1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 assert( pExpr->x.pSelect!=0 ); 56 assert( pExpr->x.pSelect->pEList!=0 ); 57 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 58 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 59 } 60 if( op==TK_REGISTER ) op = pExpr->op2; 61 #ifndef SQLITE_OMIT_CAST 62 if( op==TK_CAST ){ 63 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 64 return sqlite3AffinityType(pExpr->u.zToken, 0); 65 } 66 #endif 67 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 68 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 69 } 70 if( op==TK_SELECT_COLUMN ){ 71 assert( pExpr->pLeft->flags&EP_xIsSelect ); 72 return sqlite3ExprAffinity( 73 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 74 ); 75 } 76 if( op==TK_VECTOR ){ 77 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 78 } 79 return pExpr->affExpr; 80 } 81 82 /* 83 ** Set the collating sequence for expression pExpr to be the collating 84 ** sequence named by pToken. Return a pointer to a new Expr node that 85 ** implements the COLLATE operator. 86 ** 87 ** If a memory allocation error occurs, that fact is recorded in pParse->db 88 ** and the pExpr parameter is returned unchanged. 89 */ 90 Expr *sqlite3ExprAddCollateToken( 91 Parse *pParse, /* Parsing context */ 92 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 93 const Token *pCollName, /* Name of collating sequence */ 94 int dequote /* True to dequote pCollName */ 95 ){ 96 if( pCollName->n>0 ){ 97 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 98 if( pNew ){ 99 pNew->pLeft = pExpr; 100 pNew->flags |= EP_Collate|EP_Skip; 101 pExpr = pNew; 102 } 103 } 104 return pExpr; 105 } 106 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 107 Token s; 108 assert( zC!=0 ); 109 sqlite3TokenInit(&s, (char*)zC); 110 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 111 } 112 113 /* 114 ** Skip over any TK_COLLATE operators. 115 */ 116 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 117 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 118 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 119 pExpr = pExpr->pLeft; 120 } 121 return pExpr; 122 } 123 124 /* 125 ** Skip over any TK_COLLATE operators and/or any unlikely() 126 ** or likelihood() or likely() functions at the root of an 127 ** expression. 128 */ 129 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 130 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 131 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 132 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 133 assert( pExpr->x.pList->nExpr>0 ); 134 assert( pExpr->op==TK_FUNCTION ); 135 pExpr = pExpr->x.pList->a[0].pExpr; 136 }else{ 137 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 138 pExpr = pExpr->pLeft; 139 } 140 } 141 return pExpr; 142 } 143 144 /* 145 ** Return the collation sequence for the expression pExpr. If 146 ** there is no defined collating sequence, return NULL. 147 ** 148 ** See also: sqlite3ExprNNCollSeq() 149 ** 150 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 151 ** default collation if pExpr has no defined collation. 152 ** 153 ** The collating sequence might be determined by a COLLATE operator 154 ** or by the presence of a column with a defined collating sequence. 155 ** COLLATE operators take first precedence. Left operands take 156 ** precedence over right operands. 157 */ 158 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 159 sqlite3 *db = pParse->db; 160 CollSeq *pColl = 0; 161 const Expr *p = pExpr; 162 while( p ){ 163 int op = p->op; 164 if( op==TK_REGISTER ) op = p->op2; 165 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 166 && p->y.pTab!=0 167 ){ 168 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 169 ** a TK_COLUMN but was previously evaluated and cached in a register */ 170 int j = p->iColumn; 171 if( j>=0 ){ 172 const char *zColl = p->y.pTab->aCol[j].zColl; 173 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 174 } 175 break; 176 } 177 if( op==TK_CAST || op==TK_UPLUS ){ 178 p = p->pLeft; 179 continue; 180 } 181 if( op==TK_VECTOR ){ 182 p = p->x.pList->a[0].pExpr; 183 continue; 184 } 185 if( op==TK_COLLATE ){ 186 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 187 break; 188 } 189 if( p->flags & EP_Collate ){ 190 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 191 p = p->pLeft; 192 }else{ 193 Expr *pNext = p->pRight; 194 /* The Expr.x union is never used at the same time as Expr.pRight */ 195 assert( p->x.pList==0 || p->pRight==0 ); 196 if( p->x.pList!=0 197 && !db->mallocFailed 198 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 199 ){ 200 int i; 201 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 202 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 203 pNext = p->x.pList->a[i].pExpr; 204 break; 205 } 206 } 207 } 208 p = pNext; 209 } 210 }else{ 211 break; 212 } 213 } 214 if( sqlite3CheckCollSeq(pParse, pColl) ){ 215 pColl = 0; 216 } 217 return pColl; 218 } 219 220 /* 221 ** Return the collation sequence for the expression pExpr. If 222 ** there is no defined collating sequence, return a pointer to the 223 ** defautl collation sequence. 224 ** 225 ** See also: sqlite3ExprCollSeq() 226 ** 227 ** The sqlite3ExprCollSeq() routine works the same except that it 228 ** returns NULL if there is no defined collation. 229 */ 230 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 231 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 232 if( p==0 ) p = pParse->db->pDfltColl; 233 assert( p!=0 ); 234 return p; 235 } 236 237 /* 238 ** Return TRUE if the two expressions have equivalent collating sequences. 239 */ 240 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 241 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 242 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 243 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 244 } 245 246 /* 247 ** pExpr is an operand of a comparison operator. aff2 is the 248 ** type affinity of the other operand. This routine returns the 249 ** type affinity that should be used for the comparison operator. 250 */ 251 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 252 char aff1 = sqlite3ExprAffinity(pExpr); 253 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 254 /* Both sides of the comparison are columns. If one has numeric 255 ** affinity, use that. Otherwise use no affinity. 256 */ 257 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 258 return SQLITE_AFF_NUMERIC; 259 }else{ 260 return SQLITE_AFF_BLOB; 261 } 262 }else{ 263 /* One side is a column, the other is not. Use the columns affinity. */ 264 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 265 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 266 } 267 } 268 269 /* 270 ** pExpr is a comparison operator. Return the type affinity that should 271 ** be applied to both operands prior to doing the comparison. 272 */ 273 static char comparisonAffinity(const Expr *pExpr){ 274 char aff; 275 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 276 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 277 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 278 assert( pExpr->pLeft ); 279 aff = sqlite3ExprAffinity(pExpr->pLeft); 280 if( pExpr->pRight ){ 281 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 282 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 283 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 284 }else if( aff==0 ){ 285 aff = SQLITE_AFF_BLOB; 286 } 287 return aff; 288 } 289 290 /* 291 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 292 ** idx_affinity is the affinity of an indexed column. Return true 293 ** if the index with affinity idx_affinity may be used to implement 294 ** the comparison in pExpr. 295 */ 296 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 297 char aff = comparisonAffinity(pExpr); 298 if( aff<SQLITE_AFF_TEXT ){ 299 return 1; 300 } 301 if( aff==SQLITE_AFF_TEXT ){ 302 return idx_affinity==SQLITE_AFF_TEXT; 303 } 304 return sqlite3IsNumericAffinity(idx_affinity); 305 } 306 307 /* 308 ** Return the P5 value that should be used for a binary comparison 309 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 310 */ 311 static u8 binaryCompareP5( 312 const Expr *pExpr1, /* Left operand */ 313 const Expr *pExpr2, /* Right operand */ 314 int jumpIfNull /* Extra flags added to P5 */ 315 ){ 316 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 317 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 318 return aff; 319 } 320 321 /* 322 ** Return a pointer to the collation sequence that should be used by 323 ** a binary comparison operator comparing pLeft and pRight. 324 ** 325 ** If the left hand expression has a collating sequence type, then it is 326 ** used. Otherwise the collation sequence for the right hand expression 327 ** is used, or the default (BINARY) if neither expression has a collating 328 ** type. 329 ** 330 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 331 ** it is not considered. 332 */ 333 CollSeq *sqlite3BinaryCompareCollSeq( 334 Parse *pParse, 335 const Expr *pLeft, 336 const Expr *pRight 337 ){ 338 CollSeq *pColl; 339 assert( pLeft ); 340 if( pLeft->flags & EP_Collate ){ 341 pColl = sqlite3ExprCollSeq(pParse, pLeft); 342 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 343 pColl = sqlite3ExprCollSeq(pParse, pRight); 344 }else{ 345 pColl = sqlite3ExprCollSeq(pParse, pLeft); 346 if( !pColl ){ 347 pColl = sqlite3ExprCollSeq(pParse, pRight); 348 } 349 } 350 return pColl; 351 } 352 353 /* Expresssion p is a comparison operator. Return a collation sequence 354 ** appropriate for the comparison operator. 355 ** 356 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 357 ** However, if the OP_Commuted flag is set, then the order of the operands 358 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 359 ** correct collating sequence is found. 360 */ 361 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 362 if( ExprHasProperty(p, EP_Commuted) ){ 363 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 364 }else{ 365 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 366 } 367 } 368 369 /* 370 ** Generate code for a comparison operator. 371 */ 372 static int codeCompare( 373 Parse *pParse, /* The parsing (and code generating) context */ 374 Expr *pLeft, /* The left operand */ 375 Expr *pRight, /* The right operand */ 376 int opcode, /* The comparison opcode */ 377 int in1, int in2, /* Register holding operands */ 378 int dest, /* Jump here if true. */ 379 int jumpIfNull, /* If true, jump if either operand is NULL */ 380 int isCommuted /* The comparison has been commuted */ 381 ){ 382 int p5; 383 int addr; 384 CollSeq *p4; 385 386 if( pParse->nErr ) return 0; 387 if( isCommuted ){ 388 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 389 }else{ 390 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 391 } 392 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 393 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 394 (void*)p4, P4_COLLSEQ); 395 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 396 return addr; 397 } 398 399 /* 400 ** Return true if expression pExpr is a vector, or false otherwise. 401 ** 402 ** A vector is defined as any expression that results in two or more 403 ** columns of result. Every TK_VECTOR node is an vector because the 404 ** parser will not generate a TK_VECTOR with fewer than two entries. 405 ** But a TK_SELECT might be either a vector or a scalar. It is only 406 ** considered a vector if it has two or more result columns. 407 */ 408 int sqlite3ExprIsVector(Expr *pExpr){ 409 return sqlite3ExprVectorSize(pExpr)>1; 410 } 411 412 /* 413 ** If the expression passed as the only argument is of type TK_VECTOR 414 ** return the number of expressions in the vector. Or, if the expression 415 ** is a sub-select, return the number of columns in the sub-select. For 416 ** any other type of expression, return 1. 417 */ 418 int sqlite3ExprVectorSize(Expr *pExpr){ 419 u8 op = pExpr->op; 420 if( op==TK_REGISTER ) op = pExpr->op2; 421 if( op==TK_VECTOR ){ 422 return pExpr->x.pList->nExpr; 423 }else if( op==TK_SELECT ){ 424 return pExpr->x.pSelect->pEList->nExpr; 425 }else{ 426 return 1; 427 } 428 } 429 430 /* 431 ** Return a pointer to a subexpression of pVector that is the i-th 432 ** column of the vector (numbered starting with 0). The caller must 433 ** ensure that i is within range. 434 ** 435 ** If pVector is really a scalar (and "scalar" here includes subqueries 436 ** that return a single column!) then return pVector unmodified. 437 ** 438 ** pVector retains ownership of the returned subexpression. 439 ** 440 ** If the vector is a (SELECT ...) then the expression returned is 441 ** just the expression for the i-th term of the result set, and may 442 ** not be ready for evaluation because the table cursor has not yet 443 ** been positioned. 444 */ 445 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 446 assert( i<sqlite3ExprVectorSize(pVector) ); 447 if( sqlite3ExprIsVector(pVector) ){ 448 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 449 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 450 return pVector->x.pSelect->pEList->a[i].pExpr; 451 }else{ 452 return pVector->x.pList->a[i].pExpr; 453 } 454 } 455 return pVector; 456 } 457 458 /* 459 ** Compute and return a new Expr object which when passed to 460 ** sqlite3ExprCode() will generate all necessary code to compute 461 ** the iField-th column of the vector expression pVector. 462 ** 463 ** It is ok for pVector to be a scalar (as long as iField==0). 464 ** In that case, this routine works like sqlite3ExprDup(). 465 ** 466 ** The caller owns the returned Expr object and is responsible for 467 ** ensuring that the returned value eventually gets freed. 468 ** 469 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 470 ** then the returned object will reference pVector and so pVector must remain 471 ** valid for the life of the returned object. If pVector is a TK_VECTOR 472 ** or a scalar expression, then it can be deleted as soon as this routine 473 ** returns. 474 ** 475 ** A trick to cause a TK_SELECT pVector to be deleted together with 476 ** the returned Expr object is to attach the pVector to the pRight field 477 ** of the returned TK_SELECT_COLUMN Expr object. 478 */ 479 Expr *sqlite3ExprForVectorField( 480 Parse *pParse, /* Parsing context */ 481 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 482 int iField /* Which column of the vector to return */ 483 ){ 484 Expr *pRet; 485 if( pVector->op==TK_SELECT ){ 486 assert( pVector->flags & EP_xIsSelect ); 487 /* The TK_SELECT_COLUMN Expr node: 488 ** 489 ** pLeft: pVector containing TK_SELECT. Not deleted. 490 ** pRight: not used. But recursively deleted. 491 ** iColumn: Index of a column in pVector 492 ** iTable: 0 or the number of columns on the LHS of an assignment 493 ** pLeft->iTable: First in an array of register holding result, or 0 494 ** if the result is not yet computed. 495 ** 496 ** sqlite3ExprDelete() specifically skips the recursive delete of 497 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 498 ** can be attached to pRight to cause this node to take ownership of 499 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 500 ** with the same pLeft pointer to the pVector, but only one of them 501 ** will own the pVector. 502 */ 503 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 504 if( pRet ){ 505 pRet->iColumn = iField; 506 pRet->pLeft = pVector; 507 } 508 assert( pRet==0 || pRet->iTable==0 ); 509 }else{ 510 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 511 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 512 sqlite3RenameTokenRemap(pParse, pRet, pVector); 513 } 514 return pRet; 515 } 516 517 /* 518 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 519 ** it. Return the register in which the result is stored (or, if the 520 ** sub-select returns more than one column, the first in an array 521 ** of registers in which the result is stored). 522 ** 523 ** If pExpr is not a TK_SELECT expression, return 0. 524 */ 525 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 526 int reg = 0; 527 #ifndef SQLITE_OMIT_SUBQUERY 528 if( pExpr->op==TK_SELECT ){ 529 reg = sqlite3CodeSubselect(pParse, pExpr); 530 } 531 #endif 532 return reg; 533 } 534 535 /* 536 ** Argument pVector points to a vector expression - either a TK_VECTOR 537 ** or TK_SELECT that returns more than one column. This function returns 538 ** the register number of a register that contains the value of 539 ** element iField of the vector. 540 ** 541 ** If pVector is a TK_SELECT expression, then code for it must have 542 ** already been generated using the exprCodeSubselect() routine. In this 543 ** case parameter regSelect should be the first in an array of registers 544 ** containing the results of the sub-select. 545 ** 546 ** If pVector is of type TK_VECTOR, then code for the requested field 547 ** is generated. In this case (*pRegFree) may be set to the number of 548 ** a temporary register to be freed by the caller before returning. 549 ** 550 ** Before returning, output parameter (*ppExpr) is set to point to the 551 ** Expr object corresponding to element iElem of the vector. 552 */ 553 static int exprVectorRegister( 554 Parse *pParse, /* Parse context */ 555 Expr *pVector, /* Vector to extract element from */ 556 int iField, /* Field to extract from pVector */ 557 int regSelect, /* First in array of registers */ 558 Expr **ppExpr, /* OUT: Expression element */ 559 int *pRegFree /* OUT: Temp register to free */ 560 ){ 561 u8 op = pVector->op; 562 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 563 if( op==TK_REGISTER ){ 564 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 565 return pVector->iTable+iField; 566 } 567 if( op==TK_SELECT ){ 568 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 569 return regSelect+iField; 570 } 571 *ppExpr = pVector->x.pList->a[iField].pExpr; 572 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 573 } 574 575 /* 576 ** Expression pExpr is a comparison between two vector values. Compute 577 ** the result of the comparison (1, 0, or NULL) and write that 578 ** result into register dest. 579 ** 580 ** The caller must satisfy the following preconditions: 581 ** 582 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 583 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 584 ** otherwise: op==pExpr->op and p5==0 585 */ 586 static void codeVectorCompare( 587 Parse *pParse, /* Code generator context */ 588 Expr *pExpr, /* The comparison operation */ 589 int dest, /* Write results into this register */ 590 u8 op, /* Comparison operator */ 591 u8 p5 /* SQLITE_NULLEQ or zero */ 592 ){ 593 Vdbe *v = pParse->pVdbe; 594 Expr *pLeft = pExpr->pLeft; 595 Expr *pRight = pExpr->pRight; 596 int nLeft = sqlite3ExprVectorSize(pLeft); 597 int i; 598 int regLeft = 0; 599 int regRight = 0; 600 u8 opx = op; 601 int addrDone = sqlite3VdbeMakeLabel(pParse); 602 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 603 604 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 605 if( pParse->nErr ) return; 606 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 607 sqlite3ErrorMsg(pParse, "row value misused"); 608 return; 609 } 610 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 611 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 612 || pExpr->op==TK_LT || pExpr->op==TK_GT 613 || pExpr->op==TK_LE || pExpr->op==TK_GE 614 ); 615 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 616 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 617 assert( p5==0 || pExpr->op!=op ); 618 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 619 620 p5 |= SQLITE_STOREP2; 621 if( opx==TK_LE ) opx = TK_LT; 622 if( opx==TK_GE ) opx = TK_GT; 623 624 regLeft = exprCodeSubselect(pParse, pLeft); 625 regRight = exprCodeSubselect(pParse, pRight); 626 627 for(i=0; 1 /*Loop exits by "break"*/; i++){ 628 int regFree1 = 0, regFree2 = 0; 629 Expr *pL, *pR; 630 int r1, r2; 631 assert( i>=0 && i<nLeft ); 632 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 633 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 634 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 635 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 636 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 637 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 638 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 639 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 640 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 641 sqlite3ReleaseTempReg(pParse, regFree1); 642 sqlite3ReleaseTempReg(pParse, regFree2); 643 if( i==nLeft-1 ){ 644 break; 645 } 646 if( opx==TK_EQ ){ 647 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 648 p5 |= SQLITE_KEEPNULL; 649 }else if( opx==TK_NE ){ 650 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 651 p5 |= SQLITE_KEEPNULL; 652 }else{ 653 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 654 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 655 VdbeCoverageIf(v, op==TK_LT); 656 VdbeCoverageIf(v, op==TK_GT); 657 VdbeCoverageIf(v, op==TK_LE); 658 VdbeCoverageIf(v, op==TK_GE); 659 if( i==nLeft-2 ) opx = op; 660 } 661 } 662 sqlite3VdbeResolveLabel(v, addrDone); 663 } 664 665 #if SQLITE_MAX_EXPR_DEPTH>0 666 /* 667 ** Check that argument nHeight is less than or equal to the maximum 668 ** expression depth allowed. If it is not, leave an error message in 669 ** pParse. 670 */ 671 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 672 int rc = SQLITE_OK; 673 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 674 if( nHeight>mxHeight ){ 675 sqlite3ErrorMsg(pParse, 676 "Expression tree is too large (maximum depth %d)", mxHeight 677 ); 678 rc = SQLITE_ERROR; 679 } 680 return rc; 681 } 682 683 /* The following three functions, heightOfExpr(), heightOfExprList() 684 ** and heightOfSelect(), are used to determine the maximum height 685 ** of any expression tree referenced by the structure passed as the 686 ** first argument. 687 ** 688 ** If this maximum height is greater than the current value pointed 689 ** to by pnHeight, the second parameter, then set *pnHeight to that 690 ** value. 691 */ 692 static void heightOfExpr(Expr *p, int *pnHeight){ 693 if( p ){ 694 if( p->nHeight>*pnHeight ){ 695 *pnHeight = p->nHeight; 696 } 697 } 698 } 699 static void heightOfExprList(ExprList *p, int *pnHeight){ 700 if( p ){ 701 int i; 702 for(i=0; i<p->nExpr; i++){ 703 heightOfExpr(p->a[i].pExpr, pnHeight); 704 } 705 } 706 } 707 static void heightOfSelect(Select *pSelect, int *pnHeight){ 708 Select *p; 709 for(p=pSelect; p; p=p->pPrior){ 710 heightOfExpr(p->pWhere, pnHeight); 711 heightOfExpr(p->pHaving, pnHeight); 712 heightOfExpr(p->pLimit, pnHeight); 713 heightOfExprList(p->pEList, pnHeight); 714 heightOfExprList(p->pGroupBy, pnHeight); 715 heightOfExprList(p->pOrderBy, pnHeight); 716 } 717 } 718 719 /* 720 ** Set the Expr.nHeight variable in the structure passed as an 721 ** argument. An expression with no children, Expr.pList or 722 ** Expr.pSelect member has a height of 1. Any other expression 723 ** has a height equal to the maximum height of any other 724 ** referenced Expr plus one. 725 ** 726 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 727 ** if appropriate. 728 */ 729 static void exprSetHeight(Expr *p){ 730 int nHeight = 0; 731 heightOfExpr(p->pLeft, &nHeight); 732 heightOfExpr(p->pRight, &nHeight); 733 if( ExprHasProperty(p, EP_xIsSelect) ){ 734 heightOfSelect(p->x.pSelect, &nHeight); 735 }else if( p->x.pList ){ 736 heightOfExprList(p->x.pList, &nHeight); 737 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 738 } 739 p->nHeight = nHeight + 1; 740 } 741 742 /* 743 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 744 ** the height is greater than the maximum allowed expression depth, 745 ** leave an error in pParse. 746 ** 747 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 748 ** Expr.flags. 749 */ 750 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 751 if( pParse->nErr ) return; 752 exprSetHeight(p); 753 sqlite3ExprCheckHeight(pParse, p->nHeight); 754 } 755 756 /* 757 ** Return the maximum height of any expression tree referenced 758 ** by the select statement passed as an argument. 759 */ 760 int sqlite3SelectExprHeight(Select *p){ 761 int nHeight = 0; 762 heightOfSelect(p, &nHeight); 763 return nHeight; 764 } 765 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 766 /* 767 ** Propagate all EP_Propagate flags from the Expr.x.pList into 768 ** Expr.flags. 769 */ 770 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 771 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 772 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 773 } 774 } 775 #define exprSetHeight(y) 776 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 777 778 /* 779 ** This routine is the core allocator for Expr nodes. 780 ** 781 ** Construct a new expression node and return a pointer to it. Memory 782 ** for this node and for the pToken argument is a single allocation 783 ** obtained from sqlite3DbMalloc(). The calling function 784 ** is responsible for making sure the node eventually gets freed. 785 ** 786 ** If dequote is true, then the token (if it exists) is dequoted. 787 ** If dequote is false, no dequoting is performed. The deQuote 788 ** parameter is ignored if pToken is NULL or if the token does not 789 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 790 ** then the EP_DblQuoted flag is set on the expression node. 791 ** 792 ** Special case: If op==TK_INTEGER and pToken points to a string that 793 ** can be translated into a 32-bit integer, then the token is not 794 ** stored in u.zToken. Instead, the integer values is written 795 ** into u.iValue and the EP_IntValue flag is set. No extra storage 796 ** is allocated to hold the integer text and the dequote flag is ignored. 797 */ 798 Expr *sqlite3ExprAlloc( 799 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 800 int op, /* Expression opcode */ 801 const Token *pToken, /* Token argument. Might be NULL */ 802 int dequote /* True to dequote */ 803 ){ 804 Expr *pNew; 805 int nExtra = 0; 806 int iValue = 0; 807 808 assert( db!=0 ); 809 if( pToken ){ 810 if( op!=TK_INTEGER || pToken->z==0 811 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 812 nExtra = pToken->n+1; 813 assert( iValue>=0 ); 814 } 815 } 816 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 817 if( pNew ){ 818 memset(pNew, 0, sizeof(Expr)); 819 pNew->op = (u8)op; 820 pNew->iAgg = -1; 821 if( pToken ){ 822 if( nExtra==0 ){ 823 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 824 pNew->u.iValue = iValue; 825 }else{ 826 pNew->u.zToken = (char*)&pNew[1]; 827 assert( pToken->z!=0 || pToken->n==0 ); 828 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 829 pNew->u.zToken[pToken->n] = 0; 830 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 831 sqlite3DequoteExpr(pNew); 832 } 833 } 834 } 835 #if SQLITE_MAX_EXPR_DEPTH>0 836 pNew->nHeight = 1; 837 #endif 838 } 839 return pNew; 840 } 841 842 /* 843 ** Allocate a new expression node from a zero-terminated token that has 844 ** already been dequoted. 845 */ 846 Expr *sqlite3Expr( 847 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 848 int op, /* Expression opcode */ 849 const char *zToken /* Token argument. Might be NULL */ 850 ){ 851 Token x; 852 x.z = zToken; 853 x.n = sqlite3Strlen30(zToken); 854 return sqlite3ExprAlloc(db, op, &x, 0); 855 } 856 857 /* 858 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 859 ** 860 ** If pRoot==NULL that means that a memory allocation error has occurred. 861 ** In that case, delete the subtrees pLeft and pRight. 862 */ 863 void sqlite3ExprAttachSubtrees( 864 sqlite3 *db, 865 Expr *pRoot, 866 Expr *pLeft, 867 Expr *pRight 868 ){ 869 if( pRoot==0 ){ 870 assert( db->mallocFailed ); 871 sqlite3ExprDelete(db, pLeft); 872 sqlite3ExprDelete(db, pRight); 873 }else{ 874 if( pRight ){ 875 pRoot->pRight = pRight; 876 pRoot->flags |= EP_Propagate & pRight->flags; 877 } 878 if( pLeft ){ 879 pRoot->pLeft = pLeft; 880 pRoot->flags |= EP_Propagate & pLeft->flags; 881 } 882 exprSetHeight(pRoot); 883 } 884 } 885 886 /* 887 ** Allocate an Expr node which joins as many as two subtrees. 888 ** 889 ** One or both of the subtrees can be NULL. Return a pointer to the new 890 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 891 ** free the subtrees and return NULL. 892 */ 893 Expr *sqlite3PExpr( 894 Parse *pParse, /* Parsing context */ 895 int op, /* Expression opcode */ 896 Expr *pLeft, /* Left operand */ 897 Expr *pRight /* Right operand */ 898 ){ 899 Expr *p; 900 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 901 if( p ){ 902 memset(p, 0, sizeof(Expr)); 903 p->op = op & 0xff; 904 p->iAgg = -1; 905 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 906 sqlite3ExprCheckHeight(pParse, p->nHeight); 907 }else{ 908 sqlite3ExprDelete(pParse->db, pLeft); 909 sqlite3ExprDelete(pParse->db, pRight); 910 } 911 return p; 912 } 913 914 /* 915 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 916 ** do a memory allocation failure) then delete the pSelect object. 917 */ 918 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 919 if( pExpr ){ 920 pExpr->x.pSelect = pSelect; 921 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 922 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 923 }else{ 924 assert( pParse->db->mallocFailed ); 925 sqlite3SelectDelete(pParse->db, pSelect); 926 } 927 } 928 929 930 /* 931 ** Join two expressions using an AND operator. If either expression is 932 ** NULL, then just return the other expression. 933 ** 934 ** If one side or the other of the AND is known to be false, then instead 935 ** of returning an AND expression, just return a constant expression with 936 ** a value of false. 937 */ 938 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 939 sqlite3 *db = pParse->db; 940 if( pLeft==0 ){ 941 return pRight; 942 }else if( pRight==0 ){ 943 return pLeft; 944 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 945 && !IN_RENAME_OBJECT 946 ){ 947 sqlite3ExprDelete(db, pLeft); 948 sqlite3ExprDelete(db, pRight); 949 return sqlite3Expr(db, TK_INTEGER, "0"); 950 }else{ 951 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 952 } 953 } 954 955 /* 956 ** Construct a new expression node for a function with multiple 957 ** arguments. 958 */ 959 Expr *sqlite3ExprFunction( 960 Parse *pParse, /* Parsing context */ 961 ExprList *pList, /* Argument list */ 962 Token *pToken, /* Name of the function */ 963 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 964 ){ 965 Expr *pNew; 966 sqlite3 *db = pParse->db; 967 assert( pToken ); 968 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 969 if( pNew==0 ){ 970 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 971 return 0; 972 } 973 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 974 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 975 } 976 pNew->x.pList = pList; 977 ExprSetProperty(pNew, EP_HasFunc); 978 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 979 sqlite3ExprSetHeightAndFlags(pParse, pNew); 980 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 981 return pNew; 982 } 983 984 /* 985 ** Check to see if a function is usable according to current access 986 ** rules: 987 ** 988 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 989 ** 990 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 991 ** top-level SQL 992 ** 993 ** If the function is not usable, create an error. 994 */ 995 void sqlite3ExprFunctionUsable( 996 Parse *pParse, /* Parsing and code generating context */ 997 Expr *pExpr, /* The function invocation */ 998 FuncDef *pDef /* The function being invoked */ 999 ){ 1000 assert( !IN_RENAME_OBJECT ); 1001 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1002 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1003 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1004 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1005 ){ 1006 /* Functions prohibited in triggers and views if: 1007 ** (1) tagged with SQLITE_DIRECTONLY 1008 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1009 ** is tagged with SQLITE_FUNC_UNSAFE) and 1010 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1011 ** that the schema is possibly tainted). 1012 */ 1013 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1014 } 1015 } 1016 } 1017 1018 /* 1019 ** Assign a variable number to an expression that encodes a wildcard 1020 ** in the original SQL statement. 1021 ** 1022 ** Wildcards consisting of a single "?" are assigned the next sequential 1023 ** variable number. 1024 ** 1025 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1026 ** sure "nnn" is not too big to avoid a denial of service attack when 1027 ** the SQL statement comes from an external source. 1028 ** 1029 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1030 ** as the previous instance of the same wildcard. Or if this is the first 1031 ** instance of the wildcard, the next sequential variable number is 1032 ** assigned. 1033 */ 1034 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1035 sqlite3 *db = pParse->db; 1036 const char *z; 1037 ynVar x; 1038 1039 if( pExpr==0 ) return; 1040 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1041 z = pExpr->u.zToken; 1042 assert( z!=0 ); 1043 assert( z[0]!=0 ); 1044 assert( n==(u32)sqlite3Strlen30(z) ); 1045 if( z[1]==0 ){ 1046 /* Wildcard of the form "?". Assign the next variable number */ 1047 assert( z[0]=='?' ); 1048 x = (ynVar)(++pParse->nVar); 1049 }else{ 1050 int doAdd = 0; 1051 if( z[0]=='?' ){ 1052 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1053 ** use it as the variable number */ 1054 i64 i; 1055 int bOk; 1056 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1057 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1058 bOk = 1; 1059 }else{ 1060 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1061 } 1062 testcase( i==0 ); 1063 testcase( i==1 ); 1064 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1065 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1066 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1067 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1068 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1069 return; 1070 } 1071 x = (ynVar)i; 1072 if( x>pParse->nVar ){ 1073 pParse->nVar = (int)x; 1074 doAdd = 1; 1075 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1076 doAdd = 1; 1077 } 1078 }else{ 1079 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1080 ** number as the prior appearance of the same name, or if the name 1081 ** has never appeared before, reuse the same variable number 1082 */ 1083 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1084 if( x==0 ){ 1085 x = (ynVar)(++pParse->nVar); 1086 doAdd = 1; 1087 } 1088 } 1089 if( doAdd ){ 1090 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1091 } 1092 } 1093 pExpr->iColumn = x; 1094 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1095 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1096 } 1097 } 1098 1099 /* 1100 ** Recursively delete an expression tree. 1101 */ 1102 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1103 assert( p!=0 ); 1104 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1105 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1106 1107 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1108 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1109 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1110 #ifdef SQLITE_DEBUG 1111 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1112 assert( p->pLeft==0 ); 1113 assert( p->pRight==0 ); 1114 assert( p->x.pSelect==0 ); 1115 } 1116 #endif 1117 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1118 /* The Expr.x union is never used at the same time as Expr.pRight */ 1119 assert( p->x.pList==0 || p->pRight==0 ); 1120 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1121 if( p->pRight ){ 1122 assert( !ExprHasProperty(p, EP_WinFunc) ); 1123 sqlite3ExprDeleteNN(db, p->pRight); 1124 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1125 assert( !ExprHasProperty(p, EP_WinFunc) ); 1126 sqlite3SelectDelete(db, p->x.pSelect); 1127 }else{ 1128 sqlite3ExprListDelete(db, p->x.pList); 1129 #ifndef SQLITE_OMIT_WINDOWFUNC 1130 if( ExprHasProperty(p, EP_WinFunc) ){ 1131 sqlite3WindowDelete(db, p->y.pWin); 1132 } 1133 #endif 1134 } 1135 } 1136 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1137 if( !ExprHasProperty(p, EP_Static) ){ 1138 sqlite3DbFreeNN(db, p); 1139 } 1140 } 1141 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1142 if( p ) sqlite3ExprDeleteNN(db, p); 1143 } 1144 1145 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1146 ** expression. 1147 */ 1148 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1149 if( p ){ 1150 if( IN_RENAME_OBJECT ){ 1151 sqlite3RenameExprUnmap(pParse, p); 1152 } 1153 sqlite3ExprDeleteNN(pParse->db, p); 1154 } 1155 } 1156 1157 /* 1158 ** Return the number of bytes allocated for the expression structure 1159 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1160 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1161 */ 1162 static int exprStructSize(Expr *p){ 1163 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1164 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1165 return EXPR_FULLSIZE; 1166 } 1167 1168 /* 1169 ** The dupedExpr*Size() routines each return the number of bytes required 1170 ** to store a copy of an expression or expression tree. They differ in 1171 ** how much of the tree is measured. 1172 ** 1173 ** dupedExprStructSize() Size of only the Expr structure 1174 ** dupedExprNodeSize() Size of Expr + space for token 1175 ** dupedExprSize() Expr + token + subtree components 1176 ** 1177 *************************************************************************** 1178 ** 1179 ** The dupedExprStructSize() function returns two values OR-ed together: 1180 ** (1) the space required for a copy of the Expr structure only and 1181 ** (2) the EP_xxx flags that indicate what the structure size should be. 1182 ** The return values is always one of: 1183 ** 1184 ** EXPR_FULLSIZE 1185 ** EXPR_REDUCEDSIZE | EP_Reduced 1186 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1187 ** 1188 ** The size of the structure can be found by masking the return value 1189 ** of this routine with 0xfff. The flags can be found by masking the 1190 ** return value with EP_Reduced|EP_TokenOnly. 1191 ** 1192 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1193 ** (unreduced) Expr objects as they or originally constructed by the parser. 1194 ** During expression analysis, extra information is computed and moved into 1195 ** later parts of the Expr object and that extra information might get chopped 1196 ** off if the expression is reduced. Note also that it does not work to 1197 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1198 ** to reduce a pristine expression tree from the parser. The implementation 1199 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1200 ** to enforce this constraint. 1201 */ 1202 static int dupedExprStructSize(Expr *p, int flags){ 1203 int nSize; 1204 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1205 assert( EXPR_FULLSIZE<=0xfff ); 1206 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1207 if( 0==flags || p->op==TK_SELECT_COLUMN 1208 #ifndef SQLITE_OMIT_WINDOWFUNC 1209 || ExprHasProperty(p, EP_WinFunc) 1210 #endif 1211 ){ 1212 nSize = EXPR_FULLSIZE; 1213 }else{ 1214 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1215 assert( !ExprHasProperty(p, EP_FromJoin) ); 1216 assert( !ExprHasProperty(p, EP_MemToken) ); 1217 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1218 if( p->pLeft || p->x.pList ){ 1219 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1220 }else{ 1221 assert( p->pRight==0 ); 1222 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1223 } 1224 } 1225 return nSize; 1226 } 1227 1228 /* 1229 ** This function returns the space in bytes required to store the copy 1230 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1231 ** string is defined.) 1232 */ 1233 static int dupedExprNodeSize(Expr *p, int flags){ 1234 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1235 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1236 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1237 } 1238 return ROUND8(nByte); 1239 } 1240 1241 /* 1242 ** Return the number of bytes required to create a duplicate of the 1243 ** expression passed as the first argument. The second argument is a 1244 ** mask containing EXPRDUP_XXX flags. 1245 ** 1246 ** The value returned includes space to create a copy of the Expr struct 1247 ** itself and the buffer referred to by Expr.u.zToken, if any. 1248 ** 1249 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1250 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1251 ** and Expr.pRight variables (but not for any structures pointed to or 1252 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1253 */ 1254 static int dupedExprSize(Expr *p, int flags){ 1255 int nByte = 0; 1256 if( p ){ 1257 nByte = dupedExprNodeSize(p, flags); 1258 if( flags&EXPRDUP_REDUCE ){ 1259 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1260 } 1261 } 1262 return nByte; 1263 } 1264 1265 /* 1266 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1267 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1268 ** to store the copy of expression p, the copies of p->u.zToken 1269 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1270 ** if any. Before returning, *pzBuffer is set to the first byte past the 1271 ** portion of the buffer copied into by this function. 1272 */ 1273 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1274 Expr *pNew; /* Value to return */ 1275 u8 *zAlloc; /* Memory space from which to build Expr object */ 1276 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1277 1278 assert( db!=0 ); 1279 assert( p ); 1280 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1281 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1282 1283 /* Figure out where to write the new Expr structure. */ 1284 if( pzBuffer ){ 1285 zAlloc = *pzBuffer; 1286 staticFlag = EP_Static; 1287 }else{ 1288 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1289 staticFlag = 0; 1290 } 1291 pNew = (Expr *)zAlloc; 1292 1293 if( pNew ){ 1294 /* Set nNewSize to the size allocated for the structure pointed to 1295 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1296 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1297 ** by the copy of the p->u.zToken string (if any). 1298 */ 1299 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1300 const int nNewSize = nStructSize & 0xfff; 1301 int nToken; 1302 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1303 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1304 }else{ 1305 nToken = 0; 1306 } 1307 if( dupFlags ){ 1308 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1309 memcpy(zAlloc, p, nNewSize); 1310 }else{ 1311 u32 nSize = (u32)exprStructSize(p); 1312 memcpy(zAlloc, p, nSize); 1313 if( nSize<EXPR_FULLSIZE ){ 1314 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1315 } 1316 } 1317 1318 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1319 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1320 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1321 pNew->flags |= staticFlag; 1322 ExprClearVVAProperties(pNew); 1323 if( dupFlags ){ 1324 ExprSetVVAProperty(pNew, EP_Immutable); 1325 } 1326 1327 /* Copy the p->u.zToken string, if any. */ 1328 if( nToken ){ 1329 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1330 memcpy(zToken, p->u.zToken, nToken); 1331 } 1332 1333 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1334 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1335 if( ExprHasProperty(p, EP_xIsSelect) ){ 1336 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1337 }else{ 1338 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1339 } 1340 } 1341 1342 /* Fill in pNew->pLeft and pNew->pRight. */ 1343 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1344 zAlloc += dupedExprNodeSize(p, dupFlags); 1345 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1346 pNew->pLeft = p->pLeft ? 1347 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1348 pNew->pRight = p->pRight ? 1349 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1350 } 1351 #ifndef SQLITE_OMIT_WINDOWFUNC 1352 if( ExprHasProperty(p, EP_WinFunc) ){ 1353 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1354 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1355 } 1356 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1357 if( pzBuffer ){ 1358 *pzBuffer = zAlloc; 1359 } 1360 }else{ 1361 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1362 if( pNew->op==TK_SELECT_COLUMN ){ 1363 pNew->pLeft = p->pLeft; 1364 assert( p->iColumn==0 || p->pRight==0 ); 1365 assert( p->pRight==0 || p->pRight==p->pLeft ); 1366 }else{ 1367 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1368 } 1369 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1370 } 1371 } 1372 } 1373 return pNew; 1374 } 1375 1376 /* 1377 ** Create and return a deep copy of the object passed as the second 1378 ** argument. If an OOM condition is encountered, NULL is returned 1379 ** and the db->mallocFailed flag set. 1380 */ 1381 #ifndef SQLITE_OMIT_CTE 1382 static With *withDup(sqlite3 *db, With *p){ 1383 With *pRet = 0; 1384 if( p ){ 1385 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1386 pRet = sqlite3DbMallocZero(db, nByte); 1387 if( pRet ){ 1388 int i; 1389 pRet->nCte = p->nCte; 1390 for(i=0; i<p->nCte; i++){ 1391 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1392 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1393 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1394 } 1395 } 1396 } 1397 return pRet; 1398 } 1399 #else 1400 # define withDup(x,y) 0 1401 #endif 1402 1403 #ifndef SQLITE_OMIT_WINDOWFUNC 1404 /* 1405 ** The gatherSelectWindows() procedure and its helper routine 1406 ** gatherSelectWindowsCallback() are used to scan all the expressions 1407 ** an a newly duplicated SELECT statement and gather all of the Window 1408 ** objects found there, assembling them onto the linked list at Select->pWin. 1409 */ 1410 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1411 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1412 Select *pSelect = pWalker->u.pSelect; 1413 Window *pWin = pExpr->y.pWin; 1414 assert( pWin ); 1415 assert( IsWindowFunc(pExpr) ); 1416 assert( pWin->ppThis==0 ); 1417 sqlite3WindowLink(pSelect, pWin); 1418 } 1419 return WRC_Continue; 1420 } 1421 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1422 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1423 } 1424 static void gatherSelectWindows(Select *p){ 1425 Walker w; 1426 w.xExprCallback = gatherSelectWindowsCallback; 1427 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1428 w.xSelectCallback2 = 0; 1429 w.pParse = 0; 1430 w.u.pSelect = p; 1431 sqlite3WalkSelect(&w, p); 1432 } 1433 #endif 1434 1435 1436 /* 1437 ** The following group of routines make deep copies of expressions, 1438 ** expression lists, ID lists, and select statements. The copies can 1439 ** be deleted (by being passed to their respective ...Delete() routines) 1440 ** without effecting the originals. 1441 ** 1442 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1443 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1444 ** by subsequent calls to sqlite*ListAppend() routines. 1445 ** 1446 ** Any tables that the SrcList might point to are not duplicated. 1447 ** 1448 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1449 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1450 ** truncated version of the usual Expr structure that will be stored as 1451 ** part of the in-memory representation of the database schema. 1452 */ 1453 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1454 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1455 return p ? exprDup(db, p, flags, 0) : 0; 1456 } 1457 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1458 ExprList *pNew; 1459 struct ExprList_item *pItem, *pOldItem; 1460 int i; 1461 Expr *pPriorSelectCol = 0; 1462 assert( db!=0 ); 1463 if( p==0 ) return 0; 1464 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1465 if( pNew==0 ) return 0; 1466 pNew->nExpr = p->nExpr; 1467 pItem = pNew->a; 1468 pOldItem = p->a; 1469 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1470 Expr *pOldExpr = pOldItem->pExpr; 1471 Expr *pNewExpr; 1472 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1473 if( pOldExpr 1474 && pOldExpr->op==TK_SELECT_COLUMN 1475 && (pNewExpr = pItem->pExpr)!=0 1476 ){ 1477 assert( pNewExpr->iColumn==0 || i>0 ); 1478 if( pNewExpr->iColumn==0 ){ 1479 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1480 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1481 }else{ 1482 assert( i>0 ); 1483 assert( pItem[-1].pExpr!=0 ); 1484 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1485 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1486 pNewExpr->pLeft = pPriorSelectCol; 1487 } 1488 } 1489 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1490 pItem->sortFlags = pOldItem->sortFlags; 1491 pItem->eEName = pOldItem->eEName; 1492 pItem->done = 0; 1493 pItem->bNulls = pOldItem->bNulls; 1494 pItem->bSorterRef = pOldItem->bSorterRef; 1495 pItem->u = pOldItem->u; 1496 } 1497 return pNew; 1498 } 1499 1500 /* 1501 ** If cursors, triggers, views and subqueries are all omitted from 1502 ** the build, then none of the following routines, except for 1503 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1504 ** called with a NULL argument. 1505 */ 1506 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1507 || !defined(SQLITE_OMIT_SUBQUERY) 1508 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1509 SrcList *pNew; 1510 int i; 1511 int nByte; 1512 assert( db!=0 ); 1513 if( p==0 ) return 0; 1514 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1515 pNew = sqlite3DbMallocRawNN(db, nByte ); 1516 if( pNew==0 ) return 0; 1517 pNew->nSrc = pNew->nAlloc = p->nSrc; 1518 for(i=0; i<p->nSrc; i++){ 1519 struct SrcList_item *pNewItem = &pNew->a[i]; 1520 struct SrcList_item *pOldItem = &p->a[i]; 1521 Table *pTab; 1522 pNewItem->pSchema = pOldItem->pSchema; 1523 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1524 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1525 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1526 pNewItem->fg = pOldItem->fg; 1527 pNewItem->iCursor = pOldItem->iCursor; 1528 pNewItem->addrFillSub = pOldItem->addrFillSub; 1529 pNewItem->regReturn = pOldItem->regReturn; 1530 if( pNewItem->fg.isIndexedBy ){ 1531 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1532 } 1533 pNewItem->pIBIndex = pOldItem->pIBIndex; 1534 if( pNewItem->fg.isTabFunc ){ 1535 pNewItem->u1.pFuncArg = 1536 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1537 } 1538 pTab = pNewItem->pTab = pOldItem->pTab; 1539 if( pTab ){ 1540 pTab->nTabRef++; 1541 } 1542 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1543 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1544 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1545 pNewItem->colUsed = pOldItem->colUsed; 1546 } 1547 return pNew; 1548 } 1549 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1550 IdList *pNew; 1551 int i; 1552 assert( db!=0 ); 1553 if( p==0 ) return 0; 1554 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1555 if( pNew==0 ) return 0; 1556 pNew->nId = p->nId; 1557 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1558 if( pNew->a==0 ){ 1559 sqlite3DbFreeNN(db, pNew); 1560 return 0; 1561 } 1562 /* Note that because the size of the allocation for p->a[] is not 1563 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1564 ** on the duplicate created by this function. */ 1565 for(i=0; i<p->nId; i++){ 1566 struct IdList_item *pNewItem = &pNew->a[i]; 1567 struct IdList_item *pOldItem = &p->a[i]; 1568 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1569 pNewItem->idx = pOldItem->idx; 1570 } 1571 return pNew; 1572 } 1573 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1574 Select *pRet = 0; 1575 Select *pNext = 0; 1576 Select **pp = &pRet; 1577 Select *p; 1578 1579 assert( db!=0 ); 1580 for(p=pDup; p; p=p->pPrior){ 1581 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1582 if( pNew==0 ) break; 1583 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1584 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1585 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1586 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1587 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1588 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1589 pNew->op = p->op; 1590 pNew->pNext = pNext; 1591 pNew->pPrior = 0; 1592 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1593 pNew->iLimit = 0; 1594 pNew->iOffset = 0; 1595 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1596 pNew->addrOpenEphm[0] = -1; 1597 pNew->addrOpenEphm[1] = -1; 1598 pNew->nSelectRow = p->nSelectRow; 1599 pNew->pWith = withDup(db, p->pWith); 1600 #ifndef SQLITE_OMIT_WINDOWFUNC 1601 pNew->pWin = 0; 1602 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1603 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1604 #endif 1605 pNew->selId = p->selId; 1606 *pp = pNew; 1607 pp = &pNew->pPrior; 1608 pNext = pNew; 1609 } 1610 1611 return pRet; 1612 } 1613 #else 1614 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1615 assert( p==0 ); 1616 return 0; 1617 } 1618 #endif 1619 1620 1621 /* 1622 ** Add a new element to the end of an expression list. If pList is 1623 ** initially NULL, then create a new expression list. 1624 ** 1625 ** The pList argument must be either NULL or a pointer to an ExprList 1626 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1627 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1628 ** Reason: This routine assumes that the number of slots in pList->a[] 1629 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1630 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1631 ** 1632 ** If a memory allocation error occurs, the entire list is freed and 1633 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1634 ** that the new entry was successfully appended. 1635 */ 1636 ExprList *sqlite3ExprListAppend( 1637 Parse *pParse, /* Parsing context */ 1638 ExprList *pList, /* List to which to append. Might be NULL */ 1639 Expr *pExpr /* Expression to be appended. Might be NULL */ 1640 ){ 1641 struct ExprList_item *pItem; 1642 sqlite3 *db = pParse->db; 1643 assert( db!=0 ); 1644 if( pList==0 ){ 1645 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1646 if( pList==0 ){ 1647 goto no_mem; 1648 } 1649 pList->nExpr = 0; 1650 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1651 ExprList *pNew; 1652 pNew = sqlite3DbRealloc(db, pList, 1653 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1654 if( pNew==0 ){ 1655 goto no_mem; 1656 } 1657 pList = pNew; 1658 } 1659 pItem = &pList->a[pList->nExpr++]; 1660 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1661 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1662 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1663 pItem->pExpr = pExpr; 1664 return pList; 1665 1666 no_mem: 1667 /* Avoid leaking memory if malloc has failed. */ 1668 sqlite3ExprDelete(db, pExpr); 1669 sqlite3ExprListDelete(db, pList); 1670 return 0; 1671 } 1672 1673 /* 1674 ** pColumns and pExpr form a vector assignment which is part of the SET 1675 ** clause of an UPDATE statement. Like this: 1676 ** 1677 ** (a,b,c) = (expr1,expr2,expr3) 1678 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1679 ** 1680 ** For each term of the vector assignment, append new entries to the 1681 ** expression list pList. In the case of a subquery on the RHS, append 1682 ** TK_SELECT_COLUMN expressions. 1683 */ 1684 ExprList *sqlite3ExprListAppendVector( 1685 Parse *pParse, /* Parsing context */ 1686 ExprList *pList, /* List to which to append. Might be NULL */ 1687 IdList *pColumns, /* List of names of LHS of the assignment */ 1688 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1689 ){ 1690 sqlite3 *db = pParse->db; 1691 int n; 1692 int i; 1693 int iFirst = pList ? pList->nExpr : 0; 1694 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1695 ** exit prior to this routine being invoked */ 1696 if( NEVER(pColumns==0) ) goto vector_append_error; 1697 if( pExpr==0 ) goto vector_append_error; 1698 1699 /* If the RHS is a vector, then we can immediately check to see that 1700 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1701 ** wildcards ("*") in the result set of the SELECT must be expanded before 1702 ** we can do the size check, so defer the size check until code generation. 1703 */ 1704 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1705 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1706 pColumns->nId, n); 1707 goto vector_append_error; 1708 } 1709 1710 for(i=0; i<pColumns->nId; i++){ 1711 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1712 assert( pSubExpr!=0 || db->mallocFailed ); 1713 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1714 if( pSubExpr==0 ) continue; 1715 pSubExpr->iTable = pColumns->nId; 1716 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1717 if( pList ){ 1718 assert( pList->nExpr==iFirst+i+1 ); 1719 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1720 pColumns->a[i].zName = 0; 1721 } 1722 } 1723 1724 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1725 Expr *pFirst = pList->a[iFirst].pExpr; 1726 assert( pFirst!=0 ); 1727 assert( pFirst->op==TK_SELECT_COLUMN ); 1728 1729 /* Store the SELECT statement in pRight so it will be deleted when 1730 ** sqlite3ExprListDelete() is called */ 1731 pFirst->pRight = pExpr; 1732 pExpr = 0; 1733 1734 /* Remember the size of the LHS in iTable so that we can check that 1735 ** the RHS and LHS sizes match during code generation. */ 1736 pFirst->iTable = pColumns->nId; 1737 } 1738 1739 vector_append_error: 1740 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1741 sqlite3IdListDelete(db, pColumns); 1742 return pList; 1743 } 1744 1745 /* 1746 ** Set the sort order for the last element on the given ExprList. 1747 */ 1748 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1749 struct ExprList_item *pItem; 1750 if( p==0 ) return; 1751 assert( p->nExpr>0 ); 1752 1753 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1754 assert( iSortOrder==SQLITE_SO_UNDEFINED 1755 || iSortOrder==SQLITE_SO_ASC 1756 || iSortOrder==SQLITE_SO_DESC 1757 ); 1758 assert( eNulls==SQLITE_SO_UNDEFINED 1759 || eNulls==SQLITE_SO_ASC 1760 || eNulls==SQLITE_SO_DESC 1761 ); 1762 1763 pItem = &p->a[p->nExpr-1]; 1764 assert( pItem->bNulls==0 ); 1765 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1766 iSortOrder = SQLITE_SO_ASC; 1767 } 1768 pItem->sortFlags = (u8)iSortOrder; 1769 1770 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1771 pItem->bNulls = 1; 1772 if( iSortOrder!=eNulls ){ 1773 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1774 } 1775 } 1776 } 1777 1778 /* 1779 ** Set the ExprList.a[].zEName element of the most recently added item 1780 ** on the expression list. 1781 ** 1782 ** pList might be NULL following an OOM error. But pName should never be 1783 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1784 ** is set. 1785 */ 1786 void sqlite3ExprListSetName( 1787 Parse *pParse, /* Parsing context */ 1788 ExprList *pList, /* List to which to add the span. */ 1789 Token *pName, /* Name to be added */ 1790 int dequote /* True to cause the name to be dequoted */ 1791 ){ 1792 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1793 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1794 if( pList ){ 1795 struct ExprList_item *pItem; 1796 assert( pList->nExpr>0 ); 1797 pItem = &pList->a[pList->nExpr-1]; 1798 assert( pItem->zEName==0 ); 1799 assert( pItem->eEName==ENAME_NAME ); 1800 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1801 if( dequote ){ 1802 /* If dequote==0, then pName->z does not point to part of a DDL 1803 ** statement handled by the parser. And so no token need be added 1804 ** to the token-map. */ 1805 sqlite3Dequote(pItem->zEName); 1806 if( IN_RENAME_OBJECT ){ 1807 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1808 } 1809 } 1810 } 1811 } 1812 1813 /* 1814 ** Set the ExprList.a[].zSpan element of the most recently added item 1815 ** on the expression list. 1816 ** 1817 ** pList might be NULL following an OOM error. But pSpan should never be 1818 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1819 ** is set. 1820 */ 1821 void sqlite3ExprListSetSpan( 1822 Parse *pParse, /* Parsing context */ 1823 ExprList *pList, /* List to which to add the span. */ 1824 const char *zStart, /* Start of the span */ 1825 const char *zEnd /* End of the span */ 1826 ){ 1827 sqlite3 *db = pParse->db; 1828 assert( pList!=0 || db->mallocFailed!=0 ); 1829 if( pList ){ 1830 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1831 assert( pList->nExpr>0 ); 1832 if( pItem->zEName==0 ){ 1833 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1834 pItem->eEName = ENAME_SPAN; 1835 } 1836 } 1837 } 1838 1839 /* 1840 ** If the expression list pEList contains more than iLimit elements, 1841 ** leave an error message in pParse. 1842 */ 1843 void sqlite3ExprListCheckLength( 1844 Parse *pParse, 1845 ExprList *pEList, 1846 const char *zObject 1847 ){ 1848 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1849 testcase( pEList && pEList->nExpr==mx ); 1850 testcase( pEList && pEList->nExpr==mx+1 ); 1851 if( pEList && pEList->nExpr>mx ){ 1852 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1853 } 1854 } 1855 1856 /* 1857 ** Delete an entire expression list. 1858 */ 1859 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1860 int i = pList->nExpr; 1861 struct ExprList_item *pItem = pList->a; 1862 assert( pList->nExpr>0 ); 1863 do{ 1864 sqlite3ExprDelete(db, pItem->pExpr); 1865 sqlite3DbFree(db, pItem->zEName); 1866 pItem++; 1867 }while( --i>0 ); 1868 sqlite3DbFreeNN(db, pList); 1869 } 1870 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1871 if( pList ) exprListDeleteNN(db, pList); 1872 } 1873 1874 /* 1875 ** Return the bitwise-OR of all Expr.flags fields in the given 1876 ** ExprList. 1877 */ 1878 u32 sqlite3ExprListFlags(const ExprList *pList){ 1879 int i; 1880 u32 m = 0; 1881 assert( pList!=0 ); 1882 for(i=0; i<pList->nExpr; i++){ 1883 Expr *pExpr = pList->a[i].pExpr; 1884 assert( pExpr!=0 ); 1885 m |= pExpr->flags; 1886 } 1887 return m; 1888 } 1889 1890 /* 1891 ** This is a SELECT-node callback for the expression walker that 1892 ** always "fails". By "fail" in this case, we mean set 1893 ** pWalker->eCode to zero and abort. 1894 ** 1895 ** This callback is used by multiple expression walkers. 1896 */ 1897 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1898 UNUSED_PARAMETER(NotUsed); 1899 pWalker->eCode = 0; 1900 return WRC_Abort; 1901 } 1902 1903 /* 1904 ** Check the input string to see if it is "true" or "false" (in any case). 1905 ** 1906 ** If the string is.... Return 1907 ** "true" EP_IsTrue 1908 ** "false" EP_IsFalse 1909 ** anything else 0 1910 */ 1911 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1912 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1913 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1914 return 0; 1915 } 1916 1917 1918 /* 1919 ** If the input expression is an ID with the name "true" or "false" 1920 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1921 ** the conversion happened, and zero if the expression is unaltered. 1922 */ 1923 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1924 u32 v; 1925 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1926 if( !ExprHasProperty(pExpr, EP_Quoted) 1927 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1928 ){ 1929 pExpr->op = TK_TRUEFALSE; 1930 ExprSetProperty(pExpr, v); 1931 return 1; 1932 } 1933 return 0; 1934 } 1935 1936 /* 1937 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1938 ** and 0 if it is FALSE. 1939 */ 1940 int sqlite3ExprTruthValue(const Expr *pExpr){ 1941 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1942 assert( pExpr->op==TK_TRUEFALSE ); 1943 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1944 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1945 return pExpr->u.zToken[4]==0; 1946 } 1947 1948 /* 1949 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1950 ** terms that are always true or false. Return the simplified expression. 1951 ** Or return the original expression if no simplification is possible. 1952 ** 1953 ** Examples: 1954 ** 1955 ** (x<10) AND true => (x<10) 1956 ** (x<10) AND false => false 1957 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1958 ** (x<10) AND (y=22 OR true) => (x<10) 1959 ** (y=22) OR true => true 1960 */ 1961 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1962 assert( pExpr!=0 ); 1963 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1964 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1965 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1966 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1967 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1968 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1969 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1970 } 1971 } 1972 return pExpr; 1973 } 1974 1975 1976 /* 1977 ** These routines are Walker callbacks used to check expressions to 1978 ** see if they are "constant" for some definition of constant. The 1979 ** Walker.eCode value determines the type of "constant" we are looking 1980 ** for. 1981 ** 1982 ** These callback routines are used to implement the following: 1983 ** 1984 ** sqlite3ExprIsConstant() pWalker->eCode==1 1985 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1986 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1987 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1988 ** 1989 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1990 ** is found to not be a constant. 1991 ** 1992 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 1993 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 1994 ** when parsing an existing schema out of the sqlite_schema table and 4 1995 ** when processing a new CREATE TABLE statement. A bound parameter raises 1996 ** an error for new statements, but is silently converted 1997 ** to NULL for existing schemas. This allows sqlite_schema tables that 1998 ** contain a bound parameter because they were generated by older versions 1999 ** of SQLite to be parsed by newer versions of SQLite without raising a 2000 ** malformed schema error. 2001 */ 2002 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2003 2004 /* If pWalker->eCode is 2 then any term of the expression that comes from 2005 ** the ON or USING clauses of a left join disqualifies the expression 2006 ** from being considered constant. */ 2007 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2008 pWalker->eCode = 0; 2009 return WRC_Abort; 2010 } 2011 2012 switch( pExpr->op ){ 2013 /* Consider functions to be constant if all their arguments are constant 2014 ** and either pWalker->eCode==4 or 5 or the function has the 2015 ** SQLITE_FUNC_CONST flag. */ 2016 case TK_FUNCTION: 2017 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2018 && !ExprHasProperty(pExpr, EP_WinFunc) 2019 ){ 2020 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2021 return WRC_Continue; 2022 }else{ 2023 pWalker->eCode = 0; 2024 return WRC_Abort; 2025 } 2026 case TK_ID: 2027 /* Convert "true" or "false" in a DEFAULT clause into the 2028 ** appropriate TK_TRUEFALSE operator */ 2029 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2030 return WRC_Prune; 2031 } 2032 /* no break */ deliberate_fall_through 2033 case TK_COLUMN: 2034 case TK_AGG_FUNCTION: 2035 case TK_AGG_COLUMN: 2036 testcase( pExpr->op==TK_ID ); 2037 testcase( pExpr->op==TK_COLUMN ); 2038 testcase( pExpr->op==TK_AGG_FUNCTION ); 2039 testcase( pExpr->op==TK_AGG_COLUMN ); 2040 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2041 return WRC_Continue; 2042 } 2043 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2044 return WRC_Continue; 2045 } 2046 /* no break */ deliberate_fall_through 2047 case TK_IF_NULL_ROW: 2048 case TK_REGISTER: 2049 case TK_DOT: 2050 testcase( pExpr->op==TK_REGISTER ); 2051 testcase( pExpr->op==TK_IF_NULL_ROW ); 2052 testcase( pExpr->op==TK_DOT ); 2053 pWalker->eCode = 0; 2054 return WRC_Abort; 2055 case TK_VARIABLE: 2056 if( pWalker->eCode==5 ){ 2057 /* Silently convert bound parameters that appear inside of CREATE 2058 ** statements into a NULL when parsing the CREATE statement text out 2059 ** of the sqlite_schema table */ 2060 pExpr->op = TK_NULL; 2061 }else if( pWalker->eCode==4 ){ 2062 /* A bound parameter in a CREATE statement that originates from 2063 ** sqlite3_prepare() causes an error */ 2064 pWalker->eCode = 0; 2065 return WRC_Abort; 2066 } 2067 /* no break */ deliberate_fall_through 2068 default: 2069 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2070 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2071 return WRC_Continue; 2072 } 2073 } 2074 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2075 Walker w; 2076 w.eCode = initFlag; 2077 w.xExprCallback = exprNodeIsConstant; 2078 w.xSelectCallback = sqlite3SelectWalkFail; 2079 #ifdef SQLITE_DEBUG 2080 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2081 #endif 2082 w.u.iCur = iCur; 2083 sqlite3WalkExpr(&w, p); 2084 return w.eCode; 2085 } 2086 2087 /* 2088 ** Walk an expression tree. Return non-zero if the expression is constant 2089 ** and 0 if it involves variables or function calls. 2090 ** 2091 ** For the purposes of this function, a double-quoted string (ex: "abc") 2092 ** is considered a variable but a single-quoted string (ex: 'abc') is 2093 ** a constant. 2094 */ 2095 int sqlite3ExprIsConstant(Expr *p){ 2096 return exprIsConst(p, 1, 0); 2097 } 2098 2099 /* 2100 ** Walk an expression tree. Return non-zero if 2101 ** 2102 ** (1) the expression is constant, and 2103 ** (2) the expression does originate in the ON or USING clause 2104 ** of a LEFT JOIN, and 2105 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2106 ** operands created by the constant propagation optimization. 2107 ** 2108 ** When this routine returns true, it indicates that the expression 2109 ** can be added to the pParse->pConstExpr list and evaluated once when 2110 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2111 */ 2112 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2113 return exprIsConst(p, 2, 0); 2114 } 2115 2116 /* 2117 ** Walk an expression tree. Return non-zero if the expression is constant 2118 ** for any single row of the table with cursor iCur. In other words, the 2119 ** expression must not refer to any non-deterministic function nor any 2120 ** table other than iCur. 2121 */ 2122 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2123 return exprIsConst(p, 3, iCur); 2124 } 2125 2126 2127 /* 2128 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2129 */ 2130 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2131 ExprList *pGroupBy = pWalker->u.pGroupBy; 2132 int i; 2133 2134 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2135 ** it constant. */ 2136 for(i=0; i<pGroupBy->nExpr; i++){ 2137 Expr *p = pGroupBy->a[i].pExpr; 2138 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2139 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2140 if( sqlite3IsBinary(pColl) ){ 2141 return WRC_Prune; 2142 } 2143 } 2144 } 2145 2146 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2147 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2148 pWalker->eCode = 0; 2149 return WRC_Abort; 2150 } 2151 2152 return exprNodeIsConstant(pWalker, pExpr); 2153 } 2154 2155 /* 2156 ** Walk the expression tree passed as the first argument. Return non-zero 2157 ** if the expression consists entirely of constants or copies of terms 2158 ** in pGroupBy that sort with the BINARY collation sequence. 2159 ** 2160 ** This routine is used to determine if a term of the HAVING clause can 2161 ** be promoted into the WHERE clause. In order for such a promotion to work, 2162 ** the value of the HAVING clause term must be the same for all members of 2163 ** a "group". The requirement that the GROUP BY term must be BINARY 2164 ** assumes that no other collating sequence will have a finer-grained 2165 ** grouping than binary. In other words (A=B COLLATE binary) implies 2166 ** A=B in every other collating sequence. The requirement that the 2167 ** GROUP BY be BINARY is stricter than necessary. It would also work 2168 ** to promote HAVING clauses that use the same alternative collating 2169 ** sequence as the GROUP BY term, but that is much harder to check, 2170 ** alternative collating sequences are uncommon, and this is only an 2171 ** optimization, so we take the easy way out and simply require the 2172 ** GROUP BY to use the BINARY collating sequence. 2173 */ 2174 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2175 Walker w; 2176 w.eCode = 1; 2177 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2178 w.xSelectCallback = 0; 2179 w.u.pGroupBy = pGroupBy; 2180 w.pParse = pParse; 2181 sqlite3WalkExpr(&w, p); 2182 return w.eCode; 2183 } 2184 2185 /* 2186 ** Walk an expression tree for the DEFAULT field of a column definition 2187 ** in a CREATE TABLE statement. Return non-zero if the expression is 2188 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2189 ** the expression is constant or a function call with constant arguments. 2190 ** Return and 0 if there are any variables. 2191 ** 2192 ** isInit is true when parsing from sqlite_schema. isInit is false when 2193 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2194 ** (such as ? or $abc) in the expression are converted into NULL. When 2195 ** isInit is false, parameters raise an error. Parameters should not be 2196 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2197 ** allowed it, so we need to support it when reading sqlite_schema for 2198 ** backwards compatibility. 2199 ** 2200 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2201 ** 2202 ** For the purposes of this function, a double-quoted string (ex: "abc") 2203 ** is considered a variable but a single-quoted string (ex: 'abc') is 2204 ** a constant. 2205 */ 2206 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2207 assert( isInit==0 || isInit==1 ); 2208 return exprIsConst(p, 4+isInit, 0); 2209 } 2210 2211 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2212 /* 2213 ** Walk an expression tree. Return 1 if the expression contains a 2214 ** subquery of some kind. Return 0 if there are no subqueries. 2215 */ 2216 int sqlite3ExprContainsSubquery(Expr *p){ 2217 Walker w; 2218 w.eCode = 1; 2219 w.xExprCallback = sqlite3ExprWalkNoop; 2220 w.xSelectCallback = sqlite3SelectWalkFail; 2221 #ifdef SQLITE_DEBUG 2222 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2223 #endif 2224 sqlite3WalkExpr(&w, p); 2225 return w.eCode==0; 2226 } 2227 #endif 2228 2229 /* 2230 ** If the expression p codes a constant integer that is small enough 2231 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2232 ** in *pValue. If the expression is not an integer or if it is too big 2233 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2234 */ 2235 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2236 int rc = 0; 2237 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2238 2239 /* If an expression is an integer literal that fits in a signed 32-bit 2240 ** integer, then the EP_IntValue flag will have already been set */ 2241 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2242 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2243 2244 if( p->flags & EP_IntValue ){ 2245 *pValue = p->u.iValue; 2246 return 1; 2247 } 2248 switch( p->op ){ 2249 case TK_UPLUS: { 2250 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2251 break; 2252 } 2253 case TK_UMINUS: { 2254 int v; 2255 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2256 assert( v!=(-2147483647-1) ); 2257 *pValue = -v; 2258 rc = 1; 2259 } 2260 break; 2261 } 2262 default: break; 2263 } 2264 return rc; 2265 } 2266 2267 /* 2268 ** Return FALSE if there is no chance that the expression can be NULL. 2269 ** 2270 ** If the expression might be NULL or if the expression is too complex 2271 ** to tell return TRUE. 2272 ** 2273 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2274 ** when we know that a value cannot be NULL. Hence, a false positive 2275 ** (returning TRUE when in fact the expression can never be NULL) might 2276 ** be a small performance hit but is otherwise harmless. On the other 2277 ** hand, a false negative (returning FALSE when the result could be NULL) 2278 ** will likely result in an incorrect answer. So when in doubt, return 2279 ** TRUE. 2280 */ 2281 int sqlite3ExprCanBeNull(const Expr *p){ 2282 u8 op; 2283 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2284 p = p->pLeft; 2285 } 2286 op = p->op; 2287 if( op==TK_REGISTER ) op = p->op2; 2288 switch( op ){ 2289 case TK_INTEGER: 2290 case TK_STRING: 2291 case TK_FLOAT: 2292 case TK_BLOB: 2293 return 0; 2294 case TK_COLUMN: 2295 return ExprHasProperty(p, EP_CanBeNull) || 2296 p->y.pTab==0 || /* Reference to column of index on expression */ 2297 (p->iColumn>=0 2298 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2299 && p->y.pTab->aCol[p->iColumn].notNull==0); 2300 default: 2301 return 1; 2302 } 2303 } 2304 2305 /* 2306 ** Return TRUE if the given expression is a constant which would be 2307 ** unchanged by OP_Affinity with the affinity given in the second 2308 ** argument. 2309 ** 2310 ** This routine is used to determine if the OP_Affinity operation 2311 ** can be omitted. When in doubt return FALSE. A false negative 2312 ** is harmless. A false positive, however, can result in the wrong 2313 ** answer. 2314 */ 2315 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2316 u8 op; 2317 int unaryMinus = 0; 2318 if( aff==SQLITE_AFF_BLOB ) return 1; 2319 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2320 if( p->op==TK_UMINUS ) unaryMinus = 1; 2321 p = p->pLeft; 2322 } 2323 op = p->op; 2324 if( op==TK_REGISTER ) op = p->op2; 2325 switch( op ){ 2326 case TK_INTEGER: { 2327 return aff>=SQLITE_AFF_NUMERIC; 2328 } 2329 case TK_FLOAT: { 2330 return aff>=SQLITE_AFF_NUMERIC; 2331 } 2332 case TK_STRING: { 2333 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2334 } 2335 case TK_BLOB: { 2336 return !unaryMinus; 2337 } 2338 case TK_COLUMN: { 2339 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2340 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2341 } 2342 default: { 2343 return 0; 2344 } 2345 } 2346 } 2347 2348 /* 2349 ** Return TRUE if the given string is a row-id column name. 2350 */ 2351 int sqlite3IsRowid(const char *z){ 2352 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2353 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2354 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2355 return 0; 2356 } 2357 2358 /* 2359 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2360 ** that can be simplified to a direct table access, then return 2361 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2362 ** or if the SELECT statement needs to be manifested into a transient 2363 ** table, then return NULL. 2364 */ 2365 #ifndef SQLITE_OMIT_SUBQUERY 2366 static Select *isCandidateForInOpt(Expr *pX){ 2367 Select *p; 2368 SrcList *pSrc; 2369 ExprList *pEList; 2370 Table *pTab; 2371 int i; 2372 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2373 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2374 p = pX->x.pSelect; 2375 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2376 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2377 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2378 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2379 return 0; /* No DISTINCT keyword and no aggregate functions */ 2380 } 2381 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2382 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2383 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2384 pSrc = p->pSrc; 2385 assert( pSrc!=0 ); 2386 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2387 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2388 pTab = pSrc->a[0].pTab; 2389 assert( pTab!=0 ); 2390 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2391 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2392 pEList = p->pEList; 2393 assert( pEList!=0 ); 2394 /* All SELECT results must be columns. */ 2395 for(i=0; i<pEList->nExpr; i++){ 2396 Expr *pRes = pEList->a[i].pExpr; 2397 if( pRes->op!=TK_COLUMN ) return 0; 2398 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2399 } 2400 return p; 2401 } 2402 #endif /* SQLITE_OMIT_SUBQUERY */ 2403 2404 #ifndef SQLITE_OMIT_SUBQUERY 2405 /* 2406 ** Generate code that checks the left-most column of index table iCur to see if 2407 ** it contains any NULL entries. Cause the register at regHasNull to be set 2408 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2409 ** to be set to NULL if iCur contains one or more NULL values. 2410 */ 2411 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2412 int addr1; 2413 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2414 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2415 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2416 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2417 VdbeComment((v, "first_entry_in(%d)", iCur)); 2418 sqlite3VdbeJumpHere(v, addr1); 2419 } 2420 #endif 2421 2422 2423 #ifndef SQLITE_OMIT_SUBQUERY 2424 /* 2425 ** The argument is an IN operator with a list (not a subquery) on the 2426 ** right-hand side. Return TRUE if that list is constant. 2427 */ 2428 static int sqlite3InRhsIsConstant(Expr *pIn){ 2429 Expr *pLHS; 2430 int res; 2431 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2432 pLHS = pIn->pLeft; 2433 pIn->pLeft = 0; 2434 res = sqlite3ExprIsConstant(pIn); 2435 pIn->pLeft = pLHS; 2436 return res; 2437 } 2438 #endif 2439 2440 /* 2441 ** This function is used by the implementation of the IN (...) operator. 2442 ** The pX parameter is the expression on the RHS of the IN operator, which 2443 ** might be either a list of expressions or a subquery. 2444 ** 2445 ** The job of this routine is to find or create a b-tree object that can 2446 ** be used either to test for membership in the RHS set or to iterate through 2447 ** all members of the RHS set, skipping duplicates. 2448 ** 2449 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2450 ** and pX->iTable is set to the index of that cursor. 2451 ** 2452 ** The returned value of this function indicates the b-tree type, as follows: 2453 ** 2454 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2455 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2456 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2457 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2458 ** populated epheremal table. 2459 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2460 ** implemented as a sequence of comparisons. 2461 ** 2462 ** An existing b-tree might be used if the RHS expression pX is a simple 2463 ** subquery such as: 2464 ** 2465 ** SELECT <column1>, <column2>... FROM <table> 2466 ** 2467 ** If the RHS of the IN operator is a list or a more complex subquery, then 2468 ** an ephemeral table might need to be generated from the RHS and then 2469 ** pX->iTable made to point to the ephemeral table instead of an 2470 ** existing table. 2471 ** 2472 ** The inFlags parameter must contain, at a minimum, one of the bits 2473 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2474 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2475 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2476 ** be used to loop over all values of the RHS of the IN operator. 2477 ** 2478 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2479 ** through the set members) then the b-tree must not contain duplicates. 2480 ** An epheremal table will be created unless the selected columns are guaranteed 2481 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2482 ** a UNIQUE constraint or index. 2483 ** 2484 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2485 ** for fast set membership tests) then an epheremal table must 2486 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2487 ** index can be found with the specified <columns> as its left-most. 2488 ** 2489 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2490 ** if the RHS of the IN operator is a list (not a subquery) then this 2491 ** routine might decide that creating an ephemeral b-tree for membership 2492 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2493 ** calling routine should implement the IN operator using a sequence 2494 ** of Eq or Ne comparison operations. 2495 ** 2496 ** When the b-tree is being used for membership tests, the calling function 2497 ** might need to know whether or not the RHS side of the IN operator 2498 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2499 ** if there is any chance that the (...) might contain a NULL value at 2500 ** runtime, then a register is allocated and the register number written 2501 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2502 ** NULL value, then *prRhsHasNull is left unchanged. 2503 ** 2504 ** If a register is allocated and its location stored in *prRhsHasNull, then 2505 ** the value in that register will be NULL if the b-tree contains one or more 2506 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2507 ** NULL values. 2508 ** 2509 ** If the aiMap parameter is not NULL, it must point to an array containing 2510 ** one element for each column returned by the SELECT statement on the RHS 2511 ** of the IN(...) operator. The i'th entry of the array is populated with the 2512 ** offset of the index column that matches the i'th column returned by the 2513 ** SELECT. For example, if the expression and selected index are: 2514 ** 2515 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2516 ** CREATE INDEX i1 ON t1(b, c, a); 2517 ** 2518 ** then aiMap[] is populated with {2, 0, 1}. 2519 */ 2520 #ifndef SQLITE_OMIT_SUBQUERY 2521 int sqlite3FindInIndex( 2522 Parse *pParse, /* Parsing context */ 2523 Expr *pX, /* The IN expression */ 2524 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2525 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2526 int *aiMap, /* Mapping from Index fields to RHS fields */ 2527 int *piTab /* OUT: index to use */ 2528 ){ 2529 Select *p; /* SELECT to the right of IN operator */ 2530 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2531 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2532 int mustBeUnique; /* True if RHS must be unique */ 2533 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2534 2535 assert( pX->op==TK_IN ); 2536 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2537 2538 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2539 ** whether or not the SELECT result contains NULL values, check whether 2540 ** or not NULL is actually possible (it may not be, for example, due 2541 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2542 ** set prRhsHasNull to 0 before continuing. */ 2543 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2544 int i; 2545 ExprList *pEList = pX->x.pSelect->pEList; 2546 for(i=0; i<pEList->nExpr; i++){ 2547 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2548 } 2549 if( i==pEList->nExpr ){ 2550 prRhsHasNull = 0; 2551 } 2552 } 2553 2554 /* Check to see if an existing table or index can be used to 2555 ** satisfy the query. This is preferable to generating a new 2556 ** ephemeral table. */ 2557 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2558 sqlite3 *db = pParse->db; /* Database connection */ 2559 Table *pTab; /* Table <table>. */ 2560 int iDb; /* Database idx for pTab */ 2561 ExprList *pEList = p->pEList; 2562 int nExpr = pEList->nExpr; 2563 2564 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2565 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2566 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2567 pTab = p->pSrc->a[0].pTab; 2568 2569 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2570 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2571 assert( iDb>=0 && iDb<SQLITE_MAX_ATTACHED ); 2572 sqlite3CodeVerifySchema(pParse, iDb); 2573 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2574 2575 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2576 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2577 /* The "x IN (SELECT rowid FROM table)" case */ 2578 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2579 VdbeCoverage(v); 2580 2581 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2582 eType = IN_INDEX_ROWID; 2583 ExplainQueryPlan((pParse, 0, 2584 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2585 sqlite3VdbeJumpHere(v, iAddr); 2586 }else{ 2587 Index *pIdx; /* Iterator variable */ 2588 int affinity_ok = 1; 2589 int i; 2590 2591 /* Check that the affinity that will be used to perform each 2592 ** comparison is the same as the affinity of each column in table 2593 ** on the RHS of the IN operator. If it not, it is not possible to 2594 ** use any index of the RHS table. */ 2595 for(i=0; i<nExpr && affinity_ok; i++){ 2596 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2597 int iCol = pEList->a[i].pExpr->iColumn; 2598 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2599 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2600 testcase( cmpaff==SQLITE_AFF_BLOB ); 2601 testcase( cmpaff==SQLITE_AFF_TEXT ); 2602 switch( cmpaff ){ 2603 case SQLITE_AFF_BLOB: 2604 break; 2605 case SQLITE_AFF_TEXT: 2606 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2607 ** other has no affinity and the other side is TEXT. Hence, 2608 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2609 ** and for the term on the LHS of the IN to have no affinity. */ 2610 assert( idxaff==SQLITE_AFF_TEXT ); 2611 break; 2612 default: 2613 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2614 } 2615 } 2616 2617 if( affinity_ok ){ 2618 /* Search for an existing index that will work for this IN operator */ 2619 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2620 Bitmask colUsed; /* Columns of the index used */ 2621 Bitmask mCol; /* Mask for the current column */ 2622 if( pIdx->nColumn<nExpr ) continue; 2623 if( pIdx->pPartIdxWhere!=0 ) continue; 2624 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2625 ** BITMASK(nExpr) without overflowing */ 2626 testcase( pIdx->nColumn==BMS-2 ); 2627 testcase( pIdx->nColumn==BMS-1 ); 2628 if( pIdx->nColumn>=BMS-1 ) continue; 2629 if( mustBeUnique ){ 2630 if( pIdx->nKeyCol>nExpr 2631 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2632 ){ 2633 continue; /* This index is not unique over the IN RHS columns */ 2634 } 2635 } 2636 2637 colUsed = 0; /* Columns of index used so far */ 2638 for(i=0; i<nExpr; i++){ 2639 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2640 Expr *pRhs = pEList->a[i].pExpr; 2641 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2642 int j; 2643 2644 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2645 for(j=0; j<nExpr; j++){ 2646 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2647 assert( pIdx->azColl[j] ); 2648 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2649 continue; 2650 } 2651 break; 2652 } 2653 if( j==nExpr ) break; 2654 mCol = MASKBIT(j); 2655 if( mCol & colUsed ) break; /* Each column used only once */ 2656 colUsed |= mCol; 2657 if( aiMap ) aiMap[i] = j; 2658 } 2659 2660 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2661 if( colUsed==(MASKBIT(nExpr)-1) ){ 2662 /* If we reach this point, that means the index pIdx is usable */ 2663 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2664 ExplainQueryPlan((pParse, 0, 2665 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2666 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2667 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2668 VdbeComment((v, "%s", pIdx->zName)); 2669 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2670 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2671 2672 if( prRhsHasNull ){ 2673 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2674 i64 mask = (1<<nExpr)-1; 2675 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2676 iTab, 0, 0, (u8*)&mask, P4_INT64); 2677 #endif 2678 *prRhsHasNull = ++pParse->nMem; 2679 if( nExpr==1 ){ 2680 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2681 } 2682 } 2683 sqlite3VdbeJumpHere(v, iAddr); 2684 } 2685 } /* End loop over indexes */ 2686 } /* End if( affinity_ok ) */ 2687 } /* End if not an rowid index */ 2688 } /* End attempt to optimize using an index */ 2689 2690 /* If no preexisting index is available for the IN clause 2691 ** and IN_INDEX_NOOP is an allowed reply 2692 ** and the RHS of the IN operator is a list, not a subquery 2693 ** and the RHS is not constant or has two or fewer terms, 2694 ** then it is not worth creating an ephemeral table to evaluate 2695 ** the IN operator so return IN_INDEX_NOOP. 2696 */ 2697 if( eType==0 2698 && (inFlags & IN_INDEX_NOOP_OK) 2699 && !ExprHasProperty(pX, EP_xIsSelect) 2700 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2701 ){ 2702 eType = IN_INDEX_NOOP; 2703 } 2704 2705 if( eType==0 ){ 2706 /* Could not find an existing table or index to use as the RHS b-tree. 2707 ** We will have to generate an ephemeral table to do the job. 2708 */ 2709 u32 savedNQueryLoop = pParse->nQueryLoop; 2710 int rMayHaveNull = 0; 2711 eType = IN_INDEX_EPH; 2712 if( inFlags & IN_INDEX_LOOP ){ 2713 pParse->nQueryLoop = 0; 2714 }else if( prRhsHasNull ){ 2715 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2716 } 2717 assert( pX->op==TK_IN ); 2718 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2719 if( rMayHaveNull ){ 2720 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2721 } 2722 pParse->nQueryLoop = savedNQueryLoop; 2723 } 2724 2725 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2726 int i, n; 2727 n = sqlite3ExprVectorSize(pX->pLeft); 2728 for(i=0; i<n; i++) aiMap[i] = i; 2729 } 2730 *piTab = iTab; 2731 return eType; 2732 } 2733 #endif 2734 2735 #ifndef SQLITE_OMIT_SUBQUERY 2736 /* 2737 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2738 ** function allocates and returns a nul-terminated string containing 2739 ** the affinities to be used for each column of the comparison. 2740 ** 2741 ** It is the responsibility of the caller to ensure that the returned 2742 ** string is eventually freed using sqlite3DbFree(). 2743 */ 2744 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2745 Expr *pLeft = pExpr->pLeft; 2746 int nVal = sqlite3ExprVectorSize(pLeft); 2747 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2748 char *zRet; 2749 2750 assert( pExpr->op==TK_IN ); 2751 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2752 if( zRet ){ 2753 int i; 2754 for(i=0; i<nVal; i++){ 2755 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2756 char a = sqlite3ExprAffinity(pA); 2757 if( pSelect ){ 2758 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2759 }else{ 2760 zRet[i] = a; 2761 } 2762 } 2763 zRet[nVal] = '\0'; 2764 } 2765 return zRet; 2766 } 2767 #endif 2768 2769 #ifndef SQLITE_OMIT_SUBQUERY 2770 /* 2771 ** Load the Parse object passed as the first argument with an error 2772 ** message of the form: 2773 ** 2774 ** "sub-select returns N columns - expected M" 2775 */ 2776 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2777 if( pParse->nErr==0 ){ 2778 const char *zFmt = "sub-select returns %d columns - expected %d"; 2779 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2780 } 2781 } 2782 #endif 2783 2784 /* 2785 ** Expression pExpr is a vector that has been used in a context where 2786 ** it is not permitted. If pExpr is a sub-select vector, this routine 2787 ** loads the Parse object with a message of the form: 2788 ** 2789 ** "sub-select returns N columns - expected 1" 2790 ** 2791 ** Or, if it is a regular scalar vector: 2792 ** 2793 ** "row value misused" 2794 */ 2795 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2796 #ifndef SQLITE_OMIT_SUBQUERY 2797 if( pExpr->flags & EP_xIsSelect ){ 2798 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2799 }else 2800 #endif 2801 { 2802 sqlite3ErrorMsg(pParse, "row value misused"); 2803 } 2804 } 2805 2806 #ifndef SQLITE_OMIT_SUBQUERY 2807 /* 2808 ** Generate code that will construct an ephemeral table containing all terms 2809 ** in the RHS of an IN operator. The IN operator can be in either of two 2810 ** forms: 2811 ** 2812 ** x IN (4,5,11) -- IN operator with list on right-hand side 2813 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2814 ** 2815 ** The pExpr parameter is the IN operator. The cursor number for the 2816 ** constructed ephermeral table is returned. The first time the ephemeral 2817 ** table is computed, the cursor number is also stored in pExpr->iTable, 2818 ** however the cursor number returned might not be the same, as it might 2819 ** have been duplicated using OP_OpenDup. 2820 ** 2821 ** If the LHS expression ("x" in the examples) is a column value, or 2822 ** the SELECT statement returns a column value, then the affinity of that 2823 ** column is used to build the index keys. If both 'x' and the 2824 ** SELECT... statement are columns, then numeric affinity is used 2825 ** if either column has NUMERIC or INTEGER affinity. If neither 2826 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2827 ** is used. 2828 */ 2829 void sqlite3CodeRhsOfIN( 2830 Parse *pParse, /* Parsing context */ 2831 Expr *pExpr, /* The IN operator */ 2832 int iTab /* Use this cursor number */ 2833 ){ 2834 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2835 int addr; /* Address of OP_OpenEphemeral instruction */ 2836 Expr *pLeft; /* the LHS of the IN operator */ 2837 KeyInfo *pKeyInfo = 0; /* Key information */ 2838 int nVal; /* Size of vector pLeft */ 2839 Vdbe *v; /* The prepared statement under construction */ 2840 2841 v = pParse->pVdbe; 2842 assert( v!=0 ); 2843 2844 /* The evaluation of the IN must be repeated every time it 2845 ** is encountered if any of the following is true: 2846 ** 2847 ** * The right-hand side is a correlated subquery 2848 ** * The right-hand side is an expression list containing variables 2849 ** * We are inside a trigger 2850 ** 2851 ** If all of the above are false, then we can compute the RHS just once 2852 ** and reuse it many names. 2853 */ 2854 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2855 /* Reuse of the RHS is allowed */ 2856 /* If this routine has already been coded, but the previous code 2857 ** might not have been invoked yet, so invoke it now as a subroutine. 2858 */ 2859 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2860 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2861 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2862 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2863 pExpr->x.pSelect->selId)); 2864 } 2865 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2866 pExpr->y.sub.iAddr); 2867 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2868 sqlite3VdbeJumpHere(v, addrOnce); 2869 return; 2870 } 2871 2872 /* Begin coding the subroutine */ 2873 ExprSetProperty(pExpr, EP_Subrtn); 2874 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2875 pExpr->y.sub.regReturn = ++pParse->nMem; 2876 pExpr->y.sub.iAddr = 2877 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2878 VdbeComment((v, "return address")); 2879 2880 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2881 } 2882 2883 /* Check to see if this is a vector IN operator */ 2884 pLeft = pExpr->pLeft; 2885 nVal = sqlite3ExprVectorSize(pLeft); 2886 2887 /* Construct the ephemeral table that will contain the content of 2888 ** RHS of the IN operator. 2889 */ 2890 pExpr->iTable = iTab; 2891 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2892 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2893 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2894 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2895 }else{ 2896 VdbeComment((v, "RHS of IN operator")); 2897 } 2898 #endif 2899 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2900 2901 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2902 /* Case 1: expr IN (SELECT ...) 2903 ** 2904 ** Generate code to write the results of the select into the temporary 2905 ** table allocated and opened above. 2906 */ 2907 Select *pSelect = pExpr->x.pSelect; 2908 ExprList *pEList = pSelect->pEList; 2909 2910 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2911 addrOnce?"":"CORRELATED ", pSelect->selId 2912 )); 2913 /* If the LHS and RHS of the IN operator do not match, that 2914 ** error will have been caught long before we reach this point. */ 2915 if( ALWAYS(pEList->nExpr==nVal) ){ 2916 SelectDest dest; 2917 int i; 2918 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2919 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2920 pSelect->iLimit = 0; 2921 testcase( pSelect->selFlags & SF_Distinct ); 2922 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2923 if( sqlite3Select(pParse, pSelect, &dest) ){ 2924 sqlite3DbFree(pParse->db, dest.zAffSdst); 2925 sqlite3KeyInfoUnref(pKeyInfo); 2926 return; 2927 } 2928 sqlite3DbFree(pParse->db, dest.zAffSdst); 2929 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2930 assert( pEList!=0 ); 2931 assert( pEList->nExpr>0 ); 2932 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2933 for(i=0; i<nVal; i++){ 2934 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2935 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2936 pParse, p, pEList->a[i].pExpr 2937 ); 2938 } 2939 } 2940 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2941 /* Case 2: expr IN (exprlist) 2942 ** 2943 ** For each expression, build an index key from the evaluation and 2944 ** store it in the temporary table. If <expr> is a column, then use 2945 ** that columns affinity when building index keys. If <expr> is not 2946 ** a column, use numeric affinity. 2947 */ 2948 char affinity; /* Affinity of the LHS of the IN */ 2949 int i; 2950 ExprList *pList = pExpr->x.pList; 2951 struct ExprList_item *pItem; 2952 int r1, r2; 2953 affinity = sqlite3ExprAffinity(pLeft); 2954 if( affinity<=SQLITE_AFF_NONE ){ 2955 affinity = SQLITE_AFF_BLOB; 2956 }else if( affinity==SQLITE_AFF_REAL ){ 2957 affinity = SQLITE_AFF_NUMERIC; 2958 } 2959 if( pKeyInfo ){ 2960 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2961 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2962 } 2963 2964 /* Loop through each expression in <exprlist>. */ 2965 r1 = sqlite3GetTempReg(pParse); 2966 r2 = sqlite3GetTempReg(pParse); 2967 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2968 Expr *pE2 = pItem->pExpr; 2969 2970 /* If the expression is not constant then we will need to 2971 ** disable the test that was generated above that makes sure 2972 ** this code only executes once. Because for a non-constant 2973 ** expression we need to rerun this code each time. 2974 */ 2975 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2976 sqlite3VdbeChangeToNoop(v, addrOnce); 2977 ExprClearProperty(pExpr, EP_Subrtn); 2978 addrOnce = 0; 2979 } 2980 2981 /* Evaluate the expression and insert it into the temp table */ 2982 sqlite3ExprCode(pParse, pE2, r1); 2983 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2984 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2985 } 2986 sqlite3ReleaseTempReg(pParse, r1); 2987 sqlite3ReleaseTempReg(pParse, r2); 2988 } 2989 if( pKeyInfo ){ 2990 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2991 } 2992 if( addrOnce ){ 2993 sqlite3VdbeJumpHere(v, addrOnce); 2994 /* Subroutine return */ 2995 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2996 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2997 sqlite3ClearTempRegCache(pParse); 2998 } 2999 } 3000 #endif /* SQLITE_OMIT_SUBQUERY */ 3001 3002 /* 3003 ** Generate code for scalar subqueries used as a subquery expression 3004 ** or EXISTS operator: 3005 ** 3006 ** (SELECT a FROM b) -- subquery 3007 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3008 ** 3009 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3010 ** 3011 ** Return the register that holds the result. For a multi-column SELECT, 3012 ** the result is stored in a contiguous array of registers and the 3013 ** return value is the register of the left-most result column. 3014 ** Return 0 if an error occurs. 3015 */ 3016 #ifndef SQLITE_OMIT_SUBQUERY 3017 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3018 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3019 int rReg = 0; /* Register storing resulting */ 3020 Select *pSel; /* SELECT statement to encode */ 3021 SelectDest dest; /* How to deal with SELECT result */ 3022 int nReg; /* Registers to allocate */ 3023 Expr *pLimit; /* New limit expression */ 3024 3025 Vdbe *v = pParse->pVdbe; 3026 assert( v!=0 ); 3027 testcase( pExpr->op==TK_EXISTS ); 3028 testcase( pExpr->op==TK_SELECT ); 3029 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3030 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3031 pSel = pExpr->x.pSelect; 3032 3033 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3034 ** is encountered if any of the following is true: 3035 ** 3036 ** * The right-hand side is a correlated subquery 3037 ** * The right-hand side is an expression list containing variables 3038 ** * We are inside a trigger 3039 ** 3040 ** If all of the above are false, then we can run this code just once 3041 ** save the results, and reuse the same result on subsequent invocations. 3042 */ 3043 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3044 /* If this routine has already been coded, then invoke it as a 3045 ** subroutine. */ 3046 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3047 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3048 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3049 pExpr->y.sub.iAddr); 3050 return pExpr->iTable; 3051 } 3052 3053 /* Begin coding the subroutine */ 3054 ExprSetProperty(pExpr, EP_Subrtn); 3055 pExpr->y.sub.regReturn = ++pParse->nMem; 3056 pExpr->y.sub.iAddr = 3057 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3058 VdbeComment((v, "return address")); 3059 3060 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3061 } 3062 3063 /* For a SELECT, generate code to put the values for all columns of 3064 ** the first row into an array of registers and return the index of 3065 ** the first register. 3066 ** 3067 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3068 ** into a register and return that register number. 3069 ** 3070 ** In both cases, the query is augmented with "LIMIT 1". Any 3071 ** preexisting limit is discarded in place of the new LIMIT 1. 3072 */ 3073 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3074 addrOnce?"":"CORRELATED ", pSel->selId)); 3075 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3076 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3077 pParse->nMem += nReg; 3078 if( pExpr->op==TK_SELECT ){ 3079 dest.eDest = SRT_Mem; 3080 dest.iSdst = dest.iSDParm; 3081 dest.nSdst = nReg; 3082 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3083 VdbeComment((v, "Init subquery result")); 3084 }else{ 3085 dest.eDest = SRT_Exists; 3086 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3087 VdbeComment((v, "Init EXISTS result")); 3088 } 3089 if( pSel->pLimit ){ 3090 /* The subquery already has a limit. If the pre-existing limit is X 3091 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3092 sqlite3 *db = pParse->db; 3093 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3094 if( pLimit ){ 3095 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3096 pLimit = sqlite3PExpr(pParse, TK_NE, 3097 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3098 } 3099 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3100 pSel->pLimit->pLeft = pLimit; 3101 }else{ 3102 /* If there is no pre-existing limit add a limit of 1 */ 3103 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3104 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3105 } 3106 pSel->iLimit = 0; 3107 if( sqlite3Select(pParse, pSel, &dest) ){ 3108 return 0; 3109 } 3110 pExpr->iTable = rReg = dest.iSDParm; 3111 ExprSetVVAProperty(pExpr, EP_NoReduce); 3112 if( addrOnce ){ 3113 sqlite3VdbeJumpHere(v, addrOnce); 3114 3115 /* Subroutine return */ 3116 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3117 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3118 sqlite3ClearTempRegCache(pParse); 3119 } 3120 3121 return rReg; 3122 } 3123 #endif /* SQLITE_OMIT_SUBQUERY */ 3124 3125 #ifndef SQLITE_OMIT_SUBQUERY 3126 /* 3127 ** Expr pIn is an IN(...) expression. This function checks that the 3128 ** sub-select on the RHS of the IN() operator has the same number of 3129 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3130 ** a sub-query, that the LHS is a vector of size 1. 3131 */ 3132 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3133 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3134 if( (pIn->flags & EP_xIsSelect) ){ 3135 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3136 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3137 return 1; 3138 } 3139 }else if( nVector!=1 ){ 3140 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3141 return 1; 3142 } 3143 return 0; 3144 } 3145 #endif 3146 3147 #ifndef SQLITE_OMIT_SUBQUERY 3148 /* 3149 ** Generate code for an IN expression. 3150 ** 3151 ** x IN (SELECT ...) 3152 ** x IN (value, value, ...) 3153 ** 3154 ** The left-hand side (LHS) is a scalar or vector expression. The 3155 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3156 ** subquery. If the RHS is a subquery, the number of result columns must 3157 ** match the number of columns in the vector on the LHS. If the RHS is 3158 ** a list of values, the LHS must be a scalar. 3159 ** 3160 ** The IN operator is true if the LHS value is contained within the RHS. 3161 ** The result is false if the LHS is definitely not in the RHS. The 3162 ** result is NULL if the presence of the LHS in the RHS cannot be 3163 ** determined due to NULLs. 3164 ** 3165 ** This routine generates code that jumps to destIfFalse if the LHS is not 3166 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3167 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3168 ** within the RHS then fall through. 3169 ** 3170 ** See the separate in-operator.md documentation file in the canonical 3171 ** SQLite source tree for additional information. 3172 */ 3173 static void sqlite3ExprCodeIN( 3174 Parse *pParse, /* Parsing and code generating context */ 3175 Expr *pExpr, /* The IN expression */ 3176 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3177 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3178 ){ 3179 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3180 int eType; /* Type of the RHS */ 3181 int rLhs; /* Register(s) holding the LHS values */ 3182 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3183 Vdbe *v; /* Statement under construction */ 3184 int *aiMap = 0; /* Map from vector field to index column */ 3185 char *zAff = 0; /* Affinity string for comparisons */ 3186 int nVector; /* Size of vectors for this IN operator */ 3187 int iDummy; /* Dummy parameter to exprCodeVector() */ 3188 Expr *pLeft; /* The LHS of the IN operator */ 3189 int i; /* loop counter */ 3190 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3191 int destStep6 = 0; /* Start of code for Step 6 */ 3192 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3193 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3194 int addrTop; /* Top of the step-6 loop */ 3195 int iTab = 0; /* Index to use */ 3196 u8 okConstFactor = pParse->okConstFactor; 3197 3198 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3199 pLeft = pExpr->pLeft; 3200 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3201 zAff = exprINAffinity(pParse, pExpr); 3202 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3203 aiMap = (int*)sqlite3DbMallocZero( 3204 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3205 ); 3206 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3207 3208 /* Attempt to compute the RHS. After this step, if anything other than 3209 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3210 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3211 ** the RHS has not yet been coded. */ 3212 v = pParse->pVdbe; 3213 assert( v!=0 ); /* OOM detected prior to this routine */ 3214 VdbeNoopComment((v, "begin IN expr")); 3215 eType = sqlite3FindInIndex(pParse, pExpr, 3216 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3217 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3218 aiMap, &iTab); 3219 3220 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3221 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3222 ); 3223 #ifdef SQLITE_DEBUG 3224 /* Confirm that aiMap[] contains nVector integer values between 0 and 3225 ** nVector-1. */ 3226 for(i=0; i<nVector; i++){ 3227 int j, cnt; 3228 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3229 assert( cnt==1 ); 3230 } 3231 #endif 3232 3233 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3234 ** vector, then it is stored in an array of nVector registers starting 3235 ** at r1. 3236 ** 3237 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3238 ** so that the fields are in the same order as an existing index. The 3239 ** aiMap[] array contains a mapping from the original LHS field order to 3240 ** the field order that matches the RHS index. 3241 ** 3242 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3243 ** even if it is constant, as OP_Affinity may be used on the register 3244 ** by code generated below. */ 3245 assert( pParse->okConstFactor==okConstFactor ); 3246 pParse->okConstFactor = 0; 3247 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3248 pParse->okConstFactor = okConstFactor; 3249 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3250 if( i==nVector ){ 3251 /* LHS fields are not reordered */ 3252 rLhs = rLhsOrig; 3253 }else{ 3254 /* Need to reorder the LHS fields according to aiMap */ 3255 rLhs = sqlite3GetTempRange(pParse, nVector); 3256 for(i=0; i<nVector; i++){ 3257 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3258 } 3259 } 3260 3261 /* If sqlite3FindInIndex() did not find or create an index that is 3262 ** suitable for evaluating the IN operator, then evaluate using a 3263 ** sequence of comparisons. 3264 ** 3265 ** This is step (1) in the in-operator.md optimized algorithm. 3266 */ 3267 if( eType==IN_INDEX_NOOP ){ 3268 ExprList *pList = pExpr->x.pList; 3269 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3270 int labelOk = sqlite3VdbeMakeLabel(pParse); 3271 int r2, regToFree; 3272 int regCkNull = 0; 3273 int ii; 3274 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3275 if( destIfNull!=destIfFalse ){ 3276 regCkNull = sqlite3GetTempReg(pParse); 3277 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3278 } 3279 for(ii=0; ii<pList->nExpr; ii++){ 3280 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3281 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3282 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3283 } 3284 sqlite3ReleaseTempReg(pParse, regToFree); 3285 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3286 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3287 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3288 (void*)pColl, P4_COLLSEQ); 3289 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3290 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3291 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3292 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3293 sqlite3VdbeChangeP5(v, zAff[0]); 3294 }else{ 3295 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3296 assert( destIfNull==destIfFalse ); 3297 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3298 (void*)pColl, P4_COLLSEQ); 3299 VdbeCoverageIf(v, op==OP_Ne); 3300 VdbeCoverageIf(v, op==OP_IsNull); 3301 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3302 } 3303 } 3304 if( regCkNull ){ 3305 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3306 sqlite3VdbeGoto(v, destIfFalse); 3307 } 3308 sqlite3VdbeResolveLabel(v, labelOk); 3309 sqlite3ReleaseTempReg(pParse, regCkNull); 3310 goto sqlite3ExprCodeIN_finished; 3311 } 3312 3313 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3314 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3315 ** We will then skip the binary search of the RHS. 3316 */ 3317 if( destIfNull==destIfFalse ){ 3318 destStep2 = destIfFalse; 3319 }else{ 3320 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3321 } 3322 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3323 for(i=0; i<nVector; i++){ 3324 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3325 if( sqlite3ExprCanBeNull(p) ){ 3326 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3327 VdbeCoverage(v); 3328 } 3329 } 3330 3331 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3332 ** of the RHS using the LHS as a probe. If found, the result is 3333 ** true. 3334 */ 3335 if( eType==IN_INDEX_ROWID ){ 3336 /* In this case, the RHS is the ROWID of table b-tree and so we also 3337 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3338 ** into a single opcode. */ 3339 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3340 VdbeCoverage(v); 3341 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3342 }else{ 3343 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3344 if( destIfFalse==destIfNull ){ 3345 /* Combine Step 3 and Step 5 into a single opcode */ 3346 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3347 rLhs, nVector); VdbeCoverage(v); 3348 goto sqlite3ExprCodeIN_finished; 3349 } 3350 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3351 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3352 rLhs, nVector); VdbeCoverage(v); 3353 } 3354 3355 /* Step 4. If the RHS is known to be non-NULL and we did not find 3356 ** an match on the search above, then the result must be FALSE. 3357 */ 3358 if( rRhsHasNull && nVector==1 ){ 3359 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3360 VdbeCoverage(v); 3361 } 3362 3363 /* Step 5. If we do not care about the difference between NULL and 3364 ** FALSE, then just return false. 3365 */ 3366 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3367 3368 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3369 ** If any comparison is NULL, then the result is NULL. If all 3370 ** comparisons are FALSE then the final result is FALSE. 3371 ** 3372 ** For a scalar LHS, it is sufficient to check just the first row 3373 ** of the RHS. 3374 */ 3375 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3376 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3377 VdbeCoverage(v); 3378 if( nVector>1 ){ 3379 destNotNull = sqlite3VdbeMakeLabel(pParse); 3380 }else{ 3381 /* For nVector==1, combine steps 6 and 7 by immediately returning 3382 ** FALSE if the first comparison is not NULL */ 3383 destNotNull = destIfFalse; 3384 } 3385 for(i=0; i<nVector; i++){ 3386 Expr *p; 3387 CollSeq *pColl; 3388 int r3 = sqlite3GetTempReg(pParse); 3389 p = sqlite3VectorFieldSubexpr(pLeft, i); 3390 pColl = sqlite3ExprCollSeq(pParse, p); 3391 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3392 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3393 (void*)pColl, P4_COLLSEQ); 3394 VdbeCoverage(v); 3395 sqlite3ReleaseTempReg(pParse, r3); 3396 } 3397 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3398 if( nVector>1 ){ 3399 sqlite3VdbeResolveLabel(v, destNotNull); 3400 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3401 VdbeCoverage(v); 3402 3403 /* Step 7: If we reach this point, we know that the result must 3404 ** be false. */ 3405 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3406 } 3407 3408 /* Jumps here in order to return true. */ 3409 sqlite3VdbeJumpHere(v, addrTruthOp); 3410 3411 sqlite3ExprCodeIN_finished: 3412 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3413 VdbeComment((v, "end IN expr")); 3414 sqlite3ExprCodeIN_oom_error: 3415 sqlite3DbFree(pParse->db, aiMap); 3416 sqlite3DbFree(pParse->db, zAff); 3417 } 3418 #endif /* SQLITE_OMIT_SUBQUERY */ 3419 3420 #ifndef SQLITE_OMIT_FLOATING_POINT 3421 /* 3422 ** Generate an instruction that will put the floating point 3423 ** value described by z[0..n-1] into register iMem. 3424 ** 3425 ** The z[] string will probably not be zero-terminated. But the 3426 ** z[n] character is guaranteed to be something that does not look 3427 ** like the continuation of the number. 3428 */ 3429 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3430 if( ALWAYS(z!=0) ){ 3431 double value; 3432 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3433 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3434 if( negateFlag ) value = -value; 3435 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3436 } 3437 } 3438 #endif 3439 3440 3441 /* 3442 ** Generate an instruction that will put the integer describe by 3443 ** text z[0..n-1] into register iMem. 3444 ** 3445 ** Expr.u.zToken is always UTF8 and zero-terminated. 3446 */ 3447 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3448 Vdbe *v = pParse->pVdbe; 3449 if( pExpr->flags & EP_IntValue ){ 3450 int i = pExpr->u.iValue; 3451 assert( i>=0 ); 3452 if( negFlag ) i = -i; 3453 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3454 }else{ 3455 int c; 3456 i64 value; 3457 const char *z = pExpr->u.zToken; 3458 assert( z!=0 ); 3459 c = sqlite3DecOrHexToI64(z, &value); 3460 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3461 #ifdef SQLITE_OMIT_FLOATING_POINT 3462 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3463 #else 3464 #ifndef SQLITE_OMIT_HEX_INTEGER 3465 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3466 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3467 }else 3468 #endif 3469 { 3470 codeReal(v, z, negFlag, iMem); 3471 } 3472 #endif 3473 }else{ 3474 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3475 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3476 } 3477 } 3478 } 3479 3480 3481 /* Generate code that will load into register regOut a value that is 3482 ** appropriate for the iIdxCol-th column of index pIdx. 3483 */ 3484 void sqlite3ExprCodeLoadIndexColumn( 3485 Parse *pParse, /* The parsing context */ 3486 Index *pIdx, /* The index whose column is to be loaded */ 3487 int iTabCur, /* Cursor pointing to a table row */ 3488 int iIdxCol, /* The column of the index to be loaded */ 3489 int regOut /* Store the index column value in this register */ 3490 ){ 3491 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3492 if( iTabCol==XN_EXPR ){ 3493 assert( pIdx->aColExpr ); 3494 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3495 pParse->iSelfTab = iTabCur + 1; 3496 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3497 pParse->iSelfTab = 0; 3498 }else{ 3499 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3500 iTabCol, regOut); 3501 } 3502 } 3503 3504 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3505 /* 3506 ** Generate code that will compute the value of generated column pCol 3507 ** and store the result in register regOut 3508 */ 3509 void sqlite3ExprCodeGeneratedColumn( 3510 Parse *pParse, 3511 Column *pCol, 3512 int regOut 3513 ){ 3514 int iAddr; 3515 Vdbe *v = pParse->pVdbe; 3516 assert( v!=0 ); 3517 assert( pParse->iSelfTab!=0 ); 3518 if( pParse->iSelfTab>0 ){ 3519 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3520 }else{ 3521 iAddr = 0; 3522 } 3523 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3524 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3525 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3526 } 3527 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3528 } 3529 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3530 3531 /* 3532 ** Generate code to extract the value of the iCol-th column of a table. 3533 */ 3534 void sqlite3ExprCodeGetColumnOfTable( 3535 Vdbe *v, /* Parsing context */ 3536 Table *pTab, /* The table containing the value */ 3537 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3538 int iCol, /* Index of the column to extract */ 3539 int regOut /* Extract the value into this register */ 3540 ){ 3541 Column *pCol; 3542 assert( v!=0 ); 3543 if( pTab==0 ){ 3544 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3545 return; 3546 } 3547 if( iCol<0 || iCol==pTab->iPKey ){ 3548 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3549 }else{ 3550 int op; 3551 int x; 3552 if( IsVirtual(pTab) ){ 3553 op = OP_VColumn; 3554 x = iCol; 3555 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3556 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3557 Parse *pParse = sqlite3VdbeParser(v); 3558 if( pCol->colFlags & COLFLAG_BUSY ){ 3559 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3560 }else{ 3561 int savedSelfTab = pParse->iSelfTab; 3562 pCol->colFlags |= COLFLAG_BUSY; 3563 pParse->iSelfTab = iTabCur+1; 3564 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3565 pParse->iSelfTab = savedSelfTab; 3566 pCol->colFlags &= ~COLFLAG_BUSY; 3567 } 3568 return; 3569 #endif 3570 }else if( !HasRowid(pTab) ){ 3571 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3572 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3573 op = OP_Column; 3574 }else{ 3575 x = sqlite3TableColumnToStorage(pTab,iCol); 3576 testcase( x!=iCol ); 3577 op = OP_Column; 3578 } 3579 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3580 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3581 } 3582 } 3583 3584 /* 3585 ** Generate code that will extract the iColumn-th column from 3586 ** table pTab and store the column value in register iReg. 3587 ** 3588 ** There must be an open cursor to pTab in iTable when this routine 3589 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3590 */ 3591 int sqlite3ExprCodeGetColumn( 3592 Parse *pParse, /* Parsing and code generating context */ 3593 Table *pTab, /* Description of the table we are reading from */ 3594 int iColumn, /* Index of the table column */ 3595 int iTable, /* The cursor pointing to the table */ 3596 int iReg, /* Store results here */ 3597 u8 p5 /* P5 value for OP_Column + FLAGS */ 3598 ){ 3599 assert( pParse->pVdbe!=0 ); 3600 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3601 if( p5 ){ 3602 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3603 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3604 } 3605 return iReg; 3606 } 3607 3608 /* 3609 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3610 ** over to iTo..iTo+nReg-1. 3611 */ 3612 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3613 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3614 } 3615 3616 /* 3617 ** Convert a scalar expression node to a TK_REGISTER referencing 3618 ** register iReg. The caller must ensure that iReg already contains 3619 ** the correct value for the expression. 3620 */ 3621 static void exprToRegister(Expr *pExpr, int iReg){ 3622 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3623 p->op2 = p->op; 3624 p->op = TK_REGISTER; 3625 p->iTable = iReg; 3626 ExprClearProperty(p, EP_Skip); 3627 } 3628 3629 /* 3630 ** Evaluate an expression (either a vector or a scalar expression) and store 3631 ** the result in continguous temporary registers. Return the index of 3632 ** the first register used to store the result. 3633 ** 3634 ** If the returned result register is a temporary scalar, then also write 3635 ** that register number into *piFreeable. If the returned result register 3636 ** is not a temporary or if the expression is a vector set *piFreeable 3637 ** to 0. 3638 */ 3639 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3640 int iResult; 3641 int nResult = sqlite3ExprVectorSize(p); 3642 if( nResult==1 ){ 3643 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3644 }else{ 3645 *piFreeable = 0; 3646 if( p->op==TK_SELECT ){ 3647 #if SQLITE_OMIT_SUBQUERY 3648 iResult = 0; 3649 #else 3650 iResult = sqlite3CodeSubselect(pParse, p); 3651 #endif 3652 }else{ 3653 int i; 3654 iResult = pParse->nMem+1; 3655 pParse->nMem += nResult; 3656 for(i=0; i<nResult; i++){ 3657 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3658 } 3659 } 3660 } 3661 return iResult; 3662 } 3663 3664 /* 3665 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3666 ** so that a subsequent copy will not be merged into this one. 3667 */ 3668 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3669 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3670 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3671 } 3672 } 3673 3674 /* 3675 ** Generate code to implement special SQL functions that are implemented 3676 ** in-line rather than by using the usual callbacks. 3677 */ 3678 static int exprCodeInlineFunction( 3679 Parse *pParse, /* Parsing context */ 3680 ExprList *pFarg, /* List of function arguments */ 3681 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3682 int target /* Store function result in this register */ 3683 ){ 3684 int nFarg; 3685 Vdbe *v = pParse->pVdbe; 3686 assert( v!=0 ); 3687 assert( pFarg!=0 ); 3688 nFarg = pFarg->nExpr; 3689 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3690 switch( iFuncId ){ 3691 case INLINEFUNC_coalesce: { 3692 /* Attempt a direct implementation of the built-in COALESCE() and 3693 ** IFNULL() functions. This avoids unnecessary evaluation of 3694 ** arguments past the first non-NULL argument. 3695 */ 3696 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3697 int i; 3698 assert( nFarg>=2 ); 3699 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3700 for(i=1; i<nFarg; i++){ 3701 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3702 VdbeCoverage(v); 3703 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3704 } 3705 setDoNotMergeFlagOnCopy(v); 3706 sqlite3VdbeResolveLabel(v, endCoalesce); 3707 break; 3708 } 3709 case INLINEFUNC_iif: { 3710 Expr caseExpr; 3711 memset(&caseExpr, 0, sizeof(caseExpr)); 3712 caseExpr.op = TK_CASE; 3713 caseExpr.x.pList = pFarg; 3714 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3715 } 3716 3717 default: { 3718 /* The UNLIKELY() function is a no-op. The result is the value 3719 ** of the first argument. 3720 */ 3721 assert( nFarg==1 || nFarg==2 ); 3722 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3723 break; 3724 } 3725 3726 /*********************************************************************** 3727 ** Test-only SQL functions that are only usable if enabled 3728 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3729 */ 3730 case INLINEFUNC_expr_compare: { 3731 /* Compare two expressions using sqlite3ExprCompare() */ 3732 assert( nFarg==2 ); 3733 sqlite3VdbeAddOp2(v, OP_Integer, 3734 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3735 target); 3736 break; 3737 } 3738 3739 case INLINEFUNC_expr_implies_expr: { 3740 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3741 assert( nFarg==2 ); 3742 sqlite3VdbeAddOp2(v, OP_Integer, 3743 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3744 target); 3745 break; 3746 } 3747 3748 case INLINEFUNC_implies_nonnull_row: { 3749 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3750 Expr *pA1; 3751 assert( nFarg==2 ); 3752 pA1 = pFarg->a[1].pExpr; 3753 if( pA1->op==TK_COLUMN ){ 3754 sqlite3VdbeAddOp2(v, OP_Integer, 3755 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3756 target); 3757 }else{ 3758 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3759 } 3760 break; 3761 } 3762 3763 #ifdef SQLITE_DEBUG 3764 case INLINEFUNC_affinity: { 3765 /* The AFFINITY() function evaluates to a string that describes 3766 ** the type affinity of the argument. This is used for testing of 3767 ** the SQLite type logic. 3768 */ 3769 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3770 char aff; 3771 assert( nFarg==1 ); 3772 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3773 sqlite3VdbeLoadString(v, target, 3774 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3775 break; 3776 } 3777 #endif 3778 } 3779 return target; 3780 } 3781 3782 3783 /* 3784 ** Generate code into the current Vdbe to evaluate the given 3785 ** expression. Attempt to store the results in register "target". 3786 ** Return the register where results are stored. 3787 ** 3788 ** With this routine, there is no guarantee that results will 3789 ** be stored in target. The result might be stored in some other 3790 ** register if it is convenient to do so. The calling function 3791 ** must check the return code and move the results to the desired 3792 ** register. 3793 */ 3794 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3795 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3796 int op; /* The opcode being coded */ 3797 int inReg = target; /* Results stored in register inReg */ 3798 int regFree1 = 0; /* If non-zero free this temporary register */ 3799 int regFree2 = 0; /* If non-zero free this temporary register */ 3800 int r1, r2; /* Various register numbers */ 3801 Expr tempX; /* Temporary expression node */ 3802 int p5 = 0; 3803 3804 assert( target>0 && target<=pParse->nMem ); 3805 assert( v!=0 ); 3806 3807 expr_code_doover: 3808 if( pExpr==0 ){ 3809 op = TK_NULL; 3810 }else{ 3811 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3812 op = pExpr->op; 3813 } 3814 switch( op ){ 3815 case TK_AGG_COLUMN: { 3816 AggInfo *pAggInfo = pExpr->pAggInfo; 3817 struct AggInfo_col *pCol; 3818 assert( pAggInfo!=0 ); 3819 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 3820 pCol = &pAggInfo->aCol[pExpr->iAgg]; 3821 if( !pAggInfo->directMode ){ 3822 assert( pCol->iMem>0 ); 3823 return pCol->iMem; 3824 }else if( pAggInfo->useSortingIdx ){ 3825 Table *pTab = pCol->pTab; 3826 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3827 pCol->iSorterColumn, target); 3828 if( pCol->iColumn<0 ){ 3829 VdbeComment((v,"%s.rowid",pTab->zName)); 3830 }else{ 3831 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3832 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3833 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3834 } 3835 } 3836 return target; 3837 } 3838 /* Otherwise, fall thru into the TK_COLUMN case */ 3839 /* no break */ deliberate_fall_through 3840 } 3841 case TK_COLUMN: { 3842 int iTab = pExpr->iTable; 3843 int iReg; 3844 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3845 /* This COLUMN expression is really a constant due to WHERE clause 3846 ** constraints, and that constant is coded by the pExpr->pLeft 3847 ** expresssion. However, make sure the constant has the correct 3848 ** datatype by applying the Affinity of the table column to the 3849 ** constant. 3850 */ 3851 int aff; 3852 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3853 if( pExpr->y.pTab ){ 3854 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3855 }else{ 3856 aff = pExpr->affExpr; 3857 } 3858 if( aff>SQLITE_AFF_BLOB ){ 3859 static const char zAff[] = "B\000C\000D\000E"; 3860 assert( SQLITE_AFF_BLOB=='A' ); 3861 assert( SQLITE_AFF_TEXT=='B' ); 3862 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3863 &zAff[(aff-'B')*2], P4_STATIC); 3864 } 3865 return iReg; 3866 } 3867 if( iTab<0 ){ 3868 if( pParse->iSelfTab<0 ){ 3869 /* Other columns in the same row for CHECK constraints or 3870 ** generated columns or for inserting into partial index. 3871 ** The row is unpacked into registers beginning at 3872 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3873 ** immediately prior to the first column. 3874 */ 3875 Column *pCol; 3876 Table *pTab = pExpr->y.pTab; 3877 int iSrc; 3878 int iCol = pExpr->iColumn; 3879 assert( pTab!=0 ); 3880 assert( iCol>=XN_ROWID ); 3881 assert( iCol<pTab->nCol ); 3882 if( iCol<0 ){ 3883 return -1-pParse->iSelfTab; 3884 } 3885 pCol = pTab->aCol + iCol; 3886 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3887 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3888 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3889 if( pCol->colFlags & COLFLAG_GENERATED ){ 3890 if( pCol->colFlags & COLFLAG_BUSY ){ 3891 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3892 pCol->zName); 3893 return 0; 3894 } 3895 pCol->colFlags |= COLFLAG_BUSY; 3896 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3897 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3898 } 3899 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3900 return iSrc; 3901 }else 3902 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3903 if( pCol->affinity==SQLITE_AFF_REAL ){ 3904 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3905 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3906 return target; 3907 }else{ 3908 return iSrc; 3909 } 3910 }else{ 3911 /* Coding an expression that is part of an index where column names 3912 ** in the index refer to the table to which the index belongs */ 3913 iTab = pParse->iSelfTab - 1; 3914 } 3915 } 3916 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3917 pExpr->iColumn, iTab, target, 3918 pExpr->op2); 3919 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3920 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3921 } 3922 return iReg; 3923 } 3924 case TK_INTEGER: { 3925 codeInteger(pParse, pExpr, 0, target); 3926 return target; 3927 } 3928 case TK_TRUEFALSE: { 3929 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3930 return target; 3931 } 3932 #ifndef SQLITE_OMIT_FLOATING_POINT 3933 case TK_FLOAT: { 3934 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3935 codeReal(v, pExpr->u.zToken, 0, target); 3936 return target; 3937 } 3938 #endif 3939 case TK_STRING: { 3940 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3941 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3942 return target; 3943 } 3944 default: { 3945 /* Make NULL the default case so that if a bug causes an illegal 3946 ** Expr node to be passed into this function, it will be handled 3947 ** sanely and not crash. But keep the assert() to bring the problem 3948 ** to the attention of the developers. */ 3949 assert( op==TK_NULL ); 3950 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3951 return target; 3952 } 3953 #ifndef SQLITE_OMIT_BLOB_LITERAL 3954 case TK_BLOB: { 3955 int n; 3956 const char *z; 3957 char *zBlob; 3958 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3959 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3960 assert( pExpr->u.zToken[1]=='\'' ); 3961 z = &pExpr->u.zToken[2]; 3962 n = sqlite3Strlen30(z) - 1; 3963 assert( z[n]=='\'' ); 3964 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3965 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3966 return target; 3967 } 3968 #endif 3969 case TK_VARIABLE: { 3970 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3971 assert( pExpr->u.zToken!=0 ); 3972 assert( pExpr->u.zToken[0]!=0 ); 3973 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3974 if( pExpr->u.zToken[1]!=0 ){ 3975 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3976 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3977 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3978 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3979 } 3980 return target; 3981 } 3982 case TK_REGISTER: { 3983 return pExpr->iTable; 3984 } 3985 #ifndef SQLITE_OMIT_CAST 3986 case TK_CAST: { 3987 /* Expressions of the form: CAST(pLeft AS token) */ 3988 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3989 if( inReg!=target ){ 3990 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3991 inReg = target; 3992 } 3993 sqlite3VdbeAddOp2(v, OP_Cast, target, 3994 sqlite3AffinityType(pExpr->u.zToken, 0)); 3995 return inReg; 3996 } 3997 #endif /* SQLITE_OMIT_CAST */ 3998 case TK_IS: 3999 case TK_ISNOT: 4000 op = (op==TK_IS) ? TK_EQ : TK_NE; 4001 p5 = SQLITE_NULLEQ; 4002 /* fall-through */ 4003 case TK_LT: 4004 case TK_LE: 4005 case TK_GT: 4006 case TK_GE: 4007 case TK_NE: 4008 case TK_EQ: { 4009 Expr *pLeft = pExpr->pLeft; 4010 if( sqlite3ExprIsVector(pLeft) ){ 4011 codeVectorCompare(pParse, pExpr, target, op, p5); 4012 }else{ 4013 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4014 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4015 codeCompare(pParse, pLeft, pExpr->pRight, op, 4016 r1, r2, inReg, SQLITE_STOREP2 | p5, 4017 ExprHasProperty(pExpr,EP_Commuted)); 4018 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4019 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4020 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4021 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4022 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4023 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4024 testcase( regFree1==0 ); 4025 testcase( regFree2==0 ); 4026 } 4027 break; 4028 } 4029 case TK_AND: 4030 case TK_OR: 4031 case TK_PLUS: 4032 case TK_STAR: 4033 case TK_MINUS: 4034 case TK_REM: 4035 case TK_BITAND: 4036 case TK_BITOR: 4037 case TK_SLASH: 4038 case TK_LSHIFT: 4039 case TK_RSHIFT: 4040 case TK_CONCAT: { 4041 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4042 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4043 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4044 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4045 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4046 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4047 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4048 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4049 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4050 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4051 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4052 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4053 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4054 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4055 testcase( regFree1==0 ); 4056 testcase( regFree2==0 ); 4057 break; 4058 } 4059 case TK_UMINUS: { 4060 Expr *pLeft = pExpr->pLeft; 4061 assert( pLeft ); 4062 if( pLeft->op==TK_INTEGER ){ 4063 codeInteger(pParse, pLeft, 1, target); 4064 return target; 4065 #ifndef SQLITE_OMIT_FLOATING_POINT 4066 }else if( pLeft->op==TK_FLOAT ){ 4067 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4068 codeReal(v, pLeft->u.zToken, 1, target); 4069 return target; 4070 #endif 4071 }else{ 4072 tempX.op = TK_INTEGER; 4073 tempX.flags = EP_IntValue|EP_TokenOnly; 4074 tempX.u.iValue = 0; 4075 ExprClearVVAProperties(&tempX); 4076 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4077 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4078 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4079 testcase( regFree2==0 ); 4080 } 4081 break; 4082 } 4083 case TK_BITNOT: 4084 case TK_NOT: { 4085 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4086 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4087 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4088 testcase( regFree1==0 ); 4089 sqlite3VdbeAddOp2(v, op, r1, inReg); 4090 break; 4091 } 4092 case TK_TRUTH: { 4093 int isTrue; /* IS TRUE or IS NOT TRUE */ 4094 int bNormal; /* IS TRUE or IS FALSE */ 4095 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4096 testcase( regFree1==0 ); 4097 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4098 bNormal = pExpr->op2==TK_IS; 4099 testcase( isTrue && bNormal); 4100 testcase( !isTrue && bNormal); 4101 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4102 break; 4103 } 4104 case TK_ISNULL: 4105 case TK_NOTNULL: { 4106 int addr; 4107 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4108 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4109 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4110 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4111 testcase( regFree1==0 ); 4112 addr = sqlite3VdbeAddOp1(v, op, r1); 4113 VdbeCoverageIf(v, op==TK_ISNULL); 4114 VdbeCoverageIf(v, op==TK_NOTNULL); 4115 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4116 sqlite3VdbeJumpHere(v, addr); 4117 break; 4118 } 4119 case TK_AGG_FUNCTION: { 4120 AggInfo *pInfo = pExpr->pAggInfo; 4121 if( pInfo==0 4122 || NEVER(pExpr->iAgg<0) 4123 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4124 ){ 4125 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4126 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4127 }else{ 4128 return pInfo->aFunc[pExpr->iAgg].iMem; 4129 } 4130 break; 4131 } 4132 case TK_FUNCTION: { 4133 ExprList *pFarg; /* List of function arguments */ 4134 int nFarg; /* Number of function arguments */ 4135 FuncDef *pDef; /* The function definition object */ 4136 const char *zId; /* The function name */ 4137 u32 constMask = 0; /* Mask of function arguments that are constant */ 4138 int i; /* Loop counter */ 4139 sqlite3 *db = pParse->db; /* The database connection */ 4140 u8 enc = ENC(db); /* The text encoding used by this database */ 4141 CollSeq *pColl = 0; /* A collating sequence */ 4142 4143 #ifndef SQLITE_OMIT_WINDOWFUNC 4144 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4145 return pExpr->y.pWin->regResult; 4146 } 4147 #endif 4148 4149 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4150 /* SQL functions can be expensive. So try to avoid running them 4151 ** multiple times if we know they always give the same result */ 4152 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4153 } 4154 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4155 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4156 pFarg = pExpr->x.pList; 4157 nFarg = pFarg ? pFarg->nExpr : 0; 4158 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4159 zId = pExpr->u.zToken; 4160 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4161 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4162 if( pDef==0 && pParse->explain ){ 4163 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4164 } 4165 #endif 4166 if( pDef==0 || pDef->xFinalize!=0 ){ 4167 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4168 break; 4169 } 4170 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4171 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4172 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4173 return exprCodeInlineFunction(pParse, pFarg, 4174 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4175 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4176 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4177 } 4178 4179 for(i=0; i<nFarg; i++){ 4180 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4181 testcase( i==31 ); 4182 constMask |= MASKBIT32(i); 4183 } 4184 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4185 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4186 } 4187 } 4188 if( pFarg ){ 4189 if( constMask ){ 4190 r1 = pParse->nMem+1; 4191 pParse->nMem += nFarg; 4192 }else{ 4193 r1 = sqlite3GetTempRange(pParse, nFarg); 4194 } 4195 4196 /* For length() and typeof() functions with a column argument, 4197 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4198 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4199 ** loading. 4200 */ 4201 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4202 u8 exprOp; 4203 assert( nFarg==1 ); 4204 assert( pFarg->a[0].pExpr!=0 ); 4205 exprOp = pFarg->a[0].pExpr->op; 4206 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4207 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4208 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4209 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4210 pFarg->a[0].pExpr->op2 = 4211 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4212 } 4213 } 4214 4215 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4216 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4217 }else{ 4218 r1 = 0; 4219 } 4220 #ifndef SQLITE_OMIT_VIRTUALTABLE 4221 /* Possibly overload the function if the first argument is 4222 ** a virtual table column. 4223 ** 4224 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4225 ** second argument, not the first, as the argument to test to 4226 ** see if it is a column in a virtual table. This is done because 4227 ** the left operand of infix functions (the operand we want to 4228 ** control overloading) ends up as the second argument to the 4229 ** function. The expression "A glob B" is equivalent to 4230 ** "glob(B,A). We want to use the A in "A glob B" to test 4231 ** for function overloading. But we use the B term in "glob(B,A)". 4232 */ 4233 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4234 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4235 }else if( nFarg>0 ){ 4236 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4237 } 4238 #endif 4239 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4240 if( !pColl ) pColl = db->pDfltColl; 4241 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4242 } 4243 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4244 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4245 Expr *pArg = pFarg->a[0].pExpr; 4246 if( pArg->op==TK_COLUMN ){ 4247 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4248 }else{ 4249 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4250 } 4251 }else 4252 #endif 4253 { 4254 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4255 pDef, pExpr->op2); 4256 } 4257 if( nFarg ){ 4258 if( constMask==0 ){ 4259 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4260 }else{ 4261 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4262 } 4263 } 4264 return target; 4265 } 4266 #ifndef SQLITE_OMIT_SUBQUERY 4267 case TK_EXISTS: 4268 case TK_SELECT: { 4269 int nCol; 4270 testcase( op==TK_EXISTS ); 4271 testcase( op==TK_SELECT ); 4272 if( pParse->db->mallocFailed ){ 4273 return 0; 4274 }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4275 sqlite3SubselectError(pParse, nCol, 1); 4276 }else{ 4277 return sqlite3CodeSubselect(pParse, pExpr); 4278 } 4279 break; 4280 } 4281 case TK_SELECT_COLUMN: { 4282 int n; 4283 if( pExpr->pLeft->iTable==0 ){ 4284 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4285 } 4286 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4287 if( pExpr->iTable!=0 4288 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4289 ){ 4290 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4291 pExpr->iTable, n); 4292 } 4293 return pExpr->pLeft->iTable + pExpr->iColumn; 4294 } 4295 case TK_IN: { 4296 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4297 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4298 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4299 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4300 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4301 sqlite3VdbeResolveLabel(v, destIfFalse); 4302 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4303 sqlite3VdbeResolveLabel(v, destIfNull); 4304 return target; 4305 } 4306 #endif /* SQLITE_OMIT_SUBQUERY */ 4307 4308 4309 /* 4310 ** x BETWEEN y AND z 4311 ** 4312 ** This is equivalent to 4313 ** 4314 ** x>=y AND x<=z 4315 ** 4316 ** X is stored in pExpr->pLeft. 4317 ** Y is stored in pExpr->pList->a[0].pExpr. 4318 ** Z is stored in pExpr->pList->a[1].pExpr. 4319 */ 4320 case TK_BETWEEN: { 4321 exprCodeBetween(pParse, pExpr, target, 0, 0); 4322 return target; 4323 } 4324 case TK_SPAN: 4325 case TK_COLLATE: 4326 case TK_UPLUS: { 4327 pExpr = pExpr->pLeft; 4328 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4329 } 4330 4331 case TK_TRIGGER: { 4332 /* If the opcode is TK_TRIGGER, then the expression is a reference 4333 ** to a column in the new.* or old.* pseudo-tables available to 4334 ** trigger programs. In this case Expr.iTable is set to 1 for the 4335 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4336 ** is set to the column of the pseudo-table to read, or to -1 to 4337 ** read the rowid field. 4338 ** 4339 ** The expression is implemented using an OP_Param opcode. The p1 4340 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4341 ** to reference another column of the old.* pseudo-table, where 4342 ** i is the index of the column. For a new.rowid reference, p1 is 4343 ** set to (n+1), where n is the number of columns in each pseudo-table. 4344 ** For a reference to any other column in the new.* pseudo-table, p1 4345 ** is set to (n+2+i), where n and i are as defined previously. For 4346 ** example, if the table on which triggers are being fired is 4347 ** declared as: 4348 ** 4349 ** CREATE TABLE t1(a, b); 4350 ** 4351 ** Then p1 is interpreted as follows: 4352 ** 4353 ** p1==0 -> old.rowid p1==3 -> new.rowid 4354 ** p1==1 -> old.a p1==4 -> new.a 4355 ** p1==2 -> old.b p1==5 -> new.b 4356 */ 4357 Table *pTab = pExpr->y.pTab; 4358 int iCol = pExpr->iColumn; 4359 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4360 + sqlite3TableColumnToStorage(pTab, iCol); 4361 4362 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4363 assert( iCol>=-1 && iCol<pTab->nCol ); 4364 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4365 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4366 4367 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4368 VdbeComment((v, "r[%d]=%s.%s", target, 4369 (pExpr->iTable ? "new" : "old"), 4370 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4371 )); 4372 4373 #ifndef SQLITE_OMIT_FLOATING_POINT 4374 /* If the column has REAL affinity, it may currently be stored as an 4375 ** integer. Use OP_RealAffinity to make sure it is really real. 4376 ** 4377 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4378 ** floating point when extracting it from the record. */ 4379 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4380 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4381 } 4382 #endif 4383 break; 4384 } 4385 4386 case TK_VECTOR: { 4387 sqlite3ErrorMsg(pParse, "row value misused"); 4388 break; 4389 } 4390 4391 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4392 ** that derive from the right-hand table of a LEFT JOIN. The 4393 ** Expr.iTable value is the table number for the right-hand table. 4394 ** The expression is only evaluated if that table is not currently 4395 ** on a LEFT JOIN NULL row. 4396 */ 4397 case TK_IF_NULL_ROW: { 4398 int addrINR; 4399 u8 okConstFactor = pParse->okConstFactor; 4400 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4401 /* Temporarily disable factoring of constant expressions, since 4402 ** even though expressions may appear to be constant, they are not 4403 ** really constant because they originate from the right-hand side 4404 ** of a LEFT JOIN. */ 4405 pParse->okConstFactor = 0; 4406 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4407 pParse->okConstFactor = okConstFactor; 4408 sqlite3VdbeJumpHere(v, addrINR); 4409 sqlite3VdbeChangeP3(v, addrINR, inReg); 4410 break; 4411 } 4412 4413 /* 4414 ** Form A: 4415 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4416 ** 4417 ** Form B: 4418 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4419 ** 4420 ** Form A is can be transformed into the equivalent form B as follows: 4421 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4422 ** WHEN x=eN THEN rN ELSE y END 4423 ** 4424 ** X (if it exists) is in pExpr->pLeft. 4425 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4426 ** odd. The Y is also optional. If the number of elements in x.pList 4427 ** is even, then Y is omitted and the "otherwise" result is NULL. 4428 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4429 ** 4430 ** The result of the expression is the Ri for the first matching Ei, 4431 ** or if there is no matching Ei, the ELSE term Y, or if there is 4432 ** no ELSE term, NULL. 4433 */ 4434 case TK_CASE: { 4435 int endLabel; /* GOTO label for end of CASE stmt */ 4436 int nextCase; /* GOTO label for next WHEN clause */ 4437 int nExpr; /* 2x number of WHEN terms */ 4438 int i; /* Loop counter */ 4439 ExprList *pEList; /* List of WHEN terms */ 4440 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4441 Expr opCompare; /* The X==Ei expression */ 4442 Expr *pX; /* The X expression */ 4443 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4444 Expr *pDel = 0; 4445 sqlite3 *db = pParse->db; 4446 4447 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4448 assert(pExpr->x.pList->nExpr > 0); 4449 pEList = pExpr->x.pList; 4450 aListelem = pEList->a; 4451 nExpr = pEList->nExpr; 4452 endLabel = sqlite3VdbeMakeLabel(pParse); 4453 if( (pX = pExpr->pLeft)!=0 ){ 4454 pDel = sqlite3ExprDup(db, pX, 0); 4455 if( db->mallocFailed ){ 4456 sqlite3ExprDelete(db, pDel); 4457 break; 4458 } 4459 testcase( pX->op==TK_COLUMN ); 4460 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4461 testcase( regFree1==0 ); 4462 memset(&opCompare, 0, sizeof(opCompare)); 4463 opCompare.op = TK_EQ; 4464 opCompare.pLeft = pDel; 4465 pTest = &opCompare; 4466 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4467 ** The value in regFree1 might get SCopy-ed into the file result. 4468 ** So make sure that the regFree1 register is not reused for other 4469 ** purposes and possibly overwritten. */ 4470 regFree1 = 0; 4471 } 4472 for(i=0; i<nExpr-1; i=i+2){ 4473 if( pX ){ 4474 assert( pTest!=0 ); 4475 opCompare.pRight = aListelem[i].pExpr; 4476 }else{ 4477 pTest = aListelem[i].pExpr; 4478 } 4479 nextCase = sqlite3VdbeMakeLabel(pParse); 4480 testcase( pTest->op==TK_COLUMN ); 4481 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4482 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4483 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4484 sqlite3VdbeGoto(v, endLabel); 4485 sqlite3VdbeResolveLabel(v, nextCase); 4486 } 4487 if( (nExpr&1)!=0 ){ 4488 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4489 }else{ 4490 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4491 } 4492 sqlite3ExprDelete(db, pDel); 4493 setDoNotMergeFlagOnCopy(v); 4494 sqlite3VdbeResolveLabel(v, endLabel); 4495 break; 4496 } 4497 #ifndef SQLITE_OMIT_TRIGGER 4498 case TK_RAISE: { 4499 assert( pExpr->affExpr==OE_Rollback 4500 || pExpr->affExpr==OE_Abort 4501 || pExpr->affExpr==OE_Fail 4502 || pExpr->affExpr==OE_Ignore 4503 ); 4504 if( !pParse->pTriggerTab && !pParse->nested ){ 4505 sqlite3ErrorMsg(pParse, 4506 "RAISE() may only be used within a trigger-program"); 4507 return 0; 4508 } 4509 if( pExpr->affExpr==OE_Abort ){ 4510 sqlite3MayAbort(pParse); 4511 } 4512 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4513 if( pExpr->affExpr==OE_Ignore ){ 4514 sqlite3VdbeAddOp4( 4515 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4516 VdbeCoverage(v); 4517 }else{ 4518 sqlite3HaltConstraint(pParse, 4519 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4520 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4521 } 4522 4523 break; 4524 } 4525 #endif 4526 } 4527 sqlite3ReleaseTempReg(pParse, regFree1); 4528 sqlite3ReleaseTempReg(pParse, regFree2); 4529 return inReg; 4530 } 4531 4532 /* 4533 ** Generate code that will evaluate expression pExpr just one time 4534 ** per prepared statement execution. 4535 ** 4536 ** If the expression uses functions (that might throw an exception) then 4537 ** guard them with an OP_Once opcode to ensure that the code is only executed 4538 ** once. If no functions are involved, then factor the code out and put it at 4539 ** the end of the prepared statement in the initialization section. 4540 ** 4541 ** If regDest>=0 then the result is always stored in that register and the 4542 ** result is not reusable. If regDest<0 then this routine is free to 4543 ** store the value whereever it wants. The register where the expression 4544 ** is stored is returned. When regDest<0, two identical expressions might 4545 ** code to the same register, if they do not contain function calls and hence 4546 ** are factored out into the initialization section at the end of the 4547 ** prepared statement. 4548 */ 4549 int sqlite3ExprCodeRunJustOnce( 4550 Parse *pParse, /* Parsing context */ 4551 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4552 int regDest /* Store the value in this register */ 4553 ){ 4554 ExprList *p; 4555 assert( ConstFactorOk(pParse) ); 4556 p = pParse->pConstExpr; 4557 if( regDest<0 && p ){ 4558 struct ExprList_item *pItem; 4559 int i; 4560 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4561 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4562 return pItem->u.iConstExprReg; 4563 } 4564 } 4565 } 4566 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4567 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4568 Vdbe *v = pParse->pVdbe; 4569 int addr; 4570 assert( v ); 4571 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4572 pParse->okConstFactor = 0; 4573 if( !pParse->db->mallocFailed ){ 4574 if( regDest<0 ) regDest = ++pParse->nMem; 4575 sqlite3ExprCode(pParse, pExpr, regDest); 4576 } 4577 pParse->okConstFactor = 1; 4578 sqlite3ExprDelete(pParse->db, pExpr); 4579 sqlite3VdbeJumpHere(v, addr); 4580 }else{ 4581 p = sqlite3ExprListAppend(pParse, p, pExpr); 4582 if( p ){ 4583 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4584 pItem->reusable = regDest<0; 4585 if( regDest<0 ) regDest = ++pParse->nMem; 4586 pItem->u.iConstExprReg = regDest; 4587 } 4588 pParse->pConstExpr = p; 4589 } 4590 return regDest; 4591 } 4592 4593 /* 4594 ** Generate code to evaluate an expression and store the results 4595 ** into a register. Return the register number where the results 4596 ** are stored. 4597 ** 4598 ** If the register is a temporary register that can be deallocated, 4599 ** then write its number into *pReg. If the result register is not 4600 ** a temporary, then set *pReg to zero. 4601 ** 4602 ** If pExpr is a constant, then this routine might generate this 4603 ** code to fill the register in the initialization section of the 4604 ** VDBE program, in order to factor it out of the evaluation loop. 4605 */ 4606 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4607 int r2; 4608 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4609 if( ConstFactorOk(pParse) 4610 && pExpr->op!=TK_REGISTER 4611 && sqlite3ExprIsConstantNotJoin(pExpr) 4612 ){ 4613 *pReg = 0; 4614 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4615 }else{ 4616 int r1 = sqlite3GetTempReg(pParse); 4617 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4618 if( r2==r1 ){ 4619 *pReg = r1; 4620 }else{ 4621 sqlite3ReleaseTempReg(pParse, r1); 4622 *pReg = 0; 4623 } 4624 } 4625 return r2; 4626 } 4627 4628 /* 4629 ** Generate code that will evaluate expression pExpr and store the 4630 ** results in register target. The results are guaranteed to appear 4631 ** in register target. 4632 */ 4633 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4634 int inReg; 4635 4636 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4637 assert( target>0 && target<=pParse->nMem ); 4638 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4639 if( pParse->pVdbe==0 ) return; 4640 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4641 if( inReg!=target ){ 4642 u8 op; 4643 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4644 op = OP_Copy; 4645 }else{ 4646 op = OP_SCopy; 4647 } 4648 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4649 } 4650 } 4651 4652 /* 4653 ** Make a transient copy of expression pExpr and then code it using 4654 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4655 ** except that the input expression is guaranteed to be unchanged. 4656 */ 4657 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4658 sqlite3 *db = pParse->db; 4659 pExpr = sqlite3ExprDup(db, pExpr, 0); 4660 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4661 sqlite3ExprDelete(db, pExpr); 4662 } 4663 4664 /* 4665 ** Generate code that will evaluate expression pExpr and store the 4666 ** results in register target. The results are guaranteed to appear 4667 ** in register target. If the expression is constant, then this routine 4668 ** might choose to code the expression at initialization time. 4669 */ 4670 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4671 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4672 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4673 }else{ 4674 sqlite3ExprCodeCopy(pParse, pExpr, target); 4675 } 4676 } 4677 4678 /* 4679 ** Generate code that pushes the value of every element of the given 4680 ** expression list into a sequence of registers beginning at target. 4681 ** 4682 ** Return the number of elements evaluated. The number returned will 4683 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4684 ** is defined. 4685 ** 4686 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4687 ** filled using OP_SCopy. OP_Copy must be used instead. 4688 ** 4689 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4690 ** factored out into initialization code. 4691 ** 4692 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4693 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4694 ** in registers at srcReg, and so the value can be copied from there. 4695 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4696 ** are simply omitted rather than being copied from srcReg. 4697 */ 4698 int sqlite3ExprCodeExprList( 4699 Parse *pParse, /* Parsing context */ 4700 ExprList *pList, /* The expression list to be coded */ 4701 int target, /* Where to write results */ 4702 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4703 u8 flags /* SQLITE_ECEL_* flags */ 4704 ){ 4705 struct ExprList_item *pItem; 4706 int i, j, n; 4707 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4708 Vdbe *v = pParse->pVdbe; 4709 assert( pList!=0 ); 4710 assert( target>0 ); 4711 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4712 n = pList->nExpr; 4713 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4714 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4715 Expr *pExpr = pItem->pExpr; 4716 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4717 if( pItem->bSorterRef ){ 4718 i--; 4719 n--; 4720 }else 4721 #endif 4722 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4723 if( flags & SQLITE_ECEL_OMITREF ){ 4724 i--; 4725 n--; 4726 }else{ 4727 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4728 } 4729 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4730 && sqlite3ExprIsConstantNotJoin(pExpr) 4731 ){ 4732 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4733 }else{ 4734 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4735 if( inReg!=target+i ){ 4736 VdbeOp *pOp; 4737 if( copyOp==OP_Copy 4738 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4739 && pOp->p1+pOp->p3+1==inReg 4740 && pOp->p2+pOp->p3+1==target+i 4741 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4742 ){ 4743 pOp->p3++; 4744 }else{ 4745 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4746 } 4747 } 4748 } 4749 } 4750 return n; 4751 } 4752 4753 /* 4754 ** Generate code for a BETWEEN operator. 4755 ** 4756 ** x BETWEEN y AND z 4757 ** 4758 ** The above is equivalent to 4759 ** 4760 ** x>=y AND x<=z 4761 ** 4762 ** Code it as such, taking care to do the common subexpression 4763 ** elimination of x. 4764 ** 4765 ** The xJumpIf parameter determines details: 4766 ** 4767 ** NULL: Store the boolean result in reg[dest] 4768 ** sqlite3ExprIfTrue: Jump to dest if true 4769 ** sqlite3ExprIfFalse: Jump to dest if false 4770 ** 4771 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4772 */ 4773 static void exprCodeBetween( 4774 Parse *pParse, /* Parsing and code generating context */ 4775 Expr *pExpr, /* The BETWEEN expression */ 4776 int dest, /* Jump destination or storage location */ 4777 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4778 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4779 ){ 4780 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4781 Expr compLeft; /* The x>=y term */ 4782 Expr compRight; /* The x<=z term */ 4783 int regFree1 = 0; /* Temporary use register */ 4784 Expr *pDel = 0; 4785 sqlite3 *db = pParse->db; 4786 4787 memset(&compLeft, 0, sizeof(Expr)); 4788 memset(&compRight, 0, sizeof(Expr)); 4789 memset(&exprAnd, 0, sizeof(Expr)); 4790 4791 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4792 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4793 if( db->mallocFailed==0 ){ 4794 exprAnd.op = TK_AND; 4795 exprAnd.pLeft = &compLeft; 4796 exprAnd.pRight = &compRight; 4797 compLeft.op = TK_GE; 4798 compLeft.pLeft = pDel; 4799 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4800 compRight.op = TK_LE; 4801 compRight.pLeft = pDel; 4802 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4803 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4804 if( xJump ){ 4805 xJump(pParse, &exprAnd, dest, jumpIfNull); 4806 }else{ 4807 /* Mark the expression is being from the ON or USING clause of a join 4808 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4809 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4810 ** for clarity, but we are out of bits in the Expr.flags field so we 4811 ** have to reuse the EP_FromJoin bit. Bummer. */ 4812 pDel->flags |= EP_FromJoin; 4813 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4814 } 4815 sqlite3ReleaseTempReg(pParse, regFree1); 4816 } 4817 sqlite3ExprDelete(db, pDel); 4818 4819 /* Ensure adequate test coverage */ 4820 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4821 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4822 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4823 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4824 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4825 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4826 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4827 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4828 testcase( xJump==0 ); 4829 } 4830 4831 /* 4832 ** Generate code for a boolean expression such that a jump is made 4833 ** to the label "dest" if the expression is true but execution 4834 ** continues straight thru if the expression is false. 4835 ** 4836 ** If the expression evaluates to NULL (neither true nor false), then 4837 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4838 ** 4839 ** This code depends on the fact that certain token values (ex: TK_EQ) 4840 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4841 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4842 ** the make process cause these values to align. Assert()s in the code 4843 ** below verify that the numbers are aligned correctly. 4844 */ 4845 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4846 Vdbe *v = pParse->pVdbe; 4847 int op = 0; 4848 int regFree1 = 0; 4849 int regFree2 = 0; 4850 int r1, r2; 4851 4852 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4853 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4854 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4855 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4856 op = pExpr->op; 4857 switch( op ){ 4858 case TK_AND: 4859 case TK_OR: { 4860 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4861 if( pAlt!=pExpr ){ 4862 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4863 }else if( op==TK_AND ){ 4864 int d2 = sqlite3VdbeMakeLabel(pParse); 4865 testcase( jumpIfNull==0 ); 4866 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4867 jumpIfNull^SQLITE_JUMPIFNULL); 4868 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4869 sqlite3VdbeResolveLabel(v, d2); 4870 }else{ 4871 testcase( jumpIfNull==0 ); 4872 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4873 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4874 } 4875 break; 4876 } 4877 case TK_NOT: { 4878 testcase( jumpIfNull==0 ); 4879 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4880 break; 4881 } 4882 case TK_TRUTH: { 4883 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4884 int isTrue; /* IS TRUE or IS NOT TRUE */ 4885 testcase( jumpIfNull==0 ); 4886 isNot = pExpr->op2==TK_ISNOT; 4887 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4888 testcase( isTrue && isNot ); 4889 testcase( !isTrue && isNot ); 4890 if( isTrue ^ isNot ){ 4891 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4892 isNot ? SQLITE_JUMPIFNULL : 0); 4893 }else{ 4894 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4895 isNot ? SQLITE_JUMPIFNULL : 0); 4896 } 4897 break; 4898 } 4899 case TK_IS: 4900 case TK_ISNOT: 4901 testcase( op==TK_IS ); 4902 testcase( op==TK_ISNOT ); 4903 op = (op==TK_IS) ? TK_EQ : TK_NE; 4904 jumpIfNull = SQLITE_NULLEQ; 4905 /* no break */ deliberate_fall_through 4906 case TK_LT: 4907 case TK_LE: 4908 case TK_GT: 4909 case TK_GE: 4910 case TK_NE: 4911 case TK_EQ: { 4912 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4913 testcase( jumpIfNull==0 ); 4914 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4915 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4916 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4917 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4918 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4919 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4920 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4921 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4922 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4923 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4924 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4925 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4926 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4927 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4928 testcase( regFree1==0 ); 4929 testcase( regFree2==0 ); 4930 break; 4931 } 4932 case TK_ISNULL: 4933 case TK_NOTNULL: { 4934 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4935 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4936 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4937 sqlite3VdbeAddOp2(v, op, r1, dest); 4938 VdbeCoverageIf(v, op==TK_ISNULL); 4939 VdbeCoverageIf(v, op==TK_NOTNULL); 4940 testcase( regFree1==0 ); 4941 break; 4942 } 4943 case TK_BETWEEN: { 4944 testcase( jumpIfNull==0 ); 4945 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4946 break; 4947 } 4948 #ifndef SQLITE_OMIT_SUBQUERY 4949 case TK_IN: { 4950 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4951 int destIfNull = jumpIfNull ? dest : destIfFalse; 4952 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4953 sqlite3VdbeGoto(v, dest); 4954 sqlite3VdbeResolveLabel(v, destIfFalse); 4955 break; 4956 } 4957 #endif 4958 default: { 4959 default_expr: 4960 if( ExprAlwaysTrue(pExpr) ){ 4961 sqlite3VdbeGoto(v, dest); 4962 }else if( ExprAlwaysFalse(pExpr) ){ 4963 /* No-op */ 4964 }else{ 4965 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4966 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4967 VdbeCoverage(v); 4968 testcase( regFree1==0 ); 4969 testcase( jumpIfNull==0 ); 4970 } 4971 break; 4972 } 4973 } 4974 sqlite3ReleaseTempReg(pParse, regFree1); 4975 sqlite3ReleaseTempReg(pParse, regFree2); 4976 } 4977 4978 /* 4979 ** Generate code for a boolean expression such that a jump is made 4980 ** to the label "dest" if the expression is false but execution 4981 ** continues straight thru if the expression is true. 4982 ** 4983 ** If the expression evaluates to NULL (neither true nor false) then 4984 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4985 ** is 0. 4986 */ 4987 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4988 Vdbe *v = pParse->pVdbe; 4989 int op = 0; 4990 int regFree1 = 0; 4991 int regFree2 = 0; 4992 int r1, r2; 4993 4994 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4995 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4996 if( pExpr==0 ) return; 4997 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4998 4999 /* The value of pExpr->op and op are related as follows: 5000 ** 5001 ** pExpr->op op 5002 ** --------- ---------- 5003 ** TK_ISNULL OP_NotNull 5004 ** TK_NOTNULL OP_IsNull 5005 ** TK_NE OP_Eq 5006 ** TK_EQ OP_Ne 5007 ** TK_GT OP_Le 5008 ** TK_LE OP_Gt 5009 ** TK_GE OP_Lt 5010 ** TK_LT OP_Ge 5011 ** 5012 ** For other values of pExpr->op, op is undefined and unused. 5013 ** The value of TK_ and OP_ constants are arranged such that we 5014 ** can compute the mapping above using the following expression. 5015 ** Assert()s verify that the computation is correct. 5016 */ 5017 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5018 5019 /* Verify correct alignment of TK_ and OP_ constants 5020 */ 5021 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5022 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5023 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5024 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5025 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5026 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5027 assert( pExpr->op!=TK_GT || op==OP_Le ); 5028 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5029 5030 switch( pExpr->op ){ 5031 case TK_AND: 5032 case TK_OR: { 5033 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5034 if( pAlt!=pExpr ){ 5035 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5036 }else if( pExpr->op==TK_AND ){ 5037 testcase( jumpIfNull==0 ); 5038 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5039 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5040 }else{ 5041 int d2 = sqlite3VdbeMakeLabel(pParse); 5042 testcase( jumpIfNull==0 ); 5043 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5044 jumpIfNull^SQLITE_JUMPIFNULL); 5045 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5046 sqlite3VdbeResolveLabel(v, d2); 5047 } 5048 break; 5049 } 5050 case TK_NOT: { 5051 testcase( jumpIfNull==0 ); 5052 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5053 break; 5054 } 5055 case TK_TRUTH: { 5056 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5057 int isTrue; /* IS TRUE or IS NOT TRUE */ 5058 testcase( jumpIfNull==0 ); 5059 isNot = pExpr->op2==TK_ISNOT; 5060 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5061 testcase( isTrue && isNot ); 5062 testcase( !isTrue && isNot ); 5063 if( isTrue ^ isNot ){ 5064 /* IS TRUE and IS NOT FALSE */ 5065 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5066 isNot ? 0 : SQLITE_JUMPIFNULL); 5067 5068 }else{ 5069 /* IS FALSE and IS NOT TRUE */ 5070 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5071 isNot ? 0 : SQLITE_JUMPIFNULL); 5072 } 5073 break; 5074 } 5075 case TK_IS: 5076 case TK_ISNOT: 5077 testcase( pExpr->op==TK_IS ); 5078 testcase( pExpr->op==TK_ISNOT ); 5079 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5080 jumpIfNull = SQLITE_NULLEQ; 5081 /* no break */ deliberate_fall_through 5082 case TK_LT: 5083 case TK_LE: 5084 case TK_GT: 5085 case TK_GE: 5086 case TK_NE: 5087 case TK_EQ: { 5088 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5089 testcase( jumpIfNull==0 ); 5090 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5091 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5092 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5093 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5094 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5095 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5096 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5097 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5098 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5099 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5100 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5101 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5102 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5103 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5104 testcase( regFree1==0 ); 5105 testcase( regFree2==0 ); 5106 break; 5107 } 5108 case TK_ISNULL: 5109 case TK_NOTNULL: { 5110 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5111 sqlite3VdbeAddOp2(v, op, r1, dest); 5112 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5113 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5114 testcase( regFree1==0 ); 5115 break; 5116 } 5117 case TK_BETWEEN: { 5118 testcase( jumpIfNull==0 ); 5119 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5120 break; 5121 } 5122 #ifndef SQLITE_OMIT_SUBQUERY 5123 case TK_IN: { 5124 if( jumpIfNull ){ 5125 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5126 }else{ 5127 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5128 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5129 sqlite3VdbeResolveLabel(v, destIfNull); 5130 } 5131 break; 5132 } 5133 #endif 5134 default: { 5135 default_expr: 5136 if( ExprAlwaysFalse(pExpr) ){ 5137 sqlite3VdbeGoto(v, dest); 5138 }else if( ExprAlwaysTrue(pExpr) ){ 5139 /* no-op */ 5140 }else{ 5141 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5142 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5143 VdbeCoverage(v); 5144 testcase( regFree1==0 ); 5145 testcase( jumpIfNull==0 ); 5146 } 5147 break; 5148 } 5149 } 5150 sqlite3ReleaseTempReg(pParse, regFree1); 5151 sqlite3ReleaseTempReg(pParse, regFree2); 5152 } 5153 5154 /* 5155 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5156 ** code generation, and that copy is deleted after code generation. This 5157 ** ensures that the original pExpr is unchanged. 5158 */ 5159 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5160 sqlite3 *db = pParse->db; 5161 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5162 if( db->mallocFailed==0 ){ 5163 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5164 } 5165 sqlite3ExprDelete(db, pCopy); 5166 } 5167 5168 /* 5169 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5170 ** type of expression. 5171 ** 5172 ** If pExpr is a simple SQL value - an integer, real, string, blob 5173 ** or NULL value - then the VDBE currently being prepared is configured 5174 ** to re-prepare each time a new value is bound to variable pVar. 5175 ** 5176 ** Additionally, if pExpr is a simple SQL value and the value is the 5177 ** same as that currently bound to variable pVar, non-zero is returned. 5178 ** Otherwise, if the values are not the same or if pExpr is not a simple 5179 ** SQL value, zero is returned. 5180 */ 5181 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5182 int res = 0; 5183 int iVar; 5184 sqlite3_value *pL, *pR = 0; 5185 5186 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5187 if( pR ){ 5188 iVar = pVar->iColumn; 5189 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5190 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5191 if( pL ){ 5192 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5193 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5194 } 5195 res = 0==sqlite3MemCompare(pL, pR, 0); 5196 } 5197 sqlite3ValueFree(pR); 5198 sqlite3ValueFree(pL); 5199 } 5200 5201 return res; 5202 } 5203 5204 /* 5205 ** Do a deep comparison of two expression trees. Return 0 if the two 5206 ** expressions are completely identical. Return 1 if they differ only 5207 ** by a COLLATE operator at the top level. Return 2 if there are differences 5208 ** other than the top-level COLLATE operator. 5209 ** 5210 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5211 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5212 ** 5213 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5214 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5215 ** 5216 ** Sometimes this routine will return 2 even if the two expressions 5217 ** really are equivalent. If we cannot prove that the expressions are 5218 ** identical, we return 2 just to be safe. So if this routine 5219 ** returns 2, then you do not really know for certain if the two 5220 ** expressions are the same. But if you get a 0 or 1 return, then you 5221 ** can be sure the expressions are the same. In the places where 5222 ** this routine is used, it does not hurt to get an extra 2 - that 5223 ** just might result in some slightly slower code. But returning 5224 ** an incorrect 0 or 1 could lead to a malfunction. 5225 ** 5226 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5227 ** pParse->pReprepare can be matched against literals in pB. The 5228 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5229 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5230 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5231 ** pB causes a return value of 2. 5232 */ 5233 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5234 u32 combinedFlags; 5235 if( pA==0 || pB==0 ){ 5236 return pB==pA ? 0 : 2; 5237 } 5238 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5239 return 0; 5240 } 5241 combinedFlags = pA->flags | pB->flags; 5242 if( combinedFlags & EP_IntValue ){ 5243 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5244 return 0; 5245 } 5246 return 2; 5247 } 5248 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5249 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5250 return 1; 5251 } 5252 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5253 return 1; 5254 } 5255 return 2; 5256 } 5257 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5258 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5259 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5260 #ifndef SQLITE_OMIT_WINDOWFUNC 5261 assert( pA->op==pB->op ); 5262 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5263 return 2; 5264 } 5265 if( ExprHasProperty(pA,EP_WinFunc) ){ 5266 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5267 return 2; 5268 } 5269 } 5270 #endif 5271 }else if( pA->op==TK_NULL ){ 5272 return 0; 5273 }else if( pA->op==TK_COLLATE ){ 5274 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5275 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5276 return 2; 5277 } 5278 } 5279 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5280 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5281 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5282 if( combinedFlags & EP_xIsSelect ) return 2; 5283 if( (combinedFlags & EP_FixedCol)==0 5284 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5285 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5286 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5287 if( pA->op!=TK_STRING 5288 && pA->op!=TK_TRUEFALSE 5289 && ALWAYS((combinedFlags & EP_Reduced)==0) 5290 ){ 5291 if( pA->iColumn!=pB->iColumn ) return 2; 5292 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5293 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5294 return 2; 5295 } 5296 } 5297 } 5298 return 0; 5299 } 5300 5301 /* 5302 ** Compare two ExprList objects. Return 0 if they are identical, 1 5303 ** if they are certainly different, or 2 if it is not possible to 5304 ** determine if they are identical or not. 5305 ** 5306 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5307 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5308 ** 5309 ** This routine might return non-zero for equivalent ExprLists. The 5310 ** only consequence will be disabled optimizations. But this routine 5311 ** must never return 0 if the two ExprList objects are different, or 5312 ** a malfunction will result. 5313 ** 5314 ** Two NULL pointers are considered to be the same. But a NULL pointer 5315 ** always differs from a non-NULL pointer. 5316 */ 5317 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5318 int i; 5319 if( pA==0 && pB==0 ) return 0; 5320 if( pA==0 || pB==0 ) return 1; 5321 if( pA->nExpr!=pB->nExpr ) return 1; 5322 for(i=0; i<pA->nExpr; i++){ 5323 int res; 5324 Expr *pExprA = pA->a[i].pExpr; 5325 Expr *pExprB = pB->a[i].pExpr; 5326 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5327 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5328 } 5329 return 0; 5330 } 5331 5332 /* 5333 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5334 ** are ignored. 5335 */ 5336 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5337 return sqlite3ExprCompare(0, 5338 sqlite3ExprSkipCollateAndLikely(pA), 5339 sqlite3ExprSkipCollateAndLikely(pB), 5340 iTab); 5341 } 5342 5343 /* 5344 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5345 ** 5346 ** Or if seenNot is true, return non-zero if Expr p can only be 5347 ** non-NULL if pNN is not NULL 5348 */ 5349 static int exprImpliesNotNull( 5350 Parse *pParse, /* Parsing context */ 5351 Expr *p, /* The expression to be checked */ 5352 Expr *pNN, /* The expression that is NOT NULL */ 5353 int iTab, /* Table being evaluated */ 5354 int seenNot /* Return true only if p can be any non-NULL value */ 5355 ){ 5356 assert( p ); 5357 assert( pNN ); 5358 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5359 return pNN->op!=TK_NULL; 5360 } 5361 switch( p->op ){ 5362 case TK_IN: { 5363 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5364 assert( ExprHasProperty(p,EP_xIsSelect) 5365 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5366 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5367 } 5368 case TK_BETWEEN: { 5369 ExprList *pList = p->x.pList; 5370 assert( pList!=0 ); 5371 assert( pList->nExpr==2 ); 5372 if( seenNot ) return 0; 5373 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5374 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5375 ){ 5376 return 1; 5377 } 5378 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5379 } 5380 case TK_EQ: 5381 case TK_NE: 5382 case TK_LT: 5383 case TK_LE: 5384 case TK_GT: 5385 case TK_GE: 5386 case TK_PLUS: 5387 case TK_MINUS: 5388 case TK_BITOR: 5389 case TK_LSHIFT: 5390 case TK_RSHIFT: 5391 case TK_CONCAT: 5392 seenNot = 1; 5393 /* no break */ deliberate_fall_through 5394 case TK_STAR: 5395 case TK_REM: 5396 case TK_BITAND: 5397 case TK_SLASH: { 5398 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5399 /* no break */ deliberate_fall_through 5400 } 5401 case TK_SPAN: 5402 case TK_COLLATE: 5403 case TK_UPLUS: 5404 case TK_UMINUS: { 5405 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5406 } 5407 case TK_TRUTH: { 5408 if( seenNot ) return 0; 5409 if( p->op2!=TK_IS ) return 0; 5410 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5411 } 5412 case TK_BITNOT: 5413 case TK_NOT: { 5414 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5415 } 5416 } 5417 return 0; 5418 } 5419 5420 /* 5421 ** Return true if we can prove the pE2 will always be true if pE1 is 5422 ** true. Return false if we cannot complete the proof or if pE2 might 5423 ** be false. Examples: 5424 ** 5425 ** pE1: x==5 pE2: x==5 Result: true 5426 ** pE1: x>0 pE2: x==5 Result: false 5427 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5428 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5429 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5430 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5431 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5432 ** 5433 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5434 ** Expr.iTable<0 then assume a table number given by iTab. 5435 ** 5436 ** If pParse is not NULL, then the values of bound variables in pE1 are 5437 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5438 ** modified to record which bound variables are referenced. If pParse 5439 ** is NULL, then false will be returned if pE1 contains any bound variables. 5440 ** 5441 ** When in doubt, return false. Returning true might give a performance 5442 ** improvement. Returning false might cause a performance reduction, but 5443 ** it will always give the correct answer and is hence always safe. 5444 */ 5445 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5446 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5447 return 1; 5448 } 5449 if( pE2->op==TK_OR 5450 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5451 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5452 ){ 5453 return 1; 5454 } 5455 if( pE2->op==TK_NOTNULL 5456 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5457 ){ 5458 return 1; 5459 } 5460 return 0; 5461 } 5462 5463 /* 5464 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5465 ** If the expression node requires that the table at pWalker->iCur 5466 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5467 ** 5468 ** This routine controls an optimization. False positives (setting 5469 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5470 ** (never setting pWalker->eCode) is a harmless missed optimization. 5471 */ 5472 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5473 testcase( pExpr->op==TK_AGG_COLUMN ); 5474 testcase( pExpr->op==TK_AGG_FUNCTION ); 5475 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5476 switch( pExpr->op ){ 5477 case TK_ISNOT: 5478 case TK_ISNULL: 5479 case TK_NOTNULL: 5480 case TK_IS: 5481 case TK_OR: 5482 case TK_VECTOR: 5483 case TK_CASE: 5484 case TK_IN: 5485 case TK_FUNCTION: 5486 case TK_TRUTH: 5487 testcase( pExpr->op==TK_ISNOT ); 5488 testcase( pExpr->op==TK_ISNULL ); 5489 testcase( pExpr->op==TK_NOTNULL ); 5490 testcase( pExpr->op==TK_IS ); 5491 testcase( pExpr->op==TK_OR ); 5492 testcase( pExpr->op==TK_VECTOR ); 5493 testcase( pExpr->op==TK_CASE ); 5494 testcase( pExpr->op==TK_IN ); 5495 testcase( pExpr->op==TK_FUNCTION ); 5496 testcase( pExpr->op==TK_TRUTH ); 5497 return WRC_Prune; 5498 case TK_COLUMN: 5499 if( pWalker->u.iCur==pExpr->iTable ){ 5500 pWalker->eCode = 1; 5501 return WRC_Abort; 5502 } 5503 return WRC_Prune; 5504 5505 case TK_AND: 5506 if( pWalker->eCode==0 ){ 5507 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5508 if( pWalker->eCode ){ 5509 pWalker->eCode = 0; 5510 sqlite3WalkExpr(pWalker, pExpr->pRight); 5511 } 5512 } 5513 return WRC_Prune; 5514 5515 case TK_BETWEEN: 5516 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5517 assert( pWalker->eCode ); 5518 return WRC_Abort; 5519 } 5520 return WRC_Prune; 5521 5522 /* Virtual tables are allowed to use constraints like x=NULL. So 5523 ** a term of the form x=y does not prove that y is not null if x 5524 ** is the column of a virtual table */ 5525 case TK_EQ: 5526 case TK_NE: 5527 case TK_LT: 5528 case TK_LE: 5529 case TK_GT: 5530 case TK_GE: { 5531 Expr *pLeft = pExpr->pLeft; 5532 Expr *pRight = pExpr->pRight; 5533 testcase( pExpr->op==TK_EQ ); 5534 testcase( pExpr->op==TK_NE ); 5535 testcase( pExpr->op==TK_LT ); 5536 testcase( pExpr->op==TK_LE ); 5537 testcase( pExpr->op==TK_GT ); 5538 testcase( pExpr->op==TK_GE ); 5539 /* The y.pTab=0 assignment in wherecode.c always happens after the 5540 ** impliesNotNullRow() test */ 5541 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5542 && IsVirtual(pLeft->y.pTab)) 5543 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5544 && IsVirtual(pRight->y.pTab)) 5545 ){ 5546 return WRC_Prune; 5547 } 5548 /* no break */ deliberate_fall_through 5549 } 5550 default: 5551 return WRC_Continue; 5552 } 5553 } 5554 5555 /* 5556 ** Return true (non-zero) if expression p can only be true if at least 5557 ** one column of table iTab is non-null. In other words, return true 5558 ** if expression p will always be NULL or false if every column of iTab 5559 ** is NULL. 5560 ** 5561 ** False negatives are acceptable. In other words, it is ok to return 5562 ** zero even if expression p will never be true of every column of iTab 5563 ** is NULL. A false negative is merely a missed optimization opportunity. 5564 ** 5565 ** False positives are not allowed, however. A false positive may result 5566 ** in an incorrect answer. 5567 ** 5568 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5569 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5570 ** 5571 ** This routine is used to check if a LEFT JOIN can be converted into 5572 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5573 ** clause requires that some column of the right table of the LEFT JOIN 5574 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5575 ** ordinary join. 5576 */ 5577 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5578 Walker w; 5579 p = sqlite3ExprSkipCollateAndLikely(p); 5580 if( p==0 ) return 0; 5581 if( p->op==TK_NOTNULL ){ 5582 p = p->pLeft; 5583 }else{ 5584 while( p->op==TK_AND ){ 5585 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5586 p = p->pRight; 5587 } 5588 } 5589 w.xExprCallback = impliesNotNullRow; 5590 w.xSelectCallback = 0; 5591 w.xSelectCallback2 = 0; 5592 w.eCode = 0; 5593 w.u.iCur = iTab; 5594 sqlite3WalkExpr(&w, p); 5595 return w.eCode; 5596 } 5597 5598 /* 5599 ** An instance of the following structure is used by the tree walker 5600 ** to determine if an expression can be evaluated by reference to the 5601 ** index only, without having to do a search for the corresponding 5602 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5603 ** is the cursor for the table. 5604 */ 5605 struct IdxCover { 5606 Index *pIdx; /* The index to be tested for coverage */ 5607 int iCur; /* Cursor number for the table corresponding to the index */ 5608 }; 5609 5610 /* 5611 ** Check to see if there are references to columns in table 5612 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5613 ** pWalker->u.pIdxCover->pIdx. 5614 */ 5615 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5616 if( pExpr->op==TK_COLUMN 5617 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5618 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5619 ){ 5620 pWalker->eCode = 1; 5621 return WRC_Abort; 5622 } 5623 return WRC_Continue; 5624 } 5625 5626 /* 5627 ** Determine if an index pIdx on table with cursor iCur contains will 5628 ** the expression pExpr. Return true if the index does cover the 5629 ** expression and false if the pExpr expression references table columns 5630 ** that are not found in the index pIdx. 5631 ** 5632 ** An index covering an expression means that the expression can be 5633 ** evaluated using only the index and without having to lookup the 5634 ** corresponding table entry. 5635 */ 5636 int sqlite3ExprCoveredByIndex( 5637 Expr *pExpr, /* The index to be tested */ 5638 int iCur, /* The cursor number for the corresponding table */ 5639 Index *pIdx /* The index that might be used for coverage */ 5640 ){ 5641 Walker w; 5642 struct IdxCover xcov; 5643 memset(&w, 0, sizeof(w)); 5644 xcov.iCur = iCur; 5645 xcov.pIdx = pIdx; 5646 w.xExprCallback = exprIdxCover; 5647 w.u.pIdxCover = &xcov; 5648 sqlite3WalkExpr(&w, pExpr); 5649 return !w.eCode; 5650 } 5651 5652 5653 /* 5654 ** An instance of the following structure is used by the tree walker 5655 ** to count references to table columns in the arguments of an 5656 ** aggregate function, in order to implement the 5657 ** sqlite3FunctionThisSrc() routine. 5658 */ 5659 struct SrcCount { 5660 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5661 int iSrcInner; /* Smallest cursor number in this context */ 5662 int nThis; /* Number of references to columns in pSrcList */ 5663 int nOther; /* Number of references to columns in other FROM clauses */ 5664 }; 5665 5666 /* 5667 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first 5668 ** SELECT with a FROM clause encountered during this iteration, set 5669 ** SrcCount.iSrcInner to the cursor number of the leftmost object in 5670 ** the FROM cause. 5671 */ 5672 static int selectSrcCount(Walker *pWalker, Select *pSel){ 5673 struct SrcCount *p = pWalker->u.pSrcCount; 5674 if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){ 5675 pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor; 5676 } 5677 return WRC_Continue; 5678 } 5679 5680 /* 5681 ** Count the number of references to columns. 5682 */ 5683 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5684 /* There was once a NEVER() on the second term on the grounds that 5685 ** sqlite3FunctionUsesThisSrc() was always called before 5686 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5687 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5688 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5689 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5690 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5691 int i; 5692 struct SrcCount *p = pWalker->u.pSrcCount; 5693 SrcList *pSrc = p->pSrc; 5694 int nSrc = pSrc ? pSrc->nSrc : 0; 5695 for(i=0; i<nSrc; i++){ 5696 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5697 } 5698 if( i<nSrc ){ 5699 p->nThis++; 5700 }else if( pExpr->iTable<p->iSrcInner ){ 5701 /* In a well-formed parse tree (no name resolution errors), 5702 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5703 ** outer context. Those are the only ones to count as "other" */ 5704 p->nOther++; 5705 } 5706 } 5707 return WRC_Continue; 5708 } 5709 5710 /* 5711 ** Determine if any of the arguments to the pExpr Function reference 5712 ** pSrcList. Return true if they do. Also return true if the function 5713 ** has no arguments or has only constant arguments. Return false if pExpr 5714 ** references columns but not columns of tables found in pSrcList. 5715 */ 5716 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5717 Walker w; 5718 struct SrcCount cnt; 5719 assert( pExpr->op==TK_AGG_FUNCTION ); 5720 memset(&w, 0, sizeof(w)); 5721 w.xExprCallback = exprSrcCount; 5722 w.xSelectCallback = selectSrcCount; 5723 w.u.pSrcCount = &cnt; 5724 cnt.pSrc = pSrcList; 5725 cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF; 5726 cnt.nThis = 0; 5727 cnt.nOther = 0; 5728 sqlite3WalkExprList(&w, pExpr->x.pList); 5729 #ifndef SQLITE_OMIT_WINDOWFUNC 5730 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5731 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5732 } 5733 #endif 5734 return cnt.nThis>0 || cnt.nOther==0; 5735 } 5736 5737 /* 5738 ** This is a Walker expression node callback. 5739 ** 5740 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 5741 ** object that is referenced does not refer directly to the Expr. If 5742 ** it does, make a copy. This is done because the pExpr argument is 5743 ** subject to change. 5744 ** 5745 ** The copy is stored on pParse->pConstExpr with a register number of 0. 5746 ** This will cause the expression to be deleted automatically when the 5747 ** Parse object is destroyed, but the zero register number means that it 5748 ** will not generate any code in the preamble. 5749 */ 5750 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 5751 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 5752 && pExpr->pAggInfo!=0 5753 ){ 5754 AggInfo *pAggInfo = pExpr->pAggInfo; 5755 int iAgg = pExpr->iAgg; 5756 Parse *pParse = pWalker->pParse; 5757 sqlite3 *db = pParse->db; 5758 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); 5759 if( pExpr->op==TK_AGG_COLUMN ){ 5760 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 5761 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 5762 pExpr = sqlite3ExprDup(db, pExpr, 0); 5763 if( pExpr ){ 5764 pAggInfo->aCol[iAgg].pCExpr = pExpr; 5765 pParse->pConstExpr = 5766 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5767 } 5768 } 5769 }else{ 5770 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 5771 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 5772 pExpr = sqlite3ExprDup(db, pExpr, 0); 5773 if( pExpr ){ 5774 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 5775 pParse->pConstExpr = 5776 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); 5777 } 5778 } 5779 } 5780 } 5781 return WRC_Continue; 5782 } 5783 5784 /* 5785 ** Initialize a Walker object so that will persist AggInfo entries referenced 5786 ** by the tree that is walked. 5787 */ 5788 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 5789 memset(pWalker, 0, sizeof(*pWalker)); 5790 pWalker->pParse = pParse; 5791 pWalker->xExprCallback = agginfoPersistExprCb; 5792 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 5793 } 5794 5795 /* 5796 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5797 ** the new element. Return a negative number if malloc fails. 5798 */ 5799 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5800 int i; 5801 pInfo->aCol = sqlite3ArrayAllocate( 5802 db, 5803 pInfo->aCol, 5804 sizeof(pInfo->aCol[0]), 5805 &pInfo->nColumn, 5806 &i 5807 ); 5808 return i; 5809 } 5810 5811 /* 5812 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5813 ** the new element. Return a negative number if malloc fails. 5814 */ 5815 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5816 int i; 5817 pInfo->aFunc = sqlite3ArrayAllocate( 5818 db, 5819 pInfo->aFunc, 5820 sizeof(pInfo->aFunc[0]), 5821 &pInfo->nFunc, 5822 &i 5823 ); 5824 return i; 5825 } 5826 5827 /* 5828 ** This is the xExprCallback for a tree walker. It is used to 5829 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5830 ** for additional information. 5831 */ 5832 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5833 int i; 5834 NameContext *pNC = pWalker->u.pNC; 5835 Parse *pParse = pNC->pParse; 5836 SrcList *pSrcList = pNC->pSrcList; 5837 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5838 5839 assert( pNC->ncFlags & NC_UAggInfo ); 5840 switch( pExpr->op ){ 5841 case TK_AGG_COLUMN: 5842 case TK_COLUMN: { 5843 testcase( pExpr->op==TK_AGG_COLUMN ); 5844 testcase( pExpr->op==TK_COLUMN ); 5845 /* Check to see if the column is in one of the tables in the FROM 5846 ** clause of the aggregate query */ 5847 if( ALWAYS(pSrcList!=0) ){ 5848 struct SrcList_item *pItem = pSrcList->a; 5849 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5850 struct AggInfo_col *pCol; 5851 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5852 if( pExpr->iTable==pItem->iCursor ){ 5853 /* If we reach this point, it means that pExpr refers to a table 5854 ** that is in the FROM clause of the aggregate query. 5855 ** 5856 ** Make an entry for the column in pAggInfo->aCol[] if there 5857 ** is not an entry there already. 5858 */ 5859 int k; 5860 pCol = pAggInfo->aCol; 5861 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5862 if( pCol->iTable==pExpr->iTable && 5863 pCol->iColumn==pExpr->iColumn ){ 5864 break; 5865 } 5866 } 5867 if( (k>=pAggInfo->nColumn) 5868 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5869 ){ 5870 pCol = &pAggInfo->aCol[k]; 5871 pCol->pTab = pExpr->y.pTab; 5872 pCol->iTable = pExpr->iTable; 5873 pCol->iColumn = pExpr->iColumn; 5874 pCol->iMem = ++pParse->nMem; 5875 pCol->iSorterColumn = -1; 5876 pCol->pCExpr = pExpr; 5877 if( pAggInfo->pGroupBy ){ 5878 int j, n; 5879 ExprList *pGB = pAggInfo->pGroupBy; 5880 struct ExprList_item *pTerm = pGB->a; 5881 n = pGB->nExpr; 5882 for(j=0; j<n; j++, pTerm++){ 5883 Expr *pE = pTerm->pExpr; 5884 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5885 pE->iColumn==pExpr->iColumn ){ 5886 pCol->iSorterColumn = j; 5887 break; 5888 } 5889 } 5890 } 5891 if( pCol->iSorterColumn<0 ){ 5892 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5893 } 5894 } 5895 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5896 ** because it was there before or because we just created it). 5897 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5898 ** pAggInfo->aCol[] entry. 5899 */ 5900 ExprSetVVAProperty(pExpr, EP_NoReduce); 5901 pExpr->pAggInfo = pAggInfo; 5902 pExpr->op = TK_AGG_COLUMN; 5903 pExpr->iAgg = (i16)k; 5904 break; 5905 } /* endif pExpr->iTable==pItem->iCursor */ 5906 } /* end loop over pSrcList */ 5907 } 5908 return WRC_Prune; 5909 } 5910 case TK_AGG_FUNCTION: { 5911 if( (pNC->ncFlags & NC_InAggFunc)==0 5912 && pWalker->walkerDepth==pExpr->op2 5913 ){ 5914 /* Check to see if pExpr is a duplicate of another aggregate 5915 ** function that is already in the pAggInfo structure 5916 */ 5917 struct AggInfo_func *pItem = pAggInfo->aFunc; 5918 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5919 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 5920 break; 5921 } 5922 } 5923 if( i>=pAggInfo->nFunc ){ 5924 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5925 */ 5926 u8 enc = ENC(pParse->db); 5927 i = addAggInfoFunc(pParse->db, pAggInfo); 5928 if( i>=0 ){ 5929 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5930 pItem = &pAggInfo->aFunc[i]; 5931 pItem->pFExpr = pExpr; 5932 pItem->iMem = ++pParse->nMem; 5933 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5934 pItem->pFunc = sqlite3FindFunction(pParse->db, 5935 pExpr->u.zToken, 5936 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5937 if( pExpr->flags & EP_Distinct ){ 5938 pItem->iDistinct = pParse->nTab++; 5939 }else{ 5940 pItem->iDistinct = -1; 5941 } 5942 } 5943 } 5944 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5945 */ 5946 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5947 ExprSetVVAProperty(pExpr, EP_NoReduce); 5948 pExpr->iAgg = (i16)i; 5949 pExpr->pAggInfo = pAggInfo; 5950 return WRC_Prune; 5951 }else{ 5952 return WRC_Continue; 5953 } 5954 } 5955 } 5956 return WRC_Continue; 5957 } 5958 5959 /* 5960 ** Analyze the pExpr expression looking for aggregate functions and 5961 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5962 ** points to. Additional entries are made on the AggInfo object as 5963 ** necessary. 5964 ** 5965 ** This routine should only be called after the expression has been 5966 ** analyzed by sqlite3ResolveExprNames(). 5967 */ 5968 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5969 Walker w; 5970 w.xExprCallback = analyzeAggregate; 5971 w.xSelectCallback = sqlite3WalkerDepthIncrease; 5972 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 5973 w.walkerDepth = 0; 5974 w.u.pNC = pNC; 5975 w.pParse = 0; 5976 assert( pNC->pSrcList!=0 ); 5977 sqlite3WalkExpr(&w, pExpr); 5978 } 5979 5980 /* 5981 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5982 ** expression list. Return the number of errors. 5983 ** 5984 ** If an error is found, the analysis is cut short. 5985 */ 5986 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5987 struct ExprList_item *pItem; 5988 int i; 5989 if( pList ){ 5990 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5991 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5992 } 5993 } 5994 } 5995 5996 /* 5997 ** Allocate a single new register for use to hold some intermediate result. 5998 */ 5999 int sqlite3GetTempReg(Parse *pParse){ 6000 if( pParse->nTempReg==0 ){ 6001 return ++pParse->nMem; 6002 } 6003 return pParse->aTempReg[--pParse->nTempReg]; 6004 } 6005 6006 /* 6007 ** Deallocate a register, making available for reuse for some other 6008 ** purpose. 6009 */ 6010 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6011 if( iReg ){ 6012 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6013 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6014 pParse->aTempReg[pParse->nTempReg++] = iReg; 6015 } 6016 } 6017 } 6018 6019 /* 6020 ** Allocate or deallocate a block of nReg consecutive registers. 6021 */ 6022 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6023 int i, n; 6024 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6025 i = pParse->iRangeReg; 6026 n = pParse->nRangeReg; 6027 if( nReg<=n ){ 6028 pParse->iRangeReg += nReg; 6029 pParse->nRangeReg -= nReg; 6030 }else{ 6031 i = pParse->nMem+1; 6032 pParse->nMem += nReg; 6033 } 6034 return i; 6035 } 6036 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6037 if( nReg==1 ){ 6038 sqlite3ReleaseTempReg(pParse, iReg); 6039 return; 6040 } 6041 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6042 if( nReg>pParse->nRangeReg ){ 6043 pParse->nRangeReg = nReg; 6044 pParse->iRangeReg = iReg; 6045 } 6046 } 6047 6048 /* 6049 ** Mark all temporary registers as being unavailable for reuse. 6050 ** 6051 ** Always invoke this procedure after coding a subroutine or co-routine 6052 ** that might be invoked from other parts of the code, to ensure that 6053 ** the sub/co-routine does not use registers in common with the code that 6054 ** invokes the sub/co-routine. 6055 */ 6056 void sqlite3ClearTempRegCache(Parse *pParse){ 6057 pParse->nTempReg = 0; 6058 pParse->nRangeReg = 0; 6059 } 6060 6061 /* 6062 ** Validate that no temporary register falls within the range of 6063 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6064 ** statements. 6065 */ 6066 #ifdef SQLITE_DEBUG 6067 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6068 int i; 6069 if( pParse->nRangeReg>0 6070 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6071 && pParse->iRangeReg <= iLast 6072 ){ 6073 return 0; 6074 } 6075 for(i=0; i<pParse->nTempReg; i++){ 6076 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6077 return 0; 6078 } 6079 } 6080 return 1; 6081 } 6082 #endif /* SQLITE_DEBUG */ 6083