDUCEDSIZE | EP_Reduced 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 772 ** 773 ** The size of the structure can be found by masking the return value 774 ** of this routine with 0xfff. The flags can be found by masking the 775 ** return value with EP_Reduced|EP_TokenOnly. 776 ** 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 778 ** (unreduced) Expr objects as they or originally constructed by the parser. 779 ** During expression analysis, extra information is computed and moved into 780 ** later parts of teh Expr object and that extra information might get chopped 781 ** off if the expression is reduced. Note also that it does not work to 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 783 ** to reduce a pristine expression tree from the parser. The implementation 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt 785 ** to enforce this constraint. 786 */ 787 static int dupedExprStructSize(Expr *p, int flags){ 788 int nSize; 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 790 assert( EXPR_FULLSIZE<=0xfff ); 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 792 if( 0==(flags&EXPRDUP_REDUCE) ){ 793 nSize = EXPR_FULLSIZE; 794 }else{ 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 796 assert( !ExprHasProperty(p, EP_FromJoin) ); 797 assert( !ExprHasProperty(p, EP_MemToken) ); 798 assert( !ExprHasProperty(p, EP_NoReduce) ); 799 if( p->pLeft || p->x.pList ){ 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 801 }else{ 802 assert( p->pRight==0 ); 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 804 } 805 } 806 return nSize; 807 } 808 809 /* 810 ** This function returns the space in bytes required to store the copy 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 812 ** string is defined.) 813 */ 814 static int dupedExprNodeSize(Expr *p, int flags){ 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 817 nByte += sqlite3Strlen30(p->u.zToken)+1; 818 } 819 return ROUND8(nByte); 820 } 821 822 /* 823 ** Return the number of bytes required to create a duplicate of the 824 ** expression passed as the first argument. The second argument is a 825 ** mask containing EXPRDUP_XXX flags. 826 ** 827 ** The value returned includes space to create a copy of the Expr struct 828 ** itself and the buffer referred to by Expr.u.zToken, if any. 829 ** 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 832 ** and Expr.pRight variables (but not for any structures pointed to or 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 834 */ 835 static int dupedExprSize(Expr *p, int flags){ 836 int nByte = 0; 837 if( p ){ 838 nByte = dupedExprNodeSize(p, flags); 839 if( flags&EXPRDUP_REDUCE ){ 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 841 } 842 } 843 return nByte; 844 } 845 846 /* 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 849 ** to store the copy of expression p, the copies of p->u.zToken 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 851 ** if any. Before returning, *pzBuffer is set to the first byte past the 852 ** portion of the buffer copied into by this function. 853 */ 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 855 Expr *pNew = 0; /* Value to return */ 856 if( p ){ 857 const int isReduced = (flags&EXPRDUP_REDUCE); 858 u8 *zAlloc; 859 u32 staticFlag = 0; 860 861 assert( pzBuffer==0 || isReduced ); 862 863 /* Figure out where to write the new Expr structure. */ 864 if( pzBuffer ){ 865 zAlloc = *pzBuffer; 866 staticFlag = EP_Static; 867 }else{ 868 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 869 } 870 pNew = (Expr *)zAlloc; 871 872 if( pNew ){ 873 /* Set nNewSize to the size allocated for the structure pointed to 874 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 875 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 876 ** by the copy of the p->u.zToken string (if any). 877 */ 878 const unsigned nStructSize = dupedExprStructSize(p, flags); 879 const int nNewSize = nStructSize & 0xfff; 880 int nToken; 881 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 882 nToken = sqlite3Strlen30(p->u.zToken) + 1; 883 }else{ 884 nToken = 0; 885 } 886 if( isReduced ){ 887 assert( ExprHasProperty(p, EP_Reduced)==0 ); 888 memcpy(zAlloc, p, nNewSize); 889 }else{ 890 int nSize = exprStructSize(p); 891 memcpy(zAlloc, p, nSize); 892 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 893 } 894 895 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 896 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 897 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 898 pNew->flags |= staticFlag; 899 900 /* Copy the p->u.zToken string, if any. */ 901 if( nToken ){ 902 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 903 memcpy(zToken, p->u.zToken, nToken); 904 } 905 906 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 907 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 908 if( ExprHasProperty(p, EP_xIsSelect) ){ 909 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 910 }else{ 911 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 912 } 913 } 914 915 /* Fill in pNew->pLeft and pNew->pRight. */ 916 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 917 zAlloc += dupedExprNodeSize(p, flags); 918 if( ExprHasProperty(pNew, EP_Reduced) ){ 919 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 920 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 921 } 922 if( pzBuffer ){ 923 *pzBuffer = zAlloc; 924 } 925 }else{ 926 if( !ExprHasProperty(p, EP_TokenOnly) ){ 927 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 928 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 929 } 930 } 931 932 } 933 } 934 return pNew; 935 } 936 937 /* 938 ** Create and return a deep copy of the object passed as the second 939 ** argument. If an OOM condition is encountered, NULL is returned 940 ** and the db->mallocFailed flag set. 941 */ 942 #ifndef SQLITE_OMIT_CTE 943 static With *withDup(sqlite3 *db, With *p){ 944 With *pRet = 0; 945 if( p ){ 946 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 947 pRet = sqlite3DbMallocZero(db, nByte); 948 if( pRet ){ 949 int i; 950 pRet->nCte = p->nCte; 951 for(i=0; i<p->nCte; i++){ 952 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 953 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 954 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 955 } 956 } 957 } 958 return pRet; 959 } 960 #else 961 # define withDup(x,y) 0 962 #endif 963 964 /* 965 ** The following group of routines make deep copies of expressions, 966 ** expression lists, ID lists, and select statements. The copies can 967 ** be deleted (by being passed to their respective ...Delete() routines) 968 ** without effecting the originals. 969 ** 970 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 971 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 972 ** by subsequent calls to sqlite*ListAppend() routines. 973 ** 974 ** Any tables that the SrcList might point to are not duplicated. 975 ** 976 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 977 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 978 ** truncated version of the usual Expr structure that will be stored as 979 ** part of the in-memory representation of the database schema. 980 */ 981 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 982 return exprDup(db, p, flags, 0); 983 } 984 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 985 ExprList *pNew; 986 struct ExprList_item *pItem, *pOldItem; 987 int i; 988 if( p==0 ) return 0; 989 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 990 if( pNew==0 ) return 0; 991 pNew->nExpr = i = p->nExpr; 992 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 993 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 994 if( pItem==0 ){ 995 sqlite3DbFree(db, pNew); 996 return 0; 997 } 998 pOldItem = p->a; 999 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1000 Expr *pOldExpr = pOldItem->pExpr; 1001 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1002 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1004 pItem->sortOrder = pOldItem->sortOrder; 1005 pItem->done = 0; 1006 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1007 pItem->u = pOldItem->u; 1008 } 1009 return pNew; 1010 } 1011 1012 /* 1013 ** If cursors, triggers, views and subqueries are all omitted from 1014 ** the build, then none of the following routines, except for 1015 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1016 ** called with a NULL argument. 1017 */ 1018 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1019 || !defined(SQLITE_OMIT_SUBQUERY) 1020 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1021 SrcList *pNew; 1022 int i; 1023 int nByte; 1024 if( p==0 ) return 0; 1025 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1026 pNew = sqlite3DbMallocRaw(db, nByte ); 1027 if( pNew==0 ) return 0; 1028 pNew->nSrc = pNew->nAlloc = p->nSrc; 1029 for(i=0; i<p->nSrc; i++){ 1030 struct SrcList_item *pNewItem = &pNew->a[i]; 1031 struct SrcList_item *pOldItem = &p->a[i]; 1032 Table *pTab; 1033 pNewItem->pSchema = pOldItem->pSchema; 1034 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1035 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1036 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1037 pNewItem->fg = pOldItem->fg; 1038 pNewItem->iCursor = pOldItem->iCursor; 1039 pNewItem->addrFillSub = pOldItem->addrFillSub; 1040 pNewItem->regReturn = pOldItem->regReturn; 1041 if( pNewItem->fg.isIndexedBy ){ 1042 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1043 } 1044 pNewItem->pIBIndex = pOldItem->pIBIndex; 1045 if( pNewItem->fg.isTabFunc ){ 1046 pNewItem->u1.pFuncArg = 1047 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1048 } 1049 pTab = pNewItem->pTab = pOldItem->pTab; 1050 if( pTab ){ 1051 pTab->nRef++; 1052 } 1053 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1054 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1055 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1056 pNewItem->colUsed = pOldItem->colUsed; 1057 } 1058 return pNew; 1059 } 1060 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1061 IdList *pNew; 1062 int i; 1063 if( p==0 ) return 0; 1064 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1065 if( pNew==0 ) return 0; 1066 pNew->nId = p->nId; 1067 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1068 if( pNew->a==0 ){ 1069 sqlite3DbFree(db, pNew); 1070 return 0; 1071 } 1072 /* Note that because the size of the allocation for p->a[] is not 1073 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1074 ** on the duplicate created by this function. */ 1075 for(i=0; i<p->nId; i++){ 1076 struct IdList_item *pNewItem = &pNew->a[i]; 1077 struct IdList_item *pOldItem = &p->a[i]; 1078 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1079 pNewItem->idx = pOldItem->idx; 1080 } 1081 return pNew; 1082 } 1083 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1084 Select *pNew, *pPrior; 1085 if( p==0 ) return 0; 1086 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1087 if( pNew==0 ) return 0; 1088 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1089 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1090 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1091 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1092 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1093 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1094 pNew->op = p->op; 1095 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1096 if( pPrior ) pPrior->pNext = pNew; 1097 pNew->pNext = 0; 1098 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1099 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1100 pNew->iLimit = 0; 1101 pNew->iOffset = 0; 1102 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1103 pNew->addrOpenEphm[0] = -1; 1104 pNew->addrOpenEphm[1] = -1; 1105 pNew->nSelectRow = p->nSelectRow; 1106 pNew->pWith = withDup(db, p->pWith); 1107 sqlite3SelectSetName(pNew, p->zSelName); 1108 return pNew; 1109 } 1110 #else 1111 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1112 assert( p==0 ); 1113 return 0; 1114 } 1115 #endif 1116 1117 1118 /* 1119 ** Add a new element to the end of an expression list. If pList is 1120 ** initially NULL, then create a new expression list. 1121 ** 1122 ** If a memory allocation error occurs, the entire list is freed and 1123 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1124 ** that the new entry was successfully appended. 1125 */ 1126 ExprList *sqlite3ExprListAppend( 1127 Parse *pParse, /* Parsing context */ 1128 ExprList *pList, /* List to which to append. Might be NULL */ 1129 Expr *pExpr /* Expression to be appended. Might be NULL */ 1130 ){ 1131 sqlite3 *db = pParse->db; 1132 if( pList==0 ){ 1133 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1134 if( pList==0 ){ 1135 goto no_mem; 1136 } 1137 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1138 if( pList->a==0 ) goto no_mem; 1139 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1140 struct ExprList_item *a; 1141 assert( pList->nExpr>0 ); 1142 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1143 if( a==0 ){ 1144 goto no_mem; 1145 } 1146 pList->a = a; 1147 } 1148 assert( pList->a!=0 ); 1149 if( 1 ){ 1150 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1151 memset(pItem, 0, sizeof(*pItem)); 1152 pItem->pExpr = pExpr; 1153 } 1154 return pList; 1155 1156 no_mem: 1157 /* Avoid leaking memory if malloc has failed. */ 1158 sqlite3ExprDelete(db, pExpr); 1159 sqlite3ExprListDelete(db, pList); 1160 return 0; 1161 } 1162 1163 /* 1164 ** Set the sort order for the last element on the given ExprList. 1165 */ 1166 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1167 if( p==0 ) return; 1168 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1169 assert( p->nExpr>0 ); 1170 if( iSortOrder<0 ){ 1171 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1172 return; 1173 } 1174 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1175 } 1176 1177 /* 1178 ** Set the ExprList.a[].zName element of the most recently added item 1179 ** on the expression list. 1180 ** 1181 ** pList might be NULL following an OOM error. But pName should never be 1182 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1183 ** is set. 1184 */ 1185 void sqlite3ExprListSetName( 1186 Parse *pParse, /* Parsing context */ 1187 ExprList *pList, /* List to which to add the span. */ 1188 Token *pName, /* Name to be added */ 1189 int dequote /* True to cause the name to be dequoted */ 1190 ){ 1191 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1192 if( pList ){ 1193 struct ExprList_item *pItem; 1194 assert( pList->nExpr>0 ); 1195 pItem = &pList->a[pList->nExpr-1]; 1196 assert( pItem->zName==0 ); 1197 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1198 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1199 } 1200 } 1201 1202 /* 1203 ** Set the ExprList.a[].zSpan element of the most recently added item 1204 ** on the expression list. 1205 ** 1206 ** pList might be NULL following an OOM error. But pSpan should never be 1207 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1208 ** is set. 1209 */ 1210 void sqlite3ExprListSetSpan( 1211 Parse *pParse, /* Parsing context */ 1212 ExprList *pList, /* List to which to add the span. */ 1213 ExprSpan *pSpan /* The span to be added */ 1214 ){ 1215 sqlite3 *db = pParse->db; 1216 assert( pList!=0 || db->mallocFailed!=0 ); 1217 if( pList ){ 1218 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1219 assert( pList->nExpr>0 ); 1220 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1221 sqlite3DbFree(db, pItem->zSpan); 1222 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1223 (int)(pSpan->zEnd - pSpan->zStart)); 1224 } 1225 } 1226 1227 /* 1228 ** If the expression list pEList contains more than iLimit elements, 1229 ** leave an error message in pParse. 1230 */ 1231 void sqlite3ExprListCheckLength( 1232 Parse *pParse, 1233 ExprList *pEList, 1234 const char *zObject 1235 ){ 1236 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1237 testcase( pEList && pEList->nExpr==mx ); 1238 testcase( pEList && pEList->nExpr==mx+1 ); 1239 if( pEList && pEList->nExpr>mx ){ 1240 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1241 } 1242 } 1243 1244 /* 1245 ** Delete an entire expression list. 1246 */ 1247 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1248 int i; 1249 struct ExprList_item *pItem; 1250 if( pList==0 ) return; 1251 assert( pList->a!=0 || pList->nExpr==0 ); 1252 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1253 sqlite3ExprDelete(db, pItem->pExpr); 1254 sqlite3DbFree(db, pItem->zName); 1255 sqlite3DbFree(db, pItem->zSpan); 1256 } 1257 sqlite3DbFree(db, pList->a); 1258 sqlite3DbFree(db, pList); 1259 } 1260 1261 /* 1262 ** Return the bitwise-OR of all Expr.flags fields in the given 1263 ** ExprList. 1264 */ 1265 u32 sqlite3ExprListFlags(const ExprList *pList){ 1266 int i; 1267 u32 m = 0; 1268 if( pList ){ 1269 for(i=0; i<pList->nExpr; i++){ 1270 Expr *pExpr = pList->a[i].pExpr; 1271 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1272 } 1273 } 1274 return m; 1275 } 1276 1277 /* 1278 ** These routines are Walker callbacks used to check expressions to 1279 ** see if they are "constant" for some definition of constant. The 1280 ** Walker.eCode value determines the type of "constant" we are looking 1281 ** for. 1282 ** 1283 ** These callback routines are used to implement the following: 1284 ** 1285 ** sqlite3ExprIsConstant() pWalker->eCode==1 1286 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1287 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1288 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1289 ** 1290 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1291 ** is found to not be a constant. 1292 ** 1293 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1294 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1295 ** an existing schema and 4 when processing a new statement. A bound 1296 ** parameter raises an error for new statements, but is silently converted 1297 ** to NULL for existing schemas. This allows sqlite_master tables that 1298 ** contain a bound parameter because they were generated by older versions 1299 ** of SQLite to be parsed by newer versions of SQLite without raising a 1300 ** malformed schema error. 1301 */ 1302 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1303 1304 /* If pWalker->eCode is 2 then any term of the expression that comes from 1305 ** the ON or USING clauses of a left join disqualifies the expression 1306 ** from being considered constant. */ 1307 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1308 pWalker->eCode = 0; 1309 return WRC_Abort; 1310 } 1311 1312 switch( pExpr->op ){ 1313 /* Consider functions to be constant if all their arguments are constant 1314 ** and either pWalker->eCode==4 or 5 or the function has the 1315 ** SQLITE_FUNC_CONST flag. */ 1316 case TK_FUNCTION: 1317 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1318 return WRC_Continue; 1319 }else{ 1320 pWalker->eCode = 0; 1321 return WRC_Abort; 1322 } 1323 case TK_ID: 1324 case TK_COLUMN: 1325 case TK_AGG_FUNCTION: 1326 case TK_AGG_COLUMN: 1327 testcase( pExpr->op==TK_ID ); 1328 testcase( pExpr->op==TK_COLUMN ); 1329 testcase( pExpr->op==TK_AGG_FUNCTION ); 1330 testcase( pExpr->op==TK_AGG_COLUMN ); 1331 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1332 return WRC_Continue; 1333 }else{ 1334 pWalker->eCode = 0; 1335 return WRC_Abort; 1336 } 1337 case TK_VARIABLE: 1338 if( pWalker->eCode==5 ){ 1339 /* Silently convert bound parameters that appear inside of CREATE 1340 ** statements into a NULL when parsing the CREATE statement text out 1341 ** of the sqlite_master table */ 1342 pExpr->op = TK_NULL; 1343 }else if( pWalker->eCode==4 ){ 1344 /* A bound parameter in a CREATE statement that originates from 1345 ** sqlite3_prepare() causes an error */ 1346 pWalker->eCode = 0; 1347 return WRC_Abort; 1348 } 1349 /* Fall through */ 1350 default: 1351 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1352 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1353 return WRC_Continue; 1354 } 1355 } 1356 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1357 UNUSED_PARAMETER(NotUsed); 1358 pWalker->eCode = 0; 1359 return WRC_Abort; 1360 } 1361 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1362 Walker w; 1363 memset(&w, 0, sizeof(w)); 1364 w.eCode = initFlag; 1365 w.xExprCallback = exprNodeIsConstant; 1366 w.xSelectCallback = selectNodeIsConstant; 1367 w.u.iCur = iCur; 1368 sqlite3WalkExpr(&w, p); 1369 return w.eCode; 1370 } 1371 1372 /* 1373 ** Walk an expression tree. Return non-zero if the expression is constant 1374 ** and 0 if it involves variables or function calls. 1375 ** 1376 ** For the purposes of this function, a double-quoted string (ex: "abc") 1377 ** is considered a variable but a single-quoted string (ex: 'abc') is 1378 ** a constant. 1379 */ 1380 int sqlite3ExprIsConstant(Expr *p){ 1381 return exprIsConst(p, 1, 0); 1382 } 1383 1384 /* 1385 ** Walk an expression tree. Return non-zero if the expression is constant 1386 ** that does no originate from the ON or USING clauses of a join. 1387 ** Return 0 if it involves variables or function calls or terms from 1388 ** an ON or USING clause. 1389 */ 1390 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1391 return exprIsConst(p, 2, 0); 1392 } 1393 1394 /* 1395 ** Walk an expression tree. Return non-zero if the expression is constant 1396 ** for any single row of the table with cursor iCur. In other words, the 1397 ** expression must not refer to any non-deterministic function nor any 1398 ** table other than iCur. 1399 */ 1400 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1401 return exprIsConst(p, 3, iCur); 1402 } 1403 1404 /* 1405 ** Walk an expression tree. Return non-zero if the expression is constant 1406 ** or a function call with constant arguments. Return and 0 if there 1407 ** are any variables. 1408 ** 1409 ** For the purposes of this function, a double-quoted string (ex: "abc") 1410 ** is considered a variable but a single-quoted string (ex: 'abc') is 1411 ** a constant. 1412 */ 1413 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1414 assert( isInit==0 || isInit==1 ); 1415 return exprIsConst(p, 4+isInit, 0); 1416 } 1417 1418 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1419 /* 1420 ** Walk an expression tree. Return 1 if the expression contains a 1421 ** subquery of some kind. Return 0 if there are no subqueries. 1422 */ 1423 int sqlite3ExprContainsSubquery(Expr *p){ 1424 Walker w; 1425 memset(&w, 0, sizeof(w)); 1426 w.eCode = 1; 1427 w.xExprCallback = sqlite3ExprWalkNoop; 1428 w.xSelectCallback = selectNodeIsConstant; 1429 sqlite3WalkExpr(&w, p); 1430 return w.eCode==0; 1431 } 1432 #endif 1433 1434 /* 1435 ** If the expression p codes a constant integer that is small enough 1436 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1437 ** in *pValue. If the expression is not an integer or if it is too big 1438 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1439 */ 1440 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1441 int rc = 0; 1442 1443 /* If an expression is an integer literal that fits in a signed 32-bit 1444 ** integer, then the EP_IntValue flag will have already been set */ 1445 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1446 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1447 1448 if( p->flags & EP_IntValue ){ 1449 *pValue = p->u.iValue; 1450 return 1; 1451 } 1452 switch( p->op ){ 1453 case TK_UPLUS: { 1454 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1455 break; 1456 } 1457 case TK_UMINUS: { 1458 int v; 1459 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1460 assert( v!=(-2147483647-1) ); 1461 *pValue = -v; 1462 rc = 1; 1463 } 1464 break; 1465 } 1466 default: break; 1467 } 1468 return rc; 1469 } 1470 1471 /* 1472 ** Return FALSE if there is no chance that the expression can be NULL. 1473 ** 1474 ** If the expression might be NULL or if the expression is too complex 1475 ** to tell return TRUE. 1476 ** 1477 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1478 ** when we know that a value cannot be NULL. Hence, a false positive 1479 ** (returning TRUE when in fact the expression can never be NULL) might 1480 ** be a small performance hit but is otherwise harmless. On the other 1481 ** hand, a false negative (returning FALSE when the result could be NULL) 1482 ** will likely result in an incorrect answer. So when in doubt, return 1483 ** TRUE. 1484 */ 1485 int sqlite3ExprCanBeNull(const Expr *p){ 1486 u8 op; 1487 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1488 op = p->op; 1489 if( op==TK_REGISTER ) op = p->op2; 1490 switch( op ){ 1491 case TK_INTEGER: 1492 case TK_STRING: 1493 case TK_FLOAT: 1494 case TK_BLOB: 1495 return 0; 1496 case TK_COLUMN: 1497 assert( p->pTab!=0 ); 1498 return ExprHasProperty(p, EP_CanBeNull) || 1499 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1500 default: 1501 return 1; 1502 } 1503 } 1504 1505 /* 1506 ** Return TRUE if the given expression is a constant which would be 1507 ** unchanged by OP_Affinity with the affinity given in the second 1508 ** argument. 1509 ** 1510 ** This routine is used to determine if the OP_Affinity operation 1511 ** can be omitted. When in doubt return FALSE. A false negative 1512 ** is harmless. A false positive, however, can result in the wrong 1513 ** answer. 1514 */ 1515 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1516 u8 op; 1517 if( aff==SQLITE_AFF_BLOB ) return 1; 1518 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1519 op = p->op; 1520 if( op==TK_REGISTER ) op = p->op2; 1521 switch( op ){ 1522 case TK_INTEGER: { 1523 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1524 } 1525 case TK_FLOAT: { 1526 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1527 } 1528 case TK_STRING: { 1529 return aff==SQLITE_AFF_TEXT; 1530 } 1531 case TK_BLOB: { 1532 return 1; 1533 } 1534 case TK_COLUMN: { 1535 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1536 return p->iColumn<0 1537 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1538 } 1539 default: { 1540 return 0; 1541 } 1542 } 1543 } 1544 1545 /* 1546 ** Return TRUE if the given string is a row-id column name. 1547 */ 1548 int sqlite3IsRowid(const char *z){ 1549 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1550 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1551 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1552 return 0; 1553 } 1554 1555 /* 1556 ** Return true if we are able to the IN operator optimization on a 1557 ** query of the form 1558 ** 1559 ** x IN (SELECT ...) 1560 ** 1561 ** Where the SELECT... clause is as specified by the parameter to this 1562 ** routine. 1563 ** 1564 ** The Select object passed in has already been preprocessed and no 1565 ** errors have been found. 1566 */ 1567 #ifndef SQLITE_OMIT_SUBQUERY 1568 static int isCandidateForInOpt(Select *p){ 1569 SrcList *pSrc; 1570 ExprList *pEList; 1571 Table *pTab; 1572 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1573 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1574 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1575 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1576 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1577 return 0; /* No DISTINCT keyword and no aggregate functions */ 1578 } 1579 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1580 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1581 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1582 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1583 pSrc = p->pSrc; 1584 assert( pSrc!=0 ); 1585 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1586 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1587 pTab = pSrc->a[0].pTab; 1588 if( NEVER(pTab==0) ) return 0; 1589 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1590 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1591 pEList = p->pEList; 1592 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1593 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1594 return 1; 1595 } 1596 #endif /* SQLITE_OMIT_SUBQUERY */ 1597 1598 /* 1599 ** Code an OP_Once instruction and allocate space for its flag. Return the 1600 ** address of the new instruction. 1601 */ 1602 int sqlite3CodeOnce(Parse *pParse){ 1603 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1604 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1605 } 1606 1607 /* 1608 ** Generate code that checks the left-most column of index table iCur to see if 1609 ** it contains any NULL entries. Cause the register at regHasNull to be set 1610 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1611 ** to be set to NULL if iCur contains one or more NULL values. 1612 */ 1613 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1614 int addr1; 1615 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1616 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1617 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1618 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1619 VdbeComment((v, "first_entry_in(%d)", iCur)); 1620 sqlite3VdbeJumpHere(v, addr1); 1621 } 1622 1623 1624 #ifndef SQLITE_OMIT_SUBQUERY 1625 /* 1626 ** The argument is an IN operator with a list (not a subquery) on the 1627 ** right-hand side. Return TRUE if that list is constant. 1628 */ 1629 static int sqlite3InRhsIsConstant(Expr *pIn){ 1630 Expr *pLHS; 1631 int res; 1632 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1633 pLHS = pIn->pLeft; 1634 pIn->pLeft = 0; 1635 res = sqlite3ExprIsConstant(pIn); 1636 pIn->pLeft = pLHS; 1637 return res; 1638 } 1639 #endif 1640 1641 /* 1642 ** This function is used by the implementation of the IN (...) operator. 1643 ** The pX parameter is the expression on the RHS of the IN operator, which 1644 ** might be either a list of expressions or a subquery. 1645 ** 1646 ** The job of this routine is to find or create a b-tree object that can 1647 ** be used either to test for membership in the RHS set or to iterate through 1648 ** all members of the RHS set, skipping duplicates. 1649 ** 1650 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1651 ** and pX->iTable is set to the index of that cursor. 1652 ** 1653 ** The returned value of this function indicates the b-tree type, as follows: 1654 ** 1655 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1656 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1657 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1658 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1659 ** populated epheremal table. 1660 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1661 ** implemented as a sequence of comparisons. 1662 ** 1663 ** An existing b-tree might be used if the RHS expression pX is a simple 1664 ** subquery such as: 1665 ** 1666 ** SELECT <column> FROM <table> 1667 ** 1668 ** If the RHS of the IN operator is a list or a more complex subquery, then 1669 ** an ephemeral table might need to be generated from the RHS and then 1670 ** pX->iTable made to point to the ephemeral table instead of an 1671 ** existing table. 1672 ** 1673 ** The inFlags parameter must contain exactly one of the bits 1674 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1675 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1676 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1677 ** IN index will be used to loop over all values of the RHS of the 1678 ** IN operator. 1679 ** 1680 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1681 ** through the set members) then the b-tree must not contain duplicates. 1682 ** An epheremal table must be used unless the selected <column> is guaranteed 1683 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1684 ** has a UNIQUE constraint or UNIQUE index. 1685 ** 1686 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1687 ** for fast set membership tests) then an epheremal table must 1688 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1689 ** be found with <column> as its left-most column. 1690 ** 1691 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1692 ** if the RHS of the IN operator is a list (not a subquery) then this 1693 ** routine might decide that creating an ephemeral b-tree for membership 1694 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1695 ** calling routine should implement the IN operator using a sequence 1696 ** of Eq or Ne comparison operations. 1697 ** 1698 ** When the b-tree is being used for membership tests, the calling function 1699 ** might need to know whether or not the RHS side of the IN operator 1700 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1701 ** if there is any chance that the (...) might contain a NULL value at 1702 ** runtime, then a register is allocated and the register number written 1703 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1704 ** NULL value, then *prRhsHasNull is left unchanged. 1705 ** 1706 ** If a register is allocated and its location stored in *prRhsHasNull, then 1707 ** the value in that register will be NULL if the b-tree contains one or more 1708 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1709 ** NULL values. 1710 */ 1711 #ifndef SQLITE_OMIT_SUBQUERY 1712 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1713 Select *p; /* SELECT to the right of IN operator */ 1714 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1715 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1716 int mustBeUnique; /* True if RHS must be unique */ 1717 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1718 1719 assert( pX->op==TK_IN ); 1720 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1721 1722 /* Check to see if an existing table or index can be used to 1723 ** satisfy the query. This is preferable to generating a new 1724 ** ephemeral table. 1725 */ 1726 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1727 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1728 sqlite3 *db = pParse->db; /* Database connection */ 1729 Table *pTab; /* Table <table>. */ 1730 Expr *pExpr; /* Expression <column> */ 1731 i16 iCol; /* Index of column <column> */ 1732 i16 iDb; /* Database idx for pTab */ 1733 1734 assert( p ); /* Because of isCandidateForInOpt(p) */ 1735 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1736 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1737 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1738 pTab = p->pSrc->a[0].pTab; 1739 pExpr = p->pEList->a[0].pExpr; 1740 iCol = (i16)pExpr->iColumn; 1741 1742 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1744 sqlite3CodeVerifySchema(pParse, iDb); 1745 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1746 1747 /* This function is only called from two places. In both cases the vdbe 1748 ** has already been allocated. So assume sqlite3GetVdbe() is always 1749 ** successful here. 1750 */ 1751 assert(v); 1752 if( iCol<0 ){ 1753 int iAddr = sqlite3CodeOnce(pParse); 1754 VdbeCoverage(v); 1755 1756 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1757 eType = IN_INDEX_ROWID; 1758 1759 sqlite3VdbeJumpHere(v, iAddr); 1760 }else{ 1761 Index *pIdx; /* Iterator variable */ 1762 1763 /* The collation sequence used by the comparison. If an index is to 1764 ** be used in place of a temp-table, it must be ordered according 1765 ** to this collation sequence. */ 1766 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1767 1768 /* Check that the affinity that will be used to perform the 1769 ** comparison is the same as the affinity of the column. If 1770 ** it is not, it is not possible to use any index. 1771 */ 1772 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1773 1774 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1775 if( (pIdx->aiColumn[0]==iCol) 1776 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1777 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1778 ){ 1779 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1780 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1781 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1782 VdbeComment((v, "%s", pIdx->zName)); 1783 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1784 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1785 1786 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1787 *prRhsHasNull = ++pParse->nMem; 1788 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1789 } 1790 sqlite3VdbeJumpHere(v, iAddr); 1791 } 1792 } 1793 } 1794 } 1795 1796 /* If no preexisting index is available for the IN clause 1797 ** and IN_INDEX_NOOP is an allowed reply 1798 ** and the RHS of the IN operator is a list, not a subquery 1799 ** and the RHS is not contant or has two or fewer terms, 1800 ** then it is not worth creating an ephemeral table to evaluate 1801 ** the IN operator so return IN_INDEX_NOOP. 1802 */ 1803 if( eType==0 1804 && (inFlags & IN_INDEX_NOOP_OK) 1805 && !ExprHasProperty(pX, EP_xIsSelect) 1806 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1807 ){ 1808 eType = IN_INDEX_NOOP; 1809 } 1810 1811 1812 if( eType==0 ){ 1813 /* Could not find an existing table or index to use as the RHS b-tree. 1814 ** We will have to generate an ephemeral table to do the job. 1815 */ 1816 u32 savedNQueryLoop = pParse->nQueryLoop; 1817 int rMayHaveNull = 0; 1818 eType = IN_INDEX_EPH; 1819 if( inFlags & IN_INDEX_LOOP ){ 1820 pParse->nQueryLoop = 0; 1821 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1822 eType = IN_INDEX_ROWID; 1823 } 1824 }else if( prRhsHasNull ){ 1825 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1826 } 1827 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1828 pParse->nQueryLoop = savedNQueryLoop; 1829 }else{ 1830 pX->iTable = iTab; 1831 } 1832 return eType; 1833 } 1834 #endif 1835 1836 /* 1837 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1838 ** or IN operators. Examples: 1839 ** 1840 ** (SELECT a FROM b) -- subquery 1841 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1842 ** x IN (4,5,11) -- IN operator with list on right-hand side 1843 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1844 ** 1845 ** The pExpr parameter describes the expression that contains the IN 1846 ** operator or subquery. 1847 ** 1848 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1849 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1850 ** to some integer key column of a table B-Tree. In this case, use an 1851 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1852 ** (slower) variable length keys B-Tree. 1853 ** 1854 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1855 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1856 ** All this routine does is initialize the register given by rMayHaveNull 1857 ** to NULL. Calling routines will take care of changing this register 1858 ** value to non-NULL if the RHS is NULL-free. 1859 ** 1860 ** For a SELECT or EXISTS operator, return the register that holds the 1861 ** result. For IN operators or if an error occurs, the return value is 0. 1862 */ 1863 #ifndef SQLITE_OMIT_SUBQUERY 1864 int sqlite3CodeSubselect( 1865 Parse *pParse, /* Parsing context */ 1866 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1867 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1868 int isRowid /* If true, LHS of IN operator is a rowid */ 1869 ){ 1870 int jmpIfDynamic = -1; /* One-time test address */ 1871 int rReg = 0; /* Register storing resulting */ 1872 Vdbe *v = sqlite3GetVdbe(pParse); 1873 if( NEVER(v==0) ) return 0; 1874 sqlite3ExprCachePush(pParse); 1875 1876 /* This code must be run in its entirety every time it is encountered 1877 ** if any of the following is true: 1878 ** 1879 ** * The right-hand side is a correlated subquery 1880 ** * The right-hand side is an expression list containing variables 1881 ** * We are inside a trigger 1882 ** 1883 ** If all of the above are false, then we can run this code just once 1884 ** save the results, and reuse the same result on subsequent invocations. 1885 */ 1886 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1887 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1888 } 1889 1890 #ifndef SQLITE_OMIT_EXPLAIN 1891 if( pParse->explain==2 ){ 1892 char *zMsg = sqlite3MPrintf( 1893 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1894 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1895 ); 1896 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1897 } 1898 #endif 1899 1900 switch( pExpr->op ){ 1901 case TK_IN: { 1902 char affinity; /* Affinity of the LHS of the IN */ 1903 int addr; /* Address of OP_OpenEphemeral instruction */ 1904 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1905 KeyInfo *pKeyInfo = 0; /* Key information */ 1906 1907 affinity = sqlite3ExprAffinity(pLeft); 1908 1909 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1910 ** expression it is handled the same way. An ephemeral table is 1911 ** filled with single-field index keys representing the results 1912 ** from the SELECT or the <exprlist>. 1913 ** 1914 ** If the 'x' expression is a column value, or the SELECT... 1915 ** statement returns a column value, then the affinity of that 1916 ** column is used to build the index keys. If both 'x' and the 1917 ** SELECT... statement are columns, then numeric affinity is used 1918 ** if either column has NUMERIC or INTEGER affinity. If neither 1919 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1920 ** is used. 1921 */ 1922 pExpr->iTable = pParse->nTab++; 1923 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1924 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1925 1926 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1927 /* Case 1: expr IN (SELECT ...) 1928 ** 1929 ** Generate code to write the results of the select into the temporary 1930 ** table allocated and opened above. 1931 */ 1932 Select *pSelect = pExpr->x.pSelect; 1933 SelectDest dest; 1934 ExprList *pEList; 1935 1936 assert( !isRowid ); 1937 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1938 dest.affSdst = (u8)affinity; 1939 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1940 pSelect->iLimit = 0; 1941 testcase( pSelect->selFlags & SF_Distinct ); 1942 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1943 if( sqlite3Select(pParse, pSelect, &dest) ){ 1944 sqlite3KeyInfoUnref(pKeyInfo); 1945 return 0; 1946 } 1947 pEList = pSelect->pEList; 1948 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1949 assert( pEList!=0 ); 1950 assert( pEList->nExpr>0 ); 1951 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1952 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1953 pEList->a[0].pExpr); 1954 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1955 /* Case 2: expr IN (exprlist) 1956 ** 1957 ** For each expression, build an index key from the evaluation and 1958 ** store it in the temporary table. If <expr> is a column, then use 1959 ** that columns affinity when building index keys. If <expr> is not 1960 ** a column, use numeric affinity. 1961 */ 1962 int i; 1963 ExprList *pList = pExpr->x.pList; 1964 struct ExprList_item *pItem; 1965 int r1, r2, r3; 1966 1967 if( !affinity ){ 1968 affinity = SQLITE_AFF_BLOB; 1969 } 1970 if( pKeyInfo ){ 1971 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1972 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1973 } 1974 1975 /* Loop through each expression in <exprlist>. */ 1976 r1 = sqlite3GetTempReg(pParse); 1977 r2 = sqlite3GetTempReg(pParse); 1978 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1979 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1980 Expr *pE2 = pItem->pExpr; 1981 int iValToIns; 1982 1983 /* If the expression is not constant then we will need to 1984 ** disable the test that was generated above that makes sure 1985 ** this code only executes once. Because for a non-constant 1986 ** expression we need to rerun this code each time. 1987 */ 1988 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1989 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1990 jmpIfDynamic = -1; 1991 } 1992 1993 /* Evaluate the expression and insert it into the temp table */ 1994 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1995 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1996 }else{ 1997 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1998 if( isRowid ){ 1999 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2000 sqlite3VdbeCurrentAddr(v)+2); 2001 VdbeCoverage(v); 2002 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2003 }else{ 2004 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2005 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2006 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2007 } 2008 } 2009 } 2010 sqlite3ReleaseTempReg(pParse, r1); 2011 sqlite3ReleaseTempReg(pParse, r2); 2012 } 2013 if( pKeyInfo ){ 2014 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2015 } 2016 break; 2017 } 2018 2019 case TK_EXISTS: 2020 case TK_SELECT: 2021 default: { 2022 /* If this has to be a scalar SELECT. Generate code to put the 2023 ** value of this select in a memory cell and record the number 2024 ** of the memory cell in iColumn. If this is an EXISTS, write 2025 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2026 ** and record that memory cell in iColumn. 2027 */ 2028 Select *pSel; /* SELECT statement to encode */ 2029 SelectDest dest; /* How to deal with SELECt result */ 2030 2031 testcase( pExpr->op==TK_EXISTS ); 2032 testcase( pExpr->op==TK_SELECT ); 2033 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2034 2035 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2036 pSel = pExpr->x.pSelect; 2037 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2038 if( pExpr->op==TK_SELECT ){ 2039 dest.eDest = SRT_Mem; 2040 dest.iSdst = dest.iSDParm; 2041 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2042 VdbeComment((v, "Init subquery result")); 2043 }else{ 2044 dest.eDest = SRT_Exists; 2045 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2046 VdbeComment((v, "Init EXISTS result")); 2047 } 2048 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2049 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2050 &sqlite3IntTokens[1]); 2051 pSel->iLimit = 0; 2052 pSel->selFlags &= ~SF_MultiValue; 2053 if( sqlite3Select(pParse, pSel, &dest) ){ 2054 return 0; 2055 } 2056 rReg = dest.iSDParm; 2057 ExprSetVVAProperty(pExpr, EP_NoReduce); 2058 break; 2059 } 2060 } 2061 2062 if( rHasNullFlag ){ 2063 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2064 } 2065 2066 if( jmpIfDynamic>=0 ){ 2067 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2068 } 2069 sqlite3ExprCachePop(pParse); 2070 2071 return rReg; 2072 } 2073 #endif /* SQLITE_OMIT_SUBQUERY */ 2074 2075 #ifndef SQLITE_OMIT_SUBQUERY 2076 /* 2077 ** Generate code for an IN expression. 2078 ** 2079 ** x IN (SELECT ...) 2080 ** x IN (value, value, ...) 2081 ** 2082 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2083 ** is an array of zero or more values. The expression is true if the LHS is 2084 ** contained within the RHS. The value of the expression is unknown (NULL) 2085 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2086 ** RHS contains one or more NULL values. 2087 ** 2088 ** This routine generates code that jumps to destIfFalse if the LHS is not 2089 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2090 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2091 ** within the RHS then fall through. 2092 */ 2093 static void sqlite3ExprCodeIN( 2094 Parse *pParse, /* Parsing and code generating context */ 2095 Expr *pExpr, /* The IN expression */ 2096 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2097 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2098 ){ 2099 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2100 char affinity; /* Comparison affinity to use */ 2101 int eType; /* Type of the RHS */ 2102 int r1; /* Temporary use register */ 2103 Vdbe *v; /* Statement under construction */ 2104 2105 /* Compute the RHS. After this step, the table with cursor 2106 ** pExpr->iTable will contains the values that make up the RHS. 2107 */ 2108 v = pParse->pVdbe; 2109 assert( v!=0 ); /* OOM detected prior to this routine */ 2110 VdbeNoopComment((v, "begin IN expr")); 2111 eType = sqlite3FindInIndex(pParse, pExpr, 2112 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2113 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2114 2115 /* Figure out the affinity to use to create a key from the results 2116 ** of the expression. affinityStr stores a static string suitable for 2117 ** P4 of OP_MakeRecord. 2118 */ 2119 affinity = comparisonAffinity(pExpr); 2120 2121 /* Code the LHS, the <expr> from "<expr> IN (...)". 2122 */ 2123 sqlite3ExprCachePush(pParse); 2124 r1 = sqlite3GetTempReg(pParse); 2125 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2126 2127 /* If sqlite3FindInIndex() did not find or create an index that is 2128 ** suitable for evaluating the IN operator, then evaluate using a 2129 ** sequence of comparisons. 2130 */ 2131 if( eType==IN_INDEX_NOOP ){ 2132 ExprList *pList = pExpr->x.pList; 2133 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2134 int labelOk = sqlite3VdbeMakeLabel(v); 2135 int r2, regToFree; 2136 int regCkNull = 0; 2137 int ii; 2138 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2139 if( destIfNull!=destIfFalse ){ 2140 regCkNull = sqlite3GetTempReg(pParse); 2141 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2142 } 2143 for(ii=0; ii<pList->nExpr; ii++){ 2144 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2145 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2146 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2147 } 2148 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2149 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2150 (void*)pColl, P4_COLLSEQ); 2151 VdbeCoverageIf(v, ii<pList->nExpr-1); 2152 VdbeCoverageIf(v, ii==pList->nExpr-1); 2153 sqlite3VdbeChangeP5(v, affinity); 2154 }else{ 2155 assert( destIfNull==destIfFalse ); 2156 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2157 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2158 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2159 } 2160 sqlite3ReleaseTempReg(pParse, regToFree); 2161 } 2162 if( regCkNull ){ 2163 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2164 sqlite3VdbeGoto(v, destIfFalse); 2165 } 2166 sqlite3VdbeResolveLabel(v, labelOk); 2167 sqlite3ReleaseTempReg(pParse, regCkNull); 2168 }else{ 2169 2170 /* If the LHS is NULL, then the result is either false or NULL depending 2171 ** on whether the RHS is empty or not, respectively. 2172 */ 2173 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2174 if( destIfNull==destIfFalse ){ 2175 /* Shortcut for the common case where the false and NULL outcomes are 2176 ** the same. */ 2177 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2178 }else{ 2179 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2180 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2181 VdbeCoverage(v); 2182 sqlite3VdbeGoto(v, destIfNull); 2183 sqlite3VdbeJumpHere(v, addr1); 2184 } 2185 } 2186 2187 if( eType==IN_INDEX_ROWID ){ 2188 /* In this case, the RHS is the ROWID of table b-tree 2189 */ 2190 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2191 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2192 VdbeCoverage(v); 2193 }else{ 2194 /* In this case, the RHS is an index b-tree. 2195 */ 2196 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2197 2198 /* If the set membership test fails, then the result of the 2199 ** "x IN (...)" expression must be either 0 or NULL. If the set 2200 ** contains no NULL values, then the result is 0. If the set 2201 ** contains one or more NULL values, then the result of the 2202 ** expression is also NULL. 2203 */ 2204 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2205 if( rRhsHasNull==0 ){ 2206 /* This branch runs if it is known at compile time that the RHS 2207 ** cannot contain NULL values. This happens as the result 2208 ** of a "NOT NULL" constraint in the database schema. 2209 ** 2210 ** Also run this branch if NULL is equivalent to FALSE 2211 ** for this particular IN operator. 2212 */ 2213 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2214 VdbeCoverage(v); 2215 }else{ 2216 /* In this branch, the RHS of the IN might contain a NULL and 2217 ** the presence of a NULL on the RHS makes a difference in the 2218 ** outcome. 2219 */ 2220 int addr1; 2221 2222 /* First check to see if the LHS is contained in the RHS. If so, 2223 ** then the answer is TRUE the presence of NULLs in the RHS does 2224 ** not matter. If the LHS is not contained in the RHS, then the 2225 ** answer is NULL if the RHS contains NULLs and the answer is 2226 ** FALSE if the RHS is NULL-free. 2227 */ 2228 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2229 VdbeCoverage(v); 2230 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2231 VdbeCoverage(v); 2232 sqlite3VdbeGoto(v, destIfFalse); 2233 sqlite3VdbeJumpHere(v, addr1); 2234 } 2235 } 2236 } 2237 sqlite3ReleaseTempReg(pParse, r1); 2238 sqlite3ExprCachePop(pParse); 2239 VdbeComment((v, "end IN expr")); 2240 } 2241 #endif /* SQLITE_OMIT_SUBQUERY */ 2242 2243 #ifndef SQLITE_OMIT_FLOATING_POINT 2244 /* 2245 ** Generate an instruction that will put the floating point 2246 ** value described by z[0..n-1] into register iMem. 2247 ** 2248 ** The z[] string will probably not be zero-terminated. But the 2249 ** z[n] character is guaranteed to be something that does not look 2250 ** like the continuation of the number. 2251 */ 2252 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2253 if( ALWAYS(z!=0) ){ 2254 double value; 2255 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2256 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2257 if( negateFlag ) value = -value; 2258 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2259 } 2260 } 2261 #endif 2262 2263 2264 /* 2265 ** Generate an instruction that will put the integer describe by 2266 ** text z[0..n-1] into register iMem. 2267 ** 2268 ** Expr.u.zToken is always UTF8 and zero-terminated. 2269 */ 2270 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2271 Vdbe *v = pParse->pVdbe; 2272 if( pExpr->flags & EP_IntValue ){ 2273 int i = pExpr->u.iValue; 2274 assert( i>=0 ); 2275 if( negFlag ) i = -i; 2276 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2277 }else{ 2278 int c; 2279 i64 value; 2280 const char *z = pExpr->u.zToken; 2281 assert( z!=0 ); 2282 c = sqlite3DecOrHexToI64(z, &value); 2283 if( c==0 || (c==2 && negFlag) ){ 2284 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2285 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2286 }else{ 2287 #ifdef SQLITE_OMIT_FLOATING_POINT 2288 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2289 #else 2290 #ifndef SQLITE_OMIT_HEX_INTEGER 2291 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2292 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2293 }else 2294 #endif 2295 { 2296 codeReal(v, z, negFlag, iMem); 2297 } 2298 #endif 2299 } 2300 } 2301 } 2302 2303 /* 2304 ** Clear a cache entry. 2305 */ 2306 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2307 if( p->tempReg ){ 2308 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2309 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2310 } 2311 p->tempReg = 0; 2312 } 2313 } 2314 2315 2316 /* 2317 ** Record in the column cache that a particular column from a 2318 ** particular table is stored in a particular register. 2319 */ 2320 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2321 int i; 2322 int minLru; 2323 int idxLru; 2324 struct yColCache *p; 2325 2326 /* Unless an error has occurred, register numbers are always positive. */ 2327 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2328 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2329 2330 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2331 ** for testing only - to verify that SQLite always gets the same answer 2332 ** with and without the column cache. 2333 */ 2334 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2335 2336 /* First replace any existing entry. 2337 ** 2338 ** Actually, the way the column cache is currently used, we are guaranteed 2339 ** that the object will never already be in cache. Verify this guarantee. 2340 */ 2341 #ifndef NDEBUG 2342 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2343 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2344 } 2345 #endif 2346 2347 /* Find an empty slot and replace it */ 2348 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2349 if( p->iReg==0 ){ 2350 p->iLevel = pParse->iCacheLevel; 2351 p->iTable = iTab; 2352 p->iColumn = iCol; 2353 p->iReg = iReg; 2354 p->tempReg = 0; 2355 p->lru = pParse->iCacheCnt++; 2356 return; 2357 } 2358 } 2359 2360 /* Replace the last recently used */ 2361 minLru = 0x7fffffff; 2362 idxLru = -1; 2363 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2364 if( p->lru<minLru ){ 2365 idxLru = i; 2366 minLru = p->lru; 2367 } 2368 } 2369 if( ALWAYS(idxLru>=0) ){ 2370 p = &pParse->aColCache[idxLru]; 2371 p->iLevel = pParse->iCacheLevel; 2372 p->iTable = iTab; 2373 p->iColumn = iCol; 2374 p->iReg = iReg; 2375 p->tempReg = 0; 2376 p->lru = pParse->iCacheCnt++; 2377 return; 2378 } 2379 } 2380 2381 /* 2382 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2383 ** Purge the range of registers from the column cache. 2384 */ 2385 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2386 int i; 2387 int iLast = iReg + nReg - 1; 2388 struct yColCache *p; 2389 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2390 int r = p->iReg; 2391 if( r>=iReg && r<=iLast ){ 2392 cacheEntryClear(pParse, p); 2393 p->iReg = 0; 2394 } 2395 } 2396 } 2397 2398 /* 2399 ** Remember the current column cache context. Any new entries added 2400 ** added to the column cache after this call are removed when the 2401 ** corresponding pop occurs. 2402 */ 2403 void sqlite3ExprCachePush(Parse *pParse){ 2404 pParse->iCacheLevel++; 2405 #ifdef SQLITE_DEBUG 2406 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2407 printf("PUSH to %d\n", pParse->iCacheLevel); 2408 } 2409 #endif 2410 } 2411 2412 /* 2413 ** Remove from the column cache any entries that were added since the 2414 ** the previous sqlite3ExprCachePush operation. In other words, restore 2415 ** the cache to the state it was in prior the most recent Push. 2416 */ 2417 void sqlite3ExprCachePop(Parse *pParse){ 2418 int i; 2419 struct yColCache *p; 2420 assert( pParse->iCacheLevel>=1 ); 2421 pParse->iCacheLevel--; 2422 #ifdef SQLITE_DEBUG 2423 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2424 printf("POP to %d\n", pParse->iCacheLevel); 2425 } 2426 #endif 2427 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2428 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2429 cacheEntryClear(pParse, p); 2430 p->iReg = 0; 2431 } 2432 } 2433 } 2434 2435 /* 2436 ** When a cached column is reused, make sure that its register is 2437 ** no longer available as a temp register. ticket #3879: that same 2438 ** register might be in the cache in multiple places, so be sure to 2439 ** get them all. 2440 */ 2441 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2442 int i; 2443 struct yColCache *p; 2444 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2445 if( p->iReg==iReg ){ 2446 p->tempReg = 0; 2447 } 2448 } 2449 } 2450 2451 /* Generate code that will load into register regOut a value that is 2452 ** appropriate for the iIdxCol-th column of index pIdx. 2453 */ 2454 void sqlite3ExprCodeLoadIndexColumn( 2455 Parse *pParse, /* The parsing context */ 2456 Index *pIdx, /* The index whose column is to be loaded */ 2457 int iTabCur, /* Cursor pointing to a table row */ 2458 int iIdxCol, /* The column of the index to be loaded */ 2459 int regOut /* Store the index column value in this register */ 2460 ){ 2461 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2462 if( iTabCol==XN_EXPR ){ 2463 assert( pIdx->aColExpr ); 2464 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2465 pParse->iSelfTab = iTabCur; 2466 sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2467 }else{ 2468 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2469 iTabCol, regOut); 2470 } 2471 } 2472 2473 /* 2474 ** Generate code to extract the value of the iCol-th column of a table. 2475 */ 2476 void sqlite3ExprCodeGetColumnOfTable( 2477 Vdbe *v, /* The VDBE under construction */ 2478 Table *pTab, /* The table containing the value */ 2479 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2480 int iCol, /* Index of the column to extract */ 2481 int regOut /* Extract the value into this register */ 2482 ){ 2483 if( iCol<0 || iCol==pTab->iPKey ){ 2484 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2485 }else{ 2486 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2487 int x = iCol; 2488 if( !HasRowid(pTab) ){ 2489 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2490 } 2491 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2492 } 2493 if( iCol>=0 ){ 2494 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2495 } 2496 } 2497 2498 /* 2499 ** Generate code that will extract the iColumn-th column from 2500 ** table pTab and store the column value in a register. 2501 ** 2502 ** An effort is made to store the column value in register iReg. This 2503 ** is not garanteeed for GetColumn() - the result can be stored in 2504 ** any register. But the result is guaranteed to land in register iReg 2505 ** for GetColumnToReg(). 2506 ** 2507 ** There must be an open cursor to pTab in iTable when this routine 2508 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2509 */ 2510 int sqlite3ExprCodeGetColumn( 2511 Parse *pParse, /* Parsing and code generating context */ 2512 Table *pTab, /* Description of the table we are reading from */ 2513 int iColumn, /* Index of the table column */ 2514 int iTable, /* The cursor pointing to the table */ 2515 int iReg, /* Store results here */ 2516 u8 p5 /* P5 value for OP_Column + FLAGS */ 2517 ){ 2518 Vdbe *v = pParse->pVdbe; 2519 int i; 2520 struct yColCache *p; 2521 2522 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2523 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2524 p->lru = pParse->iCacheCnt++; 2525 sqlite3ExprCachePinRegister(pParse, p->iReg); 2526 return p->iReg; 2527 } 2528 } 2529 assert( v!=0 ); 2530 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2531 if( p5 ){ 2532 sqlite3VdbeChangeP5(v, p5); 2533 }else{ 2534 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2535 } 2536 return iReg; 2537 } 2538 void sqlite3ExprCodeGetColumnToReg( 2539 Parse *pParse, /* Parsing and code generating context */ 2540 Table *pTab, /* Description of the table we are reading from */ 2541 int iColumn, /* Index of the table column */ 2542 int iTable, /* The cursor pointing to the table */ 2543 int iReg /* Store results here */ 2544 ){ 2545 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2546 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2547 } 2548 2549 2550 /* 2551 ** Clear all column cache entries. 2552 */ 2553 void sqlite3ExprCacheClear(Parse *pParse){ 2554 int i; 2555 struct yColCache *p; 2556 2557 #if SQLITE_DEBUG 2558 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2559 printf("CLEAR\n"); 2560 } 2561 #endif 2562 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2563 if( p->iReg ){ 2564 cacheEntryClear(pParse, p); 2565 p->iReg = 0; 2566 } 2567 } 2568 } 2569 2570 /* 2571 ** Record the fact that an affinity change has occurred on iCount 2572 ** registers starting with iStart. 2573 */ 2574 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2575 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2576 } 2577 2578 /* 2579 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2580 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2581 */ 2582 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2583 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2584 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2585 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2586 } 2587 2588 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2589 /* 2590 ** Return true if any register in the range iFrom..iTo (inclusive) 2591 ** is used as part of the column cache. 2592 ** 2593 ** This routine is used within assert() and testcase() macros only 2594 ** and does not appear in a normal build. 2595 */ 2596 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2597 int i; 2598 struct yColCache *p; 2599 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2600 int r = p->iReg; 2601 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2602 } 2603 return 0; 2604 } 2605 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2606 2607 /* 2608 ** Convert an expression node to a TK_REGISTER 2609 */ 2610 static void exprToRegister(Expr *p, int iReg){ 2611 p->op2 = p->op; 2612 p->op = TK_REGISTER; 2613 p->iTable = iReg; 2614 ExprClearProperty(p, EP_Skip); 2615 } 2616 2617 /* 2618 ** Generate code into the current Vdbe to evaluate the given 2619 ** expression. Attempt to store the results in register "target". 2620 ** Return the register where results are stored. 2621 ** 2622 ** With this routine, there is no guarantee that results will 2623 ** be stored in target. The result might be stored in some other 2624 ** register if it is convenient to do so. The calling function 2625 ** must check the return code and move the results to the desired 2626 ** register. 2627 */ 2628 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2629 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2630 int op; /* The opcode being coded */ 2631 int inReg = target; /* Results stored in register inReg */ 2632 int regFree1 = 0; /* If non-zero free this temporary register */ 2633 int regFree2 = 0; /* If non-zero free this temporary register */ 2634 int r1, r2, r3, r4; /* Various register numbers */ 2635 sqlite3 *db = pParse->db; /* The database connection */ 2636 Expr tempX; /* Temporary expression node */ 2637 2638 assert( target>0 && target<=pParse->nMem ); 2639 if( v==0 ){ 2640 assert( pParse->db->mallocFailed ); 2641 return 0; 2642 } 2643 2644 if( pExpr==0 ){ 2645 op = TK_NULL; 2646 }else{ 2647 op = pExpr->op; 2648 } 2649 switch( op ){ 2650 case TK_AGG_COLUMN: { 2651 AggInfo *pAggInfo = pExpr->pAggInfo; 2652 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2653 if( !pAggInfo->directMode ){ 2654 assert( pCol->iMem>0 ); 2655 inReg = pCol->iMem; 2656 break; 2657 }else if( pAggInfo->useSortingIdx ){ 2658 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2659 pCol->iSorterColumn, target); 2660 break; 2661 } 2662 /* Otherwise, fall thru into the TK_COLUMN case */ 2663 } 2664 case TK_COLUMN: { 2665 int iTab = pExpr->iTable; 2666 if( iTab<0 ){ 2667 if( pParse->ckBase>0 ){ 2668 /* Generating CHECK constraints or inserting into partial index */ 2669 inReg = pExpr->iColumn + pParse->ckBase; 2670 break; 2671 }else{ 2672 /* Coding an expression that is part of an index where column names 2673 ** in the index refer to the table to which the index belongs */ 2674 iTab = pParse->iSelfTab; 2675 } 2676 } 2677 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2678 pExpr->iColumn, iTab, target, 2679 pExpr->op2); 2680 break; 2681 } 2682 case TK_INTEGER: { 2683 codeInteger(pParse, pExpr, 0, target); 2684 break; 2685 } 2686 #ifndef SQLITE_OMIT_FLOATING_POINT 2687 case TK_FLOAT: { 2688 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2689 codeReal(v, pExpr->u.zToken, 0, target); 2690 break; 2691 } 2692 #endif 2693 case TK_STRING: { 2694 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2695 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2696 break; 2697 } 2698 case TK_NULL: { 2699 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2700 break; 2701 } 2702 #ifndef SQLITE_OMIT_BLOB_LITERAL 2703 case TK_BLOB: { 2704 int n; 2705 const char *z; 2706 char *zBlob; 2707 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2708 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2709 assert( pExpr->u.zToken[1]=='\'' ); 2710 z = &pExpr->u.zToken[2]; 2711 n = sqlite3Strlen30(z) - 1; 2712 assert( z[n]=='\'' ); 2713 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2714 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2715 break; 2716 } 2717 #endif 2718 case TK_VARIABLE: { 2719 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2720 assert( pExpr->u.zToken!=0 ); 2721 assert( pExpr->u.zToken[0]!=0 ); 2722 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2723 if( pExpr->u.zToken[1]!=0 ){ 2724 assert( pExpr->u.zToken[0]=='?' 2725 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2726 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2727 } 2728 break; 2729 } 2730 case TK_REGISTER: { 2731 inReg = pExpr->iTable; 2732 break; 2733 } 2734 #ifndef SQLITE_OMIT_CAST 2735 case TK_CAST: { 2736 /* Expressions of the form: CAST(pLeft AS token) */ 2737 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2738 if( inReg!=target ){ 2739 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2740 inReg = target; 2741 } 2742 sqlite3VdbeAddOp2(v, OP_Cast, target, 2743 sqlite3AffinityType(pExpr->u.zToken, 0)); 2744 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2745 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2746 break; 2747 } 2748 #endif /* SQLITE_OMIT_CAST */ 2749 case TK_LT: 2750 case TK_LE: 2751 case TK_GT: 2752 case TK_GE: 2753 case TK_NE: 2754 case TK_EQ: { 2755 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2756 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2757 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2758 r1, r2, inReg, SQLITE_STOREP2); 2759 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2760 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2761 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2762 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2763 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2764 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2765 testcase( regFree1==0 ); 2766 testcase( regFree2==0 ); 2767 break; 2768 } 2769 case TK_IS: 2770 case TK_ISNOT: { 2771 testcase( op==TK_IS ); 2772 testcase( op==TK_ISNOT ); 2773 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2774 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2775 op = (op==TK_IS) ? TK_EQ : TK_NE; 2776 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2777 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2778 VdbeCoverageIf(v, op==TK_EQ); 2779 VdbeCoverageIf(v, op==TK_NE); 2780 testcase( regFree1==0 ); 2781 testcase( regFree2==0 ); 2782 break; 2783 } 2784 case TK_AND: 2785 case TK_OR: 2786 case TK_PLUS: 2787 case TK_STAR: 2788 case TK_MINUS: 2789 case TK_REM: 2790 case TK_BITAND: 2791 case TK_BITOR: 2792 case TK_SLASH: 2793 case TK_LSHIFT: 2794 case TK_RSHIFT: 2795 case TK_CONCAT: { 2796 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2797 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2798 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2799 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2800 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2801 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2802 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2803 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2804 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2805 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2806 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2807 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2808 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2809 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2810 testcase( regFree1==0 ); 2811 testcase( regFree2==0 ); 2812 break; 2813 } 2814 case TK_UMINUS: { 2815 Expr *pLeft = pExpr->pLeft; 2816 assert( pLeft ); 2817 if( pLeft->op==TK_INTEGER ){ 2818 codeInteger(pParse, pLeft, 1, target); 2819 #ifndef SQLITE_OMIT_FLOATING_POINT 2820 }else if( pLeft->op==TK_FLOAT ){ 2821 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2822 codeReal(v, pLeft->u.zToken, 1, target); 2823 #endif 2824 }else{ 2825 tempX.op = TK_INTEGER; 2826 tempX.flags = EP_IntValue|EP_TokenOnly; 2827 tempX.u.iValue = 0; 2828 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2829 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2830 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2831 testcase( regFree2==0 ); 2832 } 2833 inReg = target; 2834 break; 2835 } 2836 case TK_BITNOT: 2837 case TK_NOT: { 2838 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2839 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2840 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2841 testcase( regFree1==0 ); 2842 inReg = target; 2843 sqlite3VdbeAddOp2(v, op, r1, inReg); 2844 break; 2845 } 2846 case TK_ISNULL: 2847 case TK_NOTNULL: { 2848 int addr; 2849 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2850 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2851 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2852 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2853 testcase( regFree1==0 ); 2854 addr = sqlite3VdbeAddOp1(v, op, r1); 2855 VdbeCoverageIf(v, op==TK_ISNULL); 2856 VdbeCoverageIf(v, op==TK_NOTNULL); 2857 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2858 sqlite3VdbeJumpHere(v, addr); 2859 break; 2860 } 2861 case TK_AGG_FUNCTION: { 2862 AggInfo *pInfo = pExpr->pAggInfo; 2863 if( pInfo==0 ){ 2864 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2865 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2866 }else{ 2867 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2868 } 2869 break; 2870 } 2871 case TK_FUNCTION: { 2872 ExprList *pFarg; /* List of function arguments */ 2873 int nFarg; /* Number of function arguments */ 2874 FuncDef *pDef; /* The function definition object */ 2875 int nId; /* Length of the function name in bytes */ 2876 const char *zId; /* The function name */ 2877 u32 constMask = 0; /* Mask of function arguments that are constant */ 2878 int i; /* Loop counter */ 2879 u8 enc = ENC(db); /* The text encoding used by this database */ 2880 CollSeq *pColl = 0; /* A collating sequence */ 2881 2882 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2883 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2884 pFarg = 0; 2885 }else{ 2886 pFarg = pExpr->x.pList; 2887 } 2888 nFarg = pFarg ? pFarg->nExpr : 0; 2889 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2890 zId = pExpr->u.zToken; 2891 nId = sqlite3Strlen30(zId); 2892 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2893 if( pDef==0 || pDef->xFunc==0 ){ 2894 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2895 break; 2896 } 2897 2898 /* Attempt a direct implementation of the built-in COALESCE() and 2899 ** IFNULL() functions. This avoids unnecessary evaluation of 2900 ** arguments past the first non-NULL argument. 2901 */ 2902 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2903 int endCoalesce = sqlite3VdbeMakeLabel(v); 2904 assert( nFarg>=2 ); 2905 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2906 for(i=1; i<nFarg; i++){ 2907 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2908 VdbeCoverage(v); 2909 sqlite3ExprCacheRemove(pParse, target, 1); 2910 sqlite3ExprCachePush(pParse); 2911 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2912 sqlite3ExprCachePop(pParse); 2913 } 2914 sqlite3VdbeResolveLabel(v, endCoalesce); 2915 break; 2916 } 2917 2918 /* The UNLIKELY() function is a no-op. The result is the value 2919 ** of the first argument. 2920 */ 2921 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2922 assert( nFarg>=1 ); 2923 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2924 break; 2925 } 2926 2927 for(i=0; i<nFarg; i++){ 2928 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2929 testcase( i==31 ); 2930 constMask |= MASKBIT32(i); 2931 } 2932 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2933 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2934 } 2935 } 2936 if( pFarg ){ 2937 if( constMask ){ 2938 r1 = pParse->nMem+1; 2939 pParse->nMem += nFarg; 2940 }else{ 2941 r1 = sqlite3GetTempRange(pParse, nFarg); 2942 } 2943 2944 /* For length() and typeof() functions with a column argument, 2945 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2946 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2947 ** loading. 2948 */ 2949 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2950 u8 exprOp; 2951 assert( nFarg==1 ); 2952 assert( pFarg->a[0].pExpr!=0 ); 2953 exprOp = pFarg->a[0].pExpr->op; 2954 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2955 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2956 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2957 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2958 pFarg->a[0].pExpr->op2 = 2959 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2960 } 2961 } 2962 2963 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2964 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 2965 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2966 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2967 }else{ 2968 r1 = 0; 2969 } 2970 #ifndef SQLITE_OMIT_VIRTUALTABLE 2971 /* Possibly overload the function if the first argument is 2972 ** a virtual table column. 2973 ** 2974 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2975 ** second argument, not the first, as the argument to test to 2976 ** see if it is a column in a virtual table. This is done because 2977 ** the left operand of infix functions (the operand we want to 2978 ** control overloading) ends up as the second argument to the 2979 ** function. The expression "A glob B" is equivalent to 2980 ** "glob(B,A). We want to use the A in "A glob B" to test 2981 ** for function overloading. But we use the B term in "glob(B,A)". 2982 */ 2983 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2984 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2985 }else if( nFarg>0 ){ 2986 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2987 } 2988 #endif 2989 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2990 if( !pColl ) pColl = db->pDfltColl; 2991 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2992 } 2993 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 2994 (char*)pDef, P4_FUNCDEF); 2995 sqlite3VdbeChangeP5(v, (u8)nFarg); 2996 if( nFarg && constMask==0 ){ 2997 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2998 } 2999 break; 3000 } 3001 #ifndef SQLITE_OMIT_SUBQUERY 3002 case TK_EXISTS: 3003 case TK_SELECT: { 3004 testcase( op==TK_EXISTS ); 3005 testcase( op==TK_SELECT ); 3006 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3007 break; 3008 } 3009 case TK_IN: { 3010 int destIfFalse = sqlite3VdbeMakeLabel(v); 3011 int destIfNull = sqlite3VdbeMakeLabel(v); 3012 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3013 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3014 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3015 sqlite3VdbeResolveLabel(v, destIfFalse); 3016 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3017 sqlite3VdbeResolveLabel(v, destIfNull); 3018 break; 3019 } 3020 #endif /* SQLITE_OMIT_SUBQUERY */ 3021 3022 3023 /* 3024 ** x BETWEEN y AND z 3025 ** 3026 ** This is equivalent to 3027 ** 3028 ** x>=y AND x<=z 3029 ** 3030 ** X is stored in pExpr->pLeft. 3031 ** Y is stored in pExpr->pList->a[0].pExpr. 3032 ** Z is stored in pExpr->pList->a[1].pExpr. 3033 */ 3034 case TK_BETWEEN: { 3035 Expr *pLeft = pExpr->pLeft; 3036 struct ExprList_item *pLItem = pExpr->x.pList->a; 3037 Expr *pRight = pLItem->pExpr; 3038 3039 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3040 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3041 testcase( regFree1==0 ); 3042 testcase( regFree2==0 ); 3043 r3 = sqlite3GetTempReg(pParse); 3044 r4 = sqlite3GetTempReg(pParse); 3045 codeCompare(pParse, pLeft, pRight, OP_Ge, 3046 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3047 pLItem++; 3048 pRight = pLItem->pExpr; 3049 sqlite3ReleaseTempReg(pParse, regFree2); 3050 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3051 testcase( regFree2==0 ); 3052 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3053 VdbeCoverage(v); 3054 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3055 sqlite3ReleaseTempReg(pParse, r3); 3056 sqlite3ReleaseTempReg(pParse, r4); 3057 break; 3058 } 3059 case TK_COLLATE: 3060 case TK_UPLUS: { 3061 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3062 break; 3063 } 3064 3065 case TK_TRIGGER: { 3066 /* If the opcode is TK_TRIGGER, then the expression is a reference 3067 ** to a column in the new.* or old.* pseudo-tables available to 3068 ** trigger programs. In this case Expr.iTable is set to 1 for the 3069 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3070 ** is set to the column of the pseudo-table to read, or to -1 to 3071 ** read the rowid field. 3072 ** 3073 ** The expression is implemented using an OP_Param opcode. The p1 3074 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3075 ** to reference another column of the old.* pseudo-table, where 3076 ** i is the index of the column. For a new.rowid reference, p1 is 3077 ** set to (n+1), where n is the number of columns in each pseudo-table. 3078 ** For a reference to any other column in the new.* pseudo-table, p1 3079 ** is set to (n+2+i), where n and i are as defined previously. For 3080 ** example, if the table on which triggers are being fired is 3081 ** declared as: 3082 ** 3083 ** CREATE TABLE t1(a, b); 3084 ** 3085 ** Then p1 is interpreted as follows: 3086 ** 3087 ** p1==0 -> old.rowid p1==3 -> new.rowid 3088 ** p1==1 -> old.a p1==4 -> new.a 3089 ** p1==2 -> old.b p1==5 -> new.b 3090 */ 3091 Table *pTab = pExpr->pTab; 3092 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3093 3094 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3095 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3096 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3097 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3098 3099 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3100 VdbeComment((v, "%s.%s -> $%d", 3101 (pExpr->iTable ? "new" : "old"), 3102 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3103 target 3104 )); 3105 3106 #ifndef SQLITE_OMIT_FLOATING_POINT 3107 /* If the column has REAL affinity, it may currently be stored as an 3108 ** integer. Use OP_RealAffinity to make sure it is really real. 3109 ** 3110 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3111 ** floating point when extracting it from the record. */ 3112 if( pExpr->iColumn>=0 3113 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3114 ){ 3115 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3116 } 3117 #endif 3118 break; 3119 } 3120 3121 3122 /* 3123 ** Form A: 3124 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3125 ** 3126 ** Form B: 3127 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3128 ** 3129 ** Form A is can be transformed into the equivalent form B as follows: 3130 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3131 ** WHEN x=eN THEN rN ELSE y END 3132 ** 3133 ** X (if it exists) is in pExpr->pLeft. 3134 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3135 ** odd. The Y is also optional. If the number of elements in x.pList 3136 ** is even, then Y is omitted and the "otherwise" result is NULL. 3137 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3138 ** 3139 ** The result of the expression is the Ri for the first matching Ei, 3140 ** or if there is no matching Ei, the ELSE term Y, or if there is 3141 ** no ELSE term, NULL. 3142 */ 3143 default: assert( op==TK_CASE ); { 3144 int endLabel; /* GOTO label for end of CASE stmt */ 3145 int nextCase; /* GOTO label for next WHEN clause */ 3146 int nExpr; /* 2x number of WHEN terms */ 3147 int i; /* Loop counter */ 3148 ExprList *pEList; /* List of WHEN terms */ 3149 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3150 Expr opCompare; /* The X==Ei expression */ 3151 Expr *pX; /* The X expression */ 3152 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3153 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3154 3155 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3156 assert(pExpr->x.pList->nExpr > 0); 3157 pEList = pExpr->x.pList; 3158 aListelem = pEList->a; 3159 nExpr = pEList->nExpr; 3160 endLabel = sqlite3VdbeMakeLabel(v); 3161 if( (pX = pExpr->pLeft)!=0 ){ 3162 tempX = *pX; 3163 testcase( pX->op==TK_COLUMN ); 3164 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3165 testcase( regFree1==0 ); 3166 opCompare.op = TK_EQ; 3167 opCompare.pLeft = &tempX; 3168 pTest = &opCompare; 3169 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3170 ** The value in regFree1 might get SCopy-ed into the file result. 3171 ** So make sure that the regFree1 register is not reused for other 3172 ** purposes and possibly overwritten. */ 3173 regFree1 = 0; 3174 } 3175 for(i=0; i<nExpr-1; i=i+2){ 3176 sqlite3ExprCachePush(pParse); 3177 if( pX ){ 3178 assert( pTest!=0 ); 3179 opCompare.pRight = aListelem[i].pExpr; 3180 }else{ 3181 pTest = aListelem[i].pExpr; 3182 } 3183 nextCase = sqlite3VdbeMakeLabel(v); 3184 testcase( pTest->op==TK_COLUMN ); 3185 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3186 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3187 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3188 sqlite3VdbeGoto(v, endLabel); 3189 sqlite3ExprCachePop(pParse); 3190 sqlite3VdbeResolveLabel(v, nextCase); 3191 } 3192 if( (nExpr&1)!=0 ){ 3193 sqlite3ExprCachePush(pParse); 3194 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3195 sqlite3ExprCachePop(pParse); 3196 }else{ 3197 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3198 } 3199 assert( db->mallocFailed || pParse->nErr>0 3200 || pParse->iCacheLevel==iCacheLevel ); 3201 sqlite3VdbeResolveLabel(v, endLabel); 3202 break; 3203 } 3204 #ifndef SQLITE_OMIT_TRIGGER 3205 case TK_RAISE: { 3206 assert( pExpr->affinity==OE_Rollback 3207 || pExpr->affinity==OE_Abort 3208 || pExpr->affinity==OE_Fail 3209 || pExpr->affinity==OE_Ignore 3210 ); 3211 if( !pParse->pTriggerTab ){ 3212 sqlite3ErrorMsg(pParse, 3213 "RAISE() may only be used within a trigger-program"); 3214 return 0; 3215 } 3216 if( pExpr->affinity==OE_Abort ){ 3217 sqlite3MayAbort(pParse); 3218 } 3219 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3220 if( pExpr->affinity==OE_Ignore ){ 3221 sqlite3VdbeAddOp4( 3222 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3223 VdbeCoverage(v); 3224 }else{ 3225 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3226 pExpr->affinity, pExpr->u.zToken, 0, 0); 3227 } 3228 3229 break; 3230 } 3231 #endif 3232 } 3233 sqlite3ReleaseTempReg(pParse, regFree1); 3234 sqlite3ReleaseTempReg(pParse, regFree2); 3235 return inReg; 3236 } 3237 3238 /* 3239 ** Factor out the code of the given expression to initialization time. 3240 */ 3241 void sqlite3ExprCodeAtInit( 3242 Parse *pParse, /* Parsing context */ 3243 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3244 int regDest, /* Store the value in this register */ 3245 u8 reusable /* True if this expression is reusable */ 3246 ){ 3247 ExprList *p; 3248 assert( ConstFactorOk(pParse) ); 3249 p = pParse->pConstExpr; 3250 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3251 p = sqlite3ExprListAppend(pParse, p, pExpr); 3252 if( p ){ 3253 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3254 pItem->u.iConstExprReg = regDest; 3255 pItem->reusable = reusable; 3256 } 3257 pParse->pConstExpr = p; 3258 } 3259 3260 /* 3261 ** Generate code to evaluate an expression and store the results 3262 ** into a register. Return the register number where the results 3263 ** are stored. 3264 ** 3265 ** If the register is a temporary register that can be deallocated, 3266 ** then write its number into *pReg. If the result register is not 3267 ** a temporary, then set *pReg to zero. 3268 ** 3269 ** If pExpr is a constant, then this routine might generate this 3270 ** code to fill the register in the initialization section of the 3271 ** VDBE program, in order to factor it out of the evaluation loop. 3272 */ 3273 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3274 int r2; 3275 pExpr = sqlite3ExprSkipCollate(pExpr); 3276 if( ConstFactorOk(pParse) 3277 && pExpr->op!=TK_REGISTER 3278 && sqlite3ExprIsConstantNotJoin(pExpr) 3279 ){ 3280 ExprList *p = pParse->pConstExpr; 3281 int i; 3282 *pReg = 0; 3283 if( p ){ 3284 struct ExprList_item *pItem; 3285 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3286 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3287 return pItem->u.iConstExprReg; 3288 } 3289 } 3290 } 3291 r2 = ++pParse->nMem; 3292 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3293 }else{ 3294 int r1 = sqlite3GetTempReg(pParse); 3295 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3296 if( r2==r1 ){ 3297 *pReg = r1; 3298 }else{ 3299 sqlite3ReleaseTempReg(pParse, r1); 3300 *pReg = 0; 3301 } 3302 } 3303 return r2; 3304 } 3305 3306 /* 3307 ** Generate code that will evaluate expression pExpr and store the 3308 ** results in register target. The results are guaranteed to appear 3309 ** in register target. 3310 */ 3311 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3312 int inReg; 3313 3314 assert( target>0 && target<=pParse->nMem ); 3315 if( pExpr && pExpr->op==TK_REGISTER ){ 3316 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3317 }else{ 3318 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3319 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3320 if( inReg!=target && pParse->pVdbe ){ 3321 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3322 } 3323 } 3324 } 3325 3326 /* 3327 ** Generate code that will evaluate expression pExpr and store the 3328 ** results in register target. The results are guaranteed to appear 3329 ** in register target. If the expression is constant, then this routine 3330 ** might choose to code the expression at initialization time. 3331 */ 3332 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3333 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3334 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3335 }else{ 3336 sqlite3ExprCode(pParse, pExpr, target); 3337 } 3338 } 3339 3340 /* 3341 ** Generate code that evaluates the given expression and puts the result 3342 ** in register target. 3343 ** 3344 ** Also make a copy of the expression results into another "cache" register 3345 ** and modify the expression so that the next time it is evaluated, 3346 ** the result is a copy of the cache register. 3347 ** 3348 ** This routine is used for expressions that are used multiple 3349 ** times. They are evaluated once and the results of the expression 3350 ** are reused. 3351 */ 3352 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3353 Vdbe *v = pParse->pVdbe; 3354 int iMem; 3355 3356 assert( target>0 ); 3357 assert( pExpr->op!=TK_REGISTER ); 3358 sqlite3ExprCode(pParse, pExpr, target); 3359 iMem = ++pParse->nMem; 3360 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3361 exprToRegister(pExpr, iMem); 3362 } 3363 3364 /* 3365 ** Generate code that pushes the value of every element of the given 3366 ** expression list into a sequence of registers beginning at target. 3367 ** 3368 ** Return the number of elements evaluated. 3369 ** 3370 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3371 ** filled using OP_SCopy. OP_Copy must be used instead. 3372 ** 3373 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3374 ** factored out into initialization code. 3375 ** 3376 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3377 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3378 ** in registers at srcReg, and so the value can be copied from there. 3379 */ 3380 int sqlite3ExprCodeExprList( 3381 Parse *pParse, /* Parsing context */ 3382 ExprList *pList, /* The expression list to be coded */ 3383 int target, /* Where to write results */ 3384 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3385 u8 flags /* SQLITE_ECEL_* flags */ 3386 ){ 3387 struct ExprList_item *pItem; 3388 int i, j, n; 3389 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3390 Vdbe *v = pParse->pVdbe; 3391 assert( pList!=0 ); 3392 assert( target>0 ); 3393 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3394 n = pList->nExpr; 3395 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3396 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3397 Expr *pExpr = pItem->pExpr; 3398 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3399 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3400 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3401 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3402 }else{ 3403 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3404 if( inReg!=target+i ){ 3405 VdbeOp *pOp; 3406 if( copyOp==OP_Copy 3407 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3408 && pOp->p1+pOp->p3+1==inReg 3409 && pOp->p2+pOp->p3+1==target+i 3410 ){ 3411 pOp->p3++; 3412 }else{ 3413 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3414 } 3415 } 3416 } 3417 } 3418 return n; 3419 } 3420 3421 /* 3422 ** Generate code for a BETWEEN operator. 3423 ** 3424 ** x BETWEEN y AND z 3425 ** 3426 ** The above is equivalent to 3427 ** 3428 ** x>=y AND x<=z 3429 ** 3430 ** Code it as such, taking care to do the common subexpression 3431 ** elimination of x. 3432 */ 3433 static void exprCodeBetween( 3434 Parse *pParse, /* Parsing and code generating context */ 3435 Expr *pExpr, /* The BETWEEN expression */ 3436 int dest, /* Jump here if the jump is taken */ 3437 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3438 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3439 ){ 3440 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3441 Expr compLeft; /* The x>=y term */ 3442 Expr compRight; /* The x<=z term */ 3443 Expr exprX; /* The x subexpression */ 3444 int regFree1 = 0; /* Temporary use register */ 3445 3446 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3447 exprX = *pExpr->pLeft; 3448 exprAnd.op = TK_AND; 3449 exprAnd.pLeft = &compLeft; 3450 exprAnd.pRight = &compRight; 3451 compLeft.op = TK_GE; 3452 compLeft.pLeft = &exprX; 3453 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3454 compRight.op = TK_LE; 3455 compRight.pLeft = &exprX; 3456 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3457 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3458 if( jumpIfTrue ){ 3459 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3460 }else{ 3461 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3462 } 3463 sqlite3ReleaseTempReg(pParse, regFree1); 3464 3465 /* Ensure adequate test coverage */ 3466 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3467 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3468 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3469 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3470 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3471 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3472 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3473 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3474 } 3475 3476 /* 3477 ** Generate code for a boolean expression such that a jump is made 3478 ** to the label "dest" if the expression is true but execution 3479 ** continues straight thru if the expression is false. 3480 ** 3481 ** If the expression evaluates to NULL (neither true nor false), then 3482 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3483 ** 3484 ** This code depends on the fact that certain token values (ex: TK_EQ) 3485 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3486 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3487 ** the make process cause these values to align. Assert()s in the code 3488 ** below verify that the numbers are aligned correctly. 3489 */ 3490 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3491 Vdbe *v = pParse->pVdbe; 3492 int op = 0; 3493 int regFree1 = 0; 3494 int regFree2 = 0; 3495 int r1, r2; 3496 3497 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3498 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3499 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3500 op = pExpr->op; 3501 switch( op ){ 3502 case TK_AND: { 3503 int d2 = sqlite3VdbeMakeLabel(v); 3504 testcase( jumpIfNull==0 ); 3505 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3506 sqlite3ExprCachePush(pParse); 3507 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3508 sqlite3VdbeResolveLabel(v, d2); 3509 sqlite3ExprCachePop(pParse); 3510 break; 3511 } 3512 case TK_OR: { 3513 testcase( jumpIfNull==0 ); 3514 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3515 sqlite3ExprCachePush(pParse); 3516 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3517 sqlite3ExprCachePop(pParse); 3518 break; 3519 } 3520 case TK_NOT: { 3521 testcase( jumpIfNull==0 ); 3522 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3523 break; 3524 } 3525 case TK_LT: 3526 case TK_LE: 3527 case TK_GT: 3528 case TK_GE: 3529 case TK_NE: 3530 case TK_EQ: { 3531 testcase( jumpIfNull==0 ); 3532 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3533 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3534 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3535 r1, r2, dest, jumpIfNull); 3536 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3537 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3538 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3539 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3540 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3541 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3542 testcase( regFree1==0 ); 3543 testcase( regFree2==0 ); 3544 break; 3545 } 3546 case TK_IS: 3547 case TK_ISNOT: { 3548 testcase( op==TK_IS ); 3549 testcase( op==TK_ISNOT ); 3550 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3551 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3552 op = (op==TK_IS) ? TK_EQ : TK_NE; 3553 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3554 r1, r2, dest, SQLITE_NULLEQ); 3555 VdbeCoverageIf(v, op==TK_EQ); 3556 VdbeCoverageIf(v, op==TK_NE); 3557 testcase( regFree1==0 ); 3558 testcase( regFree2==0 ); 3559 break; 3560 } 3561 case TK_ISNULL: 3562 case TK_NOTNULL: { 3563 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3564 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3565 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3566 sqlite3VdbeAddOp2(v, op, r1, dest); 3567 VdbeCoverageIf(v, op==TK_ISNULL); 3568 VdbeCoverageIf(v, op==TK_NOTNULL); 3569 testcase( regFree1==0 ); 3570 break; 3571 } 3572 case TK_BETWEEN: { 3573 testcase( jumpIfNull==0 ); 3574 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3575 break; 3576 } 3577 #ifndef SQLITE_OMIT_SUBQUERY 3578 case TK_IN: { 3579 int destIfFalse = sqlite3VdbeMakeLabel(v); 3580 int destIfNull = jumpIfNull ? dest : destIfFalse; 3581 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3582 sqlite3VdbeGoto(v, dest); 3583 sqlite3VdbeResolveLabel(v, destIfFalse); 3584 break; 3585 } 3586 #endif 3587 default: { 3588 if( exprAlwaysTrue(pExpr) ){ 3589 sqlite3VdbeGoto(v, dest); 3590 }else if( exprAlwaysFalse(pExpr) ){ 3591 /* No-op */ 3592 }else{ 3593 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3594 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3595 VdbeCoverage(v); 3596 testcase( regFree1==0 ); 3597 testcase( jumpIfNull==0 ); 3598 } 3599 break; 3600 } 3601 } 3602 sqlite3ReleaseTempReg(pParse, regFree1); 3603 sqlite3ReleaseTempReg(pParse, regFree2); 3604 } 3605 3606 /* 3607 ** Generate code for a boolean expression such that a jump is made 3608 ** to the label "dest" if the expression is false but execution 3609 ** continues straight thru if the expression is true. 3610 ** 3611 ** If the expression evaluates to NULL (neither true nor false) then 3612 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3613 ** is 0. 3614 */ 3615 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3616 Vdbe *v = pParse->pVdbe; 3617 int op = 0; 3618 int regFree1 = 0; 3619 int regFree2 = 0; 3620 int r1, r2; 3621 3622 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3623 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3624 if( pExpr==0 ) return; 3625 3626 /* The value of pExpr->op and op are related as follows: 3627 ** 3628 ** pExpr->op op 3629 ** --------- ---------- 3630 ** TK_ISNULL OP_NotNull 3631 ** TK_NOTNULL OP_IsNull 3632 ** TK_NE OP_Eq 3633 ** TK_EQ OP_Ne 3634 ** TK_GT OP_Le 3635 ** TK_LE OP_Gt 3636 ** TK_GE OP_Lt 3637 ** TK_LT OP_Ge 3638 ** 3639 ** For other values of pExpr->op, op is undefined and unused. 3640 ** The value of TK_ and OP_ constants are arranged such that we 3641 ** can compute the mapping above using the following expression. 3642 ** Assert()s verify that the computation is correct. 3643 */ 3644 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3645 3646 /* Verify correct alignment of TK_ and OP_ constants 3647 */ 3648 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3649 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3650 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3651 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3652 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3653 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3654 assert( pExpr->op!=TK_GT || op==OP_Le ); 3655 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3656 3657 switch( pExpr->op ){ 3658 case TK_AND: { 3659 testcase( jumpIfNull==0 ); 3660 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3661 sqlite3ExprCachePush(pParse); 3662 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3663 sqlite3ExprCachePop(pParse); 3664 break; 3665 } 3666 case TK_OR: { 3667 int d2 = sqlite3VdbeMakeLabel(v); 3668 testcase( jumpIfNull==0 ); 3669 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3670 sqlite3ExprCachePush(pParse); 3671 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3672 sqlite3VdbeResolveLabel(v, d2); 3673 sqlite3ExprCachePop(pParse); 3674 break; 3675 } 3676 case TK_NOT: { 3677 testcase( jumpIfNull==0 ); 3678 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3679 break; 3680 } 3681 case TK_LT: 3682 case TK_LE: 3683 case TK_GT: 3684 case TK_GE: 3685 case TK_NE: 3686 case TK_EQ: { 3687 testcase( jumpIfNull==0 ); 3688 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3689 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3690 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3691 r1, r2, dest, jumpIfNull); 3692 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3693 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3694 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3695 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3696 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3697 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3698 testcase( regFree1==0 ); 3699 testcase( regFree2==0 ); 3700 break; 3701 } 3702 case TK_IS: 3703 case TK_ISNOT: { 3704 testcase( pExpr->op==TK_IS ); 3705 testcase( pExpr->op==TK_ISNOT ); 3706 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3707 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3708 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3709 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3710 r1, r2, dest, SQLITE_NULLEQ); 3711 VdbeCoverageIf(v, op==TK_EQ); 3712 VdbeCoverageIf(v, op==TK_NE); 3713 testcase( regFree1==0 ); 3714 testcase( regFree2==0 ); 3715 break; 3716 } 3717 case TK_ISNULL: 3718 case TK_NOTNULL: { 3719 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3720 sqlite3VdbeAddOp2(v, op, r1, dest); 3721 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3722 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3723 testcase( regFree1==0 ); 3724 break; 3725 } 3726 case TK_BETWEEN: { 3727 testcase( jumpIfNull==0 ); 3728 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3729 break; 3730 } 3731 #ifndef SQLITE_OMIT_SUBQUERY 3732 case TK_IN: { 3733 if( jumpIfNull ){ 3734 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3735 }else{ 3736 int destIfNull = sqlite3VdbeMakeLabel(v); 3737 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3738 sqlite3VdbeResolveLabel(v, destIfNull); 3739 } 3740 break; 3741 } 3742 #endif 3743 default: { 3744 if( exprAlwaysFalse(pExpr) ){ 3745 sqlite3VdbeGoto(v, dest); 3746 }else if( exprAlwaysTrue(pExpr) ){ 3747 /* no-op */ 3748 }else{ 3749 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3750 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3751 VdbeCoverage(v); 3752 testcase( regFree1==0 ); 3753 testcase( jumpIfNull==0 ); 3754 } 3755 break; 3756 } 3757 } 3758 sqlite3ReleaseTempReg(pParse, regFree1); 3759 sqlite3ReleaseTempReg(pParse, regFree2); 3760 } 3761 3762 /* 3763 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3764 ** code generation, and that copy is deleted after code generation. This 3765 ** ensures that the original pExpr is unchanged. 3766 */ 3767 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3768 sqlite3 *db = pParse->db; 3769 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3770 if( db->mallocFailed==0 ){ 3771 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3772 } 3773 sqlite3ExprDelete(db, pCopy); 3774 } 3775 3776 3777 /* 3778 ** Do a deep comparison of two expression trees. Return 0 if the two 3779 ** expressions are completely identical. Return 1 if they differ only 3780 ** by a COLLATE operator at the top level. Return 2 if there are differences 3781 ** other than the top-level COLLATE operator. 3782 ** 3783 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3784 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3785 ** 3786 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3787 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3788 ** 3789 ** Sometimes this routine will return 2 even if the two expressions 3790 ** really are equivalent. If we cannot prove that the expressions are 3791 ** identical, we return 2 just to be safe. So if this routine 3792 ** returns 2, then you do not really know for certain if the two 3793 ** expressions are the same. But if you get a 0 or 1 return, then you 3794 ** can be sure the expressions are the same. In the places where 3795 ** this routine is used, it does not hurt to get an extra 2 - that 3796 ** just might result in some slightly slower code. But returning 3797 ** an incorrect 0 or 1 could lead to a malfunction. 3798 */ 3799 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3800 u32 combinedFlags; 3801 if( pA==0 || pB==0 ){ 3802 return pB==pA ? 0 : 2; 3803 } 3804 combinedFlags = pA->flags | pB->flags; 3805 if( combinedFlags & EP_IntValue ){ 3806 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3807 return 0; 3808 } 3809 return 2; 3810 } 3811 if( pA->op!=pB->op ){ 3812 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3813 return 1; 3814 } 3815 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3816 return 1; 3817 } 3818 return 2; 3819 } 3820 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3821 if( pA->op==TK_FUNCTION ){ 3822 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3823 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3824 return pA->op==TK_COLLATE ? 1 : 2; 3825 } 3826 } 3827 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3828 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3829 if( combinedFlags & EP_xIsSelect ) return 2; 3830 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3831 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3832 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3833 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3834 if( pA->iColumn!=pB->iColumn ) return 2; 3835 if( pA->iTable!=pB->iTable 3836 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3837 } 3838 } 3839 return 0; 3840 } 3841 3842 /* 3843 ** Compare two ExprList objects. Return 0 if they are identical and 3844 ** non-zero if they differ in any way. 3845 ** 3846 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3847 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3848 ** 3849 ** This routine might return non-zero for equivalent ExprLists. The 3850 ** only consequence will be disabled optimizations. But this routine 3851 ** must never return 0 if the two ExprList objects are different, or 3852 ** a malfunction will result. 3853 ** 3854 ** Two NULL pointers are considered to be the same. But a NULL pointer 3855 ** always differs from a non-NULL pointer. 3856 */ 3857 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3858 int i; 3859 if( pA==0 && pB==0 ) return 0; 3860 if( pA==0 || pB==0 ) return 1; 3861 if( pA->nExpr!=pB->nExpr ) return 1; 3862 for(i=0; i<pA->nExpr; i++){ 3863 Expr *pExprA = pA->a[i].pExpr; 3864 Expr *pExprB = pB->a[i].pExpr; 3865 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3866 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3867 } 3868 return 0; 3869 } 3870 3871 /* 3872 ** Return true if we can prove the pE2 will always be true if pE1 is 3873 ** true. Return false if we cannot complete the proof or if pE2 might 3874 ** be false. Examples: 3875 ** 3876 ** pE1: x==5 pE2: x==5 Result: true 3877 ** pE1: x>0 pE2: x==5 Result: false 3878 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3879 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3880 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3881 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3882 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3883 ** 3884 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3885 ** Expr.iTable<0 then assume a table number given by iTab. 3886 ** 3887 ** When in doubt, return false. Returning true might give a performance 3888 ** improvement. Returning false might cause a performance reduction, but 3889 ** it will always give the correct answer and is hence always safe. 3890 */ 3891 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3892 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3893 return 1; 3894 } 3895 if( pE2->op==TK_OR 3896 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3897 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3898 ){ 3899 return 1; 3900 } 3901 if( pE2->op==TK_NOTNULL 3902 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3903 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3904 ){ 3905 return 1; 3906 } 3907 return 0; 3908 } 3909 3910 /* 3911 ** An instance of the following structure is used by the tree walker 3912 ** to count references to table columns in the arguments of an 3913 ** aggregate function, in order to implement the 3914 ** sqlite3FunctionThisSrc() routine. 3915 */ 3916 struct SrcCount { 3917 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3918 int nThis; /* Number of references to columns in pSrcList */ 3919 int nOther; /* Number of references to columns in other FROM clauses */ 3920 }; 3921 3922 /* 3923 ** Count the number of references to columns. 3924 */ 3925 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3926 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3927 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3928 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3929 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3930 ** NEVER() will need to be removed. */ 3931 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3932 int i; 3933 struct SrcCount *p = pWalker->u.pSrcCount; 3934 SrcList *pSrc = p->pSrc; 3935 int nSrc = pSrc ? pSrc->nSrc : 0; 3936 for(i=0; i<nSrc; i++){ 3937 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3938 } 3939 if( i<nSrc ){ 3940 p->nThis++; 3941 }else{ 3942 p->nOther++; 3943 } 3944 } 3945 return WRC_Continue; 3946 } 3947 3948 /* 3949 ** Determine if any of the arguments to the pExpr Function reference 3950 ** pSrcList. Return true if they do. Also return true if the function 3951 ** has no arguments or has only constant arguments. Return false if pExpr 3952 ** references columns but not columns of tables found in pSrcList. 3953 */ 3954 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3955 Walker w; 3956 struct SrcCount cnt; 3957 assert( pExpr->op==TK_AGG_FUNCTION ); 3958 memset(&w, 0, sizeof(w)); 3959 w.xExprCallback = exprSrcCount; 3960 w.u.pSrcCount = &cnt; 3961 cnt.pSrc = pSrcList; 3962 cnt.nThis = 0; 3963 cnt.nOther = 0; 3964 sqlite3WalkExprList(&w, pExpr->x.pList); 3965 return cnt.nThis>0 || cnt.nOther==0; 3966 } 3967 3968 /* 3969 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3970 ** the new element. Return a negative number if malloc fails. 3971 */ 3972 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3973 int i; 3974 pInfo->aCol = sqlite3ArrayAllocate( 3975 db, 3976 pInfo->aCol, 3977 sizeof(pInfo->aCol[0]), 3978 &pInfo->nColumn, 3979 &i 3980 ); 3981 return i; 3982 } 3983 3984 /* 3985 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3986 ** the new element. Return a negative number if malloc fails. 3987 */ 3988 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3989 int i; 3990 pInfo->aFunc = sqlite3ArrayAllocate( 3991 db, 3992 pInfo->aFunc, 3993 sizeof(pInfo->aFunc[0]), 3994 &pInfo->nFunc, 3995 &i 3996 ); 3997 return i; 3998 } 3999 4000 /* 4001 ** This is the xExprCallback for a tree walker. It is used to 4002 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4003 ** for additional information. 4004 */ 4005 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4006 int i; 4007 NameContext *pNC = pWalker->u.pNC; 4008 Parse *pParse = pNC->pParse; 4009 SrcList *pSrcList = pNC->pSrcList; 4010 AggInfo *pAggInfo = pNC->pAggInfo; 4011 4012 switch( pExpr->op ){ 4013 case TK_AGG_COLUMN: 4014 case TK_COLUMN: { 4015 testcase( pExpr->op==TK_AGG_COLUMN ); 4016 testcase( pExpr->op==TK_COLUMN ); 4017 /* Check to see if the column is in one of the tables in the FROM 4018 ** clause of the aggregate query */ 4019 if( ALWAYS(pSrcList!=0) ){ 4020 struct SrcList_item *pItem = pSrcList->a; 4021 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4022 struct AggInfo_col *pCol; 4023 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4024 if( pExpr->iTable==pItem->iCursor ){ 4025 /* If we reach this point, it means that pExpr refers to a table 4026 ** that is in the FROM clause of the aggregate query. 4027 ** 4028 ** Make an entry for the column in pAggInfo->aCol[] if there 4029 ** is not an entry there already. 4030 */ 4031 int k; 4032 pCol = pAggInfo->aCol; 4033 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4034 if( pCol->iTable==pExpr->iTable && 4035 pCol->iColumn==pExpr->iColumn ){ 4036 break; 4037 } 4038 } 4039 if( (k>=pAggInfo->nColumn) 4040 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4041 ){ 4042 pCol = &pAggInfo->aCol[k]; 4043 pCol->pTab = pExpr->pTab; 4044 pCol->iTable = pExpr->iTable; 4045 pCol->iColumn = pExpr->iColumn; 4046 pCol->iMem = ++pParse->nMem; 4047 pCol->iSorterColumn = -1; 4048 pCol->pExpr = pExpr; 4049 if( pAggInfo->pGroupBy ){ 4050 int j, n; 4051 ExprList *pGB = pAggInfo->pGroupBy; 4052 struct ExprList_item *pTerm = pGB->a; 4053 n = pGB->nExpr; 4054 for(j=0; j<n; j++, pTerm++){ 4055 Expr *pE = pTerm->pExpr; 4056 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4057 pE->iColumn==pExpr->iColumn ){ 4058 pCol->iSorterColumn = j; 4059 break; 4060 } 4061 } 4062 } 4063 if( pCol->iSorterColumn<0 ){ 4064 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4065 } 4066 } 4067 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4068 ** because it was there before or because we just created it). 4069 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4070 ** pAggInfo->aCol[] entry. 4071 */ 4072 ExprSetVVAProperty(pExpr, EP_NoReduce); 4073 pExpr->pAggInfo = pAggInfo; 4074 pExpr->op = TK_AGG_COLUMN; 4075 pExpr->iAgg = (i16)k; 4076 break; 4077 } /* endif pExpr->iTable==pItem->iCursor */ 4078 } /* end loop over pSrcList */ 4079 } 4080 return WRC_Prune; 4081 } 4082 case TK_AGG_FUNCTION: { 4083 if( (pNC->ncFlags & NC_InAggFunc)==0 4084 && pWalker->walkerDepth==pExpr->op2 4085 ){ 4086 /* Check to see if pExpr is a duplicate of another aggregate 4087 ** function that is already in the pAggInfo structure 4088 */ 4089 struct AggInfo_func *pItem = pAggInfo->aFunc; 4090 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4091 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4092 break; 4093 } 4094 } 4095 if( i>=pAggInfo->nFunc ){ 4096 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4097 */ 4098 u8 enc = ENC(pParse->db); 4099 i = addAggInfoFunc(pParse->db, pAggInfo); 4100 if( i>=0 ){ 4101 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4102 pItem = &pAggInfo->aFunc[i]; 4103 pItem->pExpr = pExpr; 4104 pItem->iMem = ++pParse->nMem; 4105 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4106 pItem->pFunc = sqlite3FindFunction(pParse->db, 4107 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4108 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4109 if( pExpr->flags & EP_Distinct ){ 4110 pItem->iDistinct = pParse->nTab++; 4111 }else{ 4112 pItem->iDistinct = -1; 4113 } 4114 } 4115 } 4116 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4117 */ 4118 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4119 ExprSetVVAProperty(pExpr, EP_NoReduce); 4120 pExpr->iAgg = (i16)i; 4121 pExpr->pAggInfo = pAggInfo; 4122 return WRC_Prune; 4123 }else{ 4124 return WRC_Continue; 4125 } 4126 } 4127 } 4128 return WRC_Continue; 4129 } 4130 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4131 UNUSED_PARAMETER(pWalker); 4132 UNUSED_PARAMETER(pSelect); 4133 return WRC_Continue; 4134 } 4135 4136 /* 4137 ** Analyze the pExpr expression looking for aggregate functions and 4138 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4139 ** points to. Additional entries are made on the AggInfo object as 4140 ** necessary. 4141 ** 4142 ** This routine should only be called after the expression has been 4143 ** analyzed by sqlite3ResolveExprNames(). 4144 */ 4145 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4146 Walker w; 4147 memset(&w, 0, sizeof(w)); 4148 w.xExprCallback = analyzeAggregate; 4149 w.xSelectCallback = analyzeAggregatesInSelect; 4150 w.u.pNC = pNC; 4151 assert( pNC->pSrcList!=0 ); 4152 sqlite3WalkExpr(&w, pExpr); 4153 } 4154 4155 /* 4156 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4157 ** expression list. Return the number of errors. 4158 ** 4159 ** If an error is found, the analysis is cut short. 4160 */ 4161 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4162 struct ExprList_item *pItem; 4163 int i; 4164 if( pList ){ 4165 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4166 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4167 } 4168 } 4169 } 4170 4171 /* 4172 ** Allocate a single new register for use to hold some intermediate result. 4173 */ 4174 int sqlite3GetTempReg(Parse *pParse){ 4175 if( pParse->nTempReg==0 ){ 4176 return ++pParse->nMem; 4177 } 4178 return pParse->aTempReg[--pParse->nTempReg]; 4179 } 4180 4181 /* 4182 ** Deallocate a register, making available for reuse for some other 4183 ** purpose. 4184 ** 4185 ** If a register is currently being used by the column cache, then 4186 ** the deallocation is deferred until the column cache line that uses 4187 ** the register becomes stale. 4188 */ 4189 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4190 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4191 int i; 4192 struct yColCache *p; 4193 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4194 if( p->iReg==iReg ){ 4195 p->tempReg = 1; 4196 return; 4197 } 4198 } 4199 pParse->aTempReg[pParse->nTempReg++] = iReg; 4200 } 4201 } 4202 4203 /* 4204 ** Allocate or deallocate a block of nReg consecutive registers 4205 */ 4206 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4207 int i, n; 4208 i = pParse->iRangeReg; 4209 n = pParse->nRangeReg; 4210 if( nReg<=n ){ 4211 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4212 pParse->iRangeReg += nReg; 4213 pParse->nRangeReg -= nReg; 4214 }else{ 4215 i = pParse->nMem+1; 4216 pParse->nMem += nReg; 4217 } 4218 return i; 4219 } 4220 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4221 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4222 if( nReg>pParse->nRangeReg ){ 4223 pParse->nRangeReg = nReg; 4224 pParse->iRangeReg = iReg; 4225 } 4226 } 4227 4228 /* 4229 ** Mark all temporary registers as being unavailable for reuse. 4230 */ 4231 void sqlite3ClearTempRegCache(Parse *pParse){ 4232 pParse->nTempReg = 0; 4233 pParse->nRangeReg = 0; 4234 } 4235