1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expressions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 if( pExpr->flags & EP_Generic ) return 0; 37 op = pExpr->op; 38 if( op==TK_SELECT ){ 39 assert( pExpr->flags&EP_xIsSelect ); 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 41 } 42 #ifndef SQLITE_OMIT_CAST 43 if( op==TK_CAST ){ 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 45 return sqlite3AffinityType(pExpr->u.zToken, 0); 46 } 47 #endif 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 49 && pExpr->pTab!=0 50 ){ 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ 53 int j = pExpr->iColumn; 54 if( j<0 ) return SQLITE_AFF_INTEGER; 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 56 return pExpr->pTab->aCol[j].affinity; 57 } 58 return pExpr->affinity; 59 } 60 61 /* 62 ** Set the collating sequence for expression pExpr to be the collating 63 ** sequence named by pToken. Return a pointer to a new Expr node that 64 ** implements the COLLATE operator. 65 ** 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db 67 ** and the pExpr parameter is returned unchanged. 68 */ 69 Expr *sqlite3ExprAddCollateToken( 70 Parse *pParse, /* Parsing context */ 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 72 const Token *pCollName /* Name of collating sequence */ 73 ){ 74 if( pCollName->n>0 ){ 75 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 76 if( pNew ){ 77 pNew->pLeft = pExpr; 78 pNew->flags |= EP_Collate|EP_Skip; 79 pExpr = pNew; 80 } 81 } 82 return pExpr; 83 } 84 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 85 Token s; 86 assert( zC!=0 ); 87 s.z = zC; 88 s.n = sqlite3Strlen30(s.z); 89 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 90 } 91 92 /* 93 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 94 ** or likelihood() function at the root of an expression. 95 */ 96 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 97 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 98 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 99 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 100 assert( pExpr->x.pList->nExpr>0 ); 101 assert( pExpr->op==TK_FUNCTION ); 102 pExpr = pExpr->x.pList->a[0].pExpr; 103 }else{ 104 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 105 pExpr = pExpr->pLeft; 106 } 107 } 108 return pExpr; 109 } 110 111 /* 112 ** Return the collation sequence for the expression pExpr. If 113 ** there is no defined collating sequence, return NULL. 114 ** 115 ** The collating sequence might be determined by a COLLATE operator 116 ** or by the presence of a column with a defined collating sequence. 117 ** COLLATE operators take first precedence. Left operands take 118 ** precedence over right operands. 119 */ 120 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 121 sqlite3 *db = pParse->db; 122 CollSeq *pColl = 0; 123 Expr *p = pExpr; 124 while( p ){ 125 int op = p->op; 126 if( p->flags & EP_Generic ) break; 127 if( op==TK_CAST || op==TK_UPLUS ){ 128 p = p->pLeft; 129 continue; 130 } 131 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 132 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 133 break; 134 } 135 if( p->pTab!=0 136 && (op==TK_AGG_COLUMN || op==TK_COLUMN 137 || op==TK_REGISTER || op==TK_TRIGGER) 138 ){ 139 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 140 ** a TK_COLUMN but was previously evaluated and cached in a register */ 141 int j = p->iColumn; 142 if( j>=0 ){ 143 const char *zColl = p->pTab->aCol[j].zColl; 144 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 145 } 146 break; 147 } 148 if( p->flags & EP_Collate ){ 149 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 150 p = p->pLeft; 151 }else{ 152 p = p->pRight; 153 } 154 }else{ 155 break; 156 } 157 } 158 if( sqlite3CheckCollSeq(pParse, pColl) ){ 159 pColl = 0; 160 } 161 return pColl; 162 } 163 164 /* 165 ** pExpr is an operand of a comparison operator. aff2 is the 166 ** type affinity of the other operand. This routine returns the 167 ** type affinity that should be used for the comparison operator. 168 */ 169 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 170 char aff1 = sqlite3ExprAffinity(pExpr); 171 if( aff1 && aff2 ){ 172 /* Both sides of the comparison are columns. If one has numeric 173 ** affinity, use that. Otherwise use no affinity. 174 */ 175 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 176 return SQLITE_AFF_NUMERIC; 177 }else{ 178 return SQLITE_AFF_NONE; 179 } 180 }else if( !aff1 && !aff2 ){ 181 /* Neither side of the comparison is a column. Compare the 182 ** results directly. 183 */ 184 return SQLITE_AFF_NONE; 185 }else{ 186 /* One side is a column, the other is not. Use the columns affinity. */ 187 assert( aff1==0 || aff2==0 ); 188 return (aff1 + aff2); 189 } 190 } 191 192 /* 193 ** pExpr is a comparison operator. Return the type affinity that should 194 ** be applied to both operands prior to doing the comparison. 195 */ 196 static char comparisonAffinity(Expr *pExpr){ 197 char aff; 198 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 199 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 200 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 201 assert( pExpr->pLeft ); 202 aff = sqlite3ExprAffinity(pExpr->pLeft); 203 if( pExpr->pRight ){ 204 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 205 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 206 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 207 }else if( !aff ){ 208 aff = SQLITE_AFF_NONE; 209 } 210 return aff; 211 } 212 213 /* 214 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 215 ** idx_affinity is the affinity of an indexed column. Return true 216 ** if the index with affinity idx_affinity may be used to implement 217 ** the comparison in pExpr. 218 */ 219 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 220 char aff = comparisonAffinity(pExpr); 221 switch( aff ){ 222 case SQLITE_AFF_NONE: 223 return 1; 224 case SQLITE_AFF_TEXT: 225 return idx_affinity==SQLITE_AFF_TEXT; 226 default: 227 return sqlite3IsNumericAffinity(idx_affinity); 228 } 229 } 230 231 /* 232 ** Return the P5 value that should be used for a binary comparison 233 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 234 */ 235 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 236 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 237 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 238 return aff; 239 } 240 241 /* 242 ** Return a pointer to the collation sequence that should be used by 243 ** a binary comparison operator comparing pLeft and pRight. 244 ** 245 ** If the left hand expression has a collating sequence type, then it is 246 ** used. Otherwise the collation sequence for the right hand expression 247 ** is used, or the default (BINARY) if neither expression has a collating 248 ** type. 249 ** 250 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 251 ** it is not considered. 252 */ 253 CollSeq *sqlite3BinaryCompareCollSeq( 254 Parse *pParse, 255 Expr *pLeft, 256 Expr *pRight 257 ){ 258 CollSeq *pColl; 259 assert( pLeft ); 260 if( pLeft->flags & EP_Collate ){ 261 pColl = sqlite3ExprCollSeq(pParse, pLeft); 262 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 263 pColl = sqlite3ExprCollSeq(pParse, pRight); 264 }else{ 265 pColl = sqlite3ExprCollSeq(pParse, pLeft); 266 if( !pColl ){ 267 pColl = sqlite3ExprCollSeq(pParse, pRight); 268 } 269 } 270 return pColl; 271 } 272 273 /* 274 ** Generate code for a comparison operator. 275 */ 276 static int codeCompare( 277 Parse *pParse, /* The parsing (and code generating) context */ 278 Expr *pLeft, /* The left operand */ 279 Expr *pRight, /* The right operand */ 280 int opcode, /* The comparison opcode */ 281 int in1, int in2, /* Register holding operands */ 282 int dest, /* Jump here if true. */ 283 int jumpIfNull /* If true, jump if either operand is NULL */ 284 ){ 285 int p5; 286 int addr; 287 CollSeq *p4; 288 289 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 290 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 291 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 292 (void*)p4, P4_COLLSEQ); 293 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 294 return addr; 295 } 296 297 #if SQLITE_MAX_EXPR_DEPTH>0 298 /* 299 ** Check that argument nHeight is less than or equal to the maximum 300 ** expression depth allowed. If it is not, leave an error message in 301 ** pParse. 302 */ 303 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 304 int rc = SQLITE_OK; 305 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 306 if( nHeight>mxHeight ){ 307 sqlite3ErrorMsg(pParse, 308 "Expression tree is too large (maximum depth %d)", mxHeight 309 ); 310 rc = SQLITE_ERROR; 311 } 312 return rc; 313 } 314 315 /* The following three functions, heightOfExpr(), heightOfExprList() 316 ** and heightOfSelect(), are used to determine the maximum height 317 ** of any expression tree referenced by the structure passed as the 318 ** first argument. 319 ** 320 ** If this maximum height is greater than the current value pointed 321 ** to by pnHeight, the second parameter, then set *pnHeight to that 322 ** value. 323 */ 324 static void heightOfExpr(Expr *p, int *pnHeight){ 325 if( p ){ 326 if( p->nHeight>*pnHeight ){ 327 *pnHeight = p->nHeight; 328 } 329 } 330 } 331 static void heightOfExprList(ExprList *p, int *pnHeight){ 332 if( p ){ 333 int i; 334 for(i=0; i<p->nExpr; i++){ 335 heightOfExpr(p->a[i].pExpr, pnHeight); 336 } 337 } 338 } 339 static void heightOfSelect(Select *p, int *pnHeight){ 340 if( p ){ 341 heightOfExpr(p->pWhere, pnHeight); 342 heightOfExpr(p->pHaving, pnHeight); 343 heightOfExpr(p->pLimit, pnHeight); 344 heightOfExpr(p->pOffset, pnHeight); 345 heightOfExprList(p->pEList, pnHeight); 346 heightOfExprList(p->pGroupBy, pnHeight); 347 heightOfExprList(p->pOrderBy, pnHeight); 348 heightOfSelect(p->pPrior, pnHeight); 349 } 350 } 351 352 /* 353 ** Set the Expr.nHeight variable in the structure passed as an 354 ** argument. An expression with no children, Expr.pList or 355 ** Expr.pSelect member has a height of 1. Any other expression 356 ** has a height equal to the maximum height of any other 357 ** referenced Expr plus one. 358 */ 359 static void exprSetHeight(Expr *p){ 360 int nHeight = 0; 361 heightOfExpr(p->pLeft, &nHeight); 362 heightOfExpr(p->pRight, &nHeight); 363 if( ExprHasProperty(p, EP_xIsSelect) ){ 364 heightOfSelect(p->x.pSelect, &nHeight); 365 }else{ 366 heightOfExprList(p->x.pList, &nHeight); 367 } 368 p->nHeight = nHeight + 1; 369 } 370 371 /* 372 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 373 ** the height is greater than the maximum allowed expression depth, 374 ** leave an error in pParse. 375 */ 376 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 377 exprSetHeight(p); 378 sqlite3ExprCheckHeight(pParse, p->nHeight); 379 } 380 381 /* 382 ** Return the maximum height of any expression tree referenced 383 ** by the select statement passed as an argument. 384 */ 385 int sqlite3SelectExprHeight(Select *p){ 386 int nHeight = 0; 387 heightOfSelect(p, &nHeight); 388 return nHeight; 389 } 390 #else 391 #define exprSetHeight(y) 392 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 393 394 /* 395 ** This routine is the core allocator for Expr nodes. 396 ** 397 ** Construct a new expression node and return a pointer to it. Memory 398 ** for this node and for the pToken argument is a single allocation 399 ** obtained from sqlite3DbMalloc(). The calling function 400 ** is responsible for making sure the node eventually gets freed. 401 ** 402 ** If dequote is true, then the token (if it exists) is dequoted. 403 ** If dequote is false, no dequoting is performance. The deQuote 404 ** parameter is ignored if pToken is NULL or if the token does not 405 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 406 ** then the EP_DblQuoted flag is set on the expression node. 407 ** 408 ** Special case: If op==TK_INTEGER and pToken points to a string that 409 ** can be translated into a 32-bit integer, then the token is not 410 ** stored in u.zToken. Instead, the integer values is written 411 ** into u.iValue and the EP_IntValue flag is set. No extra storage 412 ** is allocated to hold the integer text and the dequote flag is ignored. 413 */ 414 Expr *sqlite3ExprAlloc( 415 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 416 int op, /* Expression opcode */ 417 const Token *pToken, /* Token argument. Might be NULL */ 418 int dequote /* True to dequote */ 419 ){ 420 Expr *pNew; 421 int nExtra = 0; 422 int iValue = 0; 423 424 if( pToken ){ 425 if( op!=TK_INTEGER || pToken->z==0 426 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 427 nExtra = pToken->n+1; 428 assert( iValue>=0 ); 429 } 430 } 431 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 432 if( pNew ){ 433 pNew->op = (u8)op; 434 pNew->iAgg = -1; 435 if( pToken ){ 436 if( nExtra==0 ){ 437 pNew->flags |= EP_IntValue; 438 pNew->u.iValue = iValue; 439 }else{ 440 int c; 441 pNew->u.zToken = (char*)&pNew[1]; 442 assert( pToken->z!=0 || pToken->n==0 ); 443 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 444 pNew->u.zToken[pToken->n] = 0; 445 if( dequote && nExtra>=3 446 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 447 sqlite3Dequote(pNew->u.zToken); 448 if( c=='"' ) pNew->flags |= EP_DblQuoted; 449 } 450 } 451 } 452 #if SQLITE_MAX_EXPR_DEPTH>0 453 pNew->nHeight = 1; 454 #endif 455 } 456 return pNew; 457 } 458 459 /* 460 ** Allocate a new expression node from a zero-terminated token that has 461 ** already been dequoted. 462 */ 463 Expr *sqlite3Expr( 464 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 465 int op, /* Expression opcode */ 466 const char *zToken /* Token argument. Might be NULL */ 467 ){ 468 Token x; 469 x.z = zToken; 470 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 471 return sqlite3ExprAlloc(db, op, &x, 0); 472 } 473 474 /* 475 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 476 ** 477 ** If pRoot==NULL that means that a memory allocation error has occurred. 478 ** In that case, delete the subtrees pLeft and pRight. 479 */ 480 void sqlite3ExprAttachSubtrees( 481 sqlite3 *db, 482 Expr *pRoot, 483 Expr *pLeft, 484 Expr *pRight 485 ){ 486 if( pRoot==0 ){ 487 assert( db->mallocFailed ); 488 sqlite3ExprDelete(db, pLeft); 489 sqlite3ExprDelete(db, pRight); 490 }else{ 491 if( pRight ){ 492 pRoot->pRight = pRight; 493 pRoot->flags |= EP_Collate & pRight->flags; 494 } 495 if( pLeft ){ 496 pRoot->pLeft = pLeft; 497 pRoot->flags |= EP_Collate & pLeft->flags; 498 } 499 exprSetHeight(pRoot); 500 } 501 } 502 503 /* 504 ** Allocate an Expr node which joins as many as two subtrees. 505 ** 506 ** One or both of the subtrees can be NULL. Return a pointer to the new 507 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 508 ** free the subtrees and return NULL. 509 */ 510 Expr *sqlite3PExpr( 511 Parse *pParse, /* Parsing context */ 512 int op, /* Expression opcode */ 513 Expr *pLeft, /* Left operand */ 514 Expr *pRight, /* Right operand */ 515 const Token *pToken /* Argument token */ 516 ){ 517 Expr *p; 518 if( op==TK_AND && pLeft && pRight ){ 519 /* Take advantage of short-circuit false optimization for AND */ 520 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 521 }else{ 522 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 523 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 524 } 525 if( p ) { 526 sqlite3ExprCheckHeight(pParse, p->nHeight); 527 } 528 return p; 529 } 530 531 /* 532 ** If the expression is always either TRUE or FALSE (respectively), 533 ** then return 1. If one cannot determine the truth value of the 534 ** expression at compile-time return 0. 535 ** 536 ** This is an optimization. If is OK to return 0 here even if 537 ** the expression really is always false or false (a false negative). 538 ** But it is a bug to return 1 if the expression might have different 539 ** boolean values in different circumstances (a false positive.) 540 ** 541 ** Note that if the expression is part of conditional for a 542 ** LEFT JOIN, then we cannot determine at compile-time whether or not 543 ** is it true or false, so always return 0. 544 */ 545 static int exprAlwaysTrue(Expr *p){ 546 int v = 0; 547 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 548 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 549 return v!=0; 550 } 551 static int exprAlwaysFalse(Expr *p){ 552 int v = 0; 553 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 554 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 555 return v==0; 556 } 557 558 /* 559 ** Join two expressions using an AND operator. If either expression is 560 ** NULL, then just return the other expression. 561 ** 562 ** If one side or the other of the AND is known to be false, then instead 563 ** of returning an AND expression, just return a constant expression with 564 ** a value of false. 565 */ 566 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 567 if( pLeft==0 ){ 568 return pRight; 569 }else if( pRight==0 ){ 570 return pLeft; 571 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 572 sqlite3ExprDelete(db, pLeft); 573 sqlite3ExprDelete(db, pRight); 574 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 575 }else{ 576 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 577 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 578 return pNew; 579 } 580 } 581 582 /* 583 ** Construct a new expression node for a function with multiple 584 ** arguments. 585 */ 586 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 587 Expr *pNew; 588 sqlite3 *db = pParse->db; 589 assert( pToken ); 590 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 591 if( pNew==0 ){ 592 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 593 return 0; 594 } 595 pNew->x.pList = pList; 596 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 597 sqlite3ExprSetHeight(pParse, pNew); 598 return pNew; 599 } 600 601 /* 602 ** Assign a variable number to an expression that encodes a wildcard 603 ** in the original SQL statement. 604 ** 605 ** Wildcards consisting of a single "?" are assigned the next sequential 606 ** variable number. 607 ** 608 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 609 ** sure "nnn" is not too be to avoid a denial of service attack when 610 ** the SQL statement comes from an external source. 611 ** 612 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 613 ** as the previous instance of the same wildcard. Or if this is the first 614 ** instance of the wildcard, the next sequential variable number is 615 ** assigned. 616 */ 617 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 618 sqlite3 *db = pParse->db; 619 const char *z; 620 621 if( pExpr==0 ) return; 622 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 623 z = pExpr->u.zToken; 624 assert( z!=0 ); 625 assert( z[0]!=0 ); 626 if( z[1]==0 ){ 627 /* Wildcard of the form "?". Assign the next variable number */ 628 assert( z[0]=='?' ); 629 pExpr->iColumn = (ynVar)(++pParse->nVar); 630 }else{ 631 ynVar x = 0; 632 u32 n = sqlite3Strlen30(z); 633 if( z[0]=='?' ){ 634 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 635 ** use it as the variable number */ 636 i64 i; 637 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 638 pExpr->iColumn = x = (ynVar)i; 639 testcase( i==0 ); 640 testcase( i==1 ); 641 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 642 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 643 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 644 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 645 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 646 x = 0; 647 } 648 if( i>pParse->nVar ){ 649 pParse->nVar = (int)i; 650 } 651 }else{ 652 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 653 ** number as the prior appearance of the same name, or if the name 654 ** has never appeared before, reuse the same variable number 655 */ 656 ynVar i; 657 for(i=0; i<pParse->nzVar; i++){ 658 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 659 pExpr->iColumn = x = (ynVar)i+1; 660 break; 661 } 662 } 663 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 664 } 665 if( x>0 ){ 666 if( x>pParse->nzVar ){ 667 char **a; 668 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 669 if( a==0 ) return; /* Error reported through db->mallocFailed */ 670 pParse->azVar = a; 671 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 672 pParse->nzVar = x; 673 } 674 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 675 sqlite3DbFree(db, pParse->azVar[x-1]); 676 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 677 } 678 } 679 } 680 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 681 sqlite3ErrorMsg(pParse, "too many SQL variables"); 682 } 683 } 684 685 /* 686 ** Recursively delete an expression tree. 687 */ 688 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 689 if( p==0 ) return; 690 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 691 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 692 if( !ExprHasProperty(p, EP_TokenOnly) ){ 693 /* The Expr.x union is never used at the same time as Expr.pRight */ 694 assert( p->x.pList==0 || p->pRight==0 ); 695 sqlite3ExprDelete(db, p->pLeft); 696 sqlite3ExprDelete(db, p->pRight); 697 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 698 if( ExprHasProperty(p, EP_xIsSelect) ){ 699 sqlite3SelectDelete(db, p->x.pSelect); 700 }else{ 701 sqlite3ExprListDelete(db, p->x.pList); 702 } 703 } 704 if( !ExprHasProperty(p, EP_Static) ){ 705 sqlite3DbFree(db, p); 706 } 707 } 708 709 /* 710 ** Return the number of bytes allocated for the expression structure 711 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 712 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 713 */ 714 static int exprStructSize(Expr *p){ 715 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 716 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 717 return EXPR_FULLSIZE; 718 } 719 720 /* 721 ** The dupedExpr*Size() routines each return the number of bytes required 722 ** to store a copy of an expression or expression tree. They differ in 723 ** how much of the tree is measured. 724 ** 725 ** dupedExprStructSize() Size of only the Expr structure 726 ** dupedExprNodeSize() Size of Expr + space for token 727 ** dupedExprSize() Expr + token + subtree components 728 ** 729 *************************************************************************** 730 ** 731 ** The dupedExprStructSize() function returns two values OR-ed together: 732 ** (1) the space required for a copy of the Expr structure only and 733 ** (2) the EP_xxx flags that indicate what the structure size should be. 734 ** The return values is always one of: 735 ** 736 ** EXPR_FULLSIZE 737 ** EXPR_REDUCEDSIZE | EP_Reduced 738 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 739 ** 740 ** The size of the structure can be found by masking the return value 741 ** of this routine with 0xfff. The flags can be found by masking the 742 ** return value with EP_Reduced|EP_TokenOnly. 743 ** 744 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 745 ** (unreduced) Expr objects as they or originally constructed by the parser. 746 ** During expression analysis, extra information is computed and moved into 747 ** later parts of teh Expr object and that extra information might get chopped 748 ** off if the expression is reduced. Note also that it does not work to 749 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 750 ** to reduce a pristine expression tree from the parser. The implementation 751 ** of dupedExprStructSize() contain multiple assert() statements that attempt 752 ** to enforce this constraint. 753 */ 754 static int dupedExprStructSize(Expr *p, int flags){ 755 int nSize; 756 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 757 assert( EXPR_FULLSIZE<=0xfff ); 758 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 759 if( 0==(flags&EXPRDUP_REDUCE) ){ 760 nSize = EXPR_FULLSIZE; 761 }else{ 762 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 763 assert( !ExprHasProperty(p, EP_FromJoin) ); 764 assert( !ExprHasProperty(p, EP_MemToken) ); 765 assert( !ExprHasProperty(p, EP_NoReduce) ); 766 if( p->pLeft || p->x.pList ){ 767 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 768 }else{ 769 assert( p->pRight==0 ); 770 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 771 } 772 } 773 return nSize; 774 } 775 776 /* 777 ** This function returns the space in bytes required to store the copy 778 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 779 ** string is defined.) 780 */ 781 static int dupedExprNodeSize(Expr *p, int flags){ 782 int nByte = dupedExprStructSize(p, flags) & 0xfff; 783 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 784 nByte += sqlite3Strlen30(p->u.zToken)+1; 785 } 786 return ROUND8(nByte); 787 } 788 789 /* 790 ** Return the number of bytes required to create a duplicate of the 791 ** expression passed as the first argument. The second argument is a 792 ** mask containing EXPRDUP_XXX flags. 793 ** 794 ** The value returned includes space to create a copy of the Expr struct 795 ** itself and the buffer referred to by Expr.u.zToken, if any. 796 ** 797 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 798 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 799 ** and Expr.pRight variables (but not for any structures pointed to or 800 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 801 */ 802 static int dupedExprSize(Expr *p, int flags){ 803 int nByte = 0; 804 if( p ){ 805 nByte = dupedExprNodeSize(p, flags); 806 if( flags&EXPRDUP_REDUCE ){ 807 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 808 } 809 } 810 return nByte; 811 } 812 813 /* 814 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 815 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 816 ** to store the copy of expression p, the copies of p->u.zToken 817 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 818 ** if any. Before returning, *pzBuffer is set to the first byte past the 819 ** portion of the buffer copied into by this function. 820 */ 821 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 822 Expr *pNew = 0; /* Value to return */ 823 if( p ){ 824 const int isReduced = (flags&EXPRDUP_REDUCE); 825 u8 *zAlloc; 826 u32 staticFlag = 0; 827 828 assert( pzBuffer==0 || isReduced ); 829 830 /* Figure out where to write the new Expr structure. */ 831 if( pzBuffer ){ 832 zAlloc = *pzBuffer; 833 staticFlag = EP_Static; 834 }else{ 835 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 836 } 837 pNew = (Expr *)zAlloc; 838 839 if( pNew ){ 840 /* Set nNewSize to the size allocated for the structure pointed to 841 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 842 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 843 ** by the copy of the p->u.zToken string (if any). 844 */ 845 const unsigned nStructSize = dupedExprStructSize(p, flags); 846 const int nNewSize = nStructSize & 0xfff; 847 int nToken; 848 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 849 nToken = sqlite3Strlen30(p->u.zToken) + 1; 850 }else{ 851 nToken = 0; 852 } 853 if( isReduced ){ 854 assert( ExprHasProperty(p, EP_Reduced)==0 ); 855 memcpy(zAlloc, p, nNewSize); 856 }else{ 857 int nSize = exprStructSize(p); 858 memcpy(zAlloc, p, nSize); 859 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 860 } 861 862 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 863 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 864 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 865 pNew->flags |= staticFlag; 866 867 /* Copy the p->u.zToken string, if any. */ 868 if( nToken ){ 869 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 870 memcpy(zToken, p->u.zToken, nToken); 871 } 872 873 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 874 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 875 if( ExprHasProperty(p, EP_xIsSelect) ){ 876 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 877 }else{ 878 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 879 } 880 } 881 882 /* Fill in pNew->pLeft and pNew->pRight. */ 883 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 884 zAlloc += dupedExprNodeSize(p, flags); 885 if( ExprHasProperty(pNew, EP_Reduced) ){ 886 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 887 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 888 } 889 if( pzBuffer ){ 890 *pzBuffer = zAlloc; 891 } 892 }else{ 893 if( !ExprHasProperty(p, EP_TokenOnly) ){ 894 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 895 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 896 } 897 } 898 899 } 900 } 901 return pNew; 902 } 903 904 /* 905 ** Create and return a deep copy of the object passed as the second 906 ** argument. If an OOM condition is encountered, NULL is returned 907 ** and the db->mallocFailed flag set. 908 */ 909 #ifndef SQLITE_OMIT_CTE 910 static With *withDup(sqlite3 *db, With *p){ 911 With *pRet = 0; 912 if( p ){ 913 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 914 pRet = sqlite3DbMallocZero(db, nByte); 915 if( pRet ){ 916 int i; 917 pRet->nCte = p->nCte; 918 for(i=0; i<p->nCte; i++){ 919 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 920 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 921 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 922 } 923 } 924 } 925 return pRet; 926 } 927 #else 928 # define withDup(x,y) 0 929 #endif 930 931 /* 932 ** The following group of routines make deep copies of expressions, 933 ** expression lists, ID lists, and select statements. The copies can 934 ** be deleted (by being passed to their respective ...Delete() routines) 935 ** without effecting the originals. 936 ** 937 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 938 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 939 ** by subsequent calls to sqlite*ListAppend() routines. 940 ** 941 ** Any tables that the SrcList might point to are not duplicated. 942 ** 943 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 944 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 945 ** truncated version of the usual Expr structure that will be stored as 946 ** part of the in-memory representation of the database schema. 947 */ 948 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 949 return exprDup(db, p, flags, 0); 950 } 951 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 952 ExprList *pNew; 953 struct ExprList_item *pItem, *pOldItem; 954 int i; 955 if( p==0 ) return 0; 956 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 957 if( pNew==0 ) return 0; 958 pNew->nExpr = i = p->nExpr; 959 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 960 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 961 if( pItem==0 ){ 962 sqlite3DbFree(db, pNew); 963 return 0; 964 } 965 pOldItem = p->a; 966 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 967 Expr *pOldExpr = pOldItem->pExpr; 968 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 969 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 970 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 971 pItem->sortOrder = pOldItem->sortOrder; 972 pItem->done = 0; 973 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 974 pItem->u = pOldItem->u; 975 } 976 return pNew; 977 } 978 979 /* 980 ** If cursors, triggers, views and subqueries are all omitted from 981 ** the build, then none of the following routines, except for 982 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 983 ** called with a NULL argument. 984 */ 985 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 986 || !defined(SQLITE_OMIT_SUBQUERY) 987 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 988 SrcList *pNew; 989 int i; 990 int nByte; 991 if( p==0 ) return 0; 992 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 993 pNew = sqlite3DbMallocRaw(db, nByte ); 994 if( pNew==0 ) return 0; 995 pNew->nSrc = pNew->nAlloc = p->nSrc; 996 for(i=0; i<p->nSrc; i++){ 997 struct SrcList_item *pNewItem = &pNew->a[i]; 998 struct SrcList_item *pOldItem = &p->a[i]; 999 Table *pTab; 1000 pNewItem->pSchema = pOldItem->pSchema; 1001 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1002 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1003 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1004 pNewItem->jointype = pOldItem->jointype; 1005 pNewItem->iCursor = pOldItem->iCursor; 1006 pNewItem->addrFillSub = pOldItem->addrFillSub; 1007 pNewItem->regReturn = pOldItem->regReturn; 1008 pNewItem->isCorrelated = pOldItem->isCorrelated; 1009 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1010 pNewItem->isRecursive = pOldItem->isRecursive; 1011 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1012 pNewItem->notIndexed = pOldItem->notIndexed; 1013 pNewItem->pIndex = pOldItem->pIndex; 1014 pTab = pNewItem->pTab = pOldItem->pTab; 1015 if( pTab ){ 1016 pTab->nRef++; 1017 } 1018 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1019 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1020 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1021 pNewItem->colUsed = pOldItem->colUsed; 1022 } 1023 return pNew; 1024 } 1025 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1026 IdList *pNew; 1027 int i; 1028 if( p==0 ) return 0; 1029 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1030 if( pNew==0 ) return 0; 1031 pNew->nId = p->nId; 1032 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1033 if( pNew->a==0 ){ 1034 sqlite3DbFree(db, pNew); 1035 return 0; 1036 } 1037 /* Note that because the size of the allocation for p->a[] is not 1038 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1039 ** on the duplicate created by this function. */ 1040 for(i=0; i<p->nId; i++){ 1041 struct IdList_item *pNewItem = &pNew->a[i]; 1042 struct IdList_item *pOldItem = &p->a[i]; 1043 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1044 pNewItem->idx = pOldItem->idx; 1045 } 1046 return pNew; 1047 } 1048 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1049 Select *pNew, *pPrior; 1050 if( p==0 ) return 0; 1051 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1052 if( pNew==0 ) return 0; 1053 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1054 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1055 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1056 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1057 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1058 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1059 pNew->op = p->op; 1060 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1061 if( pPrior ) pPrior->pNext = pNew; 1062 pNew->pNext = 0; 1063 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1064 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1065 pNew->iLimit = 0; 1066 pNew->iOffset = 0; 1067 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1068 pNew->addrOpenEphm[0] = -1; 1069 pNew->addrOpenEphm[1] = -1; 1070 pNew->nSelectRow = p->nSelectRow; 1071 pNew->pWith = withDup(db, p->pWith); 1072 sqlite3SelectSetName(pNew, p->zSelName); 1073 return pNew; 1074 } 1075 #else 1076 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1077 assert( p==0 ); 1078 return 0; 1079 } 1080 #endif 1081 1082 1083 /* 1084 ** Add a new element to the end of an expression list. If pList is 1085 ** initially NULL, then create a new expression list. 1086 ** 1087 ** If a memory allocation error occurs, the entire list is freed and 1088 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1089 ** that the new entry was successfully appended. 1090 */ 1091 ExprList *sqlite3ExprListAppend( 1092 Parse *pParse, /* Parsing context */ 1093 ExprList *pList, /* List to which to append. Might be NULL */ 1094 Expr *pExpr /* Expression to be appended. Might be NULL */ 1095 ){ 1096 sqlite3 *db = pParse->db; 1097 if( pList==0 ){ 1098 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1099 if( pList==0 ){ 1100 goto no_mem; 1101 } 1102 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1103 if( pList->a==0 ) goto no_mem; 1104 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1105 struct ExprList_item *a; 1106 assert( pList->nExpr>0 ); 1107 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1108 if( a==0 ){ 1109 goto no_mem; 1110 } 1111 pList->a = a; 1112 } 1113 assert( pList->a!=0 ); 1114 if( 1 ){ 1115 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1116 memset(pItem, 0, sizeof(*pItem)); 1117 pItem->pExpr = pExpr; 1118 } 1119 return pList; 1120 1121 no_mem: 1122 /* Avoid leaking memory if malloc has failed. */ 1123 sqlite3ExprDelete(db, pExpr); 1124 sqlite3ExprListDelete(db, pList); 1125 return 0; 1126 } 1127 1128 /* 1129 ** Set the ExprList.a[].zName element of the most recently added item 1130 ** on the expression list. 1131 ** 1132 ** pList might be NULL following an OOM error. But pName should never be 1133 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1134 ** is set. 1135 */ 1136 void sqlite3ExprListSetName( 1137 Parse *pParse, /* Parsing context */ 1138 ExprList *pList, /* List to which to add the span. */ 1139 Token *pName, /* Name to be added */ 1140 int dequote /* True to cause the name to be dequoted */ 1141 ){ 1142 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1143 if( pList ){ 1144 struct ExprList_item *pItem; 1145 assert( pList->nExpr>0 ); 1146 pItem = &pList->a[pList->nExpr-1]; 1147 assert( pItem->zName==0 ); 1148 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1149 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1150 } 1151 } 1152 1153 /* 1154 ** Set the ExprList.a[].zSpan element of the most recently added item 1155 ** on the expression list. 1156 ** 1157 ** pList might be NULL following an OOM error. But pSpan should never be 1158 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1159 ** is set. 1160 */ 1161 void sqlite3ExprListSetSpan( 1162 Parse *pParse, /* Parsing context */ 1163 ExprList *pList, /* List to which to add the span. */ 1164 ExprSpan *pSpan /* The span to be added */ 1165 ){ 1166 sqlite3 *db = pParse->db; 1167 assert( pList!=0 || db->mallocFailed!=0 ); 1168 if( pList ){ 1169 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1170 assert( pList->nExpr>0 ); 1171 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1172 sqlite3DbFree(db, pItem->zSpan); 1173 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1174 (int)(pSpan->zEnd - pSpan->zStart)); 1175 } 1176 } 1177 1178 /* 1179 ** If the expression list pEList contains more than iLimit elements, 1180 ** leave an error message in pParse. 1181 */ 1182 void sqlite3ExprListCheckLength( 1183 Parse *pParse, 1184 ExprList *pEList, 1185 const char *zObject 1186 ){ 1187 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1188 testcase( pEList && pEList->nExpr==mx ); 1189 testcase( pEList && pEList->nExpr==mx+1 ); 1190 if( pEList && pEList->nExpr>mx ){ 1191 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1192 } 1193 } 1194 1195 /* 1196 ** Delete an entire expression list. 1197 */ 1198 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1199 int i; 1200 struct ExprList_item *pItem; 1201 if( pList==0 ) return; 1202 assert( pList->a!=0 || pList->nExpr==0 ); 1203 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1204 sqlite3ExprDelete(db, pItem->pExpr); 1205 sqlite3DbFree(db, pItem->zName); 1206 sqlite3DbFree(db, pItem->zSpan); 1207 } 1208 sqlite3DbFree(db, pList->a); 1209 sqlite3DbFree(db, pList); 1210 } 1211 1212 /* 1213 ** These routines are Walker callbacks used to check expressions to 1214 ** see if they are "constant" for some definition of constant. The 1215 ** Walker.eCode value determines the type of "constant" we are looking 1216 ** for. 1217 ** 1218 ** These callback routines are used to implement the following: 1219 ** 1220 ** sqlite3ExprIsConstant() pWalker->eCode==1 1221 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1222 ** sqlite3ExprRefOneTableOnly() pWalker->eCode==3 1223 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1224 ** 1225 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1226 ** is found to not be a constant. 1227 ** 1228 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1229 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1230 ** an existing schema and 4 when processing a new statement. A bound 1231 ** parameter raises an error for new statements, but is silently converted 1232 ** to NULL for existing schemas. This allows sqlite_master tables that 1233 ** contain a bound parameter because they were generated by older versions 1234 ** of SQLite to be parsed by newer versions of SQLite without raising a 1235 ** malformed schema error. 1236 */ 1237 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1238 1239 /* If pWalker->eCode is 2 then any term of the expression that comes from 1240 ** the ON or USING clauses of a left join disqualifies the expression 1241 ** from being considered constant. */ 1242 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1243 pWalker->eCode = 0; 1244 return WRC_Abort; 1245 } 1246 1247 switch( pExpr->op ){ 1248 /* Consider functions to be constant if all their arguments are constant 1249 ** and either pWalker->eCode==4 or 5 or the function has the 1250 ** SQLITE_FUNC_CONST flag. */ 1251 case TK_FUNCTION: 1252 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_Constant) ){ 1253 return WRC_Continue; 1254 }else{ 1255 pWalker->eCode = 0; 1256 return WRC_Abort; 1257 } 1258 case TK_ID: 1259 case TK_COLUMN: 1260 case TK_AGG_FUNCTION: 1261 case TK_AGG_COLUMN: 1262 testcase( pExpr->op==TK_ID ); 1263 testcase( pExpr->op==TK_COLUMN ); 1264 testcase( pExpr->op==TK_AGG_FUNCTION ); 1265 testcase( pExpr->op==TK_AGG_COLUMN ); 1266 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1267 return WRC_Continue; 1268 }else{ 1269 pWalker->eCode = 0; 1270 return WRC_Abort; 1271 } 1272 case TK_VARIABLE: 1273 if( pWalker->eCode==5 ){ 1274 /* Silently convert bound parameters that appear inside of CREATE 1275 ** statements into a NULL when parsing the CREATE statement text out 1276 ** of the sqlite_master table */ 1277 pExpr->op = TK_NULL; 1278 }else if( pWalker->eCode==4 ){ 1279 /* A bound parameter in a CREATE statement that originates from 1280 ** sqlite3_prepare() causes an error */ 1281 pWalker->eCode = 0; 1282 return WRC_Abort; 1283 } 1284 /* Fall through */ 1285 default: 1286 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1287 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1288 return WRC_Continue; 1289 } 1290 } 1291 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1292 UNUSED_PARAMETER(NotUsed); 1293 pWalker->eCode = 0; 1294 return WRC_Abort; 1295 } 1296 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1297 Walker w; 1298 memset(&w, 0, sizeof(w)); 1299 w.eCode = initFlag; 1300 w.xExprCallback = exprNodeIsConstant; 1301 w.xSelectCallback = selectNodeIsConstant; 1302 w.u.iCur = iCur; 1303 sqlite3WalkExpr(&w, p); 1304 return w.eCode; 1305 } 1306 1307 /* 1308 ** Walk an expression tree. Return non-zero if the expression is constant 1309 ** and 0 if it involves variables or function calls. 1310 ** 1311 ** For the purposes of this function, a double-quoted string (ex: "abc") 1312 ** is considered a variable but a single-quoted string (ex: 'abc') is 1313 ** a constant. 1314 */ 1315 int sqlite3ExprIsConstant(Expr *p){ 1316 return exprIsConst(p, 1, 0); 1317 } 1318 1319 /* 1320 ** Walk an expression tree. Return non-zero if the expression is constant 1321 ** that does no originate from the ON or USING clauses of a join. 1322 ** Return 0 if it involves variables or function calls or terms from 1323 ** an ON or USING clause. 1324 */ 1325 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1326 return exprIsConst(p, 2, 0); 1327 } 1328 1329 /* 1330 ** Walk an expression tree. Return non-zero if the expression constant 1331 ** for any single row of the table with cursor iCur. In other words, the 1332 ** expression must not refer to any non-deterministic function nor any 1333 ** table other than iCur. 1334 */ 1335 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1336 return exprIsConst(p, 3, iCur); 1337 } 1338 1339 /* 1340 ** Walk an expression tree. Return non-zero if the expression is constant 1341 ** or a function call with constant arguments. Return and 0 if there 1342 ** are any variables. 1343 ** 1344 ** For the purposes of this function, a double-quoted string (ex: "abc") 1345 ** is considered a variable but a single-quoted string (ex: 'abc') is 1346 ** a constant. 1347 */ 1348 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 1349 assert( isInit==0 || isInit==1 ); 1350 return exprIsConst(p, 4+isInit, 0); 1351 } 1352 1353 /* 1354 ** If the expression p codes a constant integer that is small enough 1355 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1356 ** in *pValue. If the expression is not an integer or if it is too big 1357 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1358 */ 1359 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1360 int rc = 0; 1361 1362 /* If an expression is an integer literal that fits in a signed 32-bit 1363 ** integer, then the EP_IntValue flag will have already been set */ 1364 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1365 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1366 1367 if( p->flags & EP_IntValue ){ 1368 *pValue = p->u.iValue; 1369 return 1; 1370 } 1371 switch( p->op ){ 1372 case TK_UPLUS: { 1373 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1374 break; 1375 } 1376 case TK_UMINUS: { 1377 int v; 1378 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1379 assert( v!=(-2147483647-1) ); 1380 *pValue = -v; 1381 rc = 1; 1382 } 1383 break; 1384 } 1385 default: break; 1386 } 1387 return rc; 1388 } 1389 1390 /* 1391 ** Return FALSE if there is no chance that the expression can be NULL. 1392 ** 1393 ** If the expression might be NULL or if the expression is too complex 1394 ** to tell return TRUE. 1395 ** 1396 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1397 ** when we know that a value cannot be NULL. Hence, a false positive 1398 ** (returning TRUE when in fact the expression can never be NULL) might 1399 ** be a small performance hit but is otherwise harmless. On the other 1400 ** hand, a false negative (returning FALSE when the result could be NULL) 1401 ** will likely result in an incorrect answer. So when in doubt, return 1402 ** TRUE. 1403 */ 1404 int sqlite3ExprCanBeNull(const Expr *p){ 1405 u8 op; 1406 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1407 op = p->op; 1408 if( op==TK_REGISTER ) op = p->op2; 1409 switch( op ){ 1410 case TK_INTEGER: 1411 case TK_STRING: 1412 case TK_FLOAT: 1413 case TK_BLOB: 1414 return 0; 1415 case TK_COLUMN: 1416 assert( p->pTab!=0 ); 1417 return ExprHasProperty(p, EP_CanBeNull) || 1418 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); 1419 default: 1420 return 1; 1421 } 1422 } 1423 1424 /* 1425 ** Return TRUE if the given expression is a constant which would be 1426 ** unchanged by OP_Affinity with the affinity given in the second 1427 ** argument. 1428 ** 1429 ** This routine is used to determine if the OP_Affinity operation 1430 ** can be omitted. When in doubt return FALSE. A false negative 1431 ** is harmless. A false positive, however, can result in the wrong 1432 ** answer. 1433 */ 1434 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1435 u8 op; 1436 if( aff==SQLITE_AFF_NONE ) return 1; 1437 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1438 op = p->op; 1439 if( op==TK_REGISTER ) op = p->op2; 1440 switch( op ){ 1441 case TK_INTEGER: { 1442 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1443 } 1444 case TK_FLOAT: { 1445 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1446 } 1447 case TK_STRING: { 1448 return aff==SQLITE_AFF_TEXT; 1449 } 1450 case TK_BLOB: { 1451 return 1; 1452 } 1453 case TK_COLUMN: { 1454 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1455 return p->iColumn<0 1456 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1457 } 1458 default: { 1459 return 0; 1460 } 1461 } 1462 } 1463 1464 /* 1465 ** Return TRUE if the given string is a row-id column name. 1466 */ 1467 int sqlite3IsRowid(const char *z){ 1468 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1469 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1470 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1471 return 0; 1472 } 1473 1474 /* 1475 ** Return true if we are able to the IN operator optimization on a 1476 ** query of the form 1477 ** 1478 ** x IN (SELECT ...) 1479 ** 1480 ** Where the SELECT... clause is as specified by the parameter to this 1481 ** routine. 1482 ** 1483 ** The Select object passed in has already been preprocessed and no 1484 ** errors have been found. 1485 */ 1486 #ifndef SQLITE_OMIT_SUBQUERY 1487 static int isCandidateForInOpt(Select *p){ 1488 SrcList *pSrc; 1489 ExprList *pEList; 1490 Table *pTab; 1491 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1492 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1493 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1494 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1495 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1496 return 0; /* No DISTINCT keyword and no aggregate functions */ 1497 } 1498 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1499 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1500 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1501 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1502 pSrc = p->pSrc; 1503 assert( pSrc!=0 ); 1504 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1505 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1506 pTab = pSrc->a[0].pTab; 1507 if( NEVER(pTab==0) ) return 0; 1508 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1509 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1510 pEList = p->pEList; 1511 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1512 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1513 return 1; 1514 } 1515 #endif /* SQLITE_OMIT_SUBQUERY */ 1516 1517 /* 1518 ** Code an OP_Once instruction and allocate space for its flag. Return the 1519 ** address of the new instruction. 1520 */ 1521 int sqlite3CodeOnce(Parse *pParse){ 1522 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1523 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1524 } 1525 1526 /* 1527 ** Generate code that checks the left-most column of index table iCur to see if 1528 ** it contains any NULL entries. Cause the register at regHasNull to be set 1529 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 1530 ** to be set to NULL if iCur contains one or more NULL values. 1531 */ 1532 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 1533 int j1; 1534 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 1535 j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1536 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 1537 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 1538 VdbeComment((v, "first_entry_in(%d)", iCur)); 1539 sqlite3VdbeJumpHere(v, j1); 1540 } 1541 1542 1543 #ifndef SQLITE_OMIT_SUBQUERY 1544 /* 1545 ** The argument is an IN operator with a list (not a subquery) on the 1546 ** right-hand side. Return TRUE if that list is constant. 1547 */ 1548 static int sqlite3InRhsIsConstant(Expr *pIn){ 1549 Expr *pLHS; 1550 int res; 1551 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 1552 pLHS = pIn->pLeft; 1553 pIn->pLeft = 0; 1554 res = sqlite3ExprIsConstant(pIn); 1555 pIn->pLeft = pLHS; 1556 return res; 1557 } 1558 #endif 1559 1560 /* 1561 ** This function is used by the implementation of the IN (...) operator. 1562 ** The pX parameter is the expression on the RHS of the IN operator, which 1563 ** might be either a list of expressions or a subquery. 1564 ** 1565 ** The job of this routine is to find or create a b-tree object that can 1566 ** be used either to test for membership in the RHS set or to iterate through 1567 ** all members of the RHS set, skipping duplicates. 1568 ** 1569 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 1570 ** and pX->iTable is set to the index of that cursor. 1571 ** 1572 ** The returned value of this function indicates the b-tree type, as follows: 1573 ** 1574 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1575 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1576 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1577 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1578 ** populated epheremal table. 1579 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 1580 ** implemented as a sequence of comparisons. 1581 ** 1582 ** An existing b-tree might be used if the RHS expression pX is a simple 1583 ** subquery such as: 1584 ** 1585 ** SELECT <column> FROM <table> 1586 ** 1587 ** If the RHS of the IN operator is a list or a more complex subquery, then 1588 ** an ephemeral table might need to be generated from the RHS and then 1589 ** pX->iTable made to point to the ephemeral table instead of an 1590 ** existing table. 1591 ** 1592 ** The inFlags parameter must contain exactly one of the bits 1593 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains 1594 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a 1595 ** fast membership test. When the IN_INDEX_LOOP bit is set, the 1596 ** IN index will be used to loop over all values of the RHS of the 1597 ** IN operator. 1598 ** 1599 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 1600 ** through the set members) then the b-tree must not contain duplicates. 1601 ** An epheremal table must be used unless the selected <column> is guaranteed 1602 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1603 ** has a UNIQUE constraint or UNIQUE index. 1604 ** 1605 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 1606 ** for fast set membership tests) then an epheremal table must 1607 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1608 ** be found with <column> as its left-most column. 1609 ** 1610 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 1611 ** if the RHS of the IN operator is a list (not a subquery) then this 1612 ** routine might decide that creating an ephemeral b-tree for membership 1613 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 1614 ** calling routine should implement the IN operator using a sequence 1615 ** of Eq or Ne comparison operations. 1616 ** 1617 ** When the b-tree is being used for membership tests, the calling function 1618 ** might need to know whether or not the RHS side of the IN operator 1619 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 1620 ** if there is any chance that the (...) might contain a NULL value at 1621 ** runtime, then a register is allocated and the register number written 1622 ** to *prRhsHasNull. If there is no chance that the (...) contains a 1623 ** NULL value, then *prRhsHasNull is left unchanged. 1624 ** 1625 ** If a register is allocated and its location stored in *prRhsHasNull, then 1626 ** the value in that register will be NULL if the b-tree contains one or more 1627 ** NULL values, and it will be some non-NULL value if the b-tree contains no 1628 ** NULL values. 1629 */ 1630 #ifndef SQLITE_OMIT_SUBQUERY 1631 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ 1632 Select *p; /* SELECT to the right of IN operator */ 1633 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1634 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1635 int mustBeUnique; /* True if RHS must be unique */ 1636 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1637 1638 assert( pX->op==TK_IN ); 1639 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 1640 1641 /* Check to see if an existing table or index can be used to 1642 ** satisfy the query. This is preferable to generating a new 1643 ** ephemeral table. 1644 */ 1645 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1646 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1647 sqlite3 *db = pParse->db; /* Database connection */ 1648 Table *pTab; /* Table <table>. */ 1649 Expr *pExpr; /* Expression <column> */ 1650 i16 iCol; /* Index of column <column> */ 1651 i16 iDb; /* Database idx for pTab */ 1652 1653 assert( p ); /* Because of isCandidateForInOpt(p) */ 1654 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1655 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1656 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1657 pTab = p->pSrc->a[0].pTab; 1658 pExpr = p->pEList->a[0].pExpr; 1659 iCol = (i16)pExpr->iColumn; 1660 1661 /* Code an OP_Transaction and OP_TableLock for <table>. */ 1662 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1663 sqlite3CodeVerifySchema(pParse, iDb); 1664 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1665 1666 /* This function is only called from two places. In both cases the vdbe 1667 ** has already been allocated. So assume sqlite3GetVdbe() is always 1668 ** successful here. 1669 */ 1670 assert(v); 1671 if( iCol<0 ){ 1672 int iAddr = sqlite3CodeOnce(pParse); 1673 VdbeCoverage(v); 1674 1675 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1676 eType = IN_INDEX_ROWID; 1677 1678 sqlite3VdbeJumpHere(v, iAddr); 1679 }else{ 1680 Index *pIdx; /* Iterator variable */ 1681 1682 /* The collation sequence used by the comparison. If an index is to 1683 ** be used in place of a temp-table, it must be ordered according 1684 ** to this collation sequence. */ 1685 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1686 1687 /* Check that the affinity that will be used to perform the 1688 ** comparison is the same as the affinity of the column. If 1689 ** it is not, it is not possible to use any index. 1690 */ 1691 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1692 1693 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1694 if( (pIdx->aiColumn[0]==iCol) 1695 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1696 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) 1697 ){ 1698 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1699 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1700 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1701 VdbeComment((v, "%s", pIdx->zName)); 1702 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1703 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1704 1705 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ 1706 *prRhsHasNull = ++pParse->nMem; 1707 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 1708 } 1709 sqlite3VdbeJumpHere(v, iAddr); 1710 } 1711 } 1712 } 1713 } 1714 1715 /* If no preexisting index is available for the IN clause 1716 ** and IN_INDEX_NOOP is an allowed reply 1717 ** and the RHS of the IN operator is a list, not a subquery 1718 ** and the RHS is not contant or has two or fewer terms, 1719 ** then it is not worth creating an ephemeral table to evaluate 1720 ** the IN operator so return IN_INDEX_NOOP. 1721 */ 1722 if( eType==0 1723 && (inFlags & IN_INDEX_NOOP_OK) 1724 && !ExprHasProperty(pX, EP_xIsSelect) 1725 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 1726 ){ 1727 eType = IN_INDEX_NOOP; 1728 } 1729 1730 1731 if( eType==0 ){ 1732 /* Could not find an existing table or index to use as the RHS b-tree. 1733 ** We will have to generate an ephemeral table to do the job. 1734 */ 1735 u32 savedNQueryLoop = pParse->nQueryLoop; 1736 int rMayHaveNull = 0; 1737 eType = IN_INDEX_EPH; 1738 if( inFlags & IN_INDEX_LOOP ){ 1739 pParse->nQueryLoop = 0; 1740 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1741 eType = IN_INDEX_ROWID; 1742 } 1743 }else if( prRhsHasNull ){ 1744 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 1745 } 1746 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1747 pParse->nQueryLoop = savedNQueryLoop; 1748 }else{ 1749 pX->iTable = iTab; 1750 } 1751 return eType; 1752 } 1753 #endif 1754 1755 /* 1756 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1757 ** or IN operators. Examples: 1758 ** 1759 ** (SELECT a FROM b) -- subquery 1760 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1761 ** x IN (4,5,11) -- IN operator with list on right-hand side 1762 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1763 ** 1764 ** The pExpr parameter describes the expression that contains the IN 1765 ** operator or subquery. 1766 ** 1767 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1768 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1769 ** to some integer key column of a table B-Tree. In this case, use an 1770 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1771 ** (slower) variable length keys B-Tree. 1772 ** 1773 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1774 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1775 ** All this routine does is initialize the register given by rMayHaveNull 1776 ** to NULL. Calling routines will take care of changing this register 1777 ** value to non-NULL if the RHS is NULL-free. 1778 ** 1779 ** For a SELECT or EXISTS operator, return the register that holds the 1780 ** result. For IN operators or if an error occurs, the return value is 0. 1781 */ 1782 #ifndef SQLITE_OMIT_SUBQUERY 1783 int sqlite3CodeSubselect( 1784 Parse *pParse, /* Parsing context */ 1785 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1786 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ 1787 int isRowid /* If true, LHS of IN operator is a rowid */ 1788 ){ 1789 int jmpIfDynamic = -1; /* One-time test address */ 1790 int rReg = 0; /* Register storing resulting */ 1791 Vdbe *v = sqlite3GetVdbe(pParse); 1792 if( NEVER(v==0) ) return 0; 1793 sqlite3ExprCachePush(pParse); 1794 1795 /* This code must be run in its entirety every time it is encountered 1796 ** if any of the following is true: 1797 ** 1798 ** * The right-hand side is a correlated subquery 1799 ** * The right-hand side is an expression list containing variables 1800 ** * We are inside a trigger 1801 ** 1802 ** If all of the above are false, then we can run this code just once 1803 ** save the results, and reuse the same result on subsequent invocations. 1804 */ 1805 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1806 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1807 } 1808 1809 #ifndef SQLITE_OMIT_EXPLAIN 1810 if( pParse->explain==2 ){ 1811 char *zMsg = sqlite3MPrintf( 1812 pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", 1813 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1814 ); 1815 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1816 } 1817 #endif 1818 1819 switch( pExpr->op ){ 1820 case TK_IN: { 1821 char affinity; /* Affinity of the LHS of the IN */ 1822 int addr; /* Address of OP_OpenEphemeral instruction */ 1823 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1824 KeyInfo *pKeyInfo = 0; /* Key information */ 1825 1826 affinity = sqlite3ExprAffinity(pLeft); 1827 1828 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1829 ** expression it is handled the same way. An ephemeral table is 1830 ** filled with single-field index keys representing the results 1831 ** from the SELECT or the <exprlist>. 1832 ** 1833 ** If the 'x' expression is a column value, or the SELECT... 1834 ** statement returns a column value, then the affinity of that 1835 ** column is used to build the index keys. If both 'x' and the 1836 ** SELECT... statement are columns, then numeric affinity is used 1837 ** if either column has NUMERIC or INTEGER affinity. If neither 1838 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1839 ** is used. 1840 */ 1841 pExpr->iTable = pParse->nTab++; 1842 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1843 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1844 1845 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1846 /* Case 1: expr IN (SELECT ...) 1847 ** 1848 ** Generate code to write the results of the select into the temporary 1849 ** table allocated and opened above. 1850 */ 1851 Select *pSelect = pExpr->x.pSelect; 1852 SelectDest dest; 1853 ExprList *pEList; 1854 1855 assert( !isRowid ); 1856 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1857 dest.affSdst = (u8)affinity; 1858 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1859 pSelect->iLimit = 0; 1860 testcase( pSelect->selFlags & SF_Distinct ); 1861 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1862 if( sqlite3Select(pParse, pSelect, &dest) ){ 1863 sqlite3KeyInfoUnref(pKeyInfo); 1864 return 0; 1865 } 1866 pEList = pSelect->pEList; 1867 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1868 assert( pEList!=0 ); 1869 assert( pEList->nExpr>0 ); 1870 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1871 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1872 pEList->a[0].pExpr); 1873 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1874 /* Case 2: expr IN (exprlist) 1875 ** 1876 ** For each expression, build an index key from the evaluation and 1877 ** store it in the temporary table. If <expr> is a column, then use 1878 ** that columns affinity when building index keys. If <expr> is not 1879 ** a column, use numeric affinity. 1880 */ 1881 int i; 1882 ExprList *pList = pExpr->x.pList; 1883 struct ExprList_item *pItem; 1884 int r1, r2, r3; 1885 1886 if( !affinity ){ 1887 affinity = SQLITE_AFF_NONE; 1888 } 1889 if( pKeyInfo ){ 1890 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1891 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1892 } 1893 1894 /* Loop through each expression in <exprlist>. */ 1895 r1 = sqlite3GetTempReg(pParse); 1896 r2 = sqlite3GetTempReg(pParse); 1897 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1898 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1899 Expr *pE2 = pItem->pExpr; 1900 int iValToIns; 1901 1902 /* If the expression is not constant then we will need to 1903 ** disable the test that was generated above that makes sure 1904 ** this code only executes once. Because for a non-constant 1905 ** expression we need to rerun this code each time. 1906 */ 1907 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ 1908 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); 1909 jmpIfDynamic = -1; 1910 } 1911 1912 /* Evaluate the expression and insert it into the temp table */ 1913 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1914 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1915 }else{ 1916 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1917 if( isRowid ){ 1918 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1919 sqlite3VdbeCurrentAddr(v)+2); 1920 VdbeCoverage(v); 1921 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1922 }else{ 1923 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1924 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1925 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1926 } 1927 } 1928 } 1929 sqlite3ReleaseTempReg(pParse, r1); 1930 sqlite3ReleaseTempReg(pParse, r2); 1931 } 1932 if( pKeyInfo ){ 1933 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1934 } 1935 break; 1936 } 1937 1938 case TK_EXISTS: 1939 case TK_SELECT: 1940 default: { 1941 /* If this has to be a scalar SELECT. Generate code to put the 1942 ** value of this select in a memory cell and record the number 1943 ** of the memory cell in iColumn. If this is an EXISTS, write 1944 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1945 ** and record that memory cell in iColumn. 1946 */ 1947 Select *pSel; /* SELECT statement to encode */ 1948 SelectDest dest; /* How to deal with SELECt result */ 1949 1950 testcase( pExpr->op==TK_EXISTS ); 1951 testcase( pExpr->op==TK_SELECT ); 1952 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1953 1954 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1955 pSel = pExpr->x.pSelect; 1956 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1957 if( pExpr->op==TK_SELECT ){ 1958 dest.eDest = SRT_Mem; 1959 dest.iSdst = dest.iSDParm; 1960 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1961 VdbeComment((v, "Init subquery result")); 1962 }else{ 1963 dest.eDest = SRT_Exists; 1964 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1965 VdbeComment((v, "Init EXISTS result")); 1966 } 1967 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1968 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1969 &sqlite3IntTokens[1]); 1970 pSel->iLimit = 0; 1971 if( sqlite3Select(pParse, pSel, &dest) ){ 1972 return 0; 1973 } 1974 rReg = dest.iSDParm; 1975 ExprSetVVAProperty(pExpr, EP_NoReduce); 1976 break; 1977 } 1978 } 1979 1980 if( rHasNullFlag ){ 1981 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); 1982 } 1983 1984 if( jmpIfDynamic>=0 ){ 1985 sqlite3VdbeJumpHere(v, jmpIfDynamic); 1986 } 1987 sqlite3ExprCachePop(pParse); 1988 1989 return rReg; 1990 } 1991 #endif /* SQLITE_OMIT_SUBQUERY */ 1992 1993 #ifndef SQLITE_OMIT_SUBQUERY 1994 /* 1995 ** Generate code for an IN expression. 1996 ** 1997 ** x IN (SELECT ...) 1998 ** x IN (value, value, ...) 1999 ** 2000 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 2001 ** is an array of zero or more values. The expression is true if the LHS is 2002 ** contained within the RHS. The value of the expression is unknown (NULL) 2003 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 2004 ** RHS contains one or more NULL values. 2005 ** 2006 ** This routine generates code that jumps to destIfFalse if the LHS is not 2007 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2008 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2009 ** within the RHS then fall through. 2010 */ 2011 static void sqlite3ExprCodeIN( 2012 Parse *pParse, /* Parsing and code generating context */ 2013 Expr *pExpr, /* The IN expression */ 2014 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 2015 int destIfNull /* Jump here if the results are unknown due to NULLs */ 2016 ){ 2017 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 2018 char affinity; /* Comparison affinity to use */ 2019 int eType; /* Type of the RHS */ 2020 int r1; /* Temporary use register */ 2021 Vdbe *v; /* Statement under construction */ 2022 2023 /* Compute the RHS. After this step, the table with cursor 2024 ** pExpr->iTable will contains the values that make up the RHS. 2025 */ 2026 v = pParse->pVdbe; 2027 assert( v!=0 ); /* OOM detected prior to this routine */ 2028 VdbeNoopComment((v, "begin IN expr")); 2029 eType = sqlite3FindInIndex(pParse, pExpr, 2030 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 2031 destIfFalse==destIfNull ? 0 : &rRhsHasNull); 2032 2033 /* Figure out the affinity to use to create a key from the results 2034 ** of the expression. affinityStr stores a static string suitable for 2035 ** P4 of OP_MakeRecord. 2036 */ 2037 affinity = comparisonAffinity(pExpr); 2038 2039 /* Code the LHS, the <expr> from "<expr> IN (...)". 2040 */ 2041 sqlite3ExprCachePush(pParse); 2042 r1 = sqlite3GetTempReg(pParse); 2043 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 2044 2045 /* If sqlite3FindInIndex() did not find or create an index that is 2046 ** suitable for evaluating the IN operator, then evaluate using a 2047 ** sequence of comparisons. 2048 */ 2049 if( eType==IN_INDEX_NOOP ){ 2050 ExprList *pList = pExpr->x.pList; 2051 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2052 int labelOk = sqlite3VdbeMakeLabel(v); 2053 int r2, regToFree; 2054 int regCkNull = 0; 2055 int ii; 2056 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2057 if( destIfNull!=destIfFalse ){ 2058 regCkNull = sqlite3GetTempReg(pParse); 2059 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); 2060 } 2061 for(ii=0; ii<pList->nExpr; ii++){ 2062 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 2063 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 2064 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 2065 } 2066 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 2067 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, 2068 (void*)pColl, P4_COLLSEQ); 2069 VdbeCoverageIf(v, ii<pList->nExpr-1); 2070 VdbeCoverageIf(v, ii==pList->nExpr-1); 2071 sqlite3VdbeChangeP5(v, affinity); 2072 }else{ 2073 assert( destIfNull==destIfFalse ); 2074 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, 2075 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 2076 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); 2077 } 2078 sqlite3ReleaseTempReg(pParse, regToFree); 2079 } 2080 if( regCkNull ){ 2081 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 2082 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2083 } 2084 sqlite3VdbeResolveLabel(v, labelOk); 2085 sqlite3ReleaseTempReg(pParse, regCkNull); 2086 }else{ 2087 2088 /* If the LHS is NULL, then the result is either false or NULL depending 2089 ** on whether the RHS is empty or not, respectively. 2090 */ 2091 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ 2092 if( destIfNull==destIfFalse ){ 2093 /* Shortcut for the common case where the false and NULL outcomes are 2094 ** the same. */ 2095 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); 2096 }else{ 2097 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); 2098 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 2099 VdbeCoverage(v); 2100 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 2101 sqlite3VdbeJumpHere(v, addr1); 2102 } 2103 } 2104 2105 if( eType==IN_INDEX_ROWID ){ 2106 /* In this case, the RHS is the ROWID of table b-tree 2107 */ 2108 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); 2109 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 2110 VdbeCoverage(v); 2111 }else{ 2112 /* In this case, the RHS is an index b-tree. 2113 */ 2114 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 2115 2116 /* If the set membership test fails, then the result of the 2117 ** "x IN (...)" expression must be either 0 or NULL. If the set 2118 ** contains no NULL values, then the result is 0. If the set 2119 ** contains one or more NULL values, then the result of the 2120 ** expression is also NULL. 2121 */ 2122 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); 2123 if( rRhsHasNull==0 ){ 2124 /* This branch runs if it is known at compile time that the RHS 2125 ** cannot contain NULL values. This happens as the result 2126 ** of a "NOT NULL" constraint in the database schema. 2127 ** 2128 ** Also run this branch if NULL is equivalent to FALSE 2129 ** for this particular IN operator. 2130 */ 2131 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 2132 VdbeCoverage(v); 2133 }else{ 2134 /* In this branch, the RHS of the IN might contain a NULL and 2135 ** the presence of a NULL on the RHS makes a difference in the 2136 ** outcome. 2137 */ 2138 int j1; 2139 2140 /* First check to see if the LHS is contained in the RHS. If so, 2141 ** then the answer is TRUE the presence of NULLs in the RHS does 2142 ** not matter. If the LHS is not contained in the RHS, then the 2143 ** answer is NULL if the RHS contains NULLs and the answer is 2144 ** FALSE if the RHS is NULL-free. 2145 */ 2146 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2147 VdbeCoverage(v); 2148 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); 2149 VdbeCoverage(v); 2150 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2151 sqlite3VdbeJumpHere(v, j1); 2152 } 2153 } 2154 } 2155 sqlite3ReleaseTempReg(pParse, r1); 2156 sqlite3ExprCachePop(pParse); 2157 VdbeComment((v, "end IN expr")); 2158 } 2159 #endif /* SQLITE_OMIT_SUBQUERY */ 2160 2161 /* 2162 ** Duplicate an 8-byte value 2163 */ 2164 static char *dup8bytes(Vdbe *v, const char *in){ 2165 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2166 if( out ){ 2167 memcpy(out, in, 8); 2168 } 2169 return out; 2170 } 2171 2172 #ifndef SQLITE_OMIT_FLOATING_POINT 2173 /* 2174 ** Generate an instruction that will put the floating point 2175 ** value described by z[0..n-1] into register iMem. 2176 ** 2177 ** The z[] string will probably not be zero-terminated. But the 2178 ** z[n] character is guaranteed to be something that does not look 2179 ** like the continuation of the number. 2180 */ 2181 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2182 if( ALWAYS(z!=0) ){ 2183 double value; 2184 char *zV; 2185 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2186 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2187 if( negateFlag ) value = -value; 2188 zV = dup8bytes(v, (char*)&value); 2189 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2190 } 2191 } 2192 #endif 2193 2194 2195 /* 2196 ** Generate an instruction that will put the integer describe by 2197 ** text z[0..n-1] into register iMem. 2198 ** 2199 ** Expr.u.zToken is always UTF8 and zero-terminated. 2200 */ 2201 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2202 Vdbe *v = pParse->pVdbe; 2203 if( pExpr->flags & EP_IntValue ){ 2204 int i = pExpr->u.iValue; 2205 assert( i>=0 ); 2206 if( negFlag ) i = -i; 2207 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2208 }else{ 2209 int c; 2210 i64 value; 2211 const char *z = pExpr->u.zToken; 2212 assert( z!=0 ); 2213 c = sqlite3DecOrHexToI64(z, &value); 2214 if( c==0 || (c==2 && negFlag) ){ 2215 char *zV; 2216 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2217 zV = dup8bytes(v, (char*)&value); 2218 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2219 }else{ 2220 #ifdef SQLITE_OMIT_FLOATING_POINT 2221 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2222 #else 2223 #ifndef SQLITE_OMIT_HEX_INTEGER 2224 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 2225 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); 2226 }else 2227 #endif 2228 { 2229 codeReal(v, z, negFlag, iMem); 2230 } 2231 #endif 2232 } 2233 } 2234 } 2235 2236 /* 2237 ** Clear a cache entry. 2238 */ 2239 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2240 if( p->tempReg ){ 2241 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2242 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2243 } 2244 p->tempReg = 0; 2245 } 2246 } 2247 2248 2249 /* 2250 ** Record in the column cache that a particular column from a 2251 ** particular table is stored in a particular register. 2252 */ 2253 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2254 int i; 2255 int minLru; 2256 int idxLru; 2257 struct yColCache *p; 2258 2259 assert( iReg>0 ); /* Register numbers are always positive */ 2260 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2261 2262 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2263 ** for testing only - to verify that SQLite always gets the same answer 2264 ** with and without the column cache. 2265 */ 2266 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2267 2268 /* First replace any existing entry. 2269 ** 2270 ** Actually, the way the column cache is currently used, we are guaranteed 2271 ** that the object will never already be in cache. Verify this guarantee. 2272 */ 2273 #ifndef NDEBUG 2274 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2275 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2276 } 2277 #endif 2278 2279 /* Find an empty slot and replace it */ 2280 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2281 if( p->iReg==0 ){ 2282 p->iLevel = pParse->iCacheLevel; 2283 p->iTable = iTab; 2284 p->iColumn = iCol; 2285 p->iReg = iReg; 2286 p->tempReg = 0; 2287 p->lru = pParse->iCacheCnt++; 2288 return; 2289 } 2290 } 2291 2292 /* Replace the last recently used */ 2293 minLru = 0x7fffffff; 2294 idxLru = -1; 2295 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2296 if( p->lru<minLru ){ 2297 idxLru = i; 2298 minLru = p->lru; 2299 } 2300 } 2301 if( ALWAYS(idxLru>=0) ){ 2302 p = &pParse->aColCache[idxLru]; 2303 p->iLevel = pParse->iCacheLevel; 2304 p->iTable = iTab; 2305 p->iColumn = iCol; 2306 p->iReg = iReg; 2307 p->tempReg = 0; 2308 p->lru = pParse->iCacheCnt++; 2309 return; 2310 } 2311 } 2312 2313 /* 2314 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2315 ** Purge the range of registers from the column cache. 2316 */ 2317 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2318 int i; 2319 int iLast = iReg + nReg - 1; 2320 struct yColCache *p; 2321 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2322 int r = p->iReg; 2323 if( r>=iReg && r<=iLast ){ 2324 cacheEntryClear(pParse, p); 2325 p->iReg = 0; 2326 } 2327 } 2328 } 2329 2330 /* 2331 ** Remember the current column cache context. Any new entries added 2332 ** added to the column cache after this call are removed when the 2333 ** corresponding pop occurs. 2334 */ 2335 void sqlite3ExprCachePush(Parse *pParse){ 2336 pParse->iCacheLevel++; 2337 #ifdef SQLITE_DEBUG 2338 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2339 printf("PUSH to %d\n", pParse->iCacheLevel); 2340 } 2341 #endif 2342 } 2343 2344 /* 2345 ** Remove from the column cache any entries that were added since the 2346 ** the previous sqlite3ExprCachePush operation. In other words, restore 2347 ** the cache to the state it was in prior the most recent Push. 2348 */ 2349 void sqlite3ExprCachePop(Parse *pParse){ 2350 int i; 2351 struct yColCache *p; 2352 assert( pParse->iCacheLevel>=1 ); 2353 pParse->iCacheLevel--; 2354 #ifdef SQLITE_DEBUG 2355 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2356 printf("POP to %d\n", pParse->iCacheLevel); 2357 } 2358 #endif 2359 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2360 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2361 cacheEntryClear(pParse, p); 2362 p->iReg = 0; 2363 } 2364 } 2365 } 2366 2367 /* 2368 ** When a cached column is reused, make sure that its register is 2369 ** no longer available as a temp register. ticket #3879: that same 2370 ** register might be in the cache in multiple places, so be sure to 2371 ** get them all. 2372 */ 2373 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2374 int i; 2375 struct yColCache *p; 2376 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2377 if( p->iReg==iReg ){ 2378 p->tempReg = 0; 2379 } 2380 } 2381 } 2382 2383 /* 2384 ** Generate code to extract the value of the iCol-th column of a table. 2385 */ 2386 void sqlite3ExprCodeGetColumnOfTable( 2387 Vdbe *v, /* The VDBE under construction */ 2388 Table *pTab, /* The table containing the value */ 2389 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2390 int iCol, /* Index of the column to extract */ 2391 int regOut /* Extract the value into this register */ 2392 ){ 2393 if( iCol<0 || iCol==pTab->iPKey ){ 2394 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2395 }else{ 2396 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2397 int x = iCol; 2398 if( !HasRowid(pTab) ){ 2399 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2400 } 2401 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2402 } 2403 if( iCol>=0 ){ 2404 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2405 } 2406 } 2407 2408 /* 2409 ** Generate code that will extract the iColumn-th column from 2410 ** table pTab and store the column value in a register. An effort 2411 ** is made to store the column value in register iReg, but this is 2412 ** not guaranteed. The location of the column value is returned. 2413 ** 2414 ** There must be an open cursor to pTab in iTable when this routine 2415 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2416 */ 2417 int sqlite3ExprCodeGetColumn( 2418 Parse *pParse, /* Parsing and code generating context */ 2419 Table *pTab, /* Description of the table we are reading from */ 2420 int iColumn, /* Index of the table column */ 2421 int iTable, /* The cursor pointing to the table */ 2422 int iReg, /* Store results here */ 2423 u8 p5 /* P5 value for OP_Column */ 2424 ){ 2425 Vdbe *v = pParse->pVdbe; 2426 int i; 2427 struct yColCache *p; 2428 2429 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2430 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2431 p->lru = pParse->iCacheCnt++; 2432 sqlite3ExprCachePinRegister(pParse, p->iReg); 2433 return p->iReg; 2434 } 2435 } 2436 assert( v!=0 ); 2437 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2438 if( p5 ){ 2439 sqlite3VdbeChangeP5(v, p5); 2440 }else{ 2441 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2442 } 2443 return iReg; 2444 } 2445 2446 /* 2447 ** Clear all column cache entries. 2448 */ 2449 void sqlite3ExprCacheClear(Parse *pParse){ 2450 int i; 2451 struct yColCache *p; 2452 2453 #if SQLITE_DEBUG 2454 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2455 printf("CLEAR\n"); 2456 } 2457 #endif 2458 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2459 if( p->iReg ){ 2460 cacheEntryClear(pParse, p); 2461 p->iReg = 0; 2462 } 2463 } 2464 } 2465 2466 /* 2467 ** Record the fact that an affinity change has occurred on iCount 2468 ** registers starting with iStart. 2469 */ 2470 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2471 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2472 } 2473 2474 /* 2475 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2476 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2477 */ 2478 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2479 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2480 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 2481 sqlite3ExprCacheRemove(pParse, iFrom, nReg); 2482 } 2483 2484 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2485 /* 2486 ** Return true if any register in the range iFrom..iTo (inclusive) 2487 ** is used as part of the column cache. 2488 ** 2489 ** This routine is used within assert() and testcase() macros only 2490 ** and does not appear in a normal build. 2491 */ 2492 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2493 int i; 2494 struct yColCache *p; 2495 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2496 int r = p->iReg; 2497 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2498 } 2499 return 0; 2500 } 2501 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2502 2503 /* 2504 ** Convert an expression node to a TK_REGISTER 2505 */ 2506 static void exprToRegister(Expr *p, int iReg){ 2507 p->op2 = p->op; 2508 p->op = TK_REGISTER; 2509 p->iTable = iReg; 2510 ExprClearProperty(p, EP_Skip); 2511 } 2512 2513 /* 2514 ** Generate code into the current Vdbe to evaluate the given 2515 ** expression. Attempt to store the results in register "target". 2516 ** Return the register where results are stored. 2517 ** 2518 ** With this routine, there is no guarantee that results will 2519 ** be stored in target. The result might be stored in some other 2520 ** register if it is convenient to do so. The calling function 2521 ** must check the return code and move the results to the desired 2522 ** register. 2523 */ 2524 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2525 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2526 int op; /* The opcode being coded */ 2527 int inReg = target; /* Results stored in register inReg */ 2528 int regFree1 = 0; /* If non-zero free this temporary register */ 2529 int regFree2 = 0; /* If non-zero free this temporary register */ 2530 int r1, r2, r3, r4; /* Various register numbers */ 2531 sqlite3 *db = pParse->db; /* The database connection */ 2532 Expr tempX; /* Temporary expression node */ 2533 2534 assert( target>0 && target<=pParse->nMem ); 2535 if( v==0 ){ 2536 assert( pParse->db->mallocFailed ); 2537 return 0; 2538 } 2539 2540 if( pExpr==0 ){ 2541 op = TK_NULL; 2542 }else{ 2543 op = pExpr->op; 2544 } 2545 switch( op ){ 2546 case TK_AGG_COLUMN: { 2547 AggInfo *pAggInfo = pExpr->pAggInfo; 2548 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2549 if( !pAggInfo->directMode ){ 2550 assert( pCol->iMem>0 ); 2551 inReg = pCol->iMem; 2552 break; 2553 }else if( pAggInfo->useSortingIdx ){ 2554 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2555 pCol->iSorterColumn, target); 2556 break; 2557 } 2558 /* Otherwise, fall thru into the TK_COLUMN case */ 2559 } 2560 case TK_COLUMN: { 2561 int iTab = pExpr->iTable; 2562 if( iTab<0 ){ 2563 if( pParse->ckBase>0 ){ 2564 /* Generating CHECK constraints or inserting into partial index */ 2565 inReg = pExpr->iColumn + pParse->ckBase; 2566 break; 2567 }else{ 2568 /* Deleting from a partial index */ 2569 iTab = pParse->iPartIdxTab; 2570 } 2571 } 2572 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2573 pExpr->iColumn, iTab, target, 2574 pExpr->op2); 2575 break; 2576 } 2577 case TK_INTEGER: { 2578 codeInteger(pParse, pExpr, 0, target); 2579 break; 2580 } 2581 #ifndef SQLITE_OMIT_FLOATING_POINT 2582 case TK_FLOAT: { 2583 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2584 codeReal(v, pExpr->u.zToken, 0, target); 2585 break; 2586 } 2587 #endif 2588 case TK_STRING: { 2589 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2590 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2591 break; 2592 } 2593 case TK_NULL: { 2594 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2595 break; 2596 } 2597 #ifndef SQLITE_OMIT_BLOB_LITERAL 2598 case TK_BLOB: { 2599 int n; 2600 const char *z; 2601 char *zBlob; 2602 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2603 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2604 assert( pExpr->u.zToken[1]=='\'' ); 2605 z = &pExpr->u.zToken[2]; 2606 n = sqlite3Strlen30(z) - 1; 2607 assert( z[n]=='\'' ); 2608 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2609 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2610 break; 2611 } 2612 #endif 2613 case TK_VARIABLE: { 2614 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2615 assert( pExpr->u.zToken!=0 ); 2616 assert( pExpr->u.zToken[0]!=0 ); 2617 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2618 if( pExpr->u.zToken[1]!=0 ){ 2619 assert( pExpr->u.zToken[0]=='?' 2620 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2621 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2622 } 2623 break; 2624 } 2625 case TK_REGISTER: { 2626 inReg = pExpr->iTable; 2627 break; 2628 } 2629 case TK_AS: { 2630 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2631 break; 2632 } 2633 #ifndef SQLITE_OMIT_CAST 2634 case TK_CAST: { 2635 /* Expressions of the form: CAST(pLeft AS token) */ 2636 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2637 if( inReg!=target ){ 2638 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2639 inReg = target; 2640 } 2641 sqlite3VdbeAddOp2(v, OP_Cast, target, 2642 sqlite3AffinityType(pExpr->u.zToken, 0)); 2643 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2644 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2645 break; 2646 } 2647 #endif /* SQLITE_OMIT_CAST */ 2648 case TK_LT: 2649 case TK_LE: 2650 case TK_GT: 2651 case TK_GE: 2652 case TK_NE: 2653 case TK_EQ: { 2654 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2655 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2656 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2657 r1, r2, inReg, SQLITE_STOREP2); 2658 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 2659 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 2660 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 2661 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 2662 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 2663 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 2664 testcase( regFree1==0 ); 2665 testcase( regFree2==0 ); 2666 break; 2667 } 2668 case TK_IS: 2669 case TK_ISNOT: { 2670 testcase( op==TK_IS ); 2671 testcase( op==TK_ISNOT ); 2672 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2673 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2674 op = (op==TK_IS) ? TK_EQ : TK_NE; 2675 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2676 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2677 VdbeCoverageIf(v, op==TK_EQ); 2678 VdbeCoverageIf(v, op==TK_NE); 2679 testcase( regFree1==0 ); 2680 testcase( regFree2==0 ); 2681 break; 2682 } 2683 case TK_AND: 2684 case TK_OR: 2685 case TK_PLUS: 2686 case TK_STAR: 2687 case TK_MINUS: 2688 case TK_REM: 2689 case TK_BITAND: 2690 case TK_BITOR: 2691 case TK_SLASH: 2692 case TK_LSHIFT: 2693 case TK_RSHIFT: 2694 case TK_CONCAT: { 2695 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 2696 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 2697 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 2698 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 2699 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 2700 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 2701 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 2702 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 2703 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 2704 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 2705 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 2706 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2707 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2708 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2709 testcase( regFree1==0 ); 2710 testcase( regFree2==0 ); 2711 break; 2712 } 2713 case TK_UMINUS: { 2714 Expr *pLeft = pExpr->pLeft; 2715 assert( pLeft ); 2716 if( pLeft->op==TK_INTEGER ){ 2717 codeInteger(pParse, pLeft, 1, target); 2718 #ifndef SQLITE_OMIT_FLOATING_POINT 2719 }else if( pLeft->op==TK_FLOAT ){ 2720 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2721 codeReal(v, pLeft->u.zToken, 1, target); 2722 #endif 2723 }else{ 2724 tempX.op = TK_INTEGER; 2725 tempX.flags = EP_IntValue|EP_TokenOnly; 2726 tempX.u.iValue = 0; 2727 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2728 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2729 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2730 testcase( regFree2==0 ); 2731 } 2732 inReg = target; 2733 break; 2734 } 2735 case TK_BITNOT: 2736 case TK_NOT: { 2737 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 2738 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 2739 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2740 testcase( regFree1==0 ); 2741 inReg = target; 2742 sqlite3VdbeAddOp2(v, op, r1, inReg); 2743 break; 2744 } 2745 case TK_ISNULL: 2746 case TK_NOTNULL: { 2747 int addr; 2748 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 2749 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 2750 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2751 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2752 testcase( regFree1==0 ); 2753 addr = sqlite3VdbeAddOp1(v, op, r1); 2754 VdbeCoverageIf(v, op==TK_ISNULL); 2755 VdbeCoverageIf(v, op==TK_NOTNULL); 2756 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 2757 sqlite3VdbeJumpHere(v, addr); 2758 break; 2759 } 2760 case TK_AGG_FUNCTION: { 2761 AggInfo *pInfo = pExpr->pAggInfo; 2762 if( pInfo==0 ){ 2763 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2764 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2765 }else{ 2766 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2767 } 2768 break; 2769 } 2770 case TK_FUNCTION: { 2771 ExprList *pFarg; /* List of function arguments */ 2772 int nFarg; /* Number of function arguments */ 2773 FuncDef *pDef; /* The function definition object */ 2774 int nId; /* Length of the function name in bytes */ 2775 const char *zId; /* The function name */ 2776 u32 constMask = 0; /* Mask of function arguments that are constant */ 2777 int i; /* Loop counter */ 2778 u8 enc = ENC(db); /* The text encoding used by this database */ 2779 CollSeq *pColl = 0; /* A collating sequence */ 2780 2781 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2782 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2783 pFarg = 0; 2784 }else{ 2785 pFarg = pExpr->x.pList; 2786 } 2787 nFarg = pFarg ? pFarg->nExpr : 0; 2788 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2789 zId = pExpr->u.zToken; 2790 nId = sqlite3Strlen30(zId); 2791 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2792 if( pDef==0 || pDef->xFunc==0 ){ 2793 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2794 break; 2795 } 2796 2797 /* Attempt a direct implementation of the built-in COALESCE() and 2798 ** IFNULL() functions. This avoids unnecessary evaluation of 2799 ** arguments past the first non-NULL argument. 2800 */ 2801 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2802 int endCoalesce = sqlite3VdbeMakeLabel(v); 2803 assert( nFarg>=2 ); 2804 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2805 for(i=1; i<nFarg; i++){ 2806 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2807 VdbeCoverage(v); 2808 sqlite3ExprCacheRemove(pParse, target, 1); 2809 sqlite3ExprCachePush(pParse); 2810 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2811 sqlite3ExprCachePop(pParse); 2812 } 2813 sqlite3VdbeResolveLabel(v, endCoalesce); 2814 break; 2815 } 2816 2817 /* The UNLIKELY() function is a no-op. The result is the value 2818 ** of the first argument. 2819 */ 2820 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2821 assert( nFarg>=1 ); 2822 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2823 break; 2824 } 2825 2826 for(i=0; i<nFarg; i++){ 2827 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2828 testcase( i==31 ); 2829 constMask |= MASKBIT32(i); 2830 } 2831 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2832 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2833 } 2834 } 2835 if( pFarg ){ 2836 if( constMask ){ 2837 r1 = pParse->nMem+1; 2838 pParse->nMem += nFarg; 2839 }else{ 2840 r1 = sqlite3GetTempRange(pParse, nFarg); 2841 } 2842 2843 /* For length() and typeof() functions with a column argument, 2844 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2845 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2846 ** loading. 2847 */ 2848 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2849 u8 exprOp; 2850 assert( nFarg==1 ); 2851 assert( pFarg->a[0].pExpr!=0 ); 2852 exprOp = pFarg->a[0].pExpr->op; 2853 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2854 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2855 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2856 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2857 pFarg->a[0].pExpr->op2 = 2858 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2859 } 2860 } 2861 2862 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2863 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2864 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2865 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ 2866 }else{ 2867 r1 = 0; 2868 } 2869 #ifndef SQLITE_OMIT_VIRTUALTABLE 2870 /* Possibly overload the function if the first argument is 2871 ** a virtual table column. 2872 ** 2873 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2874 ** second argument, not the first, as the argument to test to 2875 ** see if it is a column in a virtual table. This is done because 2876 ** the left operand of infix functions (the operand we want to 2877 ** control overloading) ends up as the second argument to the 2878 ** function. The expression "A glob B" is equivalent to 2879 ** "glob(B,A). We want to use the A in "A glob B" to test 2880 ** for function overloading. But we use the B term in "glob(B,A)". 2881 */ 2882 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2883 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2884 }else if( nFarg>0 ){ 2885 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2886 } 2887 #endif 2888 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2889 if( !pColl ) pColl = db->pDfltColl; 2890 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2891 } 2892 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2893 (char*)pDef, P4_FUNCDEF); 2894 sqlite3VdbeChangeP5(v, (u8)nFarg); 2895 if( nFarg && constMask==0 ){ 2896 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2897 } 2898 break; 2899 } 2900 #ifndef SQLITE_OMIT_SUBQUERY 2901 case TK_EXISTS: 2902 case TK_SELECT: { 2903 testcase( op==TK_EXISTS ); 2904 testcase( op==TK_SELECT ); 2905 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2906 break; 2907 } 2908 case TK_IN: { 2909 int destIfFalse = sqlite3VdbeMakeLabel(v); 2910 int destIfNull = sqlite3VdbeMakeLabel(v); 2911 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2912 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2913 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2914 sqlite3VdbeResolveLabel(v, destIfFalse); 2915 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2916 sqlite3VdbeResolveLabel(v, destIfNull); 2917 break; 2918 } 2919 #endif /* SQLITE_OMIT_SUBQUERY */ 2920 2921 2922 /* 2923 ** x BETWEEN y AND z 2924 ** 2925 ** This is equivalent to 2926 ** 2927 ** x>=y AND x<=z 2928 ** 2929 ** X is stored in pExpr->pLeft. 2930 ** Y is stored in pExpr->pList->a[0].pExpr. 2931 ** Z is stored in pExpr->pList->a[1].pExpr. 2932 */ 2933 case TK_BETWEEN: { 2934 Expr *pLeft = pExpr->pLeft; 2935 struct ExprList_item *pLItem = pExpr->x.pList->a; 2936 Expr *pRight = pLItem->pExpr; 2937 2938 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2939 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2940 testcase( regFree1==0 ); 2941 testcase( regFree2==0 ); 2942 r3 = sqlite3GetTempReg(pParse); 2943 r4 = sqlite3GetTempReg(pParse); 2944 codeCompare(pParse, pLeft, pRight, OP_Ge, 2945 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); 2946 pLItem++; 2947 pRight = pLItem->pExpr; 2948 sqlite3ReleaseTempReg(pParse, regFree2); 2949 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2950 testcase( regFree2==0 ); 2951 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2952 VdbeCoverage(v); 2953 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2954 sqlite3ReleaseTempReg(pParse, r3); 2955 sqlite3ReleaseTempReg(pParse, r4); 2956 break; 2957 } 2958 case TK_COLLATE: 2959 case TK_UPLUS: { 2960 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2961 break; 2962 } 2963 2964 case TK_TRIGGER: { 2965 /* If the opcode is TK_TRIGGER, then the expression is a reference 2966 ** to a column in the new.* or old.* pseudo-tables available to 2967 ** trigger programs. In this case Expr.iTable is set to 1 for the 2968 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2969 ** is set to the column of the pseudo-table to read, or to -1 to 2970 ** read the rowid field. 2971 ** 2972 ** The expression is implemented using an OP_Param opcode. The p1 2973 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2974 ** to reference another column of the old.* pseudo-table, where 2975 ** i is the index of the column. For a new.rowid reference, p1 is 2976 ** set to (n+1), where n is the number of columns in each pseudo-table. 2977 ** For a reference to any other column in the new.* pseudo-table, p1 2978 ** is set to (n+2+i), where n and i are as defined previously. For 2979 ** example, if the table on which triggers are being fired is 2980 ** declared as: 2981 ** 2982 ** CREATE TABLE t1(a, b); 2983 ** 2984 ** Then p1 is interpreted as follows: 2985 ** 2986 ** p1==0 -> old.rowid p1==3 -> new.rowid 2987 ** p1==1 -> old.a p1==4 -> new.a 2988 ** p1==2 -> old.b p1==5 -> new.b 2989 */ 2990 Table *pTab = pExpr->pTab; 2991 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2992 2993 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2994 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2995 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2996 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2997 2998 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2999 VdbeComment((v, "%s.%s -> $%d", 3000 (pExpr->iTable ? "new" : "old"), 3001 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 3002 target 3003 )); 3004 3005 #ifndef SQLITE_OMIT_FLOATING_POINT 3006 /* If the column has REAL affinity, it may currently be stored as an 3007 ** integer. Use OP_RealAffinity to make sure it is really real. 3008 ** 3009 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3010 ** floating point when extracting it from the record. */ 3011 if( pExpr->iColumn>=0 3012 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3013 ){ 3014 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3015 } 3016 #endif 3017 break; 3018 } 3019 3020 3021 /* 3022 ** Form A: 3023 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3024 ** 3025 ** Form B: 3026 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 3027 ** 3028 ** Form A is can be transformed into the equivalent form B as follows: 3029 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 3030 ** WHEN x=eN THEN rN ELSE y END 3031 ** 3032 ** X (if it exists) is in pExpr->pLeft. 3033 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 3034 ** odd. The Y is also optional. If the number of elements in x.pList 3035 ** is even, then Y is omitted and the "otherwise" result is NULL. 3036 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 3037 ** 3038 ** The result of the expression is the Ri for the first matching Ei, 3039 ** or if there is no matching Ei, the ELSE term Y, or if there is 3040 ** no ELSE term, NULL. 3041 */ 3042 default: assert( op==TK_CASE ); { 3043 int endLabel; /* GOTO label for end of CASE stmt */ 3044 int nextCase; /* GOTO label for next WHEN clause */ 3045 int nExpr; /* 2x number of WHEN terms */ 3046 int i; /* Loop counter */ 3047 ExprList *pEList; /* List of WHEN terms */ 3048 struct ExprList_item *aListelem; /* Array of WHEN terms */ 3049 Expr opCompare; /* The X==Ei expression */ 3050 Expr *pX; /* The X expression */ 3051 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 3052 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 3053 3054 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 3055 assert(pExpr->x.pList->nExpr > 0); 3056 pEList = pExpr->x.pList; 3057 aListelem = pEList->a; 3058 nExpr = pEList->nExpr; 3059 endLabel = sqlite3VdbeMakeLabel(v); 3060 if( (pX = pExpr->pLeft)!=0 ){ 3061 tempX = *pX; 3062 testcase( pX->op==TK_COLUMN ); 3063 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 3064 testcase( regFree1==0 ); 3065 opCompare.op = TK_EQ; 3066 opCompare.pLeft = &tempX; 3067 pTest = &opCompare; 3068 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 3069 ** The value in regFree1 might get SCopy-ed into the file result. 3070 ** So make sure that the regFree1 register is not reused for other 3071 ** purposes and possibly overwritten. */ 3072 regFree1 = 0; 3073 } 3074 for(i=0; i<nExpr-1; i=i+2){ 3075 sqlite3ExprCachePush(pParse); 3076 if( pX ){ 3077 assert( pTest!=0 ); 3078 opCompare.pRight = aListelem[i].pExpr; 3079 }else{ 3080 pTest = aListelem[i].pExpr; 3081 } 3082 nextCase = sqlite3VdbeMakeLabel(v); 3083 testcase( pTest->op==TK_COLUMN ); 3084 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 3085 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 3086 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 3087 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 3088 sqlite3ExprCachePop(pParse); 3089 sqlite3VdbeResolveLabel(v, nextCase); 3090 } 3091 if( (nExpr&1)!=0 ){ 3092 sqlite3ExprCachePush(pParse); 3093 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3094 sqlite3ExprCachePop(pParse); 3095 }else{ 3096 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3097 } 3098 assert( db->mallocFailed || pParse->nErr>0 3099 || pParse->iCacheLevel==iCacheLevel ); 3100 sqlite3VdbeResolveLabel(v, endLabel); 3101 break; 3102 } 3103 #ifndef SQLITE_OMIT_TRIGGER 3104 case TK_RAISE: { 3105 assert( pExpr->affinity==OE_Rollback 3106 || pExpr->affinity==OE_Abort 3107 || pExpr->affinity==OE_Fail 3108 || pExpr->affinity==OE_Ignore 3109 ); 3110 if( !pParse->pTriggerTab ){ 3111 sqlite3ErrorMsg(pParse, 3112 "RAISE() may only be used within a trigger-program"); 3113 return 0; 3114 } 3115 if( pExpr->affinity==OE_Abort ){ 3116 sqlite3MayAbort(pParse); 3117 } 3118 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3119 if( pExpr->affinity==OE_Ignore ){ 3120 sqlite3VdbeAddOp4( 3121 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3122 VdbeCoverage(v); 3123 }else{ 3124 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3125 pExpr->affinity, pExpr->u.zToken, 0, 0); 3126 } 3127 3128 break; 3129 } 3130 #endif 3131 } 3132 sqlite3ReleaseTempReg(pParse, regFree1); 3133 sqlite3ReleaseTempReg(pParse, regFree2); 3134 return inReg; 3135 } 3136 3137 /* 3138 ** Factor out the code of the given expression to initialization time. 3139 */ 3140 void sqlite3ExprCodeAtInit( 3141 Parse *pParse, /* Parsing context */ 3142 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3143 int regDest, /* Store the value in this register */ 3144 u8 reusable /* True if this expression is reusable */ 3145 ){ 3146 ExprList *p; 3147 assert( ConstFactorOk(pParse) ); 3148 p = pParse->pConstExpr; 3149 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3150 p = sqlite3ExprListAppend(pParse, p, pExpr); 3151 if( p ){ 3152 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3153 pItem->u.iConstExprReg = regDest; 3154 pItem->reusable = reusable; 3155 } 3156 pParse->pConstExpr = p; 3157 } 3158 3159 /* 3160 ** Generate code to evaluate an expression and store the results 3161 ** into a register. Return the register number where the results 3162 ** are stored. 3163 ** 3164 ** If the register is a temporary register that can be deallocated, 3165 ** then write its number into *pReg. If the result register is not 3166 ** a temporary, then set *pReg to zero. 3167 ** 3168 ** If pExpr is a constant, then this routine might generate this 3169 ** code to fill the register in the initialization section of the 3170 ** VDBE program, in order to factor it out of the evaluation loop. 3171 */ 3172 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3173 int r2; 3174 pExpr = sqlite3ExprSkipCollate(pExpr); 3175 if( ConstFactorOk(pParse) 3176 && pExpr->op!=TK_REGISTER 3177 && sqlite3ExprIsConstantNotJoin(pExpr) 3178 ){ 3179 ExprList *p = pParse->pConstExpr; 3180 int i; 3181 *pReg = 0; 3182 if( p ){ 3183 struct ExprList_item *pItem; 3184 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3185 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3186 return pItem->u.iConstExprReg; 3187 } 3188 } 3189 } 3190 r2 = ++pParse->nMem; 3191 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3192 }else{ 3193 int r1 = sqlite3GetTempReg(pParse); 3194 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3195 if( r2==r1 ){ 3196 *pReg = r1; 3197 }else{ 3198 sqlite3ReleaseTempReg(pParse, r1); 3199 *pReg = 0; 3200 } 3201 } 3202 return r2; 3203 } 3204 3205 /* 3206 ** Generate code that will evaluate expression pExpr and store the 3207 ** results in register target. The results are guaranteed to appear 3208 ** in register target. 3209 */ 3210 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3211 int inReg; 3212 3213 assert( target>0 && target<=pParse->nMem ); 3214 if( pExpr && pExpr->op==TK_REGISTER ){ 3215 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3216 }else{ 3217 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3218 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3219 if( inReg!=target && pParse->pVdbe ){ 3220 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3221 } 3222 } 3223 } 3224 3225 /* 3226 ** Generate code that will evaluate expression pExpr and store the 3227 ** results in register target. The results are guaranteed to appear 3228 ** in register target. If the expression is constant, then this routine 3229 ** might choose to code the expression at initialization time. 3230 */ 3231 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 3232 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ 3233 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); 3234 }else{ 3235 sqlite3ExprCode(pParse, pExpr, target); 3236 } 3237 } 3238 3239 /* 3240 ** Generate code that evaluates the given expression and puts the result 3241 ** in register target. 3242 ** 3243 ** Also make a copy of the expression results into another "cache" register 3244 ** and modify the expression so that the next time it is evaluated, 3245 ** the result is a copy of the cache register. 3246 ** 3247 ** This routine is used for expressions that are used multiple 3248 ** times. They are evaluated once and the results of the expression 3249 ** are reused. 3250 */ 3251 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3252 Vdbe *v = pParse->pVdbe; 3253 int iMem; 3254 3255 assert( target>0 ); 3256 assert( pExpr->op!=TK_REGISTER ); 3257 sqlite3ExprCode(pParse, pExpr, target); 3258 iMem = ++pParse->nMem; 3259 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 3260 exprToRegister(pExpr, iMem); 3261 } 3262 3263 #ifdef SQLITE_DEBUG 3264 /* 3265 ** Generate a human-readable explanation of an expression tree. 3266 */ 3267 void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ 3268 const char *zBinOp = 0; /* Binary operator */ 3269 const char *zUniOp = 0; /* Unary operator */ 3270 pView = sqlite3TreeViewPush(pView, moreToFollow); 3271 if( pExpr==0 ){ 3272 sqlite3TreeViewLine(pView, "nil"); 3273 sqlite3TreeViewPop(pView); 3274 return; 3275 } 3276 switch( pExpr->op ){ 3277 case TK_AGG_COLUMN: { 3278 sqlite3TreeViewLine(pView, "AGG{%d:%d}", 3279 pExpr->iTable, pExpr->iColumn); 3280 break; 3281 } 3282 case TK_COLUMN: { 3283 if( pExpr->iTable<0 ){ 3284 /* This only happens when coding check constraints */ 3285 sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn); 3286 }else{ 3287 sqlite3TreeViewLine(pView, "{%d:%d}", 3288 pExpr->iTable, pExpr->iColumn); 3289 } 3290 break; 3291 } 3292 case TK_INTEGER: { 3293 if( pExpr->flags & EP_IntValue ){ 3294 sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); 3295 }else{ 3296 sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); 3297 } 3298 break; 3299 } 3300 #ifndef SQLITE_OMIT_FLOATING_POINT 3301 case TK_FLOAT: { 3302 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); 3303 break; 3304 } 3305 #endif 3306 case TK_STRING: { 3307 sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); 3308 break; 3309 } 3310 case TK_NULL: { 3311 sqlite3TreeViewLine(pView,"NULL"); 3312 break; 3313 } 3314 #ifndef SQLITE_OMIT_BLOB_LITERAL 3315 case TK_BLOB: { 3316 sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); 3317 break; 3318 } 3319 #endif 3320 case TK_VARIABLE: { 3321 sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", 3322 pExpr->u.zToken, pExpr->iColumn); 3323 break; 3324 } 3325 case TK_REGISTER: { 3326 sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); 3327 break; 3328 } 3329 case TK_AS: { 3330 sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); 3331 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3332 break; 3333 } 3334 case TK_ID: { 3335 sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken); 3336 break; 3337 } 3338 #ifndef SQLITE_OMIT_CAST 3339 case TK_CAST: { 3340 /* Expressions of the form: CAST(pLeft AS token) */ 3341 sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); 3342 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3343 break; 3344 } 3345 #endif /* SQLITE_OMIT_CAST */ 3346 case TK_LT: zBinOp = "LT"; break; 3347 case TK_LE: zBinOp = "LE"; break; 3348 case TK_GT: zBinOp = "GT"; break; 3349 case TK_GE: zBinOp = "GE"; break; 3350 case TK_NE: zBinOp = "NE"; break; 3351 case TK_EQ: zBinOp = "EQ"; break; 3352 case TK_IS: zBinOp = "IS"; break; 3353 case TK_ISNOT: zBinOp = "ISNOT"; break; 3354 case TK_AND: zBinOp = "AND"; break; 3355 case TK_OR: zBinOp = "OR"; break; 3356 case TK_PLUS: zBinOp = "ADD"; break; 3357 case TK_STAR: zBinOp = "MUL"; break; 3358 case TK_MINUS: zBinOp = "SUB"; break; 3359 case TK_REM: zBinOp = "REM"; break; 3360 case TK_BITAND: zBinOp = "BITAND"; break; 3361 case TK_BITOR: zBinOp = "BITOR"; break; 3362 case TK_SLASH: zBinOp = "DIV"; break; 3363 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3364 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3365 case TK_CONCAT: zBinOp = "CONCAT"; break; 3366 case TK_DOT: zBinOp = "DOT"; break; 3367 3368 case TK_UMINUS: zUniOp = "UMINUS"; break; 3369 case TK_UPLUS: zUniOp = "UPLUS"; break; 3370 case TK_BITNOT: zUniOp = "BITNOT"; break; 3371 case TK_NOT: zUniOp = "NOT"; break; 3372 case TK_ISNULL: zUniOp = "ISNULL"; break; 3373 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3374 3375 case TK_COLLATE: { 3376 sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); 3377 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3378 break; 3379 } 3380 3381 case TK_AGG_FUNCTION: 3382 case TK_FUNCTION: { 3383 ExprList *pFarg; /* List of function arguments */ 3384 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3385 pFarg = 0; 3386 }else{ 3387 pFarg = pExpr->x.pList; 3388 } 3389 if( pExpr->op==TK_AGG_FUNCTION ){ 3390 sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", 3391 pExpr->op2, pExpr->u.zToken); 3392 }else{ 3393 sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); 3394 } 3395 if( pFarg ){ 3396 sqlite3TreeViewExprList(pView, pFarg, 0, 0); 3397 } 3398 break; 3399 } 3400 #ifndef SQLITE_OMIT_SUBQUERY 3401 case TK_EXISTS: { 3402 sqlite3TreeViewLine(pView, "EXISTS-expr"); 3403 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3404 break; 3405 } 3406 case TK_SELECT: { 3407 sqlite3TreeViewLine(pView, "SELECT-expr"); 3408 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3409 break; 3410 } 3411 case TK_IN: { 3412 sqlite3TreeViewLine(pView, "IN"); 3413 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3414 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3415 sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); 3416 }else{ 3417 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); 3418 } 3419 break; 3420 } 3421 #endif /* SQLITE_OMIT_SUBQUERY */ 3422 3423 /* 3424 ** x BETWEEN y AND z 3425 ** 3426 ** This is equivalent to 3427 ** 3428 ** x>=y AND x<=z 3429 ** 3430 ** X is stored in pExpr->pLeft. 3431 ** Y is stored in pExpr->pList->a[0].pExpr. 3432 ** Z is stored in pExpr->pList->a[1].pExpr. 3433 */ 3434 case TK_BETWEEN: { 3435 Expr *pX = pExpr->pLeft; 3436 Expr *pY = pExpr->x.pList->a[0].pExpr; 3437 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3438 sqlite3TreeViewLine(pView, "BETWEEN"); 3439 sqlite3TreeViewExpr(pView, pX, 1); 3440 sqlite3TreeViewExpr(pView, pY, 1); 3441 sqlite3TreeViewExpr(pView, pZ, 0); 3442 break; 3443 } 3444 case TK_TRIGGER: { 3445 /* If the opcode is TK_TRIGGER, then the expression is a reference 3446 ** to a column in the new.* or old.* pseudo-tables available to 3447 ** trigger programs. In this case Expr.iTable is set to 1 for the 3448 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3449 ** is set to the column of the pseudo-table to read, or to -1 to 3450 ** read the rowid field. 3451 */ 3452 sqlite3TreeViewLine(pView, "%s(%d)", 3453 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3454 break; 3455 } 3456 case TK_CASE: { 3457 sqlite3TreeViewLine(pView, "CASE"); 3458 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3459 sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); 3460 break; 3461 } 3462 #ifndef SQLITE_OMIT_TRIGGER 3463 case TK_RAISE: { 3464 const char *zType = "unk"; 3465 switch( pExpr->affinity ){ 3466 case OE_Rollback: zType = "rollback"; break; 3467 case OE_Abort: zType = "abort"; break; 3468 case OE_Fail: zType = "fail"; break; 3469 case OE_Ignore: zType = "ignore"; break; 3470 } 3471 sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); 3472 break; 3473 } 3474 #endif 3475 default: { 3476 sqlite3TreeViewLine(pView, "op=%d", pExpr->op); 3477 break; 3478 } 3479 } 3480 if( zBinOp ){ 3481 sqlite3TreeViewLine(pView, "%s", zBinOp); 3482 sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); 3483 sqlite3TreeViewExpr(pView, pExpr->pRight, 0); 3484 }else if( zUniOp ){ 3485 sqlite3TreeViewLine(pView, "%s", zUniOp); 3486 sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); 3487 } 3488 sqlite3TreeViewPop(pView); 3489 } 3490 #endif /* SQLITE_DEBUG */ 3491 3492 #ifdef SQLITE_DEBUG 3493 /* 3494 ** Generate a human-readable explanation of an expression list. 3495 */ 3496 void sqlite3TreeViewExprList( 3497 TreeView *pView, 3498 const ExprList *pList, 3499 u8 moreToFollow, 3500 const char *zLabel 3501 ){ 3502 int i; 3503 pView = sqlite3TreeViewPush(pView, moreToFollow); 3504 if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; 3505 if( pList==0 ){ 3506 sqlite3TreeViewLine(pView, "%s (empty)", zLabel); 3507 }else{ 3508 sqlite3TreeViewLine(pView, "%s", zLabel); 3509 for(i=0; i<pList->nExpr; i++){ 3510 sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); 3511 #if 0 3512 if( pList->a[i].zName ){ 3513 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3514 } 3515 if( pList->a[i].bSpanIsTab ){ 3516 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3517 } 3518 #endif 3519 } 3520 } 3521 sqlite3TreeViewPop(pView); 3522 } 3523 #endif /* SQLITE_DEBUG */ 3524 3525 /* 3526 ** Generate code that pushes the value of every element of the given 3527 ** expression list into a sequence of registers beginning at target. 3528 ** 3529 ** Return the number of elements evaluated. 3530 ** 3531 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3532 ** filled using OP_SCopy. OP_Copy must be used instead. 3533 ** 3534 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3535 ** factored out into initialization code. 3536 */ 3537 int sqlite3ExprCodeExprList( 3538 Parse *pParse, /* Parsing context */ 3539 ExprList *pList, /* The expression list to be coded */ 3540 int target, /* Where to write results */ 3541 u8 flags /* SQLITE_ECEL_* flags */ 3542 ){ 3543 struct ExprList_item *pItem; 3544 int i, n; 3545 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3546 assert( pList!=0 ); 3547 assert( target>0 ); 3548 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3549 n = pList->nExpr; 3550 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3551 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3552 Expr *pExpr = pItem->pExpr; 3553 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3554 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3555 }else{ 3556 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3557 if( inReg!=target+i ){ 3558 VdbeOp *pOp; 3559 Vdbe *v = pParse->pVdbe; 3560 if( copyOp==OP_Copy 3561 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3562 && pOp->p1+pOp->p3+1==inReg 3563 && pOp->p2+pOp->p3+1==target+i 3564 ){ 3565 pOp->p3++; 3566 }else{ 3567 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3568 } 3569 } 3570 } 3571 } 3572 return n; 3573 } 3574 3575 /* 3576 ** Generate code for a BETWEEN operator. 3577 ** 3578 ** x BETWEEN y AND z 3579 ** 3580 ** The above is equivalent to 3581 ** 3582 ** x>=y AND x<=z 3583 ** 3584 ** Code it as such, taking care to do the common subexpression 3585 ** elimination of x. 3586 */ 3587 static void exprCodeBetween( 3588 Parse *pParse, /* Parsing and code generating context */ 3589 Expr *pExpr, /* The BETWEEN expression */ 3590 int dest, /* Jump here if the jump is taken */ 3591 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3592 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3593 ){ 3594 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3595 Expr compLeft; /* The x>=y term */ 3596 Expr compRight; /* The x<=z term */ 3597 Expr exprX; /* The x subexpression */ 3598 int regFree1 = 0; /* Temporary use register */ 3599 3600 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3601 exprX = *pExpr->pLeft; 3602 exprAnd.op = TK_AND; 3603 exprAnd.pLeft = &compLeft; 3604 exprAnd.pRight = &compRight; 3605 compLeft.op = TK_GE; 3606 compLeft.pLeft = &exprX; 3607 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3608 compRight.op = TK_LE; 3609 compRight.pLeft = &exprX; 3610 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3611 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3612 if( jumpIfTrue ){ 3613 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3614 }else{ 3615 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3616 } 3617 sqlite3ReleaseTempReg(pParse, regFree1); 3618 3619 /* Ensure adequate test coverage */ 3620 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3621 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3622 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3623 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3624 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3625 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3626 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3627 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3628 } 3629 3630 /* 3631 ** Generate code for a boolean expression such that a jump is made 3632 ** to the label "dest" if the expression is true but execution 3633 ** continues straight thru if the expression is false. 3634 ** 3635 ** If the expression evaluates to NULL (neither true nor false), then 3636 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3637 ** 3638 ** This code depends on the fact that certain token values (ex: TK_EQ) 3639 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3640 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3641 ** the make process cause these values to align. Assert()s in the code 3642 ** below verify that the numbers are aligned correctly. 3643 */ 3644 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3645 Vdbe *v = pParse->pVdbe; 3646 int op = 0; 3647 int regFree1 = 0; 3648 int regFree2 = 0; 3649 int r1, r2; 3650 3651 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3652 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3653 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3654 op = pExpr->op; 3655 switch( op ){ 3656 case TK_AND: { 3657 int d2 = sqlite3VdbeMakeLabel(v); 3658 testcase( jumpIfNull==0 ); 3659 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3660 sqlite3ExprCachePush(pParse); 3661 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3662 sqlite3VdbeResolveLabel(v, d2); 3663 sqlite3ExprCachePop(pParse); 3664 break; 3665 } 3666 case TK_OR: { 3667 testcase( jumpIfNull==0 ); 3668 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3669 sqlite3ExprCachePush(pParse); 3670 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3671 sqlite3ExprCachePop(pParse); 3672 break; 3673 } 3674 case TK_NOT: { 3675 testcase( jumpIfNull==0 ); 3676 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3677 break; 3678 } 3679 case TK_LT: 3680 case TK_LE: 3681 case TK_GT: 3682 case TK_GE: 3683 case TK_NE: 3684 case TK_EQ: { 3685 testcase( jumpIfNull==0 ); 3686 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3687 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3688 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3689 r1, r2, dest, jumpIfNull); 3690 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3691 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3692 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3693 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3694 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3695 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3696 testcase( regFree1==0 ); 3697 testcase( regFree2==0 ); 3698 break; 3699 } 3700 case TK_IS: 3701 case TK_ISNOT: { 3702 testcase( op==TK_IS ); 3703 testcase( op==TK_ISNOT ); 3704 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3705 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3706 op = (op==TK_IS) ? TK_EQ : TK_NE; 3707 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3708 r1, r2, dest, SQLITE_NULLEQ); 3709 VdbeCoverageIf(v, op==TK_EQ); 3710 VdbeCoverageIf(v, op==TK_NE); 3711 testcase( regFree1==0 ); 3712 testcase( regFree2==0 ); 3713 break; 3714 } 3715 case TK_ISNULL: 3716 case TK_NOTNULL: { 3717 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3718 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3719 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3720 sqlite3VdbeAddOp2(v, op, r1, dest); 3721 VdbeCoverageIf(v, op==TK_ISNULL); 3722 VdbeCoverageIf(v, op==TK_NOTNULL); 3723 testcase( regFree1==0 ); 3724 break; 3725 } 3726 case TK_BETWEEN: { 3727 testcase( jumpIfNull==0 ); 3728 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3729 break; 3730 } 3731 #ifndef SQLITE_OMIT_SUBQUERY 3732 case TK_IN: { 3733 int destIfFalse = sqlite3VdbeMakeLabel(v); 3734 int destIfNull = jumpIfNull ? dest : destIfFalse; 3735 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3736 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3737 sqlite3VdbeResolveLabel(v, destIfFalse); 3738 break; 3739 } 3740 #endif 3741 default: { 3742 if( exprAlwaysTrue(pExpr) ){ 3743 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3744 }else if( exprAlwaysFalse(pExpr) ){ 3745 /* No-op */ 3746 }else{ 3747 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3748 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3749 VdbeCoverage(v); 3750 testcase( regFree1==0 ); 3751 testcase( jumpIfNull==0 ); 3752 } 3753 break; 3754 } 3755 } 3756 sqlite3ReleaseTempReg(pParse, regFree1); 3757 sqlite3ReleaseTempReg(pParse, regFree2); 3758 } 3759 3760 /* 3761 ** Generate code for a boolean expression such that a jump is made 3762 ** to the label "dest" if the expression is false but execution 3763 ** continues straight thru if the expression is true. 3764 ** 3765 ** If the expression evaluates to NULL (neither true nor false) then 3766 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3767 ** is 0. 3768 */ 3769 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3770 Vdbe *v = pParse->pVdbe; 3771 int op = 0; 3772 int regFree1 = 0; 3773 int regFree2 = 0; 3774 int r1, r2; 3775 3776 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3777 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3778 if( pExpr==0 ) return; 3779 3780 /* The value of pExpr->op and op are related as follows: 3781 ** 3782 ** pExpr->op op 3783 ** --------- ---------- 3784 ** TK_ISNULL OP_NotNull 3785 ** TK_NOTNULL OP_IsNull 3786 ** TK_NE OP_Eq 3787 ** TK_EQ OP_Ne 3788 ** TK_GT OP_Le 3789 ** TK_LE OP_Gt 3790 ** TK_GE OP_Lt 3791 ** TK_LT OP_Ge 3792 ** 3793 ** For other values of pExpr->op, op is undefined and unused. 3794 ** The value of TK_ and OP_ constants are arranged such that we 3795 ** can compute the mapping above using the following expression. 3796 ** Assert()s verify that the computation is correct. 3797 */ 3798 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3799 3800 /* Verify correct alignment of TK_ and OP_ constants 3801 */ 3802 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3803 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3804 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3805 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3806 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3807 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3808 assert( pExpr->op!=TK_GT || op==OP_Le ); 3809 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3810 3811 switch( pExpr->op ){ 3812 case TK_AND: { 3813 testcase( jumpIfNull==0 ); 3814 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3815 sqlite3ExprCachePush(pParse); 3816 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3817 sqlite3ExprCachePop(pParse); 3818 break; 3819 } 3820 case TK_OR: { 3821 int d2 = sqlite3VdbeMakeLabel(v); 3822 testcase( jumpIfNull==0 ); 3823 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3824 sqlite3ExprCachePush(pParse); 3825 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3826 sqlite3VdbeResolveLabel(v, d2); 3827 sqlite3ExprCachePop(pParse); 3828 break; 3829 } 3830 case TK_NOT: { 3831 testcase( jumpIfNull==0 ); 3832 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3833 break; 3834 } 3835 case TK_LT: 3836 case TK_LE: 3837 case TK_GT: 3838 case TK_GE: 3839 case TK_NE: 3840 case TK_EQ: { 3841 testcase( jumpIfNull==0 ); 3842 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3843 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3844 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3845 r1, r2, dest, jumpIfNull); 3846 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3847 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3848 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3849 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3850 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3851 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3852 testcase( regFree1==0 ); 3853 testcase( regFree2==0 ); 3854 break; 3855 } 3856 case TK_IS: 3857 case TK_ISNOT: { 3858 testcase( pExpr->op==TK_IS ); 3859 testcase( pExpr->op==TK_ISNOT ); 3860 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3861 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3862 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3863 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3864 r1, r2, dest, SQLITE_NULLEQ); 3865 VdbeCoverageIf(v, op==TK_EQ); 3866 VdbeCoverageIf(v, op==TK_NE); 3867 testcase( regFree1==0 ); 3868 testcase( regFree2==0 ); 3869 break; 3870 } 3871 case TK_ISNULL: 3872 case TK_NOTNULL: { 3873 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3874 sqlite3VdbeAddOp2(v, op, r1, dest); 3875 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 3876 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 3877 testcase( regFree1==0 ); 3878 break; 3879 } 3880 case TK_BETWEEN: { 3881 testcase( jumpIfNull==0 ); 3882 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3883 break; 3884 } 3885 #ifndef SQLITE_OMIT_SUBQUERY 3886 case TK_IN: { 3887 if( jumpIfNull ){ 3888 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3889 }else{ 3890 int destIfNull = sqlite3VdbeMakeLabel(v); 3891 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3892 sqlite3VdbeResolveLabel(v, destIfNull); 3893 } 3894 break; 3895 } 3896 #endif 3897 default: { 3898 if( exprAlwaysFalse(pExpr) ){ 3899 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3900 }else if( exprAlwaysTrue(pExpr) ){ 3901 /* no-op */ 3902 }else{ 3903 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3904 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3905 VdbeCoverage(v); 3906 testcase( regFree1==0 ); 3907 testcase( jumpIfNull==0 ); 3908 } 3909 break; 3910 } 3911 } 3912 sqlite3ReleaseTempReg(pParse, regFree1); 3913 sqlite3ReleaseTempReg(pParse, regFree2); 3914 } 3915 3916 /* 3917 ** Do a deep comparison of two expression trees. Return 0 if the two 3918 ** expressions are completely identical. Return 1 if they differ only 3919 ** by a COLLATE operator at the top level. Return 2 if there are differences 3920 ** other than the top-level COLLATE operator. 3921 ** 3922 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3923 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3924 ** 3925 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3926 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3927 ** 3928 ** Sometimes this routine will return 2 even if the two expressions 3929 ** really are equivalent. If we cannot prove that the expressions are 3930 ** identical, we return 2 just to be safe. So if this routine 3931 ** returns 2, then you do not really know for certain if the two 3932 ** expressions are the same. But if you get a 0 or 1 return, then you 3933 ** can be sure the expressions are the same. In the places where 3934 ** this routine is used, it does not hurt to get an extra 2 - that 3935 ** just might result in some slightly slower code. But returning 3936 ** an incorrect 0 or 1 could lead to a malfunction. 3937 */ 3938 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3939 u32 combinedFlags; 3940 if( pA==0 || pB==0 ){ 3941 return pB==pA ? 0 : 2; 3942 } 3943 combinedFlags = pA->flags | pB->flags; 3944 if( combinedFlags & EP_IntValue ){ 3945 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3946 return 0; 3947 } 3948 return 2; 3949 } 3950 if( pA->op!=pB->op ){ 3951 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3952 return 1; 3953 } 3954 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3955 return 1; 3956 } 3957 return 2; 3958 } 3959 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3960 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3961 return pA->op==TK_COLLATE ? 1 : 2; 3962 } 3963 } 3964 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3965 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3966 if( combinedFlags & EP_xIsSelect ) return 2; 3967 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3968 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3969 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3970 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 3971 if( pA->iColumn!=pB->iColumn ) return 2; 3972 if( pA->iTable!=pB->iTable 3973 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3974 } 3975 } 3976 return 0; 3977 } 3978 3979 /* 3980 ** Compare two ExprList objects. Return 0 if they are identical and 3981 ** non-zero if they differ in any way. 3982 ** 3983 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3984 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3985 ** 3986 ** This routine might return non-zero for equivalent ExprLists. The 3987 ** only consequence will be disabled optimizations. But this routine 3988 ** must never return 0 if the two ExprList objects are different, or 3989 ** a malfunction will result. 3990 ** 3991 ** Two NULL pointers are considered to be the same. But a NULL pointer 3992 ** always differs from a non-NULL pointer. 3993 */ 3994 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3995 int i; 3996 if( pA==0 && pB==0 ) return 0; 3997 if( pA==0 || pB==0 ) return 1; 3998 if( pA->nExpr!=pB->nExpr ) return 1; 3999 for(i=0; i<pA->nExpr; i++){ 4000 Expr *pExprA = pA->a[i].pExpr; 4001 Expr *pExprB = pB->a[i].pExpr; 4002 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4003 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 4004 } 4005 return 0; 4006 } 4007 4008 /* 4009 ** Return true if we can prove the pE2 will always be true if pE1 is 4010 ** true. Return false if we cannot complete the proof or if pE2 might 4011 ** be false. Examples: 4012 ** 4013 ** pE1: x==5 pE2: x==5 Result: true 4014 ** pE1: x>0 pE2: x==5 Result: false 4015 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 4016 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 4017 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 4018 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 4019 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 4020 ** 4021 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 4022 ** Expr.iTable<0 then assume a table number given by iTab. 4023 ** 4024 ** When in doubt, return false. Returning true might give a performance 4025 ** improvement. Returning false might cause a performance reduction, but 4026 ** it will always give the correct answer and is hence always safe. 4027 */ 4028 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 4029 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 4030 return 1; 4031 } 4032 if( pE2->op==TK_OR 4033 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 4034 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 4035 ){ 4036 return 1; 4037 } 4038 if( pE2->op==TK_NOTNULL 4039 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 4040 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 4041 ){ 4042 return 1; 4043 } 4044 return 0; 4045 } 4046 4047 /* 4048 ** An instance of the following structure is used by the tree walker 4049 ** to count references to table columns in the arguments of an 4050 ** aggregate function, in order to implement the 4051 ** sqlite3FunctionThisSrc() routine. 4052 */ 4053 struct SrcCount { 4054 SrcList *pSrc; /* One particular FROM clause in a nested query */ 4055 int nThis; /* Number of references to columns in pSrcList */ 4056 int nOther; /* Number of references to columns in other FROM clauses */ 4057 }; 4058 4059 /* 4060 ** Count the number of references to columns. 4061 */ 4062 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 4063 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 4064 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 4065 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 4066 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 4067 ** NEVER() will need to be removed. */ 4068 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 4069 int i; 4070 struct SrcCount *p = pWalker->u.pSrcCount; 4071 SrcList *pSrc = p->pSrc; 4072 for(i=0; i<pSrc->nSrc; i++){ 4073 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 4074 } 4075 if( i<pSrc->nSrc ){ 4076 p->nThis++; 4077 }else{ 4078 p->nOther++; 4079 } 4080 } 4081 return WRC_Continue; 4082 } 4083 4084 /* 4085 ** Determine if any of the arguments to the pExpr Function reference 4086 ** pSrcList. Return true if they do. Also return true if the function 4087 ** has no arguments or has only constant arguments. Return false if pExpr 4088 ** references columns but not columns of tables found in pSrcList. 4089 */ 4090 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4091 Walker w; 4092 struct SrcCount cnt; 4093 assert( pExpr->op==TK_AGG_FUNCTION ); 4094 memset(&w, 0, sizeof(w)); 4095 w.xExprCallback = exprSrcCount; 4096 w.u.pSrcCount = &cnt; 4097 cnt.pSrc = pSrcList; 4098 cnt.nThis = 0; 4099 cnt.nOther = 0; 4100 sqlite3WalkExprList(&w, pExpr->x.pList); 4101 return cnt.nThis>0 || cnt.nOther==0; 4102 } 4103 4104 /* 4105 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4106 ** the new element. Return a negative number if malloc fails. 4107 */ 4108 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4109 int i; 4110 pInfo->aCol = sqlite3ArrayAllocate( 4111 db, 4112 pInfo->aCol, 4113 sizeof(pInfo->aCol[0]), 4114 &pInfo->nColumn, 4115 &i 4116 ); 4117 return i; 4118 } 4119 4120 /* 4121 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4122 ** the new element. Return a negative number if malloc fails. 4123 */ 4124 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4125 int i; 4126 pInfo->aFunc = sqlite3ArrayAllocate( 4127 db, 4128 pInfo->aFunc, 4129 sizeof(pInfo->aFunc[0]), 4130 &pInfo->nFunc, 4131 &i 4132 ); 4133 return i; 4134 } 4135 4136 /* 4137 ** This is the xExprCallback for a tree walker. It is used to 4138 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4139 ** for additional information. 4140 */ 4141 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4142 int i; 4143 NameContext *pNC = pWalker->u.pNC; 4144 Parse *pParse = pNC->pParse; 4145 SrcList *pSrcList = pNC->pSrcList; 4146 AggInfo *pAggInfo = pNC->pAggInfo; 4147 4148 switch( pExpr->op ){ 4149 case TK_AGG_COLUMN: 4150 case TK_COLUMN: { 4151 testcase( pExpr->op==TK_AGG_COLUMN ); 4152 testcase( pExpr->op==TK_COLUMN ); 4153 /* Check to see if the column is in one of the tables in the FROM 4154 ** clause of the aggregate query */ 4155 if( ALWAYS(pSrcList!=0) ){ 4156 struct SrcList_item *pItem = pSrcList->a; 4157 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4158 struct AggInfo_col *pCol; 4159 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4160 if( pExpr->iTable==pItem->iCursor ){ 4161 /* If we reach this point, it means that pExpr refers to a table 4162 ** that is in the FROM clause of the aggregate query. 4163 ** 4164 ** Make an entry for the column in pAggInfo->aCol[] if there 4165 ** is not an entry there already. 4166 */ 4167 int k; 4168 pCol = pAggInfo->aCol; 4169 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4170 if( pCol->iTable==pExpr->iTable && 4171 pCol->iColumn==pExpr->iColumn ){ 4172 break; 4173 } 4174 } 4175 if( (k>=pAggInfo->nColumn) 4176 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4177 ){ 4178 pCol = &pAggInfo->aCol[k]; 4179 pCol->pTab = pExpr->pTab; 4180 pCol->iTable = pExpr->iTable; 4181 pCol->iColumn = pExpr->iColumn; 4182 pCol->iMem = ++pParse->nMem; 4183 pCol->iSorterColumn = -1; 4184 pCol->pExpr = pExpr; 4185 if( pAggInfo->pGroupBy ){ 4186 int j, n; 4187 ExprList *pGB = pAggInfo->pGroupBy; 4188 struct ExprList_item *pTerm = pGB->a; 4189 n = pGB->nExpr; 4190 for(j=0; j<n; j++, pTerm++){ 4191 Expr *pE = pTerm->pExpr; 4192 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4193 pE->iColumn==pExpr->iColumn ){ 4194 pCol->iSorterColumn = j; 4195 break; 4196 } 4197 } 4198 } 4199 if( pCol->iSorterColumn<0 ){ 4200 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4201 } 4202 } 4203 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4204 ** because it was there before or because we just created it). 4205 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4206 ** pAggInfo->aCol[] entry. 4207 */ 4208 ExprSetVVAProperty(pExpr, EP_NoReduce); 4209 pExpr->pAggInfo = pAggInfo; 4210 pExpr->op = TK_AGG_COLUMN; 4211 pExpr->iAgg = (i16)k; 4212 break; 4213 } /* endif pExpr->iTable==pItem->iCursor */ 4214 } /* end loop over pSrcList */ 4215 } 4216 return WRC_Prune; 4217 } 4218 case TK_AGG_FUNCTION: { 4219 if( (pNC->ncFlags & NC_InAggFunc)==0 4220 && pWalker->walkerDepth==pExpr->op2 4221 ){ 4222 /* Check to see if pExpr is a duplicate of another aggregate 4223 ** function that is already in the pAggInfo structure 4224 */ 4225 struct AggInfo_func *pItem = pAggInfo->aFunc; 4226 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4227 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4228 break; 4229 } 4230 } 4231 if( i>=pAggInfo->nFunc ){ 4232 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4233 */ 4234 u8 enc = ENC(pParse->db); 4235 i = addAggInfoFunc(pParse->db, pAggInfo); 4236 if( i>=0 ){ 4237 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4238 pItem = &pAggInfo->aFunc[i]; 4239 pItem->pExpr = pExpr; 4240 pItem->iMem = ++pParse->nMem; 4241 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4242 pItem->pFunc = sqlite3FindFunction(pParse->db, 4243 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4244 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4245 if( pExpr->flags & EP_Distinct ){ 4246 pItem->iDistinct = pParse->nTab++; 4247 }else{ 4248 pItem->iDistinct = -1; 4249 } 4250 } 4251 } 4252 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4253 */ 4254 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4255 ExprSetVVAProperty(pExpr, EP_NoReduce); 4256 pExpr->iAgg = (i16)i; 4257 pExpr->pAggInfo = pAggInfo; 4258 return WRC_Prune; 4259 }else{ 4260 return WRC_Continue; 4261 } 4262 } 4263 } 4264 return WRC_Continue; 4265 } 4266 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4267 UNUSED_PARAMETER(pWalker); 4268 UNUSED_PARAMETER(pSelect); 4269 return WRC_Continue; 4270 } 4271 4272 /* 4273 ** Analyze the pExpr expression looking for aggregate functions and 4274 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4275 ** points to. Additional entries are made on the AggInfo object as 4276 ** necessary. 4277 ** 4278 ** This routine should only be called after the expression has been 4279 ** analyzed by sqlite3ResolveExprNames(). 4280 */ 4281 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4282 Walker w; 4283 memset(&w, 0, sizeof(w)); 4284 w.xExprCallback = analyzeAggregate; 4285 w.xSelectCallback = analyzeAggregatesInSelect; 4286 w.u.pNC = pNC; 4287 assert( pNC->pSrcList!=0 ); 4288 sqlite3WalkExpr(&w, pExpr); 4289 } 4290 4291 /* 4292 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4293 ** expression list. Return the number of errors. 4294 ** 4295 ** If an error is found, the analysis is cut short. 4296 */ 4297 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4298 struct ExprList_item *pItem; 4299 int i; 4300 if( pList ){ 4301 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4302 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4303 } 4304 } 4305 } 4306 4307 /* 4308 ** Allocate a single new register for use to hold some intermediate result. 4309 */ 4310 int sqlite3GetTempReg(Parse *pParse){ 4311 if( pParse->nTempReg==0 ){ 4312 return ++pParse->nMem; 4313 } 4314 return pParse->aTempReg[--pParse->nTempReg]; 4315 } 4316 4317 /* 4318 ** Deallocate a register, making available for reuse for some other 4319 ** purpose. 4320 ** 4321 ** If a register is currently being used by the column cache, then 4322 ** the deallocation is deferred until the column cache line that uses 4323 ** the register becomes stale. 4324 */ 4325 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4326 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4327 int i; 4328 struct yColCache *p; 4329 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4330 if( p->iReg==iReg ){ 4331 p->tempReg = 1; 4332 return; 4333 } 4334 } 4335 pParse->aTempReg[pParse->nTempReg++] = iReg; 4336 } 4337 } 4338 4339 /* 4340 ** Allocate or deallocate a block of nReg consecutive registers 4341 */ 4342 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4343 int i, n; 4344 i = pParse->iRangeReg; 4345 n = pParse->nRangeReg; 4346 if( nReg<=n ){ 4347 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4348 pParse->iRangeReg += nReg; 4349 pParse->nRangeReg -= nReg; 4350 }else{ 4351 i = pParse->nMem+1; 4352 pParse->nMem += nReg; 4353 } 4354 return i; 4355 } 4356 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4357 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4358 if( nReg>pParse->nRangeReg ){ 4359 pParse->nRangeReg = nReg; 4360 pParse->iRangeReg = iReg; 4361 } 4362 } 4363 4364 /* 4365 ** Mark all temporary registers as being unavailable for reuse. 4366 */ 4367 void sqlite3ClearTempRegCache(Parse *pParse){ 4368 pParse->nTempReg = 0; 4369 pParse->nRangeReg = 0; 4370 } 4371