xref: /sqlite-3.40.0/src/expr.c (revision bde13e26)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62     return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( op==TK_CAST || op==TK_UPLUS ){
145       p = p->pLeft;
146       continue;
147     }
148     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150       break;
151     }
152     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153           || op==TK_REGISTER || op==TK_TRIGGER)
154      && p->pTab!=0
155     ){
156       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157       ** a TK_COLUMN but was previously evaluated and cached in a register */
158       int j = p->iColumn;
159       if( j>=0 ){
160         const char *zColl = p->pTab->aCol[j].zColl;
161         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
162       }
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     if( i>0 ) sqlite3ExprCachePush(pParse);
585     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594     sqlite3ReleaseTempReg(pParse, regFree1);
595     sqlite3ReleaseTempReg(pParse, regFree2);
596     if( i>0 ) sqlite3ExprCachePop(pParse);
597     if( i==nLeft-1 ){
598       break;
599     }
600     if( opx==TK_EQ ){
601       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602       p5 |= SQLITE_KEEPNULL;
603     }else if( opx==TK_NE ){
604       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605       p5 |= SQLITE_KEEPNULL;
606     }else{
607       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609       VdbeCoverageIf(v, op==TK_LT);
610       VdbeCoverageIf(v, op==TK_GT);
611       VdbeCoverageIf(v, op==TK_LE);
612       VdbeCoverageIf(v, op==TK_GE);
613       if( i==nLeft-2 ) opx = op;
614     }
615   }
616   sqlite3VdbeResolveLabel(v, addrDone);
617 }
618 
619 #if SQLITE_MAX_EXPR_DEPTH>0
620 /*
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
624 */
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626   int rc = SQLITE_OK;
627   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628   if( nHeight>mxHeight ){
629     sqlite3ErrorMsg(pParse,
630        "Expression tree is too large (maximum depth %d)", mxHeight
631     );
632     rc = SQLITE_ERROR;
633   }
634   return rc;
635 }
636 
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
641 **
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
645 */
646 static void heightOfExpr(Expr *p, int *pnHeight){
647   if( p ){
648     if( p->nHeight>*pnHeight ){
649       *pnHeight = p->nHeight;
650     }
651   }
652 }
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654   if( p ){
655     int i;
656     for(i=0; i<p->nExpr; i++){
657       heightOfExpr(p->a[i].pExpr, pnHeight);
658     }
659   }
660 }
661 static void heightOfSelect(Select *p, int *pnHeight){
662   if( p ){
663     heightOfExpr(p->pWhere, pnHeight);
664     heightOfExpr(p->pHaving, pnHeight);
665     heightOfExpr(p->pLimit, pnHeight);
666     heightOfExpr(p->pOffset, pnHeight);
667     heightOfExprList(p->pEList, pnHeight);
668     heightOfExprList(p->pGroupBy, pnHeight);
669     heightOfExprList(p->pOrderBy, pnHeight);
670     heightOfSelect(p->pPrior, pnHeight);
671   }
672 }
673 
674 /*
675 ** Set the Expr.nHeight variable in the structure passed as an
676 ** argument. An expression with no children, Expr.pList or
677 ** Expr.pSelect member has a height of 1. Any other expression
678 ** has a height equal to the maximum height of any other
679 ** referenced Expr plus one.
680 **
681 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
682 ** if appropriate.
683 */
684 static void exprSetHeight(Expr *p){
685   int nHeight = 0;
686   heightOfExpr(p->pLeft, &nHeight);
687   heightOfExpr(p->pRight, &nHeight);
688   if( ExprHasProperty(p, EP_xIsSelect) ){
689     heightOfSelect(p->x.pSelect, &nHeight);
690   }else if( p->x.pList ){
691     heightOfExprList(p->x.pList, &nHeight);
692     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
693   }
694   p->nHeight = nHeight + 1;
695 }
696 
697 /*
698 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
699 ** the height is greater than the maximum allowed expression depth,
700 ** leave an error in pParse.
701 **
702 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
703 ** Expr.flags.
704 */
705 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
706   if( pParse->nErr ) return;
707   exprSetHeight(p);
708   sqlite3ExprCheckHeight(pParse, p->nHeight);
709 }
710 
711 /*
712 ** Return the maximum height of any expression tree referenced
713 ** by the select statement passed as an argument.
714 */
715 int sqlite3SelectExprHeight(Select *p){
716   int nHeight = 0;
717   heightOfSelect(p, &nHeight);
718   return nHeight;
719 }
720 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
721 /*
722 ** Propagate all EP_Propagate flags from the Expr.x.pList into
723 ** Expr.flags.
724 */
725 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
726   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
727     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
728   }
729 }
730 #define exprSetHeight(y)
731 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
732 
733 /*
734 ** This routine is the core allocator for Expr nodes.
735 **
736 ** Construct a new expression node and return a pointer to it.  Memory
737 ** for this node and for the pToken argument is a single allocation
738 ** obtained from sqlite3DbMalloc().  The calling function
739 ** is responsible for making sure the node eventually gets freed.
740 **
741 ** If dequote is true, then the token (if it exists) is dequoted.
742 ** If dequote is false, no dequoting is performed.  The deQuote
743 ** parameter is ignored if pToken is NULL or if the token does not
744 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
745 ** then the EP_DblQuoted flag is set on the expression node.
746 **
747 ** Special case:  If op==TK_INTEGER and pToken points to a string that
748 ** can be translated into a 32-bit integer, then the token is not
749 ** stored in u.zToken.  Instead, the integer values is written
750 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
751 ** is allocated to hold the integer text and the dequote flag is ignored.
752 */
753 Expr *sqlite3ExprAlloc(
754   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
755   int op,                 /* Expression opcode */
756   const Token *pToken,    /* Token argument.  Might be NULL */
757   int dequote             /* True to dequote */
758 ){
759   Expr *pNew;
760   int nExtra = 0;
761   int iValue = 0;
762 
763   assert( db!=0 );
764   if( pToken ){
765     if( op!=TK_INTEGER || pToken->z==0
766           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
767       nExtra = pToken->n+1;
768       assert( iValue>=0 );
769     }
770   }
771   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
772   if( pNew ){
773     memset(pNew, 0, sizeof(Expr));
774     pNew->op = (u8)op;
775     pNew->iAgg = -1;
776     if( pToken ){
777       if( nExtra==0 ){
778         pNew->flags |= EP_IntValue|EP_Leaf;
779         pNew->u.iValue = iValue;
780       }else{
781         pNew->u.zToken = (char*)&pNew[1];
782         assert( pToken->z!=0 || pToken->n==0 );
783         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
784         pNew->u.zToken[pToken->n] = 0;
785         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
786           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
787           sqlite3Dequote(pNew->u.zToken);
788         }
789       }
790     }
791 #if SQLITE_MAX_EXPR_DEPTH>0
792     pNew->nHeight = 1;
793 #endif
794   }
795   return pNew;
796 }
797 
798 /*
799 ** Allocate a new expression node from a zero-terminated token that has
800 ** already been dequoted.
801 */
802 Expr *sqlite3Expr(
803   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
804   int op,                 /* Expression opcode */
805   const char *zToken      /* Token argument.  Might be NULL */
806 ){
807   Token x;
808   x.z = zToken;
809   x.n = sqlite3Strlen30(zToken);
810   return sqlite3ExprAlloc(db, op, &x, 0);
811 }
812 
813 /*
814 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
815 **
816 ** If pRoot==NULL that means that a memory allocation error has occurred.
817 ** In that case, delete the subtrees pLeft and pRight.
818 */
819 void sqlite3ExprAttachSubtrees(
820   sqlite3 *db,
821   Expr *pRoot,
822   Expr *pLeft,
823   Expr *pRight
824 ){
825   if( pRoot==0 ){
826     assert( db->mallocFailed );
827     sqlite3ExprDelete(db, pLeft);
828     sqlite3ExprDelete(db, pRight);
829   }else{
830     if( pRight ){
831       pRoot->pRight = pRight;
832       pRoot->flags |= EP_Propagate & pRight->flags;
833     }
834     if( pLeft ){
835       pRoot->pLeft = pLeft;
836       pRoot->flags |= EP_Propagate & pLeft->flags;
837     }
838     exprSetHeight(pRoot);
839   }
840 }
841 
842 /*
843 ** Allocate an Expr node which joins as many as two subtrees.
844 **
845 ** One or both of the subtrees can be NULL.  Return a pointer to the new
846 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
847 ** free the subtrees and return NULL.
848 */
849 Expr *sqlite3PExpr(
850   Parse *pParse,          /* Parsing context */
851   int op,                 /* Expression opcode */
852   Expr *pLeft,            /* Left operand */
853   Expr *pRight            /* Right operand */
854 ){
855   Expr *p;
856   if( op==TK_AND && pParse->nErr==0 ){
857     /* Take advantage of short-circuit false optimization for AND */
858     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
859   }else{
860     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
861     if( p ){
862       memset(p, 0, sizeof(Expr));
863       p->op = op & TKFLG_MASK;
864       p->iAgg = -1;
865     }
866     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
867   }
868   if( p ) {
869     sqlite3ExprCheckHeight(pParse, p->nHeight);
870   }
871   return p;
872 }
873 
874 /*
875 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
876 ** do a memory allocation failure) then delete the pSelect object.
877 */
878 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
879   if( pExpr ){
880     pExpr->x.pSelect = pSelect;
881     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
882     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
883   }else{
884     assert( pParse->db->mallocFailed );
885     sqlite3SelectDelete(pParse->db, pSelect);
886   }
887 }
888 
889 
890 /*
891 ** If the expression is always either TRUE or FALSE (respectively),
892 ** then return 1.  If one cannot determine the truth value of the
893 ** expression at compile-time return 0.
894 **
895 ** This is an optimization.  If is OK to return 0 here even if
896 ** the expression really is always false or false (a false negative).
897 ** But it is a bug to return 1 if the expression might have different
898 ** boolean values in different circumstances (a false positive.)
899 **
900 ** Note that if the expression is part of conditional for a
901 ** LEFT JOIN, then we cannot determine at compile-time whether or not
902 ** is it true or false, so always return 0.
903 */
904 static int exprAlwaysTrue(Expr *p){
905   int v = 0;
906   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
907   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
908   return v!=0;
909 }
910 static int exprAlwaysFalse(Expr *p){
911   int v = 0;
912   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
913   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
914   return v==0;
915 }
916 
917 /*
918 ** Join two expressions using an AND operator.  If either expression is
919 ** NULL, then just return the other expression.
920 **
921 ** If one side or the other of the AND is known to be false, then instead
922 ** of returning an AND expression, just return a constant expression with
923 ** a value of false.
924 */
925 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
926   if( pLeft==0 ){
927     return pRight;
928   }else if( pRight==0 ){
929     return pLeft;
930   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
931     sqlite3ExprDelete(db, pLeft);
932     sqlite3ExprDelete(db, pRight);
933     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
934   }else{
935     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
936     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
937     return pNew;
938   }
939 }
940 
941 /*
942 ** Construct a new expression node for a function with multiple
943 ** arguments.
944 */
945 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
946   Expr *pNew;
947   sqlite3 *db = pParse->db;
948   assert( pToken );
949   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
950   if( pNew==0 ){
951     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
952     return 0;
953   }
954   pNew->x.pList = pList;
955   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
956   sqlite3ExprSetHeightAndFlags(pParse, pNew);
957   return pNew;
958 }
959 
960 /*
961 ** Assign a variable number to an expression that encodes a wildcard
962 ** in the original SQL statement.
963 **
964 ** Wildcards consisting of a single "?" are assigned the next sequential
965 ** variable number.
966 **
967 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
968 ** sure "nnn" is not too big to avoid a denial of service attack when
969 ** the SQL statement comes from an external source.
970 **
971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
972 ** as the previous instance of the same wildcard.  Or if this is the first
973 ** instance of the wildcard, the next sequential variable number is
974 ** assigned.
975 */
976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
977   sqlite3 *db = pParse->db;
978   const char *z;
979   ynVar x;
980 
981   if( pExpr==0 ) return;
982   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
983   z = pExpr->u.zToken;
984   assert( z!=0 );
985   assert( z[0]!=0 );
986   assert( n==(u32)sqlite3Strlen30(z) );
987   if( z[1]==0 ){
988     /* Wildcard of the form "?".  Assign the next variable number */
989     assert( z[0]=='?' );
990     x = (ynVar)(++pParse->nVar);
991   }else{
992     int doAdd = 0;
993     if( z[0]=='?' ){
994       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
995       ** use it as the variable number */
996       i64 i;
997       int bOk;
998       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
999         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1000         bOk = 1;
1001       }else{
1002         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1003       }
1004       testcase( i==0 );
1005       testcase( i==1 );
1006       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1007       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1008       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1009         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1010             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1011         return;
1012       }
1013       x = (ynVar)i;
1014       if( x>pParse->nVar ){
1015         pParse->nVar = (int)x;
1016         doAdd = 1;
1017       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1018         doAdd = 1;
1019       }
1020     }else{
1021       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1022       ** number as the prior appearance of the same name, or if the name
1023       ** has never appeared before, reuse the same variable number
1024       */
1025       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1026       if( x==0 ){
1027         x = (ynVar)(++pParse->nVar);
1028         doAdd = 1;
1029       }
1030     }
1031     if( doAdd ){
1032       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1033     }
1034   }
1035   pExpr->iColumn = x;
1036   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1037     sqlite3ErrorMsg(pParse, "too many SQL variables");
1038   }
1039 }
1040 
1041 /*
1042 ** Recursively delete an expression tree.
1043 */
1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1045   assert( p!=0 );
1046   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1047   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1048 #ifdef SQLITE_DEBUG
1049   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1050     assert( p->pLeft==0 );
1051     assert( p->pRight==0 );
1052     assert( p->x.pSelect==0 );
1053   }
1054 #endif
1055   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1056     /* The Expr.x union is never used at the same time as Expr.pRight */
1057     assert( p->x.pList==0 || p->pRight==0 );
1058     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1059     if( p->pRight ){
1060       sqlite3ExprDeleteNN(db, p->pRight);
1061     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1062       sqlite3SelectDelete(db, p->x.pSelect);
1063     }else{
1064       sqlite3ExprListDelete(db, p->x.pList);
1065     }
1066   }
1067   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1068   if( !ExprHasProperty(p, EP_Static) ){
1069     sqlite3DbFreeNN(db, p);
1070   }
1071 }
1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1073   if( p ) sqlite3ExprDeleteNN(db, p);
1074 }
1075 
1076 /*
1077 ** Return the number of bytes allocated for the expression structure
1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1080 */
1081 static int exprStructSize(Expr *p){
1082   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1083   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1084   return EXPR_FULLSIZE;
1085 }
1086 
1087 /*
1088 ** The dupedExpr*Size() routines each return the number of bytes required
1089 ** to store a copy of an expression or expression tree.  They differ in
1090 ** how much of the tree is measured.
1091 **
1092 **     dupedExprStructSize()     Size of only the Expr structure
1093 **     dupedExprNodeSize()       Size of Expr + space for token
1094 **     dupedExprSize()           Expr + token + subtree components
1095 **
1096 ***************************************************************************
1097 **
1098 ** The dupedExprStructSize() function returns two values OR-ed together:
1099 ** (1) the space required for a copy of the Expr structure only and
1100 ** (2) the EP_xxx flags that indicate what the structure size should be.
1101 ** The return values is always one of:
1102 **
1103 **      EXPR_FULLSIZE
1104 **      EXPR_REDUCEDSIZE   | EP_Reduced
1105 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1106 **
1107 ** The size of the structure can be found by masking the return value
1108 ** of this routine with 0xfff.  The flags can be found by masking the
1109 ** return value with EP_Reduced|EP_TokenOnly.
1110 **
1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1112 ** (unreduced) Expr objects as they or originally constructed by the parser.
1113 ** During expression analysis, extra information is computed and moved into
1114 ** later parts of teh Expr object and that extra information might get chopped
1115 ** off if the expression is reduced.  Note also that it does not work to
1116 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1117 ** to reduce a pristine expression tree from the parser.  The implementation
1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1119 ** to enforce this constraint.
1120 */
1121 static int dupedExprStructSize(Expr *p, int flags){
1122   int nSize;
1123   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1124   assert( EXPR_FULLSIZE<=0xfff );
1125   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1126   if( 0==flags || p->op==TK_SELECT_COLUMN ){
1127     nSize = EXPR_FULLSIZE;
1128   }else{
1129     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1130     assert( !ExprHasProperty(p, EP_FromJoin) );
1131     assert( !ExprHasProperty(p, EP_MemToken) );
1132     assert( !ExprHasProperty(p, EP_NoReduce) );
1133     if( p->pLeft || p->x.pList ){
1134       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1135     }else{
1136       assert( p->pRight==0 );
1137       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1138     }
1139   }
1140   return nSize;
1141 }
1142 
1143 /*
1144 ** This function returns the space in bytes required to store the copy
1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1146 ** string is defined.)
1147 */
1148 static int dupedExprNodeSize(Expr *p, int flags){
1149   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1150   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1151     nByte += sqlite3Strlen30(p->u.zToken)+1;
1152   }
1153   return ROUND8(nByte);
1154 }
1155 
1156 /*
1157 ** Return the number of bytes required to create a duplicate of the
1158 ** expression passed as the first argument. The second argument is a
1159 ** mask containing EXPRDUP_XXX flags.
1160 **
1161 ** The value returned includes space to create a copy of the Expr struct
1162 ** itself and the buffer referred to by Expr.u.zToken, if any.
1163 **
1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1166 ** and Expr.pRight variables (but not for any structures pointed to or
1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1168 */
1169 static int dupedExprSize(Expr *p, int flags){
1170   int nByte = 0;
1171   if( p ){
1172     nByte = dupedExprNodeSize(p, flags);
1173     if( flags&EXPRDUP_REDUCE ){
1174       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1175     }
1176   }
1177   return nByte;
1178 }
1179 
1180 /*
1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1183 ** to store the copy of expression p, the copies of p->u.zToken
1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1185 ** if any. Before returning, *pzBuffer is set to the first byte past the
1186 ** portion of the buffer copied into by this function.
1187 */
1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1189   Expr *pNew;           /* Value to return */
1190   u8 *zAlloc;           /* Memory space from which to build Expr object */
1191   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1192 
1193   assert( db!=0 );
1194   assert( p );
1195   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1196   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1197 
1198   /* Figure out where to write the new Expr structure. */
1199   if( pzBuffer ){
1200     zAlloc = *pzBuffer;
1201     staticFlag = EP_Static;
1202   }else{
1203     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1204     staticFlag = 0;
1205   }
1206   pNew = (Expr *)zAlloc;
1207 
1208   if( pNew ){
1209     /* Set nNewSize to the size allocated for the structure pointed to
1210     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1211     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1212     ** by the copy of the p->u.zToken string (if any).
1213     */
1214     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1215     const int nNewSize = nStructSize & 0xfff;
1216     int nToken;
1217     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1218       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1219     }else{
1220       nToken = 0;
1221     }
1222     if( dupFlags ){
1223       assert( ExprHasProperty(p, EP_Reduced)==0 );
1224       memcpy(zAlloc, p, nNewSize);
1225     }else{
1226       u32 nSize = (u32)exprStructSize(p);
1227       memcpy(zAlloc, p, nSize);
1228       if( nSize<EXPR_FULLSIZE ){
1229         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1230       }
1231     }
1232 
1233     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1234     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1235     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1236     pNew->flags |= staticFlag;
1237 
1238     /* Copy the p->u.zToken string, if any. */
1239     if( nToken ){
1240       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1241       memcpy(zToken, p->u.zToken, nToken);
1242     }
1243 
1244     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1245       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1246       if( ExprHasProperty(p, EP_xIsSelect) ){
1247         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1248       }else{
1249         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1250       }
1251     }
1252 
1253     /* Fill in pNew->pLeft and pNew->pRight. */
1254     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1255       zAlloc += dupedExprNodeSize(p, dupFlags);
1256       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1257         pNew->pLeft = p->pLeft ?
1258                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1259         pNew->pRight = p->pRight ?
1260                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1261       }
1262       if( pzBuffer ){
1263         *pzBuffer = zAlloc;
1264       }
1265     }else{
1266       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1267         if( pNew->op==TK_SELECT_COLUMN ){
1268           pNew->pLeft = p->pLeft;
1269           assert( p->iColumn==0 || p->pRight==0 );
1270           assert( p->pRight==0  || p->pRight==p->pLeft );
1271         }else{
1272           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1273         }
1274         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1275       }
1276     }
1277   }
1278   return pNew;
1279 }
1280 
1281 /*
1282 ** Create and return a deep copy of the object passed as the second
1283 ** argument. If an OOM condition is encountered, NULL is returned
1284 ** and the db->mallocFailed flag set.
1285 */
1286 #ifndef SQLITE_OMIT_CTE
1287 static With *withDup(sqlite3 *db, With *p){
1288   With *pRet = 0;
1289   if( p ){
1290     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1291     pRet = sqlite3DbMallocZero(db, nByte);
1292     if( pRet ){
1293       int i;
1294       pRet->nCte = p->nCte;
1295       for(i=0; i<p->nCte; i++){
1296         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1297         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1298         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1299       }
1300     }
1301   }
1302   return pRet;
1303 }
1304 #else
1305 # define withDup(x,y) 0
1306 #endif
1307 
1308 /*
1309 ** The following group of routines make deep copies of expressions,
1310 ** expression lists, ID lists, and select statements.  The copies can
1311 ** be deleted (by being passed to their respective ...Delete() routines)
1312 ** without effecting the originals.
1313 **
1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1316 ** by subsequent calls to sqlite*ListAppend() routines.
1317 **
1318 ** Any tables that the SrcList might point to are not duplicated.
1319 **
1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1322 ** truncated version of the usual Expr structure that will be stored as
1323 ** part of the in-memory representation of the database schema.
1324 */
1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1326   assert( flags==0 || flags==EXPRDUP_REDUCE );
1327   return p ? exprDup(db, p, flags, 0) : 0;
1328 }
1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1330   ExprList *pNew;
1331   struct ExprList_item *pItem, *pOldItem;
1332   int i;
1333   Expr *pPriorSelectCol = 0;
1334   assert( db!=0 );
1335   if( p==0 ) return 0;
1336   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1337   if( pNew==0 ) return 0;
1338   pNew->nExpr = p->nExpr;
1339   pItem = pNew->a;
1340   pOldItem = p->a;
1341   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1342     Expr *pOldExpr = pOldItem->pExpr;
1343     Expr *pNewExpr;
1344     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1345     if( pOldExpr
1346      && pOldExpr->op==TK_SELECT_COLUMN
1347      && (pNewExpr = pItem->pExpr)!=0
1348     ){
1349       assert( pNewExpr->iColumn==0 || i>0 );
1350       if( pNewExpr->iColumn==0 ){
1351         assert( pOldExpr->pLeft==pOldExpr->pRight );
1352         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1353       }else{
1354         assert( i>0 );
1355         assert( pItem[-1].pExpr!=0 );
1356         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1357         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1358         pNewExpr->pLeft = pPriorSelectCol;
1359       }
1360     }
1361     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1362     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1363     pItem->sortOrder = pOldItem->sortOrder;
1364     pItem->done = 0;
1365     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1366     pItem->u = pOldItem->u;
1367   }
1368   return pNew;
1369 }
1370 
1371 /*
1372 ** If cursors, triggers, views and subqueries are all omitted from
1373 ** the build, then none of the following routines, except for
1374 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1375 ** called with a NULL argument.
1376 */
1377 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1378  || !defined(SQLITE_OMIT_SUBQUERY)
1379 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1380   SrcList *pNew;
1381   int i;
1382   int nByte;
1383   assert( db!=0 );
1384   if( p==0 ) return 0;
1385   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1386   pNew = sqlite3DbMallocRawNN(db, nByte );
1387   if( pNew==0 ) return 0;
1388   pNew->nSrc = pNew->nAlloc = p->nSrc;
1389   for(i=0; i<p->nSrc; i++){
1390     struct SrcList_item *pNewItem = &pNew->a[i];
1391     struct SrcList_item *pOldItem = &p->a[i];
1392     Table *pTab;
1393     pNewItem->pSchema = pOldItem->pSchema;
1394     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1395     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1396     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1397     pNewItem->fg = pOldItem->fg;
1398     pNewItem->iCursor = pOldItem->iCursor;
1399     pNewItem->addrFillSub = pOldItem->addrFillSub;
1400     pNewItem->regReturn = pOldItem->regReturn;
1401     if( pNewItem->fg.isIndexedBy ){
1402       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1403     }
1404     pNewItem->pIBIndex = pOldItem->pIBIndex;
1405     if( pNewItem->fg.isTabFunc ){
1406       pNewItem->u1.pFuncArg =
1407           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1408     }
1409     pTab = pNewItem->pTab = pOldItem->pTab;
1410     if( pTab ){
1411       pTab->nTabRef++;
1412     }
1413     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1414     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1415     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1416     pNewItem->colUsed = pOldItem->colUsed;
1417   }
1418   return pNew;
1419 }
1420 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1421   IdList *pNew;
1422   int i;
1423   assert( db!=0 );
1424   if( p==0 ) return 0;
1425   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1426   if( pNew==0 ) return 0;
1427   pNew->nId = p->nId;
1428   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1429   if( pNew->a==0 ){
1430     sqlite3DbFreeNN(db, pNew);
1431     return 0;
1432   }
1433   /* Note that because the size of the allocation for p->a[] is not
1434   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1435   ** on the duplicate created by this function. */
1436   for(i=0; i<p->nId; i++){
1437     struct IdList_item *pNewItem = &pNew->a[i];
1438     struct IdList_item *pOldItem = &p->a[i];
1439     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1440     pNewItem->idx = pOldItem->idx;
1441   }
1442   return pNew;
1443 }
1444 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1445   Select *pRet = 0;
1446   Select *pNext = 0;
1447   Select **pp = &pRet;
1448   Select *p;
1449 
1450   assert( db!=0 );
1451   for(p=pDup; p; p=p->pPrior){
1452     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1453     if( pNew==0 ) break;
1454     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1455     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1456     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1457     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1458     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1459     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1460     pNew->op = p->op;
1461     pNew->pNext = pNext;
1462     pNew->pPrior = 0;
1463     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1464     pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1465     pNew->iLimit = 0;
1466     pNew->iOffset = 0;
1467     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1468     pNew->addrOpenEphm[0] = -1;
1469     pNew->addrOpenEphm[1] = -1;
1470     pNew->nSelectRow = p->nSelectRow;
1471     pNew->pWith = withDup(db, p->pWith);
1472     sqlite3SelectSetName(pNew, p->zSelName);
1473     *pp = pNew;
1474     pp = &pNew->pPrior;
1475     pNext = pNew;
1476   }
1477 
1478   return pRet;
1479 }
1480 #else
1481 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1482   assert( p==0 );
1483   return 0;
1484 }
1485 #endif
1486 
1487 
1488 /*
1489 ** Add a new element to the end of an expression list.  If pList is
1490 ** initially NULL, then create a new expression list.
1491 **
1492 ** The pList argument must be either NULL or a pointer to an ExprList
1493 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1494 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1495 ** Reason:  This routine assumes that the number of slots in pList->a[]
1496 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1497 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1498 **
1499 ** If a memory allocation error occurs, the entire list is freed and
1500 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1501 ** that the new entry was successfully appended.
1502 */
1503 ExprList *sqlite3ExprListAppend(
1504   Parse *pParse,          /* Parsing context */
1505   ExprList *pList,        /* List to which to append. Might be NULL */
1506   Expr *pExpr             /* Expression to be appended. Might be NULL */
1507 ){
1508   struct ExprList_item *pItem;
1509   sqlite3 *db = pParse->db;
1510   assert( db!=0 );
1511   if( pList==0 ){
1512     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1513     if( pList==0 ){
1514       goto no_mem;
1515     }
1516     pList->nExpr = 0;
1517   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1518     ExprList *pNew;
1519     pNew = sqlite3DbRealloc(db, pList,
1520              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1521     if( pNew==0 ){
1522       goto no_mem;
1523     }
1524     pList = pNew;
1525   }
1526   pItem = &pList->a[pList->nExpr++];
1527   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1528   assert( offsetof(struct ExprList_item,pExpr)==0 );
1529   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1530   pItem->pExpr = pExpr;
1531   return pList;
1532 
1533 no_mem:
1534   /* Avoid leaking memory if malloc has failed. */
1535   sqlite3ExprDelete(db, pExpr);
1536   sqlite3ExprListDelete(db, pList);
1537   return 0;
1538 }
1539 
1540 /*
1541 ** pColumns and pExpr form a vector assignment which is part of the SET
1542 ** clause of an UPDATE statement.  Like this:
1543 **
1544 **        (a,b,c) = (expr1,expr2,expr3)
1545 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1546 **
1547 ** For each term of the vector assignment, append new entries to the
1548 ** expression list pList.  In the case of a subquery on the RHS, append
1549 ** TK_SELECT_COLUMN expressions.
1550 */
1551 ExprList *sqlite3ExprListAppendVector(
1552   Parse *pParse,         /* Parsing context */
1553   ExprList *pList,       /* List to which to append. Might be NULL */
1554   IdList *pColumns,      /* List of names of LHS of the assignment */
1555   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1556 ){
1557   sqlite3 *db = pParse->db;
1558   int n;
1559   int i;
1560   int iFirst = pList ? pList->nExpr : 0;
1561   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1562   ** exit prior to this routine being invoked */
1563   if( NEVER(pColumns==0) ) goto vector_append_error;
1564   if( pExpr==0 ) goto vector_append_error;
1565 
1566   /* If the RHS is a vector, then we can immediately check to see that
1567   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1568   ** wildcards ("*") in the result set of the SELECT must be expanded before
1569   ** we can do the size check, so defer the size check until code generation.
1570   */
1571   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1572     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1573                     pColumns->nId, n);
1574     goto vector_append_error;
1575   }
1576 
1577   for(i=0; i<pColumns->nId; i++){
1578     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1579     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1580     if( pList ){
1581       assert( pList->nExpr==iFirst+i+1 );
1582       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1583       pColumns->a[i].zName = 0;
1584     }
1585   }
1586 
1587   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1588     Expr *pFirst = pList->a[iFirst].pExpr;
1589     assert( pFirst!=0 );
1590     assert( pFirst->op==TK_SELECT_COLUMN );
1591 
1592     /* Store the SELECT statement in pRight so it will be deleted when
1593     ** sqlite3ExprListDelete() is called */
1594     pFirst->pRight = pExpr;
1595     pExpr = 0;
1596 
1597     /* Remember the size of the LHS in iTable so that we can check that
1598     ** the RHS and LHS sizes match during code generation. */
1599     pFirst->iTable = pColumns->nId;
1600   }
1601 
1602 vector_append_error:
1603   sqlite3ExprDelete(db, pExpr);
1604   sqlite3IdListDelete(db, pColumns);
1605   return pList;
1606 }
1607 
1608 /*
1609 ** Set the sort order for the last element on the given ExprList.
1610 */
1611 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1612   if( p==0 ) return;
1613   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1614   assert( p->nExpr>0 );
1615   if( iSortOrder<0 ){
1616     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1617     return;
1618   }
1619   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1620 }
1621 
1622 /*
1623 ** Set the ExprList.a[].zName element of the most recently added item
1624 ** on the expression list.
1625 **
1626 ** pList might be NULL following an OOM error.  But pName should never be
1627 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1628 ** is set.
1629 */
1630 void sqlite3ExprListSetName(
1631   Parse *pParse,          /* Parsing context */
1632   ExprList *pList,        /* List to which to add the span. */
1633   Token *pName,           /* Name to be added */
1634   int dequote             /* True to cause the name to be dequoted */
1635 ){
1636   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1637   if( pList ){
1638     struct ExprList_item *pItem;
1639     assert( pList->nExpr>0 );
1640     pItem = &pList->a[pList->nExpr-1];
1641     assert( pItem->zName==0 );
1642     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1643     if( dequote ) sqlite3Dequote(pItem->zName);
1644   }
1645 }
1646 
1647 /*
1648 ** Set the ExprList.a[].zSpan element of the most recently added item
1649 ** on the expression list.
1650 **
1651 ** pList might be NULL following an OOM error.  But pSpan should never be
1652 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1653 ** is set.
1654 */
1655 void sqlite3ExprListSetSpan(
1656   Parse *pParse,          /* Parsing context */
1657   ExprList *pList,        /* List to which to add the span. */
1658   ExprSpan *pSpan         /* The span to be added */
1659 ){
1660   sqlite3 *db = pParse->db;
1661   assert( pList!=0 || db->mallocFailed!=0 );
1662   if( pList ){
1663     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1664     assert( pList->nExpr>0 );
1665     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1666     sqlite3DbFree(db, pItem->zSpan);
1667     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1668                                     (int)(pSpan->zEnd - pSpan->zStart));
1669   }
1670 }
1671 
1672 /*
1673 ** If the expression list pEList contains more than iLimit elements,
1674 ** leave an error message in pParse.
1675 */
1676 void sqlite3ExprListCheckLength(
1677   Parse *pParse,
1678   ExprList *pEList,
1679   const char *zObject
1680 ){
1681   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1682   testcase( pEList && pEList->nExpr==mx );
1683   testcase( pEList && pEList->nExpr==mx+1 );
1684   if( pEList && pEList->nExpr>mx ){
1685     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1686   }
1687 }
1688 
1689 /*
1690 ** Delete an entire expression list.
1691 */
1692 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1693   int i = pList->nExpr;
1694   struct ExprList_item *pItem =  pList->a;
1695   assert( pList->nExpr>0 );
1696   do{
1697     sqlite3ExprDelete(db, pItem->pExpr);
1698     sqlite3DbFree(db, pItem->zName);
1699     sqlite3DbFree(db, pItem->zSpan);
1700     pItem++;
1701   }while( --i>0 );
1702   sqlite3DbFreeNN(db, pList);
1703 }
1704 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1705   if( pList ) exprListDeleteNN(db, pList);
1706 }
1707 
1708 /*
1709 ** Return the bitwise-OR of all Expr.flags fields in the given
1710 ** ExprList.
1711 */
1712 u32 sqlite3ExprListFlags(const ExprList *pList){
1713   int i;
1714   u32 m = 0;
1715   assert( pList!=0 );
1716   for(i=0; i<pList->nExpr; i++){
1717      Expr *pExpr = pList->a[i].pExpr;
1718      assert( pExpr!=0 );
1719      m |= pExpr->flags;
1720   }
1721   return m;
1722 }
1723 
1724 /*
1725 ** This is a SELECT-node callback for the expression walker that
1726 ** always "fails".  By "fail" in this case, we mean set
1727 ** pWalker->eCode to zero and abort.
1728 **
1729 ** This callback is used by multiple expression walkers.
1730 */
1731 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1732   UNUSED_PARAMETER(NotUsed);
1733   pWalker->eCode = 0;
1734   return WRC_Abort;
1735 }
1736 
1737 /*
1738 ** These routines are Walker callbacks used to check expressions to
1739 ** see if they are "constant" for some definition of constant.  The
1740 ** Walker.eCode value determines the type of "constant" we are looking
1741 ** for.
1742 **
1743 ** These callback routines are used to implement the following:
1744 **
1745 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1746 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1747 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1748 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1749 **
1750 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1751 ** is found to not be a constant.
1752 **
1753 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1754 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1755 ** an existing schema and 4 when processing a new statement.  A bound
1756 ** parameter raises an error for new statements, but is silently converted
1757 ** to NULL for existing schemas.  This allows sqlite_master tables that
1758 ** contain a bound parameter because they were generated by older versions
1759 ** of SQLite to be parsed by newer versions of SQLite without raising a
1760 ** malformed schema error.
1761 */
1762 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1763 
1764   /* If pWalker->eCode is 2 then any term of the expression that comes from
1765   ** the ON or USING clauses of a left join disqualifies the expression
1766   ** from being considered constant. */
1767   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1768     pWalker->eCode = 0;
1769     return WRC_Abort;
1770   }
1771 
1772   switch( pExpr->op ){
1773     /* Consider functions to be constant if all their arguments are constant
1774     ** and either pWalker->eCode==4 or 5 or the function has the
1775     ** SQLITE_FUNC_CONST flag. */
1776     case TK_FUNCTION:
1777       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1778         return WRC_Continue;
1779       }else{
1780         pWalker->eCode = 0;
1781         return WRC_Abort;
1782       }
1783     case TK_ID:
1784     case TK_COLUMN:
1785     case TK_AGG_FUNCTION:
1786     case TK_AGG_COLUMN:
1787       testcase( pExpr->op==TK_ID );
1788       testcase( pExpr->op==TK_COLUMN );
1789       testcase( pExpr->op==TK_AGG_FUNCTION );
1790       testcase( pExpr->op==TK_AGG_COLUMN );
1791       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1792         return WRC_Continue;
1793       }
1794       /* Fall through */
1795     case TK_IF_NULL_ROW:
1796       testcase( pExpr->op==TK_IF_NULL_ROW );
1797       pWalker->eCode = 0;
1798       return WRC_Abort;
1799     case TK_VARIABLE:
1800       if( pWalker->eCode==5 ){
1801         /* Silently convert bound parameters that appear inside of CREATE
1802         ** statements into a NULL when parsing the CREATE statement text out
1803         ** of the sqlite_master table */
1804         pExpr->op = TK_NULL;
1805       }else if( pWalker->eCode==4 ){
1806         /* A bound parameter in a CREATE statement that originates from
1807         ** sqlite3_prepare() causes an error */
1808         pWalker->eCode = 0;
1809         return WRC_Abort;
1810       }
1811       /* Fall through */
1812     default:
1813       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */
1814       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */
1815       return WRC_Continue;
1816   }
1817 }
1818 static int exprIsConst(Expr *p, int initFlag, int iCur){
1819   Walker w;
1820   w.eCode = initFlag;
1821   w.xExprCallback = exprNodeIsConstant;
1822   w.xSelectCallback = sqlite3SelectWalkFail;
1823 #ifdef SQLITE_DEBUG
1824   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1825 #endif
1826   w.u.iCur = iCur;
1827   sqlite3WalkExpr(&w, p);
1828   return w.eCode;
1829 }
1830 
1831 /*
1832 ** Walk an expression tree.  Return non-zero if the expression is constant
1833 ** and 0 if it involves variables or function calls.
1834 **
1835 ** For the purposes of this function, a double-quoted string (ex: "abc")
1836 ** is considered a variable but a single-quoted string (ex: 'abc') is
1837 ** a constant.
1838 */
1839 int sqlite3ExprIsConstant(Expr *p){
1840   return exprIsConst(p, 1, 0);
1841 }
1842 
1843 /*
1844 ** Walk an expression tree.  Return non-zero if the expression is constant
1845 ** that does no originate from the ON or USING clauses of a join.
1846 ** Return 0 if it involves variables or function calls or terms from
1847 ** an ON or USING clause.
1848 */
1849 int sqlite3ExprIsConstantNotJoin(Expr *p){
1850   return exprIsConst(p, 2, 0);
1851 }
1852 
1853 /*
1854 ** Walk an expression tree.  Return non-zero if the expression is constant
1855 ** for any single row of the table with cursor iCur.  In other words, the
1856 ** expression must not refer to any non-deterministic function nor any
1857 ** table other than iCur.
1858 */
1859 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1860   return exprIsConst(p, 3, iCur);
1861 }
1862 
1863 
1864 /*
1865 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1866 */
1867 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1868   ExprList *pGroupBy = pWalker->u.pGroupBy;
1869   int i;
1870 
1871   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1872   ** it constant.  */
1873   for(i=0; i<pGroupBy->nExpr; i++){
1874     Expr *p = pGroupBy->a[i].pExpr;
1875     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1876       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1877       if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1878         return WRC_Prune;
1879       }
1880     }
1881   }
1882 
1883   /* Check if pExpr is a sub-select. If so, consider it variable. */
1884   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1885     pWalker->eCode = 0;
1886     return WRC_Abort;
1887   }
1888 
1889   return exprNodeIsConstant(pWalker, pExpr);
1890 }
1891 
1892 /*
1893 ** Walk the expression tree passed as the first argument. Return non-zero
1894 ** if the expression consists entirely of constants or copies of terms
1895 ** in pGroupBy that sort with the BINARY collation sequence.
1896 **
1897 ** This routine is used to determine if a term of the HAVING clause can
1898 ** be promoted into the WHERE clause.  In order for such a promotion to work,
1899 ** the value of the HAVING clause term must be the same for all members of
1900 ** a "group".  The requirement that the GROUP BY term must be BINARY
1901 ** assumes that no other collating sequence will have a finer-grained
1902 ** grouping than binary.  In other words (A=B COLLATE binary) implies
1903 ** A=B in every other collating sequence.  The requirement that the
1904 ** GROUP BY be BINARY is stricter than necessary.  It would also work
1905 ** to promote HAVING clauses that use the same alternative collating
1906 ** sequence as the GROUP BY term, but that is much harder to check,
1907 ** alternative collating sequences are uncommon, and this is only an
1908 ** optimization, so we take the easy way out and simply require the
1909 ** GROUP BY to use the BINARY collating sequence.
1910 */
1911 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1912   Walker w;
1913   w.eCode = 1;
1914   w.xExprCallback = exprNodeIsConstantOrGroupBy;
1915   w.xSelectCallback = 0;
1916   w.u.pGroupBy = pGroupBy;
1917   w.pParse = pParse;
1918   sqlite3WalkExpr(&w, p);
1919   return w.eCode;
1920 }
1921 
1922 /*
1923 ** Walk an expression tree.  Return non-zero if the expression is constant
1924 ** or a function call with constant arguments.  Return and 0 if there
1925 ** are any variables.
1926 **
1927 ** For the purposes of this function, a double-quoted string (ex: "abc")
1928 ** is considered a variable but a single-quoted string (ex: 'abc') is
1929 ** a constant.
1930 */
1931 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1932   assert( isInit==0 || isInit==1 );
1933   return exprIsConst(p, 4+isInit, 0);
1934 }
1935 
1936 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1937 /*
1938 ** Walk an expression tree.  Return 1 if the expression contains a
1939 ** subquery of some kind.  Return 0 if there are no subqueries.
1940 */
1941 int sqlite3ExprContainsSubquery(Expr *p){
1942   Walker w;
1943   w.eCode = 1;
1944   w.xExprCallback = sqlite3ExprWalkNoop;
1945   w.xSelectCallback = sqlite3SelectWalkFail;
1946 #ifdef SQLITE_DEBUG
1947   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1948 #endif
1949   sqlite3WalkExpr(&w, p);
1950   return w.eCode==0;
1951 }
1952 #endif
1953 
1954 /*
1955 ** If the expression p codes a constant integer that is small enough
1956 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1957 ** in *pValue.  If the expression is not an integer or if it is too big
1958 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1959 */
1960 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1961   int rc = 0;
1962   if( p==0 ) return 0;  /* Can only happen following on OOM */
1963 
1964   /* If an expression is an integer literal that fits in a signed 32-bit
1965   ** integer, then the EP_IntValue flag will have already been set */
1966   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1967            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1968 
1969   if( p->flags & EP_IntValue ){
1970     *pValue = p->u.iValue;
1971     return 1;
1972   }
1973   switch( p->op ){
1974     case TK_UPLUS: {
1975       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1976       break;
1977     }
1978     case TK_UMINUS: {
1979       int v;
1980       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1981         assert( v!=(-2147483647-1) );
1982         *pValue = -v;
1983         rc = 1;
1984       }
1985       break;
1986     }
1987     default: break;
1988   }
1989   return rc;
1990 }
1991 
1992 /*
1993 ** Return FALSE if there is no chance that the expression can be NULL.
1994 **
1995 ** If the expression might be NULL or if the expression is too complex
1996 ** to tell return TRUE.
1997 **
1998 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1999 ** when we know that a value cannot be NULL.  Hence, a false positive
2000 ** (returning TRUE when in fact the expression can never be NULL) might
2001 ** be a small performance hit but is otherwise harmless.  On the other
2002 ** hand, a false negative (returning FALSE when the result could be NULL)
2003 ** will likely result in an incorrect answer.  So when in doubt, return
2004 ** TRUE.
2005 */
2006 int sqlite3ExprCanBeNull(const Expr *p){
2007   u8 op;
2008   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2009   op = p->op;
2010   if( op==TK_REGISTER ) op = p->op2;
2011   switch( op ){
2012     case TK_INTEGER:
2013     case TK_STRING:
2014     case TK_FLOAT:
2015     case TK_BLOB:
2016       return 0;
2017     case TK_COLUMN:
2018       return ExprHasProperty(p, EP_CanBeNull) ||
2019              p->pTab==0 ||  /* Reference to column of index on expression */
2020              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2021     default:
2022       return 1;
2023   }
2024 }
2025 
2026 /*
2027 ** Return TRUE if the given expression is a constant which would be
2028 ** unchanged by OP_Affinity with the affinity given in the second
2029 ** argument.
2030 **
2031 ** This routine is used to determine if the OP_Affinity operation
2032 ** can be omitted.  When in doubt return FALSE.  A false negative
2033 ** is harmless.  A false positive, however, can result in the wrong
2034 ** answer.
2035 */
2036 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2037   u8 op;
2038   if( aff==SQLITE_AFF_BLOB ) return 1;
2039   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2040   op = p->op;
2041   if( op==TK_REGISTER ) op = p->op2;
2042   switch( op ){
2043     case TK_INTEGER: {
2044       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2045     }
2046     case TK_FLOAT: {
2047       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2048     }
2049     case TK_STRING: {
2050       return aff==SQLITE_AFF_TEXT;
2051     }
2052     case TK_BLOB: {
2053       return 1;
2054     }
2055     case TK_COLUMN: {
2056       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2057       return p->iColumn<0
2058           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2059     }
2060     default: {
2061       return 0;
2062     }
2063   }
2064 }
2065 
2066 /*
2067 ** Return TRUE if the given string is a row-id column name.
2068 */
2069 int sqlite3IsRowid(const char *z){
2070   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2071   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2072   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2073   return 0;
2074 }
2075 
2076 /*
2077 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2078 ** that can be simplified to a direct table access, then return
2079 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2080 ** or if the SELECT statement needs to be manifested into a transient
2081 ** table, then return NULL.
2082 */
2083 #ifndef SQLITE_OMIT_SUBQUERY
2084 static Select *isCandidateForInOpt(Expr *pX){
2085   Select *p;
2086   SrcList *pSrc;
2087   ExprList *pEList;
2088   Table *pTab;
2089   int i;
2090   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2091   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2092   p = pX->x.pSelect;
2093   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2094   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2095     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2096     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2097     return 0; /* No DISTINCT keyword and no aggregate functions */
2098   }
2099   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2100   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2101   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
2102   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2103   pSrc = p->pSrc;
2104   assert( pSrc!=0 );
2105   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2106   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2107   pTab = pSrc->a[0].pTab;
2108   assert( pTab!=0 );
2109   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2110   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2111   pEList = p->pEList;
2112   assert( pEList!=0 );
2113   /* All SELECT results must be columns. */
2114   for(i=0; i<pEList->nExpr; i++){
2115     Expr *pRes = pEList->a[i].pExpr;
2116     if( pRes->op!=TK_COLUMN ) return 0;
2117     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2118   }
2119   return p;
2120 }
2121 #endif /* SQLITE_OMIT_SUBQUERY */
2122 
2123 #ifndef SQLITE_OMIT_SUBQUERY
2124 /*
2125 ** Generate code that checks the left-most column of index table iCur to see if
2126 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2127 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2128 ** to be set to NULL if iCur contains one or more NULL values.
2129 */
2130 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2131   int addr1;
2132   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2133   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2134   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2135   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2136   VdbeComment((v, "first_entry_in(%d)", iCur));
2137   sqlite3VdbeJumpHere(v, addr1);
2138 }
2139 #endif
2140 
2141 
2142 #ifndef SQLITE_OMIT_SUBQUERY
2143 /*
2144 ** The argument is an IN operator with a list (not a subquery) on the
2145 ** right-hand side.  Return TRUE if that list is constant.
2146 */
2147 static int sqlite3InRhsIsConstant(Expr *pIn){
2148   Expr *pLHS;
2149   int res;
2150   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2151   pLHS = pIn->pLeft;
2152   pIn->pLeft = 0;
2153   res = sqlite3ExprIsConstant(pIn);
2154   pIn->pLeft = pLHS;
2155   return res;
2156 }
2157 #endif
2158 
2159 /*
2160 ** This function is used by the implementation of the IN (...) operator.
2161 ** The pX parameter is the expression on the RHS of the IN operator, which
2162 ** might be either a list of expressions or a subquery.
2163 **
2164 ** The job of this routine is to find or create a b-tree object that can
2165 ** be used either to test for membership in the RHS set or to iterate through
2166 ** all members of the RHS set, skipping duplicates.
2167 **
2168 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2169 ** and pX->iTable is set to the index of that cursor.
2170 **
2171 ** The returned value of this function indicates the b-tree type, as follows:
2172 **
2173 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2174 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2175 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2176 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2177 **                         populated epheremal table.
2178 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2179 **                         implemented as a sequence of comparisons.
2180 **
2181 ** An existing b-tree might be used if the RHS expression pX is a simple
2182 ** subquery such as:
2183 **
2184 **     SELECT <column1>, <column2>... FROM <table>
2185 **
2186 ** If the RHS of the IN operator is a list or a more complex subquery, then
2187 ** an ephemeral table might need to be generated from the RHS and then
2188 ** pX->iTable made to point to the ephemeral table instead of an
2189 ** existing table.
2190 **
2191 ** The inFlags parameter must contain exactly one of the bits
2192 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
2193 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2194 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
2195 ** IN index will be used to loop over all values of the RHS of the
2196 ** IN operator.
2197 **
2198 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2199 ** through the set members) then the b-tree must not contain duplicates.
2200 ** An epheremal table must be used unless the selected columns are guaranteed
2201 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2202 ** a UNIQUE constraint or index.
2203 **
2204 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2205 ** for fast set membership tests) then an epheremal table must
2206 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2207 ** index can be found with the specified <columns> as its left-most.
2208 **
2209 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2210 ** if the RHS of the IN operator is a list (not a subquery) then this
2211 ** routine might decide that creating an ephemeral b-tree for membership
2212 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2213 ** calling routine should implement the IN operator using a sequence
2214 ** of Eq or Ne comparison operations.
2215 **
2216 ** When the b-tree is being used for membership tests, the calling function
2217 ** might need to know whether or not the RHS side of the IN operator
2218 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2219 ** if there is any chance that the (...) might contain a NULL value at
2220 ** runtime, then a register is allocated and the register number written
2221 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2222 ** NULL value, then *prRhsHasNull is left unchanged.
2223 **
2224 ** If a register is allocated and its location stored in *prRhsHasNull, then
2225 ** the value in that register will be NULL if the b-tree contains one or more
2226 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2227 ** NULL values.
2228 **
2229 ** If the aiMap parameter is not NULL, it must point to an array containing
2230 ** one element for each column returned by the SELECT statement on the RHS
2231 ** of the IN(...) operator. The i'th entry of the array is populated with the
2232 ** offset of the index column that matches the i'th column returned by the
2233 ** SELECT. For example, if the expression and selected index are:
2234 **
2235 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2236 **   CREATE INDEX i1 ON t1(b, c, a);
2237 **
2238 ** then aiMap[] is populated with {2, 0, 1}.
2239 */
2240 #ifndef SQLITE_OMIT_SUBQUERY
2241 int sqlite3FindInIndex(
2242   Parse *pParse,             /* Parsing context */
2243   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2244   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2245   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2246   int *aiMap                 /* Mapping from Index fields to RHS fields */
2247 ){
2248   Select *p;                            /* SELECT to the right of IN operator */
2249   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2250   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2251   int mustBeUnique;                     /* True if RHS must be unique */
2252   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2253 
2254   assert( pX->op==TK_IN );
2255   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2256 
2257   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2258   ** whether or not the SELECT result contains NULL values, check whether
2259   ** or not NULL is actually possible (it may not be, for example, due
2260   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2261   ** set prRhsHasNull to 0 before continuing.  */
2262   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2263     int i;
2264     ExprList *pEList = pX->x.pSelect->pEList;
2265     for(i=0; i<pEList->nExpr; i++){
2266       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2267     }
2268     if( i==pEList->nExpr ){
2269       prRhsHasNull = 0;
2270     }
2271   }
2272 
2273   /* Check to see if an existing table or index can be used to
2274   ** satisfy the query.  This is preferable to generating a new
2275   ** ephemeral table.  */
2276   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2277     sqlite3 *db = pParse->db;              /* Database connection */
2278     Table *pTab;                           /* Table <table>. */
2279     i16 iDb;                               /* Database idx for pTab */
2280     ExprList *pEList = p->pEList;
2281     int nExpr = pEList->nExpr;
2282 
2283     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2284     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2285     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2286     pTab = p->pSrc->a[0].pTab;
2287 
2288     /* Code an OP_Transaction and OP_TableLock for <table>. */
2289     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2290     sqlite3CodeVerifySchema(pParse, iDb);
2291     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2292 
2293     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2294     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2295       /* The "x IN (SELECT rowid FROM table)" case */
2296       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2297       VdbeCoverage(v);
2298 
2299       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2300       eType = IN_INDEX_ROWID;
2301 
2302       sqlite3VdbeJumpHere(v, iAddr);
2303     }else{
2304       Index *pIdx;                         /* Iterator variable */
2305       int affinity_ok = 1;
2306       int i;
2307 
2308       /* Check that the affinity that will be used to perform each
2309       ** comparison is the same as the affinity of each column in table
2310       ** on the RHS of the IN operator.  If it not, it is not possible to
2311       ** use any index of the RHS table.  */
2312       for(i=0; i<nExpr && affinity_ok; i++){
2313         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2314         int iCol = pEList->a[i].pExpr->iColumn;
2315         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2316         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2317         testcase( cmpaff==SQLITE_AFF_BLOB );
2318         testcase( cmpaff==SQLITE_AFF_TEXT );
2319         switch( cmpaff ){
2320           case SQLITE_AFF_BLOB:
2321             break;
2322           case SQLITE_AFF_TEXT:
2323             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2324             ** other has no affinity and the other side is TEXT.  Hence,
2325             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2326             ** and for the term on the LHS of the IN to have no affinity. */
2327             assert( idxaff==SQLITE_AFF_TEXT );
2328             break;
2329           default:
2330             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2331         }
2332       }
2333 
2334       if( affinity_ok ){
2335         /* Search for an existing index that will work for this IN operator */
2336         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2337           Bitmask colUsed;      /* Columns of the index used */
2338           Bitmask mCol;         /* Mask for the current column */
2339           if( pIdx->nColumn<nExpr ) continue;
2340           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2341           ** BITMASK(nExpr) without overflowing */
2342           testcase( pIdx->nColumn==BMS-2 );
2343           testcase( pIdx->nColumn==BMS-1 );
2344           if( pIdx->nColumn>=BMS-1 ) continue;
2345           if( mustBeUnique ){
2346             if( pIdx->nKeyCol>nExpr
2347              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2348             ){
2349               continue;  /* This index is not unique over the IN RHS columns */
2350             }
2351           }
2352 
2353           colUsed = 0;   /* Columns of index used so far */
2354           for(i=0; i<nExpr; i++){
2355             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2356             Expr *pRhs = pEList->a[i].pExpr;
2357             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2358             int j;
2359 
2360             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2361             for(j=0; j<nExpr; j++){
2362               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2363               assert( pIdx->azColl[j] );
2364               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2365                 continue;
2366               }
2367               break;
2368             }
2369             if( j==nExpr ) break;
2370             mCol = MASKBIT(j);
2371             if( mCol & colUsed ) break; /* Each column used only once */
2372             colUsed |= mCol;
2373             if( aiMap ) aiMap[i] = j;
2374           }
2375 
2376           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2377           if( colUsed==(MASKBIT(nExpr)-1) ){
2378             /* If we reach this point, that means the index pIdx is usable */
2379             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2380 #ifndef SQLITE_OMIT_EXPLAIN
2381             sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2382               sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2383               P4_DYNAMIC);
2384 #endif
2385             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2386             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2387             VdbeComment((v, "%s", pIdx->zName));
2388             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2389             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2390 
2391             if( prRhsHasNull ){
2392 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2393               i64 mask = (1<<nExpr)-1;
2394               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2395                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2396 #endif
2397               *prRhsHasNull = ++pParse->nMem;
2398               if( nExpr==1 ){
2399                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2400               }
2401             }
2402             sqlite3VdbeJumpHere(v, iAddr);
2403           }
2404         } /* End loop over indexes */
2405       } /* End if( affinity_ok ) */
2406     } /* End if not an rowid index */
2407   } /* End attempt to optimize using an index */
2408 
2409   /* If no preexisting index is available for the IN clause
2410   ** and IN_INDEX_NOOP is an allowed reply
2411   ** and the RHS of the IN operator is a list, not a subquery
2412   ** and the RHS is not constant or has two or fewer terms,
2413   ** then it is not worth creating an ephemeral table to evaluate
2414   ** the IN operator so return IN_INDEX_NOOP.
2415   */
2416   if( eType==0
2417    && (inFlags & IN_INDEX_NOOP_OK)
2418    && !ExprHasProperty(pX, EP_xIsSelect)
2419    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2420   ){
2421     eType = IN_INDEX_NOOP;
2422   }
2423 
2424   if( eType==0 ){
2425     /* Could not find an existing table or index to use as the RHS b-tree.
2426     ** We will have to generate an ephemeral table to do the job.
2427     */
2428     u32 savedNQueryLoop = pParse->nQueryLoop;
2429     int rMayHaveNull = 0;
2430     eType = IN_INDEX_EPH;
2431     if( inFlags & IN_INDEX_LOOP ){
2432       pParse->nQueryLoop = 0;
2433       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2434         eType = IN_INDEX_ROWID;
2435       }
2436     }else if( prRhsHasNull ){
2437       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2438     }
2439     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2440     pParse->nQueryLoop = savedNQueryLoop;
2441   }else{
2442     pX->iTable = iTab;
2443   }
2444 
2445   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2446     int i, n;
2447     n = sqlite3ExprVectorSize(pX->pLeft);
2448     for(i=0; i<n; i++) aiMap[i] = i;
2449   }
2450   return eType;
2451 }
2452 #endif
2453 
2454 #ifndef SQLITE_OMIT_SUBQUERY
2455 /*
2456 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2457 ** function allocates and returns a nul-terminated string containing
2458 ** the affinities to be used for each column of the comparison.
2459 **
2460 ** It is the responsibility of the caller to ensure that the returned
2461 ** string is eventually freed using sqlite3DbFree().
2462 */
2463 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2464   Expr *pLeft = pExpr->pLeft;
2465   int nVal = sqlite3ExprVectorSize(pLeft);
2466   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2467   char *zRet;
2468 
2469   assert( pExpr->op==TK_IN );
2470   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2471   if( zRet ){
2472     int i;
2473     for(i=0; i<nVal; i++){
2474       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2475       char a = sqlite3ExprAffinity(pA);
2476       if( pSelect ){
2477         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2478       }else{
2479         zRet[i] = a;
2480       }
2481     }
2482     zRet[nVal] = '\0';
2483   }
2484   return zRet;
2485 }
2486 #endif
2487 
2488 #ifndef SQLITE_OMIT_SUBQUERY
2489 /*
2490 ** Load the Parse object passed as the first argument with an error
2491 ** message of the form:
2492 **
2493 **   "sub-select returns N columns - expected M"
2494 */
2495 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2496   const char *zFmt = "sub-select returns %d columns - expected %d";
2497   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2498 }
2499 #endif
2500 
2501 /*
2502 ** Expression pExpr is a vector that has been used in a context where
2503 ** it is not permitted. If pExpr is a sub-select vector, this routine
2504 ** loads the Parse object with a message of the form:
2505 **
2506 **   "sub-select returns N columns - expected 1"
2507 **
2508 ** Or, if it is a regular scalar vector:
2509 **
2510 **   "row value misused"
2511 */
2512 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2513 #ifndef SQLITE_OMIT_SUBQUERY
2514   if( pExpr->flags & EP_xIsSelect ){
2515     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2516   }else
2517 #endif
2518   {
2519     sqlite3ErrorMsg(pParse, "row value misused");
2520   }
2521 }
2522 
2523 /*
2524 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2525 ** or IN operators.  Examples:
2526 **
2527 **     (SELECT a FROM b)          -- subquery
2528 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2529 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2530 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2531 **
2532 ** The pExpr parameter describes the expression that contains the IN
2533 ** operator or subquery.
2534 **
2535 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2536 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2537 ** to some integer key column of a table B-Tree. In this case, use an
2538 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2539 ** (slower) variable length keys B-Tree.
2540 **
2541 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2542 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2543 ** All this routine does is initialize the register given by rMayHaveNull
2544 ** to NULL.  Calling routines will take care of changing this register
2545 ** value to non-NULL if the RHS is NULL-free.
2546 **
2547 ** For a SELECT or EXISTS operator, return the register that holds the
2548 ** result.  For a multi-column SELECT, the result is stored in a contiguous
2549 ** array of registers and the return value is the register of the left-most
2550 ** result column.  Return 0 for IN operators or if an error occurs.
2551 */
2552 #ifndef SQLITE_OMIT_SUBQUERY
2553 int sqlite3CodeSubselect(
2554   Parse *pParse,          /* Parsing context */
2555   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
2556   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
2557   int isRowid             /* If true, LHS of IN operator is a rowid */
2558 ){
2559   int jmpIfDynamic = -1;                      /* One-time test address */
2560   int rReg = 0;                           /* Register storing resulting */
2561   Vdbe *v = sqlite3GetVdbe(pParse);
2562   if( NEVER(v==0) ) return 0;
2563   sqlite3ExprCachePush(pParse);
2564 
2565   /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2566   ** is encountered if any of the following is true:
2567   **
2568   **    *  The right-hand side is a correlated subquery
2569   **    *  The right-hand side is an expression list containing variables
2570   **    *  We are inside a trigger
2571   **
2572   ** If all of the above are false, then we can run this code just once
2573   ** save the results, and reuse the same result on subsequent invocations.
2574   */
2575   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2576     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2577   }
2578 
2579 #ifndef SQLITE_OMIT_EXPLAIN
2580   if( pParse->explain==2 ){
2581     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2582         jmpIfDynamic>=0?"":"CORRELATED ",
2583         pExpr->op==TK_IN?"LIST":"SCALAR",
2584         pParse->iNextSelectId
2585     );
2586     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2587   }
2588 #endif
2589 
2590   switch( pExpr->op ){
2591     case TK_IN: {
2592       int addr;                   /* Address of OP_OpenEphemeral instruction */
2593       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2594       KeyInfo *pKeyInfo = 0;      /* Key information */
2595       int nVal;                   /* Size of vector pLeft */
2596 
2597       nVal = sqlite3ExprVectorSize(pLeft);
2598       assert( !isRowid || nVal==1 );
2599 
2600       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2601       ** expression it is handled the same way.  An ephemeral table is
2602       ** filled with index keys representing the results from the
2603       ** SELECT or the <exprlist>.
2604       **
2605       ** If the 'x' expression is a column value, or the SELECT...
2606       ** statement returns a column value, then the affinity of that
2607       ** column is used to build the index keys. If both 'x' and the
2608       ** SELECT... statement are columns, then numeric affinity is used
2609       ** if either column has NUMERIC or INTEGER affinity. If neither
2610       ** 'x' nor the SELECT... statement are columns, then numeric affinity
2611       ** is used.
2612       */
2613       pExpr->iTable = pParse->nTab++;
2614       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2615           pExpr->iTable, (isRowid?0:nVal));
2616       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2617 
2618       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2619         /* Case 1:     expr IN (SELECT ...)
2620         **
2621         ** Generate code to write the results of the select into the temporary
2622         ** table allocated and opened above.
2623         */
2624         Select *pSelect = pExpr->x.pSelect;
2625         ExprList *pEList = pSelect->pEList;
2626 
2627         assert( !isRowid );
2628         /* If the LHS and RHS of the IN operator do not match, that
2629         ** error will have been caught long before we reach this point. */
2630         if( ALWAYS(pEList->nExpr==nVal) ){
2631           SelectDest dest;
2632           int i;
2633           sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2634           dest.zAffSdst = exprINAffinity(pParse, pExpr);
2635           pSelect->iLimit = 0;
2636           testcase( pSelect->selFlags & SF_Distinct );
2637           testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2638           if( sqlite3Select(pParse, pSelect, &dest) ){
2639             sqlite3DbFree(pParse->db, dest.zAffSdst);
2640             sqlite3KeyInfoUnref(pKeyInfo);
2641             return 0;
2642           }
2643           sqlite3DbFree(pParse->db, dest.zAffSdst);
2644           assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2645           assert( pEList!=0 );
2646           assert( pEList->nExpr>0 );
2647           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2648           for(i=0; i<nVal; i++){
2649             Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2650             pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2651                 pParse, p, pEList->a[i].pExpr
2652             );
2653           }
2654         }
2655       }else if( ALWAYS(pExpr->x.pList!=0) ){
2656         /* Case 2:     expr IN (exprlist)
2657         **
2658         ** For each expression, build an index key from the evaluation and
2659         ** store it in the temporary table. If <expr> is a column, then use
2660         ** that columns affinity when building index keys. If <expr> is not
2661         ** a column, use numeric affinity.
2662         */
2663         char affinity;            /* Affinity of the LHS of the IN */
2664         int i;
2665         ExprList *pList = pExpr->x.pList;
2666         struct ExprList_item *pItem;
2667         int r1, r2, r3;
2668 
2669         affinity = sqlite3ExprAffinity(pLeft);
2670         if( !affinity ){
2671           affinity = SQLITE_AFF_BLOB;
2672         }
2673         if( pKeyInfo ){
2674           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2675           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2676         }
2677 
2678         /* Loop through each expression in <exprlist>. */
2679         r1 = sqlite3GetTempReg(pParse);
2680         r2 = sqlite3GetTempReg(pParse);
2681         if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2682         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2683           Expr *pE2 = pItem->pExpr;
2684           int iValToIns;
2685 
2686           /* If the expression is not constant then we will need to
2687           ** disable the test that was generated above that makes sure
2688           ** this code only executes once.  Because for a non-constant
2689           ** expression we need to rerun this code each time.
2690           */
2691           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2692             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2693             jmpIfDynamic = -1;
2694           }
2695 
2696           /* Evaluate the expression and insert it into the temp table */
2697           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2698             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2699           }else{
2700             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2701             if( isRowid ){
2702               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2703                                 sqlite3VdbeCurrentAddr(v)+2);
2704               VdbeCoverage(v);
2705               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2706             }else{
2707               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2708               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2709               sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2710             }
2711           }
2712         }
2713         sqlite3ReleaseTempReg(pParse, r1);
2714         sqlite3ReleaseTempReg(pParse, r2);
2715       }
2716       if( pKeyInfo ){
2717         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2718       }
2719       break;
2720     }
2721 
2722     case TK_EXISTS:
2723     case TK_SELECT:
2724     default: {
2725       /* Case 3:    (SELECT ... FROM ...)
2726       **     or:    EXISTS(SELECT ... FROM ...)
2727       **
2728       ** For a SELECT, generate code to put the values for all columns of
2729       ** the first row into an array of registers and return the index of
2730       ** the first register.
2731       **
2732       ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2733       ** into a register and return that register number.
2734       **
2735       ** In both cases, the query is augmented with "LIMIT 1".  Any
2736       ** preexisting limit is discarded in place of the new LIMIT 1.
2737       */
2738       Select *pSel;                         /* SELECT statement to encode */
2739       SelectDest dest;                      /* How to deal with SELECT result */
2740       int nReg;                             /* Registers to allocate */
2741 
2742       testcase( pExpr->op==TK_EXISTS );
2743       testcase( pExpr->op==TK_SELECT );
2744       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2745       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2746 
2747       pSel = pExpr->x.pSelect;
2748       nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2749       sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2750       pParse->nMem += nReg;
2751       if( pExpr->op==TK_SELECT ){
2752         dest.eDest = SRT_Mem;
2753         dest.iSdst = dest.iSDParm;
2754         dest.nSdst = nReg;
2755         sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2756         VdbeComment((v, "Init subquery result"));
2757       }else{
2758         dest.eDest = SRT_Exists;
2759         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2760         VdbeComment((v, "Init EXISTS result"));
2761       }
2762       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2763       pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2764                                   &sqlite3IntTokens[1], 0);
2765       pSel->iLimit = 0;
2766       pSel->selFlags &= ~SF_MultiValue;
2767       if( sqlite3Select(pParse, pSel, &dest) ){
2768         return 0;
2769       }
2770       rReg = dest.iSDParm;
2771       ExprSetVVAProperty(pExpr, EP_NoReduce);
2772       break;
2773     }
2774   }
2775 
2776   if( rHasNullFlag ){
2777     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2778   }
2779 
2780   if( jmpIfDynamic>=0 ){
2781     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2782   }
2783   sqlite3ExprCachePop(pParse);
2784 
2785   return rReg;
2786 }
2787 #endif /* SQLITE_OMIT_SUBQUERY */
2788 
2789 #ifndef SQLITE_OMIT_SUBQUERY
2790 /*
2791 ** Expr pIn is an IN(...) expression. This function checks that the
2792 ** sub-select on the RHS of the IN() operator has the same number of
2793 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2794 ** a sub-query, that the LHS is a vector of size 1.
2795 */
2796 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2797   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2798   if( (pIn->flags & EP_xIsSelect) ){
2799     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2800       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2801       return 1;
2802     }
2803   }else if( nVector!=1 ){
2804     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2805     return 1;
2806   }
2807   return 0;
2808 }
2809 #endif
2810 
2811 #ifndef SQLITE_OMIT_SUBQUERY
2812 /*
2813 ** Generate code for an IN expression.
2814 **
2815 **      x IN (SELECT ...)
2816 **      x IN (value, value, ...)
2817 **
2818 ** The left-hand side (LHS) is a scalar or vector expression.  The
2819 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2820 ** subquery.  If the RHS is a subquery, the number of result columns must
2821 ** match the number of columns in the vector on the LHS.  If the RHS is
2822 ** a list of values, the LHS must be a scalar.
2823 **
2824 ** The IN operator is true if the LHS value is contained within the RHS.
2825 ** The result is false if the LHS is definitely not in the RHS.  The
2826 ** result is NULL if the presence of the LHS in the RHS cannot be
2827 ** determined due to NULLs.
2828 **
2829 ** This routine generates code that jumps to destIfFalse if the LHS is not
2830 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2831 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2832 ** within the RHS then fall through.
2833 **
2834 ** See the separate in-operator.md documentation file in the canonical
2835 ** SQLite source tree for additional information.
2836 */
2837 static void sqlite3ExprCodeIN(
2838   Parse *pParse,        /* Parsing and code generating context */
2839   Expr *pExpr,          /* The IN expression */
2840   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2841   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2842 ){
2843   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2844   int eType;            /* Type of the RHS */
2845   int rLhs;             /* Register(s) holding the LHS values */
2846   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2847   Vdbe *v;              /* Statement under construction */
2848   int *aiMap = 0;       /* Map from vector field to index column */
2849   char *zAff = 0;       /* Affinity string for comparisons */
2850   int nVector;          /* Size of vectors for this IN operator */
2851   int iDummy;           /* Dummy parameter to exprCodeVector() */
2852   Expr *pLeft;          /* The LHS of the IN operator */
2853   int i;                /* loop counter */
2854   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2855   int destStep6 = 0;    /* Start of code for Step 6 */
2856   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2857   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2858   int addrTop;          /* Top of the step-6 loop */
2859 
2860   pLeft = pExpr->pLeft;
2861   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2862   zAff = exprINAffinity(pParse, pExpr);
2863   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2864   aiMap = (int*)sqlite3DbMallocZero(
2865       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2866   );
2867   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2868 
2869   /* Attempt to compute the RHS. After this step, if anything other than
2870   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2871   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2872   ** the RHS has not yet been coded.  */
2873   v = pParse->pVdbe;
2874   assert( v!=0 );       /* OOM detected prior to this routine */
2875   VdbeNoopComment((v, "begin IN expr"));
2876   eType = sqlite3FindInIndex(pParse, pExpr,
2877                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2878                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2879 
2880   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2881        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2882   );
2883 #ifdef SQLITE_DEBUG
2884   /* Confirm that aiMap[] contains nVector integer values between 0 and
2885   ** nVector-1. */
2886   for(i=0; i<nVector; i++){
2887     int j, cnt;
2888     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2889     assert( cnt==1 );
2890   }
2891 #endif
2892 
2893   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2894   ** vector, then it is stored in an array of nVector registers starting
2895   ** at r1.
2896   **
2897   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2898   ** so that the fields are in the same order as an existing index.   The
2899   ** aiMap[] array contains a mapping from the original LHS field order to
2900   ** the field order that matches the RHS index.
2901   */
2902   sqlite3ExprCachePush(pParse);
2903   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2904   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2905   if( i==nVector ){
2906     /* LHS fields are not reordered */
2907     rLhs = rLhsOrig;
2908   }else{
2909     /* Need to reorder the LHS fields according to aiMap */
2910     rLhs = sqlite3GetTempRange(pParse, nVector);
2911     for(i=0; i<nVector; i++){
2912       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2913     }
2914   }
2915 
2916   /* If sqlite3FindInIndex() did not find or create an index that is
2917   ** suitable for evaluating the IN operator, then evaluate using a
2918   ** sequence of comparisons.
2919   **
2920   ** This is step (1) in the in-operator.md optimized algorithm.
2921   */
2922   if( eType==IN_INDEX_NOOP ){
2923     ExprList *pList = pExpr->x.pList;
2924     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2925     int labelOk = sqlite3VdbeMakeLabel(v);
2926     int r2, regToFree;
2927     int regCkNull = 0;
2928     int ii;
2929     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2930     if( destIfNull!=destIfFalse ){
2931       regCkNull = sqlite3GetTempReg(pParse);
2932       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2933     }
2934     for(ii=0; ii<pList->nExpr; ii++){
2935       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2936       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2937         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2938       }
2939       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2940         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2941                           (void*)pColl, P4_COLLSEQ);
2942         VdbeCoverageIf(v, ii<pList->nExpr-1);
2943         VdbeCoverageIf(v, ii==pList->nExpr-1);
2944         sqlite3VdbeChangeP5(v, zAff[0]);
2945       }else{
2946         assert( destIfNull==destIfFalse );
2947         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2948                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2949         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2950       }
2951       sqlite3ReleaseTempReg(pParse, regToFree);
2952     }
2953     if( regCkNull ){
2954       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2955       sqlite3VdbeGoto(v, destIfFalse);
2956     }
2957     sqlite3VdbeResolveLabel(v, labelOk);
2958     sqlite3ReleaseTempReg(pParse, regCkNull);
2959     goto sqlite3ExprCodeIN_finished;
2960   }
2961 
2962   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
2963   ** LHS does contain NULLs then the result must be either FALSE or NULL.
2964   ** We will then skip the binary search of the RHS.
2965   */
2966   if( destIfNull==destIfFalse ){
2967     destStep2 = destIfFalse;
2968   }else{
2969     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2970   }
2971   for(i=0; i<nVector; i++){
2972     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2973     if( sqlite3ExprCanBeNull(p) ){
2974       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2975       VdbeCoverage(v);
2976     }
2977   }
2978 
2979   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
2980   ** of the RHS using the LHS as a probe.  If found, the result is
2981   ** true.
2982   */
2983   if( eType==IN_INDEX_ROWID ){
2984     /* In this case, the RHS is the ROWID of table b-tree and so we also
2985     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
2986     ** into a single opcode. */
2987     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2988     VdbeCoverage(v);
2989     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
2990   }else{
2991     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2992     if( destIfFalse==destIfNull ){
2993       /* Combine Step 3 and Step 5 into a single opcode */
2994       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2995                            rLhs, nVector); VdbeCoverage(v);
2996       goto sqlite3ExprCodeIN_finished;
2997     }
2998     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
2999     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3000                                       rLhs, nVector); VdbeCoverage(v);
3001   }
3002 
3003   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3004   ** an match on the search above, then the result must be FALSE.
3005   */
3006   if( rRhsHasNull && nVector==1 ){
3007     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3008     VdbeCoverage(v);
3009   }
3010 
3011   /* Step 5.  If we do not care about the difference between NULL and
3012   ** FALSE, then just return false.
3013   */
3014   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3015 
3016   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3017   ** If any comparison is NULL, then the result is NULL.  If all
3018   ** comparisons are FALSE then the final result is FALSE.
3019   **
3020   ** For a scalar LHS, it is sufficient to check just the first row
3021   ** of the RHS.
3022   */
3023   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3024   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3025   VdbeCoverage(v);
3026   if( nVector>1 ){
3027     destNotNull = sqlite3VdbeMakeLabel(v);
3028   }else{
3029     /* For nVector==1, combine steps 6 and 7 by immediately returning
3030     ** FALSE if the first comparison is not NULL */
3031     destNotNull = destIfFalse;
3032   }
3033   for(i=0; i<nVector; i++){
3034     Expr *p;
3035     CollSeq *pColl;
3036     int r3 = sqlite3GetTempReg(pParse);
3037     p = sqlite3VectorFieldSubexpr(pLeft, i);
3038     pColl = sqlite3ExprCollSeq(pParse, p);
3039     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3040     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3041                       (void*)pColl, P4_COLLSEQ);
3042     VdbeCoverage(v);
3043     sqlite3ReleaseTempReg(pParse, r3);
3044   }
3045   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3046   if( nVector>1 ){
3047     sqlite3VdbeResolveLabel(v, destNotNull);
3048     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3049     VdbeCoverage(v);
3050 
3051     /* Step 7:  If we reach this point, we know that the result must
3052     ** be false. */
3053     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3054   }
3055 
3056   /* Jumps here in order to return true. */
3057   sqlite3VdbeJumpHere(v, addrTruthOp);
3058 
3059 sqlite3ExprCodeIN_finished:
3060   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3061   sqlite3ExprCachePop(pParse);
3062   VdbeComment((v, "end IN expr"));
3063 sqlite3ExprCodeIN_oom_error:
3064   sqlite3DbFree(pParse->db, aiMap);
3065   sqlite3DbFree(pParse->db, zAff);
3066 }
3067 #endif /* SQLITE_OMIT_SUBQUERY */
3068 
3069 #ifndef SQLITE_OMIT_FLOATING_POINT
3070 /*
3071 ** Generate an instruction that will put the floating point
3072 ** value described by z[0..n-1] into register iMem.
3073 **
3074 ** The z[] string will probably not be zero-terminated.  But the
3075 ** z[n] character is guaranteed to be something that does not look
3076 ** like the continuation of the number.
3077 */
3078 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3079   if( ALWAYS(z!=0) ){
3080     double value;
3081     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3082     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3083     if( negateFlag ) value = -value;
3084     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3085   }
3086 }
3087 #endif
3088 
3089 
3090 /*
3091 ** Generate an instruction that will put the integer describe by
3092 ** text z[0..n-1] into register iMem.
3093 **
3094 ** Expr.u.zToken is always UTF8 and zero-terminated.
3095 */
3096 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3097   Vdbe *v = pParse->pVdbe;
3098   if( pExpr->flags & EP_IntValue ){
3099     int i = pExpr->u.iValue;
3100     assert( i>=0 );
3101     if( negFlag ) i = -i;
3102     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3103   }else{
3104     int c;
3105     i64 value;
3106     const char *z = pExpr->u.zToken;
3107     assert( z!=0 );
3108     c = sqlite3DecOrHexToI64(z, &value);
3109     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3110 #ifdef SQLITE_OMIT_FLOATING_POINT
3111       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3112 #else
3113 #ifndef SQLITE_OMIT_HEX_INTEGER
3114       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3115         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3116       }else
3117 #endif
3118       {
3119         codeReal(v, z, negFlag, iMem);
3120       }
3121 #endif
3122     }else{
3123       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3124       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3125     }
3126   }
3127 }
3128 
3129 /*
3130 ** Erase column-cache entry number i
3131 */
3132 static void cacheEntryClear(Parse *pParse, int i){
3133   if( pParse->aColCache[i].tempReg ){
3134     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3135       pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3136     }
3137   }
3138   pParse->nColCache--;
3139   if( i<pParse->nColCache ){
3140     pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3141   }
3142 }
3143 
3144 
3145 /*
3146 ** Record in the column cache that a particular column from a
3147 ** particular table is stored in a particular register.
3148 */
3149 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3150   int i;
3151   int minLru;
3152   int idxLru;
3153   struct yColCache *p;
3154 
3155   /* Unless an error has occurred, register numbers are always positive. */
3156   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3157   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
3158 
3159   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
3160   ** for testing only - to verify that SQLite always gets the same answer
3161   ** with and without the column cache.
3162   */
3163   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3164 
3165   /* First replace any existing entry.
3166   **
3167   ** Actually, the way the column cache is currently used, we are guaranteed
3168   ** that the object will never already be in cache.  Verify this guarantee.
3169   */
3170 #ifndef NDEBUG
3171   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3172     assert( p->iTable!=iTab || p->iColumn!=iCol );
3173   }
3174 #endif
3175 
3176   /* If the cache is already full, delete the least recently used entry */
3177   if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3178     minLru = 0x7fffffff;
3179     idxLru = -1;
3180     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3181       if( p->lru<minLru ){
3182         idxLru = i;
3183         minLru = p->lru;
3184       }
3185     }
3186     p = &pParse->aColCache[idxLru];
3187   }else{
3188     p = &pParse->aColCache[pParse->nColCache++];
3189   }
3190 
3191   /* Add the new entry to the end of the cache */
3192   p->iLevel = pParse->iCacheLevel;
3193   p->iTable = iTab;
3194   p->iColumn = iCol;
3195   p->iReg = iReg;
3196   p->tempReg = 0;
3197   p->lru = pParse->iCacheCnt++;
3198 }
3199 
3200 /*
3201 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3202 ** Purge the range of registers from the column cache.
3203 */
3204 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3205   int i = 0;
3206   while( i<pParse->nColCache ){
3207     struct yColCache *p = &pParse->aColCache[i];
3208     if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3209       cacheEntryClear(pParse, i);
3210     }else{
3211       i++;
3212     }
3213   }
3214 }
3215 
3216 /*
3217 ** Remember the current column cache context.  Any new entries added
3218 ** added to the column cache after this call are removed when the
3219 ** corresponding pop occurs.
3220 */
3221 void sqlite3ExprCachePush(Parse *pParse){
3222   pParse->iCacheLevel++;
3223 #ifdef SQLITE_DEBUG
3224   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3225     printf("PUSH to %d\n", pParse->iCacheLevel);
3226   }
3227 #endif
3228 }
3229 
3230 /*
3231 ** Remove from the column cache any entries that were added since the
3232 ** the previous sqlite3ExprCachePush operation.  In other words, restore
3233 ** the cache to the state it was in prior the most recent Push.
3234 */
3235 void sqlite3ExprCachePop(Parse *pParse){
3236   int i = 0;
3237   assert( pParse->iCacheLevel>=1 );
3238   pParse->iCacheLevel--;
3239 #ifdef SQLITE_DEBUG
3240   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3241     printf("POP  to %d\n", pParse->iCacheLevel);
3242   }
3243 #endif
3244   while( i<pParse->nColCache ){
3245     if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3246       cacheEntryClear(pParse, i);
3247     }else{
3248       i++;
3249     }
3250   }
3251 }
3252 
3253 /*
3254 ** When a cached column is reused, make sure that its register is
3255 ** no longer available as a temp register.  ticket #3879:  that same
3256 ** register might be in the cache in multiple places, so be sure to
3257 ** get them all.
3258 */
3259 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3260   int i;
3261   struct yColCache *p;
3262   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3263     if( p->iReg==iReg ){
3264       p->tempReg = 0;
3265     }
3266   }
3267 }
3268 
3269 /* Generate code that will load into register regOut a value that is
3270 ** appropriate for the iIdxCol-th column of index pIdx.
3271 */
3272 void sqlite3ExprCodeLoadIndexColumn(
3273   Parse *pParse,  /* The parsing context */
3274   Index *pIdx,    /* The index whose column is to be loaded */
3275   int iTabCur,    /* Cursor pointing to a table row */
3276   int iIdxCol,    /* The column of the index to be loaded */
3277   int regOut      /* Store the index column value in this register */
3278 ){
3279   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3280   if( iTabCol==XN_EXPR ){
3281     assert( pIdx->aColExpr );
3282     assert( pIdx->aColExpr->nExpr>iIdxCol );
3283     pParse->iSelfTab = iTabCur + 1;
3284     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3285     pParse->iSelfTab = 0;
3286   }else{
3287     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3288                                     iTabCol, regOut);
3289   }
3290 }
3291 
3292 /*
3293 ** Generate code to extract the value of the iCol-th column of a table.
3294 */
3295 void sqlite3ExprCodeGetColumnOfTable(
3296   Vdbe *v,        /* The VDBE under construction */
3297   Table *pTab,    /* The table containing the value */
3298   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3299   int iCol,       /* Index of the column to extract */
3300   int regOut      /* Extract the value into this register */
3301 ){
3302   if( pTab==0 ){
3303     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3304     return;
3305   }
3306   if( iCol<0 || iCol==pTab->iPKey ){
3307     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3308   }else{
3309     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3310     int x = iCol;
3311     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3312       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3313     }
3314     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3315   }
3316   if( iCol>=0 ){
3317     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3318   }
3319 }
3320 
3321 /*
3322 ** Generate code that will extract the iColumn-th column from
3323 ** table pTab and store the column value in a register.
3324 **
3325 ** An effort is made to store the column value in register iReg.  This
3326 ** is not garanteeed for GetColumn() - the result can be stored in
3327 ** any register.  But the result is guaranteed to land in register iReg
3328 ** for GetColumnToReg().
3329 **
3330 ** There must be an open cursor to pTab in iTable when this routine
3331 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3332 */
3333 int sqlite3ExprCodeGetColumn(
3334   Parse *pParse,   /* Parsing and code generating context */
3335   Table *pTab,     /* Description of the table we are reading from */
3336   int iColumn,     /* Index of the table column */
3337   int iTable,      /* The cursor pointing to the table */
3338   int iReg,        /* Store results here */
3339   u8 p5            /* P5 value for OP_Column + FLAGS */
3340 ){
3341   Vdbe *v = pParse->pVdbe;
3342   int i;
3343   struct yColCache *p;
3344 
3345   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3346     if( p->iTable==iTable && p->iColumn==iColumn ){
3347       p->lru = pParse->iCacheCnt++;
3348       sqlite3ExprCachePinRegister(pParse, p->iReg);
3349       return p->iReg;
3350     }
3351   }
3352   assert( v!=0 );
3353   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3354   if( p5 ){
3355     sqlite3VdbeChangeP5(v, p5);
3356   }else{
3357     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3358   }
3359   return iReg;
3360 }
3361 void sqlite3ExprCodeGetColumnToReg(
3362   Parse *pParse,   /* Parsing and code generating context */
3363   Table *pTab,     /* Description of the table we are reading from */
3364   int iColumn,     /* Index of the table column */
3365   int iTable,      /* The cursor pointing to the table */
3366   int iReg         /* Store results here */
3367 ){
3368   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3369   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3370 }
3371 
3372 
3373 /*
3374 ** Clear all column cache entries.
3375 */
3376 void sqlite3ExprCacheClear(Parse *pParse){
3377   int i;
3378 
3379 #ifdef SQLITE_DEBUG
3380   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3381     printf("CLEAR\n");
3382   }
3383 #endif
3384   for(i=0; i<pParse->nColCache; i++){
3385     if( pParse->aColCache[i].tempReg
3386      && pParse->nTempReg<ArraySize(pParse->aTempReg)
3387     ){
3388        pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3389     }
3390   }
3391   pParse->nColCache = 0;
3392 }
3393 
3394 /*
3395 ** Record the fact that an affinity change has occurred on iCount
3396 ** registers starting with iStart.
3397 */
3398 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3399   sqlite3ExprCacheRemove(pParse, iStart, iCount);
3400 }
3401 
3402 /*
3403 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3404 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3405 */
3406 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3407   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3408   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3409   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3410 }
3411 
3412 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3413 /*
3414 ** Return true if any register in the range iFrom..iTo (inclusive)
3415 ** is used as part of the column cache.
3416 **
3417 ** This routine is used within assert() and testcase() macros only
3418 ** and does not appear in a normal build.
3419 */
3420 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3421   int i;
3422   struct yColCache *p;
3423   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3424     int r = p->iReg;
3425     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
3426   }
3427   return 0;
3428 }
3429 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3430 
3431 
3432 /*
3433 ** Convert a scalar expression node to a TK_REGISTER referencing
3434 ** register iReg.  The caller must ensure that iReg already contains
3435 ** the correct value for the expression.
3436 */
3437 static void exprToRegister(Expr *p, int iReg){
3438   p->op2 = p->op;
3439   p->op = TK_REGISTER;
3440   p->iTable = iReg;
3441   ExprClearProperty(p, EP_Skip);
3442 }
3443 
3444 /*
3445 ** Evaluate an expression (either a vector or a scalar expression) and store
3446 ** the result in continguous temporary registers.  Return the index of
3447 ** the first register used to store the result.
3448 **
3449 ** If the returned result register is a temporary scalar, then also write
3450 ** that register number into *piFreeable.  If the returned result register
3451 ** is not a temporary or if the expression is a vector set *piFreeable
3452 ** to 0.
3453 */
3454 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3455   int iResult;
3456   int nResult = sqlite3ExprVectorSize(p);
3457   if( nResult==1 ){
3458     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3459   }else{
3460     *piFreeable = 0;
3461     if( p->op==TK_SELECT ){
3462 #if SQLITE_OMIT_SUBQUERY
3463       iResult = 0;
3464 #else
3465       iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3466 #endif
3467     }else{
3468       int i;
3469       iResult = pParse->nMem+1;
3470       pParse->nMem += nResult;
3471       for(i=0; i<nResult; i++){
3472         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3473       }
3474     }
3475   }
3476   return iResult;
3477 }
3478 
3479 
3480 /*
3481 ** Generate code into the current Vdbe to evaluate the given
3482 ** expression.  Attempt to store the results in register "target".
3483 ** Return the register where results are stored.
3484 **
3485 ** With this routine, there is no guarantee that results will
3486 ** be stored in target.  The result might be stored in some other
3487 ** register if it is convenient to do so.  The calling function
3488 ** must check the return code and move the results to the desired
3489 ** register.
3490 */
3491 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3492   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3493   int op;                   /* The opcode being coded */
3494   int inReg = target;       /* Results stored in register inReg */
3495   int regFree1 = 0;         /* If non-zero free this temporary register */
3496   int regFree2 = 0;         /* If non-zero free this temporary register */
3497   int r1, r2;               /* Various register numbers */
3498   Expr tempX;               /* Temporary expression node */
3499   int p5 = 0;
3500 
3501   assert( target>0 && target<=pParse->nMem );
3502   if( v==0 ){
3503     assert( pParse->db->mallocFailed );
3504     return 0;
3505   }
3506 
3507   if( pExpr==0 ){
3508     op = TK_NULL;
3509   }else{
3510     op = pExpr->op;
3511   }
3512   switch( op ){
3513     case TK_AGG_COLUMN: {
3514       AggInfo *pAggInfo = pExpr->pAggInfo;
3515       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3516       if( !pAggInfo->directMode ){
3517         assert( pCol->iMem>0 );
3518         return pCol->iMem;
3519       }else if( pAggInfo->useSortingIdx ){
3520         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3521                               pCol->iSorterColumn, target);
3522         return target;
3523       }
3524       /* Otherwise, fall thru into the TK_COLUMN case */
3525     }
3526     case TK_COLUMN: {
3527       int iTab = pExpr->iTable;
3528       if( iTab<0 ){
3529         if( pParse->iSelfTab<0 ){
3530           /* Generating CHECK constraints or inserting into partial index */
3531           return pExpr->iColumn - pParse->iSelfTab;
3532         }else{
3533           /* Coding an expression that is part of an index where column names
3534           ** in the index refer to the table to which the index belongs */
3535           iTab = pParse->iSelfTab - 1;
3536         }
3537       }
3538       return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3539                                pExpr->iColumn, iTab, target,
3540                                pExpr->op2);
3541     }
3542     case TK_INTEGER: {
3543       codeInteger(pParse, pExpr, 0, target);
3544       return target;
3545     }
3546 #ifndef SQLITE_OMIT_FLOATING_POINT
3547     case TK_FLOAT: {
3548       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3549       codeReal(v, pExpr->u.zToken, 0, target);
3550       return target;
3551     }
3552 #endif
3553     case TK_STRING: {
3554       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3555       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3556       return target;
3557     }
3558     case TK_NULL: {
3559       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3560       return target;
3561     }
3562 #ifndef SQLITE_OMIT_BLOB_LITERAL
3563     case TK_BLOB: {
3564       int n;
3565       const char *z;
3566       char *zBlob;
3567       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3568       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3569       assert( pExpr->u.zToken[1]=='\'' );
3570       z = &pExpr->u.zToken[2];
3571       n = sqlite3Strlen30(z) - 1;
3572       assert( z[n]=='\'' );
3573       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3574       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3575       return target;
3576     }
3577 #endif
3578     case TK_VARIABLE: {
3579       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3580       assert( pExpr->u.zToken!=0 );
3581       assert( pExpr->u.zToken[0]!=0 );
3582       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3583       if( pExpr->u.zToken[1]!=0 ){
3584         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3585         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3586         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3587         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3588       }
3589       return target;
3590     }
3591     case TK_REGISTER: {
3592       return pExpr->iTable;
3593     }
3594 #ifndef SQLITE_OMIT_CAST
3595     case TK_CAST: {
3596       /* Expressions of the form:   CAST(pLeft AS token) */
3597       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3598       if( inReg!=target ){
3599         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3600         inReg = target;
3601       }
3602       sqlite3VdbeAddOp2(v, OP_Cast, target,
3603                         sqlite3AffinityType(pExpr->u.zToken, 0));
3604       testcase( usedAsColumnCache(pParse, inReg, inReg) );
3605       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3606       return inReg;
3607     }
3608 #endif /* SQLITE_OMIT_CAST */
3609     case TK_IS:
3610     case TK_ISNOT:
3611       op = (op==TK_IS) ? TK_EQ : TK_NE;
3612       p5 = SQLITE_NULLEQ;
3613       /* fall-through */
3614     case TK_LT:
3615     case TK_LE:
3616     case TK_GT:
3617     case TK_GE:
3618     case TK_NE:
3619     case TK_EQ: {
3620       Expr *pLeft = pExpr->pLeft;
3621       if( sqlite3ExprIsVector(pLeft) ){
3622         codeVectorCompare(pParse, pExpr, target, op, p5);
3623       }else{
3624         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3625         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3626         codeCompare(pParse, pLeft, pExpr->pRight, op,
3627             r1, r2, inReg, SQLITE_STOREP2 | p5);
3628         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3629         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3630         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3631         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3632         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3633         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3634         testcase( regFree1==0 );
3635         testcase( regFree2==0 );
3636       }
3637       break;
3638     }
3639     case TK_AND:
3640     case TK_OR:
3641     case TK_PLUS:
3642     case TK_STAR:
3643     case TK_MINUS:
3644     case TK_REM:
3645     case TK_BITAND:
3646     case TK_BITOR:
3647     case TK_SLASH:
3648     case TK_LSHIFT:
3649     case TK_RSHIFT:
3650     case TK_CONCAT: {
3651       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3652       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3653       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3654       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3655       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3656       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3657       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3658       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3659       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3660       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3661       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3662       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3663       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3664       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3665       testcase( regFree1==0 );
3666       testcase( regFree2==0 );
3667       break;
3668     }
3669     case TK_UMINUS: {
3670       Expr *pLeft = pExpr->pLeft;
3671       assert( pLeft );
3672       if( pLeft->op==TK_INTEGER ){
3673         codeInteger(pParse, pLeft, 1, target);
3674         return target;
3675 #ifndef SQLITE_OMIT_FLOATING_POINT
3676       }else if( pLeft->op==TK_FLOAT ){
3677         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3678         codeReal(v, pLeft->u.zToken, 1, target);
3679         return target;
3680 #endif
3681       }else{
3682         tempX.op = TK_INTEGER;
3683         tempX.flags = EP_IntValue|EP_TokenOnly;
3684         tempX.u.iValue = 0;
3685         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3686         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3687         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3688         testcase( regFree2==0 );
3689       }
3690       break;
3691     }
3692     case TK_BITNOT:
3693     case TK_NOT: {
3694       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3695       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3696       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3697       testcase( regFree1==0 );
3698       sqlite3VdbeAddOp2(v, op, r1, inReg);
3699       break;
3700     }
3701     case TK_ISNULL:
3702     case TK_NOTNULL: {
3703       int addr;
3704       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3705       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3706       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3707       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3708       testcase( regFree1==0 );
3709       addr = sqlite3VdbeAddOp1(v, op, r1);
3710       VdbeCoverageIf(v, op==TK_ISNULL);
3711       VdbeCoverageIf(v, op==TK_NOTNULL);
3712       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3713       sqlite3VdbeJumpHere(v, addr);
3714       break;
3715     }
3716     case TK_AGG_FUNCTION: {
3717       AggInfo *pInfo = pExpr->pAggInfo;
3718       if( pInfo==0 ){
3719         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3720         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3721       }else{
3722         return pInfo->aFunc[pExpr->iAgg].iMem;
3723       }
3724       break;
3725     }
3726     case TK_FUNCTION: {
3727       ExprList *pFarg;       /* List of function arguments */
3728       int nFarg;             /* Number of function arguments */
3729       FuncDef *pDef;         /* The function definition object */
3730       const char *zId;       /* The function name */
3731       u32 constMask = 0;     /* Mask of function arguments that are constant */
3732       int i;                 /* Loop counter */
3733       sqlite3 *db = pParse->db;  /* The database connection */
3734       u8 enc = ENC(db);      /* The text encoding used by this database */
3735       CollSeq *pColl = 0;    /* A collating sequence */
3736 
3737       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3738         /* SQL functions can be expensive. So try to move constant functions
3739         ** out of the inner loop, even if that means an extra OP_Copy. */
3740         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3741       }
3742       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3743       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3744         pFarg = 0;
3745       }else{
3746         pFarg = pExpr->x.pList;
3747       }
3748       nFarg = pFarg ? pFarg->nExpr : 0;
3749       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3750       zId = pExpr->u.zToken;
3751       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3752 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3753       if( pDef==0 && pParse->explain ){
3754         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3755       }
3756 #endif
3757       if( pDef==0 || pDef->xFinalize!=0 ){
3758         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3759         break;
3760       }
3761 
3762       /* Attempt a direct implementation of the built-in COALESCE() and
3763       ** IFNULL() functions.  This avoids unnecessary evaluation of
3764       ** arguments past the first non-NULL argument.
3765       */
3766       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3767         int endCoalesce = sqlite3VdbeMakeLabel(v);
3768         assert( nFarg>=2 );
3769         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3770         for(i=1; i<nFarg; i++){
3771           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3772           VdbeCoverage(v);
3773           sqlite3ExprCacheRemove(pParse, target, 1);
3774           sqlite3ExprCachePush(pParse);
3775           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3776           sqlite3ExprCachePop(pParse);
3777         }
3778         sqlite3VdbeResolveLabel(v, endCoalesce);
3779         break;
3780       }
3781 
3782       /* The UNLIKELY() function is a no-op.  The result is the value
3783       ** of the first argument.
3784       */
3785       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3786         assert( nFarg>=1 );
3787         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3788       }
3789 
3790 #ifdef SQLITE_DEBUG
3791       /* The AFFINITY() function evaluates to a string that describes
3792       ** the type affinity of the argument.  This is used for testing of
3793       ** the SQLite type logic.
3794       */
3795       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3796         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3797         char aff;
3798         assert( nFarg==1 );
3799         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3800         sqlite3VdbeLoadString(v, target,
3801                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3802         return target;
3803       }
3804 #endif
3805 
3806       for(i=0; i<nFarg; i++){
3807         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3808           testcase( i==31 );
3809           constMask |= MASKBIT32(i);
3810         }
3811         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3812           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3813         }
3814       }
3815       if( pFarg ){
3816         if( constMask ){
3817           r1 = pParse->nMem+1;
3818           pParse->nMem += nFarg;
3819         }else{
3820           r1 = sqlite3GetTempRange(pParse, nFarg);
3821         }
3822 
3823         /* For length() and typeof() functions with a column argument,
3824         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3825         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3826         ** loading.
3827         */
3828         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3829           u8 exprOp;
3830           assert( nFarg==1 );
3831           assert( pFarg->a[0].pExpr!=0 );
3832           exprOp = pFarg->a[0].pExpr->op;
3833           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3834             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3835             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3836             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3837             pFarg->a[0].pExpr->op2 =
3838                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3839           }
3840         }
3841 
3842         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
3843         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3844                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3845         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
3846       }else{
3847         r1 = 0;
3848       }
3849 #ifndef SQLITE_OMIT_VIRTUALTABLE
3850       /* Possibly overload the function if the first argument is
3851       ** a virtual table column.
3852       **
3853       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3854       ** second argument, not the first, as the argument to test to
3855       ** see if it is a column in a virtual table.  This is done because
3856       ** the left operand of infix functions (the operand we want to
3857       ** control overloading) ends up as the second argument to the
3858       ** function.  The expression "A glob B" is equivalent to
3859       ** "glob(B,A).  We want to use the A in "A glob B" to test
3860       ** for function overloading.  But we use the B term in "glob(B,A)".
3861       */
3862       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3863         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3864       }else if( nFarg>0 ){
3865         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3866       }
3867 #endif
3868       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3869         if( !pColl ) pColl = db->pDfltColl;
3870         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3871       }
3872       sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3873                         constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3874       sqlite3VdbeChangeP5(v, (u8)nFarg);
3875       if( nFarg && constMask==0 ){
3876         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3877       }
3878       return target;
3879     }
3880 #ifndef SQLITE_OMIT_SUBQUERY
3881     case TK_EXISTS:
3882     case TK_SELECT: {
3883       int nCol;
3884       testcase( op==TK_EXISTS );
3885       testcase( op==TK_SELECT );
3886       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3887         sqlite3SubselectError(pParse, nCol, 1);
3888       }else{
3889         return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3890       }
3891       break;
3892     }
3893     case TK_SELECT_COLUMN: {
3894       int n;
3895       if( pExpr->pLeft->iTable==0 ){
3896         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3897       }
3898       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3899       if( pExpr->iTable
3900        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3901       ){
3902         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3903                                 pExpr->iTable, n);
3904       }
3905       return pExpr->pLeft->iTable + pExpr->iColumn;
3906     }
3907     case TK_IN: {
3908       int destIfFalse = sqlite3VdbeMakeLabel(v);
3909       int destIfNull = sqlite3VdbeMakeLabel(v);
3910       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3911       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3912       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3913       sqlite3VdbeResolveLabel(v, destIfFalse);
3914       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3915       sqlite3VdbeResolveLabel(v, destIfNull);
3916       return target;
3917     }
3918 #endif /* SQLITE_OMIT_SUBQUERY */
3919 
3920 
3921     /*
3922     **    x BETWEEN y AND z
3923     **
3924     ** This is equivalent to
3925     **
3926     **    x>=y AND x<=z
3927     **
3928     ** X is stored in pExpr->pLeft.
3929     ** Y is stored in pExpr->pList->a[0].pExpr.
3930     ** Z is stored in pExpr->pList->a[1].pExpr.
3931     */
3932     case TK_BETWEEN: {
3933       exprCodeBetween(pParse, pExpr, target, 0, 0);
3934       return target;
3935     }
3936     case TK_SPAN:
3937     case TK_COLLATE:
3938     case TK_UPLUS: {
3939       return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3940     }
3941 
3942     case TK_TRIGGER: {
3943       /* If the opcode is TK_TRIGGER, then the expression is a reference
3944       ** to a column in the new.* or old.* pseudo-tables available to
3945       ** trigger programs. In this case Expr.iTable is set to 1 for the
3946       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3947       ** is set to the column of the pseudo-table to read, or to -1 to
3948       ** read the rowid field.
3949       **
3950       ** The expression is implemented using an OP_Param opcode. The p1
3951       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3952       ** to reference another column of the old.* pseudo-table, where
3953       ** i is the index of the column. For a new.rowid reference, p1 is
3954       ** set to (n+1), where n is the number of columns in each pseudo-table.
3955       ** For a reference to any other column in the new.* pseudo-table, p1
3956       ** is set to (n+2+i), where n and i are as defined previously. For
3957       ** example, if the table on which triggers are being fired is
3958       ** declared as:
3959       **
3960       **   CREATE TABLE t1(a, b);
3961       **
3962       ** Then p1 is interpreted as follows:
3963       **
3964       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3965       **   p1==1   ->    old.a         p1==4   ->    new.a
3966       **   p1==2   ->    old.b         p1==5   ->    new.b
3967       */
3968       Table *pTab = pExpr->pTab;
3969       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3970 
3971       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3972       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3973       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3974       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3975 
3976       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3977       VdbeComment((v, "%s.%s -> $%d",
3978         (pExpr->iTable ? "new" : "old"),
3979         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3980         target
3981       ));
3982 
3983 #ifndef SQLITE_OMIT_FLOATING_POINT
3984       /* If the column has REAL affinity, it may currently be stored as an
3985       ** integer. Use OP_RealAffinity to make sure it is really real.
3986       **
3987       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3988       ** floating point when extracting it from the record.  */
3989       if( pExpr->iColumn>=0
3990        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3991       ){
3992         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3993       }
3994 #endif
3995       break;
3996     }
3997 
3998     case TK_VECTOR: {
3999       sqlite3ErrorMsg(pParse, "row value misused");
4000       break;
4001     }
4002 
4003     case TK_IF_NULL_ROW: {
4004       int addrINR;
4005       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4006       sqlite3ExprCachePush(pParse);
4007       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4008       sqlite3ExprCachePop(pParse);
4009       sqlite3VdbeJumpHere(v, addrINR);
4010       sqlite3VdbeChangeP3(v, addrINR, inReg);
4011       break;
4012     }
4013 
4014     /*
4015     ** Form A:
4016     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4017     **
4018     ** Form B:
4019     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4020     **
4021     ** Form A is can be transformed into the equivalent form B as follows:
4022     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4023     **        WHEN x=eN THEN rN ELSE y END
4024     **
4025     ** X (if it exists) is in pExpr->pLeft.
4026     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4027     ** odd.  The Y is also optional.  If the number of elements in x.pList
4028     ** is even, then Y is omitted and the "otherwise" result is NULL.
4029     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4030     **
4031     ** The result of the expression is the Ri for the first matching Ei,
4032     ** or if there is no matching Ei, the ELSE term Y, or if there is
4033     ** no ELSE term, NULL.
4034     */
4035     default: assert( op==TK_CASE ); {
4036       int endLabel;                     /* GOTO label for end of CASE stmt */
4037       int nextCase;                     /* GOTO label for next WHEN clause */
4038       int nExpr;                        /* 2x number of WHEN terms */
4039       int i;                            /* Loop counter */
4040       ExprList *pEList;                 /* List of WHEN terms */
4041       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4042       Expr opCompare;                   /* The X==Ei expression */
4043       Expr *pX;                         /* The X expression */
4044       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4045       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4046 
4047       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4048       assert(pExpr->x.pList->nExpr > 0);
4049       pEList = pExpr->x.pList;
4050       aListelem = pEList->a;
4051       nExpr = pEList->nExpr;
4052       endLabel = sqlite3VdbeMakeLabel(v);
4053       if( (pX = pExpr->pLeft)!=0 ){
4054         tempX = *pX;
4055         testcase( pX->op==TK_COLUMN );
4056         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4057         testcase( regFree1==0 );
4058         memset(&opCompare, 0, sizeof(opCompare));
4059         opCompare.op = TK_EQ;
4060         opCompare.pLeft = &tempX;
4061         pTest = &opCompare;
4062         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4063         ** The value in regFree1 might get SCopy-ed into the file result.
4064         ** So make sure that the regFree1 register is not reused for other
4065         ** purposes and possibly overwritten.  */
4066         regFree1 = 0;
4067       }
4068       for(i=0; i<nExpr-1; i=i+2){
4069         sqlite3ExprCachePush(pParse);
4070         if( pX ){
4071           assert( pTest!=0 );
4072           opCompare.pRight = aListelem[i].pExpr;
4073         }else{
4074           pTest = aListelem[i].pExpr;
4075         }
4076         nextCase = sqlite3VdbeMakeLabel(v);
4077         testcase( pTest->op==TK_COLUMN );
4078         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4079         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4080         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4081         sqlite3VdbeGoto(v, endLabel);
4082         sqlite3ExprCachePop(pParse);
4083         sqlite3VdbeResolveLabel(v, nextCase);
4084       }
4085       if( (nExpr&1)!=0 ){
4086         sqlite3ExprCachePush(pParse);
4087         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4088         sqlite3ExprCachePop(pParse);
4089       }else{
4090         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4091       }
4092       assert( pParse->db->mallocFailed || pParse->nErr>0
4093            || pParse->iCacheLevel==iCacheLevel );
4094       sqlite3VdbeResolveLabel(v, endLabel);
4095       break;
4096     }
4097 #ifndef SQLITE_OMIT_TRIGGER
4098     case TK_RAISE: {
4099       assert( pExpr->affinity==OE_Rollback
4100            || pExpr->affinity==OE_Abort
4101            || pExpr->affinity==OE_Fail
4102            || pExpr->affinity==OE_Ignore
4103       );
4104       if( !pParse->pTriggerTab ){
4105         sqlite3ErrorMsg(pParse,
4106                        "RAISE() may only be used within a trigger-program");
4107         return 0;
4108       }
4109       if( pExpr->affinity==OE_Abort ){
4110         sqlite3MayAbort(pParse);
4111       }
4112       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4113       if( pExpr->affinity==OE_Ignore ){
4114         sqlite3VdbeAddOp4(
4115             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4116         VdbeCoverage(v);
4117       }else{
4118         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4119                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4120       }
4121 
4122       break;
4123     }
4124 #endif
4125   }
4126   sqlite3ReleaseTempReg(pParse, regFree1);
4127   sqlite3ReleaseTempReg(pParse, regFree2);
4128   return inReg;
4129 }
4130 
4131 /*
4132 ** Factor out the code of the given expression to initialization time.
4133 **
4134 ** If regDest>=0 then the result is always stored in that register and the
4135 ** result is not reusable.  If regDest<0 then this routine is free to
4136 ** store the value whereever it wants.  The register where the expression
4137 ** is stored is returned.  When regDest<0, two identical expressions will
4138 ** code to the same register.
4139 */
4140 int sqlite3ExprCodeAtInit(
4141   Parse *pParse,    /* Parsing context */
4142   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4143   int regDest       /* Store the value in this register */
4144 ){
4145   ExprList *p;
4146   assert( ConstFactorOk(pParse) );
4147   p = pParse->pConstExpr;
4148   if( regDest<0 && p ){
4149     struct ExprList_item *pItem;
4150     int i;
4151     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4152       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4153         return pItem->u.iConstExprReg;
4154       }
4155     }
4156   }
4157   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4158   p = sqlite3ExprListAppend(pParse, p, pExpr);
4159   if( p ){
4160      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4161      pItem->reusable = regDest<0;
4162      if( regDest<0 ) regDest = ++pParse->nMem;
4163      pItem->u.iConstExprReg = regDest;
4164   }
4165   pParse->pConstExpr = p;
4166   return regDest;
4167 }
4168 
4169 /*
4170 ** Generate code to evaluate an expression and store the results
4171 ** into a register.  Return the register number where the results
4172 ** are stored.
4173 **
4174 ** If the register is a temporary register that can be deallocated,
4175 ** then write its number into *pReg.  If the result register is not
4176 ** a temporary, then set *pReg to zero.
4177 **
4178 ** If pExpr is a constant, then this routine might generate this
4179 ** code to fill the register in the initialization section of the
4180 ** VDBE program, in order to factor it out of the evaluation loop.
4181 */
4182 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4183   int r2;
4184   pExpr = sqlite3ExprSkipCollate(pExpr);
4185   if( ConstFactorOk(pParse)
4186    && pExpr->op!=TK_REGISTER
4187    && sqlite3ExprIsConstantNotJoin(pExpr)
4188   ){
4189     *pReg  = 0;
4190     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4191   }else{
4192     int r1 = sqlite3GetTempReg(pParse);
4193     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4194     if( r2==r1 ){
4195       *pReg = r1;
4196     }else{
4197       sqlite3ReleaseTempReg(pParse, r1);
4198       *pReg = 0;
4199     }
4200   }
4201   return r2;
4202 }
4203 
4204 /*
4205 ** Generate code that will evaluate expression pExpr and store the
4206 ** results in register target.  The results are guaranteed to appear
4207 ** in register target.
4208 */
4209 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4210   int inReg;
4211 
4212   assert( target>0 && target<=pParse->nMem );
4213   if( pExpr && pExpr->op==TK_REGISTER ){
4214     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4215   }else{
4216     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4217     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4218     if( inReg!=target && pParse->pVdbe ){
4219       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4220     }
4221   }
4222 }
4223 
4224 /*
4225 ** Make a transient copy of expression pExpr and then code it using
4226 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4227 ** except that the input expression is guaranteed to be unchanged.
4228 */
4229 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4230   sqlite3 *db = pParse->db;
4231   pExpr = sqlite3ExprDup(db, pExpr, 0);
4232   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4233   sqlite3ExprDelete(db, pExpr);
4234 }
4235 
4236 /*
4237 ** Generate code that will evaluate expression pExpr and store the
4238 ** results in register target.  The results are guaranteed to appear
4239 ** in register target.  If the expression is constant, then this routine
4240 ** might choose to code the expression at initialization time.
4241 */
4242 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4243   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4244     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4245   }else{
4246     sqlite3ExprCode(pParse, pExpr, target);
4247   }
4248 }
4249 
4250 /*
4251 ** Generate code that evaluates the given expression and puts the result
4252 ** in register target.
4253 **
4254 ** Also make a copy of the expression results into another "cache" register
4255 ** and modify the expression so that the next time it is evaluated,
4256 ** the result is a copy of the cache register.
4257 **
4258 ** This routine is used for expressions that are used multiple
4259 ** times.  They are evaluated once and the results of the expression
4260 ** are reused.
4261 */
4262 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4263   Vdbe *v = pParse->pVdbe;
4264   int iMem;
4265 
4266   assert( target>0 );
4267   assert( pExpr->op!=TK_REGISTER );
4268   sqlite3ExprCode(pParse, pExpr, target);
4269   iMem = ++pParse->nMem;
4270   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4271   exprToRegister(pExpr, iMem);
4272 }
4273 
4274 /*
4275 ** Generate code that pushes the value of every element of the given
4276 ** expression list into a sequence of registers beginning at target.
4277 **
4278 ** Return the number of elements evaluated.  The number returned will
4279 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4280 ** is defined.
4281 **
4282 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4283 ** filled using OP_SCopy.  OP_Copy must be used instead.
4284 **
4285 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4286 ** factored out into initialization code.
4287 **
4288 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4289 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4290 ** in registers at srcReg, and so the value can be copied from there.
4291 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4292 ** are simply omitted rather than being copied from srcReg.
4293 */
4294 int sqlite3ExprCodeExprList(
4295   Parse *pParse,     /* Parsing context */
4296   ExprList *pList,   /* The expression list to be coded */
4297   int target,        /* Where to write results */
4298   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4299   u8 flags           /* SQLITE_ECEL_* flags */
4300 ){
4301   struct ExprList_item *pItem;
4302   int i, j, n;
4303   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4304   Vdbe *v = pParse->pVdbe;
4305   assert( pList!=0 );
4306   assert( target>0 );
4307   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4308   n = pList->nExpr;
4309   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4310   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4311     Expr *pExpr = pItem->pExpr;
4312     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4313       if( flags & SQLITE_ECEL_OMITREF ){
4314         i--;
4315         n--;
4316       }else{
4317         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4318       }
4319     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4320       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4321     }else{
4322       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4323       if( inReg!=target+i ){
4324         VdbeOp *pOp;
4325         if( copyOp==OP_Copy
4326          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4327          && pOp->p1+pOp->p3+1==inReg
4328          && pOp->p2+pOp->p3+1==target+i
4329         ){
4330           pOp->p3++;
4331         }else{
4332           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4333         }
4334       }
4335     }
4336   }
4337   return n;
4338 }
4339 
4340 /*
4341 ** Generate code for a BETWEEN operator.
4342 **
4343 **    x BETWEEN y AND z
4344 **
4345 ** The above is equivalent to
4346 **
4347 **    x>=y AND x<=z
4348 **
4349 ** Code it as such, taking care to do the common subexpression
4350 ** elimination of x.
4351 **
4352 ** The xJumpIf parameter determines details:
4353 **
4354 **    NULL:                   Store the boolean result in reg[dest]
4355 **    sqlite3ExprIfTrue:      Jump to dest if true
4356 **    sqlite3ExprIfFalse:     Jump to dest if false
4357 **
4358 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4359 */
4360 static void exprCodeBetween(
4361   Parse *pParse,    /* Parsing and code generating context */
4362   Expr *pExpr,      /* The BETWEEN expression */
4363   int dest,         /* Jump destination or storage location */
4364   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4365   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4366 ){
4367  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4368   Expr compLeft;    /* The  x>=y  term */
4369   Expr compRight;   /* The  x<=z  term */
4370   Expr exprX;       /* The  x  subexpression */
4371   int regFree1 = 0; /* Temporary use register */
4372 
4373 
4374   memset(&compLeft, 0, sizeof(Expr));
4375   memset(&compRight, 0, sizeof(Expr));
4376   memset(&exprAnd, 0, sizeof(Expr));
4377 
4378   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4379   exprX = *pExpr->pLeft;
4380   exprAnd.op = TK_AND;
4381   exprAnd.pLeft = &compLeft;
4382   exprAnd.pRight = &compRight;
4383   compLeft.op = TK_GE;
4384   compLeft.pLeft = &exprX;
4385   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4386   compRight.op = TK_LE;
4387   compRight.pLeft = &exprX;
4388   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4389   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4390   if( xJump ){
4391     xJump(pParse, &exprAnd, dest, jumpIfNull);
4392   }else{
4393     /* Mark the expression is being from the ON or USING clause of a join
4394     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4395     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4396     ** for clarity, but we are out of bits in the Expr.flags field so we
4397     ** have to reuse the EP_FromJoin bit.  Bummer. */
4398     exprX.flags |= EP_FromJoin;
4399     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4400   }
4401   sqlite3ReleaseTempReg(pParse, regFree1);
4402 
4403   /* Ensure adequate test coverage */
4404   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4405   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4406   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4407   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4408   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4409   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4410   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4411   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4412   testcase( xJump==0 );
4413 }
4414 
4415 /*
4416 ** Generate code for a boolean expression such that a jump is made
4417 ** to the label "dest" if the expression is true but execution
4418 ** continues straight thru if the expression is false.
4419 **
4420 ** If the expression evaluates to NULL (neither true nor false), then
4421 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4422 **
4423 ** This code depends on the fact that certain token values (ex: TK_EQ)
4424 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4425 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4426 ** the make process cause these values to align.  Assert()s in the code
4427 ** below verify that the numbers are aligned correctly.
4428 */
4429 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4430   Vdbe *v = pParse->pVdbe;
4431   int op = 0;
4432   int regFree1 = 0;
4433   int regFree2 = 0;
4434   int r1, r2;
4435 
4436   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4437   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4438   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4439   op = pExpr->op;
4440   switch( op ){
4441     case TK_AND: {
4442       int d2 = sqlite3VdbeMakeLabel(v);
4443       testcase( jumpIfNull==0 );
4444       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4445       sqlite3ExprCachePush(pParse);
4446       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4447       sqlite3VdbeResolveLabel(v, d2);
4448       sqlite3ExprCachePop(pParse);
4449       break;
4450     }
4451     case TK_OR: {
4452       testcase( jumpIfNull==0 );
4453       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4454       sqlite3ExprCachePush(pParse);
4455       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4456       sqlite3ExprCachePop(pParse);
4457       break;
4458     }
4459     case TK_NOT: {
4460       testcase( jumpIfNull==0 );
4461       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4462       break;
4463     }
4464     case TK_IS:
4465     case TK_ISNOT:
4466       testcase( op==TK_IS );
4467       testcase( op==TK_ISNOT );
4468       op = (op==TK_IS) ? TK_EQ : TK_NE;
4469       jumpIfNull = SQLITE_NULLEQ;
4470       /* Fall thru */
4471     case TK_LT:
4472     case TK_LE:
4473     case TK_GT:
4474     case TK_GE:
4475     case TK_NE:
4476     case TK_EQ: {
4477       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4478       testcase( jumpIfNull==0 );
4479       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4480       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4481       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4482                   r1, r2, dest, jumpIfNull);
4483       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4484       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4485       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4486       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4487       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4488       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4489       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4490       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4491       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4492       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4493       testcase( regFree1==0 );
4494       testcase( regFree2==0 );
4495       break;
4496     }
4497     case TK_ISNULL:
4498     case TK_NOTNULL: {
4499       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4500       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4501       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4502       sqlite3VdbeAddOp2(v, op, r1, dest);
4503       VdbeCoverageIf(v, op==TK_ISNULL);
4504       VdbeCoverageIf(v, op==TK_NOTNULL);
4505       testcase( regFree1==0 );
4506       break;
4507     }
4508     case TK_BETWEEN: {
4509       testcase( jumpIfNull==0 );
4510       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4511       break;
4512     }
4513 #ifndef SQLITE_OMIT_SUBQUERY
4514     case TK_IN: {
4515       int destIfFalse = sqlite3VdbeMakeLabel(v);
4516       int destIfNull = jumpIfNull ? dest : destIfFalse;
4517       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4518       sqlite3VdbeGoto(v, dest);
4519       sqlite3VdbeResolveLabel(v, destIfFalse);
4520       break;
4521     }
4522 #endif
4523     default: {
4524     default_expr:
4525       if( exprAlwaysTrue(pExpr) ){
4526         sqlite3VdbeGoto(v, dest);
4527       }else if( exprAlwaysFalse(pExpr) ){
4528         /* No-op */
4529       }else{
4530         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4531         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4532         VdbeCoverage(v);
4533         testcase( regFree1==0 );
4534         testcase( jumpIfNull==0 );
4535       }
4536       break;
4537     }
4538   }
4539   sqlite3ReleaseTempReg(pParse, regFree1);
4540   sqlite3ReleaseTempReg(pParse, regFree2);
4541 }
4542 
4543 /*
4544 ** Generate code for a boolean expression such that a jump is made
4545 ** to the label "dest" if the expression is false but execution
4546 ** continues straight thru if the expression is true.
4547 **
4548 ** If the expression evaluates to NULL (neither true nor false) then
4549 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4550 ** is 0.
4551 */
4552 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4553   Vdbe *v = pParse->pVdbe;
4554   int op = 0;
4555   int regFree1 = 0;
4556   int regFree2 = 0;
4557   int r1, r2;
4558 
4559   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4560   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4561   if( pExpr==0 )    return;
4562 
4563   /* The value of pExpr->op and op are related as follows:
4564   **
4565   **       pExpr->op            op
4566   **       ---------          ----------
4567   **       TK_ISNULL          OP_NotNull
4568   **       TK_NOTNULL         OP_IsNull
4569   **       TK_NE              OP_Eq
4570   **       TK_EQ              OP_Ne
4571   **       TK_GT              OP_Le
4572   **       TK_LE              OP_Gt
4573   **       TK_GE              OP_Lt
4574   **       TK_LT              OP_Ge
4575   **
4576   ** For other values of pExpr->op, op is undefined and unused.
4577   ** The value of TK_ and OP_ constants are arranged such that we
4578   ** can compute the mapping above using the following expression.
4579   ** Assert()s verify that the computation is correct.
4580   */
4581   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4582 
4583   /* Verify correct alignment of TK_ and OP_ constants
4584   */
4585   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4586   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4587   assert( pExpr->op!=TK_NE || op==OP_Eq );
4588   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4589   assert( pExpr->op!=TK_LT || op==OP_Ge );
4590   assert( pExpr->op!=TK_LE || op==OP_Gt );
4591   assert( pExpr->op!=TK_GT || op==OP_Le );
4592   assert( pExpr->op!=TK_GE || op==OP_Lt );
4593 
4594   switch( pExpr->op ){
4595     case TK_AND: {
4596       testcase( jumpIfNull==0 );
4597       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4598       sqlite3ExprCachePush(pParse);
4599       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4600       sqlite3ExprCachePop(pParse);
4601       break;
4602     }
4603     case TK_OR: {
4604       int d2 = sqlite3VdbeMakeLabel(v);
4605       testcase( jumpIfNull==0 );
4606       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4607       sqlite3ExprCachePush(pParse);
4608       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4609       sqlite3VdbeResolveLabel(v, d2);
4610       sqlite3ExprCachePop(pParse);
4611       break;
4612     }
4613     case TK_NOT: {
4614       testcase( jumpIfNull==0 );
4615       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4616       break;
4617     }
4618     case TK_IS:
4619     case TK_ISNOT:
4620       testcase( pExpr->op==TK_IS );
4621       testcase( pExpr->op==TK_ISNOT );
4622       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4623       jumpIfNull = SQLITE_NULLEQ;
4624       /* Fall thru */
4625     case TK_LT:
4626     case TK_LE:
4627     case TK_GT:
4628     case TK_GE:
4629     case TK_NE:
4630     case TK_EQ: {
4631       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4632       testcase( jumpIfNull==0 );
4633       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4634       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4635       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4636                   r1, r2, dest, jumpIfNull);
4637       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4638       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4639       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4640       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4641       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4642       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4643       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4644       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4645       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4646       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4647       testcase( regFree1==0 );
4648       testcase( regFree2==0 );
4649       break;
4650     }
4651     case TK_ISNULL:
4652     case TK_NOTNULL: {
4653       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4654       sqlite3VdbeAddOp2(v, op, r1, dest);
4655       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4656       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4657       testcase( regFree1==0 );
4658       break;
4659     }
4660     case TK_BETWEEN: {
4661       testcase( jumpIfNull==0 );
4662       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4663       break;
4664     }
4665 #ifndef SQLITE_OMIT_SUBQUERY
4666     case TK_IN: {
4667       if( jumpIfNull ){
4668         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4669       }else{
4670         int destIfNull = sqlite3VdbeMakeLabel(v);
4671         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4672         sqlite3VdbeResolveLabel(v, destIfNull);
4673       }
4674       break;
4675     }
4676 #endif
4677     default: {
4678     default_expr:
4679       if( exprAlwaysFalse(pExpr) ){
4680         sqlite3VdbeGoto(v, dest);
4681       }else if( exprAlwaysTrue(pExpr) ){
4682         /* no-op */
4683       }else{
4684         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4685         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4686         VdbeCoverage(v);
4687         testcase( regFree1==0 );
4688         testcase( jumpIfNull==0 );
4689       }
4690       break;
4691     }
4692   }
4693   sqlite3ReleaseTempReg(pParse, regFree1);
4694   sqlite3ReleaseTempReg(pParse, regFree2);
4695 }
4696 
4697 /*
4698 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4699 ** code generation, and that copy is deleted after code generation. This
4700 ** ensures that the original pExpr is unchanged.
4701 */
4702 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4703   sqlite3 *db = pParse->db;
4704   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4705   if( db->mallocFailed==0 ){
4706     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4707   }
4708   sqlite3ExprDelete(db, pCopy);
4709 }
4710 
4711 /*
4712 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4713 ** type of expression.
4714 **
4715 ** If pExpr is a simple SQL value - an integer, real, string, blob
4716 ** or NULL value - then the VDBE currently being prepared is configured
4717 ** to re-prepare each time a new value is bound to variable pVar.
4718 **
4719 ** Additionally, if pExpr is a simple SQL value and the value is the
4720 ** same as that currently bound to variable pVar, non-zero is returned.
4721 ** Otherwise, if the values are not the same or if pExpr is not a simple
4722 ** SQL value, zero is returned.
4723 */
4724 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4725   int res = 0;
4726   int iVar;
4727   sqlite3_value *pL, *pR = 0;
4728 
4729   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4730   if( pR ){
4731     iVar = pVar->iColumn;
4732     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4733     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4734     if( pL ){
4735       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4736         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4737       }
4738       res =  0==sqlite3MemCompare(pL, pR, 0);
4739     }
4740     sqlite3ValueFree(pR);
4741     sqlite3ValueFree(pL);
4742   }
4743 
4744   return res;
4745 }
4746 
4747 /*
4748 ** Do a deep comparison of two expression trees.  Return 0 if the two
4749 ** expressions are completely identical.  Return 1 if they differ only
4750 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4751 ** other than the top-level COLLATE operator.
4752 **
4753 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4754 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4755 **
4756 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4757 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4758 **
4759 ** Sometimes this routine will return 2 even if the two expressions
4760 ** really are equivalent.  If we cannot prove that the expressions are
4761 ** identical, we return 2 just to be safe.  So if this routine
4762 ** returns 2, then you do not really know for certain if the two
4763 ** expressions are the same.  But if you get a 0 or 1 return, then you
4764 ** can be sure the expressions are the same.  In the places where
4765 ** this routine is used, it does not hurt to get an extra 2 - that
4766 ** just might result in some slightly slower code.  But returning
4767 ** an incorrect 0 or 1 could lead to a malfunction.
4768 **
4769 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4770 ** pParse->pReprepare can be matched against literals in pB.  The
4771 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4772 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4773 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4774 ** pB causes a return value of 2.
4775 */
4776 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4777   u32 combinedFlags;
4778   if( pA==0 || pB==0 ){
4779     return pB==pA ? 0 : 2;
4780   }
4781   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4782     return 0;
4783   }
4784   combinedFlags = pA->flags | pB->flags;
4785   if( combinedFlags & EP_IntValue ){
4786     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4787       return 0;
4788     }
4789     return 2;
4790   }
4791   if( pA->op!=pB->op ){
4792     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4793       return 1;
4794     }
4795     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4796       return 1;
4797     }
4798     return 2;
4799   }
4800   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4801     if( pA->op==TK_FUNCTION ){
4802       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4803     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4804       return pA->op==TK_COLLATE ? 1 : 2;
4805     }
4806   }
4807   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4808   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4809     if( combinedFlags & EP_xIsSelect ) return 2;
4810     if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4811     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4812     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4813     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4814       if( pA->iColumn!=pB->iColumn ) return 2;
4815       if( pA->iTable!=pB->iTable
4816        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4817     }
4818   }
4819   return 0;
4820 }
4821 
4822 /*
4823 ** Compare two ExprList objects.  Return 0 if they are identical and
4824 ** non-zero if they differ in any way.
4825 **
4826 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4827 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4828 **
4829 ** This routine might return non-zero for equivalent ExprLists.  The
4830 ** only consequence will be disabled optimizations.  But this routine
4831 ** must never return 0 if the two ExprList objects are different, or
4832 ** a malfunction will result.
4833 **
4834 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4835 ** always differs from a non-NULL pointer.
4836 */
4837 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4838   int i;
4839   if( pA==0 && pB==0 ) return 0;
4840   if( pA==0 || pB==0 ) return 1;
4841   if( pA->nExpr!=pB->nExpr ) return 1;
4842   for(i=0; i<pA->nExpr; i++){
4843     Expr *pExprA = pA->a[i].pExpr;
4844     Expr *pExprB = pB->a[i].pExpr;
4845     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4846     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4847   }
4848   return 0;
4849 }
4850 
4851 /*
4852 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4853 ** are ignored.
4854 */
4855 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4856   return sqlite3ExprCompare(0,
4857              sqlite3ExprSkipCollate(pA),
4858              sqlite3ExprSkipCollate(pB),
4859              iTab);
4860 }
4861 
4862 /*
4863 ** Return true if we can prove the pE2 will always be true if pE1 is
4864 ** true.  Return false if we cannot complete the proof or if pE2 might
4865 ** be false.  Examples:
4866 **
4867 **     pE1: x==5       pE2: x==5             Result: true
4868 **     pE1: x>0        pE2: x==5             Result: false
4869 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4870 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4871 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4872 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4873 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4874 **
4875 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4876 ** Expr.iTable<0 then assume a table number given by iTab.
4877 **
4878 ** If pParse is not NULL, then the values of bound variables in pE1 are
4879 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4880 ** modified to record which bound variables are referenced.  If pParse
4881 ** is NULL, then false will be returned if pE1 contains any bound variables.
4882 **
4883 ** When in doubt, return false.  Returning true might give a performance
4884 ** improvement.  Returning false might cause a performance reduction, but
4885 ** it will always give the correct answer and is hence always safe.
4886 */
4887 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4888   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4889     return 1;
4890   }
4891   if( pE2->op==TK_OR
4892    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4893              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4894   ){
4895     return 1;
4896   }
4897   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4898     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4899     testcase( pX!=pE1->pLeft );
4900     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4901   }
4902   return 0;
4903 }
4904 
4905 /*
4906 ** An instance of the following structure is used by the tree walker
4907 ** to determine if an expression can be evaluated by reference to the
4908 ** index only, without having to do a search for the corresponding
4909 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4910 ** is the cursor for the table.
4911 */
4912 struct IdxCover {
4913   Index *pIdx;     /* The index to be tested for coverage */
4914   int iCur;        /* Cursor number for the table corresponding to the index */
4915 };
4916 
4917 /*
4918 ** Check to see if there are references to columns in table
4919 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4920 ** pWalker->u.pIdxCover->pIdx.
4921 */
4922 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4923   if( pExpr->op==TK_COLUMN
4924    && pExpr->iTable==pWalker->u.pIdxCover->iCur
4925    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4926   ){
4927     pWalker->eCode = 1;
4928     return WRC_Abort;
4929   }
4930   return WRC_Continue;
4931 }
4932 
4933 /*
4934 ** Determine if an index pIdx on table with cursor iCur contains will
4935 ** the expression pExpr.  Return true if the index does cover the
4936 ** expression and false if the pExpr expression references table columns
4937 ** that are not found in the index pIdx.
4938 **
4939 ** An index covering an expression means that the expression can be
4940 ** evaluated using only the index and without having to lookup the
4941 ** corresponding table entry.
4942 */
4943 int sqlite3ExprCoveredByIndex(
4944   Expr *pExpr,        /* The index to be tested */
4945   int iCur,           /* The cursor number for the corresponding table */
4946   Index *pIdx         /* The index that might be used for coverage */
4947 ){
4948   Walker w;
4949   struct IdxCover xcov;
4950   memset(&w, 0, sizeof(w));
4951   xcov.iCur = iCur;
4952   xcov.pIdx = pIdx;
4953   w.xExprCallback = exprIdxCover;
4954   w.u.pIdxCover = &xcov;
4955   sqlite3WalkExpr(&w, pExpr);
4956   return !w.eCode;
4957 }
4958 
4959 
4960 /*
4961 ** An instance of the following structure is used by the tree walker
4962 ** to count references to table columns in the arguments of an
4963 ** aggregate function, in order to implement the
4964 ** sqlite3FunctionThisSrc() routine.
4965 */
4966 struct SrcCount {
4967   SrcList *pSrc;   /* One particular FROM clause in a nested query */
4968   int nThis;       /* Number of references to columns in pSrcList */
4969   int nOther;      /* Number of references to columns in other FROM clauses */
4970 };
4971 
4972 /*
4973 ** Count the number of references to columns.
4974 */
4975 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4976   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4977   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4978   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
4979   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4980   ** NEVER() will need to be removed. */
4981   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4982     int i;
4983     struct SrcCount *p = pWalker->u.pSrcCount;
4984     SrcList *pSrc = p->pSrc;
4985     int nSrc = pSrc ? pSrc->nSrc : 0;
4986     for(i=0; i<nSrc; i++){
4987       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4988     }
4989     if( i<nSrc ){
4990       p->nThis++;
4991     }else{
4992       p->nOther++;
4993     }
4994   }
4995   return WRC_Continue;
4996 }
4997 
4998 /*
4999 ** Determine if any of the arguments to the pExpr Function reference
5000 ** pSrcList.  Return true if they do.  Also return true if the function
5001 ** has no arguments or has only constant arguments.  Return false if pExpr
5002 ** references columns but not columns of tables found in pSrcList.
5003 */
5004 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5005   Walker w;
5006   struct SrcCount cnt;
5007   assert( pExpr->op==TK_AGG_FUNCTION );
5008   w.xExprCallback = exprSrcCount;
5009   w.xSelectCallback = 0;
5010   w.u.pSrcCount = &cnt;
5011   cnt.pSrc = pSrcList;
5012   cnt.nThis = 0;
5013   cnt.nOther = 0;
5014   sqlite3WalkExprList(&w, pExpr->x.pList);
5015   return cnt.nThis>0 || cnt.nOther==0;
5016 }
5017 
5018 /*
5019 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5020 ** the new element.  Return a negative number if malloc fails.
5021 */
5022 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5023   int i;
5024   pInfo->aCol = sqlite3ArrayAllocate(
5025        db,
5026        pInfo->aCol,
5027        sizeof(pInfo->aCol[0]),
5028        &pInfo->nColumn,
5029        &i
5030   );
5031   return i;
5032 }
5033 
5034 /*
5035 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5036 ** the new element.  Return a negative number if malloc fails.
5037 */
5038 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5039   int i;
5040   pInfo->aFunc = sqlite3ArrayAllocate(
5041        db,
5042        pInfo->aFunc,
5043        sizeof(pInfo->aFunc[0]),
5044        &pInfo->nFunc,
5045        &i
5046   );
5047   return i;
5048 }
5049 
5050 /*
5051 ** This is the xExprCallback for a tree walker.  It is used to
5052 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5053 ** for additional information.
5054 */
5055 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5056   int i;
5057   NameContext *pNC = pWalker->u.pNC;
5058   Parse *pParse = pNC->pParse;
5059   SrcList *pSrcList = pNC->pSrcList;
5060   AggInfo *pAggInfo = pNC->pAggInfo;
5061 
5062   switch( pExpr->op ){
5063     case TK_AGG_COLUMN:
5064     case TK_COLUMN: {
5065       testcase( pExpr->op==TK_AGG_COLUMN );
5066       testcase( pExpr->op==TK_COLUMN );
5067       /* Check to see if the column is in one of the tables in the FROM
5068       ** clause of the aggregate query */
5069       if( ALWAYS(pSrcList!=0) ){
5070         struct SrcList_item *pItem = pSrcList->a;
5071         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5072           struct AggInfo_col *pCol;
5073           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5074           if( pExpr->iTable==pItem->iCursor ){
5075             /* If we reach this point, it means that pExpr refers to a table
5076             ** that is in the FROM clause of the aggregate query.
5077             **
5078             ** Make an entry for the column in pAggInfo->aCol[] if there
5079             ** is not an entry there already.
5080             */
5081             int k;
5082             pCol = pAggInfo->aCol;
5083             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5084               if( pCol->iTable==pExpr->iTable &&
5085                   pCol->iColumn==pExpr->iColumn ){
5086                 break;
5087               }
5088             }
5089             if( (k>=pAggInfo->nColumn)
5090              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5091             ){
5092               pCol = &pAggInfo->aCol[k];
5093               pCol->pTab = pExpr->pTab;
5094               pCol->iTable = pExpr->iTable;
5095               pCol->iColumn = pExpr->iColumn;
5096               pCol->iMem = ++pParse->nMem;
5097               pCol->iSorterColumn = -1;
5098               pCol->pExpr = pExpr;
5099               if( pAggInfo->pGroupBy ){
5100                 int j, n;
5101                 ExprList *pGB = pAggInfo->pGroupBy;
5102                 struct ExprList_item *pTerm = pGB->a;
5103                 n = pGB->nExpr;
5104                 for(j=0; j<n; j++, pTerm++){
5105                   Expr *pE = pTerm->pExpr;
5106                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5107                       pE->iColumn==pExpr->iColumn ){
5108                     pCol->iSorterColumn = j;
5109                     break;
5110                   }
5111                 }
5112               }
5113               if( pCol->iSorterColumn<0 ){
5114                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5115               }
5116             }
5117             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5118             ** because it was there before or because we just created it).
5119             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5120             ** pAggInfo->aCol[] entry.
5121             */
5122             ExprSetVVAProperty(pExpr, EP_NoReduce);
5123             pExpr->pAggInfo = pAggInfo;
5124             pExpr->op = TK_AGG_COLUMN;
5125             pExpr->iAgg = (i16)k;
5126             break;
5127           } /* endif pExpr->iTable==pItem->iCursor */
5128         } /* end loop over pSrcList */
5129       }
5130       return WRC_Prune;
5131     }
5132     case TK_AGG_FUNCTION: {
5133       if( (pNC->ncFlags & NC_InAggFunc)==0
5134        && pWalker->walkerDepth==pExpr->op2
5135       ){
5136         /* Check to see if pExpr is a duplicate of another aggregate
5137         ** function that is already in the pAggInfo structure
5138         */
5139         struct AggInfo_func *pItem = pAggInfo->aFunc;
5140         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5141           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5142             break;
5143           }
5144         }
5145         if( i>=pAggInfo->nFunc ){
5146           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5147           */
5148           u8 enc = ENC(pParse->db);
5149           i = addAggInfoFunc(pParse->db, pAggInfo);
5150           if( i>=0 ){
5151             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5152             pItem = &pAggInfo->aFunc[i];
5153             pItem->pExpr = pExpr;
5154             pItem->iMem = ++pParse->nMem;
5155             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5156             pItem->pFunc = sqlite3FindFunction(pParse->db,
5157                    pExpr->u.zToken,
5158                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5159             if( pExpr->flags & EP_Distinct ){
5160               pItem->iDistinct = pParse->nTab++;
5161             }else{
5162               pItem->iDistinct = -1;
5163             }
5164           }
5165         }
5166         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5167         */
5168         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5169         ExprSetVVAProperty(pExpr, EP_NoReduce);
5170         pExpr->iAgg = (i16)i;
5171         pExpr->pAggInfo = pAggInfo;
5172         return WRC_Prune;
5173       }else{
5174         return WRC_Continue;
5175       }
5176     }
5177   }
5178   return WRC_Continue;
5179 }
5180 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5181   UNUSED_PARAMETER(pSelect);
5182   pWalker->walkerDepth++;
5183   return WRC_Continue;
5184 }
5185 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5186   UNUSED_PARAMETER(pSelect);
5187   pWalker->walkerDepth--;
5188 }
5189 
5190 /*
5191 ** Analyze the pExpr expression looking for aggregate functions and
5192 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5193 ** points to.  Additional entries are made on the AggInfo object as
5194 ** necessary.
5195 **
5196 ** This routine should only be called after the expression has been
5197 ** analyzed by sqlite3ResolveExprNames().
5198 */
5199 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5200   Walker w;
5201   w.xExprCallback = analyzeAggregate;
5202   w.xSelectCallback = analyzeAggregatesInSelect;
5203   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5204   w.walkerDepth = 0;
5205   w.u.pNC = pNC;
5206   assert( pNC->pSrcList!=0 );
5207   sqlite3WalkExpr(&w, pExpr);
5208 }
5209 
5210 /*
5211 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5212 ** expression list.  Return the number of errors.
5213 **
5214 ** If an error is found, the analysis is cut short.
5215 */
5216 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5217   struct ExprList_item *pItem;
5218   int i;
5219   if( pList ){
5220     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5221       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5222     }
5223   }
5224 }
5225 
5226 /*
5227 ** Allocate a single new register for use to hold some intermediate result.
5228 */
5229 int sqlite3GetTempReg(Parse *pParse){
5230   if( pParse->nTempReg==0 ){
5231     return ++pParse->nMem;
5232   }
5233   return pParse->aTempReg[--pParse->nTempReg];
5234 }
5235 
5236 /*
5237 ** Deallocate a register, making available for reuse for some other
5238 ** purpose.
5239 **
5240 ** If a register is currently being used by the column cache, then
5241 ** the deallocation is deferred until the column cache line that uses
5242 ** the register becomes stale.
5243 */
5244 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5245   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5246     int i;
5247     struct yColCache *p;
5248     for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5249       if( p->iReg==iReg ){
5250         p->tempReg = 1;
5251         return;
5252       }
5253     }
5254     pParse->aTempReg[pParse->nTempReg++] = iReg;
5255   }
5256 }
5257 
5258 /*
5259 ** Allocate or deallocate a block of nReg consecutive registers.
5260 */
5261 int sqlite3GetTempRange(Parse *pParse, int nReg){
5262   int i, n;
5263   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5264   i = pParse->iRangeReg;
5265   n = pParse->nRangeReg;
5266   if( nReg<=n ){
5267     assert( !usedAsColumnCache(pParse, i, i+n-1) );
5268     pParse->iRangeReg += nReg;
5269     pParse->nRangeReg -= nReg;
5270   }else{
5271     i = pParse->nMem+1;
5272     pParse->nMem += nReg;
5273   }
5274   return i;
5275 }
5276 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5277   if( nReg==1 ){
5278     sqlite3ReleaseTempReg(pParse, iReg);
5279     return;
5280   }
5281   sqlite3ExprCacheRemove(pParse, iReg, nReg);
5282   if( nReg>pParse->nRangeReg ){
5283     pParse->nRangeReg = nReg;
5284     pParse->iRangeReg = iReg;
5285   }
5286 }
5287 
5288 /*
5289 ** Mark all temporary registers as being unavailable for reuse.
5290 */
5291 void sqlite3ClearTempRegCache(Parse *pParse){
5292   pParse->nTempReg = 0;
5293   pParse->nRangeReg = 0;
5294 }
5295 
5296 /*
5297 ** Validate that no temporary register falls within the range of
5298 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5299 ** statements.
5300 */
5301 #ifdef SQLITE_DEBUG
5302 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5303   int i;
5304   if( pParse->nRangeReg>0
5305    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5306    && pParse->iRangeReg <= iLast
5307   ){
5308      return 0;
5309   }
5310   for(i=0; i<pParse->nTempReg; i++){
5311     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5312       return 0;
5313     }
5314   }
5315   return 1;
5316 }
5317 #endif /* SQLITE_DEBUG */
5318