xref: /sqlite-3.40.0/src/expr.c (revision c08716a3)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     assert( pExpr->x.pSelect!=0 );
56     assert( pExpr->x.pSelect->pEList!=0 );
57     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
58     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
59   }
60   if( op==TK_REGISTER ) op = pExpr->op2;
61 #ifndef SQLITE_OMIT_CAST
62   if( op==TK_CAST ){
63     assert( !ExprHasProperty(pExpr, EP_IntValue) );
64     return sqlite3AffinityType(pExpr->u.zToken, 0);
65   }
66 #endif
67   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
68     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
69   }
70   if( op==TK_SELECT_COLUMN ){
71     assert( pExpr->pLeft->flags&EP_xIsSelect );
72     return sqlite3ExprAffinity(
73         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
74     );
75   }
76   if( op==TK_VECTOR ){
77     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
78   }
79   return pExpr->affExpr;
80 }
81 
82 /*
83 ** Set the collating sequence for expression pExpr to be the collating
84 ** sequence named by pToken.   Return a pointer to a new Expr node that
85 ** implements the COLLATE operator.
86 **
87 ** If a memory allocation error occurs, that fact is recorded in pParse->db
88 ** and the pExpr parameter is returned unchanged.
89 */
90 Expr *sqlite3ExprAddCollateToken(
91   Parse *pParse,           /* Parsing context */
92   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
93   const Token *pCollName,  /* Name of collating sequence */
94   int dequote              /* True to dequote pCollName */
95 ){
96   if( pCollName->n>0 ){
97     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
98     if( pNew ){
99       pNew->pLeft = pExpr;
100       pNew->flags |= EP_Collate|EP_Skip;
101       pExpr = pNew;
102     }
103   }
104   return pExpr;
105 }
106 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
107   Token s;
108   assert( zC!=0 );
109   sqlite3TokenInit(&s, (char*)zC);
110   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
111 }
112 
113 /*
114 ** Skip over any TK_COLLATE operators.
115 */
116 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
117   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
118     assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
119     pExpr = pExpr->pLeft;
120   }
121   return pExpr;
122 }
123 
124 /*
125 ** Skip over any TK_COLLATE operators and/or any unlikely()
126 ** or likelihood() or likely() functions at the root of an
127 ** expression.
128 */
129 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
130   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
131     if( ExprHasProperty(pExpr, EP_Unlikely) ){
132       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
133       assert( pExpr->x.pList->nExpr>0 );
134       assert( pExpr->op==TK_FUNCTION );
135       pExpr = pExpr->x.pList->a[0].pExpr;
136     }else{
137       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
138       pExpr = pExpr->pLeft;
139     }
140   }
141   return pExpr;
142 }
143 
144 /*
145 ** Return the collation sequence for the expression pExpr. If
146 ** there is no defined collating sequence, return NULL.
147 **
148 ** See also: sqlite3ExprNNCollSeq()
149 **
150 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
151 ** default collation if pExpr has no defined collation.
152 **
153 ** The collating sequence might be determined by a COLLATE operator
154 ** or by the presence of a column with a defined collating sequence.
155 ** COLLATE operators take first precedence.  Left operands take
156 ** precedence over right operands.
157 */
158 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
159   sqlite3 *db = pParse->db;
160   CollSeq *pColl = 0;
161   const Expr *p = pExpr;
162   while( p ){
163     int op = p->op;
164     if( op==TK_REGISTER ) op = p->op2;
165     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
166      && p->y.pTab!=0
167     ){
168       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
169       ** a TK_COLUMN but was previously evaluated and cached in a register */
170       int j = p->iColumn;
171       if( j>=0 ){
172         const char *zColl = p->y.pTab->aCol[j].zColl;
173         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
174       }
175       break;
176     }
177     if( op==TK_CAST || op==TK_UPLUS ){
178       p = p->pLeft;
179       continue;
180     }
181     if( op==TK_VECTOR ){
182       p = p->x.pList->a[0].pExpr;
183       continue;
184     }
185     if( op==TK_COLLATE ){
186       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
187       break;
188     }
189     if( p->flags & EP_Collate ){
190       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
191         p = p->pLeft;
192       }else{
193         Expr *pNext  = p->pRight;
194         /* The Expr.x union is never used at the same time as Expr.pRight */
195         assert( p->x.pList==0 || p->pRight==0 );
196         if( p->x.pList!=0
197          && !db->mallocFailed
198          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
199         ){
200           int i;
201           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
202             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
203               pNext = p->x.pList->a[i].pExpr;
204               break;
205             }
206           }
207         }
208         p = pNext;
209       }
210     }else{
211       break;
212     }
213   }
214   if( sqlite3CheckCollSeq(pParse, pColl) ){
215     pColl = 0;
216   }
217   return pColl;
218 }
219 
220 /*
221 ** Return the collation sequence for the expression pExpr. If
222 ** there is no defined collating sequence, return a pointer to the
223 ** defautl collation sequence.
224 **
225 ** See also: sqlite3ExprCollSeq()
226 **
227 ** The sqlite3ExprCollSeq() routine works the same except that it
228 ** returns NULL if there is no defined collation.
229 */
230 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
231   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
232   if( p==0 ) p = pParse->db->pDfltColl;
233   assert( p!=0 );
234   return p;
235 }
236 
237 /*
238 ** Return TRUE if the two expressions have equivalent collating sequences.
239 */
240 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
241   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
242   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
243   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
244 }
245 
246 /*
247 ** pExpr is an operand of a comparison operator.  aff2 is the
248 ** type affinity of the other operand.  This routine returns the
249 ** type affinity that should be used for the comparison operator.
250 */
251 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
252   char aff1 = sqlite3ExprAffinity(pExpr);
253   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
254     /* Both sides of the comparison are columns. If one has numeric
255     ** affinity, use that. Otherwise use no affinity.
256     */
257     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
258       return SQLITE_AFF_NUMERIC;
259     }else{
260       return SQLITE_AFF_BLOB;
261     }
262   }else{
263     /* One side is a column, the other is not. Use the columns affinity. */
264     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
265     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
266   }
267 }
268 
269 /*
270 ** pExpr is a comparison operator.  Return the type affinity that should
271 ** be applied to both operands prior to doing the comparison.
272 */
273 static char comparisonAffinity(const Expr *pExpr){
274   char aff;
275   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
276           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
277           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
278   assert( pExpr->pLeft );
279   aff = sqlite3ExprAffinity(pExpr->pLeft);
280   if( pExpr->pRight ){
281     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
282   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
283     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
284   }else if( aff==0 ){
285     aff = SQLITE_AFF_BLOB;
286   }
287   return aff;
288 }
289 
290 /*
291 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
292 ** idx_affinity is the affinity of an indexed column. Return true
293 ** if the index with affinity idx_affinity may be used to implement
294 ** the comparison in pExpr.
295 */
296 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
297   char aff = comparisonAffinity(pExpr);
298   if( aff<SQLITE_AFF_TEXT ){
299     return 1;
300   }
301   if( aff==SQLITE_AFF_TEXT ){
302     return idx_affinity==SQLITE_AFF_TEXT;
303   }
304   return sqlite3IsNumericAffinity(idx_affinity);
305 }
306 
307 /*
308 ** Return the P5 value that should be used for a binary comparison
309 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
310 */
311 static u8 binaryCompareP5(
312   const Expr *pExpr1,   /* Left operand */
313   const Expr *pExpr2,   /* Right operand */
314   int jumpIfNull        /* Extra flags added to P5 */
315 ){
316   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
317   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
318   return aff;
319 }
320 
321 /*
322 ** Return a pointer to the collation sequence that should be used by
323 ** a binary comparison operator comparing pLeft and pRight.
324 **
325 ** If the left hand expression has a collating sequence type, then it is
326 ** used. Otherwise the collation sequence for the right hand expression
327 ** is used, or the default (BINARY) if neither expression has a collating
328 ** type.
329 **
330 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
331 ** it is not considered.
332 */
333 CollSeq *sqlite3BinaryCompareCollSeq(
334   Parse *pParse,
335   const Expr *pLeft,
336   const Expr *pRight
337 ){
338   CollSeq *pColl;
339   assert( pLeft );
340   if( pLeft->flags & EP_Collate ){
341     pColl = sqlite3ExprCollSeq(pParse, pLeft);
342   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
343     pColl = sqlite3ExprCollSeq(pParse, pRight);
344   }else{
345     pColl = sqlite3ExprCollSeq(pParse, pLeft);
346     if( !pColl ){
347       pColl = sqlite3ExprCollSeq(pParse, pRight);
348     }
349   }
350   return pColl;
351 }
352 
353 /* Expresssion p is a comparison operator.  Return a collation sequence
354 ** appropriate for the comparison operator.
355 **
356 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
357 ** However, if the OP_Commuted flag is set, then the order of the operands
358 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
359 ** correct collating sequence is found.
360 */
361 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
362   if( ExprHasProperty(p, EP_Commuted) ){
363     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
364   }else{
365     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
366   }
367 }
368 
369 /*
370 ** Generate code for a comparison operator.
371 */
372 static int codeCompare(
373   Parse *pParse,    /* The parsing (and code generating) context */
374   Expr *pLeft,      /* The left operand */
375   Expr *pRight,     /* The right operand */
376   int opcode,       /* The comparison opcode */
377   int in1, int in2, /* Register holding operands */
378   int dest,         /* Jump here if true.  */
379   int jumpIfNull,   /* If true, jump if either operand is NULL */
380   int isCommuted    /* The comparison has been commuted */
381 ){
382   int p5;
383   int addr;
384   CollSeq *p4;
385 
386   if( pParse->nErr ) return 0;
387   if( isCommuted ){
388     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
389   }else{
390     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
391   }
392   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
393   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
394                            (void*)p4, P4_COLLSEQ);
395   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
396   return addr;
397 }
398 
399 /*
400 ** Return true if expression pExpr is a vector, or false otherwise.
401 **
402 ** A vector is defined as any expression that results in two or more
403 ** columns of result.  Every TK_VECTOR node is an vector because the
404 ** parser will not generate a TK_VECTOR with fewer than two entries.
405 ** But a TK_SELECT might be either a vector or a scalar. It is only
406 ** considered a vector if it has two or more result columns.
407 */
408 int sqlite3ExprIsVector(Expr *pExpr){
409   return sqlite3ExprVectorSize(pExpr)>1;
410 }
411 
412 /*
413 ** If the expression passed as the only argument is of type TK_VECTOR
414 ** return the number of expressions in the vector. Or, if the expression
415 ** is a sub-select, return the number of columns in the sub-select. For
416 ** any other type of expression, return 1.
417 */
418 int sqlite3ExprVectorSize(Expr *pExpr){
419   u8 op = pExpr->op;
420   if( op==TK_REGISTER ) op = pExpr->op2;
421   if( op==TK_VECTOR ){
422     return pExpr->x.pList->nExpr;
423   }else if( op==TK_SELECT ){
424     return pExpr->x.pSelect->pEList->nExpr;
425   }else{
426     return 1;
427   }
428 }
429 
430 /*
431 ** Return a pointer to a subexpression of pVector that is the i-th
432 ** column of the vector (numbered starting with 0).  The caller must
433 ** ensure that i is within range.
434 **
435 ** If pVector is really a scalar (and "scalar" here includes subqueries
436 ** that return a single column!) then return pVector unmodified.
437 **
438 ** pVector retains ownership of the returned subexpression.
439 **
440 ** If the vector is a (SELECT ...) then the expression returned is
441 ** just the expression for the i-th term of the result set, and may
442 ** not be ready for evaluation because the table cursor has not yet
443 ** been positioned.
444 */
445 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
446   assert( i<sqlite3ExprVectorSize(pVector) );
447   if( sqlite3ExprIsVector(pVector) ){
448     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
449     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
450       return pVector->x.pSelect->pEList->a[i].pExpr;
451     }else{
452       return pVector->x.pList->a[i].pExpr;
453     }
454   }
455   return pVector;
456 }
457 
458 /*
459 ** Compute and return a new Expr object which when passed to
460 ** sqlite3ExprCode() will generate all necessary code to compute
461 ** the iField-th column of the vector expression pVector.
462 **
463 ** It is ok for pVector to be a scalar (as long as iField==0).
464 ** In that case, this routine works like sqlite3ExprDup().
465 **
466 ** The caller owns the returned Expr object and is responsible for
467 ** ensuring that the returned value eventually gets freed.
468 **
469 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
470 ** then the returned object will reference pVector and so pVector must remain
471 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
472 ** or a scalar expression, then it can be deleted as soon as this routine
473 ** returns.
474 **
475 ** A trick to cause a TK_SELECT pVector to be deleted together with
476 ** the returned Expr object is to attach the pVector to the pRight field
477 ** of the returned TK_SELECT_COLUMN Expr object.
478 */
479 Expr *sqlite3ExprForVectorField(
480   Parse *pParse,       /* Parsing context */
481   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
482   int iField           /* Which column of the vector to return */
483 ){
484   Expr *pRet;
485   if( pVector->op==TK_SELECT ){
486     assert( pVector->flags & EP_xIsSelect );
487     /* The TK_SELECT_COLUMN Expr node:
488     **
489     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
490     ** pRight:          not used.  But recursively deleted.
491     ** iColumn:         Index of a column in pVector
492     ** iTable:          0 or the number of columns on the LHS of an assignment
493     ** pLeft->iTable:   First in an array of register holding result, or 0
494     **                  if the result is not yet computed.
495     **
496     ** sqlite3ExprDelete() specifically skips the recursive delete of
497     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
498     ** can be attached to pRight to cause this node to take ownership of
499     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
500     ** with the same pLeft pointer to the pVector, but only one of them
501     ** will own the pVector.
502     */
503     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
504     if( pRet ){
505       pRet->iColumn = iField;
506       pRet->pLeft = pVector;
507     }
508     assert( pRet==0 || pRet->iTable==0 );
509   }else{
510     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
511     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
512     sqlite3RenameTokenRemap(pParse, pRet, pVector);
513   }
514   return pRet;
515 }
516 
517 /*
518 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
519 ** it. Return the register in which the result is stored (or, if the
520 ** sub-select returns more than one column, the first in an array
521 ** of registers in which the result is stored).
522 **
523 ** If pExpr is not a TK_SELECT expression, return 0.
524 */
525 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
526   int reg = 0;
527 #ifndef SQLITE_OMIT_SUBQUERY
528   if( pExpr->op==TK_SELECT ){
529     reg = sqlite3CodeSubselect(pParse, pExpr);
530   }
531 #endif
532   return reg;
533 }
534 
535 /*
536 ** Argument pVector points to a vector expression - either a TK_VECTOR
537 ** or TK_SELECT that returns more than one column. This function returns
538 ** the register number of a register that contains the value of
539 ** element iField of the vector.
540 **
541 ** If pVector is a TK_SELECT expression, then code for it must have
542 ** already been generated using the exprCodeSubselect() routine. In this
543 ** case parameter regSelect should be the first in an array of registers
544 ** containing the results of the sub-select.
545 **
546 ** If pVector is of type TK_VECTOR, then code for the requested field
547 ** is generated. In this case (*pRegFree) may be set to the number of
548 ** a temporary register to be freed by the caller before returning.
549 **
550 ** Before returning, output parameter (*ppExpr) is set to point to the
551 ** Expr object corresponding to element iElem of the vector.
552 */
553 static int exprVectorRegister(
554   Parse *pParse,                  /* Parse context */
555   Expr *pVector,                  /* Vector to extract element from */
556   int iField,                     /* Field to extract from pVector */
557   int regSelect,                  /* First in array of registers */
558   Expr **ppExpr,                  /* OUT: Expression element */
559   int *pRegFree                   /* OUT: Temp register to free */
560 ){
561   u8 op = pVector->op;
562   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
563   if( op==TK_REGISTER ){
564     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
565     return pVector->iTable+iField;
566   }
567   if( op==TK_SELECT ){
568     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
569      return regSelect+iField;
570   }
571   *ppExpr = pVector->x.pList->a[iField].pExpr;
572   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
573 }
574 
575 /*
576 ** Expression pExpr is a comparison between two vector values. Compute
577 ** the result of the comparison (1, 0, or NULL) and write that
578 ** result into register dest.
579 **
580 ** The caller must satisfy the following preconditions:
581 **
582 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
583 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
584 **    otherwise:                op==pExpr->op and p5==0
585 */
586 static void codeVectorCompare(
587   Parse *pParse,        /* Code generator context */
588   Expr *pExpr,          /* The comparison operation */
589   int dest,             /* Write results into this register */
590   u8 op,                /* Comparison operator */
591   u8 p5                 /* SQLITE_NULLEQ or zero */
592 ){
593   Vdbe *v = pParse->pVdbe;
594   Expr *pLeft = pExpr->pLeft;
595   Expr *pRight = pExpr->pRight;
596   int nLeft = sqlite3ExprVectorSize(pLeft);
597   int i;
598   int regLeft = 0;
599   int regRight = 0;
600   u8 opx = op;
601   int addrDone = sqlite3VdbeMakeLabel(pParse);
602   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
603 
604   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
605   if( pParse->nErr ) return;
606   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
607     sqlite3ErrorMsg(pParse, "row value misused");
608     return;
609   }
610   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
611        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
612        || pExpr->op==TK_LT || pExpr->op==TK_GT
613        || pExpr->op==TK_LE || pExpr->op==TK_GE
614   );
615   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
616             || (pExpr->op==TK_ISNOT && op==TK_NE) );
617   assert( p5==0 || pExpr->op!=op );
618   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
619 
620   p5 |= SQLITE_STOREP2;
621   if( opx==TK_LE ) opx = TK_LT;
622   if( opx==TK_GE ) opx = TK_GT;
623 
624   regLeft = exprCodeSubselect(pParse, pLeft);
625   regRight = exprCodeSubselect(pParse, pRight);
626 
627   for(i=0; 1 /*Loop exits by "break"*/; i++){
628     int regFree1 = 0, regFree2 = 0;
629     Expr *pL, *pR;
630     int r1, r2;
631     assert( i>=0 && i<nLeft );
632     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
633     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
634     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
635     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
636     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
637     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
638     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
639     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
640     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
641     sqlite3ReleaseTempReg(pParse, regFree1);
642     sqlite3ReleaseTempReg(pParse, regFree2);
643     if( i==nLeft-1 ){
644       break;
645     }
646     if( opx==TK_EQ ){
647       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
648       p5 |= SQLITE_KEEPNULL;
649     }else if( opx==TK_NE ){
650       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
651       p5 |= SQLITE_KEEPNULL;
652     }else{
653       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
654       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
655       VdbeCoverageIf(v, op==TK_LT);
656       VdbeCoverageIf(v, op==TK_GT);
657       VdbeCoverageIf(v, op==TK_LE);
658       VdbeCoverageIf(v, op==TK_GE);
659       if( i==nLeft-2 ) opx = op;
660     }
661   }
662   sqlite3VdbeResolveLabel(v, addrDone);
663 }
664 
665 #if SQLITE_MAX_EXPR_DEPTH>0
666 /*
667 ** Check that argument nHeight is less than or equal to the maximum
668 ** expression depth allowed. If it is not, leave an error message in
669 ** pParse.
670 */
671 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
672   int rc = SQLITE_OK;
673   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
674   if( nHeight>mxHeight ){
675     sqlite3ErrorMsg(pParse,
676        "Expression tree is too large (maximum depth %d)", mxHeight
677     );
678     rc = SQLITE_ERROR;
679   }
680   return rc;
681 }
682 
683 /* The following three functions, heightOfExpr(), heightOfExprList()
684 ** and heightOfSelect(), are used to determine the maximum height
685 ** of any expression tree referenced by the structure passed as the
686 ** first argument.
687 **
688 ** If this maximum height is greater than the current value pointed
689 ** to by pnHeight, the second parameter, then set *pnHeight to that
690 ** value.
691 */
692 static void heightOfExpr(Expr *p, int *pnHeight){
693   if( p ){
694     if( p->nHeight>*pnHeight ){
695       *pnHeight = p->nHeight;
696     }
697   }
698 }
699 static void heightOfExprList(ExprList *p, int *pnHeight){
700   if( p ){
701     int i;
702     for(i=0; i<p->nExpr; i++){
703       heightOfExpr(p->a[i].pExpr, pnHeight);
704     }
705   }
706 }
707 static void heightOfSelect(Select *pSelect, int *pnHeight){
708   Select *p;
709   for(p=pSelect; p; p=p->pPrior){
710     heightOfExpr(p->pWhere, pnHeight);
711     heightOfExpr(p->pHaving, pnHeight);
712     heightOfExpr(p->pLimit, pnHeight);
713     heightOfExprList(p->pEList, pnHeight);
714     heightOfExprList(p->pGroupBy, pnHeight);
715     heightOfExprList(p->pOrderBy, pnHeight);
716   }
717 }
718 
719 /*
720 ** Set the Expr.nHeight variable in the structure passed as an
721 ** argument. An expression with no children, Expr.pList or
722 ** Expr.pSelect member has a height of 1. Any other expression
723 ** has a height equal to the maximum height of any other
724 ** referenced Expr plus one.
725 **
726 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
727 ** if appropriate.
728 */
729 static void exprSetHeight(Expr *p){
730   int nHeight = 0;
731   heightOfExpr(p->pLeft, &nHeight);
732   heightOfExpr(p->pRight, &nHeight);
733   if( ExprHasProperty(p, EP_xIsSelect) ){
734     heightOfSelect(p->x.pSelect, &nHeight);
735   }else if( p->x.pList ){
736     heightOfExprList(p->x.pList, &nHeight);
737     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
738   }
739   p->nHeight = nHeight + 1;
740 }
741 
742 /*
743 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
744 ** the height is greater than the maximum allowed expression depth,
745 ** leave an error in pParse.
746 **
747 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
748 ** Expr.flags.
749 */
750 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
751   if( pParse->nErr ) return;
752   exprSetHeight(p);
753   sqlite3ExprCheckHeight(pParse, p->nHeight);
754 }
755 
756 /*
757 ** Return the maximum height of any expression tree referenced
758 ** by the select statement passed as an argument.
759 */
760 int sqlite3SelectExprHeight(Select *p){
761   int nHeight = 0;
762   heightOfSelect(p, &nHeight);
763   return nHeight;
764 }
765 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
766 /*
767 ** Propagate all EP_Propagate flags from the Expr.x.pList into
768 ** Expr.flags.
769 */
770 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
771   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
772     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
773   }
774 }
775 #define exprSetHeight(y)
776 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
777 
778 /*
779 ** This routine is the core allocator for Expr nodes.
780 **
781 ** Construct a new expression node and return a pointer to it.  Memory
782 ** for this node and for the pToken argument is a single allocation
783 ** obtained from sqlite3DbMalloc().  The calling function
784 ** is responsible for making sure the node eventually gets freed.
785 **
786 ** If dequote is true, then the token (if it exists) is dequoted.
787 ** If dequote is false, no dequoting is performed.  The deQuote
788 ** parameter is ignored if pToken is NULL or if the token does not
789 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
790 ** then the EP_DblQuoted flag is set on the expression node.
791 **
792 ** Special case:  If op==TK_INTEGER and pToken points to a string that
793 ** can be translated into a 32-bit integer, then the token is not
794 ** stored in u.zToken.  Instead, the integer values is written
795 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
796 ** is allocated to hold the integer text and the dequote flag is ignored.
797 */
798 Expr *sqlite3ExprAlloc(
799   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
800   int op,                 /* Expression opcode */
801   const Token *pToken,    /* Token argument.  Might be NULL */
802   int dequote             /* True to dequote */
803 ){
804   Expr *pNew;
805   int nExtra = 0;
806   int iValue = 0;
807 
808   assert( db!=0 );
809   if( pToken ){
810     if( op!=TK_INTEGER || pToken->z==0
811           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
812       nExtra = pToken->n+1;
813       assert( iValue>=0 );
814     }
815   }
816   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
817   if( pNew ){
818     memset(pNew, 0, sizeof(Expr));
819     pNew->op = (u8)op;
820     pNew->iAgg = -1;
821     if( pToken ){
822       if( nExtra==0 ){
823         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
824         pNew->u.iValue = iValue;
825       }else{
826         pNew->u.zToken = (char*)&pNew[1];
827         assert( pToken->z!=0 || pToken->n==0 );
828         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
829         pNew->u.zToken[pToken->n] = 0;
830         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
831           sqlite3DequoteExpr(pNew);
832         }
833       }
834     }
835 #if SQLITE_MAX_EXPR_DEPTH>0
836     pNew->nHeight = 1;
837 #endif
838   }
839   return pNew;
840 }
841 
842 /*
843 ** Allocate a new expression node from a zero-terminated token that has
844 ** already been dequoted.
845 */
846 Expr *sqlite3Expr(
847   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
848   int op,                 /* Expression opcode */
849   const char *zToken      /* Token argument.  Might be NULL */
850 ){
851   Token x;
852   x.z = zToken;
853   x.n = sqlite3Strlen30(zToken);
854   return sqlite3ExprAlloc(db, op, &x, 0);
855 }
856 
857 /*
858 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
859 **
860 ** If pRoot==NULL that means that a memory allocation error has occurred.
861 ** In that case, delete the subtrees pLeft and pRight.
862 */
863 void sqlite3ExprAttachSubtrees(
864   sqlite3 *db,
865   Expr *pRoot,
866   Expr *pLeft,
867   Expr *pRight
868 ){
869   if( pRoot==0 ){
870     assert( db->mallocFailed );
871     sqlite3ExprDelete(db, pLeft);
872     sqlite3ExprDelete(db, pRight);
873   }else{
874     if( pRight ){
875       pRoot->pRight = pRight;
876       pRoot->flags |= EP_Propagate & pRight->flags;
877     }
878     if( pLeft ){
879       pRoot->pLeft = pLeft;
880       pRoot->flags |= EP_Propagate & pLeft->flags;
881     }
882     exprSetHeight(pRoot);
883   }
884 }
885 
886 /*
887 ** Allocate an Expr node which joins as many as two subtrees.
888 **
889 ** One or both of the subtrees can be NULL.  Return a pointer to the new
890 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
891 ** free the subtrees and return NULL.
892 */
893 Expr *sqlite3PExpr(
894   Parse *pParse,          /* Parsing context */
895   int op,                 /* Expression opcode */
896   Expr *pLeft,            /* Left operand */
897   Expr *pRight            /* Right operand */
898 ){
899   Expr *p;
900   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
901   if( p ){
902     memset(p, 0, sizeof(Expr));
903     p->op = op & 0xff;
904     p->iAgg = -1;
905     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
906     sqlite3ExprCheckHeight(pParse, p->nHeight);
907   }else{
908     sqlite3ExprDelete(pParse->db, pLeft);
909     sqlite3ExprDelete(pParse->db, pRight);
910   }
911   return p;
912 }
913 
914 /*
915 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
916 ** do a memory allocation failure) then delete the pSelect object.
917 */
918 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
919   if( pExpr ){
920     pExpr->x.pSelect = pSelect;
921     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
922     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
923   }else{
924     assert( pParse->db->mallocFailed );
925     sqlite3SelectDelete(pParse->db, pSelect);
926   }
927 }
928 
929 
930 /*
931 ** Join two expressions using an AND operator.  If either expression is
932 ** NULL, then just return the other expression.
933 **
934 ** If one side or the other of the AND is known to be false, then instead
935 ** of returning an AND expression, just return a constant expression with
936 ** a value of false.
937 */
938 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
939   sqlite3 *db = pParse->db;
940   if( pLeft==0  ){
941     return pRight;
942   }else if( pRight==0 ){
943     return pLeft;
944   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
945          && !IN_RENAME_OBJECT
946   ){
947     sqlite3ExprDelete(db, pLeft);
948     sqlite3ExprDelete(db, pRight);
949     return sqlite3Expr(db, TK_INTEGER, "0");
950   }else{
951     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
952   }
953 }
954 
955 /*
956 ** Construct a new expression node for a function with multiple
957 ** arguments.
958 */
959 Expr *sqlite3ExprFunction(
960   Parse *pParse,        /* Parsing context */
961   ExprList *pList,      /* Argument list */
962   Token *pToken,        /* Name of the function */
963   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
964 ){
965   Expr *pNew;
966   sqlite3 *db = pParse->db;
967   assert( pToken );
968   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
969   if( pNew==0 ){
970     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
971     return 0;
972   }
973   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
974     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
975   }
976   pNew->x.pList = pList;
977   ExprSetProperty(pNew, EP_HasFunc);
978   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
979   sqlite3ExprSetHeightAndFlags(pParse, pNew);
980   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
981   return pNew;
982 }
983 
984 /*
985 ** Check to see if a function is usable according to current access
986 ** rules:
987 **
988 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
989 **
990 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
991 **                                top-level SQL
992 **
993 ** If the function is not usable, create an error.
994 */
995 void sqlite3ExprFunctionUsable(
996   Parse *pParse,         /* Parsing and code generating context */
997   Expr *pExpr,           /* The function invocation */
998   FuncDef *pDef          /* The function being invoked */
999 ){
1000   assert( !IN_RENAME_OBJECT );
1001   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1002   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1003     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1004      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1005     ){
1006       /* Functions prohibited in triggers and views if:
1007       **     (1) tagged with SQLITE_DIRECTONLY
1008       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1009       **         is tagged with SQLITE_FUNC_UNSAFE) and
1010       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1011       **         that the schema is possibly tainted).
1012       */
1013       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1014     }
1015   }
1016 }
1017 
1018 /*
1019 ** Assign a variable number to an expression that encodes a wildcard
1020 ** in the original SQL statement.
1021 **
1022 ** Wildcards consisting of a single "?" are assigned the next sequential
1023 ** variable number.
1024 **
1025 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1026 ** sure "nnn" is not too big to avoid a denial of service attack when
1027 ** the SQL statement comes from an external source.
1028 **
1029 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1030 ** as the previous instance of the same wildcard.  Or if this is the first
1031 ** instance of the wildcard, the next sequential variable number is
1032 ** assigned.
1033 */
1034 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1035   sqlite3 *db = pParse->db;
1036   const char *z;
1037   ynVar x;
1038 
1039   if( pExpr==0 ) return;
1040   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1041   z = pExpr->u.zToken;
1042   assert( z!=0 );
1043   assert( z[0]!=0 );
1044   assert( n==(u32)sqlite3Strlen30(z) );
1045   if( z[1]==0 ){
1046     /* Wildcard of the form "?".  Assign the next variable number */
1047     assert( z[0]=='?' );
1048     x = (ynVar)(++pParse->nVar);
1049   }else{
1050     int doAdd = 0;
1051     if( z[0]=='?' ){
1052       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1053       ** use it as the variable number */
1054       i64 i;
1055       int bOk;
1056       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1057         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1058         bOk = 1;
1059       }else{
1060         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1061       }
1062       testcase( i==0 );
1063       testcase( i==1 );
1064       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1065       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1066       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1067         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1068             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1069         return;
1070       }
1071       x = (ynVar)i;
1072       if( x>pParse->nVar ){
1073         pParse->nVar = (int)x;
1074         doAdd = 1;
1075       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1076         doAdd = 1;
1077       }
1078     }else{
1079       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1080       ** number as the prior appearance of the same name, or if the name
1081       ** has never appeared before, reuse the same variable number
1082       */
1083       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1084       if( x==0 ){
1085         x = (ynVar)(++pParse->nVar);
1086         doAdd = 1;
1087       }
1088     }
1089     if( doAdd ){
1090       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1091     }
1092   }
1093   pExpr->iColumn = x;
1094   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1095     sqlite3ErrorMsg(pParse, "too many SQL variables");
1096   }
1097 }
1098 
1099 /*
1100 ** Recursively delete an expression tree.
1101 */
1102 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1103   assert( p!=0 );
1104   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1105   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1106 
1107   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1108   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1109           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1110 #ifdef SQLITE_DEBUG
1111   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1112     assert( p->pLeft==0 );
1113     assert( p->pRight==0 );
1114     assert( p->x.pSelect==0 );
1115   }
1116 #endif
1117   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1118     /* The Expr.x union is never used at the same time as Expr.pRight */
1119     assert( p->x.pList==0 || p->pRight==0 );
1120     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1121     if( p->pRight ){
1122       assert( !ExprHasProperty(p, EP_WinFunc) );
1123       sqlite3ExprDeleteNN(db, p->pRight);
1124     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1125       assert( !ExprHasProperty(p, EP_WinFunc) );
1126       sqlite3SelectDelete(db, p->x.pSelect);
1127     }else{
1128       sqlite3ExprListDelete(db, p->x.pList);
1129 #ifndef SQLITE_OMIT_WINDOWFUNC
1130       if( ExprHasProperty(p, EP_WinFunc) ){
1131         sqlite3WindowDelete(db, p->y.pWin);
1132       }
1133 #endif
1134     }
1135   }
1136   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1137   if( !ExprHasProperty(p, EP_Static) ){
1138     sqlite3DbFreeNN(db, p);
1139   }
1140 }
1141 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1142   if( p ) sqlite3ExprDeleteNN(db, p);
1143 }
1144 
1145 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1146 ** expression.
1147 */
1148 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1149   if( p ){
1150     if( IN_RENAME_OBJECT ){
1151       sqlite3RenameExprUnmap(pParse, p);
1152     }
1153     sqlite3ExprDeleteNN(pParse->db, p);
1154   }
1155 }
1156 
1157 /*
1158 ** Return the number of bytes allocated for the expression structure
1159 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1160 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1161 */
1162 static int exprStructSize(Expr *p){
1163   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1164   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1165   return EXPR_FULLSIZE;
1166 }
1167 
1168 /*
1169 ** The dupedExpr*Size() routines each return the number of bytes required
1170 ** to store a copy of an expression or expression tree.  They differ in
1171 ** how much of the tree is measured.
1172 **
1173 **     dupedExprStructSize()     Size of only the Expr structure
1174 **     dupedExprNodeSize()       Size of Expr + space for token
1175 **     dupedExprSize()           Expr + token + subtree components
1176 **
1177 ***************************************************************************
1178 **
1179 ** The dupedExprStructSize() function returns two values OR-ed together:
1180 ** (1) the space required for a copy of the Expr structure only and
1181 ** (2) the EP_xxx flags that indicate what the structure size should be.
1182 ** The return values is always one of:
1183 **
1184 **      EXPR_FULLSIZE
1185 **      EXPR_REDUCEDSIZE   | EP_Reduced
1186 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1187 **
1188 ** The size of the structure can be found by masking the return value
1189 ** of this routine with 0xfff.  The flags can be found by masking the
1190 ** return value with EP_Reduced|EP_TokenOnly.
1191 **
1192 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1193 ** (unreduced) Expr objects as they or originally constructed by the parser.
1194 ** During expression analysis, extra information is computed and moved into
1195 ** later parts of the Expr object and that extra information might get chopped
1196 ** off if the expression is reduced.  Note also that it does not work to
1197 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1198 ** to reduce a pristine expression tree from the parser.  The implementation
1199 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1200 ** to enforce this constraint.
1201 */
1202 static int dupedExprStructSize(Expr *p, int flags){
1203   int nSize;
1204   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1205   assert( EXPR_FULLSIZE<=0xfff );
1206   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1207   if( 0==flags || p->op==TK_SELECT_COLUMN
1208 #ifndef SQLITE_OMIT_WINDOWFUNC
1209    || ExprHasProperty(p, EP_WinFunc)
1210 #endif
1211   ){
1212     nSize = EXPR_FULLSIZE;
1213   }else{
1214     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1215     assert( !ExprHasProperty(p, EP_FromJoin) );
1216     assert( !ExprHasProperty(p, EP_MemToken) );
1217     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1218     if( p->pLeft || p->x.pList ){
1219       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1220     }else{
1221       assert( p->pRight==0 );
1222       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1223     }
1224   }
1225   return nSize;
1226 }
1227 
1228 /*
1229 ** This function returns the space in bytes required to store the copy
1230 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1231 ** string is defined.)
1232 */
1233 static int dupedExprNodeSize(Expr *p, int flags){
1234   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1235   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1236     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1237   }
1238   return ROUND8(nByte);
1239 }
1240 
1241 /*
1242 ** Return the number of bytes required to create a duplicate of the
1243 ** expression passed as the first argument. The second argument is a
1244 ** mask containing EXPRDUP_XXX flags.
1245 **
1246 ** The value returned includes space to create a copy of the Expr struct
1247 ** itself and the buffer referred to by Expr.u.zToken, if any.
1248 **
1249 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1250 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1251 ** and Expr.pRight variables (but not for any structures pointed to or
1252 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1253 */
1254 static int dupedExprSize(Expr *p, int flags){
1255   int nByte = 0;
1256   if( p ){
1257     nByte = dupedExprNodeSize(p, flags);
1258     if( flags&EXPRDUP_REDUCE ){
1259       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1260     }
1261   }
1262   return nByte;
1263 }
1264 
1265 /*
1266 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1267 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1268 ** to store the copy of expression p, the copies of p->u.zToken
1269 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1270 ** if any. Before returning, *pzBuffer is set to the first byte past the
1271 ** portion of the buffer copied into by this function.
1272 */
1273 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1274   Expr *pNew;           /* Value to return */
1275   u8 *zAlloc;           /* Memory space from which to build Expr object */
1276   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1277 
1278   assert( db!=0 );
1279   assert( p );
1280   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1281   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1282 
1283   /* Figure out where to write the new Expr structure. */
1284   if( pzBuffer ){
1285     zAlloc = *pzBuffer;
1286     staticFlag = EP_Static;
1287   }else{
1288     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1289     staticFlag = 0;
1290   }
1291   pNew = (Expr *)zAlloc;
1292 
1293   if( pNew ){
1294     /* Set nNewSize to the size allocated for the structure pointed to
1295     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1296     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1297     ** by the copy of the p->u.zToken string (if any).
1298     */
1299     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1300     const int nNewSize = nStructSize & 0xfff;
1301     int nToken;
1302     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1303       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1304     }else{
1305       nToken = 0;
1306     }
1307     if( dupFlags ){
1308       assert( ExprHasProperty(p, EP_Reduced)==0 );
1309       memcpy(zAlloc, p, nNewSize);
1310     }else{
1311       u32 nSize = (u32)exprStructSize(p);
1312       memcpy(zAlloc, p, nSize);
1313       if( nSize<EXPR_FULLSIZE ){
1314         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1315       }
1316     }
1317 
1318     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1319     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1320     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1321     pNew->flags |= staticFlag;
1322     ExprClearVVAProperties(pNew);
1323     if( dupFlags ){
1324       ExprSetVVAProperty(pNew, EP_Immutable);
1325     }
1326 
1327     /* Copy the p->u.zToken string, if any. */
1328     if( nToken ){
1329       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1330       memcpy(zToken, p->u.zToken, nToken);
1331     }
1332 
1333     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1334       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1335       if( ExprHasProperty(p, EP_xIsSelect) ){
1336         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1337       }else{
1338         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1339       }
1340     }
1341 
1342     /* Fill in pNew->pLeft and pNew->pRight. */
1343     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1344       zAlloc += dupedExprNodeSize(p, dupFlags);
1345       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1346         pNew->pLeft = p->pLeft ?
1347                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1348         pNew->pRight = p->pRight ?
1349                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1350       }
1351 #ifndef SQLITE_OMIT_WINDOWFUNC
1352       if( ExprHasProperty(p, EP_WinFunc) ){
1353         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1354         assert( ExprHasProperty(pNew, EP_WinFunc) );
1355       }
1356 #endif /* SQLITE_OMIT_WINDOWFUNC */
1357       if( pzBuffer ){
1358         *pzBuffer = zAlloc;
1359       }
1360     }else{
1361       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1362         if( pNew->op==TK_SELECT_COLUMN ){
1363           pNew->pLeft = p->pLeft;
1364           assert( p->iColumn==0 || p->pRight==0 );
1365           assert( p->pRight==0  || p->pRight==p->pLeft );
1366         }else{
1367           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1368         }
1369         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1370       }
1371     }
1372   }
1373   return pNew;
1374 }
1375 
1376 /*
1377 ** Create and return a deep copy of the object passed as the second
1378 ** argument. If an OOM condition is encountered, NULL is returned
1379 ** and the db->mallocFailed flag set.
1380 */
1381 #ifndef SQLITE_OMIT_CTE
1382 static With *withDup(sqlite3 *db, With *p){
1383   With *pRet = 0;
1384   if( p ){
1385     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1386     pRet = sqlite3DbMallocZero(db, nByte);
1387     if( pRet ){
1388       int i;
1389       pRet->nCte = p->nCte;
1390       for(i=0; i<p->nCte; i++){
1391         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1392         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1393         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1394       }
1395     }
1396   }
1397   return pRet;
1398 }
1399 #else
1400 # define withDup(x,y) 0
1401 #endif
1402 
1403 #ifndef SQLITE_OMIT_WINDOWFUNC
1404 /*
1405 ** The gatherSelectWindows() procedure and its helper routine
1406 ** gatherSelectWindowsCallback() are used to scan all the expressions
1407 ** an a newly duplicated SELECT statement and gather all of the Window
1408 ** objects found there, assembling them onto the linked list at Select->pWin.
1409 */
1410 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1411   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1412     Select *pSelect = pWalker->u.pSelect;
1413     Window *pWin = pExpr->y.pWin;
1414     assert( pWin );
1415     assert( IsWindowFunc(pExpr) );
1416     assert( pWin->ppThis==0 );
1417     sqlite3WindowLink(pSelect, pWin);
1418   }
1419   return WRC_Continue;
1420 }
1421 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1422   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1423 }
1424 static void gatherSelectWindows(Select *p){
1425   Walker w;
1426   w.xExprCallback = gatherSelectWindowsCallback;
1427   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1428   w.xSelectCallback2 = 0;
1429   w.pParse = 0;
1430   w.u.pSelect = p;
1431   sqlite3WalkSelect(&w, p);
1432 }
1433 #endif
1434 
1435 
1436 /*
1437 ** The following group of routines make deep copies of expressions,
1438 ** expression lists, ID lists, and select statements.  The copies can
1439 ** be deleted (by being passed to their respective ...Delete() routines)
1440 ** without effecting the originals.
1441 **
1442 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1443 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1444 ** by subsequent calls to sqlite*ListAppend() routines.
1445 **
1446 ** Any tables that the SrcList might point to are not duplicated.
1447 **
1448 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1449 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1450 ** truncated version of the usual Expr structure that will be stored as
1451 ** part of the in-memory representation of the database schema.
1452 */
1453 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1454   assert( flags==0 || flags==EXPRDUP_REDUCE );
1455   return p ? exprDup(db, p, flags, 0) : 0;
1456 }
1457 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1458   ExprList *pNew;
1459   struct ExprList_item *pItem, *pOldItem;
1460   int i;
1461   Expr *pPriorSelectCol = 0;
1462   assert( db!=0 );
1463   if( p==0 ) return 0;
1464   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1465   if( pNew==0 ) return 0;
1466   pNew->nExpr = p->nExpr;
1467   pItem = pNew->a;
1468   pOldItem = p->a;
1469   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1470     Expr *pOldExpr = pOldItem->pExpr;
1471     Expr *pNewExpr;
1472     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1473     if( pOldExpr
1474      && pOldExpr->op==TK_SELECT_COLUMN
1475      && (pNewExpr = pItem->pExpr)!=0
1476     ){
1477       assert( pNewExpr->iColumn==0 || i>0 );
1478       if( pNewExpr->iColumn==0 ){
1479         assert( pOldExpr->pLeft==pOldExpr->pRight );
1480         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1481       }else{
1482         assert( i>0 );
1483         assert( pItem[-1].pExpr!=0 );
1484         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1485         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1486         pNewExpr->pLeft = pPriorSelectCol;
1487       }
1488     }
1489     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1490     pItem->sortFlags = pOldItem->sortFlags;
1491     pItem->eEName = pOldItem->eEName;
1492     pItem->done = 0;
1493     pItem->bNulls = pOldItem->bNulls;
1494     pItem->bSorterRef = pOldItem->bSorterRef;
1495     pItem->u = pOldItem->u;
1496   }
1497   return pNew;
1498 }
1499 
1500 /*
1501 ** If cursors, triggers, views and subqueries are all omitted from
1502 ** the build, then none of the following routines, except for
1503 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1504 ** called with a NULL argument.
1505 */
1506 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1507  || !defined(SQLITE_OMIT_SUBQUERY)
1508 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1509   SrcList *pNew;
1510   int i;
1511   int nByte;
1512   assert( db!=0 );
1513   if( p==0 ) return 0;
1514   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1515   pNew = sqlite3DbMallocRawNN(db, nByte );
1516   if( pNew==0 ) return 0;
1517   pNew->nSrc = pNew->nAlloc = p->nSrc;
1518   for(i=0; i<p->nSrc; i++){
1519     struct SrcList_item *pNewItem = &pNew->a[i];
1520     struct SrcList_item *pOldItem = &p->a[i];
1521     Table *pTab;
1522     pNewItem->pSchema = pOldItem->pSchema;
1523     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1524     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1525     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1526     pNewItem->fg = pOldItem->fg;
1527     pNewItem->iCursor = pOldItem->iCursor;
1528     pNewItem->addrFillSub = pOldItem->addrFillSub;
1529     pNewItem->regReturn = pOldItem->regReturn;
1530     if( pNewItem->fg.isIndexedBy ){
1531       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1532     }
1533     pNewItem->pIBIndex = pOldItem->pIBIndex;
1534     if( pNewItem->fg.isTabFunc ){
1535       pNewItem->u1.pFuncArg =
1536           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1537     }
1538     pTab = pNewItem->pTab = pOldItem->pTab;
1539     if( pTab ){
1540       pTab->nTabRef++;
1541     }
1542     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1543     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1544     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1545     pNewItem->colUsed = pOldItem->colUsed;
1546   }
1547   return pNew;
1548 }
1549 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1550   IdList *pNew;
1551   int i;
1552   assert( db!=0 );
1553   if( p==0 ) return 0;
1554   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1555   if( pNew==0 ) return 0;
1556   pNew->nId = p->nId;
1557   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1558   if( pNew->a==0 ){
1559     sqlite3DbFreeNN(db, pNew);
1560     return 0;
1561   }
1562   /* Note that because the size of the allocation for p->a[] is not
1563   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1564   ** on the duplicate created by this function. */
1565   for(i=0; i<p->nId; i++){
1566     struct IdList_item *pNewItem = &pNew->a[i];
1567     struct IdList_item *pOldItem = &p->a[i];
1568     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1569     pNewItem->idx = pOldItem->idx;
1570   }
1571   return pNew;
1572 }
1573 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1574   Select *pRet = 0;
1575   Select *pNext = 0;
1576   Select **pp = &pRet;
1577   Select *p;
1578 
1579   assert( db!=0 );
1580   for(p=pDup; p; p=p->pPrior){
1581     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1582     if( pNew==0 ) break;
1583     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1584     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1585     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1586     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1587     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1588     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1589     pNew->op = p->op;
1590     pNew->pNext = pNext;
1591     pNew->pPrior = 0;
1592     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1593     pNew->iLimit = 0;
1594     pNew->iOffset = 0;
1595     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1596     pNew->addrOpenEphm[0] = -1;
1597     pNew->addrOpenEphm[1] = -1;
1598     pNew->nSelectRow = p->nSelectRow;
1599     pNew->pWith = withDup(db, p->pWith);
1600 #ifndef SQLITE_OMIT_WINDOWFUNC
1601     pNew->pWin = 0;
1602     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1603     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1604 #endif
1605     pNew->selId = p->selId;
1606     *pp = pNew;
1607     pp = &pNew->pPrior;
1608     pNext = pNew;
1609   }
1610 
1611   return pRet;
1612 }
1613 #else
1614 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1615   assert( p==0 );
1616   return 0;
1617 }
1618 #endif
1619 
1620 
1621 /*
1622 ** Add a new element to the end of an expression list.  If pList is
1623 ** initially NULL, then create a new expression list.
1624 **
1625 ** The pList argument must be either NULL or a pointer to an ExprList
1626 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1627 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1628 ** Reason:  This routine assumes that the number of slots in pList->a[]
1629 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1630 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1631 **
1632 ** If a memory allocation error occurs, the entire list is freed and
1633 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1634 ** that the new entry was successfully appended.
1635 */
1636 ExprList *sqlite3ExprListAppend(
1637   Parse *pParse,          /* Parsing context */
1638   ExprList *pList,        /* List to which to append. Might be NULL */
1639   Expr *pExpr             /* Expression to be appended. Might be NULL */
1640 ){
1641   struct ExprList_item *pItem;
1642   sqlite3 *db = pParse->db;
1643   assert( db!=0 );
1644   if( pList==0 ){
1645     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1646     if( pList==0 ){
1647       goto no_mem;
1648     }
1649     pList->nExpr = 0;
1650   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1651     ExprList *pNew;
1652     pNew = sqlite3DbRealloc(db, pList,
1653          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1654     if( pNew==0 ){
1655       goto no_mem;
1656     }
1657     pList = pNew;
1658   }
1659   pItem = &pList->a[pList->nExpr++];
1660   assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) );
1661   assert( offsetof(struct ExprList_item,pExpr)==0 );
1662   memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName));
1663   pItem->pExpr = pExpr;
1664   return pList;
1665 
1666 no_mem:
1667   /* Avoid leaking memory if malloc has failed. */
1668   sqlite3ExprDelete(db, pExpr);
1669   sqlite3ExprListDelete(db, pList);
1670   return 0;
1671 }
1672 
1673 /*
1674 ** pColumns and pExpr form a vector assignment which is part of the SET
1675 ** clause of an UPDATE statement.  Like this:
1676 **
1677 **        (a,b,c) = (expr1,expr2,expr3)
1678 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1679 **
1680 ** For each term of the vector assignment, append new entries to the
1681 ** expression list pList.  In the case of a subquery on the RHS, append
1682 ** TK_SELECT_COLUMN expressions.
1683 */
1684 ExprList *sqlite3ExprListAppendVector(
1685   Parse *pParse,         /* Parsing context */
1686   ExprList *pList,       /* List to which to append. Might be NULL */
1687   IdList *pColumns,      /* List of names of LHS of the assignment */
1688   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1689 ){
1690   sqlite3 *db = pParse->db;
1691   int n;
1692   int i;
1693   int iFirst = pList ? pList->nExpr : 0;
1694   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1695   ** exit prior to this routine being invoked */
1696   if( NEVER(pColumns==0) ) goto vector_append_error;
1697   if( pExpr==0 ) goto vector_append_error;
1698 
1699   /* If the RHS is a vector, then we can immediately check to see that
1700   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1701   ** wildcards ("*") in the result set of the SELECT must be expanded before
1702   ** we can do the size check, so defer the size check until code generation.
1703   */
1704   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1705     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1706                     pColumns->nId, n);
1707     goto vector_append_error;
1708   }
1709 
1710   for(i=0; i<pColumns->nId; i++){
1711     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1712     assert( pSubExpr!=0 || db->mallocFailed );
1713     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1714     if( pSubExpr==0 ) continue;
1715     pSubExpr->iTable = pColumns->nId;
1716     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1717     if( pList ){
1718       assert( pList->nExpr==iFirst+i+1 );
1719       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1720       pColumns->a[i].zName = 0;
1721     }
1722   }
1723 
1724   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1725     Expr *pFirst = pList->a[iFirst].pExpr;
1726     assert( pFirst!=0 );
1727     assert( pFirst->op==TK_SELECT_COLUMN );
1728 
1729     /* Store the SELECT statement in pRight so it will be deleted when
1730     ** sqlite3ExprListDelete() is called */
1731     pFirst->pRight = pExpr;
1732     pExpr = 0;
1733 
1734     /* Remember the size of the LHS in iTable so that we can check that
1735     ** the RHS and LHS sizes match during code generation. */
1736     pFirst->iTable = pColumns->nId;
1737   }
1738 
1739 vector_append_error:
1740   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1741   sqlite3IdListDelete(db, pColumns);
1742   return pList;
1743 }
1744 
1745 /*
1746 ** Set the sort order for the last element on the given ExprList.
1747 */
1748 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1749   struct ExprList_item *pItem;
1750   if( p==0 ) return;
1751   assert( p->nExpr>0 );
1752 
1753   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1754   assert( iSortOrder==SQLITE_SO_UNDEFINED
1755        || iSortOrder==SQLITE_SO_ASC
1756        || iSortOrder==SQLITE_SO_DESC
1757   );
1758   assert( eNulls==SQLITE_SO_UNDEFINED
1759        || eNulls==SQLITE_SO_ASC
1760        || eNulls==SQLITE_SO_DESC
1761   );
1762 
1763   pItem = &p->a[p->nExpr-1];
1764   assert( pItem->bNulls==0 );
1765   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1766     iSortOrder = SQLITE_SO_ASC;
1767   }
1768   pItem->sortFlags = (u8)iSortOrder;
1769 
1770   if( eNulls!=SQLITE_SO_UNDEFINED ){
1771     pItem->bNulls = 1;
1772     if( iSortOrder!=eNulls ){
1773       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1774     }
1775   }
1776 }
1777 
1778 /*
1779 ** Set the ExprList.a[].zEName element of the most recently added item
1780 ** on the expression list.
1781 **
1782 ** pList might be NULL following an OOM error.  But pName should never be
1783 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1784 ** is set.
1785 */
1786 void sqlite3ExprListSetName(
1787   Parse *pParse,          /* Parsing context */
1788   ExprList *pList,        /* List to which to add the span. */
1789   Token *pName,           /* Name to be added */
1790   int dequote             /* True to cause the name to be dequoted */
1791 ){
1792   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1793   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1794   if( pList ){
1795     struct ExprList_item *pItem;
1796     assert( pList->nExpr>0 );
1797     pItem = &pList->a[pList->nExpr-1];
1798     assert( pItem->zEName==0 );
1799     assert( pItem->eEName==ENAME_NAME );
1800     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1801     if( dequote ){
1802       /* If dequote==0, then pName->z does not point to part of a DDL
1803       ** statement handled by the parser. And so no token need be added
1804       ** to the token-map.  */
1805       sqlite3Dequote(pItem->zEName);
1806       if( IN_RENAME_OBJECT ){
1807         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1808       }
1809     }
1810   }
1811 }
1812 
1813 /*
1814 ** Set the ExprList.a[].zSpan element of the most recently added item
1815 ** on the expression list.
1816 **
1817 ** pList might be NULL following an OOM error.  But pSpan should never be
1818 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1819 ** is set.
1820 */
1821 void sqlite3ExprListSetSpan(
1822   Parse *pParse,          /* Parsing context */
1823   ExprList *pList,        /* List to which to add the span. */
1824   const char *zStart,     /* Start of the span */
1825   const char *zEnd        /* End of the span */
1826 ){
1827   sqlite3 *db = pParse->db;
1828   assert( pList!=0 || db->mallocFailed!=0 );
1829   if( pList ){
1830     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1831     assert( pList->nExpr>0 );
1832     if( pItem->zEName==0 ){
1833       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1834       pItem->eEName = ENAME_SPAN;
1835     }
1836   }
1837 }
1838 
1839 /*
1840 ** If the expression list pEList contains more than iLimit elements,
1841 ** leave an error message in pParse.
1842 */
1843 void sqlite3ExprListCheckLength(
1844   Parse *pParse,
1845   ExprList *pEList,
1846   const char *zObject
1847 ){
1848   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1849   testcase( pEList && pEList->nExpr==mx );
1850   testcase( pEList && pEList->nExpr==mx+1 );
1851   if( pEList && pEList->nExpr>mx ){
1852     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1853   }
1854 }
1855 
1856 /*
1857 ** Delete an entire expression list.
1858 */
1859 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1860   int i = pList->nExpr;
1861   struct ExprList_item *pItem =  pList->a;
1862   assert( pList->nExpr>0 );
1863   do{
1864     sqlite3ExprDelete(db, pItem->pExpr);
1865     sqlite3DbFree(db, pItem->zEName);
1866     pItem++;
1867   }while( --i>0 );
1868   sqlite3DbFreeNN(db, pList);
1869 }
1870 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1871   if( pList ) exprListDeleteNN(db, pList);
1872 }
1873 
1874 /*
1875 ** Return the bitwise-OR of all Expr.flags fields in the given
1876 ** ExprList.
1877 */
1878 u32 sqlite3ExprListFlags(const ExprList *pList){
1879   int i;
1880   u32 m = 0;
1881   assert( pList!=0 );
1882   for(i=0; i<pList->nExpr; i++){
1883      Expr *pExpr = pList->a[i].pExpr;
1884      assert( pExpr!=0 );
1885      m |= pExpr->flags;
1886   }
1887   return m;
1888 }
1889 
1890 /*
1891 ** This is a SELECT-node callback for the expression walker that
1892 ** always "fails".  By "fail" in this case, we mean set
1893 ** pWalker->eCode to zero and abort.
1894 **
1895 ** This callback is used by multiple expression walkers.
1896 */
1897 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1898   UNUSED_PARAMETER(NotUsed);
1899   pWalker->eCode = 0;
1900   return WRC_Abort;
1901 }
1902 
1903 /*
1904 ** Check the input string to see if it is "true" or "false" (in any case).
1905 **
1906 **       If the string is....           Return
1907 **         "true"                         EP_IsTrue
1908 **         "false"                        EP_IsFalse
1909 **         anything else                  0
1910 */
1911 u32 sqlite3IsTrueOrFalse(const char *zIn){
1912   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1913   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1914   return 0;
1915 }
1916 
1917 
1918 /*
1919 ** If the input expression is an ID with the name "true" or "false"
1920 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1921 ** the conversion happened, and zero if the expression is unaltered.
1922 */
1923 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1924   u32 v;
1925   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1926   if( !ExprHasProperty(pExpr, EP_Quoted)
1927    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1928   ){
1929     pExpr->op = TK_TRUEFALSE;
1930     ExprSetProperty(pExpr, v);
1931     return 1;
1932   }
1933   return 0;
1934 }
1935 
1936 /*
1937 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1938 ** and 0 if it is FALSE.
1939 */
1940 int sqlite3ExprTruthValue(const Expr *pExpr){
1941   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1942   assert( pExpr->op==TK_TRUEFALSE );
1943   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1944        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1945   return pExpr->u.zToken[4]==0;
1946 }
1947 
1948 /*
1949 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1950 ** terms that are always true or false.  Return the simplified expression.
1951 ** Or return the original expression if no simplification is possible.
1952 **
1953 ** Examples:
1954 **
1955 **     (x<10) AND true                =>   (x<10)
1956 **     (x<10) AND false               =>   false
1957 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1958 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1959 **     (y=22) OR true                 =>   true
1960 */
1961 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1962   assert( pExpr!=0 );
1963   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1964     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1965     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1966     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1967       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1968     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1969       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1970     }
1971   }
1972   return pExpr;
1973 }
1974 
1975 
1976 /*
1977 ** These routines are Walker callbacks used to check expressions to
1978 ** see if they are "constant" for some definition of constant.  The
1979 ** Walker.eCode value determines the type of "constant" we are looking
1980 ** for.
1981 **
1982 ** These callback routines are used to implement the following:
1983 **
1984 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1985 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1986 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1987 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1988 **
1989 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1990 ** is found to not be a constant.
1991 **
1992 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
1993 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
1994 ** when parsing an existing schema out of the sqlite_schema table and 4
1995 ** when processing a new CREATE TABLE statement.  A bound parameter raises
1996 ** an error for new statements, but is silently converted
1997 ** to NULL for existing schemas.  This allows sqlite_schema tables that
1998 ** contain a bound parameter because they were generated by older versions
1999 ** of SQLite to be parsed by newer versions of SQLite without raising a
2000 ** malformed schema error.
2001 */
2002 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2003 
2004   /* If pWalker->eCode is 2 then any term of the expression that comes from
2005   ** the ON or USING clauses of a left join disqualifies the expression
2006   ** from being considered constant. */
2007   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2008     pWalker->eCode = 0;
2009     return WRC_Abort;
2010   }
2011 
2012   switch( pExpr->op ){
2013     /* Consider functions to be constant if all their arguments are constant
2014     ** and either pWalker->eCode==4 or 5 or the function has the
2015     ** SQLITE_FUNC_CONST flag. */
2016     case TK_FUNCTION:
2017       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2018        && !ExprHasProperty(pExpr, EP_WinFunc)
2019       ){
2020         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2021         return WRC_Continue;
2022       }else{
2023         pWalker->eCode = 0;
2024         return WRC_Abort;
2025       }
2026     case TK_ID:
2027       /* Convert "true" or "false" in a DEFAULT clause into the
2028       ** appropriate TK_TRUEFALSE operator */
2029       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2030         return WRC_Prune;
2031       }
2032       /* no break */ deliberate_fall_through
2033     case TK_COLUMN:
2034     case TK_AGG_FUNCTION:
2035     case TK_AGG_COLUMN:
2036       testcase( pExpr->op==TK_ID );
2037       testcase( pExpr->op==TK_COLUMN );
2038       testcase( pExpr->op==TK_AGG_FUNCTION );
2039       testcase( pExpr->op==TK_AGG_COLUMN );
2040       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2041         return WRC_Continue;
2042       }
2043       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2044         return WRC_Continue;
2045       }
2046       /* no break */ deliberate_fall_through
2047     case TK_IF_NULL_ROW:
2048     case TK_REGISTER:
2049     case TK_DOT:
2050       testcase( pExpr->op==TK_REGISTER );
2051       testcase( pExpr->op==TK_IF_NULL_ROW );
2052       testcase( pExpr->op==TK_DOT );
2053       pWalker->eCode = 0;
2054       return WRC_Abort;
2055     case TK_VARIABLE:
2056       if( pWalker->eCode==5 ){
2057         /* Silently convert bound parameters that appear inside of CREATE
2058         ** statements into a NULL when parsing the CREATE statement text out
2059         ** of the sqlite_schema table */
2060         pExpr->op = TK_NULL;
2061       }else if( pWalker->eCode==4 ){
2062         /* A bound parameter in a CREATE statement that originates from
2063         ** sqlite3_prepare() causes an error */
2064         pWalker->eCode = 0;
2065         return WRC_Abort;
2066       }
2067       /* no break */ deliberate_fall_through
2068     default:
2069       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2070       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2071       return WRC_Continue;
2072   }
2073 }
2074 static int exprIsConst(Expr *p, int initFlag, int iCur){
2075   Walker w;
2076   w.eCode = initFlag;
2077   w.xExprCallback = exprNodeIsConstant;
2078   w.xSelectCallback = sqlite3SelectWalkFail;
2079 #ifdef SQLITE_DEBUG
2080   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2081 #endif
2082   w.u.iCur = iCur;
2083   sqlite3WalkExpr(&w, p);
2084   return w.eCode;
2085 }
2086 
2087 /*
2088 ** Walk an expression tree.  Return non-zero if the expression is constant
2089 ** and 0 if it involves variables or function calls.
2090 **
2091 ** For the purposes of this function, a double-quoted string (ex: "abc")
2092 ** is considered a variable but a single-quoted string (ex: 'abc') is
2093 ** a constant.
2094 */
2095 int sqlite3ExprIsConstant(Expr *p){
2096   return exprIsConst(p, 1, 0);
2097 }
2098 
2099 /*
2100 ** Walk an expression tree.  Return non-zero if
2101 **
2102 **   (1) the expression is constant, and
2103 **   (2) the expression does originate in the ON or USING clause
2104 **       of a LEFT JOIN, and
2105 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2106 **       operands created by the constant propagation optimization.
2107 **
2108 ** When this routine returns true, it indicates that the expression
2109 ** can be added to the pParse->pConstExpr list and evaluated once when
2110 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2111 */
2112 int sqlite3ExprIsConstantNotJoin(Expr *p){
2113   return exprIsConst(p, 2, 0);
2114 }
2115 
2116 /*
2117 ** Walk an expression tree.  Return non-zero if the expression is constant
2118 ** for any single row of the table with cursor iCur.  In other words, the
2119 ** expression must not refer to any non-deterministic function nor any
2120 ** table other than iCur.
2121 */
2122 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2123   return exprIsConst(p, 3, iCur);
2124 }
2125 
2126 
2127 /*
2128 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2129 */
2130 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2131   ExprList *pGroupBy = pWalker->u.pGroupBy;
2132   int i;
2133 
2134   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2135   ** it constant.  */
2136   for(i=0; i<pGroupBy->nExpr; i++){
2137     Expr *p = pGroupBy->a[i].pExpr;
2138     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2139       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2140       if( sqlite3IsBinary(pColl) ){
2141         return WRC_Prune;
2142       }
2143     }
2144   }
2145 
2146   /* Check if pExpr is a sub-select. If so, consider it variable. */
2147   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2148     pWalker->eCode = 0;
2149     return WRC_Abort;
2150   }
2151 
2152   return exprNodeIsConstant(pWalker, pExpr);
2153 }
2154 
2155 /*
2156 ** Walk the expression tree passed as the first argument. Return non-zero
2157 ** if the expression consists entirely of constants or copies of terms
2158 ** in pGroupBy that sort with the BINARY collation sequence.
2159 **
2160 ** This routine is used to determine if a term of the HAVING clause can
2161 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2162 ** the value of the HAVING clause term must be the same for all members of
2163 ** a "group".  The requirement that the GROUP BY term must be BINARY
2164 ** assumes that no other collating sequence will have a finer-grained
2165 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2166 ** A=B in every other collating sequence.  The requirement that the
2167 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2168 ** to promote HAVING clauses that use the same alternative collating
2169 ** sequence as the GROUP BY term, but that is much harder to check,
2170 ** alternative collating sequences are uncommon, and this is only an
2171 ** optimization, so we take the easy way out and simply require the
2172 ** GROUP BY to use the BINARY collating sequence.
2173 */
2174 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2175   Walker w;
2176   w.eCode = 1;
2177   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2178   w.xSelectCallback = 0;
2179   w.u.pGroupBy = pGroupBy;
2180   w.pParse = pParse;
2181   sqlite3WalkExpr(&w, p);
2182   return w.eCode;
2183 }
2184 
2185 /*
2186 ** Walk an expression tree for the DEFAULT field of a column definition
2187 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2188 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2189 ** the expression is constant or a function call with constant arguments.
2190 ** Return and 0 if there are any variables.
2191 **
2192 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2193 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2194 ** (such as ? or $abc) in the expression are converted into NULL.  When
2195 ** isInit is false, parameters raise an error.  Parameters should not be
2196 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2197 ** allowed it, so we need to support it when reading sqlite_schema for
2198 ** backwards compatibility.
2199 **
2200 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2201 **
2202 ** For the purposes of this function, a double-quoted string (ex: "abc")
2203 ** is considered a variable but a single-quoted string (ex: 'abc') is
2204 ** a constant.
2205 */
2206 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2207   assert( isInit==0 || isInit==1 );
2208   return exprIsConst(p, 4+isInit, 0);
2209 }
2210 
2211 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2212 /*
2213 ** Walk an expression tree.  Return 1 if the expression contains a
2214 ** subquery of some kind.  Return 0 if there are no subqueries.
2215 */
2216 int sqlite3ExprContainsSubquery(Expr *p){
2217   Walker w;
2218   w.eCode = 1;
2219   w.xExprCallback = sqlite3ExprWalkNoop;
2220   w.xSelectCallback = sqlite3SelectWalkFail;
2221 #ifdef SQLITE_DEBUG
2222   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2223 #endif
2224   sqlite3WalkExpr(&w, p);
2225   return w.eCode==0;
2226 }
2227 #endif
2228 
2229 /*
2230 ** If the expression p codes a constant integer that is small enough
2231 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2232 ** in *pValue.  If the expression is not an integer or if it is too big
2233 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2234 */
2235 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2236   int rc = 0;
2237   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2238 
2239   /* If an expression is an integer literal that fits in a signed 32-bit
2240   ** integer, then the EP_IntValue flag will have already been set */
2241   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2242            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2243 
2244   if( p->flags & EP_IntValue ){
2245     *pValue = p->u.iValue;
2246     return 1;
2247   }
2248   switch( p->op ){
2249     case TK_UPLUS: {
2250       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2251       break;
2252     }
2253     case TK_UMINUS: {
2254       int v;
2255       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2256         assert( v!=(-2147483647-1) );
2257         *pValue = -v;
2258         rc = 1;
2259       }
2260       break;
2261     }
2262     default: break;
2263   }
2264   return rc;
2265 }
2266 
2267 /*
2268 ** Return FALSE if there is no chance that the expression can be NULL.
2269 **
2270 ** If the expression might be NULL or if the expression is too complex
2271 ** to tell return TRUE.
2272 **
2273 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2274 ** when we know that a value cannot be NULL.  Hence, a false positive
2275 ** (returning TRUE when in fact the expression can never be NULL) might
2276 ** be a small performance hit but is otherwise harmless.  On the other
2277 ** hand, a false negative (returning FALSE when the result could be NULL)
2278 ** will likely result in an incorrect answer.  So when in doubt, return
2279 ** TRUE.
2280 */
2281 int sqlite3ExprCanBeNull(const Expr *p){
2282   u8 op;
2283   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2284     p = p->pLeft;
2285   }
2286   op = p->op;
2287   if( op==TK_REGISTER ) op = p->op2;
2288   switch( op ){
2289     case TK_INTEGER:
2290     case TK_STRING:
2291     case TK_FLOAT:
2292     case TK_BLOB:
2293       return 0;
2294     case TK_COLUMN:
2295       return ExprHasProperty(p, EP_CanBeNull) ||
2296              p->y.pTab==0 ||  /* Reference to column of index on expression */
2297              (p->iColumn>=0
2298               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2299               && p->y.pTab->aCol[p->iColumn].notNull==0);
2300     default:
2301       return 1;
2302   }
2303 }
2304 
2305 /*
2306 ** Return TRUE if the given expression is a constant which would be
2307 ** unchanged by OP_Affinity with the affinity given in the second
2308 ** argument.
2309 **
2310 ** This routine is used to determine if the OP_Affinity operation
2311 ** can be omitted.  When in doubt return FALSE.  A false negative
2312 ** is harmless.  A false positive, however, can result in the wrong
2313 ** answer.
2314 */
2315 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2316   u8 op;
2317   int unaryMinus = 0;
2318   if( aff==SQLITE_AFF_BLOB ) return 1;
2319   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2320     if( p->op==TK_UMINUS ) unaryMinus = 1;
2321     p = p->pLeft;
2322   }
2323   op = p->op;
2324   if( op==TK_REGISTER ) op = p->op2;
2325   switch( op ){
2326     case TK_INTEGER: {
2327       return aff>=SQLITE_AFF_NUMERIC;
2328     }
2329     case TK_FLOAT: {
2330       return aff>=SQLITE_AFF_NUMERIC;
2331     }
2332     case TK_STRING: {
2333       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2334     }
2335     case TK_BLOB: {
2336       return !unaryMinus;
2337     }
2338     case TK_COLUMN: {
2339       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2340       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2341     }
2342     default: {
2343       return 0;
2344     }
2345   }
2346 }
2347 
2348 /*
2349 ** Return TRUE if the given string is a row-id column name.
2350 */
2351 int sqlite3IsRowid(const char *z){
2352   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2353   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2354   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2355   return 0;
2356 }
2357 
2358 /*
2359 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2360 ** that can be simplified to a direct table access, then return
2361 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2362 ** or if the SELECT statement needs to be manifested into a transient
2363 ** table, then return NULL.
2364 */
2365 #ifndef SQLITE_OMIT_SUBQUERY
2366 static Select *isCandidateForInOpt(Expr *pX){
2367   Select *p;
2368   SrcList *pSrc;
2369   ExprList *pEList;
2370   Table *pTab;
2371   int i;
2372   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2373   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2374   p = pX->x.pSelect;
2375   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2376   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2377     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2378     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2379     return 0; /* No DISTINCT keyword and no aggregate functions */
2380   }
2381   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2382   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2383   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2384   pSrc = p->pSrc;
2385   assert( pSrc!=0 );
2386   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2387   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2388   pTab = pSrc->a[0].pTab;
2389   assert( pTab!=0 );
2390   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2391   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2392   pEList = p->pEList;
2393   assert( pEList!=0 );
2394   /* All SELECT results must be columns. */
2395   for(i=0; i<pEList->nExpr; i++){
2396     Expr *pRes = pEList->a[i].pExpr;
2397     if( pRes->op!=TK_COLUMN ) return 0;
2398     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2399   }
2400   return p;
2401 }
2402 #endif /* SQLITE_OMIT_SUBQUERY */
2403 
2404 #ifndef SQLITE_OMIT_SUBQUERY
2405 /*
2406 ** Generate code that checks the left-most column of index table iCur to see if
2407 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2408 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2409 ** to be set to NULL if iCur contains one or more NULL values.
2410 */
2411 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2412   int addr1;
2413   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2414   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2415   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2416   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2417   VdbeComment((v, "first_entry_in(%d)", iCur));
2418   sqlite3VdbeJumpHere(v, addr1);
2419 }
2420 #endif
2421 
2422 
2423 #ifndef SQLITE_OMIT_SUBQUERY
2424 /*
2425 ** The argument is an IN operator with a list (not a subquery) on the
2426 ** right-hand side.  Return TRUE if that list is constant.
2427 */
2428 static int sqlite3InRhsIsConstant(Expr *pIn){
2429   Expr *pLHS;
2430   int res;
2431   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2432   pLHS = pIn->pLeft;
2433   pIn->pLeft = 0;
2434   res = sqlite3ExprIsConstant(pIn);
2435   pIn->pLeft = pLHS;
2436   return res;
2437 }
2438 #endif
2439 
2440 /*
2441 ** This function is used by the implementation of the IN (...) operator.
2442 ** The pX parameter is the expression on the RHS of the IN operator, which
2443 ** might be either a list of expressions or a subquery.
2444 **
2445 ** The job of this routine is to find or create a b-tree object that can
2446 ** be used either to test for membership in the RHS set or to iterate through
2447 ** all members of the RHS set, skipping duplicates.
2448 **
2449 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2450 ** and pX->iTable is set to the index of that cursor.
2451 **
2452 ** The returned value of this function indicates the b-tree type, as follows:
2453 **
2454 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2455 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2456 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2457 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2458 **                         populated epheremal table.
2459 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2460 **                         implemented as a sequence of comparisons.
2461 **
2462 ** An existing b-tree might be used if the RHS expression pX is a simple
2463 ** subquery such as:
2464 **
2465 **     SELECT <column1>, <column2>... FROM <table>
2466 **
2467 ** If the RHS of the IN operator is a list or a more complex subquery, then
2468 ** an ephemeral table might need to be generated from the RHS and then
2469 ** pX->iTable made to point to the ephemeral table instead of an
2470 ** existing table.
2471 **
2472 ** The inFlags parameter must contain, at a minimum, one of the bits
2473 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2474 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2475 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2476 ** be used to loop over all values of the RHS of the IN operator.
2477 **
2478 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2479 ** through the set members) then the b-tree must not contain duplicates.
2480 ** An epheremal table will be created unless the selected columns are guaranteed
2481 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2482 ** a UNIQUE constraint or index.
2483 **
2484 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2485 ** for fast set membership tests) then an epheremal table must
2486 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2487 ** index can be found with the specified <columns> as its left-most.
2488 **
2489 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2490 ** if the RHS of the IN operator is a list (not a subquery) then this
2491 ** routine might decide that creating an ephemeral b-tree for membership
2492 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2493 ** calling routine should implement the IN operator using a sequence
2494 ** of Eq or Ne comparison operations.
2495 **
2496 ** When the b-tree is being used for membership tests, the calling function
2497 ** might need to know whether or not the RHS side of the IN operator
2498 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2499 ** if there is any chance that the (...) might contain a NULL value at
2500 ** runtime, then a register is allocated and the register number written
2501 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2502 ** NULL value, then *prRhsHasNull is left unchanged.
2503 **
2504 ** If a register is allocated and its location stored in *prRhsHasNull, then
2505 ** the value in that register will be NULL if the b-tree contains one or more
2506 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2507 ** NULL values.
2508 **
2509 ** If the aiMap parameter is not NULL, it must point to an array containing
2510 ** one element for each column returned by the SELECT statement on the RHS
2511 ** of the IN(...) operator. The i'th entry of the array is populated with the
2512 ** offset of the index column that matches the i'th column returned by the
2513 ** SELECT. For example, if the expression and selected index are:
2514 **
2515 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2516 **   CREATE INDEX i1 ON t1(b, c, a);
2517 **
2518 ** then aiMap[] is populated with {2, 0, 1}.
2519 */
2520 #ifndef SQLITE_OMIT_SUBQUERY
2521 int sqlite3FindInIndex(
2522   Parse *pParse,             /* Parsing context */
2523   Expr *pX,                  /* The IN expression */
2524   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2525   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2526   int *aiMap,                /* Mapping from Index fields to RHS fields */
2527   int *piTab                 /* OUT: index to use */
2528 ){
2529   Select *p;                            /* SELECT to the right of IN operator */
2530   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2531   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2532   int mustBeUnique;                     /* True if RHS must be unique */
2533   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2534 
2535   assert( pX->op==TK_IN );
2536   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2537 
2538   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2539   ** whether or not the SELECT result contains NULL values, check whether
2540   ** or not NULL is actually possible (it may not be, for example, due
2541   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2542   ** set prRhsHasNull to 0 before continuing.  */
2543   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2544     int i;
2545     ExprList *pEList = pX->x.pSelect->pEList;
2546     for(i=0; i<pEList->nExpr; i++){
2547       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2548     }
2549     if( i==pEList->nExpr ){
2550       prRhsHasNull = 0;
2551     }
2552   }
2553 
2554   /* Check to see if an existing table or index can be used to
2555   ** satisfy the query.  This is preferable to generating a new
2556   ** ephemeral table.  */
2557   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2558     sqlite3 *db = pParse->db;              /* Database connection */
2559     Table *pTab;                           /* Table <table>. */
2560     int iDb;                               /* Database idx for pTab */
2561     ExprList *pEList = p->pEList;
2562     int nExpr = pEList->nExpr;
2563 
2564     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2565     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2566     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2567     pTab = p->pSrc->a[0].pTab;
2568 
2569     /* Code an OP_Transaction and OP_TableLock for <table>. */
2570     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2571     assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED );
2572     sqlite3CodeVerifySchema(pParse, iDb);
2573     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2574 
2575     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2576     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2577       /* The "x IN (SELECT rowid FROM table)" case */
2578       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2579       VdbeCoverage(v);
2580 
2581       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2582       eType = IN_INDEX_ROWID;
2583       ExplainQueryPlan((pParse, 0,
2584             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2585       sqlite3VdbeJumpHere(v, iAddr);
2586     }else{
2587       Index *pIdx;                         /* Iterator variable */
2588       int affinity_ok = 1;
2589       int i;
2590 
2591       /* Check that the affinity that will be used to perform each
2592       ** comparison is the same as the affinity of each column in table
2593       ** on the RHS of the IN operator.  If it not, it is not possible to
2594       ** use any index of the RHS table.  */
2595       for(i=0; i<nExpr && affinity_ok; i++){
2596         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2597         int iCol = pEList->a[i].pExpr->iColumn;
2598         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2599         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2600         testcase( cmpaff==SQLITE_AFF_BLOB );
2601         testcase( cmpaff==SQLITE_AFF_TEXT );
2602         switch( cmpaff ){
2603           case SQLITE_AFF_BLOB:
2604             break;
2605           case SQLITE_AFF_TEXT:
2606             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2607             ** other has no affinity and the other side is TEXT.  Hence,
2608             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2609             ** and for the term on the LHS of the IN to have no affinity. */
2610             assert( idxaff==SQLITE_AFF_TEXT );
2611             break;
2612           default:
2613             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2614         }
2615       }
2616 
2617       if( affinity_ok ){
2618         /* Search for an existing index that will work for this IN operator */
2619         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2620           Bitmask colUsed;      /* Columns of the index used */
2621           Bitmask mCol;         /* Mask for the current column */
2622           if( pIdx->nColumn<nExpr ) continue;
2623           if( pIdx->pPartIdxWhere!=0 ) continue;
2624           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2625           ** BITMASK(nExpr) without overflowing */
2626           testcase( pIdx->nColumn==BMS-2 );
2627           testcase( pIdx->nColumn==BMS-1 );
2628           if( pIdx->nColumn>=BMS-1 ) continue;
2629           if( mustBeUnique ){
2630             if( pIdx->nKeyCol>nExpr
2631              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2632             ){
2633               continue;  /* This index is not unique over the IN RHS columns */
2634             }
2635           }
2636 
2637           colUsed = 0;   /* Columns of index used so far */
2638           for(i=0; i<nExpr; i++){
2639             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2640             Expr *pRhs = pEList->a[i].pExpr;
2641             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2642             int j;
2643 
2644             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2645             for(j=0; j<nExpr; j++){
2646               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2647               assert( pIdx->azColl[j] );
2648               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2649                 continue;
2650               }
2651               break;
2652             }
2653             if( j==nExpr ) break;
2654             mCol = MASKBIT(j);
2655             if( mCol & colUsed ) break; /* Each column used only once */
2656             colUsed |= mCol;
2657             if( aiMap ) aiMap[i] = j;
2658           }
2659 
2660           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2661           if( colUsed==(MASKBIT(nExpr)-1) ){
2662             /* If we reach this point, that means the index pIdx is usable */
2663             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2664             ExplainQueryPlan((pParse, 0,
2665                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2666             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2667             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2668             VdbeComment((v, "%s", pIdx->zName));
2669             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2670             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2671 
2672             if( prRhsHasNull ){
2673 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2674               i64 mask = (1<<nExpr)-1;
2675               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2676                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2677 #endif
2678               *prRhsHasNull = ++pParse->nMem;
2679               if( nExpr==1 ){
2680                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2681               }
2682             }
2683             sqlite3VdbeJumpHere(v, iAddr);
2684           }
2685         } /* End loop over indexes */
2686       } /* End if( affinity_ok ) */
2687     } /* End if not an rowid index */
2688   } /* End attempt to optimize using an index */
2689 
2690   /* If no preexisting index is available for the IN clause
2691   ** and IN_INDEX_NOOP is an allowed reply
2692   ** and the RHS of the IN operator is a list, not a subquery
2693   ** and the RHS is not constant or has two or fewer terms,
2694   ** then it is not worth creating an ephemeral table to evaluate
2695   ** the IN operator so return IN_INDEX_NOOP.
2696   */
2697   if( eType==0
2698    && (inFlags & IN_INDEX_NOOP_OK)
2699    && !ExprHasProperty(pX, EP_xIsSelect)
2700    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2701   ){
2702     eType = IN_INDEX_NOOP;
2703   }
2704 
2705   if( eType==0 ){
2706     /* Could not find an existing table or index to use as the RHS b-tree.
2707     ** We will have to generate an ephemeral table to do the job.
2708     */
2709     u32 savedNQueryLoop = pParse->nQueryLoop;
2710     int rMayHaveNull = 0;
2711     eType = IN_INDEX_EPH;
2712     if( inFlags & IN_INDEX_LOOP ){
2713       pParse->nQueryLoop = 0;
2714     }else if( prRhsHasNull ){
2715       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2716     }
2717     assert( pX->op==TK_IN );
2718     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2719     if( rMayHaveNull ){
2720       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2721     }
2722     pParse->nQueryLoop = savedNQueryLoop;
2723   }
2724 
2725   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2726     int i, n;
2727     n = sqlite3ExprVectorSize(pX->pLeft);
2728     for(i=0; i<n; i++) aiMap[i] = i;
2729   }
2730   *piTab = iTab;
2731   return eType;
2732 }
2733 #endif
2734 
2735 #ifndef SQLITE_OMIT_SUBQUERY
2736 /*
2737 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2738 ** function allocates and returns a nul-terminated string containing
2739 ** the affinities to be used for each column of the comparison.
2740 **
2741 ** It is the responsibility of the caller to ensure that the returned
2742 ** string is eventually freed using sqlite3DbFree().
2743 */
2744 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2745   Expr *pLeft = pExpr->pLeft;
2746   int nVal = sqlite3ExprVectorSize(pLeft);
2747   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2748   char *zRet;
2749 
2750   assert( pExpr->op==TK_IN );
2751   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2752   if( zRet ){
2753     int i;
2754     for(i=0; i<nVal; i++){
2755       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2756       char a = sqlite3ExprAffinity(pA);
2757       if( pSelect ){
2758         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2759       }else{
2760         zRet[i] = a;
2761       }
2762     }
2763     zRet[nVal] = '\0';
2764   }
2765   return zRet;
2766 }
2767 #endif
2768 
2769 #ifndef SQLITE_OMIT_SUBQUERY
2770 /*
2771 ** Load the Parse object passed as the first argument with an error
2772 ** message of the form:
2773 **
2774 **   "sub-select returns N columns - expected M"
2775 */
2776 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2777   if( pParse->nErr==0 ){
2778     const char *zFmt = "sub-select returns %d columns - expected %d";
2779     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2780   }
2781 }
2782 #endif
2783 
2784 /*
2785 ** Expression pExpr is a vector that has been used in a context where
2786 ** it is not permitted. If pExpr is a sub-select vector, this routine
2787 ** loads the Parse object with a message of the form:
2788 **
2789 **   "sub-select returns N columns - expected 1"
2790 **
2791 ** Or, if it is a regular scalar vector:
2792 **
2793 **   "row value misused"
2794 */
2795 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2796 #ifndef SQLITE_OMIT_SUBQUERY
2797   if( pExpr->flags & EP_xIsSelect ){
2798     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2799   }else
2800 #endif
2801   {
2802     sqlite3ErrorMsg(pParse, "row value misused");
2803   }
2804 }
2805 
2806 #ifndef SQLITE_OMIT_SUBQUERY
2807 /*
2808 ** Generate code that will construct an ephemeral table containing all terms
2809 ** in the RHS of an IN operator.  The IN operator can be in either of two
2810 ** forms:
2811 **
2812 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2813 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2814 **
2815 ** The pExpr parameter is the IN operator.  The cursor number for the
2816 ** constructed ephermeral table is returned.  The first time the ephemeral
2817 ** table is computed, the cursor number is also stored in pExpr->iTable,
2818 ** however the cursor number returned might not be the same, as it might
2819 ** have been duplicated using OP_OpenDup.
2820 **
2821 ** If the LHS expression ("x" in the examples) is a column value, or
2822 ** the SELECT statement returns a column value, then the affinity of that
2823 ** column is used to build the index keys. If both 'x' and the
2824 ** SELECT... statement are columns, then numeric affinity is used
2825 ** if either column has NUMERIC or INTEGER affinity. If neither
2826 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2827 ** is used.
2828 */
2829 void sqlite3CodeRhsOfIN(
2830   Parse *pParse,          /* Parsing context */
2831   Expr *pExpr,            /* The IN operator */
2832   int iTab                /* Use this cursor number */
2833 ){
2834   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2835   int addr;                   /* Address of OP_OpenEphemeral instruction */
2836   Expr *pLeft;                /* the LHS of the IN operator */
2837   KeyInfo *pKeyInfo = 0;      /* Key information */
2838   int nVal;                   /* Size of vector pLeft */
2839   Vdbe *v;                    /* The prepared statement under construction */
2840 
2841   v = pParse->pVdbe;
2842   assert( v!=0 );
2843 
2844   /* The evaluation of the IN must be repeated every time it
2845   ** is encountered if any of the following is true:
2846   **
2847   **    *  The right-hand side is a correlated subquery
2848   **    *  The right-hand side is an expression list containing variables
2849   **    *  We are inside a trigger
2850   **
2851   ** If all of the above are false, then we can compute the RHS just once
2852   ** and reuse it many names.
2853   */
2854   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2855     /* Reuse of the RHS is allowed */
2856     /* If this routine has already been coded, but the previous code
2857     ** might not have been invoked yet, so invoke it now as a subroutine.
2858     */
2859     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2860       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2861       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2862         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2863               pExpr->x.pSelect->selId));
2864       }
2865       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2866                         pExpr->y.sub.iAddr);
2867       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2868       sqlite3VdbeJumpHere(v, addrOnce);
2869       return;
2870     }
2871 
2872     /* Begin coding the subroutine */
2873     ExprSetProperty(pExpr, EP_Subrtn);
2874     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2875     pExpr->y.sub.regReturn = ++pParse->nMem;
2876     pExpr->y.sub.iAddr =
2877       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2878     VdbeComment((v, "return address"));
2879 
2880     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2881   }
2882 
2883   /* Check to see if this is a vector IN operator */
2884   pLeft = pExpr->pLeft;
2885   nVal = sqlite3ExprVectorSize(pLeft);
2886 
2887   /* Construct the ephemeral table that will contain the content of
2888   ** RHS of the IN operator.
2889   */
2890   pExpr->iTable = iTab;
2891   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2892 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2893   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2894     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2895   }else{
2896     VdbeComment((v, "RHS of IN operator"));
2897   }
2898 #endif
2899   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2900 
2901   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2902     /* Case 1:     expr IN (SELECT ...)
2903     **
2904     ** Generate code to write the results of the select into the temporary
2905     ** table allocated and opened above.
2906     */
2907     Select *pSelect = pExpr->x.pSelect;
2908     ExprList *pEList = pSelect->pEList;
2909 
2910     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2911         addrOnce?"":"CORRELATED ", pSelect->selId
2912     ));
2913     /* If the LHS and RHS of the IN operator do not match, that
2914     ** error will have been caught long before we reach this point. */
2915     if( ALWAYS(pEList->nExpr==nVal) ){
2916       SelectDest dest;
2917       int i;
2918       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2919       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2920       pSelect->iLimit = 0;
2921       testcase( pSelect->selFlags & SF_Distinct );
2922       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2923       if( sqlite3Select(pParse, pSelect, &dest) ){
2924         sqlite3DbFree(pParse->db, dest.zAffSdst);
2925         sqlite3KeyInfoUnref(pKeyInfo);
2926         return;
2927       }
2928       sqlite3DbFree(pParse->db, dest.zAffSdst);
2929       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2930       assert( pEList!=0 );
2931       assert( pEList->nExpr>0 );
2932       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2933       for(i=0; i<nVal; i++){
2934         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2935         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2936             pParse, p, pEList->a[i].pExpr
2937         );
2938       }
2939     }
2940   }else if( ALWAYS(pExpr->x.pList!=0) ){
2941     /* Case 2:     expr IN (exprlist)
2942     **
2943     ** For each expression, build an index key from the evaluation and
2944     ** store it in the temporary table. If <expr> is a column, then use
2945     ** that columns affinity when building index keys. If <expr> is not
2946     ** a column, use numeric affinity.
2947     */
2948     char affinity;            /* Affinity of the LHS of the IN */
2949     int i;
2950     ExprList *pList = pExpr->x.pList;
2951     struct ExprList_item *pItem;
2952     int r1, r2;
2953     affinity = sqlite3ExprAffinity(pLeft);
2954     if( affinity<=SQLITE_AFF_NONE ){
2955       affinity = SQLITE_AFF_BLOB;
2956     }else if( affinity==SQLITE_AFF_REAL ){
2957       affinity = SQLITE_AFF_NUMERIC;
2958     }
2959     if( pKeyInfo ){
2960       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2961       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2962     }
2963 
2964     /* Loop through each expression in <exprlist>. */
2965     r1 = sqlite3GetTempReg(pParse);
2966     r2 = sqlite3GetTempReg(pParse);
2967     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2968       Expr *pE2 = pItem->pExpr;
2969 
2970       /* If the expression is not constant then we will need to
2971       ** disable the test that was generated above that makes sure
2972       ** this code only executes once.  Because for a non-constant
2973       ** expression we need to rerun this code each time.
2974       */
2975       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2976         sqlite3VdbeChangeToNoop(v, addrOnce);
2977         ExprClearProperty(pExpr, EP_Subrtn);
2978         addrOnce = 0;
2979       }
2980 
2981       /* Evaluate the expression and insert it into the temp table */
2982       sqlite3ExprCode(pParse, pE2, r1);
2983       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2984       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2985     }
2986     sqlite3ReleaseTempReg(pParse, r1);
2987     sqlite3ReleaseTempReg(pParse, r2);
2988   }
2989   if( pKeyInfo ){
2990     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2991   }
2992   if( addrOnce ){
2993     sqlite3VdbeJumpHere(v, addrOnce);
2994     /* Subroutine return */
2995     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2996     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2997     sqlite3ClearTempRegCache(pParse);
2998   }
2999 }
3000 #endif /* SQLITE_OMIT_SUBQUERY */
3001 
3002 /*
3003 ** Generate code for scalar subqueries used as a subquery expression
3004 ** or EXISTS operator:
3005 **
3006 **     (SELECT a FROM b)          -- subquery
3007 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3008 **
3009 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3010 **
3011 ** Return the register that holds the result.  For a multi-column SELECT,
3012 ** the result is stored in a contiguous array of registers and the
3013 ** return value is the register of the left-most result column.
3014 ** Return 0 if an error occurs.
3015 */
3016 #ifndef SQLITE_OMIT_SUBQUERY
3017 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3018   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3019   int rReg = 0;               /* Register storing resulting */
3020   Select *pSel;               /* SELECT statement to encode */
3021   SelectDest dest;            /* How to deal with SELECT result */
3022   int nReg;                   /* Registers to allocate */
3023   Expr *pLimit;               /* New limit expression */
3024 
3025   Vdbe *v = pParse->pVdbe;
3026   assert( v!=0 );
3027   testcase( pExpr->op==TK_EXISTS );
3028   testcase( pExpr->op==TK_SELECT );
3029   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3030   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3031   pSel = pExpr->x.pSelect;
3032 
3033   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3034   ** is encountered if any of the following is true:
3035   **
3036   **    *  The right-hand side is a correlated subquery
3037   **    *  The right-hand side is an expression list containing variables
3038   **    *  We are inside a trigger
3039   **
3040   ** If all of the above are false, then we can run this code just once
3041   ** save the results, and reuse the same result on subsequent invocations.
3042   */
3043   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3044     /* If this routine has already been coded, then invoke it as a
3045     ** subroutine. */
3046     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3047       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3048       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3049                         pExpr->y.sub.iAddr);
3050       return pExpr->iTable;
3051     }
3052 
3053     /* Begin coding the subroutine */
3054     ExprSetProperty(pExpr, EP_Subrtn);
3055     pExpr->y.sub.regReturn = ++pParse->nMem;
3056     pExpr->y.sub.iAddr =
3057       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3058     VdbeComment((v, "return address"));
3059 
3060     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3061   }
3062 
3063   /* For a SELECT, generate code to put the values for all columns of
3064   ** the first row into an array of registers and return the index of
3065   ** the first register.
3066   **
3067   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3068   ** into a register and return that register number.
3069   **
3070   ** In both cases, the query is augmented with "LIMIT 1".  Any
3071   ** preexisting limit is discarded in place of the new LIMIT 1.
3072   */
3073   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3074         addrOnce?"":"CORRELATED ", pSel->selId));
3075   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3076   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3077   pParse->nMem += nReg;
3078   if( pExpr->op==TK_SELECT ){
3079     dest.eDest = SRT_Mem;
3080     dest.iSdst = dest.iSDParm;
3081     dest.nSdst = nReg;
3082     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3083     VdbeComment((v, "Init subquery result"));
3084   }else{
3085     dest.eDest = SRT_Exists;
3086     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3087     VdbeComment((v, "Init EXISTS result"));
3088   }
3089   if( pSel->pLimit ){
3090     /* The subquery already has a limit.  If the pre-existing limit is X
3091     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3092     sqlite3 *db = pParse->db;
3093     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3094     if( pLimit ){
3095       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3096       pLimit = sqlite3PExpr(pParse, TK_NE,
3097                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3098     }
3099     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3100     pSel->pLimit->pLeft = pLimit;
3101   }else{
3102     /* If there is no pre-existing limit add a limit of 1 */
3103     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3104     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3105   }
3106   pSel->iLimit = 0;
3107   if( sqlite3Select(pParse, pSel, &dest) ){
3108     return 0;
3109   }
3110   pExpr->iTable = rReg = dest.iSDParm;
3111   ExprSetVVAProperty(pExpr, EP_NoReduce);
3112   if( addrOnce ){
3113     sqlite3VdbeJumpHere(v, addrOnce);
3114 
3115     /* Subroutine return */
3116     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3117     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3118     sqlite3ClearTempRegCache(pParse);
3119   }
3120 
3121   return rReg;
3122 }
3123 #endif /* SQLITE_OMIT_SUBQUERY */
3124 
3125 #ifndef SQLITE_OMIT_SUBQUERY
3126 /*
3127 ** Expr pIn is an IN(...) expression. This function checks that the
3128 ** sub-select on the RHS of the IN() operator has the same number of
3129 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3130 ** a sub-query, that the LHS is a vector of size 1.
3131 */
3132 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3133   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3134   if( (pIn->flags & EP_xIsSelect) ){
3135     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3136       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3137       return 1;
3138     }
3139   }else if( nVector!=1 ){
3140     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3141     return 1;
3142   }
3143   return 0;
3144 }
3145 #endif
3146 
3147 #ifndef SQLITE_OMIT_SUBQUERY
3148 /*
3149 ** Generate code for an IN expression.
3150 **
3151 **      x IN (SELECT ...)
3152 **      x IN (value, value, ...)
3153 **
3154 ** The left-hand side (LHS) is a scalar or vector expression.  The
3155 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3156 ** subquery.  If the RHS is a subquery, the number of result columns must
3157 ** match the number of columns in the vector on the LHS.  If the RHS is
3158 ** a list of values, the LHS must be a scalar.
3159 **
3160 ** The IN operator is true if the LHS value is contained within the RHS.
3161 ** The result is false if the LHS is definitely not in the RHS.  The
3162 ** result is NULL if the presence of the LHS in the RHS cannot be
3163 ** determined due to NULLs.
3164 **
3165 ** This routine generates code that jumps to destIfFalse if the LHS is not
3166 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3167 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3168 ** within the RHS then fall through.
3169 **
3170 ** See the separate in-operator.md documentation file in the canonical
3171 ** SQLite source tree for additional information.
3172 */
3173 static void sqlite3ExprCodeIN(
3174   Parse *pParse,        /* Parsing and code generating context */
3175   Expr *pExpr,          /* The IN expression */
3176   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3177   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3178 ){
3179   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3180   int eType;            /* Type of the RHS */
3181   int rLhs;             /* Register(s) holding the LHS values */
3182   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3183   Vdbe *v;              /* Statement under construction */
3184   int *aiMap = 0;       /* Map from vector field to index column */
3185   char *zAff = 0;       /* Affinity string for comparisons */
3186   int nVector;          /* Size of vectors for this IN operator */
3187   int iDummy;           /* Dummy parameter to exprCodeVector() */
3188   Expr *pLeft;          /* The LHS of the IN operator */
3189   int i;                /* loop counter */
3190   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3191   int destStep6 = 0;    /* Start of code for Step 6 */
3192   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3193   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3194   int addrTop;          /* Top of the step-6 loop */
3195   int iTab = 0;         /* Index to use */
3196   u8 okConstFactor = pParse->okConstFactor;
3197 
3198   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3199   pLeft = pExpr->pLeft;
3200   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3201   zAff = exprINAffinity(pParse, pExpr);
3202   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3203   aiMap = (int*)sqlite3DbMallocZero(
3204       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3205   );
3206   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3207 
3208   /* Attempt to compute the RHS. After this step, if anything other than
3209   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3210   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3211   ** the RHS has not yet been coded.  */
3212   v = pParse->pVdbe;
3213   assert( v!=0 );       /* OOM detected prior to this routine */
3214   VdbeNoopComment((v, "begin IN expr"));
3215   eType = sqlite3FindInIndex(pParse, pExpr,
3216                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3217                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3218                              aiMap, &iTab);
3219 
3220   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3221        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3222   );
3223 #ifdef SQLITE_DEBUG
3224   /* Confirm that aiMap[] contains nVector integer values between 0 and
3225   ** nVector-1. */
3226   for(i=0; i<nVector; i++){
3227     int j, cnt;
3228     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3229     assert( cnt==1 );
3230   }
3231 #endif
3232 
3233   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3234   ** vector, then it is stored in an array of nVector registers starting
3235   ** at r1.
3236   **
3237   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3238   ** so that the fields are in the same order as an existing index.   The
3239   ** aiMap[] array contains a mapping from the original LHS field order to
3240   ** the field order that matches the RHS index.
3241   **
3242   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3243   ** even if it is constant, as OP_Affinity may be used on the register
3244   ** by code generated below.  */
3245   assert( pParse->okConstFactor==okConstFactor );
3246   pParse->okConstFactor = 0;
3247   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3248   pParse->okConstFactor = okConstFactor;
3249   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3250   if( i==nVector ){
3251     /* LHS fields are not reordered */
3252     rLhs = rLhsOrig;
3253   }else{
3254     /* Need to reorder the LHS fields according to aiMap */
3255     rLhs = sqlite3GetTempRange(pParse, nVector);
3256     for(i=0; i<nVector; i++){
3257       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3258     }
3259   }
3260 
3261   /* If sqlite3FindInIndex() did not find or create an index that is
3262   ** suitable for evaluating the IN operator, then evaluate using a
3263   ** sequence of comparisons.
3264   **
3265   ** This is step (1) in the in-operator.md optimized algorithm.
3266   */
3267   if( eType==IN_INDEX_NOOP ){
3268     ExprList *pList = pExpr->x.pList;
3269     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3270     int labelOk = sqlite3VdbeMakeLabel(pParse);
3271     int r2, regToFree;
3272     int regCkNull = 0;
3273     int ii;
3274     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3275     if( destIfNull!=destIfFalse ){
3276       regCkNull = sqlite3GetTempReg(pParse);
3277       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3278     }
3279     for(ii=0; ii<pList->nExpr; ii++){
3280       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3281       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3282         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3283       }
3284       sqlite3ReleaseTempReg(pParse, regToFree);
3285       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3286         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3287         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3288                           (void*)pColl, P4_COLLSEQ);
3289         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3290         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3291         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3292         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3293         sqlite3VdbeChangeP5(v, zAff[0]);
3294       }else{
3295         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3296         assert( destIfNull==destIfFalse );
3297         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3298                           (void*)pColl, P4_COLLSEQ);
3299         VdbeCoverageIf(v, op==OP_Ne);
3300         VdbeCoverageIf(v, op==OP_IsNull);
3301         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3302       }
3303     }
3304     if( regCkNull ){
3305       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3306       sqlite3VdbeGoto(v, destIfFalse);
3307     }
3308     sqlite3VdbeResolveLabel(v, labelOk);
3309     sqlite3ReleaseTempReg(pParse, regCkNull);
3310     goto sqlite3ExprCodeIN_finished;
3311   }
3312 
3313   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3314   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3315   ** We will then skip the binary search of the RHS.
3316   */
3317   if( destIfNull==destIfFalse ){
3318     destStep2 = destIfFalse;
3319   }else{
3320     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3321   }
3322   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3323   for(i=0; i<nVector; i++){
3324     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3325     if( sqlite3ExprCanBeNull(p) ){
3326       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3327       VdbeCoverage(v);
3328     }
3329   }
3330 
3331   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3332   ** of the RHS using the LHS as a probe.  If found, the result is
3333   ** true.
3334   */
3335   if( eType==IN_INDEX_ROWID ){
3336     /* In this case, the RHS is the ROWID of table b-tree and so we also
3337     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3338     ** into a single opcode. */
3339     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3340     VdbeCoverage(v);
3341     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3342   }else{
3343     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3344     if( destIfFalse==destIfNull ){
3345       /* Combine Step 3 and Step 5 into a single opcode */
3346       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3347                            rLhs, nVector); VdbeCoverage(v);
3348       goto sqlite3ExprCodeIN_finished;
3349     }
3350     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3351     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3352                                       rLhs, nVector); VdbeCoverage(v);
3353   }
3354 
3355   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3356   ** an match on the search above, then the result must be FALSE.
3357   */
3358   if( rRhsHasNull && nVector==1 ){
3359     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3360     VdbeCoverage(v);
3361   }
3362 
3363   /* Step 5.  If we do not care about the difference between NULL and
3364   ** FALSE, then just return false.
3365   */
3366   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3367 
3368   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3369   ** If any comparison is NULL, then the result is NULL.  If all
3370   ** comparisons are FALSE then the final result is FALSE.
3371   **
3372   ** For a scalar LHS, it is sufficient to check just the first row
3373   ** of the RHS.
3374   */
3375   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3376   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3377   VdbeCoverage(v);
3378   if( nVector>1 ){
3379     destNotNull = sqlite3VdbeMakeLabel(pParse);
3380   }else{
3381     /* For nVector==1, combine steps 6 and 7 by immediately returning
3382     ** FALSE if the first comparison is not NULL */
3383     destNotNull = destIfFalse;
3384   }
3385   for(i=0; i<nVector; i++){
3386     Expr *p;
3387     CollSeq *pColl;
3388     int r3 = sqlite3GetTempReg(pParse);
3389     p = sqlite3VectorFieldSubexpr(pLeft, i);
3390     pColl = sqlite3ExprCollSeq(pParse, p);
3391     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3392     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3393                       (void*)pColl, P4_COLLSEQ);
3394     VdbeCoverage(v);
3395     sqlite3ReleaseTempReg(pParse, r3);
3396   }
3397   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3398   if( nVector>1 ){
3399     sqlite3VdbeResolveLabel(v, destNotNull);
3400     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3401     VdbeCoverage(v);
3402 
3403     /* Step 7:  If we reach this point, we know that the result must
3404     ** be false. */
3405     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3406   }
3407 
3408   /* Jumps here in order to return true. */
3409   sqlite3VdbeJumpHere(v, addrTruthOp);
3410 
3411 sqlite3ExprCodeIN_finished:
3412   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3413   VdbeComment((v, "end IN expr"));
3414 sqlite3ExprCodeIN_oom_error:
3415   sqlite3DbFree(pParse->db, aiMap);
3416   sqlite3DbFree(pParse->db, zAff);
3417 }
3418 #endif /* SQLITE_OMIT_SUBQUERY */
3419 
3420 #ifndef SQLITE_OMIT_FLOATING_POINT
3421 /*
3422 ** Generate an instruction that will put the floating point
3423 ** value described by z[0..n-1] into register iMem.
3424 **
3425 ** The z[] string will probably not be zero-terminated.  But the
3426 ** z[n] character is guaranteed to be something that does not look
3427 ** like the continuation of the number.
3428 */
3429 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3430   if( ALWAYS(z!=0) ){
3431     double value;
3432     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3433     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3434     if( negateFlag ) value = -value;
3435     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3436   }
3437 }
3438 #endif
3439 
3440 
3441 /*
3442 ** Generate an instruction that will put the integer describe by
3443 ** text z[0..n-1] into register iMem.
3444 **
3445 ** Expr.u.zToken is always UTF8 and zero-terminated.
3446 */
3447 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3448   Vdbe *v = pParse->pVdbe;
3449   if( pExpr->flags & EP_IntValue ){
3450     int i = pExpr->u.iValue;
3451     assert( i>=0 );
3452     if( negFlag ) i = -i;
3453     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3454   }else{
3455     int c;
3456     i64 value;
3457     const char *z = pExpr->u.zToken;
3458     assert( z!=0 );
3459     c = sqlite3DecOrHexToI64(z, &value);
3460     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3461 #ifdef SQLITE_OMIT_FLOATING_POINT
3462       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3463 #else
3464 #ifndef SQLITE_OMIT_HEX_INTEGER
3465       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3466         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3467       }else
3468 #endif
3469       {
3470         codeReal(v, z, negFlag, iMem);
3471       }
3472 #endif
3473     }else{
3474       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3475       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3476     }
3477   }
3478 }
3479 
3480 
3481 /* Generate code that will load into register regOut a value that is
3482 ** appropriate for the iIdxCol-th column of index pIdx.
3483 */
3484 void sqlite3ExprCodeLoadIndexColumn(
3485   Parse *pParse,  /* The parsing context */
3486   Index *pIdx,    /* The index whose column is to be loaded */
3487   int iTabCur,    /* Cursor pointing to a table row */
3488   int iIdxCol,    /* The column of the index to be loaded */
3489   int regOut      /* Store the index column value in this register */
3490 ){
3491   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3492   if( iTabCol==XN_EXPR ){
3493     assert( pIdx->aColExpr );
3494     assert( pIdx->aColExpr->nExpr>iIdxCol );
3495     pParse->iSelfTab = iTabCur + 1;
3496     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3497     pParse->iSelfTab = 0;
3498   }else{
3499     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3500                                     iTabCol, regOut);
3501   }
3502 }
3503 
3504 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3505 /*
3506 ** Generate code that will compute the value of generated column pCol
3507 ** and store the result in register regOut
3508 */
3509 void sqlite3ExprCodeGeneratedColumn(
3510   Parse *pParse,
3511   Column *pCol,
3512   int regOut
3513 ){
3514   int iAddr;
3515   Vdbe *v = pParse->pVdbe;
3516   assert( v!=0 );
3517   assert( pParse->iSelfTab!=0 );
3518   if( pParse->iSelfTab>0 ){
3519     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3520   }else{
3521     iAddr = 0;
3522   }
3523   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3524   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3525     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3526   }
3527   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3528 }
3529 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3530 
3531 /*
3532 ** Generate code to extract the value of the iCol-th column of a table.
3533 */
3534 void sqlite3ExprCodeGetColumnOfTable(
3535   Vdbe *v,        /* Parsing context */
3536   Table *pTab,    /* The table containing the value */
3537   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3538   int iCol,       /* Index of the column to extract */
3539   int regOut      /* Extract the value into this register */
3540 ){
3541   Column *pCol;
3542   assert( v!=0 );
3543   if( pTab==0 ){
3544     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3545     return;
3546   }
3547   if( iCol<0 || iCol==pTab->iPKey ){
3548     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3549   }else{
3550     int op;
3551     int x;
3552     if( IsVirtual(pTab) ){
3553       op = OP_VColumn;
3554       x = iCol;
3555 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3556     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3557       Parse *pParse = sqlite3VdbeParser(v);
3558       if( pCol->colFlags & COLFLAG_BUSY ){
3559         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3560       }else{
3561         int savedSelfTab = pParse->iSelfTab;
3562         pCol->colFlags |= COLFLAG_BUSY;
3563         pParse->iSelfTab = iTabCur+1;
3564         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3565         pParse->iSelfTab = savedSelfTab;
3566         pCol->colFlags &= ~COLFLAG_BUSY;
3567       }
3568       return;
3569 #endif
3570     }else if( !HasRowid(pTab) ){
3571       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3572       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3573       op = OP_Column;
3574     }else{
3575       x = sqlite3TableColumnToStorage(pTab,iCol);
3576       testcase( x!=iCol );
3577       op = OP_Column;
3578     }
3579     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3580     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3581   }
3582 }
3583 
3584 /*
3585 ** Generate code that will extract the iColumn-th column from
3586 ** table pTab and store the column value in register iReg.
3587 **
3588 ** There must be an open cursor to pTab in iTable when this routine
3589 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3590 */
3591 int sqlite3ExprCodeGetColumn(
3592   Parse *pParse,   /* Parsing and code generating context */
3593   Table *pTab,     /* Description of the table we are reading from */
3594   int iColumn,     /* Index of the table column */
3595   int iTable,      /* The cursor pointing to the table */
3596   int iReg,        /* Store results here */
3597   u8 p5            /* P5 value for OP_Column + FLAGS */
3598 ){
3599   assert( pParse->pVdbe!=0 );
3600   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3601   if( p5 ){
3602     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3603     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3604   }
3605   return iReg;
3606 }
3607 
3608 /*
3609 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3610 ** over to iTo..iTo+nReg-1.
3611 */
3612 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3613   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3614 }
3615 
3616 /*
3617 ** Convert a scalar expression node to a TK_REGISTER referencing
3618 ** register iReg.  The caller must ensure that iReg already contains
3619 ** the correct value for the expression.
3620 */
3621 static void exprToRegister(Expr *pExpr, int iReg){
3622   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3623   p->op2 = p->op;
3624   p->op = TK_REGISTER;
3625   p->iTable = iReg;
3626   ExprClearProperty(p, EP_Skip);
3627 }
3628 
3629 /*
3630 ** Evaluate an expression (either a vector or a scalar expression) and store
3631 ** the result in continguous temporary registers.  Return the index of
3632 ** the first register used to store the result.
3633 **
3634 ** If the returned result register is a temporary scalar, then also write
3635 ** that register number into *piFreeable.  If the returned result register
3636 ** is not a temporary or if the expression is a vector set *piFreeable
3637 ** to 0.
3638 */
3639 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3640   int iResult;
3641   int nResult = sqlite3ExprVectorSize(p);
3642   if( nResult==1 ){
3643     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3644   }else{
3645     *piFreeable = 0;
3646     if( p->op==TK_SELECT ){
3647 #if SQLITE_OMIT_SUBQUERY
3648       iResult = 0;
3649 #else
3650       iResult = sqlite3CodeSubselect(pParse, p);
3651 #endif
3652     }else{
3653       int i;
3654       iResult = pParse->nMem+1;
3655       pParse->nMem += nResult;
3656       for(i=0; i<nResult; i++){
3657         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3658       }
3659     }
3660   }
3661   return iResult;
3662 }
3663 
3664 /*
3665 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3666 ** so that a subsequent copy will not be merged into this one.
3667 */
3668 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3669   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3670     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3671   }
3672 }
3673 
3674 /*
3675 ** Generate code to implement special SQL functions that are implemented
3676 ** in-line rather than by using the usual callbacks.
3677 */
3678 static int exprCodeInlineFunction(
3679   Parse *pParse,        /* Parsing context */
3680   ExprList *pFarg,      /* List of function arguments */
3681   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3682   int target            /* Store function result in this register */
3683 ){
3684   int nFarg;
3685   Vdbe *v = pParse->pVdbe;
3686   assert( v!=0 );
3687   assert( pFarg!=0 );
3688   nFarg = pFarg->nExpr;
3689   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3690   switch( iFuncId ){
3691     case INLINEFUNC_coalesce: {
3692       /* Attempt a direct implementation of the built-in COALESCE() and
3693       ** IFNULL() functions.  This avoids unnecessary evaluation of
3694       ** arguments past the first non-NULL argument.
3695       */
3696       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3697       int i;
3698       assert( nFarg>=2 );
3699       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3700       for(i=1; i<nFarg; i++){
3701         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3702         VdbeCoverage(v);
3703         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3704       }
3705       setDoNotMergeFlagOnCopy(v);
3706       sqlite3VdbeResolveLabel(v, endCoalesce);
3707       break;
3708     }
3709     case INLINEFUNC_iif: {
3710       Expr caseExpr;
3711       memset(&caseExpr, 0, sizeof(caseExpr));
3712       caseExpr.op = TK_CASE;
3713       caseExpr.x.pList = pFarg;
3714       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3715     }
3716 
3717     default: {
3718       /* The UNLIKELY() function is a no-op.  The result is the value
3719       ** of the first argument.
3720       */
3721       assert( nFarg==1 || nFarg==2 );
3722       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3723       break;
3724     }
3725 
3726   /***********************************************************************
3727   ** Test-only SQL functions that are only usable if enabled
3728   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3729   */
3730     case INLINEFUNC_expr_compare: {
3731       /* Compare two expressions using sqlite3ExprCompare() */
3732       assert( nFarg==2 );
3733       sqlite3VdbeAddOp2(v, OP_Integer,
3734          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3735          target);
3736       break;
3737     }
3738 
3739     case INLINEFUNC_expr_implies_expr: {
3740       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3741       assert( nFarg==2 );
3742       sqlite3VdbeAddOp2(v, OP_Integer,
3743          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3744          target);
3745       break;
3746     }
3747 
3748     case INLINEFUNC_implies_nonnull_row: {
3749       /* REsult of sqlite3ExprImpliesNonNullRow() */
3750       Expr *pA1;
3751       assert( nFarg==2 );
3752       pA1 = pFarg->a[1].pExpr;
3753       if( pA1->op==TK_COLUMN ){
3754         sqlite3VdbeAddOp2(v, OP_Integer,
3755            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3756            target);
3757       }else{
3758         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3759       }
3760       break;
3761     }
3762 
3763 #ifdef SQLITE_DEBUG
3764     case INLINEFUNC_affinity: {
3765       /* The AFFINITY() function evaluates to a string that describes
3766       ** the type affinity of the argument.  This is used for testing of
3767       ** the SQLite type logic.
3768       */
3769       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3770       char aff;
3771       assert( nFarg==1 );
3772       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3773       sqlite3VdbeLoadString(v, target,
3774               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3775       break;
3776     }
3777 #endif
3778   }
3779   return target;
3780 }
3781 
3782 
3783 /*
3784 ** Generate code into the current Vdbe to evaluate the given
3785 ** expression.  Attempt to store the results in register "target".
3786 ** Return the register where results are stored.
3787 **
3788 ** With this routine, there is no guarantee that results will
3789 ** be stored in target.  The result might be stored in some other
3790 ** register if it is convenient to do so.  The calling function
3791 ** must check the return code and move the results to the desired
3792 ** register.
3793 */
3794 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3795   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3796   int op;                   /* The opcode being coded */
3797   int inReg = target;       /* Results stored in register inReg */
3798   int regFree1 = 0;         /* If non-zero free this temporary register */
3799   int regFree2 = 0;         /* If non-zero free this temporary register */
3800   int r1, r2;               /* Various register numbers */
3801   Expr tempX;               /* Temporary expression node */
3802   int p5 = 0;
3803 
3804   assert( target>0 && target<=pParse->nMem );
3805   assert( v!=0 );
3806 
3807 expr_code_doover:
3808   if( pExpr==0 ){
3809     op = TK_NULL;
3810   }else{
3811     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3812     op = pExpr->op;
3813   }
3814   switch( op ){
3815     case TK_AGG_COLUMN: {
3816       AggInfo *pAggInfo = pExpr->pAggInfo;
3817       struct AggInfo_col *pCol;
3818       assert( pAggInfo!=0 );
3819       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3820       pCol = &pAggInfo->aCol[pExpr->iAgg];
3821       if( !pAggInfo->directMode ){
3822         assert( pCol->iMem>0 );
3823         return pCol->iMem;
3824       }else if( pAggInfo->useSortingIdx ){
3825         Table *pTab = pCol->pTab;
3826         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3827                               pCol->iSorterColumn, target);
3828         if( pCol->iColumn<0 ){
3829           VdbeComment((v,"%s.rowid",pTab->zName));
3830         }else{
3831           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3832           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3833             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3834           }
3835         }
3836         return target;
3837       }
3838       /* Otherwise, fall thru into the TK_COLUMN case */
3839       /* no break */ deliberate_fall_through
3840     }
3841     case TK_COLUMN: {
3842       int iTab = pExpr->iTable;
3843       int iReg;
3844       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3845         /* This COLUMN expression is really a constant due to WHERE clause
3846         ** constraints, and that constant is coded by the pExpr->pLeft
3847         ** expresssion.  However, make sure the constant has the correct
3848         ** datatype by applying the Affinity of the table column to the
3849         ** constant.
3850         */
3851         int aff;
3852         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3853         if( pExpr->y.pTab ){
3854           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3855         }else{
3856           aff = pExpr->affExpr;
3857         }
3858         if( aff>SQLITE_AFF_BLOB ){
3859           static const char zAff[] = "B\000C\000D\000E";
3860           assert( SQLITE_AFF_BLOB=='A' );
3861           assert( SQLITE_AFF_TEXT=='B' );
3862           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3863                             &zAff[(aff-'B')*2], P4_STATIC);
3864         }
3865         return iReg;
3866       }
3867       if( iTab<0 ){
3868         if( pParse->iSelfTab<0 ){
3869           /* Other columns in the same row for CHECK constraints or
3870           ** generated columns or for inserting into partial index.
3871           ** The row is unpacked into registers beginning at
3872           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3873           ** immediately prior to the first column.
3874           */
3875           Column *pCol;
3876           Table *pTab = pExpr->y.pTab;
3877           int iSrc;
3878           int iCol = pExpr->iColumn;
3879           assert( pTab!=0 );
3880           assert( iCol>=XN_ROWID );
3881           assert( iCol<pTab->nCol );
3882           if( iCol<0 ){
3883             return -1-pParse->iSelfTab;
3884           }
3885           pCol = pTab->aCol + iCol;
3886           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3887           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3888 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3889           if( pCol->colFlags & COLFLAG_GENERATED ){
3890             if( pCol->colFlags & COLFLAG_BUSY ){
3891               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3892                               pCol->zName);
3893               return 0;
3894             }
3895             pCol->colFlags |= COLFLAG_BUSY;
3896             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3897               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3898             }
3899             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3900             return iSrc;
3901           }else
3902 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3903           if( pCol->affinity==SQLITE_AFF_REAL ){
3904             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3905             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3906             return target;
3907           }else{
3908             return iSrc;
3909           }
3910         }else{
3911           /* Coding an expression that is part of an index where column names
3912           ** in the index refer to the table to which the index belongs */
3913           iTab = pParse->iSelfTab - 1;
3914         }
3915       }
3916       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3917                                pExpr->iColumn, iTab, target,
3918                                pExpr->op2);
3919       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3920         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3921       }
3922       return iReg;
3923     }
3924     case TK_INTEGER: {
3925       codeInteger(pParse, pExpr, 0, target);
3926       return target;
3927     }
3928     case TK_TRUEFALSE: {
3929       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3930       return target;
3931     }
3932 #ifndef SQLITE_OMIT_FLOATING_POINT
3933     case TK_FLOAT: {
3934       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3935       codeReal(v, pExpr->u.zToken, 0, target);
3936       return target;
3937     }
3938 #endif
3939     case TK_STRING: {
3940       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3941       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3942       return target;
3943     }
3944     default: {
3945       /* Make NULL the default case so that if a bug causes an illegal
3946       ** Expr node to be passed into this function, it will be handled
3947       ** sanely and not crash.  But keep the assert() to bring the problem
3948       ** to the attention of the developers. */
3949       assert( op==TK_NULL );
3950       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3951       return target;
3952     }
3953 #ifndef SQLITE_OMIT_BLOB_LITERAL
3954     case TK_BLOB: {
3955       int n;
3956       const char *z;
3957       char *zBlob;
3958       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3959       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3960       assert( pExpr->u.zToken[1]=='\'' );
3961       z = &pExpr->u.zToken[2];
3962       n = sqlite3Strlen30(z) - 1;
3963       assert( z[n]=='\'' );
3964       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3965       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3966       return target;
3967     }
3968 #endif
3969     case TK_VARIABLE: {
3970       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3971       assert( pExpr->u.zToken!=0 );
3972       assert( pExpr->u.zToken[0]!=0 );
3973       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3974       if( pExpr->u.zToken[1]!=0 ){
3975         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3976         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3977         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3978         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3979       }
3980       return target;
3981     }
3982     case TK_REGISTER: {
3983       return pExpr->iTable;
3984     }
3985 #ifndef SQLITE_OMIT_CAST
3986     case TK_CAST: {
3987       /* Expressions of the form:   CAST(pLeft AS token) */
3988       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3989       if( inReg!=target ){
3990         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3991         inReg = target;
3992       }
3993       sqlite3VdbeAddOp2(v, OP_Cast, target,
3994                         sqlite3AffinityType(pExpr->u.zToken, 0));
3995       return inReg;
3996     }
3997 #endif /* SQLITE_OMIT_CAST */
3998     case TK_IS:
3999     case TK_ISNOT:
4000       op = (op==TK_IS) ? TK_EQ : TK_NE;
4001       p5 = SQLITE_NULLEQ;
4002       /* fall-through */
4003     case TK_LT:
4004     case TK_LE:
4005     case TK_GT:
4006     case TK_GE:
4007     case TK_NE:
4008     case TK_EQ: {
4009       Expr *pLeft = pExpr->pLeft;
4010       if( sqlite3ExprIsVector(pLeft) ){
4011         codeVectorCompare(pParse, pExpr, target, op, p5);
4012       }else{
4013         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4014         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4015         codeCompare(pParse, pLeft, pExpr->pRight, op,
4016             r1, r2, inReg, SQLITE_STOREP2 | p5,
4017             ExprHasProperty(pExpr,EP_Commuted));
4018         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4019         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4020         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4021         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4022         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4023         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4024         testcase( regFree1==0 );
4025         testcase( regFree2==0 );
4026       }
4027       break;
4028     }
4029     case TK_AND:
4030     case TK_OR:
4031     case TK_PLUS:
4032     case TK_STAR:
4033     case TK_MINUS:
4034     case TK_REM:
4035     case TK_BITAND:
4036     case TK_BITOR:
4037     case TK_SLASH:
4038     case TK_LSHIFT:
4039     case TK_RSHIFT:
4040     case TK_CONCAT: {
4041       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4042       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4043       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4044       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4045       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4046       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4047       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4048       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4049       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4050       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4051       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4052       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4053       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4054       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4055       testcase( regFree1==0 );
4056       testcase( regFree2==0 );
4057       break;
4058     }
4059     case TK_UMINUS: {
4060       Expr *pLeft = pExpr->pLeft;
4061       assert( pLeft );
4062       if( pLeft->op==TK_INTEGER ){
4063         codeInteger(pParse, pLeft, 1, target);
4064         return target;
4065 #ifndef SQLITE_OMIT_FLOATING_POINT
4066       }else if( pLeft->op==TK_FLOAT ){
4067         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4068         codeReal(v, pLeft->u.zToken, 1, target);
4069         return target;
4070 #endif
4071       }else{
4072         tempX.op = TK_INTEGER;
4073         tempX.flags = EP_IntValue|EP_TokenOnly;
4074         tempX.u.iValue = 0;
4075         ExprClearVVAProperties(&tempX);
4076         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4077         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4078         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4079         testcase( regFree2==0 );
4080       }
4081       break;
4082     }
4083     case TK_BITNOT:
4084     case TK_NOT: {
4085       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4086       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4087       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4088       testcase( regFree1==0 );
4089       sqlite3VdbeAddOp2(v, op, r1, inReg);
4090       break;
4091     }
4092     case TK_TRUTH: {
4093       int isTrue;    /* IS TRUE or IS NOT TRUE */
4094       int bNormal;   /* IS TRUE or IS FALSE */
4095       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4096       testcase( regFree1==0 );
4097       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4098       bNormal = pExpr->op2==TK_IS;
4099       testcase( isTrue && bNormal);
4100       testcase( !isTrue && bNormal);
4101       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4102       break;
4103     }
4104     case TK_ISNULL:
4105     case TK_NOTNULL: {
4106       int addr;
4107       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4108       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4109       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4110       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4111       testcase( regFree1==0 );
4112       addr = sqlite3VdbeAddOp1(v, op, r1);
4113       VdbeCoverageIf(v, op==TK_ISNULL);
4114       VdbeCoverageIf(v, op==TK_NOTNULL);
4115       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4116       sqlite3VdbeJumpHere(v, addr);
4117       break;
4118     }
4119     case TK_AGG_FUNCTION: {
4120       AggInfo *pInfo = pExpr->pAggInfo;
4121       if( pInfo==0
4122        || NEVER(pExpr->iAgg<0)
4123        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4124       ){
4125         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4126         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4127       }else{
4128         return pInfo->aFunc[pExpr->iAgg].iMem;
4129       }
4130       break;
4131     }
4132     case TK_FUNCTION: {
4133       ExprList *pFarg;       /* List of function arguments */
4134       int nFarg;             /* Number of function arguments */
4135       FuncDef *pDef;         /* The function definition object */
4136       const char *zId;       /* The function name */
4137       u32 constMask = 0;     /* Mask of function arguments that are constant */
4138       int i;                 /* Loop counter */
4139       sqlite3 *db = pParse->db;  /* The database connection */
4140       u8 enc = ENC(db);      /* The text encoding used by this database */
4141       CollSeq *pColl = 0;    /* A collating sequence */
4142 
4143 #ifndef SQLITE_OMIT_WINDOWFUNC
4144       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4145         return pExpr->y.pWin->regResult;
4146       }
4147 #endif
4148 
4149       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4150         /* SQL functions can be expensive. So try to avoid running them
4151         ** multiple times if we know they always give the same result */
4152         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4153       }
4154       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4155       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4156       pFarg = pExpr->x.pList;
4157       nFarg = pFarg ? pFarg->nExpr : 0;
4158       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4159       zId = pExpr->u.zToken;
4160       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4161 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4162       if( pDef==0 && pParse->explain ){
4163         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4164       }
4165 #endif
4166       if( pDef==0 || pDef->xFinalize!=0 ){
4167         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4168         break;
4169       }
4170       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4171         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4172         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4173         return exprCodeInlineFunction(pParse, pFarg,
4174              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4175       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4176         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4177       }
4178 
4179       for(i=0; i<nFarg; i++){
4180         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4181           testcase( i==31 );
4182           constMask |= MASKBIT32(i);
4183         }
4184         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4185           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4186         }
4187       }
4188       if( pFarg ){
4189         if( constMask ){
4190           r1 = pParse->nMem+1;
4191           pParse->nMem += nFarg;
4192         }else{
4193           r1 = sqlite3GetTempRange(pParse, nFarg);
4194         }
4195 
4196         /* For length() and typeof() functions with a column argument,
4197         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4198         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4199         ** loading.
4200         */
4201         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4202           u8 exprOp;
4203           assert( nFarg==1 );
4204           assert( pFarg->a[0].pExpr!=0 );
4205           exprOp = pFarg->a[0].pExpr->op;
4206           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4207             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4208             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4209             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4210             pFarg->a[0].pExpr->op2 =
4211                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4212           }
4213         }
4214 
4215         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4216                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4217       }else{
4218         r1 = 0;
4219       }
4220 #ifndef SQLITE_OMIT_VIRTUALTABLE
4221       /* Possibly overload the function if the first argument is
4222       ** a virtual table column.
4223       **
4224       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4225       ** second argument, not the first, as the argument to test to
4226       ** see if it is a column in a virtual table.  This is done because
4227       ** the left operand of infix functions (the operand we want to
4228       ** control overloading) ends up as the second argument to the
4229       ** function.  The expression "A glob B" is equivalent to
4230       ** "glob(B,A).  We want to use the A in "A glob B" to test
4231       ** for function overloading.  But we use the B term in "glob(B,A)".
4232       */
4233       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4234         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4235       }else if( nFarg>0 ){
4236         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4237       }
4238 #endif
4239       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4240         if( !pColl ) pColl = db->pDfltColl;
4241         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4242       }
4243 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4244       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4245         Expr *pArg = pFarg->a[0].pExpr;
4246         if( pArg->op==TK_COLUMN ){
4247           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4248         }else{
4249           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4250         }
4251       }else
4252 #endif
4253       {
4254         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4255                                    pDef, pExpr->op2);
4256       }
4257       if( nFarg ){
4258         if( constMask==0 ){
4259           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4260         }else{
4261           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4262         }
4263       }
4264       return target;
4265     }
4266 #ifndef SQLITE_OMIT_SUBQUERY
4267     case TK_EXISTS:
4268     case TK_SELECT: {
4269       int nCol;
4270       testcase( op==TK_EXISTS );
4271       testcase( op==TK_SELECT );
4272       if( pParse->db->mallocFailed ){
4273         return 0;
4274       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4275         sqlite3SubselectError(pParse, nCol, 1);
4276       }else{
4277         return sqlite3CodeSubselect(pParse, pExpr);
4278       }
4279       break;
4280     }
4281     case TK_SELECT_COLUMN: {
4282       int n;
4283       if( pExpr->pLeft->iTable==0 ){
4284         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4285       }
4286       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4287       if( pExpr->iTable!=0
4288        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4289       ){
4290         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4291                                 pExpr->iTable, n);
4292       }
4293       return pExpr->pLeft->iTable + pExpr->iColumn;
4294     }
4295     case TK_IN: {
4296       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4297       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4298       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4299       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4300       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4301       sqlite3VdbeResolveLabel(v, destIfFalse);
4302       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4303       sqlite3VdbeResolveLabel(v, destIfNull);
4304       return target;
4305     }
4306 #endif /* SQLITE_OMIT_SUBQUERY */
4307 
4308 
4309     /*
4310     **    x BETWEEN y AND z
4311     **
4312     ** This is equivalent to
4313     **
4314     **    x>=y AND x<=z
4315     **
4316     ** X is stored in pExpr->pLeft.
4317     ** Y is stored in pExpr->pList->a[0].pExpr.
4318     ** Z is stored in pExpr->pList->a[1].pExpr.
4319     */
4320     case TK_BETWEEN: {
4321       exprCodeBetween(pParse, pExpr, target, 0, 0);
4322       return target;
4323     }
4324     case TK_SPAN:
4325     case TK_COLLATE:
4326     case TK_UPLUS: {
4327       pExpr = pExpr->pLeft;
4328       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4329     }
4330 
4331     case TK_TRIGGER: {
4332       /* If the opcode is TK_TRIGGER, then the expression is a reference
4333       ** to a column in the new.* or old.* pseudo-tables available to
4334       ** trigger programs. In this case Expr.iTable is set to 1 for the
4335       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4336       ** is set to the column of the pseudo-table to read, or to -1 to
4337       ** read the rowid field.
4338       **
4339       ** The expression is implemented using an OP_Param opcode. The p1
4340       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4341       ** to reference another column of the old.* pseudo-table, where
4342       ** i is the index of the column. For a new.rowid reference, p1 is
4343       ** set to (n+1), where n is the number of columns in each pseudo-table.
4344       ** For a reference to any other column in the new.* pseudo-table, p1
4345       ** is set to (n+2+i), where n and i are as defined previously. For
4346       ** example, if the table on which triggers are being fired is
4347       ** declared as:
4348       **
4349       **   CREATE TABLE t1(a, b);
4350       **
4351       ** Then p1 is interpreted as follows:
4352       **
4353       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4354       **   p1==1   ->    old.a         p1==4   ->    new.a
4355       **   p1==2   ->    old.b         p1==5   ->    new.b
4356       */
4357       Table *pTab = pExpr->y.pTab;
4358       int iCol = pExpr->iColumn;
4359       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4360                      + sqlite3TableColumnToStorage(pTab, iCol);
4361 
4362       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4363       assert( iCol>=-1 && iCol<pTab->nCol );
4364       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4365       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4366 
4367       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4368       VdbeComment((v, "r[%d]=%s.%s", target,
4369         (pExpr->iTable ? "new" : "old"),
4370         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4371       ));
4372 
4373 #ifndef SQLITE_OMIT_FLOATING_POINT
4374       /* If the column has REAL affinity, it may currently be stored as an
4375       ** integer. Use OP_RealAffinity to make sure it is really real.
4376       **
4377       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4378       ** floating point when extracting it from the record.  */
4379       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4380         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4381       }
4382 #endif
4383       break;
4384     }
4385 
4386     case TK_VECTOR: {
4387       sqlite3ErrorMsg(pParse, "row value misused");
4388       break;
4389     }
4390 
4391     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4392     ** that derive from the right-hand table of a LEFT JOIN.  The
4393     ** Expr.iTable value is the table number for the right-hand table.
4394     ** The expression is only evaluated if that table is not currently
4395     ** on a LEFT JOIN NULL row.
4396     */
4397     case TK_IF_NULL_ROW: {
4398       int addrINR;
4399       u8 okConstFactor = pParse->okConstFactor;
4400       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4401       /* Temporarily disable factoring of constant expressions, since
4402       ** even though expressions may appear to be constant, they are not
4403       ** really constant because they originate from the right-hand side
4404       ** of a LEFT JOIN. */
4405       pParse->okConstFactor = 0;
4406       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4407       pParse->okConstFactor = okConstFactor;
4408       sqlite3VdbeJumpHere(v, addrINR);
4409       sqlite3VdbeChangeP3(v, addrINR, inReg);
4410       break;
4411     }
4412 
4413     /*
4414     ** Form A:
4415     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4416     **
4417     ** Form B:
4418     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4419     **
4420     ** Form A is can be transformed into the equivalent form B as follows:
4421     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4422     **        WHEN x=eN THEN rN ELSE y END
4423     **
4424     ** X (if it exists) is in pExpr->pLeft.
4425     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4426     ** odd.  The Y is also optional.  If the number of elements in x.pList
4427     ** is even, then Y is omitted and the "otherwise" result is NULL.
4428     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4429     **
4430     ** The result of the expression is the Ri for the first matching Ei,
4431     ** or if there is no matching Ei, the ELSE term Y, or if there is
4432     ** no ELSE term, NULL.
4433     */
4434     case TK_CASE: {
4435       int endLabel;                     /* GOTO label for end of CASE stmt */
4436       int nextCase;                     /* GOTO label for next WHEN clause */
4437       int nExpr;                        /* 2x number of WHEN terms */
4438       int i;                            /* Loop counter */
4439       ExprList *pEList;                 /* List of WHEN terms */
4440       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4441       Expr opCompare;                   /* The X==Ei expression */
4442       Expr *pX;                         /* The X expression */
4443       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4444       Expr *pDel = 0;
4445       sqlite3 *db = pParse->db;
4446 
4447       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4448       assert(pExpr->x.pList->nExpr > 0);
4449       pEList = pExpr->x.pList;
4450       aListelem = pEList->a;
4451       nExpr = pEList->nExpr;
4452       endLabel = sqlite3VdbeMakeLabel(pParse);
4453       if( (pX = pExpr->pLeft)!=0 ){
4454         pDel = sqlite3ExprDup(db, pX, 0);
4455         if( db->mallocFailed ){
4456           sqlite3ExprDelete(db, pDel);
4457           break;
4458         }
4459         testcase( pX->op==TK_COLUMN );
4460         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4461         testcase( regFree1==0 );
4462         memset(&opCompare, 0, sizeof(opCompare));
4463         opCompare.op = TK_EQ;
4464         opCompare.pLeft = pDel;
4465         pTest = &opCompare;
4466         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4467         ** The value in regFree1 might get SCopy-ed into the file result.
4468         ** So make sure that the regFree1 register is not reused for other
4469         ** purposes and possibly overwritten.  */
4470         regFree1 = 0;
4471       }
4472       for(i=0; i<nExpr-1; i=i+2){
4473         if( pX ){
4474           assert( pTest!=0 );
4475           opCompare.pRight = aListelem[i].pExpr;
4476         }else{
4477           pTest = aListelem[i].pExpr;
4478         }
4479         nextCase = sqlite3VdbeMakeLabel(pParse);
4480         testcase( pTest->op==TK_COLUMN );
4481         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4482         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4483         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4484         sqlite3VdbeGoto(v, endLabel);
4485         sqlite3VdbeResolveLabel(v, nextCase);
4486       }
4487       if( (nExpr&1)!=0 ){
4488         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4489       }else{
4490         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4491       }
4492       sqlite3ExprDelete(db, pDel);
4493       setDoNotMergeFlagOnCopy(v);
4494       sqlite3VdbeResolveLabel(v, endLabel);
4495       break;
4496     }
4497 #ifndef SQLITE_OMIT_TRIGGER
4498     case TK_RAISE: {
4499       assert( pExpr->affExpr==OE_Rollback
4500            || pExpr->affExpr==OE_Abort
4501            || pExpr->affExpr==OE_Fail
4502            || pExpr->affExpr==OE_Ignore
4503       );
4504       if( !pParse->pTriggerTab && !pParse->nested ){
4505         sqlite3ErrorMsg(pParse,
4506                        "RAISE() may only be used within a trigger-program");
4507         return 0;
4508       }
4509       if( pExpr->affExpr==OE_Abort ){
4510         sqlite3MayAbort(pParse);
4511       }
4512       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4513       if( pExpr->affExpr==OE_Ignore ){
4514         sqlite3VdbeAddOp4(
4515             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4516         VdbeCoverage(v);
4517       }else{
4518         sqlite3HaltConstraint(pParse,
4519              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4520              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4521       }
4522 
4523       break;
4524     }
4525 #endif
4526   }
4527   sqlite3ReleaseTempReg(pParse, regFree1);
4528   sqlite3ReleaseTempReg(pParse, regFree2);
4529   return inReg;
4530 }
4531 
4532 /*
4533 ** Generate code that will evaluate expression pExpr just one time
4534 ** per prepared statement execution.
4535 **
4536 ** If the expression uses functions (that might throw an exception) then
4537 ** guard them with an OP_Once opcode to ensure that the code is only executed
4538 ** once. If no functions are involved, then factor the code out and put it at
4539 ** the end of the prepared statement in the initialization section.
4540 **
4541 ** If regDest>=0 then the result is always stored in that register and the
4542 ** result is not reusable.  If regDest<0 then this routine is free to
4543 ** store the value whereever it wants.  The register where the expression
4544 ** is stored is returned.  When regDest<0, two identical expressions might
4545 ** code to the same register, if they do not contain function calls and hence
4546 ** are factored out into the initialization section at the end of the
4547 ** prepared statement.
4548 */
4549 int sqlite3ExprCodeRunJustOnce(
4550   Parse *pParse,    /* Parsing context */
4551   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4552   int regDest       /* Store the value in this register */
4553 ){
4554   ExprList *p;
4555   assert( ConstFactorOk(pParse) );
4556   p = pParse->pConstExpr;
4557   if( regDest<0 && p ){
4558     struct ExprList_item *pItem;
4559     int i;
4560     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4561       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4562         return pItem->u.iConstExprReg;
4563       }
4564     }
4565   }
4566   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4567   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4568     Vdbe *v = pParse->pVdbe;
4569     int addr;
4570     assert( v );
4571     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4572     pParse->okConstFactor = 0;
4573     if( !pParse->db->mallocFailed ){
4574       if( regDest<0 ) regDest = ++pParse->nMem;
4575       sqlite3ExprCode(pParse, pExpr, regDest);
4576     }
4577     pParse->okConstFactor = 1;
4578     sqlite3ExprDelete(pParse->db, pExpr);
4579     sqlite3VdbeJumpHere(v, addr);
4580   }else{
4581     p = sqlite3ExprListAppend(pParse, p, pExpr);
4582     if( p ){
4583        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4584        pItem->reusable = regDest<0;
4585        if( regDest<0 ) regDest = ++pParse->nMem;
4586        pItem->u.iConstExprReg = regDest;
4587     }
4588     pParse->pConstExpr = p;
4589   }
4590   return regDest;
4591 }
4592 
4593 /*
4594 ** Generate code to evaluate an expression and store the results
4595 ** into a register.  Return the register number where the results
4596 ** are stored.
4597 **
4598 ** If the register is a temporary register that can be deallocated,
4599 ** then write its number into *pReg.  If the result register is not
4600 ** a temporary, then set *pReg to zero.
4601 **
4602 ** If pExpr is a constant, then this routine might generate this
4603 ** code to fill the register in the initialization section of the
4604 ** VDBE program, in order to factor it out of the evaluation loop.
4605 */
4606 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4607   int r2;
4608   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4609   if( ConstFactorOk(pParse)
4610    && pExpr->op!=TK_REGISTER
4611    && sqlite3ExprIsConstantNotJoin(pExpr)
4612   ){
4613     *pReg  = 0;
4614     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4615   }else{
4616     int r1 = sqlite3GetTempReg(pParse);
4617     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4618     if( r2==r1 ){
4619       *pReg = r1;
4620     }else{
4621       sqlite3ReleaseTempReg(pParse, r1);
4622       *pReg = 0;
4623     }
4624   }
4625   return r2;
4626 }
4627 
4628 /*
4629 ** Generate code that will evaluate expression pExpr and store the
4630 ** results in register target.  The results are guaranteed to appear
4631 ** in register target.
4632 */
4633 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4634   int inReg;
4635 
4636   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4637   assert( target>0 && target<=pParse->nMem );
4638   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4639   if( pParse->pVdbe==0 ) return;
4640   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4641   if( inReg!=target ){
4642     u8 op;
4643     if( ExprHasProperty(pExpr,EP_Subquery) ){
4644       op = OP_Copy;
4645     }else{
4646       op = OP_SCopy;
4647     }
4648     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4649   }
4650 }
4651 
4652 /*
4653 ** Make a transient copy of expression pExpr and then code it using
4654 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4655 ** except that the input expression is guaranteed to be unchanged.
4656 */
4657 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4658   sqlite3 *db = pParse->db;
4659   pExpr = sqlite3ExprDup(db, pExpr, 0);
4660   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4661   sqlite3ExprDelete(db, pExpr);
4662 }
4663 
4664 /*
4665 ** Generate code that will evaluate expression pExpr and store the
4666 ** results in register target.  The results are guaranteed to appear
4667 ** in register target.  If the expression is constant, then this routine
4668 ** might choose to code the expression at initialization time.
4669 */
4670 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4671   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4672     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4673   }else{
4674     sqlite3ExprCodeCopy(pParse, pExpr, target);
4675   }
4676 }
4677 
4678 /*
4679 ** Generate code that pushes the value of every element of the given
4680 ** expression list into a sequence of registers beginning at target.
4681 **
4682 ** Return the number of elements evaluated.  The number returned will
4683 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4684 ** is defined.
4685 **
4686 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4687 ** filled using OP_SCopy.  OP_Copy must be used instead.
4688 **
4689 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4690 ** factored out into initialization code.
4691 **
4692 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4693 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4694 ** in registers at srcReg, and so the value can be copied from there.
4695 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4696 ** are simply omitted rather than being copied from srcReg.
4697 */
4698 int sqlite3ExprCodeExprList(
4699   Parse *pParse,     /* Parsing context */
4700   ExprList *pList,   /* The expression list to be coded */
4701   int target,        /* Where to write results */
4702   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4703   u8 flags           /* SQLITE_ECEL_* flags */
4704 ){
4705   struct ExprList_item *pItem;
4706   int i, j, n;
4707   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4708   Vdbe *v = pParse->pVdbe;
4709   assert( pList!=0 );
4710   assert( target>0 );
4711   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4712   n = pList->nExpr;
4713   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4714   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4715     Expr *pExpr = pItem->pExpr;
4716 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4717     if( pItem->bSorterRef ){
4718       i--;
4719       n--;
4720     }else
4721 #endif
4722     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4723       if( flags & SQLITE_ECEL_OMITREF ){
4724         i--;
4725         n--;
4726       }else{
4727         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4728       }
4729     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4730            && sqlite3ExprIsConstantNotJoin(pExpr)
4731     ){
4732       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4733     }else{
4734       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4735       if( inReg!=target+i ){
4736         VdbeOp *pOp;
4737         if( copyOp==OP_Copy
4738          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4739          && pOp->p1+pOp->p3+1==inReg
4740          && pOp->p2+pOp->p3+1==target+i
4741          && pOp->p5==0  /* The do-not-merge flag must be clear */
4742         ){
4743           pOp->p3++;
4744         }else{
4745           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4746         }
4747       }
4748     }
4749   }
4750   return n;
4751 }
4752 
4753 /*
4754 ** Generate code for a BETWEEN operator.
4755 **
4756 **    x BETWEEN y AND z
4757 **
4758 ** The above is equivalent to
4759 **
4760 **    x>=y AND x<=z
4761 **
4762 ** Code it as such, taking care to do the common subexpression
4763 ** elimination of x.
4764 **
4765 ** The xJumpIf parameter determines details:
4766 **
4767 **    NULL:                   Store the boolean result in reg[dest]
4768 **    sqlite3ExprIfTrue:      Jump to dest if true
4769 **    sqlite3ExprIfFalse:     Jump to dest if false
4770 **
4771 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4772 */
4773 static void exprCodeBetween(
4774   Parse *pParse,    /* Parsing and code generating context */
4775   Expr *pExpr,      /* The BETWEEN expression */
4776   int dest,         /* Jump destination or storage location */
4777   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4778   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4779 ){
4780   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4781   Expr compLeft;    /* The  x>=y  term */
4782   Expr compRight;   /* The  x<=z  term */
4783   int regFree1 = 0; /* Temporary use register */
4784   Expr *pDel = 0;
4785   sqlite3 *db = pParse->db;
4786 
4787   memset(&compLeft, 0, sizeof(Expr));
4788   memset(&compRight, 0, sizeof(Expr));
4789   memset(&exprAnd, 0, sizeof(Expr));
4790 
4791   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4792   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4793   if( db->mallocFailed==0 ){
4794     exprAnd.op = TK_AND;
4795     exprAnd.pLeft = &compLeft;
4796     exprAnd.pRight = &compRight;
4797     compLeft.op = TK_GE;
4798     compLeft.pLeft = pDel;
4799     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4800     compRight.op = TK_LE;
4801     compRight.pLeft = pDel;
4802     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4803     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4804     if( xJump ){
4805       xJump(pParse, &exprAnd, dest, jumpIfNull);
4806     }else{
4807       /* Mark the expression is being from the ON or USING clause of a join
4808       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4809       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4810       ** for clarity, but we are out of bits in the Expr.flags field so we
4811       ** have to reuse the EP_FromJoin bit.  Bummer. */
4812       pDel->flags |= EP_FromJoin;
4813       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4814     }
4815     sqlite3ReleaseTempReg(pParse, regFree1);
4816   }
4817   sqlite3ExprDelete(db, pDel);
4818 
4819   /* Ensure adequate test coverage */
4820   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4821   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4822   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4823   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4824   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4825   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4826   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4827   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4828   testcase( xJump==0 );
4829 }
4830 
4831 /*
4832 ** Generate code for a boolean expression such that a jump is made
4833 ** to the label "dest" if the expression is true but execution
4834 ** continues straight thru if the expression is false.
4835 **
4836 ** If the expression evaluates to NULL (neither true nor false), then
4837 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4838 **
4839 ** This code depends on the fact that certain token values (ex: TK_EQ)
4840 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4841 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4842 ** the make process cause these values to align.  Assert()s in the code
4843 ** below verify that the numbers are aligned correctly.
4844 */
4845 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4846   Vdbe *v = pParse->pVdbe;
4847   int op = 0;
4848   int regFree1 = 0;
4849   int regFree2 = 0;
4850   int r1, r2;
4851 
4852   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4853   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4854   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4855   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4856   op = pExpr->op;
4857   switch( op ){
4858     case TK_AND:
4859     case TK_OR: {
4860       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4861       if( pAlt!=pExpr ){
4862         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4863       }else if( op==TK_AND ){
4864         int d2 = sqlite3VdbeMakeLabel(pParse);
4865         testcase( jumpIfNull==0 );
4866         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4867                            jumpIfNull^SQLITE_JUMPIFNULL);
4868         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4869         sqlite3VdbeResolveLabel(v, d2);
4870       }else{
4871         testcase( jumpIfNull==0 );
4872         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4873         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4874       }
4875       break;
4876     }
4877     case TK_NOT: {
4878       testcase( jumpIfNull==0 );
4879       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4880       break;
4881     }
4882     case TK_TRUTH: {
4883       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4884       int isTrue;     /* IS TRUE or IS NOT TRUE */
4885       testcase( jumpIfNull==0 );
4886       isNot = pExpr->op2==TK_ISNOT;
4887       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4888       testcase( isTrue && isNot );
4889       testcase( !isTrue && isNot );
4890       if( isTrue ^ isNot ){
4891         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4892                           isNot ? SQLITE_JUMPIFNULL : 0);
4893       }else{
4894         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4895                            isNot ? SQLITE_JUMPIFNULL : 0);
4896       }
4897       break;
4898     }
4899     case TK_IS:
4900     case TK_ISNOT:
4901       testcase( op==TK_IS );
4902       testcase( op==TK_ISNOT );
4903       op = (op==TK_IS) ? TK_EQ : TK_NE;
4904       jumpIfNull = SQLITE_NULLEQ;
4905       /* no break */ deliberate_fall_through
4906     case TK_LT:
4907     case TK_LE:
4908     case TK_GT:
4909     case TK_GE:
4910     case TK_NE:
4911     case TK_EQ: {
4912       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4913       testcase( jumpIfNull==0 );
4914       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4915       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4916       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4917                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4918       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4919       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4920       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4921       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4922       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4923       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4924       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4925       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4926       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4927       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4928       testcase( regFree1==0 );
4929       testcase( regFree2==0 );
4930       break;
4931     }
4932     case TK_ISNULL:
4933     case TK_NOTNULL: {
4934       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4935       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4936       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4937       sqlite3VdbeAddOp2(v, op, r1, dest);
4938       VdbeCoverageIf(v, op==TK_ISNULL);
4939       VdbeCoverageIf(v, op==TK_NOTNULL);
4940       testcase( regFree1==0 );
4941       break;
4942     }
4943     case TK_BETWEEN: {
4944       testcase( jumpIfNull==0 );
4945       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4946       break;
4947     }
4948 #ifndef SQLITE_OMIT_SUBQUERY
4949     case TK_IN: {
4950       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4951       int destIfNull = jumpIfNull ? dest : destIfFalse;
4952       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4953       sqlite3VdbeGoto(v, dest);
4954       sqlite3VdbeResolveLabel(v, destIfFalse);
4955       break;
4956     }
4957 #endif
4958     default: {
4959     default_expr:
4960       if( ExprAlwaysTrue(pExpr) ){
4961         sqlite3VdbeGoto(v, dest);
4962       }else if( ExprAlwaysFalse(pExpr) ){
4963         /* No-op */
4964       }else{
4965         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4966         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4967         VdbeCoverage(v);
4968         testcase( regFree1==0 );
4969         testcase( jumpIfNull==0 );
4970       }
4971       break;
4972     }
4973   }
4974   sqlite3ReleaseTempReg(pParse, regFree1);
4975   sqlite3ReleaseTempReg(pParse, regFree2);
4976 }
4977 
4978 /*
4979 ** Generate code for a boolean expression such that a jump is made
4980 ** to the label "dest" if the expression is false but execution
4981 ** continues straight thru if the expression is true.
4982 **
4983 ** If the expression evaluates to NULL (neither true nor false) then
4984 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4985 ** is 0.
4986 */
4987 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4988   Vdbe *v = pParse->pVdbe;
4989   int op = 0;
4990   int regFree1 = 0;
4991   int regFree2 = 0;
4992   int r1, r2;
4993 
4994   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4995   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4996   if( pExpr==0 )    return;
4997   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4998 
4999   /* The value of pExpr->op and op are related as follows:
5000   **
5001   **       pExpr->op            op
5002   **       ---------          ----------
5003   **       TK_ISNULL          OP_NotNull
5004   **       TK_NOTNULL         OP_IsNull
5005   **       TK_NE              OP_Eq
5006   **       TK_EQ              OP_Ne
5007   **       TK_GT              OP_Le
5008   **       TK_LE              OP_Gt
5009   **       TK_GE              OP_Lt
5010   **       TK_LT              OP_Ge
5011   **
5012   ** For other values of pExpr->op, op is undefined and unused.
5013   ** The value of TK_ and OP_ constants are arranged such that we
5014   ** can compute the mapping above using the following expression.
5015   ** Assert()s verify that the computation is correct.
5016   */
5017   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5018 
5019   /* Verify correct alignment of TK_ and OP_ constants
5020   */
5021   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5022   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5023   assert( pExpr->op!=TK_NE || op==OP_Eq );
5024   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5025   assert( pExpr->op!=TK_LT || op==OP_Ge );
5026   assert( pExpr->op!=TK_LE || op==OP_Gt );
5027   assert( pExpr->op!=TK_GT || op==OP_Le );
5028   assert( pExpr->op!=TK_GE || op==OP_Lt );
5029 
5030   switch( pExpr->op ){
5031     case TK_AND:
5032     case TK_OR: {
5033       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5034       if( pAlt!=pExpr ){
5035         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5036       }else if( pExpr->op==TK_AND ){
5037         testcase( jumpIfNull==0 );
5038         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5039         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5040       }else{
5041         int d2 = sqlite3VdbeMakeLabel(pParse);
5042         testcase( jumpIfNull==0 );
5043         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5044                           jumpIfNull^SQLITE_JUMPIFNULL);
5045         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5046         sqlite3VdbeResolveLabel(v, d2);
5047       }
5048       break;
5049     }
5050     case TK_NOT: {
5051       testcase( jumpIfNull==0 );
5052       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5053       break;
5054     }
5055     case TK_TRUTH: {
5056       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5057       int isTrue;  /* IS TRUE or IS NOT TRUE */
5058       testcase( jumpIfNull==0 );
5059       isNot = pExpr->op2==TK_ISNOT;
5060       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5061       testcase( isTrue && isNot );
5062       testcase( !isTrue && isNot );
5063       if( isTrue ^ isNot ){
5064         /* IS TRUE and IS NOT FALSE */
5065         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5066                            isNot ? 0 : SQLITE_JUMPIFNULL);
5067 
5068       }else{
5069         /* IS FALSE and IS NOT TRUE */
5070         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5071                           isNot ? 0 : SQLITE_JUMPIFNULL);
5072       }
5073       break;
5074     }
5075     case TK_IS:
5076     case TK_ISNOT:
5077       testcase( pExpr->op==TK_IS );
5078       testcase( pExpr->op==TK_ISNOT );
5079       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5080       jumpIfNull = SQLITE_NULLEQ;
5081       /* no break */ deliberate_fall_through
5082     case TK_LT:
5083     case TK_LE:
5084     case TK_GT:
5085     case TK_GE:
5086     case TK_NE:
5087     case TK_EQ: {
5088       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5089       testcase( jumpIfNull==0 );
5090       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5091       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5092       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5093                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5094       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5095       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5096       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5097       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5098       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5099       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5100       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5101       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5102       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5103       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5104       testcase( regFree1==0 );
5105       testcase( regFree2==0 );
5106       break;
5107     }
5108     case TK_ISNULL:
5109     case TK_NOTNULL: {
5110       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5111       sqlite3VdbeAddOp2(v, op, r1, dest);
5112       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5113       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5114       testcase( regFree1==0 );
5115       break;
5116     }
5117     case TK_BETWEEN: {
5118       testcase( jumpIfNull==0 );
5119       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5120       break;
5121     }
5122 #ifndef SQLITE_OMIT_SUBQUERY
5123     case TK_IN: {
5124       if( jumpIfNull ){
5125         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5126       }else{
5127         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5128         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5129         sqlite3VdbeResolveLabel(v, destIfNull);
5130       }
5131       break;
5132     }
5133 #endif
5134     default: {
5135     default_expr:
5136       if( ExprAlwaysFalse(pExpr) ){
5137         sqlite3VdbeGoto(v, dest);
5138       }else if( ExprAlwaysTrue(pExpr) ){
5139         /* no-op */
5140       }else{
5141         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5142         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5143         VdbeCoverage(v);
5144         testcase( regFree1==0 );
5145         testcase( jumpIfNull==0 );
5146       }
5147       break;
5148     }
5149   }
5150   sqlite3ReleaseTempReg(pParse, regFree1);
5151   sqlite3ReleaseTempReg(pParse, regFree2);
5152 }
5153 
5154 /*
5155 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5156 ** code generation, and that copy is deleted after code generation. This
5157 ** ensures that the original pExpr is unchanged.
5158 */
5159 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5160   sqlite3 *db = pParse->db;
5161   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5162   if( db->mallocFailed==0 ){
5163     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5164   }
5165   sqlite3ExprDelete(db, pCopy);
5166 }
5167 
5168 /*
5169 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5170 ** type of expression.
5171 **
5172 ** If pExpr is a simple SQL value - an integer, real, string, blob
5173 ** or NULL value - then the VDBE currently being prepared is configured
5174 ** to re-prepare each time a new value is bound to variable pVar.
5175 **
5176 ** Additionally, if pExpr is a simple SQL value and the value is the
5177 ** same as that currently bound to variable pVar, non-zero is returned.
5178 ** Otherwise, if the values are not the same or if pExpr is not a simple
5179 ** SQL value, zero is returned.
5180 */
5181 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5182   int res = 0;
5183   int iVar;
5184   sqlite3_value *pL, *pR = 0;
5185 
5186   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5187   if( pR ){
5188     iVar = pVar->iColumn;
5189     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5190     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5191     if( pL ){
5192       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5193         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5194       }
5195       res =  0==sqlite3MemCompare(pL, pR, 0);
5196     }
5197     sqlite3ValueFree(pR);
5198     sqlite3ValueFree(pL);
5199   }
5200 
5201   return res;
5202 }
5203 
5204 /*
5205 ** Do a deep comparison of two expression trees.  Return 0 if the two
5206 ** expressions are completely identical.  Return 1 if they differ only
5207 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5208 ** other than the top-level COLLATE operator.
5209 **
5210 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5211 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5212 **
5213 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5214 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5215 **
5216 ** Sometimes this routine will return 2 even if the two expressions
5217 ** really are equivalent.  If we cannot prove that the expressions are
5218 ** identical, we return 2 just to be safe.  So if this routine
5219 ** returns 2, then you do not really know for certain if the two
5220 ** expressions are the same.  But if you get a 0 or 1 return, then you
5221 ** can be sure the expressions are the same.  In the places where
5222 ** this routine is used, it does not hurt to get an extra 2 - that
5223 ** just might result in some slightly slower code.  But returning
5224 ** an incorrect 0 or 1 could lead to a malfunction.
5225 **
5226 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5227 ** pParse->pReprepare can be matched against literals in pB.  The
5228 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5229 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5230 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5231 ** pB causes a return value of 2.
5232 */
5233 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5234   u32 combinedFlags;
5235   if( pA==0 || pB==0 ){
5236     return pB==pA ? 0 : 2;
5237   }
5238   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5239     return 0;
5240   }
5241   combinedFlags = pA->flags | pB->flags;
5242   if( combinedFlags & EP_IntValue ){
5243     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5244       return 0;
5245     }
5246     return 2;
5247   }
5248   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5249     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5250       return 1;
5251     }
5252     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5253       return 1;
5254     }
5255     return 2;
5256   }
5257   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5258     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5259       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5260 #ifndef SQLITE_OMIT_WINDOWFUNC
5261       assert( pA->op==pB->op );
5262       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5263         return 2;
5264       }
5265       if( ExprHasProperty(pA,EP_WinFunc) ){
5266         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5267           return 2;
5268         }
5269       }
5270 #endif
5271     }else if( pA->op==TK_NULL ){
5272       return 0;
5273     }else if( pA->op==TK_COLLATE ){
5274       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5275     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5276       return 2;
5277     }
5278   }
5279   if( (pA->flags & (EP_Distinct|EP_Commuted))
5280      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5281   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5282     if( combinedFlags & EP_xIsSelect ) return 2;
5283     if( (combinedFlags & EP_FixedCol)==0
5284      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5285     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5286     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5287     if( pA->op!=TK_STRING
5288      && pA->op!=TK_TRUEFALSE
5289      && ALWAYS((combinedFlags & EP_Reduced)==0)
5290     ){
5291       if( pA->iColumn!=pB->iColumn ) return 2;
5292       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5293       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5294         return 2;
5295       }
5296     }
5297   }
5298   return 0;
5299 }
5300 
5301 /*
5302 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5303 ** if they are certainly different, or 2 if it is not possible to
5304 ** determine if they are identical or not.
5305 **
5306 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5307 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5308 **
5309 ** This routine might return non-zero for equivalent ExprLists.  The
5310 ** only consequence will be disabled optimizations.  But this routine
5311 ** must never return 0 if the two ExprList objects are different, or
5312 ** a malfunction will result.
5313 **
5314 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5315 ** always differs from a non-NULL pointer.
5316 */
5317 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5318   int i;
5319   if( pA==0 && pB==0 ) return 0;
5320   if( pA==0 || pB==0 ) return 1;
5321   if( pA->nExpr!=pB->nExpr ) return 1;
5322   for(i=0; i<pA->nExpr; i++){
5323     int res;
5324     Expr *pExprA = pA->a[i].pExpr;
5325     Expr *pExprB = pB->a[i].pExpr;
5326     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5327     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5328   }
5329   return 0;
5330 }
5331 
5332 /*
5333 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5334 ** are ignored.
5335 */
5336 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5337   return sqlite3ExprCompare(0,
5338              sqlite3ExprSkipCollateAndLikely(pA),
5339              sqlite3ExprSkipCollateAndLikely(pB),
5340              iTab);
5341 }
5342 
5343 /*
5344 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5345 **
5346 ** Or if seenNot is true, return non-zero if Expr p can only be
5347 ** non-NULL if pNN is not NULL
5348 */
5349 static int exprImpliesNotNull(
5350   Parse *pParse,      /* Parsing context */
5351   Expr *p,            /* The expression to be checked */
5352   Expr *pNN,          /* The expression that is NOT NULL */
5353   int iTab,           /* Table being evaluated */
5354   int seenNot         /* Return true only if p can be any non-NULL value */
5355 ){
5356   assert( p );
5357   assert( pNN );
5358   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5359     return pNN->op!=TK_NULL;
5360   }
5361   switch( p->op ){
5362     case TK_IN: {
5363       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5364       assert( ExprHasProperty(p,EP_xIsSelect)
5365            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5366       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5367     }
5368     case TK_BETWEEN: {
5369       ExprList *pList = p->x.pList;
5370       assert( pList!=0 );
5371       assert( pList->nExpr==2 );
5372       if( seenNot ) return 0;
5373       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5374        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5375       ){
5376         return 1;
5377       }
5378       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5379     }
5380     case TK_EQ:
5381     case TK_NE:
5382     case TK_LT:
5383     case TK_LE:
5384     case TK_GT:
5385     case TK_GE:
5386     case TK_PLUS:
5387     case TK_MINUS:
5388     case TK_BITOR:
5389     case TK_LSHIFT:
5390     case TK_RSHIFT:
5391     case TK_CONCAT:
5392       seenNot = 1;
5393       /* no break */ deliberate_fall_through
5394     case TK_STAR:
5395     case TK_REM:
5396     case TK_BITAND:
5397     case TK_SLASH: {
5398       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5399       /* no break */ deliberate_fall_through
5400     }
5401     case TK_SPAN:
5402     case TK_COLLATE:
5403     case TK_UPLUS:
5404     case TK_UMINUS: {
5405       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5406     }
5407     case TK_TRUTH: {
5408       if( seenNot ) return 0;
5409       if( p->op2!=TK_IS ) return 0;
5410       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5411     }
5412     case TK_BITNOT:
5413     case TK_NOT: {
5414       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5415     }
5416   }
5417   return 0;
5418 }
5419 
5420 /*
5421 ** Return true if we can prove the pE2 will always be true if pE1 is
5422 ** true.  Return false if we cannot complete the proof or if pE2 might
5423 ** be false.  Examples:
5424 **
5425 **     pE1: x==5       pE2: x==5             Result: true
5426 **     pE1: x>0        pE2: x==5             Result: false
5427 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5428 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5429 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5430 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5431 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5432 **
5433 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5434 ** Expr.iTable<0 then assume a table number given by iTab.
5435 **
5436 ** If pParse is not NULL, then the values of bound variables in pE1 are
5437 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5438 ** modified to record which bound variables are referenced.  If pParse
5439 ** is NULL, then false will be returned if pE1 contains any bound variables.
5440 **
5441 ** When in doubt, return false.  Returning true might give a performance
5442 ** improvement.  Returning false might cause a performance reduction, but
5443 ** it will always give the correct answer and is hence always safe.
5444 */
5445 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5446   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5447     return 1;
5448   }
5449   if( pE2->op==TK_OR
5450    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5451              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5452   ){
5453     return 1;
5454   }
5455   if( pE2->op==TK_NOTNULL
5456    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5457   ){
5458     return 1;
5459   }
5460   return 0;
5461 }
5462 
5463 /*
5464 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5465 ** If the expression node requires that the table at pWalker->iCur
5466 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5467 **
5468 ** This routine controls an optimization.  False positives (setting
5469 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5470 ** (never setting pWalker->eCode) is a harmless missed optimization.
5471 */
5472 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5473   testcase( pExpr->op==TK_AGG_COLUMN );
5474   testcase( pExpr->op==TK_AGG_FUNCTION );
5475   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5476   switch( pExpr->op ){
5477     case TK_ISNOT:
5478     case TK_ISNULL:
5479     case TK_NOTNULL:
5480     case TK_IS:
5481     case TK_OR:
5482     case TK_VECTOR:
5483     case TK_CASE:
5484     case TK_IN:
5485     case TK_FUNCTION:
5486     case TK_TRUTH:
5487       testcase( pExpr->op==TK_ISNOT );
5488       testcase( pExpr->op==TK_ISNULL );
5489       testcase( pExpr->op==TK_NOTNULL );
5490       testcase( pExpr->op==TK_IS );
5491       testcase( pExpr->op==TK_OR );
5492       testcase( pExpr->op==TK_VECTOR );
5493       testcase( pExpr->op==TK_CASE );
5494       testcase( pExpr->op==TK_IN );
5495       testcase( pExpr->op==TK_FUNCTION );
5496       testcase( pExpr->op==TK_TRUTH );
5497       return WRC_Prune;
5498     case TK_COLUMN:
5499       if( pWalker->u.iCur==pExpr->iTable ){
5500         pWalker->eCode = 1;
5501         return WRC_Abort;
5502       }
5503       return WRC_Prune;
5504 
5505     case TK_AND:
5506       if( pWalker->eCode==0 ){
5507         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5508         if( pWalker->eCode ){
5509           pWalker->eCode = 0;
5510           sqlite3WalkExpr(pWalker, pExpr->pRight);
5511         }
5512       }
5513       return WRC_Prune;
5514 
5515     case TK_BETWEEN:
5516       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5517         assert( pWalker->eCode );
5518         return WRC_Abort;
5519       }
5520       return WRC_Prune;
5521 
5522     /* Virtual tables are allowed to use constraints like x=NULL.  So
5523     ** a term of the form x=y does not prove that y is not null if x
5524     ** is the column of a virtual table */
5525     case TK_EQ:
5526     case TK_NE:
5527     case TK_LT:
5528     case TK_LE:
5529     case TK_GT:
5530     case TK_GE: {
5531       Expr *pLeft = pExpr->pLeft;
5532       Expr *pRight = pExpr->pRight;
5533       testcase( pExpr->op==TK_EQ );
5534       testcase( pExpr->op==TK_NE );
5535       testcase( pExpr->op==TK_LT );
5536       testcase( pExpr->op==TK_LE );
5537       testcase( pExpr->op==TK_GT );
5538       testcase( pExpr->op==TK_GE );
5539       /* The y.pTab=0 assignment in wherecode.c always happens after the
5540       ** impliesNotNullRow() test */
5541       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5542                                && IsVirtual(pLeft->y.pTab))
5543        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5544                                && IsVirtual(pRight->y.pTab))
5545       ){
5546         return WRC_Prune;
5547       }
5548       /* no break */ deliberate_fall_through
5549     }
5550     default:
5551       return WRC_Continue;
5552   }
5553 }
5554 
5555 /*
5556 ** Return true (non-zero) if expression p can only be true if at least
5557 ** one column of table iTab is non-null.  In other words, return true
5558 ** if expression p will always be NULL or false if every column of iTab
5559 ** is NULL.
5560 **
5561 ** False negatives are acceptable.  In other words, it is ok to return
5562 ** zero even if expression p will never be true of every column of iTab
5563 ** is NULL.  A false negative is merely a missed optimization opportunity.
5564 **
5565 ** False positives are not allowed, however.  A false positive may result
5566 ** in an incorrect answer.
5567 **
5568 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5569 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5570 **
5571 ** This routine is used to check if a LEFT JOIN can be converted into
5572 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5573 ** clause requires that some column of the right table of the LEFT JOIN
5574 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5575 ** ordinary join.
5576 */
5577 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5578   Walker w;
5579   p = sqlite3ExprSkipCollateAndLikely(p);
5580   if( p==0 ) return 0;
5581   if( p->op==TK_NOTNULL ){
5582     p = p->pLeft;
5583   }else{
5584     while( p->op==TK_AND ){
5585       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5586       p = p->pRight;
5587     }
5588   }
5589   w.xExprCallback = impliesNotNullRow;
5590   w.xSelectCallback = 0;
5591   w.xSelectCallback2 = 0;
5592   w.eCode = 0;
5593   w.u.iCur = iTab;
5594   sqlite3WalkExpr(&w, p);
5595   return w.eCode;
5596 }
5597 
5598 /*
5599 ** An instance of the following structure is used by the tree walker
5600 ** to determine if an expression can be evaluated by reference to the
5601 ** index only, without having to do a search for the corresponding
5602 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5603 ** is the cursor for the table.
5604 */
5605 struct IdxCover {
5606   Index *pIdx;     /* The index to be tested for coverage */
5607   int iCur;        /* Cursor number for the table corresponding to the index */
5608 };
5609 
5610 /*
5611 ** Check to see if there are references to columns in table
5612 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5613 ** pWalker->u.pIdxCover->pIdx.
5614 */
5615 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5616   if( pExpr->op==TK_COLUMN
5617    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5618    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5619   ){
5620     pWalker->eCode = 1;
5621     return WRC_Abort;
5622   }
5623   return WRC_Continue;
5624 }
5625 
5626 /*
5627 ** Determine if an index pIdx on table with cursor iCur contains will
5628 ** the expression pExpr.  Return true if the index does cover the
5629 ** expression and false if the pExpr expression references table columns
5630 ** that are not found in the index pIdx.
5631 **
5632 ** An index covering an expression means that the expression can be
5633 ** evaluated using only the index and without having to lookup the
5634 ** corresponding table entry.
5635 */
5636 int sqlite3ExprCoveredByIndex(
5637   Expr *pExpr,        /* The index to be tested */
5638   int iCur,           /* The cursor number for the corresponding table */
5639   Index *pIdx         /* The index that might be used for coverage */
5640 ){
5641   Walker w;
5642   struct IdxCover xcov;
5643   memset(&w, 0, sizeof(w));
5644   xcov.iCur = iCur;
5645   xcov.pIdx = pIdx;
5646   w.xExprCallback = exprIdxCover;
5647   w.u.pIdxCover = &xcov;
5648   sqlite3WalkExpr(&w, pExpr);
5649   return !w.eCode;
5650 }
5651 
5652 
5653 /*
5654 ** An instance of the following structure is used by the tree walker
5655 ** to count references to table columns in the arguments of an
5656 ** aggregate function, in order to implement the
5657 ** sqlite3FunctionThisSrc() routine.
5658 */
5659 struct SrcCount {
5660   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5661   int iSrcInner;   /* Smallest cursor number in this context */
5662   int nThis;       /* Number of references to columns in pSrcList */
5663   int nOther;      /* Number of references to columns in other FROM clauses */
5664 };
5665 
5666 /*
5667 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5668 ** SELECT with a FROM clause encountered during this iteration, set
5669 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5670 ** the FROM cause.
5671 */
5672 static int selectSrcCount(Walker *pWalker, Select *pSel){
5673   struct SrcCount *p = pWalker->u.pSrcCount;
5674   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5675     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5676   }
5677   return WRC_Continue;
5678 }
5679 
5680 /*
5681 ** Count the number of references to columns.
5682 */
5683 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5684   /* There was once a NEVER() on the second term on the grounds that
5685   ** sqlite3FunctionUsesThisSrc() was always called before
5686   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5687   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5688   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5689   ** FunctionUsesThisSrc() when creating a new sub-select. */
5690   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5691     int i;
5692     struct SrcCount *p = pWalker->u.pSrcCount;
5693     SrcList *pSrc = p->pSrc;
5694     int nSrc = pSrc ? pSrc->nSrc : 0;
5695     for(i=0; i<nSrc; i++){
5696       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5697     }
5698     if( i<nSrc ){
5699       p->nThis++;
5700     }else if( pExpr->iTable<p->iSrcInner ){
5701       /* In a well-formed parse tree (no name resolution errors),
5702       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5703       ** outer context.  Those are the only ones to count as "other" */
5704       p->nOther++;
5705     }
5706   }
5707   return WRC_Continue;
5708 }
5709 
5710 /*
5711 ** Determine if any of the arguments to the pExpr Function reference
5712 ** pSrcList.  Return true if they do.  Also return true if the function
5713 ** has no arguments or has only constant arguments.  Return false if pExpr
5714 ** references columns but not columns of tables found in pSrcList.
5715 */
5716 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5717   Walker w;
5718   struct SrcCount cnt;
5719   assert( pExpr->op==TK_AGG_FUNCTION );
5720   memset(&w, 0, sizeof(w));
5721   w.xExprCallback = exprSrcCount;
5722   w.xSelectCallback = selectSrcCount;
5723   w.u.pSrcCount = &cnt;
5724   cnt.pSrc = pSrcList;
5725   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5726   cnt.nThis = 0;
5727   cnt.nOther = 0;
5728   sqlite3WalkExprList(&w, pExpr->x.pList);
5729 #ifndef SQLITE_OMIT_WINDOWFUNC
5730   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5731     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5732   }
5733 #endif
5734   return cnt.nThis>0 || cnt.nOther==0;
5735 }
5736 
5737 /*
5738 ** This is a Walker expression node callback.
5739 **
5740 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5741 ** object that is referenced does not refer directly to the Expr.  If
5742 ** it does, make a copy.  This is done because the pExpr argument is
5743 ** subject to change.
5744 **
5745 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5746 ** This will cause the expression to be deleted automatically when the
5747 ** Parse object is destroyed, but the zero register number means that it
5748 ** will not generate any code in the preamble.
5749 */
5750 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5751   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5752    && pExpr->pAggInfo!=0
5753   ){
5754     AggInfo *pAggInfo = pExpr->pAggInfo;
5755     int iAgg = pExpr->iAgg;
5756     Parse *pParse = pWalker->pParse;
5757     sqlite3 *db = pParse->db;
5758     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5759     if( pExpr->op==TK_AGG_COLUMN ){
5760       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5761       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5762         pExpr = sqlite3ExprDup(db, pExpr, 0);
5763         if( pExpr ){
5764           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5765           pParse->pConstExpr =
5766              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5767         }
5768       }
5769     }else{
5770       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5771       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5772         pExpr = sqlite3ExprDup(db, pExpr, 0);
5773         if( pExpr ){
5774           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5775           pParse->pConstExpr =
5776              sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
5777         }
5778       }
5779     }
5780   }
5781   return WRC_Continue;
5782 }
5783 
5784 /*
5785 ** Initialize a Walker object so that will persist AggInfo entries referenced
5786 ** by the tree that is walked.
5787 */
5788 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5789   memset(pWalker, 0, sizeof(*pWalker));
5790   pWalker->pParse = pParse;
5791   pWalker->xExprCallback = agginfoPersistExprCb;
5792   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5793 }
5794 
5795 /*
5796 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5797 ** the new element.  Return a negative number if malloc fails.
5798 */
5799 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5800   int i;
5801   pInfo->aCol = sqlite3ArrayAllocate(
5802        db,
5803        pInfo->aCol,
5804        sizeof(pInfo->aCol[0]),
5805        &pInfo->nColumn,
5806        &i
5807   );
5808   return i;
5809 }
5810 
5811 /*
5812 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5813 ** the new element.  Return a negative number if malloc fails.
5814 */
5815 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5816   int i;
5817   pInfo->aFunc = sqlite3ArrayAllocate(
5818        db,
5819        pInfo->aFunc,
5820        sizeof(pInfo->aFunc[0]),
5821        &pInfo->nFunc,
5822        &i
5823   );
5824   return i;
5825 }
5826 
5827 /*
5828 ** This is the xExprCallback for a tree walker.  It is used to
5829 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5830 ** for additional information.
5831 */
5832 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5833   int i;
5834   NameContext *pNC = pWalker->u.pNC;
5835   Parse *pParse = pNC->pParse;
5836   SrcList *pSrcList = pNC->pSrcList;
5837   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5838 
5839   assert( pNC->ncFlags & NC_UAggInfo );
5840   switch( pExpr->op ){
5841     case TK_AGG_COLUMN:
5842     case TK_COLUMN: {
5843       testcase( pExpr->op==TK_AGG_COLUMN );
5844       testcase( pExpr->op==TK_COLUMN );
5845       /* Check to see if the column is in one of the tables in the FROM
5846       ** clause of the aggregate query */
5847       if( ALWAYS(pSrcList!=0) ){
5848         struct SrcList_item *pItem = pSrcList->a;
5849         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5850           struct AggInfo_col *pCol;
5851           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5852           if( pExpr->iTable==pItem->iCursor ){
5853             /* If we reach this point, it means that pExpr refers to a table
5854             ** that is in the FROM clause of the aggregate query.
5855             **
5856             ** Make an entry for the column in pAggInfo->aCol[] if there
5857             ** is not an entry there already.
5858             */
5859             int k;
5860             pCol = pAggInfo->aCol;
5861             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5862               if( pCol->iTable==pExpr->iTable &&
5863                   pCol->iColumn==pExpr->iColumn ){
5864                 break;
5865               }
5866             }
5867             if( (k>=pAggInfo->nColumn)
5868              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5869             ){
5870               pCol = &pAggInfo->aCol[k];
5871               pCol->pTab = pExpr->y.pTab;
5872               pCol->iTable = pExpr->iTable;
5873               pCol->iColumn = pExpr->iColumn;
5874               pCol->iMem = ++pParse->nMem;
5875               pCol->iSorterColumn = -1;
5876               pCol->pCExpr = pExpr;
5877               if( pAggInfo->pGroupBy ){
5878                 int j, n;
5879                 ExprList *pGB = pAggInfo->pGroupBy;
5880                 struct ExprList_item *pTerm = pGB->a;
5881                 n = pGB->nExpr;
5882                 for(j=0; j<n; j++, pTerm++){
5883                   Expr *pE = pTerm->pExpr;
5884                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5885                       pE->iColumn==pExpr->iColumn ){
5886                     pCol->iSorterColumn = j;
5887                     break;
5888                   }
5889                 }
5890               }
5891               if( pCol->iSorterColumn<0 ){
5892                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5893               }
5894             }
5895             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5896             ** because it was there before or because we just created it).
5897             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5898             ** pAggInfo->aCol[] entry.
5899             */
5900             ExprSetVVAProperty(pExpr, EP_NoReduce);
5901             pExpr->pAggInfo = pAggInfo;
5902             pExpr->op = TK_AGG_COLUMN;
5903             pExpr->iAgg = (i16)k;
5904             break;
5905           } /* endif pExpr->iTable==pItem->iCursor */
5906         } /* end loop over pSrcList */
5907       }
5908       return WRC_Prune;
5909     }
5910     case TK_AGG_FUNCTION: {
5911       if( (pNC->ncFlags & NC_InAggFunc)==0
5912        && pWalker->walkerDepth==pExpr->op2
5913       ){
5914         /* Check to see if pExpr is a duplicate of another aggregate
5915         ** function that is already in the pAggInfo structure
5916         */
5917         struct AggInfo_func *pItem = pAggInfo->aFunc;
5918         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5919           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
5920             break;
5921           }
5922         }
5923         if( i>=pAggInfo->nFunc ){
5924           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5925           */
5926           u8 enc = ENC(pParse->db);
5927           i = addAggInfoFunc(pParse->db, pAggInfo);
5928           if( i>=0 ){
5929             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5930             pItem = &pAggInfo->aFunc[i];
5931             pItem->pFExpr = pExpr;
5932             pItem->iMem = ++pParse->nMem;
5933             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5934             pItem->pFunc = sqlite3FindFunction(pParse->db,
5935                    pExpr->u.zToken,
5936                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5937             if( pExpr->flags & EP_Distinct ){
5938               pItem->iDistinct = pParse->nTab++;
5939             }else{
5940               pItem->iDistinct = -1;
5941             }
5942           }
5943         }
5944         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5945         */
5946         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5947         ExprSetVVAProperty(pExpr, EP_NoReduce);
5948         pExpr->iAgg = (i16)i;
5949         pExpr->pAggInfo = pAggInfo;
5950         return WRC_Prune;
5951       }else{
5952         return WRC_Continue;
5953       }
5954     }
5955   }
5956   return WRC_Continue;
5957 }
5958 
5959 /*
5960 ** Analyze the pExpr expression looking for aggregate functions and
5961 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5962 ** points to.  Additional entries are made on the AggInfo object as
5963 ** necessary.
5964 **
5965 ** This routine should only be called after the expression has been
5966 ** analyzed by sqlite3ResolveExprNames().
5967 */
5968 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5969   Walker w;
5970   w.xExprCallback = analyzeAggregate;
5971   w.xSelectCallback = sqlite3WalkerDepthIncrease;
5972   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
5973   w.walkerDepth = 0;
5974   w.u.pNC = pNC;
5975   w.pParse = 0;
5976   assert( pNC->pSrcList!=0 );
5977   sqlite3WalkExpr(&w, pExpr);
5978 }
5979 
5980 /*
5981 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5982 ** expression list.  Return the number of errors.
5983 **
5984 ** If an error is found, the analysis is cut short.
5985 */
5986 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5987   struct ExprList_item *pItem;
5988   int i;
5989   if( pList ){
5990     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5991       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5992     }
5993   }
5994 }
5995 
5996 /*
5997 ** Allocate a single new register for use to hold some intermediate result.
5998 */
5999 int sqlite3GetTempReg(Parse *pParse){
6000   if( pParse->nTempReg==0 ){
6001     return ++pParse->nMem;
6002   }
6003   return pParse->aTempReg[--pParse->nTempReg];
6004 }
6005 
6006 /*
6007 ** Deallocate a register, making available for reuse for some other
6008 ** purpose.
6009 */
6010 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6011   if( iReg ){
6012     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6013     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6014       pParse->aTempReg[pParse->nTempReg++] = iReg;
6015     }
6016   }
6017 }
6018 
6019 /*
6020 ** Allocate or deallocate a block of nReg consecutive registers.
6021 */
6022 int sqlite3GetTempRange(Parse *pParse, int nReg){
6023   int i, n;
6024   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6025   i = pParse->iRangeReg;
6026   n = pParse->nRangeReg;
6027   if( nReg<=n ){
6028     pParse->iRangeReg += nReg;
6029     pParse->nRangeReg -= nReg;
6030   }else{
6031     i = pParse->nMem+1;
6032     pParse->nMem += nReg;
6033   }
6034   return i;
6035 }
6036 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6037   if( nReg==1 ){
6038     sqlite3ReleaseTempReg(pParse, iReg);
6039     return;
6040   }
6041   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6042   if( nReg>pParse->nRangeReg ){
6043     pParse->nRangeReg = nReg;
6044     pParse->iRangeReg = iReg;
6045   }
6046 }
6047 
6048 /*
6049 ** Mark all temporary registers as being unavailable for reuse.
6050 **
6051 ** Always invoke this procedure after coding a subroutine or co-routine
6052 ** that might be invoked from other parts of the code, to ensure that
6053 ** the sub/co-routine does not use registers in common with the code that
6054 ** invokes the sub/co-routine.
6055 */
6056 void sqlite3ClearTempRegCache(Parse *pParse){
6057   pParse->nTempReg = 0;
6058   pParse->nRangeReg = 0;
6059 }
6060 
6061 /*
6062 ** Validate that no temporary register falls within the range of
6063 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6064 ** statements.
6065 */
6066 #ifdef SQLITE_DEBUG
6067 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6068   int i;
6069   if( pParse->nRangeReg>0
6070    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6071    && pParse->iRangeReg <= iLast
6072   ){
6073      return 0;
6074   }
6075   for(i=0; i<pParse->nTempReg; i++){
6076     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6077       return 0;
6078     }
6079   }
6080   return 1;
6081 }
6082 #endif /* SQLITE_DEBUG */
6083