xref: /sqlite-3.40.0/src/expr.c (revision bd5af9ea)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   if( pExpr->flags & EP_Generic ) return 0;
37   op = pExpr->op;
38   if( op==TK_SELECT ){
39     assert( pExpr->flags&EP_xIsSelect );
40     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41   }
42 #ifndef SQLITE_OMIT_CAST
43   if( op==TK_CAST ){
44     assert( !ExprHasProperty(pExpr, EP_IntValue) );
45     return sqlite3AffinityType(pExpr->u.zToken, 0);
46   }
47 #endif
48   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49    && pExpr->pTab!=0
50   ){
51     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52     ** a TK_COLUMN but was previously evaluated and cached in a register */
53     int j = pExpr->iColumn;
54     if( j<0 ) return SQLITE_AFF_INTEGER;
55     assert( pExpr->pTab && j<pExpr->pTab->nCol );
56     return pExpr->pTab->aCol[j].affinity;
57   }
58   return pExpr->affinity;
59 }
60 
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken.   Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70   Parse *pParse,           /* Parsing context */
71   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
72   const Token *pCollName,  /* Name of collating sequence */
73   int dequote              /* True to dequote pCollName */
74 ){
75   if( pCollName->n>0 ){
76     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77     if( pNew ){
78       pNew->pLeft = pExpr;
79       pNew->flags |= EP_Collate|EP_Skip;
80       pExpr = pNew;
81     }
82   }
83   return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86   Token s;
87   assert( zC!=0 );
88   s.z = zC;
89   s.n = sqlite3Strlen30(s.z);
90   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92 
93 /*
94 ** Skip over any TK_COLLATE operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99     if( ExprHasProperty(pExpr, EP_Unlikely) ){
100       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101       assert( pExpr->x.pList->nExpr>0 );
102       assert( pExpr->op==TK_FUNCTION );
103       pExpr = pExpr->x.pList->a[0].pExpr;
104     }else{
105       assert( pExpr->op==TK_COLLATE );
106       pExpr = pExpr->pLeft;
107     }
108   }
109   return pExpr;
110 }
111 
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence.  Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122   sqlite3 *db = pParse->db;
123   CollSeq *pColl = 0;
124   Expr *p = pExpr;
125   while( p ){
126     int op = p->op;
127     if( p->flags & EP_Generic ) break;
128     if( op==TK_CAST || op==TK_UPLUS ){
129       p = p->pLeft;
130       continue;
131     }
132     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134       break;
135     }
136     if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137           || op==TK_REGISTER || op==TK_TRIGGER)
138      && p->pTab!=0
139     ){
140       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141       ** a TK_COLUMN but was previously evaluated and cached in a register */
142       int j = p->iColumn;
143       if( j>=0 ){
144         const char *zColl = p->pTab->aCol[j].zColl;
145         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146       }
147       break;
148     }
149     if( p->flags & EP_Collate ){
150       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151         p = p->pLeft;
152       }else{
153         Expr *pNext  = p->pRight;
154         /* The Expr.x union is never used at the same time as Expr.pRight */
155         assert( p->x.pList==0 || p->pRight==0 );
156         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
157         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
158         ** least one EP_Collate. Thus the following two ALWAYS. */
159         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160           int i;
161           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163               pNext = p->x.pList->a[i].pExpr;
164               break;
165             }
166           }
167         }
168         p = pNext;
169       }
170     }else{
171       break;
172     }
173   }
174   if( sqlite3CheckCollSeq(pParse, pColl) ){
175     pColl = 0;
176   }
177   return pColl;
178 }
179 
180 /*
181 ** pExpr is an operand of a comparison operator.  aff2 is the
182 ** type affinity of the other operand.  This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186   char aff1 = sqlite3ExprAffinity(pExpr);
187   if( aff1 && aff2 ){
188     /* Both sides of the comparison are columns. If one has numeric
189     ** affinity, use that. Otherwise use no affinity.
190     */
191     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192       return SQLITE_AFF_NUMERIC;
193     }else{
194       return SQLITE_AFF_BLOB;
195     }
196   }else if( !aff1 && !aff2 ){
197     /* Neither side of the comparison is a column.  Compare the
198     ** results directly.
199     */
200     return SQLITE_AFF_BLOB;
201   }else{
202     /* One side is a column, the other is not. Use the columns affinity. */
203     assert( aff1==0 || aff2==0 );
204     return (aff1 + aff2);
205   }
206 }
207 
208 /*
209 ** pExpr is a comparison operator.  Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213   char aff;
214   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217   assert( pExpr->pLeft );
218   aff = sqlite3ExprAffinity(pExpr->pLeft);
219   if( pExpr->pRight ){
220     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223   }else if( !aff ){
224     aff = SQLITE_AFF_BLOB;
225   }
226   return aff;
227 }
228 
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236   char aff = comparisonAffinity(pExpr);
237   switch( aff ){
238     case SQLITE_AFF_BLOB:
239       return 1;
240     case SQLITE_AFF_TEXT:
241       return idx_affinity==SQLITE_AFF_TEXT;
242     default:
243       return sqlite3IsNumericAffinity(idx_affinity);
244   }
245 }
246 
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254   return aff;
255 }
256 
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270   Parse *pParse,
271   Expr *pLeft,
272   Expr *pRight
273 ){
274   CollSeq *pColl;
275   assert( pLeft );
276   if( pLeft->flags & EP_Collate ){
277     pColl = sqlite3ExprCollSeq(pParse, pLeft);
278   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279     pColl = sqlite3ExprCollSeq(pParse, pRight);
280   }else{
281     pColl = sqlite3ExprCollSeq(pParse, pLeft);
282     if( !pColl ){
283       pColl = sqlite3ExprCollSeq(pParse, pRight);
284     }
285   }
286   return pColl;
287 }
288 
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293   Parse *pParse,    /* The parsing (and code generating) context */
294   Expr *pLeft,      /* The left operand */
295   Expr *pRight,     /* The right operand */
296   int opcode,       /* The comparison opcode */
297   int in1, int in2, /* Register holding operands */
298   int dest,         /* Jump here if true.  */
299   int jumpIfNull    /* If true, jump if either operand is NULL */
300 ){
301   int p5;
302   int addr;
303   CollSeq *p4;
304 
305   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308                            (void*)p4, P4_COLLSEQ);
309   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310   return addr;
311 }
312 
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320   int rc = SQLITE_OK;
321   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322   if( nHeight>mxHeight ){
323     sqlite3ErrorMsg(pParse,
324        "Expression tree is too large (maximum depth %d)", mxHeight
325     );
326     rc = SQLITE_ERROR;
327   }
328   return rc;
329 }
330 
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341   if( p ){
342     if( p->nHeight>*pnHeight ){
343       *pnHeight = p->nHeight;
344     }
345   }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348   if( p ){
349     int i;
350     for(i=0; i<p->nExpr; i++){
351       heightOfExpr(p->a[i].pExpr, pnHeight);
352     }
353   }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356   if( p ){
357     heightOfExpr(p->pWhere, pnHeight);
358     heightOfExpr(p->pHaving, pnHeight);
359     heightOfExpr(p->pLimit, pnHeight);
360     heightOfExpr(p->pOffset, pnHeight);
361     heightOfExprList(p->pEList, pnHeight);
362     heightOfExprList(p->pGroupBy, pnHeight);
363     heightOfExprList(p->pOrderBy, pnHeight);
364     heightOfSelect(p->pPrior, pnHeight);
365   }
366 }
367 
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379   int nHeight = 0;
380   heightOfExpr(p->pLeft, &nHeight);
381   heightOfExpr(p->pRight, &nHeight);
382   if( ExprHasProperty(p, EP_xIsSelect) ){
383     heightOfSelect(p->x.pSelect, &nHeight);
384   }else if( p->x.pList ){
385     heightOfExprList(p->x.pList, &nHeight);
386     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387   }
388   p->nHeight = nHeight + 1;
389 }
390 
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400   if( pParse->nErr ) return;
401   exprSetHeight(p);
402   sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404 
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410   int nHeight = 0;
411   heightOfSelect(p, &nHeight);
412   return nHeight;
413 }
414 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422   }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426 
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it.  Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc().  The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performed.  The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case:  If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken.  Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
449   int op,                 /* Expression opcode */
450   const Token *pToken,    /* Token argument.  Might be NULL */
451   int dequote             /* True to dequote */
452 ){
453   Expr *pNew;
454   int nExtra = 0;
455   int iValue = 0;
456 
457   if( pToken ){
458     if( op!=TK_INTEGER || pToken->z==0
459           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460       nExtra = pToken->n+1;
461       assert( iValue>=0 );
462     }
463   }
464   pNew = sqlite3DbMallocRaw(db, sizeof(Expr)+nExtra);
465   if( pNew ){
466     memset(pNew, 0, sizeof(Expr));
467     pNew->op = (u8)op;
468     pNew->iAgg = -1;
469     if( pToken ){
470       if( nExtra==0 ){
471         pNew->flags |= EP_IntValue;
472         pNew->u.iValue = iValue;
473       }else{
474         int c;
475         pNew->u.zToken = (char*)&pNew[1];
476         assert( pToken->z!=0 || pToken->n==0 );
477         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
478         pNew->u.zToken[pToken->n] = 0;
479         if( dequote && nExtra>=3
480              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
481           sqlite3Dequote(pNew->u.zToken);
482           if( c=='"' ) pNew->flags |= EP_DblQuoted;
483         }
484       }
485     }
486 #if SQLITE_MAX_EXPR_DEPTH>0
487     pNew->nHeight = 1;
488 #endif
489   }
490   return pNew;
491 }
492 
493 /*
494 ** Allocate a new expression node from a zero-terminated token that has
495 ** already been dequoted.
496 */
497 Expr *sqlite3Expr(
498   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
499   int op,                 /* Expression opcode */
500   const char *zToken      /* Token argument.  Might be NULL */
501 ){
502   Token x;
503   x.z = zToken;
504   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
505   return sqlite3ExprAlloc(db, op, &x, 0);
506 }
507 
508 /*
509 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
510 **
511 ** If pRoot==NULL that means that a memory allocation error has occurred.
512 ** In that case, delete the subtrees pLeft and pRight.
513 */
514 void sqlite3ExprAttachSubtrees(
515   sqlite3 *db,
516   Expr *pRoot,
517   Expr *pLeft,
518   Expr *pRight
519 ){
520   if( pRoot==0 ){
521     assert( db->mallocFailed );
522     sqlite3ExprDelete(db, pLeft);
523     sqlite3ExprDelete(db, pRight);
524   }else{
525     if( pRight ){
526       pRoot->pRight = pRight;
527       pRoot->flags |= EP_Propagate & pRight->flags;
528     }
529     if( pLeft ){
530       pRoot->pLeft = pLeft;
531       pRoot->flags |= EP_Propagate & pLeft->flags;
532     }
533     exprSetHeight(pRoot);
534   }
535 }
536 
537 /*
538 ** Allocate an Expr node which joins as many as two subtrees.
539 **
540 ** One or both of the subtrees can be NULL.  Return a pointer to the new
541 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
542 ** free the subtrees and return NULL.
543 */
544 Expr *sqlite3PExpr(
545   Parse *pParse,          /* Parsing context */
546   int op,                 /* Expression opcode */
547   Expr *pLeft,            /* Left operand */
548   Expr *pRight,           /* Right operand */
549   const Token *pToken     /* Argument token */
550 ){
551   Expr *p;
552   if( op==TK_AND && pParse->nErr==0 ){
553     /* Take advantage of short-circuit false optimization for AND */
554     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
555   }else{
556     p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
557     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
558   }
559   if( p ) {
560     sqlite3ExprCheckHeight(pParse, p->nHeight);
561   }
562   return p;
563 }
564 
565 /*
566 ** If the expression is always either TRUE or FALSE (respectively),
567 ** then return 1.  If one cannot determine the truth value of the
568 ** expression at compile-time return 0.
569 **
570 ** This is an optimization.  If is OK to return 0 here even if
571 ** the expression really is always false or false (a false negative).
572 ** But it is a bug to return 1 if the expression might have different
573 ** boolean values in different circumstances (a false positive.)
574 **
575 ** Note that if the expression is part of conditional for a
576 ** LEFT JOIN, then we cannot determine at compile-time whether or not
577 ** is it true or false, so always return 0.
578 */
579 static int exprAlwaysTrue(Expr *p){
580   int v = 0;
581   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
582   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
583   return v!=0;
584 }
585 static int exprAlwaysFalse(Expr *p){
586   int v = 0;
587   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
588   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
589   return v==0;
590 }
591 
592 /*
593 ** Join two expressions using an AND operator.  If either expression is
594 ** NULL, then just return the other expression.
595 **
596 ** If one side or the other of the AND is known to be false, then instead
597 ** of returning an AND expression, just return a constant expression with
598 ** a value of false.
599 */
600 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
601   if( pLeft==0 ){
602     return pRight;
603   }else if( pRight==0 ){
604     return pLeft;
605   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
606     sqlite3ExprDelete(db, pLeft);
607     sqlite3ExprDelete(db, pRight);
608     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
609   }else{
610     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
611     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
612     return pNew;
613   }
614 }
615 
616 /*
617 ** Construct a new expression node for a function with multiple
618 ** arguments.
619 */
620 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
621   Expr *pNew;
622   sqlite3 *db = pParse->db;
623   assert( pToken );
624   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
625   if( pNew==0 ){
626     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
627     return 0;
628   }
629   pNew->x.pList = pList;
630   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
631   sqlite3ExprSetHeightAndFlags(pParse, pNew);
632   return pNew;
633 }
634 
635 /*
636 ** Assign a variable number to an expression that encodes a wildcard
637 ** in the original SQL statement.
638 **
639 ** Wildcards consisting of a single "?" are assigned the next sequential
640 ** variable number.
641 **
642 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
643 ** sure "nnn" is not too be to avoid a denial of service attack when
644 ** the SQL statement comes from an external source.
645 **
646 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
647 ** as the previous instance of the same wildcard.  Or if this is the first
648 ** instance of the wildcard, the next sequential variable number is
649 ** assigned.
650 */
651 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
652   sqlite3 *db = pParse->db;
653   const char *z;
654 
655   if( pExpr==0 ) return;
656   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
657   z = pExpr->u.zToken;
658   assert( z!=0 );
659   assert( z[0]!=0 );
660   if( z[1]==0 ){
661     /* Wildcard of the form "?".  Assign the next variable number */
662     assert( z[0]=='?' );
663     pExpr->iColumn = (ynVar)(++pParse->nVar);
664   }else{
665     ynVar x = 0;
666     u32 n = sqlite3Strlen30(z);
667     if( z[0]=='?' ){
668       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
669       ** use it as the variable number */
670       i64 i;
671       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
672       pExpr->iColumn = x = (ynVar)i;
673       testcase( i==0 );
674       testcase( i==1 );
675       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
676       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
677       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
678         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
679             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
680         x = 0;
681       }
682       if( i>pParse->nVar ){
683         pParse->nVar = (int)i;
684       }
685     }else{
686       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
687       ** number as the prior appearance of the same name, or if the name
688       ** has never appeared before, reuse the same variable number
689       */
690       ynVar i;
691       for(i=0; i<pParse->nzVar; i++){
692         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
693           pExpr->iColumn = x = (ynVar)i+1;
694           break;
695         }
696       }
697       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
698     }
699     if( x>0 ){
700       if( x>pParse->nzVar ){
701         char **a;
702         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
703         if( a==0 ) return;  /* Error reported through db->mallocFailed */
704         pParse->azVar = a;
705         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
706         pParse->nzVar = x;
707       }
708       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
709         sqlite3DbFree(db, pParse->azVar[x-1]);
710         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
711       }
712     }
713   }
714   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
715     sqlite3ErrorMsg(pParse, "too many SQL variables");
716   }
717 }
718 
719 /*
720 ** Recursively delete an expression tree.
721 */
722 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
723   if( p==0 ) return;
724   /* Sanity check: Assert that the IntValue is non-negative if it exists */
725   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
726   if( !ExprHasProperty(p, EP_TokenOnly) ){
727     /* The Expr.x union is never used at the same time as Expr.pRight */
728     assert( p->x.pList==0 || p->pRight==0 );
729     sqlite3ExprDelete(db, p->pLeft);
730     sqlite3ExprDelete(db, p->pRight);
731     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
732     if( ExprHasProperty(p, EP_xIsSelect) ){
733       sqlite3SelectDelete(db, p->x.pSelect);
734     }else{
735       sqlite3ExprListDelete(db, p->x.pList);
736     }
737   }
738   if( !ExprHasProperty(p, EP_Static) ){
739     sqlite3DbFree(db, p);
740   }
741 }
742 
743 /*
744 ** Return the number of bytes allocated for the expression structure
745 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
746 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
747 */
748 static int exprStructSize(Expr *p){
749   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
750   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
751   return EXPR_FULLSIZE;
752 }
753 
754 /*
755 ** The dupedExpr*Size() routines each return the number of bytes required
756 ** to store a copy of an expression or expression tree.  They differ in
757 ** how much of the tree is measured.
758 **
759 **     dupedExprStructSize()     Size of only the Expr structure
760 **     dupedExprNodeSize()       Size of Expr + space for token
761 **     dupedExprSize()           Expr + token + subtree components
762 **
763 ***************************************************************************
764 **
765 ** The dupedExprStructSize() function returns two values OR-ed together:
766 ** (1) the space required for a copy of the Expr structure only and
767 ** (2) the EP_xxx flags that indicate what the structure size should be.
768 ** The return values is always one of:
769 **
770 **      EXPR_FULLSIZE
771 **      EXPR_REDUCEDSIZE   | EP_Reduced
772 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
773 **
774 ** The size of the structure can be found by masking the return value
775 ** of this routine with 0xfff.  The flags can be found by masking the
776 ** return value with EP_Reduced|EP_TokenOnly.
777 **
778 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
779 ** (unreduced) Expr objects as they or originally constructed by the parser.
780 ** During expression analysis, extra information is computed and moved into
781 ** later parts of teh Expr object and that extra information might get chopped
782 ** off if the expression is reduced.  Note also that it does not work to
783 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
784 ** to reduce a pristine expression tree from the parser.  The implementation
785 ** of dupedExprStructSize() contain multiple assert() statements that attempt
786 ** to enforce this constraint.
787 */
788 static int dupedExprStructSize(Expr *p, int flags){
789   int nSize;
790   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
791   assert( EXPR_FULLSIZE<=0xfff );
792   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
793   if( 0==(flags&EXPRDUP_REDUCE) ){
794     nSize = EXPR_FULLSIZE;
795   }else{
796     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
797     assert( !ExprHasProperty(p, EP_FromJoin) );
798     assert( !ExprHasProperty(p, EP_MemToken) );
799     assert( !ExprHasProperty(p, EP_NoReduce) );
800     if( p->pLeft || p->x.pList ){
801       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
802     }else{
803       assert( p->pRight==0 );
804       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
805     }
806   }
807   return nSize;
808 }
809 
810 /*
811 ** This function returns the space in bytes required to store the copy
812 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
813 ** string is defined.)
814 */
815 static int dupedExprNodeSize(Expr *p, int flags){
816   int nByte = dupedExprStructSize(p, flags) & 0xfff;
817   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
818     nByte += sqlite3Strlen30(p->u.zToken)+1;
819   }
820   return ROUND8(nByte);
821 }
822 
823 /*
824 ** Return the number of bytes required to create a duplicate of the
825 ** expression passed as the first argument. The second argument is a
826 ** mask containing EXPRDUP_XXX flags.
827 **
828 ** The value returned includes space to create a copy of the Expr struct
829 ** itself and the buffer referred to by Expr.u.zToken, if any.
830 **
831 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
832 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
833 ** and Expr.pRight variables (but not for any structures pointed to or
834 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
835 */
836 static int dupedExprSize(Expr *p, int flags){
837   int nByte = 0;
838   if( p ){
839     nByte = dupedExprNodeSize(p, flags);
840     if( flags&EXPRDUP_REDUCE ){
841       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
842     }
843   }
844   return nByte;
845 }
846 
847 /*
848 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
849 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
850 ** to store the copy of expression p, the copies of p->u.zToken
851 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
852 ** if any. Before returning, *pzBuffer is set to the first byte past the
853 ** portion of the buffer copied into by this function.
854 */
855 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
856   Expr *pNew = 0;                      /* Value to return */
857   assert( flags==0 || flags==EXPRDUP_REDUCE );
858   if( p ){
859     const int isReduced = (flags&EXPRDUP_REDUCE);
860     u8 *zAlloc;
861     u32 staticFlag = 0;
862 
863     assert( pzBuffer==0 || isReduced );
864 
865     /* Figure out where to write the new Expr structure. */
866     if( pzBuffer ){
867       zAlloc = *pzBuffer;
868       staticFlag = EP_Static;
869     }else{
870       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
871     }
872     pNew = (Expr *)zAlloc;
873 
874     if( pNew ){
875       /* Set nNewSize to the size allocated for the structure pointed to
876       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
877       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
878       ** by the copy of the p->u.zToken string (if any).
879       */
880       const unsigned nStructSize = dupedExprStructSize(p, flags);
881       const int nNewSize = nStructSize & 0xfff;
882       int nToken;
883       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
884         nToken = sqlite3Strlen30(p->u.zToken) + 1;
885       }else{
886         nToken = 0;
887       }
888       if( isReduced ){
889         assert( ExprHasProperty(p, EP_Reduced)==0 );
890         memcpy(zAlloc, p, nNewSize);
891       }else{
892         u32 nSize = (u32)exprStructSize(p);
893         memcpy(zAlloc, p, nSize);
894         if( nSize<EXPR_FULLSIZE ){
895           memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
896         }
897       }
898 
899       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
900       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
901       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
902       pNew->flags |= staticFlag;
903 
904       /* Copy the p->u.zToken string, if any. */
905       if( nToken ){
906         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
907         memcpy(zToken, p->u.zToken, nToken);
908       }
909 
910       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
911         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
912         if( ExprHasProperty(p, EP_xIsSelect) ){
913           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
914         }else{
915           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
916         }
917       }
918 
919       /* Fill in pNew->pLeft and pNew->pRight. */
920       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
921         zAlloc += dupedExprNodeSize(p, flags);
922         if( ExprHasProperty(pNew, EP_Reduced) ){
923           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
924           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
925         }
926         if( pzBuffer ){
927           *pzBuffer = zAlloc;
928         }
929       }else{
930         if( !ExprHasProperty(p, EP_TokenOnly) ){
931           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
932           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
933         }
934       }
935 
936     }
937   }
938   return pNew;
939 }
940 
941 /*
942 ** Create and return a deep copy of the object passed as the second
943 ** argument. If an OOM condition is encountered, NULL is returned
944 ** and the db->mallocFailed flag set.
945 */
946 #ifndef SQLITE_OMIT_CTE
947 static With *withDup(sqlite3 *db, With *p){
948   With *pRet = 0;
949   if( p ){
950     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
951     pRet = sqlite3DbMallocZero(db, nByte);
952     if( pRet ){
953       int i;
954       pRet->nCte = p->nCte;
955       for(i=0; i<p->nCte; i++){
956         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
957         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
958         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
959       }
960     }
961   }
962   return pRet;
963 }
964 #else
965 # define withDup(x,y) 0
966 #endif
967 
968 /*
969 ** The following group of routines make deep copies of expressions,
970 ** expression lists, ID lists, and select statements.  The copies can
971 ** be deleted (by being passed to their respective ...Delete() routines)
972 ** without effecting the originals.
973 **
974 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
975 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
976 ** by subsequent calls to sqlite*ListAppend() routines.
977 **
978 ** Any tables that the SrcList might point to are not duplicated.
979 **
980 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
981 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
982 ** truncated version of the usual Expr structure that will be stored as
983 ** part of the in-memory representation of the database schema.
984 */
985 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
986   assert( flags==0 || flags==EXPRDUP_REDUCE );
987   return exprDup(db, p, flags, 0);
988 }
989 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
990   ExprList *pNew;
991   struct ExprList_item *pItem, *pOldItem;
992   int i;
993   if( p==0 ) return 0;
994   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
995   if( pNew==0 ) return 0;
996   pNew->nExpr = i = p->nExpr;
997   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
998   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
999   if( pItem==0 ){
1000     sqlite3DbFree(db, pNew);
1001     return 0;
1002   }
1003   pOldItem = p->a;
1004   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1005     Expr *pOldExpr = pOldItem->pExpr;
1006     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1007     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1008     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1009     pItem->sortOrder = pOldItem->sortOrder;
1010     pItem->done = 0;
1011     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1012     pItem->u = pOldItem->u;
1013   }
1014   return pNew;
1015 }
1016 
1017 /*
1018 ** If cursors, triggers, views and subqueries are all omitted from
1019 ** the build, then none of the following routines, except for
1020 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1021 ** called with a NULL argument.
1022 */
1023 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1024  || !defined(SQLITE_OMIT_SUBQUERY)
1025 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1026   SrcList *pNew;
1027   int i;
1028   int nByte;
1029   if( p==0 ) return 0;
1030   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1031   pNew = sqlite3DbMallocRaw(db, nByte );
1032   if( pNew==0 ) return 0;
1033   pNew->nSrc = pNew->nAlloc = p->nSrc;
1034   for(i=0; i<p->nSrc; i++){
1035     struct SrcList_item *pNewItem = &pNew->a[i];
1036     struct SrcList_item *pOldItem = &p->a[i];
1037     Table *pTab;
1038     pNewItem->pSchema = pOldItem->pSchema;
1039     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1040     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1041     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1042     pNewItem->fg = pOldItem->fg;
1043     pNewItem->iCursor = pOldItem->iCursor;
1044     pNewItem->addrFillSub = pOldItem->addrFillSub;
1045     pNewItem->regReturn = pOldItem->regReturn;
1046     if( pNewItem->fg.isIndexedBy ){
1047       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1048     }
1049     pNewItem->pIBIndex = pOldItem->pIBIndex;
1050     if( pNewItem->fg.isTabFunc ){
1051       pNewItem->u1.pFuncArg =
1052           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1053     }
1054     pTab = pNewItem->pTab = pOldItem->pTab;
1055     if( pTab ){
1056       pTab->nRef++;
1057     }
1058     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1059     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1060     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1061     pNewItem->colUsed = pOldItem->colUsed;
1062   }
1063   return pNew;
1064 }
1065 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1066   IdList *pNew;
1067   int i;
1068   if( p==0 ) return 0;
1069   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1070   if( pNew==0 ) return 0;
1071   pNew->nId = p->nId;
1072   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1073   if( pNew->a==0 ){
1074     sqlite3DbFree(db, pNew);
1075     return 0;
1076   }
1077   /* Note that because the size of the allocation for p->a[] is not
1078   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1079   ** on the duplicate created by this function. */
1080   for(i=0; i<p->nId; i++){
1081     struct IdList_item *pNewItem = &pNew->a[i];
1082     struct IdList_item *pOldItem = &p->a[i];
1083     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1084     pNewItem->idx = pOldItem->idx;
1085   }
1086   return pNew;
1087 }
1088 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1089   Select *pNew, *pPrior;
1090   if( p==0 ) return 0;
1091   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1092   if( pNew==0 ) return 0;
1093   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1094   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1095   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1096   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1097   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1098   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1099   pNew->op = p->op;
1100   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1101   if( pPrior ) pPrior->pNext = pNew;
1102   pNew->pNext = 0;
1103   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1104   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1105   pNew->iLimit = 0;
1106   pNew->iOffset = 0;
1107   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1108   pNew->addrOpenEphm[0] = -1;
1109   pNew->addrOpenEphm[1] = -1;
1110   pNew->nSelectRow = p->nSelectRow;
1111   pNew->pWith = withDup(db, p->pWith);
1112   sqlite3SelectSetName(pNew, p->zSelName);
1113   return pNew;
1114 }
1115 #else
1116 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1117   assert( p==0 );
1118   return 0;
1119 }
1120 #endif
1121 
1122 
1123 /*
1124 ** Add a new element to the end of an expression list.  If pList is
1125 ** initially NULL, then create a new expression list.
1126 **
1127 ** If a memory allocation error occurs, the entire list is freed and
1128 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1129 ** that the new entry was successfully appended.
1130 */
1131 ExprList *sqlite3ExprListAppend(
1132   Parse *pParse,          /* Parsing context */
1133   ExprList *pList,        /* List to which to append. Might be NULL */
1134   Expr *pExpr             /* Expression to be appended. Might be NULL */
1135 ){
1136   sqlite3 *db = pParse->db;
1137   if( pList==0 ){
1138     pList = sqlite3DbMallocRaw(db, sizeof(ExprList) );
1139     if( pList==0 ){
1140       goto no_mem;
1141     }
1142     pList->nExpr = 0;
1143     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1144     if( pList->a==0 ) goto no_mem;
1145   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1146     struct ExprList_item *a;
1147     assert( pList->nExpr>0 );
1148     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1149     if( a==0 ){
1150       goto no_mem;
1151     }
1152     pList->a = a;
1153   }
1154   assert( pList->a!=0 );
1155   if( 1 ){
1156     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1157     memset(pItem, 0, sizeof(*pItem));
1158     pItem->pExpr = pExpr;
1159   }
1160   return pList;
1161 
1162 no_mem:
1163   /* Avoid leaking memory if malloc has failed. */
1164   sqlite3ExprDelete(db, pExpr);
1165   sqlite3ExprListDelete(db, pList);
1166   return 0;
1167 }
1168 
1169 /*
1170 ** Set the sort order for the last element on the given ExprList.
1171 */
1172 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1173   if( p==0 ) return;
1174   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1175   assert( p->nExpr>0 );
1176   if( iSortOrder<0 ){
1177     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1178     return;
1179   }
1180   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1181 }
1182 
1183 /*
1184 ** Set the ExprList.a[].zName element of the most recently added item
1185 ** on the expression list.
1186 **
1187 ** pList might be NULL following an OOM error.  But pName should never be
1188 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1189 ** is set.
1190 */
1191 void sqlite3ExprListSetName(
1192   Parse *pParse,          /* Parsing context */
1193   ExprList *pList,        /* List to which to add the span. */
1194   Token *pName,           /* Name to be added */
1195   int dequote             /* True to cause the name to be dequoted */
1196 ){
1197   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1198   if( pList ){
1199     struct ExprList_item *pItem;
1200     assert( pList->nExpr>0 );
1201     pItem = &pList->a[pList->nExpr-1];
1202     assert( pItem->zName==0 );
1203     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1204     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1205   }
1206 }
1207 
1208 /*
1209 ** Set the ExprList.a[].zSpan element of the most recently added item
1210 ** on the expression list.
1211 **
1212 ** pList might be NULL following an OOM error.  But pSpan should never be
1213 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1214 ** is set.
1215 */
1216 void sqlite3ExprListSetSpan(
1217   Parse *pParse,          /* Parsing context */
1218   ExprList *pList,        /* List to which to add the span. */
1219   ExprSpan *pSpan         /* The span to be added */
1220 ){
1221   sqlite3 *db = pParse->db;
1222   assert( pList!=0 || db->mallocFailed!=0 );
1223   if( pList ){
1224     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1225     assert( pList->nExpr>0 );
1226     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1227     sqlite3DbFree(db, pItem->zSpan);
1228     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1229                                     (int)(pSpan->zEnd - pSpan->zStart));
1230   }
1231 }
1232 
1233 /*
1234 ** If the expression list pEList contains more than iLimit elements,
1235 ** leave an error message in pParse.
1236 */
1237 void sqlite3ExprListCheckLength(
1238   Parse *pParse,
1239   ExprList *pEList,
1240   const char *zObject
1241 ){
1242   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1243   testcase( pEList && pEList->nExpr==mx );
1244   testcase( pEList && pEList->nExpr==mx+1 );
1245   if( pEList && pEList->nExpr>mx ){
1246     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1247   }
1248 }
1249 
1250 /*
1251 ** Delete an entire expression list.
1252 */
1253 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1254   int i;
1255   struct ExprList_item *pItem;
1256   if( pList==0 ) return;
1257   assert( pList->a!=0 || pList->nExpr==0 );
1258   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1259     sqlite3ExprDelete(db, pItem->pExpr);
1260     sqlite3DbFree(db, pItem->zName);
1261     sqlite3DbFree(db, pItem->zSpan);
1262   }
1263   sqlite3DbFree(db, pList->a);
1264   sqlite3DbFree(db, pList);
1265 }
1266 
1267 /*
1268 ** Return the bitwise-OR of all Expr.flags fields in the given
1269 ** ExprList.
1270 */
1271 u32 sqlite3ExprListFlags(const ExprList *pList){
1272   int i;
1273   u32 m = 0;
1274   if( pList ){
1275     for(i=0; i<pList->nExpr; i++){
1276        Expr *pExpr = pList->a[i].pExpr;
1277        if( ALWAYS(pExpr) ) m |= pExpr->flags;
1278     }
1279   }
1280   return m;
1281 }
1282 
1283 /*
1284 ** These routines are Walker callbacks used to check expressions to
1285 ** see if they are "constant" for some definition of constant.  The
1286 ** Walker.eCode value determines the type of "constant" we are looking
1287 ** for.
1288 **
1289 ** These callback routines are used to implement the following:
1290 **
1291 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1292 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1293 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1294 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1295 **
1296 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1297 ** is found to not be a constant.
1298 **
1299 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1300 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1301 ** an existing schema and 4 when processing a new statement.  A bound
1302 ** parameter raises an error for new statements, but is silently converted
1303 ** to NULL for existing schemas.  This allows sqlite_master tables that
1304 ** contain a bound parameter because they were generated by older versions
1305 ** of SQLite to be parsed by newer versions of SQLite without raising a
1306 ** malformed schema error.
1307 */
1308 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1309 
1310   /* If pWalker->eCode is 2 then any term of the expression that comes from
1311   ** the ON or USING clauses of a left join disqualifies the expression
1312   ** from being considered constant. */
1313   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1314     pWalker->eCode = 0;
1315     return WRC_Abort;
1316   }
1317 
1318   switch( pExpr->op ){
1319     /* Consider functions to be constant if all their arguments are constant
1320     ** and either pWalker->eCode==4 or 5 or the function has the
1321     ** SQLITE_FUNC_CONST flag. */
1322     case TK_FUNCTION:
1323       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1324         return WRC_Continue;
1325       }else{
1326         pWalker->eCode = 0;
1327         return WRC_Abort;
1328       }
1329     case TK_ID:
1330     case TK_COLUMN:
1331     case TK_AGG_FUNCTION:
1332     case TK_AGG_COLUMN:
1333       testcase( pExpr->op==TK_ID );
1334       testcase( pExpr->op==TK_COLUMN );
1335       testcase( pExpr->op==TK_AGG_FUNCTION );
1336       testcase( pExpr->op==TK_AGG_COLUMN );
1337       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1338         return WRC_Continue;
1339       }else{
1340         pWalker->eCode = 0;
1341         return WRC_Abort;
1342       }
1343     case TK_VARIABLE:
1344       if( pWalker->eCode==5 ){
1345         /* Silently convert bound parameters that appear inside of CREATE
1346         ** statements into a NULL when parsing the CREATE statement text out
1347         ** of the sqlite_master table */
1348         pExpr->op = TK_NULL;
1349       }else if( pWalker->eCode==4 ){
1350         /* A bound parameter in a CREATE statement that originates from
1351         ** sqlite3_prepare() causes an error */
1352         pWalker->eCode = 0;
1353         return WRC_Abort;
1354       }
1355       /* Fall through */
1356     default:
1357       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1358       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1359       return WRC_Continue;
1360   }
1361 }
1362 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1363   UNUSED_PARAMETER(NotUsed);
1364   pWalker->eCode = 0;
1365   return WRC_Abort;
1366 }
1367 static int exprIsConst(Expr *p, int initFlag, int iCur){
1368   Walker w;
1369   memset(&w, 0, sizeof(w));
1370   w.eCode = initFlag;
1371   w.xExprCallback = exprNodeIsConstant;
1372   w.xSelectCallback = selectNodeIsConstant;
1373   w.u.iCur = iCur;
1374   sqlite3WalkExpr(&w, p);
1375   return w.eCode;
1376 }
1377 
1378 /*
1379 ** Walk an expression tree.  Return non-zero if the expression is constant
1380 ** and 0 if it involves variables or function calls.
1381 **
1382 ** For the purposes of this function, a double-quoted string (ex: "abc")
1383 ** is considered a variable but a single-quoted string (ex: 'abc') is
1384 ** a constant.
1385 */
1386 int sqlite3ExprIsConstant(Expr *p){
1387   return exprIsConst(p, 1, 0);
1388 }
1389 
1390 /*
1391 ** Walk an expression tree.  Return non-zero if the expression is constant
1392 ** that does no originate from the ON or USING clauses of a join.
1393 ** Return 0 if it involves variables or function calls or terms from
1394 ** an ON or USING clause.
1395 */
1396 int sqlite3ExprIsConstantNotJoin(Expr *p){
1397   return exprIsConst(p, 2, 0);
1398 }
1399 
1400 /*
1401 ** Walk an expression tree.  Return non-zero if the expression is constant
1402 ** for any single row of the table with cursor iCur.  In other words, the
1403 ** expression must not refer to any non-deterministic function nor any
1404 ** table other than iCur.
1405 */
1406 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1407   return exprIsConst(p, 3, iCur);
1408 }
1409 
1410 /*
1411 ** Walk an expression tree.  Return non-zero if the expression is constant
1412 ** or a function call with constant arguments.  Return and 0 if there
1413 ** are any variables.
1414 **
1415 ** For the purposes of this function, a double-quoted string (ex: "abc")
1416 ** is considered a variable but a single-quoted string (ex: 'abc') is
1417 ** a constant.
1418 */
1419 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1420   assert( isInit==0 || isInit==1 );
1421   return exprIsConst(p, 4+isInit, 0);
1422 }
1423 
1424 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1425 /*
1426 ** Walk an expression tree.  Return 1 if the expression contains a
1427 ** subquery of some kind.  Return 0 if there are no subqueries.
1428 */
1429 int sqlite3ExprContainsSubquery(Expr *p){
1430   Walker w;
1431   memset(&w, 0, sizeof(w));
1432   w.eCode = 1;
1433   w.xExprCallback = sqlite3ExprWalkNoop;
1434   w.xSelectCallback = selectNodeIsConstant;
1435   sqlite3WalkExpr(&w, p);
1436   return w.eCode==0;
1437 }
1438 #endif
1439 
1440 /*
1441 ** If the expression p codes a constant integer that is small enough
1442 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1443 ** in *pValue.  If the expression is not an integer or if it is too big
1444 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1445 */
1446 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1447   int rc = 0;
1448 
1449   /* If an expression is an integer literal that fits in a signed 32-bit
1450   ** integer, then the EP_IntValue flag will have already been set */
1451   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1452            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1453 
1454   if( p->flags & EP_IntValue ){
1455     *pValue = p->u.iValue;
1456     return 1;
1457   }
1458   switch( p->op ){
1459     case TK_UPLUS: {
1460       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1461       break;
1462     }
1463     case TK_UMINUS: {
1464       int v;
1465       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1466         assert( v!=(-2147483647-1) );
1467         *pValue = -v;
1468         rc = 1;
1469       }
1470       break;
1471     }
1472     default: break;
1473   }
1474   return rc;
1475 }
1476 
1477 /*
1478 ** Return FALSE if there is no chance that the expression can be NULL.
1479 **
1480 ** If the expression might be NULL or if the expression is too complex
1481 ** to tell return TRUE.
1482 **
1483 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1484 ** when we know that a value cannot be NULL.  Hence, a false positive
1485 ** (returning TRUE when in fact the expression can never be NULL) might
1486 ** be a small performance hit but is otherwise harmless.  On the other
1487 ** hand, a false negative (returning FALSE when the result could be NULL)
1488 ** will likely result in an incorrect answer.  So when in doubt, return
1489 ** TRUE.
1490 */
1491 int sqlite3ExprCanBeNull(const Expr *p){
1492   u8 op;
1493   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1494   op = p->op;
1495   if( op==TK_REGISTER ) op = p->op2;
1496   switch( op ){
1497     case TK_INTEGER:
1498     case TK_STRING:
1499     case TK_FLOAT:
1500     case TK_BLOB:
1501       return 0;
1502     case TK_COLUMN:
1503       assert( p->pTab!=0 );
1504       return ExprHasProperty(p, EP_CanBeNull) ||
1505              (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1506     default:
1507       return 1;
1508   }
1509 }
1510 
1511 /*
1512 ** Return TRUE if the given expression is a constant which would be
1513 ** unchanged by OP_Affinity with the affinity given in the second
1514 ** argument.
1515 **
1516 ** This routine is used to determine if the OP_Affinity operation
1517 ** can be omitted.  When in doubt return FALSE.  A false negative
1518 ** is harmless.  A false positive, however, can result in the wrong
1519 ** answer.
1520 */
1521 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1522   u8 op;
1523   if( aff==SQLITE_AFF_BLOB ) return 1;
1524   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1525   op = p->op;
1526   if( op==TK_REGISTER ) op = p->op2;
1527   switch( op ){
1528     case TK_INTEGER: {
1529       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1530     }
1531     case TK_FLOAT: {
1532       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1533     }
1534     case TK_STRING: {
1535       return aff==SQLITE_AFF_TEXT;
1536     }
1537     case TK_BLOB: {
1538       return 1;
1539     }
1540     case TK_COLUMN: {
1541       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1542       return p->iColumn<0
1543           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1544     }
1545     default: {
1546       return 0;
1547     }
1548   }
1549 }
1550 
1551 /*
1552 ** Return TRUE if the given string is a row-id column name.
1553 */
1554 int sqlite3IsRowid(const char *z){
1555   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1556   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1557   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1558   return 0;
1559 }
1560 
1561 /*
1562 ** Return true if we are able to the IN operator optimization on a
1563 ** query of the form
1564 **
1565 **       x IN (SELECT ...)
1566 **
1567 ** Where the SELECT... clause is as specified by the parameter to this
1568 ** routine.
1569 **
1570 ** The Select object passed in has already been preprocessed and no
1571 ** errors have been found.
1572 */
1573 #ifndef SQLITE_OMIT_SUBQUERY
1574 static int isCandidateForInOpt(Select *p){
1575   SrcList *pSrc;
1576   ExprList *pEList;
1577   Table *pTab;
1578   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1579   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1580   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1581     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1582     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1583     return 0; /* No DISTINCT keyword and no aggregate functions */
1584   }
1585   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1586   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1587   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1588   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1589   pSrc = p->pSrc;
1590   assert( pSrc!=0 );
1591   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1592   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1593   pTab = pSrc->a[0].pTab;
1594   if( NEVER(pTab==0) ) return 0;
1595   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1596   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1597   pEList = p->pEList;
1598   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1599   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1600   return 1;
1601 }
1602 #endif /* SQLITE_OMIT_SUBQUERY */
1603 
1604 /*
1605 ** Code an OP_Once instruction and allocate space for its flag. Return the
1606 ** address of the new instruction.
1607 */
1608 int sqlite3CodeOnce(Parse *pParse){
1609   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1610   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1611 }
1612 
1613 /*
1614 ** Generate code that checks the left-most column of index table iCur to see if
1615 ** it contains any NULL entries.  Cause the register at regHasNull to be set
1616 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
1617 ** to be set to NULL if iCur contains one or more NULL values.
1618 */
1619 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1620   int addr1;
1621   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1622   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1623   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1624   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1625   VdbeComment((v, "first_entry_in(%d)", iCur));
1626   sqlite3VdbeJumpHere(v, addr1);
1627 }
1628 
1629 
1630 #ifndef SQLITE_OMIT_SUBQUERY
1631 /*
1632 ** The argument is an IN operator with a list (not a subquery) on the
1633 ** right-hand side.  Return TRUE if that list is constant.
1634 */
1635 static int sqlite3InRhsIsConstant(Expr *pIn){
1636   Expr *pLHS;
1637   int res;
1638   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1639   pLHS = pIn->pLeft;
1640   pIn->pLeft = 0;
1641   res = sqlite3ExprIsConstant(pIn);
1642   pIn->pLeft = pLHS;
1643   return res;
1644 }
1645 #endif
1646 
1647 /*
1648 ** This function is used by the implementation of the IN (...) operator.
1649 ** The pX parameter is the expression on the RHS of the IN operator, which
1650 ** might be either a list of expressions or a subquery.
1651 **
1652 ** The job of this routine is to find or create a b-tree object that can
1653 ** be used either to test for membership in the RHS set or to iterate through
1654 ** all members of the RHS set, skipping duplicates.
1655 **
1656 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1657 ** and pX->iTable is set to the index of that cursor.
1658 **
1659 ** The returned value of this function indicates the b-tree type, as follows:
1660 **
1661 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1662 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1663 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1664 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1665 **                         populated epheremal table.
1666 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
1667 **                         implemented as a sequence of comparisons.
1668 **
1669 ** An existing b-tree might be used if the RHS expression pX is a simple
1670 ** subquery such as:
1671 **
1672 **     SELECT <column> FROM <table>
1673 **
1674 ** If the RHS of the IN operator is a list or a more complex subquery, then
1675 ** an ephemeral table might need to be generated from the RHS and then
1676 ** pX->iTable made to point to the ephemeral table instead of an
1677 ** existing table.
1678 **
1679 ** The inFlags parameter must contain exactly one of the bits
1680 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP.  If inFlags contains
1681 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1682 ** fast membership test.  When the IN_INDEX_LOOP bit is set, the
1683 ** IN index will be used to loop over all values of the RHS of the
1684 ** IN operator.
1685 **
1686 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1687 ** through the set members) then the b-tree must not contain duplicates.
1688 ** An epheremal table must be used unless the selected <column> is guaranteed
1689 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1690 ** has a UNIQUE constraint or UNIQUE index.
1691 **
1692 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1693 ** for fast set membership tests) then an epheremal table must
1694 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1695 ** be found with <column> as its left-most column.
1696 **
1697 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1698 ** if the RHS of the IN operator is a list (not a subquery) then this
1699 ** routine might decide that creating an ephemeral b-tree for membership
1700 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
1701 ** calling routine should implement the IN operator using a sequence
1702 ** of Eq or Ne comparison operations.
1703 **
1704 ** When the b-tree is being used for membership tests, the calling function
1705 ** might need to know whether or not the RHS side of the IN operator
1706 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
1707 ** if there is any chance that the (...) might contain a NULL value at
1708 ** runtime, then a register is allocated and the register number written
1709 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1710 ** NULL value, then *prRhsHasNull is left unchanged.
1711 **
1712 ** If a register is allocated and its location stored in *prRhsHasNull, then
1713 ** the value in that register will be NULL if the b-tree contains one or more
1714 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1715 ** NULL values.
1716 */
1717 #ifndef SQLITE_OMIT_SUBQUERY
1718 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1719   Select *p;                            /* SELECT to the right of IN operator */
1720   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1721   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1722   int mustBeUnique;                     /* True if RHS must be unique */
1723   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1724 
1725   assert( pX->op==TK_IN );
1726   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1727 
1728   /* Check to see if an existing table or index can be used to
1729   ** satisfy the query.  This is preferable to generating a new
1730   ** ephemeral table.
1731   */
1732   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1733   if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1734     sqlite3 *db = pParse->db;              /* Database connection */
1735     Table *pTab;                           /* Table <table>. */
1736     Expr *pExpr;                           /* Expression <column> */
1737     i16 iCol;                              /* Index of column <column> */
1738     i16 iDb;                               /* Database idx for pTab */
1739 
1740     assert( p );                        /* Because of isCandidateForInOpt(p) */
1741     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1742     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1743     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1744     pTab = p->pSrc->a[0].pTab;
1745     pExpr = p->pEList->a[0].pExpr;
1746     iCol = (i16)pExpr->iColumn;
1747 
1748     /* Code an OP_Transaction and OP_TableLock for <table>. */
1749     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1750     sqlite3CodeVerifySchema(pParse, iDb);
1751     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1752 
1753     /* This function is only called from two places. In both cases the vdbe
1754     ** has already been allocated. So assume sqlite3GetVdbe() is always
1755     ** successful here.
1756     */
1757     assert(v);
1758     if( iCol<0 ){
1759       int iAddr = sqlite3CodeOnce(pParse);
1760       VdbeCoverage(v);
1761 
1762       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1763       eType = IN_INDEX_ROWID;
1764 
1765       sqlite3VdbeJumpHere(v, iAddr);
1766     }else{
1767       Index *pIdx;                         /* Iterator variable */
1768 
1769       /* The collation sequence used by the comparison. If an index is to
1770       ** be used in place of a temp-table, it must be ordered according
1771       ** to this collation sequence.  */
1772       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1773 
1774       /* Check that the affinity that will be used to perform the
1775       ** comparison is the same as the affinity of the column. If
1776       ** it is not, it is not possible to use any index.
1777       */
1778       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1779 
1780       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1781         if( (pIdx->aiColumn[0]==iCol)
1782          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1783          && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1784         ){
1785           int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1786           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1787           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1788           VdbeComment((v, "%s", pIdx->zName));
1789           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1790           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1791 
1792           if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1793             *prRhsHasNull = ++pParse->nMem;
1794             sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1795           }
1796           sqlite3VdbeJumpHere(v, iAddr);
1797         }
1798       }
1799     }
1800   }
1801 
1802   /* If no preexisting index is available for the IN clause
1803   ** and IN_INDEX_NOOP is an allowed reply
1804   ** and the RHS of the IN operator is a list, not a subquery
1805   ** and the RHS is not contant or has two or fewer terms,
1806   ** then it is not worth creating an ephemeral table to evaluate
1807   ** the IN operator so return IN_INDEX_NOOP.
1808   */
1809   if( eType==0
1810    && (inFlags & IN_INDEX_NOOP_OK)
1811    && !ExprHasProperty(pX, EP_xIsSelect)
1812    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1813   ){
1814     eType = IN_INDEX_NOOP;
1815   }
1816 
1817 
1818   if( eType==0 ){
1819     /* Could not find an existing table or index to use as the RHS b-tree.
1820     ** We will have to generate an ephemeral table to do the job.
1821     */
1822     u32 savedNQueryLoop = pParse->nQueryLoop;
1823     int rMayHaveNull = 0;
1824     eType = IN_INDEX_EPH;
1825     if( inFlags & IN_INDEX_LOOP ){
1826       pParse->nQueryLoop = 0;
1827       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1828         eType = IN_INDEX_ROWID;
1829       }
1830     }else if( prRhsHasNull ){
1831       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1832     }
1833     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1834     pParse->nQueryLoop = savedNQueryLoop;
1835   }else{
1836     pX->iTable = iTab;
1837   }
1838   return eType;
1839 }
1840 #endif
1841 
1842 /*
1843 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1844 ** or IN operators.  Examples:
1845 **
1846 **     (SELECT a FROM b)          -- subquery
1847 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1848 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1849 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1850 **
1851 ** The pExpr parameter describes the expression that contains the IN
1852 ** operator or subquery.
1853 **
1854 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1855 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1856 ** to some integer key column of a table B-Tree. In this case, use an
1857 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1858 ** (slower) variable length keys B-Tree.
1859 **
1860 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1861 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1862 ** All this routine does is initialize the register given by rMayHaveNull
1863 ** to NULL.  Calling routines will take care of changing this register
1864 ** value to non-NULL if the RHS is NULL-free.
1865 **
1866 ** For a SELECT or EXISTS operator, return the register that holds the
1867 ** result.  For IN operators or if an error occurs, the return value is 0.
1868 */
1869 #ifndef SQLITE_OMIT_SUBQUERY
1870 int sqlite3CodeSubselect(
1871   Parse *pParse,          /* Parsing context */
1872   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1873   int rHasNullFlag,       /* Register that records whether NULLs exist in RHS */
1874   int isRowid             /* If true, LHS of IN operator is a rowid */
1875 ){
1876   int jmpIfDynamic = -1;                      /* One-time test address */
1877   int rReg = 0;                           /* Register storing resulting */
1878   Vdbe *v = sqlite3GetVdbe(pParse);
1879   if( NEVER(v==0) ) return 0;
1880   sqlite3ExprCachePush(pParse);
1881 
1882   /* This code must be run in its entirety every time it is encountered
1883   ** if any of the following is true:
1884   **
1885   **    *  The right-hand side is a correlated subquery
1886   **    *  The right-hand side is an expression list containing variables
1887   **    *  We are inside a trigger
1888   **
1889   ** If all of the above are false, then we can run this code just once
1890   ** save the results, and reuse the same result on subsequent invocations.
1891   */
1892   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1893     jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1894   }
1895 
1896 #ifndef SQLITE_OMIT_EXPLAIN
1897   if( pParse->explain==2 ){
1898     char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1899         jmpIfDynamic>=0?"":"CORRELATED ",
1900         pExpr->op==TK_IN?"LIST":"SCALAR",
1901         pParse->iNextSelectId
1902     );
1903     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1904   }
1905 #endif
1906 
1907   switch( pExpr->op ){
1908     case TK_IN: {
1909       char affinity;              /* Affinity of the LHS of the IN */
1910       int addr;                   /* Address of OP_OpenEphemeral instruction */
1911       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1912       KeyInfo *pKeyInfo = 0;      /* Key information */
1913 
1914       affinity = sqlite3ExprAffinity(pLeft);
1915 
1916       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1917       ** expression it is handled the same way.  An ephemeral table is
1918       ** filled with single-field index keys representing the results
1919       ** from the SELECT or the <exprlist>.
1920       **
1921       ** If the 'x' expression is a column value, or the SELECT...
1922       ** statement returns a column value, then the affinity of that
1923       ** column is used to build the index keys. If both 'x' and the
1924       ** SELECT... statement are columns, then numeric affinity is used
1925       ** if either column has NUMERIC or INTEGER affinity. If neither
1926       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1927       ** is used.
1928       */
1929       pExpr->iTable = pParse->nTab++;
1930       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1931       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1932 
1933       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1934         /* Case 1:     expr IN (SELECT ...)
1935         **
1936         ** Generate code to write the results of the select into the temporary
1937         ** table allocated and opened above.
1938         */
1939         Select *pSelect = pExpr->x.pSelect;
1940         SelectDest dest;
1941         ExprList *pEList;
1942 
1943         assert( !isRowid );
1944         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1945         dest.affSdst = (u8)affinity;
1946         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1947         pSelect->iLimit = 0;
1948         testcase( pSelect->selFlags & SF_Distinct );
1949         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1950         if( sqlite3Select(pParse, pSelect, &dest) ){
1951           sqlite3KeyInfoUnref(pKeyInfo);
1952           return 0;
1953         }
1954         pEList = pSelect->pEList;
1955         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1956         assert( pEList!=0 );
1957         assert( pEList->nExpr>0 );
1958         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1959         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1960                                                          pEList->a[0].pExpr);
1961       }else if( ALWAYS(pExpr->x.pList!=0) ){
1962         /* Case 2:     expr IN (exprlist)
1963         **
1964         ** For each expression, build an index key from the evaluation and
1965         ** store it in the temporary table. If <expr> is a column, then use
1966         ** that columns affinity when building index keys. If <expr> is not
1967         ** a column, use numeric affinity.
1968         */
1969         int i;
1970         ExprList *pList = pExpr->x.pList;
1971         struct ExprList_item *pItem;
1972         int r1, r2, r3;
1973 
1974         if( !affinity ){
1975           affinity = SQLITE_AFF_BLOB;
1976         }
1977         if( pKeyInfo ){
1978           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1979           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1980         }
1981 
1982         /* Loop through each expression in <exprlist>. */
1983         r1 = sqlite3GetTempReg(pParse);
1984         r2 = sqlite3GetTempReg(pParse);
1985         if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1986         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1987           Expr *pE2 = pItem->pExpr;
1988           int iValToIns;
1989 
1990           /* If the expression is not constant then we will need to
1991           ** disable the test that was generated above that makes sure
1992           ** this code only executes once.  Because for a non-constant
1993           ** expression we need to rerun this code each time.
1994           */
1995           if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1996             sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1997             jmpIfDynamic = -1;
1998           }
1999 
2000           /* Evaluate the expression and insert it into the temp table */
2001           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2002             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2003           }else{
2004             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2005             if( isRowid ){
2006               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2007                                 sqlite3VdbeCurrentAddr(v)+2);
2008               VdbeCoverage(v);
2009               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2010             }else{
2011               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2012               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2013               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2014             }
2015           }
2016         }
2017         sqlite3ReleaseTempReg(pParse, r1);
2018         sqlite3ReleaseTempReg(pParse, r2);
2019       }
2020       if( pKeyInfo ){
2021         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2022       }
2023       break;
2024     }
2025 
2026     case TK_EXISTS:
2027     case TK_SELECT:
2028     default: {
2029       /* If this has to be a scalar SELECT.  Generate code to put the
2030       ** value of this select in a memory cell and record the number
2031       ** of the memory cell in iColumn.  If this is an EXISTS, write
2032       ** an integer 0 (not exists) or 1 (exists) into a memory cell
2033       ** and record that memory cell in iColumn.
2034       */
2035       Select *pSel;                         /* SELECT statement to encode */
2036       SelectDest dest;                      /* How to deal with SELECt result */
2037 
2038       testcase( pExpr->op==TK_EXISTS );
2039       testcase( pExpr->op==TK_SELECT );
2040       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2041 
2042       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2043       pSel = pExpr->x.pSelect;
2044       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2045       if( pExpr->op==TK_SELECT ){
2046         dest.eDest = SRT_Mem;
2047         dest.iSdst = dest.iSDParm;
2048         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2049         VdbeComment((v, "Init subquery result"));
2050       }else{
2051         dest.eDest = SRT_Exists;
2052         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2053         VdbeComment((v, "Init EXISTS result"));
2054       }
2055       sqlite3ExprDelete(pParse->db, pSel->pLimit);
2056       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2057                                   &sqlite3IntTokens[1]);
2058       pSel->iLimit = 0;
2059       pSel->selFlags &= ~SF_MultiValue;
2060       if( sqlite3Select(pParse, pSel, &dest) ){
2061         return 0;
2062       }
2063       rReg = dest.iSDParm;
2064       ExprSetVVAProperty(pExpr, EP_NoReduce);
2065       break;
2066     }
2067   }
2068 
2069   if( rHasNullFlag ){
2070     sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2071   }
2072 
2073   if( jmpIfDynamic>=0 ){
2074     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2075   }
2076   sqlite3ExprCachePop(pParse);
2077 
2078   return rReg;
2079 }
2080 #endif /* SQLITE_OMIT_SUBQUERY */
2081 
2082 #ifndef SQLITE_OMIT_SUBQUERY
2083 /*
2084 ** Generate code for an IN expression.
2085 **
2086 **      x IN (SELECT ...)
2087 **      x IN (value, value, ...)
2088 **
2089 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
2090 ** is an array of zero or more values.  The expression is true if the LHS is
2091 ** contained within the RHS.  The value of the expression is unknown (NULL)
2092 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2093 ** RHS contains one or more NULL values.
2094 **
2095 ** This routine generates code that jumps to destIfFalse if the LHS is not
2096 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2097 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2098 ** within the RHS then fall through.
2099 */
2100 static void sqlite3ExprCodeIN(
2101   Parse *pParse,        /* Parsing and code generating context */
2102   Expr *pExpr,          /* The IN expression */
2103   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2104   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2105 ){
2106   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2107   char affinity;        /* Comparison affinity to use */
2108   int eType;            /* Type of the RHS */
2109   int r1;               /* Temporary use register */
2110   Vdbe *v;              /* Statement under construction */
2111 
2112   /* Compute the RHS.   After this step, the table with cursor
2113   ** pExpr->iTable will contains the values that make up the RHS.
2114   */
2115   v = pParse->pVdbe;
2116   assert( v!=0 );       /* OOM detected prior to this routine */
2117   VdbeNoopComment((v, "begin IN expr"));
2118   eType = sqlite3FindInIndex(pParse, pExpr,
2119                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2120                              destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2121 
2122   /* Figure out the affinity to use to create a key from the results
2123   ** of the expression. affinityStr stores a static string suitable for
2124   ** P4 of OP_MakeRecord.
2125   */
2126   affinity = comparisonAffinity(pExpr);
2127 
2128   /* Code the LHS, the <expr> from "<expr> IN (...)".
2129   */
2130   sqlite3ExprCachePush(pParse);
2131   r1 = sqlite3GetTempReg(pParse);
2132   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2133 
2134   /* If sqlite3FindInIndex() did not find or create an index that is
2135   ** suitable for evaluating the IN operator, then evaluate using a
2136   ** sequence of comparisons.
2137   */
2138   if( eType==IN_INDEX_NOOP ){
2139     ExprList *pList = pExpr->x.pList;
2140     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2141     int labelOk = sqlite3VdbeMakeLabel(v);
2142     int r2, regToFree;
2143     int regCkNull = 0;
2144     int ii;
2145     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2146     if( destIfNull!=destIfFalse ){
2147       regCkNull = sqlite3GetTempReg(pParse);
2148       sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2149     }
2150     for(ii=0; ii<pList->nExpr; ii++){
2151       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2152       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2153         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2154       }
2155       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2156         sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2157                           (void*)pColl, P4_COLLSEQ);
2158         VdbeCoverageIf(v, ii<pList->nExpr-1);
2159         VdbeCoverageIf(v, ii==pList->nExpr-1);
2160         sqlite3VdbeChangeP5(v, affinity);
2161       }else{
2162         assert( destIfNull==destIfFalse );
2163         sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2164                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2165         sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2166       }
2167       sqlite3ReleaseTempReg(pParse, regToFree);
2168     }
2169     if( regCkNull ){
2170       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2171       sqlite3VdbeGoto(v, destIfFalse);
2172     }
2173     sqlite3VdbeResolveLabel(v, labelOk);
2174     sqlite3ReleaseTempReg(pParse, regCkNull);
2175   }else{
2176 
2177     /* If the LHS is NULL, then the result is either false or NULL depending
2178     ** on whether the RHS is empty or not, respectively.
2179     */
2180     if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2181       if( destIfNull==destIfFalse ){
2182         /* Shortcut for the common case where the false and NULL outcomes are
2183         ** the same. */
2184         sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2185       }else{
2186         int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2187         sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2188         VdbeCoverage(v);
2189         sqlite3VdbeGoto(v, destIfNull);
2190         sqlite3VdbeJumpHere(v, addr1);
2191       }
2192     }
2193 
2194     if( eType==IN_INDEX_ROWID ){
2195       /* In this case, the RHS is the ROWID of table b-tree
2196       */
2197       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2198       sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2199       VdbeCoverage(v);
2200     }else{
2201       /* In this case, the RHS is an index b-tree.
2202       */
2203       sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2204 
2205       /* If the set membership test fails, then the result of the
2206       ** "x IN (...)" expression must be either 0 or NULL. If the set
2207       ** contains no NULL values, then the result is 0. If the set
2208       ** contains one or more NULL values, then the result of the
2209       ** expression is also NULL.
2210       */
2211       assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2212       if( rRhsHasNull==0 ){
2213         /* This branch runs if it is known at compile time that the RHS
2214         ** cannot contain NULL values. This happens as the result
2215         ** of a "NOT NULL" constraint in the database schema.
2216         **
2217         ** Also run this branch if NULL is equivalent to FALSE
2218         ** for this particular IN operator.
2219         */
2220         sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2221         VdbeCoverage(v);
2222       }else{
2223         /* In this branch, the RHS of the IN might contain a NULL and
2224         ** the presence of a NULL on the RHS makes a difference in the
2225         ** outcome.
2226         */
2227         int addr1;
2228 
2229         /* First check to see if the LHS is contained in the RHS.  If so,
2230         ** then the answer is TRUE the presence of NULLs in the RHS does
2231         ** not matter.  If the LHS is not contained in the RHS, then the
2232         ** answer is NULL if the RHS contains NULLs and the answer is
2233         ** FALSE if the RHS is NULL-free.
2234         */
2235         addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2236         VdbeCoverage(v);
2237         sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2238         VdbeCoverage(v);
2239         sqlite3VdbeGoto(v, destIfFalse);
2240         sqlite3VdbeJumpHere(v, addr1);
2241       }
2242     }
2243   }
2244   sqlite3ReleaseTempReg(pParse, r1);
2245   sqlite3ExprCachePop(pParse);
2246   VdbeComment((v, "end IN expr"));
2247 }
2248 #endif /* SQLITE_OMIT_SUBQUERY */
2249 
2250 #ifndef SQLITE_OMIT_FLOATING_POINT
2251 /*
2252 ** Generate an instruction that will put the floating point
2253 ** value described by z[0..n-1] into register iMem.
2254 **
2255 ** The z[] string will probably not be zero-terminated.  But the
2256 ** z[n] character is guaranteed to be something that does not look
2257 ** like the continuation of the number.
2258 */
2259 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2260   if( ALWAYS(z!=0) ){
2261     double value;
2262     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2263     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2264     if( negateFlag ) value = -value;
2265     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2266   }
2267 }
2268 #endif
2269 
2270 
2271 /*
2272 ** Generate an instruction that will put the integer describe by
2273 ** text z[0..n-1] into register iMem.
2274 **
2275 ** Expr.u.zToken is always UTF8 and zero-terminated.
2276 */
2277 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2278   Vdbe *v = pParse->pVdbe;
2279   if( pExpr->flags & EP_IntValue ){
2280     int i = pExpr->u.iValue;
2281     assert( i>=0 );
2282     if( negFlag ) i = -i;
2283     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2284   }else{
2285     int c;
2286     i64 value;
2287     const char *z = pExpr->u.zToken;
2288     assert( z!=0 );
2289     c = sqlite3DecOrHexToI64(z, &value);
2290     if( c==0 || (c==2 && negFlag) ){
2291       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2292       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2293     }else{
2294 #ifdef SQLITE_OMIT_FLOATING_POINT
2295       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2296 #else
2297 #ifndef SQLITE_OMIT_HEX_INTEGER
2298       if( sqlite3_strnicmp(z,"0x",2)==0 ){
2299         sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2300       }else
2301 #endif
2302       {
2303         codeReal(v, z, negFlag, iMem);
2304       }
2305 #endif
2306     }
2307   }
2308 }
2309 
2310 /*
2311 ** Clear a cache entry.
2312 */
2313 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2314   if( p->tempReg ){
2315     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2316       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2317     }
2318     p->tempReg = 0;
2319   }
2320 }
2321 
2322 
2323 /*
2324 ** Record in the column cache that a particular column from a
2325 ** particular table is stored in a particular register.
2326 */
2327 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2328   int i;
2329   int minLru;
2330   int idxLru;
2331   struct yColCache *p;
2332 
2333   /* Unless an error has occurred, register numbers are always positive. */
2334   assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2335   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2336 
2337   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2338   ** for testing only - to verify that SQLite always gets the same answer
2339   ** with and without the column cache.
2340   */
2341   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2342 
2343   /* First replace any existing entry.
2344   **
2345   ** Actually, the way the column cache is currently used, we are guaranteed
2346   ** that the object will never already be in cache.  Verify this guarantee.
2347   */
2348 #ifndef NDEBUG
2349   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2350     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2351   }
2352 #endif
2353 
2354   /* Find an empty slot and replace it */
2355   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2356     if( p->iReg==0 ){
2357       p->iLevel = pParse->iCacheLevel;
2358       p->iTable = iTab;
2359       p->iColumn = iCol;
2360       p->iReg = iReg;
2361       p->tempReg = 0;
2362       p->lru = pParse->iCacheCnt++;
2363       return;
2364     }
2365   }
2366 
2367   /* Replace the last recently used */
2368   minLru = 0x7fffffff;
2369   idxLru = -1;
2370   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2371     if( p->lru<minLru ){
2372       idxLru = i;
2373       minLru = p->lru;
2374     }
2375   }
2376   if( ALWAYS(idxLru>=0) ){
2377     p = &pParse->aColCache[idxLru];
2378     p->iLevel = pParse->iCacheLevel;
2379     p->iTable = iTab;
2380     p->iColumn = iCol;
2381     p->iReg = iReg;
2382     p->tempReg = 0;
2383     p->lru = pParse->iCacheCnt++;
2384     return;
2385   }
2386 }
2387 
2388 /*
2389 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2390 ** Purge the range of registers from the column cache.
2391 */
2392 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2393   int i;
2394   int iLast = iReg + nReg - 1;
2395   struct yColCache *p;
2396   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2397     int r = p->iReg;
2398     if( r>=iReg && r<=iLast ){
2399       cacheEntryClear(pParse, p);
2400       p->iReg = 0;
2401     }
2402   }
2403 }
2404 
2405 /*
2406 ** Remember the current column cache context.  Any new entries added
2407 ** added to the column cache after this call are removed when the
2408 ** corresponding pop occurs.
2409 */
2410 void sqlite3ExprCachePush(Parse *pParse){
2411   pParse->iCacheLevel++;
2412 #ifdef SQLITE_DEBUG
2413   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2414     printf("PUSH to %d\n", pParse->iCacheLevel);
2415   }
2416 #endif
2417 }
2418 
2419 /*
2420 ** Remove from the column cache any entries that were added since the
2421 ** the previous sqlite3ExprCachePush operation.  In other words, restore
2422 ** the cache to the state it was in prior the most recent Push.
2423 */
2424 void sqlite3ExprCachePop(Parse *pParse){
2425   int i;
2426   struct yColCache *p;
2427   assert( pParse->iCacheLevel>=1 );
2428   pParse->iCacheLevel--;
2429 #ifdef SQLITE_DEBUG
2430   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2431     printf("POP  to %d\n", pParse->iCacheLevel);
2432   }
2433 #endif
2434   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2435     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2436       cacheEntryClear(pParse, p);
2437       p->iReg = 0;
2438     }
2439   }
2440 }
2441 
2442 /*
2443 ** When a cached column is reused, make sure that its register is
2444 ** no longer available as a temp register.  ticket #3879:  that same
2445 ** register might be in the cache in multiple places, so be sure to
2446 ** get them all.
2447 */
2448 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2449   int i;
2450   struct yColCache *p;
2451   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2452     if( p->iReg==iReg ){
2453       p->tempReg = 0;
2454     }
2455   }
2456 }
2457 
2458 /* Generate code that will load into register regOut a value that is
2459 ** appropriate for the iIdxCol-th column of index pIdx.
2460 */
2461 void sqlite3ExprCodeLoadIndexColumn(
2462   Parse *pParse,  /* The parsing context */
2463   Index *pIdx,    /* The index whose column is to be loaded */
2464   int iTabCur,    /* Cursor pointing to a table row */
2465   int iIdxCol,    /* The column of the index to be loaded */
2466   int regOut      /* Store the index column value in this register */
2467 ){
2468   i16 iTabCol = pIdx->aiColumn[iIdxCol];
2469   if( iTabCol==XN_EXPR ){
2470     assert( pIdx->aColExpr );
2471     assert( pIdx->aColExpr->nExpr>iIdxCol );
2472     pParse->iSelfTab = iTabCur;
2473     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2474   }else{
2475     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2476                                     iTabCol, regOut);
2477   }
2478 }
2479 
2480 /*
2481 ** Generate code to extract the value of the iCol-th column of a table.
2482 */
2483 void sqlite3ExprCodeGetColumnOfTable(
2484   Vdbe *v,        /* The VDBE under construction */
2485   Table *pTab,    /* The table containing the value */
2486   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2487   int iCol,       /* Index of the column to extract */
2488   int regOut      /* Extract the value into this register */
2489 ){
2490   if( iCol<0 || iCol==pTab->iPKey ){
2491     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2492   }else{
2493     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2494     int x = iCol;
2495     if( !HasRowid(pTab) ){
2496       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2497     }
2498     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2499   }
2500   if( iCol>=0 ){
2501     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2502   }
2503 }
2504 
2505 /*
2506 ** Generate code that will extract the iColumn-th column from
2507 ** table pTab and store the column value in a register.
2508 **
2509 ** An effort is made to store the column value in register iReg.  This
2510 ** is not garanteeed for GetColumn() - the result can be stored in
2511 ** any register.  But the result is guaranteed to land in register iReg
2512 ** for GetColumnToReg().
2513 **
2514 ** There must be an open cursor to pTab in iTable when this routine
2515 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2516 */
2517 int sqlite3ExprCodeGetColumn(
2518   Parse *pParse,   /* Parsing and code generating context */
2519   Table *pTab,     /* Description of the table we are reading from */
2520   int iColumn,     /* Index of the table column */
2521   int iTable,      /* The cursor pointing to the table */
2522   int iReg,        /* Store results here */
2523   u8 p5            /* P5 value for OP_Column + FLAGS */
2524 ){
2525   Vdbe *v = pParse->pVdbe;
2526   int i;
2527   struct yColCache *p;
2528 
2529   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2530     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2531       p->lru = pParse->iCacheCnt++;
2532       sqlite3ExprCachePinRegister(pParse, p->iReg);
2533       return p->iReg;
2534     }
2535   }
2536   assert( v!=0 );
2537   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2538   if( p5 ){
2539     sqlite3VdbeChangeP5(v, p5);
2540   }else{
2541     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2542   }
2543   return iReg;
2544 }
2545 void sqlite3ExprCodeGetColumnToReg(
2546   Parse *pParse,   /* Parsing and code generating context */
2547   Table *pTab,     /* Description of the table we are reading from */
2548   int iColumn,     /* Index of the table column */
2549   int iTable,      /* The cursor pointing to the table */
2550   int iReg         /* Store results here */
2551 ){
2552   int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2553   if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2554 }
2555 
2556 
2557 /*
2558 ** Clear all column cache entries.
2559 */
2560 void sqlite3ExprCacheClear(Parse *pParse){
2561   int i;
2562   struct yColCache *p;
2563 
2564 #if SQLITE_DEBUG
2565   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2566     printf("CLEAR\n");
2567   }
2568 #endif
2569   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2570     if( p->iReg ){
2571       cacheEntryClear(pParse, p);
2572       p->iReg = 0;
2573     }
2574   }
2575 }
2576 
2577 /*
2578 ** Record the fact that an affinity change has occurred on iCount
2579 ** registers starting with iStart.
2580 */
2581 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2582   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2583 }
2584 
2585 /*
2586 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2587 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2588 */
2589 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2590   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2591   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2592   sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2593 }
2594 
2595 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2596 /*
2597 ** Return true if any register in the range iFrom..iTo (inclusive)
2598 ** is used as part of the column cache.
2599 **
2600 ** This routine is used within assert() and testcase() macros only
2601 ** and does not appear in a normal build.
2602 */
2603 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2604   int i;
2605   struct yColCache *p;
2606   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2607     int r = p->iReg;
2608     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2609   }
2610   return 0;
2611 }
2612 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2613 
2614 /*
2615 ** Convert an expression node to a TK_REGISTER
2616 */
2617 static void exprToRegister(Expr *p, int iReg){
2618   p->op2 = p->op;
2619   p->op = TK_REGISTER;
2620   p->iTable = iReg;
2621   ExprClearProperty(p, EP_Skip);
2622 }
2623 
2624 /*
2625 ** Generate code into the current Vdbe to evaluate the given
2626 ** expression.  Attempt to store the results in register "target".
2627 ** Return the register where results are stored.
2628 **
2629 ** With this routine, there is no guarantee that results will
2630 ** be stored in target.  The result might be stored in some other
2631 ** register if it is convenient to do so.  The calling function
2632 ** must check the return code and move the results to the desired
2633 ** register.
2634 */
2635 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2636   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2637   int op;                   /* The opcode being coded */
2638   int inReg = target;       /* Results stored in register inReg */
2639   int regFree1 = 0;         /* If non-zero free this temporary register */
2640   int regFree2 = 0;         /* If non-zero free this temporary register */
2641   int r1, r2, r3, r4;       /* Various register numbers */
2642   sqlite3 *db = pParse->db; /* The database connection */
2643   Expr tempX;               /* Temporary expression node */
2644 
2645   assert( target>0 && target<=pParse->nMem );
2646   if( v==0 ){
2647     assert( pParse->db->mallocFailed );
2648     return 0;
2649   }
2650 
2651   if( pExpr==0 ){
2652     op = TK_NULL;
2653   }else{
2654     op = pExpr->op;
2655   }
2656   switch( op ){
2657     case TK_AGG_COLUMN: {
2658       AggInfo *pAggInfo = pExpr->pAggInfo;
2659       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2660       if( !pAggInfo->directMode ){
2661         assert( pCol->iMem>0 );
2662         inReg = pCol->iMem;
2663         break;
2664       }else if( pAggInfo->useSortingIdx ){
2665         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2666                               pCol->iSorterColumn, target);
2667         break;
2668       }
2669       /* Otherwise, fall thru into the TK_COLUMN case */
2670     }
2671     case TK_COLUMN: {
2672       int iTab = pExpr->iTable;
2673       if( iTab<0 ){
2674         if( pParse->ckBase>0 ){
2675           /* Generating CHECK constraints or inserting into partial index */
2676           inReg = pExpr->iColumn + pParse->ckBase;
2677           break;
2678         }else{
2679           /* Coding an expression that is part of an index where column names
2680           ** in the index refer to the table to which the index belongs */
2681           iTab = pParse->iSelfTab;
2682         }
2683       }
2684       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2685                                pExpr->iColumn, iTab, target,
2686                                pExpr->op2);
2687       break;
2688     }
2689     case TK_INTEGER: {
2690       codeInteger(pParse, pExpr, 0, target);
2691       break;
2692     }
2693 #ifndef SQLITE_OMIT_FLOATING_POINT
2694     case TK_FLOAT: {
2695       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2696       codeReal(v, pExpr->u.zToken, 0, target);
2697       break;
2698     }
2699 #endif
2700     case TK_STRING: {
2701       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2702       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2703       break;
2704     }
2705     case TK_NULL: {
2706       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2707       break;
2708     }
2709 #ifndef SQLITE_OMIT_BLOB_LITERAL
2710     case TK_BLOB: {
2711       int n;
2712       const char *z;
2713       char *zBlob;
2714       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2715       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2716       assert( pExpr->u.zToken[1]=='\'' );
2717       z = &pExpr->u.zToken[2];
2718       n = sqlite3Strlen30(z) - 1;
2719       assert( z[n]=='\'' );
2720       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2721       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2722       break;
2723     }
2724 #endif
2725     case TK_VARIABLE: {
2726       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2727       assert( pExpr->u.zToken!=0 );
2728       assert( pExpr->u.zToken[0]!=0 );
2729       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2730       if( pExpr->u.zToken[1]!=0 ){
2731         assert( pExpr->u.zToken[0]=='?'
2732              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2733         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2734       }
2735       break;
2736     }
2737     case TK_REGISTER: {
2738       inReg = pExpr->iTable;
2739       break;
2740     }
2741 #ifndef SQLITE_OMIT_CAST
2742     case TK_CAST: {
2743       /* Expressions of the form:   CAST(pLeft AS token) */
2744       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2745       if( inReg!=target ){
2746         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2747         inReg = target;
2748       }
2749       sqlite3VdbeAddOp2(v, OP_Cast, target,
2750                         sqlite3AffinityType(pExpr->u.zToken, 0));
2751       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2752       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2753       break;
2754     }
2755 #endif /* SQLITE_OMIT_CAST */
2756     case TK_LT:
2757     case TK_LE:
2758     case TK_GT:
2759     case TK_GE:
2760     case TK_NE:
2761     case TK_EQ: {
2762       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2763       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2764       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2765                   r1, r2, inReg, SQLITE_STOREP2);
2766       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2767       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2768       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2769       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2770       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2771       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2772       testcase( regFree1==0 );
2773       testcase( regFree2==0 );
2774       break;
2775     }
2776     case TK_IS:
2777     case TK_ISNOT: {
2778       testcase( op==TK_IS );
2779       testcase( op==TK_ISNOT );
2780       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2781       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2782       op = (op==TK_IS) ? TK_EQ : TK_NE;
2783       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2784                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2785       VdbeCoverageIf(v, op==TK_EQ);
2786       VdbeCoverageIf(v, op==TK_NE);
2787       testcase( regFree1==0 );
2788       testcase( regFree2==0 );
2789       break;
2790     }
2791     case TK_AND:
2792     case TK_OR:
2793     case TK_PLUS:
2794     case TK_STAR:
2795     case TK_MINUS:
2796     case TK_REM:
2797     case TK_BITAND:
2798     case TK_BITOR:
2799     case TK_SLASH:
2800     case TK_LSHIFT:
2801     case TK_RSHIFT:
2802     case TK_CONCAT: {
2803       assert( TK_AND==OP_And );            testcase( op==TK_AND );
2804       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
2805       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
2806       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
2807       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
2808       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
2809       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
2810       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
2811       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
2812       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
2813       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
2814       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2815       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2816       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2817       testcase( regFree1==0 );
2818       testcase( regFree2==0 );
2819       break;
2820     }
2821     case TK_UMINUS: {
2822       Expr *pLeft = pExpr->pLeft;
2823       assert( pLeft );
2824       if( pLeft->op==TK_INTEGER ){
2825         codeInteger(pParse, pLeft, 1, target);
2826 #ifndef SQLITE_OMIT_FLOATING_POINT
2827       }else if( pLeft->op==TK_FLOAT ){
2828         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2829         codeReal(v, pLeft->u.zToken, 1, target);
2830 #endif
2831       }else{
2832         tempX.op = TK_INTEGER;
2833         tempX.flags = EP_IntValue|EP_TokenOnly;
2834         tempX.u.iValue = 0;
2835         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2836         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2837         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2838         testcase( regFree2==0 );
2839       }
2840       inReg = target;
2841       break;
2842     }
2843     case TK_BITNOT:
2844     case TK_NOT: {
2845       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
2846       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
2847       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2848       testcase( regFree1==0 );
2849       inReg = target;
2850       sqlite3VdbeAddOp2(v, op, r1, inReg);
2851       break;
2852     }
2853     case TK_ISNULL:
2854     case TK_NOTNULL: {
2855       int addr;
2856       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
2857       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2858       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2859       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2860       testcase( regFree1==0 );
2861       addr = sqlite3VdbeAddOp1(v, op, r1);
2862       VdbeCoverageIf(v, op==TK_ISNULL);
2863       VdbeCoverageIf(v, op==TK_NOTNULL);
2864       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2865       sqlite3VdbeJumpHere(v, addr);
2866       break;
2867     }
2868     case TK_AGG_FUNCTION: {
2869       AggInfo *pInfo = pExpr->pAggInfo;
2870       if( pInfo==0 ){
2871         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2872         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2873       }else{
2874         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2875       }
2876       break;
2877     }
2878     case TK_FUNCTION: {
2879       ExprList *pFarg;       /* List of function arguments */
2880       int nFarg;             /* Number of function arguments */
2881       FuncDef *pDef;         /* The function definition object */
2882       int nId;               /* Length of the function name in bytes */
2883       const char *zId;       /* The function name */
2884       u32 constMask = 0;     /* Mask of function arguments that are constant */
2885       int i;                 /* Loop counter */
2886       u8 enc = ENC(db);      /* The text encoding used by this database */
2887       CollSeq *pColl = 0;    /* A collating sequence */
2888 
2889       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2890       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2891         pFarg = 0;
2892       }else{
2893         pFarg = pExpr->x.pList;
2894       }
2895       nFarg = pFarg ? pFarg->nExpr : 0;
2896       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2897       zId = pExpr->u.zToken;
2898       nId = sqlite3Strlen30(zId);
2899       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2900       if( pDef==0 || pDef->xFinalize!=0 ){
2901         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2902         break;
2903       }
2904 
2905       /* Attempt a direct implementation of the built-in COALESCE() and
2906       ** IFNULL() functions.  This avoids unnecessary evaluation of
2907       ** arguments past the first non-NULL argument.
2908       */
2909       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2910         int endCoalesce = sqlite3VdbeMakeLabel(v);
2911         assert( nFarg>=2 );
2912         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2913         for(i=1; i<nFarg; i++){
2914           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2915           VdbeCoverage(v);
2916           sqlite3ExprCacheRemove(pParse, target, 1);
2917           sqlite3ExprCachePush(pParse);
2918           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2919           sqlite3ExprCachePop(pParse);
2920         }
2921         sqlite3VdbeResolveLabel(v, endCoalesce);
2922         break;
2923       }
2924 
2925       /* The UNLIKELY() function is a no-op.  The result is the value
2926       ** of the first argument.
2927       */
2928       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2929         assert( nFarg>=1 );
2930         inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2931         break;
2932       }
2933 
2934       for(i=0; i<nFarg; i++){
2935         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2936           testcase( i==31 );
2937           constMask |= MASKBIT32(i);
2938         }
2939         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2940           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2941         }
2942       }
2943       if( pFarg ){
2944         if( constMask ){
2945           r1 = pParse->nMem+1;
2946           pParse->nMem += nFarg;
2947         }else{
2948           r1 = sqlite3GetTempRange(pParse, nFarg);
2949         }
2950 
2951         /* For length() and typeof() functions with a column argument,
2952         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2953         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2954         ** loading.
2955         */
2956         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2957           u8 exprOp;
2958           assert( nFarg==1 );
2959           assert( pFarg->a[0].pExpr!=0 );
2960           exprOp = pFarg->a[0].pExpr->op;
2961           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2962             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2963             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2964             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2965             pFarg->a[0].pExpr->op2 =
2966                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2967           }
2968         }
2969 
2970         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2971         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
2972                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2973         sqlite3ExprCachePop(pParse);      /* Ticket 2ea2425d34be */
2974       }else{
2975         r1 = 0;
2976       }
2977 #ifndef SQLITE_OMIT_VIRTUALTABLE
2978       /* Possibly overload the function if the first argument is
2979       ** a virtual table column.
2980       **
2981       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2982       ** second argument, not the first, as the argument to test to
2983       ** see if it is a column in a virtual table.  This is done because
2984       ** the left operand of infix functions (the operand we want to
2985       ** control overloading) ends up as the second argument to the
2986       ** function.  The expression "A glob B" is equivalent to
2987       ** "glob(B,A).  We want to use the A in "A glob B" to test
2988       ** for function overloading.  But we use the B term in "glob(B,A)".
2989       */
2990       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2991         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2992       }else if( nFarg>0 ){
2993         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2994       }
2995 #endif
2996       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2997         if( !pColl ) pColl = db->pDfltColl;
2998         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2999       }
3000       sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
3001                         (char*)pDef, P4_FUNCDEF);
3002       sqlite3VdbeChangeP5(v, (u8)nFarg);
3003       if( nFarg && constMask==0 ){
3004         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3005       }
3006       break;
3007     }
3008 #ifndef SQLITE_OMIT_SUBQUERY
3009     case TK_EXISTS:
3010     case TK_SELECT: {
3011       testcase( op==TK_EXISTS );
3012       testcase( op==TK_SELECT );
3013       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3014       break;
3015     }
3016     case TK_IN: {
3017       int destIfFalse = sqlite3VdbeMakeLabel(v);
3018       int destIfNull = sqlite3VdbeMakeLabel(v);
3019       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3020       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3021       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3022       sqlite3VdbeResolveLabel(v, destIfFalse);
3023       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3024       sqlite3VdbeResolveLabel(v, destIfNull);
3025       break;
3026     }
3027 #endif /* SQLITE_OMIT_SUBQUERY */
3028 
3029 
3030     /*
3031     **    x BETWEEN y AND z
3032     **
3033     ** This is equivalent to
3034     **
3035     **    x>=y AND x<=z
3036     **
3037     ** X is stored in pExpr->pLeft.
3038     ** Y is stored in pExpr->pList->a[0].pExpr.
3039     ** Z is stored in pExpr->pList->a[1].pExpr.
3040     */
3041     case TK_BETWEEN: {
3042       Expr *pLeft = pExpr->pLeft;
3043       struct ExprList_item *pLItem = pExpr->x.pList->a;
3044       Expr *pRight = pLItem->pExpr;
3045 
3046       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3047       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3048       testcase( regFree1==0 );
3049       testcase( regFree2==0 );
3050       r3 = sqlite3GetTempReg(pParse);
3051       r4 = sqlite3GetTempReg(pParse);
3052       codeCompare(pParse, pLeft, pRight, OP_Ge,
3053                   r1, r2, r3, SQLITE_STOREP2);  VdbeCoverage(v);
3054       pLItem++;
3055       pRight = pLItem->pExpr;
3056       sqlite3ReleaseTempReg(pParse, regFree2);
3057       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3058       testcase( regFree2==0 );
3059       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3060       VdbeCoverage(v);
3061       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3062       sqlite3ReleaseTempReg(pParse, r3);
3063       sqlite3ReleaseTempReg(pParse, r4);
3064       break;
3065     }
3066     case TK_COLLATE:
3067     case TK_UPLUS: {
3068       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3069       break;
3070     }
3071 
3072     case TK_TRIGGER: {
3073       /* If the opcode is TK_TRIGGER, then the expression is a reference
3074       ** to a column in the new.* or old.* pseudo-tables available to
3075       ** trigger programs. In this case Expr.iTable is set to 1 for the
3076       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3077       ** is set to the column of the pseudo-table to read, or to -1 to
3078       ** read the rowid field.
3079       **
3080       ** The expression is implemented using an OP_Param opcode. The p1
3081       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3082       ** to reference another column of the old.* pseudo-table, where
3083       ** i is the index of the column. For a new.rowid reference, p1 is
3084       ** set to (n+1), where n is the number of columns in each pseudo-table.
3085       ** For a reference to any other column in the new.* pseudo-table, p1
3086       ** is set to (n+2+i), where n and i are as defined previously. For
3087       ** example, if the table on which triggers are being fired is
3088       ** declared as:
3089       **
3090       **   CREATE TABLE t1(a, b);
3091       **
3092       ** Then p1 is interpreted as follows:
3093       **
3094       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3095       **   p1==1   ->    old.a         p1==4   ->    new.a
3096       **   p1==2   ->    old.b         p1==5   ->    new.b
3097       */
3098       Table *pTab = pExpr->pTab;
3099       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3100 
3101       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3102       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3103       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3104       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3105 
3106       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3107       VdbeComment((v, "%s.%s -> $%d",
3108         (pExpr->iTable ? "new" : "old"),
3109         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3110         target
3111       ));
3112 
3113 #ifndef SQLITE_OMIT_FLOATING_POINT
3114       /* If the column has REAL affinity, it may currently be stored as an
3115       ** integer. Use OP_RealAffinity to make sure it is really real.
3116       **
3117       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3118       ** floating point when extracting it from the record.  */
3119       if( pExpr->iColumn>=0
3120        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3121       ){
3122         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3123       }
3124 #endif
3125       break;
3126     }
3127 
3128 
3129     /*
3130     ** Form A:
3131     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3132     **
3133     ** Form B:
3134     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3135     **
3136     ** Form A is can be transformed into the equivalent form B as follows:
3137     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3138     **        WHEN x=eN THEN rN ELSE y END
3139     **
3140     ** X (if it exists) is in pExpr->pLeft.
3141     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3142     ** odd.  The Y is also optional.  If the number of elements in x.pList
3143     ** is even, then Y is omitted and the "otherwise" result is NULL.
3144     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3145     **
3146     ** The result of the expression is the Ri for the first matching Ei,
3147     ** or if there is no matching Ei, the ELSE term Y, or if there is
3148     ** no ELSE term, NULL.
3149     */
3150     default: assert( op==TK_CASE ); {
3151       int endLabel;                     /* GOTO label for end of CASE stmt */
3152       int nextCase;                     /* GOTO label for next WHEN clause */
3153       int nExpr;                        /* 2x number of WHEN terms */
3154       int i;                            /* Loop counter */
3155       ExprList *pEList;                 /* List of WHEN terms */
3156       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3157       Expr opCompare;                   /* The X==Ei expression */
3158       Expr *pX;                         /* The X expression */
3159       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3160       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3161 
3162       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3163       assert(pExpr->x.pList->nExpr > 0);
3164       pEList = pExpr->x.pList;
3165       aListelem = pEList->a;
3166       nExpr = pEList->nExpr;
3167       endLabel = sqlite3VdbeMakeLabel(v);
3168       if( (pX = pExpr->pLeft)!=0 ){
3169         tempX = *pX;
3170         testcase( pX->op==TK_COLUMN );
3171         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3172         testcase( regFree1==0 );
3173         opCompare.op = TK_EQ;
3174         opCompare.pLeft = &tempX;
3175         pTest = &opCompare;
3176         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3177         ** The value in regFree1 might get SCopy-ed into the file result.
3178         ** So make sure that the regFree1 register is not reused for other
3179         ** purposes and possibly overwritten.  */
3180         regFree1 = 0;
3181       }
3182       for(i=0; i<nExpr-1; i=i+2){
3183         sqlite3ExprCachePush(pParse);
3184         if( pX ){
3185           assert( pTest!=0 );
3186           opCompare.pRight = aListelem[i].pExpr;
3187         }else{
3188           pTest = aListelem[i].pExpr;
3189         }
3190         nextCase = sqlite3VdbeMakeLabel(v);
3191         testcase( pTest->op==TK_COLUMN );
3192         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3193         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3194         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3195         sqlite3VdbeGoto(v, endLabel);
3196         sqlite3ExprCachePop(pParse);
3197         sqlite3VdbeResolveLabel(v, nextCase);
3198       }
3199       if( (nExpr&1)!=0 ){
3200         sqlite3ExprCachePush(pParse);
3201         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3202         sqlite3ExprCachePop(pParse);
3203       }else{
3204         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3205       }
3206       assert( db->mallocFailed || pParse->nErr>0
3207            || pParse->iCacheLevel==iCacheLevel );
3208       sqlite3VdbeResolveLabel(v, endLabel);
3209       break;
3210     }
3211 #ifndef SQLITE_OMIT_TRIGGER
3212     case TK_RAISE: {
3213       assert( pExpr->affinity==OE_Rollback
3214            || pExpr->affinity==OE_Abort
3215            || pExpr->affinity==OE_Fail
3216            || pExpr->affinity==OE_Ignore
3217       );
3218       if( !pParse->pTriggerTab ){
3219         sqlite3ErrorMsg(pParse,
3220                        "RAISE() may only be used within a trigger-program");
3221         return 0;
3222       }
3223       if( pExpr->affinity==OE_Abort ){
3224         sqlite3MayAbort(pParse);
3225       }
3226       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3227       if( pExpr->affinity==OE_Ignore ){
3228         sqlite3VdbeAddOp4(
3229             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3230         VdbeCoverage(v);
3231       }else{
3232         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3233                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3234       }
3235 
3236       break;
3237     }
3238 #endif
3239   }
3240   sqlite3ReleaseTempReg(pParse, regFree1);
3241   sqlite3ReleaseTempReg(pParse, regFree2);
3242   return inReg;
3243 }
3244 
3245 /*
3246 ** Factor out the code of the given expression to initialization time.
3247 */
3248 void sqlite3ExprCodeAtInit(
3249   Parse *pParse,    /* Parsing context */
3250   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3251   int regDest,      /* Store the value in this register */
3252   u8 reusable       /* True if this expression is reusable */
3253 ){
3254   ExprList *p;
3255   assert( ConstFactorOk(pParse) );
3256   p = pParse->pConstExpr;
3257   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3258   p = sqlite3ExprListAppend(pParse, p, pExpr);
3259   if( p ){
3260      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3261      pItem->u.iConstExprReg = regDest;
3262      pItem->reusable = reusable;
3263   }
3264   pParse->pConstExpr = p;
3265 }
3266 
3267 /*
3268 ** Generate code to evaluate an expression and store the results
3269 ** into a register.  Return the register number where the results
3270 ** are stored.
3271 **
3272 ** If the register is a temporary register that can be deallocated,
3273 ** then write its number into *pReg.  If the result register is not
3274 ** a temporary, then set *pReg to zero.
3275 **
3276 ** If pExpr is a constant, then this routine might generate this
3277 ** code to fill the register in the initialization section of the
3278 ** VDBE program, in order to factor it out of the evaluation loop.
3279 */
3280 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3281   int r2;
3282   pExpr = sqlite3ExprSkipCollate(pExpr);
3283   if( ConstFactorOk(pParse)
3284    && pExpr->op!=TK_REGISTER
3285    && sqlite3ExprIsConstantNotJoin(pExpr)
3286   ){
3287     ExprList *p = pParse->pConstExpr;
3288     int i;
3289     *pReg  = 0;
3290     if( p ){
3291       struct ExprList_item *pItem;
3292       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3293         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3294           return pItem->u.iConstExprReg;
3295         }
3296       }
3297     }
3298     r2 = ++pParse->nMem;
3299     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3300   }else{
3301     int r1 = sqlite3GetTempReg(pParse);
3302     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3303     if( r2==r1 ){
3304       *pReg = r1;
3305     }else{
3306       sqlite3ReleaseTempReg(pParse, r1);
3307       *pReg = 0;
3308     }
3309   }
3310   return r2;
3311 }
3312 
3313 /*
3314 ** Generate code that will evaluate expression pExpr and store the
3315 ** results in register target.  The results are guaranteed to appear
3316 ** in register target.
3317 */
3318 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3319   int inReg;
3320 
3321   assert( target>0 && target<=pParse->nMem );
3322   if( pExpr && pExpr->op==TK_REGISTER ){
3323     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3324   }else{
3325     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3326     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3327     if( inReg!=target && pParse->pVdbe ){
3328       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3329     }
3330   }
3331 }
3332 
3333 /*
3334 ** Make a transient copy of expression pExpr and then code it using
3335 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
3336 ** except that the input expression is guaranteed to be unchanged.
3337 */
3338 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
3339   sqlite3 *db = pParse->db;
3340   pExpr = sqlite3ExprDup(db, pExpr, 0);
3341   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
3342   sqlite3ExprDelete(db, pExpr);
3343 }
3344 
3345 /*
3346 ** Generate code that will evaluate expression pExpr and store the
3347 ** results in register target.  The results are guaranteed to appear
3348 ** in register target.  If the expression is constant, then this routine
3349 ** might choose to code the expression at initialization time.
3350 */
3351 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3352   if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3353     sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3354   }else{
3355     sqlite3ExprCode(pParse, pExpr, target);
3356   }
3357 }
3358 
3359 /*
3360 ** Generate code that evaluates the given expression and puts the result
3361 ** in register target.
3362 **
3363 ** Also make a copy of the expression results into another "cache" register
3364 ** and modify the expression so that the next time it is evaluated,
3365 ** the result is a copy of the cache register.
3366 **
3367 ** This routine is used for expressions that are used multiple
3368 ** times.  They are evaluated once and the results of the expression
3369 ** are reused.
3370 */
3371 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3372   Vdbe *v = pParse->pVdbe;
3373   int iMem;
3374 
3375   assert( target>0 );
3376   assert( pExpr->op!=TK_REGISTER );
3377   sqlite3ExprCode(pParse, pExpr, target);
3378   iMem = ++pParse->nMem;
3379   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3380   exprToRegister(pExpr, iMem);
3381 }
3382 
3383 /*
3384 ** Generate code that pushes the value of every element of the given
3385 ** expression list into a sequence of registers beginning at target.
3386 **
3387 ** Return the number of elements evaluated.
3388 **
3389 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3390 ** filled using OP_SCopy.  OP_Copy must be used instead.
3391 **
3392 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3393 ** factored out into initialization code.
3394 **
3395 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3396 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3397 ** in registers at srcReg, and so the value can be copied from there.
3398 */
3399 int sqlite3ExprCodeExprList(
3400   Parse *pParse,     /* Parsing context */
3401   ExprList *pList,   /* The expression list to be coded */
3402   int target,        /* Where to write results */
3403   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
3404   u8 flags           /* SQLITE_ECEL_* flags */
3405 ){
3406   struct ExprList_item *pItem;
3407   int i, j, n;
3408   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3409   Vdbe *v = pParse->pVdbe;
3410   assert( pList!=0 );
3411   assert( target>0 );
3412   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3413   n = pList->nExpr;
3414   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3415   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3416     Expr *pExpr = pItem->pExpr;
3417     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3418       sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3419     }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3420       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3421     }else{
3422       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3423       if( inReg!=target+i ){
3424         VdbeOp *pOp;
3425         if( copyOp==OP_Copy
3426          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3427          && pOp->p1+pOp->p3+1==inReg
3428          && pOp->p2+pOp->p3+1==target+i
3429         ){
3430           pOp->p3++;
3431         }else{
3432           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3433         }
3434       }
3435     }
3436   }
3437   return n;
3438 }
3439 
3440 /*
3441 ** Generate code for a BETWEEN operator.
3442 **
3443 **    x BETWEEN y AND z
3444 **
3445 ** The above is equivalent to
3446 **
3447 **    x>=y AND x<=z
3448 **
3449 ** Code it as such, taking care to do the common subexpression
3450 ** elimination of x.
3451 */
3452 static void exprCodeBetween(
3453   Parse *pParse,    /* Parsing and code generating context */
3454   Expr *pExpr,      /* The BETWEEN expression */
3455   int dest,         /* Jump here if the jump is taken */
3456   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3457   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3458 ){
3459   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3460   Expr compLeft;    /* The  x>=y  term */
3461   Expr compRight;   /* The  x<=z  term */
3462   Expr exprX;       /* The  x  subexpression */
3463   int regFree1 = 0; /* Temporary use register */
3464 
3465   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3466   exprX = *pExpr->pLeft;
3467   exprAnd.op = TK_AND;
3468   exprAnd.pLeft = &compLeft;
3469   exprAnd.pRight = &compRight;
3470   compLeft.op = TK_GE;
3471   compLeft.pLeft = &exprX;
3472   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3473   compRight.op = TK_LE;
3474   compRight.pLeft = &exprX;
3475   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3476   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3477   if( jumpIfTrue ){
3478     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3479   }else{
3480     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3481   }
3482   sqlite3ReleaseTempReg(pParse, regFree1);
3483 
3484   /* Ensure adequate test coverage */
3485   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3486   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3487   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3488   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3489   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3490   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3491   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3492   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3493 }
3494 
3495 /*
3496 ** Generate code for a boolean expression such that a jump is made
3497 ** to the label "dest" if the expression is true but execution
3498 ** continues straight thru if the expression is false.
3499 **
3500 ** If the expression evaluates to NULL (neither true nor false), then
3501 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3502 **
3503 ** This code depends on the fact that certain token values (ex: TK_EQ)
3504 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3505 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3506 ** the make process cause these values to align.  Assert()s in the code
3507 ** below verify that the numbers are aligned correctly.
3508 */
3509 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3510   Vdbe *v = pParse->pVdbe;
3511   int op = 0;
3512   int regFree1 = 0;
3513   int regFree2 = 0;
3514   int r1, r2;
3515 
3516   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3517   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3518   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3519   op = pExpr->op;
3520   switch( op ){
3521     case TK_AND: {
3522       int d2 = sqlite3VdbeMakeLabel(v);
3523       testcase( jumpIfNull==0 );
3524       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3525       sqlite3ExprCachePush(pParse);
3526       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3527       sqlite3VdbeResolveLabel(v, d2);
3528       sqlite3ExprCachePop(pParse);
3529       break;
3530     }
3531     case TK_OR: {
3532       testcase( jumpIfNull==0 );
3533       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3534       sqlite3ExprCachePush(pParse);
3535       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3536       sqlite3ExprCachePop(pParse);
3537       break;
3538     }
3539     case TK_NOT: {
3540       testcase( jumpIfNull==0 );
3541       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3542       break;
3543     }
3544     case TK_LT:
3545     case TK_LE:
3546     case TK_GT:
3547     case TK_GE:
3548     case TK_NE:
3549     case TK_EQ: {
3550       testcase( jumpIfNull==0 );
3551       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3552       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3553       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3554                   r1, r2, dest, jumpIfNull);
3555       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3556       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3557       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3558       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3559       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3560       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3561       testcase( regFree1==0 );
3562       testcase( regFree2==0 );
3563       break;
3564     }
3565     case TK_IS:
3566     case TK_ISNOT: {
3567       testcase( op==TK_IS );
3568       testcase( op==TK_ISNOT );
3569       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3570       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3571       op = (op==TK_IS) ? TK_EQ : TK_NE;
3572       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3573                   r1, r2, dest, SQLITE_NULLEQ);
3574       VdbeCoverageIf(v, op==TK_EQ);
3575       VdbeCoverageIf(v, op==TK_NE);
3576       testcase( regFree1==0 );
3577       testcase( regFree2==0 );
3578       break;
3579     }
3580     case TK_ISNULL:
3581     case TK_NOTNULL: {
3582       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3583       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3584       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3585       sqlite3VdbeAddOp2(v, op, r1, dest);
3586       VdbeCoverageIf(v, op==TK_ISNULL);
3587       VdbeCoverageIf(v, op==TK_NOTNULL);
3588       testcase( regFree1==0 );
3589       break;
3590     }
3591     case TK_BETWEEN: {
3592       testcase( jumpIfNull==0 );
3593       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3594       break;
3595     }
3596 #ifndef SQLITE_OMIT_SUBQUERY
3597     case TK_IN: {
3598       int destIfFalse = sqlite3VdbeMakeLabel(v);
3599       int destIfNull = jumpIfNull ? dest : destIfFalse;
3600       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3601       sqlite3VdbeGoto(v, dest);
3602       sqlite3VdbeResolveLabel(v, destIfFalse);
3603       break;
3604     }
3605 #endif
3606     default: {
3607       if( exprAlwaysTrue(pExpr) ){
3608         sqlite3VdbeGoto(v, dest);
3609       }else if( exprAlwaysFalse(pExpr) ){
3610         /* No-op */
3611       }else{
3612         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3613         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3614         VdbeCoverage(v);
3615         testcase( regFree1==0 );
3616         testcase( jumpIfNull==0 );
3617       }
3618       break;
3619     }
3620   }
3621   sqlite3ReleaseTempReg(pParse, regFree1);
3622   sqlite3ReleaseTempReg(pParse, regFree2);
3623 }
3624 
3625 /*
3626 ** Generate code for a boolean expression such that a jump is made
3627 ** to the label "dest" if the expression is false but execution
3628 ** continues straight thru if the expression is true.
3629 **
3630 ** If the expression evaluates to NULL (neither true nor false) then
3631 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3632 ** is 0.
3633 */
3634 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3635   Vdbe *v = pParse->pVdbe;
3636   int op = 0;
3637   int regFree1 = 0;
3638   int regFree2 = 0;
3639   int r1, r2;
3640 
3641   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3642   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3643   if( pExpr==0 )    return;
3644 
3645   /* The value of pExpr->op and op are related as follows:
3646   **
3647   **       pExpr->op            op
3648   **       ---------          ----------
3649   **       TK_ISNULL          OP_NotNull
3650   **       TK_NOTNULL         OP_IsNull
3651   **       TK_NE              OP_Eq
3652   **       TK_EQ              OP_Ne
3653   **       TK_GT              OP_Le
3654   **       TK_LE              OP_Gt
3655   **       TK_GE              OP_Lt
3656   **       TK_LT              OP_Ge
3657   **
3658   ** For other values of pExpr->op, op is undefined and unused.
3659   ** The value of TK_ and OP_ constants are arranged such that we
3660   ** can compute the mapping above using the following expression.
3661   ** Assert()s verify that the computation is correct.
3662   */
3663   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3664 
3665   /* Verify correct alignment of TK_ and OP_ constants
3666   */
3667   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3668   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3669   assert( pExpr->op!=TK_NE || op==OP_Eq );
3670   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3671   assert( pExpr->op!=TK_LT || op==OP_Ge );
3672   assert( pExpr->op!=TK_LE || op==OP_Gt );
3673   assert( pExpr->op!=TK_GT || op==OP_Le );
3674   assert( pExpr->op!=TK_GE || op==OP_Lt );
3675 
3676   switch( pExpr->op ){
3677     case TK_AND: {
3678       testcase( jumpIfNull==0 );
3679       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3680       sqlite3ExprCachePush(pParse);
3681       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3682       sqlite3ExprCachePop(pParse);
3683       break;
3684     }
3685     case TK_OR: {
3686       int d2 = sqlite3VdbeMakeLabel(v);
3687       testcase( jumpIfNull==0 );
3688       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3689       sqlite3ExprCachePush(pParse);
3690       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3691       sqlite3VdbeResolveLabel(v, d2);
3692       sqlite3ExprCachePop(pParse);
3693       break;
3694     }
3695     case TK_NOT: {
3696       testcase( jumpIfNull==0 );
3697       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3698       break;
3699     }
3700     case TK_LT:
3701     case TK_LE:
3702     case TK_GT:
3703     case TK_GE:
3704     case TK_NE:
3705     case TK_EQ: {
3706       testcase( jumpIfNull==0 );
3707       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3708       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3709       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3710                   r1, r2, dest, jumpIfNull);
3711       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3712       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3713       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3714       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3715       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3716       assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3717       testcase( regFree1==0 );
3718       testcase( regFree2==0 );
3719       break;
3720     }
3721     case TK_IS:
3722     case TK_ISNOT: {
3723       testcase( pExpr->op==TK_IS );
3724       testcase( pExpr->op==TK_ISNOT );
3725       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3726       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3727       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3728       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3729                   r1, r2, dest, SQLITE_NULLEQ);
3730       VdbeCoverageIf(v, op==TK_EQ);
3731       VdbeCoverageIf(v, op==TK_NE);
3732       testcase( regFree1==0 );
3733       testcase( regFree2==0 );
3734       break;
3735     }
3736     case TK_ISNULL:
3737     case TK_NOTNULL: {
3738       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3739       sqlite3VdbeAddOp2(v, op, r1, dest);
3740       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
3741       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
3742       testcase( regFree1==0 );
3743       break;
3744     }
3745     case TK_BETWEEN: {
3746       testcase( jumpIfNull==0 );
3747       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3748       break;
3749     }
3750 #ifndef SQLITE_OMIT_SUBQUERY
3751     case TK_IN: {
3752       if( jumpIfNull ){
3753         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3754       }else{
3755         int destIfNull = sqlite3VdbeMakeLabel(v);
3756         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3757         sqlite3VdbeResolveLabel(v, destIfNull);
3758       }
3759       break;
3760     }
3761 #endif
3762     default: {
3763       if( exprAlwaysFalse(pExpr) ){
3764         sqlite3VdbeGoto(v, dest);
3765       }else if( exprAlwaysTrue(pExpr) ){
3766         /* no-op */
3767       }else{
3768         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3769         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3770         VdbeCoverage(v);
3771         testcase( regFree1==0 );
3772         testcase( jumpIfNull==0 );
3773       }
3774       break;
3775     }
3776   }
3777   sqlite3ReleaseTempReg(pParse, regFree1);
3778   sqlite3ReleaseTempReg(pParse, regFree2);
3779 }
3780 
3781 /*
3782 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3783 ** code generation, and that copy is deleted after code generation. This
3784 ** ensures that the original pExpr is unchanged.
3785 */
3786 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3787   sqlite3 *db = pParse->db;
3788   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3789   if( db->mallocFailed==0 ){
3790     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3791   }
3792   sqlite3ExprDelete(db, pCopy);
3793 }
3794 
3795 
3796 /*
3797 ** Do a deep comparison of two expression trees.  Return 0 if the two
3798 ** expressions are completely identical.  Return 1 if they differ only
3799 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3800 ** other than the top-level COLLATE operator.
3801 **
3802 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3803 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3804 **
3805 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3806 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3807 **
3808 ** Sometimes this routine will return 2 even if the two expressions
3809 ** really are equivalent.  If we cannot prove that the expressions are
3810 ** identical, we return 2 just to be safe.  So if this routine
3811 ** returns 2, then you do not really know for certain if the two
3812 ** expressions are the same.  But if you get a 0 or 1 return, then you
3813 ** can be sure the expressions are the same.  In the places where
3814 ** this routine is used, it does not hurt to get an extra 2 - that
3815 ** just might result in some slightly slower code.  But returning
3816 ** an incorrect 0 or 1 could lead to a malfunction.
3817 */
3818 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3819   u32 combinedFlags;
3820   if( pA==0 || pB==0 ){
3821     return pB==pA ? 0 : 2;
3822   }
3823   combinedFlags = pA->flags | pB->flags;
3824   if( combinedFlags & EP_IntValue ){
3825     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3826       return 0;
3827     }
3828     return 2;
3829   }
3830   if( pA->op!=pB->op ){
3831     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3832       return 1;
3833     }
3834     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3835       return 1;
3836     }
3837     return 2;
3838   }
3839   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3840     if( pA->op==TK_FUNCTION ){
3841       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3842     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3843       return pA->op==TK_COLLATE ? 1 : 2;
3844     }
3845   }
3846   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3847   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3848     if( combinedFlags & EP_xIsSelect ) return 2;
3849     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3850     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3851     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3852     if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3853       if( pA->iColumn!=pB->iColumn ) return 2;
3854       if( pA->iTable!=pB->iTable
3855        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3856     }
3857   }
3858   return 0;
3859 }
3860 
3861 /*
3862 ** Compare two ExprList objects.  Return 0 if they are identical and
3863 ** non-zero if they differ in any way.
3864 **
3865 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3866 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3867 **
3868 ** This routine might return non-zero for equivalent ExprLists.  The
3869 ** only consequence will be disabled optimizations.  But this routine
3870 ** must never return 0 if the two ExprList objects are different, or
3871 ** a malfunction will result.
3872 **
3873 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3874 ** always differs from a non-NULL pointer.
3875 */
3876 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3877   int i;
3878   if( pA==0 && pB==0 ) return 0;
3879   if( pA==0 || pB==0 ) return 1;
3880   if( pA->nExpr!=pB->nExpr ) return 1;
3881   for(i=0; i<pA->nExpr; i++){
3882     Expr *pExprA = pA->a[i].pExpr;
3883     Expr *pExprB = pB->a[i].pExpr;
3884     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3885     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3886   }
3887   return 0;
3888 }
3889 
3890 /*
3891 ** Return true if we can prove the pE2 will always be true if pE1 is
3892 ** true.  Return false if we cannot complete the proof or if pE2 might
3893 ** be false.  Examples:
3894 **
3895 **     pE1: x==5       pE2: x==5             Result: true
3896 **     pE1: x>0        pE2: x==5             Result: false
3897 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3898 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3899 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3900 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3901 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3902 **
3903 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3904 ** Expr.iTable<0 then assume a table number given by iTab.
3905 **
3906 ** When in doubt, return false.  Returning true might give a performance
3907 ** improvement.  Returning false might cause a performance reduction, but
3908 ** it will always give the correct answer and is hence always safe.
3909 */
3910 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3911   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3912     return 1;
3913   }
3914   if( pE2->op==TK_OR
3915    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3916              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3917   ){
3918     return 1;
3919   }
3920   if( pE2->op==TK_NOTNULL
3921    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3922    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3923   ){
3924     return 1;
3925   }
3926   return 0;
3927 }
3928 
3929 /*
3930 ** An instance of the following structure is used by the tree walker
3931 ** to count references to table columns in the arguments of an
3932 ** aggregate function, in order to implement the
3933 ** sqlite3FunctionThisSrc() routine.
3934 */
3935 struct SrcCount {
3936   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3937   int nThis;       /* Number of references to columns in pSrcList */
3938   int nOther;      /* Number of references to columns in other FROM clauses */
3939 };
3940 
3941 /*
3942 ** Count the number of references to columns.
3943 */
3944 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3945   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3946   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3947   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3948   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3949   ** NEVER() will need to be removed. */
3950   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3951     int i;
3952     struct SrcCount *p = pWalker->u.pSrcCount;
3953     SrcList *pSrc = p->pSrc;
3954     int nSrc = pSrc ? pSrc->nSrc : 0;
3955     for(i=0; i<nSrc; i++){
3956       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3957     }
3958     if( i<nSrc ){
3959       p->nThis++;
3960     }else{
3961       p->nOther++;
3962     }
3963   }
3964   return WRC_Continue;
3965 }
3966 
3967 /*
3968 ** Determine if any of the arguments to the pExpr Function reference
3969 ** pSrcList.  Return true if they do.  Also return true if the function
3970 ** has no arguments or has only constant arguments.  Return false if pExpr
3971 ** references columns but not columns of tables found in pSrcList.
3972 */
3973 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3974   Walker w;
3975   struct SrcCount cnt;
3976   assert( pExpr->op==TK_AGG_FUNCTION );
3977   memset(&w, 0, sizeof(w));
3978   w.xExprCallback = exprSrcCount;
3979   w.u.pSrcCount = &cnt;
3980   cnt.pSrc = pSrcList;
3981   cnt.nThis = 0;
3982   cnt.nOther = 0;
3983   sqlite3WalkExprList(&w, pExpr->x.pList);
3984   return cnt.nThis>0 || cnt.nOther==0;
3985 }
3986 
3987 /*
3988 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
3989 ** the new element.  Return a negative number if malloc fails.
3990 */
3991 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3992   int i;
3993   pInfo->aCol = sqlite3ArrayAllocate(
3994        db,
3995        pInfo->aCol,
3996        sizeof(pInfo->aCol[0]),
3997        &pInfo->nColumn,
3998        &i
3999   );
4000   return i;
4001 }
4002 
4003 /*
4004 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4005 ** the new element.  Return a negative number if malloc fails.
4006 */
4007 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4008   int i;
4009   pInfo->aFunc = sqlite3ArrayAllocate(
4010        db,
4011        pInfo->aFunc,
4012        sizeof(pInfo->aFunc[0]),
4013        &pInfo->nFunc,
4014        &i
4015   );
4016   return i;
4017 }
4018 
4019 /*
4020 ** This is the xExprCallback for a tree walker.  It is used to
4021 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4022 ** for additional information.
4023 */
4024 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4025   int i;
4026   NameContext *pNC = pWalker->u.pNC;
4027   Parse *pParse = pNC->pParse;
4028   SrcList *pSrcList = pNC->pSrcList;
4029   AggInfo *pAggInfo = pNC->pAggInfo;
4030 
4031   switch( pExpr->op ){
4032     case TK_AGG_COLUMN:
4033     case TK_COLUMN: {
4034       testcase( pExpr->op==TK_AGG_COLUMN );
4035       testcase( pExpr->op==TK_COLUMN );
4036       /* Check to see if the column is in one of the tables in the FROM
4037       ** clause of the aggregate query */
4038       if( ALWAYS(pSrcList!=0) ){
4039         struct SrcList_item *pItem = pSrcList->a;
4040         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4041           struct AggInfo_col *pCol;
4042           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4043           if( pExpr->iTable==pItem->iCursor ){
4044             /* If we reach this point, it means that pExpr refers to a table
4045             ** that is in the FROM clause of the aggregate query.
4046             **
4047             ** Make an entry for the column in pAggInfo->aCol[] if there
4048             ** is not an entry there already.
4049             */
4050             int k;
4051             pCol = pAggInfo->aCol;
4052             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4053               if( pCol->iTable==pExpr->iTable &&
4054                   pCol->iColumn==pExpr->iColumn ){
4055                 break;
4056               }
4057             }
4058             if( (k>=pAggInfo->nColumn)
4059              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4060             ){
4061               pCol = &pAggInfo->aCol[k];
4062               pCol->pTab = pExpr->pTab;
4063               pCol->iTable = pExpr->iTable;
4064               pCol->iColumn = pExpr->iColumn;
4065               pCol->iMem = ++pParse->nMem;
4066               pCol->iSorterColumn = -1;
4067               pCol->pExpr = pExpr;
4068               if( pAggInfo->pGroupBy ){
4069                 int j, n;
4070                 ExprList *pGB = pAggInfo->pGroupBy;
4071                 struct ExprList_item *pTerm = pGB->a;
4072                 n = pGB->nExpr;
4073                 for(j=0; j<n; j++, pTerm++){
4074                   Expr *pE = pTerm->pExpr;
4075                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4076                       pE->iColumn==pExpr->iColumn ){
4077                     pCol->iSorterColumn = j;
4078                     break;
4079                   }
4080                 }
4081               }
4082               if( pCol->iSorterColumn<0 ){
4083                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4084               }
4085             }
4086             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4087             ** because it was there before or because we just created it).
4088             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4089             ** pAggInfo->aCol[] entry.
4090             */
4091             ExprSetVVAProperty(pExpr, EP_NoReduce);
4092             pExpr->pAggInfo = pAggInfo;
4093             pExpr->op = TK_AGG_COLUMN;
4094             pExpr->iAgg = (i16)k;
4095             break;
4096           } /* endif pExpr->iTable==pItem->iCursor */
4097         } /* end loop over pSrcList */
4098       }
4099       return WRC_Prune;
4100     }
4101     case TK_AGG_FUNCTION: {
4102       if( (pNC->ncFlags & NC_InAggFunc)==0
4103        && pWalker->walkerDepth==pExpr->op2
4104       ){
4105         /* Check to see if pExpr is a duplicate of another aggregate
4106         ** function that is already in the pAggInfo structure
4107         */
4108         struct AggInfo_func *pItem = pAggInfo->aFunc;
4109         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4110           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4111             break;
4112           }
4113         }
4114         if( i>=pAggInfo->nFunc ){
4115           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4116           */
4117           u8 enc = ENC(pParse->db);
4118           i = addAggInfoFunc(pParse->db, pAggInfo);
4119           if( i>=0 ){
4120             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4121             pItem = &pAggInfo->aFunc[i];
4122             pItem->pExpr = pExpr;
4123             pItem->iMem = ++pParse->nMem;
4124             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4125             pItem->pFunc = sqlite3FindFunction(pParse->db,
4126                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4127                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4128             if( pExpr->flags & EP_Distinct ){
4129               pItem->iDistinct = pParse->nTab++;
4130             }else{
4131               pItem->iDistinct = -1;
4132             }
4133           }
4134         }
4135         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4136         */
4137         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4138         ExprSetVVAProperty(pExpr, EP_NoReduce);
4139         pExpr->iAgg = (i16)i;
4140         pExpr->pAggInfo = pAggInfo;
4141         return WRC_Prune;
4142       }else{
4143         return WRC_Continue;
4144       }
4145     }
4146   }
4147   return WRC_Continue;
4148 }
4149 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4150   UNUSED_PARAMETER(pWalker);
4151   UNUSED_PARAMETER(pSelect);
4152   return WRC_Continue;
4153 }
4154 
4155 /*
4156 ** Analyze the pExpr expression looking for aggregate functions and
4157 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4158 ** points to.  Additional entries are made on the AggInfo object as
4159 ** necessary.
4160 **
4161 ** This routine should only be called after the expression has been
4162 ** analyzed by sqlite3ResolveExprNames().
4163 */
4164 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4165   Walker w;
4166   memset(&w, 0, sizeof(w));
4167   w.xExprCallback = analyzeAggregate;
4168   w.xSelectCallback = analyzeAggregatesInSelect;
4169   w.u.pNC = pNC;
4170   assert( pNC->pSrcList!=0 );
4171   sqlite3WalkExpr(&w, pExpr);
4172 }
4173 
4174 /*
4175 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4176 ** expression list.  Return the number of errors.
4177 **
4178 ** If an error is found, the analysis is cut short.
4179 */
4180 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4181   struct ExprList_item *pItem;
4182   int i;
4183   if( pList ){
4184     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4185       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4186     }
4187   }
4188 }
4189 
4190 /*
4191 ** Allocate a single new register for use to hold some intermediate result.
4192 */
4193 int sqlite3GetTempReg(Parse *pParse){
4194   if( pParse->nTempReg==0 ){
4195     return ++pParse->nMem;
4196   }
4197   return pParse->aTempReg[--pParse->nTempReg];
4198 }
4199 
4200 /*
4201 ** Deallocate a register, making available for reuse for some other
4202 ** purpose.
4203 **
4204 ** If a register is currently being used by the column cache, then
4205 ** the deallocation is deferred until the column cache line that uses
4206 ** the register becomes stale.
4207 */
4208 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4209   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4210     int i;
4211     struct yColCache *p;
4212     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4213       if( p->iReg==iReg ){
4214         p->tempReg = 1;
4215         return;
4216       }
4217     }
4218     pParse->aTempReg[pParse->nTempReg++] = iReg;
4219   }
4220 }
4221 
4222 /*
4223 ** Allocate or deallocate a block of nReg consecutive registers
4224 */
4225 int sqlite3GetTempRange(Parse *pParse, int nReg){
4226   int i, n;
4227   i = pParse->iRangeReg;
4228   n = pParse->nRangeReg;
4229   if( nReg<=n ){
4230     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4231     pParse->iRangeReg += nReg;
4232     pParse->nRangeReg -= nReg;
4233   }else{
4234     i = pParse->nMem+1;
4235     pParse->nMem += nReg;
4236   }
4237   return i;
4238 }
4239 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4240   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4241   if( nReg>pParse->nRangeReg ){
4242     pParse->nRangeReg = nReg;
4243     pParse->iRangeReg = iReg;
4244   }
4245 }
4246 
4247 /*
4248 ** Mark all temporary registers as being unavailable for reuse.
4249 */
4250 void sqlite3ClearTempRegCache(Parse *pParse){
4251   pParse->nTempReg = 0;
4252   pParse->nRangeReg = 0;
4253 }
4254