1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName, /* Name of collating sequence */ 73 int dequote /* True to dequote pCollName */ 74 ){ 75 if( pCollName->n>0 ){ 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 77 if( pNew ){ 78 pNew->pLeft = pExpr; 79 pNew->flags |= EP_Collate|EP_Skip; 80 pExpr = pNew; 81 } 82 } 83 return pExpr; 84 } 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 86 Token s; 87 assert( zC!=0 ); 88 s.z = zC; 89 s.n = sqlite3Strlen30(s.z); 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 91 } 92 93 /* 94 ** Skip over any TK_COLLATE operators and any unlikely() 95 ** or likelihood() function at the root of an expression. 96 */ 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 101 assert( pExpr->x.pList->nExpr>0 ); 102 assert( pExpr->op==TK_FUNCTION ); 103 pExpr = pExpr->x.pList->a[0].pExpr; 104 }else{ 105 assert( pExpr->op==TK_COLLATE ); 106 pExpr = pExpr->pLeft; 107 } 108 } 109 return pExpr; 110 } 111 112 /* 113 ** Return the collation sequence for the expression pExpr. If 114 ** there is no defined collating sequence, return NULL. 115 ** 116 ** The collating sequence might be determined by a COLLATE operator 117 ** or by the presence of a column with a defined collating sequence. 118 ** COLLATE operators take first precedence. Left operands take 119 ** precedence over right operands. 120 */ 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 122 sqlite3 *db = pParse->db; 123 CollSeq *pColl = 0; 124 Expr *p = pExpr; 125 while( p ){ 126 int op = p->op; 127 if( p->flags & EP_Generic ) break; 128 if( op==TK_CAST || op==TK_UPLUS ){ 129 p = p->pLeft; 130 continue; 131 } 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 134 break; 135 } 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 && p->pTab!=0 139 ){ 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ 142 int j = p->iColumn; 143 if( j>=0 ){ 144 const char *zColl = p->pTab->aCol[j].zColl; 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 146 } 147 break; 148 } 149 if( p->flags & EP_Collate ){ 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 151 p = p->pLeft; 152 }else{ 153 Expr *pNext = p->pRight; 154 /* The Expr.x union is never used at the same time as Expr.pRight */ 155 assert( p->x.pList==0 || p->pRight==0 ); 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 158 ** least one EP_Collate. Thus the following two ALWAYS. */ 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 160 int i; 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 163 pNext = p->x.pList->a[i].pExpr; 164 break; 165 } 166 } 167 } 168 p = pNext; 169 } 170 }else{ 171 break; 172 } 173 } 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ 175 pColl = 0; 176 } 177 return pColl; 178 } 179 180 /* 181 ** pExpr is an operand of a comparison operator. aff2 is the 182 ** type affinity of the other operand. This routine returns the 183 ** type affinity that should be used for the comparison operator. 184 */ 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 186 char aff1 = sqlite3ExprAffinity(pExpr); 187 if( aff1 && aff2 ){ 188 /* Both sides of the comparison are columns. If one has numeric 189 ** affinity, use that. Otherwise use no affinity. 190 */ 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 192 return SQLITE_AFF_NUMERIC; 193 }else{ 194 return SQLITE_AFF_BLOB; 195 } 196 }else if( !aff1 && !aff2 ){ 197 /* Neither side of the comparison is a column. Compare the 198 ** results directly. 199 */ 200 return SQLITE_AFF_BLOB; 201 }else{ 202 /* One side is a column, the other is not. Use the columns affinity. */ 203 assert( aff1==0 || aff2==0 ); 204 return (aff1 + aff2); 205 } 206 } 207 208 /* 209 ** pExpr is a comparison operator. Return the type affinity that should 210 ** be applied to both operands prior to doing the comparison. 211 */ 212 static char comparisonAffinity(Expr *pExpr){ 213 char aff; 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 217 assert( pExpr->pLeft ); 218 aff = sqlite3ExprAffinity(pExpr->pLeft); 219 if( pExpr->pRight ){ 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 223 }else if( !aff ){ 224 aff = SQLITE_AFF_BLOB; 225 } 226 return aff; 227 } 228 229 /* 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 231 ** idx_affinity is the affinity of an indexed column. Return true 232 ** if the index with affinity idx_affinity may be used to implement 233 ** the comparison in pExpr. 234 */ 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 236 char aff = comparisonAffinity(pExpr); 237 switch( aff ){ 238 case SQLITE_AFF_BLOB: 239 return 1; 240 case SQLITE_AFF_TEXT: 241 return idx_affinity==SQLITE_AFF_TEXT; 242 default: 243 return sqlite3IsNumericAffinity(idx_affinity); 244 } 245 } 246 247 /* 248 ** Return the P5 value that should be used for a binary comparison 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 250 */ 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 254 return aff; 255 } 256 257 /* 258 ** Return a pointer to the collation sequence that should be used by 259 ** a binary comparison operator comparing pLeft and pRight. 260 ** 261 ** If the left hand expression has a collating sequence type, then it is 262 ** used. Otherwise the collation sequence for the right hand expression 263 ** is used, or the default (BINARY) if neither expression has a collating 264 ** type. 265 ** 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 267 ** it is not considered. 268 */ 269 CollSeq *sqlite3BinaryCompareCollSeq( 270 Parse *pParse, 271 Expr *pLeft, 272 Expr *pRight 273 ){ 274 CollSeq *pColl; 275 assert( pLeft ); 276 if( pLeft->flags & EP_Collate ){ 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 279 pColl = sqlite3ExprCollSeq(pParse, pRight); 280 }else{ 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); 282 if( !pColl ){ 283 pColl = sqlite3ExprCollSeq(pParse, pRight); 284 } 285 } 286 return pColl; 287 } 288 289 /* 290 ** Generate code for a comparison operator. 291 */ 292 static int codeCompare( 293 Parse *pParse, /* The parsing (and code generating) context */ 294 Expr *pLeft, /* The left operand */ 295 Expr *pRight, /* The right operand */ 296 int opcode, /* The comparison opcode */ 297 int in1, int in2, /* Register holding operands */ 298 int dest, /* Jump here if true. */ 299 int jumpIfNull /* If true, jump if either operand is NULL */ 300 ){ 301 int p5; 302 int addr; 303 CollSeq *p4; 304 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 308 (void*)p4, P4_COLLSEQ); 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 310 return addr; 311 } 312 313 #if SQLITE_MAX_EXPR_DEPTH>0 314 /* 315 ** Check that argument nHeight is less than or equal to the maximum 316 ** expression depth allowed. If it is not, leave an error message in 317 ** pParse. 318 */ 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 320 int rc = SQLITE_OK; 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 322 if( nHeight>mxHeight ){ 323 sqlite3ErrorMsg(pParse, 324 "Expression tree is too large (maximum depth %d)", mxHeight 325 ); 326 rc = SQLITE_ERROR; 327 } 328 return rc; 329 } 330 331 /* The following three functions, heightOfExpr(), heightOfExprList() 332 ** and heightOfSelect(), are used to determine the maximum height 333 ** of any expression tree referenced by the structure passed as the 334 ** first argument. 335 ** 336 ** If this maximum height is greater than the current value pointed 337 ** to by pnHeight, the second parameter, then set *pnHeight to that 338 ** value. 339 */ 340 static void heightOfExpr(Expr *p, int *pnHeight){ 341 if( p ){ 342 if( p->nHeight>*pnHeight ){ 343 *pnHeight = p->nHeight; 344 } 345 } 346 } 347 static void heightOfExprList(ExprList *p, int *pnHeight){ 348 if( p ){ 349 int i; 350 for(i=0; i<p->nExpr; i++){ 351 heightOfExpr(p->a[i].pExpr, pnHeight); 352 } 353 } 354 } 355 static void heightOfSelect(Select *p, int *pnHeight){ 356 if( p ){ 357 heightOfExpr(p->pWhere, pnHeight); 358 heightOfExpr(p->pHaving, pnHeight); 359 heightOfExpr(p->pLimit, pnHeight); 360 heightOfExpr(p->pOffset, pnHeight); 361 heightOfExprList(p->pEList, pnHeight); 362 heightOfExprList(p->pGroupBy, pnHeight); 363 heightOfExprList(p->pOrderBy, pnHeight); 364 heightOfSelect(p->pPrior, pnHeight); 365 } 366 } 367 368 /* 369 ** Set the Expr.nHeight variable in the structure passed as an 370 ** argument. An expression with no children, Expr.pList or 371 ** Expr.pSelect member has a height of 1. Any other expression 372 ** has a height equal to the maximum height of any other 373 ** referenced Expr plus one. 374 ** 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 376 ** if appropriate. 377 */ 378 static void exprSetHeight(Expr *p){ 379 int nHeight = 0; 380 heightOfExpr(p->pLeft, &nHeight); 381 heightOfExpr(p->pRight, &nHeight); 382 if( ExprHasProperty(p, EP_xIsSelect) ){ 383 heightOfSelect(p->x.pSelect, &nHeight); 384 }else if( p->x.pList ){ 385 heightOfExprList(p->x.pList, &nHeight); 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 387 } 388 p->nHeight = nHeight + 1; 389 } 390 391 /* 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 393 ** the height is greater than the maximum allowed expression depth, 394 ** leave an error in pParse. 395 ** 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 397 ** Expr.flags. 398 */ 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 400 if( pParse->nErr ) return; 401 exprSetHeight(p); 402 sqlite3ExprCheckHeight(pParse, p->nHeight); 403 } 404 405 /* 406 ** Return the maximum height of any expression tree referenced 407 ** by the select statement passed as an argument. 408 */ 409 int sqlite3SelectExprHeight(Select *p){ 410 int nHeight = 0; 411 heightOfSelect(p, &nHeight); 412 return nHeight; 413 } 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 415 /* 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into 417 ** Expr.flags. 418 */ 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 422 } 423 } 424 #define exprSetHeight(y) 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 426 427 /* 428 ** This routine is the core allocator for Expr nodes. 429 ** 430 ** Construct a new expression node and return a pointer to it. Memory 431 ** for this node and for the pToken argument is a single allocation 432 ** obtained from sqlite3DbMalloc(). The calling function 433 ** is responsible for making sure the node eventually gets freed. 434 ** 435 ** If dequote is true, then the token (if it exists) is dequoted. 436 ** If dequote is false, no dequoting is performed. The deQuote 437 ** parameter is ignored if pToken is NULL or if the token does not 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 439 ** then the EP_DblQuoted flag is set on the expression node. 440 ** 441 ** Special case: If op==TK_INTEGER and pToken points to a string that 442 ** can be translated into a 32-bit integer, then the token is not 443 ** stored in u.zToken. Instead, the integer values is written 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage 445 ** is allocated to hold the integer text and the dequote flag is ignored. 446 */ 447 Expr *sqlite3ExprAlloc( 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 449 int op, /* Expression opcode */ 450 const Token *pToken, /* Token argument. Might be NULL */ 451 int dequote /* True to dequote */ 452 ){ 453 Expr *pNew; 454 int nExtra = 0; 455 int iValue = 0; 456 457 if( pToken ){ 458 if( op!=TK_INTEGER || pToken->z==0 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 460 nExtra = pToken->n+1; 461 assert( iValue>=0 ); 462 } 463 } 464 pNew = sqlite3DbMallocRaw(db, sizeof(Expr)+nExtra); 465 if( pNew ){ 466 memset(pNew, 0, sizeof(Expr)); 467 pNew->op = (u8)op; 468 pNew->iAgg = -1; 469 if( pToken ){ 470 if( nExtra==0 ){ 471 pNew->flags |= EP_IntValue; 472 pNew->u.iValue = iValue; 473 }else{ 474 int c; 475 pNew->u.zToken = (char*)&pNew[1]; 476 assert( pToken->z!=0 || pToken->n==0 ); 477 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 478 pNew->u.zToken[pToken->n] = 0; 479 if( dequote && nExtra>=3 480 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 481 sqlite3Dequote(pNew->u.zToken); 482 if( c=='"' ) pNew->flags |= EP_DblQuoted; 483 } 484 } 485 } 486 #if SQLITE_MAX_EXPR_DEPTH>0 487 pNew->nHeight = 1; 488 #endif 489 } 490 return pNew; 491 } 492 493 /* 494 ** Allocate a new expression node from a zero-terminated token that has 495 ** already been dequoted. 496 */ 497 Expr *sqlite3Expr( 498 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 499 int op, /* Expression opcode */ 500 const char *zToken /* Token argument. Might be NULL */ 501 ){ 502 Token x; 503 x.z = zToken; 504 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 505 return sqlite3ExprAlloc(db, op, &x, 0); 506 } 507 508 /* 509 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 510 ** 511 ** If pRoot==NULL that means that a memory allocation error has occurred. 512 ** In that case, delete the subtrees pLeft and pRight. 513 */ 514 void sqlite3ExprAttachSubtrees( 515 sqlite3 *db, 516 Expr *pRoot, 517 Expr *pLeft, 518 Expr *pRight 519 ){ 520 if( pRoot==0 ){ 521 assert( db->mallocFailed ); 522 sqlite3ExprDelete(db, pLeft); 523 sqlite3ExprDelete(db, pRight); 524 }else{ 525 if( pRight ){ 526 pRoot->pRight = pRight; 527 pRoot->flags |= EP_Propagate & pRight->flags; 528 } 529 if( pLeft ){ 530 pRoot->pLeft = pLeft; 531 pRoot->flags |= EP_Propagate & pLeft->flags; 532 } 533 exprSetHeight(pRoot); 534 } 535 } 536 537 /* 538 ** Allocate an Expr node which joins as many as two subtrees. 539 ** 540 ** One or both of the subtrees can be NULL. Return a pointer to the new 541 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 542 ** free the subtrees and return NULL. 543 */ 544 Expr *sqlite3PExpr( 545 Parse *pParse, /* Parsing context */ 546 int op, /* Expression opcode */ 547 Expr *pLeft, /* Left operand */ 548 Expr *pRight, /* Right operand */ 549 const Token *pToken /* Argument token */ 550 ){ 551 Expr *p; 552 if( op==TK_AND && pParse->nErr==0 ){ 553 /* Take advantage of short-circuit false optimization for AND */ 554 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 555 }else{ 556 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); 557 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 558 } 559 if( p ) { 560 sqlite3ExprCheckHeight(pParse, p->nHeight); 561 } 562 return p; 563 } 564 565 /* 566 ** If the expression is always either TRUE or FALSE (respectively), 567 ** then return 1. If one cannot determine the truth value of the 568 ** expression at compile-time return 0. 569 ** 570 ** This is an optimization. If is OK to return 0 here even if 571 ** the expression really is always false or false (a false negative). 572 ** But it is a bug to return 1 if the expression might have different 573 ** boolean values in different circumstances (a false positive.) 574 ** 575 ** Note that if the expression is part of conditional for a 576 ** LEFT JOIN, then we cannot determine at compile-time whether or not 577 ** is it true or false, so always return 0. 578 */ 579 static int exprAlwaysTrue(Expr *p){ 580 int v = 0; 581 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 582 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 583 return v!=0; 584 } 585 static int exprAlwaysFalse(Expr *p){ 586 int v = 0; 587 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 588 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 589 return v==0; 590 } 591 592 /* 593 ** Join two expressions using an AND operator. If either expression is 594 ** NULL, then just return the other expression. 595 ** 596 ** If one side or the other of the AND is known to be false, then instead 597 ** of returning an AND expression, just return a constant expression with 598 ** a value of false. 599 */ 600 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 601 if( pLeft==0 ){ 602 return pRight; 603 }else if( pRight==0 ){ 604 return pLeft; 605 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 606 sqlite3ExprDelete(db, pLeft); 607 sqlite3ExprDelete(db, pRight); 608 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 609 }else{ 610 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 611 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 612 return pNew; 613 } 614 } 615 616 /* 617 ** Construct a new expression node for a function with multiple 618 ** arguments. 619 */ 620 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 621 Expr *pNew; 622 sqlite3 *db = pParse->db; 623 assert( pToken ); 624 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 625 if( pNew==0 ){ 626 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 627 return 0; 628 } 629 pNew->x.pList = pList; 630 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 631 sqlite3ExprSetHeightAndFlags(pParse, pNew); 632 return pNew; 633 } 634 635 /* 636 ** Assign a variable number to an expression that encodes a wildcard 637 ** in the original SQL statement. 638 ** 639 ** Wildcards consisting of a single "?" are assigned the next sequential 640 ** variable number. 641 ** 642 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 643 ** sure "nnn" is not too be to avoid a denial of service attack when 644 ** the SQL statement comes from an external source. 645 ** 646 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 647 ** as the previous instance of the same wildcard. Or if this is the first 648 ** instance of the wildcard, the next sequential variable number is 649 ** assigned. 650 */ 651 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 652 sqlite3 *db = pParse->db; 653 const char *z; 654 655 if( pExpr==0 ) return; 656 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 657 z = pExpr->u.zToken; 658 assert( z!=0 ); 659 assert( z[0]!=0 ); 660 if( z[1]==0 ){ 661 /* Wildcard of the form "?". Assign the next variable number */ 662 assert( z[0]=='?' ); 663 pExpr->iColumn = (ynVar)(++pParse->nVar); 664 }else{ 665 ynVar x = 0; 666 u32 n = sqlite3Strlen30(z); 667 if( z[0]=='?' ){ 668 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 669 ** use it as the variable number */ 670 i64 i; 671 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 672 pExpr->iColumn = x = (ynVar)i; 673 testcase( i==0 ); 674 testcase( i==1 ); 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 676 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 677 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 678 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 679 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 680 x = 0; 681 } 682 if( i>pParse->nVar ){ 683 pParse->nVar = (int)i; 684 } 685 }else{ 686 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 687 ** number as the prior appearance of the same name, or if the name 688 ** has never appeared before, reuse the same variable number 689 */ 690 ynVar i; 691 for(i=0; i<pParse->nzVar; i++){ 692 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 693 pExpr->iColumn = x = (ynVar)i+1; 694 break; 695 } 696 } 697 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 698 } 699 if( x>0 ){ 700 if( x>pParse->nzVar ){ 701 char **a; 702 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 703 if( a==0 ) return; /* Error reported through db->mallocFailed */ 704 pParse->azVar = a; 705 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 706 pParse->nzVar = x; 707 } 708 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 709 sqlite3DbFree(db, pParse->azVar[x-1]); 710 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 711 } 712 } 713 } 714 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 715 sqlite3ErrorMsg(pParse, "too many SQL variables"); 716 } 717 } 718 719 /* 720 ** Recursively delete an expression tree. 721 */ 722 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 723 if( p==0 ) return; 724 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 725 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 726 if( !ExprHasProperty(p, EP_TokenOnly) ){ 727 /* The Expr.x union is never used at the same time as Expr.pRight */ 728 assert( p->x.pList==0 || p->pRight==0 ); 729 sqlite3ExprDelete(db, p->pLeft); 730 sqlite3ExprDelete(db, p->pRight); 731 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 732 if( ExprHasProperty(p, EP_xIsSelect) ){ 733 sqlite3SelectDelete(db, p->x.pSelect); 734 }else{ 735 sqlite3ExprListDelete(db, p->x.pList); 736 } 737 } 738 if( !ExprHasProperty(p, EP_Static) ){ 739 sqlite3DbFree(db, p); 740 } 741 } 742 743 /* 744 ** Return the number of bytes allocated for the expression structure 745 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 746 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 747 */ 748 static int exprStructSize(Expr *p){ 749 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 750 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 751 return EXPR_FULLSIZE; 752 } 753 754 /* 755 ** The dupedExpr*Size() routines each return the number of bytes required 756 ** to store a copy of an expression or expression tree. They differ in 757 ** how much of the tree is measured. 758 ** 759 ** dupedExprStructSize() Size of only the Expr structure 760 ** dupedExprNodeSize() Size of Expr + space for token 761 ** dupedExprSize() Expr + token + subtree components 762 ** 763 *************************************************************************** 764 ** 765 ** The dupedExprStructSize() function returns two values OR-ed together: 766 ** (1) the space required for a copy of the Expr structure only and 767 ** (2) the EP_xxx flags that indicate what the structure size should be. 768 ** The return values is always one of: 769 ** 770 ** EXPR_FULLSIZE 771 ** EXPR_REDUCEDSIZE | EP_Reduced 772 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 773 ** 774 ** The size of the structure can be found by masking the return value 775 ** of this routine with 0xfff. The flags can be found by masking the 776 ** return value with EP_Reduced|EP_TokenOnly. 777 ** 778 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 779 ** (unreduced) Expr objects as they or originally constructed by the parser. 780 ** During expression analysis, extra information is computed and moved into 781 ** later parts of teh Expr object and that extra information might get chopped 782 ** off if the expression is reduced. Note also that it does not work to 783 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 784 ** to reduce a pristine expression tree from the parser. The implementation 785 ** of dupedExprStructSize() contain multiple assert() statements that attempt 786 ** to enforce this constraint. 787 */ 788 static int dupedExprStructSize(Expr *p, int flags){ 789 int nSize; 790 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 791 assert( EXPR_FULLSIZE<=0xfff ); 792 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 793 if( 0==(flags&EXPRDUP_REDUCE) ){ 794 nSize = EXPR_FULLSIZE; 795 }else{ 796 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 797 assert( !ExprHasProperty(p, EP_FromJoin) ); 798 assert( !ExprHasProperty(p, EP_MemToken) ); 799 assert( !ExprHasProperty(p, EP_NoReduce) ); 800 if( p->pLeft || p->x.pList ){ 801 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 802 }else{ 803 assert( p->pRight==0 ); 804 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 805 } 806 } 807 return nSize; 808 } 809 810 /* 811 ** This function returns the space in bytes required to store the copy 812 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 813 ** string is defined.) 814 */ 815 static int dupedExprNodeSize(Expr *p, int flags){ 816 int nByte = dupedExprStructSize(p, flags) & 0xfff; 817 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 818 nByte += sqlite3Strlen30(p->u.zToken)+1; 819 } 820 return ROUND8(nByte); 821 } 822 823 /* 824 ** Return the number of bytes required to create a duplicate of the 825 ** expression passed as the first argument. The second argument is a 826 ** mask containing EXPRDUP_XXX flags. 827 ** 828 ** The value returned includes space to create a copy of the Expr struct 829 ** itself and the buffer referred to by Expr.u.zToken, if any. 830 ** 831 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 832 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 833 ** and Expr.pRight variables (but not for any structures pointed to or 834 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 835 */ 836 static int dupedExprSize(Expr *p, int flags){ 837 int nByte = 0; 838 if( p ){ 839 nByte = dupedExprNodeSize(p, flags); 840 if( flags&EXPRDUP_REDUCE ){ 841 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 842 } 843 } 844 return nByte; 845 } 846 847 /* 848 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 849 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 850 ** to store the copy of expression p, the copies of p->u.zToken 851 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 852 ** if any. Before returning, *pzBuffer is set to the first byte past the 853 ** portion of the buffer copied into by this function. 854 */ 855 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 856 Expr *pNew = 0; /* Value to return */ 857 assert( flags==0 || flags==EXPRDUP_REDUCE ); 858 if( p ){ 859 const int isReduced = (flags&EXPRDUP_REDUCE); 860 u8 *zAlloc; 861 u32 staticFlag = 0; 862 863 assert( pzBuffer==0 || isReduced ); 864 865 /* Figure out where to write the new Expr structure. */ 866 if( pzBuffer ){ 867 zAlloc = *pzBuffer; 868 staticFlag = EP_Static; 869 }else{ 870 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 871 } 872 pNew = (Expr *)zAlloc; 873 874 if( pNew ){ 875 /* Set nNewSize to the size allocated for the structure pointed to 876 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 877 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 878 ** by the copy of the p->u.zToken string (if any). 879 */ 880 const unsigned nStructSize = dupedExprStructSize(p, flags); 881 const int nNewSize = nStructSize & 0xfff; 882 int nToken; 883 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 884 nToken = sqlite3Strlen30(p->u.zToken) + 1; 885 }else{ 886 nToken = 0; 887 } 888 if( isReduced ){ 889 assert( ExprHasProperty(p, EP_Reduced)==0 ); 890 memcpy(zAlloc, p, nNewSize); 891 }else{ 892 u32 nSize = (u32)exprStructSize(p); 893 memcpy(zAlloc, p, nSize); 894 if( nSize<EXPR_FULLSIZE ){ 895 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 896 } 897 } 898 899 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 900 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 901 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 902 pNew->flags |= staticFlag; 903 904 /* Copy the p->u.zToken string, if any. */ 905 if( nToken ){ 906 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 907 memcpy(zToken, p->u.zToken, nToken); 908 } 909 910 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 911 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 912 if( ExprHasProperty(p, EP_xIsSelect) ){ 913 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 914 }else{ 915 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 916 } 917 } 918 919 /* Fill in pNew->pLeft and pNew->pRight. */ 920 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 921 zAlloc += dupedExprNodeSize(p, flags); 922 if( ExprHasProperty(pNew, EP_Reduced) ){ 923 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 924 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 925 } 926 if( pzBuffer ){ 927 *pzBuffer = zAlloc; 928 } 929 }else{ 930 if( !ExprHasProperty(p, EP_TokenOnly) ){ 931 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 932 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 933 } 934 } 935 936 } 937 } 938 return pNew; 939 } 940 941 /* 942 ** Create and return a deep copy of the object passed as the second 943 ** argument. If an OOM condition is encountered, NULL is returned 944 ** and the db->mallocFailed flag set. 945 */ 946 #ifndef SQLITE_OMIT_CTE 947 static With *withDup(sqlite3 *db, With *p){ 948 With *pRet = 0; 949 if( p ){ 950 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 951 pRet = sqlite3DbMallocZero(db, nByte); 952 if( pRet ){ 953 int i; 954 pRet->nCte = p->nCte; 955 for(i=0; i<p->nCte; i++){ 956 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 957 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 958 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 959 } 960 } 961 } 962 return pRet; 963 } 964 #else 965 # define withDup(x,y) 0 966 #endif 967 968 /* 969 ** The following group of routines make deep copies of expressions, 970 ** expression lists, ID lists, and select statements. The copies can 971 ** be deleted (by being passed to their respective ...Delete() routines) 972 ** without effecting the originals. 973 ** 974 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 975 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 976 ** by subsequent calls to sqlite*ListAppend() routines. 977 ** 978 ** Any tables that the SrcList might point to are not duplicated. 979 ** 980 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 981 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 982 ** truncated version of the usual Expr structure that will be stored as 983 ** part of the in-memory representation of the database schema. 984 */ 985 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 986 assert( flags==0 || flags==EXPRDUP_REDUCE ); 987 return exprDup(db, p, flags, 0); 988 } 989 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 990 ExprList *pNew; 991 struct ExprList_item *pItem, *pOldItem; 992 int i; 993 if( p==0 ) return 0; 994 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 995 if( pNew==0 ) return 0; 996 pNew->nExpr = i = p->nExpr; 997 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 998 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 999 if( pItem==0 ){ 1000 sqlite3DbFree(db, pNew); 1001 return 0; 1002 } 1003 pOldItem = p->a; 1004 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1005 Expr *pOldExpr = pOldItem->pExpr; 1006 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1007 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1008 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1009 pItem->sortOrder = pOldItem->sortOrder; 1010 pItem->done = 0; 1011 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1012 pItem->u = pOldItem->u; 1013 } 1014 return pNew; 1015 } 1016 1017 /* 1018 ** If cursors, triggers, views and subqueries are all omitted from 1019 ** the build, then none of the following routines, except for 1020 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1021 ** called with a NULL argument. 1022 */ 1023 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1024 || !defined(SQLITE_OMIT_SUBQUERY) 1025 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1026 SrcList *pNew; 1027 int i; 1028 int nByte; 1029 if( p==0 ) return 0; 1030 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1031 pNew = sqlite3DbMallocRaw(db, nByte ); 1032 if( pNew==0 ) return 0; 1033 pNew->nSrc = pNew->nAlloc = p->nSrc; 1034 for(i=0; i<p->nSrc; i++){ 1035 struct SrcList_item *pNewItem = &pNew->a[i]; 1036 struct SrcList_item *pOldItem = &p->a[i]; 1037 Table *pTab; 1038 pNewItem->pSchema = pOldItem->pSchema; 1039 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1040 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1041 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1042 pNewItem->fg = pOldItem->fg; 1043 pNewItem->iCursor = pOldItem->iCursor; 1044 pNewItem->addrFillSub = pOldItem->addrFillSub; 1045 pNewItem->regReturn = pOldItem->regReturn; 1046 if( pNewItem->fg.isIndexedBy ){ 1047 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1048 } 1049 pNewItem->pIBIndex = pOldItem->pIBIndex; 1050 if( pNewItem->fg.isTabFunc ){ 1051 pNewItem->u1.pFuncArg = 1052 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1053 } 1054 pTab = pNewItem->pTab = pOldItem->pTab; 1055 if( pTab ){ 1056 pTab->nRef++; 1057 } 1058 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1059 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1060 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1061 pNewItem->colUsed = pOldItem->colUsed; 1062 } 1063 return pNew; 1064 } 1065 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1066 IdList *pNew; 1067 int i; 1068 if( p==0 ) return 0; 1069 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1070 if( pNew==0 ) return 0; 1071 pNew->nId = p->nId; 1072 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1073 if( pNew->a==0 ){ 1074 sqlite3DbFree(db, pNew); 1075 return 0; 1076 } 1077 /* Note that because the size of the allocation for p->a[] is not 1078 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1079 ** on the duplicate created by this function. */ 1080 for(i=0; i<p->nId; i++){ 1081 struct IdList_item *pNewItem = &pNew->a[i]; 1082 struct IdList_item *pOldItem = &p->a[i]; 1083 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1084 pNewItem->idx = pOldItem->idx; 1085 } 1086 return pNew; 1087 } 1088 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1089 Select *pNew, *pPrior; 1090 if( p==0 ) return 0; 1091 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1092 if( pNew==0 ) return 0; 1093 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1094 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1095 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1096 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1097 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1098 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1099 pNew->op = p->op; 1100 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1101 if( pPrior ) pPrior->pNext = pNew; 1102 pNew->pNext = 0; 1103 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1104 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1105 pNew->iLimit = 0; 1106 pNew->iOffset = 0; 1107 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1108 pNew->addrOpenEphm[0] = -1; 1109 pNew->addrOpenEphm[1] = -1; 1110 pNew->nSelectRow = p->nSelectRow; 1111 pNew->pWith = withDup(db, p->pWith); 1112 sqlite3SelectSetName(pNew, p->zSelName); 1113 return pNew; 1114 } 1115 #else 1116 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1117 assert( p==0 ); 1118 return 0; 1119 } 1120 #endif 1121 1122 1123 /* 1124 ** Add a new element to the end of an expression list. If pList is 1125 ** initially NULL, then create a new expression list. 1126 ** 1127 ** If a memory allocation error occurs, the entire list is freed and 1128 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1129 ** that the new entry was successfully appended. 1130 */ 1131 ExprList *sqlite3ExprListAppend( 1132 Parse *pParse, /* Parsing context */ 1133 ExprList *pList, /* List to which to append. Might be NULL */ 1134 Expr *pExpr /* Expression to be appended. Might be NULL */ 1135 ){ 1136 sqlite3 *db = pParse->db; 1137 if( pList==0 ){ 1138 pList = sqlite3DbMallocRaw(db, sizeof(ExprList) ); 1139 if( pList==0 ){ 1140 goto no_mem; 1141 } 1142 pList->nExpr = 0; 1143 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1144 if( pList->a==0 ) goto no_mem; 1145 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1146 struct ExprList_item *a; 1147 assert( pList->nExpr>0 ); 1148 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1149 if( a==0 ){ 1150 goto no_mem; 1151 } 1152 pList->a = a; 1153 } 1154 assert( pList->a!=0 ); 1155 if( 1 ){ 1156 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1157 memset(pItem, 0, sizeof(*pItem)); 1158 pItem->pExpr = pExpr; 1159 } 1160 return pList; 1161 1162 no_mem: 1163 /* Avoid leaking memory if malloc has failed. */ 1164 sqlite3ExprDelete(db, pExpr); 1165 sqlite3ExprListDelete(db, pList); 1166 return 0; 1167 } 1168 1169 /* 1170 ** Set the sort order for the last element on the given ExprList. 1171 */ 1172 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1173 if( p==0 ) return; 1174 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1175 assert( p->nExpr>0 ); 1176 if( iSortOrder<0 ){ 1177 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1178 return; 1179 } 1180 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1181 } 1182 1183 /* 1184 ** Set the ExprList.a[].zName element of the most recently added item 1185 ** on the expression list. 1186 ** 1187 ** pList might be NULL following an OOM error. But pName should never be 1188 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1189 ** is set. 1190 */ 1191 void sqlite3ExprListSetName( 1192 Parse *pParse, /* Parsing context */ 1193 ExprList *pList, /* List to which to add the span. */ 1194 Token *pName, /* Name to be added */ 1195 int dequote /* True to cause the name to be dequoted */ 1196 ){ 1197 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1198 if( pList ){ 1199 struct ExprList_item *pItem; 1200 assert( pList->nExpr>0 ); 1201 pItem = &pList->a[pList->nExpr-1]; 1202 assert( pItem->zName==0 ); 1203 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1204 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1205 } 1206 } 1207 1208 /* 1209 ** Set the ExprList.a[].zSpan element of the most recently added item 1210 ** on the expression list. 1211 ** 1212 ** pList might be NULL following an OOM error. But pSpan should never be 1213 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1214 ** is set. 1215 */ 1216 void sqlite3ExprListSetSpan( 1217 Parse *pParse, /* Parsing context */ 1218 ExprList *pList, /* List to which to add the span. */ 1219 ExprSpan *pSpan /* The span to be added */ 1220 ){ 1221 sqlite3 *db = pParse->db; 1222 assert( pList!=0 || db->mallocFailed!=0 ); 1223 if( pList ){ 1224 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1225 assert( pList->nExpr>0 ); 1226 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1227 sqlite3DbFree(db, pItem->zSpan); 1228 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1229 (int)(pSpan->zEnd - pSpan->zStart)); 1230 } 1231 } 1232 1233 /* 1234 ** If the expression list pEList contains more than iLimit elements, 1235 ** leave an error message in pParse. 1236 */ 1237 void sqlite3ExprListCheckLength( 1238 Parse *pParse, 1239 ExprList *pEList, 1240 const char *zObject 1241 ){ 1242 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1243 testcase( pEList && pEList->nExpr==mx ); 1244 testcase( pEList && pEList->nExpr==mx+1 ); 1245 if( pEList && pEList->nExpr>mx ){ 1246 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1247 } 1248 } 1249 1250 /* 1251 ** Delete an entire expression list. 1252 */ 1253 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1254 int i; 1255 struct ExprList_item *pItem; 1256 if( pList==0 ) return; 1257 assert( pList->a!=0 || pList->nExpr==0 ); 1258 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1259 sqlite3ExprDelete(db, pItem->pExpr); 1260 sqlite3DbFree(db, pItem->zName); 1261 sqlite3DbFree(db, pItem->zSpan); 1262 } 1263 sqlite3DbFree(db, pList->a); 1264 sqlite3DbFree(db, pList); 1265 } 1266 1267 /* 1268 ** Return the bitwise-OR of all Expr.flags fields in the given 1269 ** ExprList. 1270 */ 1271 u32 sqlite3ExprListFlags(const ExprList *pList){ 1272 int i; 1273 u32 m = 0; 1274 if( pList ){ 1275 for(i=0; i<pList->nExpr; i++){ 1276 Expr *pExpr = pList->a[i].pExpr; 1277 if( ALWAYS(pExpr) ) m |= pExpr->flags; 1278 } 1279 } 1280 return m; 1281 } 1282 1283 /* 1284 ** These routines are Walker callbacks used to check expressions to 1285 ** see if they are "constant" for some definition of constant. The 1286 ** Walker.eCode value determines the type of "constant" we are looking 1287 ** for. 1288 ** 1289 ** These callback routines are used to implement the following: 1290 ** 1291 ** sqlite3ExprIsConstant() pWalker->eCode==1 1292 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1293 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1294 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1295 ** 1296 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1297 ** is found to not be a constant. 1298 ** 1299 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1300 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1301 ** an existing schema and 4 when processing a new statement. A bound 1302 ** parameter raises an error for new statements, but is silently converted 1303 ** to NULL for existing schemas. This allows sqlite_master tables that 1304 ** contain a bound parameter because they were generated by older versions 1305 ** of SQLite to be parsed by newer versions of SQLite without raising a 1306 ** malformed schema error. 1307 */ 1308 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1309 1310 /* If pWalker->eCode is 2 then any term of the expression that comes from 1311 ** the ON or USING clauses of a left join disqualifies the expression 1312 ** from being considered constant. */ 1313 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1314 pWalker->eCode = 0; 1315 return WRC_Abort; 1316 } 1317 1318 switch( pExpr->op ){ 1319 /* Consider functions to be constant if all their arguments are constant 1320 ** and either pWalker->eCode==4 or 5 or the function has the 1321 ** SQLITE_FUNC_CONST flag. */ 1322 case TK_FUNCTION: 1323 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1324 return WRC_Continue; 1325 }else{ 1326 pWalker->eCode = 0; 1327 return WRC_Abort; 1328 } 1329 case TK_ID: 1330 case TK_COLUMN: 1331 case TK_AGG_FUNCTION: 1332 case TK_AGG_COLUMN: 1333 testcase( pExpr->op==TK_ID ); 1334 testcase( pExpr->op==TK_COLUMN ); 1335 testcase( pExpr->op==TK_AGG_FUNCTION ); 1336 testcase( pExpr->op==TK_AGG_COLUMN ); 1337 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1338 return WRC_Continue; 1339 }else{ 1340 pWalker->eCode = 0; 1341 return WRC_Abort; 1342 } 1343 case TK_VARIABLE: 1344 if( pWalker->eCode==5 ){ 1345 /* Silently convert bound parameters that appear inside of CREATE 1346 ** statements into a NULL when parsing the CREATE statement text out 1347 ** of the sqlite_master table */ 1348 pExpr->op = TK_NULL; 1349 }else if( pWalker->eCode==4 ){ 1350 /* A bound parameter in a CREATE statement that originates from 1351 ** sqlite3_prepare() causes an error */ 1352 pWalker->eCode = 0; 1353 return WRC_Abort; 1354 } 1355 /* Fall through */ 1356 default: 1357 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1358 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1359 return WRC_Continue; 1360 } 1361 } 1362 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1363 UNUSED_PARAMETER(NotUsed); 1364 pWalker->eCode = 0; 1365 return WRC_Abort; 1366 } 1367 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1368 Walker w; 1369 memset(&w, 0, sizeof(w)); 1370 w.eCode = initFlag; 1371 w.xExprCallback = exprNodeIsConstant; 1372 w.xSelectCallback = selectNodeIsConstant; 1373 w.u.iCur = iCur; 1374 sqlite3WalkExpr(&w, p); 1375 return w.eCode; 1376 } 1377 1378 /* 1379 ** Walk an expression tree. Return non-zero if the expression is constant 1380 ** and 0 if it involves variables or function calls. 1381 ** 1382 ** For the purposes of this function, a double-quoted string (ex: "abc") 1383 ** is considered a variable but a single-quoted string (ex: 'abc') is 1384 ** a constant. 1385 */ 1386 int sqlite3ExprIsConstant(Expr *p){ 1387 return exprIsConst(p, 1, 0); 1388 } 1389 1390 /* 1391 ** Walk an expression tree. Return non-zero if the expression is constant 1392 ** that does no originate from the ON or USING clauses of a join. 1393 ** Return 0 if it involves variables or function calls or terms from 1394 ** an ON or USING clause. 1395 */ 1396 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1397 return exprIsConst(p, 2, 0); 1398 } 1399 1400 /* 1401 ** Walk an expression tree. Return non-zero if the expression is constant 1402 ** for any single row of the table with cursor iCur. In other words, the 1403 ** expression must not refer to any non-deterministic function nor any 1404 ** table other than iCur. 1405 */ 1406 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1407 return exprIsConst(p, 3, iCur); 1408 } 1409 1410 /* 1411 ** Walk an expression tree. Return non-zero if the expression is constant 1412 ** or a function call with constant arguments. Return and 0 if there 1413 ** are any variables. 1414 ** 1415 ** For the purposes of this function, a double-quoted string (ex: "abc") 1416 ** is considered a variable but a single-quoted string (ex: 'abc') is 1417 ** a constant. 1418 */ 1419 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1420 assert( isInit==0 || isInit==1 ); 1421 return exprIsConst(p, 4+isInit, 0); 1422 } 1423 1424 #ifdef SQLITE_ENABLE_CURSOR_HINTS 1425 /* 1426 ** Walk an expression tree. Return 1 if the expression contains a 1427 ** subquery of some kind. Return 0 if there are no subqueries. 1428 */ 1429 int sqlite3ExprContainsSubquery(Expr *p){ 1430 Walker w; 1431 memset(&w, 0, sizeof(w)); 1432 w.eCode = 1; 1433 w.xExprCallback = sqlite3ExprWalkNoop; 1434 w.xSelectCallback = selectNodeIsConstant; 1435 sqlite3WalkExpr(&w, p); 1436 return w.eCode==0; 1437 } 1438 #endif 1439 1440 /* 1441 ** If the expression p codes a constant integer that is small enough 1442 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1443 ** in *pValue. If the expression is not an integer or if it is too big 1444 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1445 */ 1446 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1447 int rc = 0; 1448 1449 /* If an expression is an integer literal that fits in a signed 32-bit 1450 ** integer, then the EP_IntValue flag will have already been set */ 1451 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1452 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1453 1454 if( p->flags & EP_IntValue ){ 1455 *pValue = p->u.iValue; 1456 return 1; 1457 } 1458 switch( p->op ){ 1459 case TK_UPLUS: { 1460 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1461 break; 1462 } 1463 case TK_UMINUS: { 1464 int v; 1465 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1466 assert( v!=(-2147483647-1) ); 1467 *pValue = -v; 1468 rc = 1; 1469 } 1470 break; 1471 } 1472 default: break; 1473 } 1474 return rc; 1475 } 1476 1477 /* 1478 ** Return FALSE if there is no chance that the expression can be NULL. 1479 ** 1480 ** If the expression might be NULL or if the expression is too complex 1481 ** to tell return TRUE. 1482 ** 1483 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1484 ** when we know that a value cannot be NULL. Hence, a false positive 1485 ** (returning TRUE when in fact the expression can never be NULL) might 1486 ** be a small performance hit but is otherwise harmless. On the other 1487 ** hand, a false negative (returning FALSE when the result could be NULL) 1488 ** will likely result in an incorrect answer. So when in doubt, return 1489 ** TRUE. 1490 */ 1491 int sqlite3ExprCanBeNull(const Expr *p){ 1492 u8 op; 1493 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1494 op = p->op; 1495 if( op==TK_REGISTER ) op = p->op2; 1496 switch( op ){ 1497 case TK_INTEGER: 1498 case TK_STRING: 1499 case TK_FLOAT: 1500 case TK_BLOB: 1501 return 0; 1502 case TK_COLUMN: 1503 assert( p->pTab!=0 ); 1504 return ExprHasProperty(p, EP_CanBeNull) || 1505 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1506 default: 1507 return 1; 1508 } 1509 } 1510 1511 /* 1512 ** Return TRUE if the given expression is a constant which would be 1513 ** unchanged by OP_Affinity with the affinity given in the second 1514 ** argument. 1515 ** 1516 ** This routine is used to determine if the OP_Affinity operation 1517 ** can be omitted. When in doubt return FALSE. A false negative 1518 ** is harmless. A false positive, however, can result in the wrong 1519 ** answer. 1520 */ 1521 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1522 u8 op; 1523 if( aff==SQLITE_AFF_BLOB ) return 1; 1524 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1525 op = p->op; 1526 if( op==TK_REGISTER ) op = p->op2; 1527 switch( op ){ 1528 case TK_INTEGER: { 1529 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1530 } 1531 case TK_FLOAT: { 1532 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1533 } 1534 case TK_STRING: { 1535 return aff==SQLITE_AFF_TEXT; 1536 } 1537 case TK_BLOB: { 1538 return 1; 1539 } 1540 case TK_COLUMN: { 1541 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1542 return p->iColumn<0 1543 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1544 } 1545 default: { 1546 return 0; 1547 } 1548 } 1549 } 1550 1551 /* 1552 ** Return TRUE if the given string is a row-id column name. 1553 */ 1554 int sqlite3IsRowid(const char *z){ 1555 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1556 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1557 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1558 return 0; 1559 } 1560 1561 /* 1562 ** Return true if we are able to the IN operator optimization on a 1563 ** query of the form 1564 ** 1565 ** x IN (SELECT ...) 1566 ** 1567 ** Where the SELECT... clause is as specified by the parameter to this 1568 ** routine. 1569 ** 1570 ** The Select object passed in has already been preprocessed and no 1571 ** errors have been found. 1572 */ 1573 #ifndef SQLITE_OMIT_SUBQUERY 1574 static int isCandidateForInOpt(Select *p){ 1575 SrcList *pSrc; 1576 ExprList *pEList; 1577 Table *pTab; 1578 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1579 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1580 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1581 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1582 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1583 return 0; /* No DISTINCT keyword and no aggregate functions */ 1584 } 1585 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1586 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1587 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1588 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1589 pSrc = p->pSrc; 1590 assert( pSrc!=0 ); 1591 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1592 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1593 pTab = pSrc->a[0].pTab; 1594 if( NEVER(pTab==0) ) return 0; 1595 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1596 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1597 pEList = p->pEList; 1598 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1599 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1600 return 1; 1601 } 1602 #endif /* SQLITE_OMIT_SUBQUERY */ 1603 1604 /* 1605 ** Code an OP_Once instruction and allocate space for its flag. Return the 1606 ** address of the new instruction. 1607 */ 1608 int sqlite3CodeOnce(Parse *pParse){ 1609 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1610 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1611 } 1612 1613 /* 1614 ** Generate code that checks the left-most column of index table iCur to see if 1615 ** it contains any NULL entries. Cause the register at regHasNull to be set 1616 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1617 ** to be set to NULL if iCur contains one or more NULL values. 1618 */ 1619 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1620 int addr1; 1621 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1622 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1623 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1624 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1625 VdbeComment((v, "first_entry_in(%d)", iCur)); 1626 sqlite3VdbeJumpHere(v, addr1); 1627 } 1628 1629 1630 #ifndef SQLITE_OMIT_SUBQUERY 1631 /* 1632 ** The argument is an IN operator with a list (not a subquery) on the 1633 ** right-hand side. Return TRUE if that list is constant. 1634 */ 1635 static int sqlite3InRhsIsConstant(Expr *pIn){ 1636 Expr *pLHS; 1637 int res; 1638 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1639 pLHS = pIn->pLeft; 1640 pIn->pLeft = 0; 1641 res = sqlite3ExprIsConstant(pIn); 1642 pIn->pLeft = pLHS; 1643 return res; 1644 } 1645 #endif 1646 1647 /* 1648 ** This function is used by the implementation of the IN (...) operator. 1649 ** The pX parameter is the expression on the RHS of the IN operator, which 1650 ** might be either a list of expressions or a subquery. 1651 ** 1652 ** The job of this routine is to find or create a b-tree object that can 1653 ** be used either to test for membership in the RHS set or to iterate through 1654 ** all members of the RHS set, skipping duplicates. 1655 ** 1656 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1657 ** and pX->iTable is set to the index of that cursor. 1658 ** 1659 ** The returned value of this function indicates the b-tree type, as follows: 1660 ** 1661 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1662 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1663 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1664 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1665 ** populated epheremal table. 1666 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1667 ** implemented as a sequence of comparisons. 1668 ** 1669 ** An existing b-tree might be used if the RHS expression pX is a simple 1670 ** subquery such as: 1671 ** 1672 ** SELECT <column> FROM <table> 1673 ** 1674 ** If the RHS of the IN operator is a list or a more complex subquery, then 1675 ** an ephemeral table might need to be generated from the RHS and then 1676 ** pX->iTable made to point to the ephemeral table instead of an 1677 ** existing table. 1678 ** 1679 ** The inFlags parameter must contain exactly one of the bits 1680 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1681 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1682 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1683 ** IN index will be used to loop over all values of the RHS of the 1684 ** IN operator. 1685 ** 1686 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1687 ** through the set members) then the b-tree must not contain duplicates. 1688 ** An epheremal table must be used unless the selected <column> is guaranteed 1689 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1690 ** has a UNIQUE constraint or UNIQUE index. 1691 ** 1692 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1693 ** for fast set membership tests) then an epheremal table must 1694 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1695 ** be found with <column> as its left-most column. 1696 ** 1697 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1698 ** if the RHS of the IN operator is a list (not a subquery) then this 1699 ** routine might decide that creating an ephemeral b-tree for membership 1700 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1701 ** calling routine should implement the IN operator using a sequence 1702 ** of Eq or Ne comparison operations. 1703 ** 1704 ** When the b-tree is being used for membership tests, the calling function 1705 ** might need to know whether or not the RHS side of the IN operator 1706 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1707 ** if there is any chance that the (...) might contain a NULL value at 1708 ** runtime, then a register is allocated and the register number written 1709 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1710 ** NULL value, then *prRhsHasNull is left unchanged. 1711 ** 1712 ** If a register is allocated and its location stored in *prRhsHasNull, then 1713 ** the value in that register will be NULL if the b-tree contains one or more 1714 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1715 ** NULL values. 1716 */ 1717 #ifndef SQLITE_OMIT_SUBQUERY 1718 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1719 Select *p; /* SELECT to the right of IN operator */ 1720 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1721 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1722 int mustBeUnique; /* True if RHS must be unique */ 1723 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1724 1725 assert( pX->op==TK_IN ); 1726 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1727 1728 /* Check to see if an existing table or index can be used to 1729 ** satisfy the query. This is preferable to generating a new 1730 ** ephemeral table. 1731 */ 1732 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1733 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ 1734 sqlite3 *db = pParse->db; /* Database connection */ 1735 Table *pTab; /* Table <table>. */ 1736 Expr *pExpr; /* Expression <column> */ 1737 i16 iCol; /* Index of column <column> */ 1738 i16 iDb; /* Database idx for pTab */ 1739 1740 assert( p ); /* Because of isCandidateForInOpt(p) */ 1741 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1742 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1743 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1744 pTab = p->pSrc->a[0].pTab; 1745 pExpr = p->pEList->a[0].pExpr; 1746 iCol = (i16)pExpr->iColumn; 1747 1748 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1749 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1750 sqlite3CodeVerifySchema(pParse, iDb); 1751 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1752 1753 /* This function is only called from two places. In both cases the vdbe 1754 ** has already been allocated. So assume sqlite3GetVdbe() is always 1755 ** successful here. 1756 */ 1757 assert(v); 1758 if( iCol<0 ){ 1759 int iAddr = sqlite3CodeOnce(pParse); 1760 VdbeCoverage(v); 1761 1762 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1763 eType = IN_INDEX_ROWID; 1764 1765 sqlite3VdbeJumpHere(v, iAddr); 1766 }else{ 1767 Index *pIdx; /* Iterator variable */ 1768 1769 /* The collation sequence used by the comparison. If an index is to 1770 ** be used in place of a temp-table, it must be ordered according 1771 ** to this collation sequence. */ 1772 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1773 1774 /* Check that the affinity that will be used to perform the 1775 ** comparison is the same as the affinity of the column. If 1776 ** it is not, it is not possible to use any index. 1777 */ 1778 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1779 1780 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1781 if( (pIdx->aiColumn[0]==iCol) 1782 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1783 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1784 ){ 1785 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1786 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1787 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1788 VdbeComment((v, "%s", pIdx->zName)); 1789 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1790 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1791 1792 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1793 *prRhsHasNull = ++pParse->nMem; 1794 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1795 } 1796 sqlite3VdbeJumpHere(v, iAddr); 1797 } 1798 } 1799 } 1800 } 1801 1802 /* If no preexisting index is available for the IN clause 1803 ** and IN_INDEX_NOOP is an allowed reply 1804 ** and the RHS of the IN operator is a list, not a subquery 1805 ** and the RHS is not contant or has two or fewer terms, 1806 ** then it is not worth creating an ephemeral table to evaluate 1807 ** the IN operator so return IN_INDEX_NOOP. 1808 */ 1809 if( eType==0 1810 && (inFlags & IN_INDEX_NOOP_OK) 1811 && !ExprHasProperty(pX, EP_xIsSelect) 1812 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1813 ){ 1814 eType = IN_INDEX_NOOP; 1815 } 1816 1817 1818 if( eType==0 ){ 1819 /* Could not find an existing table or index to use as the RHS b-tree. 1820 ** We will have to generate an ephemeral table to do the job. 1821 */ 1822 u32 savedNQueryLoop = pParse->nQueryLoop; 1823 int rMayHaveNull = 0; 1824 eType = IN_INDEX_EPH; 1825 if( inFlags & IN_INDEX_LOOP ){ 1826 pParse->nQueryLoop = 0; 1827 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1828 eType = IN_INDEX_ROWID; 1829 } 1830 }else if( prRhsHasNull ){ 1831 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1832 } 1833 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1834 pParse->nQueryLoop = savedNQueryLoop; 1835 }else{ 1836 pX->iTable = iTab; 1837 } 1838 return eType; 1839 } 1840 #endif 1841 1842 /* 1843 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1844 ** or IN operators. Examples: 1845 ** 1846 ** (SELECT a FROM b) -- subquery 1847 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1848 ** x IN (4,5,11) -- IN operator with list on right-hand side 1849 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1850 ** 1851 ** The pExpr parameter describes the expression that contains the IN 1852 ** operator or subquery. 1853 ** 1854 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1855 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1856 ** to some integer key column of a table B-Tree. In this case, use an 1857 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1858 ** (slower) variable length keys B-Tree. 1859 ** 1860 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1861 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1862 ** All this routine does is initialize the register given by rMayHaveNull 1863 ** to NULL. Calling routines will take care of changing this register 1864 ** value to non-NULL if the RHS is NULL-free. 1865 ** 1866 ** For a SELECT or EXISTS operator, return the register that holds the 1867 ** result. For IN operators or if an error occurs, the return value is 0. 1868 */ 1869 #ifndef SQLITE_OMIT_SUBQUERY 1870 int sqlite3CodeSubselect( 1871 Parse *pParse, /* Parsing context */ 1872 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1873 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1874 int isRowid /* If true, LHS of IN operator is a rowid */ 1875 ){ 1876 int jmpIfDynamic = -1; /* One-time test address */ 1877 int rReg = 0; /* Register storing resulting */ 1878 Vdbe *v = sqlite3GetVdbe(pParse); 1879 if( NEVER(v==0) ) return 0; 1880 sqlite3ExprCachePush(pParse); 1881 1882 /* This code must be run in its entirety every time it is encountered 1883 ** if any of the following is true: 1884 ** 1885 ** * The right-hand side is a correlated subquery 1886 ** * The right-hand side is an expression list containing variables 1887 ** * We are inside a trigger 1888 ** 1889 ** If all of the above are false, then we can run this code just once 1890 ** save the results, and reuse the same result on subsequent invocations. 1891 */ 1892 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1893 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1894 } 1895 1896 #ifndef SQLITE_OMIT_EXPLAIN 1897 if( pParse->explain==2 ){ 1898 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", 1899 jmpIfDynamic>=0?"":"CORRELATED ", 1900 pExpr->op==TK_IN?"LIST":"SCALAR", 1901 pParse->iNextSelectId 1902 ); 1903 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1904 } 1905 #endif 1906 1907 switch( pExpr->op ){ 1908 case TK_IN: { 1909 char affinity; /* Affinity of the LHS of the IN */ 1910 int addr; /* Address of OP_OpenEphemeral instruction */ 1911 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1912 KeyInfo *pKeyInfo = 0; /* Key information */ 1913 1914 affinity = sqlite3ExprAffinity(pLeft); 1915 1916 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1917 ** expression it is handled the same way. An ephemeral table is 1918 ** filled with single-field index keys representing the results 1919 ** from the SELECT or the <exprlist>. 1920 ** 1921 ** If the 'x' expression is a column value, or the SELECT... 1922 ** statement returns a column value, then the affinity of that 1923 ** column is used to build the index keys. If both 'x' and the 1924 ** SELECT... statement are columns, then numeric affinity is used 1925 ** if either column has NUMERIC or INTEGER affinity. If neither 1926 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1927 ** is used. 1928 */ 1929 pExpr->iTable = pParse->nTab++; 1930 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1931 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1932 1933 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1934 /* Case 1: expr IN (SELECT ...) 1935 ** 1936 ** Generate code to write the results of the select into the temporary 1937 ** table allocated and opened above. 1938 */ 1939 Select *pSelect = pExpr->x.pSelect; 1940 SelectDest dest; 1941 ExprList *pEList; 1942 1943 assert( !isRowid ); 1944 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1945 dest.affSdst = (u8)affinity; 1946 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1947 pSelect->iLimit = 0; 1948 testcase( pSelect->selFlags & SF_Distinct ); 1949 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1950 if( sqlite3Select(pParse, pSelect, &dest) ){ 1951 sqlite3KeyInfoUnref(pKeyInfo); 1952 return 0; 1953 } 1954 pEList = pSelect->pEList; 1955 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1956 assert( pEList!=0 ); 1957 assert( pEList->nExpr>0 ); 1958 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1959 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1960 pEList->a[0].pExpr); 1961 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1962 /* Case 2: expr IN (exprlist) 1963 ** 1964 ** For each expression, build an index key from the evaluation and 1965 ** store it in the temporary table. If <expr> is a column, then use 1966 ** that columns affinity when building index keys. If <expr> is not 1967 ** a column, use numeric affinity. 1968 */ 1969 int i; 1970 ExprList *pList = pExpr->x.pList; 1971 struct ExprList_item *pItem; 1972 int r1, r2, r3; 1973 1974 if( !affinity ){ 1975 affinity = SQLITE_AFF_BLOB; 1976 } 1977 if( pKeyInfo ){ 1978 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1979 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1980 } 1981 1982 /* Loop through each expression in <exprlist>. */ 1983 r1 = sqlite3GetTempReg(pParse); 1984 r2 = sqlite3GetTempReg(pParse); 1985 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1986 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1987 Expr *pE2 = pItem->pExpr; 1988 int iValToIns; 1989 1990 /* If the expression is not constant then we will need to 1991 ** disable the test that was generated above that makes sure 1992 ** this code only executes once. Because for a non-constant 1993 ** expression we need to rerun this code each time. 1994 */ 1995 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1996 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1997 jmpIfDynamic = -1; 1998 } 1999 2000 /* Evaluate the expression and insert it into the temp table */ 2001 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2002 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 2003 }else{ 2004 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2005 if( isRowid ){ 2006 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2007 sqlite3VdbeCurrentAddr(v)+2); 2008 VdbeCoverage(v); 2009 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 2010 }else{ 2011 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2012 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 2013 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 2014 } 2015 } 2016 } 2017 sqlite3ReleaseTempReg(pParse, r1); 2018 sqlite3ReleaseTempReg(pParse, r2); 2019 } 2020 if( pKeyInfo ){ 2021 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2022 } 2023 break; 2024 } 2025 2026 case TK_EXISTS: 2027 case TK_SELECT: 2028 default: { 2029 /* If this has to be a scalar SELECT. Generate code to put the 2030 ** value of this select in a memory cell and record the number 2031 ** of the memory cell in iColumn. If this is an EXISTS, write 2032 ** an integer 0 (not exists) or 1 (exists) into a memory cell 2033 ** and record that memory cell in iColumn. 2034 */ 2035 Select *pSel; /* SELECT statement to encode */ 2036 SelectDest dest; /* How to deal with SELECt result */ 2037 2038 testcase( pExpr->op==TK_EXISTS ); 2039 testcase( pExpr->op==TK_SELECT ); 2040 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2041 2042 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2043 pSel = pExpr->x.pSelect; 2044 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 2045 if( pExpr->op==TK_SELECT ){ 2046 dest.eDest = SRT_Mem; 2047 dest.iSdst = dest.iSDParm; 2048 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 2049 VdbeComment((v, "Init subquery result")); 2050 }else{ 2051 dest.eDest = SRT_Exists; 2052 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2053 VdbeComment((v, "Init EXISTS result")); 2054 } 2055 sqlite3ExprDelete(pParse->db, pSel->pLimit); 2056 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 2057 &sqlite3IntTokens[1]); 2058 pSel->iLimit = 0; 2059 pSel->selFlags &= ~SF_MultiValue; 2060 if( sqlite3Select(pParse, pSel, &dest) ){ 2061 return 0; 2062 } 2063 rReg = dest.iSDParm; 2064 ExprSetVVAProperty(pExpr, EP_NoReduce); 2065 break; 2066 } 2067 } 2068 2069 if( rHasNullFlag ){ 2070 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 2071 } 2072 2073 if( jmpIfDynamic>=0 ){ 2074 sqlite3VdbeJumpHere(v, jmpIfDynamic); 2075 } 2076 sqlite3ExprCachePop(pParse); 2077 2078 return rReg; 2079 } 2080 #endif /* SQLITE_OMIT_SUBQUERY */ 2081 2082 #ifndef SQLITE_OMIT_SUBQUERY 2083 /* 2084 ** Generate code for an IN expression. 2085 ** 2086 ** x IN (SELECT ...) 2087 ** x IN (value, value, ...) 2088 ** 2089 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2090 ** is an array of zero or more values. The expression is true if the LHS is 2091 ** contained within the RHS. The value of the expression is unknown (NULL) 2092 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2093 ** RHS contains one or more NULL values. 2094 ** 2095 ** This routine generates code that jumps to destIfFalse if the LHS is not 2096 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2097 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2098 ** within the RHS then fall through. 2099 */ 2100 static void sqlite3ExprCodeIN( 2101 Parse *pParse, /* Parsing and code generating context */ 2102 Expr *pExpr, /* The IN expression */ 2103 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2104 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2105 ){ 2106 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2107 char affinity; /* Comparison affinity to use */ 2108 int eType; /* Type of the RHS */ 2109 int r1; /* Temporary use register */ 2110 Vdbe *v; /* Statement under construction */ 2111 2112 /* Compute the RHS. After this step, the table with cursor 2113 ** pExpr->iTable will contains the values that make up the RHS. 2114 */ 2115 v = pParse->pVdbe; 2116 assert( v!=0 ); /* OOM detected prior to this routine */ 2117 VdbeNoopComment((v, "begin IN expr")); 2118 eType = sqlite3FindInIndex(pParse, pExpr, 2119 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2120 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2121 2122 /* Figure out the affinity to use to create a key from the results 2123 ** of the expression. affinityStr stores a static string suitable for 2124 ** P4 of OP_MakeRecord. 2125 */ 2126 affinity = comparisonAffinity(pExpr); 2127 2128 /* Code the LHS, the <expr> from "<expr> IN (...)". 2129 */ 2130 sqlite3ExprCachePush(pParse); 2131 r1 = sqlite3GetTempReg(pParse); 2132 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2133 2134 /* If sqlite3FindInIndex() did not find or create an index that is 2135 ** suitable for evaluating the IN operator, then evaluate using a 2136 ** sequence of comparisons. 2137 */ 2138 if( eType==IN_INDEX_NOOP ){ 2139 ExprList *pList = pExpr->x.pList; 2140 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2141 int labelOk = sqlite3VdbeMakeLabel(v); 2142 int r2, regToFree; 2143 int regCkNull = 0; 2144 int ii; 2145 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2146 if( destIfNull!=destIfFalse ){ 2147 regCkNull = sqlite3GetTempReg(pParse); 2148 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2149 } 2150 for(ii=0; ii<pList->nExpr; ii++){ 2151 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2152 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2153 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2154 } 2155 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2156 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2157 (void*)pColl, P4_COLLSEQ); 2158 VdbeCoverageIf(v, ii<pList->nExpr-1); 2159 VdbeCoverageIf(v, ii==pList->nExpr-1); 2160 sqlite3VdbeChangeP5(v, affinity); 2161 }else{ 2162 assert( destIfNull==destIfFalse ); 2163 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2164 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2165 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2166 } 2167 sqlite3ReleaseTempReg(pParse, regToFree); 2168 } 2169 if( regCkNull ){ 2170 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2171 sqlite3VdbeGoto(v, destIfFalse); 2172 } 2173 sqlite3VdbeResolveLabel(v, labelOk); 2174 sqlite3ReleaseTempReg(pParse, regCkNull); 2175 }else{ 2176 2177 /* If the LHS is NULL, then the result is either false or NULL depending 2178 ** on whether the RHS is empty or not, respectively. 2179 */ 2180 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2181 if( destIfNull==destIfFalse ){ 2182 /* Shortcut for the common case where the false and NULL outcomes are 2183 ** the same. */ 2184 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2185 }else{ 2186 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2187 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2188 VdbeCoverage(v); 2189 sqlite3VdbeGoto(v, destIfNull); 2190 sqlite3VdbeJumpHere(v, addr1); 2191 } 2192 } 2193 2194 if( eType==IN_INDEX_ROWID ){ 2195 /* In this case, the RHS is the ROWID of table b-tree 2196 */ 2197 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2198 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2199 VdbeCoverage(v); 2200 }else{ 2201 /* In this case, the RHS is an index b-tree. 2202 */ 2203 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2204 2205 /* If the set membership test fails, then the result of the 2206 ** "x IN (...)" expression must be either 0 or NULL. If the set 2207 ** contains no NULL values, then the result is 0. If the set 2208 ** contains one or more NULL values, then the result of the 2209 ** expression is also NULL. 2210 */ 2211 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2212 if( rRhsHasNull==0 ){ 2213 /* This branch runs if it is known at compile time that the RHS 2214 ** cannot contain NULL values. This happens as the result 2215 ** of a "NOT NULL" constraint in the database schema. 2216 ** 2217 ** Also run this branch if NULL is equivalent to FALSE 2218 ** for this particular IN operator. 2219 */ 2220 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2221 VdbeCoverage(v); 2222 }else{ 2223 /* In this branch, the RHS of the IN might contain a NULL and 2224 ** the presence of a NULL on the RHS makes a difference in the 2225 ** outcome. 2226 */ 2227 int addr1; 2228 2229 /* First check to see if the LHS is contained in the RHS. If so, 2230 ** then the answer is TRUE the presence of NULLs in the RHS does 2231 ** not matter. If the LHS is not contained in the RHS, then the 2232 ** answer is NULL if the RHS contains NULLs and the answer is 2233 ** FALSE if the RHS is NULL-free. 2234 */ 2235 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2236 VdbeCoverage(v); 2237 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2238 VdbeCoverage(v); 2239 sqlite3VdbeGoto(v, destIfFalse); 2240 sqlite3VdbeJumpHere(v, addr1); 2241 } 2242 } 2243 } 2244 sqlite3ReleaseTempReg(pParse, r1); 2245 sqlite3ExprCachePop(pParse); 2246 VdbeComment((v, "end IN expr")); 2247 } 2248 #endif /* SQLITE_OMIT_SUBQUERY */ 2249 2250 #ifndef SQLITE_OMIT_FLOATING_POINT 2251 /* 2252 ** Generate an instruction that will put the floating point 2253 ** value described by z[0..n-1] into register iMem. 2254 ** 2255 ** The z[] string will probably not be zero-terminated. But the 2256 ** z[n] character is guaranteed to be something that does not look 2257 ** like the continuation of the number. 2258 */ 2259 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2260 if( ALWAYS(z!=0) ){ 2261 double value; 2262 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2263 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2264 if( negateFlag ) value = -value; 2265 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 2266 } 2267 } 2268 #endif 2269 2270 2271 /* 2272 ** Generate an instruction that will put the integer describe by 2273 ** text z[0..n-1] into register iMem. 2274 ** 2275 ** Expr.u.zToken is always UTF8 and zero-terminated. 2276 */ 2277 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2278 Vdbe *v = pParse->pVdbe; 2279 if( pExpr->flags & EP_IntValue ){ 2280 int i = pExpr->u.iValue; 2281 assert( i>=0 ); 2282 if( negFlag ) i = -i; 2283 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2284 }else{ 2285 int c; 2286 i64 value; 2287 const char *z = pExpr->u.zToken; 2288 assert( z!=0 ); 2289 c = sqlite3DecOrHexToI64(z, &value); 2290 if( c==0 || (c==2 && negFlag) ){ 2291 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2292 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 2293 }else{ 2294 #ifdef SQLITE_OMIT_FLOATING_POINT 2295 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2296 #else 2297 #ifndef SQLITE_OMIT_HEX_INTEGER 2298 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2299 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2300 }else 2301 #endif 2302 { 2303 codeReal(v, z, negFlag, iMem); 2304 } 2305 #endif 2306 } 2307 } 2308 } 2309 2310 /* 2311 ** Clear a cache entry. 2312 */ 2313 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2314 if( p->tempReg ){ 2315 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2316 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2317 } 2318 p->tempReg = 0; 2319 } 2320 } 2321 2322 2323 /* 2324 ** Record in the column cache that a particular column from a 2325 ** particular table is stored in a particular register. 2326 */ 2327 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2328 int i; 2329 int minLru; 2330 int idxLru; 2331 struct yColCache *p; 2332 2333 /* Unless an error has occurred, register numbers are always positive. */ 2334 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); 2335 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2336 2337 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2338 ** for testing only - to verify that SQLite always gets the same answer 2339 ** with and without the column cache. 2340 */ 2341 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2342 2343 /* First replace any existing entry. 2344 ** 2345 ** Actually, the way the column cache is currently used, we are guaranteed 2346 ** that the object will never already be in cache. Verify this guarantee. 2347 */ 2348 #ifndef NDEBUG 2349 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2350 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2351 } 2352 #endif 2353 2354 /* Find an empty slot and replace it */ 2355 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2356 if( p->iReg==0 ){ 2357 p->iLevel = pParse->iCacheLevel; 2358 p->iTable = iTab; 2359 p->iColumn = iCol; 2360 p->iReg = iReg; 2361 p->tempReg = 0; 2362 p->lru = pParse->iCacheCnt++; 2363 return; 2364 } 2365 } 2366 2367 /* Replace the last recently used */ 2368 minLru = 0x7fffffff; 2369 idxLru = -1; 2370 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2371 if( p->lru<minLru ){ 2372 idxLru = i; 2373 minLru = p->lru; 2374 } 2375 } 2376 if( ALWAYS(idxLru>=0) ){ 2377 p = &pParse->aColCache[idxLru]; 2378 p->iLevel = pParse->iCacheLevel; 2379 p->iTable = iTab; 2380 p->iColumn = iCol; 2381 p->iReg = iReg; 2382 p->tempReg = 0; 2383 p->lru = pParse->iCacheCnt++; 2384 return; 2385 } 2386 } 2387 2388 /* 2389 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2390 ** Purge the range of registers from the column cache. 2391 */ 2392 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2393 int i; 2394 int iLast = iReg + nReg - 1; 2395 struct yColCache *p; 2396 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2397 int r = p->iReg; 2398 if( r>=iReg && r<=iLast ){ 2399 cacheEntryClear(pParse, p); 2400 p->iReg = 0; 2401 } 2402 } 2403 } 2404 2405 /* 2406 ** Remember the current column cache context. Any new entries added 2407 ** added to the column cache after this call are removed when the 2408 ** corresponding pop occurs. 2409 */ 2410 void sqlite3ExprCachePush(Parse *pParse){ 2411 pParse->iCacheLevel++; 2412 #ifdef SQLITE_DEBUG 2413 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2414 printf("PUSH to %d\n", pParse->iCacheLevel); 2415 } 2416 #endif 2417 } 2418 2419 /* 2420 ** Remove from the column cache any entries that were added since the 2421 ** the previous sqlite3ExprCachePush operation. In other words, restore 2422 ** the cache to the state it was in prior the most recent Push. 2423 */ 2424 void sqlite3ExprCachePop(Parse *pParse){ 2425 int i; 2426 struct yColCache *p; 2427 assert( pParse->iCacheLevel>=1 ); 2428 pParse->iCacheLevel--; 2429 #ifdef SQLITE_DEBUG 2430 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2431 printf("POP to %d\n", pParse->iCacheLevel); 2432 } 2433 #endif 2434 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2435 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2436 cacheEntryClear(pParse, p); 2437 p->iReg = 0; 2438 } 2439 } 2440 } 2441 2442 /* 2443 ** When a cached column is reused, make sure that its register is 2444 ** no longer available as a temp register. ticket #3879: that same 2445 ** register might be in the cache in multiple places, so be sure to 2446 ** get them all. 2447 */ 2448 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2449 int i; 2450 struct yColCache *p; 2451 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2452 if( p->iReg==iReg ){ 2453 p->tempReg = 0; 2454 } 2455 } 2456 } 2457 2458 /* Generate code that will load into register regOut a value that is 2459 ** appropriate for the iIdxCol-th column of index pIdx. 2460 */ 2461 void sqlite3ExprCodeLoadIndexColumn( 2462 Parse *pParse, /* The parsing context */ 2463 Index *pIdx, /* The index whose column is to be loaded */ 2464 int iTabCur, /* Cursor pointing to a table row */ 2465 int iIdxCol, /* The column of the index to be loaded */ 2466 int regOut /* Store the index column value in this register */ 2467 ){ 2468 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 2469 if( iTabCol==XN_EXPR ){ 2470 assert( pIdx->aColExpr ); 2471 assert( pIdx->aColExpr->nExpr>iIdxCol ); 2472 pParse->iSelfTab = iTabCur; 2473 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 2474 }else{ 2475 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 2476 iTabCol, regOut); 2477 } 2478 } 2479 2480 /* 2481 ** Generate code to extract the value of the iCol-th column of a table. 2482 */ 2483 void sqlite3ExprCodeGetColumnOfTable( 2484 Vdbe *v, /* The VDBE under construction */ 2485 Table *pTab, /* The table containing the value */ 2486 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2487 int iCol, /* Index of the column to extract */ 2488 int regOut /* Extract the value into this register */ 2489 ){ 2490 if( iCol<0 || iCol==pTab->iPKey ){ 2491 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2492 }else{ 2493 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2494 int x = iCol; 2495 if( !HasRowid(pTab) ){ 2496 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2497 } 2498 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2499 } 2500 if( iCol>=0 ){ 2501 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2502 } 2503 } 2504 2505 /* 2506 ** Generate code that will extract the iColumn-th column from 2507 ** table pTab and store the column value in a register. 2508 ** 2509 ** An effort is made to store the column value in register iReg. This 2510 ** is not garanteeed for GetColumn() - the result can be stored in 2511 ** any register. But the result is guaranteed to land in register iReg 2512 ** for GetColumnToReg(). 2513 ** 2514 ** There must be an open cursor to pTab in iTable when this routine 2515 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2516 */ 2517 int sqlite3ExprCodeGetColumn( 2518 Parse *pParse, /* Parsing and code generating context */ 2519 Table *pTab, /* Description of the table we are reading from */ 2520 int iColumn, /* Index of the table column */ 2521 int iTable, /* The cursor pointing to the table */ 2522 int iReg, /* Store results here */ 2523 u8 p5 /* P5 value for OP_Column + FLAGS */ 2524 ){ 2525 Vdbe *v = pParse->pVdbe; 2526 int i; 2527 struct yColCache *p; 2528 2529 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2530 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2531 p->lru = pParse->iCacheCnt++; 2532 sqlite3ExprCachePinRegister(pParse, p->iReg); 2533 return p->iReg; 2534 } 2535 } 2536 assert( v!=0 ); 2537 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2538 if( p5 ){ 2539 sqlite3VdbeChangeP5(v, p5); 2540 }else{ 2541 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2542 } 2543 return iReg; 2544 } 2545 void sqlite3ExprCodeGetColumnToReg( 2546 Parse *pParse, /* Parsing and code generating context */ 2547 Table *pTab, /* Description of the table we are reading from */ 2548 int iColumn, /* Index of the table column */ 2549 int iTable, /* The cursor pointing to the table */ 2550 int iReg /* Store results here */ 2551 ){ 2552 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); 2553 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); 2554 } 2555 2556 2557 /* 2558 ** Clear all column cache entries. 2559 */ 2560 void sqlite3ExprCacheClear(Parse *pParse){ 2561 int i; 2562 struct yColCache *p; 2563 2564 #if SQLITE_DEBUG 2565 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2566 printf("CLEAR\n"); 2567 } 2568 #endif 2569 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2570 if( p->iReg ){ 2571 cacheEntryClear(pParse, p); 2572 p->iReg = 0; 2573 } 2574 } 2575 } 2576 2577 /* 2578 ** Record the fact that an affinity change has occurred on iCount 2579 ** registers starting with iStart. 2580 */ 2581 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2582 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2583 } 2584 2585 /* 2586 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2587 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2588 */ 2589 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2590 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2591 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2592 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2593 } 2594 2595 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2596 /* 2597 ** Return true if any register in the range iFrom..iTo (inclusive) 2598 ** is used as part of the column cache. 2599 ** 2600 ** This routine is used within assert() and testcase() macros only 2601 ** and does not appear in a normal build. 2602 */ 2603 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2604 int i; 2605 struct yColCache *p; 2606 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2607 int r = p->iReg; 2608 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2609 } 2610 return 0; 2611 } 2612 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2613 2614 /* 2615 ** Convert an expression node to a TK_REGISTER 2616 */ 2617 static void exprToRegister(Expr *p, int iReg){ 2618 p->op2 = p->op; 2619 p->op = TK_REGISTER; 2620 p->iTable = iReg; 2621 ExprClearProperty(p, EP_Skip); 2622 } 2623 2624 /* 2625 ** Generate code into the current Vdbe to evaluate the given 2626 ** expression. Attempt to store the results in register "target". 2627 ** Return the register where results are stored. 2628 ** 2629 ** With this routine, there is no guarantee that results will 2630 ** be stored in target. The result might be stored in some other 2631 ** register if it is convenient to do so. The calling function 2632 ** must check the return code and move the results to the desired 2633 ** register. 2634 */ 2635 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2636 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2637 int op; /* The opcode being coded */ 2638 int inReg = target; /* Results stored in register inReg */ 2639 int regFree1 = 0; /* If non-zero free this temporary register */ 2640 int regFree2 = 0; /* If non-zero free this temporary register */ 2641 int r1, r2, r3, r4; /* Various register numbers */ 2642 sqlite3 *db = pParse->db; /* The database connection */ 2643 Expr tempX; /* Temporary expression node */ 2644 2645 assert( target>0 && target<=pParse->nMem ); 2646 if( v==0 ){ 2647 assert( pParse->db->mallocFailed ); 2648 return 0; 2649 } 2650 2651 if( pExpr==0 ){ 2652 op = TK_NULL; 2653 }else{ 2654 op = pExpr->op; 2655 } 2656 switch( op ){ 2657 case TK_AGG_COLUMN: { 2658 AggInfo *pAggInfo = pExpr->pAggInfo; 2659 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2660 if( !pAggInfo->directMode ){ 2661 assert( pCol->iMem>0 ); 2662 inReg = pCol->iMem; 2663 break; 2664 }else if( pAggInfo->useSortingIdx ){ 2665 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2666 pCol->iSorterColumn, target); 2667 break; 2668 } 2669 /* Otherwise, fall thru into the TK_COLUMN case */ 2670 } 2671 case TK_COLUMN: { 2672 int iTab = pExpr->iTable; 2673 if( iTab<0 ){ 2674 if( pParse->ckBase>0 ){ 2675 /* Generating CHECK constraints or inserting into partial index */ 2676 inReg = pExpr->iColumn + pParse->ckBase; 2677 break; 2678 }else{ 2679 /* Coding an expression that is part of an index where column names 2680 ** in the index refer to the table to which the index belongs */ 2681 iTab = pParse->iSelfTab; 2682 } 2683 } 2684 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2685 pExpr->iColumn, iTab, target, 2686 pExpr->op2); 2687 break; 2688 } 2689 case TK_INTEGER: { 2690 codeInteger(pParse, pExpr, 0, target); 2691 break; 2692 } 2693 #ifndef SQLITE_OMIT_FLOATING_POINT 2694 case TK_FLOAT: { 2695 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2696 codeReal(v, pExpr->u.zToken, 0, target); 2697 break; 2698 } 2699 #endif 2700 case TK_STRING: { 2701 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2702 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 2703 break; 2704 } 2705 case TK_NULL: { 2706 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2707 break; 2708 } 2709 #ifndef SQLITE_OMIT_BLOB_LITERAL 2710 case TK_BLOB: { 2711 int n; 2712 const char *z; 2713 char *zBlob; 2714 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2715 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2716 assert( pExpr->u.zToken[1]=='\'' ); 2717 z = &pExpr->u.zToken[2]; 2718 n = sqlite3Strlen30(z) - 1; 2719 assert( z[n]=='\'' ); 2720 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2721 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2722 break; 2723 } 2724 #endif 2725 case TK_VARIABLE: { 2726 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2727 assert( pExpr->u.zToken!=0 ); 2728 assert( pExpr->u.zToken[0]!=0 ); 2729 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2730 if( pExpr->u.zToken[1]!=0 ){ 2731 assert( pExpr->u.zToken[0]=='?' 2732 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2733 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2734 } 2735 break; 2736 } 2737 case TK_REGISTER: { 2738 inReg = pExpr->iTable; 2739 break; 2740 } 2741 #ifndef SQLITE_OMIT_CAST 2742 case TK_CAST: { 2743 /* Expressions of the form: CAST(pLeft AS token) */ 2744 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2745 if( inReg!=target ){ 2746 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2747 inReg = target; 2748 } 2749 sqlite3VdbeAddOp2(v, OP_Cast, target, 2750 sqlite3AffinityType(pExpr->u.zToken, 0)); 2751 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2752 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2753 break; 2754 } 2755 #endif /* SQLITE_OMIT_CAST */ 2756 case TK_LT: 2757 case TK_LE: 2758 case TK_GT: 2759 case TK_GE: 2760 case TK_NE: 2761 case TK_EQ: { 2762 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2763 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2764 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2765 r1, r2, inReg, SQLITE_STOREP2); 2766 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2767 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2768 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2769 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2770 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2771 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2772 testcase( regFree1==0 ); 2773 testcase( regFree2==0 ); 2774 break; 2775 } 2776 case TK_IS: 2777 case TK_ISNOT: { 2778 testcase( op==TK_IS ); 2779 testcase( op==TK_ISNOT ); 2780 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2781 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2782 op = (op==TK_IS) ? TK_EQ : TK_NE; 2783 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2784 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2785 VdbeCoverageIf(v, op==TK_EQ); 2786 VdbeCoverageIf(v, op==TK_NE); 2787 testcase( regFree1==0 ); 2788 testcase( regFree2==0 ); 2789 break; 2790 } 2791 case TK_AND: 2792 case TK_OR: 2793 case TK_PLUS: 2794 case TK_STAR: 2795 case TK_MINUS: 2796 case TK_REM: 2797 case TK_BITAND: 2798 case TK_BITOR: 2799 case TK_SLASH: 2800 case TK_LSHIFT: 2801 case TK_RSHIFT: 2802 case TK_CONCAT: { 2803 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2804 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2805 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2806 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2807 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2808 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2809 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2810 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2811 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2812 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2813 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2814 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2815 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2816 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2817 testcase( regFree1==0 ); 2818 testcase( regFree2==0 ); 2819 break; 2820 } 2821 case TK_UMINUS: { 2822 Expr *pLeft = pExpr->pLeft; 2823 assert( pLeft ); 2824 if( pLeft->op==TK_INTEGER ){ 2825 codeInteger(pParse, pLeft, 1, target); 2826 #ifndef SQLITE_OMIT_FLOATING_POINT 2827 }else if( pLeft->op==TK_FLOAT ){ 2828 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2829 codeReal(v, pLeft->u.zToken, 1, target); 2830 #endif 2831 }else{ 2832 tempX.op = TK_INTEGER; 2833 tempX.flags = EP_IntValue|EP_TokenOnly; 2834 tempX.u.iValue = 0; 2835 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2836 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2837 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2838 testcase( regFree2==0 ); 2839 } 2840 inReg = target; 2841 break; 2842 } 2843 case TK_BITNOT: 2844 case TK_NOT: { 2845 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2846 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2847 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2848 testcase( regFree1==0 ); 2849 inReg = target; 2850 sqlite3VdbeAddOp2(v, op, r1, inReg); 2851 break; 2852 } 2853 case TK_ISNULL: 2854 case TK_NOTNULL: { 2855 int addr; 2856 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2857 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2858 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2859 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2860 testcase( regFree1==0 ); 2861 addr = sqlite3VdbeAddOp1(v, op, r1); 2862 VdbeCoverageIf(v, op==TK_ISNULL); 2863 VdbeCoverageIf(v, op==TK_NOTNULL); 2864 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2865 sqlite3VdbeJumpHere(v, addr); 2866 break; 2867 } 2868 case TK_AGG_FUNCTION: { 2869 AggInfo *pInfo = pExpr->pAggInfo; 2870 if( pInfo==0 ){ 2871 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2872 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2873 }else{ 2874 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2875 } 2876 break; 2877 } 2878 case TK_FUNCTION: { 2879 ExprList *pFarg; /* List of function arguments */ 2880 int nFarg; /* Number of function arguments */ 2881 FuncDef *pDef; /* The function definition object */ 2882 int nId; /* Length of the function name in bytes */ 2883 const char *zId; /* The function name */ 2884 u32 constMask = 0; /* Mask of function arguments that are constant */ 2885 int i; /* Loop counter */ 2886 u8 enc = ENC(db); /* The text encoding used by this database */ 2887 CollSeq *pColl = 0; /* A collating sequence */ 2888 2889 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2890 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2891 pFarg = 0; 2892 }else{ 2893 pFarg = pExpr->x.pList; 2894 } 2895 nFarg = pFarg ? pFarg->nExpr : 0; 2896 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2897 zId = pExpr->u.zToken; 2898 nId = sqlite3Strlen30(zId); 2899 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2900 if( pDef==0 || pDef->xFinalize!=0 ){ 2901 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2902 break; 2903 } 2904 2905 /* Attempt a direct implementation of the built-in COALESCE() and 2906 ** IFNULL() functions. This avoids unnecessary evaluation of 2907 ** arguments past the first non-NULL argument. 2908 */ 2909 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2910 int endCoalesce = sqlite3VdbeMakeLabel(v); 2911 assert( nFarg>=2 ); 2912 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2913 for(i=1; i<nFarg; i++){ 2914 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2915 VdbeCoverage(v); 2916 sqlite3ExprCacheRemove(pParse, target, 1); 2917 sqlite3ExprCachePush(pParse); 2918 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2919 sqlite3ExprCachePop(pParse); 2920 } 2921 sqlite3VdbeResolveLabel(v, endCoalesce); 2922 break; 2923 } 2924 2925 /* The UNLIKELY() function is a no-op. The result is the value 2926 ** of the first argument. 2927 */ 2928 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2929 assert( nFarg>=1 ); 2930 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 2931 break; 2932 } 2933 2934 for(i=0; i<nFarg; i++){ 2935 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2936 testcase( i==31 ); 2937 constMask |= MASKBIT32(i); 2938 } 2939 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2940 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2941 } 2942 } 2943 if( pFarg ){ 2944 if( constMask ){ 2945 r1 = pParse->nMem+1; 2946 pParse->nMem += nFarg; 2947 }else{ 2948 r1 = sqlite3GetTempRange(pParse, nFarg); 2949 } 2950 2951 /* For length() and typeof() functions with a column argument, 2952 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2953 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2954 ** loading. 2955 */ 2956 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2957 u8 exprOp; 2958 assert( nFarg==1 ); 2959 assert( pFarg->a[0].pExpr!=0 ); 2960 exprOp = pFarg->a[0].pExpr->op; 2961 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2962 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2963 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2964 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2965 pFarg->a[0].pExpr->op2 = 2966 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2967 } 2968 } 2969 2970 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2971 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 2972 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2973 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2974 }else{ 2975 r1 = 0; 2976 } 2977 #ifndef SQLITE_OMIT_VIRTUALTABLE 2978 /* Possibly overload the function if the first argument is 2979 ** a virtual table column. 2980 ** 2981 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2982 ** second argument, not the first, as the argument to test to 2983 ** see if it is a column in a virtual table. This is done because 2984 ** the left operand of infix functions (the operand we want to 2985 ** control overloading) ends up as the second argument to the 2986 ** function. The expression "A glob B" is equivalent to 2987 ** "glob(B,A). We want to use the A in "A glob B" to test 2988 ** for function overloading. But we use the B term in "glob(B,A)". 2989 */ 2990 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2991 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2992 }else if( nFarg>0 ){ 2993 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2994 } 2995 #endif 2996 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2997 if( !pColl ) pColl = db->pDfltColl; 2998 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2999 } 3000 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, 3001 (char*)pDef, P4_FUNCDEF); 3002 sqlite3VdbeChangeP5(v, (u8)nFarg); 3003 if( nFarg && constMask==0 ){ 3004 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3005 } 3006 break; 3007 } 3008 #ifndef SQLITE_OMIT_SUBQUERY 3009 case TK_EXISTS: 3010 case TK_SELECT: { 3011 testcase( op==TK_EXISTS ); 3012 testcase( op==TK_SELECT ); 3013 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 3014 break; 3015 } 3016 case TK_IN: { 3017 int destIfFalse = sqlite3VdbeMakeLabel(v); 3018 int destIfNull = sqlite3VdbeMakeLabel(v); 3019 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3020 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3021 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3022 sqlite3VdbeResolveLabel(v, destIfFalse); 3023 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3024 sqlite3VdbeResolveLabel(v, destIfNull); 3025 break; 3026 } 3027 #endif /* SQLITE_OMIT_SUBQUERY */ 3028 3029 3030 /* 3031 ** x BETWEEN y AND z 3032 ** 3033 ** This is equivalent to 3034 ** 3035 ** x>=y AND x<=z 3036 ** 3037 ** X is stored in pExpr->pLeft. 3038 ** Y is stored in pExpr->pList->a[0].pExpr. 3039 ** Z is stored in pExpr->pList->a[1].pExpr. 3040 */ 3041 case TK_BETWEEN: { 3042 Expr *pLeft = pExpr->pLeft; 3043 struct ExprList_item *pLItem = pExpr->x.pList->a; 3044 Expr *pRight = pLItem->pExpr; 3045 3046 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3047 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3048 testcase( regFree1==0 ); 3049 testcase( regFree2==0 ); 3050 r3 = sqlite3GetTempReg(pParse); 3051 r4 = sqlite3GetTempReg(pParse); 3052 codeCompare(pParse, pLeft, pRight, OP_Ge, 3053 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 3054 pLItem++; 3055 pRight = pLItem->pExpr; 3056 sqlite3ReleaseTempReg(pParse, regFree2); 3057 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 3058 testcase( regFree2==0 ); 3059 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 3060 VdbeCoverage(v); 3061 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 3062 sqlite3ReleaseTempReg(pParse, r3); 3063 sqlite3ReleaseTempReg(pParse, r4); 3064 break; 3065 } 3066 case TK_COLLATE: 3067 case TK_UPLUS: { 3068 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3069 break; 3070 } 3071 3072 case TK_TRIGGER: { 3073 /* If the opcode is TK_TRIGGER, then the expression is a reference 3074 ** to a column in the new.* or old.* pseudo-tables available to 3075 ** trigger programs. In this case Expr.iTable is set to 1 for the 3076 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3077 ** is set to the column of the pseudo-table to read, or to -1 to 3078 ** read the rowid field. 3079 ** 3080 ** The expression is implemented using an OP_Param opcode. The p1 3081 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3082 ** to reference another column of the old.* pseudo-table, where 3083 ** i is the index of the column. For a new.rowid reference, p1 is 3084 ** set to (n+1), where n is the number of columns in each pseudo-table. 3085 ** For a reference to any other column in the new.* pseudo-table, p1 3086 ** is set to (n+2+i), where n and i are as defined previously. For 3087 ** example, if the table on which triggers are being fired is 3088 ** declared as: 3089 ** 3090 ** CREATE TABLE t1(a, b); 3091 ** 3092 ** Then p1 is interpreted as follows: 3093 ** 3094 ** p1==0 -> old.rowid p1==3 -> new.rowid 3095 ** p1==1 -> old.a p1==4 -> new.a 3096 ** p1==2 -> old.b p1==5 -> new.b 3097 */ 3098 Table *pTab = pExpr->pTab; 3099 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3100 3101 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3102 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3103 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3104 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3105 3106 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3107 VdbeComment((v, "%s.%s -> $%d", 3108 (pExpr->iTable ? "new" : "old"), 3109 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3110 target 3111 )); 3112 3113 #ifndef SQLITE_OMIT_FLOATING_POINT 3114 /* If the column has REAL affinity, it may currently be stored as an 3115 ** integer. Use OP_RealAffinity to make sure it is really real. 3116 ** 3117 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3118 ** floating point when extracting it from the record. */ 3119 if( pExpr->iColumn>=0 3120 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3121 ){ 3122 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3123 } 3124 #endif 3125 break; 3126 } 3127 3128 3129 /* 3130 ** Form A: 3131 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3132 ** 3133 ** Form B: 3134 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3135 ** 3136 ** Form A is can be transformed into the equivalent form B as follows: 3137 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3138 ** WHEN x=eN THEN rN ELSE y END 3139 ** 3140 ** X (if it exists) is in pExpr->pLeft. 3141 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3142 ** odd. The Y is also optional. If the number of elements in x.pList 3143 ** is even, then Y is omitted and the "otherwise" result is NULL. 3144 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3145 ** 3146 ** The result of the expression is the Ri for the first matching Ei, 3147 ** or if there is no matching Ei, the ELSE term Y, or if there is 3148 ** no ELSE term, NULL. 3149 */ 3150 default: assert( op==TK_CASE ); { 3151 int endLabel; /* GOTO label for end of CASE stmt */ 3152 int nextCase; /* GOTO label for next WHEN clause */ 3153 int nExpr; /* 2x number of WHEN terms */ 3154 int i; /* Loop counter */ 3155 ExprList *pEList; /* List of WHEN terms */ 3156 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3157 Expr opCompare; /* The X==Ei expression */ 3158 Expr *pX; /* The X expression */ 3159 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3160 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3161 3162 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3163 assert(pExpr->x.pList->nExpr > 0); 3164 pEList = pExpr->x.pList; 3165 aListelem = pEList->a; 3166 nExpr = pEList->nExpr; 3167 endLabel = sqlite3VdbeMakeLabel(v); 3168 if( (pX = pExpr->pLeft)!=0 ){ 3169 tempX = *pX; 3170 testcase( pX->op==TK_COLUMN ); 3171 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3172 testcase( regFree1==0 ); 3173 opCompare.op = TK_EQ; 3174 opCompare.pLeft = &tempX; 3175 pTest = &opCompare; 3176 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3177 ** The value in regFree1 might get SCopy-ed into the file result. 3178 ** So make sure that the regFree1 register is not reused for other 3179 ** purposes and possibly overwritten. */ 3180 regFree1 = 0; 3181 } 3182 for(i=0; i<nExpr-1; i=i+2){ 3183 sqlite3ExprCachePush(pParse); 3184 if( pX ){ 3185 assert( pTest!=0 ); 3186 opCompare.pRight = aListelem[i].pExpr; 3187 }else{ 3188 pTest = aListelem[i].pExpr; 3189 } 3190 nextCase = sqlite3VdbeMakeLabel(v); 3191 testcase( pTest->op==TK_COLUMN ); 3192 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3193 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3194 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3195 sqlite3VdbeGoto(v, endLabel); 3196 sqlite3ExprCachePop(pParse); 3197 sqlite3VdbeResolveLabel(v, nextCase); 3198 } 3199 if( (nExpr&1)!=0 ){ 3200 sqlite3ExprCachePush(pParse); 3201 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3202 sqlite3ExprCachePop(pParse); 3203 }else{ 3204 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3205 } 3206 assert( db->mallocFailed || pParse->nErr>0 3207 || pParse->iCacheLevel==iCacheLevel ); 3208 sqlite3VdbeResolveLabel(v, endLabel); 3209 break; 3210 } 3211 #ifndef SQLITE_OMIT_TRIGGER 3212 case TK_RAISE: { 3213 assert( pExpr->affinity==OE_Rollback 3214 || pExpr->affinity==OE_Abort 3215 || pExpr->affinity==OE_Fail 3216 || pExpr->affinity==OE_Ignore 3217 ); 3218 if( !pParse->pTriggerTab ){ 3219 sqlite3ErrorMsg(pParse, 3220 "RAISE() may only be used within a trigger-program"); 3221 return 0; 3222 } 3223 if( pExpr->affinity==OE_Abort ){ 3224 sqlite3MayAbort(pParse); 3225 } 3226 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3227 if( pExpr->affinity==OE_Ignore ){ 3228 sqlite3VdbeAddOp4( 3229 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3230 VdbeCoverage(v); 3231 }else{ 3232 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3233 pExpr->affinity, pExpr->u.zToken, 0, 0); 3234 } 3235 3236 break; 3237 } 3238 #endif 3239 } 3240 sqlite3ReleaseTempReg(pParse, regFree1); 3241 sqlite3ReleaseTempReg(pParse, regFree2); 3242 return inReg; 3243 } 3244 3245 /* 3246 ** Factor out the code of the given expression to initialization time. 3247 */ 3248 void sqlite3ExprCodeAtInit( 3249 Parse *pParse, /* Parsing context */ 3250 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3251 int regDest, /* Store the value in this register */ 3252 u8 reusable /* True if this expression is reusable */ 3253 ){ 3254 ExprList *p; 3255 assert( ConstFactorOk(pParse) ); 3256 p = pParse->pConstExpr; 3257 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3258 p = sqlite3ExprListAppend(pParse, p, pExpr); 3259 if( p ){ 3260 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3261 pItem->u.iConstExprReg = regDest; 3262 pItem->reusable = reusable; 3263 } 3264 pParse->pConstExpr = p; 3265 } 3266 3267 /* 3268 ** Generate code to evaluate an expression and store the results 3269 ** into a register. Return the register number where the results 3270 ** are stored. 3271 ** 3272 ** If the register is a temporary register that can be deallocated, 3273 ** then write its number into *pReg. If the result register is not 3274 ** a temporary, then set *pReg to zero. 3275 ** 3276 ** If pExpr is a constant, then this routine might generate this 3277 ** code to fill the register in the initialization section of the 3278 ** VDBE program, in order to factor it out of the evaluation loop. 3279 */ 3280 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3281 int r2; 3282 pExpr = sqlite3ExprSkipCollate(pExpr); 3283 if( ConstFactorOk(pParse) 3284 && pExpr->op!=TK_REGISTER 3285 && sqlite3ExprIsConstantNotJoin(pExpr) 3286 ){ 3287 ExprList *p = pParse->pConstExpr; 3288 int i; 3289 *pReg = 0; 3290 if( p ){ 3291 struct ExprList_item *pItem; 3292 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3293 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3294 return pItem->u.iConstExprReg; 3295 } 3296 } 3297 } 3298 r2 = ++pParse->nMem; 3299 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3300 }else{ 3301 int r1 = sqlite3GetTempReg(pParse); 3302 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3303 if( r2==r1 ){ 3304 *pReg = r1; 3305 }else{ 3306 sqlite3ReleaseTempReg(pParse, r1); 3307 *pReg = 0; 3308 } 3309 } 3310 return r2; 3311 } 3312 3313 /* 3314 ** Generate code that will evaluate expression pExpr and store the 3315 ** results in register target. The results are guaranteed to appear 3316 ** in register target. 3317 */ 3318 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3319 int inReg; 3320 3321 assert( target>0 && target<=pParse->nMem ); 3322 if( pExpr && pExpr->op==TK_REGISTER ){ 3323 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3324 }else{ 3325 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3326 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 3327 if( inReg!=target && pParse->pVdbe ){ 3328 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3329 } 3330 } 3331 } 3332 3333 /* 3334 ** Make a transient copy of expression pExpr and then code it using 3335 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 3336 ** except that the input expression is guaranteed to be unchanged. 3337 */ 3338 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 3339 sqlite3 *db = pParse->db; 3340 pExpr = sqlite3ExprDup(db, pExpr, 0); 3341 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 3342 sqlite3ExprDelete(db, pExpr); 3343 } 3344 3345 /* 3346 ** Generate code that will evaluate expression pExpr and store the 3347 ** results in register target. The results are guaranteed to appear 3348 ** in register target. If the expression is constant, then this routine 3349 ** might choose to code the expression at initialization time. 3350 */ 3351 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3352 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3353 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3354 }else{ 3355 sqlite3ExprCode(pParse, pExpr, target); 3356 } 3357 } 3358 3359 /* 3360 ** Generate code that evaluates the given expression and puts the result 3361 ** in register target. 3362 ** 3363 ** Also make a copy of the expression results into another "cache" register 3364 ** and modify the expression so that the next time it is evaluated, 3365 ** the result is a copy of the cache register. 3366 ** 3367 ** This routine is used for expressions that are used multiple 3368 ** times. They are evaluated once and the results of the expression 3369 ** are reused. 3370 */ 3371 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3372 Vdbe *v = pParse->pVdbe; 3373 int iMem; 3374 3375 assert( target>0 ); 3376 assert( pExpr->op!=TK_REGISTER ); 3377 sqlite3ExprCode(pParse, pExpr, target); 3378 iMem = ++pParse->nMem; 3379 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3380 exprToRegister(pExpr, iMem); 3381 } 3382 3383 /* 3384 ** Generate code that pushes the value of every element of the given 3385 ** expression list into a sequence of registers beginning at target. 3386 ** 3387 ** Return the number of elements evaluated. 3388 ** 3389 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3390 ** filled using OP_SCopy. OP_Copy must be used instead. 3391 ** 3392 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3393 ** factored out into initialization code. 3394 ** 3395 ** The SQLITE_ECEL_REF flag means that expressions in the list with 3396 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 3397 ** in registers at srcReg, and so the value can be copied from there. 3398 */ 3399 int sqlite3ExprCodeExprList( 3400 Parse *pParse, /* Parsing context */ 3401 ExprList *pList, /* The expression list to be coded */ 3402 int target, /* Where to write results */ 3403 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 3404 u8 flags /* SQLITE_ECEL_* flags */ 3405 ){ 3406 struct ExprList_item *pItem; 3407 int i, j, n; 3408 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3409 Vdbe *v = pParse->pVdbe; 3410 assert( pList!=0 ); 3411 assert( target>0 ); 3412 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3413 n = pList->nExpr; 3414 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3415 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3416 Expr *pExpr = pItem->pExpr; 3417 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ 3418 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 3419 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3420 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3421 }else{ 3422 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3423 if( inReg!=target+i ){ 3424 VdbeOp *pOp; 3425 if( copyOp==OP_Copy 3426 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3427 && pOp->p1+pOp->p3+1==inReg 3428 && pOp->p2+pOp->p3+1==target+i 3429 ){ 3430 pOp->p3++; 3431 }else{ 3432 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3433 } 3434 } 3435 } 3436 } 3437 return n; 3438 } 3439 3440 /* 3441 ** Generate code for a BETWEEN operator. 3442 ** 3443 ** x BETWEEN y AND z 3444 ** 3445 ** The above is equivalent to 3446 ** 3447 ** x>=y AND x<=z 3448 ** 3449 ** Code it as such, taking care to do the common subexpression 3450 ** elimination of x. 3451 */ 3452 static void exprCodeBetween( 3453 Parse *pParse, /* Parsing and code generating context */ 3454 Expr *pExpr, /* The BETWEEN expression */ 3455 int dest, /* Jump here if the jump is taken */ 3456 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3457 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3458 ){ 3459 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3460 Expr compLeft; /* The x>=y term */ 3461 Expr compRight; /* The x<=z term */ 3462 Expr exprX; /* The x subexpression */ 3463 int regFree1 = 0; /* Temporary use register */ 3464 3465 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3466 exprX = *pExpr->pLeft; 3467 exprAnd.op = TK_AND; 3468 exprAnd.pLeft = &compLeft; 3469 exprAnd.pRight = &compRight; 3470 compLeft.op = TK_GE; 3471 compLeft.pLeft = &exprX; 3472 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3473 compRight.op = TK_LE; 3474 compRight.pLeft = &exprX; 3475 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3476 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3477 if( jumpIfTrue ){ 3478 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3479 }else{ 3480 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3481 } 3482 sqlite3ReleaseTempReg(pParse, regFree1); 3483 3484 /* Ensure adequate test coverage */ 3485 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3486 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3487 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3488 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3489 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3490 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3491 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3492 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3493 } 3494 3495 /* 3496 ** Generate code for a boolean expression such that a jump is made 3497 ** to the label "dest" if the expression is true but execution 3498 ** continues straight thru if the expression is false. 3499 ** 3500 ** If the expression evaluates to NULL (neither true nor false), then 3501 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3502 ** 3503 ** This code depends on the fact that certain token values (ex: TK_EQ) 3504 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3505 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3506 ** the make process cause these values to align. Assert()s in the code 3507 ** below verify that the numbers are aligned correctly. 3508 */ 3509 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3510 Vdbe *v = pParse->pVdbe; 3511 int op = 0; 3512 int regFree1 = 0; 3513 int regFree2 = 0; 3514 int r1, r2; 3515 3516 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3517 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3518 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3519 op = pExpr->op; 3520 switch( op ){ 3521 case TK_AND: { 3522 int d2 = sqlite3VdbeMakeLabel(v); 3523 testcase( jumpIfNull==0 ); 3524 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3525 sqlite3ExprCachePush(pParse); 3526 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3527 sqlite3VdbeResolveLabel(v, d2); 3528 sqlite3ExprCachePop(pParse); 3529 break; 3530 } 3531 case TK_OR: { 3532 testcase( jumpIfNull==0 ); 3533 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3534 sqlite3ExprCachePush(pParse); 3535 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3536 sqlite3ExprCachePop(pParse); 3537 break; 3538 } 3539 case TK_NOT: { 3540 testcase( jumpIfNull==0 ); 3541 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3542 break; 3543 } 3544 case TK_LT: 3545 case TK_LE: 3546 case TK_GT: 3547 case TK_GE: 3548 case TK_NE: 3549 case TK_EQ: { 3550 testcase( jumpIfNull==0 ); 3551 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3552 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3553 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3554 r1, r2, dest, jumpIfNull); 3555 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3556 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3557 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3558 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3559 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3560 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3561 testcase( regFree1==0 ); 3562 testcase( regFree2==0 ); 3563 break; 3564 } 3565 case TK_IS: 3566 case TK_ISNOT: { 3567 testcase( op==TK_IS ); 3568 testcase( op==TK_ISNOT ); 3569 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3570 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3571 op = (op==TK_IS) ? TK_EQ : TK_NE; 3572 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3573 r1, r2, dest, SQLITE_NULLEQ); 3574 VdbeCoverageIf(v, op==TK_EQ); 3575 VdbeCoverageIf(v, op==TK_NE); 3576 testcase( regFree1==0 ); 3577 testcase( regFree2==0 ); 3578 break; 3579 } 3580 case TK_ISNULL: 3581 case TK_NOTNULL: { 3582 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3583 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3584 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3585 sqlite3VdbeAddOp2(v, op, r1, dest); 3586 VdbeCoverageIf(v, op==TK_ISNULL); 3587 VdbeCoverageIf(v, op==TK_NOTNULL); 3588 testcase( regFree1==0 ); 3589 break; 3590 } 3591 case TK_BETWEEN: { 3592 testcase( jumpIfNull==0 ); 3593 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3594 break; 3595 } 3596 #ifndef SQLITE_OMIT_SUBQUERY 3597 case TK_IN: { 3598 int destIfFalse = sqlite3VdbeMakeLabel(v); 3599 int destIfNull = jumpIfNull ? dest : destIfFalse; 3600 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3601 sqlite3VdbeGoto(v, dest); 3602 sqlite3VdbeResolveLabel(v, destIfFalse); 3603 break; 3604 } 3605 #endif 3606 default: { 3607 if( exprAlwaysTrue(pExpr) ){ 3608 sqlite3VdbeGoto(v, dest); 3609 }else if( exprAlwaysFalse(pExpr) ){ 3610 /* No-op */ 3611 }else{ 3612 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3613 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3614 VdbeCoverage(v); 3615 testcase( regFree1==0 ); 3616 testcase( jumpIfNull==0 ); 3617 } 3618 break; 3619 } 3620 } 3621 sqlite3ReleaseTempReg(pParse, regFree1); 3622 sqlite3ReleaseTempReg(pParse, regFree2); 3623 } 3624 3625 /* 3626 ** Generate code for a boolean expression such that a jump is made 3627 ** to the label "dest" if the expression is false but execution 3628 ** continues straight thru if the expression is true. 3629 ** 3630 ** If the expression evaluates to NULL (neither true nor false) then 3631 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3632 ** is 0. 3633 */ 3634 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3635 Vdbe *v = pParse->pVdbe; 3636 int op = 0; 3637 int regFree1 = 0; 3638 int regFree2 = 0; 3639 int r1, r2; 3640 3641 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3642 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3643 if( pExpr==0 ) return; 3644 3645 /* The value of pExpr->op and op are related as follows: 3646 ** 3647 ** pExpr->op op 3648 ** --------- ---------- 3649 ** TK_ISNULL OP_NotNull 3650 ** TK_NOTNULL OP_IsNull 3651 ** TK_NE OP_Eq 3652 ** TK_EQ OP_Ne 3653 ** TK_GT OP_Le 3654 ** TK_LE OP_Gt 3655 ** TK_GE OP_Lt 3656 ** TK_LT OP_Ge 3657 ** 3658 ** For other values of pExpr->op, op is undefined and unused. 3659 ** The value of TK_ and OP_ constants are arranged such that we 3660 ** can compute the mapping above using the following expression. 3661 ** Assert()s verify that the computation is correct. 3662 */ 3663 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3664 3665 /* Verify correct alignment of TK_ and OP_ constants 3666 */ 3667 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3668 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3669 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3670 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3671 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3672 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3673 assert( pExpr->op!=TK_GT || op==OP_Le ); 3674 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3675 3676 switch( pExpr->op ){ 3677 case TK_AND: { 3678 testcase( jumpIfNull==0 ); 3679 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3680 sqlite3ExprCachePush(pParse); 3681 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3682 sqlite3ExprCachePop(pParse); 3683 break; 3684 } 3685 case TK_OR: { 3686 int d2 = sqlite3VdbeMakeLabel(v); 3687 testcase( jumpIfNull==0 ); 3688 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3689 sqlite3ExprCachePush(pParse); 3690 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3691 sqlite3VdbeResolveLabel(v, d2); 3692 sqlite3ExprCachePop(pParse); 3693 break; 3694 } 3695 case TK_NOT: { 3696 testcase( jumpIfNull==0 ); 3697 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3698 break; 3699 } 3700 case TK_LT: 3701 case TK_LE: 3702 case TK_GT: 3703 case TK_GE: 3704 case TK_NE: 3705 case TK_EQ: { 3706 testcase( jumpIfNull==0 ); 3707 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3708 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3709 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3710 r1, r2, dest, jumpIfNull); 3711 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3712 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3713 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3714 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3715 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3716 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3717 testcase( regFree1==0 ); 3718 testcase( regFree2==0 ); 3719 break; 3720 } 3721 case TK_IS: 3722 case TK_ISNOT: { 3723 testcase( pExpr->op==TK_IS ); 3724 testcase( pExpr->op==TK_ISNOT ); 3725 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3726 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3727 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3728 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3729 r1, r2, dest, SQLITE_NULLEQ); 3730 VdbeCoverageIf(v, op==TK_EQ); 3731 VdbeCoverageIf(v, op==TK_NE); 3732 testcase( regFree1==0 ); 3733 testcase( regFree2==0 ); 3734 break; 3735 } 3736 case TK_ISNULL: 3737 case TK_NOTNULL: { 3738 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3739 sqlite3VdbeAddOp2(v, op, r1, dest); 3740 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3741 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3742 testcase( regFree1==0 ); 3743 break; 3744 } 3745 case TK_BETWEEN: { 3746 testcase( jumpIfNull==0 ); 3747 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3748 break; 3749 } 3750 #ifndef SQLITE_OMIT_SUBQUERY 3751 case TK_IN: { 3752 if( jumpIfNull ){ 3753 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3754 }else{ 3755 int destIfNull = sqlite3VdbeMakeLabel(v); 3756 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3757 sqlite3VdbeResolveLabel(v, destIfNull); 3758 } 3759 break; 3760 } 3761 #endif 3762 default: { 3763 if( exprAlwaysFalse(pExpr) ){ 3764 sqlite3VdbeGoto(v, dest); 3765 }else if( exprAlwaysTrue(pExpr) ){ 3766 /* no-op */ 3767 }else{ 3768 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3769 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3770 VdbeCoverage(v); 3771 testcase( regFree1==0 ); 3772 testcase( jumpIfNull==0 ); 3773 } 3774 break; 3775 } 3776 } 3777 sqlite3ReleaseTempReg(pParse, regFree1); 3778 sqlite3ReleaseTempReg(pParse, regFree2); 3779 } 3780 3781 /* 3782 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 3783 ** code generation, and that copy is deleted after code generation. This 3784 ** ensures that the original pExpr is unchanged. 3785 */ 3786 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 3787 sqlite3 *db = pParse->db; 3788 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 3789 if( db->mallocFailed==0 ){ 3790 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 3791 } 3792 sqlite3ExprDelete(db, pCopy); 3793 } 3794 3795 3796 /* 3797 ** Do a deep comparison of two expression trees. Return 0 if the two 3798 ** expressions are completely identical. Return 1 if they differ only 3799 ** by a COLLATE operator at the top level. Return 2 if there are differences 3800 ** other than the top-level COLLATE operator. 3801 ** 3802 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3803 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3804 ** 3805 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3806 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3807 ** 3808 ** Sometimes this routine will return 2 even if the two expressions 3809 ** really are equivalent. If we cannot prove that the expressions are 3810 ** identical, we return 2 just to be safe. So if this routine 3811 ** returns 2, then you do not really know for certain if the two 3812 ** expressions are the same. But if you get a 0 or 1 return, then you 3813 ** can be sure the expressions are the same. In the places where 3814 ** this routine is used, it does not hurt to get an extra 2 - that 3815 ** just might result in some slightly slower code. But returning 3816 ** an incorrect 0 or 1 could lead to a malfunction. 3817 */ 3818 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3819 u32 combinedFlags; 3820 if( pA==0 || pB==0 ){ 3821 return pB==pA ? 0 : 2; 3822 } 3823 combinedFlags = pA->flags | pB->flags; 3824 if( combinedFlags & EP_IntValue ){ 3825 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3826 return 0; 3827 } 3828 return 2; 3829 } 3830 if( pA->op!=pB->op ){ 3831 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3832 return 1; 3833 } 3834 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3835 return 1; 3836 } 3837 return 2; 3838 } 3839 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 3840 if( pA->op==TK_FUNCTION ){ 3841 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 3842 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3843 return pA->op==TK_COLLATE ? 1 : 2; 3844 } 3845 } 3846 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3847 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3848 if( combinedFlags & EP_xIsSelect ) return 2; 3849 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3850 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3851 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3852 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ 3853 if( pA->iColumn!=pB->iColumn ) return 2; 3854 if( pA->iTable!=pB->iTable 3855 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3856 } 3857 } 3858 return 0; 3859 } 3860 3861 /* 3862 ** Compare two ExprList objects. Return 0 if they are identical and 3863 ** non-zero if they differ in any way. 3864 ** 3865 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3866 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3867 ** 3868 ** This routine might return non-zero for equivalent ExprLists. The 3869 ** only consequence will be disabled optimizations. But this routine 3870 ** must never return 0 if the two ExprList objects are different, or 3871 ** a malfunction will result. 3872 ** 3873 ** Two NULL pointers are considered to be the same. But a NULL pointer 3874 ** always differs from a non-NULL pointer. 3875 */ 3876 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3877 int i; 3878 if( pA==0 && pB==0 ) return 0; 3879 if( pA==0 || pB==0 ) return 1; 3880 if( pA->nExpr!=pB->nExpr ) return 1; 3881 for(i=0; i<pA->nExpr; i++){ 3882 Expr *pExprA = pA->a[i].pExpr; 3883 Expr *pExprB = pB->a[i].pExpr; 3884 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3885 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3886 } 3887 return 0; 3888 } 3889 3890 /* 3891 ** Return true if we can prove the pE2 will always be true if pE1 is 3892 ** true. Return false if we cannot complete the proof or if pE2 might 3893 ** be false. Examples: 3894 ** 3895 ** pE1: x==5 pE2: x==5 Result: true 3896 ** pE1: x>0 pE2: x==5 Result: false 3897 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3898 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3899 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3900 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3901 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3902 ** 3903 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3904 ** Expr.iTable<0 then assume a table number given by iTab. 3905 ** 3906 ** When in doubt, return false. Returning true might give a performance 3907 ** improvement. Returning false might cause a performance reduction, but 3908 ** it will always give the correct answer and is hence always safe. 3909 */ 3910 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3911 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3912 return 1; 3913 } 3914 if( pE2->op==TK_OR 3915 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3916 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3917 ){ 3918 return 1; 3919 } 3920 if( pE2->op==TK_NOTNULL 3921 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3922 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3923 ){ 3924 return 1; 3925 } 3926 return 0; 3927 } 3928 3929 /* 3930 ** An instance of the following structure is used by the tree walker 3931 ** to count references to table columns in the arguments of an 3932 ** aggregate function, in order to implement the 3933 ** sqlite3FunctionThisSrc() routine. 3934 */ 3935 struct SrcCount { 3936 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3937 int nThis; /* Number of references to columns in pSrcList */ 3938 int nOther; /* Number of references to columns in other FROM clauses */ 3939 }; 3940 3941 /* 3942 ** Count the number of references to columns. 3943 */ 3944 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3945 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3946 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3947 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3948 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3949 ** NEVER() will need to be removed. */ 3950 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3951 int i; 3952 struct SrcCount *p = pWalker->u.pSrcCount; 3953 SrcList *pSrc = p->pSrc; 3954 int nSrc = pSrc ? pSrc->nSrc : 0; 3955 for(i=0; i<nSrc; i++){ 3956 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3957 } 3958 if( i<nSrc ){ 3959 p->nThis++; 3960 }else{ 3961 p->nOther++; 3962 } 3963 } 3964 return WRC_Continue; 3965 } 3966 3967 /* 3968 ** Determine if any of the arguments to the pExpr Function reference 3969 ** pSrcList. Return true if they do. Also return true if the function 3970 ** has no arguments or has only constant arguments. Return false if pExpr 3971 ** references columns but not columns of tables found in pSrcList. 3972 */ 3973 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 3974 Walker w; 3975 struct SrcCount cnt; 3976 assert( pExpr->op==TK_AGG_FUNCTION ); 3977 memset(&w, 0, sizeof(w)); 3978 w.xExprCallback = exprSrcCount; 3979 w.u.pSrcCount = &cnt; 3980 cnt.pSrc = pSrcList; 3981 cnt.nThis = 0; 3982 cnt.nOther = 0; 3983 sqlite3WalkExprList(&w, pExpr->x.pList); 3984 return cnt.nThis>0 || cnt.nOther==0; 3985 } 3986 3987 /* 3988 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 3989 ** the new element. Return a negative number if malloc fails. 3990 */ 3991 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 3992 int i; 3993 pInfo->aCol = sqlite3ArrayAllocate( 3994 db, 3995 pInfo->aCol, 3996 sizeof(pInfo->aCol[0]), 3997 &pInfo->nColumn, 3998 &i 3999 ); 4000 return i; 4001 } 4002 4003 /* 4004 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4005 ** the new element. Return a negative number if malloc fails. 4006 */ 4007 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4008 int i; 4009 pInfo->aFunc = sqlite3ArrayAllocate( 4010 db, 4011 pInfo->aFunc, 4012 sizeof(pInfo->aFunc[0]), 4013 &pInfo->nFunc, 4014 &i 4015 ); 4016 return i; 4017 } 4018 4019 /* 4020 ** This is the xExprCallback for a tree walker. It is used to 4021 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4022 ** for additional information. 4023 */ 4024 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4025 int i; 4026 NameContext *pNC = pWalker->u.pNC; 4027 Parse *pParse = pNC->pParse; 4028 SrcList *pSrcList = pNC->pSrcList; 4029 AggInfo *pAggInfo = pNC->pAggInfo; 4030 4031 switch( pExpr->op ){ 4032 case TK_AGG_COLUMN: 4033 case TK_COLUMN: { 4034 testcase( pExpr->op==TK_AGG_COLUMN ); 4035 testcase( pExpr->op==TK_COLUMN ); 4036 /* Check to see if the column is in one of the tables in the FROM 4037 ** clause of the aggregate query */ 4038 if( ALWAYS(pSrcList!=0) ){ 4039 struct SrcList_item *pItem = pSrcList->a; 4040 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4041 struct AggInfo_col *pCol; 4042 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4043 if( pExpr->iTable==pItem->iCursor ){ 4044 /* If we reach this point, it means that pExpr refers to a table 4045 ** that is in the FROM clause of the aggregate query. 4046 ** 4047 ** Make an entry for the column in pAggInfo->aCol[] if there 4048 ** is not an entry there already. 4049 */ 4050 int k; 4051 pCol = pAggInfo->aCol; 4052 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4053 if( pCol->iTable==pExpr->iTable && 4054 pCol->iColumn==pExpr->iColumn ){ 4055 break; 4056 } 4057 } 4058 if( (k>=pAggInfo->nColumn) 4059 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4060 ){ 4061 pCol = &pAggInfo->aCol[k]; 4062 pCol->pTab = pExpr->pTab; 4063 pCol->iTable = pExpr->iTable; 4064 pCol->iColumn = pExpr->iColumn; 4065 pCol->iMem = ++pParse->nMem; 4066 pCol->iSorterColumn = -1; 4067 pCol->pExpr = pExpr; 4068 if( pAggInfo->pGroupBy ){ 4069 int j, n; 4070 ExprList *pGB = pAggInfo->pGroupBy; 4071 struct ExprList_item *pTerm = pGB->a; 4072 n = pGB->nExpr; 4073 for(j=0; j<n; j++, pTerm++){ 4074 Expr *pE = pTerm->pExpr; 4075 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4076 pE->iColumn==pExpr->iColumn ){ 4077 pCol->iSorterColumn = j; 4078 break; 4079 } 4080 } 4081 } 4082 if( pCol->iSorterColumn<0 ){ 4083 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4084 } 4085 } 4086 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4087 ** because it was there before or because we just created it). 4088 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4089 ** pAggInfo->aCol[] entry. 4090 */ 4091 ExprSetVVAProperty(pExpr, EP_NoReduce); 4092 pExpr->pAggInfo = pAggInfo; 4093 pExpr->op = TK_AGG_COLUMN; 4094 pExpr->iAgg = (i16)k; 4095 break; 4096 } /* endif pExpr->iTable==pItem->iCursor */ 4097 } /* end loop over pSrcList */ 4098 } 4099 return WRC_Prune; 4100 } 4101 case TK_AGG_FUNCTION: { 4102 if( (pNC->ncFlags & NC_InAggFunc)==0 4103 && pWalker->walkerDepth==pExpr->op2 4104 ){ 4105 /* Check to see if pExpr is a duplicate of another aggregate 4106 ** function that is already in the pAggInfo structure 4107 */ 4108 struct AggInfo_func *pItem = pAggInfo->aFunc; 4109 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4110 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4111 break; 4112 } 4113 } 4114 if( i>=pAggInfo->nFunc ){ 4115 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4116 */ 4117 u8 enc = ENC(pParse->db); 4118 i = addAggInfoFunc(pParse->db, pAggInfo); 4119 if( i>=0 ){ 4120 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4121 pItem = &pAggInfo->aFunc[i]; 4122 pItem->pExpr = pExpr; 4123 pItem->iMem = ++pParse->nMem; 4124 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4125 pItem->pFunc = sqlite3FindFunction(pParse->db, 4126 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4127 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4128 if( pExpr->flags & EP_Distinct ){ 4129 pItem->iDistinct = pParse->nTab++; 4130 }else{ 4131 pItem->iDistinct = -1; 4132 } 4133 } 4134 } 4135 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4136 */ 4137 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4138 ExprSetVVAProperty(pExpr, EP_NoReduce); 4139 pExpr->iAgg = (i16)i; 4140 pExpr->pAggInfo = pAggInfo; 4141 return WRC_Prune; 4142 }else{ 4143 return WRC_Continue; 4144 } 4145 } 4146 } 4147 return WRC_Continue; 4148 } 4149 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4150 UNUSED_PARAMETER(pWalker); 4151 UNUSED_PARAMETER(pSelect); 4152 return WRC_Continue; 4153 } 4154 4155 /* 4156 ** Analyze the pExpr expression looking for aggregate functions and 4157 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4158 ** points to. Additional entries are made on the AggInfo object as 4159 ** necessary. 4160 ** 4161 ** This routine should only be called after the expression has been 4162 ** analyzed by sqlite3ResolveExprNames(). 4163 */ 4164 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4165 Walker w; 4166 memset(&w, 0, sizeof(w)); 4167 w.xExprCallback = analyzeAggregate; 4168 w.xSelectCallback = analyzeAggregatesInSelect; 4169 w.u.pNC = pNC; 4170 assert( pNC->pSrcList!=0 ); 4171 sqlite3WalkExpr(&w, pExpr); 4172 } 4173 4174 /* 4175 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4176 ** expression list. Return the number of errors. 4177 ** 4178 ** If an error is found, the analysis is cut short. 4179 */ 4180 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4181 struct ExprList_item *pItem; 4182 int i; 4183 if( pList ){ 4184 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4185 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4186 } 4187 } 4188 } 4189 4190 /* 4191 ** Allocate a single new register for use to hold some intermediate result. 4192 */ 4193 int sqlite3GetTempReg(Parse *pParse){ 4194 if( pParse->nTempReg==0 ){ 4195 return ++pParse->nMem; 4196 } 4197 return pParse->aTempReg[--pParse->nTempReg]; 4198 } 4199 4200 /* 4201 ** Deallocate a register, making available for reuse for some other 4202 ** purpose. 4203 ** 4204 ** If a register is currently being used by the column cache, then 4205 ** the deallocation is deferred until the column cache line that uses 4206 ** the register becomes stale. 4207 */ 4208 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4209 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4210 int i; 4211 struct yColCache *p; 4212 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4213 if( p->iReg==iReg ){ 4214 p->tempReg = 1; 4215 return; 4216 } 4217 } 4218 pParse->aTempReg[pParse->nTempReg++] = iReg; 4219 } 4220 } 4221 4222 /* 4223 ** Allocate or deallocate a block of nReg consecutive registers 4224 */ 4225 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4226 int i, n; 4227 i = pParse->iRangeReg; 4228 n = pParse->nRangeReg; 4229 if( nReg<=n ){ 4230 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4231 pParse->iRangeReg += nReg; 4232 pParse->nRangeReg -= nReg; 4233 }else{ 4234 i = pParse->nMem+1; 4235 pParse->nMem += nReg; 4236 } 4237 return i; 4238 } 4239 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4240 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4241 if( nReg>pParse->nRangeReg ){ 4242 pParse->nRangeReg = nReg; 4243 pParse->iRangeReg = iReg; 4244 } 4245 } 4246 4247 /* 4248 ** Mark all temporary registers as being unavailable for reuse. 4249 */ 4250 void sqlite3ClearTempRegCache(Parse *pParse){ 4251 pParse->nTempReg = 0; 4252 pParse->nRangeReg = 0; 4253 } 4254