xref: /sqlite-3.40.0/src/expr.c (revision b9324fea)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( (op==TK_COLUMN || op==TK_AGG_COLUMN) && pExpr->y.pTab ){
57     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
58   }
59   if( op==TK_SELECT ){
60     assert( pExpr->flags&EP_xIsSelect );
61     assert( pExpr->x.pSelect!=0 );
62     assert( pExpr->x.pSelect->pEList!=0 );
63     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
64     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
65   }
66 #ifndef SQLITE_OMIT_CAST
67   if( op==TK_CAST ){
68     assert( !ExprHasProperty(pExpr, EP_IntValue) );
69     return sqlite3AffinityType(pExpr->u.zToken, 0);
70   }
71 #endif
72   if( op==TK_SELECT_COLUMN ){
73     assert( pExpr->pLeft->flags&EP_xIsSelect );
74     assert( pExpr->iColumn < pExpr->iTable );
75     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
76     return sqlite3ExprAffinity(
77         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
78     );
79   }
80   if( op==TK_VECTOR ){
81     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
82   }
83   return pExpr->affExpr;
84 }
85 
86 /*
87 ** Set the collating sequence for expression pExpr to be the collating
88 ** sequence named by pToken.   Return a pointer to a new Expr node that
89 ** implements the COLLATE operator.
90 **
91 ** If a memory allocation error occurs, that fact is recorded in pParse->db
92 ** and the pExpr parameter is returned unchanged.
93 */
94 Expr *sqlite3ExprAddCollateToken(
95   Parse *pParse,           /* Parsing context */
96   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
97   const Token *pCollName,  /* Name of collating sequence */
98   int dequote              /* True to dequote pCollName */
99 ){
100   if( pCollName->n>0 ){
101     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
102     if( pNew ){
103       pNew->pLeft = pExpr;
104       pNew->flags |= EP_Collate|EP_Skip;
105       pExpr = pNew;
106     }
107   }
108   return pExpr;
109 }
110 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
111   Token s;
112   assert( zC!=0 );
113   sqlite3TokenInit(&s, (char*)zC);
114   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
115 }
116 
117 /*
118 ** Skip over any TK_COLLATE operators.
119 */
120 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
121   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
122     assert( pExpr->op==TK_COLLATE );
123     pExpr = pExpr->pLeft;
124   }
125   return pExpr;
126 }
127 
128 /*
129 ** Skip over any TK_COLLATE operators and/or any unlikely()
130 ** or likelihood() or likely() functions at the root of an
131 ** expression.
132 */
133 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
134   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
135     if( ExprHasProperty(pExpr, EP_Unlikely) ){
136       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
137       assert( pExpr->x.pList->nExpr>0 );
138       assert( pExpr->op==TK_FUNCTION );
139       pExpr = pExpr->x.pList->a[0].pExpr;
140     }else{
141       assert( pExpr->op==TK_COLLATE );
142       pExpr = pExpr->pLeft;
143     }
144   }
145   return pExpr;
146 }
147 
148 /*
149 ** Return the collation sequence for the expression pExpr. If
150 ** there is no defined collating sequence, return NULL.
151 **
152 ** See also: sqlite3ExprNNCollSeq()
153 **
154 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
155 ** default collation if pExpr has no defined collation.
156 **
157 ** The collating sequence might be determined by a COLLATE operator
158 ** or by the presence of a column with a defined collating sequence.
159 ** COLLATE operators take first precedence.  Left operands take
160 ** precedence over right operands.
161 */
162 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
163   sqlite3 *db = pParse->db;
164   CollSeq *pColl = 0;
165   const Expr *p = pExpr;
166   while( p ){
167     int op = p->op;
168     if( op==TK_REGISTER ) op = p->op2;
169     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
170      && p->y.pTab!=0
171     ){
172       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
173       ** a TK_COLUMN but was previously evaluated and cached in a register */
174       int j = p->iColumn;
175       if( j>=0 ){
176         const char *zColl = p->y.pTab->aCol[j].zColl;
177         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
178       }
179       break;
180     }
181     if( op==TK_CAST || op==TK_UPLUS ){
182       p = p->pLeft;
183       continue;
184     }
185     if( op==TK_VECTOR ){
186       p = p->x.pList->a[0].pExpr;
187       continue;
188     }
189     if( op==TK_COLLATE ){
190       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
191       break;
192     }
193     if( p->flags & EP_Collate ){
194       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
195         p = p->pLeft;
196       }else{
197         Expr *pNext  = p->pRight;
198         /* The Expr.x union is never used at the same time as Expr.pRight */
199         assert( p->x.pList==0 || p->pRight==0 );
200         if( p->x.pList!=0
201          && !db->mallocFailed
202          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
203         ){
204           int i;
205           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
206             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
207               pNext = p->x.pList->a[i].pExpr;
208               break;
209             }
210           }
211         }
212         p = pNext;
213       }
214     }else{
215       break;
216     }
217   }
218   if( sqlite3CheckCollSeq(pParse, pColl) ){
219     pColl = 0;
220   }
221   return pColl;
222 }
223 
224 /*
225 ** Return the collation sequence for the expression pExpr. If
226 ** there is no defined collating sequence, return a pointer to the
227 ** defautl collation sequence.
228 **
229 ** See also: sqlite3ExprCollSeq()
230 **
231 ** The sqlite3ExprCollSeq() routine works the same except that it
232 ** returns NULL if there is no defined collation.
233 */
234 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
235   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
236   if( p==0 ) p = pParse->db->pDfltColl;
237   assert( p!=0 );
238   return p;
239 }
240 
241 /*
242 ** Return TRUE if the two expressions have equivalent collating sequences.
243 */
244 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
245   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
246   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
247   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
248 }
249 
250 /*
251 ** pExpr is an operand of a comparison operator.  aff2 is the
252 ** type affinity of the other operand.  This routine returns the
253 ** type affinity that should be used for the comparison operator.
254 */
255 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
256   char aff1 = sqlite3ExprAffinity(pExpr);
257   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
258     /* Both sides of the comparison are columns. If one has numeric
259     ** affinity, use that. Otherwise use no affinity.
260     */
261     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
262       return SQLITE_AFF_NUMERIC;
263     }else{
264       return SQLITE_AFF_BLOB;
265     }
266   }else{
267     /* One side is a column, the other is not. Use the columns affinity. */
268     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
269     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
270   }
271 }
272 
273 /*
274 ** pExpr is a comparison operator.  Return the type affinity that should
275 ** be applied to both operands prior to doing the comparison.
276 */
277 static char comparisonAffinity(const Expr *pExpr){
278   char aff;
279   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
280           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
281           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
282   assert( pExpr->pLeft );
283   aff = sqlite3ExprAffinity(pExpr->pLeft);
284   if( pExpr->pRight ){
285     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
286   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
287     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
288   }else if( aff==0 ){
289     aff = SQLITE_AFF_BLOB;
290   }
291   return aff;
292 }
293 
294 /*
295 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
296 ** idx_affinity is the affinity of an indexed column. Return true
297 ** if the index with affinity idx_affinity may be used to implement
298 ** the comparison in pExpr.
299 */
300 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
301   char aff = comparisonAffinity(pExpr);
302   if( aff<SQLITE_AFF_TEXT ){
303     return 1;
304   }
305   if( aff==SQLITE_AFF_TEXT ){
306     return idx_affinity==SQLITE_AFF_TEXT;
307   }
308   return sqlite3IsNumericAffinity(idx_affinity);
309 }
310 
311 /*
312 ** Return the P5 value that should be used for a binary comparison
313 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
314 */
315 static u8 binaryCompareP5(
316   const Expr *pExpr1,   /* Left operand */
317   const Expr *pExpr2,   /* Right operand */
318   int jumpIfNull        /* Extra flags added to P5 */
319 ){
320   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
321   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
322   return aff;
323 }
324 
325 /*
326 ** Return a pointer to the collation sequence that should be used by
327 ** a binary comparison operator comparing pLeft and pRight.
328 **
329 ** If the left hand expression has a collating sequence type, then it is
330 ** used. Otherwise the collation sequence for the right hand expression
331 ** is used, or the default (BINARY) if neither expression has a collating
332 ** type.
333 **
334 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
335 ** it is not considered.
336 */
337 CollSeq *sqlite3BinaryCompareCollSeq(
338   Parse *pParse,
339   const Expr *pLeft,
340   const Expr *pRight
341 ){
342   CollSeq *pColl;
343   assert( pLeft );
344   if( pLeft->flags & EP_Collate ){
345     pColl = sqlite3ExprCollSeq(pParse, pLeft);
346   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
347     pColl = sqlite3ExprCollSeq(pParse, pRight);
348   }else{
349     pColl = sqlite3ExprCollSeq(pParse, pLeft);
350     if( !pColl ){
351       pColl = sqlite3ExprCollSeq(pParse, pRight);
352     }
353   }
354   return pColl;
355 }
356 
357 /* Expresssion p is a comparison operator.  Return a collation sequence
358 ** appropriate for the comparison operator.
359 **
360 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
361 ** However, if the OP_Commuted flag is set, then the order of the operands
362 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
363 ** correct collating sequence is found.
364 */
365 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
366   if( ExprHasProperty(p, EP_Commuted) ){
367     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
368   }else{
369     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
370   }
371 }
372 
373 /*
374 ** Generate code for a comparison operator.
375 */
376 static int codeCompare(
377   Parse *pParse,    /* The parsing (and code generating) context */
378   Expr *pLeft,      /* The left operand */
379   Expr *pRight,     /* The right operand */
380   int opcode,       /* The comparison opcode */
381   int in1, int in2, /* Register holding operands */
382   int dest,         /* Jump here if true.  */
383   int jumpIfNull,   /* If true, jump if either operand is NULL */
384   int isCommuted    /* The comparison has been commuted */
385 ){
386   int p5;
387   int addr;
388   CollSeq *p4;
389 
390   if( pParse->nErr ) return 0;
391   if( isCommuted ){
392     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
393   }else{
394     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
395   }
396   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
397   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
398                            (void*)p4, P4_COLLSEQ);
399   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
400   return addr;
401 }
402 
403 /*
404 ** Return true if expression pExpr is a vector, or false otherwise.
405 **
406 ** A vector is defined as any expression that results in two or more
407 ** columns of result.  Every TK_VECTOR node is an vector because the
408 ** parser will not generate a TK_VECTOR with fewer than two entries.
409 ** But a TK_SELECT might be either a vector or a scalar. It is only
410 ** considered a vector if it has two or more result columns.
411 */
412 int sqlite3ExprIsVector(Expr *pExpr){
413   return sqlite3ExprVectorSize(pExpr)>1;
414 }
415 
416 /*
417 ** If the expression passed as the only argument is of type TK_VECTOR
418 ** return the number of expressions in the vector. Or, if the expression
419 ** is a sub-select, return the number of columns in the sub-select. For
420 ** any other type of expression, return 1.
421 */
422 int sqlite3ExprVectorSize(Expr *pExpr){
423   u8 op = pExpr->op;
424   if( op==TK_REGISTER ) op = pExpr->op2;
425   if( op==TK_VECTOR ){
426     return pExpr->x.pList->nExpr;
427   }else if( op==TK_SELECT ){
428     return pExpr->x.pSelect->pEList->nExpr;
429   }else{
430     return 1;
431   }
432 }
433 
434 /*
435 ** Return a pointer to a subexpression of pVector that is the i-th
436 ** column of the vector (numbered starting with 0).  The caller must
437 ** ensure that i is within range.
438 **
439 ** If pVector is really a scalar (and "scalar" here includes subqueries
440 ** that return a single column!) then return pVector unmodified.
441 **
442 ** pVector retains ownership of the returned subexpression.
443 **
444 ** If the vector is a (SELECT ...) then the expression returned is
445 ** just the expression for the i-th term of the result set, and may
446 ** not be ready for evaluation because the table cursor has not yet
447 ** been positioned.
448 */
449 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
450   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
451   if( sqlite3ExprIsVector(pVector) ){
452     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
453     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
454       return pVector->x.pSelect->pEList->a[i].pExpr;
455     }else{
456       return pVector->x.pList->a[i].pExpr;
457     }
458   }
459   return pVector;
460 }
461 
462 /*
463 ** Compute and return a new Expr object which when passed to
464 ** sqlite3ExprCode() will generate all necessary code to compute
465 ** the iField-th column of the vector expression pVector.
466 **
467 ** It is ok for pVector to be a scalar (as long as iField==0).
468 ** In that case, this routine works like sqlite3ExprDup().
469 **
470 ** The caller owns the returned Expr object and is responsible for
471 ** ensuring that the returned value eventually gets freed.
472 **
473 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
474 ** then the returned object will reference pVector and so pVector must remain
475 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
476 ** or a scalar expression, then it can be deleted as soon as this routine
477 ** returns.
478 **
479 ** A trick to cause a TK_SELECT pVector to be deleted together with
480 ** the returned Expr object is to attach the pVector to the pRight field
481 ** of the returned TK_SELECT_COLUMN Expr object.
482 */
483 Expr *sqlite3ExprForVectorField(
484   Parse *pParse,       /* Parsing context */
485   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
486   int iField,          /* Which column of the vector to return */
487   int nField           /* Total number of columns in the vector */
488 ){
489   Expr *pRet;
490   if( pVector->op==TK_SELECT ){
491     assert( pVector->flags & EP_xIsSelect );
492     /* The TK_SELECT_COLUMN Expr node:
493     **
494     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
495     ** pRight:          not used.  But recursively deleted.
496     ** iColumn:         Index of a column in pVector
497     ** iTable:          0 or the number of columns on the LHS of an assignment
498     ** pLeft->iTable:   First in an array of register holding result, or 0
499     **                  if the result is not yet computed.
500     **
501     ** sqlite3ExprDelete() specifically skips the recursive delete of
502     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
503     ** can be attached to pRight to cause this node to take ownership of
504     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
505     ** with the same pLeft pointer to the pVector, but only one of them
506     ** will own the pVector.
507     */
508     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
509     if( pRet ){
510       pRet->iTable = nField;
511       pRet->iColumn = iField;
512       pRet->pLeft = pVector;
513     }
514   }else{
515     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
516     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
517     sqlite3RenameTokenRemap(pParse, pRet, pVector);
518   }
519   return pRet;
520 }
521 
522 /*
523 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
524 ** it. Return the register in which the result is stored (or, if the
525 ** sub-select returns more than one column, the first in an array
526 ** of registers in which the result is stored).
527 **
528 ** If pExpr is not a TK_SELECT expression, return 0.
529 */
530 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
531   int reg = 0;
532 #ifndef SQLITE_OMIT_SUBQUERY
533   if( pExpr->op==TK_SELECT ){
534     reg = sqlite3CodeSubselect(pParse, pExpr);
535   }
536 #endif
537   return reg;
538 }
539 
540 /*
541 ** Argument pVector points to a vector expression - either a TK_VECTOR
542 ** or TK_SELECT that returns more than one column. This function returns
543 ** the register number of a register that contains the value of
544 ** element iField of the vector.
545 **
546 ** If pVector is a TK_SELECT expression, then code for it must have
547 ** already been generated using the exprCodeSubselect() routine. In this
548 ** case parameter regSelect should be the first in an array of registers
549 ** containing the results of the sub-select.
550 **
551 ** If pVector is of type TK_VECTOR, then code for the requested field
552 ** is generated. In this case (*pRegFree) may be set to the number of
553 ** a temporary register to be freed by the caller before returning.
554 **
555 ** Before returning, output parameter (*ppExpr) is set to point to the
556 ** Expr object corresponding to element iElem of the vector.
557 */
558 static int exprVectorRegister(
559   Parse *pParse,                  /* Parse context */
560   Expr *pVector,                  /* Vector to extract element from */
561   int iField,                     /* Field to extract from pVector */
562   int regSelect,                  /* First in array of registers */
563   Expr **ppExpr,                  /* OUT: Expression element */
564   int *pRegFree                   /* OUT: Temp register to free */
565 ){
566   u8 op = pVector->op;
567   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
568   if( op==TK_REGISTER ){
569     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
570     return pVector->iTable+iField;
571   }
572   if( op==TK_SELECT ){
573     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
574      return regSelect+iField;
575   }
576   if( op==TK_VECTOR ){
577     *ppExpr = pVector->x.pList->a[iField].pExpr;
578     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
579   }
580   return 0;
581 }
582 
583 /*
584 ** Expression pExpr is a comparison between two vector values. Compute
585 ** the result of the comparison (1, 0, or NULL) and write that
586 ** result into register dest.
587 **
588 ** The caller must satisfy the following preconditions:
589 **
590 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
591 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
592 **    otherwise:                op==pExpr->op and p5==0
593 */
594 static void codeVectorCompare(
595   Parse *pParse,        /* Code generator context */
596   Expr *pExpr,          /* The comparison operation */
597   int dest,             /* Write results into this register */
598   u8 op,                /* Comparison operator */
599   u8 p5                 /* SQLITE_NULLEQ or zero */
600 ){
601   Vdbe *v = pParse->pVdbe;
602   Expr *pLeft = pExpr->pLeft;
603   Expr *pRight = pExpr->pRight;
604   int nLeft = sqlite3ExprVectorSize(pLeft);
605   int i;
606   int regLeft = 0;
607   int regRight = 0;
608   u8 opx = op;
609   int addrCmp = 0;
610   int addrDone = sqlite3VdbeMakeLabel(pParse);
611   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
612 
613   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
614   if( pParse->nErr ) return;
615   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
616     sqlite3ErrorMsg(pParse, "row value misused");
617     return;
618   }
619   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
620        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
621        || pExpr->op==TK_LT || pExpr->op==TK_GT
622        || pExpr->op==TK_LE || pExpr->op==TK_GE
623   );
624   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
625             || (pExpr->op==TK_ISNOT && op==TK_NE) );
626   assert( p5==0 || pExpr->op!=op );
627   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
628 
629   if( op==TK_LE ) opx = TK_LT;
630   if( op==TK_GE ) opx = TK_GT;
631   if( op==TK_NE ) opx = TK_EQ;
632 
633   regLeft = exprCodeSubselect(pParse, pLeft);
634   regRight = exprCodeSubselect(pParse, pRight);
635 
636   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
637   for(i=0; 1 /*Loop exits by "break"*/; i++){
638     int regFree1 = 0, regFree2 = 0;
639     Expr *pL = 0, *pR = 0;
640     int r1, r2;
641     assert( i>=0 && i<nLeft );
642     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
643     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
644     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
645     addrCmp = sqlite3VdbeCurrentAddr(v);
646     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
647     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
648     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
649     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
650     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
651     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
652     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
653     sqlite3ReleaseTempReg(pParse, regFree1);
654     sqlite3ReleaseTempReg(pParse, regFree2);
655     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
656       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
657       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
658       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
659     }
660     if( p5==SQLITE_NULLEQ ){
661       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
662     }else{
663       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
664     }
665     if( i==nLeft-1 ){
666       break;
667     }
668     if( opx==TK_EQ ){
669       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
670     }else{
671       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
672       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
673       if( i==nLeft-2 ) opx = op;
674     }
675   }
676   sqlite3VdbeJumpHere(v, addrCmp);
677   sqlite3VdbeResolveLabel(v, addrDone);
678   if( op==TK_NE ){
679     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
680   }
681 }
682 
683 #if SQLITE_MAX_EXPR_DEPTH>0
684 /*
685 ** Check that argument nHeight is less than or equal to the maximum
686 ** expression depth allowed. If it is not, leave an error message in
687 ** pParse.
688 */
689 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
690   int rc = SQLITE_OK;
691   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
692   if( nHeight>mxHeight ){
693     sqlite3ErrorMsg(pParse,
694        "Expression tree is too large (maximum depth %d)", mxHeight
695     );
696     rc = SQLITE_ERROR;
697   }
698   return rc;
699 }
700 
701 /* The following three functions, heightOfExpr(), heightOfExprList()
702 ** and heightOfSelect(), are used to determine the maximum height
703 ** of any expression tree referenced by the structure passed as the
704 ** first argument.
705 **
706 ** If this maximum height is greater than the current value pointed
707 ** to by pnHeight, the second parameter, then set *pnHeight to that
708 ** value.
709 */
710 static void heightOfExpr(Expr *p, int *pnHeight){
711   if( p ){
712     if( p->nHeight>*pnHeight ){
713       *pnHeight = p->nHeight;
714     }
715   }
716 }
717 static void heightOfExprList(ExprList *p, int *pnHeight){
718   if( p ){
719     int i;
720     for(i=0; i<p->nExpr; i++){
721       heightOfExpr(p->a[i].pExpr, pnHeight);
722     }
723   }
724 }
725 static void heightOfSelect(Select *pSelect, int *pnHeight){
726   Select *p;
727   for(p=pSelect; p; p=p->pPrior){
728     heightOfExpr(p->pWhere, pnHeight);
729     heightOfExpr(p->pHaving, pnHeight);
730     heightOfExpr(p->pLimit, pnHeight);
731     heightOfExprList(p->pEList, pnHeight);
732     heightOfExprList(p->pGroupBy, pnHeight);
733     heightOfExprList(p->pOrderBy, pnHeight);
734   }
735 }
736 
737 /*
738 ** Set the Expr.nHeight variable in the structure passed as an
739 ** argument. An expression with no children, Expr.pList or
740 ** Expr.pSelect member has a height of 1. Any other expression
741 ** has a height equal to the maximum height of any other
742 ** referenced Expr plus one.
743 **
744 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
745 ** if appropriate.
746 */
747 static void exprSetHeight(Expr *p){
748   int nHeight = 0;
749   heightOfExpr(p->pLeft, &nHeight);
750   heightOfExpr(p->pRight, &nHeight);
751   if( ExprHasProperty(p, EP_xIsSelect) ){
752     heightOfSelect(p->x.pSelect, &nHeight);
753   }else if( p->x.pList ){
754     heightOfExprList(p->x.pList, &nHeight);
755     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
756   }
757   p->nHeight = nHeight + 1;
758 }
759 
760 /*
761 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
762 ** the height is greater than the maximum allowed expression depth,
763 ** leave an error in pParse.
764 **
765 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
766 ** Expr.flags.
767 */
768 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
769   if( pParse->nErr ) return;
770   exprSetHeight(p);
771   sqlite3ExprCheckHeight(pParse, p->nHeight);
772 }
773 
774 /*
775 ** Return the maximum height of any expression tree referenced
776 ** by the select statement passed as an argument.
777 */
778 int sqlite3SelectExprHeight(Select *p){
779   int nHeight = 0;
780   heightOfSelect(p, &nHeight);
781   return nHeight;
782 }
783 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
784 /*
785 ** Propagate all EP_Propagate flags from the Expr.x.pList into
786 ** Expr.flags.
787 */
788 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
789   if( pParse->nErr ) return;
790   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
791     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
792   }
793 }
794 #define exprSetHeight(y)
795 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
796 
797 /*
798 ** This routine is the core allocator for Expr nodes.
799 **
800 ** Construct a new expression node and return a pointer to it.  Memory
801 ** for this node and for the pToken argument is a single allocation
802 ** obtained from sqlite3DbMalloc().  The calling function
803 ** is responsible for making sure the node eventually gets freed.
804 **
805 ** If dequote is true, then the token (if it exists) is dequoted.
806 ** If dequote is false, no dequoting is performed.  The deQuote
807 ** parameter is ignored if pToken is NULL or if the token does not
808 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
809 ** then the EP_DblQuoted flag is set on the expression node.
810 **
811 ** Special case:  If op==TK_INTEGER and pToken points to a string that
812 ** can be translated into a 32-bit integer, then the token is not
813 ** stored in u.zToken.  Instead, the integer values is written
814 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
815 ** is allocated to hold the integer text and the dequote flag is ignored.
816 */
817 Expr *sqlite3ExprAlloc(
818   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
819   int op,                 /* Expression opcode */
820   const Token *pToken,    /* Token argument.  Might be NULL */
821   int dequote             /* True to dequote */
822 ){
823   Expr *pNew;
824   int nExtra = 0;
825   int iValue = 0;
826 
827   assert( db!=0 );
828   if( pToken ){
829     if( op!=TK_INTEGER || pToken->z==0
830           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
831       nExtra = pToken->n+1;
832       assert( iValue>=0 );
833     }
834   }
835   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
836   if( pNew ){
837     memset(pNew, 0, sizeof(Expr));
838     pNew->op = (u8)op;
839     pNew->iAgg = -1;
840     if( pToken ){
841       if( nExtra==0 ){
842         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
843         pNew->u.iValue = iValue;
844       }else{
845         pNew->u.zToken = (char*)&pNew[1];
846         assert( pToken->z!=0 || pToken->n==0 );
847         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
848         pNew->u.zToken[pToken->n] = 0;
849         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
850           sqlite3DequoteExpr(pNew);
851         }
852       }
853     }
854 #if SQLITE_MAX_EXPR_DEPTH>0
855     pNew->nHeight = 1;
856 #endif
857   }
858   return pNew;
859 }
860 
861 /*
862 ** Allocate a new expression node from a zero-terminated token that has
863 ** already been dequoted.
864 */
865 Expr *sqlite3Expr(
866   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
867   int op,                 /* Expression opcode */
868   const char *zToken      /* Token argument.  Might be NULL */
869 ){
870   Token x;
871   x.z = zToken;
872   x.n = sqlite3Strlen30(zToken);
873   return sqlite3ExprAlloc(db, op, &x, 0);
874 }
875 
876 /*
877 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
878 **
879 ** If pRoot==NULL that means that a memory allocation error has occurred.
880 ** In that case, delete the subtrees pLeft and pRight.
881 */
882 void sqlite3ExprAttachSubtrees(
883   sqlite3 *db,
884   Expr *pRoot,
885   Expr *pLeft,
886   Expr *pRight
887 ){
888   if( pRoot==0 ){
889     assert( db->mallocFailed );
890     sqlite3ExprDelete(db, pLeft);
891     sqlite3ExprDelete(db, pRight);
892   }else{
893     if( pRight ){
894       pRoot->pRight = pRight;
895       pRoot->flags |= EP_Propagate & pRight->flags;
896     }
897     if( pLeft ){
898       pRoot->pLeft = pLeft;
899       pRoot->flags |= EP_Propagate & pLeft->flags;
900     }
901     exprSetHeight(pRoot);
902   }
903 }
904 
905 /*
906 ** Allocate an Expr node which joins as many as two subtrees.
907 **
908 ** One or both of the subtrees can be NULL.  Return a pointer to the new
909 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
910 ** free the subtrees and return NULL.
911 */
912 Expr *sqlite3PExpr(
913   Parse *pParse,          /* Parsing context */
914   int op,                 /* Expression opcode */
915   Expr *pLeft,            /* Left operand */
916   Expr *pRight            /* Right operand */
917 ){
918   Expr *p;
919   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
920   if( p ){
921     memset(p, 0, sizeof(Expr));
922     p->op = op & 0xff;
923     p->iAgg = -1;
924     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
925     sqlite3ExprCheckHeight(pParse, p->nHeight);
926   }else{
927     sqlite3ExprDelete(pParse->db, pLeft);
928     sqlite3ExprDelete(pParse->db, pRight);
929   }
930   return p;
931 }
932 
933 /*
934 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
935 ** do a memory allocation failure) then delete the pSelect object.
936 */
937 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
938   if( pExpr ){
939     pExpr->x.pSelect = pSelect;
940     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
941     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
942   }else{
943     assert( pParse->db->mallocFailed );
944     sqlite3SelectDelete(pParse->db, pSelect);
945   }
946 }
947 
948 
949 /*
950 ** Join two expressions using an AND operator.  If either expression is
951 ** NULL, then just return the other expression.
952 **
953 ** If one side or the other of the AND is known to be false, then instead
954 ** of returning an AND expression, just return a constant expression with
955 ** a value of false.
956 */
957 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
958   sqlite3 *db = pParse->db;
959   if( pLeft==0  ){
960     return pRight;
961   }else if( pRight==0 ){
962     return pLeft;
963   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
964          && !IN_RENAME_OBJECT
965   ){
966     sqlite3ExprDeferredDelete(pParse, pLeft);
967     sqlite3ExprDeferredDelete(pParse, pRight);
968     return sqlite3Expr(db, TK_INTEGER, "0");
969   }else{
970     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
971   }
972 }
973 
974 /*
975 ** Construct a new expression node for a function with multiple
976 ** arguments.
977 */
978 Expr *sqlite3ExprFunction(
979   Parse *pParse,        /* Parsing context */
980   ExprList *pList,      /* Argument list */
981   Token *pToken,        /* Name of the function */
982   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
983 ){
984   Expr *pNew;
985   sqlite3 *db = pParse->db;
986   assert( pToken );
987   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
988   if( pNew==0 ){
989     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
990     return 0;
991   }
992   if( pList
993    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
994    && !pParse->nested
995   ){
996     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
997   }
998   pNew->x.pList = pList;
999   ExprSetProperty(pNew, EP_HasFunc);
1000   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1001   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1002   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1003   return pNew;
1004 }
1005 
1006 /*
1007 ** Check to see if a function is usable according to current access
1008 ** rules:
1009 **
1010 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1011 **
1012 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1013 **                                top-level SQL
1014 **
1015 ** If the function is not usable, create an error.
1016 */
1017 void sqlite3ExprFunctionUsable(
1018   Parse *pParse,         /* Parsing and code generating context */
1019   Expr *pExpr,           /* The function invocation */
1020   FuncDef *pDef          /* The function being invoked */
1021 ){
1022   assert( !IN_RENAME_OBJECT );
1023   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1024   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1025     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1026      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1027     ){
1028       /* Functions prohibited in triggers and views if:
1029       **     (1) tagged with SQLITE_DIRECTONLY
1030       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1031       **         is tagged with SQLITE_FUNC_UNSAFE) and
1032       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1033       **         that the schema is possibly tainted).
1034       */
1035       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1036     }
1037   }
1038 }
1039 
1040 /*
1041 ** Assign a variable number to an expression that encodes a wildcard
1042 ** in the original SQL statement.
1043 **
1044 ** Wildcards consisting of a single "?" are assigned the next sequential
1045 ** variable number.
1046 **
1047 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1048 ** sure "nnn" is not too big to avoid a denial of service attack when
1049 ** the SQL statement comes from an external source.
1050 **
1051 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1052 ** as the previous instance of the same wildcard.  Or if this is the first
1053 ** instance of the wildcard, the next sequential variable number is
1054 ** assigned.
1055 */
1056 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1057   sqlite3 *db = pParse->db;
1058   const char *z;
1059   ynVar x;
1060 
1061   if( pExpr==0 ) return;
1062   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1063   z = pExpr->u.zToken;
1064   assert( z!=0 );
1065   assert( z[0]!=0 );
1066   assert( n==(u32)sqlite3Strlen30(z) );
1067   if( z[1]==0 ){
1068     /* Wildcard of the form "?".  Assign the next variable number */
1069     assert( z[0]=='?' );
1070     x = (ynVar)(++pParse->nVar);
1071   }else{
1072     int doAdd = 0;
1073     if( z[0]=='?' ){
1074       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1075       ** use it as the variable number */
1076       i64 i;
1077       int bOk;
1078       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1079         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1080         bOk = 1;
1081       }else{
1082         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1083       }
1084       testcase( i==0 );
1085       testcase( i==1 );
1086       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1087       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1088       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1089         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1090             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1091         return;
1092       }
1093       x = (ynVar)i;
1094       if( x>pParse->nVar ){
1095         pParse->nVar = (int)x;
1096         doAdd = 1;
1097       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1098         doAdd = 1;
1099       }
1100     }else{
1101       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1102       ** number as the prior appearance of the same name, or if the name
1103       ** has never appeared before, reuse the same variable number
1104       */
1105       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1106       if( x==0 ){
1107         x = (ynVar)(++pParse->nVar);
1108         doAdd = 1;
1109       }
1110     }
1111     if( doAdd ){
1112       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1113     }
1114   }
1115   pExpr->iColumn = x;
1116   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1117     sqlite3ErrorMsg(pParse, "too many SQL variables");
1118   }
1119 }
1120 
1121 /*
1122 ** Recursively delete an expression tree.
1123 */
1124 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1125   assert( p!=0 );
1126   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1127   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1128 
1129   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1130   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1131           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1132 #ifdef SQLITE_DEBUG
1133   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1134     assert( p->pLeft==0 );
1135     assert( p->pRight==0 );
1136     assert( p->x.pSelect==0 );
1137   }
1138 #endif
1139   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1140     /* The Expr.x union is never used at the same time as Expr.pRight */
1141     assert( p->x.pList==0 || p->pRight==0 );
1142     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1143     if( p->pRight ){
1144       assert( !ExprHasProperty(p, EP_WinFunc) );
1145       sqlite3ExprDeleteNN(db, p->pRight);
1146     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1147       assert( !ExprHasProperty(p, EP_WinFunc) );
1148       sqlite3SelectDelete(db, p->x.pSelect);
1149     }else{
1150       sqlite3ExprListDelete(db, p->x.pList);
1151 #ifndef SQLITE_OMIT_WINDOWFUNC
1152       if( ExprHasProperty(p, EP_WinFunc) ){
1153         sqlite3WindowDelete(db, p->y.pWin);
1154       }
1155 #endif
1156     }
1157   }
1158   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1159   if( !ExprHasProperty(p, EP_Static) ){
1160     sqlite3DbFreeNN(db, p);
1161   }
1162 }
1163 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1164   if( p ) sqlite3ExprDeleteNN(db, p);
1165 }
1166 
1167 
1168 /*
1169 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1170 ** This is similar to sqlite3ExprDelete() except that the delete is
1171 ** deferred untilthe pParse is deleted.
1172 **
1173 ** The pExpr might be deleted immediately on an OOM error.
1174 **
1175 ** The deferred delete is (currently) implemented by adding the
1176 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1177 */
1178 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1179   pParse->pConstExpr =
1180       sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1181 }
1182 
1183 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1184 ** expression.
1185 */
1186 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1187   if( p ){
1188     if( IN_RENAME_OBJECT ){
1189       sqlite3RenameExprUnmap(pParse, p);
1190     }
1191     sqlite3ExprDeleteNN(pParse->db, p);
1192   }
1193 }
1194 
1195 /*
1196 ** Return the number of bytes allocated for the expression structure
1197 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1198 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1199 */
1200 static int exprStructSize(Expr *p){
1201   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1202   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1203   return EXPR_FULLSIZE;
1204 }
1205 
1206 /*
1207 ** The dupedExpr*Size() routines each return the number of bytes required
1208 ** to store a copy of an expression or expression tree.  They differ in
1209 ** how much of the tree is measured.
1210 **
1211 **     dupedExprStructSize()     Size of only the Expr structure
1212 **     dupedExprNodeSize()       Size of Expr + space for token
1213 **     dupedExprSize()           Expr + token + subtree components
1214 **
1215 ***************************************************************************
1216 **
1217 ** The dupedExprStructSize() function returns two values OR-ed together:
1218 ** (1) the space required for a copy of the Expr structure only and
1219 ** (2) the EP_xxx flags that indicate what the structure size should be.
1220 ** The return values is always one of:
1221 **
1222 **      EXPR_FULLSIZE
1223 **      EXPR_REDUCEDSIZE   | EP_Reduced
1224 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1225 **
1226 ** The size of the structure can be found by masking the return value
1227 ** of this routine with 0xfff.  The flags can be found by masking the
1228 ** return value with EP_Reduced|EP_TokenOnly.
1229 **
1230 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1231 ** (unreduced) Expr objects as they or originally constructed by the parser.
1232 ** During expression analysis, extra information is computed and moved into
1233 ** later parts of the Expr object and that extra information might get chopped
1234 ** off if the expression is reduced.  Note also that it does not work to
1235 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1236 ** to reduce a pristine expression tree from the parser.  The implementation
1237 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1238 ** to enforce this constraint.
1239 */
1240 static int dupedExprStructSize(Expr *p, int flags){
1241   int nSize;
1242   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1243   assert( EXPR_FULLSIZE<=0xfff );
1244   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1245   if( 0==flags || p->op==TK_SELECT_COLUMN
1246 #ifndef SQLITE_OMIT_WINDOWFUNC
1247    || ExprHasProperty(p, EP_WinFunc)
1248 #endif
1249   ){
1250     nSize = EXPR_FULLSIZE;
1251   }else{
1252     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1253     assert( !ExprHasProperty(p, EP_FromJoin) );
1254     assert( !ExprHasProperty(p, EP_MemToken) );
1255     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1256     if( p->pLeft || p->x.pList ){
1257       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1258     }else{
1259       assert( p->pRight==0 );
1260       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1261     }
1262   }
1263   return nSize;
1264 }
1265 
1266 /*
1267 ** This function returns the space in bytes required to store the copy
1268 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1269 ** string is defined.)
1270 */
1271 static int dupedExprNodeSize(Expr *p, int flags){
1272   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1273   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1274     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1275   }
1276   return ROUND8(nByte);
1277 }
1278 
1279 /*
1280 ** Return the number of bytes required to create a duplicate of the
1281 ** expression passed as the first argument. The second argument is a
1282 ** mask containing EXPRDUP_XXX flags.
1283 **
1284 ** The value returned includes space to create a copy of the Expr struct
1285 ** itself and the buffer referred to by Expr.u.zToken, if any.
1286 **
1287 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1288 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1289 ** and Expr.pRight variables (but not for any structures pointed to or
1290 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1291 */
1292 static int dupedExprSize(Expr *p, int flags){
1293   int nByte = 0;
1294   if( p ){
1295     nByte = dupedExprNodeSize(p, flags);
1296     if( flags&EXPRDUP_REDUCE ){
1297       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1298     }
1299   }
1300   return nByte;
1301 }
1302 
1303 /*
1304 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1305 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1306 ** to store the copy of expression p, the copies of p->u.zToken
1307 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1308 ** if any. Before returning, *pzBuffer is set to the first byte past the
1309 ** portion of the buffer copied into by this function.
1310 */
1311 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1312   Expr *pNew;           /* Value to return */
1313   u8 *zAlloc;           /* Memory space from which to build Expr object */
1314   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1315 
1316   assert( db!=0 );
1317   assert( p );
1318   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1319   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1320 
1321   /* Figure out where to write the new Expr structure. */
1322   if( pzBuffer ){
1323     zAlloc = *pzBuffer;
1324     staticFlag = EP_Static;
1325     assert( zAlloc!=0 );
1326   }else{
1327     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1328     staticFlag = 0;
1329   }
1330   pNew = (Expr *)zAlloc;
1331 
1332   if( pNew ){
1333     /* Set nNewSize to the size allocated for the structure pointed to
1334     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1335     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1336     ** by the copy of the p->u.zToken string (if any).
1337     */
1338     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1339     const int nNewSize = nStructSize & 0xfff;
1340     int nToken;
1341     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1342       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1343     }else{
1344       nToken = 0;
1345     }
1346     if( dupFlags ){
1347       assert( ExprHasProperty(p, EP_Reduced)==0 );
1348       memcpy(zAlloc, p, nNewSize);
1349     }else{
1350       u32 nSize = (u32)exprStructSize(p);
1351       memcpy(zAlloc, p, nSize);
1352       if( nSize<EXPR_FULLSIZE ){
1353         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1354       }
1355     }
1356 
1357     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1358     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1359     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1360     pNew->flags |= staticFlag;
1361     ExprClearVVAProperties(pNew);
1362     if( dupFlags ){
1363       ExprSetVVAProperty(pNew, EP_Immutable);
1364     }
1365 
1366     /* Copy the p->u.zToken string, if any. */
1367     if( nToken ){
1368       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1369       memcpy(zToken, p->u.zToken, nToken);
1370     }
1371 
1372     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1373       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1374       if( ExprHasProperty(p, EP_xIsSelect) ){
1375         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1376       }else{
1377         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1378       }
1379     }
1380 
1381     /* Fill in pNew->pLeft and pNew->pRight. */
1382     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1383       zAlloc += dupedExprNodeSize(p, dupFlags);
1384       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1385         pNew->pLeft = p->pLeft ?
1386                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1387         pNew->pRight = p->pRight ?
1388                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1389       }
1390 #ifndef SQLITE_OMIT_WINDOWFUNC
1391       if( ExprHasProperty(p, EP_WinFunc) ){
1392         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1393         assert( ExprHasProperty(pNew, EP_WinFunc) );
1394       }
1395 #endif /* SQLITE_OMIT_WINDOWFUNC */
1396       if( pzBuffer ){
1397         *pzBuffer = zAlloc;
1398       }
1399     }else{
1400       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1401         if( pNew->op==TK_SELECT_COLUMN ){
1402           pNew->pLeft = p->pLeft;
1403           assert( p->pRight==0  || p->pRight==p->pLeft
1404                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1405         }else{
1406           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1407         }
1408         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1409       }
1410     }
1411   }
1412   return pNew;
1413 }
1414 
1415 /*
1416 ** Create and return a deep copy of the object passed as the second
1417 ** argument. If an OOM condition is encountered, NULL is returned
1418 ** and the db->mallocFailed flag set.
1419 */
1420 #ifndef SQLITE_OMIT_CTE
1421 With *sqlite3WithDup(sqlite3 *db, With *p){
1422   With *pRet = 0;
1423   if( p ){
1424     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1425     pRet = sqlite3DbMallocZero(db, nByte);
1426     if( pRet ){
1427       int i;
1428       pRet->nCte = p->nCte;
1429       for(i=0; i<p->nCte; i++){
1430         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1431         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1432         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1433       }
1434     }
1435   }
1436   return pRet;
1437 }
1438 #else
1439 # define sqlite3WithDup(x,y) 0
1440 #endif
1441 
1442 #ifndef SQLITE_OMIT_WINDOWFUNC
1443 /*
1444 ** The gatherSelectWindows() procedure and its helper routine
1445 ** gatherSelectWindowsCallback() are used to scan all the expressions
1446 ** an a newly duplicated SELECT statement and gather all of the Window
1447 ** objects found there, assembling them onto the linked list at Select->pWin.
1448 */
1449 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1450   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1451     Select *pSelect = pWalker->u.pSelect;
1452     Window *pWin = pExpr->y.pWin;
1453     assert( pWin );
1454     assert( IsWindowFunc(pExpr) );
1455     assert( pWin->ppThis==0 );
1456     sqlite3WindowLink(pSelect, pWin);
1457   }
1458   return WRC_Continue;
1459 }
1460 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1461   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1462 }
1463 static void gatherSelectWindows(Select *p){
1464   Walker w;
1465   w.xExprCallback = gatherSelectWindowsCallback;
1466   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1467   w.xSelectCallback2 = 0;
1468   w.pParse = 0;
1469   w.u.pSelect = p;
1470   sqlite3WalkSelect(&w, p);
1471 }
1472 #endif
1473 
1474 
1475 /*
1476 ** The following group of routines make deep copies of expressions,
1477 ** expression lists, ID lists, and select statements.  The copies can
1478 ** be deleted (by being passed to their respective ...Delete() routines)
1479 ** without effecting the originals.
1480 **
1481 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1482 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1483 ** by subsequent calls to sqlite*ListAppend() routines.
1484 **
1485 ** Any tables that the SrcList might point to are not duplicated.
1486 **
1487 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1488 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1489 ** truncated version of the usual Expr structure that will be stored as
1490 ** part of the in-memory representation of the database schema.
1491 */
1492 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1493   assert( flags==0 || flags==EXPRDUP_REDUCE );
1494   return p ? exprDup(db, p, flags, 0) : 0;
1495 }
1496 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1497   ExprList *pNew;
1498   struct ExprList_item *pItem, *pOldItem;
1499   int i;
1500   Expr *pPriorSelectColOld = 0;
1501   Expr *pPriorSelectColNew = 0;
1502   assert( db!=0 );
1503   if( p==0 ) return 0;
1504   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1505   if( pNew==0 ) return 0;
1506   pNew->nExpr = p->nExpr;
1507   pNew->nAlloc = p->nAlloc;
1508   pItem = pNew->a;
1509   pOldItem = p->a;
1510   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1511     Expr *pOldExpr = pOldItem->pExpr;
1512     Expr *pNewExpr;
1513     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1514     if( pOldExpr
1515      && pOldExpr->op==TK_SELECT_COLUMN
1516      && (pNewExpr = pItem->pExpr)!=0
1517     ){
1518       if( pNewExpr->pRight ){
1519         pPriorSelectColOld = pOldExpr->pRight;
1520         pPriorSelectColNew = pNewExpr->pRight;
1521         pNewExpr->pLeft = pNewExpr->pRight;
1522       }else{
1523         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1524           pPriorSelectColOld = pOldExpr->pLeft;
1525           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1526           pNewExpr->pRight = pPriorSelectColNew;
1527         }
1528         pNewExpr->pLeft = pPriorSelectColNew;
1529       }
1530     }
1531     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1532     pItem->sortFlags = pOldItem->sortFlags;
1533     pItem->eEName = pOldItem->eEName;
1534     pItem->done = 0;
1535     pItem->bNulls = pOldItem->bNulls;
1536     pItem->bSorterRef = pOldItem->bSorterRef;
1537     pItem->u = pOldItem->u;
1538   }
1539   return pNew;
1540 }
1541 
1542 /*
1543 ** If cursors, triggers, views and subqueries are all omitted from
1544 ** the build, then none of the following routines, except for
1545 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1546 ** called with a NULL argument.
1547 */
1548 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1549  || !defined(SQLITE_OMIT_SUBQUERY)
1550 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1551   SrcList *pNew;
1552   int i;
1553   int nByte;
1554   assert( db!=0 );
1555   if( p==0 ) return 0;
1556   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1557   pNew = sqlite3DbMallocRawNN(db, nByte );
1558   if( pNew==0 ) return 0;
1559   pNew->nSrc = pNew->nAlloc = p->nSrc;
1560   for(i=0; i<p->nSrc; i++){
1561     SrcItem *pNewItem = &pNew->a[i];
1562     SrcItem *pOldItem = &p->a[i];
1563     Table *pTab;
1564     pNewItem->pSchema = pOldItem->pSchema;
1565     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1566     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1567     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1568     pNewItem->fg = pOldItem->fg;
1569     pNewItem->iCursor = pOldItem->iCursor;
1570     pNewItem->addrFillSub = pOldItem->addrFillSub;
1571     pNewItem->regReturn = pOldItem->regReturn;
1572     if( pNewItem->fg.isIndexedBy ){
1573       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1574     }
1575     pNewItem->u2 = pOldItem->u2;
1576     if( pNewItem->fg.isCte ){
1577       pNewItem->u2.pCteUse->nUse++;
1578     }
1579     if( pNewItem->fg.isTabFunc ){
1580       pNewItem->u1.pFuncArg =
1581           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1582     }
1583     pTab = pNewItem->pTab = pOldItem->pTab;
1584     if( pTab ){
1585       pTab->nTabRef++;
1586     }
1587     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1588     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1589     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1590     pNewItem->colUsed = pOldItem->colUsed;
1591   }
1592   return pNew;
1593 }
1594 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1595   IdList *pNew;
1596   int i;
1597   assert( db!=0 );
1598   if( p==0 ) return 0;
1599   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1600   if( pNew==0 ) return 0;
1601   pNew->nId = p->nId;
1602   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1603   if( pNew->a==0 ){
1604     sqlite3DbFreeNN(db, pNew);
1605     return 0;
1606   }
1607   /* Note that because the size of the allocation for p->a[] is not
1608   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1609   ** on the duplicate created by this function. */
1610   for(i=0; i<p->nId; i++){
1611     struct IdList_item *pNewItem = &pNew->a[i];
1612     struct IdList_item *pOldItem = &p->a[i];
1613     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1614     pNewItem->idx = pOldItem->idx;
1615   }
1616   return pNew;
1617 }
1618 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1619   Select *pRet = 0;
1620   Select *pNext = 0;
1621   Select **pp = &pRet;
1622   Select *p;
1623 
1624   assert( db!=0 );
1625   for(p=pDup; p; p=p->pPrior){
1626     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1627     if( pNew==0 ) break;
1628     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1629     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1630     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1631     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1632     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1633     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1634     pNew->op = p->op;
1635     pNew->pNext = pNext;
1636     pNew->pPrior = 0;
1637     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1638     pNew->iLimit = 0;
1639     pNew->iOffset = 0;
1640     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1641     pNew->addrOpenEphm[0] = -1;
1642     pNew->addrOpenEphm[1] = -1;
1643     pNew->nSelectRow = p->nSelectRow;
1644     pNew->pWith = sqlite3WithDup(db, p->pWith);
1645 #ifndef SQLITE_OMIT_WINDOWFUNC
1646     pNew->pWin = 0;
1647     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1648     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1649 #endif
1650     pNew->selId = p->selId;
1651     if( db->mallocFailed ){
1652       /* Any prior OOM might have left the Select object incomplete.
1653       ** Delete the whole thing rather than allow an incomplete Select
1654       ** to be used by the code generator. */
1655       pNew->pNext = 0;
1656       sqlite3SelectDelete(db, pNew);
1657       break;
1658     }
1659     *pp = pNew;
1660     pp = &pNew->pPrior;
1661     pNext = pNew;
1662   }
1663 
1664   return pRet;
1665 }
1666 #else
1667 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1668   assert( p==0 );
1669   return 0;
1670 }
1671 #endif
1672 
1673 
1674 /*
1675 ** Add a new element to the end of an expression list.  If pList is
1676 ** initially NULL, then create a new expression list.
1677 **
1678 ** The pList argument must be either NULL or a pointer to an ExprList
1679 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1680 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1681 ** Reason:  This routine assumes that the number of slots in pList->a[]
1682 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1683 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1684 **
1685 ** If a memory allocation error occurs, the entire list is freed and
1686 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1687 ** that the new entry was successfully appended.
1688 */
1689 static const struct ExprList_item zeroItem = {0};
1690 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1691   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1692   Expr *pExpr             /* Expression to be appended. Might be NULL */
1693 ){
1694   struct ExprList_item *pItem;
1695   ExprList *pList;
1696 
1697   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1698   if( pList==0 ){
1699     sqlite3ExprDelete(db, pExpr);
1700     return 0;
1701   }
1702   pList->nAlloc = 4;
1703   pList->nExpr = 1;
1704   pItem = &pList->a[0];
1705   *pItem = zeroItem;
1706   pItem->pExpr = pExpr;
1707   return pList;
1708 }
1709 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1710   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1711   ExprList *pList,        /* List to which to append. Might be NULL */
1712   Expr *pExpr             /* Expression to be appended. Might be NULL */
1713 ){
1714   struct ExprList_item *pItem;
1715   ExprList *pNew;
1716   pList->nAlloc *= 2;
1717   pNew = sqlite3DbRealloc(db, pList,
1718        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1719   if( pNew==0 ){
1720     sqlite3ExprListDelete(db, pList);
1721     sqlite3ExprDelete(db, pExpr);
1722     return 0;
1723   }else{
1724     pList = pNew;
1725   }
1726   pItem = &pList->a[pList->nExpr++];
1727   *pItem = zeroItem;
1728   pItem->pExpr = pExpr;
1729   return pList;
1730 }
1731 ExprList *sqlite3ExprListAppend(
1732   Parse *pParse,          /* Parsing context */
1733   ExprList *pList,        /* List to which to append. Might be NULL */
1734   Expr *pExpr             /* Expression to be appended. Might be NULL */
1735 ){
1736   struct ExprList_item *pItem;
1737   if( pList==0 ){
1738     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1739   }
1740   if( pList->nAlloc<pList->nExpr+1 ){
1741     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1742   }
1743   pItem = &pList->a[pList->nExpr++];
1744   *pItem = zeroItem;
1745   pItem->pExpr = pExpr;
1746   return pList;
1747 }
1748 
1749 /*
1750 ** pColumns and pExpr form a vector assignment which is part of the SET
1751 ** clause of an UPDATE statement.  Like this:
1752 **
1753 **        (a,b,c) = (expr1,expr2,expr3)
1754 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1755 **
1756 ** For each term of the vector assignment, append new entries to the
1757 ** expression list pList.  In the case of a subquery on the RHS, append
1758 ** TK_SELECT_COLUMN expressions.
1759 */
1760 ExprList *sqlite3ExprListAppendVector(
1761   Parse *pParse,         /* Parsing context */
1762   ExprList *pList,       /* List to which to append. Might be NULL */
1763   IdList *pColumns,      /* List of names of LHS of the assignment */
1764   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1765 ){
1766   sqlite3 *db = pParse->db;
1767   int n;
1768   int i;
1769   int iFirst = pList ? pList->nExpr : 0;
1770   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1771   ** exit prior to this routine being invoked */
1772   if( NEVER(pColumns==0) ) goto vector_append_error;
1773   if( pExpr==0 ) goto vector_append_error;
1774 
1775   /* If the RHS is a vector, then we can immediately check to see that
1776   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1777   ** wildcards ("*") in the result set of the SELECT must be expanded before
1778   ** we can do the size check, so defer the size check until code generation.
1779   */
1780   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1781     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1782                     pColumns->nId, n);
1783     goto vector_append_error;
1784   }
1785 
1786   for(i=0; i<pColumns->nId; i++){
1787     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1788     assert( pSubExpr!=0 || db->mallocFailed );
1789     if( pSubExpr==0 ) continue;
1790     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1791     if( pList ){
1792       assert( pList->nExpr==iFirst+i+1 );
1793       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1794       pColumns->a[i].zName = 0;
1795     }
1796   }
1797 
1798   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1799     Expr *pFirst = pList->a[iFirst].pExpr;
1800     assert( pFirst!=0 );
1801     assert( pFirst->op==TK_SELECT_COLUMN );
1802 
1803     /* Store the SELECT statement in pRight so it will be deleted when
1804     ** sqlite3ExprListDelete() is called */
1805     pFirst->pRight = pExpr;
1806     pExpr = 0;
1807 
1808     /* Remember the size of the LHS in iTable so that we can check that
1809     ** the RHS and LHS sizes match during code generation. */
1810     pFirst->iTable = pColumns->nId;
1811   }
1812 
1813 vector_append_error:
1814   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1815   sqlite3IdListDelete(db, pColumns);
1816   return pList;
1817 }
1818 
1819 /*
1820 ** Set the sort order for the last element on the given ExprList.
1821 */
1822 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1823   struct ExprList_item *pItem;
1824   if( p==0 ) return;
1825   assert( p->nExpr>0 );
1826 
1827   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1828   assert( iSortOrder==SQLITE_SO_UNDEFINED
1829        || iSortOrder==SQLITE_SO_ASC
1830        || iSortOrder==SQLITE_SO_DESC
1831   );
1832   assert( eNulls==SQLITE_SO_UNDEFINED
1833        || eNulls==SQLITE_SO_ASC
1834        || eNulls==SQLITE_SO_DESC
1835   );
1836 
1837   pItem = &p->a[p->nExpr-1];
1838   assert( pItem->bNulls==0 );
1839   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1840     iSortOrder = SQLITE_SO_ASC;
1841   }
1842   pItem->sortFlags = (u8)iSortOrder;
1843 
1844   if( eNulls!=SQLITE_SO_UNDEFINED ){
1845     pItem->bNulls = 1;
1846     if( iSortOrder!=eNulls ){
1847       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1848     }
1849   }
1850 }
1851 
1852 /*
1853 ** Set the ExprList.a[].zEName element of the most recently added item
1854 ** on the expression list.
1855 **
1856 ** pList might be NULL following an OOM error.  But pName should never be
1857 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1858 ** is set.
1859 */
1860 void sqlite3ExprListSetName(
1861   Parse *pParse,          /* Parsing context */
1862   ExprList *pList,        /* List to which to add the span. */
1863   Token *pName,           /* Name to be added */
1864   int dequote             /* True to cause the name to be dequoted */
1865 ){
1866   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1867   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1868   if( pList ){
1869     struct ExprList_item *pItem;
1870     assert( pList->nExpr>0 );
1871     pItem = &pList->a[pList->nExpr-1];
1872     assert( pItem->zEName==0 );
1873     assert( pItem->eEName==ENAME_NAME );
1874     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1875     if( dequote ){
1876       /* If dequote==0, then pName->z does not point to part of a DDL
1877       ** statement handled by the parser. And so no token need be added
1878       ** to the token-map.  */
1879       sqlite3Dequote(pItem->zEName);
1880       if( IN_RENAME_OBJECT ){
1881         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1882       }
1883     }
1884   }
1885 }
1886 
1887 /*
1888 ** Set the ExprList.a[].zSpan element of the most recently added item
1889 ** on the expression list.
1890 **
1891 ** pList might be NULL following an OOM error.  But pSpan should never be
1892 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1893 ** is set.
1894 */
1895 void sqlite3ExprListSetSpan(
1896   Parse *pParse,          /* Parsing context */
1897   ExprList *pList,        /* List to which to add the span. */
1898   const char *zStart,     /* Start of the span */
1899   const char *zEnd        /* End of the span */
1900 ){
1901   sqlite3 *db = pParse->db;
1902   assert( pList!=0 || db->mallocFailed!=0 );
1903   if( pList ){
1904     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1905     assert( pList->nExpr>0 );
1906     if( pItem->zEName==0 ){
1907       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1908       pItem->eEName = ENAME_SPAN;
1909     }
1910   }
1911 }
1912 
1913 /*
1914 ** If the expression list pEList contains more than iLimit elements,
1915 ** leave an error message in pParse.
1916 */
1917 void sqlite3ExprListCheckLength(
1918   Parse *pParse,
1919   ExprList *pEList,
1920   const char *zObject
1921 ){
1922   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1923   testcase( pEList && pEList->nExpr==mx );
1924   testcase( pEList && pEList->nExpr==mx+1 );
1925   if( pEList && pEList->nExpr>mx ){
1926     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1927   }
1928 }
1929 
1930 /*
1931 ** Delete an entire expression list.
1932 */
1933 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1934   int i = pList->nExpr;
1935   struct ExprList_item *pItem =  pList->a;
1936   assert( pList->nExpr>0 );
1937   do{
1938     sqlite3ExprDelete(db, pItem->pExpr);
1939     sqlite3DbFree(db, pItem->zEName);
1940     pItem++;
1941   }while( --i>0 );
1942   sqlite3DbFreeNN(db, pList);
1943 }
1944 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1945   if( pList ) exprListDeleteNN(db, pList);
1946 }
1947 
1948 /*
1949 ** Return the bitwise-OR of all Expr.flags fields in the given
1950 ** ExprList.
1951 */
1952 u32 sqlite3ExprListFlags(const ExprList *pList){
1953   int i;
1954   u32 m = 0;
1955   assert( pList!=0 );
1956   for(i=0; i<pList->nExpr; i++){
1957      Expr *pExpr = pList->a[i].pExpr;
1958      assert( pExpr!=0 );
1959      m |= pExpr->flags;
1960   }
1961   return m;
1962 }
1963 
1964 /*
1965 ** This is a SELECT-node callback for the expression walker that
1966 ** always "fails".  By "fail" in this case, we mean set
1967 ** pWalker->eCode to zero and abort.
1968 **
1969 ** This callback is used by multiple expression walkers.
1970 */
1971 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1972   UNUSED_PARAMETER(NotUsed);
1973   pWalker->eCode = 0;
1974   return WRC_Abort;
1975 }
1976 
1977 /*
1978 ** Check the input string to see if it is "true" or "false" (in any case).
1979 **
1980 **       If the string is....           Return
1981 **         "true"                         EP_IsTrue
1982 **         "false"                        EP_IsFalse
1983 **         anything else                  0
1984 */
1985 u32 sqlite3IsTrueOrFalse(const char *zIn){
1986   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1987   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1988   return 0;
1989 }
1990 
1991 
1992 /*
1993 ** If the input expression is an ID with the name "true" or "false"
1994 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1995 ** the conversion happened, and zero if the expression is unaltered.
1996 */
1997 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1998   u32 v;
1999   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2000   if( !ExprHasProperty(pExpr, EP_Quoted)
2001    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2002   ){
2003     pExpr->op = TK_TRUEFALSE;
2004     ExprSetProperty(pExpr, v);
2005     return 1;
2006   }
2007   return 0;
2008 }
2009 
2010 /*
2011 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2012 ** and 0 if it is FALSE.
2013 */
2014 int sqlite3ExprTruthValue(const Expr *pExpr){
2015   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2016   assert( pExpr->op==TK_TRUEFALSE );
2017   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2018        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2019   return pExpr->u.zToken[4]==0;
2020 }
2021 
2022 /*
2023 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2024 ** terms that are always true or false.  Return the simplified expression.
2025 ** Or return the original expression if no simplification is possible.
2026 **
2027 ** Examples:
2028 **
2029 **     (x<10) AND true                =>   (x<10)
2030 **     (x<10) AND false               =>   false
2031 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2032 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2033 **     (y=22) OR true                 =>   true
2034 */
2035 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2036   assert( pExpr!=0 );
2037   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2038     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2039     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2040     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2041       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2042     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2043       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2044     }
2045   }
2046   return pExpr;
2047 }
2048 
2049 
2050 /*
2051 ** These routines are Walker callbacks used to check expressions to
2052 ** see if they are "constant" for some definition of constant.  The
2053 ** Walker.eCode value determines the type of "constant" we are looking
2054 ** for.
2055 **
2056 ** These callback routines are used to implement the following:
2057 **
2058 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2059 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2060 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2061 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2062 **
2063 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2064 ** is found to not be a constant.
2065 **
2066 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2067 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2068 ** when parsing an existing schema out of the sqlite_schema table and 4
2069 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2070 ** an error for new statements, but is silently converted
2071 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2072 ** contain a bound parameter because they were generated by older versions
2073 ** of SQLite to be parsed by newer versions of SQLite without raising a
2074 ** malformed schema error.
2075 */
2076 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2077 
2078   /* If pWalker->eCode is 2 then any term of the expression that comes from
2079   ** the ON or USING clauses of a left join disqualifies the expression
2080   ** from being considered constant. */
2081   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2082     pWalker->eCode = 0;
2083     return WRC_Abort;
2084   }
2085 
2086   switch( pExpr->op ){
2087     /* Consider functions to be constant if all their arguments are constant
2088     ** and either pWalker->eCode==4 or 5 or the function has the
2089     ** SQLITE_FUNC_CONST flag. */
2090     case TK_FUNCTION:
2091       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2092        && !ExprHasProperty(pExpr, EP_WinFunc)
2093       ){
2094         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2095         return WRC_Continue;
2096       }else{
2097         pWalker->eCode = 0;
2098         return WRC_Abort;
2099       }
2100     case TK_ID:
2101       /* Convert "true" or "false" in a DEFAULT clause into the
2102       ** appropriate TK_TRUEFALSE operator */
2103       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2104         return WRC_Prune;
2105       }
2106       /* no break */ deliberate_fall_through
2107     case TK_COLUMN:
2108     case TK_AGG_FUNCTION:
2109     case TK_AGG_COLUMN:
2110       testcase( pExpr->op==TK_ID );
2111       testcase( pExpr->op==TK_COLUMN );
2112       testcase( pExpr->op==TK_AGG_FUNCTION );
2113       testcase( pExpr->op==TK_AGG_COLUMN );
2114       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2115         return WRC_Continue;
2116       }
2117       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2118         return WRC_Continue;
2119       }
2120       /* no break */ deliberate_fall_through
2121     case TK_IF_NULL_ROW:
2122     case TK_REGISTER:
2123     case TK_DOT:
2124       testcase( pExpr->op==TK_REGISTER );
2125       testcase( pExpr->op==TK_IF_NULL_ROW );
2126       testcase( pExpr->op==TK_DOT );
2127       pWalker->eCode = 0;
2128       return WRC_Abort;
2129     case TK_VARIABLE:
2130       if( pWalker->eCode==5 ){
2131         /* Silently convert bound parameters that appear inside of CREATE
2132         ** statements into a NULL when parsing the CREATE statement text out
2133         ** of the sqlite_schema table */
2134         pExpr->op = TK_NULL;
2135       }else if( pWalker->eCode==4 ){
2136         /* A bound parameter in a CREATE statement that originates from
2137         ** sqlite3_prepare() causes an error */
2138         pWalker->eCode = 0;
2139         return WRC_Abort;
2140       }
2141       /* no break */ deliberate_fall_through
2142     default:
2143       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2144       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2145       return WRC_Continue;
2146   }
2147 }
2148 static int exprIsConst(Expr *p, int initFlag, int iCur){
2149   Walker w;
2150   w.eCode = initFlag;
2151   w.xExprCallback = exprNodeIsConstant;
2152   w.xSelectCallback = sqlite3SelectWalkFail;
2153 #ifdef SQLITE_DEBUG
2154   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2155 #endif
2156   w.u.iCur = iCur;
2157   sqlite3WalkExpr(&w, p);
2158   return w.eCode;
2159 }
2160 
2161 /*
2162 ** Walk an expression tree.  Return non-zero if the expression is constant
2163 ** and 0 if it involves variables or function calls.
2164 **
2165 ** For the purposes of this function, a double-quoted string (ex: "abc")
2166 ** is considered a variable but a single-quoted string (ex: 'abc') is
2167 ** a constant.
2168 */
2169 int sqlite3ExprIsConstant(Expr *p){
2170   return exprIsConst(p, 1, 0);
2171 }
2172 
2173 /*
2174 ** Walk an expression tree.  Return non-zero if
2175 **
2176 **   (1) the expression is constant, and
2177 **   (2) the expression does originate in the ON or USING clause
2178 **       of a LEFT JOIN, and
2179 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2180 **       operands created by the constant propagation optimization.
2181 **
2182 ** When this routine returns true, it indicates that the expression
2183 ** can be added to the pParse->pConstExpr list and evaluated once when
2184 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2185 */
2186 int sqlite3ExprIsConstantNotJoin(Expr *p){
2187   return exprIsConst(p, 2, 0);
2188 }
2189 
2190 /*
2191 ** Walk an expression tree.  Return non-zero if the expression is constant
2192 ** for any single row of the table with cursor iCur.  In other words, the
2193 ** expression must not refer to any non-deterministic function nor any
2194 ** table other than iCur.
2195 */
2196 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2197   return exprIsConst(p, 3, iCur);
2198 }
2199 
2200 
2201 /*
2202 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2203 */
2204 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2205   ExprList *pGroupBy = pWalker->u.pGroupBy;
2206   int i;
2207 
2208   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2209   ** it constant.  */
2210   for(i=0; i<pGroupBy->nExpr; i++){
2211     Expr *p = pGroupBy->a[i].pExpr;
2212     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2213       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2214       if( sqlite3IsBinary(pColl) ){
2215         return WRC_Prune;
2216       }
2217     }
2218   }
2219 
2220   /* Check if pExpr is a sub-select. If so, consider it variable. */
2221   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2222     pWalker->eCode = 0;
2223     return WRC_Abort;
2224   }
2225 
2226   return exprNodeIsConstant(pWalker, pExpr);
2227 }
2228 
2229 /*
2230 ** Walk the expression tree passed as the first argument. Return non-zero
2231 ** if the expression consists entirely of constants or copies of terms
2232 ** in pGroupBy that sort with the BINARY collation sequence.
2233 **
2234 ** This routine is used to determine if a term of the HAVING clause can
2235 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2236 ** the value of the HAVING clause term must be the same for all members of
2237 ** a "group".  The requirement that the GROUP BY term must be BINARY
2238 ** assumes that no other collating sequence will have a finer-grained
2239 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2240 ** A=B in every other collating sequence.  The requirement that the
2241 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2242 ** to promote HAVING clauses that use the same alternative collating
2243 ** sequence as the GROUP BY term, but that is much harder to check,
2244 ** alternative collating sequences are uncommon, and this is only an
2245 ** optimization, so we take the easy way out and simply require the
2246 ** GROUP BY to use the BINARY collating sequence.
2247 */
2248 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2249   Walker w;
2250   w.eCode = 1;
2251   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2252   w.xSelectCallback = 0;
2253   w.u.pGroupBy = pGroupBy;
2254   w.pParse = pParse;
2255   sqlite3WalkExpr(&w, p);
2256   return w.eCode;
2257 }
2258 
2259 /*
2260 ** Walk an expression tree for the DEFAULT field of a column definition
2261 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2262 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2263 ** the expression is constant or a function call with constant arguments.
2264 ** Return and 0 if there are any variables.
2265 **
2266 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2267 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2268 ** (such as ? or $abc) in the expression are converted into NULL.  When
2269 ** isInit is false, parameters raise an error.  Parameters should not be
2270 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2271 ** allowed it, so we need to support it when reading sqlite_schema for
2272 ** backwards compatibility.
2273 **
2274 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2275 **
2276 ** For the purposes of this function, a double-quoted string (ex: "abc")
2277 ** is considered a variable but a single-quoted string (ex: 'abc') is
2278 ** a constant.
2279 */
2280 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2281   assert( isInit==0 || isInit==1 );
2282   return exprIsConst(p, 4+isInit, 0);
2283 }
2284 
2285 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2286 /*
2287 ** Walk an expression tree.  Return 1 if the expression contains a
2288 ** subquery of some kind.  Return 0 if there are no subqueries.
2289 */
2290 int sqlite3ExprContainsSubquery(Expr *p){
2291   Walker w;
2292   w.eCode = 1;
2293   w.xExprCallback = sqlite3ExprWalkNoop;
2294   w.xSelectCallback = sqlite3SelectWalkFail;
2295 #ifdef SQLITE_DEBUG
2296   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2297 #endif
2298   sqlite3WalkExpr(&w, p);
2299   return w.eCode==0;
2300 }
2301 #endif
2302 
2303 /*
2304 ** If the expression p codes a constant integer that is small enough
2305 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2306 ** in *pValue.  If the expression is not an integer or if it is too big
2307 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2308 */
2309 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2310   int rc = 0;
2311   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2312 
2313   /* If an expression is an integer literal that fits in a signed 32-bit
2314   ** integer, then the EP_IntValue flag will have already been set */
2315   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2316            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2317 
2318   if( p->flags & EP_IntValue ){
2319     *pValue = p->u.iValue;
2320     return 1;
2321   }
2322   switch( p->op ){
2323     case TK_UPLUS: {
2324       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2325       break;
2326     }
2327     case TK_UMINUS: {
2328       int v;
2329       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2330         assert( v!=(-2147483647-1) );
2331         *pValue = -v;
2332         rc = 1;
2333       }
2334       break;
2335     }
2336     default: break;
2337   }
2338   return rc;
2339 }
2340 
2341 /*
2342 ** Return FALSE if there is no chance that the expression can be NULL.
2343 **
2344 ** If the expression might be NULL or if the expression is too complex
2345 ** to tell return TRUE.
2346 **
2347 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2348 ** when we know that a value cannot be NULL.  Hence, a false positive
2349 ** (returning TRUE when in fact the expression can never be NULL) might
2350 ** be a small performance hit but is otherwise harmless.  On the other
2351 ** hand, a false negative (returning FALSE when the result could be NULL)
2352 ** will likely result in an incorrect answer.  So when in doubt, return
2353 ** TRUE.
2354 */
2355 int sqlite3ExprCanBeNull(const Expr *p){
2356   u8 op;
2357   assert( p!=0 );
2358   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2359     p = p->pLeft;
2360     assert( p!=0 );
2361   }
2362   op = p->op;
2363   if( op==TK_REGISTER ) op = p->op2;
2364   switch( op ){
2365     case TK_INTEGER:
2366     case TK_STRING:
2367     case TK_FLOAT:
2368     case TK_BLOB:
2369       return 0;
2370     case TK_COLUMN:
2371       return ExprHasProperty(p, EP_CanBeNull) ||
2372              p->y.pTab==0 ||  /* Reference to column of index on expression */
2373              (p->iColumn>=0
2374               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2375               && p->y.pTab->aCol[p->iColumn].notNull==0);
2376     default:
2377       return 1;
2378   }
2379 }
2380 
2381 /*
2382 ** Return TRUE if the given expression is a constant which would be
2383 ** unchanged by OP_Affinity with the affinity given in the second
2384 ** argument.
2385 **
2386 ** This routine is used to determine if the OP_Affinity operation
2387 ** can be omitted.  When in doubt return FALSE.  A false negative
2388 ** is harmless.  A false positive, however, can result in the wrong
2389 ** answer.
2390 */
2391 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2392   u8 op;
2393   int unaryMinus = 0;
2394   if( aff==SQLITE_AFF_BLOB ) return 1;
2395   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2396     if( p->op==TK_UMINUS ) unaryMinus = 1;
2397     p = p->pLeft;
2398   }
2399   op = p->op;
2400   if( op==TK_REGISTER ) op = p->op2;
2401   switch( op ){
2402     case TK_INTEGER: {
2403       return aff>=SQLITE_AFF_NUMERIC;
2404     }
2405     case TK_FLOAT: {
2406       return aff>=SQLITE_AFF_NUMERIC;
2407     }
2408     case TK_STRING: {
2409       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2410     }
2411     case TK_BLOB: {
2412       return !unaryMinus;
2413     }
2414     case TK_COLUMN: {
2415       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2416       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2417     }
2418     default: {
2419       return 0;
2420     }
2421   }
2422 }
2423 
2424 /*
2425 ** Return TRUE if the given string is a row-id column name.
2426 */
2427 int sqlite3IsRowid(const char *z){
2428   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2429   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2430   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2431   return 0;
2432 }
2433 
2434 /*
2435 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2436 ** that can be simplified to a direct table access, then return
2437 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2438 ** or if the SELECT statement needs to be manifested into a transient
2439 ** table, then return NULL.
2440 */
2441 #ifndef SQLITE_OMIT_SUBQUERY
2442 static Select *isCandidateForInOpt(Expr *pX){
2443   Select *p;
2444   SrcList *pSrc;
2445   ExprList *pEList;
2446   Table *pTab;
2447   int i;
2448   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2449   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2450   p = pX->x.pSelect;
2451   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2452   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2453     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2454     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2455     return 0; /* No DISTINCT keyword and no aggregate functions */
2456   }
2457   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2458   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2459   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2460   pSrc = p->pSrc;
2461   assert( pSrc!=0 );
2462   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2463   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2464   pTab = pSrc->a[0].pTab;
2465   assert( pTab!=0 );
2466   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2467   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2468   pEList = p->pEList;
2469   assert( pEList!=0 );
2470   /* All SELECT results must be columns. */
2471   for(i=0; i<pEList->nExpr; i++){
2472     Expr *pRes = pEList->a[i].pExpr;
2473     if( pRes->op!=TK_COLUMN ) return 0;
2474     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2475   }
2476   return p;
2477 }
2478 #endif /* SQLITE_OMIT_SUBQUERY */
2479 
2480 #ifndef SQLITE_OMIT_SUBQUERY
2481 /*
2482 ** Generate code that checks the left-most column of index table iCur to see if
2483 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2484 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2485 ** to be set to NULL if iCur contains one or more NULL values.
2486 */
2487 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2488   int addr1;
2489   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2490   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2491   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2492   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2493   VdbeComment((v, "first_entry_in(%d)", iCur));
2494   sqlite3VdbeJumpHere(v, addr1);
2495 }
2496 #endif
2497 
2498 
2499 #ifndef SQLITE_OMIT_SUBQUERY
2500 /*
2501 ** The argument is an IN operator with a list (not a subquery) on the
2502 ** right-hand side.  Return TRUE if that list is constant.
2503 */
2504 static int sqlite3InRhsIsConstant(Expr *pIn){
2505   Expr *pLHS;
2506   int res;
2507   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2508   pLHS = pIn->pLeft;
2509   pIn->pLeft = 0;
2510   res = sqlite3ExprIsConstant(pIn);
2511   pIn->pLeft = pLHS;
2512   return res;
2513 }
2514 #endif
2515 
2516 /*
2517 ** This function is used by the implementation of the IN (...) operator.
2518 ** The pX parameter is the expression on the RHS of the IN operator, which
2519 ** might be either a list of expressions or a subquery.
2520 **
2521 ** The job of this routine is to find or create a b-tree object that can
2522 ** be used either to test for membership in the RHS set or to iterate through
2523 ** all members of the RHS set, skipping duplicates.
2524 **
2525 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2526 ** and pX->iTable is set to the index of that cursor.
2527 **
2528 ** The returned value of this function indicates the b-tree type, as follows:
2529 **
2530 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2531 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2532 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2533 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2534 **                         populated epheremal table.
2535 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2536 **                         implemented as a sequence of comparisons.
2537 **
2538 ** An existing b-tree might be used if the RHS expression pX is a simple
2539 ** subquery such as:
2540 **
2541 **     SELECT <column1>, <column2>... FROM <table>
2542 **
2543 ** If the RHS of the IN operator is a list or a more complex subquery, then
2544 ** an ephemeral table might need to be generated from the RHS and then
2545 ** pX->iTable made to point to the ephemeral table instead of an
2546 ** existing table.
2547 **
2548 ** The inFlags parameter must contain, at a minimum, one of the bits
2549 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2550 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2551 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2552 ** be used to loop over all values of the RHS of the IN operator.
2553 **
2554 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2555 ** through the set members) then the b-tree must not contain duplicates.
2556 ** An epheremal table will be created unless the selected columns are guaranteed
2557 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2558 ** a UNIQUE constraint or index.
2559 **
2560 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2561 ** for fast set membership tests) then an epheremal table must
2562 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2563 ** index can be found with the specified <columns> as its left-most.
2564 **
2565 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2566 ** if the RHS of the IN operator is a list (not a subquery) then this
2567 ** routine might decide that creating an ephemeral b-tree for membership
2568 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2569 ** calling routine should implement the IN operator using a sequence
2570 ** of Eq or Ne comparison operations.
2571 **
2572 ** When the b-tree is being used for membership tests, the calling function
2573 ** might need to know whether or not the RHS side of the IN operator
2574 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2575 ** if there is any chance that the (...) might contain a NULL value at
2576 ** runtime, then a register is allocated and the register number written
2577 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2578 ** NULL value, then *prRhsHasNull is left unchanged.
2579 **
2580 ** If a register is allocated and its location stored in *prRhsHasNull, then
2581 ** the value in that register will be NULL if the b-tree contains one or more
2582 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2583 ** NULL values.
2584 **
2585 ** If the aiMap parameter is not NULL, it must point to an array containing
2586 ** one element for each column returned by the SELECT statement on the RHS
2587 ** of the IN(...) operator. The i'th entry of the array is populated with the
2588 ** offset of the index column that matches the i'th column returned by the
2589 ** SELECT. For example, if the expression and selected index are:
2590 **
2591 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2592 **   CREATE INDEX i1 ON t1(b, c, a);
2593 **
2594 ** then aiMap[] is populated with {2, 0, 1}.
2595 */
2596 #ifndef SQLITE_OMIT_SUBQUERY
2597 int sqlite3FindInIndex(
2598   Parse *pParse,             /* Parsing context */
2599   Expr *pX,                  /* The IN expression */
2600   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2601   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2602   int *aiMap,                /* Mapping from Index fields to RHS fields */
2603   int *piTab                 /* OUT: index to use */
2604 ){
2605   Select *p;                            /* SELECT to the right of IN operator */
2606   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2607   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2608   int mustBeUnique;                     /* True if RHS must be unique */
2609   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2610 
2611   assert( pX->op==TK_IN );
2612   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2613 
2614   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2615   ** whether or not the SELECT result contains NULL values, check whether
2616   ** or not NULL is actually possible (it may not be, for example, due
2617   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2618   ** set prRhsHasNull to 0 before continuing.  */
2619   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2620     int i;
2621     ExprList *pEList = pX->x.pSelect->pEList;
2622     for(i=0; i<pEList->nExpr; i++){
2623       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2624     }
2625     if( i==pEList->nExpr ){
2626       prRhsHasNull = 0;
2627     }
2628   }
2629 
2630   /* Check to see if an existing table or index can be used to
2631   ** satisfy the query.  This is preferable to generating a new
2632   ** ephemeral table.  */
2633   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2634     sqlite3 *db = pParse->db;              /* Database connection */
2635     Table *pTab;                           /* Table <table>. */
2636     int iDb;                               /* Database idx for pTab */
2637     ExprList *pEList = p->pEList;
2638     int nExpr = pEList->nExpr;
2639 
2640     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2641     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2642     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2643     pTab = p->pSrc->a[0].pTab;
2644 
2645     /* Code an OP_Transaction and OP_TableLock for <table>. */
2646     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2647     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2648     sqlite3CodeVerifySchema(pParse, iDb);
2649     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2650 
2651     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2652     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2653       /* The "x IN (SELECT rowid FROM table)" case */
2654       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2655       VdbeCoverage(v);
2656 
2657       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2658       eType = IN_INDEX_ROWID;
2659       ExplainQueryPlan((pParse, 0,
2660             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2661       sqlite3VdbeJumpHere(v, iAddr);
2662     }else{
2663       Index *pIdx;                         /* Iterator variable */
2664       int affinity_ok = 1;
2665       int i;
2666 
2667       /* Check that the affinity that will be used to perform each
2668       ** comparison is the same as the affinity of each column in table
2669       ** on the RHS of the IN operator.  If it not, it is not possible to
2670       ** use any index of the RHS table.  */
2671       for(i=0; i<nExpr && affinity_ok; i++){
2672         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2673         int iCol = pEList->a[i].pExpr->iColumn;
2674         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2675         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2676         testcase( cmpaff==SQLITE_AFF_BLOB );
2677         testcase( cmpaff==SQLITE_AFF_TEXT );
2678         switch( cmpaff ){
2679           case SQLITE_AFF_BLOB:
2680             break;
2681           case SQLITE_AFF_TEXT:
2682             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2683             ** other has no affinity and the other side is TEXT.  Hence,
2684             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2685             ** and for the term on the LHS of the IN to have no affinity. */
2686             assert( idxaff==SQLITE_AFF_TEXT );
2687             break;
2688           default:
2689             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2690         }
2691       }
2692 
2693       if( affinity_ok ){
2694         /* Search for an existing index that will work for this IN operator */
2695         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2696           Bitmask colUsed;      /* Columns of the index used */
2697           Bitmask mCol;         /* Mask for the current column */
2698           if( pIdx->nColumn<nExpr ) continue;
2699           if( pIdx->pPartIdxWhere!=0 ) continue;
2700           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2701           ** BITMASK(nExpr) without overflowing */
2702           testcase( pIdx->nColumn==BMS-2 );
2703           testcase( pIdx->nColumn==BMS-1 );
2704           if( pIdx->nColumn>=BMS-1 ) continue;
2705           if( mustBeUnique ){
2706             if( pIdx->nKeyCol>nExpr
2707              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2708             ){
2709               continue;  /* This index is not unique over the IN RHS columns */
2710             }
2711           }
2712 
2713           colUsed = 0;   /* Columns of index used so far */
2714           for(i=0; i<nExpr; i++){
2715             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2716             Expr *pRhs = pEList->a[i].pExpr;
2717             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2718             int j;
2719 
2720             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2721             for(j=0; j<nExpr; j++){
2722               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2723               assert( pIdx->azColl[j] );
2724               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2725                 continue;
2726               }
2727               break;
2728             }
2729             if( j==nExpr ) break;
2730             mCol = MASKBIT(j);
2731             if( mCol & colUsed ) break; /* Each column used only once */
2732             colUsed |= mCol;
2733             if( aiMap ) aiMap[i] = j;
2734           }
2735 
2736           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2737           if( colUsed==(MASKBIT(nExpr)-1) ){
2738             /* If we reach this point, that means the index pIdx is usable */
2739             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2740             ExplainQueryPlan((pParse, 0,
2741                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2742             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2743             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2744             VdbeComment((v, "%s", pIdx->zName));
2745             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2746             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2747 
2748             if( prRhsHasNull ){
2749 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2750               i64 mask = (1<<nExpr)-1;
2751               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2752                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2753 #endif
2754               *prRhsHasNull = ++pParse->nMem;
2755               if( nExpr==1 ){
2756                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2757               }
2758             }
2759             sqlite3VdbeJumpHere(v, iAddr);
2760           }
2761         } /* End loop over indexes */
2762       } /* End if( affinity_ok ) */
2763     } /* End if not an rowid index */
2764   } /* End attempt to optimize using an index */
2765 
2766   /* If no preexisting index is available for the IN clause
2767   ** and IN_INDEX_NOOP is an allowed reply
2768   ** and the RHS of the IN operator is a list, not a subquery
2769   ** and the RHS is not constant or has two or fewer terms,
2770   ** then it is not worth creating an ephemeral table to evaluate
2771   ** the IN operator so return IN_INDEX_NOOP.
2772   */
2773   if( eType==0
2774    && (inFlags & IN_INDEX_NOOP_OK)
2775    && !ExprHasProperty(pX, EP_xIsSelect)
2776    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2777   ){
2778     eType = IN_INDEX_NOOP;
2779   }
2780 
2781   if( eType==0 ){
2782     /* Could not find an existing table or index to use as the RHS b-tree.
2783     ** We will have to generate an ephemeral table to do the job.
2784     */
2785     u32 savedNQueryLoop = pParse->nQueryLoop;
2786     int rMayHaveNull = 0;
2787     eType = IN_INDEX_EPH;
2788     if( inFlags & IN_INDEX_LOOP ){
2789       pParse->nQueryLoop = 0;
2790     }else if( prRhsHasNull ){
2791       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2792     }
2793     assert( pX->op==TK_IN );
2794     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2795     if( rMayHaveNull ){
2796       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2797     }
2798     pParse->nQueryLoop = savedNQueryLoop;
2799   }
2800 
2801   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2802     int i, n;
2803     n = sqlite3ExprVectorSize(pX->pLeft);
2804     for(i=0; i<n; i++) aiMap[i] = i;
2805   }
2806   *piTab = iTab;
2807   return eType;
2808 }
2809 #endif
2810 
2811 #ifndef SQLITE_OMIT_SUBQUERY
2812 /*
2813 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2814 ** function allocates and returns a nul-terminated string containing
2815 ** the affinities to be used for each column of the comparison.
2816 **
2817 ** It is the responsibility of the caller to ensure that the returned
2818 ** string is eventually freed using sqlite3DbFree().
2819 */
2820 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2821   Expr *pLeft = pExpr->pLeft;
2822   int nVal = sqlite3ExprVectorSize(pLeft);
2823   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2824   char *zRet;
2825 
2826   assert( pExpr->op==TK_IN );
2827   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2828   if( zRet ){
2829     int i;
2830     for(i=0; i<nVal; i++){
2831       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2832       char a = sqlite3ExprAffinity(pA);
2833       if( pSelect ){
2834         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2835       }else{
2836         zRet[i] = a;
2837       }
2838     }
2839     zRet[nVal] = '\0';
2840   }
2841   return zRet;
2842 }
2843 #endif
2844 
2845 #ifndef SQLITE_OMIT_SUBQUERY
2846 /*
2847 ** Load the Parse object passed as the first argument with an error
2848 ** message of the form:
2849 **
2850 **   "sub-select returns N columns - expected M"
2851 */
2852 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2853   if( pParse->nErr==0 ){
2854     const char *zFmt = "sub-select returns %d columns - expected %d";
2855     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2856   }
2857 }
2858 #endif
2859 
2860 /*
2861 ** Expression pExpr is a vector that has been used in a context where
2862 ** it is not permitted. If pExpr is a sub-select vector, this routine
2863 ** loads the Parse object with a message of the form:
2864 **
2865 **   "sub-select returns N columns - expected 1"
2866 **
2867 ** Or, if it is a regular scalar vector:
2868 **
2869 **   "row value misused"
2870 */
2871 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2872 #ifndef SQLITE_OMIT_SUBQUERY
2873   if( pExpr->flags & EP_xIsSelect ){
2874     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2875   }else
2876 #endif
2877   {
2878     sqlite3ErrorMsg(pParse, "row value misused");
2879   }
2880 }
2881 
2882 #ifndef SQLITE_OMIT_SUBQUERY
2883 /*
2884 ** Generate code that will construct an ephemeral table containing all terms
2885 ** in the RHS of an IN operator.  The IN operator can be in either of two
2886 ** forms:
2887 **
2888 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2889 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2890 **
2891 ** The pExpr parameter is the IN operator.  The cursor number for the
2892 ** constructed ephermeral table is returned.  The first time the ephemeral
2893 ** table is computed, the cursor number is also stored in pExpr->iTable,
2894 ** however the cursor number returned might not be the same, as it might
2895 ** have been duplicated using OP_OpenDup.
2896 **
2897 ** If the LHS expression ("x" in the examples) is a column value, or
2898 ** the SELECT statement returns a column value, then the affinity of that
2899 ** column is used to build the index keys. If both 'x' and the
2900 ** SELECT... statement are columns, then numeric affinity is used
2901 ** if either column has NUMERIC or INTEGER affinity. If neither
2902 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2903 ** is used.
2904 */
2905 void sqlite3CodeRhsOfIN(
2906   Parse *pParse,          /* Parsing context */
2907   Expr *pExpr,            /* The IN operator */
2908   int iTab                /* Use this cursor number */
2909 ){
2910   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2911   int addr;                   /* Address of OP_OpenEphemeral instruction */
2912   Expr *pLeft;                /* the LHS of the IN operator */
2913   KeyInfo *pKeyInfo = 0;      /* Key information */
2914   int nVal;                   /* Size of vector pLeft */
2915   Vdbe *v;                    /* The prepared statement under construction */
2916 
2917   v = pParse->pVdbe;
2918   assert( v!=0 );
2919 
2920   /* The evaluation of the IN must be repeated every time it
2921   ** is encountered if any of the following is true:
2922   **
2923   **    *  The right-hand side is a correlated subquery
2924   **    *  The right-hand side is an expression list containing variables
2925   **    *  We are inside a trigger
2926   **
2927   ** If all of the above are false, then we can compute the RHS just once
2928   ** and reuse it many names.
2929   */
2930   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2931     /* Reuse of the RHS is allowed */
2932     /* If this routine has already been coded, but the previous code
2933     ** might not have been invoked yet, so invoke it now as a subroutine.
2934     */
2935     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2936       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2937       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2938         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2939               pExpr->x.pSelect->selId));
2940       }
2941       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2942                         pExpr->y.sub.iAddr);
2943       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2944       sqlite3VdbeJumpHere(v, addrOnce);
2945       return;
2946     }
2947 
2948     /* Begin coding the subroutine */
2949     ExprSetProperty(pExpr, EP_Subrtn);
2950     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2951     pExpr->y.sub.regReturn = ++pParse->nMem;
2952     pExpr->y.sub.iAddr =
2953       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2954     VdbeComment((v, "return address"));
2955 
2956     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2957   }
2958 
2959   /* Check to see if this is a vector IN operator */
2960   pLeft = pExpr->pLeft;
2961   nVal = sqlite3ExprVectorSize(pLeft);
2962 
2963   /* Construct the ephemeral table that will contain the content of
2964   ** RHS of the IN operator.
2965   */
2966   pExpr->iTable = iTab;
2967   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2968 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2969   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2970     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2971   }else{
2972     VdbeComment((v, "RHS of IN operator"));
2973   }
2974 #endif
2975   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2976 
2977   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2978     /* Case 1:     expr IN (SELECT ...)
2979     **
2980     ** Generate code to write the results of the select into the temporary
2981     ** table allocated and opened above.
2982     */
2983     Select *pSelect = pExpr->x.pSelect;
2984     ExprList *pEList = pSelect->pEList;
2985 
2986     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2987         addrOnce?"":"CORRELATED ", pSelect->selId
2988     ));
2989     /* If the LHS and RHS of the IN operator do not match, that
2990     ** error will have been caught long before we reach this point. */
2991     if( ALWAYS(pEList->nExpr==nVal) ){
2992       Select *pCopy;
2993       SelectDest dest;
2994       int i;
2995       int rc;
2996       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2997       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2998       pSelect->iLimit = 0;
2999       testcase( pSelect->selFlags & SF_Distinct );
3000       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3001       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3002       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3003       sqlite3SelectDelete(pParse->db, pCopy);
3004       sqlite3DbFree(pParse->db, dest.zAffSdst);
3005       if( rc ){
3006         sqlite3KeyInfoUnref(pKeyInfo);
3007         return;
3008       }
3009       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3010       assert( pEList!=0 );
3011       assert( pEList->nExpr>0 );
3012       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3013       for(i=0; i<nVal; i++){
3014         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3015         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3016             pParse, p, pEList->a[i].pExpr
3017         );
3018       }
3019     }
3020   }else if( ALWAYS(pExpr->x.pList!=0) ){
3021     /* Case 2:     expr IN (exprlist)
3022     **
3023     ** For each expression, build an index key from the evaluation and
3024     ** store it in the temporary table. If <expr> is a column, then use
3025     ** that columns affinity when building index keys. If <expr> is not
3026     ** a column, use numeric affinity.
3027     */
3028     char affinity;            /* Affinity of the LHS of the IN */
3029     int i;
3030     ExprList *pList = pExpr->x.pList;
3031     struct ExprList_item *pItem;
3032     int r1, r2;
3033     affinity = sqlite3ExprAffinity(pLeft);
3034     if( affinity<=SQLITE_AFF_NONE ){
3035       affinity = SQLITE_AFF_BLOB;
3036     }else if( affinity==SQLITE_AFF_REAL ){
3037       affinity = SQLITE_AFF_NUMERIC;
3038     }
3039     if( pKeyInfo ){
3040       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3041       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3042     }
3043 
3044     /* Loop through each expression in <exprlist>. */
3045     r1 = sqlite3GetTempReg(pParse);
3046     r2 = sqlite3GetTempReg(pParse);
3047     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3048       Expr *pE2 = pItem->pExpr;
3049 
3050       /* If the expression is not constant then we will need to
3051       ** disable the test that was generated above that makes sure
3052       ** this code only executes once.  Because for a non-constant
3053       ** expression we need to rerun this code each time.
3054       */
3055       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3056         sqlite3VdbeChangeToNoop(v, addrOnce);
3057         ExprClearProperty(pExpr, EP_Subrtn);
3058         addrOnce = 0;
3059       }
3060 
3061       /* Evaluate the expression and insert it into the temp table */
3062       sqlite3ExprCode(pParse, pE2, r1);
3063       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3064       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3065     }
3066     sqlite3ReleaseTempReg(pParse, r1);
3067     sqlite3ReleaseTempReg(pParse, r2);
3068   }
3069   if( pKeyInfo ){
3070     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3071   }
3072   if( addrOnce ){
3073     sqlite3VdbeJumpHere(v, addrOnce);
3074     /* Subroutine return */
3075     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3076     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3077     sqlite3ClearTempRegCache(pParse);
3078   }
3079 }
3080 #endif /* SQLITE_OMIT_SUBQUERY */
3081 
3082 /*
3083 ** Generate code for scalar subqueries used as a subquery expression
3084 ** or EXISTS operator:
3085 **
3086 **     (SELECT a FROM b)          -- subquery
3087 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3088 **
3089 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3090 **
3091 ** Return the register that holds the result.  For a multi-column SELECT,
3092 ** the result is stored in a contiguous array of registers and the
3093 ** return value is the register of the left-most result column.
3094 ** Return 0 if an error occurs.
3095 */
3096 #ifndef SQLITE_OMIT_SUBQUERY
3097 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3098   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3099   int rReg = 0;               /* Register storing resulting */
3100   Select *pSel;               /* SELECT statement to encode */
3101   SelectDest dest;            /* How to deal with SELECT result */
3102   int nReg;                   /* Registers to allocate */
3103   Expr *pLimit;               /* New limit expression */
3104 
3105   Vdbe *v = pParse->pVdbe;
3106   assert( v!=0 );
3107   if( pParse->nErr ) return 0;
3108   testcase( pExpr->op==TK_EXISTS );
3109   testcase( pExpr->op==TK_SELECT );
3110   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3111   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3112   pSel = pExpr->x.pSelect;
3113 
3114   /* If this routine has already been coded, then invoke it as a
3115   ** subroutine. */
3116   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3117     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3118     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3119                       pExpr->y.sub.iAddr);
3120     return pExpr->iTable;
3121   }
3122 
3123   /* Begin coding the subroutine */
3124   ExprSetProperty(pExpr, EP_Subrtn);
3125   pExpr->y.sub.regReturn = ++pParse->nMem;
3126   pExpr->y.sub.iAddr =
3127     sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3128   VdbeComment((v, "return address"));
3129 
3130 
3131   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3132   ** is encountered if any of the following is true:
3133   **
3134   **    *  The right-hand side is a correlated subquery
3135   **    *  The right-hand side is an expression list containing variables
3136   **    *  We are inside a trigger
3137   **
3138   ** If all of the above are false, then we can run this code just once
3139   ** save the results, and reuse the same result on subsequent invocations.
3140   */
3141   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3142     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3143   }
3144 
3145   /* For a SELECT, generate code to put the values for all columns of
3146   ** the first row into an array of registers and return the index of
3147   ** the first register.
3148   **
3149   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3150   ** into a register and return that register number.
3151   **
3152   ** In both cases, the query is augmented with "LIMIT 1".  Any
3153   ** preexisting limit is discarded in place of the new LIMIT 1.
3154   */
3155   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3156         addrOnce?"":"CORRELATED ", pSel->selId));
3157   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3158   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3159   pParse->nMem += nReg;
3160   if( pExpr->op==TK_SELECT ){
3161     dest.eDest = SRT_Mem;
3162     dest.iSdst = dest.iSDParm;
3163     dest.nSdst = nReg;
3164     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3165     VdbeComment((v, "Init subquery result"));
3166   }else{
3167     dest.eDest = SRT_Exists;
3168     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3169     VdbeComment((v, "Init EXISTS result"));
3170   }
3171   if( pSel->pLimit ){
3172     /* The subquery already has a limit.  If the pre-existing limit is X
3173     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3174     sqlite3 *db = pParse->db;
3175     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3176     if( pLimit ){
3177       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3178       pLimit = sqlite3PExpr(pParse, TK_NE,
3179                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3180     }
3181     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3182     pSel->pLimit->pLeft = pLimit;
3183   }else{
3184     /* If there is no pre-existing limit add a limit of 1 */
3185     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3186     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3187   }
3188   pSel->iLimit = 0;
3189   if( sqlite3Select(pParse, pSel, &dest) ){
3190     if( pParse->nErr ){
3191       pExpr->op2 = pExpr->op;
3192       pExpr->op = TK_ERROR;
3193     }
3194     return 0;
3195   }
3196   pExpr->iTable = rReg = dest.iSDParm;
3197   ExprSetVVAProperty(pExpr, EP_NoReduce);
3198   if( addrOnce ){
3199     sqlite3VdbeJumpHere(v, addrOnce);
3200   }
3201 
3202   /* Subroutine return */
3203   sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3204   sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3205   sqlite3ClearTempRegCache(pParse);
3206   return rReg;
3207 }
3208 #endif /* SQLITE_OMIT_SUBQUERY */
3209 
3210 #ifndef SQLITE_OMIT_SUBQUERY
3211 /*
3212 ** Expr pIn is an IN(...) expression. This function checks that the
3213 ** sub-select on the RHS of the IN() operator has the same number of
3214 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3215 ** a sub-query, that the LHS is a vector of size 1.
3216 */
3217 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3218   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3219   if( (pIn->flags & EP_xIsSelect)!=0 && !pParse->db->mallocFailed ){
3220     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3221       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3222       return 1;
3223     }
3224   }else if( nVector!=1 ){
3225     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3226     return 1;
3227   }
3228   return 0;
3229 }
3230 #endif
3231 
3232 #ifndef SQLITE_OMIT_SUBQUERY
3233 /*
3234 ** Generate code for an IN expression.
3235 **
3236 **      x IN (SELECT ...)
3237 **      x IN (value, value, ...)
3238 **
3239 ** The left-hand side (LHS) is a scalar or vector expression.  The
3240 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3241 ** subquery.  If the RHS is a subquery, the number of result columns must
3242 ** match the number of columns in the vector on the LHS.  If the RHS is
3243 ** a list of values, the LHS must be a scalar.
3244 **
3245 ** The IN operator is true if the LHS value is contained within the RHS.
3246 ** The result is false if the LHS is definitely not in the RHS.  The
3247 ** result is NULL if the presence of the LHS in the RHS cannot be
3248 ** determined due to NULLs.
3249 **
3250 ** This routine generates code that jumps to destIfFalse if the LHS is not
3251 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3252 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3253 ** within the RHS then fall through.
3254 **
3255 ** See the separate in-operator.md documentation file in the canonical
3256 ** SQLite source tree for additional information.
3257 */
3258 static void sqlite3ExprCodeIN(
3259   Parse *pParse,        /* Parsing and code generating context */
3260   Expr *pExpr,          /* The IN expression */
3261   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3262   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3263 ){
3264   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3265   int eType;            /* Type of the RHS */
3266   int rLhs;             /* Register(s) holding the LHS values */
3267   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3268   Vdbe *v;              /* Statement under construction */
3269   int *aiMap = 0;       /* Map from vector field to index column */
3270   char *zAff = 0;       /* Affinity string for comparisons */
3271   int nVector;          /* Size of vectors for this IN operator */
3272   int iDummy;           /* Dummy parameter to exprCodeVector() */
3273   Expr *pLeft;          /* The LHS of the IN operator */
3274   int i;                /* loop counter */
3275   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3276   int destStep6 = 0;    /* Start of code for Step 6 */
3277   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3278   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3279   int addrTop;          /* Top of the step-6 loop */
3280   int iTab = 0;         /* Index to use */
3281   u8 okConstFactor = pParse->okConstFactor;
3282 
3283   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3284   pLeft = pExpr->pLeft;
3285   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3286   zAff = exprINAffinity(pParse, pExpr);
3287   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3288   aiMap = (int*)sqlite3DbMallocZero(
3289       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3290   );
3291   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3292 
3293   /* Attempt to compute the RHS. After this step, if anything other than
3294   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3295   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3296   ** the RHS has not yet been coded.  */
3297   v = pParse->pVdbe;
3298   assert( v!=0 );       /* OOM detected prior to this routine */
3299   VdbeNoopComment((v, "begin IN expr"));
3300   eType = sqlite3FindInIndex(pParse, pExpr,
3301                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3302                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3303                              aiMap, &iTab);
3304 
3305   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3306        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3307   );
3308 #ifdef SQLITE_DEBUG
3309   /* Confirm that aiMap[] contains nVector integer values between 0 and
3310   ** nVector-1. */
3311   for(i=0; i<nVector; i++){
3312     int j, cnt;
3313     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3314     assert( cnt==1 );
3315   }
3316 #endif
3317 
3318   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3319   ** vector, then it is stored in an array of nVector registers starting
3320   ** at r1.
3321   **
3322   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3323   ** so that the fields are in the same order as an existing index.   The
3324   ** aiMap[] array contains a mapping from the original LHS field order to
3325   ** the field order that matches the RHS index.
3326   **
3327   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3328   ** even if it is constant, as OP_Affinity may be used on the register
3329   ** by code generated below.  */
3330   assert( pParse->okConstFactor==okConstFactor );
3331   pParse->okConstFactor = 0;
3332   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3333   pParse->okConstFactor = okConstFactor;
3334   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3335   if( i==nVector ){
3336     /* LHS fields are not reordered */
3337     rLhs = rLhsOrig;
3338   }else{
3339     /* Need to reorder the LHS fields according to aiMap */
3340     rLhs = sqlite3GetTempRange(pParse, nVector);
3341     for(i=0; i<nVector; i++){
3342       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3343     }
3344   }
3345 
3346   /* If sqlite3FindInIndex() did not find or create an index that is
3347   ** suitable for evaluating the IN operator, then evaluate using a
3348   ** sequence of comparisons.
3349   **
3350   ** This is step (1) in the in-operator.md optimized algorithm.
3351   */
3352   if( eType==IN_INDEX_NOOP ){
3353     ExprList *pList = pExpr->x.pList;
3354     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3355     int labelOk = sqlite3VdbeMakeLabel(pParse);
3356     int r2, regToFree;
3357     int regCkNull = 0;
3358     int ii;
3359     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3360     if( destIfNull!=destIfFalse ){
3361       regCkNull = sqlite3GetTempReg(pParse);
3362       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3363     }
3364     for(ii=0; ii<pList->nExpr; ii++){
3365       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3366       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3367         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3368       }
3369       sqlite3ReleaseTempReg(pParse, regToFree);
3370       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3371         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3372         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3373                           (void*)pColl, P4_COLLSEQ);
3374         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3375         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3376         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3377         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3378         sqlite3VdbeChangeP5(v, zAff[0]);
3379       }else{
3380         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3381         assert( destIfNull==destIfFalse );
3382         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3383                           (void*)pColl, P4_COLLSEQ);
3384         VdbeCoverageIf(v, op==OP_Ne);
3385         VdbeCoverageIf(v, op==OP_IsNull);
3386         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3387       }
3388     }
3389     if( regCkNull ){
3390       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3391       sqlite3VdbeGoto(v, destIfFalse);
3392     }
3393     sqlite3VdbeResolveLabel(v, labelOk);
3394     sqlite3ReleaseTempReg(pParse, regCkNull);
3395     goto sqlite3ExprCodeIN_finished;
3396   }
3397 
3398   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3399   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3400   ** We will then skip the binary search of the RHS.
3401   */
3402   if( destIfNull==destIfFalse ){
3403     destStep2 = destIfFalse;
3404   }else{
3405     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3406   }
3407   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3408   for(i=0; i<nVector; i++){
3409     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3410     if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3411     if( sqlite3ExprCanBeNull(p) ){
3412       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3413       VdbeCoverage(v);
3414     }
3415   }
3416 
3417   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3418   ** of the RHS using the LHS as a probe.  If found, the result is
3419   ** true.
3420   */
3421   if( eType==IN_INDEX_ROWID ){
3422     /* In this case, the RHS is the ROWID of table b-tree and so we also
3423     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3424     ** into a single opcode. */
3425     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3426     VdbeCoverage(v);
3427     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3428   }else{
3429     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3430     if( destIfFalse==destIfNull ){
3431       /* Combine Step 3 and Step 5 into a single opcode */
3432       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3433                            rLhs, nVector); VdbeCoverage(v);
3434       goto sqlite3ExprCodeIN_finished;
3435     }
3436     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3437     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3438                                       rLhs, nVector); VdbeCoverage(v);
3439   }
3440 
3441   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3442   ** an match on the search above, then the result must be FALSE.
3443   */
3444   if( rRhsHasNull && nVector==1 ){
3445     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3446     VdbeCoverage(v);
3447   }
3448 
3449   /* Step 5.  If we do not care about the difference between NULL and
3450   ** FALSE, then just return false.
3451   */
3452   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3453 
3454   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3455   ** If any comparison is NULL, then the result is NULL.  If all
3456   ** comparisons are FALSE then the final result is FALSE.
3457   **
3458   ** For a scalar LHS, it is sufficient to check just the first row
3459   ** of the RHS.
3460   */
3461   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3462   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3463   VdbeCoverage(v);
3464   if( nVector>1 ){
3465     destNotNull = sqlite3VdbeMakeLabel(pParse);
3466   }else{
3467     /* For nVector==1, combine steps 6 and 7 by immediately returning
3468     ** FALSE if the first comparison is not NULL */
3469     destNotNull = destIfFalse;
3470   }
3471   for(i=0; i<nVector; i++){
3472     Expr *p;
3473     CollSeq *pColl;
3474     int r3 = sqlite3GetTempReg(pParse);
3475     p = sqlite3VectorFieldSubexpr(pLeft, i);
3476     pColl = sqlite3ExprCollSeq(pParse, p);
3477     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3478     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3479                       (void*)pColl, P4_COLLSEQ);
3480     VdbeCoverage(v);
3481     sqlite3ReleaseTempReg(pParse, r3);
3482   }
3483   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3484   if( nVector>1 ){
3485     sqlite3VdbeResolveLabel(v, destNotNull);
3486     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3487     VdbeCoverage(v);
3488 
3489     /* Step 7:  If we reach this point, we know that the result must
3490     ** be false. */
3491     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3492   }
3493 
3494   /* Jumps here in order to return true. */
3495   sqlite3VdbeJumpHere(v, addrTruthOp);
3496 
3497 sqlite3ExprCodeIN_finished:
3498   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3499   VdbeComment((v, "end IN expr"));
3500 sqlite3ExprCodeIN_oom_error:
3501   sqlite3DbFree(pParse->db, aiMap);
3502   sqlite3DbFree(pParse->db, zAff);
3503 }
3504 #endif /* SQLITE_OMIT_SUBQUERY */
3505 
3506 #ifndef SQLITE_OMIT_FLOATING_POINT
3507 /*
3508 ** Generate an instruction that will put the floating point
3509 ** value described by z[0..n-1] into register iMem.
3510 **
3511 ** The z[] string will probably not be zero-terminated.  But the
3512 ** z[n] character is guaranteed to be something that does not look
3513 ** like the continuation of the number.
3514 */
3515 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3516   if( ALWAYS(z!=0) ){
3517     double value;
3518     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3519     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3520     if( negateFlag ) value = -value;
3521     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3522   }
3523 }
3524 #endif
3525 
3526 
3527 /*
3528 ** Generate an instruction that will put the integer describe by
3529 ** text z[0..n-1] into register iMem.
3530 **
3531 ** Expr.u.zToken is always UTF8 and zero-terminated.
3532 */
3533 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3534   Vdbe *v = pParse->pVdbe;
3535   if( pExpr->flags & EP_IntValue ){
3536     int i = pExpr->u.iValue;
3537     assert( i>=0 );
3538     if( negFlag ) i = -i;
3539     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3540   }else{
3541     int c;
3542     i64 value;
3543     const char *z = pExpr->u.zToken;
3544     assert( z!=0 );
3545     c = sqlite3DecOrHexToI64(z, &value);
3546     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3547 #ifdef SQLITE_OMIT_FLOATING_POINT
3548       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3549 #else
3550 #ifndef SQLITE_OMIT_HEX_INTEGER
3551       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3552         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3553       }else
3554 #endif
3555       {
3556         codeReal(v, z, negFlag, iMem);
3557       }
3558 #endif
3559     }else{
3560       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3561       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3562     }
3563   }
3564 }
3565 
3566 
3567 /* Generate code that will load into register regOut a value that is
3568 ** appropriate for the iIdxCol-th column of index pIdx.
3569 */
3570 void sqlite3ExprCodeLoadIndexColumn(
3571   Parse *pParse,  /* The parsing context */
3572   Index *pIdx,    /* The index whose column is to be loaded */
3573   int iTabCur,    /* Cursor pointing to a table row */
3574   int iIdxCol,    /* The column of the index to be loaded */
3575   int regOut      /* Store the index column value in this register */
3576 ){
3577   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3578   if( iTabCol==XN_EXPR ){
3579     assert( pIdx->aColExpr );
3580     assert( pIdx->aColExpr->nExpr>iIdxCol );
3581     pParse->iSelfTab = iTabCur + 1;
3582     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3583     pParse->iSelfTab = 0;
3584   }else{
3585     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3586                                     iTabCol, regOut);
3587   }
3588 }
3589 
3590 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3591 /*
3592 ** Generate code that will compute the value of generated column pCol
3593 ** and store the result in register regOut
3594 */
3595 void sqlite3ExprCodeGeneratedColumn(
3596   Parse *pParse,
3597   Column *pCol,
3598   int regOut
3599 ){
3600   int iAddr;
3601   Vdbe *v = pParse->pVdbe;
3602   assert( v!=0 );
3603   assert( pParse->iSelfTab!=0 );
3604   if( pParse->iSelfTab>0 ){
3605     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3606   }else{
3607     iAddr = 0;
3608   }
3609   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3610   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3611     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3612   }
3613   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3614 }
3615 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3616 
3617 /*
3618 ** Generate code to extract the value of the iCol-th column of a table.
3619 */
3620 void sqlite3ExprCodeGetColumnOfTable(
3621   Vdbe *v,        /* Parsing context */
3622   Table *pTab,    /* The table containing the value */
3623   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3624   int iCol,       /* Index of the column to extract */
3625   int regOut      /* Extract the value into this register */
3626 ){
3627   Column *pCol;
3628   assert( v!=0 );
3629   if( pTab==0 ){
3630     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3631     return;
3632   }
3633   if( iCol<0 || iCol==pTab->iPKey ){
3634     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3635   }else{
3636     int op;
3637     int x;
3638     if( IsVirtual(pTab) ){
3639       op = OP_VColumn;
3640       x = iCol;
3641 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3642     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3643       Parse *pParse = sqlite3VdbeParser(v);
3644       if( pCol->colFlags & COLFLAG_BUSY ){
3645         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3646       }else{
3647         int savedSelfTab = pParse->iSelfTab;
3648         pCol->colFlags |= COLFLAG_BUSY;
3649         pParse->iSelfTab = iTabCur+1;
3650         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3651         pParse->iSelfTab = savedSelfTab;
3652         pCol->colFlags &= ~COLFLAG_BUSY;
3653       }
3654       return;
3655 #endif
3656     }else if( !HasRowid(pTab) ){
3657       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3658       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3659       op = OP_Column;
3660     }else{
3661       x = sqlite3TableColumnToStorage(pTab,iCol);
3662       testcase( x!=iCol );
3663       op = OP_Column;
3664     }
3665     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3666     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3667   }
3668 }
3669 
3670 /*
3671 ** Generate code that will extract the iColumn-th column from
3672 ** table pTab and store the column value in register iReg.
3673 **
3674 ** There must be an open cursor to pTab in iTable when this routine
3675 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3676 */
3677 int sqlite3ExprCodeGetColumn(
3678   Parse *pParse,   /* Parsing and code generating context */
3679   Table *pTab,     /* Description of the table we are reading from */
3680   int iColumn,     /* Index of the table column */
3681   int iTable,      /* The cursor pointing to the table */
3682   int iReg,        /* Store results here */
3683   u8 p5            /* P5 value for OP_Column + FLAGS */
3684 ){
3685   assert( pParse->pVdbe!=0 );
3686   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3687   if( p5 ){
3688     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3689     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3690   }
3691   return iReg;
3692 }
3693 
3694 /*
3695 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3696 ** over to iTo..iTo+nReg-1.
3697 */
3698 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3699   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3700 }
3701 
3702 /*
3703 ** Convert a scalar expression node to a TK_REGISTER referencing
3704 ** register iReg.  The caller must ensure that iReg already contains
3705 ** the correct value for the expression.
3706 */
3707 static void exprToRegister(Expr *pExpr, int iReg){
3708   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3709   if( NEVER(p==0) ) return;
3710   p->op2 = p->op;
3711   p->op = TK_REGISTER;
3712   p->iTable = iReg;
3713   ExprClearProperty(p, EP_Skip);
3714 }
3715 
3716 /*
3717 ** Evaluate an expression (either a vector or a scalar expression) and store
3718 ** the result in continguous temporary registers.  Return the index of
3719 ** the first register used to store the result.
3720 **
3721 ** If the returned result register is a temporary scalar, then also write
3722 ** that register number into *piFreeable.  If the returned result register
3723 ** is not a temporary or if the expression is a vector set *piFreeable
3724 ** to 0.
3725 */
3726 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3727   int iResult;
3728   int nResult = sqlite3ExprVectorSize(p);
3729   if( nResult==1 ){
3730     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3731   }else{
3732     *piFreeable = 0;
3733     if( p->op==TK_SELECT ){
3734 #if SQLITE_OMIT_SUBQUERY
3735       iResult = 0;
3736 #else
3737       iResult = sqlite3CodeSubselect(pParse, p);
3738 #endif
3739     }else{
3740       int i;
3741       iResult = pParse->nMem+1;
3742       pParse->nMem += nResult;
3743       for(i=0; i<nResult; i++){
3744         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3745       }
3746     }
3747   }
3748   return iResult;
3749 }
3750 
3751 /*
3752 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3753 ** so that a subsequent copy will not be merged into this one.
3754 */
3755 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3756   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3757     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3758   }
3759 }
3760 
3761 /*
3762 ** Generate code to implement special SQL functions that are implemented
3763 ** in-line rather than by using the usual callbacks.
3764 */
3765 static int exprCodeInlineFunction(
3766   Parse *pParse,        /* Parsing context */
3767   ExprList *pFarg,      /* List of function arguments */
3768   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3769   int target            /* Store function result in this register */
3770 ){
3771   int nFarg;
3772   Vdbe *v = pParse->pVdbe;
3773   assert( v!=0 );
3774   assert( pFarg!=0 );
3775   nFarg = pFarg->nExpr;
3776   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3777   switch( iFuncId ){
3778     case INLINEFUNC_coalesce: {
3779       /* Attempt a direct implementation of the built-in COALESCE() and
3780       ** IFNULL() functions.  This avoids unnecessary evaluation of
3781       ** arguments past the first non-NULL argument.
3782       */
3783       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3784       int i;
3785       assert( nFarg>=2 );
3786       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3787       for(i=1; i<nFarg; i++){
3788         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3789         VdbeCoverage(v);
3790         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3791       }
3792       setDoNotMergeFlagOnCopy(v);
3793       sqlite3VdbeResolveLabel(v, endCoalesce);
3794       break;
3795     }
3796     case INLINEFUNC_iif: {
3797       Expr caseExpr;
3798       memset(&caseExpr, 0, sizeof(caseExpr));
3799       caseExpr.op = TK_CASE;
3800       caseExpr.x.pList = pFarg;
3801       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3802     }
3803 
3804     default: {
3805       /* The UNLIKELY() function is a no-op.  The result is the value
3806       ** of the first argument.
3807       */
3808       assert( nFarg==1 || nFarg==2 );
3809       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3810       break;
3811     }
3812 
3813   /***********************************************************************
3814   ** Test-only SQL functions that are only usable if enabled
3815   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3816   */
3817     case INLINEFUNC_expr_compare: {
3818       /* Compare two expressions using sqlite3ExprCompare() */
3819       assert( nFarg==2 );
3820       sqlite3VdbeAddOp2(v, OP_Integer,
3821          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3822          target);
3823       break;
3824     }
3825 
3826     case INLINEFUNC_expr_implies_expr: {
3827       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3828       assert( nFarg==2 );
3829       sqlite3VdbeAddOp2(v, OP_Integer,
3830          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3831          target);
3832       break;
3833     }
3834 
3835     case INLINEFUNC_implies_nonnull_row: {
3836       /* REsult of sqlite3ExprImpliesNonNullRow() */
3837       Expr *pA1;
3838       assert( nFarg==2 );
3839       pA1 = pFarg->a[1].pExpr;
3840       if( pA1->op==TK_COLUMN ){
3841         sqlite3VdbeAddOp2(v, OP_Integer,
3842            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3843            target);
3844       }else{
3845         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3846       }
3847       break;
3848     }
3849 
3850 #ifdef SQLITE_DEBUG
3851     case INLINEFUNC_affinity: {
3852       /* The AFFINITY() function evaluates to a string that describes
3853       ** the type affinity of the argument.  This is used for testing of
3854       ** the SQLite type logic.
3855       */
3856       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3857       char aff;
3858       assert( nFarg==1 );
3859       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3860       sqlite3VdbeLoadString(v, target,
3861               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3862       break;
3863     }
3864 #endif
3865   }
3866   return target;
3867 }
3868 
3869 
3870 /*
3871 ** Generate code into the current Vdbe to evaluate the given
3872 ** expression.  Attempt to store the results in register "target".
3873 ** Return the register where results are stored.
3874 **
3875 ** With this routine, there is no guarantee that results will
3876 ** be stored in target.  The result might be stored in some other
3877 ** register if it is convenient to do so.  The calling function
3878 ** must check the return code and move the results to the desired
3879 ** register.
3880 */
3881 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3882   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3883   int op;                   /* The opcode being coded */
3884   int inReg = target;       /* Results stored in register inReg */
3885   int regFree1 = 0;         /* If non-zero free this temporary register */
3886   int regFree2 = 0;         /* If non-zero free this temporary register */
3887   int r1, r2;               /* Various register numbers */
3888   Expr tempX;               /* Temporary expression node */
3889   int p5 = 0;
3890 
3891   assert( target>0 && target<=pParse->nMem );
3892   assert( v!=0 );
3893 
3894 expr_code_doover:
3895   if( pExpr==0 ){
3896     op = TK_NULL;
3897   }else{
3898     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3899     op = pExpr->op;
3900   }
3901   switch( op ){
3902     case TK_AGG_COLUMN: {
3903       AggInfo *pAggInfo = pExpr->pAggInfo;
3904       struct AggInfo_col *pCol;
3905       assert( pAggInfo!=0 );
3906       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
3907       pCol = &pAggInfo->aCol[pExpr->iAgg];
3908       if( !pAggInfo->directMode ){
3909         assert( pCol->iMem>0 );
3910         return pCol->iMem;
3911       }else if( pAggInfo->useSortingIdx ){
3912         Table *pTab = pCol->pTab;
3913         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3914                               pCol->iSorterColumn, target);
3915         if( pCol->iColumn<0 ){
3916           VdbeComment((v,"%s.rowid",pTab->zName));
3917         }else{
3918           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3919           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3920             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3921           }
3922         }
3923         return target;
3924       }
3925       /* Otherwise, fall thru into the TK_COLUMN case */
3926       /* no break */ deliberate_fall_through
3927     }
3928     case TK_COLUMN: {
3929       int iTab = pExpr->iTable;
3930       int iReg;
3931       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3932         /* This COLUMN expression is really a constant due to WHERE clause
3933         ** constraints, and that constant is coded by the pExpr->pLeft
3934         ** expresssion.  However, make sure the constant has the correct
3935         ** datatype by applying the Affinity of the table column to the
3936         ** constant.
3937         */
3938         int aff;
3939         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3940         if( pExpr->y.pTab ){
3941           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3942         }else{
3943           aff = pExpr->affExpr;
3944         }
3945         if( aff>SQLITE_AFF_BLOB ){
3946           static const char zAff[] = "B\000C\000D\000E";
3947           assert( SQLITE_AFF_BLOB=='A' );
3948           assert( SQLITE_AFF_TEXT=='B' );
3949           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3950                             &zAff[(aff-'B')*2], P4_STATIC);
3951         }
3952         return iReg;
3953       }
3954       if( iTab<0 ){
3955         if( pParse->iSelfTab<0 ){
3956           /* Other columns in the same row for CHECK constraints or
3957           ** generated columns or for inserting into partial index.
3958           ** The row is unpacked into registers beginning at
3959           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3960           ** immediately prior to the first column.
3961           */
3962           Column *pCol;
3963           Table *pTab = pExpr->y.pTab;
3964           int iSrc;
3965           int iCol = pExpr->iColumn;
3966           assert( pTab!=0 );
3967           assert( iCol>=XN_ROWID );
3968           assert( iCol<pTab->nCol );
3969           if( iCol<0 ){
3970             return -1-pParse->iSelfTab;
3971           }
3972           pCol = pTab->aCol + iCol;
3973           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3974           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3975 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3976           if( pCol->colFlags & COLFLAG_GENERATED ){
3977             if( pCol->colFlags & COLFLAG_BUSY ){
3978               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3979                               pCol->zName);
3980               return 0;
3981             }
3982             pCol->colFlags |= COLFLAG_BUSY;
3983             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3984               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3985             }
3986             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3987             return iSrc;
3988           }else
3989 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3990           if( pCol->affinity==SQLITE_AFF_REAL ){
3991             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3992             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3993             return target;
3994           }else{
3995             return iSrc;
3996           }
3997         }else{
3998           /* Coding an expression that is part of an index where column names
3999           ** in the index refer to the table to which the index belongs */
4000           iTab = pParse->iSelfTab - 1;
4001         }
4002       }
4003       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4004                                pExpr->iColumn, iTab, target,
4005                                pExpr->op2);
4006       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4007         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4008       }
4009       return iReg;
4010     }
4011     case TK_INTEGER: {
4012       codeInteger(pParse, pExpr, 0, target);
4013       return target;
4014     }
4015     case TK_TRUEFALSE: {
4016       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4017       return target;
4018     }
4019 #ifndef SQLITE_OMIT_FLOATING_POINT
4020     case TK_FLOAT: {
4021       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4022       codeReal(v, pExpr->u.zToken, 0, target);
4023       return target;
4024     }
4025 #endif
4026     case TK_STRING: {
4027       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4028       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4029       return target;
4030     }
4031     default: {
4032       /* Make NULL the default case so that if a bug causes an illegal
4033       ** Expr node to be passed into this function, it will be handled
4034       ** sanely and not crash.  But keep the assert() to bring the problem
4035       ** to the attention of the developers. */
4036       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4037       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4038       return target;
4039     }
4040 #ifndef SQLITE_OMIT_BLOB_LITERAL
4041     case TK_BLOB: {
4042       int n;
4043       const char *z;
4044       char *zBlob;
4045       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4046       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4047       assert( pExpr->u.zToken[1]=='\'' );
4048       z = &pExpr->u.zToken[2];
4049       n = sqlite3Strlen30(z) - 1;
4050       assert( z[n]=='\'' );
4051       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4052       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4053       return target;
4054     }
4055 #endif
4056     case TK_VARIABLE: {
4057       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4058       assert( pExpr->u.zToken!=0 );
4059       assert( pExpr->u.zToken[0]!=0 );
4060       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4061       if( pExpr->u.zToken[1]!=0 ){
4062         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4063         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4064         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4065         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4066       }
4067       return target;
4068     }
4069     case TK_REGISTER: {
4070       return pExpr->iTable;
4071     }
4072 #ifndef SQLITE_OMIT_CAST
4073     case TK_CAST: {
4074       /* Expressions of the form:   CAST(pLeft AS token) */
4075       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4076       if( inReg!=target ){
4077         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4078         inReg = target;
4079       }
4080       sqlite3VdbeAddOp2(v, OP_Cast, target,
4081                         sqlite3AffinityType(pExpr->u.zToken, 0));
4082       return inReg;
4083     }
4084 #endif /* SQLITE_OMIT_CAST */
4085     case TK_IS:
4086     case TK_ISNOT:
4087       op = (op==TK_IS) ? TK_EQ : TK_NE;
4088       p5 = SQLITE_NULLEQ;
4089       /* fall-through */
4090     case TK_LT:
4091     case TK_LE:
4092     case TK_GT:
4093     case TK_GE:
4094     case TK_NE:
4095     case TK_EQ: {
4096       Expr *pLeft = pExpr->pLeft;
4097       if( sqlite3ExprIsVector(pLeft) ){
4098         codeVectorCompare(pParse, pExpr, target, op, p5);
4099       }else{
4100         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4101         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4102         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4103         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4104             sqlite3VdbeCurrentAddr(v)+2, p5,
4105             ExprHasProperty(pExpr,EP_Commuted));
4106         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4107         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4108         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4109         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4110         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4111         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4112         if( p5==SQLITE_NULLEQ ){
4113           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4114         }else{
4115           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4116         }
4117         testcase( regFree1==0 );
4118         testcase( regFree2==0 );
4119       }
4120       break;
4121     }
4122     case TK_AND:
4123     case TK_OR:
4124     case TK_PLUS:
4125     case TK_STAR:
4126     case TK_MINUS:
4127     case TK_REM:
4128     case TK_BITAND:
4129     case TK_BITOR:
4130     case TK_SLASH:
4131     case TK_LSHIFT:
4132     case TK_RSHIFT:
4133     case TK_CONCAT: {
4134       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4135       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4136       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4137       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4138       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4139       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4140       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4141       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4142       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4143       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4144       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4145       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4146       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4147       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4148       testcase( regFree1==0 );
4149       testcase( regFree2==0 );
4150       break;
4151     }
4152     case TK_UMINUS: {
4153       Expr *pLeft = pExpr->pLeft;
4154       assert( pLeft );
4155       if( pLeft->op==TK_INTEGER ){
4156         codeInteger(pParse, pLeft, 1, target);
4157         return target;
4158 #ifndef SQLITE_OMIT_FLOATING_POINT
4159       }else if( pLeft->op==TK_FLOAT ){
4160         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4161         codeReal(v, pLeft->u.zToken, 1, target);
4162         return target;
4163 #endif
4164       }else{
4165         tempX.op = TK_INTEGER;
4166         tempX.flags = EP_IntValue|EP_TokenOnly;
4167         tempX.u.iValue = 0;
4168         ExprClearVVAProperties(&tempX);
4169         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4170         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4171         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4172         testcase( regFree2==0 );
4173       }
4174       break;
4175     }
4176     case TK_BITNOT:
4177     case TK_NOT: {
4178       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4179       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4180       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4181       testcase( regFree1==0 );
4182       sqlite3VdbeAddOp2(v, op, r1, inReg);
4183       break;
4184     }
4185     case TK_TRUTH: {
4186       int isTrue;    /* IS TRUE or IS NOT TRUE */
4187       int bNormal;   /* IS TRUE or IS FALSE */
4188       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4189       testcase( regFree1==0 );
4190       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4191       bNormal = pExpr->op2==TK_IS;
4192       testcase( isTrue && bNormal);
4193       testcase( !isTrue && bNormal);
4194       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4195       break;
4196     }
4197     case TK_ISNULL:
4198     case TK_NOTNULL: {
4199       int addr;
4200       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4201       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4202       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4203       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4204       testcase( regFree1==0 );
4205       addr = sqlite3VdbeAddOp1(v, op, r1);
4206       VdbeCoverageIf(v, op==TK_ISNULL);
4207       VdbeCoverageIf(v, op==TK_NOTNULL);
4208       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4209       sqlite3VdbeJumpHere(v, addr);
4210       break;
4211     }
4212     case TK_AGG_FUNCTION: {
4213       AggInfo *pInfo = pExpr->pAggInfo;
4214       if( pInfo==0
4215        || NEVER(pExpr->iAgg<0)
4216        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4217       ){
4218         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4219         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4220       }else{
4221         return pInfo->aFunc[pExpr->iAgg].iMem;
4222       }
4223       break;
4224     }
4225     case TK_FUNCTION: {
4226       ExprList *pFarg;       /* List of function arguments */
4227       int nFarg;             /* Number of function arguments */
4228       FuncDef *pDef;         /* The function definition object */
4229       const char *zId;       /* The function name */
4230       u32 constMask = 0;     /* Mask of function arguments that are constant */
4231       int i;                 /* Loop counter */
4232       sqlite3 *db = pParse->db;  /* The database connection */
4233       u8 enc = ENC(db);      /* The text encoding used by this database */
4234       CollSeq *pColl = 0;    /* A collating sequence */
4235 
4236 #ifndef SQLITE_OMIT_WINDOWFUNC
4237       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4238         return pExpr->y.pWin->regResult;
4239       }
4240 #endif
4241 
4242       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4243         /* SQL functions can be expensive. So try to avoid running them
4244         ** multiple times if we know they always give the same result */
4245         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4246       }
4247       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4248       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4249       pFarg = pExpr->x.pList;
4250       nFarg = pFarg ? pFarg->nExpr : 0;
4251       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4252       zId = pExpr->u.zToken;
4253       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4254 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4255       if( pDef==0 && pParse->explain ){
4256         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4257       }
4258 #endif
4259       if( pDef==0 || pDef->xFinalize!=0 ){
4260         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4261         break;
4262       }
4263       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4264         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4265         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4266         return exprCodeInlineFunction(pParse, pFarg,
4267              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4268       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4269         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4270       }
4271 
4272       for(i=0; i<nFarg; i++){
4273         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4274           testcase( i==31 );
4275           constMask |= MASKBIT32(i);
4276         }
4277         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4278           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4279         }
4280       }
4281       if( pFarg ){
4282         if( constMask ){
4283           r1 = pParse->nMem+1;
4284           pParse->nMem += nFarg;
4285         }else{
4286           r1 = sqlite3GetTempRange(pParse, nFarg);
4287         }
4288 
4289         /* For length() and typeof() functions with a column argument,
4290         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4291         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4292         ** loading.
4293         */
4294         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4295           u8 exprOp;
4296           assert( nFarg==1 );
4297           assert( pFarg->a[0].pExpr!=0 );
4298           exprOp = pFarg->a[0].pExpr->op;
4299           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4300             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4301             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4302             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4303             pFarg->a[0].pExpr->op2 =
4304                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4305           }
4306         }
4307 
4308         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4309                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4310       }else{
4311         r1 = 0;
4312       }
4313 #ifndef SQLITE_OMIT_VIRTUALTABLE
4314       /* Possibly overload the function if the first argument is
4315       ** a virtual table column.
4316       **
4317       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4318       ** second argument, not the first, as the argument to test to
4319       ** see if it is a column in a virtual table.  This is done because
4320       ** the left operand of infix functions (the operand we want to
4321       ** control overloading) ends up as the second argument to the
4322       ** function.  The expression "A glob B" is equivalent to
4323       ** "glob(B,A).  We want to use the A in "A glob B" to test
4324       ** for function overloading.  But we use the B term in "glob(B,A)".
4325       */
4326       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4327         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4328       }else if( nFarg>0 ){
4329         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4330       }
4331 #endif
4332       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4333         if( !pColl ) pColl = db->pDfltColl;
4334         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4335       }
4336 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4337       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4338         Expr *pArg = pFarg->a[0].pExpr;
4339         if( pArg->op==TK_COLUMN ){
4340           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4341         }else{
4342           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4343         }
4344       }else
4345 #endif
4346       {
4347         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4348                                    pDef, pExpr->op2);
4349       }
4350       if( nFarg ){
4351         if( constMask==0 ){
4352           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4353         }else{
4354           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4355         }
4356       }
4357       return target;
4358     }
4359 #ifndef SQLITE_OMIT_SUBQUERY
4360     case TK_EXISTS:
4361     case TK_SELECT: {
4362       int nCol;
4363       testcase( op==TK_EXISTS );
4364       testcase( op==TK_SELECT );
4365       if( pParse->db->mallocFailed ){
4366         return 0;
4367       }else if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4368         sqlite3SubselectError(pParse, nCol, 1);
4369       }else{
4370         return sqlite3CodeSubselect(pParse, pExpr);
4371       }
4372       break;
4373     }
4374     case TK_SELECT_COLUMN: {
4375       int n;
4376       if( pExpr->pLeft->iTable==0 ){
4377         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4378       }
4379       assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR );
4380       n = sqlite3ExprVectorSize(pExpr->pLeft);
4381       if( pExpr->iTable!=n ){
4382         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4383                                 pExpr->iTable, n);
4384       }
4385       return pExpr->pLeft->iTable + pExpr->iColumn;
4386     }
4387     case TK_IN: {
4388       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4389       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4390       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4391       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4392       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4393       sqlite3VdbeResolveLabel(v, destIfFalse);
4394       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4395       sqlite3VdbeResolveLabel(v, destIfNull);
4396       return target;
4397     }
4398 #endif /* SQLITE_OMIT_SUBQUERY */
4399 
4400 
4401     /*
4402     **    x BETWEEN y AND z
4403     **
4404     ** This is equivalent to
4405     **
4406     **    x>=y AND x<=z
4407     **
4408     ** X is stored in pExpr->pLeft.
4409     ** Y is stored in pExpr->pList->a[0].pExpr.
4410     ** Z is stored in pExpr->pList->a[1].pExpr.
4411     */
4412     case TK_BETWEEN: {
4413       exprCodeBetween(pParse, pExpr, target, 0, 0);
4414       return target;
4415     }
4416     case TK_SPAN:
4417     case TK_COLLATE:
4418     case TK_UPLUS: {
4419       pExpr = pExpr->pLeft;
4420       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4421     }
4422 
4423     case TK_TRIGGER: {
4424       /* If the opcode is TK_TRIGGER, then the expression is a reference
4425       ** to a column in the new.* or old.* pseudo-tables available to
4426       ** trigger programs. In this case Expr.iTable is set to 1 for the
4427       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4428       ** is set to the column of the pseudo-table to read, or to -1 to
4429       ** read the rowid field.
4430       **
4431       ** The expression is implemented using an OP_Param opcode. The p1
4432       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4433       ** to reference another column of the old.* pseudo-table, where
4434       ** i is the index of the column. For a new.rowid reference, p1 is
4435       ** set to (n+1), where n is the number of columns in each pseudo-table.
4436       ** For a reference to any other column in the new.* pseudo-table, p1
4437       ** is set to (n+2+i), where n and i are as defined previously. For
4438       ** example, if the table on which triggers are being fired is
4439       ** declared as:
4440       **
4441       **   CREATE TABLE t1(a, b);
4442       **
4443       ** Then p1 is interpreted as follows:
4444       **
4445       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4446       **   p1==1   ->    old.a         p1==4   ->    new.a
4447       **   p1==2   ->    old.b         p1==5   ->    new.b
4448       */
4449       Table *pTab = pExpr->y.pTab;
4450       int iCol = pExpr->iColumn;
4451       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4452                      + sqlite3TableColumnToStorage(pTab, iCol);
4453 
4454       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4455       assert( iCol>=-1 && iCol<pTab->nCol );
4456       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4457       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4458 
4459       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4460       VdbeComment((v, "r[%d]=%s.%s", target,
4461         (pExpr->iTable ? "new" : "old"),
4462         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4463       ));
4464 
4465 #ifndef SQLITE_OMIT_FLOATING_POINT
4466       /* If the column has REAL affinity, it may currently be stored as an
4467       ** integer. Use OP_RealAffinity to make sure it is really real.
4468       **
4469       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4470       ** floating point when extracting it from the record.  */
4471       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4472         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4473       }
4474 #endif
4475       break;
4476     }
4477 
4478     case TK_VECTOR: {
4479       sqlite3ErrorMsg(pParse, "row value misused");
4480       break;
4481     }
4482 
4483     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4484     ** that derive from the right-hand table of a LEFT JOIN.  The
4485     ** Expr.iTable value is the table number for the right-hand table.
4486     ** The expression is only evaluated if that table is not currently
4487     ** on a LEFT JOIN NULL row.
4488     */
4489     case TK_IF_NULL_ROW: {
4490       int addrINR;
4491       u8 okConstFactor = pParse->okConstFactor;
4492       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4493       /* Temporarily disable factoring of constant expressions, since
4494       ** even though expressions may appear to be constant, they are not
4495       ** really constant because they originate from the right-hand side
4496       ** of a LEFT JOIN. */
4497       pParse->okConstFactor = 0;
4498       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4499       pParse->okConstFactor = okConstFactor;
4500       sqlite3VdbeJumpHere(v, addrINR);
4501       sqlite3VdbeChangeP3(v, addrINR, inReg);
4502       break;
4503     }
4504 
4505     /*
4506     ** Form A:
4507     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4508     **
4509     ** Form B:
4510     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4511     **
4512     ** Form A is can be transformed into the equivalent form B as follows:
4513     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4514     **        WHEN x=eN THEN rN ELSE y END
4515     **
4516     ** X (if it exists) is in pExpr->pLeft.
4517     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4518     ** odd.  The Y is also optional.  If the number of elements in x.pList
4519     ** is even, then Y is omitted and the "otherwise" result is NULL.
4520     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4521     **
4522     ** The result of the expression is the Ri for the first matching Ei,
4523     ** or if there is no matching Ei, the ELSE term Y, or if there is
4524     ** no ELSE term, NULL.
4525     */
4526     case TK_CASE: {
4527       int endLabel;                     /* GOTO label for end of CASE stmt */
4528       int nextCase;                     /* GOTO label for next WHEN clause */
4529       int nExpr;                        /* 2x number of WHEN terms */
4530       int i;                            /* Loop counter */
4531       ExprList *pEList;                 /* List of WHEN terms */
4532       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4533       Expr opCompare;                   /* The X==Ei expression */
4534       Expr *pX;                         /* The X expression */
4535       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4536       Expr *pDel = 0;
4537       sqlite3 *db = pParse->db;
4538 
4539       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4540       assert(pExpr->x.pList->nExpr > 0);
4541       pEList = pExpr->x.pList;
4542       aListelem = pEList->a;
4543       nExpr = pEList->nExpr;
4544       endLabel = sqlite3VdbeMakeLabel(pParse);
4545       if( (pX = pExpr->pLeft)!=0 ){
4546         pDel = sqlite3ExprDup(db, pX, 0);
4547         if( db->mallocFailed ){
4548           sqlite3ExprDelete(db, pDel);
4549           break;
4550         }
4551         testcase( pX->op==TK_COLUMN );
4552         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4553         testcase( regFree1==0 );
4554         memset(&opCompare, 0, sizeof(opCompare));
4555         opCompare.op = TK_EQ;
4556         opCompare.pLeft = pDel;
4557         pTest = &opCompare;
4558         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4559         ** The value in regFree1 might get SCopy-ed into the file result.
4560         ** So make sure that the regFree1 register is not reused for other
4561         ** purposes and possibly overwritten.  */
4562         regFree1 = 0;
4563       }
4564       for(i=0; i<nExpr-1; i=i+2){
4565         if( pX ){
4566           assert( pTest!=0 );
4567           opCompare.pRight = aListelem[i].pExpr;
4568         }else{
4569           pTest = aListelem[i].pExpr;
4570         }
4571         nextCase = sqlite3VdbeMakeLabel(pParse);
4572         testcase( pTest->op==TK_COLUMN );
4573         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4574         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4575         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4576         sqlite3VdbeGoto(v, endLabel);
4577         sqlite3VdbeResolveLabel(v, nextCase);
4578       }
4579       if( (nExpr&1)!=0 ){
4580         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4581       }else{
4582         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4583       }
4584       sqlite3ExprDelete(db, pDel);
4585       setDoNotMergeFlagOnCopy(v);
4586       sqlite3VdbeResolveLabel(v, endLabel);
4587       break;
4588     }
4589 #ifndef SQLITE_OMIT_TRIGGER
4590     case TK_RAISE: {
4591       assert( pExpr->affExpr==OE_Rollback
4592            || pExpr->affExpr==OE_Abort
4593            || pExpr->affExpr==OE_Fail
4594            || pExpr->affExpr==OE_Ignore
4595       );
4596       if( !pParse->pTriggerTab && !pParse->nested ){
4597         sqlite3ErrorMsg(pParse,
4598                        "RAISE() may only be used within a trigger-program");
4599         return 0;
4600       }
4601       if( pExpr->affExpr==OE_Abort ){
4602         sqlite3MayAbort(pParse);
4603       }
4604       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4605       if( pExpr->affExpr==OE_Ignore ){
4606         sqlite3VdbeAddOp4(
4607             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4608         VdbeCoverage(v);
4609       }else{
4610         sqlite3HaltConstraint(pParse,
4611              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4612              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4613       }
4614 
4615       break;
4616     }
4617 #endif
4618   }
4619   sqlite3ReleaseTempReg(pParse, regFree1);
4620   sqlite3ReleaseTempReg(pParse, regFree2);
4621   return inReg;
4622 }
4623 
4624 /*
4625 ** Generate code that will evaluate expression pExpr just one time
4626 ** per prepared statement execution.
4627 **
4628 ** If the expression uses functions (that might throw an exception) then
4629 ** guard them with an OP_Once opcode to ensure that the code is only executed
4630 ** once. If no functions are involved, then factor the code out and put it at
4631 ** the end of the prepared statement in the initialization section.
4632 **
4633 ** If regDest>=0 then the result is always stored in that register and the
4634 ** result is not reusable.  If regDest<0 then this routine is free to
4635 ** store the value whereever it wants.  The register where the expression
4636 ** is stored is returned.  When regDest<0, two identical expressions might
4637 ** code to the same register, if they do not contain function calls and hence
4638 ** are factored out into the initialization section at the end of the
4639 ** prepared statement.
4640 */
4641 int sqlite3ExprCodeRunJustOnce(
4642   Parse *pParse,    /* Parsing context */
4643   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4644   int regDest       /* Store the value in this register */
4645 ){
4646   ExprList *p;
4647   assert( ConstFactorOk(pParse) );
4648   p = pParse->pConstExpr;
4649   if( regDest<0 && p ){
4650     struct ExprList_item *pItem;
4651     int i;
4652     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4653       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4654         return pItem->u.iConstExprReg;
4655       }
4656     }
4657   }
4658   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4659   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4660     Vdbe *v = pParse->pVdbe;
4661     int addr;
4662     assert( v );
4663     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4664     pParse->okConstFactor = 0;
4665     if( !pParse->db->mallocFailed ){
4666       if( regDest<0 ) regDest = ++pParse->nMem;
4667       sqlite3ExprCode(pParse, pExpr, regDest);
4668     }
4669     pParse->okConstFactor = 1;
4670     sqlite3ExprDelete(pParse->db, pExpr);
4671     sqlite3VdbeJumpHere(v, addr);
4672   }else{
4673     p = sqlite3ExprListAppend(pParse, p, pExpr);
4674     if( p ){
4675        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4676        pItem->reusable = regDest<0;
4677        if( regDest<0 ) regDest = ++pParse->nMem;
4678        pItem->u.iConstExprReg = regDest;
4679     }
4680     pParse->pConstExpr = p;
4681   }
4682   return regDest;
4683 }
4684 
4685 /*
4686 ** Generate code to evaluate an expression and store the results
4687 ** into a register.  Return the register number where the results
4688 ** are stored.
4689 **
4690 ** If the register is a temporary register that can be deallocated,
4691 ** then write its number into *pReg.  If the result register is not
4692 ** a temporary, then set *pReg to zero.
4693 **
4694 ** If pExpr is a constant, then this routine might generate this
4695 ** code to fill the register in the initialization section of the
4696 ** VDBE program, in order to factor it out of the evaluation loop.
4697 */
4698 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4699   int r2;
4700   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4701   if( ConstFactorOk(pParse)
4702    && ALWAYS(pExpr!=0)
4703    && pExpr->op!=TK_REGISTER
4704    && sqlite3ExprIsConstantNotJoin(pExpr)
4705   ){
4706     *pReg  = 0;
4707     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4708   }else{
4709     int r1 = sqlite3GetTempReg(pParse);
4710     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4711     if( r2==r1 ){
4712       *pReg = r1;
4713     }else{
4714       sqlite3ReleaseTempReg(pParse, r1);
4715       *pReg = 0;
4716     }
4717   }
4718   return r2;
4719 }
4720 
4721 /*
4722 ** Generate code that will evaluate expression pExpr and store the
4723 ** results in register target.  The results are guaranteed to appear
4724 ** in register target.
4725 */
4726 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4727   int inReg;
4728 
4729   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4730   assert( target>0 && target<=pParse->nMem );
4731   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4732   if( pParse->pVdbe==0 ) return;
4733   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4734   if( inReg!=target ){
4735     u8 op;
4736     if( ExprHasProperty(pExpr,EP_Subquery) ){
4737       op = OP_Copy;
4738     }else{
4739       op = OP_SCopy;
4740     }
4741     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4742   }
4743 }
4744 
4745 /*
4746 ** Make a transient copy of expression pExpr and then code it using
4747 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4748 ** except that the input expression is guaranteed to be unchanged.
4749 */
4750 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4751   sqlite3 *db = pParse->db;
4752   pExpr = sqlite3ExprDup(db, pExpr, 0);
4753   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4754   sqlite3ExprDelete(db, pExpr);
4755 }
4756 
4757 /*
4758 ** Generate code that will evaluate expression pExpr and store the
4759 ** results in register target.  The results are guaranteed to appear
4760 ** in register target.  If the expression is constant, then this routine
4761 ** might choose to code the expression at initialization time.
4762 */
4763 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4764   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4765     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4766   }else{
4767     sqlite3ExprCodeCopy(pParse, pExpr, target);
4768   }
4769 }
4770 
4771 /*
4772 ** Generate code that pushes the value of every element of the given
4773 ** expression list into a sequence of registers beginning at target.
4774 **
4775 ** Return the number of elements evaluated.  The number returned will
4776 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4777 ** is defined.
4778 **
4779 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4780 ** filled using OP_SCopy.  OP_Copy must be used instead.
4781 **
4782 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4783 ** factored out into initialization code.
4784 **
4785 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4786 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4787 ** in registers at srcReg, and so the value can be copied from there.
4788 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4789 ** are simply omitted rather than being copied from srcReg.
4790 */
4791 int sqlite3ExprCodeExprList(
4792   Parse *pParse,     /* Parsing context */
4793   ExprList *pList,   /* The expression list to be coded */
4794   int target,        /* Where to write results */
4795   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4796   u8 flags           /* SQLITE_ECEL_* flags */
4797 ){
4798   struct ExprList_item *pItem;
4799   int i, j, n;
4800   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4801   Vdbe *v = pParse->pVdbe;
4802   assert( pList!=0 );
4803   assert( target>0 );
4804   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4805   n = pList->nExpr;
4806   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4807   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4808     Expr *pExpr = pItem->pExpr;
4809 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4810     if( pItem->bSorterRef ){
4811       i--;
4812       n--;
4813     }else
4814 #endif
4815     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4816       if( flags & SQLITE_ECEL_OMITREF ){
4817         i--;
4818         n--;
4819       }else{
4820         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4821       }
4822     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4823            && sqlite3ExprIsConstantNotJoin(pExpr)
4824     ){
4825       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4826     }else{
4827       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4828       if( inReg!=target+i ){
4829         VdbeOp *pOp;
4830         if( copyOp==OP_Copy
4831          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4832          && pOp->p1+pOp->p3+1==inReg
4833          && pOp->p2+pOp->p3+1==target+i
4834          && pOp->p5==0  /* The do-not-merge flag must be clear */
4835         ){
4836           pOp->p3++;
4837         }else{
4838           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4839         }
4840       }
4841     }
4842   }
4843   return n;
4844 }
4845 
4846 /*
4847 ** Generate code for a BETWEEN operator.
4848 **
4849 **    x BETWEEN y AND z
4850 **
4851 ** The above is equivalent to
4852 **
4853 **    x>=y AND x<=z
4854 **
4855 ** Code it as such, taking care to do the common subexpression
4856 ** elimination of x.
4857 **
4858 ** The xJumpIf parameter determines details:
4859 **
4860 **    NULL:                   Store the boolean result in reg[dest]
4861 **    sqlite3ExprIfTrue:      Jump to dest if true
4862 **    sqlite3ExprIfFalse:     Jump to dest if false
4863 **
4864 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4865 */
4866 static void exprCodeBetween(
4867   Parse *pParse,    /* Parsing and code generating context */
4868   Expr *pExpr,      /* The BETWEEN expression */
4869   int dest,         /* Jump destination or storage location */
4870   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4871   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4872 ){
4873   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4874   Expr compLeft;    /* The  x>=y  term */
4875   Expr compRight;   /* The  x<=z  term */
4876   int regFree1 = 0; /* Temporary use register */
4877   Expr *pDel = 0;
4878   sqlite3 *db = pParse->db;
4879 
4880   memset(&compLeft, 0, sizeof(Expr));
4881   memset(&compRight, 0, sizeof(Expr));
4882   memset(&exprAnd, 0, sizeof(Expr));
4883 
4884   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4885   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4886   if( db->mallocFailed==0 ){
4887     exprAnd.op = TK_AND;
4888     exprAnd.pLeft = &compLeft;
4889     exprAnd.pRight = &compRight;
4890     compLeft.op = TK_GE;
4891     compLeft.pLeft = pDel;
4892     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4893     compRight.op = TK_LE;
4894     compRight.pLeft = pDel;
4895     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4896     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4897     if( xJump ){
4898       xJump(pParse, &exprAnd, dest, jumpIfNull);
4899     }else{
4900       /* Mark the expression is being from the ON or USING clause of a join
4901       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4902       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4903       ** for clarity, but we are out of bits in the Expr.flags field so we
4904       ** have to reuse the EP_FromJoin bit.  Bummer. */
4905       pDel->flags |= EP_FromJoin;
4906       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4907     }
4908     sqlite3ReleaseTempReg(pParse, regFree1);
4909   }
4910   sqlite3ExprDelete(db, pDel);
4911 
4912   /* Ensure adequate test coverage */
4913   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4914   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4915   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4916   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4917   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4918   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4919   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4920   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4921   testcase( xJump==0 );
4922 }
4923 
4924 /*
4925 ** Generate code for a boolean expression such that a jump is made
4926 ** to the label "dest" if the expression is true but execution
4927 ** continues straight thru if the expression is false.
4928 **
4929 ** If the expression evaluates to NULL (neither true nor false), then
4930 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4931 **
4932 ** This code depends on the fact that certain token values (ex: TK_EQ)
4933 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4934 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4935 ** the make process cause these values to align.  Assert()s in the code
4936 ** below verify that the numbers are aligned correctly.
4937 */
4938 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4939   Vdbe *v = pParse->pVdbe;
4940   int op = 0;
4941   int regFree1 = 0;
4942   int regFree2 = 0;
4943   int r1, r2;
4944 
4945   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4946   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4947   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4948   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4949   op = pExpr->op;
4950   switch( op ){
4951     case TK_AND:
4952     case TK_OR: {
4953       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4954       if( pAlt!=pExpr ){
4955         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4956       }else if( op==TK_AND ){
4957         int d2 = sqlite3VdbeMakeLabel(pParse);
4958         testcase( jumpIfNull==0 );
4959         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4960                            jumpIfNull^SQLITE_JUMPIFNULL);
4961         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4962         sqlite3VdbeResolveLabel(v, d2);
4963       }else{
4964         testcase( jumpIfNull==0 );
4965         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4966         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4967       }
4968       break;
4969     }
4970     case TK_NOT: {
4971       testcase( jumpIfNull==0 );
4972       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4973       break;
4974     }
4975     case TK_TRUTH: {
4976       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4977       int isTrue;     /* IS TRUE or IS NOT TRUE */
4978       testcase( jumpIfNull==0 );
4979       isNot = pExpr->op2==TK_ISNOT;
4980       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4981       testcase( isTrue && isNot );
4982       testcase( !isTrue && isNot );
4983       if( isTrue ^ isNot ){
4984         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4985                           isNot ? SQLITE_JUMPIFNULL : 0);
4986       }else{
4987         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4988                            isNot ? SQLITE_JUMPIFNULL : 0);
4989       }
4990       break;
4991     }
4992     case TK_IS:
4993     case TK_ISNOT:
4994       testcase( op==TK_IS );
4995       testcase( op==TK_ISNOT );
4996       op = (op==TK_IS) ? TK_EQ : TK_NE;
4997       jumpIfNull = SQLITE_NULLEQ;
4998       /* no break */ deliberate_fall_through
4999     case TK_LT:
5000     case TK_LE:
5001     case TK_GT:
5002     case TK_GE:
5003     case TK_NE:
5004     case TK_EQ: {
5005       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5006       testcase( jumpIfNull==0 );
5007       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5008       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5009       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5010                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5011       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5012       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5013       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5014       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5015       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5016       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5017       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5018       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5019       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5020       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5021       testcase( regFree1==0 );
5022       testcase( regFree2==0 );
5023       break;
5024     }
5025     case TK_ISNULL:
5026     case TK_NOTNULL: {
5027       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5028       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5029       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5030       sqlite3VdbeAddOp2(v, op, r1, dest);
5031       VdbeCoverageIf(v, op==TK_ISNULL);
5032       VdbeCoverageIf(v, op==TK_NOTNULL);
5033       testcase( regFree1==0 );
5034       break;
5035     }
5036     case TK_BETWEEN: {
5037       testcase( jumpIfNull==0 );
5038       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5039       break;
5040     }
5041 #ifndef SQLITE_OMIT_SUBQUERY
5042     case TK_IN: {
5043       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5044       int destIfNull = jumpIfNull ? dest : destIfFalse;
5045       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5046       sqlite3VdbeGoto(v, dest);
5047       sqlite3VdbeResolveLabel(v, destIfFalse);
5048       break;
5049     }
5050 #endif
5051     default: {
5052     default_expr:
5053       if( ExprAlwaysTrue(pExpr) ){
5054         sqlite3VdbeGoto(v, dest);
5055       }else if( ExprAlwaysFalse(pExpr) ){
5056         /* No-op */
5057       }else{
5058         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5059         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5060         VdbeCoverage(v);
5061         testcase( regFree1==0 );
5062         testcase( jumpIfNull==0 );
5063       }
5064       break;
5065     }
5066   }
5067   sqlite3ReleaseTempReg(pParse, regFree1);
5068   sqlite3ReleaseTempReg(pParse, regFree2);
5069 }
5070 
5071 /*
5072 ** Generate code for a boolean expression such that a jump is made
5073 ** to the label "dest" if the expression is false but execution
5074 ** continues straight thru if the expression is true.
5075 **
5076 ** If the expression evaluates to NULL (neither true nor false) then
5077 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5078 ** is 0.
5079 */
5080 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5081   Vdbe *v = pParse->pVdbe;
5082   int op = 0;
5083   int regFree1 = 0;
5084   int regFree2 = 0;
5085   int r1, r2;
5086 
5087   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5088   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5089   if( pExpr==0 )    return;
5090   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5091 
5092   /* The value of pExpr->op and op are related as follows:
5093   **
5094   **       pExpr->op            op
5095   **       ---------          ----------
5096   **       TK_ISNULL          OP_NotNull
5097   **       TK_NOTNULL         OP_IsNull
5098   **       TK_NE              OP_Eq
5099   **       TK_EQ              OP_Ne
5100   **       TK_GT              OP_Le
5101   **       TK_LE              OP_Gt
5102   **       TK_GE              OP_Lt
5103   **       TK_LT              OP_Ge
5104   **
5105   ** For other values of pExpr->op, op is undefined and unused.
5106   ** The value of TK_ and OP_ constants are arranged such that we
5107   ** can compute the mapping above using the following expression.
5108   ** Assert()s verify that the computation is correct.
5109   */
5110   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5111 
5112   /* Verify correct alignment of TK_ and OP_ constants
5113   */
5114   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5115   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5116   assert( pExpr->op!=TK_NE || op==OP_Eq );
5117   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5118   assert( pExpr->op!=TK_LT || op==OP_Ge );
5119   assert( pExpr->op!=TK_LE || op==OP_Gt );
5120   assert( pExpr->op!=TK_GT || op==OP_Le );
5121   assert( pExpr->op!=TK_GE || op==OP_Lt );
5122 
5123   switch( pExpr->op ){
5124     case TK_AND:
5125     case TK_OR: {
5126       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5127       if( pAlt!=pExpr ){
5128         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5129       }else if( pExpr->op==TK_AND ){
5130         testcase( jumpIfNull==0 );
5131         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5132         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5133       }else{
5134         int d2 = sqlite3VdbeMakeLabel(pParse);
5135         testcase( jumpIfNull==0 );
5136         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5137                           jumpIfNull^SQLITE_JUMPIFNULL);
5138         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5139         sqlite3VdbeResolveLabel(v, d2);
5140       }
5141       break;
5142     }
5143     case TK_NOT: {
5144       testcase( jumpIfNull==0 );
5145       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5146       break;
5147     }
5148     case TK_TRUTH: {
5149       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5150       int isTrue;  /* IS TRUE or IS NOT TRUE */
5151       testcase( jumpIfNull==0 );
5152       isNot = pExpr->op2==TK_ISNOT;
5153       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5154       testcase( isTrue && isNot );
5155       testcase( !isTrue && isNot );
5156       if( isTrue ^ isNot ){
5157         /* IS TRUE and IS NOT FALSE */
5158         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5159                            isNot ? 0 : SQLITE_JUMPIFNULL);
5160 
5161       }else{
5162         /* IS FALSE and IS NOT TRUE */
5163         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5164                           isNot ? 0 : SQLITE_JUMPIFNULL);
5165       }
5166       break;
5167     }
5168     case TK_IS:
5169     case TK_ISNOT:
5170       testcase( pExpr->op==TK_IS );
5171       testcase( pExpr->op==TK_ISNOT );
5172       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5173       jumpIfNull = SQLITE_NULLEQ;
5174       /* no break */ deliberate_fall_through
5175     case TK_LT:
5176     case TK_LE:
5177     case TK_GT:
5178     case TK_GE:
5179     case TK_NE:
5180     case TK_EQ: {
5181       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5182       testcase( jumpIfNull==0 );
5183       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5184       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5185       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5186                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5187       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5188       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5189       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5190       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5191       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5192       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5193       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5194       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5195       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5196       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5197       testcase( regFree1==0 );
5198       testcase( regFree2==0 );
5199       break;
5200     }
5201     case TK_ISNULL:
5202     case TK_NOTNULL: {
5203       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5204       sqlite3VdbeAddOp2(v, op, r1, dest);
5205       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5206       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5207       testcase( regFree1==0 );
5208       break;
5209     }
5210     case TK_BETWEEN: {
5211       testcase( jumpIfNull==0 );
5212       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5213       break;
5214     }
5215 #ifndef SQLITE_OMIT_SUBQUERY
5216     case TK_IN: {
5217       if( jumpIfNull ){
5218         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5219       }else{
5220         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5221         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5222         sqlite3VdbeResolveLabel(v, destIfNull);
5223       }
5224       break;
5225     }
5226 #endif
5227     default: {
5228     default_expr:
5229       if( ExprAlwaysFalse(pExpr) ){
5230         sqlite3VdbeGoto(v, dest);
5231       }else if( ExprAlwaysTrue(pExpr) ){
5232         /* no-op */
5233       }else{
5234         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5235         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5236         VdbeCoverage(v);
5237         testcase( regFree1==0 );
5238         testcase( jumpIfNull==0 );
5239       }
5240       break;
5241     }
5242   }
5243   sqlite3ReleaseTempReg(pParse, regFree1);
5244   sqlite3ReleaseTempReg(pParse, regFree2);
5245 }
5246 
5247 /*
5248 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5249 ** code generation, and that copy is deleted after code generation. This
5250 ** ensures that the original pExpr is unchanged.
5251 */
5252 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5253   sqlite3 *db = pParse->db;
5254   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5255   if( db->mallocFailed==0 ){
5256     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5257   }
5258   sqlite3ExprDelete(db, pCopy);
5259 }
5260 
5261 /*
5262 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5263 ** type of expression.
5264 **
5265 ** If pExpr is a simple SQL value - an integer, real, string, blob
5266 ** or NULL value - then the VDBE currently being prepared is configured
5267 ** to re-prepare each time a new value is bound to variable pVar.
5268 **
5269 ** Additionally, if pExpr is a simple SQL value and the value is the
5270 ** same as that currently bound to variable pVar, non-zero is returned.
5271 ** Otherwise, if the values are not the same or if pExpr is not a simple
5272 ** SQL value, zero is returned.
5273 */
5274 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5275   int res = 0;
5276   int iVar;
5277   sqlite3_value *pL, *pR = 0;
5278 
5279   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5280   if( pR ){
5281     iVar = pVar->iColumn;
5282     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5283     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5284     if( pL ){
5285       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5286         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5287       }
5288       res =  0==sqlite3MemCompare(pL, pR, 0);
5289     }
5290     sqlite3ValueFree(pR);
5291     sqlite3ValueFree(pL);
5292   }
5293 
5294   return res;
5295 }
5296 
5297 /*
5298 ** Do a deep comparison of two expression trees.  Return 0 if the two
5299 ** expressions are completely identical.  Return 1 if they differ only
5300 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5301 ** other than the top-level COLLATE operator.
5302 **
5303 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5304 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5305 **
5306 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5307 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5308 **
5309 ** Sometimes this routine will return 2 even if the two expressions
5310 ** really are equivalent.  If we cannot prove that the expressions are
5311 ** identical, we return 2 just to be safe.  So if this routine
5312 ** returns 2, then you do not really know for certain if the two
5313 ** expressions are the same.  But if you get a 0 or 1 return, then you
5314 ** can be sure the expressions are the same.  In the places where
5315 ** this routine is used, it does not hurt to get an extra 2 - that
5316 ** just might result in some slightly slower code.  But returning
5317 ** an incorrect 0 or 1 could lead to a malfunction.
5318 **
5319 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5320 ** pParse->pReprepare can be matched against literals in pB.  The
5321 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5322 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5323 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5324 ** pB causes a return value of 2.
5325 */
5326 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5327   u32 combinedFlags;
5328   if( pA==0 || pB==0 ){
5329     return pB==pA ? 0 : 2;
5330   }
5331   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5332     return 0;
5333   }
5334   combinedFlags = pA->flags | pB->flags;
5335   if( combinedFlags & EP_IntValue ){
5336     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5337       return 0;
5338     }
5339     return 2;
5340   }
5341   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5342     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5343       return 1;
5344     }
5345     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5346       return 1;
5347     }
5348     return 2;
5349   }
5350   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5351     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5352       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5353 #ifndef SQLITE_OMIT_WINDOWFUNC
5354       assert( pA->op==pB->op );
5355       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5356         return 2;
5357       }
5358       if( ExprHasProperty(pA,EP_WinFunc) ){
5359         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5360           return 2;
5361         }
5362       }
5363 #endif
5364     }else if( pA->op==TK_NULL ){
5365       return 0;
5366     }else if( pA->op==TK_COLLATE ){
5367       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5368     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5369       return 2;
5370     }
5371   }
5372   if( (pA->flags & (EP_Distinct|EP_Commuted))
5373      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5374   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5375     if( combinedFlags & EP_xIsSelect ) return 2;
5376     if( (combinedFlags & EP_FixedCol)==0
5377      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5378     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5379     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5380     if( pA->op!=TK_STRING
5381      && pA->op!=TK_TRUEFALSE
5382      && ALWAYS((combinedFlags & EP_Reduced)==0)
5383     ){
5384       if( pA->iColumn!=pB->iColumn ) return 2;
5385       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5386       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5387         return 2;
5388       }
5389     }
5390   }
5391   return 0;
5392 }
5393 
5394 /*
5395 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5396 ** if they are certainly different, or 2 if it is not possible to
5397 ** determine if they are identical or not.
5398 **
5399 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5400 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5401 **
5402 ** This routine might return non-zero for equivalent ExprLists.  The
5403 ** only consequence will be disabled optimizations.  But this routine
5404 ** must never return 0 if the two ExprList objects are different, or
5405 ** a malfunction will result.
5406 **
5407 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5408 ** always differs from a non-NULL pointer.
5409 */
5410 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5411   int i;
5412   if( pA==0 && pB==0 ) return 0;
5413   if( pA==0 || pB==0 ) return 1;
5414   if( pA->nExpr!=pB->nExpr ) return 1;
5415   for(i=0; i<pA->nExpr; i++){
5416     int res;
5417     Expr *pExprA = pA->a[i].pExpr;
5418     Expr *pExprB = pB->a[i].pExpr;
5419     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5420     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5421   }
5422   return 0;
5423 }
5424 
5425 /*
5426 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5427 ** are ignored.
5428 */
5429 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5430   return sqlite3ExprCompare(0,
5431              sqlite3ExprSkipCollateAndLikely(pA),
5432              sqlite3ExprSkipCollateAndLikely(pB),
5433              iTab);
5434 }
5435 
5436 /*
5437 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5438 **
5439 ** Or if seenNot is true, return non-zero if Expr p can only be
5440 ** non-NULL if pNN is not NULL
5441 */
5442 static int exprImpliesNotNull(
5443   Parse *pParse,      /* Parsing context */
5444   Expr *p,            /* The expression to be checked */
5445   Expr *pNN,          /* The expression that is NOT NULL */
5446   int iTab,           /* Table being evaluated */
5447   int seenNot         /* Return true only if p can be any non-NULL value */
5448 ){
5449   assert( p );
5450   assert( pNN );
5451   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5452     return pNN->op!=TK_NULL;
5453   }
5454   switch( p->op ){
5455     case TK_IN: {
5456       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5457       assert( ExprHasProperty(p,EP_xIsSelect)
5458            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5459       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5460     }
5461     case TK_BETWEEN: {
5462       ExprList *pList = p->x.pList;
5463       assert( pList!=0 );
5464       assert( pList->nExpr==2 );
5465       if( seenNot ) return 0;
5466       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5467        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5468       ){
5469         return 1;
5470       }
5471       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5472     }
5473     case TK_EQ:
5474     case TK_NE:
5475     case TK_LT:
5476     case TK_LE:
5477     case TK_GT:
5478     case TK_GE:
5479     case TK_PLUS:
5480     case TK_MINUS:
5481     case TK_BITOR:
5482     case TK_LSHIFT:
5483     case TK_RSHIFT:
5484     case TK_CONCAT:
5485       seenNot = 1;
5486       /* no break */ deliberate_fall_through
5487     case TK_STAR:
5488     case TK_REM:
5489     case TK_BITAND:
5490     case TK_SLASH: {
5491       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5492       /* no break */ deliberate_fall_through
5493     }
5494     case TK_SPAN:
5495     case TK_COLLATE:
5496     case TK_UPLUS:
5497     case TK_UMINUS: {
5498       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5499     }
5500     case TK_TRUTH: {
5501       if( seenNot ) return 0;
5502       if( p->op2!=TK_IS ) return 0;
5503       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5504     }
5505     case TK_BITNOT:
5506     case TK_NOT: {
5507       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5508     }
5509   }
5510   return 0;
5511 }
5512 
5513 /*
5514 ** Return true if we can prove the pE2 will always be true if pE1 is
5515 ** true.  Return false if we cannot complete the proof or if pE2 might
5516 ** be false.  Examples:
5517 **
5518 **     pE1: x==5       pE2: x==5             Result: true
5519 **     pE1: x>0        pE2: x==5             Result: false
5520 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5521 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5522 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5523 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5524 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5525 **
5526 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5527 ** Expr.iTable<0 then assume a table number given by iTab.
5528 **
5529 ** If pParse is not NULL, then the values of bound variables in pE1 are
5530 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5531 ** modified to record which bound variables are referenced.  If pParse
5532 ** is NULL, then false will be returned if pE1 contains any bound variables.
5533 **
5534 ** When in doubt, return false.  Returning true might give a performance
5535 ** improvement.  Returning false might cause a performance reduction, but
5536 ** it will always give the correct answer and is hence always safe.
5537 */
5538 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5539   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5540     return 1;
5541   }
5542   if( pE2->op==TK_OR
5543    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5544              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5545   ){
5546     return 1;
5547   }
5548   if( pE2->op==TK_NOTNULL
5549    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5550   ){
5551     return 1;
5552   }
5553   return 0;
5554 }
5555 
5556 /*
5557 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5558 ** If the expression node requires that the table at pWalker->iCur
5559 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5560 **
5561 ** This routine controls an optimization.  False positives (setting
5562 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5563 ** (never setting pWalker->eCode) is a harmless missed optimization.
5564 */
5565 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5566   testcase( pExpr->op==TK_AGG_COLUMN );
5567   testcase( pExpr->op==TK_AGG_FUNCTION );
5568   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5569   switch( pExpr->op ){
5570     case TK_ISNOT:
5571     case TK_ISNULL:
5572     case TK_NOTNULL:
5573     case TK_IS:
5574     case TK_OR:
5575     case TK_VECTOR:
5576     case TK_CASE:
5577     case TK_IN:
5578     case TK_FUNCTION:
5579     case TK_TRUTH:
5580       testcase( pExpr->op==TK_ISNOT );
5581       testcase( pExpr->op==TK_ISNULL );
5582       testcase( pExpr->op==TK_NOTNULL );
5583       testcase( pExpr->op==TK_IS );
5584       testcase( pExpr->op==TK_OR );
5585       testcase( pExpr->op==TK_VECTOR );
5586       testcase( pExpr->op==TK_CASE );
5587       testcase( pExpr->op==TK_IN );
5588       testcase( pExpr->op==TK_FUNCTION );
5589       testcase( pExpr->op==TK_TRUTH );
5590       return WRC_Prune;
5591     case TK_COLUMN:
5592       if( pWalker->u.iCur==pExpr->iTable ){
5593         pWalker->eCode = 1;
5594         return WRC_Abort;
5595       }
5596       return WRC_Prune;
5597 
5598     case TK_AND:
5599       if( pWalker->eCode==0 ){
5600         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5601         if( pWalker->eCode ){
5602           pWalker->eCode = 0;
5603           sqlite3WalkExpr(pWalker, pExpr->pRight);
5604         }
5605       }
5606       return WRC_Prune;
5607 
5608     case TK_BETWEEN:
5609       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5610         assert( pWalker->eCode );
5611         return WRC_Abort;
5612       }
5613       return WRC_Prune;
5614 
5615     /* Virtual tables are allowed to use constraints like x=NULL.  So
5616     ** a term of the form x=y does not prove that y is not null if x
5617     ** is the column of a virtual table */
5618     case TK_EQ:
5619     case TK_NE:
5620     case TK_LT:
5621     case TK_LE:
5622     case TK_GT:
5623     case TK_GE: {
5624       Expr *pLeft = pExpr->pLeft;
5625       Expr *pRight = pExpr->pRight;
5626       testcase( pExpr->op==TK_EQ );
5627       testcase( pExpr->op==TK_NE );
5628       testcase( pExpr->op==TK_LT );
5629       testcase( pExpr->op==TK_LE );
5630       testcase( pExpr->op==TK_GT );
5631       testcase( pExpr->op==TK_GE );
5632       /* The y.pTab=0 assignment in wherecode.c always happens after the
5633       ** impliesNotNullRow() test */
5634       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5635                                && IsVirtual(pLeft->y.pTab))
5636        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5637                                && IsVirtual(pRight->y.pTab))
5638       ){
5639         return WRC_Prune;
5640       }
5641       /* no break */ deliberate_fall_through
5642     }
5643     default:
5644       return WRC_Continue;
5645   }
5646 }
5647 
5648 /*
5649 ** Return true (non-zero) if expression p can only be true if at least
5650 ** one column of table iTab is non-null.  In other words, return true
5651 ** if expression p will always be NULL or false if every column of iTab
5652 ** is NULL.
5653 **
5654 ** False negatives are acceptable.  In other words, it is ok to return
5655 ** zero even if expression p will never be true of every column of iTab
5656 ** is NULL.  A false negative is merely a missed optimization opportunity.
5657 **
5658 ** False positives are not allowed, however.  A false positive may result
5659 ** in an incorrect answer.
5660 **
5661 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5662 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5663 **
5664 ** This routine is used to check if a LEFT JOIN can be converted into
5665 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5666 ** clause requires that some column of the right table of the LEFT JOIN
5667 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5668 ** ordinary join.
5669 */
5670 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5671   Walker w;
5672   p = sqlite3ExprSkipCollateAndLikely(p);
5673   if( p==0 ) return 0;
5674   if( p->op==TK_NOTNULL ){
5675     p = p->pLeft;
5676   }else{
5677     while( p->op==TK_AND ){
5678       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5679       p = p->pRight;
5680     }
5681   }
5682   w.xExprCallback = impliesNotNullRow;
5683   w.xSelectCallback = 0;
5684   w.xSelectCallback2 = 0;
5685   w.eCode = 0;
5686   w.u.iCur = iTab;
5687   sqlite3WalkExpr(&w, p);
5688   return w.eCode;
5689 }
5690 
5691 /*
5692 ** An instance of the following structure is used by the tree walker
5693 ** to determine if an expression can be evaluated by reference to the
5694 ** index only, without having to do a search for the corresponding
5695 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5696 ** is the cursor for the table.
5697 */
5698 struct IdxCover {
5699   Index *pIdx;     /* The index to be tested for coverage */
5700   int iCur;        /* Cursor number for the table corresponding to the index */
5701 };
5702 
5703 /*
5704 ** Check to see if there are references to columns in table
5705 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5706 ** pWalker->u.pIdxCover->pIdx.
5707 */
5708 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5709   if( pExpr->op==TK_COLUMN
5710    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5711    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5712   ){
5713     pWalker->eCode = 1;
5714     return WRC_Abort;
5715   }
5716   return WRC_Continue;
5717 }
5718 
5719 /*
5720 ** Determine if an index pIdx on table with cursor iCur contains will
5721 ** the expression pExpr.  Return true if the index does cover the
5722 ** expression and false if the pExpr expression references table columns
5723 ** that are not found in the index pIdx.
5724 **
5725 ** An index covering an expression means that the expression can be
5726 ** evaluated using only the index and without having to lookup the
5727 ** corresponding table entry.
5728 */
5729 int sqlite3ExprCoveredByIndex(
5730   Expr *pExpr,        /* The index to be tested */
5731   int iCur,           /* The cursor number for the corresponding table */
5732   Index *pIdx         /* The index that might be used for coverage */
5733 ){
5734   Walker w;
5735   struct IdxCover xcov;
5736   memset(&w, 0, sizeof(w));
5737   xcov.iCur = iCur;
5738   xcov.pIdx = pIdx;
5739   w.xExprCallback = exprIdxCover;
5740   w.u.pIdxCover = &xcov;
5741   sqlite3WalkExpr(&w, pExpr);
5742   return !w.eCode;
5743 }
5744 
5745 
5746 /*
5747 ** An instance of the following structure is used by the tree walker
5748 ** to count references to table columns in the arguments of an
5749 ** aggregate function, in order to implement the
5750 ** sqlite3FunctionThisSrc() routine.
5751 */
5752 struct SrcCount {
5753   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5754   int iSrcInner;   /* Smallest cursor number in this context */
5755   int nThis;       /* Number of references to columns in pSrcList */
5756   int nOther;      /* Number of references to columns in other FROM clauses */
5757 };
5758 
5759 /*
5760 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5761 ** SELECT with a FROM clause encountered during this iteration, set
5762 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5763 ** the FROM cause.
5764 */
5765 static int selectSrcCount(Walker *pWalker, Select *pSel){
5766   struct SrcCount *p = pWalker->u.pSrcCount;
5767   if( p->iSrcInner==0x7FFFFFFF && ALWAYS(pSel->pSrc) && pSel->pSrc->nSrc ){
5768     pWalker->u.pSrcCount->iSrcInner = pSel->pSrc->a[0].iCursor;
5769   }
5770   return WRC_Continue;
5771 }
5772 
5773 /*
5774 ** Count the number of references to columns.
5775 */
5776 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5777   /* There was once a NEVER() on the second term on the grounds that
5778   ** sqlite3FunctionUsesThisSrc() was always called before
5779   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5780   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5781   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5782   ** FunctionUsesThisSrc() when creating a new sub-select. */
5783   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5784     int i;
5785     struct SrcCount *p = pWalker->u.pSrcCount;
5786     SrcList *pSrc = p->pSrc;
5787     int nSrc = pSrc ? pSrc->nSrc : 0;
5788     for(i=0; i<nSrc; i++){
5789       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5790     }
5791     if( i<nSrc ){
5792       p->nThis++;
5793     }else if( pExpr->iTable<p->iSrcInner ){
5794       /* In a well-formed parse tree (no name resolution errors),
5795       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5796       ** outer context.  Those are the only ones to count as "other" */
5797       p->nOther++;
5798     }
5799   }
5800   return WRC_Continue;
5801 }
5802 
5803 /*
5804 ** Determine if any of the arguments to the pExpr Function reference
5805 ** pSrcList.  Return true if they do.  Also return true if the function
5806 ** has no arguments or has only constant arguments.  Return false if pExpr
5807 ** references columns but not columns of tables found in pSrcList.
5808 */
5809 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5810   Walker w;
5811   struct SrcCount cnt;
5812   assert( pExpr->op==TK_AGG_FUNCTION );
5813   memset(&w, 0, sizeof(w));
5814   w.xExprCallback = exprSrcCount;
5815   w.xSelectCallback = selectSrcCount;
5816   w.u.pSrcCount = &cnt;
5817   cnt.pSrc = pSrcList;
5818   cnt.iSrcInner = (pSrcList&&pSrcList->nSrc)?pSrcList->a[0].iCursor:0x7FFFFFFF;
5819   cnt.nThis = 0;
5820   cnt.nOther = 0;
5821   sqlite3WalkExprList(&w, pExpr->x.pList);
5822 #ifndef SQLITE_OMIT_WINDOWFUNC
5823   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5824     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5825   }
5826 #endif
5827   return cnt.nThis>0 || cnt.nOther==0;
5828 }
5829 
5830 /*
5831 ** This is a Walker expression node callback.
5832 **
5833 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5834 ** object that is referenced does not refer directly to the Expr.  If
5835 ** it does, make a copy.  This is done because the pExpr argument is
5836 ** subject to change.
5837 **
5838 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5839 ** This will cause the expression to be deleted automatically when the
5840 ** Parse object is destroyed, but the zero register number means that it
5841 ** will not generate any code in the preamble.
5842 */
5843 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
5844   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
5845    && pExpr->pAggInfo!=0
5846   ){
5847     AggInfo *pAggInfo = pExpr->pAggInfo;
5848     int iAgg = pExpr->iAgg;
5849     Parse *pParse = pWalker->pParse;
5850     sqlite3 *db = pParse->db;
5851     assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
5852     if( pExpr->op==TK_AGG_COLUMN ){
5853       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
5854       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
5855         pExpr = sqlite3ExprDup(db, pExpr, 0);
5856         if( pExpr ){
5857           pAggInfo->aCol[iAgg].pCExpr = pExpr;
5858           sqlite3ExprDeferredDelete(pParse, pExpr);
5859         }
5860       }
5861     }else{
5862       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
5863       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
5864         pExpr = sqlite3ExprDup(db, pExpr, 0);
5865         if( pExpr ){
5866           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
5867           sqlite3ExprDeferredDelete(pParse, pExpr);
5868         }
5869       }
5870     }
5871   }
5872   return WRC_Continue;
5873 }
5874 
5875 /*
5876 ** Initialize a Walker object so that will persist AggInfo entries referenced
5877 ** by the tree that is walked.
5878 */
5879 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
5880   memset(pWalker, 0, sizeof(*pWalker));
5881   pWalker->pParse = pParse;
5882   pWalker->xExprCallback = agginfoPersistExprCb;
5883   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
5884 }
5885 
5886 /*
5887 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5888 ** the new element.  Return a negative number if malloc fails.
5889 */
5890 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5891   int i;
5892   pInfo->aCol = sqlite3ArrayAllocate(
5893        db,
5894        pInfo->aCol,
5895        sizeof(pInfo->aCol[0]),
5896        &pInfo->nColumn,
5897        &i
5898   );
5899   return i;
5900 }
5901 
5902 /*
5903 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5904 ** the new element.  Return a negative number if malloc fails.
5905 */
5906 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5907   int i;
5908   pInfo->aFunc = sqlite3ArrayAllocate(
5909        db,
5910        pInfo->aFunc,
5911        sizeof(pInfo->aFunc[0]),
5912        &pInfo->nFunc,
5913        &i
5914   );
5915   return i;
5916 }
5917 
5918 /*
5919 ** This is the xExprCallback for a tree walker.  It is used to
5920 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5921 ** for additional information.
5922 */
5923 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5924   int i;
5925   NameContext *pNC = pWalker->u.pNC;
5926   Parse *pParse = pNC->pParse;
5927   SrcList *pSrcList = pNC->pSrcList;
5928   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5929 
5930   assert( pNC->ncFlags & NC_UAggInfo );
5931   switch( pExpr->op ){
5932     case TK_AGG_COLUMN:
5933     case TK_COLUMN: {
5934       testcase( pExpr->op==TK_AGG_COLUMN );
5935       testcase( pExpr->op==TK_COLUMN );
5936       /* Check to see if the column is in one of the tables in the FROM
5937       ** clause of the aggregate query */
5938       if( ALWAYS(pSrcList!=0) ){
5939         SrcItem *pItem = pSrcList->a;
5940         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5941           struct AggInfo_col *pCol;
5942           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5943           if( pExpr->iTable==pItem->iCursor ){
5944             /* If we reach this point, it means that pExpr refers to a table
5945             ** that is in the FROM clause of the aggregate query.
5946             **
5947             ** Make an entry for the column in pAggInfo->aCol[] if there
5948             ** is not an entry there already.
5949             */
5950             int k;
5951             pCol = pAggInfo->aCol;
5952             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5953               if( pCol->iTable==pExpr->iTable &&
5954                   pCol->iColumn==pExpr->iColumn ){
5955                 break;
5956               }
5957             }
5958             if( (k>=pAggInfo->nColumn)
5959              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5960             ){
5961               pCol = &pAggInfo->aCol[k];
5962               pCol->pTab = pExpr->y.pTab;
5963               pCol->iTable = pExpr->iTable;
5964               pCol->iColumn = pExpr->iColumn;
5965               pCol->iMem = ++pParse->nMem;
5966               pCol->iSorterColumn = -1;
5967               pCol->pCExpr = pExpr;
5968               if( pAggInfo->pGroupBy ){
5969                 int j, n;
5970                 ExprList *pGB = pAggInfo->pGroupBy;
5971                 struct ExprList_item *pTerm = pGB->a;
5972                 n = pGB->nExpr;
5973                 for(j=0; j<n; j++, pTerm++){
5974                   Expr *pE = pTerm->pExpr;
5975                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5976                       pE->iColumn==pExpr->iColumn ){
5977                     pCol->iSorterColumn = j;
5978                     break;
5979                   }
5980                 }
5981               }
5982               if( pCol->iSorterColumn<0 ){
5983                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5984               }
5985             }
5986             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5987             ** because it was there before or because we just created it).
5988             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5989             ** pAggInfo->aCol[] entry.
5990             */
5991             ExprSetVVAProperty(pExpr, EP_NoReduce);
5992             pExpr->pAggInfo = pAggInfo;
5993             pExpr->op = TK_AGG_COLUMN;
5994             pExpr->iAgg = (i16)k;
5995             break;
5996           } /* endif pExpr->iTable==pItem->iCursor */
5997         } /* end loop over pSrcList */
5998       }
5999       return WRC_Prune;
6000     }
6001     case TK_AGG_FUNCTION: {
6002       if( (pNC->ncFlags & NC_InAggFunc)==0
6003        && pWalker->walkerDepth==pExpr->op2
6004       ){
6005         /* Check to see if pExpr is a duplicate of another aggregate
6006         ** function that is already in the pAggInfo structure
6007         */
6008         struct AggInfo_func *pItem = pAggInfo->aFunc;
6009         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6010           if( pItem->pFExpr==pExpr ) break;
6011           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6012             break;
6013           }
6014         }
6015         if( i>=pAggInfo->nFunc ){
6016           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6017           */
6018           u8 enc = ENC(pParse->db);
6019           i = addAggInfoFunc(pParse->db, pAggInfo);
6020           if( i>=0 ){
6021             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6022             pItem = &pAggInfo->aFunc[i];
6023             pItem->pFExpr = pExpr;
6024             pItem->iMem = ++pParse->nMem;
6025             assert( !ExprHasProperty(pExpr, EP_IntValue) );
6026             pItem->pFunc = sqlite3FindFunction(pParse->db,
6027                    pExpr->u.zToken,
6028                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6029             if( pExpr->flags & EP_Distinct ){
6030               pItem->iDistinct = pParse->nTab++;
6031             }else{
6032               pItem->iDistinct = -1;
6033             }
6034           }
6035         }
6036         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6037         */
6038         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6039         ExprSetVVAProperty(pExpr, EP_NoReduce);
6040         pExpr->iAgg = (i16)i;
6041         pExpr->pAggInfo = pAggInfo;
6042         return WRC_Prune;
6043       }else{
6044         return WRC_Continue;
6045       }
6046     }
6047   }
6048   return WRC_Continue;
6049 }
6050 
6051 /*
6052 ** Analyze the pExpr expression looking for aggregate functions and
6053 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6054 ** points to.  Additional entries are made on the AggInfo object as
6055 ** necessary.
6056 **
6057 ** This routine should only be called after the expression has been
6058 ** analyzed by sqlite3ResolveExprNames().
6059 */
6060 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6061   Walker w;
6062   w.xExprCallback = analyzeAggregate;
6063   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6064   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6065   w.walkerDepth = 0;
6066   w.u.pNC = pNC;
6067   w.pParse = 0;
6068   assert( pNC->pSrcList!=0 );
6069   sqlite3WalkExpr(&w, pExpr);
6070 }
6071 
6072 /*
6073 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6074 ** expression list.  Return the number of errors.
6075 **
6076 ** If an error is found, the analysis is cut short.
6077 */
6078 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6079   struct ExprList_item *pItem;
6080   int i;
6081   if( pList ){
6082     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6083       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6084     }
6085   }
6086 }
6087 
6088 /*
6089 ** Allocate a single new register for use to hold some intermediate result.
6090 */
6091 int sqlite3GetTempReg(Parse *pParse){
6092   if( pParse->nTempReg==0 ){
6093     return ++pParse->nMem;
6094   }
6095   return pParse->aTempReg[--pParse->nTempReg];
6096 }
6097 
6098 /*
6099 ** Deallocate a register, making available for reuse for some other
6100 ** purpose.
6101 */
6102 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6103   if( iReg ){
6104     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6105     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6106       pParse->aTempReg[pParse->nTempReg++] = iReg;
6107     }
6108   }
6109 }
6110 
6111 /*
6112 ** Allocate or deallocate a block of nReg consecutive registers.
6113 */
6114 int sqlite3GetTempRange(Parse *pParse, int nReg){
6115   int i, n;
6116   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6117   i = pParse->iRangeReg;
6118   n = pParse->nRangeReg;
6119   if( nReg<=n ){
6120     pParse->iRangeReg += nReg;
6121     pParse->nRangeReg -= nReg;
6122   }else{
6123     i = pParse->nMem+1;
6124     pParse->nMem += nReg;
6125   }
6126   return i;
6127 }
6128 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6129   if( nReg==1 ){
6130     sqlite3ReleaseTempReg(pParse, iReg);
6131     return;
6132   }
6133   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6134   if( nReg>pParse->nRangeReg ){
6135     pParse->nRangeReg = nReg;
6136     pParse->iRangeReg = iReg;
6137   }
6138 }
6139 
6140 /*
6141 ** Mark all temporary registers as being unavailable for reuse.
6142 **
6143 ** Always invoke this procedure after coding a subroutine or co-routine
6144 ** that might be invoked from other parts of the code, to ensure that
6145 ** the sub/co-routine does not use registers in common with the code that
6146 ** invokes the sub/co-routine.
6147 */
6148 void sqlite3ClearTempRegCache(Parse *pParse){
6149   pParse->nTempReg = 0;
6150   pParse->nRangeReg = 0;
6151 }
6152 
6153 /*
6154 ** Validate that no temporary register falls within the range of
6155 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6156 ** statements.
6157 */
6158 #ifdef SQLITE_DEBUG
6159 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6160   int i;
6161   if( pParse->nRangeReg>0
6162    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6163    && pParse->iRangeReg <= iLast
6164   ){
6165      return 0;
6166   }
6167   for(i=0; i<pParse->nTempReg; i++){
6168     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6169       return 0;
6170     }
6171   }
6172   return 1;
6173 }
6174 #endif /* SQLITE_DEBUG */
6175