1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.417 2009/03/05 03:48:07 shane Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 /* 20 ** Return the 'affinity' of the expression pExpr if any. 21 ** 22 ** If pExpr is a column, a reference to a column via an 'AS' alias, 23 ** or a sub-select with a column as the return value, then the 24 ** affinity of that column is returned. Otherwise, 0x00 is returned, 25 ** indicating no affinity for the expression. 26 ** 27 ** i.e. the WHERE clause expresssions in the following statements all 28 ** have an affinity: 29 ** 30 ** CREATE TABLE t1(a); 31 ** SELECT * FROM t1 WHERE a; 32 ** SELECT a AS b FROM t1 WHERE b; 33 ** SELECT * FROM t1 WHERE (select a from t1); 34 */ 35 char sqlite3ExprAffinity(Expr *pExpr){ 36 int op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 47 && pExpr->pTab!=0 48 ){ 49 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 50 ** a TK_COLUMN but was previously evaluated and cached in a register */ 51 int j = pExpr->iColumn; 52 if( j<0 ) return SQLITE_AFF_INTEGER; 53 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 54 return pExpr->pTab->aCol[j].affinity; 55 } 56 return pExpr->affinity; 57 } 58 59 /* 60 ** Set the collating sequence for expression pExpr to be the collating 61 ** sequence named by pToken. Return a pointer to the revised expression. 62 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 63 ** flag. An explicit collating sequence will override implicit 64 ** collating sequences. 65 */ 66 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){ 67 char *zColl = 0; /* Dequoted name of collation sequence */ 68 CollSeq *pColl; 69 sqlite3 *db = pParse->db; 70 zColl = sqlite3NameFromToken(db, pCollName); 71 if( pExpr && zColl ){ 72 pColl = sqlite3LocateCollSeq(pParse, zColl, -1); 73 if( pColl ){ 74 pExpr->pColl = pColl; 75 pExpr->flags |= EP_ExpCollate; 76 } 77 } 78 sqlite3DbFree(db, zColl); 79 return pExpr; 80 } 81 82 /* 83 ** Return the default collation sequence for the expression pExpr. If 84 ** there is no default collation type, return 0. 85 */ 86 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 87 CollSeq *pColl = 0; 88 Expr *p = pExpr; 89 while( p ){ 90 int op; 91 pColl = p->pColl; 92 if( pColl ) break; 93 op = p->op; 94 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){ 95 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 96 ** a TK_COLUMN but was previously evaluated and cached in a register */ 97 const char *zColl; 98 int j = p->iColumn; 99 if( j>=0 ){ 100 sqlite3 *db = pParse->db; 101 zColl = p->pTab->aCol[j].zColl; 102 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); 103 pExpr->pColl = pColl; 104 } 105 break; 106 } 107 if( op!=TK_CAST && op!=TK_UPLUS ){ 108 break; 109 } 110 p = p->pLeft; 111 } 112 if( sqlite3CheckCollSeq(pParse, pColl) ){ 113 pColl = 0; 114 } 115 return pColl; 116 } 117 118 /* 119 ** pExpr is an operand of a comparison operator. aff2 is the 120 ** type affinity of the other operand. This routine returns the 121 ** type affinity that should be used for the comparison operator. 122 */ 123 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 124 char aff1 = sqlite3ExprAffinity(pExpr); 125 if( aff1 && aff2 ){ 126 /* Both sides of the comparison are columns. If one has numeric 127 ** affinity, use that. Otherwise use no affinity. 128 */ 129 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 130 return SQLITE_AFF_NUMERIC; 131 }else{ 132 return SQLITE_AFF_NONE; 133 } 134 }else if( !aff1 && !aff2 ){ 135 /* Neither side of the comparison is a column. Compare the 136 ** results directly. 137 */ 138 return SQLITE_AFF_NONE; 139 }else{ 140 /* One side is a column, the other is not. Use the columns affinity. */ 141 assert( aff1==0 || aff2==0 ); 142 return (aff1 + aff2); 143 } 144 } 145 146 /* 147 ** pExpr is a comparison operator. Return the type affinity that should 148 ** be applied to both operands prior to doing the comparison. 149 */ 150 static char comparisonAffinity(Expr *pExpr){ 151 char aff; 152 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 153 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 154 pExpr->op==TK_NE ); 155 assert( pExpr->pLeft ); 156 aff = sqlite3ExprAffinity(pExpr->pLeft); 157 if( pExpr->pRight ){ 158 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 159 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 160 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 161 }else if( !aff ){ 162 aff = SQLITE_AFF_NONE; 163 } 164 return aff; 165 } 166 167 /* 168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 169 ** idx_affinity is the affinity of an indexed column. Return true 170 ** if the index with affinity idx_affinity may be used to implement 171 ** the comparison in pExpr. 172 */ 173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 174 char aff = comparisonAffinity(pExpr); 175 switch( aff ){ 176 case SQLITE_AFF_NONE: 177 return 1; 178 case SQLITE_AFF_TEXT: 179 return idx_affinity==SQLITE_AFF_TEXT; 180 default: 181 return sqlite3IsNumericAffinity(idx_affinity); 182 } 183 } 184 185 /* 186 ** Return the P5 value that should be used for a binary comparison 187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 188 */ 189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 190 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 191 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 192 return aff; 193 } 194 195 /* 196 ** Return a pointer to the collation sequence that should be used by 197 ** a binary comparison operator comparing pLeft and pRight. 198 ** 199 ** If the left hand expression has a collating sequence type, then it is 200 ** used. Otherwise the collation sequence for the right hand expression 201 ** is used, or the default (BINARY) if neither expression has a collating 202 ** type. 203 ** 204 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 205 ** it is not considered. 206 */ 207 CollSeq *sqlite3BinaryCompareCollSeq( 208 Parse *pParse, 209 Expr *pLeft, 210 Expr *pRight 211 ){ 212 CollSeq *pColl; 213 assert( pLeft ); 214 if( pLeft->flags & EP_ExpCollate ){ 215 assert( pLeft->pColl ); 216 pColl = pLeft->pColl; 217 }else if( pRight && pRight->flags & EP_ExpCollate ){ 218 assert( pRight->pColl ); 219 pColl = pRight->pColl; 220 }else{ 221 pColl = sqlite3ExprCollSeq(pParse, pLeft); 222 if( !pColl ){ 223 pColl = sqlite3ExprCollSeq(pParse, pRight); 224 } 225 } 226 return pColl; 227 } 228 229 /* 230 ** Generate the operands for a comparison operation. Before 231 ** generating the code for each operand, set the EP_AnyAff 232 ** flag on the expression so that it will be able to used a 233 ** cached column value that has previously undergone an 234 ** affinity change. 235 */ 236 static void codeCompareOperands( 237 Parse *pParse, /* Parsing and code generating context */ 238 Expr *pLeft, /* The left operand */ 239 int *pRegLeft, /* Register where left operand is stored */ 240 int *pFreeLeft, /* Free this register when done */ 241 Expr *pRight, /* The right operand */ 242 int *pRegRight, /* Register where right operand is stored */ 243 int *pFreeRight /* Write temp register for right operand there */ 244 ){ 245 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; 246 pLeft->flags |= EP_AnyAff; 247 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); 248 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; 249 pRight->flags |= EP_AnyAff; 250 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); 251 } 252 253 /* 254 ** Generate code for a comparison operator. 255 */ 256 static int codeCompare( 257 Parse *pParse, /* The parsing (and code generating) context */ 258 Expr *pLeft, /* The left operand */ 259 Expr *pRight, /* The right operand */ 260 int opcode, /* The comparison opcode */ 261 int in1, int in2, /* Register holding operands */ 262 int dest, /* Jump here if true. */ 263 int jumpIfNull /* If true, jump if either operand is NULL */ 264 ){ 265 int p5; 266 int addr; 267 CollSeq *p4; 268 269 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 270 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 271 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 272 (void*)p4, P4_COLLSEQ); 273 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 274 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){ 275 sqlite3ExprCacheAffinityChange(pParse, in1, 1); 276 sqlite3ExprCacheAffinityChange(pParse, in2, 1); 277 } 278 return addr; 279 } 280 281 #if SQLITE_MAX_EXPR_DEPTH>0 282 /* 283 ** Check that argument nHeight is less than or equal to the maximum 284 ** expression depth allowed. If it is not, leave an error message in 285 ** pParse. 286 */ 287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 288 int rc = SQLITE_OK; 289 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 290 if( nHeight>mxHeight ){ 291 sqlite3ErrorMsg(pParse, 292 "Expression tree is too large (maximum depth %d)", mxHeight 293 ); 294 rc = SQLITE_ERROR; 295 } 296 return rc; 297 } 298 299 /* The following three functions, heightOfExpr(), heightOfExprList() 300 ** and heightOfSelect(), are used to determine the maximum height 301 ** of any expression tree referenced by the structure passed as the 302 ** first argument. 303 ** 304 ** If this maximum height is greater than the current value pointed 305 ** to by pnHeight, the second parameter, then set *pnHeight to that 306 ** value. 307 */ 308 static void heightOfExpr(Expr *p, int *pnHeight){ 309 if( p ){ 310 if( p->nHeight>*pnHeight ){ 311 *pnHeight = p->nHeight; 312 } 313 } 314 } 315 static void heightOfExprList(ExprList *p, int *pnHeight){ 316 if( p ){ 317 int i; 318 for(i=0; i<p->nExpr; i++){ 319 heightOfExpr(p->a[i].pExpr, pnHeight); 320 } 321 } 322 } 323 static void heightOfSelect(Select *p, int *pnHeight){ 324 if( p ){ 325 heightOfExpr(p->pWhere, pnHeight); 326 heightOfExpr(p->pHaving, pnHeight); 327 heightOfExpr(p->pLimit, pnHeight); 328 heightOfExpr(p->pOffset, pnHeight); 329 heightOfExprList(p->pEList, pnHeight); 330 heightOfExprList(p->pGroupBy, pnHeight); 331 heightOfExprList(p->pOrderBy, pnHeight); 332 heightOfSelect(p->pPrior, pnHeight); 333 } 334 } 335 336 /* 337 ** Set the Expr.nHeight variable in the structure passed as an 338 ** argument. An expression with no children, Expr.pList or 339 ** Expr.pSelect member has a height of 1. Any other expression 340 ** has a height equal to the maximum height of any other 341 ** referenced Expr plus one. 342 */ 343 static void exprSetHeight(Expr *p){ 344 int nHeight = 0; 345 heightOfExpr(p->pLeft, &nHeight); 346 heightOfExpr(p->pRight, &nHeight); 347 if( ExprHasProperty(p, EP_xIsSelect) ){ 348 heightOfSelect(p->x.pSelect, &nHeight); 349 }else{ 350 heightOfExprList(p->x.pList, &nHeight); 351 } 352 p->nHeight = nHeight + 1; 353 } 354 355 /* 356 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 357 ** the height is greater than the maximum allowed expression depth, 358 ** leave an error in pParse. 359 */ 360 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 361 exprSetHeight(p); 362 sqlite3ExprCheckHeight(pParse, p->nHeight); 363 } 364 365 /* 366 ** Return the maximum height of any expression tree referenced 367 ** by the select statement passed as an argument. 368 */ 369 int sqlite3SelectExprHeight(Select *p){ 370 int nHeight = 0; 371 heightOfSelect(p, &nHeight); 372 return nHeight; 373 } 374 #else 375 #define exprSetHeight(y) 376 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 377 378 /* 379 ** Construct a new expression node and return a pointer to it. Memory 380 ** for this node is obtained from sqlite3_malloc(). The calling function 381 ** is responsible for making sure the node eventually gets freed. 382 */ 383 Expr *sqlite3Expr( 384 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 385 int op, /* Expression opcode */ 386 Expr *pLeft, /* Left operand */ 387 Expr *pRight, /* Right operand */ 388 const Token *pToken /* Argument token */ 389 ){ 390 Expr *pNew; 391 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 392 if( pNew==0 ){ 393 /* When malloc fails, delete pLeft and pRight. Expressions passed to 394 ** this function must always be allocated with sqlite3Expr() for this 395 ** reason. 396 */ 397 sqlite3ExprDelete(db, pLeft); 398 sqlite3ExprDelete(db, pRight); 399 return 0; 400 } 401 pNew->op = (u8)op; 402 pNew->pLeft = pLeft; 403 pNew->pRight = pRight; 404 pNew->iAgg = -1; 405 pNew->span.z = (u8*)""; 406 if( pToken ){ 407 assert( pToken->dyn==0 ); 408 pNew->span = pNew->token = *pToken; 409 }else if( pLeft ){ 410 if( pRight ){ 411 if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){ 412 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 413 } 414 if( pRight->flags & EP_ExpCollate ){ 415 pNew->flags |= EP_ExpCollate; 416 pNew->pColl = pRight->pColl; 417 } 418 } 419 if( pLeft->flags & EP_ExpCollate ){ 420 pNew->flags |= EP_ExpCollate; 421 pNew->pColl = pLeft->pColl; 422 } 423 } 424 425 exprSetHeight(pNew); 426 return pNew; 427 } 428 429 /* 430 ** Works like sqlite3Expr() except that it takes an extra Parse* 431 ** argument and notifies the associated connection object if malloc fails. 432 */ 433 Expr *sqlite3PExpr( 434 Parse *pParse, /* Parsing context */ 435 int op, /* Expression opcode */ 436 Expr *pLeft, /* Left operand */ 437 Expr *pRight, /* Right operand */ 438 const Token *pToken /* Argument token */ 439 ){ 440 Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 441 if( p ){ 442 sqlite3ExprCheckHeight(pParse, p->nHeight); 443 } 444 return p; 445 } 446 447 /* 448 ** When doing a nested parse, you can include terms in an expression 449 ** that look like this: #1 #2 ... These terms refer to registers 450 ** in the virtual machine. #N is the N-th register. 451 ** 452 ** This routine is called by the parser to deal with on of those terms. 453 ** It immediately generates code to store the value in a memory location. 454 ** The returns an expression that will code to extract the value from 455 ** that memory location as needed. 456 */ 457 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 458 Vdbe *v = pParse->pVdbe; 459 Expr *p; 460 if( pParse->nested==0 ){ 461 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 462 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 463 } 464 if( v==0 ) return 0; 465 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 466 if( p==0 ){ 467 return 0; /* Malloc failed */ 468 } 469 p->iTable = atoi((char*)&pToken->z[1]); 470 return p; 471 } 472 473 /* 474 ** Join two expressions using an AND operator. If either expression is 475 ** NULL, then just return the other expression. 476 */ 477 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 478 if( pLeft==0 ){ 479 return pRight; 480 }else if( pRight==0 ){ 481 return pLeft; 482 }else{ 483 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 484 } 485 } 486 487 /* 488 ** Set the Expr.span field of the given expression to span all 489 ** text between the two given tokens. Both tokens must be pointing 490 ** at the same string. 491 */ 492 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 493 assert( pRight!=0 ); 494 assert( pLeft!=0 ); 495 if( pExpr ){ 496 pExpr->span.z = pLeft->z; 497 assert(pRight->z >= pLeft->z); 498 pExpr->span.n = pRight->n + (unsigned)(pRight->z - pLeft->z); 499 } 500 } 501 502 /* 503 ** Construct a new expression node for a function with multiple 504 ** arguments. 505 */ 506 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 507 Expr *pNew; 508 sqlite3 *db = pParse->db; 509 assert( pToken ); 510 pNew = sqlite3DbMallocZero(db, sizeof(Expr) ); 511 if( pNew==0 ){ 512 sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */ 513 return 0; 514 } 515 pNew->op = TK_FUNCTION; 516 pNew->x.pList = pList; 517 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 518 assert( pToken->dyn==0 ); 519 pNew->token = *pToken; 520 pNew->span = pNew->token; 521 522 sqlite3ExprSetHeight(pParse, pNew); 523 return pNew; 524 } 525 526 /* 527 ** Assign a variable number to an expression that encodes a wildcard 528 ** in the original SQL statement. 529 ** 530 ** Wildcards consisting of a single "?" are assigned the next sequential 531 ** variable number. 532 ** 533 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 534 ** sure "nnn" is not too be to avoid a denial of service attack when 535 ** the SQL statement comes from an external source. 536 ** 537 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 538 ** as the previous instance of the same wildcard. Or if this is the first 539 ** instance of the wildcard, the next sequenial variable number is 540 ** assigned. 541 */ 542 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 543 Token *pToken; 544 sqlite3 *db = pParse->db; 545 546 if( pExpr==0 ) return; 547 pToken = &pExpr->token; 548 assert( pToken->n>=1 ); 549 assert( pToken->z!=0 ); 550 assert( pToken->z[0]!=0 ); 551 if( pToken->n==1 ){ 552 /* Wildcard of the form "?". Assign the next variable number */ 553 pExpr->iTable = ++pParse->nVar; 554 }else if( pToken->z[0]=='?' ){ 555 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 556 ** use it as the variable number */ 557 int i; 558 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 559 testcase( i==0 ); 560 testcase( i==1 ); 561 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 562 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 563 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 564 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 565 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 566 } 567 if( i>pParse->nVar ){ 568 pParse->nVar = i; 569 } 570 }else{ 571 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 572 ** number as the prior appearance of the same name, or if the name 573 ** has never appeared before, reuse the same variable number 574 */ 575 int i; 576 u32 n; 577 n = pToken->n; 578 for(i=0; i<pParse->nVarExpr; i++){ 579 Expr *pE; 580 if( (pE = pParse->apVarExpr[i])!=0 581 && pE->token.n==n 582 && memcmp(pE->token.z, pToken->z, n)==0 ){ 583 pExpr->iTable = pE->iTable; 584 break; 585 } 586 } 587 if( i>=pParse->nVarExpr ){ 588 pExpr->iTable = ++pParse->nVar; 589 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 590 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 591 pParse->apVarExpr = 592 sqlite3DbReallocOrFree( 593 db, 594 pParse->apVarExpr, 595 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 596 ); 597 } 598 if( !db->mallocFailed ){ 599 assert( pParse->apVarExpr!=0 ); 600 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 601 } 602 } 603 } 604 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 605 sqlite3ErrorMsg(pParse, "too many SQL variables"); 606 } 607 } 608 609 /* 610 ** Clear an expression structure without deleting the structure itself. 611 ** Substructure is deleted. 612 */ 613 void sqlite3ExprClear(sqlite3 *db, Expr *p){ 614 if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z); 615 if( !ExprHasAnyProperty(p, EP_TokenOnly|EP_SpanOnly) ){ 616 if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z); 617 if( ExprHasProperty(p, EP_Reduced) ){ 618 if( p->pLeft ) sqlite3ExprClear(db, p->pLeft); 619 if( p->pRight ) sqlite3ExprClear(db, p->pRight); 620 }else{ 621 sqlite3ExprDelete(db, p->pLeft); 622 sqlite3ExprDelete(db, p->pRight); 623 } 624 if( ExprHasProperty(p, EP_xIsSelect) ){ 625 sqlite3SelectDelete(db, p->x.pSelect); 626 }else{ 627 sqlite3ExprListDelete(db, p->x.pList); 628 } 629 } 630 } 631 632 /* 633 ** Recursively delete an expression tree. 634 */ 635 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 636 if( p==0 ) return; 637 sqlite3ExprClear(db, p); 638 sqlite3DbFree(db, p); 639 } 640 641 /* 642 ** The Expr.token field might be a string literal that is quoted. 643 ** If so, remove the quotation marks. 644 */ 645 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 646 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 647 return; 648 } 649 ExprSetProperty(p, EP_Dequoted); 650 if( p->token.dyn==0 && !ExprHasProperty(p, EP_Reduced) ){ 651 sqlite3TokenCopy(db, &p->token, &p->token); 652 } 653 sqlite3Dequote((char*)p->token.z); 654 } 655 656 /* 657 ** Return the number of bytes allocated for the expression structure 658 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 659 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 660 */ 661 static int exprStructSize(Expr *p){ 662 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 663 if( ExprHasProperty(p, EP_SpanOnly) ) return EXPR_SPANONLYSIZE; 664 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 665 return EXPR_FULLSIZE; 666 } 667 668 /* 669 ** sqlite3ExprDup() has been called to create a copy of expression p with 670 ** the EXPRDUP_XXX flags passed as the second argument. This function 671 ** returns the space required for the copy of the Expr structure only. 672 ** This is always one of EXPR_FULLSIZE, EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 673 */ 674 static int dupedExprStructSize(Expr *p, int flags){ 675 int nSize; 676 if( 0==(flags&EXPRDUP_REDUCE) ){ 677 nSize = EXPR_FULLSIZE; 678 }else if( p->pLeft || p->pRight || p->pColl || p->x.pList ){ 679 nSize = EXPR_REDUCEDSIZE; 680 }else if( flags&EXPRDUP_SPAN ){ 681 nSize = EXPR_SPANONLYSIZE; 682 }else{ 683 nSize = EXPR_TOKENONLYSIZE; 684 } 685 return nSize; 686 } 687 688 /* 689 ** sqlite3ExprDup() has been called to create a copy of expression p with 690 ** the EXPRDUP_XXX passed as the second argument. This function returns 691 ** the space in bytes required to store the copy of the Expr structure 692 ** and the copies of the Expr.token.z and Expr.span.z (if applicable) 693 ** string buffers. 694 */ 695 static int dupedExprNodeSize(Expr *p, int flags){ 696 int nByte = dupedExprStructSize(p, flags) + (p->token.z ? p->token.n + 1 : 0); 697 if( flags&EXPRDUP_SPAN && (p->token.z!=p->span.z || p->token.n!=p->span.n) ){ 698 nByte += p->span.n; 699 } 700 return (nByte+7)&~7; 701 } 702 703 /* 704 ** Return the number of bytes required to create a duplicate of the 705 ** expression passed as the first argument. The second argument is a 706 ** mask containing EXPRDUP_XXX flags. 707 ** 708 ** The value returned includes space to create a copy of the Expr struct 709 ** itself and the buffer referred to by Expr.token, if any. If the 710 ** EXPRDUP_SPAN flag is set, then space to create a copy of the buffer 711 ** refered to by Expr.span is also included. 712 ** 713 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 714 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 715 ** and Expr.pRight variables (but not for any structures pointed to or 716 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 717 */ 718 static int dupedExprSize(Expr *p, int flags){ 719 int nByte = 0; 720 if( p ){ 721 nByte = dupedExprNodeSize(p, flags); 722 if( flags&EXPRDUP_REDUCE ){ 723 int f = flags&(~EXPRDUP_SPAN); 724 nByte += dupedExprSize(p->pLeft, f) + dupedExprSize(p->pRight, f); 725 } 726 } 727 return nByte; 728 } 729 730 /* 731 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 732 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 733 ** to store the copy of expression p, the copies of p->token and p->span 734 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 735 ** if any. Before returning, *pzBuffer is set to the first byte passed the 736 ** portion of the buffer copied into by this function. 737 */ 738 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 739 Expr *pNew = 0; /* Value to return */ 740 if( p ){ 741 const int isRequireSpan = (flags&EXPRDUP_SPAN); 742 const int isReduced = (flags&EXPRDUP_REDUCE); 743 u8 *zAlloc; 744 745 assert( pzBuffer==0 || isReduced ); 746 747 /* Figure out where to write the new Expr structure. */ 748 if( pzBuffer ){ 749 zAlloc = *pzBuffer; 750 }else{ 751 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 752 } 753 pNew = (Expr *)zAlloc; 754 755 if( pNew ){ 756 /* Set nNewSize to the size allocated for the structure pointed to 757 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 758 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 759 ** by the copy of the p->token.z string (if any). 760 */ 761 const int nNewSize = dupedExprStructSize(p, flags); 762 const int nToken = (p->token.z ? p->token.n + 1 : 0); 763 if( isReduced ){ 764 assert( ExprHasProperty(p, EP_Reduced)==0 ); 765 memcpy(zAlloc, p, nNewSize); 766 }else{ 767 int nSize = exprStructSize(p); 768 memcpy(zAlloc, p, nSize); 769 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 770 } 771 772 /* Set the EP_Reduced and EP_TokenOnly flags appropriately. */ 773 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_SpanOnly); 774 switch( nNewSize ){ 775 case EXPR_REDUCEDSIZE: pNew->flags |= EP_Reduced; break; 776 case EXPR_TOKENONLYSIZE: pNew->flags |= EP_TokenOnly; break; 777 case EXPR_SPANONLYSIZE: pNew->flags |= EP_SpanOnly; break; 778 } 779 780 /* Copy the p->token string, if any. */ 781 if( nToken ){ 782 unsigned char *zToken = &zAlloc[nNewSize]; 783 memcpy(zToken, p->token.z, nToken-1); 784 zToken[nToken-1] = '\0'; 785 pNew->token.dyn = 0; 786 pNew->token.z = zToken; 787 } 788 789 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 790 /* Fill in the pNew->span token, if required. */ 791 if( isRequireSpan ){ 792 if( p->token.z!=p->span.z || p->token.n!=p->span.n ){ 793 pNew->span.z = &zAlloc[nNewSize+nToken]; 794 memcpy((char *)pNew->span.z, p->span.z, p->span.n); 795 pNew->span.dyn = 0; 796 }else{ 797 pNew->span.z = pNew->token.z; 798 pNew->span.n = pNew->token.n; 799 } 800 }else{ 801 pNew->span.z = 0; 802 pNew->span.n = 0; 803 } 804 } 805 806 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_SpanOnly)) ){ 807 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 808 if( ExprHasProperty(p, EP_xIsSelect) ){ 809 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 810 }else{ 811 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 812 } 813 } 814 815 /* Fill in pNew->pLeft and pNew->pRight. */ 816 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly|EP_SpanOnly) ){ 817 zAlloc += dupedExprNodeSize(p, flags); 818 if( ExprHasProperty(pNew, EP_Reduced) ){ 819 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 820 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 821 } 822 if( pzBuffer ){ 823 *pzBuffer = zAlloc; 824 } 825 }else if( !ExprHasAnyProperty(p, EP_TokenOnly|EP_SpanOnly) ){ 826 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 827 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 828 } 829 } 830 } 831 return pNew; 832 } 833 834 /* 835 ** The following group of routines make deep copies of expressions, 836 ** expression lists, ID lists, and select statements. The copies can 837 ** be deleted (by being passed to their respective ...Delete() routines) 838 ** without effecting the originals. 839 ** 840 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 841 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 842 ** by subsequent calls to sqlite*ListAppend() routines. 843 ** 844 ** Any tables that the SrcList might point to are not duplicated. 845 ** 846 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. If 847 ** the EXPRDUP_SPAN flag is set in the argument parameter, then the 848 ** Expr.span field of the input expression is copied. If EXPRDUP_SPAN is 849 ** clear, then the Expr.span field of the returned expression structure 850 ** is zeroed. 851 ** 852 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 853 ** truncated version of the usual Expr structure that will be stored as 854 ** part of the in-memory representation of the database schema. 855 */ 856 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 857 return exprDup(db, p, flags, 0); 858 } 859 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 860 if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z); 861 if( pFrom->z ){ 862 pTo->n = pFrom->n; 863 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 864 pTo->dyn = 1; 865 }else{ 866 pTo->z = 0; 867 } 868 } 869 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 870 ExprList *pNew; 871 struct ExprList_item *pItem, *pOldItem; 872 int i; 873 if( p==0 ) return 0; 874 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 875 if( pNew==0 ) return 0; 876 pNew->iECursor = 0; 877 pNew->nExpr = pNew->nAlloc = p->nExpr; 878 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 879 if( pItem==0 ){ 880 sqlite3DbFree(db, pNew); 881 return 0; 882 } 883 pOldItem = p->a; 884 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 885 Expr *pNewExpr; 886 Expr *pOldExpr = pOldItem->pExpr; 887 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr, flags); 888 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 889 pItem->sortOrder = pOldItem->sortOrder; 890 pItem->done = 0; 891 pItem->iCol = pOldItem->iCol; 892 pItem->iAlias = pOldItem->iAlias; 893 } 894 return pNew; 895 } 896 897 /* 898 ** If cursors, triggers, views and subqueries are all omitted from 899 ** the build, then none of the following routines, except for 900 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 901 ** called with a NULL argument. 902 */ 903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 904 || !defined(SQLITE_OMIT_SUBQUERY) 905 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 906 SrcList *pNew; 907 int i; 908 int nByte; 909 if( p==0 ) return 0; 910 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 911 pNew = sqlite3DbMallocRaw(db, nByte ); 912 if( pNew==0 ) return 0; 913 pNew->nSrc = pNew->nAlloc = p->nSrc; 914 for(i=0; i<p->nSrc; i++){ 915 struct SrcList_item *pNewItem = &pNew->a[i]; 916 struct SrcList_item *pOldItem = &p->a[i]; 917 Table *pTab; 918 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 919 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 920 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 921 pNewItem->jointype = pOldItem->jointype; 922 pNewItem->iCursor = pOldItem->iCursor; 923 pNewItem->isPopulated = pOldItem->isPopulated; 924 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 925 pNewItem->notIndexed = pOldItem->notIndexed; 926 pNewItem->pIndex = pOldItem->pIndex; 927 pTab = pNewItem->pTab = pOldItem->pTab; 928 if( pTab ){ 929 pTab->nRef++; 930 } 931 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 932 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 933 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 934 pNewItem->colUsed = pOldItem->colUsed; 935 } 936 return pNew; 937 } 938 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 939 IdList *pNew; 940 int i; 941 if( p==0 ) return 0; 942 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 943 if( pNew==0 ) return 0; 944 pNew->nId = pNew->nAlloc = p->nId; 945 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 946 if( pNew->a==0 ){ 947 sqlite3DbFree(db, pNew); 948 return 0; 949 } 950 for(i=0; i<p->nId; i++){ 951 struct IdList_item *pNewItem = &pNew->a[i]; 952 struct IdList_item *pOldItem = &p->a[i]; 953 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 954 pNewItem->idx = pOldItem->idx; 955 } 956 return pNew; 957 } 958 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 959 Select *pNew; 960 if( p==0 ) return 0; 961 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 962 if( pNew==0 ) return 0; 963 /* Always make a copy of the span for top-level expressions in the 964 ** expression list. The logic in SELECT processing that determines 965 ** the names of columns in the result set needs this information */ 966 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags|EXPRDUP_SPAN); 967 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 968 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 969 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 970 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 971 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 972 pNew->op = p->op; 973 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags); 974 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 975 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 976 pNew->iLimit = 0; 977 pNew->iOffset = 0; 978 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 979 pNew->pRightmost = 0; 980 pNew->addrOpenEphm[0] = -1; 981 pNew->addrOpenEphm[1] = -1; 982 pNew->addrOpenEphm[2] = -1; 983 return pNew; 984 } 985 #else 986 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 987 assert( p==0 ); 988 return 0; 989 } 990 #endif 991 992 993 /* 994 ** Add a new element to the end of an expression list. If pList is 995 ** initially NULL, then create a new expression list. 996 */ 997 ExprList *sqlite3ExprListAppend( 998 Parse *pParse, /* Parsing context */ 999 ExprList *pList, /* List to which to append. Might be NULL */ 1000 Expr *pExpr, /* Expression to be appended */ 1001 Token *pName /* AS keyword for the expression */ 1002 ){ 1003 sqlite3 *db = pParse->db; 1004 if( pList==0 ){ 1005 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1006 if( pList==0 ){ 1007 goto no_mem; 1008 } 1009 assert( pList->nAlloc==0 ); 1010 } 1011 if( pList->nAlloc<=pList->nExpr ){ 1012 struct ExprList_item *a; 1013 int n = pList->nAlloc*2 + 4; 1014 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 1015 if( a==0 ){ 1016 goto no_mem; 1017 } 1018 pList->a = a; 1019 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]); 1020 } 1021 assert( pList->a!=0 ); 1022 if( pExpr || pName ){ 1023 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1024 memset(pItem, 0, sizeof(*pItem)); 1025 pItem->zName = sqlite3NameFromToken(db, pName); 1026 pItem->pExpr = pExpr; 1027 pItem->iAlias = 0; 1028 } 1029 return pList; 1030 1031 no_mem: 1032 /* Avoid leaking memory if malloc has failed. */ 1033 sqlite3ExprDelete(db, pExpr); 1034 sqlite3ExprListDelete(db, pList); 1035 return 0; 1036 } 1037 1038 /* 1039 ** If the expression list pEList contains more than iLimit elements, 1040 ** leave an error message in pParse. 1041 */ 1042 void sqlite3ExprListCheckLength( 1043 Parse *pParse, 1044 ExprList *pEList, 1045 const char *zObject 1046 ){ 1047 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1048 testcase( pEList && pEList->nExpr==mx ); 1049 testcase( pEList && pEList->nExpr==mx+1 ); 1050 if( pEList && pEList->nExpr>mx ){ 1051 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1052 } 1053 } 1054 1055 /* 1056 ** Delete an entire expression list. 1057 */ 1058 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1059 int i; 1060 struct ExprList_item *pItem; 1061 if( pList==0 ) return; 1062 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 1063 assert( pList->nExpr<=pList->nAlloc ); 1064 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1065 sqlite3ExprDelete(db, pItem->pExpr); 1066 sqlite3DbFree(db, pItem->zName); 1067 } 1068 sqlite3DbFree(db, pList->a); 1069 sqlite3DbFree(db, pList); 1070 } 1071 1072 /* 1073 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1074 ** to an integer. These routines are checking an expression to see 1075 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1076 ** not constant. 1077 ** 1078 ** These callback routines are used to implement the following: 1079 ** 1080 ** sqlite3ExprIsConstant() 1081 ** sqlite3ExprIsConstantNotJoin() 1082 ** sqlite3ExprIsConstantOrFunction() 1083 ** 1084 */ 1085 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1086 1087 /* If pWalker->u.i is 3 then any term of the expression that comes from 1088 ** the ON or USING clauses of a join disqualifies the expression 1089 ** from being considered constant. */ 1090 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 1091 pWalker->u.i = 0; 1092 return WRC_Abort; 1093 } 1094 1095 switch( pExpr->op ){ 1096 /* Consider functions to be constant if all their arguments are constant 1097 ** and pWalker->u.i==2 */ 1098 case TK_FUNCTION: 1099 if( pWalker->u.i==2 ) return 0; 1100 /* Fall through */ 1101 case TK_ID: 1102 case TK_COLUMN: 1103 case TK_AGG_FUNCTION: 1104 case TK_AGG_COLUMN: 1105 #ifndef SQLITE_OMIT_SUBQUERY 1106 case TK_SELECT: 1107 case TK_EXISTS: 1108 testcase( pExpr->op==TK_SELECT ); 1109 testcase( pExpr->op==TK_EXISTS ); 1110 #endif 1111 testcase( pExpr->op==TK_ID ); 1112 testcase( pExpr->op==TK_COLUMN ); 1113 testcase( pExpr->op==TK_AGG_FUNCTION ); 1114 testcase( pExpr->op==TK_AGG_COLUMN ); 1115 pWalker->u.i = 0; 1116 return WRC_Abort; 1117 default: 1118 return WRC_Continue; 1119 } 1120 } 1121 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1122 UNUSED_PARAMETER(NotUsed); 1123 pWalker->u.i = 0; 1124 return WRC_Abort; 1125 } 1126 static int exprIsConst(Expr *p, int initFlag){ 1127 Walker w; 1128 w.u.i = initFlag; 1129 w.xExprCallback = exprNodeIsConstant; 1130 w.xSelectCallback = selectNodeIsConstant; 1131 sqlite3WalkExpr(&w, p); 1132 return w.u.i; 1133 } 1134 1135 /* 1136 ** Walk an expression tree. Return 1 if the expression is constant 1137 ** and 0 if it involves variables or function calls. 1138 ** 1139 ** For the purposes of this function, a double-quoted string (ex: "abc") 1140 ** is considered a variable but a single-quoted string (ex: 'abc') is 1141 ** a constant. 1142 */ 1143 int sqlite3ExprIsConstant(Expr *p){ 1144 return exprIsConst(p, 1); 1145 } 1146 1147 /* 1148 ** Walk an expression tree. Return 1 if the expression is constant 1149 ** that does no originate from the ON or USING clauses of a join. 1150 ** Return 0 if it involves variables or function calls or terms from 1151 ** an ON or USING clause. 1152 */ 1153 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1154 return exprIsConst(p, 3); 1155 } 1156 1157 /* 1158 ** Walk an expression tree. Return 1 if the expression is constant 1159 ** or a function call with constant arguments. Return and 0 if there 1160 ** are any variables. 1161 ** 1162 ** For the purposes of this function, a double-quoted string (ex: "abc") 1163 ** is considered a variable but a single-quoted string (ex: 'abc') is 1164 ** a constant. 1165 */ 1166 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1167 return exprIsConst(p, 2); 1168 } 1169 1170 /* 1171 ** If the expression p codes a constant integer that is small enough 1172 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1173 ** in *pValue. If the expression is not an integer or if it is too big 1174 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1175 */ 1176 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1177 int rc = 0; 1178 if( p->flags & EP_IntValue ){ 1179 *pValue = p->iTable; 1180 return 1; 1181 } 1182 switch( p->op ){ 1183 case TK_INTEGER: { 1184 rc = sqlite3GetInt32((char*)p->token.z, pValue); 1185 break; 1186 } 1187 case TK_UPLUS: { 1188 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1189 break; 1190 } 1191 case TK_UMINUS: { 1192 int v; 1193 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1194 *pValue = -v; 1195 rc = 1; 1196 } 1197 break; 1198 } 1199 default: break; 1200 } 1201 if( rc ){ 1202 p->op = TK_INTEGER; 1203 p->flags |= EP_IntValue; 1204 p->iTable = *pValue; 1205 } 1206 return rc; 1207 } 1208 1209 /* 1210 ** Return TRUE if the given string is a row-id column name. 1211 */ 1212 int sqlite3IsRowid(const char *z){ 1213 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1214 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1215 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1216 return 0; 1217 } 1218 1219 /* 1220 ** Return true if the IN operator optimization is enabled and 1221 ** the SELECT statement p exists and is of the 1222 ** simple form: 1223 ** 1224 ** SELECT <column> FROM <table> 1225 ** 1226 ** If this is the case, it may be possible to use an existing table 1227 ** or index instead of generating an epheremal table. 1228 */ 1229 #ifndef SQLITE_OMIT_SUBQUERY 1230 static int isCandidateForInOpt(Select *p){ 1231 SrcList *pSrc; 1232 ExprList *pEList; 1233 Table *pTab; 1234 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1235 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1236 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1237 return 0; /* No DISTINCT keyword and no aggregate functions */ 1238 } 1239 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ 1240 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1241 if( p->pOffset ) return 0; 1242 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1243 pSrc = p->pSrc; 1244 assert( pSrc!=0 ); 1245 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1246 if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ 1247 pTab = pSrc->a[0].pTab; 1248 if( pTab==0 ) return 0; 1249 if( pTab->pSelect ) return 0; /* FROM clause is not a view */ 1250 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1251 pEList = p->pEList; 1252 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1253 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1254 return 1; 1255 } 1256 #endif /* SQLITE_OMIT_SUBQUERY */ 1257 1258 /* 1259 ** This function is used by the implementation of the IN (...) operator. 1260 ** It's job is to find or create a b-tree structure that may be used 1261 ** either to test for membership of the (...) set or to iterate through 1262 ** its members, skipping duplicates. 1263 ** 1264 ** The cursor opened on the structure (database table, database index 1265 ** or ephermal table) is stored in pX->iTable before this function returns. 1266 ** The returned value indicates the structure type, as follows: 1267 ** 1268 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1269 ** IN_INDEX_INDEX - The cursor was opened on a database index. 1270 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1271 ** populated epheremal table. 1272 ** 1273 ** An existing structure may only be used if the SELECT is of the simple 1274 ** form: 1275 ** 1276 ** SELECT <column> FROM <table> 1277 ** 1278 ** If prNotFound parameter is 0, then the structure will be used to iterate 1279 ** through the set members, skipping any duplicates. In this case an 1280 ** epheremal table must be used unless the selected <column> is guaranteed 1281 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1282 ** is unique by virtue of a constraint or implicit index. 1283 ** 1284 ** If the prNotFound parameter is not 0, then the structure will be used 1285 ** for fast set membership tests. In this case an epheremal table must 1286 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1287 ** be found with <column> as its left-most column. 1288 ** 1289 ** When the structure is being used for set membership tests, the user 1290 ** needs to know whether or not the structure contains an SQL NULL 1291 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1292 ** If there is a chance that the structure may contain a NULL value at 1293 ** runtime, then a register is allocated and the register number written 1294 ** to *prNotFound. If there is no chance that the structure contains a 1295 ** NULL value, then *prNotFound is left unchanged. 1296 ** 1297 ** If a register is allocated and its location stored in *prNotFound, then 1298 ** its initial value is NULL. If the structure does not remain constant 1299 ** for the duration of the query (i.e. the set is a correlated sub-select), 1300 ** the value of the allocated register is reset to NULL each time the 1301 ** structure is repopulated. This allows the caller to use vdbe code 1302 ** equivalent to the following: 1303 ** 1304 ** if( register==NULL ){ 1305 ** has_null = <test if data structure contains null> 1306 ** register = 1 1307 ** } 1308 ** 1309 ** in order to avoid running the <test if data structure contains null> 1310 ** test more often than is necessary. 1311 */ 1312 #ifndef SQLITE_OMIT_SUBQUERY 1313 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1314 Select *p; 1315 int eType = 0; 1316 int iTab = pParse->nTab++; 1317 int mustBeUnique = !prNotFound; 1318 1319 /* The follwing if(...) expression is true if the SELECT is of the 1320 ** simple form: 1321 ** 1322 ** SELECT <column> FROM <table> 1323 ** 1324 ** If this is the case, it may be possible to use an existing table 1325 ** or index instead of generating an epheremal table. 1326 */ 1327 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1328 if( isCandidateForInOpt(p) ){ 1329 sqlite3 *db = pParse->db; 1330 Index *pIdx; 1331 Expr *pExpr = p->pEList->a[0].pExpr; 1332 int iCol = pExpr->iColumn; 1333 Vdbe *v = sqlite3GetVdbe(pParse); 1334 1335 /* This function is only called from two places. In both cases the vdbe 1336 ** has already been allocated. So assume sqlite3GetVdbe() is always 1337 ** successful here. 1338 */ 1339 assert(v); 1340 if( iCol<0 ){ 1341 int iMem = ++pParse->nMem; 1342 int iAddr; 1343 Table *pTab = p->pSrc->a[0].pTab; 1344 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1345 sqlite3VdbeUsesBtree(v, iDb); 1346 1347 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1348 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1349 1350 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1351 eType = IN_INDEX_ROWID; 1352 1353 sqlite3VdbeJumpHere(v, iAddr); 1354 }else{ 1355 /* The collation sequence used by the comparison. If an index is to 1356 ** be used in place of a temp-table, it must be ordered according 1357 ** to this collation sequence. 1358 */ 1359 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1360 1361 /* Check that the affinity that will be used to perform the 1362 ** comparison is the same as the affinity of the column. If 1363 ** it is not, it is not possible to use any index. 1364 */ 1365 Table *pTab = p->pSrc->a[0].pTab; 1366 char aff = comparisonAffinity(pX); 1367 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); 1368 1369 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1370 if( (pIdx->aiColumn[0]==iCol) 1371 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) 1372 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) 1373 ){ 1374 int iDb; 1375 int iMem = ++pParse->nMem; 1376 int iAddr; 1377 char *pKey; 1378 1379 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); 1380 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); 1381 sqlite3VdbeUsesBtree(v, iDb); 1382 1383 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); 1384 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); 1385 1386 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, 1387 pKey,P4_KEYINFO_HANDOFF); 1388 VdbeComment((v, "%s", pIdx->zName)); 1389 eType = IN_INDEX_INDEX; 1390 1391 sqlite3VdbeJumpHere(v, iAddr); 1392 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1393 *prNotFound = ++pParse->nMem; 1394 } 1395 } 1396 } 1397 } 1398 } 1399 1400 if( eType==0 ){ 1401 int rMayHaveNull = 0; 1402 eType = IN_INDEX_EPH; 1403 if( prNotFound ){ 1404 *prNotFound = rMayHaveNull = ++pParse->nMem; 1405 }else if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ 1406 eType = IN_INDEX_ROWID; 1407 } 1408 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1409 }else{ 1410 pX->iTable = iTab; 1411 } 1412 return eType; 1413 } 1414 #endif 1415 1416 /* 1417 ** Generate code for scalar subqueries used as an expression 1418 ** and IN operators. Examples: 1419 ** 1420 ** (SELECT a FROM b) -- subquery 1421 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1422 ** x IN (4,5,11) -- IN operator with list on right-hand side 1423 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1424 ** 1425 ** The pExpr parameter describes the expression that contains the IN 1426 ** operator or subquery. 1427 ** 1428 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1429 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1430 ** to some integer key column of a table B-Tree. In this case, use an 1431 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1432 ** (slower) variable length keys B-Tree. 1433 */ 1434 #ifndef SQLITE_OMIT_SUBQUERY 1435 void sqlite3CodeSubselect( 1436 Parse *pParse, 1437 Expr *pExpr, 1438 int rMayHaveNull, 1439 int isRowid 1440 ){ 1441 int testAddr = 0; /* One-time test address */ 1442 Vdbe *v = sqlite3GetVdbe(pParse); 1443 if( v==0 ) return; 1444 1445 1446 /* This code must be run in its entirety every time it is encountered 1447 ** if any of the following is true: 1448 ** 1449 ** * The right-hand side is a correlated subquery 1450 ** * The right-hand side is an expression list containing variables 1451 ** * We are inside a trigger 1452 ** 1453 ** If all of the above are false, then we can run this code just once 1454 ** save the results, and reuse the same result on subsequent invocations. 1455 */ 1456 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1457 int mem = ++pParse->nMem; 1458 sqlite3VdbeAddOp1(v, OP_If, mem); 1459 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); 1460 assert( testAddr>0 || pParse->db->mallocFailed ); 1461 } 1462 1463 switch( pExpr->op ){ 1464 case TK_IN: { 1465 char affinity; 1466 KeyInfo keyInfo; 1467 int addr; /* Address of OP_OpenEphemeral instruction */ 1468 Expr *pLeft = pExpr->pLeft; 1469 1470 if( rMayHaveNull ){ 1471 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1472 } 1473 1474 affinity = sqlite3ExprAffinity(pLeft); 1475 1476 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1477 ** expression it is handled the same way. A virtual table is 1478 ** filled with single-field index keys representing the results 1479 ** from the SELECT or the <exprlist>. 1480 ** 1481 ** If the 'x' expression is a column value, or the SELECT... 1482 ** statement returns a column value, then the affinity of that 1483 ** column is used to build the index keys. If both 'x' and the 1484 ** SELECT... statement are columns, then numeric affinity is used 1485 ** if either column has NUMERIC or INTEGER affinity. If neither 1486 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1487 ** is used. 1488 */ 1489 pExpr->iTable = pParse->nTab++; 1490 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1491 memset(&keyInfo, 0, sizeof(keyInfo)); 1492 keyInfo.nField = 1; 1493 1494 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1495 /* Case 1: expr IN (SELECT ...) 1496 ** 1497 ** Generate code to write the results of the select into the temporary 1498 ** table allocated and opened above. 1499 */ 1500 SelectDest dest; 1501 ExprList *pEList; 1502 1503 assert( !isRowid ); 1504 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1505 dest.affinity = (u8)affinity; 1506 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1507 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1508 return; 1509 } 1510 pEList = pExpr->x.pSelect->pEList; 1511 if( pEList && pEList->nExpr>0 ){ 1512 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1513 pEList->a[0].pExpr); 1514 } 1515 }else if( pExpr->x.pList ){ 1516 /* Case 2: expr IN (exprlist) 1517 ** 1518 ** For each expression, build an index key from the evaluation and 1519 ** store it in the temporary table. If <expr> is a column, then use 1520 ** that columns affinity when building index keys. If <expr> is not 1521 ** a column, use numeric affinity. 1522 */ 1523 int i; 1524 ExprList *pList = pExpr->x.pList; 1525 struct ExprList_item *pItem; 1526 int r1, r2, r3; 1527 1528 if( !affinity ){ 1529 affinity = SQLITE_AFF_NONE; 1530 } 1531 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1532 1533 /* Loop through each expression in <exprlist>. */ 1534 r1 = sqlite3GetTempReg(pParse); 1535 r2 = sqlite3GetTempReg(pParse); 1536 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1537 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1538 Expr *pE2 = pItem->pExpr; 1539 1540 /* If the expression is not constant then we will need to 1541 ** disable the test that was generated above that makes sure 1542 ** this code only executes once. Because for a non-constant 1543 ** expression we need to rerun this code each time. 1544 */ 1545 if( testAddr && !sqlite3ExprIsConstant(pE2) ){ 1546 sqlite3VdbeChangeToNoop(v, testAddr-1, 2); 1547 testAddr = 0; 1548 } 1549 1550 /* Evaluate the expression and insert it into the temp table */ 1551 pParse->disableColCache++; 1552 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1553 assert( pParse->disableColCache>0 ); 1554 pParse->disableColCache--; 1555 1556 if( isRowid ){ 1557 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2); 1558 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1559 }else{ 1560 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1561 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1562 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1563 } 1564 } 1565 sqlite3ReleaseTempReg(pParse, r1); 1566 sqlite3ReleaseTempReg(pParse, r2); 1567 } 1568 if( !isRowid ){ 1569 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); 1570 } 1571 break; 1572 } 1573 1574 case TK_EXISTS: 1575 case TK_SELECT: { 1576 /* This has to be a scalar SELECT. Generate code to put the 1577 ** value of this select in a memory cell and record the number 1578 ** of the memory cell in iColumn. 1579 */ 1580 static const Token one = { (u8*)"1", 0, 1 }; 1581 Select *pSel; 1582 SelectDest dest; 1583 1584 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1585 pSel = pExpr->x.pSelect; 1586 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1587 if( pExpr->op==TK_SELECT ){ 1588 dest.eDest = SRT_Mem; 1589 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); 1590 VdbeComment((v, "Init subquery result")); 1591 }else{ 1592 dest.eDest = SRT_Exists; 1593 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); 1594 VdbeComment((v, "Init EXISTS result")); 1595 } 1596 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1597 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1598 if( sqlite3Select(pParse, pSel, &dest) ){ 1599 return; 1600 } 1601 pExpr->iColumn = dest.iParm; 1602 break; 1603 } 1604 } 1605 1606 if( testAddr ){ 1607 sqlite3VdbeJumpHere(v, testAddr-1); 1608 } 1609 1610 return; 1611 } 1612 #endif /* SQLITE_OMIT_SUBQUERY */ 1613 1614 /* 1615 ** Duplicate an 8-byte value 1616 */ 1617 static char *dup8bytes(Vdbe *v, const char *in){ 1618 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1619 if( out ){ 1620 memcpy(out, in, 8); 1621 } 1622 return out; 1623 } 1624 1625 /* 1626 ** Generate an instruction that will put the floating point 1627 ** value described by z[0..n-1] into register iMem. 1628 ** 1629 ** The z[] string will probably not be zero-terminated. But the 1630 ** z[n] character is guaranteed to be something that does not look 1631 ** like the continuation of the number. 1632 */ 1633 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ 1634 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1635 assert( !z || !sqlite3Isdigit(z[n]) ); 1636 UNUSED_PARAMETER(n); 1637 if( z ){ 1638 double value; 1639 char *zV; 1640 sqlite3AtoF(z, &value); 1641 if( sqlite3IsNaN(value) ){ 1642 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); 1643 }else{ 1644 if( negateFlag ) value = -value; 1645 zV = dup8bytes(v, (char*)&value); 1646 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 1647 } 1648 } 1649 } 1650 1651 1652 /* 1653 ** Generate an instruction that will put the integer describe by 1654 ** text z[0..n-1] into register iMem. 1655 ** 1656 ** The z[] string will probably not be zero-terminated. But the 1657 ** z[n] character is guaranteed to be something that does not look 1658 ** like the continuation of the number. 1659 */ 1660 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){ 1661 const char *z; 1662 if( pExpr->flags & EP_IntValue ){ 1663 int i = pExpr->iTable; 1664 if( negFlag ) i = -i; 1665 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1666 }else if( (z = (char*)pExpr->token.z)!=0 ){ 1667 int i; 1668 int n = pExpr->token.n; 1669 assert( !sqlite3Isdigit(z[n]) ); 1670 if( sqlite3GetInt32(z, &i) ){ 1671 if( negFlag ) i = -i; 1672 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 1673 }else if( sqlite3FitsIn64Bits(z, negFlag) ){ 1674 i64 value; 1675 char *zV; 1676 sqlite3Atoi64(z, &value); 1677 if( negFlag ) value = -value; 1678 zV = dup8bytes(v, (char*)&value); 1679 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 1680 }else{ 1681 codeReal(v, z, n, negFlag, iMem); 1682 } 1683 } 1684 } 1685 1686 1687 /* 1688 ** Generate code that will extract the iColumn-th column from 1689 ** table pTab and store the column value in a register. An effort 1690 ** is made to store the column value in register iReg, but this is 1691 ** not guaranteed. The location of the column value is returned. 1692 ** 1693 ** There must be an open cursor to pTab in iTable when this routine 1694 ** is called. If iColumn<0 then code is generated that extracts the rowid. 1695 ** 1696 ** This routine might attempt to reuse the value of the column that 1697 ** has already been loaded into a register. The value will always 1698 ** be used if it has not undergone any affinity changes. But if 1699 ** an affinity change has occurred, then the cached value will only be 1700 ** used if allowAffChng is true. 1701 */ 1702 int sqlite3ExprCodeGetColumn( 1703 Parse *pParse, /* Parsing and code generating context */ 1704 Table *pTab, /* Description of the table we are reading from */ 1705 int iColumn, /* Index of the table column */ 1706 int iTable, /* The cursor pointing to the table */ 1707 int iReg, /* Store results here */ 1708 int allowAffChng /* True if prior affinity changes are OK */ 1709 ){ 1710 Vdbe *v = pParse->pVdbe; 1711 int i; 1712 struct yColCache *p; 1713 1714 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 1715 if( p->iTable==iTable && p->iColumn==iColumn 1716 && (!p->affChange || allowAffChng) ){ 1717 #if 0 1718 sqlite3VdbeAddOp0(v, OP_Noop); 1719 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); 1720 #endif 1721 return p->iReg; 1722 } 1723 } 1724 assert( v!=0 ); 1725 if( iColumn<0 ){ 1726 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1727 sqlite3VdbeAddOp2(v, op, iTable, iReg); 1728 }else if( pTab==0 ){ 1729 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); 1730 }else{ 1731 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1732 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); 1733 sqlite3ColumnDefault(v, pTab, iColumn); 1734 #ifndef SQLITE_OMIT_FLOATING_POINT 1735 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1736 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 1737 } 1738 #endif 1739 } 1740 if( pParse->disableColCache==0 ){ 1741 i = pParse->iColCache; 1742 p = &pParse->aColCache[i]; 1743 p->iTable = iTable; 1744 p->iColumn = iColumn; 1745 p->iReg = iReg; 1746 p->affChange = 0; 1747 i++; 1748 if( i>=ArraySize(pParse->aColCache) ) i = 0; 1749 if( i>pParse->nColCache ) pParse->nColCache = i; 1750 pParse->iColCache = i; 1751 } 1752 return iReg; 1753 } 1754 1755 /* 1756 ** Clear all column cache entries associated with the vdbe 1757 ** cursor with cursor number iTable. 1758 */ 1759 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ 1760 if( iTable<0 ){ 1761 pParse->nColCache = 0; 1762 pParse->iColCache = 0; 1763 }else{ 1764 int i; 1765 for(i=0; i<pParse->nColCache; i++){ 1766 if( pParse->aColCache[i].iTable==iTable ){ 1767 testcase( i==pParse->nColCache-1 ); 1768 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; 1769 pParse->iColCache = pParse->nColCache; 1770 } 1771 } 1772 } 1773 } 1774 1775 /* 1776 ** Record the fact that an affinity change has occurred on iCount 1777 ** registers starting with iStart. 1778 */ 1779 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 1780 int iEnd = iStart + iCount - 1; 1781 int i; 1782 for(i=0; i<pParse->nColCache; i++){ 1783 int r = pParse->aColCache[i].iReg; 1784 if( r>=iStart && r<=iEnd ){ 1785 pParse->aColCache[i].affChange = 1; 1786 } 1787 } 1788 } 1789 1790 /* 1791 ** Generate code to move content from registers iFrom...iFrom+nReg-1 1792 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 1793 */ 1794 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 1795 int i; 1796 if( iFrom==iTo ) return; 1797 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 1798 for(i=0; i<pParse->nColCache; i++){ 1799 int x = pParse->aColCache[i].iReg; 1800 if( x>=iFrom && x<iFrom+nReg ){ 1801 pParse->aColCache[i].iReg += iTo-iFrom; 1802 } 1803 } 1804 } 1805 1806 /* 1807 ** Generate code to copy content from registers iFrom...iFrom+nReg-1 1808 ** over to iTo..iTo+nReg-1. 1809 */ 1810 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){ 1811 int i; 1812 if( iFrom==iTo ) return; 1813 for(i=0; i<nReg; i++){ 1814 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); 1815 } 1816 } 1817 1818 /* 1819 ** Return true if any register in the range iFrom..iTo (inclusive) 1820 ** is used as part of the column cache. 1821 */ 1822 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 1823 int i; 1824 for(i=0; i<pParse->nColCache; i++){ 1825 int r = pParse->aColCache[i].iReg; 1826 if( r>=iFrom && r<=iTo ) return 1; 1827 } 1828 return 0; 1829 } 1830 1831 /* 1832 ** There is a value in register iReg. 1833 ** 1834 ** We are going to modify the value, so we need to make sure it 1835 ** is not a cached register. If iReg is a cached register, 1836 ** then clear the corresponding cache line. 1837 */ 1838 void sqlite3ExprWritableRegister(Parse *pParse, int iReg){ 1839 int i; 1840 if( usedAsColumnCache(pParse, iReg, iReg) ){ 1841 for(i=0; i<pParse->nColCache; i++){ 1842 if( pParse->aColCache[i].iReg==iReg ){ 1843 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; 1844 pParse->iColCache = pParse->nColCache; 1845 } 1846 } 1847 } 1848 } 1849 1850 /* 1851 ** If the last instruction coded is an ephemeral copy of any of 1852 ** the registers in the nReg registers beginning with iReg, then 1853 ** convert the last instruction from OP_SCopy to OP_Copy. 1854 */ 1855 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ 1856 int addr; 1857 VdbeOp *pOp; 1858 Vdbe *v; 1859 1860 v = pParse->pVdbe; 1861 addr = sqlite3VdbeCurrentAddr(v); 1862 pOp = sqlite3VdbeGetOp(v, addr-1); 1863 assert( pOp || pParse->db->mallocFailed ); 1864 if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ 1865 pOp->opcode = OP_Copy; 1866 } 1867 } 1868 1869 /* 1870 ** Generate code to store the value of the iAlias-th alias in register 1871 ** target. The first time this is called, pExpr is evaluated to compute 1872 ** the value of the alias. The value is stored in an auxiliary register 1873 ** and the number of that register is returned. On subsequent calls, 1874 ** the register number is returned without generating any code. 1875 ** 1876 ** Note that in order for this to work, code must be generated in the 1877 ** same order that it is executed. 1878 ** 1879 ** Aliases are numbered starting with 1. So iAlias is in the range 1880 ** of 1 to pParse->nAlias inclusive. 1881 ** 1882 ** pParse->aAlias[iAlias-1] records the register number where the value 1883 ** of the iAlias-th alias is stored. If zero, that means that the 1884 ** alias has not yet been computed. 1885 */ 1886 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){ 1887 sqlite3 *db = pParse->db; 1888 int iReg; 1889 if( pParse->nAliasAlloc<pParse->nAlias ){ 1890 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias, 1891 sizeof(pParse->aAlias[0])*pParse->nAlias ); 1892 testcase( db->mallocFailed && pParse->nAliasAlloc>0 ); 1893 if( db->mallocFailed ) return 0; 1894 memset(&pParse->aAlias[pParse->nAliasAlloc], 0, 1895 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0])); 1896 pParse->nAliasAlloc = pParse->nAlias; 1897 } 1898 assert( iAlias>0 && iAlias<=pParse->nAlias ); 1899 iReg = pParse->aAlias[iAlias-1]; 1900 if( iReg==0 ){ 1901 if( pParse->disableColCache ){ 1902 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 1903 }else{ 1904 iReg = ++pParse->nMem; 1905 sqlite3ExprCode(pParse, pExpr, iReg); 1906 pParse->aAlias[iAlias-1] = iReg; 1907 } 1908 } 1909 return iReg; 1910 } 1911 1912 /* 1913 ** Generate code into the current Vdbe to evaluate the given 1914 ** expression. Attempt to store the results in register "target". 1915 ** Return the register where results are stored. 1916 ** 1917 ** With this routine, there is no guarantee that results will 1918 ** be stored in target. The result might be stored in some other 1919 ** register if it is convenient to do so. The calling function 1920 ** must check the return code and move the results to the desired 1921 ** register. 1922 */ 1923 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 1924 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 1925 int op; /* The opcode being coded */ 1926 int inReg = target; /* Results stored in register inReg */ 1927 int regFree1 = 0; /* If non-zero free this temporary register */ 1928 int regFree2 = 0; /* If non-zero free this temporary register */ 1929 int r1, r2, r3, r4; /* Various register numbers */ 1930 sqlite3 *db; 1931 1932 db = pParse->db; 1933 assert( v!=0 || db->mallocFailed ); 1934 assert( target>0 && target<=pParse->nMem ); 1935 if( v==0 ) return 0; 1936 1937 if( pExpr==0 ){ 1938 op = TK_NULL; 1939 }else{ 1940 op = pExpr->op; 1941 } 1942 switch( op ){ 1943 case TK_AGG_COLUMN: { 1944 AggInfo *pAggInfo = pExpr->pAggInfo; 1945 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1946 if( !pAggInfo->directMode ){ 1947 assert( pCol->iMem>0 ); 1948 inReg = pCol->iMem; 1949 break; 1950 }else if( pAggInfo->useSortingIdx ){ 1951 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, 1952 pCol->iSorterColumn, target); 1953 break; 1954 } 1955 /* Otherwise, fall thru into the TK_COLUMN case */ 1956 } 1957 case TK_COLUMN: { 1958 if( pExpr->iTable<0 ){ 1959 /* This only happens when coding check constraints */ 1960 assert( pParse->ckBase>0 ); 1961 inReg = pExpr->iColumn + pParse->ckBase; 1962 }else{ 1963 testcase( (pExpr->flags & EP_AnyAff)!=0 ); 1964 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 1965 pExpr->iColumn, pExpr->iTable, target, 1966 pExpr->flags & EP_AnyAff); 1967 } 1968 break; 1969 } 1970 case TK_INTEGER: { 1971 codeInteger(v, pExpr, 0, target); 1972 break; 1973 } 1974 case TK_FLOAT: { 1975 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); 1976 break; 1977 } 1978 case TK_STRING: { 1979 sqlite3DequoteExpr(db, pExpr); 1980 sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, 1981 (char*)pExpr->token.z, pExpr->token.n); 1982 break; 1983 } 1984 case TK_NULL: { 1985 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 1986 break; 1987 } 1988 #ifndef SQLITE_OMIT_BLOB_LITERAL 1989 case TK_BLOB: { 1990 int n; 1991 const char *z; 1992 char *zBlob; 1993 assert( pExpr->token.n>=3 ); 1994 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); 1995 assert( pExpr->token.z[1]=='\'' ); 1996 assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); 1997 n = pExpr->token.n - 3; 1998 z = (char*)pExpr->token.z + 2; 1999 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2000 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2001 break; 2002 } 2003 #endif 2004 case TK_VARIABLE: { 2005 int iPrior; 2006 VdbeOp *pOp; 2007 if( pExpr->token.n<=1 2008 && (iPrior = sqlite3VdbeCurrentAddr(v)-1)>=0 2009 && (pOp = sqlite3VdbeGetOp(v, iPrior))->opcode==OP_Variable 2010 && pOp->p1+pOp->p3==pExpr->iTable 2011 && pOp->p2+pOp->p3==target 2012 && pOp->p4.z==0 2013 ){ 2014 /* If the previous instruction was a copy of the previous unnamed 2015 ** parameter into the previous register, then simply increment the 2016 ** repeat count on the prior instruction rather than making a new 2017 ** instruction. 2018 */ 2019 pOp->p3++; 2020 }else{ 2021 sqlite3VdbeAddOp3(v, OP_Variable, pExpr->iTable, target, 1); 2022 if( pExpr->token.n>1 ){ 2023 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); 2024 } 2025 } 2026 break; 2027 } 2028 case TK_REGISTER: { 2029 inReg = pExpr->iTable; 2030 break; 2031 } 2032 case TK_AS: { 2033 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target); 2034 break; 2035 } 2036 #ifndef SQLITE_OMIT_CAST 2037 case TK_CAST: { 2038 /* Expressions of the form: CAST(pLeft AS token) */ 2039 int aff, to_op; 2040 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2041 aff = sqlite3AffinityType(&pExpr->token); 2042 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2043 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2044 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2045 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2046 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2047 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2048 testcase( to_op==OP_ToText ); 2049 testcase( to_op==OP_ToBlob ); 2050 testcase( to_op==OP_ToNumeric ); 2051 testcase( to_op==OP_ToInt ); 2052 testcase( to_op==OP_ToReal ); 2053 if( inReg!=target ){ 2054 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2055 inReg = target; 2056 } 2057 sqlite3VdbeAddOp1(v, to_op, inReg); 2058 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2059 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2060 break; 2061 } 2062 #endif /* SQLITE_OMIT_CAST */ 2063 case TK_LT: 2064 case TK_LE: 2065 case TK_GT: 2066 case TK_GE: 2067 case TK_NE: 2068 case TK_EQ: { 2069 assert( TK_LT==OP_Lt ); 2070 assert( TK_LE==OP_Le ); 2071 assert( TK_GT==OP_Gt ); 2072 assert( TK_GE==OP_Ge ); 2073 assert( TK_EQ==OP_Eq ); 2074 assert( TK_NE==OP_Ne ); 2075 testcase( op==TK_LT ); 2076 testcase( op==TK_LE ); 2077 testcase( op==TK_GT ); 2078 testcase( op==TK_GE ); 2079 testcase( op==TK_EQ ); 2080 testcase( op==TK_NE ); 2081 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2082 pExpr->pRight, &r2, ®Free2); 2083 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2084 r1, r2, inReg, SQLITE_STOREP2); 2085 testcase( regFree1==0 ); 2086 testcase( regFree2==0 ); 2087 break; 2088 } 2089 case TK_AND: 2090 case TK_OR: 2091 case TK_PLUS: 2092 case TK_STAR: 2093 case TK_MINUS: 2094 case TK_REM: 2095 case TK_BITAND: 2096 case TK_BITOR: 2097 case TK_SLASH: 2098 case TK_LSHIFT: 2099 case TK_RSHIFT: 2100 case TK_CONCAT: { 2101 assert( TK_AND==OP_And ); 2102 assert( TK_OR==OP_Or ); 2103 assert( TK_PLUS==OP_Add ); 2104 assert( TK_MINUS==OP_Subtract ); 2105 assert( TK_REM==OP_Remainder ); 2106 assert( TK_BITAND==OP_BitAnd ); 2107 assert( TK_BITOR==OP_BitOr ); 2108 assert( TK_SLASH==OP_Divide ); 2109 assert( TK_LSHIFT==OP_ShiftLeft ); 2110 assert( TK_RSHIFT==OP_ShiftRight ); 2111 assert( TK_CONCAT==OP_Concat ); 2112 testcase( op==TK_AND ); 2113 testcase( op==TK_OR ); 2114 testcase( op==TK_PLUS ); 2115 testcase( op==TK_MINUS ); 2116 testcase( op==TK_REM ); 2117 testcase( op==TK_BITAND ); 2118 testcase( op==TK_BITOR ); 2119 testcase( op==TK_SLASH ); 2120 testcase( op==TK_LSHIFT ); 2121 testcase( op==TK_RSHIFT ); 2122 testcase( op==TK_CONCAT ); 2123 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2124 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2125 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2126 testcase( regFree1==0 ); 2127 testcase( regFree2==0 ); 2128 break; 2129 } 2130 case TK_UMINUS: { 2131 Expr *pLeft = pExpr->pLeft; 2132 assert( pLeft ); 2133 if( pLeft->op==TK_FLOAT ){ 2134 codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target); 2135 }else if( pLeft->op==TK_INTEGER ){ 2136 codeInteger(v, pLeft, 1, target); 2137 }else{ 2138 regFree1 = r1 = sqlite3GetTempReg(pParse); 2139 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); 2140 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2141 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2142 testcase( regFree2==0 ); 2143 } 2144 inReg = target; 2145 break; 2146 } 2147 case TK_BITNOT: 2148 case TK_NOT: { 2149 assert( TK_BITNOT==OP_BitNot ); 2150 assert( TK_NOT==OP_Not ); 2151 testcase( op==TK_BITNOT ); 2152 testcase( op==TK_NOT ); 2153 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2154 testcase( regFree1==0 ); 2155 inReg = target; 2156 sqlite3VdbeAddOp2(v, op, r1, inReg); 2157 break; 2158 } 2159 case TK_ISNULL: 2160 case TK_NOTNULL: { 2161 int addr; 2162 assert( TK_ISNULL==OP_IsNull ); 2163 assert( TK_NOTNULL==OP_NotNull ); 2164 testcase( op==TK_ISNULL ); 2165 testcase( op==TK_NOTNULL ); 2166 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2167 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2168 testcase( regFree1==0 ); 2169 addr = sqlite3VdbeAddOp1(v, op, r1); 2170 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2171 sqlite3VdbeJumpHere(v, addr); 2172 break; 2173 } 2174 case TK_AGG_FUNCTION: { 2175 AggInfo *pInfo = pExpr->pAggInfo; 2176 if( pInfo==0 ){ 2177 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 2178 &pExpr->span); 2179 }else{ 2180 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2181 } 2182 break; 2183 } 2184 case TK_CONST_FUNC: 2185 case TK_FUNCTION: { 2186 ExprList *pList = ( 2187 ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_SpanOnly) ? 0 : pExpr->x.pList 2188 ); 2189 int nExpr = pList ? pList->nExpr : 0; 2190 FuncDef *pDef; 2191 int nId; 2192 const char *zId; 2193 int constMask = 0; 2194 int i; 2195 u8 enc = ENC(db); 2196 CollSeq *pColl = 0; 2197 2198 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2199 testcase( op==TK_CONST_FUNC ); 2200 testcase( op==TK_FUNCTION ); 2201 zId = (char*)pExpr->token.z; 2202 nId = pExpr->token.n; 2203 pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0); 2204 assert( pDef!=0 ); 2205 if( pList ){ 2206 nExpr = pList->nExpr; 2207 r1 = sqlite3GetTempRange(pParse, nExpr); 2208 sqlite3ExprCodeExprList(pParse, pList, r1, 1); 2209 }else{ 2210 nExpr = r1 = 0; 2211 } 2212 #ifndef SQLITE_OMIT_VIRTUALTABLE 2213 /* Possibly overload the function if the first argument is 2214 ** a virtual table column. 2215 ** 2216 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2217 ** second argument, not the first, as the argument to test to 2218 ** see if it is a column in a virtual table. This is done because 2219 ** the left operand of infix functions (the operand we want to 2220 ** control overloading) ends up as the second argument to the 2221 ** function. The expression "A glob B" is equivalent to 2222 ** "glob(B,A). We want to use the A in "A glob B" to test 2223 ** for function overloading. But we use the B term in "glob(B,A)". 2224 */ 2225 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 2226 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 2227 }else if( nExpr>0 ){ 2228 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 2229 } 2230 #endif 2231 for(i=0; i<nExpr && i<32; i++){ 2232 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 2233 constMask |= (1<<i); 2234 } 2235 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2236 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 2237 } 2238 } 2239 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){ 2240 if( !pColl ) pColl = db->pDfltColl; 2241 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2242 } 2243 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2244 (char*)pDef, P4_FUNCDEF); 2245 sqlite3VdbeChangeP5(v, (u8)nExpr); 2246 if( nExpr ){ 2247 sqlite3ReleaseTempRange(pParse, r1, nExpr); 2248 } 2249 sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); 2250 break; 2251 } 2252 #ifndef SQLITE_OMIT_SUBQUERY 2253 case TK_EXISTS: 2254 case TK_SELECT: { 2255 testcase( op==TK_EXISTS ); 2256 testcase( op==TK_SELECT ); 2257 if( pExpr->iColumn==0 ){ 2258 sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2259 } 2260 inReg = pExpr->iColumn; 2261 break; 2262 } 2263 case TK_IN: { 2264 int rNotFound = 0; 2265 int rMayHaveNull = 0; 2266 int j2, j3, j4, j5; 2267 char affinity; 2268 int eType; 2269 2270 VdbeNoopComment((v, "begin IN expr r%d", target)); 2271 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull); 2272 if( rMayHaveNull ){ 2273 rNotFound = ++pParse->nMem; 2274 } 2275 2276 /* Figure out the affinity to use to create a key from the results 2277 ** of the expression. affinityStr stores a static string suitable for 2278 ** P4 of OP_MakeRecord. 2279 */ 2280 affinity = comparisonAffinity(pExpr); 2281 2282 2283 /* Code the <expr> from "<expr> IN (...)". The temporary table 2284 ** pExpr->iTable contains the values that make up the (...) set. 2285 */ 2286 pParse->disableColCache++; 2287 sqlite3ExprCode(pParse, pExpr->pLeft, target); 2288 pParse->disableColCache--; 2289 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target); 2290 if( eType==IN_INDEX_ROWID ){ 2291 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target); 2292 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target); 2293 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2294 j5 = sqlite3VdbeAddOp0(v, OP_Goto); 2295 sqlite3VdbeJumpHere(v, j3); 2296 sqlite3VdbeJumpHere(v, j4); 2297 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2298 }else{ 2299 r2 = regFree2 = sqlite3GetTempReg(pParse); 2300 2301 /* Create a record and test for set membership. If the set contains 2302 ** the value, then jump to the end of the test code. The target 2303 ** register still contains the true (1) value written to it earlier. 2304 */ 2305 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1); 2306 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2307 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); 2308 2309 /* If the set membership test fails, then the result of the 2310 ** "x IN (...)" expression must be either 0 or NULL. If the set 2311 ** contains no NULL values, then the result is 0. If the set 2312 ** contains one or more NULL values, then the result of the 2313 ** expression is also NULL. 2314 */ 2315 if( rNotFound==0 ){ 2316 /* This branch runs if it is known at compile time (now) that 2317 ** the set contains no NULL values. This happens as the result 2318 ** of a "NOT NULL" constraint in the database schema. No need 2319 ** to test the data structure at runtime in this case. 2320 */ 2321 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2322 }else{ 2323 /* This block populates the rNotFound register with either NULL 2324 ** or 0 (an integer value). If the data structure contains one 2325 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it 2326 ** to 0. If register rMayHaveNull is already set to some value 2327 ** other than NULL, then the test has already been run and 2328 ** rNotFound is already populated. 2329 */ 2330 static const char nullRecord[] = { 0x02, 0x00 }; 2331 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull); 2332 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound); 2333 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 2334 nullRecord, P4_STATIC); 2335 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull); 2336 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound); 2337 sqlite3VdbeJumpHere(v, j4); 2338 sqlite3VdbeJumpHere(v, j3); 2339 2340 /* Copy the value of register rNotFound (which is either NULL or 0) 2341 ** into the target register. This will be the result of the 2342 ** expression. 2343 */ 2344 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target); 2345 } 2346 } 2347 sqlite3VdbeJumpHere(v, j2); 2348 sqlite3VdbeJumpHere(v, j5); 2349 VdbeComment((v, "end IN expr r%d", target)); 2350 break; 2351 } 2352 #endif 2353 /* 2354 ** x BETWEEN y AND z 2355 ** 2356 ** This is equivalent to 2357 ** 2358 ** x>=y AND x<=z 2359 ** 2360 ** X is stored in pExpr->pLeft. 2361 ** Y is stored in pExpr->pList->a[0].pExpr. 2362 ** Z is stored in pExpr->pList->a[1].pExpr. 2363 */ 2364 case TK_BETWEEN: { 2365 Expr *pLeft = pExpr->pLeft; 2366 struct ExprList_item *pLItem = pExpr->x.pList->a; 2367 Expr *pRight = pLItem->pExpr; 2368 2369 codeCompareOperands(pParse, pLeft, &r1, ®Free1, 2370 pRight, &r2, ®Free2); 2371 testcase( regFree1==0 ); 2372 testcase( regFree2==0 ); 2373 r3 = sqlite3GetTempReg(pParse); 2374 r4 = sqlite3GetTempReg(pParse); 2375 codeCompare(pParse, pLeft, pRight, OP_Ge, 2376 r1, r2, r3, SQLITE_STOREP2); 2377 pLItem++; 2378 pRight = pLItem->pExpr; 2379 sqlite3ReleaseTempReg(pParse, regFree2); 2380 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2381 testcase( regFree2==0 ); 2382 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2383 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2384 sqlite3ReleaseTempReg(pParse, r3); 2385 sqlite3ReleaseTempReg(pParse, r4); 2386 break; 2387 } 2388 case TK_UPLUS: { 2389 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2390 break; 2391 } 2392 2393 /* 2394 ** Form A: 2395 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2396 ** 2397 ** Form B: 2398 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2399 ** 2400 ** Form A is can be transformed into the equivalent form B as follows: 2401 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2402 ** WHEN x=eN THEN rN ELSE y END 2403 ** 2404 ** X (if it exists) is in pExpr->pLeft. 2405 ** Y is in pExpr->pRight. The Y is also optional. If there is no 2406 ** ELSE clause and no other term matches, then the result of the 2407 ** exprssion is NULL. 2408 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2409 ** 2410 ** The result of the expression is the Ri for the first matching Ei, 2411 ** or if there is no matching Ei, the ELSE term Y, or if there is 2412 ** no ELSE term, NULL. 2413 */ 2414 case TK_CASE: { 2415 int endLabel; /* GOTO label for end of CASE stmt */ 2416 int nextCase; /* GOTO label for next WHEN clause */ 2417 int nExpr; /* 2x number of WHEN terms */ 2418 int i; /* Loop counter */ 2419 ExprList *pEList; /* List of WHEN terms */ 2420 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2421 Expr opCompare; /* The X==Ei expression */ 2422 Expr cacheX; /* Cached expression X */ 2423 Expr *pX; /* The X expression */ 2424 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2425 2426 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2427 assert((pExpr->x.pList->nExpr % 2) == 0); 2428 assert(pExpr->x.pList->nExpr > 0); 2429 pEList = pExpr->x.pList; 2430 aListelem = pEList->a; 2431 nExpr = pEList->nExpr; 2432 endLabel = sqlite3VdbeMakeLabel(v); 2433 if( (pX = pExpr->pLeft)!=0 ){ 2434 cacheX = *pX; 2435 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); 2436 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); 2437 testcase( regFree1==0 ); 2438 cacheX.op = TK_REGISTER; 2439 opCompare.op = TK_EQ; 2440 opCompare.pLeft = &cacheX; 2441 pTest = &opCompare; 2442 } 2443 pParse->disableColCache++; 2444 for(i=0; i<nExpr; i=i+2){ 2445 if( pX ){ 2446 assert( pTest!=0 ); 2447 opCompare.pRight = aListelem[i].pExpr; 2448 }else{ 2449 pTest = aListelem[i].pExpr; 2450 } 2451 nextCase = sqlite3VdbeMakeLabel(v); 2452 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER ); 2453 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2454 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2455 testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); 2456 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2457 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2458 sqlite3VdbeResolveLabel(v, nextCase); 2459 } 2460 if( pExpr->pRight ){ 2461 sqlite3ExprCode(pParse, pExpr->pRight, target); 2462 }else{ 2463 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2464 } 2465 sqlite3VdbeResolveLabel(v, endLabel); 2466 assert( pParse->disableColCache>0 ); 2467 pParse->disableColCache--; 2468 break; 2469 } 2470 #ifndef SQLITE_OMIT_TRIGGER 2471 case TK_RAISE: { 2472 if( !pParse->trigStack ){ 2473 sqlite3ErrorMsg(pParse, 2474 "RAISE() may only be used within a trigger-program"); 2475 return 0; 2476 } 2477 if( pExpr->affinity!=OE_Ignore ){ 2478 assert( pExpr->affinity==OE_Rollback || 2479 pExpr->affinity == OE_Abort || 2480 pExpr->affinity == OE_Fail ); 2481 sqlite3DequoteExpr(db, pExpr); 2482 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->affinity, 0, 2483 (char*)pExpr->token.z, pExpr->token.n); 2484 } else { 2485 assert( pExpr->affinity == OE_Ignore ); 2486 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); 2487 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2488 VdbeComment((v, "raise(IGNORE)")); 2489 } 2490 break; 2491 } 2492 #endif 2493 } 2494 sqlite3ReleaseTempReg(pParse, regFree1); 2495 sqlite3ReleaseTempReg(pParse, regFree2); 2496 return inReg; 2497 } 2498 2499 /* 2500 ** Generate code to evaluate an expression and store the results 2501 ** into a register. Return the register number where the results 2502 ** are stored. 2503 ** 2504 ** If the register is a temporary register that can be deallocated, 2505 ** then write its number into *pReg. If the result register is not 2506 ** a temporary, then set *pReg to zero. 2507 */ 2508 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 2509 int r1 = sqlite3GetTempReg(pParse); 2510 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2511 if( r2==r1 ){ 2512 *pReg = r1; 2513 }else{ 2514 sqlite3ReleaseTempReg(pParse, r1); 2515 *pReg = 0; 2516 } 2517 return r2; 2518 } 2519 2520 /* 2521 ** Generate code that will evaluate expression pExpr and store the 2522 ** results in register target. The results are guaranteed to appear 2523 ** in register target. 2524 */ 2525 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 2526 int inReg; 2527 2528 assert( target>0 && target<=pParse->nMem ); 2529 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 2530 assert( pParse->pVdbe || pParse->db->mallocFailed ); 2531 if( inReg!=target && pParse->pVdbe ){ 2532 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 2533 } 2534 return target; 2535 } 2536 2537 /* 2538 ** Generate code that evalutes the given expression and puts the result 2539 ** in register target. 2540 ** 2541 ** Also make a copy of the expression results into another "cache" register 2542 ** and modify the expression so that the next time it is evaluated, 2543 ** the result is a copy of the cache register. 2544 ** 2545 ** This routine is used for expressions that are used multiple 2546 ** times. They are evaluated once and the results of the expression 2547 ** are reused. 2548 */ 2549 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 2550 Vdbe *v = pParse->pVdbe; 2551 int inReg; 2552 inReg = sqlite3ExprCode(pParse, pExpr, target); 2553 assert( target>0 ); 2554 if( pExpr->op!=TK_REGISTER ){ 2555 int iMem; 2556 iMem = ++pParse->nMem; 2557 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 2558 pExpr->iTable = iMem; 2559 pExpr->op = TK_REGISTER; 2560 } 2561 return inReg; 2562 } 2563 2564 /* 2565 ** Return TRUE if pExpr is an constant expression that is appropriate 2566 ** for factoring out of a loop. Appropriate expressions are: 2567 ** 2568 ** * Any expression that evaluates to two or more opcodes. 2569 ** 2570 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 2571 ** or OP_Variable that does not need to be placed in a 2572 ** specific register. 2573 ** 2574 ** There is no point in factoring out single-instruction constant 2575 ** expressions that need to be placed in a particular register. 2576 ** We could factor them out, but then we would end up adding an 2577 ** OP_SCopy instruction to move the value into the correct register 2578 ** later. We might as well just use the original instruction and 2579 ** avoid the OP_SCopy. 2580 */ 2581 static int isAppropriateForFactoring(Expr *p){ 2582 if( !sqlite3ExprIsConstantNotJoin(p) ){ 2583 return 0; /* Only constant expressions are appropriate for factoring */ 2584 } 2585 if( (p->flags & EP_FixedDest)==0 ){ 2586 return 1; /* Any constant without a fixed destination is appropriate */ 2587 } 2588 while( p->op==TK_UPLUS ) p = p->pLeft; 2589 switch( p->op ){ 2590 #ifndef SQLITE_OMIT_BLOB_LITERAL 2591 case TK_BLOB: 2592 #endif 2593 case TK_VARIABLE: 2594 case TK_INTEGER: 2595 case TK_FLOAT: 2596 case TK_NULL: 2597 case TK_STRING: { 2598 testcase( p->op==TK_BLOB ); 2599 testcase( p->op==TK_VARIABLE ); 2600 testcase( p->op==TK_INTEGER ); 2601 testcase( p->op==TK_FLOAT ); 2602 testcase( p->op==TK_NULL ); 2603 testcase( p->op==TK_STRING ); 2604 /* Single-instruction constants with a fixed destination are 2605 ** better done in-line. If we factor them, they will just end 2606 ** up generating an OP_SCopy to move the value to the destination 2607 ** register. */ 2608 return 0; 2609 } 2610 case TK_UMINUS: { 2611 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ 2612 return 0; 2613 } 2614 break; 2615 } 2616 default: { 2617 break; 2618 } 2619 } 2620 return 1; 2621 } 2622 2623 /* 2624 ** If pExpr is a constant expression that is appropriate for 2625 ** factoring out of a loop, then evaluate the expression 2626 ** into a register and convert the expression into a TK_REGISTER 2627 ** expression. 2628 */ 2629 static int evalConstExpr(Walker *pWalker, Expr *pExpr){ 2630 Parse *pParse = pWalker->pParse; 2631 switch( pExpr->op ){ 2632 case TK_REGISTER: { 2633 return 1; 2634 } 2635 case TK_FUNCTION: 2636 case TK_AGG_FUNCTION: 2637 case TK_CONST_FUNC: { 2638 /* The arguments to a function have a fixed destination. 2639 ** Mark them this way to avoid generated unneeded OP_SCopy 2640 ** instructions. 2641 */ 2642 ExprList *pList = pExpr->x.pList; 2643 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2644 if( pList ){ 2645 int i = pList->nExpr; 2646 struct ExprList_item *pItem = pList->a; 2647 for(; i>0; i--, pItem++){ 2648 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; 2649 } 2650 } 2651 break; 2652 } 2653 } 2654 if( isAppropriateForFactoring(pExpr) ){ 2655 int r1 = ++pParse->nMem; 2656 int r2; 2657 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 2658 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); 2659 pExpr->op = TK_REGISTER; 2660 pExpr->iTable = r2; 2661 return WRC_Prune; 2662 } 2663 return WRC_Continue; 2664 } 2665 2666 /* 2667 ** Preevaluate constant subexpressions within pExpr and store the 2668 ** results in registers. Modify pExpr so that the constant subexpresions 2669 ** are TK_REGISTER opcodes that refer to the precomputed values. 2670 */ 2671 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ 2672 Walker w; 2673 w.xExprCallback = evalConstExpr; 2674 w.xSelectCallback = 0; 2675 w.pParse = pParse; 2676 sqlite3WalkExpr(&w, pExpr); 2677 } 2678 2679 2680 /* 2681 ** Generate code that pushes the value of every element of the given 2682 ** expression list into a sequence of registers beginning at target. 2683 ** 2684 ** Return the number of elements evaluated. 2685 */ 2686 int sqlite3ExprCodeExprList( 2687 Parse *pParse, /* Parsing context */ 2688 ExprList *pList, /* The expression list to be coded */ 2689 int target, /* Where to write results */ 2690 int doHardCopy /* Make a hard copy of every element */ 2691 ){ 2692 struct ExprList_item *pItem; 2693 int i, n; 2694 assert( pList!=0 ); 2695 assert( target>0 ); 2696 n = pList->nExpr; 2697 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 2698 if( pItem->iAlias ){ 2699 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target+i); 2700 Vdbe *v = sqlite3GetVdbe(pParse); 2701 if( iReg!=target+i ){ 2702 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i); 2703 } 2704 }else{ 2705 sqlite3ExprCode(pParse, pItem->pExpr, target+i); 2706 } 2707 if( doHardCopy ){ 2708 sqlite3ExprHardCopy(pParse, target, n); 2709 } 2710 } 2711 return n; 2712 } 2713 2714 /* 2715 ** Generate code for a boolean expression such that a jump is made 2716 ** to the label "dest" if the expression is true but execution 2717 ** continues straight thru if the expression is false. 2718 ** 2719 ** If the expression evaluates to NULL (neither true nor false), then 2720 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 2721 ** 2722 ** This code depends on the fact that certain token values (ex: TK_EQ) 2723 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2724 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2725 ** the make process cause these values to align. Assert()s in the code 2726 ** below verify that the numbers are aligned correctly. 2727 */ 2728 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2729 Vdbe *v = pParse->pVdbe; 2730 int op = 0; 2731 int regFree1 = 0; 2732 int regFree2 = 0; 2733 int r1, r2; 2734 2735 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2736 if( v==0 || pExpr==0 ) return; 2737 op = pExpr->op; 2738 switch( op ){ 2739 case TK_AND: { 2740 int d2 = sqlite3VdbeMakeLabel(v); 2741 testcase( jumpIfNull==0 ); 2742 testcase( pParse->disableColCache==0 ); 2743 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 2744 pParse->disableColCache++; 2745 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2746 assert( pParse->disableColCache>0 ); 2747 pParse->disableColCache--; 2748 sqlite3VdbeResolveLabel(v, d2); 2749 break; 2750 } 2751 case TK_OR: { 2752 testcase( jumpIfNull==0 ); 2753 testcase( pParse->disableColCache==0 ); 2754 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2755 pParse->disableColCache++; 2756 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2757 assert( pParse->disableColCache>0 ); 2758 pParse->disableColCache--; 2759 break; 2760 } 2761 case TK_NOT: { 2762 testcase( jumpIfNull==0 ); 2763 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2764 break; 2765 } 2766 case TK_LT: 2767 case TK_LE: 2768 case TK_GT: 2769 case TK_GE: 2770 case TK_NE: 2771 case TK_EQ: { 2772 assert( TK_LT==OP_Lt ); 2773 assert( TK_LE==OP_Le ); 2774 assert( TK_GT==OP_Gt ); 2775 assert( TK_GE==OP_Ge ); 2776 assert( TK_EQ==OP_Eq ); 2777 assert( TK_NE==OP_Ne ); 2778 testcase( op==TK_LT ); 2779 testcase( op==TK_LE ); 2780 testcase( op==TK_GT ); 2781 testcase( op==TK_GE ); 2782 testcase( op==TK_EQ ); 2783 testcase( op==TK_NE ); 2784 testcase( jumpIfNull==0 ); 2785 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2786 pExpr->pRight, &r2, ®Free2); 2787 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2788 r1, r2, dest, jumpIfNull); 2789 testcase( regFree1==0 ); 2790 testcase( regFree2==0 ); 2791 break; 2792 } 2793 case TK_ISNULL: 2794 case TK_NOTNULL: { 2795 assert( TK_ISNULL==OP_IsNull ); 2796 assert( TK_NOTNULL==OP_NotNull ); 2797 testcase( op==TK_ISNULL ); 2798 testcase( op==TK_NOTNULL ); 2799 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2800 sqlite3VdbeAddOp2(v, op, r1, dest); 2801 testcase( regFree1==0 ); 2802 break; 2803 } 2804 case TK_BETWEEN: { 2805 /* x BETWEEN y AND z 2806 ** 2807 ** Is equivalent to 2808 ** 2809 ** x>=y AND x<=z 2810 ** 2811 ** Code it as such, taking care to do the common subexpression 2812 ** elementation of x. 2813 */ 2814 Expr exprAnd; 2815 Expr compLeft; 2816 Expr compRight; 2817 Expr exprX; 2818 2819 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2820 exprX = *pExpr->pLeft; 2821 exprAnd.op = TK_AND; 2822 exprAnd.pLeft = &compLeft; 2823 exprAnd.pRight = &compRight; 2824 compLeft.op = TK_GE; 2825 compLeft.pLeft = &exprX; 2826 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 2827 compRight.op = TK_LE; 2828 compRight.pLeft = &exprX; 2829 compRight.pRight = pExpr->x.pList->a[1].pExpr; 2830 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 2831 testcase( regFree1==0 ); 2832 exprX.op = TK_REGISTER; 2833 testcase( jumpIfNull==0 ); 2834 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 2835 break; 2836 } 2837 default: { 2838 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 2839 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 2840 testcase( regFree1==0 ); 2841 testcase( jumpIfNull==0 ); 2842 break; 2843 } 2844 } 2845 sqlite3ReleaseTempReg(pParse, regFree1); 2846 sqlite3ReleaseTempReg(pParse, regFree2); 2847 } 2848 2849 /* 2850 ** Generate code for a boolean expression such that a jump is made 2851 ** to the label "dest" if the expression is false but execution 2852 ** continues straight thru if the expression is true. 2853 ** 2854 ** If the expression evaluates to NULL (neither true nor false) then 2855 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 2856 ** is 0. 2857 */ 2858 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2859 Vdbe *v = pParse->pVdbe; 2860 int op = 0; 2861 int regFree1 = 0; 2862 int regFree2 = 0; 2863 int r1, r2; 2864 2865 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 2866 if( v==0 || pExpr==0 ) return; 2867 2868 /* The value of pExpr->op and op are related as follows: 2869 ** 2870 ** pExpr->op op 2871 ** --------- ---------- 2872 ** TK_ISNULL OP_NotNull 2873 ** TK_NOTNULL OP_IsNull 2874 ** TK_NE OP_Eq 2875 ** TK_EQ OP_Ne 2876 ** TK_GT OP_Le 2877 ** TK_LE OP_Gt 2878 ** TK_GE OP_Lt 2879 ** TK_LT OP_Ge 2880 ** 2881 ** For other values of pExpr->op, op is undefined and unused. 2882 ** The value of TK_ and OP_ constants are arranged such that we 2883 ** can compute the mapping above using the following expression. 2884 ** Assert()s verify that the computation is correct. 2885 */ 2886 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2887 2888 /* Verify correct alignment of TK_ and OP_ constants 2889 */ 2890 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2891 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2892 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2893 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2894 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2895 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2896 assert( pExpr->op!=TK_GT || op==OP_Le ); 2897 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2898 2899 switch( pExpr->op ){ 2900 case TK_AND: { 2901 testcase( jumpIfNull==0 ); 2902 testcase( pParse->disableColCache==0 ); 2903 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2904 pParse->disableColCache++; 2905 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2906 assert( pParse->disableColCache>0 ); 2907 pParse->disableColCache--; 2908 break; 2909 } 2910 case TK_OR: { 2911 int d2 = sqlite3VdbeMakeLabel(v); 2912 testcase( jumpIfNull==0 ); 2913 testcase( pParse->disableColCache==0 ); 2914 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 2915 pParse->disableColCache++; 2916 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2917 assert( pParse->disableColCache>0 ); 2918 pParse->disableColCache--; 2919 sqlite3VdbeResolveLabel(v, d2); 2920 break; 2921 } 2922 case TK_NOT: { 2923 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2924 break; 2925 } 2926 case TK_LT: 2927 case TK_LE: 2928 case TK_GT: 2929 case TK_GE: 2930 case TK_NE: 2931 case TK_EQ: { 2932 testcase( op==TK_LT ); 2933 testcase( op==TK_LE ); 2934 testcase( op==TK_GT ); 2935 testcase( op==TK_GE ); 2936 testcase( op==TK_EQ ); 2937 testcase( op==TK_NE ); 2938 testcase( jumpIfNull==0 ); 2939 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, 2940 pExpr->pRight, &r2, ®Free2); 2941 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2942 r1, r2, dest, jumpIfNull); 2943 testcase( regFree1==0 ); 2944 testcase( regFree2==0 ); 2945 break; 2946 } 2947 case TK_ISNULL: 2948 case TK_NOTNULL: { 2949 testcase( op==TK_ISNULL ); 2950 testcase( op==TK_NOTNULL ); 2951 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2952 sqlite3VdbeAddOp2(v, op, r1, dest); 2953 testcase( regFree1==0 ); 2954 break; 2955 } 2956 case TK_BETWEEN: { 2957 /* x BETWEEN y AND z 2958 ** 2959 ** Is equivalent to 2960 ** 2961 ** x>=y AND x<=z 2962 ** 2963 ** Code it as such, taking care to do the common subexpression 2964 ** elementation of x. 2965 */ 2966 Expr exprAnd; 2967 Expr compLeft; 2968 Expr compRight; 2969 Expr exprX; 2970 2971 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2972 exprX = *pExpr->pLeft; 2973 exprAnd.op = TK_AND; 2974 exprAnd.pLeft = &compLeft; 2975 exprAnd.pRight = &compRight; 2976 compLeft.op = TK_GE; 2977 compLeft.pLeft = &exprX; 2978 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 2979 compRight.op = TK_LE; 2980 compRight.pLeft = &exprX; 2981 compRight.pRight = pExpr->x.pList->a[1].pExpr; 2982 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); 2983 testcase( regFree1==0 ); 2984 exprX.op = TK_REGISTER; 2985 testcase( jumpIfNull==0 ); 2986 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 2987 break; 2988 } 2989 default: { 2990 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 2991 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 2992 testcase( regFree1==0 ); 2993 testcase( jumpIfNull==0 ); 2994 break; 2995 } 2996 } 2997 sqlite3ReleaseTempReg(pParse, regFree1); 2998 sqlite3ReleaseTempReg(pParse, regFree2); 2999 } 3000 3001 /* 3002 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 3003 ** if they are identical and return FALSE if they differ in any way. 3004 ** 3005 ** Sometimes this routine will return FALSE even if the two expressions 3006 ** really are equivalent. If we cannot prove that the expressions are 3007 ** identical, we return FALSE just to be safe. So if this routine 3008 ** returns false, then you do not really know for certain if the two 3009 ** expressions are the same. But if you get a TRUE return, then you 3010 ** can be sure the expressions are the same. In the places where 3011 ** this routine is used, it does not hurt to get an extra FALSE - that 3012 ** just might result in some slightly slower code. But returning 3013 ** an incorrect TRUE could lead to a malfunction. 3014 */ 3015 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 3016 int i; 3017 if( pA==0||pB==0 ){ 3018 return pB==pA; 3019 } 3020 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ 3021 return 0; 3022 } 3023 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 3024 if( pA->op!=pB->op ) return 0; 3025 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 3026 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 3027 3028 if( pA->x.pList && pB->x.pList ){ 3029 if( pA->x.pList->nExpr!=pB->x.pList->nExpr ) return 0; 3030 for(i=0; i<pA->x.pList->nExpr; i++){ 3031 Expr *pExprA = pA->x.pList->a[i].pExpr; 3032 Expr *pExprB = pB->x.pList->a[i].pExpr; 3033 if( !sqlite3ExprCompare(pExprA, pExprB) ) return 0; 3034 } 3035 }else if( pA->x.pList || pB->x.pList ){ 3036 return 0; 3037 } 3038 3039 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 3040 if( pA->op!=TK_COLUMN && pA->token.z ){ 3041 if( pB->token.z==0 ) return 0; 3042 if( pB->token.n!=pA->token.n ) return 0; 3043 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 3044 return 0; 3045 } 3046 } 3047 return 1; 3048 } 3049 3050 3051 /* 3052 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3053 ** the new element. Return a negative number if malloc fails. 3054 */ 3055 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3056 int i; 3057 pInfo->aCol = sqlite3ArrayAllocate( 3058 db, 3059 pInfo->aCol, 3060 sizeof(pInfo->aCol[0]), 3061 3, 3062 &pInfo->nColumn, 3063 &pInfo->nColumnAlloc, 3064 &i 3065 ); 3066 return i; 3067 } 3068 3069 /* 3070 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 3071 ** the new element. Return a negative number if malloc fails. 3072 */ 3073 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 3074 int i; 3075 pInfo->aFunc = sqlite3ArrayAllocate( 3076 db, 3077 pInfo->aFunc, 3078 sizeof(pInfo->aFunc[0]), 3079 3, 3080 &pInfo->nFunc, 3081 &pInfo->nFuncAlloc, 3082 &i 3083 ); 3084 return i; 3085 } 3086 3087 /* 3088 ** This is the xExprCallback for a tree walker. It is used to 3089 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 3090 ** for additional information. 3091 */ 3092 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 3093 int i; 3094 NameContext *pNC = pWalker->u.pNC; 3095 Parse *pParse = pNC->pParse; 3096 SrcList *pSrcList = pNC->pSrcList; 3097 AggInfo *pAggInfo = pNC->pAggInfo; 3098 3099 switch( pExpr->op ){ 3100 case TK_AGG_COLUMN: 3101 case TK_COLUMN: { 3102 testcase( pExpr->op==TK_AGG_COLUMN ); 3103 testcase( pExpr->op==TK_COLUMN ); 3104 /* Check to see if the column is in one of the tables in the FROM 3105 ** clause of the aggregate query */ 3106 if( pSrcList ){ 3107 struct SrcList_item *pItem = pSrcList->a; 3108 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 3109 struct AggInfo_col *pCol; 3110 if( pExpr->iTable==pItem->iCursor ){ 3111 /* If we reach this point, it means that pExpr refers to a table 3112 ** that is in the FROM clause of the aggregate query. 3113 ** 3114 ** Make an entry for the column in pAggInfo->aCol[] if there 3115 ** is not an entry there already. 3116 */ 3117 int k; 3118 pCol = pAggInfo->aCol; 3119 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 3120 if( pCol->iTable==pExpr->iTable && 3121 pCol->iColumn==pExpr->iColumn ){ 3122 break; 3123 } 3124 } 3125 if( (k>=pAggInfo->nColumn) 3126 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 3127 ){ 3128 pCol = &pAggInfo->aCol[k]; 3129 pCol->pTab = pExpr->pTab; 3130 pCol->iTable = pExpr->iTable; 3131 pCol->iColumn = pExpr->iColumn; 3132 pCol->iMem = ++pParse->nMem; 3133 pCol->iSorterColumn = -1; 3134 pCol->pExpr = pExpr; 3135 if( pAggInfo->pGroupBy ){ 3136 int j, n; 3137 ExprList *pGB = pAggInfo->pGroupBy; 3138 struct ExprList_item *pTerm = pGB->a; 3139 n = pGB->nExpr; 3140 for(j=0; j<n; j++, pTerm++){ 3141 Expr *pE = pTerm->pExpr; 3142 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 3143 pE->iColumn==pExpr->iColumn ){ 3144 pCol->iSorterColumn = j; 3145 break; 3146 } 3147 } 3148 } 3149 if( pCol->iSorterColumn<0 ){ 3150 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 3151 } 3152 } 3153 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 3154 ** because it was there before or because we just created it). 3155 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 3156 ** pAggInfo->aCol[] entry. 3157 */ 3158 pExpr->pAggInfo = pAggInfo; 3159 pExpr->op = TK_AGG_COLUMN; 3160 pExpr->iAgg = k; 3161 break; 3162 } /* endif pExpr->iTable==pItem->iCursor */ 3163 } /* end loop over pSrcList */ 3164 } 3165 return WRC_Prune; 3166 } 3167 case TK_AGG_FUNCTION: { 3168 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 3169 ** to be ignored */ 3170 if( pNC->nDepth==0 ){ 3171 /* Check to see if pExpr is a duplicate of another aggregate 3172 ** function that is already in the pAggInfo structure 3173 */ 3174 struct AggInfo_func *pItem = pAggInfo->aFunc; 3175 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 3176 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 3177 break; 3178 } 3179 } 3180 if( i>=pAggInfo->nFunc ){ 3181 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 3182 */ 3183 u8 enc = ENC(pParse->db); 3184 i = addAggInfoFunc(pParse->db, pAggInfo); 3185 if( i>=0 ){ 3186 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3187 pItem = &pAggInfo->aFunc[i]; 3188 pItem->pExpr = pExpr; 3189 pItem->iMem = ++pParse->nMem; 3190 pItem->pFunc = sqlite3FindFunction(pParse->db, 3191 (char*)pExpr->token.z, pExpr->token.n, 3192 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 3193 if( pExpr->flags & EP_Distinct ){ 3194 pItem->iDistinct = pParse->nTab++; 3195 }else{ 3196 pItem->iDistinct = -1; 3197 } 3198 } 3199 } 3200 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 3201 */ 3202 pExpr->iAgg = i; 3203 pExpr->pAggInfo = pAggInfo; 3204 return WRC_Prune; 3205 } 3206 } 3207 } 3208 return WRC_Continue; 3209 } 3210 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 3211 NameContext *pNC = pWalker->u.pNC; 3212 if( pNC->nDepth==0 ){ 3213 pNC->nDepth++; 3214 sqlite3WalkSelect(pWalker, pSelect); 3215 pNC->nDepth--; 3216 return WRC_Prune; 3217 }else{ 3218 return WRC_Continue; 3219 } 3220 } 3221 3222 /* 3223 ** Analyze the given expression looking for aggregate functions and 3224 ** for variables that need to be added to the pParse->aAgg[] array. 3225 ** Make additional entries to the pParse->aAgg[] array as necessary. 3226 ** 3227 ** This routine should only be called after the expression has been 3228 ** analyzed by sqlite3ResolveExprNames(). 3229 */ 3230 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 3231 Walker w; 3232 w.xExprCallback = analyzeAggregate; 3233 w.xSelectCallback = analyzeAggregatesInSelect; 3234 w.u.pNC = pNC; 3235 sqlite3WalkExpr(&w, pExpr); 3236 } 3237 3238 /* 3239 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 3240 ** expression list. Return the number of errors. 3241 ** 3242 ** If an error is found, the analysis is cut short. 3243 */ 3244 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 3245 struct ExprList_item *pItem; 3246 int i; 3247 if( pList ){ 3248 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 3249 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 3250 } 3251 } 3252 } 3253 3254 /* 3255 ** Allocate or deallocate temporary use registers during code generation. 3256 */ 3257 int sqlite3GetTempReg(Parse *pParse){ 3258 if( pParse->nTempReg==0 ){ 3259 return ++pParse->nMem; 3260 } 3261 return pParse->aTempReg[--pParse->nTempReg]; 3262 } 3263 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 3264 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3265 sqlite3ExprWritableRegister(pParse, iReg); 3266 pParse->aTempReg[pParse->nTempReg++] = iReg; 3267 } 3268 } 3269 3270 /* 3271 ** Allocate or deallocate a block of nReg consecutive registers 3272 */ 3273 int sqlite3GetTempRange(Parse *pParse, int nReg){ 3274 int i, n; 3275 i = pParse->iRangeReg; 3276 n = pParse->nRangeReg; 3277 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ 3278 pParse->iRangeReg += nReg; 3279 pParse->nRangeReg -= nReg; 3280 }else{ 3281 i = pParse->nMem+1; 3282 pParse->nMem += nReg; 3283 } 3284 return i; 3285 } 3286 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 3287 if( nReg>pParse->nRangeReg ){ 3288 pParse->nRangeReg = nReg; 3289 pParse->iRangeReg = iReg; 3290 } 3291 } 3292