1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_CAST || op==TK_UPLUS ){ 145 p = p->pLeft; 146 continue; 147 } 148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 150 break; 151 } 152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 153 || op==TK_REGISTER || op==TK_TRIGGER) 154 && p->pTab!=0 155 ){ 156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 157 ** a TK_COLUMN but was previously evaluated and cached in a register */ 158 int j = p->iColumn; 159 if( j>=0 ){ 160 const char *zColl = p->pTab->aCol[j].zColl; 161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 162 } 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 if( i>0 ) sqlite3ExprCachePush(pParse); 585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 594 sqlite3ReleaseTempReg(pParse, regFree1); 595 sqlite3ReleaseTempReg(pParse, regFree2); 596 if( i>0 ) sqlite3ExprCachePop(pParse); 597 if( i==nLeft-1 ){ 598 break; 599 } 600 if( opx==TK_EQ ){ 601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else if( opx==TK_NE ){ 604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 605 p5 |= SQLITE_KEEPNULL; 606 }else{ 607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 609 VdbeCoverageIf(v, op==TK_LT); 610 VdbeCoverageIf(v, op==TK_GT); 611 VdbeCoverageIf(v, op==TK_LE); 612 VdbeCoverageIf(v, op==TK_GE); 613 if( i==nLeft-2 ) opx = op; 614 } 615 } 616 sqlite3VdbeResolveLabel(v, addrDone); 617 } 618 619 #if SQLITE_MAX_EXPR_DEPTH>0 620 /* 621 ** Check that argument nHeight is less than or equal to the maximum 622 ** expression depth allowed. If it is not, leave an error message in 623 ** pParse. 624 */ 625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 626 int rc = SQLITE_OK; 627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 628 if( nHeight>mxHeight ){ 629 sqlite3ErrorMsg(pParse, 630 "Expression tree is too large (maximum depth %d)", mxHeight 631 ); 632 rc = SQLITE_ERROR; 633 } 634 return rc; 635 } 636 637 /* The following three functions, heightOfExpr(), heightOfExprList() 638 ** and heightOfSelect(), are used to determine the maximum height 639 ** of any expression tree referenced by the structure passed as the 640 ** first argument. 641 ** 642 ** If this maximum height is greater than the current value pointed 643 ** to by pnHeight, the second parameter, then set *pnHeight to that 644 ** value. 645 */ 646 static void heightOfExpr(Expr *p, int *pnHeight){ 647 if( p ){ 648 if( p->nHeight>*pnHeight ){ 649 *pnHeight = p->nHeight; 650 } 651 } 652 } 653 static void heightOfExprList(ExprList *p, int *pnHeight){ 654 if( p ){ 655 int i; 656 for(i=0; i<p->nExpr; i++){ 657 heightOfExpr(p->a[i].pExpr, pnHeight); 658 } 659 } 660 } 661 static void heightOfSelect(Select *p, int *pnHeight){ 662 if( p ){ 663 heightOfExpr(p->pWhere, pnHeight); 664 heightOfExpr(p->pHaving, pnHeight); 665 heightOfExpr(p->pLimit, pnHeight); 666 heightOfExpr(p->pOffset, pnHeight); 667 heightOfExprList(p->pEList, pnHeight); 668 heightOfExprList(p->pGroupBy, pnHeight); 669 heightOfExprList(p->pOrderBy, pnHeight); 670 heightOfSelect(p->pPrior, pnHeight); 671 } 672 } 673 674 /* 675 ** Set the Expr.nHeight variable in the structure passed as an 676 ** argument. An expression with no children, Expr.pList or 677 ** Expr.pSelect member has a height of 1. Any other expression 678 ** has a height equal to the maximum height of any other 679 ** referenced Expr plus one. 680 ** 681 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 682 ** if appropriate. 683 */ 684 static void exprSetHeight(Expr *p){ 685 int nHeight = 0; 686 heightOfExpr(p->pLeft, &nHeight); 687 heightOfExpr(p->pRight, &nHeight); 688 if( ExprHasProperty(p, EP_xIsSelect) ){ 689 heightOfSelect(p->x.pSelect, &nHeight); 690 }else if( p->x.pList ){ 691 heightOfExprList(p->x.pList, &nHeight); 692 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 693 } 694 p->nHeight = nHeight + 1; 695 } 696 697 /* 698 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 699 ** the height is greater than the maximum allowed expression depth, 700 ** leave an error in pParse. 701 ** 702 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 703 ** Expr.flags. 704 */ 705 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 706 if( pParse->nErr ) return; 707 exprSetHeight(p); 708 sqlite3ExprCheckHeight(pParse, p->nHeight); 709 } 710 711 /* 712 ** Return the maximum height of any expression tree referenced 713 ** by the select statement passed as an argument. 714 */ 715 int sqlite3SelectExprHeight(Select *p){ 716 int nHeight = 0; 717 heightOfSelect(p, &nHeight); 718 return nHeight; 719 } 720 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 721 /* 722 ** Propagate all EP_Propagate flags from the Expr.x.pList into 723 ** Expr.flags. 724 */ 725 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 726 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 727 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 728 } 729 } 730 #define exprSetHeight(y) 731 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 732 733 /* 734 ** This routine is the core allocator for Expr nodes. 735 ** 736 ** Construct a new expression node and return a pointer to it. Memory 737 ** for this node and for the pToken argument is a single allocation 738 ** obtained from sqlite3DbMalloc(). The calling function 739 ** is responsible for making sure the node eventually gets freed. 740 ** 741 ** If dequote is true, then the token (if it exists) is dequoted. 742 ** If dequote is false, no dequoting is performed. The deQuote 743 ** parameter is ignored if pToken is NULL or if the token does not 744 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 745 ** then the EP_DblQuoted flag is set on the expression node. 746 ** 747 ** Special case: If op==TK_INTEGER and pToken points to a string that 748 ** can be translated into a 32-bit integer, then the token is not 749 ** stored in u.zToken. Instead, the integer values is written 750 ** into u.iValue and the EP_IntValue flag is set. No extra storage 751 ** is allocated to hold the integer text and the dequote flag is ignored. 752 */ 753 Expr *sqlite3ExprAlloc( 754 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 755 int op, /* Expression opcode */ 756 const Token *pToken, /* Token argument. Might be NULL */ 757 int dequote /* True to dequote */ 758 ){ 759 Expr *pNew; 760 int nExtra = 0; 761 int iValue = 0; 762 763 assert( db!=0 ); 764 if( pToken ){ 765 if( op!=TK_INTEGER || pToken->z==0 766 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 767 nExtra = pToken->n+1; 768 assert( iValue>=0 ); 769 } 770 } 771 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 772 if( pNew ){ 773 memset(pNew, 0, sizeof(Expr)); 774 pNew->op = (u8)op; 775 pNew->iAgg = -1; 776 if( pToken ){ 777 if( nExtra==0 ){ 778 pNew->flags |= EP_IntValue|EP_Leaf; 779 pNew->u.iValue = iValue; 780 }else{ 781 pNew->u.zToken = (char*)&pNew[1]; 782 assert( pToken->z!=0 || pToken->n==0 ); 783 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 784 pNew->u.zToken[pToken->n] = 0; 785 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 786 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 787 sqlite3Dequote(pNew->u.zToken); 788 } 789 } 790 } 791 #if SQLITE_MAX_EXPR_DEPTH>0 792 pNew->nHeight = 1; 793 #endif 794 } 795 return pNew; 796 } 797 798 /* 799 ** Allocate a new expression node from a zero-terminated token that has 800 ** already been dequoted. 801 */ 802 Expr *sqlite3Expr( 803 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 804 int op, /* Expression opcode */ 805 const char *zToken /* Token argument. Might be NULL */ 806 ){ 807 Token x; 808 x.z = zToken; 809 x.n = sqlite3Strlen30(zToken); 810 return sqlite3ExprAlloc(db, op, &x, 0); 811 } 812 813 /* 814 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 815 ** 816 ** If pRoot==NULL that means that a memory allocation error has occurred. 817 ** In that case, delete the subtrees pLeft and pRight. 818 */ 819 void sqlite3ExprAttachSubtrees( 820 sqlite3 *db, 821 Expr *pRoot, 822 Expr *pLeft, 823 Expr *pRight 824 ){ 825 if( pRoot==0 ){ 826 assert( db->mallocFailed ); 827 sqlite3ExprDelete(db, pLeft); 828 sqlite3ExprDelete(db, pRight); 829 }else{ 830 if( pRight ){ 831 pRoot->pRight = pRight; 832 pRoot->flags |= EP_Propagate & pRight->flags; 833 } 834 if( pLeft ){ 835 pRoot->pLeft = pLeft; 836 pRoot->flags |= EP_Propagate & pLeft->flags; 837 } 838 exprSetHeight(pRoot); 839 } 840 } 841 842 /* 843 ** Allocate an Expr node which joins as many as two subtrees. 844 ** 845 ** One or both of the subtrees can be NULL. Return a pointer to the new 846 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 847 ** free the subtrees and return NULL. 848 */ 849 Expr *sqlite3PExpr( 850 Parse *pParse, /* Parsing context */ 851 int op, /* Expression opcode */ 852 Expr *pLeft, /* Left operand */ 853 Expr *pRight /* Right operand */ 854 ){ 855 Expr *p; 856 if( op==TK_AND && pParse->nErr==0 ){ 857 /* Take advantage of short-circuit false optimization for AND */ 858 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 859 }else{ 860 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 861 if( p ){ 862 memset(p, 0, sizeof(Expr)); 863 p->op = op & TKFLG_MASK; 864 p->iAgg = -1; 865 } 866 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 867 } 868 if( p ) { 869 sqlite3ExprCheckHeight(pParse, p->nHeight); 870 } 871 return p; 872 } 873 874 /* 875 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 876 ** do a memory allocation failure) then delete the pSelect object. 877 */ 878 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 879 if( pExpr ){ 880 pExpr->x.pSelect = pSelect; 881 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 882 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 883 }else{ 884 assert( pParse->db->mallocFailed ); 885 sqlite3SelectDelete(pParse->db, pSelect); 886 } 887 } 888 889 890 /* 891 ** If the expression is always either TRUE or FALSE (respectively), 892 ** then return 1. If one cannot determine the truth value of the 893 ** expression at compile-time return 0. 894 ** 895 ** This is an optimization. If is OK to return 0 here even if 896 ** the expression really is always false or false (a false negative). 897 ** But it is a bug to return 1 if the expression might have different 898 ** boolean values in different circumstances (a false positive.) 899 ** 900 ** Note that if the expression is part of conditional for a 901 ** LEFT JOIN, then we cannot determine at compile-time whether or not 902 ** is it true or false, so always return 0. 903 */ 904 static int exprAlwaysTrue(Expr *p){ 905 int v = 0; 906 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 907 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 908 return v!=0; 909 } 910 static int exprAlwaysFalse(Expr *p){ 911 int v = 0; 912 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 913 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 914 return v==0; 915 } 916 917 /* 918 ** Join two expressions using an AND operator. If either expression is 919 ** NULL, then just return the other expression. 920 ** 921 ** If one side or the other of the AND is known to be false, then instead 922 ** of returning an AND expression, just return a constant expression with 923 ** a value of false. 924 */ 925 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 926 if( pLeft==0 ){ 927 return pRight; 928 }else if( pRight==0 ){ 929 return pLeft; 930 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 931 sqlite3ExprDelete(db, pLeft); 932 sqlite3ExprDelete(db, pRight); 933 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 934 }else{ 935 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 936 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 937 return pNew; 938 } 939 } 940 941 /* 942 ** Construct a new expression node for a function with multiple 943 ** arguments. 944 */ 945 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 946 Expr *pNew; 947 sqlite3 *db = pParse->db; 948 assert( pToken ); 949 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 950 if( pNew==0 ){ 951 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 952 return 0; 953 } 954 pNew->x.pList = pList; 955 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 956 sqlite3ExprSetHeightAndFlags(pParse, pNew); 957 return pNew; 958 } 959 960 /* 961 ** Assign a variable number to an expression that encodes a wildcard 962 ** in the original SQL statement. 963 ** 964 ** Wildcards consisting of a single "?" are assigned the next sequential 965 ** variable number. 966 ** 967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 968 ** sure "nnn" is not too big to avoid a denial of service attack when 969 ** the SQL statement comes from an external source. 970 ** 971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 972 ** as the previous instance of the same wildcard. Or if this is the first 973 ** instance of the wildcard, the next sequential variable number is 974 ** assigned. 975 */ 976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 977 sqlite3 *db = pParse->db; 978 const char *z; 979 ynVar x; 980 981 if( pExpr==0 ) return; 982 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 983 z = pExpr->u.zToken; 984 assert( z!=0 ); 985 assert( z[0]!=0 ); 986 assert( n==(u32)sqlite3Strlen30(z) ); 987 if( z[1]==0 ){ 988 /* Wildcard of the form "?". Assign the next variable number */ 989 assert( z[0]=='?' ); 990 x = (ynVar)(++pParse->nVar); 991 }else{ 992 int doAdd = 0; 993 if( z[0]=='?' ){ 994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 995 ** use it as the variable number */ 996 i64 i; 997 int bOk; 998 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 999 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1000 bOk = 1; 1001 }else{ 1002 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1003 } 1004 testcase( i==0 ); 1005 testcase( i==1 ); 1006 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1008 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1009 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1010 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1011 return; 1012 } 1013 x = (ynVar)i; 1014 if( x>pParse->nVar ){ 1015 pParse->nVar = (int)x; 1016 doAdd = 1; 1017 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1018 doAdd = 1; 1019 } 1020 }else{ 1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1022 ** number as the prior appearance of the same name, or if the name 1023 ** has never appeared before, reuse the same variable number 1024 */ 1025 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1026 if( x==0 ){ 1027 x = (ynVar)(++pParse->nVar); 1028 doAdd = 1; 1029 } 1030 } 1031 if( doAdd ){ 1032 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1033 } 1034 } 1035 pExpr->iColumn = x; 1036 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1037 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1038 } 1039 } 1040 1041 /* 1042 ** Recursively delete an expression tree. 1043 */ 1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1045 assert( p!=0 ); 1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1047 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1048 #ifdef SQLITE_DEBUG 1049 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1050 assert( p->pLeft==0 ); 1051 assert( p->pRight==0 ); 1052 assert( p->x.pSelect==0 ); 1053 } 1054 #endif 1055 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1056 /* The Expr.x union is never used at the same time as Expr.pRight */ 1057 assert( p->x.pList==0 || p->pRight==0 ); 1058 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1059 if( p->pRight ){ 1060 sqlite3ExprDeleteNN(db, p->pRight); 1061 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1062 sqlite3SelectDelete(db, p->x.pSelect); 1063 }else{ 1064 sqlite3ExprListDelete(db, p->x.pList); 1065 } 1066 } 1067 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1068 if( !ExprHasProperty(p, EP_Static) ){ 1069 sqlite3DbFreeNN(db, p); 1070 } 1071 } 1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1073 if( p ) sqlite3ExprDeleteNN(db, p); 1074 } 1075 1076 /* 1077 ** Return the number of bytes allocated for the expression structure 1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1080 */ 1081 static int exprStructSize(Expr *p){ 1082 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1083 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1084 return EXPR_FULLSIZE; 1085 } 1086 1087 /* 1088 ** The dupedExpr*Size() routines each return the number of bytes required 1089 ** to store a copy of an expression or expression tree. They differ in 1090 ** how much of the tree is measured. 1091 ** 1092 ** dupedExprStructSize() Size of only the Expr structure 1093 ** dupedExprNodeSize() Size of Expr + space for token 1094 ** dupedExprSize() Expr + token + subtree components 1095 ** 1096 *************************************************************************** 1097 ** 1098 ** The dupedExprStructSize() function returns two values OR-ed together: 1099 ** (1) the space required for a copy of the Expr structure only and 1100 ** (2) the EP_xxx flags that indicate what the structure size should be. 1101 ** The return values is always one of: 1102 ** 1103 ** EXPR_FULLSIZE 1104 ** EXPR_REDUCEDSIZE | EP_Reduced 1105 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1106 ** 1107 ** The size of the structure can be found by masking the return value 1108 ** of this routine with 0xfff. The flags can be found by masking the 1109 ** return value with EP_Reduced|EP_TokenOnly. 1110 ** 1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1112 ** (unreduced) Expr objects as they or originally constructed by the parser. 1113 ** During expression analysis, extra information is computed and moved into 1114 ** later parts of teh Expr object and that extra information might get chopped 1115 ** off if the expression is reduced. Note also that it does not work to 1116 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1117 ** to reduce a pristine expression tree from the parser. The implementation 1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1119 ** to enforce this constraint. 1120 */ 1121 static int dupedExprStructSize(Expr *p, int flags){ 1122 int nSize; 1123 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1124 assert( EXPR_FULLSIZE<=0xfff ); 1125 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1126 if( 0==flags || p->op==TK_SELECT_COLUMN ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 if( pzBuffer ){ 1263 *pzBuffer = zAlloc; 1264 } 1265 }else{ 1266 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1267 if( pNew->op==TK_SELECT_COLUMN ){ 1268 pNew->pLeft = p->pLeft; 1269 assert( p->iColumn==0 || p->pRight==0 ); 1270 assert( p->pRight==0 || p->pRight==p->pLeft ); 1271 }else{ 1272 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1273 } 1274 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1275 } 1276 } 1277 } 1278 return pNew; 1279 } 1280 1281 /* 1282 ** Create and return a deep copy of the object passed as the second 1283 ** argument. If an OOM condition is encountered, NULL is returned 1284 ** and the db->mallocFailed flag set. 1285 */ 1286 #ifndef SQLITE_OMIT_CTE 1287 static With *withDup(sqlite3 *db, With *p){ 1288 With *pRet = 0; 1289 if( p ){ 1290 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1291 pRet = sqlite3DbMallocZero(db, nByte); 1292 if( pRet ){ 1293 int i; 1294 pRet->nCte = p->nCte; 1295 for(i=0; i<p->nCte; i++){ 1296 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1297 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1298 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1299 } 1300 } 1301 } 1302 return pRet; 1303 } 1304 #else 1305 # define withDup(x,y) 0 1306 #endif 1307 1308 /* 1309 ** The following group of routines make deep copies of expressions, 1310 ** expression lists, ID lists, and select statements. The copies can 1311 ** be deleted (by being passed to their respective ...Delete() routines) 1312 ** without effecting the originals. 1313 ** 1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1316 ** by subsequent calls to sqlite*ListAppend() routines. 1317 ** 1318 ** Any tables that the SrcList might point to are not duplicated. 1319 ** 1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1322 ** truncated version of the usual Expr structure that will be stored as 1323 ** part of the in-memory representation of the database schema. 1324 */ 1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1326 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1327 return p ? exprDup(db, p, flags, 0) : 0; 1328 } 1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1330 ExprList *pNew; 1331 struct ExprList_item *pItem, *pOldItem; 1332 int i; 1333 Expr *pPriorSelectCol = 0; 1334 assert( db!=0 ); 1335 if( p==0 ) return 0; 1336 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1337 if( pNew==0 ) return 0; 1338 pNew->nExpr = p->nExpr; 1339 pItem = pNew->a; 1340 pOldItem = p->a; 1341 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1342 Expr *pOldExpr = pOldItem->pExpr; 1343 Expr *pNewExpr; 1344 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1345 if( pOldExpr 1346 && pOldExpr->op==TK_SELECT_COLUMN 1347 && (pNewExpr = pItem->pExpr)!=0 1348 ){ 1349 assert( pNewExpr->iColumn==0 || i>0 ); 1350 if( pNewExpr->iColumn==0 ){ 1351 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1352 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1353 }else{ 1354 assert( i>0 ); 1355 assert( pItem[-1].pExpr!=0 ); 1356 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1357 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1358 pNewExpr->pLeft = pPriorSelectCol; 1359 } 1360 } 1361 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1362 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1363 pItem->sortOrder = pOldItem->sortOrder; 1364 pItem->done = 0; 1365 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1366 pItem->u = pOldItem->u; 1367 } 1368 return pNew; 1369 } 1370 1371 /* 1372 ** If cursors, triggers, views and subqueries are all omitted from 1373 ** the build, then none of the following routines, except for 1374 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1375 ** called with a NULL argument. 1376 */ 1377 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1378 || !defined(SQLITE_OMIT_SUBQUERY) 1379 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1380 SrcList *pNew; 1381 int i; 1382 int nByte; 1383 assert( db!=0 ); 1384 if( p==0 ) return 0; 1385 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1386 pNew = sqlite3DbMallocRawNN(db, nByte ); 1387 if( pNew==0 ) return 0; 1388 pNew->nSrc = pNew->nAlloc = p->nSrc; 1389 for(i=0; i<p->nSrc; i++){ 1390 struct SrcList_item *pNewItem = &pNew->a[i]; 1391 struct SrcList_item *pOldItem = &p->a[i]; 1392 Table *pTab; 1393 pNewItem->pSchema = pOldItem->pSchema; 1394 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1395 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1396 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1397 pNewItem->fg = pOldItem->fg; 1398 pNewItem->iCursor = pOldItem->iCursor; 1399 pNewItem->addrFillSub = pOldItem->addrFillSub; 1400 pNewItem->regReturn = pOldItem->regReturn; 1401 if( pNewItem->fg.isIndexedBy ){ 1402 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1403 } 1404 pNewItem->pIBIndex = pOldItem->pIBIndex; 1405 if( pNewItem->fg.isTabFunc ){ 1406 pNewItem->u1.pFuncArg = 1407 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1408 } 1409 pTab = pNewItem->pTab = pOldItem->pTab; 1410 if( pTab ){ 1411 pTab->nTabRef++; 1412 } 1413 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1414 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1415 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1416 pNewItem->colUsed = pOldItem->colUsed; 1417 } 1418 return pNew; 1419 } 1420 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1421 IdList *pNew; 1422 int i; 1423 assert( db!=0 ); 1424 if( p==0 ) return 0; 1425 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1426 if( pNew==0 ) return 0; 1427 pNew->nId = p->nId; 1428 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1429 if( pNew->a==0 ){ 1430 sqlite3DbFreeNN(db, pNew); 1431 return 0; 1432 } 1433 /* Note that because the size of the allocation for p->a[] is not 1434 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1435 ** on the duplicate created by this function. */ 1436 for(i=0; i<p->nId; i++){ 1437 struct IdList_item *pNewItem = &pNew->a[i]; 1438 struct IdList_item *pOldItem = &p->a[i]; 1439 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1440 pNewItem->idx = pOldItem->idx; 1441 } 1442 return pNew; 1443 } 1444 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1445 Select *pRet = 0; 1446 Select *pNext = 0; 1447 Select **pp = &pRet; 1448 Select *p; 1449 1450 assert( db!=0 ); 1451 for(p=pDup; p; p=p->pPrior){ 1452 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1453 if( pNew==0 ) break; 1454 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1455 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1456 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1457 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1458 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1459 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1460 pNew->op = p->op; 1461 pNew->pNext = pNext; 1462 pNew->pPrior = 0; 1463 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1464 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1465 pNew->iLimit = 0; 1466 pNew->iOffset = 0; 1467 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1468 pNew->addrOpenEphm[0] = -1; 1469 pNew->addrOpenEphm[1] = -1; 1470 pNew->nSelectRow = p->nSelectRow; 1471 pNew->pWith = withDup(db, p->pWith); 1472 sqlite3SelectSetName(pNew, p->zSelName); 1473 *pp = pNew; 1474 pp = &pNew->pPrior; 1475 pNext = pNew; 1476 } 1477 1478 return pRet; 1479 } 1480 #else 1481 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1482 assert( p==0 ); 1483 return 0; 1484 } 1485 #endif 1486 1487 1488 /* 1489 ** Add a new element to the end of an expression list. If pList is 1490 ** initially NULL, then create a new expression list. 1491 ** 1492 ** The pList argument must be either NULL or a pointer to an ExprList 1493 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1494 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1495 ** Reason: This routine assumes that the number of slots in pList->a[] 1496 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1497 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1498 ** 1499 ** If a memory allocation error occurs, the entire list is freed and 1500 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1501 ** that the new entry was successfully appended. 1502 */ 1503 ExprList *sqlite3ExprListAppend( 1504 Parse *pParse, /* Parsing context */ 1505 ExprList *pList, /* List to which to append. Might be NULL */ 1506 Expr *pExpr /* Expression to be appended. Might be NULL */ 1507 ){ 1508 struct ExprList_item *pItem; 1509 sqlite3 *db = pParse->db; 1510 assert( db!=0 ); 1511 if( pList==0 ){ 1512 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1513 if( pList==0 ){ 1514 goto no_mem; 1515 } 1516 pList->nExpr = 0; 1517 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1518 ExprList *pNew; 1519 pNew = sqlite3DbRealloc(db, pList, 1520 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1521 if( pNew==0 ){ 1522 goto no_mem; 1523 } 1524 pList = pNew; 1525 } 1526 pItem = &pList->a[pList->nExpr++]; 1527 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1528 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1529 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1530 pItem->pExpr = pExpr; 1531 return pList; 1532 1533 no_mem: 1534 /* Avoid leaking memory if malloc has failed. */ 1535 sqlite3ExprDelete(db, pExpr); 1536 sqlite3ExprListDelete(db, pList); 1537 return 0; 1538 } 1539 1540 /* 1541 ** pColumns and pExpr form a vector assignment which is part of the SET 1542 ** clause of an UPDATE statement. Like this: 1543 ** 1544 ** (a,b,c) = (expr1,expr2,expr3) 1545 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1546 ** 1547 ** For each term of the vector assignment, append new entries to the 1548 ** expression list pList. In the case of a subquery on the RHS, append 1549 ** TK_SELECT_COLUMN expressions. 1550 */ 1551 ExprList *sqlite3ExprListAppendVector( 1552 Parse *pParse, /* Parsing context */ 1553 ExprList *pList, /* List to which to append. Might be NULL */ 1554 IdList *pColumns, /* List of names of LHS of the assignment */ 1555 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1556 ){ 1557 sqlite3 *db = pParse->db; 1558 int n; 1559 int i; 1560 int iFirst = pList ? pList->nExpr : 0; 1561 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1562 ** exit prior to this routine being invoked */ 1563 if( NEVER(pColumns==0) ) goto vector_append_error; 1564 if( pExpr==0 ) goto vector_append_error; 1565 1566 /* If the RHS is a vector, then we can immediately check to see that 1567 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1568 ** wildcards ("*") in the result set of the SELECT must be expanded before 1569 ** we can do the size check, so defer the size check until code generation. 1570 */ 1571 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1572 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1573 pColumns->nId, n); 1574 goto vector_append_error; 1575 } 1576 1577 for(i=0; i<pColumns->nId; i++){ 1578 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1579 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1580 if( pList ){ 1581 assert( pList->nExpr==iFirst+i+1 ); 1582 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1583 pColumns->a[i].zName = 0; 1584 } 1585 } 1586 1587 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1588 Expr *pFirst = pList->a[iFirst].pExpr; 1589 assert( pFirst!=0 ); 1590 assert( pFirst->op==TK_SELECT_COLUMN ); 1591 1592 /* Store the SELECT statement in pRight so it will be deleted when 1593 ** sqlite3ExprListDelete() is called */ 1594 pFirst->pRight = pExpr; 1595 pExpr = 0; 1596 1597 /* Remember the size of the LHS in iTable so that we can check that 1598 ** the RHS and LHS sizes match during code generation. */ 1599 pFirst->iTable = pColumns->nId; 1600 } 1601 1602 vector_append_error: 1603 sqlite3ExprDelete(db, pExpr); 1604 sqlite3IdListDelete(db, pColumns); 1605 return pList; 1606 } 1607 1608 /* 1609 ** Set the sort order for the last element on the given ExprList. 1610 */ 1611 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1612 if( p==0 ) return; 1613 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1614 assert( p->nExpr>0 ); 1615 if( iSortOrder<0 ){ 1616 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1617 return; 1618 } 1619 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1620 } 1621 1622 /* 1623 ** Set the ExprList.a[].zName element of the most recently added item 1624 ** on the expression list. 1625 ** 1626 ** pList might be NULL following an OOM error. But pName should never be 1627 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1628 ** is set. 1629 */ 1630 void sqlite3ExprListSetName( 1631 Parse *pParse, /* Parsing context */ 1632 ExprList *pList, /* List to which to add the span. */ 1633 Token *pName, /* Name to be added */ 1634 int dequote /* True to cause the name to be dequoted */ 1635 ){ 1636 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1637 if( pList ){ 1638 struct ExprList_item *pItem; 1639 assert( pList->nExpr>0 ); 1640 pItem = &pList->a[pList->nExpr-1]; 1641 assert( pItem->zName==0 ); 1642 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1643 if( dequote ) sqlite3Dequote(pItem->zName); 1644 } 1645 } 1646 1647 /* 1648 ** Set the ExprList.a[].zSpan element of the most recently added item 1649 ** on the expression list. 1650 ** 1651 ** pList might be NULL following an OOM error. But pSpan should never be 1652 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1653 ** is set. 1654 */ 1655 void sqlite3ExprListSetSpan( 1656 Parse *pParse, /* Parsing context */ 1657 ExprList *pList, /* List to which to add the span. */ 1658 ExprSpan *pSpan /* The span to be added */ 1659 ){ 1660 sqlite3 *db = pParse->db; 1661 assert( pList!=0 || db->mallocFailed!=0 ); 1662 if( pList ){ 1663 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1664 assert( pList->nExpr>0 ); 1665 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1666 sqlite3DbFree(db, pItem->zSpan); 1667 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1668 (int)(pSpan->zEnd - pSpan->zStart)); 1669 } 1670 } 1671 1672 /* 1673 ** If the expression list pEList contains more than iLimit elements, 1674 ** leave an error message in pParse. 1675 */ 1676 void sqlite3ExprListCheckLength( 1677 Parse *pParse, 1678 ExprList *pEList, 1679 const char *zObject 1680 ){ 1681 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1682 testcase( pEList && pEList->nExpr==mx ); 1683 testcase( pEList && pEList->nExpr==mx+1 ); 1684 if( pEList && pEList->nExpr>mx ){ 1685 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1686 } 1687 } 1688 1689 /* 1690 ** Delete an entire expression list. 1691 */ 1692 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1693 int i = pList->nExpr; 1694 struct ExprList_item *pItem = pList->a; 1695 assert( pList->nExpr>0 ); 1696 do{ 1697 sqlite3ExprDelete(db, pItem->pExpr); 1698 sqlite3DbFree(db, pItem->zName); 1699 sqlite3DbFree(db, pItem->zSpan); 1700 pItem++; 1701 }while( --i>0 ); 1702 sqlite3DbFreeNN(db, pList); 1703 } 1704 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1705 if( pList ) exprListDeleteNN(db, pList); 1706 } 1707 1708 /* 1709 ** Return the bitwise-OR of all Expr.flags fields in the given 1710 ** ExprList. 1711 */ 1712 u32 sqlite3ExprListFlags(const ExprList *pList){ 1713 int i; 1714 u32 m = 0; 1715 assert( pList!=0 ); 1716 for(i=0; i<pList->nExpr; i++){ 1717 Expr *pExpr = pList->a[i].pExpr; 1718 assert( pExpr!=0 ); 1719 m |= pExpr->flags; 1720 } 1721 return m; 1722 } 1723 1724 /* 1725 ** This is a SELECT-node callback for the expression walker that 1726 ** always "fails". By "fail" in this case, we mean set 1727 ** pWalker->eCode to zero and abort. 1728 ** 1729 ** This callback is used by multiple expression walkers. 1730 */ 1731 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1732 UNUSED_PARAMETER(NotUsed); 1733 pWalker->eCode = 0; 1734 return WRC_Abort; 1735 } 1736 1737 /* 1738 ** These routines are Walker callbacks used to check expressions to 1739 ** see if they are "constant" for some definition of constant. The 1740 ** Walker.eCode value determines the type of "constant" we are looking 1741 ** for. 1742 ** 1743 ** These callback routines are used to implement the following: 1744 ** 1745 ** sqlite3ExprIsConstant() pWalker->eCode==1 1746 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1747 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1748 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1749 ** 1750 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1751 ** is found to not be a constant. 1752 ** 1753 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1754 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1755 ** an existing schema and 4 when processing a new statement. A bound 1756 ** parameter raises an error for new statements, but is silently converted 1757 ** to NULL for existing schemas. This allows sqlite_master tables that 1758 ** contain a bound parameter because they were generated by older versions 1759 ** of SQLite to be parsed by newer versions of SQLite without raising a 1760 ** malformed schema error. 1761 */ 1762 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1763 1764 /* If pWalker->eCode is 2 then any term of the expression that comes from 1765 ** the ON or USING clauses of a left join disqualifies the expression 1766 ** from being considered constant. */ 1767 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1768 pWalker->eCode = 0; 1769 return WRC_Abort; 1770 } 1771 1772 switch( pExpr->op ){ 1773 /* Consider functions to be constant if all their arguments are constant 1774 ** and either pWalker->eCode==4 or 5 or the function has the 1775 ** SQLITE_FUNC_CONST flag. */ 1776 case TK_FUNCTION: 1777 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1778 return WRC_Continue; 1779 }else{ 1780 pWalker->eCode = 0; 1781 return WRC_Abort; 1782 } 1783 case TK_ID: 1784 case TK_COLUMN: 1785 case TK_AGG_FUNCTION: 1786 case TK_AGG_COLUMN: 1787 testcase( pExpr->op==TK_ID ); 1788 testcase( pExpr->op==TK_COLUMN ); 1789 testcase( pExpr->op==TK_AGG_FUNCTION ); 1790 testcase( pExpr->op==TK_AGG_COLUMN ); 1791 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1792 return WRC_Continue; 1793 } 1794 /* Fall through */ 1795 case TK_IF_NULL_ROW: 1796 testcase( pExpr->op==TK_IF_NULL_ROW ); 1797 pWalker->eCode = 0; 1798 return WRC_Abort; 1799 case TK_VARIABLE: 1800 if( pWalker->eCode==5 ){ 1801 /* Silently convert bound parameters that appear inside of CREATE 1802 ** statements into a NULL when parsing the CREATE statement text out 1803 ** of the sqlite_master table */ 1804 pExpr->op = TK_NULL; 1805 }else if( pWalker->eCode==4 ){ 1806 /* A bound parameter in a CREATE statement that originates from 1807 ** sqlite3_prepare() causes an error */ 1808 pWalker->eCode = 0; 1809 return WRC_Abort; 1810 } 1811 /* Fall through */ 1812 default: 1813 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */ 1814 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */ 1815 return WRC_Continue; 1816 } 1817 } 1818 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1819 Walker w; 1820 w.eCode = initFlag; 1821 w.xExprCallback = exprNodeIsConstant; 1822 w.xSelectCallback = sqlite3SelectWalkFail; 1823 #ifdef SQLITE_DEBUG 1824 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1825 #endif 1826 w.u.iCur = iCur; 1827 sqlite3WalkExpr(&w, p); 1828 return w.eCode; 1829 } 1830 1831 /* 1832 ** Walk an expression tree. Return non-zero if the expression is constant 1833 ** and 0 if it involves variables or function calls. 1834 ** 1835 ** For the purposes of this function, a double-quoted string (ex: "abc") 1836 ** is considered a variable but a single-quoted string (ex: 'abc') is 1837 ** a constant. 1838 */ 1839 int sqlite3ExprIsConstant(Expr *p){ 1840 return exprIsConst(p, 1, 0); 1841 } 1842 1843 /* 1844 ** Walk an expression tree. Return non-zero if the expression is constant 1845 ** that does no originate from the ON or USING clauses of a join. 1846 ** Return 0 if it involves variables or function calls or terms from 1847 ** an ON or USING clause. 1848 */ 1849 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1850 return exprIsConst(p, 2, 0); 1851 } 1852 1853 /* 1854 ** Walk an expression tree. Return non-zero if the expression is constant 1855 ** for any single row of the table with cursor iCur. In other words, the 1856 ** expression must not refer to any non-deterministic function nor any 1857 ** table other than iCur. 1858 */ 1859 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1860 return exprIsConst(p, 3, iCur); 1861 } 1862 1863 1864 /* 1865 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1866 */ 1867 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1868 ExprList *pGroupBy = pWalker->u.pGroupBy; 1869 int i; 1870 1871 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1872 ** it constant. */ 1873 for(i=0; i<pGroupBy->nExpr; i++){ 1874 Expr *p = pGroupBy->a[i].pExpr; 1875 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1876 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1877 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){ 1878 return WRC_Prune; 1879 } 1880 } 1881 } 1882 1883 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1884 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1885 pWalker->eCode = 0; 1886 return WRC_Abort; 1887 } 1888 1889 return exprNodeIsConstant(pWalker, pExpr); 1890 } 1891 1892 /* 1893 ** Walk the expression tree passed as the first argument. Return non-zero 1894 ** if the expression consists entirely of constants or copies of terms 1895 ** in pGroupBy that sort with the BINARY collation sequence. 1896 ** 1897 ** This routine is used to determine if a term of the HAVING clause can 1898 ** be promoted into the WHERE clause. In order for such a promotion to work, 1899 ** the value of the HAVING clause term must be the same for all members of 1900 ** a "group". The requirement that the GROUP BY term must be BINARY 1901 ** assumes that no other collating sequence will have a finer-grained 1902 ** grouping than binary. In other words (A=B COLLATE binary) implies 1903 ** A=B in every other collating sequence. The requirement that the 1904 ** GROUP BY be BINARY is stricter than necessary. It would also work 1905 ** to promote HAVING clauses that use the same alternative collating 1906 ** sequence as the GROUP BY term, but that is much harder to check, 1907 ** alternative collating sequences are uncommon, and this is only an 1908 ** optimization, so we take the easy way out and simply require the 1909 ** GROUP BY to use the BINARY collating sequence. 1910 */ 1911 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 1912 Walker w; 1913 w.eCode = 1; 1914 w.xExprCallback = exprNodeIsConstantOrGroupBy; 1915 w.xSelectCallback = 0; 1916 w.u.pGroupBy = pGroupBy; 1917 w.pParse = pParse; 1918 sqlite3WalkExpr(&w, p); 1919 return w.eCode; 1920 } 1921 1922 /* 1923 ** Walk an expression tree. Return non-zero if the expression is constant 1924 ** or a function call with constant arguments. Return and 0 if there 1925 ** are any variables. 1926 ** 1927 ** For the purposes of this function, a double-quoted string (ex: "abc") 1928 ** is considered a variable but a single-quoted string (ex: 'abc') is 1929 ** a constant. 1930 */ 1931 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1932 assert( isInit==0 || isInit==1 ); 1933 return exprIsConst(p, 4+isInit, 0); 1934 } 1935 1936 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1937 /* 1938 ** Walk an expression tree. Return 1 if the expression contains a 1939 ** subquery of some kind. Return 0 if there are no subqueries. 1940 */ 1941 int sqlite3ExprContainsSubquery(Expr *p){ 1942 Walker w; 1943 w.eCode = 1; 1944 w.xExprCallback = sqlite3ExprWalkNoop; 1945 w.xSelectCallback = sqlite3SelectWalkFail; 1946 #ifdef SQLITE_DEBUG 1947 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1948 #endif 1949 sqlite3WalkExpr(&w, p); 1950 return w.eCode==0; 1951 } 1952 #endif 1953 1954 /* 1955 ** If the expression p codes a constant integer that is small enough 1956 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1957 ** in *pValue. If the expression is not an integer or if it is too big 1958 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1959 */ 1960 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1961 int rc = 0; 1962 if( p==0 ) return 0; /* Can only happen following on OOM */ 1963 1964 /* If an expression is an integer literal that fits in a signed 32-bit 1965 ** integer, then the EP_IntValue flag will have already been set */ 1966 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1967 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1968 1969 if( p->flags & EP_IntValue ){ 1970 *pValue = p->u.iValue; 1971 return 1; 1972 } 1973 switch( p->op ){ 1974 case TK_UPLUS: { 1975 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1976 break; 1977 } 1978 case TK_UMINUS: { 1979 int v; 1980 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1981 assert( v!=(-2147483647-1) ); 1982 *pValue = -v; 1983 rc = 1; 1984 } 1985 break; 1986 } 1987 default: break; 1988 } 1989 return rc; 1990 } 1991 1992 /* 1993 ** Return FALSE if there is no chance that the expression can be NULL. 1994 ** 1995 ** If the expression might be NULL or if the expression is too complex 1996 ** to tell return TRUE. 1997 ** 1998 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1999 ** when we know that a value cannot be NULL. Hence, a false positive 2000 ** (returning TRUE when in fact the expression can never be NULL) might 2001 ** be a small performance hit but is otherwise harmless. On the other 2002 ** hand, a false negative (returning FALSE when the result could be NULL) 2003 ** will likely result in an incorrect answer. So when in doubt, return 2004 ** TRUE. 2005 */ 2006 int sqlite3ExprCanBeNull(const Expr *p){ 2007 u8 op; 2008 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2009 op = p->op; 2010 if( op==TK_REGISTER ) op = p->op2; 2011 switch( op ){ 2012 case TK_INTEGER: 2013 case TK_STRING: 2014 case TK_FLOAT: 2015 case TK_BLOB: 2016 return 0; 2017 case TK_COLUMN: 2018 return ExprHasProperty(p, EP_CanBeNull) || 2019 p->pTab==0 || /* Reference to column of index on expression */ 2020 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 2021 default: 2022 return 1; 2023 } 2024 } 2025 2026 /* 2027 ** Return TRUE if the given expression is a constant which would be 2028 ** unchanged by OP_Affinity with the affinity given in the second 2029 ** argument. 2030 ** 2031 ** This routine is used to determine if the OP_Affinity operation 2032 ** can be omitted. When in doubt return FALSE. A false negative 2033 ** is harmless. A false positive, however, can result in the wrong 2034 ** answer. 2035 */ 2036 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2037 u8 op; 2038 if( aff==SQLITE_AFF_BLOB ) return 1; 2039 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2040 op = p->op; 2041 if( op==TK_REGISTER ) op = p->op2; 2042 switch( op ){ 2043 case TK_INTEGER: { 2044 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2045 } 2046 case TK_FLOAT: { 2047 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2048 } 2049 case TK_STRING: { 2050 return aff==SQLITE_AFF_TEXT; 2051 } 2052 case TK_BLOB: { 2053 return 1; 2054 } 2055 case TK_COLUMN: { 2056 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2057 return p->iColumn<0 2058 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2059 } 2060 default: { 2061 return 0; 2062 } 2063 } 2064 } 2065 2066 /* 2067 ** Return TRUE if the given string is a row-id column name. 2068 */ 2069 int sqlite3IsRowid(const char *z){ 2070 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2071 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2072 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2073 return 0; 2074 } 2075 2076 /* 2077 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2078 ** that can be simplified to a direct table access, then return 2079 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2080 ** or if the SELECT statement needs to be manifested into a transient 2081 ** table, then return NULL. 2082 */ 2083 #ifndef SQLITE_OMIT_SUBQUERY 2084 static Select *isCandidateForInOpt(Expr *pX){ 2085 Select *p; 2086 SrcList *pSrc; 2087 ExprList *pEList; 2088 Table *pTab; 2089 int i; 2090 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2091 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2092 p = pX->x.pSelect; 2093 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2094 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2095 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2096 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2097 return 0; /* No DISTINCT keyword and no aggregate functions */ 2098 } 2099 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2100 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2101 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 2102 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2103 pSrc = p->pSrc; 2104 assert( pSrc!=0 ); 2105 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2106 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2107 pTab = pSrc->a[0].pTab; 2108 assert( pTab!=0 ); 2109 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2110 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2111 pEList = p->pEList; 2112 assert( pEList!=0 ); 2113 /* All SELECT results must be columns. */ 2114 for(i=0; i<pEList->nExpr; i++){ 2115 Expr *pRes = pEList->a[i].pExpr; 2116 if( pRes->op!=TK_COLUMN ) return 0; 2117 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2118 } 2119 return p; 2120 } 2121 #endif /* SQLITE_OMIT_SUBQUERY */ 2122 2123 #ifndef SQLITE_OMIT_SUBQUERY 2124 /* 2125 ** Generate code that checks the left-most column of index table iCur to see if 2126 ** it contains any NULL entries. Cause the register at regHasNull to be set 2127 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2128 ** to be set to NULL if iCur contains one or more NULL values. 2129 */ 2130 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2131 int addr1; 2132 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2133 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2134 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2135 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2136 VdbeComment((v, "first_entry_in(%d)", iCur)); 2137 sqlite3VdbeJumpHere(v, addr1); 2138 } 2139 #endif 2140 2141 2142 #ifndef SQLITE_OMIT_SUBQUERY 2143 /* 2144 ** The argument is an IN operator with a list (not a subquery) on the 2145 ** right-hand side. Return TRUE if that list is constant. 2146 */ 2147 static int sqlite3InRhsIsConstant(Expr *pIn){ 2148 Expr *pLHS; 2149 int res; 2150 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2151 pLHS = pIn->pLeft; 2152 pIn->pLeft = 0; 2153 res = sqlite3ExprIsConstant(pIn); 2154 pIn->pLeft = pLHS; 2155 return res; 2156 } 2157 #endif 2158 2159 /* 2160 ** This function is used by the implementation of the IN (...) operator. 2161 ** The pX parameter is the expression on the RHS of the IN operator, which 2162 ** might be either a list of expressions or a subquery. 2163 ** 2164 ** The job of this routine is to find or create a b-tree object that can 2165 ** be used either to test for membership in the RHS set or to iterate through 2166 ** all members of the RHS set, skipping duplicates. 2167 ** 2168 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2169 ** and pX->iTable is set to the index of that cursor. 2170 ** 2171 ** The returned value of this function indicates the b-tree type, as follows: 2172 ** 2173 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2174 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2175 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2176 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2177 ** populated epheremal table. 2178 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2179 ** implemented as a sequence of comparisons. 2180 ** 2181 ** An existing b-tree might be used if the RHS expression pX is a simple 2182 ** subquery such as: 2183 ** 2184 ** SELECT <column1>, <column2>... FROM <table> 2185 ** 2186 ** If the RHS of the IN operator is a list or a more complex subquery, then 2187 ** an ephemeral table might need to be generated from the RHS and then 2188 ** pX->iTable made to point to the ephemeral table instead of an 2189 ** existing table. 2190 ** 2191 ** The inFlags parameter must contain exactly one of the bits 2192 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 2193 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 2194 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 2195 ** IN index will be used to loop over all values of the RHS of the 2196 ** IN operator. 2197 ** 2198 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2199 ** through the set members) then the b-tree must not contain duplicates. 2200 ** An epheremal table must be used unless the selected columns are guaranteed 2201 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2202 ** a UNIQUE constraint or index. 2203 ** 2204 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2205 ** for fast set membership tests) then an epheremal table must 2206 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2207 ** index can be found with the specified <columns> as its left-most. 2208 ** 2209 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2210 ** if the RHS of the IN operator is a list (not a subquery) then this 2211 ** routine might decide that creating an ephemeral b-tree for membership 2212 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2213 ** calling routine should implement the IN operator using a sequence 2214 ** of Eq or Ne comparison operations. 2215 ** 2216 ** When the b-tree is being used for membership tests, the calling function 2217 ** might need to know whether or not the RHS side of the IN operator 2218 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2219 ** if there is any chance that the (...) might contain a NULL value at 2220 ** runtime, then a register is allocated and the register number written 2221 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2222 ** NULL value, then *prRhsHasNull is left unchanged. 2223 ** 2224 ** If a register is allocated and its location stored in *prRhsHasNull, then 2225 ** the value in that register will be NULL if the b-tree contains one or more 2226 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2227 ** NULL values. 2228 ** 2229 ** If the aiMap parameter is not NULL, it must point to an array containing 2230 ** one element for each column returned by the SELECT statement on the RHS 2231 ** of the IN(...) operator. The i'th entry of the array is populated with the 2232 ** offset of the index column that matches the i'th column returned by the 2233 ** SELECT. For example, if the expression and selected index are: 2234 ** 2235 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2236 ** CREATE INDEX i1 ON t1(b, c, a); 2237 ** 2238 ** then aiMap[] is populated with {2, 0, 1}. 2239 */ 2240 #ifndef SQLITE_OMIT_SUBQUERY 2241 int sqlite3FindInIndex( 2242 Parse *pParse, /* Parsing context */ 2243 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2244 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2245 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2246 int *aiMap /* Mapping from Index fields to RHS fields */ 2247 ){ 2248 Select *p; /* SELECT to the right of IN operator */ 2249 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2250 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2251 int mustBeUnique; /* True if RHS must be unique */ 2252 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2253 2254 assert( pX->op==TK_IN ); 2255 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2256 2257 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2258 ** whether or not the SELECT result contains NULL values, check whether 2259 ** or not NULL is actually possible (it may not be, for example, due 2260 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2261 ** set prRhsHasNull to 0 before continuing. */ 2262 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2263 int i; 2264 ExprList *pEList = pX->x.pSelect->pEList; 2265 for(i=0; i<pEList->nExpr; i++){ 2266 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2267 } 2268 if( i==pEList->nExpr ){ 2269 prRhsHasNull = 0; 2270 } 2271 } 2272 2273 /* Check to see if an existing table or index can be used to 2274 ** satisfy the query. This is preferable to generating a new 2275 ** ephemeral table. */ 2276 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2277 sqlite3 *db = pParse->db; /* Database connection */ 2278 Table *pTab; /* Table <table>. */ 2279 i16 iDb; /* Database idx for pTab */ 2280 ExprList *pEList = p->pEList; 2281 int nExpr = pEList->nExpr; 2282 2283 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2284 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2285 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2286 pTab = p->pSrc->a[0].pTab; 2287 2288 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2289 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2290 sqlite3CodeVerifySchema(pParse, iDb); 2291 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2292 2293 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2294 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2295 /* The "x IN (SELECT rowid FROM table)" case */ 2296 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2297 VdbeCoverage(v); 2298 2299 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2300 eType = IN_INDEX_ROWID; 2301 2302 sqlite3VdbeJumpHere(v, iAddr); 2303 }else{ 2304 Index *pIdx; /* Iterator variable */ 2305 int affinity_ok = 1; 2306 int i; 2307 2308 /* Check that the affinity that will be used to perform each 2309 ** comparison is the same as the affinity of each column in table 2310 ** on the RHS of the IN operator. If it not, it is not possible to 2311 ** use any index of the RHS table. */ 2312 for(i=0; i<nExpr && affinity_ok; i++){ 2313 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2314 int iCol = pEList->a[i].pExpr->iColumn; 2315 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2316 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2317 testcase( cmpaff==SQLITE_AFF_BLOB ); 2318 testcase( cmpaff==SQLITE_AFF_TEXT ); 2319 switch( cmpaff ){ 2320 case SQLITE_AFF_BLOB: 2321 break; 2322 case SQLITE_AFF_TEXT: 2323 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2324 ** other has no affinity and the other side is TEXT. Hence, 2325 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2326 ** and for the term on the LHS of the IN to have no affinity. */ 2327 assert( idxaff==SQLITE_AFF_TEXT ); 2328 break; 2329 default: 2330 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2331 } 2332 } 2333 2334 if( affinity_ok ){ 2335 /* Search for an existing index that will work for this IN operator */ 2336 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2337 Bitmask colUsed; /* Columns of the index used */ 2338 Bitmask mCol; /* Mask for the current column */ 2339 if( pIdx->nColumn<nExpr ) continue; 2340 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2341 ** BITMASK(nExpr) without overflowing */ 2342 testcase( pIdx->nColumn==BMS-2 ); 2343 testcase( pIdx->nColumn==BMS-1 ); 2344 if( pIdx->nColumn>=BMS-1 ) continue; 2345 if( mustBeUnique ){ 2346 if( pIdx->nKeyCol>nExpr 2347 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2348 ){ 2349 continue; /* This index is not unique over the IN RHS columns */ 2350 } 2351 } 2352 2353 colUsed = 0; /* Columns of index used so far */ 2354 for(i=0; i<nExpr; i++){ 2355 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2356 Expr *pRhs = pEList->a[i].pExpr; 2357 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2358 int j; 2359 2360 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2361 for(j=0; j<nExpr; j++){ 2362 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2363 assert( pIdx->azColl[j] ); 2364 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2365 continue; 2366 } 2367 break; 2368 } 2369 if( j==nExpr ) break; 2370 mCol = MASKBIT(j); 2371 if( mCol & colUsed ) break; /* Each column used only once */ 2372 colUsed |= mCol; 2373 if( aiMap ) aiMap[i] = j; 2374 } 2375 2376 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2377 if( colUsed==(MASKBIT(nExpr)-1) ){ 2378 /* If we reach this point, that means the index pIdx is usable */ 2379 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2380 #ifndef SQLITE_OMIT_EXPLAIN 2381 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0, 2382 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName), 2383 P4_DYNAMIC); 2384 #endif 2385 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2386 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2387 VdbeComment((v, "%s", pIdx->zName)); 2388 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2389 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2390 2391 if( prRhsHasNull ){ 2392 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2393 i64 mask = (1<<nExpr)-1; 2394 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2395 iTab, 0, 0, (u8*)&mask, P4_INT64); 2396 #endif 2397 *prRhsHasNull = ++pParse->nMem; 2398 if( nExpr==1 ){ 2399 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2400 } 2401 } 2402 sqlite3VdbeJumpHere(v, iAddr); 2403 } 2404 } /* End loop over indexes */ 2405 } /* End if( affinity_ok ) */ 2406 } /* End if not an rowid index */ 2407 } /* End attempt to optimize using an index */ 2408 2409 /* If no preexisting index is available for the IN clause 2410 ** and IN_INDEX_NOOP is an allowed reply 2411 ** and the RHS of the IN operator is a list, not a subquery 2412 ** and the RHS is not constant or has two or fewer terms, 2413 ** then it is not worth creating an ephemeral table to evaluate 2414 ** the IN operator so return IN_INDEX_NOOP. 2415 */ 2416 if( eType==0 2417 && (inFlags & IN_INDEX_NOOP_OK) 2418 && !ExprHasProperty(pX, EP_xIsSelect) 2419 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2420 ){ 2421 eType = IN_INDEX_NOOP; 2422 } 2423 2424 if( eType==0 ){ 2425 /* Could not find an existing table or index to use as the RHS b-tree. 2426 ** We will have to generate an ephemeral table to do the job. 2427 */ 2428 u32 savedNQueryLoop = pParse->nQueryLoop; 2429 int rMayHaveNull = 0; 2430 eType = IN_INDEX_EPH; 2431 if( inFlags & IN_INDEX_LOOP ){ 2432 pParse->nQueryLoop = 0; 2433 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2434 eType = IN_INDEX_ROWID; 2435 } 2436 }else if( prRhsHasNull ){ 2437 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2438 } 2439 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 2440 pParse->nQueryLoop = savedNQueryLoop; 2441 }else{ 2442 pX->iTable = iTab; 2443 } 2444 2445 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2446 int i, n; 2447 n = sqlite3ExprVectorSize(pX->pLeft); 2448 for(i=0; i<n; i++) aiMap[i] = i; 2449 } 2450 return eType; 2451 } 2452 #endif 2453 2454 #ifndef SQLITE_OMIT_SUBQUERY 2455 /* 2456 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2457 ** function allocates and returns a nul-terminated string containing 2458 ** the affinities to be used for each column of the comparison. 2459 ** 2460 ** It is the responsibility of the caller to ensure that the returned 2461 ** string is eventually freed using sqlite3DbFree(). 2462 */ 2463 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2464 Expr *pLeft = pExpr->pLeft; 2465 int nVal = sqlite3ExprVectorSize(pLeft); 2466 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2467 char *zRet; 2468 2469 assert( pExpr->op==TK_IN ); 2470 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2471 if( zRet ){ 2472 int i; 2473 for(i=0; i<nVal; i++){ 2474 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2475 char a = sqlite3ExprAffinity(pA); 2476 if( pSelect ){ 2477 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2478 }else{ 2479 zRet[i] = a; 2480 } 2481 } 2482 zRet[nVal] = '\0'; 2483 } 2484 return zRet; 2485 } 2486 #endif 2487 2488 #ifndef SQLITE_OMIT_SUBQUERY 2489 /* 2490 ** Load the Parse object passed as the first argument with an error 2491 ** message of the form: 2492 ** 2493 ** "sub-select returns N columns - expected M" 2494 */ 2495 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2496 const char *zFmt = "sub-select returns %d columns - expected %d"; 2497 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2498 } 2499 #endif 2500 2501 /* 2502 ** Expression pExpr is a vector that has been used in a context where 2503 ** it is not permitted. If pExpr is a sub-select vector, this routine 2504 ** loads the Parse object with a message of the form: 2505 ** 2506 ** "sub-select returns N columns - expected 1" 2507 ** 2508 ** Or, if it is a regular scalar vector: 2509 ** 2510 ** "row value misused" 2511 */ 2512 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2513 #ifndef SQLITE_OMIT_SUBQUERY 2514 if( pExpr->flags & EP_xIsSelect ){ 2515 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2516 }else 2517 #endif 2518 { 2519 sqlite3ErrorMsg(pParse, "row value misused"); 2520 } 2521 } 2522 2523 /* 2524 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 2525 ** or IN operators. Examples: 2526 ** 2527 ** (SELECT a FROM b) -- subquery 2528 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2529 ** x IN (4,5,11) -- IN operator with list on right-hand side 2530 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2531 ** 2532 ** The pExpr parameter describes the expression that contains the IN 2533 ** operator or subquery. 2534 ** 2535 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 2536 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 2537 ** to some integer key column of a table B-Tree. In this case, use an 2538 ** intkey B-Tree to store the set of IN(...) values instead of the usual 2539 ** (slower) variable length keys B-Tree. 2540 ** 2541 ** If rMayHaveNull is non-zero, that means that the operation is an IN 2542 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 2543 ** All this routine does is initialize the register given by rMayHaveNull 2544 ** to NULL. Calling routines will take care of changing this register 2545 ** value to non-NULL if the RHS is NULL-free. 2546 ** 2547 ** For a SELECT or EXISTS operator, return the register that holds the 2548 ** result. For a multi-column SELECT, the result is stored in a contiguous 2549 ** array of registers and the return value is the register of the left-most 2550 ** result column. Return 0 for IN operators or if an error occurs. 2551 */ 2552 #ifndef SQLITE_OMIT_SUBQUERY 2553 int sqlite3CodeSubselect( 2554 Parse *pParse, /* Parsing context */ 2555 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 2556 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 2557 int isRowid /* If true, LHS of IN operator is a rowid */ 2558 ){ 2559 int jmpIfDynamic = -1; /* One-time test address */ 2560 int rReg = 0; /* Register storing resulting */ 2561 Vdbe *v = sqlite3GetVdbe(pParse); 2562 if( NEVER(v==0) ) return 0; 2563 sqlite3ExprCachePush(pParse); 2564 2565 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it 2566 ** is encountered if any of the following is true: 2567 ** 2568 ** * The right-hand side is a correlated subquery 2569 ** * The right-hand side is an expression list containing variables 2570 ** * We are inside a trigger 2571 ** 2572 ** If all of the above are false, then we can run this code just once 2573 ** save the results, and reuse the same result on subsequent invocations. 2574 */ 2575 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2576 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2577 } 2578 2579 #ifndef SQLITE_OMIT_EXPLAIN 2580 if( pParse->explain==2 ){ 2581 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 2582 jmpIfDynamic>=0?"":"CORRELATED ", 2583 pExpr->op==TK_IN?"LIST":"SCALAR", 2584 pParse->iNextSelectId 2585 ); 2586 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 2587 } 2588 #endif 2589 2590 switch( pExpr->op ){ 2591 case TK_IN: { 2592 int addr; /* Address of OP_OpenEphemeral instruction */ 2593 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 2594 KeyInfo *pKeyInfo = 0; /* Key information */ 2595 int nVal; /* Size of vector pLeft */ 2596 2597 nVal = sqlite3ExprVectorSize(pLeft); 2598 assert( !isRowid || nVal==1 ); 2599 2600 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 2601 ** expression it is handled the same way. An ephemeral table is 2602 ** filled with index keys representing the results from the 2603 ** SELECT or the <exprlist>. 2604 ** 2605 ** If the 'x' expression is a column value, or the SELECT... 2606 ** statement returns a column value, then the affinity of that 2607 ** column is used to build the index keys. If both 'x' and the 2608 ** SELECT... statement are columns, then numeric affinity is used 2609 ** if either column has NUMERIC or INTEGER affinity. If neither 2610 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2611 ** is used. 2612 */ 2613 pExpr->iTable = pParse->nTab++; 2614 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2615 pExpr->iTable, (isRowid?0:nVal)); 2616 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2617 2618 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2619 /* Case 1: expr IN (SELECT ...) 2620 ** 2621 ** Generate code to write the results of the select into the temporary 2622 ** table allocated and opened above. 2623 */ 2624 Select *pSelect = pExpr->x.pSelect; 2625 ExprList *pEList = pSelect->pEList; 2626 2627 assert( !isRowid ); 2628 /* If the LHS and RHS of the IN operator do not match, that 2629 ** error will have been caught long before we reach this point. */ 2630 if( ALWAYS(pEList->nExpr==nVal) ){ 2631 SelectDest dest; 2632 int i; 2633 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 2634 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2635 pSelect->iLimit = 0; 2636 testcase( pSelect->selFlags & SF_Distinct ); 2637 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2638 if( sqlite3Select(pParse, pSelect, &dest) ){ 2639 sqlite3DbFree(pParse->db, dest.zAffSdst); 2640 sqlite3KeyInfoUnref(pKeyInfo); 2641 return 0; 2642 } 2643 sqlite3DbFree(pParse->db, dest.zAffSdst); 2644 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2645 assert( pEList!=0 ); 2646 assert( pEList->nExpr>0 ); 2647 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2648 for(i=0; i<nVal; i++){ 2649 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2650 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2651 pParse, p, pEList->a[i].pExpr 2652 ); 2653 } 2654 } 2655 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2656 /* Case 2: expr IN (exprlist) 2657 ** 2658 ** For each expression, build an index key from the evaluation and 2659 ** store it in the temporary table. If <expr> is a column, then use 2660 ** that columns affinity when building index keys. If <expr> is not 2661 ** a column, use numeric affinity. 2662 */ 2663 char affinity; /* Affinity of the LHS of the IN */ 2664 int i; 2665 ExprList *pList = pExpr->x.pList; 2666 struct ExprList_item *pItem; 2667 int r1, r2, r3; 2668 2669 affinity = sqlite3ExprAffinity(pLeft); 2670 if( !affinity ){ 2671 affinity = SQLITE_AFF_BLOB; 2672 } 2673 if( pKeyInfo ){ 2674 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2675 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2676 } 2677 2678 /* Loop through each expression in <exprlist>. */ 2679 r1 = sqlite3GetTempReg(pParse); 2680 r2 = sqlite3GetTempReg(pParse); 2681 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2682 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2683 Expr *pE2 = pItem->pExpr; 2684 int iValToIns; 2685 2686 /* If the expression is not constant then we will need to 2687 ** disable the test that was generated above that makes sure 2688 ** this code only executes once. Because for a non-constant 2689 ** expression we need to rerun this code each time. 2690 */ 2691 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 2692 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 2693 jmpIfDynamic = -1; 2694 } 2695 2696 /* Evaluate the expression and insert it into the temp table */ 2697 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2698 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2699 }else{ 2700 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2701 if( isRowid ){ 2702 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2703 sqlite3VdbeCurrentAddr(v)+2); 2704 VdbeCoverage(v); 2705 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2706 }else{ 2707 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2708 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2709 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1); 2710 } 2711 } 2712 } 2713 sqlite3ReleaseTempReg(pParse, r1); 2714 sqlite3ReleaseTempReg(pParse, r2); 2715 } 2716 if( pKeyInfo ){ 2717 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2718 } 2719 break; 2720 } 2721 2722 case TK_EXISTS: 2723 case TK_SELECT: 2724 default: { 2725 /* Case 3: (SELECT ... FROM ...) 2726 ** or: EXISTS(SELECT ... FROM ...) 2727 ** 2728 ** For a SELECT, generate code to put the values for all columns of 2729 ** the first row into an array of registers and return the index of 2730 ** the first register. 2731 ** 2732 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2733 ** into a register and return that register number. 2734 ** 2735 ** In both cases, the query is augmented with "LIMIT 1". Any 2736 ** preexisting limit is discarded in place of the new LIMIT 1. 2737 */ 2738 Select *pSel; /* SELECT statement to encode */ 2739 SelectDest dest; /* How to deal with SELECT result */ 2740 int nReg; /* Registers to allocate */ 2741 2742 testcase( pExpr->op==TK_EXISTS ); 2743 testcase( pExpr->op==TK_SELECT ); 2744 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2745 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2746 2747 pSel = pExpr->x.pSelect; 2748 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2749 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2750 pParse->nMem += nReg; 2751 if( pExpr->op==TK_SELECT ){ 2752 dest.eDest = SRT_Mem; 2753 dest.iSdst = dest.iSDParm; 2754 dest.nSdst = nReg; 2755 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2756 VdbeComment((v, "Init subquery result")); 2757 }else{ 2758 dest.eDest = SRT_Exists; 2759 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2760 VdbeComment((v, "Init EXISTS result")); 2761 } 2762 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2763 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER, 2764 &sqlite3IntTokens[1], 0); 2765 pSel->iLimit = 0; 2766 pSel->selFlags &= ~SF_MultiValue; 2767 if( sqlite3Select(pParse, pSel, &dest) ){ 2768 return 0; 2769 } 2770 rReg = dest.iSDParm; 2771 ExprSetVVAProperty(pExpr, EP_NoReduce); 2772 break; 2773 } 2774 } 2775 2776 if( rHasNullFlag ){ 2777 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2778 } 2779 2780 if( jmpIfDynamic>=0 ){ 2781 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2782 } 2783 sqlite3ExprCachePop(pParse); 2784 2785 return rReg; 2786 } 2787 #endif /* SQLITE_OMIT_SUBQUERY */ 2788 2789 #ifndef SQLITE_OMIT_SUBQUERY 2790 /* 2791 ** Expr pIn is an IN(...) expression. This function checks that the 2792 ** sub-select on the RHS of the IN() operator has the same number of 2793 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2794 ** a sub-query, that the LHS is a vector of size 1. 2795 */ 2796 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2797 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2798 if( (pIn->flags & EP_xIsSelect) ){ 2799 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2800 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2801 return 1; 2802 } 2803 }else if( nVector!=1 ){ 2804 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2805 return 1; 2806 } 2807 return 0; 2808 } 2809 #endif 2810 2811 #ifndef SQLITE_OMIT_SUBQUERY 2812 /* 2813 ** Generate code for an IN expression. 2814 ** 2815 ** x IN (SELECT ...) 2816 ** x IN (value, value, ...) 2817 ** 2818 ** The left-hand side (LHS) is a scalar or vector expression. The 2819 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2820 ** subquery. If the RHS is a subquery, the number of result columns must 2821 ** match the number of columns in the vector on the LHS. If the RHS is 2822 ** a list of values, the LHS must be a scalar. 2823 ** 2824 ** The IN operator is true if the LHS value is contained within the RHS. 2825 ** The result is false if the LHS is definitely not in the RHS. The 2826 ** result is NULL if the presence of the LHS in the RHS cannot be 2827 ** determined due to NULLs. 2828 ** 2829 ** This routine generates code that jumps to destIfFalse if the LHS is not 2830 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2831 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2832 ** within the RHS then fall through. 2833 ** 2834 ** See the separate in-operator.md documentation file in the canonical 2835 ** SQLite source tree for additional information. 2836 */ 2837 static void sqlite3ExprCodeIN( 2838 Parse *pParse, /* Parsing and code generating context */ 2839 Expr *pExpr, /* The IN expression */ 2840 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2841 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2842 ){ 2843 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2844 int eType; /* Type of the RHS */ 2845 int rLhs; /* Register(s) holding the LHS values */ 2846 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 2847 Vdbe *v; /* Statement under construction */ 2848 int *aiMap = 0; /* Map from vector field to index column */ 2849 char *zAff = 0; /* Affinity string for comparisons */ 2850 int nVector; /* Size of vectors for this IN operator */ 2851 int iDummy; /* Dummy parameter to exprCodeVector() */ 2852 Expr *pLeft; /* The LHS of the IN operator */ 2853 int i; /* loop counter */ 2854 int destStep2; /* Where to jump when NULLs seen in step 2 */ 2855 int destStep6 = 0; /* Start of code for Step 6 */ 2856 int addrTruthOp; /* Address of opcode that determines the IN is true */ 2857 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 2858 int addrTop; /* Top of the step-6 loop */ 2859 2860 pLeft = pExpr->pLeft; 2861 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 2862 zAff = exprINAffinity(pParse, pExpr); 2863 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 2864 aiMap = (int*)sqlite3DbMallocZero( 2865 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 2866 ); 2867 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 2868 2869 /* Attempt to compute the RHS. After this step, if anything other than 2870 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable 2871 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 2872 ** the RHS has not yet been coded. */ 2873 v = pParse->pVdbe; 2874 assert( v!=0 ); /* OOM detected prior to this routine */ 2875 VdbeNoopComment((v, "begin IN expr")); 2876 eType = sqlite3FindInIndex(pParse, pExpr, 2877 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2878 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap); 2879 2880 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 2881 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 2882 ); 2883 #ifdef SQLITE_DEBUG 2884 /* Confirm that aiMap[] contains nVector integer values between 0 and 2885 ** nVector-1. */ 2886 for(i=0; i<nVector; i++){ 2887 int j, cnt; 2888 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 2889 assert( cnt==1 ); 2890 } 2891 #endif 2892 2893 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 2894 ** vector, then it is stored in an array of nVector registers starting 2895 ** at r1. 2896 ** 2897 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 2898 ** so that the fields are in the same order as an existing index. The 2899 ** aiMap[] array contains a mapping from the original LHS field order to 2900 ** the field order that matches the RHS index. 2901 */ 2902 sqlite3ExprCachePush(pParse); 2903 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 2904 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 2905 if( i==nVector ){ 2906 /* LHS fields are not reordered */ 2907 rLhs = rLhsOrig; 2908 }else{ 2909 /* Need to reorder the LHS fields according to aiMap */ 2910 rLhs = sqlite3GetTempRange(pParse, nVector); 2911 for(i=0; i<nVector; i++){ 2912 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 2913 } 2914 } 2915 2916 /* If sqlite3FindInIndex() did not find or create an index that is 2917 ** suitable for evaluating the IN operator, then evaluate using a 2918 ** sequence of comparisons. 2919 ** 2920 ** This is step (1) in the in-operator.md optimized algorithm. 2921 */ 2922 if( eType==IN_INDEX_NOOP ){ 2923 ExprList *pList = pExpr->x.pList; 2924 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2925 int labelOk = sqlite3VdbeMakeLabel(v); 2926 int r2, regToFree; 2927 int regCkNull = 0; 2928 int ii; 2929 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2930 if( destIfNull!=destIfFalse ){ 2931 regCkNull = sqlite3GetTempReg(pParse); 2932 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 2933 } 2934 for(ii=0; ii<pList->nExpr; ii++){ 2935 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2936 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2937 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2938 } 2939 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2940 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 2941 (void*)pColl, P4_COLLSEQ); 2942 VdbeCoverageIf(v, ii<pList->nExpr-1); 2943 VdbeCoverageIf(v, ii==pList->nExpr-1); 2944 sqlite3VdbeChangeP5(v, zAff[0]); 2945 }else{ 2946 assert( destIfNull==destIfFalse ); 2947 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 2948 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2949 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 2950 } 2951 sqlite3ReleaseTempReg(pParse, regToFree); 2952 } 2953 if( regCkNull ){ 2954 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2955 sqlite3VdbeGoto(v, destIfFalse); 2956 } 2957 sqlite3VdbeResolveLabel(v, labelOk); 2958 sqlite3ReleaseTempReg(pParse, regCkNull); 2959 goto sqlite3ExprCodeIN_finished; 2960 } 2961 2962 /* Step 2: Check to see if the LHS contains any NULL columns. If the 2963 ** LHS does contain NULLs then the result must be either FALSE or NULL. 2964 ** We will then skip the binary search of the RHS. 2965 */ 2966 if( destIfNull==destIfFalse ){ 2967 destStep2 = destIfFalse; 2968 }else{ 2969 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 2970 } 2971 for(i=0; i<nVector; i++){ 2972 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 2973 if( sqlite3ExprCanBeNull(p) ){ 2974 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 2975 VdbeCoverage(v); 2976 } 2977 } 2978 2979 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 2980 ** of the RHS using the LHS as a probe. If found, the result is 2981 ** true. 2982 */ 2983 if( eType==IN_INDEX_ROWID ){ 2984 /* In this case, the RHS is the ROWID of table b-tree and so we also 2985 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 2986 ** into a single opcode. */ 2987 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs); 2988 VdbeCoverage(v); 2989 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 2990 }else{ 2991 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 2992 if( destIfFalse==destIfNull ){ 2993 /* Combine Step 3 and Step 5 into a single opcode */ 2994 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, 2995 rLhs, nVector); VdbeCoverage(v); 2996 goto sqlite3ExprCodeIN_finished; 2997 } 2998 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 2999 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, 3000 rLhs, nVector); VdbeCoverage(v); 3001 } 3002 3003 /* Step 4. If the RHS is known to be non-NULL and we did not find 3004 ** an match on the search above, then the result must be FALSE. 3005 */ 3006 if( rRhsHasNull && nVector==1 ){ 3007 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3008 VdbeCoverage(v); 3009 } 3010 3011 /* Step 5. If we do not care about the difference between NULL and 3012 ** FALSE, then just return false. 3013 */ 3014 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3015 3016 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3017 ** If any comparison is NULL, then the result is NULL. If all 3018 ** comparisons are FALSE then the final result is FALSE. 3019 ** 3020 ** For a scalar LHS, it is sufficient to check just the first row 3021 ** of the RHS. 3022 */ 3023 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3024 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 3025 VdbeCoverage(v); 3026 if( nVector>1 ){ 3027 destNotNull = sqlite3VdbeMakeLabel(v); 3028 }else{ 3029 /* For nVector==1, combine steps 6 and 7 by immediately returning 3030 ** FALSE if the first comparison is not NULL */ 3031 destNotNull = destIfFalse; 3032 } 3033 for(i=0; i<nVector; i++){ 3034 Expr *p; 3035 CollSeq *pColl; 3036 int r3 = sqlite3GetTempReg(pParse); 3037 p = sqlite3VectorFieldSubexpr(pLeft, i); 3038 pColl = sqlite3ExprCollSeq(pParse, p); 3039 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3); 3040 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3041 (void*)pColl, P4_COLLSEQ); 3042 VdbeCoverage(v); 3043 sqlite3ReleaseTempReg(pParse, r3); 3044 } 3045 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3046 if( nVector>1 ){ 3047 sqlite3VdbeResolveLabel(v, destNotNull); 3048 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1); 3049 VdbeCoverage(v); 3050 3051 /* Step 7: If we reach this point, we know that the result must 3052 ** be false. */ 3053 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3054 } 3055 3056 /* Jumps here in order to return true. */ 3057 sqlite3VdbeJumpHere(v, addrTruthOp); 3058 3059 sqlite3ExprCodeIN_finished: 3060 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3061 sqlite3ExprCachePop(pParse); 3062 VdbeComment((v, "end IN expr")); 3063 sqlite3ExprCodeIN_oom_error: 3064 sqlite3DbFree(pParse->db, aiMap); 3065 sqlite3DbFree(pParse->db, zAff); 3066 } 3067 #endif /* SQLITE_OMIT_SUBQUERY */ 3068 3069 #ifndef SQLITE_OMIT_FLOATING_POINT 3070 /* 3071 ** Generate an instruction that will put the floating point 3072 ** value described by z[0..n-1] into register iMem. 3073 ** 3074 ** The z[] string will probably not be zero-terminated. But the 3075 ** z[n] character is guaranteed to be something that does not look 3076 ** like the continuation of the number. 3077 */ 3078 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3079 if( ALWAYS(z!=0) ){ 3080 double value; 3081 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3082 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3083 if( negateFlag ) value = -value; 3084 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3085 } 3086 } 3087 #endif 3088 3089 3090 /* 3091 ** Generate an instruction that will put the integer describe by 3092 ** text z[0..n-1] into register iMem. 3093 ** 3094 ** Expr.u.zToken is always UTF8 and zero-terminated. 3095 */ 3096 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3097 Vdbe *v = pParse->pVdbe; 3098 if( pExpr->flags & EP_IntValue ){ 3099 int i = pExpr->u.iValue; 3100 assert( i>=0 ); 3101 if( negFlag ) i = -i; 3102 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3103 }else{ 3104 int c; 3105 i64 value; 3106 const char *z = pExpr->u.zToken; 3107 assert( z!=0 ); 3108 c = sqlite3DecOrHexToI64(z, &value); 3109 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3110 #ifdef SQLITE_OMIT_FLOATING_POINT 3111 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3112 #else 3113 #ifndef SQLITE_OMIT_HEX_INTEGER 3114 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3115 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3116 }else 3117 #endif 3118 { 3119 codeReal(v, z, negFlag, iMem); 3120 } 3121 #endif 3122 }else{ 3123 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3124 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3125 } 3126 } 3127 } 3128 3129 /* 3130 ** Erase column-cache entry number i 3131 */ 3132 static void cacheEntryClear(Parse *pParse, int i){ 3133 if( pParse->aColCache[i].tempReg ){ 3134 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 3135 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3136 } 3137 } 3138 pParse->nColCache--; 3139 if( i<pParse->nColCache ){ 3140 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache]; 3141 } 3142 } 3143 3144 3145 /* 3146 ** Record in the column cache that a particular column from a 3147 ** particular table is stored in a particular register. 3148 */ 3149 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 3150 int i; 3151 int minLru; 3152 int idxLru; 3153 struct yColCache *p; 3154 3155 /* Unless an error has occurred, register numbers are always positive. */ 3156 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 3157 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 3158 3159 /* The SQLITE_ColumnCache flag disables the column cache. This is used 3160 ** for testing only - to verify that SQLite always gets the same answer 3161 ** with and without the column cache. 3162 */ 3163 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 3164 3165 /* First replace any existing entry. 3166 ** 3167 ** Actually, the way the column cache is currently used, we are guaranteed 3168 ** that the object will never already be in cache. Verify this guarantee. 3169 */ 3170 #ifndef NDEBUG 3171 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3172 assert( p->iTable!=iTab || p->iColumn!=iCol ); 3173 } 3174 #endif 3175 3176 /* If the cache is already full, delete the least recently used entry */ 3177 if( pParse->nColCache>=SQLITE_N_COLCACHE ){ 3178 minLru = 0x7fffffff; 3179 idxLru = -1; 3180 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 3181 if( p->lru<minLru ){ 3182 idxLru = i; 3183 minLru = p->lru; 3184 } 3185 } 3186 p = &pParse->aColCache[idxLru]; 3187 }else{ 3188 p = &pParse->aColCache[pParse->nColCache++]; 3189 } 3190 3191 /* Add the new entry to the end of the cache */ 3192 p->iLevel = pParse->iCacheLevel; 3193 p->iTable = iTab; 3194 p->iColumn = iCol; 3195 p->iReg = iReg; 3196 p->tempReg = 0; 3197 p->lru = pParse->iCacheCnt++; 3198 } 3199 3200 /* 3201 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 3202 ** Purge the range of registers from the column cache. 3203 */ 3204 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 3205 int i = 0; 3206 while( i<pParse->nColCache ){ 3207 struct yColCache *p = &pParse->aColCache[i]; 3208 if( p->iReg >= iReg && p->iReg < iReg+nReg ){ 3209 cacheEntryClear(pParse, i); 3210 }else{ 3211 i++; 3212 } 3213 } 3214 } 3215 3216 /* 3217 ** Remember the current column cache context. Any new entries added 3218 ** added to the column cache after this call are removed when the 3219 ** corresponding pop occurs. 3220 */ 3221 void sqlite3ExprCachePush(Parse *pParse){ 3222 pParse->iCacheLevel++; 3223 #ifdef SQLITE_DEBUG 3224 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3225 printf("PUSH to %d\n", pParse->iCacheLevel); 3226 } 3227 #endif 3228 } 3229 3230 /* 3231 ** Remove from the column cache any entries that were added since the 3232 ** the previous sqlite3ExprCachePush operation. In other words, restore 3233 ** the cache to the state it was in prior the most recent Push. 3234 */ 3235 void sqlite3ExprCachePop(Parse *pParse){ 3236 int i = 0; 3237 assert( pParse->iCacheLevel>=1 ); 3238 pParse->iCacheLevel--; 3239 #ifdef SQLITE_DEBUG 3240 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3241 printf("POP to %d\n", pParse->iCacheLevel); 3242 } 3243 #endif 3244 while( i<pParse->nColCache ){ 3245 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){ 3246 cacheEntryClear(pParse, i); 3247 }else{ 3248 i++; 3249 } 3250 } 3251 } 3252 3253 /* 3254 ** When a cached column is reused, make sure that its register is 3255 ** no longer available as a temp register. ticket #3879: that same 3256 ** register might be in the cache in multiple places, so be sure to 3257 ** get them all. 3258 */ 3259 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 3260 int i; 3261 struct yColCache *p; 3262 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3263 if( p->iReg==iReg ){ 3264 p->tempReg = 0; 3265 } 3266 } 3267 } 3268 3269 /* Generate code that will load into register regOut a value that is 3270 ** appropriate for the iIdxCol-th column of index pIdx. 3271 */ 3272 void sqlite3ExprCodeLoadIndexColumn( 3273 Parse *pParse, /* The parsing context */ 3274 Index *pIdx, /* The index whose column is to be loaded */ 3275 int iTabCur, /* Cursor pointing to a table row */ 3276 int iIdxCol, /* The column of the index to be loaded */ 3277 int regOut /* Store the index column value in this register */ 3278 ){ 3279 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3280 if( iTabCol==XN_EXPR ){ 3281 assert( pIdx->aColExpr ); 3282 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3283 pParse->iSelfTab = iTabCur + 1; 3284 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3285 pParse->iSelfTab = 0; 3286 }else{ 3287 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3288 iTabCol, regOut); 3289 } 3290 } 3291 3292 /* 3293 ** Generate code to extract the value of the iCol-th column of a table. 3294 */ 3295 void sqlite3ExprCodeGetColumnOfTable( 3296 Vdbe *v, /* The VDBE under construction */ 3297 Table *pTab, /* The table containing the value */ 3298 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3299 int iCol, /* Index of the column to extract */ 3300 int regOut /* Extract the value into this register */ 3301 ){ 3302 if( pTab==0 ){ 3303 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3304 return; 3305 } 3306 if( iCol<0 || iCol==pTab->iPKey ){ 3307 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3308 }else{ 3309 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3310 int x = iCol; 3311 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3312 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3313 } 3314 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3315 } 3316 if( iCol>=0 ){ 3317 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3318 } 3319 } 3320 3321 /* 3322 ** Generate code that will extract the iColumn-th column from 3323 ** table pTab and store the column value in a register. 3324 ** 3325 ** An effort is made to store the column value in register iReg. This 3326 ** is not garanteeed for GetColumn() - the result can be stored in 3327 ** any register. But the result is guaranteed to land in register iReg 3328 ** for GetColumnToReg(). 3329 ** 3330 ** There must be an open cursor to pTab in iTable when this routine 3331 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3332 */ 3333 int sqlite3ExprCodeGetColumn( 3334 Parse *pParse, /* Parsing and code generating context */ 3335 Table *pTab, /* Description of the table we are reading from */ 3336 int iColumn, /* Index of the table column */ 3337 int iTable, /* The cursor pointing to the table */ 3338 int iReg, /* Store results here */ 3339 u8 p5 /* P5 value for OP_Column + FLAGS */ 3340 ){ 3341 Vdbe *v = pParse->pVdbe; 3342 int i; 3343 struct yColCache *p; 3344 3345 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3346 if( p->iTable==iTable && p->iColumn==iColumn ){ 3347 p->lru = pParse->iCacheCnt++; 3348 sqlite3ExprCachePinRegister(pParse, p->iReg); 3349 return p->iReg; 3350 } 3351 } 3352 assert( v!=0 ); 3353 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3354 if( p5 ){ 3355 sqlite3VdbeChangeP5(v, p5); 3356 }else{ 3357 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 3358 } 3359 return iReg; 3360 } 3361 void sqlite3ExprCodeGetColumnToReg( 3362 Parse *pParse, /* Parsing and code generating context */ 3363 Table *pTab, /* Description of the table we are reading from */ 3364 int iColumn, /* Index of the table column */ 3365 int iTable, /* The cursor pointing to the table */ 3366 int iReg /* Store results here */ 3367 ){ 3368 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 3369 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 3370 } 3371 3372 3373 /* 3374 ** Clear all column cache entries. 3375 */ 3376 void sqlite3ExprCacheClear(Parse *pParse){ 3377 int i; 3378 3379 #ifdef SQLITE_DEBUG 3380 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 3381 printf("CLEAR\n"); 3382 } 3383 #endif 3384 for(i=0; i<pParse->nColCache; i++){ 3385 if( pParse->aColCache[i].tempReg 3386 && pParse->nTempReg<ArraySize(pParse->aTempReg) 3387 ){ 3388 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg; 3389 } 3390 } 3391 pParse->nColCache = 0; 3392 } 3393 3394 /* 3395 ** Record the fact that an affinity change has occurred on iCount 3396 ** registers starting with iStart. 3397 */ 3398 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 3399 sqlite3ExprCacheRemove(pParse, iStart, iCount); 3400 } 3401 3402 /* 3403 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3404 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 3405 */ 3406 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3407 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3408 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3409 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 3410 } 3411 3412 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 3413 /* 3414 ** Return true if any register in the range iFrom..iTo (inclusive) 3415 ** is used as part of the column cache. 3416 ** 3417 ** This routine is used within assert() and testcase() macros only 3418 ** and does not appear in a normal build. 3419 */ 3420 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 3421 int i; 3422 struct yColCache *p; 3423 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 3424 int r = p->iReg; 3425 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 3426 } 3427 return 0; 3428 } 3429 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 3430 3431 3432 /* 3433 ** Convert a scalar expression node to a TK_REGISTER referencing 3434 ** register iReg. The caller must ensure that iReg already contains 3435 ** the correct value for the expression. 3436 */ 3437 static void exprToRegister(Expr *p, int iReg){ 3438 p->op2 = p->op; 3439 p->op = TK_REGISTER; 3440 p->iTable = iReg; 3441 ExprClearProperty(p, EP_Skip); 3442 } 3443 3444 /* 3445 ** Evaluate an expression (either a vector or a scalar expression) and store 3446 ** the result in continguous temporary registers. Return the index of 3447 ** the first register used to store the result. 3448 ** 3449 ** If the returned result register is a temporary scalar, then also write 3450 ** that register number into *piFreeable. If the returned result register 3451 ** is not a temporary or if the expression is a vector set *piFreeable 3452 ** to 0. 3453 */ 3454 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3455 int iResult; 3456 int nResult = sqlite3ExprVectorSize(p); 3457 if( nResult==1 ){ 3458 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3459 }else{ 3460 *piFreeable = 0; 3461 if( p->op==TK_SELECT ){ 3462 #if SQLITE_OMIT_SUBQUERY 3463 iResult = 0; 3464 #else 3465 iResult = sqlite3CodeSubselect(pParse, p, 0, 0); 3466 #endif 3467 }else{ 3468 int i; 3469 iResult = pParse->nMem+1; 3470 pParse->nMem += nResult; 3471 for(i=0; i<nResult; i++){ 3472 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3473 } 3474 } 3475 } 3476 return iResult; 3477 } 3478 3479 3480 /* 3481 ** Generate code into the current Vdbe to evaluate the given 3482 ** expression. Attempt to store the results in register "target". 3483 ** Return the register where results are stored. 3484 ** 3485 ** With this routine, there is no guarantee that results will 3486 ** be stored in target. The result might be stored in some other 3487 ** register if it is convenient to do so. The calling function 3488 ** must check the return code and move the results to the desired 3489 ** register. 3490 */ 3491 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3492 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3493 int op; /* The opcode being coded */ 3494 int inReg = target; /* Results stored in register inReg */ 3495 int regFree1 = 0; /* If non-zero free this temporary register */ 3496 int regFree2 = 0; /* If non-zero free this temporary register */ 3497 int r1, r2; /* Various register numbers */ 3498 Expr tempX; /* Temporary expression node */ 3499 int p5 = 0; 3500 3501 assert( target>0 && target<=pParse->nMem ); 3502 if( v==0 ){ 3503 assert( pParse->db->mallocFailed ); 3504 return 0; 3505 } 3506 3507 if( pExpr==0 ){ 3508 op = TK_NULL; 3509 }else{ 3510 op = pExpr->op; 3511 } 3512 switch( op ){ 3513 case TK_AGG_COLUMN: { 3514 AggInfo *pAggInfo = pExpr->pAggInfo; 3515 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3516 if( !pAggInfo->directMode ){ 3517 assert( pCol->iMem>0 ); 3518 return pCol->iMem; 3519 }else if( pAggInfo->useSortingIdx ){ 3520 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3521 pCol->iSorterColumn, target); 3522 return target; 3523 } 3524 /* Otherwise, fall thru into the TK_COLUMN case */ 3525 } 3526 case TK_COLUMN: { 3527 int iTab = pExpr->iTable; 3528 if( iTab<0 ){ 3529 if( pParse->iSelfTab<0 ){ 3530 /* Generating CHECK constraints or inserting into partial index */ 3531 return pExpr->iColumn - pParse->iSelfTab; 3532 }else{ 3533 /* Coding an expression that is part of an index where column names 3534 ** in the index refer to the table to which the index belongs */ 3535 iTab = pParse->iSelfTab - 1; 3536 } 3537 } 3538 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 3539 pExpr->iColumn, iTab, target, 3540 pExpr->op2); 3541 } 3542 case TK_INTEGER: { 3543 codeInteger(pParse, pExpr, 0, target); 3544 return target; 3545 } 3546 #ifndef SQLITE_OMIT_FLOATING_POINT 3547 case TK_FLOAT: { 3548 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3549 codeReal(v, pExpr->u.zToken, 0, target); 3550 return target; 3551 } 3552 #endif 3553 case TK_STRING: { 3554 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3555 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3556 return target; 3557 } 3558 case TK_NULL: { 3559 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3560 return target; 3561 } 3562 #ifndef SQLITE_OMIT_BLOB_LITERAL 3563 case TK_BLOB: { 3564 int n; 3565 const char *z; 3566 char *zBlob; 3567 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3568 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3569 assert( pExpr->u.zToken[1]=='\'' ); 3570 z = &pExpr->u.zToken[2]; 3571 n = sqlite3Strlen30(z) - 1; 3572 assert( z[n]=='\'' ); 3573 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3574 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3575 return target; 3576 } 3577 #endif 3578 case TK_VARIABLE: { 3579 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3580 assert( pExpr->u.zToken!=0 ); 3581 assert( pExpr->u.zToken[0]!=0 ); 3582 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3583 if( pExpr->u.zToken[1]!=0 ){ 3584 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3585 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3586 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3587 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3588 } 3589 return target; 3590 } 3591 case TK_REGISTER: { 3592 return pExpr->iTable; 3593 } 3594 #ifndef SQLITE_OMIT_CAST 3595 case TK_CAST: { 3596 /* Expressions of the form: CAST(pLeft AS token) */ 3597 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3598 if( inReg!=target ){ 3599 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3600 inReg = target; 3601 } 3602 sqlite3VdbeAddOp2(v, OP_Cast, target, 3603 sqlite3AffinityType(pExpr->u.zToken, 0)); 3604 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 3605 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 3606 return inReg; 3607 } 3608 #endif /* SQLITE_OMIT_CAST */ 3609 case TK_IS: 3610 case TK_ISNOT: 3611 op = (op==TK_IS) ? TK_EQ : TK_NE; 3612 p5 = SQLITE_NULLEQ; 3613 /* fall-through */ 3614 case TK_LT: 3615 case TK_LE: 3616 case TK_GT: 3617 case TK_GE: 3618 case TK_NE: 3619 case TK_EQ: { 3620 Expr *pLeft = pExpr->pLeft; 3621 if( sqlite3ExprIsVector(pLeft) ){ 3622 codeVectorCompare(pParse, pExpr, target, op, p5); 3623 }else{ 3624 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3625 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3626 codeCompare(pParse, pLeft, pExpr->pRight, op, 3627 r1, r2, inReg, SQLITE_STOREP2 | p5); 3628 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3629 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3630 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3631 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3632 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3633 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3634 testcase( regFree1==0 ); 3635 testcase( regFree2==0 ); 3636 } 3637 break; 3638 } 3639 case TK_AND: 3640 case TK_OR: 3641 case TK_PLUS: 3642 case TK_STAR: 3643 case TK_MINUS: 3644 case TK_REM: 3645 case TK_BITAND: 3646 case TK_BITOR: 3647 case TK_SLASH: 3648 case TK_LSHIFT: 3649 case TK_RSHIFT: 3650 case TK_CONCAT: { 3651 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3652 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3653 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3654 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3655 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3656 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3657 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3658 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3659 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3660 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3661 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3662 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3663 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3664 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3665 testcase( regFree1==0 ); 3666 testcase( regFree2==0 ); 3667 break; 3668 } 3669 case TK_UMINUS: { 3670 Expr *pLeft = pExpr->pLeft; 3671 assert( pLeft ); 3672 if( pLeft->op==TK_INTEGER ){ 3673 codeInteger(pParse, pLeft, 1, target); 3674 return target; 3675 #ifndef SQLITE_OMIT_FLOATING_POINT 3676 }else if( pLeft->op==TK_FLOAT ){ 3677 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3678 codeReal(v, pLeft->u.zToken, 1, target); 3679 return target; 3680 #endif 3681 }else{ 3682 tempX.op = TK_INTEGER; 3683 tempX.flags = EP_IntValue|EP_TokenOnly; 3684 tempX.u.iValue = 0; 3685 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3686 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3687 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3688 testcase( regFree2==0 ); 3689 } 3690 break; 3691 } 3692 case TK_BITNOT: 3693 case TK_NOT: { 3694 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3695 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3696 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3697 testcase( regFree1==0 ); 3698 sqlite3VdbeAddOp2(v, op, r1, inReg); 3699 break; 3700 } 3701 case TK_ISNULL: 3702 case TK_NOTNULL: { 3703 int addr; 3704 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3705 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3706 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3707 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3708 testcase( regFree1==0 ); 3709 addr = sqlite3VdbeAddOp1(v, op, r1); 3710 VdbeCoverageIf(v, op==TK_ISNULL); 3711 VdbeCoverageIf(v, op==TK_NOTNULL); 3712 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3713 sqlite3VdbeJumpHere(v, addr); 3714 break; 3715 } 3716 case TK_AGG_FUNCTION: { 3717 AggInfo *pInfo = pExpr->pAggInfo; 3718 if( pInfo==0 ){ 3719 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3720 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3721 }else{ 3722 return pInfo->aFunc[pExpr->iAgg].iMem; 3723 } 3724 break; 3725 } 3726 case TK_FUNCTION: { 3727 ExprList *pFarg; /* List of function arguments */ 3728 int nFarg; /* Number of function arguments */ 3729 FuncDef *pDef; /* The function definition object */ 3730 const char *zId; /* The function name */ 3731 u32 constMask = 0; /* Mask of function arguments that are constant */ 3732 int i; /* Loop counter */ 3733 sqlite3 *db = pParse->db; /* The database connection */ 3734 u8 enc = ENC(db); /* The text encoding used by this database */ 3735 CollSeq *pColl = 0; /* A collating sequence */ 3736 3737 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3738 /* SQL functions can be expensive. So try to move constant functions 3739 ** out of the inner loop, even if that means an extra OP_Copy. */ 3740 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3741 } 3742 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3743 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3744 pFarg = 0; 3745 }else{ 3746 pFarg = pExpr->x.pList; 3747 } 3748 nFarg = pFarg ? pFarg->nExpr : 0; 3749 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3750 zId = pExpr->u.zToken; 3751 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3752 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3753 if( pDef==0 && pParse->explain ){ 3754 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3755 } 3756 #endif 3757 if( pDef==0 || pDef->xFinalize!=0 ){ 3758 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3759 break; 3760 } 3761 3762 /* Attempt a direct implementation of the built-in COALESCE() and 3763 ** IFNULL() functions. This avoids unnecessary evaluation of 3764 ** arguments past the first non-NULL argument. 3765 */ 3766 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3767 int endCoalesce = sqlite3VdbeMakeLabel(v); 3768 assert( nFarg>=2 ); 3769 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3770 for(i=1; i<nFarg; i++){ 3771 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3772 VdbeCoverage(v); 3773 sqlite3ExprCacheRemove(pParse, target, 1); 3774 sqlite3ExprCachePush(pParse); 3775 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3776 sqlite3ExprCachePop(pParse); 3777 } 3778 sqlite3VdbeResolveLabel(v, endCoalesce); 3779 break; 3780 } 3781 3782 /* The UNLIKELY() function is a no-op. The result is the value 3783 ** of the first argument. 3784 */ 3785 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3786 assert( nFarg>=1 ); 3787 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3788 } 3789 3790 #ifdef SQLITE_DEBUG 3791 /* The AFFINITY() function evaluates to a string that describes 3792 ** the type affinity of the argument. This is used for testing of 3793 ** the SQLite type logic. 3794 */ 3795 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3796 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3797 char aff; 3798 assert( nFarg==1 ); 3799 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3800 sqlite3VdbeLoadString(v, target, 3801 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3802 return target; 3803 } 3804 #endif 3805 3806 for(i=0; i<nFarg; i++){ 3807 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3808 testcase( i==31 ); 3809 constMask |= MASKBIT32(i); 3810 } 3811 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3812 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3813 } 3814 } 3815 if( pFarg ){ 3816 if( constMask ){ 3817 r1 = pParse->nMem+1; 3818 pParse->nMem += nFarg; 3819 }else{ 3820 r1 = sqlite3GetTempRange(pParse, nFarg); 3821 } 3822 3823 /* For length() and typeof() functions with a column argument, 3824 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3825 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3826 ** loading. 3827 */ 3828 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3829 u8 exprOp; 3830 assert( nFarg==1 ); 3831 assert( pFarg->a[0].pExpr!=0 ); 3832 exprOp = pFarg->a[0].pExpr->op; 3833 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3834 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3835 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3836 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3837 pFarg->a[0].pExpr->op2 = 3838 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3839 } 3840 } 3841 3842 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 3843 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3844 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3845 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 3846 }else{ 3847 r1 = 0; 3848 } 3849 #ifndef SQLITE_OMIT_VIRTUALTABLE 3850 /* Possibly overload the function if the first argument is 3851 ** a virtual table column. 3852 ** 3853 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3854 ** second argument, not the first, as the argument to test to 3855 ** see if it is a column in a virtual table. This is done because 3856 ** the left operand of infix functions (the operand we want to 3857 ** control overloading) ends up as the second argument to the 3858 ** function. The expression "A glob B" is equivalent to 3859 ** "glob(B,A). We want to use the A in "A glob B" to test 3860 ** for function overloading. But we use the B term in "glob(B,A)". 3861 */ 3862 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 3863 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3864 }else if( nFarg>0 ){ 3865 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3866 } 3867 #endif 3868 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3869 if( !pColl ) pColl = db->pDfltColl; 3870 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3871 } 3872 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3873 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3874 sqlite3VdbeChangeP5(v, (u8)nFarg); 3875 if( nFarg && constMask==0 ){ 3876 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3877 } 3878 return target; 3879 } 3880 #ifndef SQLITE_OMIT_SUBQUERY 3881 case TK_EXISTS: 3882 case TK_SELECT: { 3883 int nCol; 3884 testcase( op==TK_EXISTS ); 3885 testcase( op==TK_SELECT ); 3886 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3887 sqlite3SubselectError(pParse, nCol, 1); 3888 }else{ 3889 return sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3890 } 3891 break; 3892 } 3893 case TK_SELECT_COLUMN: { 3894 int n; 3895 if( pExpr->pLeft->iTable==0 ){ 3896 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0); 3897 } 3898 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3899 if( pExpr->iTable 3900 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3901 ){ 3902 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3903 pExpr->iTable, n); 3904 } 3905 return pExpr->pLeft->iTable + pExpr->iColumn; 3906 } 3907 case TK_IN: { 3908 int destIfFalse = sqlite3VdbeMakeLabel(v); 3909 int destIfNull = sqlite3VdbeMakeLabel(v); 3910 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3911 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3912 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3913 sqlite3VdbeResolveLabel(v, destIfFalse); 3914 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3915 sqlite3VdbeResolveLabel(v, destIfNull); 3916 return target; 3917 } 3918 #endif /* SQLITE_OMIT_SUBQUERY */ 3919 3920 3921 /* 3922 ** x BETWEEN y AND z 3923 ** 3924 ** This is equivalent to 3925 ** 3926 ** x>=y AND x<=z 3927 ** 3928 ** X is stored in pExpr->pLeft. 3929 ** Y is stored in pExpr->pList->a[0].pExpr. 3930 ** Z is stored in pExpr->pList->a[1].pExpr. 3931 */ 3932 case TK_BETWEEN: { 3933 exprCodeBetween(pParse, pExpr, target, 0, 0); 3934 return target; 3935 } 3936 case TK_SPAN: 3937 case TK_COLLATE: 3938 case TK_UPLUS: { 3939 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3940 } 3941 3942 case TK_TRIGGER: { 3943 /* If the opcode is TK_TRIGGER, then the expression is a reference 3944 ** to a column in the new.* or old.* pseudo-tables available to 3945 ** trigger programs. In this case Expr.iTable is set to 1 for the 3946 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3947 ** is set to the column of the pseudo-table to read, or to -1 to 3948 ** read the rowid field. 3949 ** 3950 ** The expression is implemented using an OP_Param opcode. The p1 3951 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3952 ** to reference another column of the old.* pseudo-table, where 3953 ** i is the index of the column. For a new.rowid reference, p1 is 3954 ** set to (n+1), where n is the number of columns in each pseudo-table. 3955 ** For a reference to any other column in the new.* pseudo-table, p1 3956 ** is set to (n+2+i), where n and i are as defined previously. For 3957 ** example, if the table on which triggers are being fired is 3958 ** declared as: 3959 ** 3960 ** CREATE TABLE t1(a, b); 3961 ** 3962 ** Then p1 is interpreted as follows: 3963 ** 3964 ** p1==0 -> old.rowid p1==3 -> new.rowid 3965 ** p1==1 -> old.a p1==4 -> new.a 3966 ** p1==2 -> old.b p1==5 -> new.b 3967 */ 3968 Table *pTab = pExpr->pTab; 3969 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3970 3971 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3972 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3973 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3974 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3975 3976 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3977 VdbeComment((v, "%s.%s -> $%d", 3978 (pExpr->iTable ? "new" : "old"), 3979 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3980 target 3981 )); 3982 3983 #ifndef SQLITE_OMIT_FLOATING_POINT 3984 /* If the column has REAL affinity, it may currently be stored as an 3985 ** integer. Use OP_RealAffinity to make sure it is really real. 3986 ** 3987 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3988 ** floating point when extracting it from the record. */ 3989 if( pExpr->iColumn>=0 3990 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3991 ){ 3992 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3993 } 3994 #endif 3995 break; 3996 } 3997 3998 case TK_VECTOR: { 3999 sqlite3ErrorMsg(pParse, "row value misused"); 4000 break; 4001 } 4002 4003 case TK_IF_NULL_ROW: { 4004 int addrINR; 4005 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4006 sqlite3ExprCachePush(pParse); 4007 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4008 sqlite3ExprCachePop(pParse); 4009 sqlite3VdbeJumpHere(v, addrINR); 4010 sqlite3VdbeChangeP3(v, addrINR, inReg); 4011 break; 4012 } 4013 4014 /* 4015 ** Form A: 4016 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4017 ** 4018 ** Form B: 4019 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4020 ** 4021 ** Form A is can be transformed into the equivalent form B as follows: 4022 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4023 ** WHEN x=eN THEN rN ELSE y END 4024 ** 4025 ** X (if it exists) is in pExpr->pLeft. 4026 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4027 ** odd. The Y is also optional. If the number of elements in x.pList 4028 ** is even, then Y is omitted and the "otherwise" result is NULL. 4029 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4030 ** 4031 ** The result of the expression is the Ri for the first matching Ei, 4032 ** or if there is no matching Ei, the ELSE term Y, or if there is 4033 ** no ELSE term, NULL. 4034 */ 4035 default: assert( op==TK_CASE ); { 4036 int endLabel; /* GOTO label for end of CASE stmt */ 4037 int nextCase; /* GOTO label for next WHEN clause */ 4038 int nExpr; /* 2x number of WHEN terms */ 4039 int i; /* Loop counter */ 4040 ExprList *pEList; /* List of WHEN terms */ 4041 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4042 Expr opCompare; /* The X==Ei expression */ 4043 Expr *pX; /* The X expression */ 4044 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4045 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 4046 4047 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4048 assert(pExpr->x.pList->nExpr > 0); 4049 pEList = pExpr->x.pList; 4050 aListelem = pEList->a; 4051 nExpr = pEList->nExpr; 4052 endLabel = sqlite3VdbeMakeLabel(v); 4053 if( (pX = pExpr->pLeft)!=0 ){ 4054 tempX = *pX; 4055 testcase( pX->op==TK_COLUMN ); 4056 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4057 testcase( regFree1==0 ); 4058 memset(&opCompare, 0, sizeof(opCompare)); 4059 opCompare.op = TK_EQ; 4060 opCompare.pLeft = &tempX; 4061 pTest = &opCompare; 4062 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4063 ** The value in regFree1 might get SCopy-ed into the file result. 4064 ** So make sure that the regFree1 register is not reused for other 4065 ** purposes and possibly overwritten. */ 4066 regFree1 = 0; 4067 } 4068 for(i=0; i<nExpr-1; i=i+2){ 4069 sqlite3ExprCachePush(pParse); 4070 if( pX ){ 4071 assert( pTest!=0 ); 4072 opCompare.pRight = aListelem[i].pExpr; 4073 }else{ 4074 pTest = aListelem[i].pExpr; 4075 } 4076 nextCase = sqlite3VdbeMakeLabel(v); 4077 testcase( pTest->op==TK_COLUMN ); 4078 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4079 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4080 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4081 sqlite3VdbeGoto(v, endLabel); 4082 sqlite3ExprCachePop(pParse); 4083 sqlite3VdbeResolveLabel(v, nextCase); 4084 } 4085 if( (nExpr&1)!=0 ){ 4086 sqlite3ExprCachePush(pParse); 4087 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4088 sqlite3ExprCachePop(pParse); 4089 }else{ 4090 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4091 } 4092 assert( pParse->db->mallocFailed || pParse->nErr>0 4093 || pParse->iCacheLevel==iCacheLevel ); 4094 sqlite3VdbeResolveLabel(v, endLabel); 4095 break; 4096 } 4097 #ifndef SQLITE_OMIT_TRIGGER 4098 case TK_RAISE: { 4099 assert( pExpr->affinity==OE_Rollback 4100 || pExpr->affinity==OE_Abort 4101 || pExpr->affinity==OE_Fail 4102 || pExpr->affinity==OE_Ignore 4103 ); 4104 if( !pParse->pTriggerTab ){ 4105 sqlite3ErrorMsg(pParse, 4106 "RAISE() may only be used within a trigger-program"); 4107 return 0; 4108 } 4109 if( pExpr->affinity==OE_Abort ){ 4110 sqlite3MayAbort(pParse); 4111 } 4112 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4113 if( pExpr->affinity==OE_Ignore ){ 4114 sqlite3VdbeAddOp4( 4115 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4116 VdbeCoverage(v); 4117 }else{ 4118 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4119 pExpr->affinity, pExpr->u.zToken, 0, 0); 4120 } 4121 4122 break; 4123 } 4124 #endif 4125 } 4126 sqlite3ReleaseTempReg(pParse, regFree1); 4127 sqlite3ReleaseTempReg(pParse, regFree2); 4128 return inReg; 4129 } 4130 4131 /* 4132 ** Factor out the code of the given expression to initialization time. 4133 ** 4134 ** If regDest>=0 then the result is always stored in that register and the 4135 ** result is not reusable. If regDest<0 then this routine is free to 4136 ** store the value whereever it wants. The register where the expression 4137 ** is stored is returned. When regDest<0, two identical expressions will 4138 ** code to the same register. 4139 */ 4140 int sqlite3ExprCodeAtInit( 4141 Parse *pParse, /* Parsing context */ 4142 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4143 int regDest /* Store the value in this register */ 4144 ){ 4145 ExprList *p; 4146 assert( ConstFactorOk(pParse) ); 4147 p = pParse->pConstExpr; 4148 if( regDest<0 && p ){ 4149 struct ExprList_item *pItem; 4150 int i; 4151 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4152 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4153 return pItem->u.iConstExprReg; 4154 } 4155 } 4156 } 4157 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4158 p = sqlite3ExprListAppend(pParse, p, pExpr); 4159 if( p ){ 4160 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4161 pItem->reusable = regDest<0; 4162 if( regDest<0 ) regDest = ++pParse->nMem; 4163 pItem->u.iConstExprReg = regDest; 4164 } 4165 pParse->pConstExpr = p; 4166 return regDest; 4167 } 4168 4169 /* 4170 ** Generate code to evaluate an expression and store the results 4171 ** into a register. Return the register number where the results 4172 ** are stored. 4173 ** 4174 ** If the register is a temporary register that can be deallocated, 4175 ** then write its number into *pReg. If the result register is not 4176 ** a temporary, then set *pReg to zero. 4177 ** 4178 ** If pExpr is a constant, then this routine might generate this 4179 ** code to fill the register in the initialization section of the 4180 ** VDBE program, in order to factor it out of the evaluation loop. 4181 */ 4182 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4183 int r2; 4184 pExpr = sqlite3ExprSkipCollate(pExpr); 4185 if( ConstFactorOk(pParse) 4186 && pExpr->op!=TK_REGISTER 4187 && sqlite3ExprIsConstantNotJoin(pExpr) 4188 ){ 4189 *pReg = 0; 4190 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4191 }else{ 4192 int r1 = sqlite3GetTempReg(pParse); 4193 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4194 if( r2==r1 ){ 4195 *pReg = r1; 4196 }else{ 4197 sqlite3ReleaseTempReg(pParse, r1); 4198 *pReg = 0; 4199 } 4200 } 4201 return r2; 4202 } 4203 4204 /* 4205 ** Generate code that will evaluate expression pExpr and store the 4206 ** results in register target. The results are guaranteed to appear 4207 ** in register target. 4208 */ 4209 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4210 int inReg; 4211 4212 assert( target>0 && target<=pParse->nMem ); 4213 if( pExpr && pExpr->op==TK_REGISTER ){ 4214 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4215 }else{ 4216 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4217 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4218 if( inReg!=target && pParse->pVdbe ){ 4219 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4220 } 4221 } 4222 } 4223 4224 /* 4225 ** Make a transient copy of expression pExpr and then code it using 4226 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4227 ** except that the input expression is guaranteed to be unchanged. 4228 */ 4229 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4230 sqlite3 *db = pParse->db; 4231 pExpr = sqlite3ExprDup(db, pExpr, 0); 4232 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4233 sqlite3ExprDelete(db, pExpr); 4234 } 4235 4236 /* 4237 ** Generate code that will evaluate expression pExpr and store the 4238 ** results in register target. The results are guaranteed to appear 4239 ** in register target. If the expression is constant, then this routine 4240 ** might choose to code the expression at initialization time. 4241 */ 4242 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4243 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 4244 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4245 }else{ 4246 sqlite3ExprCode(pParse, pExpr, target); 4247 } 4248 } 4249 4250 /* 4251 ** Generate code that evaluates the given expression and puts the result 4252 ** in register target. 4253 ** 4254 ** Also make a copy of the expression results into another "cache" register 4255 ** and modify the expression so that the next time it is evaluated, 4256 ** the result is a copy of the cache register. 4257 ** 4258 ** This routine is used for expressions that are used multiple 4259 ** times. They are evaluated once and the results of the expression 4260 ** are reused. 4261 */ 4262 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4263 Vdbe *v = pParse->pVdbe; 4264 int iMem; 4265 4266 assert( target>0 ); 4267 assert( pExpr->op!=TK_REGISTER ); 4268 sqlite3ExprCode(pParse, pExpr, target); 4269 iMem = ++pParse->nMem; 4270 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4271 exprToRegister(pExpr, iMem); 4272 } 4273 4274 /* 4275 ** Generate code that pushes the value of every element of the given 4276 ** expression list into a sequence of registers beginning at target. 4277 ** 4278 ** Return the number of elements evaluated. The number returned will 4279 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4280 ** is defined. 4281 ** 4282 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4283 ** filled using OP_SCopy. OP_Copy must be used instead. 4284 ** 4285 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4286 ** factored out into initialization code. 4287 ** 4288 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4289 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4290 ** in registers at srcReg, and so the value can be copied from there. 4291 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4292 ** are simply omitted rather than being copied from srcReg. 4293 */ 4294 int sqlite3ExprCodeExprList( 4295 Parse *pParse, /* Parsing context */ 4296 ExprList *pList, /* The expression list to be coded */ 4297 int target, /* Where to write results */ 4298 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4299 u8 flags /* SQLITE_ECEL_* flags */ 4300 ){ 4301 struct ExprList_item *pItem; 4302 int i, j, n; 4303 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4304 Vdbe *v = pParse->pVdbe; 4305 assert( pList!=0 ); 4306 assert( target>0 ); 4307 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4308 n = pList->nExpr; 4309 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4310 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4311 Expr *pExpr = pItem->pExpr; 4312 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4313 if( flags & SQLITE_ECEL_OMITREF ){ 4314 i--; 4315 n--; 4316 }else{ 4317 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4318 } 4319 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 4320 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4321 }else{ 4322 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4323 if( inReg!=target+i ){ 4324 VdbeOp *pOp; 4325 if( copyOp==OP_Copy 4326 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4327 && pOp->p1+pOp->p3+1==inReg 4328 && pOp->p2+pOp->p3+1==target+i 4329 ){ 4330 pOp->p3++; 4331 }else{ 4332 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4333 } 4334 } 4335 } 4336 } 4337 return n; 4338 } 4339 4340 /* 4341 ** Generate code for a BETWEEN operator. 4342 ** 4343 ** x BETWEEN y AND z 4344 ** 4345 ** The above is equivalent to 4346 ** 4347 ** x>=y AND x<=z 4348 ** 4349 ** Code it as such, taking care to do the common subexpression 4350 ** elimination of x. 4351 ** 4352 ** The xJumpIf parameter determines details: 4353 ** 4354 ** NULL: Store the boolean result in reg[dest] 4355 ** sqlite3ExprIfTrue: Jump to dest if true 4356 ** sqlite3ExprIfFalse: Jump to dest if false 4357 ** 4358 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4359 */ 4360 static void exprCodeBetween( 4361 Parse *pParse, /* Parsing and code generating context */ 4362 Expr *pExpr, /* The BETWEEN expression */ 4363 int dest, /* Jump destination or storage location */ 4364 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4365 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4366 ){ 4367 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4368 Expr compLeft; /* The x>=y term */ 4369 Expr compRight; /* The x<=z term */ 4370 Expr exprX; /* The x subexpression */ 4371 int regFree1 = 0; /* Temporary use register */ 4372 4373 4374 memset(&compLeft, 0, sizeof(Expr)); 4375 memset(&compRight, 0, sizeof(Expr)); 4376 memset(&exprAnd, 0, sizeof(Expr)); 4377 4378 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4379 exprX = *pExpr->pLeft; 4380 exprAnd.op = TK_AND; 4381 exprAnd.pLeft = &compLeft; 4382 exprAnd.pRight = &compRight; 4383 compLeft.op = TK_GE; 4384 compLeft.pLeft = &exprX; 4385 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4386 compRight.op = TK_LE; 4387 compRight.pLeft = &exprX; 4388 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4389 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4390 if( xJump ){ 4391 xJump(pParse, &exprAnd, dest, jumpIfNull); 4392 }else{ 4393 /* Mark the expression is being from the ON or USING clause of a join 4394 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4395 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4396 ** for clarity, but we are out of bits in the Expr.flags field so we 4397 ** have to reuse the EP_FromJoin bit. Bummer. */ 4398 exprX.flags |= EP_FromJoin; 4399 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4400 } 4401 sqlite3ReleaseTempReg(pParse, regFree1); 4402 4403 /* Ensure adequate test coverage */ 4404 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4405 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4406 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4407 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4408 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4409 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4410 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4411 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4412 testcase( xJump==0 ); 4413 } 4414 4415 /* 4416 ** Generate code for a boolean expression such that a jump is made 4417 ** to the label "dest" if the expression is true but execution 4418 ** continues straight thru if the expression is false. 4419 ** 4420 ** If the expression evaluates to NULL (neither true nor false), then 4421 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4422 ** 4423 ** This code depends on the fact that certain token values (ex: TK_EQ) 4424 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4425 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4426 ** the make process cause these values to align. Assert()s in the code 4427 ** below verify that the numbers are aligned correctly. 4428 */ 4429 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4430 Vdbe *v = pParse->pVdbe; 4431 int op = 0; 4432 int regFree1 = 0; 4433 int regFree2 = 0; 4434 int r1, r2; 4435 4436 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4437 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4438 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4439 op = pExpr->op; 4440 switch( op ){ 4441 case TK_AND: { 4442 int d2 = sqlite3VdbeMakeLabel(v); 4443 testcase( jumpIfNull==0 ); 4444 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4445 sqlite3ExprCachePush(pParse); 4446 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4447 sqlite3VdbeResolveLabel(v, d2); 4448 sqlite3ExprCachePop(pParse); 4449 break; 4450 } 4451 case TK_OR: { 4452 testcase( jumpIfNull==0 ); 4453 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4454 sqlite3ExprCachePush(pParse); 4455 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4456 sqlite3ExprCachePop(pParse); 4457 break; 4458 } 4459 case TK_NOT: { 4460 testcase( jumpIfNull==0 ); 4461 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4462 break; 4463 } 4464 case TK_IS: 4465 case TK_ISNOT: 4466 testcase( op==TK_IS ); 4467 testcase( op==TK_ISNOT ); 4468 op = (op==TK_IS) ? TK_EQ : TK_NE; 4469 jumpIfNull = SQLITE_NULLEQ; 4470 /* Fall thru */ 4471 case TK_LT: 4472 case TK_LE: 4473 case TK_GT: 4474 case TK_GE: 4475 case TK_NE: 4476 case TK_EQ: { 4477 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4478 testcase( jumpIfNull==0 ); 4479 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4480 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4481 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4482 r1, r2, dest, jumpIfNull); 4483 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4484 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4485 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4486 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4487 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4488 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4489 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4490 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4491 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4492 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4493 testcase( regFree1==0 ); 4494 testcase( regFree2==0 ); 4495 break; 4496 } 4497 case TK_ISNULL: 4498 case TK_NOTNULL: { 4499 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4500 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4501 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4502 sqlite3VdbeAddOp2(v, op, r1, dest); 4503 VdbeCoverageIf(v, op==TK_ISNULL); 4504 VdbeCoverageIf(v, op==TK_NOTNULL); 4505 testcase( regFree1==0 ); 4506 break; 4507 } 4508 case TK_BETWEEN: { 4509 testcase( jumpIfNull==0 ); 4510 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4511 break; 4512 } 4513 #ifndef SQLITE_OMIT_SUBQUERY 4514 case TK_IN: { 4515 int destIfFalse = sqlite3VdbeMakeLabel(v); 4516 int destIfNull = jumpIfNull ? dest : destIfFalse; 4517 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4518 sqlite3VdbeGoto(v, dest); 4519 sqlite3VdbeResolveLabel(v, destIfFalse); 4520 break; 4521 } 4522 #endif 4523 default: { 4524 default_expr: 4525 if( exprAlwaysTrue(pExpr) ){ 4526 sqlite3VdbeGoto(v, dest); 4527 }else if( exprAlwaysFalse(pExpr) ){ 4528 /* No-op */ 4529 }else{ 4530 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4531 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4532 VdbeCoverage(v); 4533 testcase( regFree1==0 ); 4534 testcase( jumpIfNull==0 ); 4535 } 4536 break; 4537 } 4538 } 4539 sqlite3ReleaseTempReg(pParse, regFree1); 4540 sqlite3ReleaseTempReg(pParse, regFree2); 4541 } 4542 4543 /* 4544 ** Generate code for a boolean expression such that a jump is made 4545 ** to the label "dest" if the expression is false but execution 4546 ** continues straight thru if the expression is true. 4547 ** 4548 ** If the expression evaluates to NULL (neither true nor false) then 4549 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4550 ** is 0. 4551 */ 4552 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4553 Vdbe *v = pParse->pVdbe; 4554 int op = 0; 4555 int regFree1 = 0; 4556 int regFree2 = 0; 4557 int r1, r2; 4558 4559 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4560 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4561 if( pExpr==0 ) return; 4562 4563 /* The value of pExpr->op and op are related as follows: 4564 ** 4565 ** pExpr->op op 4566 ** --------- ---------- 4567 ** TK_ISNULL OP_NotNull 4568 ** TK_NOTNULL OP_IsNull 4569 ** TK_NE OP_Eq 4570 ** TK_EQ OP_Ne 4571 ** TK_GT OP_Le 4572 ** TK_LE OP_Gt 4573 ** TK_GE OP_Lt 4574 ** TK_LT OP_Ge 4575 ** 4576 ** For other values of pExpr->op, op is undefined and unused. 4577 ** The value of TK_ and OP_ constants are arranged such that we 4578 ** can compute the mapping above using the following expression. 4579 ** Assert()s verify that the computation is correct. 4580 */ 4581 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4582 4583 /* Verify correct alignment of TK_ and OP_ constants 4584 */ 4585 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4586 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4587 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4588 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4589 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4590 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4591 assert( pExpr->op!=TK_GT || op==OP_Le ); 4592 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4593 4594 switch( pExpr->op ){ 4595 case TK_AND: { 4596 testcase( jumpIfNull==0 ); 4597 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4598 sqlite3ExprCachePush(pParse); 4599 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4600 sqlite3ExprCachePop(pParse); 4601 break; 4602 } 4603 case TK_OR: { 4604 int d2 = sqlite3VdbeMakeLabel(v); 4605 testcase( jumpIfNull==0 ); 4606 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4607 sqlite3ExprCachePush(pParse); 4608 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4609 sqlite3VdbeResolveLabel(v, d2); 4610 sqlite3ExprCachePop(pParse); 4611 break; 4612 } 4613 case TK_NOT: { 4614 testcase( jumpIfNull==0 ); 4615 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4616 break; 4617 } 4618 case TK_IS: 4619 case TK_ISNOT: 4620 testcase( pExpr->op==TK_IS ); 4621 testcase( pExpr->op==TK_ISNOT ); 4622 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4623 jumpIfNull = SQLITE_NULLEQ; 4624 /* Fall thru */ 4625 case TK_LT: 4626 case TK_LE: 4627 case TK_GT: 4628 case TK_GE: 4629 case TK_NE: 4630 case TK_EQ: { 4631 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4632 testcase( jumpIfNull==0 ); 4633 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4634 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4635 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4636 r1, r2, dest, jumpIfNull); 4637 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4638 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4639 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4640 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4641 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4642 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4643 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4644 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4645 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4646 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4647 testcase( regFree1==0 ); 4648 testcase( regFree2==0 ); 4649 break; 4650 } 4651 case TK_ISNULL: 4652 case TK_NOTNULL: { 4653 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4654 sqlite3VdbeAddOp2(v, op, r1, dest); 4655 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4656 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4657 testcase( regFree1==0 ); 4658 break; 4659 } 4660 case TK_BETWEEN: { 4661 testcase( jumpIfNull==0 ); 4662 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4663 break; 4664 } 4665 #ifndef SQLITE_OMIT_SUBQUERY 4666 case TK_IN: { 4667 if( jumpIfNull ){ 4668 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4669 }else{ 4670 int destIfNull = sqlite3VdbeMakeLabel(v); 4671 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4672 sqlite3VdbeResolveLabel(v, destIfNull); 4673 } 4674 break; 4675 } 4676 #endif 4677 default: { 4678 default_expr: 4679 if( exprAlwaysFalse(pExpr) ){ 4680 sqlite3VdbeGoto(v, dest); 4681 }else if( exprAlwaysTrue(pExpr) ){ 4682 /* no-op */ 4683 }else{ 4684 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4685 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4686 VdbeCoverage(v); 4687 testcase( regFree1==0 ); 4688 testcase( jumpIfNull==0 ); 4689 } 4690 break; 4691 } 4692 } 4693 sqlite3ReleaseTempReg(pParse, regFree1); 4694 sqlite3ReleaseTempReg(pParse, regFree2); 4695 } 4696 4697 /* 4698 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4699 ** code generation, and that copy is deleted after code generation. This 4700 ** ensures that the original pExpr is unchanged. 4701 */ 4702 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4703 sqlite3 *db = pParse->db; 4704 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4705 if( db->mallocFailed==0 ){ 4706 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4707 } 4708 sqlite3ExprDelete(db, pCopy); 4709 } 4710 4711 /* 4712 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4713 ** type of expression. 4714 ** 4715 ** If pExpr is a simple SQL value - an integer, real, string, blob 4716 ** or NULL value - then the VDBE currently being prepared is configured 4717 ** to re-prepare each time a new value is bound to variable pVar. 4718 ** 4719 ** Additionally, if pExpr is a simple SQL value and the value is the 4720 ** same as that currently bound to variable pVar, non-zero is returned. 4721 ** Otherwise, if the values are not the same or if pExpr is not a simple 4722 ** SQL value, zero is returned. 4723 */ 4724 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4725 int res = 0; 4726 int iVar; 4727 sqlite3_value *pL, *pR = 0; 4728 4729 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4730 if( pR ){ 4731 iVar = pVar->iColumn; 4732 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4733 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4734 if( pL ){ 4735 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4736 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4737 } 4738 res = 0==sqlite3MemCompare(pL, pR, 0); 4739 } 4740 sqlite3ValueFree(pR); 4741 sqlite3ValueFree(pL); 4742 } 4743 4744 return res; 4745 } 4746 4747 /* 4748 ** Do a deep comparison of two expression trees. Return 0 if the two 4749 ** expressions are completely identical. Return 1 if they differ only 4750 ** by a COLLATE operator at the top level. Return 2 if there are differences 4751 ** other than the top-level COLLATE operator. 4752 ** 4753 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4754 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4755 ** 4756 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4757 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4758 ** 4759 ** Sometimes this routine will return 2 even if the two expressions 4760 ** really are equivalent. If we cannot prove that the expressions are 4761 ** identical, we return 2 just to be safe. So if this routine 4762 ** returns 2, then you do not really know for certain if the two 4763 ** expressions are the same. But if you get a 0 or 1 return, then you 4764 ** can be sure the expressions are the same. In the places where 4765 ** this routine is used, it does not hurt to get an extra 2 - that 4766 ** just might result in some slightly slower code. But returning 4767 ** an incorrect 0 or 1 could lead to a malfunction. 4768 ** 4769 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4770 ** pParse->pReprepare can be matched against literals in pB. The 4771 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4772 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4773 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4774 ** pB causes a return value of 2. 4775 */ 4776 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4777 u32 combinedFlags; 4778 if( pA==0 || pB==0 ){ 4779 return pB==pA ? 0 : 2; 4780 } 4781 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4782 return 0; 4783 } 4784 combinedFlags = pA->flags | pB->flags; 4785 if( combinedFlags & EP_IntValue ){ 4786 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4787 return 0; 4788 } 4789 return 2; 4790 } 4791 if( pA->op!=pB->op ){ 4792 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4793 return 1; 4794 } 4795 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4796 return 1; 4797 } 4798 return 2; 4799 } 4800 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4801 if( pA->op==TK_FUNCTION ){ 4802 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4803 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4804 return pA->op==TK_COLLATE ? 1 : 2; 4805 } 4806 } 4807 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4808 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 4809 if( combinedFlags & EP_xIsSelect ) return 2; 4810 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4811 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4812 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4813 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 4814 if( pA->iColumn!=pB->iColumn ) return 2; 4815 if( pA->iTable!=pB->iTable 4816 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4817 } 4818 } 4819 return 0; 4820 } 4821 4822 /* 4823 ** Compare two ExprList objects. Return 0 if they are identical and 4824 ** non-zero if they differ in any way. 4825 ** 4826 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4827 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4828 ** 4829 ** This routine might return non-zero for equivalent ExprLists. The 4830 ** only consequence will be disabled optimizations. But this routine 4831 ** must never return 0 if the two ExprList objects are different, or 4832 ** a malfunction will result. 4833 ** 4834 ** Two NULL pointers are considered to be the same. But a NULL pointer 4835 ** always differs from a non-NULL pointer. 4836 */ 4837 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4838 int i; 4839 if( pA==0 && pB==0 ) return 0; 4840 if( pA==0 || pB==0 ) return 1; 4841 if( pA->nExpr!=pB->nExpr ) return 1; 4842 for(i=0; i<pA->nExpr; i++){ 4843 Expr *pExprA = pA->a[i].pExpr; 4844 Expr *pExprB = pB->a[i].pExpr; 4845 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4846 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4847 } 4848 return 0; 4849 } 4850 4851 /* 4852 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4853 ** are ignored. 4854 */ 4855 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4856 return sqlite3ExprCompare(0, 4857 sqlite3ExprSkipCollate(pA), 4858 sqlite3ExprSkipCollate(pB), 4859 iTab); 4860 } 4861 4862 /* 4863 ** Return true if we can prove the pE2 will always be true if pE1 is 4864 ** true. Return false if we cannot complete the proof or if pE2 might 4865 ** be false. Examples: 4866 ** 4867 ** pE1: x==5 pE2: x==5 Result: true 4868 ** pE1: x>0 pE2: x==5 Result: false 4869 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4870 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4871 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4872 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4873 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4874 ** 4875 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4876 ** Expr.iTable<0 then assume a table number given by iTab. 4877 ** 4878 ** If pParse is not NULL, then the values of bound variables in pE1 are 4879 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4880 ** modified to record which bound variables are referenced. If pParse 4881 ** is NULL, then false will be returned if pE1 contains any bound variables. 4882 ** 4883 ** When in doubt, return false. Returning true might give a performance 4884 ** improvement. Returning false might cause a performance reduction, but 4885 ** it will always give the correct answer and is hence always safe. 4886 */ 4887 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4888 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4889 return 1; 4890 } 4891 if( pE2->op==TK_OR 4892 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4893 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4894 ){ 4895 return 1; 4896 } 4897 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4898 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4899 testcase( pX!=pE1->pLeft ); 4900 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4901 } 4902 return 0; 4903 } 4904 4905 /* 4906 ** An instance of the following structure is used by the tree walker 4907 ** to determine if an expression can be evaluated by reference to the 4908 ** index only, without having to do a search for the corresponding 4909 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 4910 ** is the cursor for the table. 4911 */ 4912 struct IdxCover { 4913 Index *pIdx; /* The index to be tested for coverage */ 4914 int iCur; /* Cursor number for the table corresponding to the index */ 4915 }; 4916 4917 /* 4918 ** Check to see if there are references to columns in table 4919 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 4920 ** pWalker->u.pIdxCover->pIdx. 4921 */ 4922 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 4923 if( pExpr->op==TK_COLUMN 4924 && pExpr->iTable==pWalker->u.pIdxCover->iCur 4925 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 4926 ){ 4927 pWalker->eCode = 1; 4928 return WRC_Abort; 4929 } 4930 return WRC_Continue; 4931 } 4932 4933 /* 4934 ** Determine if an index pIdx on table with cursor iCur contains will 4935 ** the expression pExpr. Return true if the index does cover the 4936 ** expression and false if the pExpr expression references table columns 4937 ** that are not found in the index pIdx. 4938 ** 4939 ** An index covering an expression means that the expression can be 4940 ** evaluated using only the index and without having to lookup the 4941 ** corresponding table entry. 4942 */ 4943 int sqlite3ExprCoveredByIndex( 4944 Expr *pExpr, /* The index to be tested */ 4945 int iCur, /* The cursor number for the corresponding table */ 4946 Index *pIdx /* The index that might be used for coverage */ 4947 ){ 4948 Walker w; 4949 struct IdxCover xcov; 4950 memset(&w, 0, sizeof(w)); 4951 xcov.iCur = iCur; 4952 xcov.pIdx = pIdx; 4953 w.xExprCallback = exprIdxCover; 4954 w.u.pIdxCover = &xcov; 4955 sqlite3WalkExpr(&w, pExpr); 4956 return !w.eCode; 4957 } 4958 4959 4960 /* 4961 ** An instance of the following structure is used by the tree walker 4962 ** to count references to table columns in the arguments of an 4963 ** aggregate function, in order to implement the 4964 ** sqlite3FunctionThisSrc() routine. 4965 */ 4966 struct SrcCount { 4967 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4968 int nThis; /* Number of references to columns in pSrcList */ 4969 int nOther; /* Number of references to columns in other FROM clauses */ 4970 }; 4971 4972 /* 4973 ** Count the number of references to columns. 4974 */ 4975 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4976 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4977 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4978 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4979 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4980 ** NEVER() will need to be removed. */ 4981 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4982 int i; 4983 struct SrcCount *p = pWalker->u.pSrcCount; 4984 SrcList *pSrc = p->pSrc; 4985 int nSrc = pSrc ? pSrc->nSrc : 0; 4986 for(i=0; i<nSrc; i++){ 4987 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4988 } 4989 if( i<nSrc ){ 4990 p->nThis++; 4991 }else{ 4992 p->nOther++; 4993 } 4994 } 4995 return WRC_Continue; 4996 } 4997 4998 /* 4999 ** Determine if any of the arguments to the pExpr Function reference 5000 ** pSrcList. Return true if they do. Also return true if the function 5001 ** has no arguments or has only constant arguments. Return false if pExpr 5002 ** references columns but not columns of tables found in pSrcList. 5003 */ 5004 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5005 Walker w; 5006 struct SrcCount cnt; 5007 assert( pExpr->op==TK_AGG_FUNCTION ); 5008 w.xExprCallback = exprSrcCount; 5009 w.xSelectCallback = 0; 5010 w.u.pSrcCount = &cnt; 5011 cnt.pSrc = pSrcList; 5012 cnt.nThis = 0; 5013 cnt.nOther = 0; 5014 sqlite3WalkExprList(&w, pExpr->x.pList); 5015 return cnt.nThis>0 || cnt.nOther==0; 5016 } 5017 5018 /* 5019 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5020 ** the new element. Return a negative number if malloc fails. 5021 */ 5022 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5023 int i; 5024 pInfo->aCol = sqlite3ArrayAllocate( 5025 db, 5026 pInfo->aCol, 5027 sizeof(pInfo->aCol[0]), 5028 &pInfo->nColumn, 5029 &i 5030 ); 5031 return i; 5032 } 5033 5034 /* 5035 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5036 ** the new element. Return a negative number if malloc fails. 5037 */ 5038 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5039 int i; 5040 pInfo->aFunc = sqlite3ArrayAllocate( 5041 db, 5042 pInfo->aFunc, 5043 sizeof(pInfo->aFunc[0]), 5044 &pInfo->nFunc, 5045 &i 5046 ); 5047 return i; 5048 } 5049 5050 /* 5051 ** This is the xExprCallback for a tree walker. It is used to 5052 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5053 ** for additional information. 5054 */ 5055 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5056 int i; 5057 NameContext *pNC = pWalker->u.pNC; 5058 Parse *pParse = pNC->pParse; 5059 SrcList *pSrcList = pNC->pSrcList; 5060 AggInfo *pAggInfo = pNC->pAggInfo; 5061 5062 switch( pExpr->op ){ 5063 case TK_AGG_COLUMN: 5064 case TK_COLUMN: { 5065 testcase( pExpr->op==TK_AGG_COLUMN ); 5066 testcase( pExpr->op==TK_COLUMN ); 5067 /* Check to see if the column is in one of the tables in the FROM 5068 ** clause of the aggregate query */ 5069 if( ALWAYS(pSrcList!=0) ){ 5070 struct SrcList_item *pItem = pSrcList->a; 5071 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5072 struct AggInfo_col *pCol; 5073 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5074 if( pExpr->iTable==pItem->iCursor ){ 5075 /* If we reach this point, it means that pExpr refers to a table 5076 ** that is in the FROM clause of the aggregate query. 5077 ** 5078 ** Make an entry for the column in pAggInfo->aCol[] if there 5079 ** is not an entry there already. 5080 */ 5081 int k; 5082 pCol = pAggInfo->aCol; 5083 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5084 if( pCol->iTable==pExpr->iTable && 5085 pCol->iColumn==pExpr->iColumn ){ 5086 break; 5087 } 5088 } 5089 if( (k>=pAggInfo->nColumn) 5090 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5091 ){ 5092 pCol = &pAggInfo->aCol[k]; 5093 pCol->pTab = pExpr->pTab; 5094 pCol->iTable = pExpr->iTable; 5095 pCol->iColumn = pExpr->iColumn; 5096 pCol->iMem = ++pParse->nMem; 5097 pCol->iSorterColumn = -1; 5098 pCol->pExpr = pExpr; 5099 if( pAggInfo->pGroupBy ){ 5100 int j, n; 5101 ExprList *pGB = pAggInfo->pGroupBy; 5102 struct ExprList_item *pTerm = pGB->a; 5103 n = pGB->nExpr; 5104 for(j=0; j<n; j++, pTerm++){ 5105 Expr *pE = pTerm->pExpr; 5106 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5107 pE->iColumn==pExpr->iColumn ){ 5108 pCol->iSorterColumn = j; 5109 break; 5110 } 5111 } 5112 } 5113 if( pCol->iSorterColumn<0 ){ 5114 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5115 } 5116 } 5117 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5118 ** because it was there before or because we just created it). 5119 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5120 ** pAggInfo->aCol[] entry. 5121 */ 5122 ExprSetVVAProperty(pExpr, EP_NoReduce); 5123 pExpr->pAggInfo = pAggInfo; 5124 pExpr->op = TK_AGG_COLUMN; 5125 pExpr->iAgg = (i16)k; 5126 break; 5127 } /* endif pExpr->iTable==pItem->iCursor */ 5128 } /* end loop over pSrcList */ 5129 } 5130 return WRC_Prune; 5131 } 5132 case TK_AGG_FUNCTION: { 5133 if( (pNC->ncFlags & NC_InAggFunc)==0 5134 && pWalker->walkerDepth==pExpr->op2 5135 ){ 5136 /* Check to see if pExpr is a duplicate of another aggregate 5137 ** function that is already in the pAggInfo structure 5138 */ 5139 struct AggInfo_func *pItem = pAggInfo->aFunc; 5140 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5141 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5142 break; 5143 } 5144 } 5145 if( i>=pAggInfo->nFunc ){ 5146 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5147 */ 5148 u8 enc = ENC(pParse->db); 5149 i = addAggInfoFunc(pParse->db, pAggInfo); 5150 if( i>=0 ){ 5151 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5152 pItem = &pAggInfo->aFunc[i]; 5153 pItem->pExpr = pExpr; 5154 pItem->iMem = ++pParse->nMem; 5155 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5156 pItem->pFunc = sqlite3FindFunction(pParse->db, 5157 pExpr->u.zToken, 5158 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5159 if( pExpr->flags & EP_Distinct ){ 5160 pItem->iDistinct = pParse->nTab++; 5161 }else{ 5162 pItem->iDistinct = -1; 5163 } 5164 } 5165 } 5166 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5167 */ 5168 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5169 ExprSetVVAProperty(pExpr, EP_NoReduce); 5170 pExpr->iAgg = (i16)i; 5171 pExpr->pAggInfo = pAggInfo; 5172 return WRC_Prune; 5173 }else{ 5174 return WRC_Continue; 5175 } 5176 } 5177 } 5178 return WRC_Continue; 5179 } 5180 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5181 UNUSED_PARAMETER(pSelect); 5182 pWalker->walkerDepth++; 5183 return WRC_Continue; 5184 } 5185 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5186 UNUSED_PARAMETER(pSelect); 5187 pWalker->walkerDepth--; 5188 } 5189 5190 /* 5191 ** Analyze the pExpr expression looking for aggregate functions and 5192 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5193 ** points to. Additional entries are made on the AggInfo object as 5194 ** necessary. 5195 ** 5196 ** This routine should only be called after the expression has been 5197 ** analyzed by sqlite3ResolveExprNames(). 5198 */ 5199 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5200 Walker w; 5201 w.xExprCallback = analyzeAggregate; 5202 w.xSelectCallback = analyzeAggregatesInSelect; 5203 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5204 w.walkerDepth = 0; 5205 w.u.pNC = pNC; 5206 assert( pNC->pSrcList!=0 ); 5207 sqlite3WalkExpr(&w, pExpr); 5208 } 5209 5210 /* 5211 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5212 ** expression list. Return the number of errors. 5213 ** 5214 ** If an error is found, the analysis is cut short. 5215 */ 5216 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5217 struct ExprList_item *pItem; 5218 int i; 5219 if( pList ){ 5220 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5221 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5222 } 5223 } 5224 } 5225 5226 /* 5227 ** Allocate a single new register for use to hold some intermediate result. 5228 */ 5229 int sqlite3GetTempReg(Parse *pParse){ 5230 if( pParse->nTempReg==0 ){ 5231 return ++pParse->nMem; 5232 } 5233 return pParse->aTempReg[--pParse->nTempReg]; 5234 } 5235 5236 /* 5237 ** Deallocate a register, making available for reuse for some other 5238 ** purpose. 5239 ** 5240 ** If a register is currently being used by the column cache, then 5241 ** the deallocation is deferred until the column cache line that uses 5242 ** the register becomes stale. 5243 */ 5244 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5245 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5246 int i; 5247 struct yColCache *p; 5248 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ 5249 if( p->iReg==iReg ){ 5250 p->tempReg = 1; 5251 return; 5252 } 5253 } 5254 pParse->aTempReg[pParse->nTempReg++] = iReg; 5255 } 5256 } 5257 5258 /* 5259 ** Allocate or deallocate a block of nReg consecutive registers. 5260 */ 5261 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5262 int i, n; 5263 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5264 i = pParse->iRangeReg; 5265 n = pParse->nRangeReg; 5266 if( nReg<=n ){ 5267 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 5268 pParse->iRangeReg += nReg; 5269 pParse->nRangeReg -= nReg; 5270 }else{ 5271 i = pParse->nMem+1; 5272 pParse->nMem += nReg; 5273 } 5274 return i; 5275 } 5276 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5277 if( nReg==1 ){ 5278 sqlite3ReleaseTempReg(pParse, iReg); 5279 return; 5280 } 5281 sqlite3ExprCacheRemove(pParse, iReg, nReg); 5282 if( nReg>pParse->nRangeReg ){ 5283 pParse->nRangeReg = nReg; 5284 pParse->iRangeReg = iReg; 5285 } 5286 } 5287 5288 /* 5289 ** Mark all temporary registers as being unavailable for reuse. 5290 */ 5291 void sqlite3ClearTempRegCache(Parse *pParse){ 5292 pParse->nTempReg = 0; 5293 pParse->nRangeReg = 0; 5294 } 5295 5296 /* 5297 ** Validate that no temporary register falls within the range of 5298 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5299 ** statements. 5300 */ 5301 #ifdef SQLITE_DEBUG 5302 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5303 int i; 5304 if( pParse->nRangeReg>0 5305 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5306 && pParse->iRangeReg <= iLast 5307 ){ 5308 return 0; 5309 } 5310 for(i=0; i<pParse->nTempReg; i++){ 5311 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5312 return 0; 5313 } 5314 } 5315 return 1; 5316 } 5317 #endif /* SQLITE_DEBUG */ 5318