xref: /sqlite-3.40.0/src/expr.c (revision be217793)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.417 2009/03/05 03:48:07 shane Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** Return the 'affinity' of the expression pExpr if any.
21 **
22 ** If pExpr is a column, a reference to a column via an 'AS' alias,
23 ** or a sub-select with a column as the return value, then the
24 ** affinity of that column is returned. Otherwise, 0x00 is returned,
25 ** indicating no affinity for the expression.
26 **
27 ** i.e. the WHERE clause expresssions in the following statements all
28 ** have an affinity:
29 **
30 ** CREATE TABLE t1(a);
31 ** SELECT * FROM t1 WHERE a;
32 ** SELECT a AS b FROM t1 WHERE b;
33 ** SELECT * FROM t1 WHERE (select a from t1);
34 */
35 char sqlite3ExprAffinity(Expr *pExpr){
36   int op = pExpr->op;
37   if( op==TK_SELECT ){
38     assert( pExpr->flags&EP_xIsSelect );
39     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
47    && pExpr->pTab!=0
48   ){
49     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
50     ** a TK_COLUMN but was previously evaluated and cached in a register */
51     int j = pExpr->iColumn;
52     if( j<0 ) return SQLITE_AFF_INTEGER;
53     assert( pExpr->pTab && j<pExpr->pTab->nCol );
54     return pExpr->pTab->aCol[j].affinity;
55   }
56   return pExpr->affinity;
57 }
58 
59 /*
60 ** Set the collating sequence for expression pExpr to be the collating
61 ** sequence named by pToken.   Return a pointer to the revised expression.
62 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
63 ** flag.  An explicit collating sequence will override implicit
64 ** collating sequences.
65 */
66 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
67   char *zColl = 0;            /* Dequoted name of collation sequence */
68   CollSeq *pColl;
69   sqlite3 *db = pParse->db;
70   zColl = sqlite3NameFromToken(db, pCollName);
71   if( pExpr && zColl ){
72     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
73     if( pColl ){
74       pExpr->pColl = pColl;
75       pExpr->flags |= EP_ExpCollate;
76     }
77   }
78   sqlite3DbFree(db, zColl);
79   return pExpr;
80 }
81 
82 /*
83 ** Return the default collation sequence for the expression pExpr. If
84 ** there is no default collation type, return 0.
85 */
86 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
87   CollSeq *pColl = 0;
88   Expr *p = pExpr;
89   while( p ){
90     int op;
91     pColl = p->pColl;
92     if( pColl ) break;
93     op = p->op;
94     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
95       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
96       ** a TK_COLUMN but was previously evaluated and cached in a register */
97       const char *zColl;
98       int j = p->iColumn;
99       if( j>=0 ){
100         sqlite3 *db = pParse->db;
101         zColl = p->pTab->aCol[j].zColl;
102         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
103         pExpr->pColl = pColl;
104       }
105       break;
106     }
107     if( op!=TK_CAST && op!=TK_UPLUS ){
108       break;
109     }
110     p = p->pLeft;
111   }
112   if( sqlite3CheckCollSeq(pParse, pColl) ){
113     pColl = 0;
114   }
115   return pColl;
116 }
117 
118 /*
119 ** pExpr is an operand of a comparison operator.  aff2 is the
120 ** type affinity of the other operand.  This routine returns the
121 ** type affinity that should be used for the comparison operator.
122 */
123 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
124   char aff1 = sqlite3ExprAffinity(pExpr);
125   if( aff1 && aff2 ){
126     /* Both sides of the comparison are columns. If one has numeric
127     ** affinity, use that. Otherwise use no affinity.
128     */
129     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
130       return SQLITE_AFF_NUMERIC;
131     }else{
132       return SQLITE_AFF_NONE;
133     }
134   }else if( !aff1 && !aff2 ){
135     /* Neither side of the comparison is a column.  Compare the
136     ** results directly.
137     */
138     return SQLITE_AFF_NONE;
139   }else{
140     /* One side is a column, the other is not. Use the columns affinity. */
141     assert( aff1==0 || aff2==0 );
142     return (aff1 + aff2);
143   }
144 }
145 
146 /*
147 ** pExpr is a comparison operator.  Return the type affinity that should
148 ** be applied to both operands prior to doing the comparison.
149 */
150 static char comparisonAffinity(Expr *pExpr){
151   char aff;
152   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
153           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
154           pExpr->op==TK_NE );
155   assert( pExpr->pLeft );
156   aff = sqlite3ExprAffinity(pExpr->pLeft);
157   if( pExpr->pRight ){
158     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
159   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
160     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
161   }else if( !aff ){
162     aff = SQLITE_AFF_NONE;
163   }
164   return aff;
165 }
166 
167 /*
168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
169 ** idx_affinity is the affinity of an indexed column. Return true
170 ** if the index with affinity idx_affinity may be used to implement
171 ** the comparison in pExpr.
172 */
173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
174   char aff = comparisonAffinity(pExpr);
175   switch( aff ){
176     case SQLITE_AFF_NONE:
177       return 1;
178     case SQLITE_AFF_TEXT:
179       return idx_affinity==SQLITE_AFF_TEXT;
180     default:
181       return sqlite3IsNumericAffinity(idx_affinity);
182   }
183 }
184 
185 /*
186 ** Return the P5 value that should be used for a binary comparison
187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
188 */
189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
190   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
191   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
192   return aff;
193 }
194 
195 /*
196 ** Return a pointer to the collation sequence that should be used by
197 ** a binary comparison operator comparing pLeft and pRight.
198 **
199 ** If the left hand expression has a collating sequence type, then it is
200 ** used. Otherwise the collation sequence for the right hand expression
201 ** is used, or the default (BINARY) if neither expression has a collating
202 ** type.
203 **
204 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
205 ** it is not considered.
206 */
207 CollSeq *sqlite3BinaryCompareCollSeq(
208   Parse *pParse,
209   Expr *pLeft,
210   Expr *pRight
211 ){
212   CollSeq *pColl;
213   assert( pLeft );
214   if( pLeft->flags & EP_ExpCollate ){
215     assert( pLeft->pColl );
216     pColl = pLeft->pColl;
217   }else if( pRight && pRight->flags & EP_ExpCollate ){
218     assert( pRight->pColl );
219     pColl = pRight->pColl;
220   }else{
221     pColl = sqlite3ExprCollSeq(pParse, pLeft);
222     if( !pColl ){
223       pColl = sqlite3ExprCollSeq(pParse, pRight);
224     }
225   }
226   return pColl;
227 }
228 
229 /*
230 ** Generate the operands for a comparison operation.  Before
231 ** generating the code for each operand, set the EP_AnyAff
232 ** flag on the expression so that it will be able to used a
233 ** cached column value that has previously undergone an
234 ** affinity change.
235 */
236 static void codeCompareOperands(
237   Parse *pParse,    /* Parsing and code generating context */
238   Expr *pLeft,      /* The left operand */
239   int *pRegLeft,    /* Register where left operand is stored */
240   int *pFreeLeft,   /* Free this register when done */
241   Expr *pRight,     /* The right operand */
242   int *pRegRight,   /* Register where right operand is stored */
243   int *pFreeRight   /* Write temp register for right operand there */
244 ){
245   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
246   pLeft->flags |= EP_AnyAff;
247   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
248   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
249   pRight->flags |= EP_AnyAff;
250   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
251 }
252 
253 /*
254 ** Generate code for a comparison operator.
255 */
256 static int codeCompare(
257   Parse *pParse,    /* The parsing (and code generating) context */
258   Expr *pLeft,      /* The left operand */
259   Expr *pRight,     /* The right operand */
260   int opcode,       /* The comparison opcode */
261   int in1, int in2, /* Register holding operands */
262   int dest,         /* Jump here if true.  */
263   int jumpIfNull    /* If true, jump if either operand is NULL */
264 ){
265   int p5;
266   int addr;
267   CollSeq *p4;
268 
269   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
270   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
271   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
272                            (void*)p4, P4_COLLSEQ);
273   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
274   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
275     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
276     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
277   }
278   return addr;
279 }
280 
281 #if SQLITE_MAX_EXPR_DEPTH>0
282 /*
283 ** Check that argument nHeight is less than or equal to the maximum
284 ** expression depth allowed. If it is not, leave an error message in
285 ** pParse.
286 */
287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
288   int rc = SQLITE_OK;
289   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
290   if( nHeight>mxHeight ){
291     sqlite3ErrorMsg(pParse,
292        "Expression tree is too large (maximum depth %d)", mxHeight
293     );
294     rc = SQLITE_ERROR;
295   }
296   return rc;
297 }
298 
299 /* The following three functions, heightOfExpr(), heightOfExprList()
300 ** and heightOfSelect(), are used to determine the maximum height
301 ** of any expression tree referenced by the structure passed as the
302 ** first argument.
303 **
304 ** If this maximum height is greater than the current value pointed
305 ** to by pnHeight, the second parameter, then set *pnHeight to that
306 ** value.
307 */
308 static void heightOfExpr(Expr *p, int *pnHeight){
309   if( p ){
310     if( p->nHeight>*pnHeight ){
311       *pnHeight = p->nHeight;
312     }
313   }
314 }
315 static void heightOfExprList(ExprList *p, int *pnHeight){
316   if( p ){
317     int i;
318     for(i=0; i<p->nExpr; i++){
319       heightOfExpr(p->a[i].pExpr, pnHeight);
320     }
321   }
322 }
323 static void heightOfSelect(Select *p, int *pnHeight){
324   if( p ){
325     heightOfExpr(p->pWhere, pnHeight);
326     heightOfExpr(p->pHaving, pnHeight);
327     heightOfExpr(p->pLimit, pnHeight);
328     heightOfExpr(p->pOffset, pnHeight);
329     heightOfExprList(p->pEList, pnHeight);
330     heightOfExprList(p->pGroupBy, pnHeight);
331     heightOfExprList(p->pOrderBy, pnHeight);
332     heightOfSelect(p->pPrior, pnHeight);
333   }
334 }
335 
336 /*
337 ** Set the Expr.nHeight variable in the structure passed as an
338 ** argument. An expression with no children, Expr.pList or
339 ** Expr.pSelect member has a height of 1. Any other expression
340 ** has a height equal to the maximum height of any other
341 ** referenced Expr plus one.
342 */
343 static void exprSetHeight(Expr *p){
344   int nHeight = 0;
345   heightOfExpr(p->pLeft, &nHeight);
346   heightOfExpr(p->pRight, &nHeight);
347   if( ExprHasProperty(p, EP_xIsSelect) ){
348     heightOfSelect(p->x.pSelect, &nHeight);
349   }else{
350     heightOfExprList(p->x.pList, &nHeight);
351   }
352   p->nHeight = nHeight + 1;
353 }
354 
355 /*
356 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
357 ** the height is greater than the maximum allowed expression depth,
358 ** leave an error in pParse.
359 */
360 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
361   exprSetHeight(p);
362   sqlite3ExprCheckHeight(pParse, p->nHeight);
363 }
364 
365 /*
366 ** Return the maximum height of any expression tree referenced
367 ** by the select statement passed as an argument.
368 */
369 int sqlite3SelectExprHeight(Select *p){
370   int nHeight = 0;
371   heightOfSelect(p, &nHeight);
372   return nHeight;
373 }
374 #else
375   #define exprSetHeight(y)
376 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
377 
378 /*
379 ** Construct a new expression node and return a pointer to it.  Memory
380 ** for this node is obtained from sqlite3_malloc().  The calling function
381 ** is responsible for making sure the node eventually gets freed.
382 */
383 Expr *sqlite3Expr(
384   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
385   int op,                 /* Expression opcode */
386   Expr *pLeft,            /* Left operand */
387   Expr *pRight,           /* Right operand */
388   const Token *pToken     /* Argument token */
389 ){
390   Expr *pNew;
391   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
392   if( pNew==0 ){
393     /* When malloc fails, delete pLeft and pRight. Expressions passed to
394     ** this function must always be allocated with sqlite3Expr() for this
395     ** reason.
396     */
397     sqlite3ExprDelete(db, pLeft);
398     sqlite3ExprDelete(db, pRight);
399     return 0;
400   }
401   pNew->op = (u8)op;
402   pNew->pLeft = pLeft;
403   pNew->pRight = pRight;
404   pNew->iAgg = -1;
405   pNew->span.z = (u8*)"";
406   if( pToken ){
407     assert( pToken->dyn==0 );
408     pNew->span = pNew->token = *pToken;
409   }else if( pLeft ){
410     if( pRight ){
411       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
412         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
413       }
414       if( pRight->flags & EP_ExpCollate ){
415         pNew->flags |= EP_ExpCollate;
416         pNew->pColl = pRight->pColl;
417       }
418     }
419     if( pLeft->flags & EP_ExpCollate ){
420       pNew->flags |= EP_ExpCollate;
421       pNew->pColl = pLeft->pColl;
422     }
423   }
424 
425   exprSetHeight(pNew);
426   return pNew;
427 }
428 
429 /*
430 ** Works like sqlite3Expr() except that it takes an extra Parse*
431 ** argument and notifies the associated connection object if malloc fails.
432 */
433 Expr *sqlite3PExpr(
434   Parse *pParse,          /* Parsing context */
435   int op,                 /* Expression opcode */
436   Expr *pLeft,            /* Left operand */
437   Expr *pRight,           /* Right operand */
438   const Token *pToken     /* Argument token */
439 ){
440   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
441   if( p ){
442     sqlite3ExprCheckHeight(pParse, p->nHeight);
443   }
444   return p;
445 }
446 
447 /*
448 ** When doing a nested parse, you can include terms in an expression
449 ** that look like this:   #1 #2 ...  These terms refer to registers
450 ** in the virtual machine.  #N is the N-th register.
451 **
452 ** This routine is called by the parser to deal with on of those terms.
453 ** It immediately generates code to store the value in a memory location.
454 ** The returns an expression that will code to extract the value from
455 ** that memory location as needed.
456 */
457 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
458   Vdbe *v = pParse->pVdbe;
459   Expr *p;
460   if( pParse->nested==0 ){
461     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
462     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
463   }
464   if( v==0 ) return 0;
465   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
466   if( p==0 ){
467     return 0;  /* Malloc failed */
468   }
469   p->iTable = atoi((char*)&pToken->z[1]);
470   return p;
471 }
472 
473 /*
474 ** Join two expressions using an AND operator.  If either expression is
475 ** NULL, then just return the other expression.
476 */
477 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
478   if( pLeft==0 ){
479     return pRight;
480   }else if( pRight==0 ){
481     return pLeft;
482   }else{
483     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
484   }
485 }
486 
487 /*
488 ** Set the Expr.span field of the given expression to span all
489 ** text between the two given tokens.  Both tokens must be pointing
490 ** at the same string.
491 */
492 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
493   assert( pRight!=0 );
494   assert( pLeft!=0 );
495   if( pExpr ){
496     pExpr->span.z = pLeft->z;
497     assert(pRight->z >= pLeft->z);
498     pExpr->span.n = pRight->n + (unsigned)(pRight->z - pLeft->z);
499   }
500 }
501 
502 /*
503 ** Construct a new expression node for a function with multiple
504 ** arguments.
505 */
506 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
507   Expr *pNew;
508   sqlite3 *db = pParse->db;
509   assert( pToken );
510   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
511   if( pNew==0 ){
512     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
513     return 0;
514   }
515   pNew->op = TK_FUNCTION;
516   pNew->x.pList = pList;
517   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
518   assert( pToken->dyn==0 );
519   pNew->token = *pToken;
520   pNew->span = pNew->token;
521 
522   sqlite3ExprSetHeight(pParse, pNew);
523   return pNew;
524 }
525 
526 /*
527 ** Assign a variable number to an expression that encodes a wildcard
528 ** in the original SQL statement.
529 **
530 ** Wildcards consisting of a single "?" are assigned the next sequential
531 ** variable number.
532 **
533 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
534 ** sure "nnn" is not too be to avoid a denial of service attack when
535 ** the SQL statement comes from an external source.
536 **
537 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
538 ** as the previous instance of the same wildcard.  Or if this is the first
539 ** instance of the wildcard, the next sequenial variable number is
540 ** assigned.
541 */
542 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
543   Token *pToken;
544   sqlite3 *db = pParse->db;
545 
546   if( pExpr==0 ) return;
547   pToken = &pExpr->token;
548   assert( pToken->n>=1 );
549   assert( pToken->z!=0 );
550   assert( pToken->z[0]!=0 );
551   if( pToken->n==1 ){
552     /* Wildcard of the form "?".  Assign the next variable number */
553     pExpr->iTable = ++pParse->nVar;
554   }else if( pToken->z[0]=='?' ){
555     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
556     ** use it as the variable number */
557     int i;
558     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
559     testcase( i==0 );
560     testcase( i==1 );
561     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
562     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
563     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
564       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
565           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
566     }
567     if( i>pParse->nVar ){
568       pParse->nVar = i;
569     }
570   }else{
571     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
572     ** number as the prior appearance of the same name, or if the name
573     ** has never appeared before, reuse the same variable number
574     */
575     int i;
576     u32 n;
577     n = pToken->n;
578     for(i=0; i<pParse->nVarExpr; i++){
579       Expr *pE;
580       if( (pE = pParse->apVarExpr[i])!=0
581           && pE->token.n==n
582           && memcmp(pE->token.z, pToken->z, n)==0 ){
583         pExpr->iTable = pE->iTable;
584         break;
585       }
586     }
587     if( i>=pParse->nVarExpr ){
588       pExpr->iTable = ++pParse->nVar;
589       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
590         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
591         pParse->apVarExpr =
592             sqlite3DbReallocOrFree(
593               db,
594               pParse->apVarExpr,
595               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
596             );
597       }
598       if( !db->mallocFailed ){
599         assert( pParse->apVarExpr!=0 );
600         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
601       }
602     }
603   }
604   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
605     sqlite3ErrorMsg(pParse, "too many SQL variables");
606   }
607 }
608 
609 /*
610 ** Clear an expression structure without deleting the structure itself.
611 ** Substructure is deleted.
612 */
613 void sqlite3ExprClear(sqlite3 *db, Expr *p){
614   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
615   if( !ExprHasAnyProperty(p, EP_TokenOnly|EP_SpanOnly) ){
616     if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
617     if( ExprHasProperty(p, EP_Reduced) ){
618       if( p->pLeft ) sqlite3ExprClear(db, p->pLeft);
619       if( p->pRight ) sqlite3ExprClear(db, p->pRight);
620     }else{
621       sqlite3ExprDelete(db, p->pLeft);
622       sqlite3ExprDelete(db, p->pRight);
623     }
624     if( ExprHasProperty(p, EP_xIsSelect) ){
625       sqlite3SelectDelete(db, p->x.pSelect);
626     }else{
627       sqlite3ExprListDelete(db, p->x.pList);
628     }
629   }
630 }
631 
632 /*
633 ** Recursively delete an expression tree.
634 */
635 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
636   if( p==0 ) return;
637   sqlite3ExprClear(db, p);
638   sqlite3DbFree(db, p);
639 }
640 
641 /*
642 ** The Expr.token field might be a string literal that is quoted.
643 ** If so, remove the quotation marks.
644 */
645 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
646   if( ExprHasAnyProperty(p, EP_Dequoted) ){
647     return;
648   }
649   ExprSetProperty(p, EP_Dequoted);
650   if( p->token.dyn==0 && !ExprHasProperty(p, EP_Reduced) ){
651     sqlite3TokenCopy(db, &p->token, &p->token);
652   }
653   sqlite3Dequote((char*)p->token.z);
654 }
655 
656 /*
657 ** Return the number of bytes allocated for the expression structure
658 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
659 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
660 */
661 static int exprStructSize(Expr *p){
662   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
663   if( ExprHasProperty(p, EP_SpanOnly) ) return EXPR_SPANONLYSIZE;
664   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
665   return EXPR_FULLSIZE;
666 }
667 
668 /*
669 ** sqlite3ExprDup() has been called to create a copy of expression p with
670 ** the EXPRDUP_XXX flags passed as the second argument. This function
671 ** returns the space required for the copy of the Expr structure only.
672 ** This is always one of EXPR_FULLSIZE, EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
673 */
674 static int dupedExprStructSize(Expr *p, int flags){
675   int nSize;
676   if( 0==(flags&EXPRDUP_REDUCE) ){
677     nSize = EXPR_FULLSIZE;
678   }else if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
679     nSize = EXPR_REDUCEDSIZE;
680   }else if( flags&EXPRDUP_SPAN ){
681     nSize = EXPR_SPANONLYSIZE;
682   }else{
683     nSize = EXPR_TOKENONLYSIZE;
684   }
685   return nSize;
686 }
687 
688 /*
689 ** sqlite3ExprDup() has been called to create a copy of expression p with
690 ** the EXPRDUP_XXX passed as the second argument. This function returns
691 ** the space in bytes required to store the copy of the Expr structure
692 ** and the copies of the Expr.token.z and Expr.span.z (if applicable)
693 ** string buffers.
694 */
695 static int dupedExprNodeSize(Expr *p, int flags){
696   int nByte = dupedExprStructSize(p, flags) + (p->token.z ? p->token.n + 1 : 0);
697   if( flags&EXPRDUP_SPAN && (p->token.z!=p->span.z || p->token.n!=p->span.n) ){
698     nByte += p->span.n;
699   }
700   return (nByte+7)&~7;
701 }
702 
703 /*
704 ** Return the number of bytes required to create a duplicate of the
705 ** expression passed as the first argument. The second argument is a
706 ** mask containing EXPRDUP_XXX flags.
707 **
708 ** The value returned includes space to create a copy of the Expr struct
709 ** itself and the buffer referred to by Expr.token, if any. If the
710 ** EXPRDUP_SPAN flag is set, then space to create a copy of the buffer
711 ** refered to by Expr.span is also included.
712 **
713 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
714 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
715 ** and Expr.pRight variables (but not for any structures pointed to or
716 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
717 */
718 static int dupedExprSize(Expr *p, int flags){
719   int nByte = 0;
720   if( p ){
721     nByte = dupedExprNodeSize(p, flags);
722     if( flags&EXPRDUP_REDUCE ){
723       int f = flags&(~EXPRDUP_SPAN);
724       nByte += dupedExprSize(p->pLeft, f) + dupedExprSize(p->pRight, f);
725     }
726   }
727   return nByte;
728 }
729 
730 /*
731 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
732 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
733 ** to store the copy of expression p, the copies of p->token and p->span
734 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
735 ** if any. Before returning, *pzBuffer is set to the first byte passed the
736 ** portion of the buffer copied into by this function.
737 */
738 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
739   Expr *pNew = 0;                      /* Value to return */
740   if( p ){
741     const int isRequireSpan = (flags&EXPRDUP_SPAN);
742     const int isReduced = (flags&EXPRDUP_REDUCE);
743     u8 *zAlloc;
744 
745     assert( pzBuffer==0 || isReduced );
746 
747     /* Figure out where to write the new Expr structure. */
748     if( pzBuffer ){
749       zAlloc = *pzBuffer;
750     }else{
751       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
752     }
753     pNew = (Expr *)zAlloc;
754 
755     if( pNew ){
756       /* Set nNewSize to the size allocated for the structure pointed to
757       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
758       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
759       ** by the copy of the p->token.z string (if any).
760       */
761       const int nNewSize = dupedExprStructSize(p, flags);
762       const int nToken = (p->token.z ? p->token.n + 1 : 0);
763       if( isReduced ){
764         assert( ExprHasProperty(p, EP_Reduced)==0 );
765         memcpy(zAlloc, p, nNewSize);
766       }else{
767         int nSize = exprStructSize(p);
768         memcpy(zAlloc, p, nSize);
769         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
770       }
771 
772       /* Set the EP_Reduced and EP_TokenOnly flags appropriately. */
773       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_SpanOnly);
774       switch( nNewSize ){
775         case EXPR_REDUCEDSIZE:   pNew->flags |= EP_Reduced; break;
776         case EXPR_TOKENONLYSIZE: pNew->flags |= EP_TokenOnly; break;
777         case EXPR_SPANONLYSIZE:  pNew->flags |= EP_SpanOnly; break;
778       }
779 
780       /* Copy the p->token string, if any. */
781       if( nToken ){
782         unsigned char *zToken = &zAlloc[nNewSize];
783         memcpy(zToken, p->token.z, nToken-1);
784         zToken[nToken-1] = '\0';
785         pNew->token.dyn = 0;
786         pNew->token.z = zToken;
787       }
788 
789       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
790         /* Fill in the pNew->span token, if required. */
791         if( isRequireSpan ){
792           if( p->token.z!=p->span.z || p->token.n!=p->span.n ){
793             pNew->span.z = &zAlloc[nNewSize+nToken];
794             memcpy((char *)pNew->span.z, p->span.z, p->span.n);
795             pNew->span.dyn = 0;
796           }else{
797             pNew->span.z = pNew->token.z;
798             pNew->span.n = pNew->token.n;
799           }
800         }else{
801           pNew->span.z = 0;
802           pNew->span.n = 0;
803         }
804       }
805 
806       if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_SpanOnly)) ){
807         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
808         if( ExprHasProperty(p, EP_xIsSelect) ){
809           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
810         }else{
811           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
812         }
813       }
814 
815       /* Fill in pNew->pLeft and pNew->pRight. */
816       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly|EP_SpanOnly) ){
817         zAlloc += dupedExprNodeSize(p, flags);
818         if( ExprHasProperty(pNew, EP_Reduced) ){
819           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
820           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
821         }
822         if( pzBuffer ){
823           *pzBuffer = zAlloc;
824         }
825       }else if( !ExprHasAnyProperty(p, EP_TokenOnly|EP_SpanOnly) ){
826         pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
827         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
828       }
829     }
830   }
831   return pNew;
832 }
833 
834 /*
835 ** The following group of routines make deep copies of expressions,
836 ** expression lists, ID lists, and select statements.  The copies can
837 ** be deleted (by being passed to their respective ...Delete() routines)
838 ** without effecting the originals.
839 **
840 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
841 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
842 ** by subsequent calls to sqlite*ListAppend() routines.
843 **
844 ** Any tables that the SrcList might point to are not duplicated.
845 **
846 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. If
847 ** the EXPRDUP_SPAN flag is set in the argument parameter, then the
848 ** Expr.span field of the input expression is copied. If EXPRDUP_SPAN is
849 ** clear, then the Expr.span field of the returned expression structure
850 ** is zeroed.
851 **
852 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
853 ** truncated version of the usual Expr structure that will be stored as
854 ** part of the in-memory representation of the database schema.
855 */
856 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
857   return exprDup(db, p, flags, 0);
858 }
859 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
860   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
861   if( pFrom->z ){
862     pTo->n = pFrom->n;
863     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
864     pTo->dyn = 1;
865   }else{
866     pTo->z = 0;
867   }
868 }
869 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
870   ExprList *pNew;
871   struct ExprList_item *pItem, *pOldItem;
872   int i;
873   if( p==0 ) return 0;
874   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
875   if( pNew==0 ) return 0;
876   pNew->iECursor = 0;
877   pNew->nExpr = pNew->nAlloc = p->nExpr;
878   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
879   if( pItem==0 ){
880     sqlite3DbFree(db, pNew);
881     return 0;
882   }
883   pOldItem = p->a;
884   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
885     Expr *pNewExpr;
886     Expr *pOldExpr = pOldItem->pExpr;
887     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr, flags);
888     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
889     pItem->sortOrder = pOldItem->sortOrder;
890     pItem->done = 0;
891     pItem->iCol = pOldItem->iCol;
892     pItem->iAlias = pOldItem->iAlias;
893   }
894   return pNew;
895 }
896 
897 /*
898 ** If cursors, triggers, views and subqueries are all omitted from
899 ** the build, then none of the following routines, except for
900 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
901 ** called with a NULL argument.
902 */
903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
904  || !defined(SQLITE_OMIT_SUBQUERY)
905 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
906   SrcList *pNew;
907   int i;
908   int nByte;
909   if( p==0 ) return 0;
910   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
911   pNew = sqlite3DbMallocRaw(db, nByte );
912   if( pNew==0 ) return 0;
913   pNew->nSrc = pNew->nAlloc = p->nSrc;
914   for(i=0; i<p->nSrc; i++){
915     struct SrcList_item *pNewItem = &pNew->a[i];
916     struct SrcList_item *pOldItem = &p->a[i];
917     Table *pTab;
918     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
919     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
920     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
921     pNewItem->jointype = pOldItem->jointype;
922     pNewItem->iCursor = pOldItem->iCursor;
923     pNewItem->isPopulated = pOldItem->isPopulated;
924     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
925     pNewItem->notIndexed = pOldItem->notIndexed;
926     pNewItem->pIndex = pOldItem->pIndex;
927     pTab = pNewItem->pTab = pOldItem->pTab;
928     if( pTab ){
929       pTab->nRef++;
930     }
931     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
932     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
933     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
934     pNewItem->colUsed = pOldItem->colUsed;
935   }
936   return pNew;
937 }
938 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
939   IdList *pNew;
940   int i;
941   if( p==0 ) return 0;
942   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
943   if( pNew==0 ) return 0;
944   pNew->nId = pNew->nAlloc = p->nId;
945   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
946   if( pNew->a==0 ){
947     sqlite3DbFree(db, pNew);
948     return 0;
949   }
950   for(i=0; i<p->nId; i++){
951     struct IdList_item *pNewItem = &pNew->a[i];
952     struct IdList_item *pOldItem = &p->a[i];
953     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
954     pNewItem->idx = pOldItem->idx;
955   }
956   return pNew;
957 }
958 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
959   Select *pNew;
960   if( p==0 ) return 0;
961   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
962   if( pNew==0 ) return 0;
963   /* Always make a copy of the span for top-level expressions in the
964   ** expression list.  The logic in SELECT processing that determines
965   ** the names of columns in the result set needs this information */
966   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags|EXPRDUP_SPAN);
967   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
968   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
969   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
970   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
971   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
972   pNew->op = p->op;
973   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
974   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
975   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
976   pNew->iLimit = 0;
977   pNew->iOffset = 0;
978   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
979   pNew->pRightmost = 0;
980   pNew->addrOpenEphm[0] = -1;
981   pNew->addrOpenEphm[1] = -1;
982   pNew->addrOpenEphm[2] = -1;
983   return pNew;
984 }
985 #else
986 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
987   assert( p==0 );
988   return 0;
989 }
990 #endif
991 
992 
993 /*
994 ** Add a new element to the end of an expression list.  If pList is
995 ** initially NULL, then create a new expression list.
996 */
997 ExprList *sqlite3ExprListAppend(
998   Parse *pParse,          /* Parsing context */
999   ExprList *pList,        /* List to which to append. Might be NULL */
1000   Expr *pExpr,            /* Expression to be appended */
1001   Token *pName            /* AS keyword for the expression */
1002 ){
1003   sqlite3 *db = pParse->db;
1004   if( pList==0 ){
1005     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1006     if( pList==0 ){
1007       goto no_mem;
1008     }
1009     assert( pList->nAlloc==0 );
1010   }
1011   if( pList->nAlloc<=pList->nExpr ){
1012     struct ExprList_item *a;
1013     int n = pList->nAlloc*2 + 4;
1014     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
1015     if( a==0 ){
1016       goto no_mem;
1017     }
1018     pList->a = a;
1019     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1020   }
1021   assert( pList->a!=0 );
1022   if( pExpr || pName ){
1023     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1024     memset(pItem, 0, sizeof(*pItem));
1025     pItem->zName = sqlite3NameFromToken(db, pName);
1026     pItem->pExpr = pExpr;
1027     pItem->iAlias = 0;
1028   }
1029   return pList;
1030 
1031 no_mem:
1032   /* Avoid leaking memory if malloc has failed. */
1033   sqlite3ExprDelete(db, pExpr);
1034   sqlite3ExprListDelete(db, pList);
1035   return 0;
1036 }
1037 
1038 /*
1039 ** If the expression list pEList contains more than iLimit elements,
1040 ** leave an error message in pParse.
1041 */
1042 void sqlite3ExprListCheckLength(
1043   Parse *pParse,
1044   ExprList *pEList,
1045   const char *zObject
1046 ){
1047   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1048   testcase( pEList && pEList->nExpr==mx );
1049   testcase( pEList && pEList->nExpr==mx+1 );
1050   if( pEList && pEList->nExpr>mx ){
1051     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1052   }
1053 }
1054 
1055 /*
1056 ** Delete an entire expression list.
1057 */
1058 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1059   int i;
1060   struct ExprList_item *pItem;
1061   if( pList==0 ) return;
1062   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1063   assert( pList->nExpr<=pList->nAlloc );
1064   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1065     sqlite3ExprDelete(db, pItem->pExpr);
1066     sqlite3DbFree(db, pItem->zName);
1067   }
1068   sqlite3DbFree(db, pList->a);
1069   sqlite3DbFree(db, pList);
1070 }
1071 
1072 /*
1073 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1074 ** to an integer.  These routines are checking an expression to see
1075 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1076 ** not constant.
1077 **
1078 ** These callback routines are used to implement the following:
1079 **
1080 **     sqlite3ExprIsConstant()
1081 **     sqlite3ExprIsConstantNotJoin()
1082 **     sqlite3ExprIsConstantOrFunction()
1083 **
1084 */
1085 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1086 
1087   /* If pWalker->u.i is 3 then any term of the expression that comes from
1088   ** the ON or USING clauses of a join disqualifies the expression
1089   ** from being considered constant. */
1090   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1091     pWalker->u.i = 0;
1092     return WRC_Abort;
1093   }
1094 
1095   switch( pExpr->op ){
1096     /* Consider functions to be constant if all their arguments are constant
1097     ** and pWalker->u.i==2 */
1098     case TK_FUNCTION:
1099       if( pWalker->u.i==2 ) return 0;
1100       /* Fall through */
1101     case TK_ID:
1102     case TK_COLUMN:
1103     case TK_AGG_FUNCTION:
1104     case TK_AGG_COLUMN:
1105 #ifndef SQLITE_OMIT_SUBQUERY
1106     case TK_SELECT:
1107     case TK_EXISTS:
1108       testcase( pExpr->op==TK_SELECT );
1109       testcase( pExpr->op==TK_EXISTS );
1110 #endif
1111       testcase( pExpr->op==TK_ID );
1112       testcase( pExpr->op==TK_COLUMN );
1113       testcase( pExpr->op==TK_AGG_FUNCTION );
1114       testcase( pExpr->op==TK_AGG_COLUMN );
1115       pWalker->u.i = 0;
1116       return WRC_Abort;
1117     default:
1118       return WRC_Continue;
1119   }
1120 }
1121 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1122   UNUSED_PARAMETER(NotUsed);
1123   pWalker->u.i = 0;
1124   return WRC_Abort;
1125 }
1126 static int exprIsConst(Expr *p, int initFlag){
1127   Walker w;
1128   w.u.i = initFlag;
1129   w.xExprCallback = exprNodeIsConstant;
1130   w.xSelectCallback = selectNodeIsConstant;
1131   sqlite3WalkExpr(&w, p);
1132   return w.u.i;
1133 }
1134 
1135 /*
1136 ** Walk an expression tree.  Return 1 if the expression is constant
1137 ** and 0 if it involves variables or function calls.
1138 **
1139 ** For the purposes of this function, a double-quoted string (ex: "abc")
1140 ** is considered a variable but a single-quoted string (ex: 'abc') is
1141 ** a constant.
1142 */
1143 int sqlite3ExprIsConstant(Expr *p){
1144   return exprIsConst(p, 1);
1145 }
1146 
1147 /*
1148 ** Walk an expression tree.  Return 1 if the expression is constant
1149 ** that does no originate from the ON or USING clauses of a join.
1150 ** Return 0 if it involves variables or function calls or terms from
1151 ** an ON or USING clause.
1152 */
1153 int sqlite3ExprIsConstantNotJoin(Expr *p){
1154   return exprIsConst(p, 3);
1155 }
1156 
1157 /*
1158 ** Walk an expression tree.  Return 1 if the expression is constant
1159 ** or a function call with constant arguments.  Return and 0 if there
1160 ** are any variables.
1161 **
1162 ** For the purposes of this function, a double-quoted string (ex: "abc")
1163 ** is considered a variable but a single-quoted string (ex: 'abc') is
1164 ** a constant.
1165 */
1166 int sqlite3ExprIsConstantOrFunction(Expr *p){
1167   return exprIsConst(p, 2);
1168 }
1169 
1170 /*
1171 ** If the expression p codes a constant integer that is small enough
1172 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1173 ** in *pValue.  If the expression is not an integer or if it is too big
1174 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1175 */
1176 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1177   int rc = 0;
1178   if( p->flags & EP_IntValue ){
1179     *pValue = p->iTable;
1180     return 1;
1181   }
1182   switch( p->op ){
1183     case TK_INTEGER: {
1184       rc = sqlite3GetInt32((char*)p->token.z, pValue);
1185       break;
1186     }
1187     case TK_UPLUS: {
1188       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1189       break;
1190     }
1191     case TK_UMINUS: {
1192       int v;
1193       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1194         *pValue = -v;
1195         rc = 1;
1196       }
1197       break;
1198     }
1199     default: break;
1200   }
1201   if( rc ){
1202     p->op = TK_INTEGER;
1203     p->flags |= EP_IntValue;
1204     p->iTable = *pValue;
1205   }
1206   return rc;
1207 }
1208 
1209 /*
1210 ** Return TRUE if the given string is a row-id column name.
1211 */
1212 int sqlite3IsRowid(const char *z){
1213   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1214   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1215   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1216   return 0;
1217 }
1218 
1219 /*
1220 ** Return true if the IN operator optimization is enabled and
1221 ** the SELECT statement p exists and is of the
1222 ** simple form:
1223 **
1224 **     SELECT <column> FROM <table>
1225 **
1226 ** If this is the case, it may be possible to use an existing table
1227 ** or index instead of generating an epheremal table.
1228 */
1229 #ifndef SQLITE_OMIT_SUBQUERY
1230 static int isCandidateForInOpt(Select *p){
1231   SrcList *pSrc;
1232   ExprList *pEList;
1233   Table *pTab;
1234   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1235   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1236   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1237       return 0; /* No DISTINCT keyword and no aggregate functions */
1238   }
1239   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
1240   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1241   if( p->pOffset ) return 0;
1242   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1243   pSrc = p->pSrc;
1244   assert( pSrc!=0 );
1245   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1246   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
1247   pTab = pSrc->a[0].pTab;
1248   if( pTab==0 ) return 0;
1249   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
1250   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1251   pEList = p->pEList;
1252   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1253   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1254   return 1;
1255 }
1256 #endif /* SQLITE_OMIT_SUBQUERY */
1257 
1258 /*
1259 ** This function is used by the implementation of the IN (...) operator.
1260 ** It's job is to find or create a b-tree structure that may be used
1261 ** either to test for membership of the (...) set or to iterate through
1262 ** its members, skipping duplicates.
1263 **
1264 ** The cursor opened on the structure (database table, database index
1265 ** or ephermal table) is stored in pX->iTable before this function returns.
1266 ** The returned value indicates the structure type, as follows:
1267 **
1268 **   IN_INDEX_ROWID - The cursor was opened on a database table.
1269 **   IN_INDEX_INDEX - The cursor was opened on a database index.
1270 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
1271 **                    populated epheremal table.
1272 **
1273 ** An existing structure may only be used if the SELECT is of the simple
1274 ** form:
1275 **
1276 **     SELECT <column> FROM <table>
1277 **
1278 ** If prNotFound parameter is 0, then the structure will be used to iterate
1279 ** through the set members, skipping any duplicates. In this case an
1280 ** epheremal table must be used unless the selected <column> is guaranteed
1281 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1282 ** is unique by virtue of a constraint or implicit index.
1283 **
1284 ** If the prNotFound parameter is not 0, then the structure will be used
1285 ** for fast set membership tests. In this case an epheremal table must
1286 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1287 ** be found with <column> as its left-most column.
1288 **
1289 ** When the structure is being used for set membership tests, the user
1290 ** needs to know whether or not the structure contains an SQL NULL
1291 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1292 ** If there is a chance that the structure may contain a NULL value at
1293 ** runtime, then a register is allocated and the register number written
1294 ** to *prNotFound. If there is no chance that the structure contains a
1295 ** NULL value, then *prNotFound is left unchanged.
1296 **
1297 ** If a register is allocated and its location stored in *prNotFound, then
1298 ** its initial value is NULL. If the structure does not remain constant
1299 ** for the duration of the query (i.e. the set is a correlated sub-select),
1300 ** the value of the allocated register is reset to NULL each time the
1301 ** structure is repopulated. This allows the caller to use vdbe code
1302 ** equivalent to the following:
1303 **
1304 **   if( register==NULL ){
1305 **     has_null = <test if data structure contains null>
1306 **     register = 1
1307 **   }
1308 **
1309 ** in order to avoid running the <test if data structure contains null>
1310 ** test more often than is necessary.
1311 */
1312 #ifndef SQLITE_OMIT_SUBQUERY
1313 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1314   Select *p;
1315   int eType = 0;
1316   int iTab = pParse->nTab++;
1317   int mustBeUnique = !prNotFound;
1318 
1319   /* The follwing if(...) expression is true if the SELECT is of the
1320   ** simple form:
1321   **
1322   **     SELECT <column> FROM <table>
1323   **
1324   ** If this is the case, it may be possible to use an existing table
1325   ** or index instead of generating an epheremal table.
1326   */
1327   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1328   if( isCandidateForInOpt(p) ){
1329     sqlite3 *db = pParse->db;
1330     Index *pIdx;
1331     Expr *pExpr = p->pEList->a[0].pExpr;
1332     int iCol = pExpr->iColumn;
1333     Vdbe *v = sqlite3GetVdbe(pParse);
1334 
1335     /* This function is only called from two places. In both cases the vdbe
1336     ** has already been allocated. So assume sqlite3GetVdbe() is always
1337     ** successful here.
1338     */
1339     assert(v);
1340     if( iCol<0 ){
1341       int iMem = ++pParse->nMem;
1342       int iAddr;
1343       Table *pTab = p->pSrc->a[0].pTab;
1344       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1345       sqlite3VdbeUsesBtree(v, iDb);
1346 
1347       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1348       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1349 
1350       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1351       eType = IN_INDEX_ROWID;
1352 
1353       sqlite3VdbeJumpHere(v, iAddr);
1354     }else{
1355       /* The collation sequence used by the comparison. If an index is to
1356       ** be used in place of a temp-table, it must be ordered according
1357       ** to this collation sequence.
1358       */
1359       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1360 
1361       /* Check that the affinity that will be used to perform the
1362       ** comparison is the same as the affinity of the column. If
1363       ** it is not, it is not possible to use any index.
1364       */
1365       Table *pTab = p->pSrc->a[0].pTab;
1366       char aff = comparisonAffinity(pX);
1367       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1368 
1369       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1370         if( (pIdx->aiColumn[0]==iCol)
1371          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1372          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1373         ){
1374           int iDb;
1375           int iMem = ++pParse->nMem;
1376           int iAddr;
1377           char *pKey;
1378 
1379           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1380           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1381           sqlite3VdbeUsesBtree(v, iDb);
1382 
1383           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1384           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1385 
1386           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1387                                pKey,P4_KEYINFO_HANDOFF);
1388           VdbeComment((v, "%s", pIdx->zName));
1389           eType = IN_INDEX_INDEX;
1390 
1391           sqlite3VdbeJumpHere(v, iAddr);
1392           if( prNotFound && !pTab->aCol[iCol].notNull ){
1393             *prNotFound = ++pParse->nMem;
1394           }
1395         }
1396       }
1397     }
1398   }
1399 
1400   if( eType==0 ){
1401     int rMayHaveNull = 0;
1402     eType = IN_INDEX_EPH;
1403     if( prNotFound ){
1404       *prNotFound = rMayHaveNull = ++pParse->nMem;
1405     }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1406       eType = IN_INDEX_ROWID;
1407     }
1408     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1409   }else{
1410     pX->iTable = iTab;
1411   }
1412   return eType;
1413 }
1414 #endif
1415 
1416 /*
1417 ** Generate code for scalar subqueries used as an expression
1418 ** and IN operators.  Examples:
1419 **
1420 **     (SELECT a FROM b)          -- subquery
1421 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1422 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1423 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1424 **
1425 ** The pExpr parameter describes the expression that contains the IN
1426 ** operator or subquery.
1427 **
1428 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1429 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1430 ** to some integer key column of a table B-Tree. In this case, use an
1431 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1432 ** (slower) variable length keys B-Tree.
1433 */
1434 #ifndef SQLITE_OMIT_SUBQUERY
1435 void sqlite3CodeSubselect(
1436   Parse *pParse,
1437   Expr *pExpr,
1438   int rMayHaveNull,
1439   int isRowid
1440 ){
1441   int testAddr = 0;                       /* One-time test address */
1442   Vdbe *v = sqlite3GetVdbe(pParse);
1443   if( v==0 ) return;
1444 
1445 
1446   /* This code must be run in its entirety every time it is encountered
1447   ** if any of the following is true:
1448   **
1449   **    *  The right-hand side is a correlated subquery
1450   **    *  The right-hand side is an expression list containing variables
1451   **    *  We are inside a trigger
1452   **
1453   ** If all of the above are false, then we can run this code just once
1454   ** save the results, and reuse the same result on subsequent invocations.
1455   */
1456   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1457     int mem = ++pParse->nMem;
1458     sqlite3VdbeAddOp1(v, OP_If, mem);
1459     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1460     assert( testAddr>0 || pParse->db->mallocFailed );
1461   }
1462 
1463   switch( pExpr->op ){
1464     case TK_IN: {
1465       char affinity;
1466       KeyInfo keyInfo;
1467       int addr;        /* Address of OP_OpenEphemeral instruction */
1468       Expr *pLeft = pExpr->pLeft;
1469 
1470       if( rMayHaveNull ){
1471         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1472       }
1473 
1474       affinity = sqlite3ExprAffinity(pLeft);
1475 
1476       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1477       ** expression it is handled the same way. A virtual table is
1478       ** filled with single-field index keys representing the results
1479       ** from the SELECT or the <exprlist>.
1480       **
1481       ** If the 'x' expression is a column value, or the SELECT...
1482       ** statement returns a column value, then the affinity of that
1483       ** column is used to build the index keys. If both 'x' and the
1484       ** SELECT... statement are columns, then numeric affinity is used
1485       ** if either column has NUMERIC or INTEGER affinity. If neither
1486       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1487       ** is used.
1488       */
1489       pExpr->iTable = pParse->nTab++;
1490       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1491       memset(&keyInfo, 0, sizeof(keyInfo));
1492       keyInfo.nField = 1;
1493 
1494       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1495         /* Case 1:     expr IN (SELECT ...)
1496         **
1497         ** Generate code to write the results of the select into the temporary
1498         ** table allocated and opened above.
1499         */
1500         SelectDest dest;
1501         ExprList *pEList;
1502 
1503         assert( !isRowid );
1504         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1505         dest.affinity = (u8)affinity;
1506         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1507         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1508           return;
1509         }
1510         pEList = pExpr->x.pSelect->pEList;
1511         if( pEList && pEList->nExpr>0 ){
1512           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1513               pEList->a[0].pExpr);
1514         }
1515       }else if( pExpr->x.pList ){
1516         /* Case 2:     expr IN (exprlist)
1517         **
1518         ** For each expression, build an index key from the evaluation and
1519         ** store it in the temporary table. If <expr> is a column, then use
1520         ** that columns affinity when building index keys. If <expr> is not
1521         ** a column, use numeric affinity.
1522         */
1523         int i;
1524         ExprList *pList = pExpr->x.pList;
1525         struct ExprList_item *pItem;
1526         int r1, r2, r3;
1527 
1528         if( !affinity ){
1529           affinity = SQLITE_AFF_NONE;
1530         }
1531         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1532 
1533         /* Loop through each expression in <exprlist>. */
1534         r1 = sqlite3GetTempReg(pParse);
1535         r2 = sqlite3GetTempReg(pParse);
1536         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1537         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1538           Expr *pE2 = pItem->pExpr;
1539 
1540           /* If the expression is not constant then we will need to
1541           ** disable the test that was generated above that makes sure
1542           ** this code only executes once.  Because for a non-constant
1543           ** expression we need to rerun this code each time.
1544           */
1545           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1546             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1547             testAddr = 0;
1548           }
1549 
1550           /* Evaluate the expression and insert it into the temp table */
1551           pParse->disableColCache++;
1552           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1553           assert( pParse->disableColCache>0 );
1554           pParse->disableColCache--;
1555 
1556           if( isRowid ){
1557             sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
1558             sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1559           }else{
1560             sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1561             sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1562             sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1563           }
1564         }
1565         sqlite3ReleaseTempReg(pParse, r1);
1566         sqlite3ReleaseTempReg(pParse, r2);
1567       }
1568       if( !isRowid ){
1569         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1570       }
1571       break;
1572     }
1573 
1574     case TK_EXISTS:
1575     case TK_SELECT: {
1576       /* This has to be a scalar SELECT.  Generate code to put the
1577       ** value of this select in a memory cell and record the number
1578       ** of the memory cell in iColumn.
1579       */
1580       static const Token one = { (u8*)"1", 0, 1 };
1581       Select *pSel;
1582       SelectDest dest;
1583 
1584       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1585       pSel = pExpr->x.pSelect;
1586       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1587       if( pExpr->op==TK_SELECT ){
1588         dest.eDest = SRT_Mem;
1589         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1590         VdbeComment((v, "Init subquery result"));
1591       }else{
1592         dest.eDest = SRT_Exists;
1593         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1594         VdbeComment((v, "Init EXISTS result"));
1595       }
1596       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1597       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1598       if( sqlite3Select(pParse, pSel, &dest) ){
1599         return;
1600       }
1601       pExpr->iColumn = dest.iParm;
1602       break;
1603     }
1604   }
1605 
1606   if( testAddr ){
1607     sqlite3VdbeJumpHere(v, testAddr-1);
1608   }
1609 
1610   return;
1611 }
1612 #endif /* SQLITE_OMIT_SUBQUERY */
1613 
1614 /*
1615 ** Duplicate an 8-byte value
1616 */
1617 static char *dup8bytes(Vdbe *v, const char *in){
1618   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1619   if( out ){
1620     memcpy(out, in, 8);
1621   }
1622   return out;
1623 }
1624 
1625 /*
1626 ** Generate an instruction that will put the floating point
1627 ** value described by z[0..n-1] into register iMem.
1628 **
1629 ** The z[] string will probably not be zero-terminated.  But the
1630 ** z[n] character is guaranteed to be something that does not look
1631 ** like the continuation of the number.
1632 */
1633 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
1634   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
1635   assert( !z || !sqlite3Isdigit(z[n]) );
1636   UNUSED_PARAMETER(n);
1637   if( z ){
1638     double value;
1639     char *zV;
1640     sqlite3AtoF(z, &value);
1641     if( sqlite3IsNaN(value) ){
1642       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
1643     }else{
1644       if( negateFlag ) value = -value;
1645       zV = dup8bytes(v, (char*)&value);
1646       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1647     }
1648   }
1649 }
1650 
1651 
1652 /*
1653 ** Generate an instruction that will put the integer describe by
1654 ** text z[0..n-1] into register iMem.
1655 **
1656 ** The z[] string will probably not be zero-terminated.  But the
1657 ** z[n] character is guaranteed to be something that does not look
1658 ** like the continuation of the number.
1659 */
1660 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
1661   const char *z;
1662   if( pExpr->flags & EP_IntValue ){
1663     int i = pExpr->iTable;
1664     if( negFlag ) i = -i;
1665     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1666   }else if( (z = (char*)pExpr->token.z)!=0 ){
1667     int i;
1668     int n = pExpr->token.n;
1669     assert( !sqlite3Isdigit(z[n]) );
1670     if( sqlite3GetInt32(z, &i) ){
1671       if( negFlag ) i = -i;
1672       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1673     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
1674       i64 value;
1675       char *zV;
1676       sqlite3Atoi64(z, &value);
1677       if( negFlag ) value = -value;
1678       zV = dup8bytes(v, (char*)&value);
1679       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1680     }else{
1681       codeReal(v, z, n, negFlag, iMem);
1682     }
1683   }
1684 }
1685 
1686 
1687 /*
1688 ** Generate code that will extract the iColumn-th column from
1689 ** table pTab and store the column value in a register.  An effort
1690 ** is made to store the column value in register iReg, but this is
1691 ** not guaranteed.  The location of the column value is returned.
1692 **
1693 ** There must be an open cursor to pTab in iTable when this routine
1694 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
1695 **
1696 ** This routine might attempt to reuse the value of the column that
1697 ** has already been loaded into a register.  The value will always
1698 ** be used if it has not undergone any affinity changes.  But if
1699 ** an affinity change has occurred, then the cached value will only be
1700 ** used if allowAffChng is true.
1701 */
1702 int sqlite3ExprCodeGetColumn(
1703   Parse *pParse,   /* Parsing and code generating context */
1704   Table *pTab,     /* Description of the table we are reading from */
1705   int iColumn,     /* Index of the table column */
1706   int iTable,      /* The cursor pointing to the table */
1707   int iReg,        /* Store results here */
1708   int allowAffChng /* True if prior affinity changes are OK */
1709 ){
1710   Vdbe *v = pParse->pVdbe;
1711   int i;
1712   struct yColCache *p;
1713 
1714   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
1715     if( p->iTable==iTable && p->iColumn==iColumn
1716            && (!p->affChange || allowAffChng) ){
1717 #if 0
1718       sqlite3VdbeAddOp0(v, OP_Noop);
1719       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
1720 #endif
1721       return p->iReg;
1722     }
1723   }
1724   assert( v!=0 );
1725   if( iColumn<0 ){
1726     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1727     sqlite3VdbeAddOp2(v, op, iTable, iReg);
1728   }else if( pTab==0 ){
1729     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
1730   }else{
1731     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1732     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
1733     sqlite3ColumnDefault(v, pTab, iColumn);
1734 #ifndef SQLITE_OMIT_FLOATING_POINT
1735     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1736       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
1737     }
1738 #endif
1739   }
1740   if( pParse->disableColCache==0 ){
1741     i = pParse->iColCache;
1742     p = &pParse->aColCache[i];
1743     p->iTable = iTable;
1744     p->iColumn = iColumn;
1745     p->iReg = iReg;
1746     p->affChange = 0;
1747     i++;
1748     if( i>=ArraySize(pParse->aColCache) ) i = 0;
1749     if( i>pParse->nColCache ) pParse->nColCache = i;
1750     pParse->iColCache = i;
1751   }
1752   return iReg;
1753 }
1754 
1755 /*
1756 ** Clear all column cache entries associated with the vdbe
1757 ** cursor with cursor number iTable.
1758 */
1759 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
1760   if( iTable<0 ){
1761     pParse->nColCache = 0;
1762     pParse->iColCache = 0;
1763   }else{
1764     int i;
1765     for(i=0; i<pParse->nColCache; i++){
1766       if( pParse->aColCache[i].iTable==iTable ){
1767         testcase( i==pParse->nColCache-1 );
1768         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
1769         pParse->iColCache = pParse->nColCache;
1770       }
1771     }
1772   }
1773 }
1774 
1775 /*
1776 ** Record the fact that an affinity change has occurred on iCount
1777 ** registers starting with iStart.
1778 */
1779 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
1780   int iEnd = iStart + iCount - 1;
1781   int i;
1782   for(i=0; i<pParse->nColCache; i++){
1783     int r = pParse->aColCache[i].iReg;
1784     if( r>=iStart && r<=iEnd ){
1785       pParse->aColCache[i].affChange = 1;
1786     }
1787   }
1788 }
1789 
1790 /*
1791 ** Generate code to move content from registers iFrom...iFrom+nReg-1
1792 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
1793 */
1794 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
1795   int i;
1796   if( iFrom==iTo ) return;
1797   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
1798   for(i=0; i<pParse->nColCache; i++){
1799     int x = pParse->aColCache[i].iReg;
1800     if( x>=iFrom && x<iFrom+nReg ){
1801       pParse->aColCache[i].iReg += iTo-iFrom;
1802     }
1803   }
1804 }
1805 
1806 /*
1807 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
1808 ** over to iTo..iTo+nReg-1.
1809 */
1810 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
1811   int i;
1812   if( iFrom==iTo ) return;
1813   for(i=0; i<nReg; i++){
1814     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
1815   }
1816 }
1817 
1818 /*
1819 ** Return true if any register in the range iFrom..iTo (inclusive)
1820 ** is used as part of the column cache.
1821 */
1822 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
1823   int i;
1824   for(i=0; i<pParse->nColCache; i++){
1825     int r = pParse->aColCache[i].iReg;
1826     if( r>=iFrom && r<=iTo ) return 1;
1827   }
1828   return 0;
1829 }
1830 
1831 /*
1832 ** There is a value in register iReg.
1833 **
1834 ** We are going to modify the value, so we need to make sure it
1835 ** is not a cached register.  If iReg is a cached register,
1836 ** then clear the corresponding cache line.
1837 */
1838 void sqlite3ExprWritableRegister(Parse *pParse, int iReg){
1839   int i;
1840   if( usedAsColumnCache(pParse, iReg, iReg) ){
1841     for(i=0; i<pParse->nColCache; i++){
1842       if( pParse->aColCache[i].iReg==iReg ){
1843         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
1844         pParse->iColCache = pParse->nColCache;
1845       }
1846     }
1847   }
1848 }
1849 
1850 /*
1851 ** If the last instruction coded is an ephemeral copy of any of
1852 ** the registers in the nReg registers beginning with iReg, then
1853 ** convert the last instruction from OP_SCopy to OP_Copy.
1854 */
1855 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
1856   int addr;
1857   VdbeOp *pOp;
1858   Vdbe *v;
1859 
1860   v = pParse->pVdbe;
1861   addr = sqlite3VdbeCurrentAddr(v);
1862   pOp = sqlite3VdbeGetOp(v, addr-1);
1863   assert( pOp || pParse->db->mallocFailed );
1864   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
1865     pOp->opcode = OP_Copy;
1866   }
1867 }
1868 
1869 /*
1870 ** Generate code to store the value of the iAlias-th alias in register
1871 ** target.  The first time this is called, pExpr is evaluated to compute
1872 ** the value of the alias.  The value is stored in an auxiliary register
1873 ** and the number of that register is returned.  On subsequent calls,
1874 ** the register number is returned without generating any code.
1875 **
1876 ** Note that in order for this to work, code must be generated in the
1877 ** same order that it is executed.
1878 **
1879 ** Aliases are numbered starting with 1.  So iAlias is in the range
1880 ** of 1 to pParse->nAlias inclusive.
1881 **
1882 ** pParse->aAlias[iAlias-1] records the register number where the value
1883 ** of the iAlias-th alias is stored.  If zero, that means that the
1884 ** alias has not yet been computed.
1885 */
1886 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
1887   sqlite3 *db = pParse->db;
1888   int iReg;
1889   if( pParse->nAliasAlloc<pParse->nAlias ){
1890     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
1891                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
1892     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
1893     if( db->mallocFailed ) return 0;
1894     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
1895            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
1896     pParse->nAliasAlloc = pParse->nAlias;
1897   }
1898   assert( iAlias>0 && iAlias<=pParse->nAlias );
1899   iReg = pParse->aAlias[iAlias-1];
1900   if( iReg==0 ){
1901     if( pParse->disableColCache ){
1902       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
1903     }else{
1904       iReg = ++pParse->nMem;
1905       sqlite3ExprCode(pParse, pExpr, iReg);
1906       pParse->aAlias[iAlias-1] = iReg;
1907     }
1908   }
1909   return iReg;
1910 }
1911 
1912 /*
1913 ** Generate code into the current Vdbe to evaluate the given
1914 ** expression.  Attempt to store the results in register "target".
1915 ** Return the register where results are stored.
1916 **
1917 ** With this routine, there is no guarantee that results will
1918 ** be stored in target.  The result might be stored in some other
1919 ** register if it is convenient to do so.  The calling function
1920 ** must check the return code and move the results to the desired
1921 ** register.
1922 */
1923 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
1924   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
1925   int op;                   /* The opcode being coded */
1926   int inReg = target;       /* Results stored in register inReg */
1927   int regFree1 = 0;         /* If non-zero free this temporary register */
1928   int regFree2 = 0;         /* If non-zero free this temporary register */
1929   int r1, r2, r3, r4;       /* Various register numbers */
1930   sqlite3 *db;
1931 
1932   db = pParse->db;
1933   assert( v!=0 || db->mallocFailed );
1934   assert( target>0 && target<=pParse->nMem );
1935   if( v==0 ) return 0;
1936 
1937   if( pExpr==0 ){
1938     op = TK_NULL;
1939   }else{
1940     op = pExpr->op;
1941   }
1942   switch( op ){
1943     case TK_AGG_COLUMN: {
1944       AggInfo *pAggInfo = pExpr->pAggInfo;
1945       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1946       if( !pAggInfo->directMode ){
1947         assert( pCol->iMem>0 );
1948         inReg = pCol->iMem;
1949         break;
1950       }else if( pAggInfo->useSortingIdx ){
1951         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
1952                               pCol->iSorterColumn, target);
1953         break;
1954       }
1955       /* Otherwise, fall thru into the TK_COLUMN case */
1956     }
1957     case TK_COLUMN: {
1958       if( pExpr->iTable<0 ){
1959         /* This only happens when coding check constraints */
1960         assert( pParse->ckBase>0 );
1961         inReg = pExpr->iColumn + pParse->ckBase;
1962       }else{
1963         testcase( (pExpr->flags & EP_AnyAff)!=0 );
1964         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
1965                                  pExpr->iColumn, pExpr->iTable, target,
1966                                  pExpr->flags & EP_AnyAff);
1967       }
1968       break;
1969     }
1970     case TK_INTEGER: {
1971       codeInteger(v, pExpr, 0, target);
1972       break;
1973     }
1974     case TK_FLOAT: {
1975       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
1976       break;
1977     }
1978     case TK_STRING: {
1979       sqlite3DequoteExpr(db, pExpr);
1980       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
1981                         (char*)pExpr->token.z, pExpr->token.n);
1982       break;
1983     }
1984     case TK_NULL: {
1985       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
1986       break;
1987     }
1988 #ifndef SQLITE_OMIT_BLOB_LITERAL
1989     case TK_BLOB: {
1990       int n;
1991       const char *z;
1992       char *zBlob;
1993       assert( pExpr->token.n>=3 );
1994       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
1995       assert( pExpr->token.z[1]=='\'' );
1996       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
1997       n = pExpr->token.n - 3;
1998       z = (char*)pExpr->token.z + 2;
1999       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2000       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2001       break;
2002     }
2003 #endif
2004     case TK_VARIABLE: {
2005       int iPrior;
2006       VdbeOp *pOp;
2007       if( pExpr->token.n<=1
2008          && (iPrior = sqlite3VdbeCurrentAddr(v)-1)>=0
2009          && (pOp = sqlite3VdbeGetOp(v, iPrior))->opcode==OP_Variable
2010          && pOp->p1+pOp->p3==pExpr->iTable
2011          && pOp->p2+pOp->p3==target
2012          && pOp->p4.z==0
2013       ){
2014         /* If the previous instruction was a copy of the previous unnamed
2015         ** parameter into the previous register, then simply increment the
2016         ** repeat count on the prior instruction rather than making a new
2017         ** instruction.
2018         */
2019         pOp->p3++;
2020       }else{
2021         sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1);
2022         if( pExpr->token.n>1 ){
2023           sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
2024         }
2025       }
2026       break;
2027     }
2028     case TK_REGISTER: {
2029       inReg = pExpr->iTable;
2030       break;
2031     }
2032     case TK_AS: {
2033       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
2034       break;
2035     }
2036 #ifndef SQLITE_OMIT_CAST
2037     case TK_CAST: {
2038       /* Expressions of the form:   CAST(pLeft AS token) */
2039       int aff, to_op;
2040       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2041       aff = sqlite3AffinityType(&pExpr->token);
2042       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2043       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2044       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2045       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2046       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2047       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2048       testcase( to_op==OP_ToText );
2049       testcase( to_op==OP_ToBlob );
2050       testcase( to_op==OP_ToNumeric );
2051       testcase( to_op==OP_ToInt );
2052       testcase( to_op==OP_ToReal );
2053       if( inReg!=target ){
2054         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2055         inReg = target;
2056       }
2057       sqlite3VdbeAddOp1(v, to_op, inReg);
2058       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2059       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2060       break;
2061     }
2062 #endif /* SQLITE_OMIT_CAST */
2063     case TK_LT:
2064     case TK_LE:
2065     case TK_GT:
2066     case TK_GE:
2067     case TK_NE:
2068     case TK_EQ: {
2069       assert( TK_LT==OP_Lt );
2070       assert( TK_LE==OP_Le );
2071       assert( TK_GT==OP_Gt );
2072       assert( TK_GE==OP_Ge );
2073       assert( TK_EQ==OP_Eq );
2074       assert( TK_NE==OP_Ne );
2075       testcase( op==TK_LT );
2076       testcase( op==TK_LE );
2077       testcase( op==TK_GT );
2078       testcase( op==TK_GE );
2079       testcase( op==TK_EQ );
2080       testcase( op==TK_NE );
2081       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2082                                   pExpr->pRight, &r2, &regFree2);
2083       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2084                   r1, r2, inReg, SQLITE_STOREP2);
2085       testcase( regFree1==0 );
2086       testcase( regFree2==0 );
2087       break;
2088     }
2089     case TK_AND:
2090     case TK_OR:
2091     case TK_PLUS:
2092     case TK_STAR:
2093     case TK_MINUS:
2094     case TK_REM:
2095     case TK_BITAND:
2096     case TK_BITOR:
2097     case TK_SLASH:
2098     case TK_LSHIFT:
2099     case TK_RSHIFT:
2100     case TK_CONCAT: {
2101       assert( TK_AND==OP_And );
2102       assert( TK_OR==OP_Or );
2103       assert( TK_PLUS==OP_Add );
2104       assert( TK_MINUS==OP_Subtract );
2105       assert( TK_REM==OP_Remainder );
2106       assert( TK_BITAND==OP_BitAnd );
2107       assert( TK_BITOR==OP_BitOr );
2108       assert( TK_SLASH==OP_Divide );
2109       assert( TK_LSHIFT==OP_ShiftLeft );
2110       assert( TK_RSHIFT==OP_ShiftRight );
2111       assert( TK_CONCAT==OP_Concat );
2112       testcase( op==TK_AND );
2113       testcase( op==TK_OR );
2114       testcase( op==TK_PLUS );
2115       testcase( op==TK_MINUS );
2116       testcase( op==TK_REM );
2117       testcase( op==TK_BITAND );
2118       testcase( op==TK_BITOR );
2119       testcase( op==TK_SLASH );
2120       testcase( op==TK_LSHIFT );
2121       testcase( op==TK_RSHIFT );
2122       testcase( op==TK_CONCAT );
2123       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2124       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2125       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2126       testcase( regFree1==0 );
2127       testcase( regFree2==0 );
2128       break;
2129     }
2130     case TK_UMINUS: {
2131       Expr *pLeft = pExpr->pLeft;
2132       assert( pLeft );
2133       if( pLeft->op==TK_FLOAT ){
2134         codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
2135       }else if( pLeft->op==TK_INTEGER ){
2136         codeInteger(v, pLeft, 1, target);
2137       }else{
2138         regFree1 = r1 = sqlite3GetTempReg(pParse);
2139         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2140         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2141         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2142         testcase( regFree2==0 );
2143       }
2144       inReg = target;
2145       break;
2146     }
2147     case TK_BITNOT:
2148     case TK_NOT: {
2149       assert( TK_BITNOT==OP_BitNot );
2150       assert( TK_NOT==OP_Not );
2151       testcase( op==TK_BITNOT );
2152       testcase( op==TK_NOT );
2153       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2154       testcase( regFree1==0 );
2155       inReg = target;
2156       sqlite3VdbeAddOp2(v, op, r1, inReg);
2157       break;
2158     }
2159     case TK_ISNULL:
2160     case TK_NOTNULL: {
2161       int addr;
2162       assert( TK_ISNULL==OP_IsNull );
2163       assert( TK_NOTNULL==OP_NotNull );
2164       testcase( op==TK_ISNULL );
2165       testcase( op==TK_NOTNULL );
2166       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2167       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2168       testcase( regFree1==0 );
2169       addr = sqlite3VdbeAddOp1(v, op, r1);
2170       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2171       sqlite3VdbeJumpHere(v, addr);
2172       break;
2173     }
2174     case TK_AGG_FUNCTION: {
2175       AggInfo *pInfo = pExpr->pAggInfo;
2176       if( pInfo==0 ){
2177         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
2178             &pExpr->span);
2179       }else{
2180         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2181       }
2182       break;
2183     }
2184     case TK_CONST_FUNC:
2185     case TK_FUNCTION: {
2186       ExprList *pList = (
2187         ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_SpanOnly) ? 0 : pExpr->x.pList
2188       );
2189       int nExpr = pList ? pList->nExpr : 0;
2190       FuncDef *pDef;
2191       int nId;
2192       const char *zId;
2193       int constMask = 0;
2194       int i;
2195       u8 enc = ENC(db);
2196       CollSeq *pColl = 0;
2197 
2198       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2199       testcase( op==TK_CONST_FUNC );
2200       testcase( op==TK_FUNCTION );
2201       zId = (char*)pExpr->token.z;
2202       nId = pExpr->token.n;
2203       pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
2204       assert( pDef!=0 );
2205       if( pList ){
2206         nExpr = pList->nExpr;
2207         r1 = sqlite3GetTempRange(pParse, nExpr);
2208         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
2209       }else{
2210         nExpr = r1 = 0;
2211       }
2212 #ifndef SQLITE_OMIT_VIRTUALTABLE
2213       /* Possibly overload the function if the first argument is
2214       ** a virtual table column.
2215       **
2216       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2217       ** second argument, not the first, as the argument to test to
2218       ** see if it is a column in a virtual table.  This is done because
2219       ** the left operand of infix functions (the operand we want to
2220       ** control overloading) ends up as the second argument to the
2221       ** function.  The expression "A glob B" is equivalent to
2222       ** "glob(B,A).  We want to use the A in "A glob B" to test
2223       ** for function overloading.  But we use the B term in "glob(B,A)".
2224       */
2225       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2226         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2227       }else if( nExpr>0 ){
2228         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2229       }
2230 #endif
2231       for(i=0; i<nExpr && i<32; i++){
2232         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2233           constMask |= (1<<i);
2234         }
2235         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2236           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2237         }
2238       }
2239       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2240         if( !pColl ) pColl = db->pDfltColl;
2241         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2242       }
2243       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2244                         (char*)pDef, P4_FUNCDEF);
2245       sqlite3VdbeChangeP5(v, (u8)nExpr);
2246       if( nExpr ){
2247         sqlite3ReleaseTempRange(pParse, r1, nExpr);
2248       }
2249       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
2250       break;
2251     }
2252 #ifndef SQLITE_OMIT_SUBQUERY
2253     case TK_EXISTS:
2254     case TK_SELECT: {
2255       testcase( op==TK_EXISTS );
2256       testcase( op==TK_SELECT );
2257       if( pExpr->iColumn==0 ){
2258         sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2259       }
2260       inReg = pExpr->iColumn;
2261       break;
2262     }
2263     case TK_IN: {
2264       int rNotFound = 0;
2265       int rMayHaveNull = 0;
2266       int j2, j3, j4, j5;
2267       char affinity;
2268       int eType;
2269 
2270       VdbeNoopComment((v, "begin IN expr r%d", target));
2271       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2272       if( rMayHaveNull ){
2273         rNotFound = ++pParse->nMem;
2274       }
2275 
2276       /* Figure out the affinity to use to create a key from the results
2277       ** of the expression. affinityStr stores a static string suitable for
2278       ** P4 of OP_MakeRecord.
2279       */
2280       affinity = comparisonAffinity(pExpr);
2281 
2282 
2283       /* Code the <expr> from "<expr> IN (...)". The temporary table
2284       ** pExpr->iTable contains the values that make up the (...) set.
2285       */
2286       pParse->disableColCache++;
2287       sqlite3ExprCode(pParse, pExpr->pLeft, target);
2288       pParse->disableColCache--;
2289       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2290       if( eType==IN_INDEX_ROWID ){
2291         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2292         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2293         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2294         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2295         sqlite3VdbeJumpHere(v, j3);
2296         sqlite3VdbeJumpHere(v, j4);
2297         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2298       }else{
2299         r2 = regFree2 = sqlite3GetTempReg(pParse);
2300 
2301         /* Create a record and test for set membership. If the set contains
2302         ** the value, then jump to the end of the test code. The target
2303         ** register still contains the true (1) value written to it earlier.
2304         */
2305         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2306         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2307         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2308 
2309         /* If the set membership test fails, then the result of the
2310         ** "x IN (...)" expression must be either 0 or NULL. If the set
2311         ** contains no NULL values, then the result is 0. If the set
2312         ** contains one or more NULL values, then the result of the
2313         ** expression is also NULL.
2314         */
2315         if( rNotFound==0 ){
2316           /* This branch runs if it is known at compile time (now) that
2317           ** the set contains no NULL values. This happens as the result
2318           ** of a "NOT NULL" constraint in the database schema. No need
2319           ** to test the data structure at runtime in this case.
2320           */
2321           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2322         }else{
2323           /* This block populates the rNotFound register with either NULL
2324           ** or 0 (an integer value). If the data structure contains one
2325           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2326           ** to 0. If register rMayHaveNull is already set to some value
2327           ** other than NULL, then the test has already been run and
2328           ** rNotFound is already populated.
2329           */
2330           static const char nullRecord[] = { 0x02, 0x00 };
2331           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2332           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2333           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2334                              nullRecord, P4_STATIC);
2335           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2336           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2337           sqlite3VdbeJumpHere(v, j4);
2338           sqlite3VdbeJumpHere(v, j3);
2339 
2340           /* Copy the value of register rNotFound (which is either NULL or 0)
2341           ** into the target register. This will be the result of the
2342           ** expression.
2343           */
2344           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2345         }
2346       }
2347       sqlite3VdbeJumpHere(v, j2);
2348       sqlite3VdbeJumpHere(v, j5);
2349       VdbeComment((v, "end IN expr r%d", target));
2350       break;
2351     }
2352 #endif
2353     /*
2354     **    x BETWEEN y AND z
2355     **
2356     ** This is equivalent to
2357     **
2358     **    x>=y AND x<=z
2359     **
2360     ** X is stored in pExpr->pLeft.
2361     ** Y is stored in pExpr->pList->a[0].pExpr.
2362     ** Z is stored in pExpr->pList->a[1].pExpr.
2363     */
2364     case TK_BETWEEN: {
2365       Expr *pLeft = pExpr->pLeft;
2366       struct ExprList_item *pLItem = pExpr->x.pList->a;
2367       Expr *pRight = pLItem->pExpr;
2368 
2369       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
2370                                   pRight, &r2, &regFree2);
2371       testcase( regFree1==0 );
2372       testcase( regFree2==0 );
2373       r3 = sqlite3GetTempReg(pParse);
2374       r4 = sqlite3GetTempReg(pParse);
2375       codeCompare(pParse, pLeft, pRight, OP_Ge,
2376                   r1, r2, r3, SQLITE_STOREP2);
2377       pLItem++;
2378       pRight = pLItem->pExpr;
2379       sqlite3ReleaseTempReg(pParse, regFree2);
2380       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2381       testcase( regFree2==0 );
2382       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2383       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2384       sqlite3ReleaseTempReg(pParse, r3);
2385       sqlite3ReleaseTempReg(pParse, r4);
2386       break;
2387     }
2388     case TK_UPLUS: {
2389       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2390       break;
2391     }
2392 
2393     /*
2394     ** Form A:
2395     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2396     **
2397     ** Form B:
2398     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2399     **
2400     ** Form A is can be transformed into the equivalent form B as follows:
2401     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2402     **        WHEN x=eN THEN rN ELSE y END
2403     **
2404     ** X (if it exists) is in pExpr->pLeft.
2405     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
2406     ** ELSE clause and no other term matches, then the result of the
2407     ** exprssion is NULL.
2408     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2409     **
2410     ** The result of the expression is the Ri for the first matching Ei,
2411     ** or if there is no matching Ei, the ELSE term Y, or if there is
2412     ** no ELSE term, NULL.
2413     */
2414     case TK_CASE: {
2415       int endLabel;                     /* GOTO label for end of CASE stmt */
2416       int nextCase;                     /* GOTO label for next WHEN clause */
2417       int nExpr;                        /* 2x number of WHEN terms */
2418       int i;                            /* Loop counter */
2419       ExprList *pEList;                 /* List of WHEN terms */
2420       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2421       Expr opCompare;                   /* The X==Ei expression */
2422       Expr cacheX;                      /* Cached expression X */
2423       Expr *pX;                         /* The X expression */
2424       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2425 
2426       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2427       assert((pExpr->x.pList->nExpr % 2) == 0);
2428       assert(pExpr->x.pList->nExpr > 0);
2429       pEList = pExpr->x.pList;
2430       aListelem = pEList->a;
2431       nExpr = pEList->nExpr;
2432       endLabel = sqlite3VdbeMakeLabel(v);
2433       if( (pX = pExpr->pLeft)!=0 ){
2434         cacheX = *pX;
2435         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
2436         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2437         testcase( regFree1==0 );
2438         cacheX.op = TK_REGISTER;
2439         opCompare.op = TK_EQ;
2440         opCompare.pLeft = &cacheX;
2441         pTest = &opCompare;
2442       }
2443       pParse->disableColCache++;
2444       for(i=0; i<nExpr; i=i+2){
2445         if( pX ){
2446           assert( pTest!=0 );
2447           opCompare.pRight = aListelem[i].pExpr;
2448         }else{
2449           pTest = aListelem[i].pExpr;
2450         }
2451         nextCase = sqlite3VdbeMakeLabel(v);
2452         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
2453         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2454         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2455         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2456         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2457         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2458         sqlite3VdbeResolveLabel(v, nextCase);
2459       }
2460       if( pExpr->pRight ){
2461         sqlite3ExprCode(pParse, pExpr->pRight, target);
2462       }else{
2463         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2464       }
2465       sqlite3VdbeResolveLabel(v, endLabel);
2466       assert( pParse->disableColCache>0 );
2467       pParse->disableColCache--;
2468       break;
2469     }
2470 #ifndef SQLITE_OMIT_TRIGGER
2471     case TK_RAISE: {
2472       if( !pParse->trigStack ){
2473         sqlite3ErrorMsg(pParse,
2474                        "RAISE() may only be used within a trigger-program");
2475         return 0;
2476       }
2477       if( pExpr->affinity!=OE_Ignore ){
2478          assert( pExpr->affinity==OE_Rollback ||
2479                  pExpr->affinity == OE_Abort ||
2480                  pExpr->affinity == OE_Fail );
2481          sqlite3DequoteExpr(db, pExpr);
2482          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0,
2483                         (char*)pExpr->token.z, pExpr->token.n);
2484       } else {
2485          assert( pExpr->affinity == OE_Ignore );
2486          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2487          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2488          VdbeComment((v, "raise(IGNORE)"));
2489       }
2490       break;
2491     }
2492 #endif
2493   }
2494   sqlite3ReleaseTempReg(pParse, regFree1);
2495   sqlite3ReleaseTempReg(pParse, regFree2);
2496   return inReg;
2497 }
2498 
2499 /*
2500 ** Generate code to evaluate an expression and store the results
2501 ** into a register.  Return the register number where the results
2502 ** are stored.
2503 **
2504 ** If the register is a temporary register that can be deallocated,
2505 ** then write its number into *pReg.  If the result register is not
2506 ** a temporary, then set *pReg to zero.
2507 */
2508 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2509   int r1 = sqlite3GetTempReg(pParse);
2510   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2511   if( r2==r1 ){
2512     *pReg = r1;
2513   }else{
2514     sqlite3ReleaseTempReg(pParse, r1);
2515     *pReg = 0;
2516   }
2517   return r2;
2518 }
2519 
2520 /*
2521 ** Generate code that will evaluate expression pExpr and store the
2522 ** results in register target.  The results are guaranteed to appear
2523 ** in register target.
2524 */
2525 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2526   int inReg;
2527 
2528   assert( target>0 && target<=pParse->nMem );
2529   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2530   assert( pParse->pVdbe || pParse->db->mallocFailed );
2531   if( inReg!=target && pParse->pVdbe ){
2532     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2533   }
2534   return target;
2535 }
2536 
2537 /*
2538 ** Generate code that evalutes the given expression and puts the result
2539 ** in register target.
2540 **
2541 ** Also make a copy of the expression results into another "cache" register
2542 ** and modify the expression so that the next time it is evaluated,
2543 ** the result is a copy of the cache register.
2544 **
2545 ** This routine is used for expressions that are used multiple
2546 ** times.  They are evaluated once and the results of the expression
2547 ** are reused.
2548 */
2549 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2550   Vdbe *v = pParse->pVdbe;
2551   int inReg;
2552   inReg = sqlite3ExprCode(pParse, pExpr, target);
2553   assert( target>0 );
2554   if( pExpr->op!=TK_REGISTER ){
2555     int iMem;
2556     iMem = ++pParse->nMem;
2557     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2558     pExpr->iTable = iMem;
2559     pExpr->op = TK_REGISTER;
2560   }
2561   return inReg;
2562 }
2563 
2564 /*
2565 ** Return TRUE if pExpr is an constant expression that is appropriate
2566 ** for factoring out of a loop.  Appropriate expressions are:
2567 **
2568 **    *  Any expression that evaluates to two or more opcodes.
2569 **
2570 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2571 **       or OP_Variable that does not need to be placed in a
2572 **       specific register.
2573 **
2574 ** There is no point in factoring out single-instruction constant
2575 ** expressions that need to be placed in a particular register.
2576 ** We could factor them out, but then we would end up adding an
2577 ** OP_SCopy instruction to move the value into the correct register
2578 ** later.  We might as well just use the original instruction and
2579 ** avoid the OP_SCopy.
2580 */
2581 static int isAppropriateForFactoring(Expr *p){
2582   if( !sqlite3ExprIsConstantNotJoin(p) ){
2583     return 0;  /* Only constant expressions are appropriate for factoring */
2584   }
2585   if( (p->flags & EP_FixedDest)==0 ){
2586     return 1;  /* Any constant without a fixed destination is appropriate */
2587   }
2588   while( p->op==TK_UPLUS ) p = p->pLeft;
2589   switch( p->op ){
2590 #ifndef SQLITE_OMIT_BLOB_LITERAL
2591     case TK_BLOB:
2592 #endif
2593     case TK_VARIABLE:
2594     case TK_INTEGER:
2595     case TK_FLOAT:
2596     case TK_NULL:
2597     case TK_STRING: {
2598       testcase( p->op==TK_BLOB );
2599       testcase( p->op==TK_VARIABLE );
2600       testcase( p->op==TK_INTEGER );
2601       testcase( p->op==TK_FLOAT );
2602       testcase( p->op==TK_NULL );
2603       testcase( p->op==TK_STRING );
2604       /* Single-instruction constants with a fixed destination are
2605       ** better done in-line.  If we factor them, they will just end
2606       ** up generating an OP_SCopy to move the value to the destination
2607       ** register. */
2608       return 0;
2609     }
2610     case TK_UMINUS: {
2611        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2612          return 0;
2613        }
2614        break;
2615     }
2616     default: {
2617       break;
2618     }
2619   }
2620   return 1;
2621 }
2622 
2623 /*
2624 ** If pExpr is a constant expression that is appropriate for
2625 ** factoring out of a loop, then evaluate the expression
2626 ** into a register and convert the expression into a TK_REGISTER
2627 ** expression.
2628 */
2629 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2630   Parse *pParse = pWalker->pParse;
2631   switch( pExpr->op ){
2632     case TK_REGISTER: {
2633       return 1;
2634     }
2635     case TK_FUNCTION:
2636     case TK_AGG_FUNCTION:
2637     case TK_CONST_FUNC: {
2638       /* The arguments to a function have a fixed destination.
2639       ** Mark them this way to avoid generated unneeded OP_SCopy
2640       ** instructions.
2641       */
2642       ExprList *pList = pExpr->x.pList;
2643       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2644       if( pList ){
2645         int i = pList->nExpr;
2646         struct ExprList_item *pItem = pList->a;
2647         for(; i>0; i--, pItem++){
2648           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
2649         }
2650       }
2651       break;
2652     }
2653   }
2654   if( isAppropriateForFactoring(pExpr) ){
2655     int r1 = ++pParse->nMem;
2656     int r2;
2657     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2658     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
2659     pExpr->op = TK_REGISTER;
2660     pExpr->iTable = r2;
2661     return WRC_Prune;
2662   }
2663   return WRC_Continue;
2664 }
2665 
2666 /*
2667 ** Preevaluate constant subexpressions within pExpr and store the
2668 ** results in registers.  Modify pExpr so that the constant subexpresions
2669 ** are TK_REGISTER opcodes that refer to the precomputed values.
2670 */
2671 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2672   Walker w;
2673   w.xExprCallback = evalConstExpr;
2674   w.xSelectCallback = 0;
2675   w.pParse = pParse;
2676   sqlite3WalkExpr(&w, pExpr);
2677 }
2678 
2679 
2680 /*
2681 ** Generate code that pushes the value of every element of the given
2682 ** expression list into a sequence of registers beginning at target.
2683 **
2684 ** Return the number of elements evaluated.
2685 */
2686 int sqlite3ExprCodeExprList(
2687   Parse *pParse,     /* Parsing context */
2688   ExprList *pList,   /* The expression list to be coded */
2689   int target,        /* Where to write results */
2690   int doHardCopy     /* Make a hard copy of every element */
2691 ){
2692   struct ExprList_item *pItem;
2693   int i, n;
2694   assert( pList!=0 );
2695   assert( target>0 );
2696   n = pList->nExpr;
2697   for(pItem=pList->a, i=0; i<n; i++, pItem++){
2698     if( pItem->iAlias ){
2699       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i);
2700       Vdbe *v = sqlite3GetVdbe(pParse);
2701       if( iReg!=target+i ){
2702         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
2703       }
2704     }else{
2705       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
2706     }
2707     if( doHardCopy ){
2708       sqlite3ExprHardCopy(pParse, target, n);
2709     }
2710   }
2711   return n;
2712 }
2713 
2714 /*
2715 ** Generate code for a boolean expression such that a jump is made
2716 ** to the label "dest" if the expression is true but execution
2717 ** continues straight thru if the expression is false.
2718 **
2719 ** If the expression evaluates to NULL (neither true nor false), then
2720 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
2721 **
2722 ** This code depends on the fact that certain token values (ex: TK_EQ)
2723 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2724 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
2725 ** the make process cause these values to align.  Assert()s in the code
2726 ** below verify that the numbers are aligned correctly.
2727 */
2728 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2729   Vdbe *v = pParse->pVdbe;
2730   int op = 0;
2731   int regFree1 = 0;
2732   int regFree2 = 0;
2733   int r1, r2;
2734 
2735   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2736   if( v==0 || pExpr==0 ) return;
2737   op = pExpr->op;
2738   switch( op ){
2739     case TK_AND: {
2740       int d2 = sqlite3VdbeMakeLabel(v);
2741       testcase( jumpIfNull==0 );
2742       testcase( pParse->disableColCache==0 );
2743       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
2744       pParse->disableColCache++;
2745       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2746       assert( pParse->disableColCache>0 );
2747       pParse->disableColCache--;
2748       sqlite3VdbeResolveLabel(v, d2);
2749       break;
2750     }
2751     case TK_OR: {
2752       testcase( jumpIfNull==0 );
2753       testcase( pParse->disableColCache==0 );
2754       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2755       pParse->disableColCache++;
2756       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2757       assert( pParse->disableColCache>0 );
2758       pParse->disableColCache--;
2759       break;
2760     }
2761     case TK_NOT: {
2762       testcase( jumpIfNull==0 );
2763       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2764       break;
2765     }
2766     case TK_LT:
2767     case TK_LE:
2768     case TK_GT:
2769     case TK_GE:
2770     case TK_NE:
2771     case TK_EQ: {
2772       assert( TK_LT==OP_Lt );
2773       assert( TK_LE==OP_Le );
2774       assert( TK_GT==OP_Gt );
2775       assert( TK_GE==OP_Ge );
2776       assert( TK_EQ==OP_Eq );
2777       assert( TK_NE==OP_Ne );
2778       testcase( op==TK_LT );
2779       testcase( op==TK_LE );
2780       testcase( op==TK_GT );
2781       testcase( op==TK_GE );
2782       testcase( op==TK_EQ );
2783       testcase( op==TK_NE );
2784       testcase( jumpIfNull==0 );
2785       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2786                                   pExpr->pRight, &r2, &regFree2);
2787       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2788                   r1, r2, dest, jumpIfNull);
2789       testcase( regFree1==0 );
2790       testcase( regFree2==0 );
2791       break;
2792     }
2793     case TK_ISNULL:
2794     case TK_NOTNULL: {
2795       assert( TK_ISNULL==OP_IsNull );
2796       assert( TK_NOTNULL==OP_NotNull );
2797       testcase( op==TK_ISNULL );
2798       testcase( op==TK_NOTNULL );
2799       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2800       sqlite3VdbeAddOp2(v, op, r1, dest);
2801       testcase( regFree1==0 );
2802       break;
2803     }
2804     case TK_BETWEEN: {
2805       /*    x BETWEEN y AND z
2806       **
2807       ** Is equivalent to
2808       **
2809       **    x>=y AND x<=z
2810       **
2811       ** Code it as such, taking care to do the common subexpression
2812       ** elementation of x.
2813       */
2814       Expr exprAnd;
2815       Expr compLeft;
2816       Expr compRight;
2817       Expr exprX;
2818 
2819       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2820       exprX = *pExpr->pLeft;
2821       exprAnd.op = TK_AND;
2822       exprAnd.pLeft = &compLeft;
2823       exprAnd.pRight = &compRight;
2824       compLeft.op = TK_GE;
2825       compLeft.pLeft = &exprX;
2826       compLeft.pRight = pExpr->x.pList->a[0].pExpr;
2827       compRight.op = TK_LE;
2828       compRight.pLeft = &exprX;
2829       compRight.pRight = pExpr->x.pList->a[1].pExpr;
2830       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
2831       testcase( regFree1==0 );
2832       exprX.op = TK_REGISTER;
2833       testcase( jumpIfNull==0 );
2834       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
2835       break;
2836     }
2837     default: {
2838       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
2839       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
2840       testcase( regFree1==0 );
2841       testcase( jumpIfNull==0 );
2842       break;
2843     }
2844   }
2845   sqlite3ReleaseTempReg(pParse, regFree1);
2846   sqlite3ReleaseTempReg(pParse, regFree2);
2847 }
2848 
2849 /*
2850 ** Generate code for a boolean expression such that a jump is made
2851 ** to the label "dest" if the expression is false but execution
2852 ** continues straight thru if the expression is true.
2853 **
2854 ** If the expression evaluates to NULL (neither true nor false) then
2855 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
2856 ** is 0.
2857 */
2858 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2859   Vdbe *v = pParse->pVdbe;
2860   int op = 0;
2861   int regFree1 = 0;
2862   int regFree2 = 0;
2863   int r1, r2;
2864 
2865   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2866   if( v==0 || pExpr==0 ) return;
2867 
2868   /* The value of pExpr->op and op are related as follows:
2869   **
2870   **       pExpr->op            op
2871   **       ---------          ----------
2872   **       TK_ISNULL          OP_NotNull
2873   **       TK_NOTNULL         OP_IsNull
2874   **       TK_NE              OP_Eq
2875   **       TK_EQ              OP_Ne
2876   **       TK_GT              OP_Le
2877   **       TK_LE              OP_Gt
2878   **       TK_GE              OP_Lt
2879   **       TK_LT              OP_Ge
2880   **
2881   ** For other values of pExpr->op, op is undefined and unused.
2882   ** The value of TK_ and OP_ constants are arranged such that we
2883   ** can compute the mapping above using the following expression.
2884   ** Assert()s verify that the computation is correct.
2885   */
2886   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2887 
2888   /* Verify correct alignment of TK_ and OP_ constants
2889   */
2890   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2891   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2892   assert( pExpr->op!=TK_NE || op==OP_Eq );
2893   assert( pExpr->op!=TK_EQ || op==OP_Ne );
2894   assert( pExpr->op!=TK_LT || op==OP_Ge );
2895   assert( pExpr->op!=TK_LE || op==OP_Gt );
2896   assert( pExpr->op!=TK_GT || op==OP_Le );
2897   assert( pExpr->op!=TK_GE || op==OP_Lt );
2898 
2899   switch( pExpr->op ){
2900     case TK_AND: {
2901       testcase( jumpIfNull==0 );
2902       testcase( pParse->disableColCache==0 );
2903       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2904       pParse->disableColCache++;
2905       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2906       assert( pParse->disableColCache>0 );
2907       pParse->disableColCache--;
2908       break;
2909     }
2910     case TK_OR: {
2911       int d2 = sqlite3VdbeMakeLabel(v);
2912       testcase( jumpIfNull==0 );
2913       testcase( pParse->disableColCache==0 );
2914       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
2915       pParse->disableColCache++;
2916       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2917       assert( pParse->disableColCache>0 );
2918       pParse->disableColCache--;
2919       sqlite3VdbeResolveLabel(v, d2);
2920       break;
2921     }
2922     case TK_NOT: {
2923       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2924       break;
2925     }
2926     case TK_LT:
2927     case TK_LE:
2928     case TK_GT:
2929     case TK_GE:
2930     case TK_NE:
2931     case TK_EQ: {
2932       testcase( op==TK_LT );
2933       testcase( op==TK_LE );
2934       testcase( op==TK_GT );
2935       testcase( op==TK_GE );
2936       testcase( op==TK_EQ );
2937       testcase( op==TK_NE );
2938       testcase( jumpIfNull==0 );
2939       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
2940                                   pExpr->pRight, &r2, &regFree2);
2941       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2942                   r1, r2, dest, jumpIfNull);
2943       testcase( regFree1==0 );
2944       testcase( regFree2==0 );
2945       break;
2946     }
2947     case TK_ISNULL:
2948     case TK_NOTNULL: {
2949       testcase( op==TK_ISNULL );
2950       testcase( op==TK_NOTNULL );
2951       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2952       sqlite3VdbeAddOp2(v, op, r1, dest);
2953       testcase( regFree1==0 );
2954       break;
2955     }
2956     case TK_BETWEEN: {
2957       /*    x BETWEEN y AND z
2958       **
2959       ** Is equivalent to
2960       **
2961       **    x>=y AND x<=z
2962       **
2963       ** Code it as such, taking care to do the common subexpression
2964       ** elementation of x.
2965       */
2966       Expr exprAnd;
2967       Expr compLeft;
2968       Expr compRight;
2969       Expr exprX;
2970 
2971       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2972       exprX = *pExpr->pLeft;
2973       exprAnd.op = TK_AND;
2974       exprAnd.pLeft = &compLeft;
2975       exprAnd.pRight = &compRight;
2976       compLeft.op = TK_GE;
2977       compLeft.pLeft = &exprX;
2978       compLeft.pRight = pExpr->x.pList->a[0].pExpr;
2979       compRight.op = TK_LE;
2980       compRight.pLeft = &exprX;
2981       compRight.pRight = pExpr->x.pList->a[1].pExpr;
2982       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
2983       testcase( regFree1==0 );
2984       exprX.op = TK_REGISTER;
2985       testcase( jumpIfNull==0 );
2986       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
2987       break;
2988     }
2989     default: {
2990       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
2991       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
2992       testcase( regFree1==0 );
2993       testcase( jumpIfNull==0 );
2994       break;
2995     }
2996   }
2997   sqlite3ReleaseTempReg(pParse, regFree1);
2998   sqlite3ReleaseTempReg(pParse, regFree2);
2999 }
3000 
3001 /*
3002 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
3003 ** if they are identical and return FALSE if they differ in any way.
3004 **
3005 ** Sometimes this routine will return FALSE even if the two expressions
3006 ** really are equivalent.  If we cannot prove that the expressions are
3007 ** identical, we return FALSE just to be safe.  So if this routine
3008 ** returns false, then you do not really know for certain if the two
3009 ** expressions are the same.  But if you get a TRUE return, then you
3010 ** can be sure the expressions are the same.  In the places where
3011 ** this routine is used, it does not hurt to get an extra FALSE - that
3012 ** just might result in some slightly slower code.  But returning
3013 ** an incorrect TRUE could lead to a malfunction.
3014 */
3015 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3016   int i;
3017   if( pA==0||pB==0 ){
3018     return pB==pA;
3019   }
3020   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3021     return 0;
3022   }
3023   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3024   if( pA->op!=pB->op ) return 0;
3025   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3026   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3027 
3028   if( pA->x.pList && pB->x.pList ){
3029     if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0;
3030     for(i=0; i<pA->x.pList->nExpr; i++){
3031       Expr *pExprA = pA->x.pList->a[i].pExpr;
3032       Expr *pExprB = pB->x.pList->a[i].pExpr;
3033       if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0;
3034     }
3035   }else if( pA->x.pList || pB->x.pList ){
3036     return 0;
3037   }
3038 
3039   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3040   if( pA->op!=TK_COLUMN && pA->token.z ){
3041     if( pB->token.z==0 ) return 0;
3042     if( pB->token.n!=pA->token.n ) return 0;
3043     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
3044       return 0;
3045     }
3046   }
3047   return 1;
3048 }
3049 
3050 
3051 /*
3052 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3053 ** the new element.  Return a negative number if malloc fails.
3054 */
3055 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3056   int i;
3057   pInfo->aCol = sqlite3ArrayAllocate(
3058        db,
3059        pInfo->aCol,
3060        sizeof(pInfo->aCol[0]),
3061        3,
3062        &pInfo->nColumn,
3063        &pInfo->nColumnAlloc,
3064        &i
3065   );
3066   return i;
3067 }
3068 
3069 /*
3070 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
3071 ** the new element.  Return a negative number if malloc fails.
3072 */
3073 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3074   int i;
3075   pInfo->aFunc = sqlite3ArrayAllocate(
3076        db,
3077        pInfo->aFunc,
3078        sizeof(pInfo->aFunc[0]),
3079        3,
3080        &pInfo->nFunc,
3081        &pInfo->nFuncAlloc,
3082        &i
3083   );
3084   return i;
3085 }
3086 
3087 /*
3088 ** This is the xExprCallback for a tree walker.  It is used to
3089 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
3090 ** for additional information.
3091 */
3092 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3093   int i;
3094   NameContext *pNC = pWalker->u.pNC;
3095   Parse *pParse = pNC->pParse;
3096   SrcList *pSrcList = pNC->pSrcList;
3097   AggInfo *pAggInfo = pNC->pAggInfo;
3098 
3099   switch( pExpr->op ){
3100     case TK_AGG_COLUMN:
3101     case TK_COLUMN: {
3102       testcase( pExpr->op==TK_AGG_COLUMN );
3103       testcase( pExpr->op==TK_COLUMN );
3104       /* Check to see if the column is in one of the tables in the FROM
3105       ** clause of the aggregate query */
3106       if( pSrcList ){
3107         struct SrcList_item *pItem = pSrcList->a;
3108         for(i=0; i<pSrcList->nSrc; i++, pItem++){
3109           struct AggInfo_col *pCol;
3110           if( pExpr->iTable==pItem->iCursor ){
3111             /* If we reach this point, it means that pExpr refers to a table
3112             ** that is in the FROM clause of the aggregate query.
3113             **
3114             ** Make an entry for the column in pAggInfo->aCol[] if there
3115             ** is not an entry there already.
3116             */
3117             int k;
3118             pCol = pAggInfo->aCol;
3119             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3120               if( pCol->iTable==pExpr->iTable &&
3121                   pCol->iColumn==pExpr->iColumn ){
3122                 break;
3123               }
3124             }
3125             if( (k>=pAggInfo->nColumn)
3126              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3127             ){
3128               pCol = &pAggInfo->aCol[k];
3129               pCol->pTab = pExpr->pTab;
3130               pCol->iTable = pExpr->iTable;
3131               pCol->iColumn = pExpr->iColumn;
3132               pCol->iMem = ++pParse->nMem;
3133               pCol->iSorterColumn = -1;
3134               pCol->pExpr = pExpr;
3135               if( pAggInfo->pGroupBy ){
3136                 int j, n;
3137                 ExprList *pGB = pAggInfo->pGroupBy;
3138                 struct ExprList_item *pTerm = pGB->a;
3139                 n = pGB->nExpr;
3140                 for(j=0; j<n; j++, pTerm++){
3141                   Expr *pE = pTerm->pExpr;
3142                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3143                       pE->iColumn==pExpr->iColumn ){
3144                     pCol->iSorterColumn = j;
3145                     break;
3146                   }
3147                 }
3148               }
3149               if( pCol->iSorterColumn<0 ){
3150                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3151               }
3152             }
3153             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3154             ** because it was there before or because we just created it).
3155             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3156             ** pAggInfo->aCol[] entry.
3157             */
3158             pExpr->pAggInfo = pAggInfo;
3159             pExpr->op = TK_AGG_COLUMN;
3160             pExpr->iAgg = k;
3161             break;
3162           } /* endif pExpr->iTable==pItem->iCursor */
3163         } /* end loop over pSrcList */
3164       }
3165       return WRC_Prune;
3166     }
3167     case TK_AGG_FUNCTION: {
3168       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3169       ** to be ignored */
3170       if( pNC->nDepth==0 ){
3171         /* Check to see if pExpr is a duplicate of another aggregate
3172         ** function that is already in the pAggInfo structure
3173         */
3174         struct AggInfo_func *pItem = pAggInfo->aFunc;
3175         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3176           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3177             break;
3178           }
3179         }
3180         if( i>=pAggInfo->nFunc ){
3181           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
3182           */
3183           u8 enc = ENC(pParse->db);
3184           i = addAggInfoFunc(pParse->db, pAggInfo);
3185           if( i>=0 ){
3186             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3187             pItem = &pAggInfo->aFunc[i];
3188             pItem->pExpr = pExpr;
3189             pItem->iMem = ++pParse->nMem;
3190             pItem->pFunc = sqlite3FindFunction(pParse->db,
3191                    (char*)pExpr->token.z, pExpr->token.n,
3192                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3193             if( pExpr->flags & EP_Distinct ){
3194               pItem->iDistinct = pParse->nTab++;
3195             }else{
3196               pItem->iDistinct = -1;
3197             }
3198           }
3199         }
3200         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3201         */
3202         pExpr->iAgg = i;
3203         pExpr->pAggInfo = pAggInfo;
3204         return WRC_Prune;
3205       }
3206     }
3207   }
3208   return WRC_Continue;
3209 }
3210 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3211   NameContext *pNC = pWalker->u.pNC;
3212   if( pNC->nDepth==0 ){
3213     pNC->nDepth++;
3214     sqlite3WalkSelect(pWalker, pSelect);
3215     pNC->nDepth--;
3216     return WRC_Prune;
3217   }else{
3218     return WRC_Continue;
3219   }
3220 }
3221 
3222 /*
3223 ** Analyze the given expression looking for aggregate functions and
3224 ** for variables that need to be added to the pParse->aAgg[] array.
3225 ** Make additional entries to the pParse->aAgg[] array as necessary.
3226 **
3227 ** This routine should only be called after the expression has been
3228 ** analyzed by sqlite3ResolveExprNames().
3229 */
3230 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3231   Walker w;
3232   w.xExprCallback = analyzeAggregate;
3233   w.xSelectCallback = analyzeAggregatesInSelect;
3234   w.u.pNC = pNC;
3235   sqlite3WalkExpr(&w, pExpr);
3236 }
3237 
3238 /*
3239 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3240 ** expression list.  Return the number of errors.
3241 **
3242 ** If an error is found, the analysis is cut short.
3243 */
3244 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3245   struct ExprList_item *pItem;
3246   int i;
3247   if( pList ){
3248     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3249       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3250     }
3251   }
3252 }
3253 
3254 /*
3255 ** Allocate or deallocate temporary use registers during code generation.
3256 */
3257 int sqlite3GetTempReg(Parse *pParse){
3258   if( pParse->nTempReg==0 ){
3259     return ++pParse->nMem;
3260   }
3261   return pParse->aTempReg[--pParse->nTempReg];
3262 }
3263 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3264   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3265     sqlite3ExprWritableRegister(pParse, iReg);
3266     pParse->aTempReg[pParse->nTempReg++] = iReg;
3267   }
3268 }
3269 
3270 /*
3271 ** Allocate or deallocate a block of nReg consecutive registers
3272 */
3273 int sqlite3GetTempRange(Parse *pParse, int nReg){
3274   int i, n;
3275   i = pParse->iRangeReg;
3276   n = pParse->nRangeReg;
3277   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3278     pParse->iRangeReg += nReg;
3279     pParse->nRangeReg -= nReg;
3280   }else{
3281     i = pParse->nMem+1;
3282     pParse->nMem += nReg;
3283   }
3284   return i;
3285 }
3286 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3287   if( nReg>pParse->nRangeReg ){
3288     pParse->nRangeReg = nReg;
3289     pParse->iRangeReg = iReg;
3290   }
3291 }
3292