1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 pExpr = sqlite3ExprSkipCollate(pExpr); 48 if( pExpr->flags & EP_Generic ) return 0; 49 op = pExpr->op; 50 if( op==TK_SELECT ){ 51 assert( pExpr->flags&EP_xIsSelect ); 52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 53 } 54 if( op==TK_REGISTER ) op = pExpr->op2; 55 #ifndef SQLITE_OMIT_CAST 56 if( op==TK_CAST ){ 57 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 58 return sqlite3AffinityType(pExpr->u.zToken, 0); 59 } 60 #endif 61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 62 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 63 } 64 if( op==TK_SELECT_COLUMN ){ 65 assert( pExpr->pLeft->flags&EP_xIsSelect ); 66 return sqlite3ExprAffinity( 67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 68 ); 69 } 70 return pExpr->affinity; 71 } 72 73 /* 74 ** Set the collating sequence for expression pExpr to be the collating 75 ** sequence named by pToken. Return a pointer to a new Expr node that 76 ** implements the COLLATE operator. 77 ** 78 ** If a memory allocation error occurs, that fact is recorded in pParse->db 79 ** and the pExpr parameter is returned unchanged. 80 */ 81 Expr *sqlite3ExprAddCollateToken( 82 Parse *pParse, /* Parsing context */ 83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 84 const Token *pCollName, /* Name of collating sequence */ 85 int dequote /* True to dequote pCollName */ 86 ){ 87 if( pCollName->n>0 ){ 88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 89 if( pNew ){ 90 pNew->pLeft = pExpr; 91 pNew->flags |= EP_Collate|EP_Skip; 92 pExpr = pNew; 93 } 94 } 95 return pExpr; 96 } 97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 98 Token s; 99 assert( zC!=0 ); 100 sqlite3TokenInit(&s, (char*)zC); 101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 102 } 103 104 /* 105 ** Skip over any TK_COLLATE operators and any unlikely() 106 ** or likelihood() function at the root of an expression. 107 */ 108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 110 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 112 assert( pExpr->x.pList->nExpr>0 ); 113 assert( pExpr->op==TK_FUNCTION ); 114 pExpr = pExpr->x.pList->a[0].pExpr; 115 }else{ 116 assert( pExpr->op==TK_COLLATE ); 117 pExpr = pExpr->pLeft; 118 } 119 } 120 return pExpr; 121 } 122 123 /* 124 ** Return the collation sequence for the expression pExpr. If 125 ** there is no defined collating sequence, return NULL. 126 ** 127 ** See also: sqlite3ExprNNCollSeq() 128 ** 129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 130 ** default collation if pExpr has no defined collation. 131 ** 132 ** The collating sequence might be determined by a COLLATE operator 133 ** or by the presence of a column with a defined collating sequence. 134 ** COLLATE operators take first precedence. Left operands take 135 ** precedence over right operands. 136 */ 137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 138 sqlite3 *db = pParse->db; 139 CollSeq *pColl = 0; 140 Expr *p = pExpr; 141 while( p ){ 142 int op = p->op; 143 if( p->flags & EP_Generic ) break; 144 if( op==TK_REGISTER ) op = p->op2; 145 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 146 && p->y.pTab!=0 147 ){ 148 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 149 ** a TK_COLUMN but was previously evaluated and cached in a register */ 150 int j = p->iColumn; 151 if( j>=0 ){ 152 const char *zColl = p->y.pTab->aCol[j].zColl; 153 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 154 } 155 break; 156 } 157 if( op==TK_CAST || op==TK_UPLUS ){ 158 p = p->pLeft; 159 continue; 160 } 161 if( op==TK_COLLATE ){ 162 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 163 break; 164 } 165 if( p->flags & EP_Collate ){ 166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 167 p = p->pLeft; 168 }else{ 169 Expr *pNext = p->pRight; 170 /* The Expr.x union is never used at the same time as Expr.pRight */ 171 assert( p->x.pList==0 || p->pRight==0 ); 172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 174 ** least one EP_Collate. Thus the following two ALWAYS. */ 175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 176 int i; 177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 179 pNext = p->x.pList->a[i].pExpr; 180 break; 181 } 182 } 183 } 184 p = pNext; 185 } 186 }else{ 187 break; 188 } 189 } 190 if( sqlite3CheckCollSeq(pParse, pColl) ){ 191 pColl = 0; 192 } 193 return pColl; 194 } 195 196 /* 197 ** Return the collation sequence for the expression pExpr. If 198 ** there is no defined collating sequence, return a pointer to the 199 ** defautl collation sequence. 200 ** 201 ** See also: sqlite3ExprCollSeq() 202 ** 203 ** The sqlite3ExprCollSeq() routine works the same except that it 204 ** returns NULL if there is no defined collation. 205 */ 206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 208 if( p==0 ) p = pParse->db->pDfltColl; 209 assert( p!=0 ); 210 return p; 211 } 212 213 /* 214 ** Return TRUE if the two expressions have equivalent collating sequences. 215 */ 216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 220 } 221 222 /* 223 ** pExpr is an operand of a comparison operator. aff2 is the 224 ** type affinity of the other operand. This routine returns the 225 ** type affinity that should be used for the comparison operator. 226 */ 227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 228 char aff1 = sqlite3ExprAffinity(pExpr); 229 if( aff1 && aff2 ){ 230 /* Both sides of the comparison are columns. If one has numeric 231 ** affinity, use that. Otherwise use no affinity. 232 */ 233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 234 return SQLITE_AFF_NUMERIC; 235 }else{ 236 return SQLITE_AFF_BLOB; 237 } 238 }else if( !aff1 && !aff2 ){ 239 /* Neither side of the comparison is a column. Compare the 240 ** results directly. 241 */ 242 return SQLITE_AFF_BLOB; 243 }else{ 244 /* One side is a column, the other is not. Use the columns affinity. */ 245 assert( aff1==0 || aff2==0 ); 246 return (aff1 + aff2); 247 } 248 } 249 250 /* 251 ** pExpr is a comparison operator. Return the type affinity that should 252 ** be applied to both operands prior to doing the comparison. 253 */ 254 static char comparisonAffinity(Expr *pExpr){ 255 char aff; 256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 259 assert( pExpr->pLeft ); 260 aff = sqlite3ExprAffinity(pExpr->pLeft); 261 if( pExpr->pRight ){ 262 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 265 }else if( aff==0 ){ 266 aff = SQLITE_AFF_BLOB; 267 } 268 return aff; 269 } 270 271 /* 272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 273 ** idx_affinity is the affinity of an indexed column. Return true 274 ** if the index with affinity idx_affinity may be used to implement 275 ** the comparison in pExpr. 276 */ 277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 278 char aff = comparisonAffinity(pExpr); 279 switch( aff ){ 280 case SQLITE_AFF_BLOB: 281 return 1; 282 case SQLITE_AFF_TEXT: 283 return idx_affinity==SQLITE_AFF_TEXT; 284 default: 285 return sqlite3IsNumericAffinity(idx_affinity); 286 } 287 } 288 289 /* 290 ** Return the P5 value that should be used for a binary comparison 291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 292 */ 293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 294 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 296 return aff; 297 } 298 299 /* 300 ** Return a pointer to the collation sequence that should be used by 301 ** a binary comparison operator comparing pLeft and pRight. 302 ** 303 ** If the left hand expression has a collating sequence type, then it is 304 ** used. Otherwise the collation sequence for the right hand expression 305 ** is used, or the default (BINARY) if neither expression has a collating 306 ** type. 307 ** 308 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 309 ** it is not considered. 310 */ 311 CollSeq *sqlite3BinaryCompareCollSeq( 312 Parse *pParse, 313 Expr *pLeft, 314 Expr *pRight 315 ){ 316 CollSeq *pColl; 317 assert( pLeft ); 318 if( pLeft->flags & EP_Collate ){ 319 pColl = sqlite3ExprCollSeq(pParse, pLeft); 320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 321 pColl = sqlite3ExprCollSeq(pParse, pRight); 322 }else{ 323 pColl = sqlite3ExprCollSeq(pParse, pLeft); 324 if( !pColl ){ 325 pColl = sqlite3ExprCollSeq(pParse, pRight); 326 } 327 } 328 return pColl; 329 } 330 331 /* 332 ** Generate code for a comparison operator. 333 */ 334 static int codeCompare( 335 Parse *pParse, /* The parsing (and code generating) context */ 336 Expr *pLeft, /* The left operand */ 337 Expr *pRight, /* The right operand */ 338 int opcode, /* The comparison opcode */ 339 int in1, int in2, /* Register holding operands */ 340 int dest, /* Jump here if true. */ 341 int jumpIfNull /* If true, jump if either operand is NULL */ 342 ){ 343 int p5; 344 int addr; 345 CollSeq *p4; 346 347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 350 (void*)p4, P4_COLLSEQ); 351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 352 return addr; 353 } 354 355 /* 356 ** Return true if expression pExpr is a vector, or false otherwise. 357 ** 358 ** A vector is defined as any expression that results in two or more 359 ** columns of result. Every TK_VECTOR node is an vector because the 360 ** parser will not generate a TK_VECTOR with fewer than two entries. 361 ** But a TK_SELECT might be either a vector or a scalar. It is only 362 ** considered a vector if it has two or more result columns. 363 */ 364 int sqlite3ExprIsVector(Expr *pExpr){ 365 return sqlite3ExprVectorSize(pExpr)>1; 366 } 367 368 /* 369 ** If the expression passed as the only argument is of type TK_VECTOR 370 ** return the number of expressions in the vector. Or, if the expression 371 ** is a sub-select, return the number of columns in the sub-select. For 372 ** any other type of expression, return 1. 373 */ 374 int sqlite3ExprVectorSize(Expr *pExpr){ 375 u8 op = pExpr->op; 376 if( op==TK_REGISTER ) op = pExpr->op2; 377 if( op==TK_VECTOR ){ 378 return pExpr->x.pList->nExpr; 379 }else if( op==TK_SELECT ){ 380 return pExpr->x.pSelect->pEList->nExpr; 381 }else{ 382 return 1; 383 } 384 } 385 386 /* 387 ** Return a pointer to a subexpression of pVector that is the i-th 388 ** column of the vector (numbered starting with 0). The caller must 389 ** ensure that i is within range. 390 ** 391 ** If pVector is really a scalar (and "scalar" here includes subqueries 392 ** that return a single column!) then return pVector unmodified. 393 ** 394 ** pVector retains ownership of the returned subexpression. 395 ** 396 ** If the vector is a (SELECT ...) then the expression returned is 397 ** just the expression for the i-th term of the result set, and may 398 ** not be ready for evaluation because the table cursor has not yet 399 ** been positioned. 400 */ 401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 402 assert( i<sqlite3ExprVectorSize(pVector) ); 403 if( sqlite3ExprIsVector(pVector) ){ 404 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 406 return pVector->x.pSelect->pEList->a[i].pExpr; 407 }else{ 408 return pVector->x.pList->a[i].pExpr; 409 } 410 } 411 return pVector; 412 } 413 414 /* 415 ** Compute and return a new Expr object which when passed to 416 ** sqlite3ExprCode() will generate all necessary code to compute 417 ** the iField-th column of the vector expression pVector. 418 ** 419 ** It is ok for pVector to be a scalar (as long as iField==0). 420 ** In that case, this routine works like sqlite3ExprDup(). 421 ** 422 ** The caller owns the returned Expr object and is responsible for 423 ** ensuring that the returned value eventually gets freed. 424 ** 425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 426 ** then the returned object will reference pVector and so pVector must remain 427 ** valid for the life of the returned object. If pVector is a TK_VECTOR 428 ** or a scalar expression, then it can be deleted as soon as this routine 429 ** returns. 430 ** 431 ** A trick to cause a TK_SELECT pVector to be deleted together with 432 ** the returned Expr object is to attach the pVector to the pRight field 433 ** of the returned TK_SELECT_COLUMN Expr object. 434 */ 435 Expr *sqlite3ExprForVectorField( 436 Parse *pParse, /* Parsing context */ 437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 438 int iField /* Which column of the vector to return */ 439 ){ 440 Expr *pRet; 441 if( pVector->op==TK_SELECT ){ 442 assert( pVector->flags & EP_xIsSelect ); 443 /* The TK_SELECT_COLUMN Expr node: 444 ** 445 ** pLeft: pVector containing TK_SELECT. Not deleted. 446 ** pRight: not used. But recursively deleted. 447 ** iColumn: Index of a column in pVector 448 ** iTable: 0 or the number of columns on the LHS of an assignment 449 ** pLeft->iTable: First in an array of register holding result, or 0 450 ** if the result is not yet computed. 451 ** 452 ** sqlite3ExprDelete() specifically skips the recursive delete of 453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 454 ** can be attached to pRight to cause this node to take ownership of 455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 456 ** with the same pLeft pointer to the pVector, but only one of them 457 ** will own the pVector. 458 */ 459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 460 if( pRet ){ 461 pRet->iColumn = iField; 462 pRet->pLeft = pVector; 463 } 464 assert( pRet==0 || pRet->iTable==0 ); 465 }else{ 466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 467 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 468 } 469 return pRet; 470 } 471 472 /* 473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 474 ** it. Return the register in which the result is stored (or, if the 475 ** sub-select returns more than one column, the first in an array 476 ** of registers in which the result is stored). 477 ** 478 ** If pExpr is not a TK_SELECT expression, return 0. 479 */ 480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 481 int reg = 0; 482 #ifndef SQLITE_OMIT_SUBQUERY 483 if( pExpr->op==TK_SELECT ){ 484 reg = sqlite3CodeSubselect(pParse, pExpr); 485 } 486 #endif 487 return reg; 488 } 489 490 /* 491 ** Argument pVector points to a vector expression - either a TK_VECTOR 492 ** or TK_SELECT that returns more than one column. This function returns 493 ** the register number of a register that contains the value of 494 ** element iField of the vector. 495 ** 496 ** If pVector is a TK_SELECT expression, then code for it must have 497 ** already been generated using the exprCodeSubselect() routine. In this 498 ** case parameter regSelect should be the first in an array of registers 499 ** containing the results of the sub-select. 500 ** 501 ** If pVector is of type TK_VECTOR, then code for the requested field 502 ** is generated. In this case (*pRegFree) may be set to the number of 503 ** a temporary register to be freed by the caller before returning. 504 ** 505 ** Before returning, output parameter (*ppExpr) is set to point to the 506 ** Expr object corresponding to element iElem of the vector. 507 */ 508 static int exprVectorRegister( 509 Parse *pParse, /* Parse context */ 510 Expr *pVector, /* Vector to extract element from */ 511 int iField, /* Field to extract from pVector */ 512 int regSelect, /* First in array of registers */ 513 Expr **ppExpr, /* OUT: Expression element */ 514 int *pRegFree /* OUT: Temp register to free */ 515 ){ 516 u8 op = pVector->op; 517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 518 if( op==TK_REGISTER ){ 519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 520 return pVector->iTable+iField; 521 } 522 if( op==TK_SELECT ){ 523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 524 return regSelect+iField; 525 } 526 *ppExpr = pVector->x.pList->a[iField].pExpr; 527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 528 } 529 530 /* 531 ** Expression pExpr is a comparison between two vector values. Compute 532 ** the result of the comparison (1, 0, or NULL) and write that 533 ** result into register dest. 534 ** 535 ** The caller must satisfy the following preconditions: 536 ** 537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 539 ** otherwise: op==pExpr->op and p5==0 540 */ 541 static void codeVectorCompare( 542 Parse *pParse, /* Code generator context */ 543 Expr *pExpr, /* The comparison operation */ 544 int dest, /* Write results into this register */ 545 u8 op, /* Comparison operator */ 546 u8 p5 /* SQLITE_NULLEQ or zero */ 547 ){ 548 Vdbe *v = pParse->pVdbe; 549 Expr *pLeft = pExpr->pLeft; 550 Expr *pRight = pExpr->pRight; 551 int nLeft = sqlite3ExprVectorSize(pLeft); 552 int i; 553 int regLeft = 0; 554 int regRight = 0; 555 u8 opx = op; 556 int addrDone = sqlite3VdbeMakeLabel(v); 557 558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 559 sqlite3ErrorMsg(pParse, "row value misused"); 560 return; 561 } 562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 564 || pExpr->op==TK_LT || pExpr->op==TK_GT 565 || pExpr->op==TK_LE || pExpr->op==TK_GE 566 ); 567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 568 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 569 assert( p5==0 || pExpr->op!=op ); 570 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 571 572 p5 |= SQLITE_STOREP2; 573 if( opx==TK_LE ) opx = TK_LT; 574 if( opx==TK_GE ) opx = TK_GT; 575 576 regLeft = exprCodeSubselect(pParse, pLeft); 577 regRight = exprCodeSubselect(pParse, pRight); 578 579 for(i=0; 1 /*Loop exits by "break"*/; i++){ 580 int regFree1 = 0, regFree2 = 0; 581 Expr *pL, *pR; 582 int r1, r2; 583 assert( i>=0 && i<nLeft ); 584 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 585 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 586 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 587 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 588 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 589 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 590 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 591 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 592 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 593 sqlite3ReleaseTempReg(pParse, regFree1); 594 sqlite3ReleaseTempReg(pParse, regFree2); 595 if( i==nLeft-1 ){ 596 break; 597 } 598 if( opx==TK_EQ ){ 599 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 600 p5 |= SQLITE_KEEPNULL; 601 }else if( opx==TK_NE ){ 602 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 603 p5 |= SQLITE_KEEPNULL; 604 }else{ 605 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 606 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 607 VdbeCoverageIf(v, op==TK_LT); 608 VdbeCoverageIf(v, op==TK_GT); 609 VdbeCoverageIf(v, op==TK_LE); 610 VdbeCoverageIf(v, op==TK_GE); 611 if( i==nLeft-2 ) opx = op; 612 } 613 } 614 sqlite3VdbeResolveLabel(v, addrDone); 615 } 616 617 #if SQLITE_MAX_EXPR_DEPTH>0 618 /* 619 ** Check that argument nHeight is less than or equal to the maximum 620 ** expression depth allowed. If it is not, leave an error message in 621 ** pParse. 622 */ 623 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 624 int rc = SQLITE_OK; 625 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 626 if( nHeight>mxHeight ){ 627 sqlite3ErrorMsg(pParse, 628 "Expression tree is too large (maximum depth %d)", mxHeight 629 ); 630 rc = SQLITE_ERROR; 631 } 632 return rc; 633 } 634 635 /* The following three functions, heightOfExpr(), heightOfExprList() 636 ** and heightOfSelect(), are used to determine the maximum height 637 ** of any expression tree referenced by the structure passed as the 638 ** first argument. 639 ** 640 ** If this maximum height is greater than the current value pointed 641 ** to by pnHeight, the second parameter, then set *pnHeight to that 642 ** value. 643 */ 644 static void heightOfExpr(Expr *p, int *pnHeight){ 645 if( p ){ 646 if( p->nHeight>*pnHeight ){ 647 *pnHeight = p->nHeight; 648 } 649 } 650 } 651 static void heightOfExprList(ExprList *p, int *pnHeight){ 652 if( p ){ 653 int i; 654 for(i=0; i<p->nExpr; i++){ 655 heightOfExpr(p->a[i].pExpr, pnHeight); 656 } 657 } 658 } 659 static void heightOfSelect(Select *pSelect, int *pnHeight){ 660 Select *p; 661 for(p=pSelect; p; p=p->pPrior){ 662 heightOfExpr(p->pWhere, pnHeight); 663 heightOfExpr(p->pHaving, pnHeight); 664 heightOfExpr(p->pLimit, pnHeight); 665 heightOfExprList(p->pEList, pnHeight); 666 heightOfExprList(p->pGroupBy, pnHeight); 667 heightOfExprList(p->pOrderBy, pnHeight); 668 } 669 } 670 671 /* 672 ** Set the Expr.nHeight variable in the structure passed as an 673 ** argument. An expression with no children, Expr.pList or 674 ** Expr.pSelect member has a height of 1. Any other expression 675 ** has a height equal to the maximum height of any other 676 ** referenced Expr plus one. 677 ** 678 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 679 ** if appropriate. 680 */ 681 static void exprSetHeight(Expr *p){ 682 int nHeight = 0; 683 heightOfExpr(p->pLeft, &nHeight); 684 heightOfExpr(p->pRight, &nHeight); 685 if( ExprHasProperty(p, EP_xIsSelect) ){ 686 heightOfSelect(p->x.pSelect, &nHeight); 687 }else if( p->x.pList ){ 688 heightOfExprList(p->x.pList, &nHeight); 689 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 690 } 691 p->nHeight = nHeight + 1; 692 } 693 694 /* 695 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 696 ** the height is greater than the maximum allowed expression depth, 697 ** leave an error in pParse. 698 ** 699 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 700 ** Expr.flags. 701 */ 702 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 703 if( pParse->nErr ) return; 704 exprSetHeight(p); 705 sqlite3ExprCheckHeight(pParse, p->nHeight); 706 } 707 708 /* 709 ** Return the maximum height of any expression tree referenced 710 ** by the select statement passed as an argument. 711 */ 712 int sqlite3SelectExprHeight(Select *p){ 713 int nHeight = 0; 714 heightOfSelect(p, &nHeight); 715 return nHeight; 716 } 717 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 718 /* 719 ** Propagate all EP_Propagate flags from the Expr.x.pList into 720 ** Expr.flags. 721 */ 722 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 723 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 724 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 725 } 726 } 727 #define exprSetHeight(y) 728 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 729 730 /* 731 ** This routine is the core allocator for Expr nodes. 732 ** 733 ** Construct a new expression node and return a pointer to it. Memory 734 ** for this node and for the pToken argument is a single allocation 735 ** obtained from sqlite3DbMalloc(). The calling function 736 ** is responsible for making sure the node eventually gets freed. 737 ** 738 ** If dequote is true, then the token (if it exists) is dequoted. 739 ** If dequote is false, no dequoting is performed. The deQuote 740 ** parameter is ignored if pToken is NULL or if the token does not 741 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 742 ** then the EP_DblQuoted flag is set on the expression node. 743 ** 744 ** Special case: If op==TK_INTEGER and pToken points to a string that 745 ** can be translated into a 32-bit integer, then the token is not 746 ** stored in u.zToken. Instead, the integer values is written 747 ** into u.iValue and the EP_IntValue flag is set. No extra storage 748 ** is allocated to hold the integer text and the dequote flag is ignored. 749 */ 750 Expr *sqlite3ExprAlloc( 751 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 752 int op, /* Expression opcode */ 753 const Token *pToken, /* Token argument. Might be NULL */ 754 int dequote /* True to dequote */ 755 ){ 756 Expr *pNew; 757 int nExtra = 0; 758 int iValue = 0; 759 760 assert( db!=0 ); 761 if( pToken ){ 762 if( op!=TK_INTEGER || pToken->z==0 763 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 764 nExtra = pToken->n+1; 765 assert( iValue>=0 ); 766 } 767 } 768 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 769 if( pNew ){ 770 memset(pNew, 0, sizeof(Expr)); 771 pNew->op = (u8)op; 772 pNew->iAgg = -1; 773 if( pToken ){ 774 if( nExtra==0 ){ 775 pNew->flags |= EP_IntValue|EP_Leaf; 776 pNew->u.iValue = iValue; 777 }else{ 778 pNew->u.zToken = (char*)&pNew[1]; 779 assert( pToken->z!=0 || pToken->n==0 ); 780 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 781 pNew->u.zToken[pToken->n] = 0; 782 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 783 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted; 784 sqlite3Dequote(pNew->u.zToken); 785 } 786 } 787 } 788 #if SQLITE_MAX_EXPR_DEPTH>0 789 pNew->nHeight = 1; 790 #endif 791 } 792 return pNew; 793 } 794 795 /* 796 ** Allocate a new expression node from a zero-terminated token that has 797 ** already been dequoted. 798 */ 799 Expr *sqlite3Expr( 800 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 801 int op, /* Expression opcode */ 802 const char *zToken /* Token argument. Might be NULL */ 803 ){ 804 Token x; 805 x.z = zToken; 806 x.n = sqlite3Strlen30(zToken); 807 return sqlite3ExprAlloc(db, op, &x, 0); 808 } 809 810 /* 811 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 812 ** 813 ** If pRoot==NULL that means that a memory allocation error has occurred. 814 ** In that case, delete the subtrees pLeft and pRight. 815 */ 816 void sqlite3ExprAttachSubtrees( 817 sqlite3 *db, 818 Expr *pRoot, 819 Expr *pLeft, 820 Expr *pRight 821 ){ 822 if( pRoot==0 ){ 823 assert( db->mallocFailed ); 824 sqlite3ExprDelete(db, pLeft); 825 sqlite3ExprDelete(db, pRight); 826 }else{ 827 if( pRight ){ 828 pRoot->pRight = pRight; 829 pRoot->flags |= EP_Propagate & pRight->flags; 830 } 831 if( pLeft ){ 832 pRoot->pLeft = pLeft; 833 pRoot->flags |= EP_Propagate & pLeft->flags; 834 } 835 exprSetHeight(pRoot); 836 } 837 } 838 839 /* 840 ** Allocate an Expr node which joins as many as two subtrees. 841 ** 842 ** One or both of the subtrees can be NULL. Return a pointer to the new 843 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 844 ** free the subtrees and return NULL. 845 */ 846 Expr *sqlite3PExpr( 847 Parse *pParse, /* Parsing context */ 848 int op, /* Expression opcode */ 849 Expr *pLeft, /* Left operand */ 850 Expr *pRight /* Right operand */ 851 ){ 852 Expr *p; 853 if( op==TK_AND && pParse->nErr==0 ){ 854 /* Take advantage of short-circuit false optimization for AND */ 855 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 856 }else{ 857 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 858 if( p ){ 859 memset(p, 0, sizeof(Expr)); 860 p->op = op & TKFLG_MASK; 861 p->iAgg = -1; 862 } 863 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 864 } 865 if( p ) { 866 sqlite3ExprCheckHeight(pParse, p->nHeight); 867 } 868 return p; 869 } 870 871 /* 872 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 873 ** do a memory allocation failure) then delete the pSelect object. 874 */ 875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 876 if( pExpr ){ 877 pExpr->x.pSelect = pSelect; 878 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 879 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 880 }else{ 881 assert( pParse->db->mallocFailed ); 882 sqlite3SelectDelete(pParse->db, pSelect); 883 } 884 } 885 886 887 /* 888 ** If the expression is always either TRUE or FALSE (respectively), 889 ** then return 1. If one cannot determine the truth value of the 890 ** expression at compile-time return 0. 891 ** 892 ** This is an optimization. If is OK to return 0 here even if 893 ** the expression really is always false or false (a false negative). 894 ** But it is a bug to return 1 if the expression might have different 895 ** boolean values in different circumstances (a false positive.) 896 ** 897 ** Note that if the expression is part of conditional for a 898 ** LEFT JOIN, then we cannot determine at compile-time whether or not 899 ** is it true or false, so always return 0. 900 */ 901 static int exprAlwaysTrue(Expr *p){ 902 int v = 0; 903 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 904 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 905 return v!=0; 906 } 907 static int exprAlwaysFalse(Expr *p){ 908 int v = 0; 909 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 910 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 911 return v==0; 912 } 913 914 /* 915 ** Join two expressions using an AND operator. If either expression is 916 ** NULL, then just return the other expression. 917 ** 918 ** If one side or the other of the AND is known to be false, then instead 919 ** of returning an AND expression, just return a constant expression with 920 ** a value of false. 921 */ 922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 923 if( pLeft==0 ){ 924 return pRight; 925 }else if( pRight==0 ){ 926 return pLeft; 927 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 928 sqlite3ExprDelete(db, pLeft); 929 sqlite3ExprDelete(db, pRight); 930 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 931 }else{ 932 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 933 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 934 return pNew; 935 } 936 } 937 938 /* 939 ** Construct a new expression node for a function with multiple 940 ** arguments. 941 */ 942 Expr *sqlite3ExprFunction( 943 Parse *pParse, /* Parsing context */ 944 ExprList *pList, /* Argument list */ 945 Token *pToken, /* Name of the function */ 946 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 947 ){ 948 Expr *pNew; 949 sqlite3 *db = pParse->db; 950 assert( pToken ); 951 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 952 if( pNew==0 ){ 953 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 954 return 0; 955 } 956 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 957 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 958 } 959 pNew->x.pList = pList; 960 ExprSetProperty(pNew, EP_HasFunc); 961 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 962 sqlite3ExprSetHeightAndFlags(pParse, pNew); 963 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 964 return pNew; 965 } 966 967 /* 968 ** Assign a variable number to an expression that encodes a wildcard 969 ** in the original SQL statement. 970 ** 971 ** Wildcards consisting of a single "?" are assigned the next sequential 972 ** variable number. 973 ** 974 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 975 ** sure "nnn" is not too big to avoid a denial of service attack when 976 ** the SQL statement comes from an external source. 977 ** 978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 979 ** as the previous instance of the same wildcard. Or if this is the first 980 ** instance of the wildcard, the next sequential variable number is 981 ** assigned. 982 */ 983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 984 sqlite3 *db = pParse->db; 985 const char *z; 986 ynVar x; 987 988 if( pExpr==0 ) return; 989 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 990 z = pExpr->u.zToken; 991 assert( z!=0 ); 992 assert( z[0]!=0 ); 993 assert( n==(u32)sqlite3Strlen30(z) ); 994 if( z[1]==0 ){ 995 /* Wildcard of the form "?". Assign the next variable number */ 996 assert( z[0]=='?' ); 997 x = (ynVar)(++pParse->nVar); 998 }else{ 999 int doAdd = 0; 1000 if( z[0]=='?' ){ 1001 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1002 ** use it as the variable number */ 1003 i64 i; 1004 int bOk; 1005 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1006 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1007 bOk = 1; 1008 }else{ 1009 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1010 } 1011 testcase( i==0 ); 1012 testcase( i==1 ); 1013 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1014 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1015 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1016 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1017 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1018 return; 1019 } 1020 x = (ynVar)i; 1021 if( x>pParse->nVar ){ 1022 pParse->nVar = (int)x; 1023 doAdd = 1; 1024 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1025 doAdd = 1; 1026 } 1027 }else{ 1028 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1029 ** number as the prior appearance of the same name, or if the name 1030 ** has never appeared before, reuse the same variable number 1031 */ 1032 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1033 if( x==0 ){ 1034 x = (ynVar)(++pParse->nVar); 1035 doAdd = 1; 1036 } 1037 } 1038 if( doAdd ){ 1039 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1040 } 1041 } 1042 pExpr->iColumn = x; 1043 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1044 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1045 } 1046 } 1047 1048 /* 1049 ** Recursively delete an expression tree. 1050 */ 1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1052 assert( p!=0 ); 1053 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1054 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1055 1056 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1057 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1058 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1059 #ifdef SQLITE_DEBUG 1060 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1061 assert( p->pLeft==0 ); 1062 assert( p->pRight==0 ); 1063 assert( p->x.pSelect==0 ); 1064 } 1065 #endif 1066 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1067 /* The Expr.x union is never used at the same time as Expr.pRight */ 1068 assert( p->x.pList==0 || p->pRight==0 ); 1069 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1070 if( p->pRight ){ 1071 sqlite3ExprDeleteNN(db, p->pRight); 1072 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1073 sqlite3SelectDelete(db, p->x.pSelect); 1074 }else{ 1075 sqlite3ExprListDelete(db, p->x.pList); 1076 } 1077 if( ExprHasProperty(p, EP_WinFunc) ){ 1078 assert( p->op==TK_FUNCTION ); 1079 sqlite3WindowDelete(db, p->y.pWin); 1080 } 1081 } 1082 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1083 if( !ExprHasProperty(p, EP_Static) ){ 1084 sqlite3DbFreeNN(db, p); 1085 } 1086 } 1087 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1088 if( p ) sqlite3ExprDeleteNN(db, p); 1089 } 1090 1091 /* 1092 ** Return the number of bytes allocated for the expression structure 1093 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1094 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1095 */ 1096 static int exprStructSize(Expr *p){ 1097 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1098 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1099 return EXPR_FULLSIZE; 1100 } 1101 1102 /* 1103 ** The dupedExpr*Size() routines each return the number of bytes required 1104 ** to store a copy of an expression or expression tree. They differ in 1105 ** how much of the tree is measured. 1106 ** 1107 ** dupedExprStructSize() Size of only the Expr structure 1108 ** dupedExprNodeSize() Size of Expr + space for token 1109 ** dupedExprSize() Expr + token + subtree components 1110 ** 1111 *************************************************************************** 1112 ** 1113 ** The dupedExprStructSize() function returns two values OR-ed together: 1114 ** (1) the space required for a copy of the Expr structure only and 1115 ** (2) the EP_xxx flags that indicate what the structure size should be. 1116 ** The return values is always one of: 1117 ** 1118 ** EXPR_FULLSIZE 1119 ** EXPR_REDUCEDSIZE | EP_Reduced 1120 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1121 ** 1122 ** The size of the structure can be found by masking the return value 1123 ** of this routine with 0xfff. The flags can be found by masking the 1124 ** return value with EP_Reduced|EP_TokenOnly. 1125 ** 1126 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1127 ** (unreduced) Expr objects as they or originally constructed by the parser. 1128 ** During expression analysis, extra information is computed and moved into 1129 ** later parts of the Expr object and that extra information might get chopped 1130 ** off if the expression is reduced. Note also that it does not work to 1131 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1132 ** to reduce a pristine expression tree from the parser. The implementation 1133 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1134 ** to enforce this constraint. 1135 */ 1136 static int dupedExprStructSize(Expr *p, int flags){ 1137 int nSize; 1138 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1139 assert( EXPR_FULLSIZE<=0xfff ); 1140 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1141 if( 0==flags || p->op==TK_SELECT_COLUMN 1142 #ifndef SQLITE_OMIT_WINDOWFUNC 1143 || ExprHasProperty(p, EP_WinFunc) 1144 #endif 1145 ){ 1146 nSize = EXPR_FULLSIZE; 1147 }else{ 1148 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1149 assert( !ExprHasProperty(p, EP_FromJoin) ); 1150 assert( !ExprHasProperty(p, EP_MemToken) ); 1151 assert( !ExprHasProperty(p, EP_NoReduce) ); 1152 if( p->pLeft || p->x.pList ){ 1153 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1154 }else{ 1155 assert( p->pRight==0 ); 1156 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1157 } 1158 } 1159 return nSize; 1160 } 1161 1162 /* 1163 ** This function returns the space in bytes required to store the copy 1164 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1165 ** string is defined.) 1166 */ 1167 static int dupedExprNodeSize(Expr *p, int flags){ 1168 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1169 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1170 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1171 } 1172 return ROUND8(nByte); 1173 } 1174 1175 /* 1176 ** Return the number of bytes required to create a duplicate of the 1177 ** expression passed as the first argument. The second argument is a 1178 ** mask containing EXPRDUP_XXX flags. 1179 ** 1180 ** The value returned includes space to create a copy of the Expr struct 1181 ** itself and the buffer referred to by Expr.u.zToken, if any. 1182 ** 1183 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1184 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1185 ** and Expr.pRight variables (but not for any structures pointed to or 1186 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1187 */ 1188 static int dupedExprSize(Expr *p, int flags){ 1189 int nByte = 0; 1190 if( p ){ 1191 nByte = dupedExprNodeSize(p, flags); 1192 if( flags&EXPRDUP_REDUCE ){ 1193 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1194 } 1195 } 1196 return nByte; 1197 } 1198 1199 /* 1200 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1201 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1202 ** to store the copy of expression p, the copies of p->u.zToken 1203 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1204 ** if any. Before returning, *pzBuffer is set to the first byte past the 1205 ** portion of the buffer copied into by this function. 1206 */ 1207 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1208 Expr *pNew; /* Value to return */ 1209 u8 *zAlloc; /* Memory space from which to build Expr object */ 1210 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1211 1212 assert( db!=0 ); 1213 assert( p ); 1214 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1215 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1216 1217 /* Figure out where to write the new Expr structure. */ 1218 if( pzBuffer ){ 1219 zAlloc = *pzBuffer; 1220 staticFlag = EP_Static; 1221 }else{ 1222 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1223 staticFlag = 0; 1224 } 1225 pNew = (Expr *)zAlloc; 1226 1227 if( pNew ){ 1228 /* Set nNewSize to the size allocated for the structure pointed to 1229 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1230 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1231 ** by the copy of the p->u.zToken string (if any). 1232 */ 1233 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1234 const int nNewSize = nStructSize & 0xfff; 1235 int nToken; 1236 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1237 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1238 }else{ 1239 nToken = 0; 1240 } 1241 if( dupFlags ){ 1242 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1243 memcpy(zAlloc, p, nNewSize); 1244 }else{ 1245 u32 nSize = (u32)exprStructSize(p); 1246 memcpy(zAlloc, p, nSize); 1247 if( nSize<EXPR_FULLSIZE ){ 1248 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1249 } 1250 } 1251 1252 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1253 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1254 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1255 pNew->flags |= staticFlag; 1256 1257 /* Copy the p->u.zToken string, if any. */ 1258 if( nToken ){ 1259 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1260 memcpy(zToken, p->u.zToken, nToken); 1261 } 1262 1263 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1264 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1265 if( ExprHasProperty(p, EP_xIsSelect) ){ 1266 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1267 }else{ 1268 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1269 } 1270 } 1271 1272 /* Fill in pNew->pLeft and pNew->pRight. */ 1273 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1274 zAlloc += dupedExprNodeSize(p, dupFlags); 1275 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1276 pNew->pLeft = p->pLeft ? 1277 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1278 pNew->pRight = p->pRight ? 1279 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1280 } 1281 #ifndef SQLITE_OMIT_WINDOWFUNC 1282 if( ExprHasProperty(p, EP_WinFunc) ){ 1283 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1284 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1285 } 1286 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1287 if( pzBuffer ){ 1288 *pzBuffer = zAlloc; 1289 } 1290 }else{ 1291 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1292 if( pNew->op==TK_SELECT_COLUMN ){ 1293 pNew->pLeft = p->pLeft; 1294 assert( p->iColumn==0 || p->pRight==0 ); 1295 assert( p->pRight==0 || p->pRight==p->pLeft ); 1296 }else{ 1297 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1298 } 1299 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1300 } 1301 } 1302 } 1303 return pNew; 1304 } 1305 1306 /* 1307 ** Create and return a deep copy of the object passed as the second 1308 ** argument. If an OOM condition is encountered, NULL is returned 1309 ** and the db->mallocFailed flag set. 1310 */ 1311 #ifndef SQLITE_OMIT_CTE 1312 static With *withDup(sqlite3 *db, With *p){ 1313 With *pRet = 0; 1314 if( p ){ 1315 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1316 pRet = sqlite3DbMallocZero(db, nByte); 1317 if( pRet ){ 1318 int i; 1319 pRet->nCte = p->nCte; 1320 for(i=0; i<p->nCte; i++){ 1321 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1322 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1323 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1324 } 1325 } 1326 } 1327 return pRet; 1328 } 1329 #else 1330 # define withDup(x,y) 0 1331 #endif 1332 1333 #ifndef SQLITE_OMIT_WINDOWFUNC 1334 /* 1335 ** The gatherSelectWindows() procedure and its helper routine 1336 ** gatherSelectWindowsCallback() are used to scan all the expressions 1337 ** an a newly duplicated SELECT statement and gather all of the Window 1338 ** objects found there, assembling them onto the linked list at Select->pWin. 1339 */ 1340 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1341 if( pExpr->op==TK_FUNCTION && pExpr->y.pWin!=0 ){ 1342 assert( ExprHasProperty(pExpr, EP_WinFunc) ); 1343 pExpr->y.pWin->pNextWin = pWalker->u.pSelect->pWin; 1344 pWalker->u.pSelect->pWin = pExpr->y.pWin; 1345 } 1346 return WRC_Continue; 1347 } 1348 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1349 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1350 } 1351 static void gatherSelectWindows(Select *p){ 1352 Walker w; 1353 w.xExprCallback = gatherSelectWindowsCallback; 1354 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1355 w.xSelectCallback2 = 0; 1356 w.u.pSelect = p; 1357 sqlite3WalkSelect(&w, p); 1358 } 1359 #endif 1360 1361 1362 /* 1363 ** The following group of routines make deep copies of expressions, 1364 ** expression lists, ID lists, and select statements. The copies can 1365 ** be deleted (by being passed to their respective ...Delete() routines) 1366 ** without effecting the originals. 1367 ** 1368 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1369 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1370 ** by subsequent calls to sqlite*ListAppend() routines. 1371 ** 1372 ** Any tables that the SrcList might point to are not duplicated. 1373 ** 1374 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1375 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1376 ** truncated version of the usual Expr structure that will be stored as 1377 ** part of the in-memory representation of the database schema. 1378 */ 1379 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1380 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1381 return p ? exprDup(db, p, flags, 0) : 0; 1382 } 1383 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1384 ExprList *pNew; 1385 struct ExprList_item *pItem, *pOldItem; 1386 int i; 1387 Expr *pPriorSelectCol = 0; 1388 assert( db!=0 ); 1389 if( p==0 ) return 0; 1390 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1391 if( pNew==0 ) return 0; 1392 pNew->nExpr = p->nExpr; 1393 pItem = pNew->a; 1394 pOldItem = p->a; 1395 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1396 Expr *pOldExpr = pOldItem->pExpr; 1397 Expr *pNewExpr; 1398 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1399 if( pOldExpr 1400 && pOldExpr->op==TK_SELECT_COLUMN 1401 && (pNewExpr = pItem->pExpr)!=0 1402 ){ 1403 assert( pNewExpr->iColumn==0 || i>0 ); 1404 if( pNewExpr->iColumn==0 ){ 1405 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1406 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1407 }else{ 1408 assert( i>0 ); 1409 assert( pItem[-1].pExpr!=0 ); 1410 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1411 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1412 pNewExpr->pLeft = pPriorSelectCol; 1413 } 1414 } 1415 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1416 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1417 pItem->sortOrder = pOldItem->sortOrder; 1418 pItem->done = 0; 1419 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1420 pItem->bSorterRef = pOldItem->bSorterRef; 1421 pItem->u = pOldItem->u; 1422 } 1423 return pNew; 1424 } 1425 1426 /* 1427 ** If cursors, triggers, views and subqueries are all omitted from 1428 ** the build, then none of the following routines, except for 1429 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1430 ** called with a NULL argument. 1431 */ 1432 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1433 || !defined(SQLITE_OMIT_SUBQUERY) 1434 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1435 SrcList *pNew; 1436 int i; 1437 int nByte; 1438 assert( db!=0 ); 1439 if( p==0 ) return 0; 1440 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1441 pNew = sqlite3DbMallocRawNN(db, nByte ); 1442 if( pNew==0 ) return 0; 1443 pNew->nSrc = pNew->nAlloc = p->nSrc; 1444 for(i=0; i<p->nSrc; i++){ 1445 struct SrcList_item *pNewItem = &pNew->a[i]; 1446 struct SrcList_item *pOldItem = &p->a[i]; 1447 Table *pTab; 1448 pNewItem->pSchema = pOldItem->pSchema; 1449 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1450 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1451 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1452 pNewItem->fg = pOldItem->fg; 1453 pNewItem->iCursor = pOldItem->iCursor; 1454 pNewItem->addrFillSub = pOldItem->addrFillSub; 1455 pNewItem->regReturn = pOldItem->regReturn; 1456 if( pNewItem->fg.isIndexedBy ){ 1457 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1458 } 1459 pNewItem->pIBIndex = pOldItem->pIBIndex; 1460 if( pNewItem->fg.isTabFunc ){ 1461 pNewItem->u1.pFuncArg = 1462 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1463 } 1464 pTab = pNewItem->pTab = pOldItem->pTab; 1465 if( pTab ){ 1466 pTab->nTabRef++; 1467 } 1468 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1469 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1470 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1471 pNewItem->colUsed = pOldItem->colUsed; 1472 } 1473 return pNew; 1474 } 1475 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1476 IdList *pNew; 1477 int i; 1478 assert( db!=0 ); 1479 if( p==0 ) return 0; 1480 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1481 if( pNew==0 ) return 0; 1482 pNew->nId = p->nId; 1483 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1484 if( pNew->a==0 ){ 1485 sqlite3DbFreeNN(db, pNew); 1486 return 0; 1487 } 1488 /* Note that because the size of the allocation for p->a[] is not 1489 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1490 ** on the duplicate created by this function. */ 1491 for(i=0; i<p->nId; i++){ 1492 struct IdList_item *pNewItem = &pNew->a[i]; 1493 struct IdList_item *pOldItem = &p->a[i]; 1494 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1495 pNewItem->idx = pOldItem->idx; 1496 } 1497 return pNew; 1498 } 1499 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1500 Select *pRet = 0; 1501 Select *pNext = 0; 1502 Select **pp = &pRet; 1503 Select *p; 1504 1505 assert( db!=0 ); 1506 for(p=pDup; p; p=p->pPrior){ 1507 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1508 if( pNew==0 ) break; 1509 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1510 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1511 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1512 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1513 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1514 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1515 pNew->op = p->op; 1516 pNew->pNext = pNext; 1517 pNew->pPrior = 0; 1518 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1519 pNew->iLimit = 0; 1520 pNew->iOffset = 0; 1521 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1522 pNew->addrOpenEphm[0] = -1; 1523 pNew->addrOpenEphm[1] = -1; 1524 pNew->nSelectRow = p->nSelectRow; 1525 pNew->pWith = withDup(db, p->pWith); 1526 #ifndef SQLITE_OMIT_WINDOWFUNC 1527 pNew->pWin = 0; 1528 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1529 if( p->pWin ) gatherSelectWindows(pNew); 1530 #endif 1531 pNew->selId = p->selId; 1532 *pp = pNew; 1533 pp = &pNew->pPrior; 1534 pNext = pNew; 1535 } 1536 1537 return pRet; 1538 } 1539 #else 1540 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1541 assert( p==0 ); 1542 return 0; 1543 } 1544 #endif 1545 1546 1547 /* 1548 ** Add a new element to the end of an expression list. If pList is 1549 ** initially NULL, then create a new expression list. 1550 ** 1551 ** The pList argument must be either NULL or a pointer to an ExprList 1552 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1553 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1554 ** Reason: This routine assumes that the number of slots in pList->a[] 1555 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1556 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1557 ** 1558 ** If a memory allocation error occurs, the entire list is freed and 1559 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1560 ** that the new entry was successfully appended. 1561 */ 1562 ExprList *sqlite3ExprListAppend( 1563 Parse *pParse, /* Parsing context */ 1564 ExprList *pList, /* List to which to append. Might be NULL */ 1565 Expr *pExpr /* Expression to be appended. Might be NULL */ 1566 ){ 1567 struct ExprList_item *pItem; 1568 sqlite3 *db = pParse->db; 1569 assert( db!=0 ); 1570 if( pList==0 ){ 1571 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1572 if( pList==0 ){ 1573 goto no_mem; 1574 } 1575 pList->nExpr = 0; 1576 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1577 ExprList *pNew; 1578 pNew = sqlite3DbRealloc(db, pList, 1579 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0])); 1580 if( pNew==0 ){ 1581 goto no_mem; 1582 } 1583 pList = pNew; 1584 } 1585 pItem = &pList->a[pList->nExpr++]; 1586 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1587 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1588 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1589 pItem->pExpr = pExpr; 1590 return pList; 1591 1592 no_mem: 1593 /* Avoid leaking memory if malloc has failed. */ 1594 sqlite3ExprDelete(db, pExpr); 1595 sqlite3ExprListDelete(db, pList); 1596 return 0; 1597 } 1598 1599 /* 1600 ** pColumns and pExpr form a vector assignment which is part of the SET 1601 ** clause of an UPDATE statement. Like this: 1602 ** 1603 ** (a,b,c) = (expr1,expr2,expr3) 1604 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1605 ** 1606 ** For each term of the vector assignment, append new entries to the 1607 ** expression list pList. In the case of a subquery on the RHS, append 1608 ** TK_SELECT_COLUMN expressions. 1609 */ 1610 ExprList *sqlite3ExprListAppendVector( 1611 Parse *pParse, /* Parsing context */ 1612 ExprList *pList, /* List to which to append. Might be NULL */ 1613 IdList *pColumns, /* List of names of LHS of the assignment */ 1614 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1615 ){ 1616 sqlite3 *db = pParse->db; 1617 int n; 1618 int i; 1619 int iFirst = pList ? pList->nExpr : 0; 1620 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1621 ** exit prior to this routine being invoked */ 1622 if( NEVER(pColumns==0) ) goto vector_append_error; 1623 if( pExpr==0 ) goto vector_append_error; 1624 1625 /* If the RHS is a vector, then we can immediately check to see that 1626 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1627 ** wildcards ("*") in the result set of the SELECT must be expanded before 1628 ** we can do the size check, so defer the size check until code generation. 1629 */ 1630 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1631 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1632 pColumns->nId, n); 1633 goto vector_append_error; 1634 } 1635 1636 for(i=0; i<pColumns->nId; i++){ 1637 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1638 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1639 if( pList ){ 1640 assert( pList->nExpr==iFirst+i+1 ); 1641 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1642 pColumns->a[i].zName = 0; 1643 } 1644 } 1645 1646 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1647 Expr *pFirst = pList->a[iFirst].pExpr; 1648 assert( pFirst!=0 ); 1649 assert( pFirst->op==TK_SELECT_COLUMN ); 1650 1651 /* Store the SELECT statement in pRight so it will be deleted when 1652 ** sqlite3ExprListDelete() is called */ 1653 pFirst->pRight = pExpr; 1654 pExpr = 0; 1655 1656 /* Remember the size of the LHS in iTable so that we can check that 1657 ** the RHS and LHS sizes match during code generation. */ 1658 pFirst->iTable = pColumns->nId; 1659 } 1660 1661 vector_append_error: 1662 sqlite3ExprDelete(db, pExpr); 1663 sqlite3IdListDelete(db, pColumns); 1664 return pList; 1665 } 1666 1667 /* 1668 ** Set the sort order for the last element on the given ExprList. 1669 */ 1670 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1671 if( p==0 ) return; 1672 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1673 assert( p->nExpr>0 ); 1674 if( iSortOrder<0 ){ 1675 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1676 return; 1677 } 1678 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1679 } 1680 1681 /* 1682 ** Set the ExprList.a[].zName element of the most recently added item 1683 ** on the expression list. 1684 ** 1685 ** pList might be NULL following an OOM error. But pName should never be 1686 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1687 ** is set. 1688 */ 1689 void sqlite3ExprListSetName( 1690 Parse *pParse, /* Parsing context */ 1691 ExprList *pList, /* List to which to add the span. */ 1692 Token *pName, /* Name to be added */ 1693 int dequote /* True to cause the name to be dequoted */ 1694 ){ 1695 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1696 if( pList ){ 1697 struct ExprList_item *pItem; 1698 assert( pList->nExpr>0 ); 1699 pItem = &pList->a[pList->nExpr-1]; 1700 assert( pItem->zName==0 ); 1701 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1702 if( dequote ) sqlite3Dequote(pItem->zName); 1703 if( IN_RENAME_OBJECT ){ 1704 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1705 } 1706 } 1707 } 1708 1709 /* 1710 ** Set the ExprList.a[].zSpan element of the most recently added item 1711 ** on the expression list. 1712 ** 1713 ** pList might be NULL following an OOM error. But pSpan should never be 1714 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1715 ** is set. 1716 */ 1717 void sqlite3ExprListSetSpan( 1718 Parse *pParse, /* Parsing context */ 1719 ExprList *pList, /* List to which to add the span. */ 1720 const char *zStart, /* Start of the span */ 1721 const char *zEnd /* End of the span */ 1722 ){ 1723 sqlite3 *db = pParse->db; 1724 assert( pList!=0 || db->mallocFailed!=0 ); 1725 if( pList ){ 1726 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1727 assert( pList->nExpr>0 ); 1728 sqlite3DbFree(db, pItem->zSpan); 1729 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1730 } 1731 } 1732 1733 /* 1734 ** If the expression list pEList contains more than iLimit elements, 1735 ** leave an error message in pParse. 1736 */ 1737 void sqlite3ExprListCheckLength( 1738 Parse *pParse, 1739 ExprList *pEList, 1740 const char *zObject 1741 ){ 1742 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1743 testcase( pEList && pEList->nExpr==mx ); 1744 testcase( pEList && pEList->nExpr==mx+1 ); 1745 if( pEList && pEList->nExpr>mx ){ 1746 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1747 } 1748 } 1749 1750 /* 1751 ** Delete an entire expression list. 1752 */ 1753 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1754 int i = pList->nExpr; 1755 struct ExprList_item *pItem = pList->a; 1756 assert( pList->nExpr>0 ); 1757 do{ 1758 sqlite3ExprDelete(db, pItem->pExpr); 1759 sqlite3DbFree(db, pItem->zName); 1760 sqlite3DbFree(db, pItem->zSpan); 1761 pItem++; 1762 }while( --i>0 ); 1763 sqlite3DbFreeNN(db, pList); 1764 } 1765 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1766 if( pList ) exprListDeleteNN(db, pList); 1767 } 1768 1769 /* 1770 ** Return the bitwise-OR of all Expr.flags fields in the given 1771 ** ExprList. 1772 */ 1773 u32 sqlite3ExprListFlags(const ExprList *pList){ 1774 int i; 1775 u32 m = 0; 1776 assert( pList!=0 ); 1777 for(i=0; i<pList->nExpr; i++){ 1778 Expr *pExpr = pList->a[i].pExpr; 1779 assert( pExpr!=0 ); 1780 m |= pExpr->flags; 1781 } 1782 return m; 1783 } 1784 1785 /* 1786 ** This is a SELECT-node callback for the expression walker that 1787 ** always "fails". By "fail" in this case, we mean set 1788 ** pWalker->eCode to zero and abort. 1789 ** 1790 ** This callback is used by multiple expression walkers. 1791 */ 1792 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1793 UNUSED_PARAMETER(NotUsed); 1794 pWalker->eCode = 0; 1795 return WRC_Abort; 1796 } 1797 1798 /* 1799 ** If the input expression is an ID with the name "true" or "false" 1800 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1801 ** the conversion happened, and zero if the expression is unaltered. 1802 */ 1803 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1804 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1805 if( sqlite3StrICmp(pExpr->u.zToken, "true")==0 1806 || sqlite3StrICmp(pExpr->u.zToken, "false")==0 1807 ){ 1808 pExpr->op = TK_TRUEFALSE; 1809 return 1; 1810 } 1811 return 0; 1812 } 1813 1814 /* 1815 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1816 ** and 0 if it is FALSE. 1817 */ 1818 int sqlite3ExprTruthValue(const Expr *pExpr){ 1819 assert( pExpr->op==TK_TRUEFALSE ); 1820 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1821 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1822 return pExpr->u.zToken[4]==0; 1823 } 1824 1825 1826 /* 1827 ** These routines are Walker callbacks used to check expressions to 1828 ** see if they are "constant" for some definition of constant. The 1829 ** Walker.eCode value determines the type of "constant" we are looking 1830 ** for. 1831 ** 1832 ** These callback routines are used to implement the following: 1833 ** 1834 ** sqlite3ExprIsConstant() pWalker->eCode==1 1835 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1836 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1837 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1838 ** 1839 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1840 ** is found to not be a constant. 1841 ** 1842 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1843 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1844 ** an existing schema and 4 when processing a new statement. A bound 1845 ** parameter raises an error for new statements, but is silently converted 1846 ** to NULL for existing schemas. This allows sqlite_master tables that 1847 ** contain a bound parameter because they were generated by older versions 1848 ** of SQLite to be parsed by newer versions of SQLite without raising a 1849 ** malformed schema error. 1850 */ 1851 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1852 1853 /* If pWalker->eCode is 2 then any term of the expression that comes from 1854 ** the ON or USING clauses of a left join disqualifies the expression 1855 ** from being considered constant. */ 1856 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1857 pWalker->eCode = 0; 1858 return WRC_Abort; 1859 } 1860 1861 switch( pExpr->op ){ 1862 /* Consider functions to be constant if all their arguments are constant 1863 ** and either pWalker->eCode==4 or 5 or the function has the 1864 ** SQLITE_FUNC_CONST flag. */ 1865 case TK_FUNCTION: 1866 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1867 return WRC_Continue; 1868 }else{ 1869 pWalker->eCode = 0; 1870 return WRC_Abort; 1871 } 1872 case TK_ID: 1873 /* Convert "true" or "false" in a DEFAULT clause into the 1874 ** appropriate TK_TRUEFALSE operator */ 1875 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1876 return WRC_Prune; 1877 } 1878 /* Fall thru */ 1879 case TK_COLUMN: 1880 case TK_AGG_FUNCTION: 1881 case TK_AGG_COLUMN: 1882 testcase( pExpr->op==TK_ID ); 1883 testcase( pExpr->op==TK_COLUMN ); 1884 testcase( pExpr->op==TK_AGG_FUNCTION ); 1885 testcase( pExpr->op==TK_AGG_COLUMN ); 1886 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1887 return WRC_Continue; 1888 } 1889 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1890 return WRC_Continue; 1891 } 1892 /* Fall through */ 1893 case TK_IF_NULL_ROW: 1894 case TK_REGISTER: 1895 testcase( pExpr->op==TK_REGISTER ); 1896 testcase( pExpr->op==TK_IF_NULL_ROW ); 1897 pWalker->eCode = 0; 1898 return WRC_Abort; 1899 case TK_VARIABLE: 1900 if( pWalker->eCode==5 ){ 1901 /* Silently convert bound parameters that appear inside of CREATE 1902 ** statements into a NULL when parsing the CREATE statement text out 1903 ** of the sqlite_master table */ 1904 pExpr->op = TK_NULL; 1905 }else if( pWalker->eCode==4 ){ 1906 /* A bound parameter in a CREATE statement that originates from 1907 ** sqlite3_prepare() causes an error */ 1908 pWalker->eCode = 0; 1909 return WRC_Abort; 1910 } 1911 /* Fall through */ 1912 default: 1913 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1914 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1915 return WRC_Continue; 1916 } 1917 } 1918 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1919 Walker w; 1920 w.eCode = initFlag; 1921 w.xExprCallback = exprNodeIsConstant; 1922 w.xSelectCallback = sqlite3SelectWalkFail; 1923 #ifdef SQLITE_DEBUG 1924 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1925 #endif 1926 w.u.iCur = iCur; 1927 sqlite3WalkExpr(&w, p); 1928 return w.eCode; 1929 } 1930 1931 /* 1932 ** Walk an expression tree. Return non-zero if the expression is constant 1933 ** and 0 if it involves variables or function calls. 1934 ** 1935 ** For the purposes of this function, a double-quoted string (ex: "abc") 1936 ** is considered a variable but a single-quoted string (ex: 'abc') is 1937 ** a constant. 1938 */ 1939 int sqlite3ExprIsConstant(Expr *p){ 1940 return exprIsConst(p, 1, 0); 1941 } 1942 1943 /* 1944 ** Walk an expression tree. Return non-zero if 1945 ** 1946 ** (1) the expression is constant, and 1947 ** (2) the expression does originate in the ON or USING clause 1948 ** of a LEFT JOIN, and 1949 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1950 ** operands created by the constant propagation optimization. 1951 ** 1952 ** When this routine returns true, it indicates that the expression 1953 ** can be added to the pParse->pConstExpr list and evaluated once when 1954 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1955 */ 1956 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1957 return exprIsConst(p, 2, 0); 1958 } 1959 1960 /* 1961 ** Walk an expression tree. Return non-zero if the expression is constant 1962 ** for any single row of the table with cursor iCur. In other words, the 1963 ** expression must not refer to any non-deterministic function nor any 1964 ** table other than iCur. 1965 */ 1966 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1967 return exprIsConst(p, 3, iCur); 1968 } 1969 1970 1971 /* 1972 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1973 */ 1974 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1975 ExprList *pGroupBy = pWalker->u.pGroupBy; 1976 int i; 1977 1978 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1979 ** it constant. */ 1980 for(i=0; i<pGroupBy->nExpr; i++){ 1981 Expr *p = pGroupBy->a[i].pExpr; 1982 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 1983 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 1984 if( sqlite3IsBinary(pColl) ){ 1985 return WRC_Prune; 1986 } 1987 } 1988 } 1989 1990 /* Check if pExpr is a sub-select. If so, consider it variable. */ 1991 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1992 pWalker->eCode = 0; 1993 return WRC_Abort; 1994 } 1995 1996 return exprNodeIsConstant(pWalker, pExpr); 1997 } 1998 1999 /* 2000 ** Walk the expression tree passed as the first argument. Return non-zero 2001 ** if the expression consists entirely of constants or copies of terms 2002 ** in pGroupBy that sort with the BINARY collation sequence. 2003 ** 2004 ** This routine is used to determine if a term of the HAVING clause can 2005 ** be promoted into the WHERE clause. In order for such a promotion to work, 2006 ** the value of the HAVING clause term must be the same for all members of 2007 ** a "group". The requirement that the GROUP BY term must be BINARY 2008 ** assumes that no other collating sequence will have a finer-grained 2009 ** grouping than binary. In other words (A=B COLLATE binary) implies 2010 ** A=B in every other collating sequence. The requirement that the 2011 ** GROUP BY be BINARY is stricter than necessary. It would also work 2012 ** to promote HAVING clauses that use the same alternative collating 2013 ** sequence as the GROUP BY term, but that is much harder to check, 2014 ** alternative collating sequences are uncommon, and this is only an 2015 ** optimization, so we take the easy way out and simply require the 2016 ** GROUP BY to use the BINARY collating sequence. 2017 */ 2018 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2019 Walker w; 2020 w.eCode = 1; 2021 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2022 w.xSelectCallback = 0; 2023 w.u.pGroupBy = pGroupBy; 2024 w.pParse = pParse; 2025 sqlite3WalkExpr(&w, p); 2026 return w.eCode; 2027 } 2028 2029 /* 2030 ** Walk an expression tree. Return non-zero if the expression is constant 2031 ** or a function call with constant arguments. Return and 0 if there 2032 ** are any variables. 2033 ** 2034 ** For the purposes of this function, a double-quoted string (ex: "abc") 2035 ** is considered a variable but a single-quoted string (ex: 'abc') is 2036 ** a constant. 2037 */ 2038 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2039 assert( isInit==0 || isInit==1 ); 2040 return exprIsConst(p, 4+isInit, 0); 2041 } 2042 2043 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2044 /* 2045 ** Walk an expression tree. Return 1 if the expression contains a 2046 ** subquery of some kind. Return 0 if there are no subqueries. 2047 */ 2048 int sqlite3ExprContainsSubquery(Expr *p){ 2049 Walker w; 2050 w.eCode = 1; 2051 w.xExprCallback = sqlite3ExprWalkNoop; 2052 w.xSelectCallback = sqlite3SelectWalkFail; 2053 #ifdef SQLITE_DEBUG 2054 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2055 #endif 2056 sqlite3WalkExpr(&w, p); 2057 return w.eCode==0; 2058 } 2059 #endif 2060 2061 /* 2062 ** If the expression p codes a constant integer that is small enough 2063 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2064 ** in *pValue. If the expression is not an integer or if it is too big 2065 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2066 */ 2067 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2068 int rc = 0; 2069 if( p==0 ) return 0; /* Can only happen following on OOM */ 2070 2071 /* If an expression is an integer literal that fits in a signed 32-bit 2072 ** integer, then the EP_IntValue flag will have already been set */ 2073 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2074 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2075 2076 if( p->flags & EP_IntValue ){ 2077 *pValue = p->u.iValue; 2078 return 1; 2079 } 2080 switch( p->op ){ 2081 case TK_UPLUS: { 2082 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2083 break; 2084 } 2085 case TK_UMINUS: { 2086 int v; 2087 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2088 assert( v!=(-2147483647-1) ); 2089 *pValue = -v; 2090 rc = 1; 2091 } 2092 break; 2093 } 2094 default: break; 2095 } 2096 return rc; 2097 } 2098 2099 /* 2100 ** Return FALSE if there is no chance that the expression can be NULL. 2101 ** 2102 ** If the expression might be NULL or if the expression is too complex 2103 ** to tell return TRUE. 2104 ** 2105 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2106 ** when we know that a value cannot be NULL. Hence, a false positive 2107 ** (returning TRUE when in fact the expression can never be NULL) might 2108 ** be a small performance hit but is otherwise harmless. On the other 2109 ** hand, a false negative (returning FALSE when the result could be NULL) 2110 ** will likely result in an incorrect answer. So when in doubt, return 2111 ** TRUE. 2112 */ 2113 int sqlite3ExprCanBeNull(const Expr *p){ 2114 u8 op; 2115 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2116 p = p->pLeft; 2117 } 2118 op = p->op; 2119 if( op==TK_REGISTER ) op = p->op2; 2120 switch( op ){ 2121 case TK_INTEGER: 2122 case TK_STRING: 2123 case TK_FLOAT: 2124 case TK_BLOB: 2125 return 0; 2126 case TK_COLUMN: 2127 return ExprHasProperty(p, EP_CanBeNull) || 2128 p->y.pTab==0 || /* Reference to column of index on expression */ 2129 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2130 default: 2131 return 1; 2132 } 2133 } 2134 2135 /* 2136 ** Return TRUE if the given expression is a constant which would be 2137 ** unchanged by OP_Affinity with the affinity given in the second 2138 ** argument. 2139 ** 2140 ** This routine is used to determine if the OP_Affinity operation 2141 ** can be omitted. When in doubt return FALSE. A false negative 2142 ** is harmless. A false positive, however, can result in the wrong 2143 ** answer. 2144 */ 2145 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2146 u8 op; 2147 if( aff==SQLITE_AFF_BLOB ) return 1; 2148 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2149 op = p->op; 2150 if( op==TK_REGISTER ) op = p->op2; 2151 switch( op ){ 2152 case TK_INTEGER: { 2153 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2154 } 2155 case TK_FLOAT: { 2156 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2157 } 2158 case TK_STRING: { 2159 return aff==SQLITE_AFF_TEXT; 2160 } 2161 case TK_BLOB: { 2162 return 1; 2163 } 2164 case TK_COLUMN: { 2165 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2166 return p->iColumn<0 2167 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2168 } 2169 default: { 2170 return 0; 2171 } 2172 } 2173 } 2174 2175 /* 2176 ** Return TRUE if the given string is a row-id column name. 2177 */ 2178 int sqlite3IsRowid(const char *z){ 2179 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2180 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2181 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2182 return 0; 2183 } 2184 2185 /* 2186 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2187 ** that can be simplified to a direct table access, then return 2188 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2189 ** or if the SELECT statement needs to be manifested into a transient 2190 ** table, then return NULL. 2191 */ 2192 #ifndef SQLITE_OMIT_SUBQUERY 2193 static Select *isCandidateForInOpt(Expr *pX){ 2194 Select *p; 2195 SrcList *pSrc; 2196 ExprList *pEList; 2197 Table *pTab; 2198 int i; 2199 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2200 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2201 p = pX->x.pSelect; 2202 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2203 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2204 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2205 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2206 return 0; /* No DISTINCT keyword and no aggregate functions */ 2207 } 2208 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2209 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2210 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2211 pSrc = p->pSrc; 2212 assert( pSrc!=0 ); 2213 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2214 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2215 pTab = pSrc->a[0].pTab; 2216 assert( pTab!=0 ); 2217 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2218 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2219 pEList = p->pEList; 2220 assert( pEList!=0 ); 2221 /* All SELECT results must be columns. */ 2222 for(i=0; i<pEList->nExpr; i++){ 2223 Expr *pRes = pEList->a[i].pExpr; 2224 if( pRes->op!=TK_COLUMN ) return 0; 2225 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2226 } 2227 return p; 2228 } 2229 #endif /* SQLITE_OMIT_SUBQUERY */ 2230 2231 #ifndef SQLITE_OMIT_SUBQUERY 2232 /* 2233 ** Generate code that checks the left-most column of index table iCur to see if 2234 ** it contains any NULL entries. Cause the register at regHasNull to be set 2235 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2236 ** to be set to NULL if iCur contains one or more NULL values. 2237 */ 2238 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2239 int addr1; 2240 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2241 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2242 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2243 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2244 VdbeComment((v, "first_entry_in(%d)", iCur)); 2245 sqlite3VdbeJumpHere(v, addr1); 2246 } 2247 #endif 2248 2249 2250 #ifndef SQLITE_OMIT_SUBQUERY 2251 /* 2252 ** The argument is an IN operator with a list (not a subquery) on the 2253 ** right-hand side. Return TRUE if that list is constant. 2254 */ 2255 static int sqlite3InRhsIsConstant(Expr *pIn){ 2256 Expr *pLHS; 2257 int res; 2258 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2259 pLHS = pIn->pLeft; 2260 pIn->pLeft = 0; 2261 res = sqlite3ExprIsConstant(pIn); 2262 pIn->pLeft = pLHS; 2263 return res; 2264 } 2265 #endif 2266 2267 /* 2268 ** This function is used by the implementation of the IN (...) operator. 2269 ** The pX parameter is the expression on the RHS of the IN operator, which 2270 ** might be either a list of expressions or a subquery. 2271 ** 2272 ** The job of this routine is to find or create a b-tree object that can 2273 ** be used either to test for membership in the RHS set or to iterate through 2274 ** all members of the RHS set, skipping duplicates. 2275 ** 2276 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2277 ** and pX->iTable is set to the index of that cursor. 2278 ** 2279 ** The returned value of this function indicates the b-tree type, as follows: 2280 ** 2281 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2282 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2283 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2284 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2285 ** populated epheremal table. 2286 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2287 ** implemented as a sequence of comparisons. 2288 ** 2289 ** An existing b-tree might be used if the RHS expression pX is a simple 2290 ** subquery such as: 2291 ** 2292 ** SELECT <column1>, <column2>... FROM <table> 2293 ** 2294 ** If the RHS of the IN operator is a list or a more complex subquery, then 2295 ** an ephemeral table might need to be generated from the RHS and then 2296 ** pX->iTable made to point to the ephemeral table instead of an 2297 ** existing table. 2298 ** 2299 ** The inFlags parameter must contain, at a minimum, one of the bits 2300 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2301 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2302 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2303 ** be used to loop over all values of the RHS of the IN operator. 2304 ** 2305 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2306 ** through the set members) then the b-tree must not contain duplicates. 2307 ** An epheremal table will be created unless the selected columns are guaranteed 2308 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2309 ** a UNIQUE constraint or index. 2310 ** 2311 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2312 ** for fast set membership tests) then an epheremal table must 2313 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2314 ** index can be found with the specified <columns> as its left-most. 2315 ** 2316 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2317 ** if the RHS of the IN operator is a list (not a subquery) then this 2318 ** routine might decide that creating an ephemeral b-tree for membership 2319 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2320 ** calling routine should implement the IN operator using a sequence 2321 ** of Eq or Ne comparison operations. 2322 ** 2323 ** When the b-tree is being used for membership tests, the calling function 2324 ** might need to know whether or not the RHS side of the IN operator 2325 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2326 ** if there is any chance that the (...) might contain a NULL value at 2327 ** runtime, then a register is allocated and the register number written 2328 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2329 ** NULL value, then *prRhsHasNull is left unchanged. 2330 ** 2331 ** If a register is allocated and its location stored in *prRhsHasNull, then 2332 ** the value in that register will be NULL if the b-tree contains one or more 2333 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2334 ** NULL values. 2335 ** 2336 ** If the aiMap parameter is not NULL, it must point to an array containing 2337 ** one element for each column returned by the SELECT statement on the RHS 2338 ** of the IN(...) operator. The i'th entry of the array is populated with the 2339 ** offset of the index column that matches the i'th column returned by the 2340 ** SELECT. For example, if the expression and selected index are: 2341 ** 2342 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2343 ** CREATE INDEX i1 ON t1(b, c, a); 2344 ** 2345 ** then aiMap[] is populated with {2, 0, 1}. 2346 */ 2347 #ifndef SQLITE_OMIT_SUBQUERY 2348 int sqlite3FindInIndex( 2349 Parse *pParse, /* Parsing context */ 2350 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2351 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2352 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2353 int *aiMap, /* Mapping from Index fields to RHS fields */ 2354 int *piTab /* OUT: index to use */ 2355 ){ 2356 Select *p; /* SELECT to the right of IN operator */ 2357 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2358 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2359 int mustBeUnique; /* True if RHS must be unique */ 2360 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2361 2362 assert( pX->op==TK_IN ); 2363 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2364 2365 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2366 ** whether or not the SELECT result contains NULL values, check whether 2367 ** or not NULL is actually possible (it may not be, for example, due 2368 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2369 ** set prRhsHasNull to 0 before continuing. */ 2370 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2371 int i; 2372 ExprList *pEList = pX->x.pSelect->pEList; 2373 for(i=0; i<pEList->nExpr; i++){ 2374 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2375 } 2376 if( i==pEList->nExpr ){ 2377 prRhsHasNull = 0; 2378 } 2379 } 2380 2381 /* Check to see if an existing table or index can be used to 2382 ** satisfy the query. This is preferable to generating a new 2383 ** ephemeral table. */ 2384 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2385 sqlite3 *db = pParse->db; /* Database connection */ 2386 Table *pTab; /* Table <table>. */ 2387 i16 iDb; /* Database idx for pTab */ 2388 ExprList *pEList = p->pEList; 2389 int nExpr = pEList->nExpr; 2390 2391 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2392 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2393 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2394 pTab = p->pSrc->a[0].pTab; 2395 2396 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2397 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2398 sqlite3CodeVerifySchema(pParse, iDb); 2399 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2400 2401 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2402 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2403 /* The "x IN (SELECT rowid FROM table)" case */ 2404 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2405 VdbeCoverage(v); 2406 2407 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2408 eType = IN_INDEX_ROWID; 2409 ExplainQueryPlan((pParse, 0, 2410 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2411 sqlite3VdbeJumpHere(v, iAddr); 2412 }else{ 2413 Index *pIdx; /* Iterator variable */ 2414 int affinity_ok = 1; 2415 int i; 2416 2417 /* Check that the affinity that will be used to perform each 2418 ** comparison is the same as the affinity of each column in table 2419 ** on the RHS of the IN operator. If it not, it is not possible to 2420 ** use any index of the RHS table. */ 2421 for(i=0; i<nExpr && affinity_ok; i++){ 2422 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2423 int iCol = pEList->a[i].pExpr->iColumn; 2424 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2425 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2426 testcase( cmpaff==SQLITE_AFF_BLOB ); 2427 testcase( cmpaff==SQLITE_AFF_TEXT ); 2428 switch( cmpaff ){ 2429 case SQLITE_AFF_BLOB: 2430 break; 2431 case SQLITE_AFF_TEXT: 2432 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2433 ** other has no affinity and the other side is TEXT. Hence, 2434 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2435 ** and for the term on the LHS of the IN to have no affinity. */ 2436 assert( idxaff==SQLITE_AFF_TEXT ); 2437 break; 2438 default: 2439 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2440 } 2441 } 2442 2443 if( affinity_ok ){ 2444 /* Search for an existing index that will work for this IN operator */ 2445 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2446 Bitmask colUsed; /* Columns of the index used */ 2447 Bitmask mCol; /* Mask for the current column */ 2448 if( pIdx->nColumn<nExpr ) continue; 2449 if( pIdx->pPartIdxWhere!=0 ) continue; 2450 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2451 ** BITMASK(nExpr) without overflowing */ 2452 testcase( pIdx->nColumn==BMS-2 ); 2453 testcase( pIdx->nColumn==BMS-1 ); 2454 if( pIdx->nColumn>=BMS-1 ) continue; 2455 if( mustBeUnique ){ 2456 if( pIdx->nKeyCol>nExpr 2457 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2458 ){ 2459 continue; /* This index is not unique over the IN RHS columns */ 2460 } 2461 } 2462 2463 colUsed = 0; /* Columns of index used so far */ 2464 for(i=0; i<nExpr; i++){ 2465 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2466 Expr *pRhs = pEList->a[i].pExpr; 2467 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2468 int j; 2469 2470 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2471 for(j=0; j<nExpr; j++){ 2472 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2473 assert( pIdx->azColl[j] ); 2474 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2475 continue; 2476 } 2477 break; 2478 } 2479 if( j==nExpr ) break; 2480 mCol = MASKBIT(j); 2481 if( mCol & colUsed ) break; /* Each column used only once */ 2482 colUsed |= mCol; 2483 if( aiMap ) aiMap[i] = j; 2484 } 2485 2486 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2487 if( colUsed==(MASKBIT(nExpr)-1) ){ 2488 /* If we reach this point, that means the index pIdx is usable */ 2489 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2490 ExplainQueryPlan((pParse, 0, 2491 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2492 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2493 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2494 VdbeComment((v, "%s", pIdx->zName)); 2495 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2496 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2497 2498 if( prRhsHasNull ){ 2499 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2500 i64 mask = (1<<nExpr)-1; 2501 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2502 iTab, 0, 0, (u8*)&mask, P4_INT64); 2503 #endif 2504 *prRhsHasNull = ++pParse->nMem; 2505 if( nExpr==1 ){ 2506 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2507 } 2508 } 2509 sqlite3VdbeJumpHere(v, iAddr); 2510 } 2511 } /* End loop over indexes */ 2512 } /* End if( affinity_ok ) */ 2513 } /* End if not an rowid index */ 2514 } /* End attempt to optimize using an index */ 2515 2516 /* If no preexisting index is available for the IN clause 2517 ** and IN_INDEX_NOOP is an allowed reply 2518 ** and the RHS of the IN operator is a list, not a subquery 2519 ** and the RHS is not constant or has two or fewer terms, 2520 ** then it is not worth creating an ephemeral table to evaluate 2521 ** the IN operator so return IN_INDEX_NOOP. 2522 */ 2523 if( eType==0 2524 && (inFlags & IN_INDEX_NOOP_OK) 2525 && !ExprHasProperty(pX, EP_xIsSelect) 2526 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2527 ){ 2528 eType = IN_INDEX_NOOP; 2529 } 2530 2531 if( eType==0 ){ 2532 /* Could not find an existing table or index to use as the RHS b-tree. 2533 ** We will have to generate an ephemeral table to do the job. 2534 */ 2535 u32 savedNQueryLoop = pParse->nQueryLoop; 2536 int rMayHaveNull = 0; 2537 eType = IN_INDEX_EPH; 2538 if( inFlags & IN_INDEX_LOOP ){ 2539 pParse->nQueryLoop = 0; 2540 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 2541 eType = IN_INDEX_ROWID; 2542 } 2543 }else if( prRhsHasNull ){ 2544 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2545 } 2546 assert( pX->op==TK_IN ); 2547 sqlite3CodeRhsOfIN(pParse, pX, iTab, eType==IN_INDEX_ROWID); 2548 if( rMayHaveNull ){ 2549 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2550 } 2551 pParse->nQueryLoop = savedNQueryLoop; 2552 } 2553 2554 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2555 int i, n; 2556 n = sqlite3ExprVectorSize(pX->pLeft); 2557 for(i=0; i<n; i++) aiMap[i] = i; 2558 } 2559 *piTab = iTab; 2560 return eType; 2561 } 2562 #endif 2563 2564 #ifndef SQLITE_OMIT_SUBQUERY 2565 /* 2566 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2567 ** function allocates and returns a nul-terminated string containing 2568 ** the affinities to be used for each column of the comparison. 2569 ** 2570 ** It is the responsibility of the caller to ensure that the returned 2571 ** string is eventually freed using sqlite3DbFree(). 2572 */ 2573 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2574 Expr *pLeft = pExpr->pLeft; 2575 int nVal = sqlite3ExprVectorSize(pLeft); 2576 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2577 char *zRet; 2578 2579 assert( pExpr->op==TK_IN ); 2580 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2581 if( zRet ){ 2582 int i; 2583 for(i=0; i<nVal; i++){ 2584 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2585 char a = sqlite3ExprAffinity(pA); 2586 if( pSelect ){ 2587 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2588 }else{ 2589 zRet[i] = a; 2590 } 2591 } 2592 zRet[nVal] = '\0'; 2593 } 2594 return zRet; 2595 } 2596 #endif 2597 2598 #ifndef SQLITE_OMIT_SUBQUERY 2599 /* 2600 ** Load the Parse object passed as the first argument with an error 2601 ** message of the form: 2602 ** 2603 ** "sub-select returns N columns - expected M" 2604 */ 2605 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2606 const char *zFmt = "sub-select returns %d columns - expected %d"; 2607 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2608 } 2609 #endif 2610 2611 /* 2612 ** Expression pExpr is a vector that has been used in a context where 2613 ** it is not permitted. If pExpr is a sub-select vector, this routine 2614 ** loads the Parse object with a message of the form: 2615 ** 2616 ** "sub-select returns N columns - expected 1" 2617 ** 2618 ** Or, if it is a regular scalar vector: 2619 ** 2620 ** "row value misused" 2621 */ 2622 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2623 #ifndef SQLITE_OMIT_SUBQUERY 2624 if( pExpr->flags & EP_xIsSelect ){ 2625 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2626 }else 2627 #endif 2628 { 2629 sqlite3ErrorMsg(pParse, "row value misused"); 2630 } 2631 } 2632 2633 #ifndef SQLITE_OMIT_SUBQUERY 2634 /* 2635 ** Generate code that will construct an ephemeral table containing all terms 2636 ** in the RHS of an IN operator. The IN operator can be in either of two 2637 ** forms: 2638 ** 2639 ** x IN (4,5,11) -- IN operator with list on right-hand side 2640 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2641 ** 2642 ** The pExpr parameter is the IN operator. The cursor number for the 2643 ** constructed ephermeral table is returned. The first time the ephemeral 2644 ** table is computed, the cursor number is also stored in pExpr->iTable, 2645 ** however the cursor number returned might not be the same, as it might 2646 ** have been duplicated using OP_OpenDup. 2647 ** 2648 ** If parameter isRowid is non-zero, then LHS of the IN operator is guaranteed 2649 ** to be a non-null integer. In this case, the ephemeral table can be an 2650 ** table B-Tree that keyed by only integers. The more general cases uses 2651 ** an index B-Tree which can have arbitrary keys, but is slower to both 2652 ** read and write. 2653 ** 2654 ** If the LHS expression ("x" in the examples) is a column value, or 2655 ** the SELECT statement returns a column value, then the affinity of that 2656 ** column is used to build the index keys. If both 'x' and the 2657 ** SELECT... statement are columns, then numeric affinity is used 2658 ** if either column has NUMERIC or INTEGER affinity. If neither 2659 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2660 ** is used. 2661 */ 2662 void sqlite3CodeRhsOfIN( 2663 Parse *pParse, /* Parsing context */ 2664 Expr *pExpr, /* The IN operator */ 2665 int iTab, /* Use this cursor number */ 2666 int isRowid /* If true, LHS is a rowid */ 2667 ){ 2668 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2669 int addr; /* Address of OP_OpenEphemeral instruction */ 2670 Expr *pLeft; /* the LHS of the IN operator */ 2671 KeyInfo *pKeyInfo = 0; /* Key information */ 2672 int nVal; /* Size of vector pLeft */ 2673 Vdbe *v; /* The prepared statement under construction */ 2674 2675 v = pParse->pVdbe; 2676 assert( v!=0 ); 2677 2678 /* The evaluation of the IN must be repeated every time it 2679 ** is encountered if any of the following is true: 2680 ** 2681 ** * The right-hand side is a correlated subquery 2682 ** * The right-hand side is an expression list containing variables 2683 ** * We are inside a trigger 2684 ** 2685 ** If all of the above are false, then we can compute the RHS just once 2686 ** and reuse it many names. 2687 */ 2688 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2689 /* Reuse of the RHS is allowed */ 2690 /* If this routine has already been coded, but the previous code 2691 ** might not have been invoked yet, so invoke it now as a subroutine. 2692 */ 2693 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2694 int addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2695 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2696 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2697 pExpr->x.pSelect->selId)); 2698 } 2699 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2700 pExpr->y.sub.iAddr); 2701 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2702 sqlite3VdbeJumpHere(v, addr); 2703 return; 2704 } 2705 2706 /* Begin coding the subroutine */ 2707 ExprSetProperty(pExpr, EP_Subrtn); 2708 pExpr->y.sub.regReturn = ++pParse->nMem; 2709 pExpr->y.sub.iAddr = 2710 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2711 VdbeComment((v, "return address")); 2712 2713 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2714 } 2715 2716 /* Check to see if this is a vector IN operator */ 2717 pLeft = pExpr->pLeft; 2718 nVal = sqlite3ExprVectorSize(pLeft); 2719 assert( !isRowid || nVal==1 ); 2720 2721 /* Construct the ephemeral table that will contain the content of 2722 ** RHS of the IN operator. 2723 */ 2724 pExpr->iTable = iTab; 2725 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, 2726 pExpr->iTable, (isRowid?0:nVal)); 2727 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2728 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2729 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2730 }else{ 2731 VdbeComment((v, "RHS of IN operator")); 2732 } 2733 #endif 2734 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2735 2736 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2737 /* Case 1: expr IN (SELECT ...) 2738 ** 2739 ** Generate code to write the results of the select into the temporary 2740 ** table allocated and opened above. 2741 */ 2742 Select *pSelect = pExpr->x.pSelect; 2743 ExprList *pEList = pSelect->pEList; 2744 2745 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2746 addrOnce?"":"CORRELATED ", pSelect->selId 2747 )); 2748 assert( !isRowid ); 2749 /* If the LHS and RHS of the IN operator do not match, that 2750 ** error will have been caught long before we reach this point. */ 2751 if( ALWAYS(pEList->nExpr==nVal) ){ 2752 SelectDest dest; 2753 int i; 2754 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2755 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2756 pSelect->iLimit = 0; 2757 testcase( pSelect->selFlags & SF_Distinct ); 2758 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2759 if( sqlite3Select(pParse, pSelect, &dest) ){ 2760 sqlite3DbFree(pParse->db, dest.zAffSdst); 2761 sqlite3KeyInfoUnref(pKeyInfo); 2762 return; 2763 } 2764 sqlite3DbFree(pParse->db, dest.zAffSdst); 2765 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2766 assert( pEList!=0 ); 2767 assert( pEList->nExpr>0 ); 2768 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2769 for(i=0; i<nVal; i++){ 2770 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2771 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2772 pParse, p, pEList->a[i].pExpr 2773 ); 2774 } 2775 } 2776 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2777 /* Case 2: expr IN (exprlist) 2778 ** 2779 ** For each expression, build an index key from the evaluation and 2780 ** store it in the temporary table. If <expr> is a column, then use 2781 ** that columns affinity when building index keys. If <expr> is not 2782 ** a column, use numeric affinity. 2783 */ 2784 char affinity; /* Affinity of the LHS of the IN */ 2785 int i; 2786 ExprList *pList = pExpr->x.pList; 2787 struct ExprList_item *pItem; 2788 int r1, r2, r3; 2789 affinity = sqlite3ExprAffinity(pLeft); 2790 if( !affinity ){ 2791 affinity = SQLITE_AFF_BLOB; 2792 } 2793 if( pKeyInfo ){ 2794 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2795 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2796 } 2797 2798 /* Loop through each expression in <exprlist>. */ 2799 r1 = sqlite3GetTempReg(pParse); 2800 r2 = sqlite3GetTempReg(pParse); 2801 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC); 2802 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2803 Expr *pE2 = pItem->pExpr; 2804 int iValToIns; 2805 2806 /* If the expression is not constant then we will need to 2807 ** disable the test that was generated above that makes sure 2808 ** this code only executes once. Because for a non-constant 2809 ** expression we need to rerun this code each time. 2810 */ 2811 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2812 sqlite3VdbeChangeToNoop(v, addrOnce); 2813 addrOnce = 0; 2814 } 2815 2816 /* Evaluate the expression and insert it into the temp table */ 2817 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 2818 sqlite3VdbeAddOp3(v, OP_InsertInt, iTab, r2, iValToIns); 2819 }else{ 2820 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2821 if( isRowid ){ 2822 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 2823 sqlite3VdbeCurrentAddr(v)+2); 2824 VdbeCoverage(v); 2825 sqlite3VdbeAddOp3(v, OP_Insert, iTab, r2, r3); 2826 }else{ 2827 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2828 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r3, 1); 2829 } 2830 } 2831 } 2832 sqlite3ReleaseTempReg(pParse, r1); 2833 sqlite3ReleaseTempReg(pParse, r2); 2834 } 2835 if( pKeyInfo ){ 2836 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2837 } 2838 if( addrOnce ){ 2839 sqlite3VdbeJumpHere(v, addrOnce); 2840 /* Subroutine return */ 2841 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2842 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2843 } 2844 } 2845 #endif /* SQLITE_OMIT_SUBQUERY */ 2846 2847 /* 2848 ** Generate code for scalar subqueries used as a subquery expression 2849 ** or EXISTS operator: 2850 ** 2851 ** (SELECT a FROM b) -- subquery 2852 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2853 ** 2854 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2855 ** 2856 ** The register that holds the result. For a multi-column SELECT, 2857 ** the result is stored in a contiguous array of registers and the 2858 ** return value is the register of the left-most result column. 2859 ** Return 0 if an error occurs. 2860 */ 2861 #ifndef SQLITE_OMIT_SUBQUERY 2862 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2863 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2864 int rReg = 0; /* Register storing resulting */ 2865 Select *pSel; /* SELECT statement to encode */ 2866 SelectDest dest; /* How to deal with SELECT result */ 2867 int nReg; /* Registers to allocate */ 2868 Expr *pLimit; /* New limit expression */ 2869 2870 Vdbe *v = pParse->pVdbe; 2871 assert( v!=0 ); 2872 testcase( pExpr->op==TK_EXISTS ); 2873 testcase( pExpr->op==TK_SELECT ); 2874 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2875 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2876 pSel = pExpr->x.pSelect; 2877 2878 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2879 ** is encountered if any of the following is true: 2880 ** 2881 ** * The right-hand side is a correlated subquery 2882 ** * The right-hand side is an expression list containing variables 2883 ** * We are inside a trigger 2884 ** 2885 ** If all of the above are false, then we can run this code just once 2886 ** save the results, and reuse the same result on subsequent invocations. 2887 */ 2888 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2889 /* If this routine has already been coded, then invoke it as a 2890 ** subroutine. */ 2891 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2892 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2893 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2894 pExpr->y.sub.iAddr); 2895 return pExpr->iTable; 2896 } 2897 2898 /* Begin coding the subroutine */ 2899 ExprSetProperty(pExpr, EP_Subrtn); 2900 pExpr->y.sub.regReturn = ++pParse->nMem; 2901 pExpr->y.sub.iAddr = 2902 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2903 VdbeComment((v, "return address")); 2904 2905 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2906 } 2907 2908 /* For a SELECT, generate code to put the values for all columns of 2909 ** the first row into an array of registers and return the index of 2910 ** the first register. 2911 ** 2912 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2913 ** into a register and return that register number. 2914 ** 2915 ** In both cases, the query is augmented with "LIMIT 1". Any 2916 ** preexisting limit is discarded in place of the new LIMIT 1. 2917 */ 2918 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2919 addrOnce?"":"CORRELATED ", pSel->selId)); 2920 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2921 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2922 pParse->nMem += nReg; 2923 if( pExpr->op==TK_SELECT ){ 2924 dest.eDest = SRT_Mem; 2925 dest.iSdst = dest.iSDParm; 2926 dest.nSdst = nReg; 2927 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2928 VdbeComment((v, "Init subquery result")); 2929 }else{ 2930 dest.eDest = SRT_Exists; 2931 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2932 VdbeComment((v, "Init EXISTS result")); 2933 } 2934 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2935 if( pSel->pLimit ){ 2936 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2937 pSel->pLimit->pLeft = pLimit; 2938 }else{ 2939 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2940 } 2941 pSel->iLimit = 0; 2942 if( sqlite3Select(pParse, pSel, &dest) ){ 2943 return 0; 2944 } 2945 pExpr->iTable = rReg = dest.iSDParm; 2946 ExprSetVVAProperty(pExpr, EP_NoReduce); 2947 if( addrOnce ){ 2948 sqlite3VdbeJumpHere(v, addrOnce); 2949 2950 /* Subroutine return */ 2951 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2952 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2953 } 2954 2955 return rReg; 2956 } 2957 #endif /* SQLITE_OMIT_SUBQUERY */ 2958 2959 #ifndef SQLITE_OMIT_SUBQUERY 2960 /* 2961 ** Expr pIn is an IN(...) expression. This function checks that the 2962 ** sub-select on the RHS of the IN() operator has the same number of 2963 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2964 ** a sub-query, that the LHS is a vector of size 1. 2965 */ 2966 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2967 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2968 if( (pIn->flags & EP_xIsSelect) ){ 2969 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2970 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2971 return 1; 2972 } 2973 }else if( nVector!=1 ){ 2974 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2975 return 1; 2976 } 2977 return 0; 2978 } 2979 #endif 2980 2981 #ifndef SQLITE_OMIT_SUBQUERY 2982 /* 2983 ** Generate code for an IN expression. 2984 ** 2985 ** x IN (SELECT ...) 2986 ** x IN (value, value, ...) 2987 ** 2988 ** The left-hand side (LHS) is a scalar or vector expression. The 2989 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2990 ** subquery. If the RHS is a subquery, the number of result columns must 2991 ** match the number of columns in the vector on the LHS. If the RHS is 2992 ** a list of values, the LHS must be a scalar. 2993 ** 2994 ** The IN operator is true if the LHS value is contained within the RHS. 2995 ** The result is false if the LHS is definitely not in the RHS. The 2996 ** result is NULL if the presence of the LHS in the RHS cannot be 2997 ** determined due to NULLs. 2998 ** 2999 ** This routine generates code that jumps to destIfFalse if the LHS is not 3000 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3001 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3002 ** within the RHS then fall through. 3003 ** 3004 ** See the separate in-operator.md documentation file in the canonical 3005 ** SQLite source tree for additional information. 3006 */ 3007 static void sqlite3ExprCodeIN( 3008 Parse *pParse, /* Parsing and code generating context */ 3009 Expr *pExpr, /* The IN expression */ 3010 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3011 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3012 ){ 3013 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3014 int eType; /* Type of the RHS */ 3015 int rLhs; /* Register(s) holding the LHS values */ 3016 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3017 Vdbe *v; /* Statement under construction */ 3018 int *aiMap = 0; /* Map from vector field to index column */ 3019 char *zAff = 0; /* Affinity string for comparisons */ 3020 int nVector; /* Size of vectors for this IN operator */ 3021 int iDummy; /* Dummy parameter to exprCodeVector() */ 3022 Expr *pLeft; /* The LHS of the IN operator */ 3023 int i; /* loop counter */ 3024 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3025 int destStep6 = 0; /* Start of code for Step 6 */ 3026 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3027 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3028 int addrTop; /* Top of the step-6 loop */ 3029 int iTab = 0; /* Index to use */ 3030 3031 pLeft = pExpr->pLeft; 3032 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3033 zAff = exprINAffinity(pParse, pExpr); 3034 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3035 aiMap = (int*)sqlite3DbMallocZero( 3036 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3037 ); 3038 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3039 3040 /* Attempt to compute the RHS. After this step, if anything other than 3041 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3042 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3043 ** the RHS has not yet been coded. */ 3044 v = pParse->pVdbe; 3045 assert( v!=0 ); /* OOM detected prior to this routine */ 3046 VdbeNoopComment((v, "begin IN expr")); 3047 eType = sqlite3FindInIndex(pParse, pExpr, 3048 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3049 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3050 aiMap, &iTab); 3051 3052 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3053 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3054 ); 3055 #ifdef SQLITE_DEBUG 3056 /* Confirm that aiMap[] contains nVector integer values between 0 and 3057 ** nVector-1. */ 3058 for(i=0; i<nVector; i++){ 3059 int j, cnt; 3060 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3061 assert( cnt==1 ); 3062 } 3063 #endif 3064 3065 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3066 ** vector, then it is stored in an array of nVector registers starting 3067 ** at r1. 3068 ** 3069 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3070 ** so that the fields are in the same order as an existing index. The 3071 ** aiMap[] array contains a mapping from the original LHS field order to 3072 ** the field order that matches the RHS index. 3073 */ 3074 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3075 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3076 if( i==nVector ){ 3077 /* LHS fields are not reordered */ 3078 rLhs = rLhsOrig; 3079 }else{ 3080 /* Need to reorder the LHS fields according to aiMap */ 3081 rLhs = sqlite3GetTempRange(pParse, nVector); 3082 for(i=0; i<nVector; i++){ 3083 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3084 } 3085 } 3086 3087 /* If sqlite3FindInIndex() did not find or create an index that is 3088 ** suitable for evaluating the IN operator, then evaluate using a 3089 ** sequence of comparisons. 3090 ** 3091 ** This is step (1) in the in-operator.md optimized algorithm. 3092 */ 3093 if( eType==IN_INDEX_NOOP ){ 3094 ExprList *pList = pExpr->x.pList; 3095 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3096 int labelOk = sqlite3VdbeMakeLabel(v); 3097 int r2, regToFree; 3098 int regCkNull = 0; 3099 int ii; 3100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3101 if( destIfNull!=destIfFalse ){ 3102 regCkNull = sqlite3GetTempReg(pParse); 3103 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3104 } 3105 for(ii=0; ii<pList->nExpr; ii++){ 3106 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3107 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3108 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3109 } 3110 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3111 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3112 (void*)pColl, P4_COLLSEQ); 3113 VdbeCoverageIf(v, ii<pList->nExpr-1); 3114 VdbeCoverageIf(v, ii==pList->nExpr-1); 3115 sqlite3VdbeChangeP5(v, zAff[0]); 3116 }else{ 3117 assert( destIfNull==destIfFalse ); 3118 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3119 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3120 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3121 } 3122 sqlite3ReleaseTempReg(pParse, regToFree); 3123 } 3124 if( regCkNull ){ 3125 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3126 sqlite3VdbeGoto(v, destIfFalse); 3127 } 3128 sqlite3VdbeResolveLabel(v, labelOk); 3129 sqlite3ReleaseTempReg(pParse, regCkNull); 3130 goto sqlite3ExprCodeIN_finished; 3131 } 3132 3133 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3134 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3135 ** We will then skip the binary search of the RHS. 3136 */ 3137 if( destIfNull==destIfFalse ){ 3138 destStep2 = destIfFalse; 3139 }else{ 3140 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v); 3141 } 3142 for(i=0; i<nVector; i++){ 3143 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3144 if( sqlite3ExprCanBeNull(p) ){ 3145 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3146 VdbeCoverage(v); 3147 } 3148 } 3149 3150 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3151 ** of the RHS using the LHS as a probe. If found, the result is 3152 ** true. 3153 */ 3154 if( eType==IN_INDEX_ROWID ){ 3155 /* In this case, the RHS is the ROWID of table b-tree and so we also 3156 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3157 ** into a single opcode. */ 3158 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3159 VdbeCoverage(v); 3160 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3161 }else{ 3162 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3163 if( destIfFalse==destIfNull ){ 3164 /* Combine Step 3 and Step 5 into a single opcode */ 3165 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3166 rLhs, nVector); VdbeCoverage(v); 3167 goto sqlite3ExprCodeIN_finished; 3168 } 3169 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3170 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3171 rLhs, nVector); VdbeCoverage(v); 3172 } 3173 3174 /* Step 4. If the RHS is known to be non-NULL and we did not find 3175 ** an match on the search above, then the result must be FALSE. 3176 */ 3177 if( rRhsHasNull && nVector==1 ){ 3178 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3179 VdbeCoverage(v); 3180 } 3181 3182 /* Step 5. If we do not care about the difference between NULL and 3183 ** FALSE, then just return false. 3184 */ 3185 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3186 3187 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3188 ** If any comparison is NULL, then the result is NULL. If all 3189 ** comparisons are FALSE then the final result is FALSE. 3190 ** 3191 ** For a scalar LHS, it is sufficient to check just the first row 3192 ** of the RHS. 3193 */ 3194 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3195 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3196 VdbeCoverage(v); 3197 if( nVector>1 ){ 3198 destNotNull = sqlite3VdbeMakeLabel(v); 3199 }else{ 3200 /* For nVector==1, combine steps 6 and 7 by immediately returning 3201 ** FALSE if the first comparison is not NULL */ 3202 destNotNull = destIfFalse; 3203 } 3204 for(i=0; i<nVector; i++){ 3205 Expr *p; 3206 CollSeq *pColl; 3207 int r3 = sqlite3GetTempReg(pParse); 3208 p = sqlite3VectorFieldSubexpr(pLeft, i); 3209 pColl = sqlite3ExprCollSeq(pParse, p); 3210 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3211 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3212 (void*)pColl, P4_COLLSEQ); 3213 VdbeCoverage(v); 3214 sqlite3ReleaseTempReg(pParse, r3); 3215 } 3216 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3217 if( nVector>1 ){ 3218 sqlite3VdbeResolveLabel(v, destNotNull); 3219 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3220 VdbeCoverage(v); 3221 3222 /* Step 7: If we reach this point, we know that the result must 3223 ** be false. */ 3224 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3225 } 3226 3227 /* Jumps here in order to return true. */ 3228 sqlite3VdbeJumpHere(v, addrTruthOp); 3229 3230 sqlite3ExprCodeIN_finished: 3231 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3232 VdbeComment((v, "end IN expr")); 3233 sqlite3ExprCodeIN_oom_error: 3234 sqlite3DbFree(pParse->db, aiMap); 3235 sqlite3DbFree(pParse->db, zAff); 3236 } 3237 #endif /* SQLITE_OMIT_SUBQUERY */ 3238 3239 #ifndef SQLITE_OMIT_FLOATING_POINT 3240 /* 3241 ** Generate an instruction that will put the floating point 3242 ** value described by z[0..n-1] into register iMem. 3243 ** 3244 ** The z[] string will probably not be zero-terminated. But the 3245 ** z[n] character is guaranteed to be something that does not look 3246 ** like the continuation of the number. 3247 */ 3248 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3249 if( ALWAYS(z!=0) ){ 3250 double value; 3251 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3252 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3253 if( negateFlag ) value = -value; 3254 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3255 } 3256 } 3257 #endif 3258 3259 3260 /* 3261 ** Generate an instruction that will put the integer describe by 3262 ** text z[0..n-1] into register iMem. 3263 ** 3264 ** Expr.u.zToken is always UTF8 and zero-terminated. 3265 */ 3266 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3267 Vdbe *v = pParse->pVdbe; 3268 if( pExpr->flags & EP_IntValue ){ 3269 int i = pExpr->u.iValue; 3270 assert( i>=0 ); 3271 if( negFlag ) i = -i; 3272 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3273 }else{ 3274 int c; 3275 i64 value; 3276 const char *z = pExpr->u.zToken; 3277 assert( z!=0 ); 3278 c = sqlite3DecOrHexToI64(z, &value); 3279 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3280 #ifdef SQLITE_OMIT_FLOATING_POINT 3281 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3282 #else 3283 #ifndef SQLITE_OMIT_HEX_INTEGER 3284 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3285 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3286 }else 3287 #endif 3288 { 3289 codeReal(v, z, negFlag, iMem); 3290 } 3291 #endif 3292 }else{ 3293 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3294 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3295 } 3296 } 3297 } 3298 3299 3300 /* Generate code that will load into register regOut a value that is 3301 ** appropriate for the iIdxCol-th column of index pIdx. 3302 */ 3303 void sqlite3ExprCodeLoadIndexColumn( 3304 Parse *pParse, /* The parsing context */ 3305 Index *pIdx, /* The index whose column is to be loaded */ 3306 int iTabCur, /* Cursor pointing to a table row */ 3307 int iIdxCol, /* The column of the index to be loaded */ 3308 int regOut /* Store the index column value in this register */ 3309 ){ 3310 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3311 if( iTabCol==XN_EXPR ){ 3312 assert( pIdx->aColExpr ); 3313 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3314 pParse->iSelfTab = iTabCur + 1; 3315 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3316 pParse->iSelfTab = 0; 3317 }else{ 3318 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3319 iTabCol, regOut); 3320 } 3321 } 3322 3323 /* 3324 ** Generate code to extract the value of the iCol-th column of a table. 3325 */ 3326 void sqlite3ExprCodeGetColumnOfTable( 3327 Vdbe *v, /* The VDBE under construction */ 3328 Table *pTab, /* The table containing the value */ 3329 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3330 int iCol, /* Index of the column to extract */ 3331 int regOut /* Extract the value into this register */ 3332 ){ 3333 if( pTab==0 ){ 3334 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3335 return; 3336 } 3337 if( iCol<0 || iCol==pTab->iPKey ){ 3338 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3339 }else{ 3340 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3341 int x = iCol; 3342 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3343 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3344 } 3345 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3346 } 3347 if( iCol>=0 ){ 3348 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3349 } 3350 } 3351 3352 /* 3353 ** Generate code that will extract the iColumn-th column from 3354 ** table pTab and store the column value in register iReg. 3355 ** 3356 ** There must be an open cursor to pTab in iTable when this routine 3357 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3358 */ 3359 int sqlite3ExprCodeGetColumn( 3360 Parse *pParse, /* Parsing and code generating context */ 3361 Table *pTab, /* Description of the table we are reading from */ 3362 int iColumn, /* Index of the table column */ 3363 int iTable, /* The cursor pointing to the table */ 3364 int iReg, /* Store results here */ 3365 u8 p5 /* P5 value for OP_Column + FLAGS */ 3366 ){ 3367 Vdbe *v = pParse->pVdbe; 3368 assert( v!=0 ); 3369 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3370 if( p5 ){ 3371 sqlite3VdbeChangeP5(v, p5); 3372 } 3373 return iReg; 3374 } 3375 3376 /* 3377 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3378 ** over to iTo..iTo+nReg-1. 3379 */ 3380 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3381 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3382 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3383 } 3384 3385 /* 3386 ** Convert a scalar expression node to a TK_REGISTER referencing 3387 ** register iReg. The caller must ensure that iReg already contains 3388 ** the correct value for the expression. 3389 */ 3390 static void exprToRegister(Expr *p, int iReg){ 3391 p->op2 = p->op; 3392 p->op = TK_REGISTER; 3393 p->iTable = iReg; 3394 ExprClearProperty(p, EP_Skip); 3395 } 3396 3397 /* 3398 ** Evaluate an expression (either a vector or a scalar expression) and store 3399 ** the result in continguous temporary registers. Return the index of 3400 ** the first register used to store the result. 3401 ** 3402 ** If the returned result register is a temporary scalar, then also write 3403 ** that register number into *piFreeable. If the returned result register 3404 ** is not a temporary or if the expression is a vector set *piFreeable 3405 ** to 0. 3406 */ 3407 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3408 int iResult; 3409 int nResult = sqlite3ExprVectorSize(p); 3410 if( nResult==1 ){ 3411 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3412 }else{ 3413 *piFreeable = 0; 3414 if( p->op==TK_SELECT ){ 3415 #if SQLITE_OMIT_SUBQUERY 3416 iResult = 0; 3417 #else 3418 iResult = sqlite3CodeSubselect(pParse, p); 3419 #endif 3420 }else{ 3421 int i; 3422 iResult = pParse->nMem+1; 3423 pParse->nMem += nResult; 3424 for(i=0; i<nResult; i++){ 3425 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3426 } 3427 } 3428 } 3429 return iResult; 3430 } 3431 3432 3433 /* 3434 ** Generate code into the current Vdbe to evaluate the given 3435 ** expression. Attempt to store the results in register "target". 3436 ** Return the register where results are stored. 3437 ** 3438 ** With this routine, there is no guarantee that results will 3439 ** be stored in target. The result might be stored in some other 3440 ** register if it is convenient to do so. The calling function 3441 ** must check the return code and move the results to the desired 3442 ** register. 3443 */ 3444 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3445 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3446 int op; /* The opcode being coded */ 3447 int inReg = target; /* Results stored in register inReg */ 3448 int regFree1 = 0; /* If non-zero free this temporary register */ 3449 int regFree2 = 0; /* If non-zero free this temporary register */ 3450 int r1, r2; /* Various register numbers */ 3451 Expr tempX; /* Temporary expression node */ 3452 int p5 = 0; 3453 3454 assert( target>0 && target<=pParse->nMem ); 3455 if( v==0 ){ 3456 assert( pParse->db->mallocFailed ); 3457 return 0; 3458 } 3459 3460 expr_code_doover: 3461 if( pExpr==0 ){ 3462 op = TK_NULL; 3463 }else{ 3464 op = pExpr->op; 3465 } 3466 switch( op ){ 3467 case TK_AGG_COLUMN: { 3468 AggInfo *pAggInfo = pExpr->pAggInfo; 3469 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3470 if( !pAggInfo->directMode ){ 3471 assert( pCol->iMem>0 ); 3472 return pCol->iMem; 3473 }else if( pAggInfo->useSortingIdx ){ 3474 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3475 pCol->iSorterColumn, target); 3476 return target; 3477 } 3478 /* Otherwise, fall thru into the TK_COLUMN case */ 3479 } 3480 case TK_COLUMN: { 3481 int iTab = pExpr->iTable; 3482 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3483 /* This COLUMN expression is really a constant due to WHERE clause 3484 ** constraints, and that constant is coded by the pExpr->pLeft 3485 ** expresssion. However, make sure the constant has the correct 3486 ** datatype by applying the Affinity of the table column to the 3487 ** constant. 3488 */ 3489 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3490 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3491 if( aff!=SQLITE_AFF_BLOB ){ 3492 static const char zAff[] = "B\000C\000D\000E"; 3493 assert( SQLITE_AFF_BLOB=='A' ); 3494 assert( SQLITE_AFF_TEXT=='B' ); 3495 if( iReg!=target ){ 3496 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3497 iReg = target; 3498 } 3499 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3500 &zAff[(aff-'B')*2], P4_STATIC); 3501 } 3502 return iReg; 3503 } 3504 if( iTab<0 ){ 3505 if( pParse->iSelfTab<0 ){ 3506 /* Generating CHECK constraints or inserting into partial index */ 3507 return pExpr->iColumn - pParse->iSelfTab; 3508 }else{ 3509 /* Coding an expression that is part of an index where column names 3510 ** in the index refer to the table to which the index belongs */ 3511 iTab = pParse->iSelfTab - 1; 3512 } 3513 } 3514 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3515 pExpr->iColumn, iTab, target, 3516 pExpr->op2); 3517 } 3518 case TK_INTEGER: { 3519 codeInteger(pParse, pExpr, 0, target); 3520 return target; 3521 } 3522 case TK_TRUEFALSE: { 3523 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3524 return target; 3525 } 3526 #ifndef SQLITE_OMIT_FLOATING_POINT 3527 case TK_FLOAT: { 3528 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3529 codeReal(v, pExpr->u.zToken, 0, target); 3530 return target; 3531 } 3532 #endif 3533 case TK_STRING: { 3534 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3535 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3536 return target; 3537 } 3538 case TK_NULL: { 3539 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3540 return target; 3541 } 3542 #ifndef SQLITE_OMIT_BLOB_LITERAL 3543 case TK_BLOB: { 3544 int n; 3545 const char *z; 3546 char *zBlob; 3547 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3548 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3549 assert( pExpr->u.zToken[1]=='\'' ); 3550 z = &pExpr->u.zToken[2]; 3551 n = sqlite3Strlen30(z) - 1; 3552 assert( z[n]=='\'' ); 3553 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3554 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3555 return target; 3556 } 3557 #endif 3558 case TK_VARIABLE: { 3559 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3560 assert( pExpr->u.zToken!=0 ); 3561 assert( pExpr->u.zToken[0]!=0 ); 3562 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3563 if( pExpr->u.zToken[1]!=0 ){ 3564 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3565 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3566 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3567 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3568 } 3569 return target; 3570 } 3571 case TK_REGISTER: { 3572 return pExpr->iTable; 3573 } 3574 #ifndef SQLITE_OMIT_CAST 3575 case TK_CAST: { 3576 /* Expressions of the form: CAST(pLeft AS token) */ 3577 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3578 if( inReg!=target ){ 3579 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3580 inReg = target; 3581 } 3582 sqlite3VdbeAddOp2(v, OP_Cast, target, 3583 sqlite3AffinityType(pExpr->u.zToken, 0)); 3584 return inReg; 3585 } 3586 #endif /* SQLITE_OMIT_CAST */ 3587 case TK_IS: 3588 case TK_ISNOT: 3589 op = (op==TK_IS) ? TK_EQ : TK_NE; 3590 p5 = SQLITE_NULLEQ; 3591 /* fall-through */ 3592 case TK_LT: 3593 case TK_LE: 3594 case TK_GT: 3595 case TK_GE: 3596 case TK_NE: 3597 case TK_EQ: { 3598 Expr *pLeft = pExpr->pLeft; 3599 if( sqlite3ExprIsVector(pLeft) ){ 3600 codeVectorCompare(pParse, pExpr, target, op, p5); 3601 }else{ 3602 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3603 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3604 codeCompare(pParse, pLeft, pExpr->pRight, op, 3605 r1, r2, inReg, SQLITE_STOREP2 | p5); 3606 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3607 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3608 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3609 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3610 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3611 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3612 testcase( regFree1==0 ); 3613 testcase( regFree2==0 ); 3614 } 3615 break; 3616 } 3617 case TK_AND: 3618 case TK_OR: 3619 case TK_PLUS: 3620 case TK_STAR: 3621 case TK_MINUS: 3622 case TK_REM: 3623 case TK_BITAND: 3624 case TK_BITOR: 3625 case TK_SLASH: 3626 case TK_LSHIFT: 3627 case TK_RSHIFT: 3628 case TK_CONCAT: { 3629 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3630 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3631 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3632 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3633 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3634 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3635 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3636 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3637 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3638 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3639 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3640 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3641 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3642 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3643 testcase( regFree1==0 ); 3644 testcase( regFree2==0 ); 3645 break; 3646 } 3647 case TK_UMINUS: { 3648 Expr *pLeft = pExpr->pLeft; 3649 assert( pLeft ); 3650 if( pLeft->op==TK_INTEGER ){ 3651 codeInteger(pParse, pLeft, 1, target); 3652 return target; 3653 #ifndef SQLITE_OMIT_FLOATING_POINT 3654 }else if( pLeft->op==TK_FLOAT ){ 3655 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3656 codeReal(v, pLeft->u.zToken, 1, target); 3657 return target; 3658 #endif 3659 }else{ 3660 tempX.op = TK_INTEGER; 3661 tempX.flags = EP_IntValue|EP_TokenOnly; 3662 tempX.u.iValue = 0; 3663 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3664 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3665 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3666 testcase( regFree2==0 ); 3667 } 3668 break; 3669 } 3670 case TK_BITNOT: 3671 case TK_NOT: { 3672 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3673 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3674 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3675 testcase( regFree1==0 ); 3676 sqlite3VdbeAddOp2(v, op, r1, inReg); 3677 break; 3678 } 3679 case TK_TRUTH: { 3680 int isTrue; /* IS TRUE or IS NOT TRUE */ 3681 int bNormal; /* IS TRUE or IS FALSE */ 3682 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3683 testcase( regFree1==0 ); 3684 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3685 bNormal = pExpr->op2==TK_IS; 3686 testcase( isTrue && bNormal); 3687 testcase( !isTrue && bNormal); 3688 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3689 break; 3690 } 3691 case TK_ISNULL: 3692 case TK_NOTNULL: { 3693 int addr; 3694 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3695 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3696 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3697 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3698 testcase( regFree1==0 ); 3699 addr = sqlite3VdbeAddOp1(v, op, r1); 3700 VdbeCoverageIf(v, op==TK_ISNULL); 3701 VdbeCoverageIf(v, op==TK_NOTNULL); 3702 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3703 sqlite3VdbeJumpHere(v, addr); 3704 break; 3705 } 3706 case TK_AGG_FUNCTION: { 3707 AggInfo *pInfo = pExpr->pAggInfo; 3708 if( pInfo==0 ){ 3709 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3710 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3711 }else{ 3712 return pInfo->aFunc[pExpr->iAgg].iMem; 3713 } 3714 break; 3715 } 3716 case TK_FUNCTION: { 3717 ExprList *pFarg; /* List of function arguments */ 3718 int nFarg; /* Number of function arguments */ 3719 FuncDef *pDef; /* The function definition object */ 3720 const char *zId; /* The function name */ 3721 u32 constMask = 0; /* Mask of function arguments that are constant */ 3722 int i; /* Loop counter */ 3723 sqlite3 *db = pParse->db; /* The database connection */ 3724 u8 enc = ENC(db); /* The text encoding used by this database */ 3725 CollSeq *pColl = 0; /* A collating sequence */ 3726 3727 #ifndef SQLITE_OMIT_WINDOWFUNC 3728 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3729 return pExpr->y.pWin->regResult; 3730 } 3731 #endif 3732 3733 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3734 /* SQL functions can be expensive. So try to move constant functions 3735 ** out of the inner loop, even if that means an extra OP_Copy. */ 3736 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3737 } 3738 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3739 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3740 pFarg = 0; 3741 }else{ 3742 pFarg = pExpr->x.pList; 3743 } 3744 nFarg = pFarg ? pFarg->nExpr : 0; 3745 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3746 zId = pExpr->u.zToken; 3747 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3748 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3749 if( pDef==0 && pParse->explain ){ 3750 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3751 } 3752 #endif 3753 if( pDef==0 || pDef->xFinalize!=0 ){ 3754 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3755 break; 3756 } 3757 3758 /* Attempt a direct implementation of the built-in COALESCE() and 3759 ** IFNULL() functions. This avoids unnecessary evaluation of 3760 ** arguments past the first non-NULL argument. 3761 */ 3762 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3763 int endCoalesce = sqlite3VdbeMakeLabel(v); 3764 assert( nFarg>=2 ); 3765 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3766 for(i=1; i<nFarg; i++){ 3767 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3768 VdbeCoverage(v); 3769 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3770 } 3771 sqlite3VdbeResolveLabel(v, endCoalesce); 3772 break; 3773 } 3774 3775 /* The UNLIKELY() function is a no-op. The result is the value 3776 ** of the first argument. 3777 */ 3778 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3779 assert( nFarg>=1 ); 3780 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3781 } 3782 3783 #ifdef SQLITE_DEBUG 3784 /* The AFFINITY() function evaluates to a string that describes 3785 ** the type affinity of the argument. This is used for testing of 3786 ** the SQLite type logic. 3787 */ 3788 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3789 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3790 char aff; 3791 assert( nFarg==1 ); 3792 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3793 sqlite3VdbeLoadString(v, target, 3794 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none"); 3795 return target; 3796 } 3797 #endif 3798 3799 for(i=0; i<nFarg; i++){ 3800 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3801 testcase( i==31 ); 3802 constMask |= MASKBIT32(i); 3803 } 3804 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3805 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3806 } 3807 } 3808 if( pFarg ){ 3809 if( constMask ){ 3810 r1 = pParse->nMem+1; 3811 pParse->nMem += nFarg; 3812 }else{ 3813 r1 = sqlite3GetTempRange(pParse, nFarg); 3814 } 3815 3816 /* For length() and typeof() functions with a column argument, 3817 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3818 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3819 ** loading. 3820 */ 3821 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3822 u8 exprOp; 3823 assert( nFarg==1 ); 3824 assert( pFarg->a[0].pExpr!=0 ); 3825 exprOp = pFarg->a[0].pExpr->op; 3826 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3827 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3828 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3829 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3830 pFarg->a[0].pExpr->op2 = 3831 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3832 } 3833 } 3834 3835 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3836 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3837 }else{ 3838 r1 = 0; 3839 } 3840 #ifndef SQLITE_OMIT_VIRTUALTABLE 3841 /* Possibly overload the function if the first argument is 3842 ** a virtual table column. 3843 ** 3844 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3845 ** second argument, not the first, as the argument to test to 3846 ** see if it is a column in a virtual table. This is done because 3847 ** the left operand of infix functions (the operand we want to 3848 ** control overloading) ends up as the second argument to the 3849 ** function. The expression "A glob B" is equivalent to 3850 ** "glob(B,A). We want to use the A in "A glob B" to test 3851 ** for function overloading. But we use the B term in "glob(B,A)". 3852 */ 3853 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3854 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3855 }else if( nFarg>0 ){ 3856 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3857 } 3858 #endif 3859 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3860 if( !pColl ) pColl = db->pDfltColl; 3861 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3862 } 3863 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3864 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3865 Expr *pArg = pFarg->a[0].pExpr; 3866 if( pArg->op==TK_COLUMN ){ 3867 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3868 }else{ 3869 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3870 } 3871 }else 3872 #endif 3873 { 3874 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3875 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3876 sqlite3VdbeChangeP5(v, (u8)nFarg); 3877 } 3878 if( nFarg && constMask==0 ){ 3879 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3880 } 3881 return target; 3882 } 3883 #ifndef SQLITE_OMIT_SUBQUERY 3884 case TK_EXISTS: 3885 case TK_SELECT: { 3886 int nCol; 3887 testcase( op==TK_EXISTS ); 3888 testcase( op==TK_SELECT ); 3889 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3890 sqlite3SubselectError(pParse, nCol, 1); 3891 }else{ 3892 return sqlite3CodeSubselect(pParse, pExpr); 3893 } 3894 break; 3895 } 3896 case TK_SELECT_COLUMN: { 3897 int n; 3898 if( pExpr->pLeft->iTable==0 ){ 3899 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 3900 } 3901 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3902 if( pExpr->iTable 3903 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3904 ){ 3905 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3906 pExpr->iTable, n); 3907 } 3908 return pExpr->pLeft->iTable + pExpr->iColumn; 3909 } 3910 case TK_IN: { 3911 int destIfFalse = sqlite3VdbeMakeLabel(v); 3912 int destIfNull = sqlite3VdbeMakeLabel(v); 3913 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3914 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3915 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3916 sqlite3VdbeResolveLabel(v, destIfFalse); 3917 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3918 sqlite3VdbeResolveLabel(v, destIfNull); 3919 return target; 3920 } 3921 #endif /* SQLITE_OMIT_SUBQUERY */ 3922 3923 3924 /* 3925 ** x BETWEEN y AND z 3926 ** 3927 ** This is equivalent to 3928 ** 3929 ** x>=y AND x<=z 3930 ** 3931 ** X is stored in pExpr->pLeft. 3932 ** Y is stored in pExpr->pList->a[0].pExpr. 3933 ** Z is stored in pExpr->pList->a[1].pExpr. 3934 */ 3935 case TK_BETWEEN: { 3936 exprCodeBetween(pParse, pExpr, target, 0, 0); 3937 return target; 3938 } 3939 case TK_SPAN: 3940 case TK_COLLATE: 3941 case TK_UPLUS: { 3942 pExpr = pExpr->pLeft; 3943 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3944 } 3945 3946 case TK_TRIGGER: { 3947 /* If the opcode is TK_TRIGGER, then the expression is a reference 3948 ** to a column in the new.* or old.* pseudo-tables available to 3949 ** trigger programs. In this case Expr.iTable is set to 1 for the 3950 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3951 ** is set to the column of the pseudo-table to read, or to -1 to 3952 ** read the rowid field. 3953 ** 3954 ** The expression is implemented using an OP_Param opcode. The p1 3955 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3956 ** to reference another column of the old.* pseudo-table, where 3957 ** i is the index of the column. For a new.rowid reference, p1 is 3958 ** set to (n+1), where n is the number of columns in each pseudo-table. 3959 ** For a reference to any other column in the new.* pseudo-table, p1 3960 ** is set to (n+2+i), where n and i are as defined previously. For 3961 ** example, if the table on which triggers are being fired is 3962 ** declared as: 3963 ** 3964 ** CREATE TABLE t1(a, b); 3965 ** 3966 ** Then p1 is interpreted as follows: 3967 ** 3968 ** p1==0 -> old.rowid p1==3 -> new.rowid 3969 ** p1==1 -> old.a p1==4 -> new.a 3970 ** p1==2 -> old.b p1==5 -> new.b 3971 */ 3972 Table *pTab = pExpr->y.pTab; 3973 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3974 3975 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3976 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3977 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3978 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3979 3980 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3981 VdbeComment((v, "r[%d]=%s.%s", target, 3982 (pExpr->iTable ? "new" : "old"), 3983 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 3984 )); 3985 3986 #ifndef SQLITE_OMIT_FLOATING_POINT 3987 /* If the column has REAL affinity, it may currently be stored as an 3988 ** integer. Use OP_RealAffinity to make sure it is really real. 3989 ** 3990 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3991 ** floating point when extracting it from the record. */ 3992 if( pExpr->iColumn>=0 3993 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3994 ){ 3995 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3996 } 3997 #endif 3998 break; 3999 } 4000 4001 case TK_VECTOR: { 4002 sqlite3ErrorMsg(pParse, "row value misused"); 4003 break; 4004 } 4005 4006 case TK_IF_NULL_ROW: { 4007 int addrINR; 4008 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4009 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4010 sqlite3VdbeJumpHere(v, addrINR); 4011 sqlite3VdbeChangeP3(v, addrINR, inReg); 4012 break; 4013 } 4014 4015 /* 4016 ** Form A: 4017 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4018 ** 4019 ** Form B: 4020 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4021 ** 4022 ** Form A is can be transformed into the equivalent form B as follows: 4023 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4024 ** WHEN x=eN THEN rN ELSE y END 4025 ** 4026 ** X (if it exists) is in pExpr->pLeft. 4027 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4028 ** odd. The Y is also optional. If the number of elements in x.pList 4029 ** is even, then Y is omitted and the "otherwise" result is NULL. 4030 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4031 ** 4032 ** The result of the expression is the Ri for the first matching Ei, 4033 ** or if there is no matching Ei, the ELSE term Y, or if there is 4034 ** no ELSE term, NULL. 4035 */ 4036 default: assert( op==TK_CASE ); { 4037 int endLabel; /* GOTO label for end of CASE stmt */ 4038 int nextCase; /* GOTO label for next WHEN clause */ 4039 int nExpr; /* 2x number of WHEN terms */ 4040 int i; /* Loop counter */ 4041 ExprList *pEList; /* List of WHEN terms */ 4042 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4043 Expr opCompare; /* The X==Ei expression */ 4044 Expr *pX; /* The X expression */ 4045 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4046 4047 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4048 assert(pExpr->x.pList->nExpr > 0); 4049 pEList = pExpr->x.pList; 4050 aListelem = pEList->a; 4051 nExpr = pEList->nExpr; 4052 endLabel = sqlite3VdbeMakeLabel(v); 4053 if( (pX = pExpr->pLeft)!=0 ){ 4054 tempX = *pX; 4055 testcase( pX->op==TK_COLUMN ); 4056 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, ®Free1)); 4057 testcase( regFree1==0 ); 4058 memset(&opCompare, 0, sizeof(opCompare)); 4059 opCompare.op = TK_EQ; 4060 opCompare.pLeft = &tempX; 4061 pTest = &opCompare; 4062 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4063 ** The value in regFree1 might get SCopy-ed into the file result. 4064 ** So make sure that the regFree1 register is not reused for other 4065 ** purposes and possibly overwritten. */ 4066 regFree1 = 0; 4067 } 4068 for(i=0; i<nExpr-1; i=i+2){ 4069 if( pX ){ 4070 assert( pTest!=0 ); 4071 opCompare.pRight = aListelem[i].pExpr; 4072 }else{ 4073 pTest = aListelem[i].pExpr; 4074 } 4075 nextCase = sqlite3VdbeMakeLabel(v); 4076 testcase( pTest->op==TK_COLUMN ); 4077 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4078 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4079 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4080 sqlite3VdbeGoto(v, endLabel); 4081 sqlite3VdbeResolveLabel(v, nextCase); 4082 } 4083 if( (nExpr&1)!=0 ){ 4084 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4085 }else{ 4086 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4087 } 4088 sqlite3VdbeResolveLabel(v, endLabel); 4089 break; 4090 } 4091 #ifndef SQLITE_OMIT_TRIGGER 4092 case TK_RAISE: { 4093 assert( pExpr->affinity==OE_Rollback 4094 || pExpr->affinity==OE_Abort 4095 || pExpr->affinity==OE_Fail 4096 || pExpr->affinity==OE_Ignore 4097 ); 4098 if( !pParse->pTriggerTab ){ 4099 sqlite3ErrorMsg(pParse, 4100 "RAISE() may only be used within a trigger-program"); 4101 return 0; 4102 } 4103 if( pExpr->affinity==OE_Abort ){ 4104 sqlite3MayAbort(pParse); 4105 } 4106 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4107 if( pExpr->affinity==OE_Ignore ){ 4108 sqlite3VdbeAddOp4( 4109 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4110 VdbeCoverage(v); 4111 }else{ 4112 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4113 pExpr->affinity, pExpr->u.zToken, 0, 0); 4114 } 4115 4116 break; 4117 } 4118 #endif 4119 } 4120 sqlite3ReleaseTempReg(pParse, regFree1); 4121 sqlite3ReleaseTempReg(pParse, regFree2); 4122 return inReg; 4123 } 4124 4125 /* 4126 ** Factor out the code of the given expression to initialization time. 4127 ** 4128 ** If regDest>=0 then the result is always stored in that register and the 4129 ** result is not reusable. If regDest<0 then this routine is free to 4130 ** store the value whereever it wants. The register where the expression 4131 ** is stored is returned. When regDest<0, two identical expressions will 4132 ** code to the same register. 4133 */ 4134 int sqlite3ExprCodeAtInit( 4135 Parse *pParse, /* Parsing context */ 4136 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4137 int regDest /* Store the value in this register */ 4138 ){ 4139 ExprList *p; 4140 assert( ConstFactorOk(pParse) ); 4141 p = pParse->pConstExpr; 4142 if( regDest<0 && p ){ 4143 struct ExprList_item *pItem; 4144 int i; 4145 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4146 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4147 return pItem->u.iConstExprReg; 4148 } 4149 } 4150 } 4151 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4152 p = sqlite3ExprListAppend(pParse, p, pExpr); 4153 if( p ){ 4154 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4155 pItem->reusable = regDest<0; 4156 if( regDest<0 ) regDest = ++pParse->nMem; 4157 pItem->u.iConstExprReg = regDest; 4158 } 4159 pParse->pConstExpr = p; 4160 return regDest; 4161 } 4162 4163 /* 4164 ** Generate code to evaluate an expression and store the results 4165 ** into a register. Return the register number where the results 4166 ** are stored. 4167 ** 4168 ** If the register is a temporary register that can be deallocated, 4169 ** then write its number into *pReg. If the result register is not 4170 ** a temporary, then set *pReg to zero. 4171 ** 4172 ** If pExpr is a constant, then this routine might generate this 4173 ** code to fill the register in the initialization section of the 4174 ** VDBE program, in order to factor it out of the evaluation loop. 4175 */ 4176 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4177 int r2; 4178 pExpr = sqlite3ExprSkipCollate(pExpr); 4179 if( ConstFactorOk(pParse) 4180 && pExpr->op!=TK_REGISTER 4181 && sqlite3ExprIsConstantNotJoin(pExpr) 4182 ){ 4183 *pReg = 0; 4184 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4185 }else{ 4186 int r1 = sqlite3GetTempReg(pParse); 4187 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4188 if( r2==r1 ){ 4189 *pReg = r1; 4190 }else{ 4191 sqlite3ReleaseTempReg(pParse, r1); 4192 *pReg = 0; 4193 } 4194 } 4195 return r2; 4196 } 4197 4198 /* 4199 ** Generate code that will evaluate expression pExpr and store the 4200 ** results in register target. The results are guaranteed to appear 4201 ** in register target. 4202 */ 4203 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4204 int inReg; 4205 4206 assert( target>0 && target<=pParse->nMem ); 4207 if( pExpr && pExpr->op==TK_REGISTER ){ 4208 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4209 }else{ 4210 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4211 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4212 if( inReg!=target && pParse->pVdbe ){ 4213 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4214 } 4215 } 4216 } 4217 4218 /* 4219 ** Make a transient copy of expression pExpr and then code it using 4220 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4221 ** except that the input expression is guaranteed to be unchanged. 4222 */ 4223 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4224 sqlite3 *db = pParse->db; 4225 pExpr = sqlite3ExprDup(db, pExpr, 0); 4226 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4227 sqlite3ExprDelete(db, pExpr); 4228 } 4229 4230 /* 4231 ** Generate code that will evaluate expression pExpr and store the 4232 ** results in register target. The results are guaranteed to appear 4233 ** in register target. If the expression is constant, then this routine 4234 ** might choose to code the expression at initialization time. 4235 */ 4236 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4237 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4238 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4239 }else{ 4240 sqlite3ExprCode(pParse, pExpr, target); 4241 } 4242 } 4243 4244 /* 4245 ** Generate code that evaluates the given expression and puts the result 4246 ** in register target. 4247 ** 4248 ** Also make a copy of the expression results into another "cache" register 4249 ** and modify the expression so that the next time it is evaluated, 4250 ** the result is a copy of the cache register. 4251 ** 4252 ** This routine is used for expressions that are used multiple 4253 ** times. They are evaluated once and the results of the expression 4254 ** are reused. 4255 */ 4256 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4257 Vdbe *v = pParse->pVdbe; 4258 int iMem; 4259 4260 assert( target>0 ); 4261 assert( pExpr->op!=TK_REGISTER ); 4262 sqlite3ExprCode(pParse, pExpr, target); 4263 iMem = ++pParse->nMem; 4264 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4265 exprToRegister(pExpr, iMem); 4266 } 4267 4268 /* 4269 ** Generate code that pushes the value of every element of the given 4270 ** expression list into a sequence of registers beginning at target. 4271 ** 4272 ** Return the number of elements evaluated. The number returned will 4273 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4274 ** is defined. 4275 ** 4276 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4277 ** filled using OP_SCopy. OP_Copy must be used instead. 4278 ** 4279 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4280 ** factored out into initialization code. 4281 ** 4282 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4283 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4284 ** in registers at srcReg, and so the value can be copied from there. 4285 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4286 ** are simply omitted rather than being copied from srcReg. 4287 */ 4288 int sqlite3ExprCodeExprList( 4289 Parse *pParse, /* Parsing context */ 4290 ExprList *pList, /* The expression list to be coded */ 4291 int target, /* Where to write results */ 4292 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4293 u8 flags /* SQLITE_ECEL_* flags */ 4294 ){ 4295 struct ExprList_item *pItem; 4296 int i, j, n; 4297 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4298 Vdbe *v = pParse->pVdbe; 4299 assert( pList!=0 ); 4300 assert( target>0 ); 4301 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4302 n = pList->nExpr; 4303 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4304 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4305 Expr *pExpr = pItem->pExpr; 4306 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4307 if( pItem->bSorterRef ){ 4308 i--; 4309 n--; 4310 }else 4311 #endif 4312 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4313 if( flags & SQLITE_ECEL_OMITREF ){ 4314 i--; 4315 n--; 4316 }else{ 4317 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4318 } 4319 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4320 && sqlite3ExprIsConstantNotJoin(pExpr) 4321 ){ 4322 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4323 }else{ 4324 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4325 if( inReg!=target+i ){ 4326 VdbeOp *pOp; 4327 if( copyOp==OP_Copy 4328 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4329 && pOp->p1+pOp->p3+1==inReg 4330 && pOp->p2+pOp->p3+1==target+i 4331 ){ 4332 pOp->p3++; 4333 }else{ 4334 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4335 } 4336 } 4337 } 4338 } 4339 return n; 4340 } 4341 4342 /* 4343 ** Generate code for a BETWEEN operator. 4344 ** 4345 ** x BETWEEN y AND z 4346 ** 4347 ** The above is equivalent to 4348 ** 4349 ** x>=y AND x<=z 4350 ** 4351 ** Code it as such, taking care to do the common subexpression 4352 ** elimination of x. 4353 ** 4354 ** The xJumpIf parameter determines details: 4355 ** 4356 ** NULL: Store the boolean result in reg[dest] 4357 ** sqlite3ExprIfTrue: Jump to dest if true 4358 ** sqlite3ExprIfFalse: Jump to dest if false 4359 ** 4360 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4361 */ 4362 static void exprCodeBetween( 4363 Parse *pParse, /* Parsing and code generating context */ 4364 Expr *pExpr, /* The BETWEEN expression */ 4365 int dest, /* Jump destination or storage location */ 4366 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4367 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4368 ){ 4369 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4370 Expr compLeft; /* The x>=y term */ 4371 Expr compRight; /* The x<=z term */ 4372 Expr exprX; /* The x subexpression */ 4373 int regFree1 = 0; /* Temporary use register */ 4374 4375 4376 memset(&compLeft, 0, sizeof(Expr)); 4377 memset(&compRight, 0, sizeof(Expr)); 4378 memset(&exprAnd, 0, sizeof(Expr)); 4379 4380 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4381 exprX = *pExpr->pLeft; 4382 exprAnd.op = TK_AND; 4383 exprAnd.pLeft = &compLeft; 4384 exprAnd.pRight = &compRight; 4385 compLeft.op = TK_GE; 4386 compLeft.pLeft = &exprX; 4387 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4388 compRight.op = TK_LE; 4389 compRight.pLeft = &exprX; 4390 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4391 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, ®Free1)); 4392 if( xJump ){ 4393 xJump(pParse, &exprAnd, dest, jumpIfNull); 4394 }else{ 4395 /* Mark the expression is being from the ON or USING clause of a join 4396 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4397 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4398 ** for clarity, but we are out of bits in the Expr.flags field so we 4399 ** have to reuse the EP_FromJoin bit. Bummer. */ 4400 exprX.flags |= EP_FromJoin; 4401 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4402 } 4403 sqlite3ReleaseTempReg(pParse, regFree1); 4404 4405 /* Ensure adequate test coverage */ 4406 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4407 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4408 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4409 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4410 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4411 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4412 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4413 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4414 testcase( xJump==0 ); 4415 } 4416 4417 /* 4418 ** Generate code for a boolean expression such that a jump is made 4419 ** to the label "dest" if the expression is true but execution 4420 ** continues straight thru if the expression is false. 4421 ** 4422 ** If the expression evaluates to NULL (neither true nor false), then 4423 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4424 ** 4425 ** This code depends on the fact that certain token values (ex: TK_EQ) 4426 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4427 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4428 ** the make process cause these values to align. Assert()s in the code 4429 ** below verify that the numbers are aligned correctly. 4430 */ 4431 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4432 Vdbe *v = pParse->pVdbe; 4433 int op = 0; 4434 int regFree1 = 0; 4435 int regFree2 = 0; 4436 int r1, r2; 4437 4438 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4439 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4440 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4441 op = pExpr->op; 4442 switch( op ){ 4443 case TK_AND: { 4444 int d2 = sqlite3VdbeMakeLabel(v); 4445 testcase( jumpIfNull==0 ); 4446 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 4447 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4448 sqlite3VdbeResolveLabel(v, d2); 4449 break; 4450 } 4451 case TK_OR: { 4452 testcase( jumpIfNull==0 ); 4453 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4454 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4455 break; 4456 } 4457 case TK_NOT: { 4458 testcase( jumpIfNull==0 ); 4459 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4460 break; 4461 } 4462 case TK_TRUTH: { 4463 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4464 int isTrue; /* IS TRUE or IS NOT TRUE */ 4465 testcase( jumpIfNull==0 ); 4466 isNot = pExpr->op2==TK_ISNOT; 4467 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4468 testcase( isTrue && isNot ); 4469 testcase( !isTrue && isNot ); 4470 if( isTrue ^ isNot ){ 4471 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4472 isNot ? SQLITE_JUMPIFNULL : 0); 4473 }else{ 4474 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4475 isNot ? SQLITE_JUMPIFNULL : 0); 4476 } 4477 break; 4478 } 4479 case TK_IS: 4480 case TK_ISNOT: 4481 testcase( op==TK_IS ); 4482 testcase( op==TK_ISNOT ); 4483 op = (op==TK_IS) ? TK_EQ : TK_NE; 4484 jumpIfNull = SQLITE_NULLEQ; 4485 /* Fall thru */ 4486 case TK_LT: 4487 case TK_LE: 4488 case TK_GT: 4489 case TK_GE: 4490 case TK_NE: 4491 case TK_EQ: { 4492 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4493 testcase( jumpIfNull==0 ); 4494 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4495 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4496 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4497 r1, r2, dest, jumpIfNull); 4498 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4499 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4500 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4501 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4502 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4503 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4504 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4505 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4506 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4507 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4508 testcase( regFree1==0 ); 4509 testcase( regFree2==0 ); 4510 break; 4511 } 4512 case TK_ISNULL: 4513 case TK_NOTNULL: { 4514 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4515 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4516 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4517 sqlite3VdbeAddOp2(v, op, r1, dest); 4518 VdbeCoverageIf(v, op==TK_ISNULL); 4519 VdbeCoverageIf(v, op==TK_NOTNULL); 4520 testcase( regFree1==0 ); 4521 break; 4522 } 4523 case TK_BETWEEN: { 4524 testcase( jumpIfNull==0 ); 4525 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4526 break; 4527 } 4528 #ifndef SQLITE_OMIT_SUBQUERY 4529 case TK_IN: { 4530 int destIfFalse = sqlite3VdbeMakeLabel(v); 4531 int destIfNull = jumpIfNull ? dest : destIfFalse; 4532 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4533 sqlite3VdbeGoto(v, dest); 4534 sqlite3VdbeResolveLabel(v, destIfFalse); 4535 break; 4536 } 4537 #endif 4538 default: { 4539 default_expr: 4540 if( exprAlwaysTrue(pExpr) ){ 4541 sqlite3VdbeGoto(v, dest); 4542 }else if( exprAlwaysFalse(pExpr) ){ 4543 /* No-op */ 4544 }else{ 4545 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4546 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4547 VdbeCoverage(v); 4548 testcase( regFree1==0 ); 4549 testcase( jumpIfNull==0 ); 4550 } 4551 break; 4552 } 4553 } 4554 sqlite3ReleaseTempReg(pParse, regFree1); 4555 sqlite3ReleaseTempReg(pParse, regFree2); 4556 } 4557 4558 /* 4559 ** Generate code for a boolean expression such that a jump is made 4560 ** to the label "dest" if the expression is false but execution 4561 ** continues straight thru if the expression is true. 4562 ** 4563 ** If the expression evaluates to NULL (neither true nor false) then 4564 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4565 ** is 0. 4566 */ 4567 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4568 Vdbe *v = pParse->pVdbe; 4569 int op = 0; 4570 int regFree1 = 0; 4571 int regFree2 = 0; 4572 int r1, r2; 4573 4574 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4575 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4576 if( pExpr==0 ) return; 4577 4578 /* The value of pExpr->op and op are related as follows: 4579 ** 4580 ** pExpr->op op 4581 ** --------- ---------- 4582 ** TK_ISNULL OP_NotNull 4583 ** TK_NOTNULL OP_IsNull 4584 ** TK_NE OP_Eq 4585 ** TK_EQ OP_Ne 4586 ** TK_GT OP_Le 4587 ** TK_LE OP_Gt 4588 ** TK_GE OP_Lt 4589 ** TK_LT OP_Ge 4590 ** 4591 ** For other values of pExpr->op, op is undefined and unused. 4592 ** The value of TK_ and OP_ constants are arranged such that we 4593 ** can compute the mapping above using the following expression. 4594 ** Assert()s verify that the computation is correct. 4595 */ 4596 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4597 4598 /* Verify correct alignment of TK_ and OP_ constants 4599 */ 4600 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4601 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4602 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4603 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4604 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4605 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4606 assert( pExpr->op!=TK_GT || op==OP_Le ); 4607 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4608 4609 switch( pExpr->op ){ 4610 case TK_AND: { 4611 testcase( jumpIfNull==0 ); 4612 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4613 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4614 break; 4615 } 4616 case TK_OR: { 4617 int d2 = sqlite3VdbeMakeLabel(v); 4618 testcase( jumpIfNull==0 ); 4619 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 4620 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4621 sqlite3VdbeResolveLabel(v, d2); 4622 break; 4623 } 4624 case TK_NOT: { 4625 testcase( jumpIfNull==0 ); 4626 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4627 break; 4628 } 4629 case TK_TRUTH: { 4630 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4631 int isTrue; /* IS TRUE or IS NOT TRUE */ 4632 testcase( jumpIfNull==0 ); 4633 isNot = pExpr->op2==TK_ISNOT; 4634 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4635 testcase( isTrue && isNot ); 4636 testcase( !isTrue && isNot ); 4637 if( isTrue ^ isNot ){ 4638 /* IS TRUE and IS NOT FALSE */ 4639 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4640 isNot ? 0 : SQLITE_JUMPIFNULL); 4641 4642 }else{ 4643 /* IS FALSE and IS NOT TRUE */ 4644 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4645 isNot ? 0 : SQLITE_JUMPIFNULL); 4646 } 4647 break; 4648 } 4649 case TK_IS: 4650 case TK_ISNOT: 4651 testcase( pExpr->op==TK_IS ); 4652 testcase( pExpr->op==TK_ISNOT ); 4653 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4654 jumpIfNull = SQLITE_NULLEQ; 4655 /* Fall thru */ 4656 case TK_LT: 4657 case TK_LE: 4658 case TK_GT: 4659 case TK_GE: 4660 case TK_NE: 4661 case TK_EQ: { 4662 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4663 testcase( jumpIfNull==0 ); 4664 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4665 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4666 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4667 r1, r2, dest, jumpIfNull); 4668 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4669 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4670 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4671 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4672 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4673 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4674 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4675 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4676 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4677 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4678 testcase( regFree1==0 ); 4679 testcase( regFree2==0 ); 4680 break; 4681 } 4682 case TK_ISNULL: 4683 case TK_NOTNULL: { 4684 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4685 sqlite3VdbeAddOp2(v, op, r1, dest); 4686 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4687 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4688 testcase( regFree1==0 ); 4689 break; 4690 } 4691 case TK_BETWEEN: { 4692 testcase( jumpIfNull==0 ); 4693 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4694 break; 4695 } 4696 #ifndef SQLITE_OMIT_SUBQUERY 4697 case TK_IN: { 4698 if( jumpIfNull ){ 4699 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4700 }else{ 4701 int destIfNull = sqlite3VdbeMakeLabel(v); 4702 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4703 sqlite3VdbeResolveLabel(v, destIfNull); 4704 } 4705 break; 4706 } 4707 #endif 4708 default: { 4709 default_expr: 4710 if( exprAlwaysFalse(pExpr) ){ 4711 sqlite3VdbeGoto(v, dest); 4712 }else if( exprAlwaysTrue(pExpr) ){ 4713 /* no-op */ 4714 }else{ 4715 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4716 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4717 VdbeCoverage(v); 4718 testcase( regFree1==0 ); 4719 testcase( jumpIfNull==0 ); 4720 } 4721 break; 4722 } 4723 } 4724 sqlite3ReleaseTempReg(pParse, regFree1); 4725 sqlite3ReleaseTempReg(pParse, regFree2); 4726 } 4727 4728 /* 4729 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4730 ** code generation, and that copy is deleted after code generation. This 4731 ** ensures that the original pExpr is unchanged. 4732 */ 4733 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4734 sqlite3 *db = pParse->db; 4735 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4736 if( db->mallocFailed==0 ){ 4737 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4738 } 4739 sqlite3ExprDelete(db, pCopy); 4740 } 4741 4742 /* 4743 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4744 ** type of expression. 4745 ** 4746 ** If pExpr is a simple SQL value - an integer, real, string, blob 4747 ** or NULL value - then the VDBE currently being prepared is configured 4748 ** to re-prepare each time a new value is bound to variable pVar. 4749 ** 4750 ** Additionally, if pExpr is a simple SQL value and the value is the 4751 ** same as that currently bound to variable pVar, non-zero is returned. 4752 ** Otherwise, if the values are not the same or if pExpr is not a simple 4753 ** SQL value, zero is returned. 4754 */ 4755 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4756 int res = 0; 4757 int iVar; 4758 sqlite3_value *pL, *pR = 0; 4759 4760 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4761 if( pR ){ 4762 iVar = pVar->iColumn; 4763 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4764 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4765 if( pL ){ 4766 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4767 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4768 } 4769 res = 0==sqlite3MemCompare(pL, pR, 0); 4770 } 4771 sqlite3ValueFree(pR); 4772 sqlite3ValueFree(pL); 4773 } 4774 4775 return res; 4776 } 4777 4778 /* 4779 ** Do a deep comparison of two expression trees. Return 0 if the two 4780 ** expressions are completely identical. Return 1 if they differ only 4781 ** by a COLLATE operator at the top level. Return 2 if there are differences 4782 ** other than the top-level COLLATE operator. 4783 ** 4784 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4785 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4786 ** 4787 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4788 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4789 ** 4790 ** Sometimes this routine will return 2 even if the two expressions 4791 ** really are equivalent. If we cannot prove that the expressions are 4792 ** identical, we return 2 just to be safe. So if this routine 4793 ** returns 2, then you do not really know for certain if the two 4794 ** expressions are the same. But if you get a 0 or 1 return, then you 4795 ** can be sure the expressions are the same. In the places where 4796 ** this routine is used, it does not hurt to get an extra 2 - that 4797 ** just might result in some slightly slower code. But returning 4798 ** an incorrect 0 or 1 could lead to a malfunction. 4799 ** 4800 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4801 ** pParse->pReprepare can be matched against literals in pB. The 4802 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4803 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4804 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4805 ** pB causes a return value of 2. 4806 */ 4807 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4808 u32 combinedFlags; 4809 if( pA==0 || pB==0 ){ 4810 return pB==pA ? 0 : 2; 4811 } 4812 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4813 return 0; 4814 } 4815 combinedFlags = pA->flags | pB->flags; 4816 if( combinedFlags & EP_IntValue ){ 4817 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4818 return 0; 4819 } 4820 return 2; 4821 } 4822 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4823 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4824 return 1; 4825 } 4826 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4827 return 1; 4828 } 4829 return 2; 4830 } 4831 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4832 if( pA->op==TK_FUNCTION ){ 4833 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4834 #ifndef SQLITE_OMIT_WINDOWFUNC 4835 /* Justification for the assert(): 4836 ** window functions have p->op==TK_FUNCTION but aggregate functions 4837 ** have p->op==TK_AGG_FUNCTION. So any comparison between an aggregate 4838 ** function and a window function should have failed before reaching 4839 ** this point. And, it is not possible to have a window function and 4840 ** a scalar function with the same name and number of arguments. So 4841 ** if we reach this point, either A and B both window functions or 4842 ** neither are a window functions. */ 4843 assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) ); 4844 if( ExprHasProperty(pA,EP_WinFunc) ){ 4845 if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2; 4846 } 4847 #endif 4848 }else if( pA->op==TK_COLLATE ){ 4849 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4850 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4851 return 2; 4852 } 4853 } 4854 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4855 if( (combinedFlags & EP_TokenOnly)==0 ){ 4856 if( combinedFlags & EP_xIsSelect ) return 2; 4857 if( (combinedFlags & EP_FixedCol)==0 4858 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4859 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4860 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4861 if( pA->op!=TK_STRING 4862 && pA->op!=TK_TRUEFALSE 4863 && (combinedFlags & EP_Reduced)==0 4864 ){ 4865 if( pA->iColumn!=pB->iColumn ) return 2; 4866 if( pA->iTable!=pB->iTable 4867 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4868 } 4869 } 4870 return 0; 4871 } 4872 4873 /* 4874 ** Compare two ExprList objects. Return 0 if they are identical and 4875 ** non-zero if they differ in any way. 4876 ** 4877 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4878 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4879 ** 4880 ** This routine might return non-zero for equivalent ExprLists. The 4881 ** only consequence will be disabled optimizations. But this routine 4882 ** must never return 0 if the two ExprList objects are different, or 4883 ** a malfunction will result. 4884 ** 4885 ** Two NULL pointers are considered to be the same. But a NULL pointer 4886 ** always differs from a non-NULL pointer. 4887 */ 4888 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4889 int i; 4890 if( pA==0 && pB==0 ) return 0; 4891 if( pA==0 || pB==0 ) return 1; 4892 if( pA->nExpr!=pB->nExpr ) return 1; 4893 for(i=0; i<pA->nExpr; i++){ 4894 Expr *pExprA = pA->a[i].pExpr; 4895 Expr *pExprB = pB->a[i].pExpr; 4896 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4897 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4898 } 4899 return 0; 4900 } 4901 4902 /* 4903 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4904 ** are ignored. 4905 */ 4906 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4907 return sqlite3ExprCompare(0, 4908 sqlite3ExprSkipCollate(pA), 4909 sqlite3ExprSkipCollate(pB), 4910 iTab); 4911 } 4912 4913 /* 4914 ** Return true if we can prove the pE2 will always be true if pE1 is 4915 ** true. Return false if we cannot complete the proof or if pE2 might 4916 ** be false. Examples: 4917 ** 4918 ** pE1: x==5 pE2: x==5 Result: true 4919 ** pE1: x>0 pE2: x==5 Result: false 4920 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4921 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4922 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4923 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4924 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4925 ** 4926 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4927 ** Expr.iTable<0 then assume a table number given by iTab. 4928 ** 4929 ** If pParse is not NULL, then the values of bound variables in pE1 are 4930 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 4931 ** modified to record which bound variables are referenced. If pParse 4932 ** is NULL, then false will be returned if pE1 contains any bound variables. 4933 ** 4934 ** When in doubt, return false. Returning true might give a performance 4935 ** improvement. Returning false might cause a performance reduction, but 4936 ** it will always give the correct answer and is hence always safe. 4937 */ 4938 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 4939 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 4940 return 1; 4941 } 4942 if( pE2->op==TK_OR 4943 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 4944 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 4945 ){ 4946 return 1; 4947 } 4948 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){ 4949 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft); 4950 testcase( pX!=pE1->pLeft ); 4951 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1; 4952 } 4953 return 0; 4954 } 4955 4956 /* 4957 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 4958 ** If the expression node requires that the table at pWalker->iCur 4959 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 4960 ** 4961 ** This routine controls an optimization. False positives (setting 4962 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 4963 ** (never setting pWalker->eCode) is a harmless missed optimization. 4964 */ 4965 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 4966 testcase( pExpr->op==TK_AGG_COLUMN ); 4967 testcase( pExpr->op==TK_AGG_FUNCTION ); 4968 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 4969 switch( pExpr->op ){ 4970 case TK_ISNOT: 4971 case TK_NOT: 4972 case TK_ISNULL: 4973 case TK_IS: 4974 case TK_OR: 4975 case TK_CASE: 4976 case TK_IN: 4977 case TK_FUNCTION: 4978 testcase( pExpr->op==TK_ISNOT ); 4979 testcase( pExpr->op==TK_NOT ); 4980 testcase( pExpr->op==TK_ISNULL ); 4981 testcase( pExpr->op==TK_IS ); 4982 testcase( pExpr->op==TK_OR ); 4983 testcase( pExpr->op==TK_CASE ); 4984 testcase( pExpr->op==TK_IN ); 4985 testcase( pExpr->op==TK_FUNCTION ); 4986 return WRC_Prune; 4987 case TK_COLUMN: 4988 if( pWalker->u.iCur==pExpr->iTable ){ 4989 pWalker->eCode = 1; 4990 return WRC_Abort; 4991 } 4992 return WRC_Prune; 4993 4994 /* Virtual tables are allowed to use constraints like x=NULL. So 4995 ** a term of the form x=y does not prove that y is not null if x 4996 ** is the column of a virtual table */ 4997 case TK_EQ: 4998 case TK_NE: 4999 case TK_LT: 5000 case TK_LE: 5001 case TK_GT: 5002 case TK_GE: 5003 testcase( pExpr->op==TK_EQ ); 5004 testcase( pExpr->op==TK_NE ); 5005 testcase( pExpr->op==TK_LT ); 5006 testcase( pExpr->op==TK_LE ); 5007 testcase( pExpr->op==TK_GT ); 5008 testcase( pExpr->op==TK_GE ); 5009 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5010 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5011 ){ 5012 return WRC_Prune; 5013 } 5014 default: 5015 return WRC_Continue; 5016 } 5017 } 5018 5019 /* 5020 ** Return true (non-zero) if expression p can only be true if at least 5021 ** one column of table iTab is non-null. In other words, return true 5022 ** if expression p will always be NULL or false if every column of iTab 5023 ** is NULL. 5024 ** 5025 ** False negatives are acceptable. In other words, it is ok to return 5026 ** zero even if expression p will never be true of every column of iTab 5027 ** is NULL. A false negative is merely a missed optimization opportunity. 5028 ** 5029 ** False positives are not allowed, however. A false positive may result 5030 ** in an incorrect answer. 5031 ** 5032 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5033 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5034 ** 5035 ** This routine is used to check if a LEFT JOIN can be converted into 5036 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5037 ** clause requires that some column of the right table of the LEFT JOIN 5038 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5039 ** ordinary join. 5040 */ 5041 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5042 Walker w; 5043 w.xExprCallback = impliesNotNullRow; 5044 w.xSelectCallback = 0; 5045 w.xSelectCallback2 = 0; 5046 w.eCode = 0; 5047 w.u.iCur = iTab; 5048 sqlite3WalkExpr(&w, p); 5049 return w.eCode; 5050 } 5051 5052 /* 5053 ** An instance of the following structure is used by the tree walker 5054 ** to determine if an expression can be evaluated by reference to the 5055 ** index only, without having to do a search for the corresponding 5056 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5057 ** is the cursor for the table. 5058 */ 5059 struct IdxCover { 5060 Index *pIdx; /* The index to be tested for coverage */ 5061 int iCur; /* Cursor number for the table corresponding to the index */ 5062 }; 5063 5064 /* 5065 ** Check to see if there are references to columns in table 5066 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5067 ** pWalker->u.pIdxCover->pIdx. 5068 */ 5069 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5070 if( pExpr->op==TK_COLUMN 5071 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5072 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5073 ){ 5074 pWalker->eCode = 1; 5075 return WRC_Abort; 5076 } 5077 return WRC_Continue; 5078 } 5079 5080 /* 5081 ** Determine if an index pIdx on table with cursor iCur contains will 5082 ** the expression pExpr. Return true if the index does cover the 5083 ** expression and false if the pExpr expression references table columns 5084 ** that are not found in the index pIdx. 5085 ** 5086 ** An index covering an expression means that the expression can be 5087 ** evaluated using only the index and without having to lookup the 5088 ** corresponding table entry. 5089 */ 5090 int sqlite3ExprCoveredByIndex( 5091 Expr *pExpr, /* The index to be tested */ 5092 int iCur, /* The cursor number for the corresponding table */ 5093 Index *pIdx /* The index that might be used for coverage */ 5094 ){ 5095 Walker w; 5096 struct IdxCover xcov; 5097 memset(&w, 0, sizeof(w)); 5098 xcov.iCur = iCur; 5099 xcov.pIdx = pIdx; 5100 w.xExprCallback = exprIdxCover; 5101 w.u.pIdxCover = &xcov; 5102 sqlite3WalkExpr(&w, pExpr); 5103 return !w.eCode; 5104 } 5105 5106 5107 /* 5108 ** An instance of the following structure is used by the tree walker 5109 ** to count references to table columns in the arguments of an 5110 ** aggregate function, in order to implement the 5111 ** sqlite3FunctionThisSrc() routine. 5112 */ 5113 struct SrcCount { 5114 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5115 int nThis; /* Number of references to columns in pSrcList */ 5116 int nOther; /* Number of references to columns in other FROM clauses */ 5117 }; 5118 5119 /* 5120 ** Count the number of references to columns. 5121 */ 5122 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5123 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5124 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5125 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5126 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5127 ** NEVER() will need to be removed. */ 5128 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5129 int i; 5130 struct SrcCount *p = pWalker->u.pSrcCount; 5131 SrcList *pSrc = p->pSrc; 5132 int nSrc = pSrc ? pSrc->nSrc : 0; 5133 for(i=0; i<nSrc; i++){ 5134 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5135 } 5136 if( i<nSrc ){ 5137 p->nThis++; 5138 }else{ 5139 p->nOther++; 5140 } 5141 } 5142 return WRC_Continue; 5143 } 5144 5145 /* 5146 ** Determine if any of the arguments to the pExpr Function reference 5147 ** pSrcList. Return true if they do. Also return true if the function 5148 ** has no arguments or has only constant arguments. Return false if pExpr 5149 ** references columns but not columns of tables found in pSrcList. 5150 */ 5151 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5152 Walker w; 5153 struct SrcCount cnt; 5154 assert( pExpr->op==TK_AGG_FUNCTION ); 5155 w.xExprCallback = exprSrcCount; 5156 w.xSelectCallback = 0; 5157 w.u.pSrcCount = &cnt; 5158 cnt.pSrc = pSrcList; 5159 cnt.nThis = 0; 5160 cnt.nOther = 0; 5161 sqlite3WalkExprList(&w, pExpr->x.pList); 5162 return cnt.nThis>0 || cnt.nOther==0; 5163 } 5164 5165 /* 5166 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5167 ** the new element. Return a negative number if malloc fails. 5168 */ 5169 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5170 int i; 5171 pInfo->aCol = sqlite3ArrayAllocate( 5172 db, 5173 pInfo->aCol, 5174 sizeof(pInfo->aCol[0]), 5175 &pInfo->nColumn, 5176 &i 5177 ); 5178 return i; 5179 } 5180 5181 /* 5182 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5183 ** the new element. Return a negative number if malloc fails. 5184 */ 5185 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5186 int i; 5187 pInfo->aFunc = sqlite3ArrayAllocate( 5188 db, 5189 pInfo->aFunc, 5190 sizeof(pInfo->aFunc[0]), 5191 &pInfo->nFunc, 5192 &i 5193 ); 5194 return i; 5195 } 5196 5197 /* 5198 ** This is the xExprCallback for a tree walker. It is used to 5199 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5200 ** for additional information. 5201 */ 5202 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5203 int i; 5204 NameContext *pNC = pWalker->u.pNC; 5205 Parse *pParse = pNC->pParse; 5206 SrcList *pSrcList = pNC->pSrcList; 5207 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5208 5209 assert( pNC->ncFlags & NC_UAggInfo ); 5210 switch( pExpr->op ){ 5211 case TK_AGG_COLUMN: 5212 case TK_COLUMN: { 5213 testcase( pExpr->op==TK_AGG_COLUMN ); 5214 testcase( pExpr->op==TK_COLUMN ); 5215 /* Check to see if the column is in one of the tables in the FROM 5216 ** clause of the aggregate query */ 5217 if( ALWAYS(pSrcList!=0) ){ 5218 struct SrcList_item *pItem = pSrcList->a; 5219 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5220 struct AggInfo_col *pCol; 5221 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5222 if( pExpr->iTable==pItem->iCursor ){ 5223 /* If we reach this point, it means that pExpr refers to a table 5224 ** that is in the FROM clause of the aggregate query. 5225 ** 5226 ** Make an entry for the column in pAggInfo->aCol[] if there 5227 ** is not an entry there already. 5228 */ 5229 int k; 5230 pCol = pAggInfo->aCol; 5231 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5232 if( pCol->iTable==pExpr->iTable && 5233 pCol->iColumn==pExpr->iColumn ){ 5234 break; 5235 } 5236 } 5237 if( (k>=pAggInfo->nColumn) 5238 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5239 ){ 5240 pCol = &pAggInfo->aCol[k]; 5241 pCol->pTab = pExpr->y.pTab; 5242 pCol->iTable = pExpr->iTable; 5243 pCol->iColumn = pExpr->iColumn; 5244 pCol->iMem = ++pParse->nMem; 5245 pCol->iSorterColumn = -1; 5246 pCol->pExpr = pExpr; 5247 if( pAggInfo->pGroupBy ){ 5248 int j, n; 5249 ExprList *pGB = pAggInfo->pGroupBy; 5250 struct ExprList_item *pTerm = pGB->a; 5251 n = pGB->nExpr; 5252 for(j=0; j<n; j++, pTerm++){ 5253 Expr *pE = pTerm->pExpr; 5254 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5255 pE->iColumn==pExpr->iColumn ){ 5256 pCol->iSorterColumn = j; 5257 break; 5258 } 5259 } 5260 } 5261 if( pCol->iSorterColumn<0 ){ 5262 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5263 } 5264 } 5265 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5266 ** because it was there before or because we just created it). 5267 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5268 ** pAggInfo->aCol[] entry. 5269 */ 5270 ExprSetVVAProperty(pExpr, EP_NoReduce); 5271 pExpr->pAggInfo = pAggInfo; 5272 pExpr->op = TK_AGG_COLUMN; 5273 pExpr->iAgg = (i16)k; 5274 break; 5275 } /* endif pExpr->iTable==pItem->iCursor */ 5276 } /* end loop over pSrcList */ 5277 } 5278 return WRC_Prune; 5279 } 5280 case TK_AGG_FUNCTION: { 5281 if( (pNC->ncFlags & NC_InAggFunc)==0 5282 && pWalker->walkerDepth==pExpr->op2 5283 ){ 5284 /* Check to see if pExpr is a duplicate of another aggregate 5285 ** function that is already in the pAggInfo structure 5286 */ 5287 struct AggInfo_func *pItem = pAggInfo->aFunc; 5288 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5289 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5290 break; 5291 } 5292 } 5293 if( i>=pAggInfo->nFunc ){ 5294 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5295 */ 5296 u8 enc = ENC(pParse->db); 5297 i = addAggInfoFunc(pParse->db, pAggInfo); 5298 if( i>=0 ){ 5299 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5300 pItem = &pAggInfo->aFunc[i]; 5301 pItem->pExpr = pExpr; 5302 pItem->iMem = ++pParse->nMem; 5303 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5304 pItem->pFunc = sqlite3FindFunction(pParse->db, 5305 pExpr->u.zToken, 5306 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5307 if( pExpr->flags & EP_Distinct ){ 5308 pItem->iDistinct = pParse->nTab++; 5309 }else{ 5310 pItem->iDistinct = -1; 5311 } 5312 } 5313 } 5314 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5315 */ 5316 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5317 ExprSetVVAProperty(pExpr, EP_NoReduce); 5318 pExpr->iAgg = (i16)i; 5319 pExpr->pAggInfo = pAggInfo; 5320 return WRC_Prune; 5321 }else{ 5322 return WRC_Continue; 5323 } 5324 } 5325 } 5326 return WRC_Continue; 5327 } 5328 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5329 UNUSED_PARAMETER(pSelect); 5330 pWalker->walkerDepth++; 5331 return WRC_Continue; 5332 } 5333 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5334 UNUSED_PARAMETER(pSelect); 5335 pWalker->walkerDepth--; 5336 } 5337 5338 /* 5339 ** Analyze the pExpr expression looking for aggregate functions and 5340 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5341 ** points to. Additional entries are made on the AggInfo object as 5342 ** necessary. 5343 ** 5344 ** This routine should only be called after the expression has been 5345 ** analyzed by sqlite3ResolveExprNames(). 5346 */ 5347 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5348 Walker w; 5349 w.xExprCallback = analyzeAggregate; 5350 w.xSelectCallback = analyzeAggregatesInSelect; 5351 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5352 w.walkerDepth = 0; 5353 w.u.pNC = pNC; 5354 assert( pNC->pSrcList!=0 ); 5355 sqlite3WalkExpr(&w, pExpr); 5356 } 5357 5358 /* 5359 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5360 ** expression list. Return the number of errors. 5361 ** 5362 ** If an error is found, the analysis is cut short. 5363 */ 5364 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5365 struct ExprList_item *pItem; 5366 int i; 5367 if( pList ){ 5368 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5369 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5370 } 5371 } 5372 } 5373 5374 /* 5375 ** Allocate a single new register for use to hold some intermediate result. 5376 */ 5377 int sqlite3GetTempReg(Parse *pParse){ 5378 if( pParse->nTempReg==0 ){ 5379 return ++pParse->nMem; 5380 } 5381 return pParse->aTempReg[--pParse->nTempReg]; 5382 } 5383 5384 /* 5385 ** Deallocate a register, making available for reuse for some other 5386 ** purpose. 5387 */ 5388 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5389 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5390 pParse->aTempReg[pParse->nTempReg++] = iReg; 5391 } 5392 } 5393 5394 /* 5395 ** Allocate or deallocate a block of nReg consecutive registers. 5396 */ 5397 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5398 int i, n; 5399 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5400 i = pParse->iRangeReg; 5401 n = pParse->nRangeReg; 5402 if( nReg<=n ){ 5403 pParse->iRangeReg += nReg; 5404 pParse->nRangeReg -= nReg; 5405 }else{ 5406 i = pParse->nMem+1; 5407 pParse->nMem += nReg; 5408 } 5409 return i; 5410 } 5411 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5412 if( nReg==1 ){ 5413 sqlite3ReleaseTempReg(pParse, iReg); 5414 return; 5415 } 5416 if( nReg>pParse->nRangeReg ){ 5417 pParse->nRangeReg = nReg; 5418 pParse->iRangeReg = iReg; 5419 } 5420 } 5421 5422 /* 5423 ** Mark all temporary registers as being unavailable for reuse. 5424 */ 5425 void sqlite3ClearTempRegCache(Parse *pParse){ 5426 pParse->nTempReg = 0; 5427 pParse->nRangeReg = 0; 5428 } 5429 5430 /* 5431 ** Validate that no temporary register falls within the range of 5432 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5433 ** statements. 5434 */ 5435 #ifdef SQLITE_DEBUG 5436 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5437 int i; 5438 if( pParse->nRangeReg>0 5439 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5440 && pParse->iRangeReg <= iLast 5441 ){ 5442 return 0; 5443 } 5444 for(i=0; i<pParse->nTempReg; i++){ 5445 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5446 return 0; 5447 } 5448 } 5449 return 1; 5450 } 5451 #endif /* SQLITE_DEBUG */ 5452