1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 if( pExpr->flags & EP_Generic ) return 0; 48 while( ExprHasProperty(pExpr, EP_Skip) ){ 49 assert( pExpr->op==TK_COLLATE ); 50 pExpr = pExpr->pLeft; 51 assert( pExpr!=0 ); 52 } 53 op = pExpr->op; 54 if( op==TK_SELECT ){ 55 assert( pExpr->flags&EP_xIsSelect ); 56 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 57 } 58 if( op==TK_REGISTER ) op = pExpr->op2; 59 #ifndef SQLITE_OMIT_CAST 60 if( op==TK_CAST ){ 61 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 62 return sqlite3AffinityType(pExpr->u.zToken, 0); 63 } 64 #endif 65 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 66 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 67 } 68 if( op==TK_SELECT_COLUMN ){ 69 assert( pExpr->pLeft->flags&EP_xIsSelect ); 70 return sqlite3ExprAffinity( 71 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 72 ); 73 } 74 return pExpr->affExpr; 75 } 76 77 /* 78 ** Set the collating sequence for expression pExpr to be the collating 79 ** sequence named by pToken. Return a pointer to a new Expr node that 80 ** implements the COLLATE operator. 81 ** 82 ** If a memory allocation error occurs, that fact is recorded in pParse->db 83 ** and the pExpr parameter is returned unchanged. 84 */ 85 Expr *sqlite3ExprAddCollateToken( 86 Parse *pParse, /* Parsing context */ 87 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 88 const Token *pCollName, /* Name of collating sequence */ 89 int dequote /* True to dequote pCollName */ 90 ){ 91 if( pCollName->n>0 ){ 92 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 93 if( pNew ){ 94 pNew->pLeft = pExpr; 95 pNew->flags |= EP_Collate|EP_Skip; 96 pExpr = pNew; 97 } 98 } 99 return pExpr; 100 } 101 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 102 Token s; 103 assert( zC!=0 ); 104 sqlite3TokenInit(&s, (char*)zC); 105 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 106 } 107 108 /* 109 ** Skip over any TK_COLLATE operators and any unlikely() 110 ** or likelihood() function at the root of an expression. 111 */ 112 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 113 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 114 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 115 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 116 assert( pExpr->x.pList->nExpr>0 ); 117 assert( pExpr->op==TK_FUNCTION ); 118 pExpr = pExpr->x.pList->a[0].pExpr; 119 }else{ 120 assert( pExpr->op==TK_COLLATE ); 121 pExpr = pExpr->pLeft; 122 } 123 } 124 return pExpr; 125 } 126 127 /* 128 ** Return the collation sequence for the expression pExpr. If 129 ** there is no defined collating sequence, return NULL. 130 ** 131 ** See also: sqlite3ExprNNCollSeq() 132 ** 133 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 134 ** default collation if pExpr has no defined collation. 135 ** 136 ** The collating sequence might be determined by a COLLATE operator 137 ** or by the presence of a column with a defined collating sequence. 138 ** COLLATE operators take first precedence. Left operands take 139 ** precedence over right operands. 140 */ 141 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 142 sqlite3 *db = pParse->db; 143 CollSeq *pColl = 0; 144 Expr *p = pExpr; 145 while( p ){ 146 int op = p->op; 147 if( p->flags & EP_Generic ) break; 148 if( op==TK_REGISTER ) op = p->op2; 149 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 150 && p->y.pTab!=0 151 ){ 152 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 153 ** a TK_COLUMN but was previously evaluated and cached in a register */ 154 int j = p->iColumn; 155 if( j>=0 ){ 156 const char *zColl = p->y.pTab->aCol[j].zColl; 157 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 158 } 159 break; 160 } 161 if( op==TK_CAST || op==TK_UPLUS ){ 162 p = p->pLeft; 163 continue; 164 } 165 if( op==TK_COLLATE ){ 166 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 167 break; 168 } 169 if( p->flags & EP_Collate ){ 170 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 171 p = p->pLeft; 172 }else{ 173 Expr *pNext = p->pRight; 174 /* The Expr.x union is never used at the same time as Expr.pRight */ 175 assert( p->x.pList==0 || p->pRight==0 ); 176 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 177 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 178 ** least one EP_Collate. Thus the following two ALWAYS. */ 179 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ 180 int i; 181 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 182 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 183 pNext = p->x.pList->a[i].pExpr; 184 break; 185 } 186 } 187 } 188 p = pNext; 189 } 190 }else{ 191 break; 192 } 193 } 194 if( sqlite3CheckCollSeq(pParse, pColl) ){ 195 pColl = 0; 196 } 197 return pColl; 198 } 199 200 /* 201 ** Return the collation sequence for the expression pExpr. If 202 ** there is no defined collating sequence, return a pointer to the 203 ** defautl collation sequence. 204 ** 205 ** See also: sqlite3ExprCollSeq() 206 ** 207 ** The sqlite3ExprCollSeq() routine works the same except that it 208 ** returns NULL if there is no defined collation. 209 */ 210 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 211 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 212 if( p==0 ) p = pParse->db->pDfltColl; 213 assert( p!=0 ); 214 return p; 215 } 216 217 /* 218 ** Return TRUE if the two expressions have equivalent collating sequences. 219 */ 220 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 221 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 222 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 223 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 224 } 225 226 /* 227 ** pExpr is an operand of a comparison operator. aff2 is the 228 ** type affinity of the other operand. This routine returns the 229 ** type affinity that should be used for the comparison operator. 230 */ 231 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 232 char aff1 = sqlite3ExprAffinity(pExpr); 233 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 234 /* Both sides of the comparison are columns. If one has numeric 235 ** affinity, use that. Otherwise use no affinity. 236 */ 237 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 238 return SQLITE_AFF_NUMERIC; 239 }else{ 240 return SQLITE_AFF_BLOB; 241 } 242 }else{ 243 /* One side is a column, the other is not. Use the columns affinity. */ 244 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 245 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 246 } 247 } 248 249 /* 250 ** pExpr is a comparison operator. Return the type affinity that should 251 ** be applied to both operands prior to doing the comparison. 252 */ 253 static char comparisonAffinity(Expr *pExpr){ 254 char aff; 255 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 256 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 257 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 258 assert( pExpr->pLeft ); 259 aff = sqlite3ExprAffinity(pExpr->pLeft); 260 if( pExpr->pRight ){ 261 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 262 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 263 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 264 }else if( aff==0 ){ 265 aff = SQLITE_AFF_BLOB; 266 } 267 return aff; 268 } 269 270 /* 271 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 272 ** idx_affinity is the affinity of an indexed column. Return true 273 ** if the index with affinity idx_affinity may be used to implement 274 ** the comparison in pExpr. 275 */ 276 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 277 char aff = comparisonAffinity(pExpr); 278 if( aff<SQLITE_AFF_TEXT ){ 279 return 1; 280 } 281 if( aff==SQLITE_AFF_TEXT ){ 282 return idx_affinity==SQLITE_AFF_TEXT; 283 } 284 return sqlite3IsNumericAffinity(idx_affinity); 285 } 286 287 /* 288 ** Return the P5 value that should be used for a binary comparison 289 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 290 */ 291 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 292 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 293 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 294 return aff; 295 } 296 297 /* 298 ** Return a pointer to the collation sequence that should be used by 299 ** a binary comparison operator comparing pLeft and pRight. 300 ** 301 ** If the left hand expression has a collating sequence type, then it is 302 ** used. Otherwise the collation sequence for the right hand expression 303 ** is used, or the default (BINARY) if neither expression has a collating 304 ** type. 305 ** 306 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 307 ** it is not considered. 308 */ 309 CollSeq *sqlite3BinaryCompareCollSeq( 310 Parse *pParse, 311 Expr *pLeft, 312 Expr *pRight 313 ){ 314 CollSeq *pColl; 315 assert( pLeft ); 316 if( pLeft->flags & EP_Collate ){ 317 pColl = sqlite3ExprCollSeq(pParse, pLeft); 318 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 319 pColl = sqlite3ExprCollSeq(pParse, pRight); 320 }else{ 321 pColl = sqlite3ExprCollSeq(pParse, pLeft); 322 if( !pColl ){ 323 pColl = sqlite3ExprCollSeq(pParse, pRight); 324 } 325 } 326 return pColl; 327 } 328 329 /* 330 ** Generate code for a comparison operator. 331 */ 332 static int codeCompare( 333 Parse *pParse, /* The parsing (and code generating) context */ 334 Expr *pLeft, /* The left operand */ 335 Expr *pRight, /* The right operand */ 336 int opcode, /* The comparison opcode */ 337 int in1, int in2, /* Register holding operands */ 338 int dest, /* Jump here if true. */ 339 int jumpIfNull /* If true, jump if either operand is NULL */ 340 ){ 341 int p5; 342 int addr; 343 CollSeq *p4; 344 345 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 346 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 347 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 348 (void*)p4, P4_COLLSEQ); 349 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 350 return addr; 351 } 352 353 /* 354 ** Return true if expression pExpr is a vector, or false otherwise. 355 ** 356 ** A vector is defined as any expression that results in two or more 357 ** columns of result. Every TK_VECTOR node is an vector because the 358 ** parser will not generate a TK_VECTOR with fewer than two entries. 359 ** But a TK_SELECT might be either a vector or a scalar. It is only 360 ** considered a vector if it has two or more result columns. 361 */ 362 int sqlite3ExprIsVector(Expr *pExpr){ 363 return sqlite3ExprVectorSize(pExpr)>1; 364 } 365 366 /* 367 ** If the expression passed as the only argument is of type TK_VECTOR 368 ** return the number of expressions in the vector. Or, if the expression 369 ** is a sub-select, return the number of columns in the sub-select. For 370 ** any other type of expression, return 1. 371 */ 372 int sqlite3ExprVectorSize(Expr *pExpr){ 373 u8 op = pExpr->op; 374 if( op==TK_REGISTER ) op = pExpr->op2; 375 if( op==TK_VECTOR ){ 376 return pExpr->x.pList->nExpr; 377 }else if( op==TK_SELECT ){ 378 return pExpr->x.pSelect->pEList->nExpr; 379 }else{ 380 return 1; 381 } 382 } 383 384 /* 385 ** Return a pointer to a subexpression of pVector that is the i-th 386 ** column of the vector (numbered starting with 0). The caller must 387 ** ensure that i is within range. 388 ** 389 ** If pVector is really a scalar (and "scalar" here includes subqueries 390 ** that return a single column!) then return pVector unmodified. 391 ** 392 ** pVector retains ownership of the returned subexpression. 393 ** 394 ** If the vector is a (SELECT ...) then the expression returned is 395 ** just the expression for the i-th term of the result set, and may 396 ** not be ready for evaluation because the table cursor has not yet 397 ** been positioned. 398 */ 399 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 400 assert( i<sqlite3ExprVectorSize(pVector) ); 401 if( sqlite3ExprIsVector(pVector) ){ 402 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 403 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 404 return pVector->x.pSelect->pEList->a[i].pExpr; 405 }else{ 406 return pVector->x.pList->a[i].pExpr; 407 } 408 } 409 return pVector; 410 } 411 412 /* 413 ** Compute and return a new Expr object which when passed to 414 ** sqlite3ExprCode() will generate all necessary code to compute 415 ** the iField-th column of the vector expression pVector. 416 ** 417 ** It is ok for pVector to be a scalar (as long as iField==0). 418 ** In that case, this routine works like sqlite3ExprDup(). 419 ** 420 ** The caller owns the returned Expr object and is responsible for 421 ** ensuring that the returned value eventually gets freed. 422 ** 423 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 424 ** then the returned object will reference pVector and so pVector must remain 425 ** valid for the life of the returned object. If pVector is a TK_VECTOR 426 ** or a scalar expression, then it can be deleted as soon as this routine 427 ** returns. 428 ** 429 ** A trick to cause a TK_SELECT pVector to be deleted together with 430 ** the returned Expr object is to attach the pVector to the pRight field 431 ** of the returned TK_SELECT_COLUMN Expr object. 432 */ 433 Expr *sqlite3ExprForVectorField( 434 Parse *pParse, /* Parsing context */ 435 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 436 int iField /* Which column of the vector to return */ 437 ){ 438 Expr *pRet; 439 if( pVector->op==TK_SELECT ){ 440 assert( pVector->flags & EP_xIsSelect ); 441 /* The TK_SELECT_COLUMN Expr node: 442 ** 443 ** pLeft: pVector containing TK_SELECT. Not deleted. 444 ** pRight: not used. But recursively deleted. 445 ** iColumn: Index of a column in pVector 446 ** iTable: 0 or the number of columns on the LHS of an assignment 447 ** pLeft->iTable: First in an array of register holding result, or 0 448 ** if the result is not yet computed. 449 ** 450 ** sqlite3ExprDelete() specifically skips the recursive delete of 451 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 452 ** can be attached to pRight to cause this node to take ownership of 453 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 454 ** with the same pLeft pointer to the pVector, but only one of them 455 ** will own the pVector. 456 */ 457 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 458 if( pRet ){ 459 pRet->iColumn = iField; 460 pRet->pLeft = pVector; 461 } 462 assert( pRet==0 || pRet->iTable==0 ); 463 }else{ 464 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 465 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 466 sqlite3RenameTokenRemap(pParse, pRet, pVector); 467 } 468 return pRet; 469 } 470 471 /* 472 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 473 ** it. Return the register in which the result is stored (or, if the 474 ** sub-select returns more than one column, the first in an array 475 ** of registers in which the result is stored). 476 ** 477 ** If pExpr is not a TK_SELECT expression, return 0. 478 */ 479 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 480 int reg = 0; 481 #ifndef SQLITE_OMIT_SUBQUERY 482 if( pExpr->op==TK_SELECT ){ 483 reg = sqlite3CodeSubselect(pParse, pExpr); 484 } 485 #endif 486 return reg; 487 } 488 489 /* 490 ** Argument pVector points to a vector expression - either a TK_VECTOR 491 ** or TK_SELECT that returns more than one column. This function returns 492 ** the register number of a register that contains the value of 493 ** element iField of the vector. 494 ** 495 ** If pVector is a TK_SELECT expression, then code for it must have 496 ** already been generated using the exprCodeSubselect() routine. In this 497 ** case parameter regSelect should be the first in an array of registers 498 ** containing the results of the sub-select. 499 ** 500 ** If pVector is of type TK_VECTOR, then code for the requested field 501 ** is generated. In this case (*pRegFree) may be set to the number of 502 ** a temporary register to be freed by the caller before returning. 503 ** 504 ** Before returning, output parameter (*ppExpr) is set to point to the 505 ** Expr object corresponding to element iElem of the vector. 506 */ 507 static int exprVectorRegister( 508 Parse *pParse, /* Parse context */ 509 Expr *pVector, /* Vector to extract element from */ 510 int iField, /* Field to extract from pVector */ 511 int regSelect, /* First in array of registers */ 512 Expr **ppExpr, /* OUT: Expression element */ 513 int *pRegFree /* OUT: Temp register to free */ 514 ){ 515 u8 op = pVector->op; 516 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 517 if( op==TK_REGISTER ){ 518 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 519 return pVector->iTable+iField; 520 } 521 if( op==TK_SELECT ){ 522 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 523 return regSelect+iField; 524 } 525 *ppExpr = pVector->x.pList->a[iField].pExpr; 526 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 527 } 528 529 /* 530 ** Expression pExpr is a comparison between two vector values. Compute 531 ** the result of the comparison (1, 0, or NULL) and write that 532 ** result into register dest. 533 ** 534 ** The caller must satisfy the following preconditions: 535 ** 536 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 537 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 538 ** otherwise: op==pExpr->op and p5==0 539 */ 540 static void codeVectorCompare( 541 Parse *pParse, /* Code generator context */ 542 Expr *pExpr, /* The comparison operation */ 543 int dest, /* Write results into this register */ 544 u8 op, /* Comparison operator */ 545 u8 p5 /* SQLITE_NULLEQ or zero */ 546 ){ 547 Vdbe *v = pParse->pVdbe; 548 Expr *pLeft = pExpr->pLeft; 549 Expr *pRight = pExpr->pRight; 550 int nLeft = sqlite3ExprVectorSize(pLeft); 551 int i; 552 int regLeft = 0; 553 int regRight = 0; 554 u8 opx = op; 555 int addrDone = sqlite3VdbeMakeLabel(pParse); 556 557 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 558 sqlite3ErrorMsg(pParse, "row value misused"); 559 return; 560 } 561 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 562 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 563 || pExpr->op==TK_LT || pExpr->op==TK_GT 564 || pExpr->op==TK_LE || pExpr->op==TK_GE 565 ); 566 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 567 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 568 assert( p5==0 || pExpr->op!=op ); 569 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 570 571 p5 |= SQLITE_STOREP2; 572 if( opx==TK_LE ) opx = TK_LT; 573 if( opx==TK_GE ) opx = TK_GT; 574 575 regLeft = exprCodeSubselect(pParse, pLeft); 576 regRight = exprCodeSubselect(pParse, pRight); 577 578 for(i=0; 1 /*Loop exits by "break"*/; i++){ 579 int regFree1 = 0, regFree2 = 0; 580 Expr *pL, *pR; 581 int r1, r2; 582 assert( i>=0 && i<nLeft ); 583 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 584 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 585 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 586 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 587 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 588 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 589 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 590 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 591 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 592 sqlite3ReleaseTempReg(pParse, regFree1); 593 sqlite3ReleaseTempReg(pParse, regFree2); 594 if( i==nLeft-1 ){ 595 break; 596 } 597 if( opx==TK_EQ ){ 598 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 599 p5 |= SQLITE_KEEPNULL; 600 }else if( opx==TK_NE ){ 601 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 602 p5 |= SQLITE_KEEPNULL; 603 }else{ 604 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 605 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 606 VdbeCoverageIf(v, op==TK_LT); 607 VdbeCoverageIf(v, op==TK_GT); 608 VdbeCoverageIf(v, op==TK_LE); 609 VdbeCoverageIf(v, op==TK_GE); 610 if( i==nLeft-2 ) opx = op; 611 } 612 } 613 sqlite3VdbeResolveLabel(v, addrDone); 614 } 615 616 #if SQLITE_MAX_EXPR_DEPTH>0 617 /* 618 ** Check that argument nHeight is less than or equal to the maximum 619 ** expression depth allowed. If it is not, leave an error message in 620 ** pParse. 621 */ 622 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 623 int rc = SQLITE_OK; 624 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 625 if( nHeight>mxHeight ){ 626 sqlite3ErrorMsg(pParse, 627 "Expression tree is too large (maximum depth %d)", mxHeight 628 ); 629 rc = SQLITE_ERROR; 630 } 631 return rc; 632 } 633 634 /* The following three functions, heightOfExpr(), heightOfExprList() 635 ** and heightOfSelect(), are used to determine the maximum height 636 ** of any expression tree referenced by the structure passed as the 637 ** first argument. 638 ** 639 ** If this maximum height is greater than the current value pointed 640 ** to by pnHeight, the second parameter, then set *pnHeight to that 641 ** value. 642 */ 643 static void heightOfExpr(Expr *p, int *pnHeight){ 644 if( p ){ 645 if( p->nHeight>*pnHeight ){ 646 *pnHeight = p->nHeight; 647 } 648 } 649 } 650 static void heightOfExprList(ExprList *p, int *pnHeight){ 651 if( p ){ 652 int i; 653 for(i=0; i<p->nExpr; i++){ 654 heightOfExpr(p->a[i].pExpr, pnHeight); 655 } 656 } 657 } 658 static void heightOfSelect(Select *pSelect, int *pnHeight){ 659 Select *p; 660 for(p=pSelect; p; p=p->pPrior){ 661 heightOfExpr(p->pWhere, pnHeight); 662 heightOfExpr(p->pHaving, pnHeight); 663 heightOfExpr(p->pLimit, pnHeight); 664 heightOfExprList(p->pEList, pnHeight); 665 heightOfExprList(p->pGroupBy, pnHeight); 666 heightOfExprList(p->pOrderBy, pnHeight); 667 } 668 } 669 670 /* 671 ** Set the Expr.nHeight variable in the structure passed as an 672 ** argument. An expression with no children, Expr.pList or 673 ** Expr.pSelect member has a height of 1. Any other expression 674 ** has a height equal to the maximum height of any other 675 ** referenced Expr plus one. 676 ** 677 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 678 ** if appropriate. 679 */ 680 static void exprSetHeight(Expr *p){ 681 int nHeight = 0; 682 heightOfExpr(p->pLeft, &nHeight); 683 heightOfExpr(p->pRight, &nHeight); 684 if( ExprHasProperty(p, EP_xIsSelect) ){ 685 heightOfSelect(p->x.pSelect, &nHeight); 686 }else if( p->x.pList ){ 687 heightOfExprList(p->x.pList, &nHeight); 688 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 689 } 690 p->nHeight = nHeight + 1; 691 } 692 693 /* 694 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 695 ** the height is greater than the maximum allowed expression depth, 696 ** leave an error in pParse. 697 ** 698 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 699 ** Expr.flags. 700 */ 701 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 702 if( pParse->nErr ) return; 703 exprSetHeight(p); 704 sqlite3ExprCheckHeight(pParse, p->nHeight); 705 } 706 707 /* 708 ** Return the maximum height of any expression tree referenced 709 ** by the select statement passed as an argument. 710 */ 711 int sqlite3SelectExprHeight(Select *p){ 712 int nHeight = 0; 713 heightOfSelect(p, &nHeight); 714 return nHeight; 715 } 716 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 717 /* 718 ** Propagate all EP_Propagate flags from the Expr.x.pList into 719 ** Expr.flags. 720 */ 721 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 722 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 723 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 724 } 725 } 726 #define exprSetHeight(y) 727 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 728 729 /* 730 ** This routine is the core allocator for Expr nodes. 731 ** 732 ** Construct a new expression node and return a pointer to it. Memory 733 ** for this node and for the pToken argument is a single allocation 734 ** obtained from sqlite3DbMalloc(). The calling function 735 ** is responsible for making sure the node eventually gets freed. 736 ** 737 ** If dequote is true, then the token (if it exists) is dequoted. 738 ** If dequote is false, no dequoting is performed. The deQuote 739 ** parameter is ignored if pToken is NULL or if the token does not 740 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 741 ** then the EP_DblQuoted flag is set on the expression node. 742 ** 743 ** Special case: If op==TK_INTEGER and pToken points to a string that 744 ** can be translated into a 32-bit integer, then the token is not 745 ** stored in u.zToken. Instead, the integer values is written 746 ** into u.iValue and the EP_IntValue flag is set. No extra storage 747 ** is allocated to hold the integer text and the dequote flag is ignored. 748 */ 749 Expr *sqlite3ExprAlloc( 750 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 751 int op, /* Expression opcode */ 752 const Token *pToken, /* Token argument. Might be NULL */ 753 int dequote /* True to dequote */ 754 ){ 755 Expr *pNew; 756 int nExtra = 0; 757 int iValue = 0; 758 759 assert( db!=0 ); 760 if( pToken ){ 761 if( op!=TK_INTEGER || pToken->z==0 762 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 763 nExtra = pToken->n+1; 764 assert( iValue>=0 ); 765 } 766 } 767 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 768 if( pNew ){ 769 memset(pNew, 0, sizeof(Expr)); 770 pNew->op = (u8)op; 771 pNew->iAgg = -1; 772 if( pToken ){ 773 if( nExtra==0 ){ 774 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 775 pNew->u.iValue = iValue; 776 }else{ 777 pNew->u.zToken = (char*)&pNew[1]; 778 assert( pToken->z!=0 || pToken->n==0 ); 779 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 780 pNew->u.zToken[pToken->n] = 0; 781 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 782 sqlite3DequoteExpr(pNew); 783 } 784 } 785 } 786 #if SQLITE_MAX_EXPR_DEPTH>0 787 pNew->nHeight = 1; 788 #endif 789 } 790 return pNew; 791 } 792 793 /* 794 ** Allocate a new expression node from a zero-terminated token that has 795 ** already been dequoted. 796 */ 797 Expr *sqlite3Expr( 798 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 799 int op, /* Expression opcode */ 800 const char *zToken /* Token argument. Might be NULL */ 801 ){ 802 Token x; 803 x.z = zToken; 804 x.n = sqlite3Strlen30(zToken); 805 return sqlite3ExprAlloc(db, op, &x, 0); 806 } 807 808 /* 809 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 810 ** 811 ** If pRoot==NULL that means that a memory allocation error has occurred. 812 ** In that case, delete the subtrees pLeft and pRight. 813 */ 814 void sqlite3ExprAttachSubtrees( 815 sqlite3 *db, 816 Expr *pRoot, 817 Expr *pLeft, 818 Expr *pRight 819 ){ 820 if( pRoot==0 ){ 821 assert( db->mallocFailed ); 822 sqlite3ExprDelete(db, pLeft); 823 sqlite3ExprDelete(db, pRight); 824 }else{ 825 if( pRight ){ 826 pRoot->pRight = pRight; 827 pRoot->flags |= EP_Propagate & pRight->flags; 828 } 829 if( pLeft ){ 830 pRoot->pLeft = pLeft; 831 pRoot->flags |= EP_Propagate & pLeft->flags; 832 } 833 exprSetHeight(pRoot); 834 } 835 } 836 837 /* 838 ** Allocate an Expr node which joins as many as two subtrees. 839 ** 840 ** One or both of the subtrees can be NULL. Return a pointer to the new 841 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 842 ** free the subtrees and return NULL. 843 */ 844 Expr *sqlite3PExpr( 845 Parse *pParse, /* Parsing context */ 846 int op, /* Expression opcode */ 847 Expr *pLeft, /* Left operand */ 848 Expr *pRight /* Right operand */ 849 ){ 850 Expr *p; 851 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 852 if( p ){ 853 memset(p, 0, sizeof(Expr)); 854 p->op = op & 0xff; 855 p->iAgg = -1; 856 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 857 sqlite3ExprCheckHeight(pParse, p->nHeight); 858 }else{ 859 sqlite3ExprDelete(pParse->db, pLeft); 860 sqlite3ExprDelete(pParse->db, pRight); 861 } 862 return p; 863 } 864 865 /* 866 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 867 ** do a memory allocation failure) then delete the pSelect object. 868 */ 869 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 870 if( pExpr ){ 871 pExpr->x.pSelect = pSelect; 872 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 873 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 874 }else{ 875 assert( pParse->db->mallocFailed ); 876 sqlite3SelectDelete(pParse->db, pSelect); 877 } 878 } 879 880 881 /* 882 ** Join two expressions using an AND operator. If either expression is 883 ** NULL, then just return the other expression. 884 ** 885 ** If one side or the other of the AND is known to be false, then instead 886 ** of returning an AND expression, just return a constant expression with 887 ** a value of false. 888 */ 889 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 890 sqlite3 *db = pParse->db; 891 if( pLeft==0 ){ 892 return pRight; 893 }else if( pRight==0 ){ 894 return pLeft; 895 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 896 sqlite3ExprUnmapAndDelete(pParse, pLeft); 897 sqlite3ExprUnmapAndDelete(pParse, pRight); 898 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 899 }else{ 900 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 901 } 902 } 903 904 /* 905 ** Construct a new expression node for a function with multiple 906 ** arguments. 907 */ 908 Expr *sqlite3ExprFunction( 909 Parse *pParse, /* Parsing context */ 910 ExprList *pList, /* Argument list */ 911 Token *pToken, /* Name of the function */ 912 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 913 ){ 914 Expr *pNew; 915 sqlite3 *db = pParse->db; 916 assert( pToken ); 917 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 918 if( pNew==0 ){ 919 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 920 return 0; 921 } 922 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 923 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 924 } 925 pNew->x.pList = pList; 926 ExprSetProperty(pNew, EP_HasFunc); 927 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 928 sqlite3ExprSetHeightAndFlags(pParse, pNew); 929 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 930 return pNew; 931 } 932 933 /* 934 ** Assign a variable number to an expression that encodes a wildcard 935 ** in the original SQL statement. 936 ** 937 ** Wildcards consisting of a single "?" are assigned the next sequential 938 ** variable number. 939 ** 940 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 941 ** sure "nnn" is not too big to avoid a denial of service attack when 942 ** the SQL statement comes from an external source. 943 ** 944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 945 ** as the previous instance of the same wildcard. Or if this is the first 946 ** instance of the wildcard, the next sequential variable number is 947 ** assigned. 948 */ 949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 950 sqlite3 *db = pParse->db; 951 const char *z; 952 ynVar x; 953 954 if( pExpr==0 ) return; 955 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 956 z = pExpr->u.zToken; 957 assert( z!=0 ); 958 assert( z[0]!=0 ); 959 assert( n==(u32)sqlite3Strlen30(z) ); 960 if( z[1]==0 ){ 961 /* Wildcard of the form "?". Assign the next variable number */ 962 assert( z[0]=='?' ); 963 x = (ynVar)(++pParse->nVar); 964 }else{ 965 int doAdd = 0; 966 if( z[0]=='?' ){ 967 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 968 ** use it as the variable number */ 969 i64 i; 970 int bOk; 971 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 972 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 973 bOk = 1; 974 }else{ 975 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 976 } 977 testcase( i==0 ); 978 testcase( i==1 ); 979 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 980 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 981 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 982 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 983 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 984 return; 985 } 986 x = (ynVar)i; 987 if( x>pParse->nVar ){ 988 pParse->nVar = (int)x; 989 doAdd = 1; 990 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 991 doAdd = 1; 992 } 993 }else{ 994 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 995 ** number as the prior appearance of the same name, or if the name 996 ** has never appeared before, reuse the same variable number 997 */ 998 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 999 if( x==0 ){ 1000 x = (ynVar)(++pParse->nVar); 1001 doAdd = 1; 1002 } 1003 } 1004 if( doAdd ){ 1005 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1006 } 1007 } 1008 pExpr->iColumn = x; 1009 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1010 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1011 } 1012 } 1013 1014 /* 1015 ** Recursively delete an expression tree. 1016 */ 1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1018 assert( p!=0 ); 1019 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1020 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1021 1022 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1023 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1024 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1025 #ifdef SQLITE_DEBUG 1026 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1027 assert( p->pLeft==0 ); 1028 assert( p->pRight==0 ); 1029 assert( p->x.pSelect==0 ); 1030 } 1031 #endif 1032 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1033 /* The Expr.x union is never used at the same time as Expr.pRight */ 1034 assert( p->x.pList==0 || p->pRight==0 ); 1035 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1036 if( p->pRight ){ 1037 assert( !ExprHasProperty(p, EP_WinFunc) ); 1038 sqlite3ExprDeleteNN(db, p->pRight); 1039 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1040 assert( !ExprHasProperty(p, EP_WinFunc) ); 1041 sqlite3SelectDelete(db, p->x.pSelect); 1042 }else{ 1043 sqlite3ExprListDelete(db, p->x.pList); 1044 #ifndef SQLITE_OMIT_WINDOWFUNC 1045 if( ExprHasProperty(p, EP_WinFunc) ){ 1046 sqlite3WindowDelete(db, p->y.pWin); 1047 } 1048 #endif 1049 } 1050 } 1051 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1052 if( !ExprHasProperty(p, EP_Static) ){ 1053 sqlite3DbFreeNN(db, p); 1054 } 1055 } 1056 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1057 if( p ) sqlite3ExprDeleteNN(db, p); 1058 } 1059 1060 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1061 ** expression. 1062 */ 1063 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1064 if( p ){ 1065 if( IN_RENAME_OBJECT ){ 1066 sqlite3RenameExprUnmap(pParse, p); 1067 } 1068 sqlite3ExprDeleteNN(pParse->db, p); 1069 } 1070 } 1071 1072 /* 1073 ** Return the number of bytes allocated for the expression structure 1074 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1075 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1076 */ 1077 static int exprStructSize(Expr *p){ 1078 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1079 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1080 return EXPR_FULLSIZE; 1081 } 1082 1083 /* 1084 ** The dupedExpr*Size() routines each return the number of bytes required 1085 ** to store a copy of an expression or expression tree. They differ in 1086 ** how much of the tree is measured. 1087 ** 1088 ** dupedExprStructSize() Size of only the Expr structure 1089 ** dupedExprNodeSize() Size of Expr + space for token 1090 ** dupedExprSize() Expr + token + subtree components 1091 ** 1092 *************************************************************************** 1093 ** 1094 ** The dupedExprStructSize() function returns two values OR-ed together: 1095 ** (1) the space required for a copy of the Expr structure only and 1096 ** (2) the EP_xxx flags that indicate what the structure size should be. 1097 ** The return values is always one of: 1098 ** 1099 ** EXPR_FULLSIZE 1100 ** EXPR_REDUCEDSIZE | EP_Reduced 1101 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1102 ** 1103 ** The size of the structure can be found by masking the return value 1104 ** of this routine with 0xfff. The flags can be found by masking the 1105 ** return value with EP_Reduced|EP_TokenOnly. 1106 ** 1107 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1108 ** (unreduced) Expr objects as they or originally constructed by the parser. 1109 ** During expression analysis, extra information is computed and moved into 1110 ** later parts of the Expr object and that extra information might get chopped 1111 ** off if the expression is reduced. Note also that it does not work to 1112 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1113 ** to reduce a pristine expression tree from the parser. The implementation 1114 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1115 ** to enforce this constraint. 1116 */ 1117 static int dupedExprStructSize(Expr *p, int flags){ 1118 int nSize; 1119 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1120 assert( EXPR_FULLSIZE<=0xfff ); 1121 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1122 if( 0==flags || p->op==TK_SELECT_COLUMN 1123 #ifndef SQLITE_OMIT_WINDOWFUNC 1124 || ExprHasProperty(p, EP_WinFunc) 1125 #endif 1126 ){ 1127 nSize = EXPR_FULLSIZE; 1128 }else{ 1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1130 assert( !ExprHasProperty(p, EP_FromJoin) ); 1131 assert( !ExprHasProperty(p, EP_MemToken) ); 1132 assert( !ExprHasProperty(p, EP_NoReduce) ); 1133 if( p->pLeft || p->x.pList ){ 1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1135 }else{ 1136 assert( p->pRight==0 ); 1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1138 } 1139 } 1140 return nSize; 1141 } 1142 1143 /* 1144 ** This function returns the space in bytes required to store the copy 1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1146 ** string is defined.) 1147 */ 1148 static int dupedExprNodeSize(Expr *p, int flags){ 1149 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1151 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1152 } 1153 return ROUND8(nByte); 1154 } 1155 1156 /* 1157 ** Return the number of bytes required to create a duplicate of the 1158 ** expression passed as the first argument. The second argument is a 1159 ** mask containing EXPRDUP_XXX flags. 1160 ** 1161 ** The value returned includes space to create a copy of the Expr struct 1162 ** itself and the buffer referred to by Expr.u.zToken, if any. 1163 ** 1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1166 ** and Expr.pRight variables (but not for any structures pointed to or 1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1168 */ 1169 static int dupedExprSize(Expr *p, int flags){ 1170 int nByte = 0; 1171 if( p ){ 1172 nByte = dupedExprNodeSize(p, flags); 1173 if( flags&EXPRDUP_REDUCE ){ 1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1175 } 1176 } 1177 return nByte; 1178 } 1179 1180 /* 1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1183 ** to store the copy of expression p, the copies of p->u.zToken 1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1185 ** if any. Before returning, *pzBuffer is set to the first byte past the 1186 ** portion of the buffer copied into by this function. 1187 */ 1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1189 Expr *pNew; /* Value to return */ 1190 u8 *zAlloc; /* Memory space from which to build Expr object */ 1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1192 1193 assert( db!=0 ); 1194 assert( p ); 1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1197 1198 /* Figure out where to write the new Expr structure. */ 1199 if( pzBuffer ){ 1200 zAlloc = *pzBuffer; 1201 staticFlag = EP_Static; 1202 }else{ 1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1204 staticFlag = 0; 1205 } 1206 pNew = (Expr *)zAlloc; 1207 1208 if( pNew ){ 1209 /* Set nNewSize to the size allocated for the structure pointed to 1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1212 ** by the copy of the p->u.zToken string (if any). 1213 */ 1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1215 const int nNewSize = nStructSize & 0xfff; 1216 int nToken; 1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1218 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1219 }else{ 1220 nToken = 0; 1221 } 1222 if( dupFlags ){ 1223 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1224 memcpy(zAlloc, p, nNewSize); 1225 }else{ 1226 u32 nSize = (u32)exprStructSize(p); 1227 memcpy(zAlloc, p, nSize); 1228 if( nSize<EXPR_FULLSIZE ){ 1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1230 } 1231 } 1232 1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1236 pNew->flags |= staticFlag; 1237 1238 /* Copy the p->u.zToken string, if any. */ 1239 if( nToken ){ 1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1241 memcpy(zToken, p->u.zToken, nToken); 1242 } 1243 1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1246 if( ExprHasProperty(p, EP_xIsSelect) ){ 1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1248 }else{ 1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1250 } 1251 } 1252 1253 /* Fill in pNew->pLeft and pNew->pRight. */ 1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1255 zAlloc += dupedExprNodeSize(p, dupFlags); 1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1257 pNew->pLeft = p->pLeft ? 1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1259 pNew->pRight = p->pRight ? 1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1261 } 1262 #ifndef SQLITE_OMIT_WINDOWFUNC 1263 if( ExprHasProperty(p, EP_WinFunc) ){ 1264 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1265 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1266 } 1267 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1268 if( pzBuffer ){ 1269 *pzBuffer = zAlloc; 1270 } 1271 }else{ 1272 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1273 if( pNew->op==TK_SELECT_COLUMN ){ 1274 pNew->pLeft = p->pLeft; 1275 assert( p->iColumn==0 || p->pRight==0 ); 1276 assert( p->pRight==0 || p->pRight==p->pLeft ); 1277 }else{ 1278 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1279 } 1280 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1281 } 1282 } 1283 } 1284 return pNew; 1285 } 1286 1287 /* 1288 ** Create and return a deep copy of the object passed as the second 1289 ** argument. If an OOM condition is encountered, NULL is returned 1290 ** and the db->mallocFailed flag set. 1291 */ 1292 #ifndef SQLITE_OMIT_CTE 1293 static With *withDup(sqlite3 *db, With *p){ 1294 With *pRet = 0; 1295 if( p ){ 1296 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1297 pRet = sqlite3DbMallocZero(db, nByte); 1298 if( pRet ){ 1299 int i; 1300 pRet->nCte = p->nCte; 1301 for(i=0; i<p->nCte; i++){ 1302 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1303 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1304 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1305 } 1306 } 1307 } 1308 return pRet; 1309 } 1310 #else 1311 # define withDup(x,y) 0 1312 #endif 1313 1314 #ifndef SQLITE_OMIT_WINDOWFUNC 1315 /* 1316 ** The gatherSelectWindows() procedure and its helper routine 1317 ** gatherSelectWindowsCallback() are used to scan all the expressions 1318 ** an a newly duplicated SELECT statement and gather all of the Window 1319 ** objects found there, assembling them onto the linked list at Select->pWin. 1320 */ 1321 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1322 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1323 Select *pSelect = pWalker->u.pSelect; 1324 Window *pWin = pExpr->y.pWin; 1325 assert( pWin ); 1326 assert( IsWindowFunc(pExpr) ); 1327 assert( pWin->ppThis==0 ); 1328 if( pSelect->pWin ){ 1329 pSelect->pWin->ppThis = &pWin->pNextWin; 1330 } 1331 pWin->pNextWin = pSelect->pWin; 1332 pWin->ppThis = &pSelect->pWin; 1333 pSelect->pWin = pWin; 1334 } 1335 return WRC_Continue; 1336 } 1337 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1338 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1339 } 1340 static void gatherSelectWindows(Select *p){ 1341 Walker w; 1342 w.xExprCallback = gatherSelectWindowsCallback; 1343 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1344 w.xSelectCallback2 = 0; 1345 w.pParse = 0; 1346 w.u.pSelect = p; 1347 sqlite3WalkSelect(&w, p); 1348 } 1349 #endif 1350 1351 1352 /* 1353 ** The following group of routines make deep copies of expressions, 1354 ** expression lists, ID lists, and select statements. The copies can 1355 ** be deleted (by being passed to their respective ...Delete() routines) 1356 ** without effecting the originals. 1357 ** 1358 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1359 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1360 ** by subsequent calls to sqlite*ListAppend() routines. 1361 ** 1362 ** Any tables that the SrcList might point to are not duplicated. 1363 ** 1364 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1365 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1366 ** truncated version of the usual Expr structure that will be stored as 1367 ** part of the in-memory representation of the database schema. 1368 */ 1369 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1370 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1371 return p ? exprDup(db, p, flags, 0) : 0; 1372 } 1373 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1374 ExprList *pNew; 1375 struct ExprList_item *pItem, *pOldItem; 1376 int i; 1377 Expr *pPriorSelectCol = 0; 1378 assert( db!=0 ); 1379 if( p==0 ) return 0; 1380 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1381 if( pNew==0 ) return 0; 1382 pNew->nExpr = p->nExpr; 1383 pItem = pNew->a; 1384 pOldItem = p->a; 1385 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1386 Expr *pOldExpr = pOldItem->pExpr; 1387 Expr *pNewExpr; 1388 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1389 if( pOldExpr 1390 && pOldExpr->op==TK_SELECT_COLUMN 1391 && (pNewExpr = pItem->pExpr)!=0 1392 ){ 1393 assert( pNewExpr->iColumn==0 || i>0 ); 1394 if( pNewExpr->iColumn==0 ){ 1395 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1396 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1397 }else{ 1398 assert( i>0 ); 1399 assert( pItem[-1].pExpr!=0 ); 1400 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1401 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1402 pNewExpr->pLeft = pPriorSelectCol; 1403 } 1404 } 1405 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1406 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1407 pItem->sortOrder = pOldItem->sortOrder; 1408 pItem->done = 0; 1409 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1410 pItem->bSorterRef = pOldItem->bSorterRef; 1411 pItem->u = pOldItem->u; 1412 } 1413 return pNew; 1414 } 1415 1416 /* 1417 ** If cursors, triggers, views and subqueries are all omitted from 1418 ** the build, then none of the following routines, except for 1419 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1420 ** called with a NULL argument. 1421 */ 1422 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1423 || !defined(SQLITE_OMIT_SUBQUERY) 1424 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1425 SrcList *pNew; 1426 int i; 1427 int nByte; 1428 assert( db!=0 ); 1429 if( p==0 ) return 0; 1430 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1431 pNew = sqlite3DbMallocRawNN(db, nByte ); 1432 if( pNew==0 ) return 0; 1433 pNew->nSrc = pNew->nAlloc = p->nSrc; 1434 for(i=0; i<p->nSrc; i++){ 1435 struct SrcList_item *pNewItem = &pNew->a[i]; 1436 struct SrcList_item *pOldItem = &p->a[i]; 1437 Table *pTab; 1438 pNewItem->pSchema = pOldItem->pSchema; 1439 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1440 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1441 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1442 pNewItem->fg = pOldItem->fg; 1443 pNewItem->iCursor = pOldItem->iCursor; 1444 pNewItem->addrFillSub = pOldItem->addrFillSub; 1445 pNewItem->regReturn = pOldItem->regReturn; 1446 if( pNewItem->fg.isIndexedBy ){ 1447 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1448 } 1449 pNewItem->pIBIndex = pOldItem->pIBIndex; 1450 if( pNewItem->fg.isTabFunc ){ 1451 pNewItem->u1.pFuncArg = 1452 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1453 } 1454 pTab = pNewItem->pTab = pOldItem->pTab; 1455 if( pTab ){ 1456 pTab->nTabRef++; 1457 } 1458 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1459 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1460 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1461 pNewItem->colUsed = pOldItem->colUsed; 1462 } 1463 return pNew; 1464 } 1465 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1466 IdList *pNew; 1467 int i; 1468 assert( db!=0 ); 1469 if( p==0 ) return 0; 1470 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1471 if( pNew==0 ) return 0; 1472 pNew->nId = p->nId; 1473 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1474 if( pNew->a==0 ){ 1475 sqlite3DbFreeNN(db, pNew); 1476 return 0; 1477 } 1478 /* Note that because the size of the allocation for p->a[] is not 1479 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1480 ** on the duplicate created by this function. */ 1481 for(i=0; i<p->nId; i++){ 1482 struct IdList_item *pNewItem = &pNew->a[i]; 1483 struct IdList_item *pOldItem = &p->a[i]; 1484 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1485 pNewItem->idx = pOldItem->idx; 1486 } 1487 return pNew; 1488 } 1489 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1490 Select *pRet = 0; 1491 Select *pNext = 0; 1492 Select **pp = &pRet; 1493 Select *p; 1494 1495 assert( db!=0 ); 1496 for(p=pDup; p; p=p->pPrior){ 1497 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1498 if( pNew==0 ) break; 1499 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1500 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1501 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1502 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1503 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1504 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1505 pNew->op = p->op; 1506 pNew->pNext = pNext; 1507 pNew->pPrior = 0; 1508 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1509 pNew->iLimit = 0; 1510 pNew->iOffset = 0; 1511 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1512 pNew->addrOpenEphm[0] = -1; 1513 pNew->addrOpenEphm[1] = -1; 1514 pNew->nSelectRow = p->nSelectRow; 1515 pNew->pWith = withDup(db, p->pWith); 1516 #ifndef SQLITE_OMIT_WINDOWFUNC 1517 pNew->pWin = 0; 1518 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1519 if( p->pWin ) gatherSelectWindows(pNew); 1520 #endif 1521 pNew->selId = p->selId; 1522 *pp = pNew; 1523 pp = &pNew->pPrior; 1524 pNext = pNew; 1525 } 1526 1527 return pRet; 1528 } 1529 #else 1530 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1531 assert( p==0 ); 1532 return 0; 1533 } 1534 #endif 1535 1536 1537 /* 1538 ** Add a new element to the end of an expression list. If pList is 1539 ** initially NULL, then create a new expression list. 1540 ** 1541 ** The pList argument must be either NULL or a pointer to an ExprList 1542 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1543 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1544 ** Reason: This routine assumes that the number of slots in pList->a[] 1545 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1546 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1547 ** 1548 ** If a memory allocation error occurs, the entire list is freed and 1549 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1550 ** that the new entry was successfully appended. 1551 */ 1552 ExprList *sqlite3ExprListAppend( 1553 Parse *pParse, /* Parsing context */ 1554 ExprList *pList, /* List to which to append. Might be NULL */ 1555 Expr *pExpr /* Expression to be appended. Might be NULL */ 1556 ){ 1557 struct ExprList_item *pItem; 1558 sqlite3 *db = pParse->db; 1559 assert( db!=0 ); 1560 if( pList==0 ){ 1561 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1562 if( pList==0 ){ 1563 goto no_mem; 1564 } 1565 pList->nExpr = 0; 1566 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1567 ExprList *pNew; 1568 pNew = sqlite3DbRealloc(db, pList, 1569 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1570 if( pNew==0 ){ 1571 goto no_mem; 1572 } 1573 pList = pNew; 1574 } 1575 pItem = &pList->a[pList->nExpr++]; 1576 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1577 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1578 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1579 pItem->pExpr = pExpr; 1580 return pList; 1581 1582 no_mem: 1583 /* Avoid leaking memory if malloc has failed. */ 1584 sqlite3ExprDelete(db, pExpr); 1585 sqlite3ExprListDelete(db, pList); 1586 return 0; 1587 } 1588 1589 /* 1590 ** pColumns and pExpr form a vector assignment which is part of the SET 1591 ** clause of an UPDATE statement. Like this: 1592 ** 1593 ** (a,b,c) = (expr1,expr2,expr3) 1594 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1595 ** 1596 ** For each term of the vector assignment, append new entries to the 1597 ** expression list pList. In the case of a subquery on the RHS, append 1598 ** TK_SELECT_COLUMN expressions. 1599 */ 1600 ExprList *sqlite3ExprListAppendVector( 1601 Parse *pParse, /* Parsing context */ 1602 ExprList *pList, /* List to which to append. Might be NULL */ 1603 IdList *pColumns, /* List of names of LHS of the assignment */ 1604 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1605 ){ 1606 sqlite3 *db = pParse->db; 1607 int n; 1608 int i; 1609 int iFirst = pList ? pList->nExpr : 0; 1610 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1611 ** exit prior to this routine being invoked */ 1612 if( NEVER(pColumns==0) ) goto vector_append_error; 1613 if( pExpr==0 ) goto vector_append_error; 1614 1615 /* If the RHS is a vector, then we can immediately check to see that 1616 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1617 ** wildcards ("*") in the result set of the SELECT must be expanded before 1618 ** we can do the size check, so defer the size check until code generation. 1619 */ 1620 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1621 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1622 pColumns->nId, n); 1623 goto vector_append_error; 1624 } 1625 1626 for(i=0; i<pColumns->nId; i++){ 1627 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1628 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1629 if( pList ){ 1630 assert( pList->nExpr==iFirst+i+1 ); 1631 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1632 pColumns->a[i].zName = 0; 1633 } 1634 } 1635 1636 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1637 Expr *pFirst = pList->a[iFirst].pExpr; 1638 assert( pFirst!=0 ); 1639 assert( pFirst->op==TK_SELECT_COLUMN ); 1640 1641 /* Store the SELECT statement in pRight so it will be deleted when 1642 ** sqlite3ExprListDelete() is called */ 1643 pFirst->pRight = pExpr; 1644 pExpr = 0; 1645 1646 /* Remember the size of the LHS in iTable so that we can check that 1647 ** the RHS and LHS sizes match during code generation. */ 1648 pFirst->iTable = pColumns->nId; 1649 } 1650 1651 vector_append_error: 1652 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1653 sqlite3IdListDelete(db, pColumns); 1654 return pList; 1655 } 1656 1657 /* 1658 ** Set the sort order for the last element on the given ExprList. 1659 */ 1660 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ 1661 if( p==0 ) return; 1662 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); 1663 assert( p->nExpr>0 ); 1664 if( iSortOrder<0 ){ 1665 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); 1666 return; 1667 } 1668 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; 1669 } 1670 1671 /* 1672 ** Set the ExprList.a[].zName element of the most recently added item 1673 ** on the expression list. 1674 ** 1675 ** pList might be NULL following an OOM error. But pName should never be 1676 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1677 ** is set. 1678 */ 1679 void sqlite3ExprListSetName( 1680 Parse *pParse, /* Parsing context */ 1681 ExprList *pList, /* List to which to add the span. */ 1682 Token *pName, /* Name to be added */ 1683 int dequote /* True to cause the name to be dequoted */ 1684 ){ 1685 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1686 if( pList ){ 1687 struct ExprList_item *pItem; 1688 assert( pList->nExpr>0 ); 1689 pItem = &pList->a[pList->nExpr-1]; 1690 assert( pItem->zName==0 ); 1691 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1692 if( dequote ) sqlite3Dequote(pItem->zName); 1693 if( IN_RENAME_OBJECT ){ 1694 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1695 } 1696 } 1697 } 1698 1699 /* 1700 ** Set the ExprList.a[].zSpan element of the most recently added item 1701 ** on the expression list. 1702 ** 1703 ** pList might be NULL following an OOM error. But pSpan should never be 1704 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1705 ** is set. 1706 */ 1707 void sqlite3ExprListSetSpan( 1708 Parse *pParse, /* Parsing context */ 1709 ExprList *pList, /* List to which to add the span. */ 1710 const char *zStart, /* Start of the span */ 1711 const char *zEnd /* End of the span */ 1712 ){ 1713 sqlite3 *db = pParse->db; 1714 assert( pList!=0 || db->mallocFailed!=0 ); 1715 if( pList ){ 1716 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1717 assert( pList->nExpr>0 ); 1718 sqlite3DbFree(db, pItem->zSpan); 1719 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1720 } 1721 } 1722 1723 /* 1724 ** If the expression list pEList contains more than iLimit elements, 1725 ** leave an error message in pParse. 1726 */ 1727 void sqlite3ExprListCheckLength( 1728 Parse *pParse, 1729 ExprList *pEList, 1730 const char *zObject 1731 ){ 1732 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1733 testcase( pEList && pEList->nExpr==mx ); 1734 testcase( pEList && pEList->nExpr==mx+1 ); 1735 if( pEList && pEList->nExpr>mx ){ 1736 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1737 } 1738 } 1739 1740 /* 1741 ** Delete an entire expression list. 1742 */ 1743 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1744 int i = pList->nExpr; 1745 struct ExprList_item *pItem = pList->a; 1746 assert( pList->nExpr>0 ); 1747 do{ 1748 sqlite3ExprDelete(db, pItem->pExpr); 1749 sqlite3DbFree(db, pItem->zName); 1750 sqlite3DbFree(db, pItem->zSpan); 1751 pItem++; 1752 }while( --i>0 ); 1753 sqlite3DbFreeNN(db, pList); 1754 } 1755 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1756 if( pList ) exprListDeleteNN(db, pList); 1757 } 1758 1759 /* 1760 ** Return the bitwise-OR of all Expr.flags fields in the given 1761 ** ExprList. 1762 */ 1763 u32 sqlite3ExprListFlags(const ExprList *pList){ 1764 int i; 1765 u32 m = 0; 1766 assert( pList!=0 ); 1767 for(i=0; i<pList->nExpr; i++){ 1768 Expr *pExpr = pList->a[i].pExpr; 1769 assert( pExpr!=0 ); 1770 m |= pExpr->flags; 1771 } 1772 return m; 1773 } 1774 1775 /* 1776 ** This is a SELECT-node callback for the expression walker that 1777 ** always "fails". By "fail" in this case, we mean set 1778 ** pWalker->eCode to zero and abort. 1779 ** 1780 ** This callback is used by multiple expression walkers. 1781 */ 1782 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1783 UNUSED_PARAMETER(NotUsed); 1784 pWalker->eCode = 0; 1785 return WRC_Abort; 1786 } 1787 1788 /* 1789 ** If the input expression is an ID with the name "true" or "false" 1790 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1791 ** the conversion happened, and zero if the expression is unaltered. 1792 */ 1793 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1794 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1795 if( !ExprHasProperty(pExpr, EP_Quoted) 1796 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1797 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1798 ){ 1799 pExpr->op = TK_TRUEFALSE; 1800 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1801 return 1; 1802 } 1803 return 0; 1804 } 1805 1806 /* 1807 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1808 ** and 0 if it is FALSE. 1809 */ 1810 int sqlite3ExprTruthValue(const Expr *pExpr){ 1811 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1812 assert( pExpr->op==TK_TRUEFALSE ); 1813 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1814 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1815 return pExpr->u.zToken[4]==0; 1816 } 1817 1818 /* 1819 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1820 ** terms that are always true or false. Return the simplified expression. 1821 ** Or return the original expression if no simplification is possible. 1822 ** 1823 ** Examples: 1824 ** 1825 ** (x<10) AND true => (x<10) 1826 ** (x<10) AND false => false 1827 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1828 ** (x<10) AND (y=22 OR true) => (x<10) 1829 ** (y=22) OR true => true 1830 */ 1831 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1832 assert( pExpr!=0 ); 1833 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1834 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1835 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1836 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1837 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1838 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1839 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1840 } 1841 } 1842 return pExpr; 1843 } 1844 1845 1846 /* 1847 ** These routines are Walker callbacks used to check expressions to 1848 ** see if they are "constant" for some definition of constant. The 1849 ** Walker.eCode value determines the type of "constant" we are looking 1850 ** for. 1851 ** 1852 ** These callback routines are used to implement the following: 1853 ** 1854 ** sqlite3ExprIsConstant() pWalker->eCode==1 1855 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1856 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1857 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1858 ** 1859 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1860 ** is found to not be a constant. 1861 ** 1862 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1863 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1864 ** an existing schema and 4 when processing a new statement. A bound 1865 ** parameter raises an error for new statements, but is silently converted 1866 ** to NULL for existing schemas. This allows sqlite_master tables that 1867 ** contain a bound parameter because they were generated by older versions 1868 ** of SQLite to be parsed by newer versions of SQLite without raising a 1869 ** malformed schema error. 1870 */ 1871 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1872 1873 /* If pWalker->eCode is 2 then any term of the expression that comes from 1874 ** the ON or USING clauses of a left join disqualifies the expression 1875 ** from being considered constant. */ 1876 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1877 pWalker->eCode = 0; 1878 return WRC_Abort; 1879 } 1880 1881 switch( pExpr->op ){ 1882 /* Consider functions to be constant if all their arguments are constant 1883 ** and either pWalker->eCode==4 or 5 or the function has the 1884 ** SQLITE_FUNC_CONST flag. */ 1885 case TK_FUNCTION: 1886 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1887 return WRC_Continue; 1888 }else{ 1889 pWalker->eCode = 0; 1890 return WRC_Abort; 1891 } 1892 case TK_ID: 1893 /* Convert "true" or "false" in a DEFAULT clause into the 1894 ** appropriate TK_TRUEFALSE operator */ 1895 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1896 return WRC_Prune; 1897 } 1898 /* Fall thru */ 1899 case TK_COLUMN: 1900 case TK_AGG_FUNCTION: 1901 case TK_AGG_COLUMN: 1902 testcase( pExpr->op==TK_ID ); 1903 testcase( pExpr->op==TK_COLUMN ); 1904 testcase( pExpr->op==TK_AGG_FUNCTION ); 1905 testcase( pExpr->op==TK_AGG_COLUMN ); 1906 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1907 return WRC_Continue; 1908 } 1909 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1910 return WRC_Continue; 1911 } 1912 /* Fall through */ 1913 case TK_IF_NULL_ROW: 1914 case TK_REGISTER: 1915 testcase( pExpr->op==TK_REGISTER ); 1916 testcase( pExpr->op==TK_IF_NULL_ROW ); 1917 pWalker->eCode = 0; 1918 return WRC_Abort; 1919 case TK_VARIABLE: 1920 if( pWalker->eCode==5 ){ 1921 /* Silently convert bound parameters that appear inside of CREATE 1922 ** statements into a NULL when parsing the CREATE statement text out 1923 ** of the sqlite_master table */ 1924 pExpr->op = TK_NULL; 1925 }else if( pWalker->eCode==4 ){ 1926 /* A bound parameter in a CREATE statement that originates from 1927 ** sqlite3_prepare() causes an error */ 1928 pWalker->eCode = 0; 1929 return WRC_Abort; 1930 } 1931 /* Fall through */ 1932 default: 1933 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1934 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1935 return WRC_Continue; 1936 } 1937 } 1938 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1939 Walker w; 1940 w.eCode = initFlag; 1941 w.xExprCallback = exprNodeIsConstant; 1942 w.xSelectCallback = sqlite3SelectWalkFail; 1943 #ifdef SQLITE_DEBUG 1944 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1945 #endif 1946 w.u.iCur = iCur; 1947 sqlite3WalkExpr(&w, p); 1948 return w.eCode; 1949 } 1950 1951 /* 1952 ** Walk an expression tree. Return non-zero if the expression is constant 1953 ** and 0 if it involves variables or function calls. 1954 ** 1955 ** For the purposes of this function, a double-quoted string (ex: "abc") 1956 ** is considered a variable but a single-quoted string (ex: 'abc') is 1957 ** a constant. 1958 */ 1959 int sqlite3ExprIsConstant(Expr *p){ 1960 return exprIsConst(p, 1, 0); 1961 } 1962 1963 /* 1964 ** Walk an expression tree. Return non-zero if 1965 ** 1966 ** (1) the expression is constant, and 1967 ** (2) the expression does originate in the ON or USING clause 1968 ** of a LEFT JOIN, and 1969 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 1970 ** operands created by the constant propagation optimization. 1971 ** 1972 ** When this routine returns true, it indicates that the expression 1973 ** can be added to the pParse->pConstExpr list and evaluated once when 1974 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 1975 */ 1976 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1977 return exprIsConst(p, 2, 0); 1978 } 1979 1980 /* 1981 ** Walk an expression tree. Return non-zero if the expression is constant 1982 ** for any single row of the table with cursor iCur. In other words, the 1983 ** expression must not refer to any non-deterministic function nor any 1984 ** table other than iCur. 1985 */ 1986 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 1987 return exprIsConst(p, 3, iCur); 1988 } 1989 1990 1991 /* 1992 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 1993 */ 1994 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 1995 ExprList *pGroupBy = pWalker->u.pGroupBy; 1996 int i; 1997 1998 /* Check if pExpr is identical to any GROUP BY term. If so, consider 1999 ** it constant. */ 2000 for(i=0; i<pGroupBy->nExpr; i++){ 2001 Expr *p = pGroupBy->a[i].pExpr; 2002 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2003 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2004 if( sqlite3IsBinary(pColl) ){ 2005 return WRC_Prune; 2006 } 2007 } 2008 } 2009 2010 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2011 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2012 pWalker->eCode = 0; 2013 return WRC_Abort; 2014 } 2015 2016 return exprNodeIsConstant(pWalker, pExpr); 2017 } 2018 2019 /* 2020 ** Walk the expression tree passed as the first argument. Return non-zero 2021 ** if the expression consists entirely of constants or copies of terms 2022 ** in pGroupBy that sort with the BINARY collation sequence. 2023 ** 2024 ** This routine is used to determine if a term of the HAVING clause can 2025 ** be promoted into the WHERE clause. In order for such a promotion to work, 2026 ** the value of the HAVING clause term must be the same for all members of 2027 ** a "group". The requirement that the GROUP BY term must be BINARY 2028 ** assumes that no other collating sequence will have a finer-grained 2029 ** grouping than binary. In other words (A=B COLLATE binary) implies 2030 ** A=B in every other collating sequence. The requirement that the 2031 ** GROUP BY be BINARY is stricter than necessary. It would also work 2032 ** to promote HAVING clauses that use the same alternative collating 2033 ** sequence as the GROUP BY term, but that is much harder to check, 2034 ** alternative collating sequences are uncommon, and this is only an 2035 ** optimization, so we take the easy way out and simply require the 2036 ** GROUP BY to use the BINARY collating sequence. 2037 */ 2038 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2039 Walker w; 2040 w.eCode = 1; 2041 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2042 w.xSelectCallback = 0; 2043 w.u.pGroupBy = pGroupBy; 2044 w.pParse = pParse; 2045 sqlite3WalkExpr(&w, p); 2046 return w.eCode; 2047 } 2048 2049 /* 2050 ** Walk an expression tree. Return non-zero if the expression is constant 2051 ** or a function call with constant arguments. Return and 0 if there 2052 ** are any variables. 2053 ** 2054 ** For the purposes of this function, a double-quoted string (ex: "abc") 2055 ** is considered a variable but a single-quoted string (ex: 'abc') is 2056 ** a constant. 2057 */ 2058 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2059 assert( isInit==0 || isInit==1 ); 2060 return exprIsConst(p, 4+isInit, 0); 2061 } 2062 2063 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2064 /* 2065 ** Walk an expression tree. Return 1 if the expression contains a 2066 ** subquery of some kind. Return 0 if there are no subqueries. 2067 */ 2068 int sqlite3ExprContainsSubquery(Expr *p){ 2069 Walker w; 2070 w.eCode = 1; 2071 w.xExprCallback = sqlite3ExprWalkNoop; 2072 w.xSelectCallback = sqlite3SelectWalkFail; 2073 #ifdef SQLITE_DEBUG 2074 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2075 #endif 2076 sqlite3WalkExpr(&w, p); 2077 return w.eCode==0; 2078 } 2079 #endif 2080 2081 /* 2082 ** If the expression p codes a constant integer that is small enough 2083 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2084 ** in *pValue. If the expression is not an integer or if it is too big 2085 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2086 */ 2087 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2088 int rc = 0; 2089 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2090 2091 /* If an expression is an integer literal that fits in a signed 32-bit 2092 ** integer, then the EP_IntValue flag will have already been set */ 2093 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2094 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2095 2096 if( p->flags & EP_IntValue ){ 2097 *pValue = p->u.iValue; 2098 return 1; 2099 } 2100 switch( p->op ){ 2101 case TK_UPLUS: { 2102 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2103 break; 2104 } 2105 case TK_UMINUS: { 2106 int v; 2107 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2108 assert( v!=(-2147483647-1) ); 2109 *pValue = -v; 2110 rc = 1; 2111 } 2112 break; 2113 } 2114 default: break; 2115 } 2116 return rc; 2117 } 2118 2119 /* 2120 ** Return FALSE if there is no chance that the expression can be NULL. 2121 ** 2122 ** If the expression might be NULL or if the expression is too complex 2123 ** to tell return TRUE. 2124 ** 2125 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2126 ** when we know that a value cannot be NULL. Hence, a false positive 2127 ** (returning TRUE when in fact the expression can never be NULL) might 2128 ** be a small performance hit but is otherwise harmless. On the other 2129 ** hand, a false negative (returning FALSE when the result could be NULL) 2130 ** will likely result in an incorrect answer. So when in doubt, return 2131 ** TRUE. 2132 */ 2133 int sqlite3ExprCanBeNull(const Expr *p){ 2134 u8 op; 2135 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2136 p = p->pLeft; 2137 } 2138 op = p->op; 2139 if( op==TK_REGISTER ) op = p->op2; 2140 switch( op ){ 2141 case TK_INTEGER: 2142 case TK_STRING: 2143 case TK_FLOAT: 2144 case TK_BLOB: 2145 return 0; 2146 case TK_COLUMN: 2147 return ExprHasProperty(p, EP_CanBeNull) || 2148 p->y.pTab==0 || /* Reference to column of index on expression */ 2149 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2150 default: 2151 return 1; 2152 } 2153 } 2154 2155 /* 2156 ** Return TRUE if the given expression is a constant which would be 2157 ** unchanged by OP_Affinity with the affinity given in the second 2158 ** argument. 2159 ** 2160 ** This routine is used to determine if the OP_Affinity operation 2161 ** can be omitted. When in doubt return FALSE. A false negative 2162 ** is harmless. A false positive, however, can result in the wrong 2163 ** answer. 2164 */ 2165 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2166 u8 op; 2167 if( aff==SQLITE_AFF_BLOB ) return 1; 2168 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 2169 op = p->op; 2170 if( op==TK_REGISTER ) op = p->op2; 2171 switch( op ){ 2172 case TK_INTEGER: { 2173 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 2174 } 2175 case TK_FLOAT: { 2176 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 2177 } 2178 case TK_STRING: { 2179 return aff==SQLITE_AFF_TEXT; 2180 } 2181 case TK_BLOB: { 2182 return 1; 2183 } 2184 case TK_COLUMN: { 2185 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2186 return p->iColumn<0 2187 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 2188 } 2189 default: { 2190 return 0; 2191 } 2192 } 2193 } 2194 2195 /* 2196 ** Return TRUE if the given string is a row-id column name. 2197 */ 2198 int sqlite3IsRowid(const char *z){ 2199 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2200 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2201 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2202 return 0; 2203 } 2204 2205 /* 2206 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2207 ** that can be simplified to a direct table access, then return 2208 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2209 ** or if the SELECT statement needs to be manifested into a transient 2210 ** table, then return NULL. 2211 */ 2212 #ifndef SQLITE_OMIT_SUBQUERY 2213 static Select *isCandidateForInOpt(Expr *pX){ 2214 Select *p; 2215 SrcList *pSrc; 2216 ExprList *pEList; 2217 Table *pTab; 2218 int i; 2219 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2220 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2221 p = pX->x.pSelect; 2222 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2223 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2224 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2225 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2226 return 0; /* No DISTINCT keyword and no aggregate functions */ 2227 } 2228 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2229 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2230 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2231 pSrc = p->pSrc; 2232 assert( pSrc!=0 ); 2233 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2234 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2235 pTab = pSrc->a[0].pTab; 2236 assert( pTab!=0 ); 2237 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2238 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2239 pEList = p->pEList; 2240 assert( pEList!=0 ); 2241 /* All SELECT results must be columns. */ 2242 for(i=0; i<pEList->nExpr; i++){ 2243 Expr *pRes = pEList->a[i].pExpr; 2244 if( pRes->op!=TK_COLUMN ) return 0; 2245 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2246 } 2247 return p; 2248 } 2249 #endif /* SQLITE_OMIT_SUBQUERY */ 2250 2251 #ifndef SQLITE_OMIT_SUBQUERY 2252 /* 2253 ** Generate code that checks the left-most column of index table iCur to see if 2254 ** it contains any NULL entries. Cause the register at regHasNull to be set 2255 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2256 ** to be set to NULL if iCur contains one or more NULL values. 2257 */ 2258 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2259 int addr1; 2260 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2261 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2262 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2263 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2264 VdbeComment((v, "first_entry_in(%d)", iCur)); 2265 sqlite3VdbeJumpHere(v, addr1); 2266 } 2267 #endif 2268 2269 2270 #ifndef SQLITE_OMIT_SUBQUERY 2271 /* 2272 ** The argument is an IN operator with a list (not a subquery) on the 2273 ** right-hand side. Return TRUE if that list is constant. 2274 */ 2275 static int sqlite3InRhsIsConstant(Expr *pIn){ 2276 Expr *pLHS; 2277 int res; 2278 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2279 pLHS = pIn->pLeft; 2280 pIn->pLeft = 0; 2281 res = sqlite3ExprIsConstant(pIn); 2282 pIn->pLeft = pLHS; 2283 return res; 2284 } 2285 #endif 2286 2287 /* 2288 ** This function is used by the implementation of the IN (...) operator. 2289 ** The pX parameter is the expression on the RHS of the IN operator, which 2290 ** might be either a list of expressions or a subquery. 2291 ** 2292 ** The job of this routine is to find or create a b-tree object that can 2293 ** be used either to test for membership in the RHS set or to iterate through 2294 ** all members of the RHS set, skipping duplicates. 2295 ** 2296 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2297 ** and pX->iTable is set to the index of that cursor. 2298 ** 2299 ** The returned value of this function indicates the b-tree type, as follows: 2300 ** 2301 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2302 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2303 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2304 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2305 ** populated epheremal table. 2306 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2307 ** implemented as a sequence of comparisons. 2308 ** 2309 ** An existing b-tree might be used if the RHS expression pX is a simple 2310 ** subquery such as: 2311 ** 2312 ** SELECT <column1>, <column2>... FROM <table> 2313 ** 2314 ** If the RHS of the IN operator is a list or a more complex subquery, then 2315 ** an ephemeral table might need to be generated from the RHS and then 2316 ** pX->iTable made to point to the ephemeral table instead of an 2317 ** existing table. 2318 ** 2319 ** The inFlags parameter must contain, at a minimum, one of the bits 2320 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2321 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2322 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2323 ** be used to loop over all values of the RHS of the IN operator. 2324 ** 2325 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2326 ** through the set members) then the b-tree must not contain duplicates. 2327 ** An epheremal table will be created unless the selected columns are guaranteed 2328 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2329 ** a UNIQUE constraint or index. 2330 ** 2331 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2332 ** for fast set membership tests) then an epheremal table must 2333 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2334 ** index can be found with the specified <columns> as its left-most. 2335 ** 2336 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2337 ** if the RHS of the IN operator is a list (not a subquery) then this 2338 ** routine might decide that creating an ephemeral b-tree for membership 2339 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2340 ** calling routine should implement the IN operator using a sequence 2341 ** of Eq or Ne comparison operations. 2342 ** 2343 ** When the b-tree is being used for membership tests, the calling function 2344 ** might need to know whether or not the RHS side of the IN operator 2345 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2346 ** if there is any chance that the (...) might contain a NULL value at 2347 ** runtime, then a register is allocated and the register number written 2348 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2349 ** NULL value, then *prRhsHasNull is left unchanged. 2350 ** 2351 ** If a register is allocated and its location stored in *prRhsHasNull, then 2352 ** the value in that register will be NULL if the b-tree contains one or more 2353 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2354 ** NULL values. 2355 ** 2356 ** If the aiMap parameter is not NULL, it must point to an array containing 2357 ** one element for each column returned by the SELECT statement on the RHS 2358 ** of the IN(...) operator. The i'th entry of the array is populated with the 2359 ** offset of the index column that matches the i'th column returned by the 2360 ** SELECT. For example, if the expression and selected index are: 2361 ** 2362 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2363 ** CREATE INDEX i1 ON t1(b, c, a); 2364 ** 2365 ** then aiMap[] is populated with {2, 0, 1}. 2366 */ 2367 #ifndef SQLITE_OMIT_SUBQUERY 2368 int sqlite3FindInIndex( 2369 Parse *pParse, /* Parsing context */ 2370 Expr *pX, /* The right-hand side (RHS) of the IN operator */ 2371 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2372 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2373 int *aiMap, /* Mapping from Index fields to RHS fields */ 2374 int *piTab /* OUT: index to use */ 2375 ){ 2376 Select *p; /* SELECT to the right of IN operator */ 2377 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2378 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2379 int mustBeUnique; /* True if RHS must be unique */ 2380 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2381 2382 assert( pX->op==TK_IN ); 2383 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2384 2385 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2386 ** whether or not the SELECT result contains NULL values, check whether 2387 ** or not NULL is actually possible (it may not be, for example, due 2388 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2389 ** set prRhsHasNull to 0 before continuing. */ 2390 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2391 int i; 2392 ExprList *pEList = pX->x.pSelect->pEList; 2393 for(i=0; i<pEList->nExpr; i++){ 2394 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2395 } 2396 if( i==pEList->nExpr ){ 2397 prRhsHasNull = 0; 2398 } 2399 } 2400 2401 /* Check to see if an existing table or index can be used to 2402 ** satisfy the query. This is preferable to generating a new 2403 ** ephemeral table. */ 2404 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2405 sqlite3 *db = pParse->db; /* Database connection */ 2406 Table *pTab; /* Table <table>. */ 2407 i16 iDb; /* Database idx for pTab */ 2408 ExprList *pEList = p->pEList; 2409 int nExpr = pEList->nExpr; 2410 2411 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2412 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2413 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2414 pTab = p->pSrc->a[0].pTab; 2415 2416 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2417 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2418 sqlite3CodeVerifySchema(pParse, iDb); 2419 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2420 2421 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2422 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2423 /* The "x IN (SELECT rowid FROM table)" case */ 2424 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2425 VdbeCoverage(v); 2426 2427 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2428 eType = IN_INDEX_ROWID; 2429 ExplainQueryPlan((pParse, 0, 2430 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2431 sqlite3VdbeJumpHere(v, iAddr); 2432 }else{ 2433 Index *pIdx; /* Iterator variable */ 2434 int affinity_ok = 1; 2435 int i; 2436 2437 /* Check that the affinity that will be used to perform each 2438 ** comparison is the same as the affinity of each column in table 2439 ** on the RHS of the IN operator. If it not, it is not possible to 2440 ** use any index of the RHS table. */ 2441 for(i=0; i<nExpr && affinity_ok; i++){ 2442 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2443 int iCol = pEList->a[i].pExpr->iColumn; 2444 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2445 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2446 testcase( cmpaff==SQLITE_AFF_BLOB ); 2447 testcase( cmpaff==SQLITE_AFF_TEXT ); 2448 switch( cmpaff ){ 2449 case SQLITE_AFF_BLOB: 2450 break; 2451 case SQLITE_AFF_TEXT: 2452 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2453 ** other has no affinity and the other side is TEXT. Hence, 2454 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2455 ** and for the term on the LHS of the IN to have no affinity. */ 2456 assert( idxaff==SQLITE_AFF_TEXT ); 2457 break; 2458 default: 2459 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2460 } 2461 } 2462 2463 if( affinity_ok ){ 2464 /* Search for an existing index that will work for this IN operator */ 2465 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2466 Bitmask colUsed; /* Columns of the index used */ 2467 Bitmask mCol; /* Mask for the current column */ 2468 if( pIdx->nColumn<nExpr ) continue; 2469 if( pIdx->pPartIdxWhere!=0 ) continue; 2470 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2471 ** BITMASK(nExpr) without overflowing */ 2472 testcase( pIdx->nColumn==BMS-2 ); 2473 testcase( pIdx->nColumn==BMS-1 ); 2474 if( pIdx->nColumn>=BMS-1 ) continue; 2475 if( mustBeUnique ){ 2476 if( pIdx->nKeyCol>nExpr 2477 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2478 ){ 2479 continue; /* This index is not unique over the IN RHS columns */ 2480 } 2481 } 2482 2483 colUsed = 0; /* Columns of index used so far */ 2484 for(i=0; i<nExpr; i++){ 2485 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2486 Expr *pRhs = pEList->a[i].pExpr; 2487 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2488 int j; 2489 2490 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2491 for(j=0; j<nExpr; j++){ 2492 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2493 assert( pIdx->azColl[j] ); 2494 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2495 continue; 2496 } 2497 break; 2498 } 2499 if( j==nExpr ) break; 2500 mCol = MASKBIT(j); 2501 if( mCol & colUsed ) break; /* Each column used only once */ 2502 colUsed |= mCol; 2503 if( aiMap ) aiMap[i] = j; 2504 } 2505 2506 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2507 if( colUsed==(MASKBIT(nExpr)-1) ){ 2508 /* If we reach this point, that means the index pIdx is usable */ 2509 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2510 ExplainQueryPlan((pParse, 0, 2511 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2512 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2513 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2514 VdbeComment((v, "%s", pIdx->zName)); 2515 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2516 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2517 2518 if( prRhsHasNull ){ 2519 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2520 i64 mask = (1<<nExpr)-1; 2521 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2522 iTab, 0, 0, (u8*)&mask, P4_INT64); 2523 #endif 2524 *prRhsHasNull = ++pParse->nMem; 2525 if( nExpr==1 ){ 2526 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2527 } 2528 } 2529 sqlite3VdbeJumpHere(v, iAddr); 2530 } 2531 } /* End loop over indexes */ 2532 } /* End if( affinity_ok ) */ 2533 } /* End if not an rowid index */ 2534 } /* End attempt to optimize using an index */ 2535 2536 /* If no preexisting index is available for the IN clause 2537 ** and IN_INDEX_NOOP is an allowed reply 2538 ** and the RHS of the IN operator is a list, not a subquery 2539 ** and the RHS is not constant or has two or fewer terms, 2540 ** then it is not worth creating an ephemeral table to evaluate 2541 ** the IN operator so return IN_INDEX_NOOP. 2542 */ 2543 if( eType==0 2544 && (inFlags & IN_INDEX_NOOP_OK) 2545 && !ExprHasProperty(pX, EP_xIsSelect) 2546 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2547 ){ 2548 eType = IN_INDEX_NOOP; 2549 } 2550 2551 if( eType==0 ){ 2552 /* Could not find an existing table or index to use as the RHS b-tree. 2553 ** We will have to generate an ephemeral table to do the job. 2554 */ 2555 u32 savedNQueryLoop = pParse->nQueryLoop; 2556 int rMayHaveNull = 0; 2557 eType = IN_INDEX_EPH; 2558 if( inFlags & IN_INDEX_LOOP ){ 2559 pParse->nQueryLoop = 0; 2560 }else if( prRhsHasNull ){ 2561 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2562 } 2563 assert( pX->op==TK_IN ); 2564 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2565 if( rMayHaveNull ){ 2566 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2567 } 2568 pParse->nQueryLoop = savedNQueryLoop; 2569 } 2570 2571 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2572 int i, n; 2573 n = sqlite3ExprVectorSize(pX->pLeft); 2574 for(i=0; i<n; i++) aiMap[i] = i; 2575 } 2576 *piTab = iTab; 2577 return eType; 2578 } 2579 #endif 2580 2581 #ifndef SQLITE_OMIT_SUBQUERY 2582 /* 2583 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2584 ** function allocates and returns a nul-terminated string containing 2585 ** the affinities to be used for each column of the comparison. 2586 ** 2587 ** It is the responsibility of the caller to ensure that the returned 2588 ** string is eventually freed using sqlite3DbFree(). 2589 */ 2590 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2591 Expr *pLeft = pExpr->pLeft; 2592 int nVal = sqlite3ExprVectorSize(pLeft); 2593 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2594 char *zRet; 2595 2596 assert( pExpr->op==TK_IN ); 2597 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2598 if( zRet ){ 2599 int i; 2600 for(i=0; i<nVal; i++){ 2601 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2602 char a = sqlite3ExprAffinity(pA); 2603 if( pSelect ){ 2604 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2605 }else{ 2606 zRet[i] = a; 2607 } 2608 } 2609 zRet[nVal] = '\0'; 2610 } 2611 return zRet; 2612 } 2613 #endif 2614 2615 #ifndef SQLITE_OMIT_SUBQUERY 2616 /* 2617 ** Load the Parse object passed as the first argument with an error 2618 ** message of the form: 2619 ** 2620 ** "sub-select returns N columns - expected M" 2621 */ 2622 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2623 const char *zFmt = "sub-select returns %d columns - expected %d"; 2624 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2625 } 2626 #endif 2627 2628 /* 2629 ** Expression pExpr is a vector that has been used in a context where 2630 ** it is not permitted. If pExpr is a sub-select vector, this routine 2631 ** loads the Parse object with a message of the form: 2632 ** 2633 ** "sub-select returns N columns - expected 1" 2634 ** 2635 ** Or, if it is a regular scalar vector: 2636 ** 2637 ** "row value misused" 2638 */ 2639 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2640 #ifndef SQLITE_OMIT_SUBQUERY 2641 if( pExpr->flags & EP_xIsSelect ){ 2642 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2643 }else 2644 #endif 2645 { 2646 sqlite3ErrorMsg(pParse, "row value misused"); 2647 } 2648 } 2649 2650 #ifndef SQLITE_OMIT_SUBQUERY 2651 /* 2652 ** Generate code that will construct an ephemeral table containing all terms 2653 ** in the RHS of an IN operator. The IN operator can be in either of two 2654 ** forms: 2655 ** 2656 ** x IN (4,5,11) -- IN operator with list on right-hand side 2657 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2658 ** 2659 ** The pExpr parameter is the IN operator. The cursor number for the 2660 ** constructed ephermeral table is returned. The first time the ephemeral 2661 ** table is computed, the cursor number is also stored in pExpr->iTable, 2662 ** however the cursor number returned might not be the same, as it might 2663 ** have been duplicated using OP_OpenDup. 2664 ** 2665 ** If the LHS expression ("x" in the examples) is a column value, or 2666 ** the SELECT statement returns a column value, then the affinity of that 2667 ** column is used to build the index keys. If both 'x' and the 2668 ** SELECT... statement are columns, then numeric affinity is used 2669 ** if either column has NUMERIC or INTEGER affinity. If neither 2670 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2671 ** is used. 2672 */ 2673 void sqlite3CodeRhsOfIN( 2674 Parse *pParse, /* Parsing context */ 2675 Expr *pExpr, /* The IN operator */ 2676 int iTab /* Use this cursor number */ 2677 ){ 2678 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2679 int addr; /* Address of OP_OpenEphemeral instruction */ 2680 Expr *pLeft; /* the LHS of the IN operator */ 2681 KeyInfo *pKeyInfo = 0; /* Key information */ 2682 int nVal; /* Size of vector pLeft */ 2683 Vdbe *v; /* The prepared statement under construction */ 2684 2685 v = pParse->pVdbe; 2686 assert( v!=0 ); 2687 2688 /* The evaluation of the IN must be repeated every time it 2689 ** is encountered if any of the following is true: 2690 ** 2691 ** * The right-hand side is a correlated subquery 2692 ** * The right-hand side is an expression list containing variables 2693 ** * We are inside a trigger 2694 ** 2695 ** If all of the above are false, then we can compute the RHS just once 2696 ** and reuse it many names. 2697 */ 2698 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2699 /* Reuse of the RHS is allowed */ 2700 /* If this routine has already been coded, but the previous code 2701 ** might not have been invoked yet, so invoke it now as a subroutine. 2702 */ 2703 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2704 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2705 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2706 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2707 pExpr->x.pSelect->selId)); 2708 } 2709 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2710 pExpr->y.sub.iAddr); 2711 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2712 sqlite3VdbeJumpHere(v, addrOnce); 2713 return; 2714 } 2715 2716 /* Begin coding the subroutine */ 2717 ExprSetProperty(pExpr, EP_Subrtn); 2718 pExpr->y.sub.regReturn = ++pParse->nMem; 2719 pExpr->y.sub.iAddr = 2720 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2721 VdbeComment((v, "return address")); 2722 2723 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2724 } 2725 2726 /* Check to see if this is a vector IN operator */ 2727 pLeft = pExpr->pLeft; 2728 nVal = sqlite3ExprVectorSize(pLeft); 2729 2730 /* Construct the ephemeral table that will contain the content of 2731 ** RHS of the IN operator. 2732 */ 2733 pExpr->iTable = iTab; 2734 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2735 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2736 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2737 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2738 }else{ 2739 VdbeComment((v, "RHS of IN operator")); 2740 } 2741 #endif 2742 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2743 2744 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2745 /* Case 1: expr IN (SELECT ...) 2746 ** 2747 ** Generate code to write the results of the select into the temporary 2748 ** table allocated and opened above. 2749 */ 2750 Select *pSelect = pExpr->x.pSelect; 2751 ExprList *pEList = pSelect->pEList; 2752 2753 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2754 addrOnce?"":"CORRELATED ", pSelect->selId 2755 )); 2756 /* If the LHS and RHS of the IN operator do not match, that 2757 ** error will have been caught long before we reach this point. */ 2758 if( ALWAYS(pEList->nExpr==nVal) ){ 2759 SelectDest dest; 2760 int i; 2761 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2762 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2763 pSelect->iLimit = 0; 2764 testcase( pSelect->selFlags & SF_Distinct ); 2765 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2766 if( sqlite3Select(pParse, pSelect, &dest) ){ 2767 sqlite3DbFree(pParse->db, dest.zAffSdst); 2768 sqlite3KeyInfoUnref(pKeyInfo); 2769 return; 2770 } 2771 sqlite3DbFree(pParse->db, dest.zAffSdst); 2772 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2773 assert( pEList!=0 ); 2774 assert( pEList->nExpr>0 ); 2775 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2776 for(i=0; i<nVal; i++){ 2777 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2778 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2779 pParse, p, pEList->a[i].pExpr 2780 ); 2781 } 2782 } 2783 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2784 /* Case 2: expr IN (exprlist) 2785 ** 2786 ** For each expression, build an index key from the evaluation and 2787 ** store it in the temporary table. If <expr> is a column, then use 2788 ** that columns affinity when building index keys. If <expr> is not 2789 ** a column, use numeric affinity. 2790 */ 2791 char affinity; /* Affinity of the LHS of the IN */ 2792 int i; 2793 ExprList *pList = pExpr->x.pList; 2794 struct ExprList_item *pItem; 2795 int r1, r2, r3; 2796 affinity = sqlite3ExprAffinity(pLeft); 2797 if( affinity<=SQLITE_AFF_NONE ){ 2798 affinity = SQLITE_AFF_BLOB; 2799 } 2800 if( pKeyInfo ){ 2801 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2802 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2803 } 2804 2805 /* Loop through each expression in <exprlist>. */ 2806 r1 = sqlite3GetTempReg(pParse); 2807 r2 = sqlite3GetTempReg(pParse); 2808 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2809 Expr *pE2 = pItem->pExpr; 2810 2811 /* If the expression is not constant then we will need to 2812 ** disable the test that was generated above that makes sure 2813 ** this code only executes once. Because for a non-constant 2814 ** expression we need to rerun this code each time. 2815 */ 2816 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2817 sqlite3VdbeChangeToNoop(v, addrOnce); 2818 ExprClearProperty(pExpr, EP_Subrtn); 2819 addrOnce = 0; 2820 } 2821 2822 /* Evaluate the expression and insert it into the temp table */ 2823 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 2824 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 2825 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r3, 1); 2826 } 2827 sqlite3ReleaseTempReg(pParse, r1); 2828 sqlite3ReleaseTempReg(pParse, r2); 2829 } 2830 if( pKeyInfo ){ 2831 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2832 } 2833 if( addrOnce ){ 2834 sqlite3VdbeJumpHere(v, addrOnce); 2835 /* Subroutine return */ 2836 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2837 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2838 } 2839 } 2840 #endif /* SQLITE_OMIT_SUBQUERY */ 2841 2842 /* 2843 ** Generate code for scalar subqueries used as a subquery expression 2844 ** or EXISTS operator: 2845 ** 2846 ** (SELECT a FROM b) -- subquery 2847 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2848 ** 2849 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2850 ** 2851 ** The register that holds the result. For a multi-column SELECT, 2852 ** the result is stored in a contiguous array of registers and the 2853 ** return value is the register of the left-most result column. 2854 ** Return 0 if an error occurs. 2855 */ 2856 #ifndef SQLITE_OMIT_SUBQUERY 2857 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2858 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2859 int rReg = 0; /* Register storing resulting */ 2860 Select *pSel; /* SELECT statement to encode */ 2861 SelectDest dest; /* How to deal with SELECT result */ 2862 int nReg; /* Registers to allocate */ 2863 Expr *pLimit; /* New limit expression */ 2864 2865 Vdbe *v = pParse->pVdbe; 2866 assert( v!=0 ); 2867 testcase( pExpr->op==TK_EXISTS ); 2868 testcase( pExpr->op==TK_SELECT ); 2869 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2870 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2871 pSel = pExpr->x.pSelect; 2872 2873 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2874 ** is encountered if any of the following is true: 2875 ** 2876 ** * The right-hand side is a correlated subquery 2877 ** * The right-hand side is an expression list containing variables 2878 ** * We are inside a trigger 2879 ** 2880 ** If all of the above are false, then we can run this code just once 2881 ** save the results, and reuse the same result on subsequent invocations. 2882 */ 2883 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2884 /* If this routine has already been coded, then invoke it as a 2885 ** subroutine. */ 2886 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2887 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2888 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2889 pExpr->y.sub.iAddr); 2890 return pExpr->iTable; 2891 } 2892 2893 /* Begin coding the subroutine */ 2894 ExprSetProperty(pExpr, EP_Subrtn); 2895 pExpr->y.sub.regReturn = ++pParse->nMem; 2896 pExpr->y.sub.iAddr = 2897 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2898 VdbeComment((v, "return address")); 2899 2900 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2901 } 2902 2903 /* For a SELECT, generate code to put the values for all columns of 2904 ** the first row into an array of registers and return the index of 2905 ** the first register. 2906 ** 2907 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2908 ** into a register and return that register number. 2909 ** 2910 ** In both cases, the query is augmented with "LIMIT 1". Any 2911 ** preexisting limit is discarded in place of the new LIMIT 1. 2912 */ 2913 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2914 addrOnce?"":"CORRELATED ", pSel->selId)); 2915 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2916 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2917 pParse->nMem += nReg; 2918 if( pExpr->op==TK_SELECT ){ 2919 dest.eDest = SRT_Mem; 2920 dest.iSdst = dest.iSDParm; 2921 dest.nSdst = nReg; 2922 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2923 VdbeComment((v, "Init subquery result")); 2924 }else{ 2925 dest.eDest = SRT_Exists; 2926 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2927 VdbeComment((v, "Init EXISTS result")); 2928 } 2929 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0); 2930 if( pSel->pLimit ){ 2931 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft); 2932 pSel->pLimit->pLeft = pLimit; 2933 }else{ 2934 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2935 } 2936 pSel->iLimit = 0; 2937 if( sqlite3Select(pParse, pSel, &dest) ){ 2938 return 0; 2939 } 2940 pExpr->iTable = rReg = dest.iSDParm; 2941 ExprSetVVAProperty(pExpr, EP_NoReduce); 2942 if( addrOnce ){ 2943 sqlite3VdbeJumpHere(v, addrOnce); 2944 2945 /* Subroutine return */ 2946 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2947 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2948 } 2949 2950 return rReg; 2951 } 2952 #endif /* SQLITE_OMIT_SUBQUERY */ 2953 2954 #ifndef SQLITE_OMIT_SUBQUERY 2955 /* 2956 ** Expr pIn is an IN(...) expression. This function checks that the 2957 ** sub-select on the RHS of the IN() operator has the same number of 2958 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 2959 ** a sub-query, that the LHS is a vector of size 1. 2960 */ 2961 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 2962 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 2963 if( (pIn->flags & EP_xIsSelect) ){ 2964 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 2965 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 2966 return 1; 2967 } 2968 }else if( nVector!=1 ){ 2969 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 2970 return 1; 2971 } 2972 return 0; 2973 } 2974 #endif 2975 2976 #ifndef SQLITE_OMIT_SUBQUERY 2977 /* 2978 ** Generate code for an IN expression. 2979 ** 2980 ** x IN (SELECT ...) 2981 ** x IN (value, value, ...) 2982 ** 2983 ** The left-hand side (LHS) is a scalar or vector expression. The 2984 ** right-hand side (RHS) is an array of zero or more scalar values, or a 2985 ** subquery. If the RHS is a subquery, the number of result columns must 2986 ** match the number of columns in the vector on the LHS. If the RHS is 2987 ** a list of values, the LHS must be a scalar. 2988 ** 2989 ** The IN operator is true if the LHS value is contained within the RHS. 2990 ** The result is false if the LHS is definitely not in the RHS. The 2991 ** result is NULL if the presence of the LHS in the RHS cannot be 2992 ** determined due to NULLs. 2993 ** 2994 ** This routine generates code that jumps to destIfFalse if the LHS is not 2995 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 2996 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 2997 ** within the RHS then fall through. 2998 ** 2999 ** See the separate in-operator.md documentation file in the canonical 3000 ** SQLite source tree for additional information. 3001 */ 3002 static void sqlite3ExprCodeIN( 3003 Parse *pParse, /* Parsing and code generating context */ 3004 Expr *pExpr, /* The IN expression */ 3005 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3006 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3007 ){ 3008 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3009 int eType; /* Type of the RHS */ 3010 int rLhs; /* Register(s) holding the LHS values */ 3011 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3012 Vdbe *v; /* Statement under construction */ 3013 int *aiMap = 0; /* Map from vector field to index column */ 3014 char *zAff = 0; /* Affinity string for comparisons */ 3015 int nVector; /* Size of vectors for this IN operator */ 3016 int iDummy; /* Dummy parameter to exprCodeVector() */ 3017 Expr *pLeft; /* The LHS of the IN operator */ 3018 int i; /* loop counter */ 3019 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3020 int destStep6 = 0; /* Start of code for Step 6 */ 3021 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3022 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3023 int addrTop; /* Top of the step-6 loop */ 3024 int iTab = 0; /* Index to use */ 3025 3026 pLeft = pExpr->pLeft; 3027 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3028 zAff = exprINAffinity(pParse, pExpr); 3029 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3030 aiMap = (int*)sqlite3DbMallocZero( 3031 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3032 ); 3033 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3034 3035 /* Attempt to compute the RHS. After this step, if anything other than 3036 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3037 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3038 ** the RHS has not yet been coded. */ 3039 v = pParse->pVdbe; 3040 assert( v!=0 ); /* OOM detected prior to this routine */ 3041 VdbeNoopComment((v, "begin IN expr")); 3042 eType = sqlite3FindInIndex(pParse, pExpr, 3043 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3044 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3045 aiMap, &iTab); 3046 3047 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3048 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3049 ); 3050 #ifdef SQLITE_DEBUG 3051 /* Confirm that aiMap[] contains nVector integer values between 0 and 3052 ** nVector-1. */ 3053 for(i=0; i<nVector; i++){ 3054 int j, cnt; 3055 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3056 assert( cnt==1 ); 3057 } 3058 #endif 3059 3060 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3061 ** vector, then it is stored in an array of nVector registers starting 3062 ** at r1. 3063 ** 3064 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3065 ** so that the fields are in the same order as an existing index. The 3066 ** aiMap[] array contains a mapping from the original LHS field order to 3067 ** the field order that matches the RHS index. 3068 */ 3069 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3070 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3071 if( i==nVector ){ 3072 /* LHS fields are not reordered */ 3073 rLhs = rLhsOrig; 3074 }else{ 3075 /* Need to reorder the LHS fields according to aiMap */ 3076 rLhs = sqlite3GetTempRange(pParse, nVector); 3077 for(i=0; i<nVector; i++){ 3078 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3079 } 3080 } 3081 3082 /* If sqlite3FindInIndex() did not find or create an index that is 3083 ** suitable for evaluating the IN operator, then evaluate using a 3084 ** sequence of comparisons. 3085 ** 3086 ** This is step (1) in the in-operator.md optimized algorithm. 3087 */ 3088 if( eType==IN_INDEX_NOOP ){ 3089 ExprList *pList = pExpr->x.pList; 3090 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3091 int labelOk = sqlite3VdbeMakeLabel(pParse); 3092 int r2, regToFree; 3093 int regCkNull = 0; 3094 int ii; 3095 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3096 if( destIfNull!=destIfFalse ){ 3097 regCkNull = sqlite3GetTempReg(pParse); 3098 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3099 } 3100 for(ii=0; ii<pList->nExpr; ii++){ 3101 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3102 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3103 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3104 } 3105 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3106 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3107 (void*)pColl, P4_COLLSEQ); 3108 VdbeCoverageIf(v, ii<pList->nExpr-1); 3109 VdbeCoverageIf(v, ii==pList->nExpr-1); 3110 sqlite3VdbeChangeP5(v, zAff[0]); 3111 }else{ 3112 assert( destIfNull==destIfFalse ); 3113 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3114 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3115 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3116 } 3117 sqlite3ReleaseTempReg(pParse, regToFree); 3118 } 3119 if( regCkNull ){ 3120 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3121 sqlite3VdbeGoto(v, destIfFalse); 3122 } 3123 sqlite3VdbeResolveLabel(v, labelOk); 3124 sqlite3ReleaseTempReg(pParse, regCkNull); 3125 goto sqlite3ExprCodeIN_finished; 3126 } 3127 3128 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3129 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3130 ** We will then skip the binary search of the RHS. 3131 */ 3132 if( destIfNull==destIfFalse ){ 3133 destStep2 = destIfFalse; 3134 }else{ 3135 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3136 } 3137 for(i=0; i<nVector; i++){ 3138 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3139 if( sqlite3ExprCanBeNull(p) ){ 3140 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3141 VdbeCoverage(v); 3142 } 3143 } 3144 3145 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3146 ** of the RHS using the LHS as a probe. If found, the result is 3147 ** true. 3148 */ 3149 if( eType==IN_INDEX_ROWID ){ 3150 /* In this case, the RHS is the ROWID of table b-tree and so we also 3151 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3152 ** into a single opcode. */ 3153 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3154 VdbeCoverage(v); 3155 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3156 }else{ 3157 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3158 if( destIfFalse==destIfNull ){ 3159 /* Combine Step 3 and Step 5 into a single opcode */ 3160 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3161 rLhs, nVector); VdbeCoverage(v); 3162 goto sqlite3ExprCodeIN_finished; 3163 } 3164 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3165 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3166 rLhs, nVector); VdbeCoverage(v); 3167 } 3168 3169 /* Step 4. If the RHS is known to be non-NULL and we did not find 3170 ** an match on the search above, then the result must be FALSE. 3171 */ 3172 if( rRhsHasNull && nVector==1 ){ 3173 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3174 VdbeCoverage(v); 3175 } 3176 3177 /* Step 5. If we do not care about the difference between NULL and 3178 ** FALSE, then just return false. 3179 */ 3180 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3181 3182 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3183 ** If any comparison is NULL, then the result is NULL. If all 3184 ** comparisons are FALSE then the final result is FALSE. 3185 ** 3186 ** For a scalar LHS, it is sufficient to check just the first row 3187 ** of the RHS. 3188 */ 3189 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3190 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3191 VdbeCoverage(v); 3192 if( nVector>1 ){ 3193 destNotNull = sqlite3VdbeMakeLabel(pParse); 3194 }else{ 3195 /* For nVector==1, combine steps 6 and 7 by immediately returning 3196 ** FALSE if the first comparison is not NULL */ 3197 destNotNull = destIfFalse; 3198 } 3199 for(i=0; i<nVector; i++){ 3200 Expr *p; 3201 CollSeq *pColl; 3202 int r3 = sqlite3GetTempReg(pParse); 3203 p = sqlite3VectorFieldSubexpr(pLeft, i); 3204 pColl = sqlite3ExprCollSeq(pParse, p); 3205 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3206 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3207 (void*)pColl, P4_COLLSEQ); 3208 VdbeCoverage(v); 3209 sqlite3ReleaseTempReg(pParse, r3); 3210 } 3211 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3212 if( nVector>1 ){ 3213 sqlite3VdbeResolveLabel(v, destNotNull); 3214 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3215 VdbeCoverage(v); 3216 3217 /* Step 7: If we reach this point, we know that the result must 3218 ** be false. */ 3219 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3220 } 3221 3222 /* Jumps here in order to return true. */ 3223 sqlite3VdbeJumpHere(v, addrTruthOp); 3224 3225 sqlite3ExprCodeIN_finished: 3226 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3227 VdbeComment((v, "end IN expr")); 3228 sqlite3ExprCodeIN_oom_error: 3229 sqlite3DbFree(pParse->db, aiMap); 3230 sqlite3DbFree(pParse->db, zAff); 3231 } 3232 #endif /* SQLITE_OMIT_SUBQUERY */ 3233 3234 #ifndef SQLITE_OMIT_FLOATING_POINT 3235 /* 3236 ** Generate an instruction that will put the floating point 3237 ** value described by z[0..n-1] into register iMem. 3238 ** 3239 ** The z[] string will probably not be zero-terminated. But the 3240 ** z[n] character is guaranteed to be something that does not look 3241 ** like the continuation of the number. 3242 */ 3243 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3244 if( ALWAYS(z!=0) ){ 3245 double value; 3246 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3247 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3248 if( negateFlag ) value = -value; 3249 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3250 } 3251 } 3252 #endif 3253 3254 3255 /* 3256 ** Generate an instruction that will put the integer describe by 3257 ** text z[0..n-1] into register iMem. 3258 ** 3259 ** Expr.u.zToken is always UTF8 and zero-terminated. 3260 */ 3261 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3262 Vdbe *v = pParse->pVdbe; 3263 if( pExpr->flags & EP_IntValue ){ 3264 int i = pExpr->u.iValue; 3265 assert( i>=0 ); 3266 if( negFlag ) i = -i; 3267 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3268 }else{ 3269 int c; 3270 i64 value; 3271 const char *z = pExpr->u.zToken; 3272 assert( z!=0 ); 3273 c = sqlite3DecOrHexToI64(z, &value); 3274 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3275 #ifdef SQLITE_OMIT_FLOATING_POINT 3276 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3277 #else 3278 #ifndef SQLITE_OMIT_HEX_INTEGER 3279 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3280 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3281 }else 3282 #endif 3283 { 3284 codeReal(v, z, negFlag, iMem); 3285 } 3286 #endif 3287 }else{ 3288 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3289 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3290 } 3291 } 3292 } 3293 3294 3295 /* Generate code that will load into register regOut a value that is 3296 ** appropriate for the iIdxCol-th column of index pIdx. 3297 */ 3298 void sqlite3ExprCodeLoadIndexColumn( 3299 Parse *pParse, /* The parsing context */ 3300 Index *pIdx, /* The index whose column is to be loaded */ 3301 int iTabCur, /* Cursor pointing to a table row */ 3302 int iIdxCol, /* The column of the index to be loaded */ 3303 int regOut /* Store the index column value in this register */ 3304 ){ 3305 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3306 if( iTabCol==XN_EXPR ){ 3307 assert( pIdx->aColExpr ); 3308 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3309 pParse->iSelfTab = iTabCur + 1; 3310 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3311 pParse->iSelfTab = 0; 3312 }else{ 3313 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3314 iTabCol, regOut); 3315 } 3316 } 3317 3318 /* 3319 ** Generate code to extract the value of the iCol-th column of a table. 3320 */ 3321 void sqlite3ExprCodeGetColumnOfTable( 3322 Vdbe *v, /* The VDBE under construction */ 3323 Table *pTab, /* The table containing the value */ 3324 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3325 int iCol, /* Index of the column to extract */ 3326 int regOut /* Extract the value into this register */ 3327 ){ 3328 if( pTab==0 ){ 3329 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3330 return; 3331 } 3332 if( iCol<0 || iCol==pTab->iPKey ){ 3333 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3334 }else{ 3335 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3336 int x = iCol; 3337 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3338 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3339 } 3340 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3341 } 3342 if( iCol>=0 ){ 3343 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3344 } 3345 } 3346 3347 /* 3348 ** Generate code that will extract the iColumn-th column from 3349 ** table pTab and store the column value in register iReg. 3350 ** 3351 ** There must be an open cursor to pTab in iTable when this routine 3352 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3353 */ 3354 int sqlite3ExprCodeGetColumn( 3355 Parse *pParse, /* Parsing and code generating context */ 3356 Table *pTab, /* Description of the table we are reading from */ 3357 int iColumn, /* Index of the table column */ 3358 int iTable, /* The cursor pointing to the table */ 3359 int iReg, /* Store results here */ 3360 u8 p5 /* P5 value for OP_Column + FLAGS */ 3361 ){ 3362 Vdbe *v = pParse->pVdbe; 3363 assert( v!=0 ); 3364 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3365 if( p5 ){ 3366 sqlite3VdbeChangeP5(v, p5); 3367 } 3368 return iReg; 3369 } 3370 3371 /* 3372 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3373 ** over to iTo..iTo+nReg-1. 3374 */ 3375 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3376 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3377 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3378 } 3379 3380 /* 3381 ** Convert a scalar expression node to a TK_REGISTER referencing 3382 ** register iReg. The caller must ensure that iReg already contains 3383 ** the correct value for the expression. 3384 */ 3385 static void exprToRegister(Expr *pExpr, int iReg){ 3386 Expr *p = sqlite3ExprSkipCollate(pExpr); 3387 p->op2 = p->op; 3388 p->op = TK_REGISTER; 3389 p->iTable = iReg; 3390 ExprClearProperty(p, EP_Skip); 3391 } 3392 3393 /* 3394 ** Evaluate an expression (either a vector or a scalar expression) and store 3395 ** the result in continguous temporary registers. Return the index of 3396 ** the first register used to store the result. 3397 ** 3398 ** If the returned result register is a temporary scalar, then also write 3399 ** that register number into *piFreeable. If the returned result register 3400 ** is not a temporary or if the expression is a vector set *piFreeable 3401 ** to 0. 3402 */ 3403 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3404 int iResult; 3405 int nResult = sqlite3ExprVectorSize(p); 3406 if( nResult==1 ){ 3407 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3408 }else{ 3409 *piFreeable = 0; 3410 if( p->op==TK_SELECT ){ 3411 #if SQLITE_OMIT_SUBQUERY 3412 iResult = 0; 3413 #else 3414 iResult = sqlite3CodeSubselect(pParse, p); 3415 #endif 3416 }else{ 3417 int i; 3418 iResult = pParse->nMem+1; 3419 pParse->nMem += nResult; 3420 for(i=0; i<nResult; i++){ 3421 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3422 } 3423 } 3424 } 3425 return iResult; 3426 } 3427 3428 3429 /* 3430 ** Generate code into the current Vdbe to evaluate the given 3431 ** expression. Attempt to store the results in register "target". 3432 ** Return the register where results are stored. 3433 ** 3434 ** With this routine, there is no guarantee that results will 3435 ** be stored in target. The result might be stored in some other 3436 ** register if it is convenient to do so. The calling function 3437 ** must check the return code and move the results to the desired 3438 ** register. 3439 */ 3440 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3441 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3442 int op; /* The opcode being coded */ 3443 int inReg = target; /* Results stored in register inReg */ 3444 int regFree1 = 0; /* If non-zero free this temporary register */ 3445 int regFree2 = 0; /* If non-zero free this temporary register */ 3446 int r1, r2; /* Various register numbers */ 3447 Expr tempX; /* Temporary expression node */ 3448 int p5 = 0; 3449 3450 assert( target>0 && target<=pParse->nMem ); 3451 if( v==0 ){ 3452 assert( pParse->db->mallocFailed ); 3453 return 0; 3454 } 3455 3456 expr_code_doover: 3457 if( pExpr==0 ){ 3458 op = TK_NULL; 3459 }else{ 3460 op = pExpr->op; 3461 } 3462 switch( op ){ 3463 case TK_AGG_COLUMN: { 3464 AggInfo *pAggInfo = pExpr->pAggInfo; 3465 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3466 if( !pAggInfo->directMode ){ 3467 assert( pCol->iMem>0 ); 3468 return pCol->iMem; 3469 }else if( pAggInfo->useSortingIdx ){ 3470 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3471 pCol->iSorterColumn, target); 3472 return target; 3473 } 3474 /* Otherwise, fall thru into the TK_COLUMN case */ 3475 } 3476 case TK_COLUMN: { 3477 int iTab = pExpr->iTable; 3478 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3479 /* This COLUMN expression is really a constant due to WHERE clause 3480 ** constraints, and that constant is coded by the pExpr->pLeft 3481 ** expresssion. However, make sure the constant has the correct 3482 ** datatype by applying the Affinity of the table column to the 3483 ** constant. 3484 */ 3485 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3486 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3487 if( aff>SQLITE_AFF_BLOB ){ 3488 static const char zAff[] = "B\000C\000D\000E"; 3489 assert( SQLITE_AFF_BLOB=='A' ); 3490 assert( SQLITE_AFF_TEXT=='B' ); 3491 if( iReg!=target ){ 3492 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3493 iReg = target; 3494 } 3495 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3496 &zAff[(aff-'B')*2], P4_STATIC); 3497 } 3498 return iReg; 3499 } 3500 if( iTab<0 ){ 3501 if( pParse->iSelfTab<0 ){ 3502 /* Generating CHECK constraints or inserting into partial index */ 3503 return pExpr->iColumn - pParse->iSelfTab; 3504 }else{ 3505 /* Coding an expression that is part of an index where column names 3506 ** in the index refer to the table to which the index belongs */ 3507 iTab = pParse->iSelfTab - 1; 3508 } 3509 } 3510 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3511 pExpr->iColumn, iTab, target, 3512 pExpr->op2); 3513 } 3514 case TK_INTEGER: { 3515 codeInteger(pParse, pExpr, 0, target); 3516 return target; 3517 } 3518 case TK_TRUEFALSE: { 3519 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3520 return target; 3521 } 3522 #ifndef SQLITE_OMIT_FLOATING_POINT 3523 case TK_FLOAT: { 3524 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3525 codeReal(v, pExpr->u.zToken, 0, target); 3526 return target; 3527 } 3528 #endif 3529 case TK_STRING: { 3530 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3531 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3532 return target; 3533 } 3534 case TK_NULL: { 3535 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3536 return target; 3537 } 3538 #ifndef SQLITE_OMIT_BLOB_LITERAL 3539 case TK_BLOB: { 3540 int n; 3541 const char *z; 3542 char *zBlob; 3543 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3544 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3545 assert( pExpr->u.zToken[1]=='\'' ); 3546 z = &pExpr->u.zToken[2]; 3547 n = sqlite3Strlen30(z) - 1; 3548 assert( z[n]=='\'' ); 3549 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3550 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3551 return target; 3552 } 3553 #endif 3554 case TK_VARIABLE: { 3555 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3556 assert( pExpr->u.zToken!=0 ); 3557 assert( pExpr->u.zToken[0]!=0 ); 3558 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3559 if( pExpr->u.zToken[1]!=0 ){ 3560 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3561 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3562 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3563 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3564 } 3565 return target; 3566 } 3567 case TK_REGISTER: { 3568 return pExpr->iTable; 3569 } 3570 #ifndef SQLITE_OMIT_CAST 3571 case TK_CAST: { 3572 /* Expressions of the form: CAST(pLeft AS token) */ 3573 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3574 if( inReg!=target ){ 3575 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3576 inReg = target; 3577 } 3578 sqlite3VdbeAddOp2(v, OP_Cast, target, 3579 sqlite3AffinityType(pExpr->u.zToken, 0)); 3580 return inReg; 3581 } 3582 #endif /* SQLITE_OMIT_CAST */ 3583 case TK_IS: 3584 case TK_ISNOT: 3585 op = (op==TK_IS) ? TK_EQ : TK_NE; 3586 p5 = SQLITE_NULLEQ; 3587 /* fall-through */ 3588 case TK_LT: 3589 case TK_LE: 3590 case TK_GT: 3591 case TK_GE: 3592 case TK_NE: 3593 case TK_EQ: { 3594 Expr *pLeft = pExpr->pLeft; 3595 if( sqlite3ExprIsVector(pLeft) ){ 3596 codeVectorCompare(pParse, pExpr, target, op, p5); 3597 }else{ 3598 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3599 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3600 codeCompare(pParse, pLeft, pExpr->pRight, op, 3601 r1, r2, inReg, SQLITE_STOREP2 | p5); 3602 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3603 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3604 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3605 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3606 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3607 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3608 testcase( regFree1==0 ); 3609 testcase( regFree2==0 ); 3610 } 3611 break; 3612 } 3613 case TK_AND: 3614 case TK_OR: 3615 case TK_PLUS: 3616 case TK_STAR: 3617 case TK_MINUS: 3618 case TK_REM: 3619 case TK_BITAND: 3620 case TK_BITOR: 3621 case TK_SLASH: 3622 case TK_LSHIFT: 3623 case TK_RSHIFT: 3624 case TK_CONCAT: { 3625 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3626 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3627 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3628 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3629 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3630 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3631 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3632 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3633 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3634 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3635 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3636 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3637 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3638 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3639 testcase( regFree1==0 ); 3640 testcase( regFree2==0 ); 3641 break; 3642 } 3643 case TK_UMINUS: { 3644 Expr *pLeft = pExpr->pLeft; 3645 assert( pLeft ); 3646 if( pLeft->op==TK_INTEGER ){ 3647 codeInteger(pParse, pLeft, 1, target); 3648 return target; 3649 #ifndef SQLITE_OMIT_FLOATING_POINT 3650 }else if( pLeft->op==TK_FLOAT ){ 3651 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3652 codeReal(v, pLeft->u.zToken, 1, target); 3653 return target; 3654 #endif 3655 }else{ 3656 tempX.op = TK_INTEGER; 3657 tempX.flags = EP_IntValue|EP_TokenOnly; 3658 tempX.u.iValue = 0; 3659 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3660 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3661 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3662 testcase( regFree2==0 ); 3663 } 3664 break; 3665 } 3666 case TK_BITNOT: 3667 case TK_NOT: { 3668 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3669 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3670 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3671 testcase( regFree1==0 ); 3672 sqlite3VdbeAddOp2(v, op, r1, inReg); 3673 break; 3674 } 3675 case TK_TRUTH: { 3676 int isTrue; /* IS TRUE or IS NOT TRUE */ 3677 int bNormal; /* IS TRUE or IS FALSE */ 3678 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3679 testcase( regFree1==0 ); 3680 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3681 bNormal = pExpr->op2==TK_IS; 3682 testcase( isTrue && bNormal); 3683 testcase( !isTrue && bNormal); 3684 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3685 break; 3686 } 3687 case TK_ISNULL: 3688 case TK_NOTNULL: { 3689 int addr; 3690 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3691 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3692 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3693 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3694 testcase( regFree1==0 ); 3695 addr = sqlite3VdbeAddOp1(v, op, r1); 3696 VdbeCoverageIf(v, op==TK_ISNULL); 3697 VdbeCoverageIf(v, op==TK_NOTNULL); 3698 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3699 sqlite3VdbeJumpHere(v, addr); 3700 break; 3701 } 3702 case TK_AGG_FUNCTION: { 3703 AggInfo *pInfo = pExpr->pAggInfo; 3704 if( pInfo==0 ){ 3705 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3706 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3707 }else{ 3708 return pInfo->aFunc[pExpr->iAgg].iMem; 3709 } 3710 break; 3711 } 3712 case TK_FUNCTION: { 3713 ExprList *pFarg; /* List of function arguments */ 3714 int nFarg; /* Number of function arguments */ 3715 FuncDef *pDef; /* The function definition object */ 3716 const char *zId; /* The function name */ 3717 u32 constMask = 0; /* Mask of function arguments that are constant */ 3718 int i; /* Loop counter */ 3719 sqlite3 *db = pParse->db; /* The database connection */ 3720 u8 enc = ENC(db); /* The text encoding used by this database */ 3721 CollSeq *pColl = 0; /* A collating sequence */ 3722 3723 #ifndef SQLITE_OMIT_WINDOWFUNC 3724 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3725 return pExpr->y.pWin->regResult; 3726 } 3727 #endif 3728 3729 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3730 /* SQL functions can be expensive. So try to move constant functions 3731 ** out of the inner loop, even if that means an extra OP_Copy. */ 3732 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3733 } 3734 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3735 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3736 pFarg = 0; 3737 }else{ 3738 pFarg = pExpr->x.pList; 3739 } 3740 nFarg = pFarg ? pFarg->nExpr : 0; 3741 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3742 zId = pExpr->u.zToken; 3743 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3744 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3745 if( pDef==0 && pParse->explain ){ 3746 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3747 } 3748 #endif 3749 if( pDef==0 || pDef->xFinalize!=0 ){ 3750 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3751 break; 3752 } 3753 3754 /* Attempt a direct implementation of the built-in COALESCE() and 3755 ** IFNULL() functions. This avoids unnecessary evaluation of 3756 ** arguments past the first non-NULL argument. 3757 */ 3758 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3759 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3760 assert( nFarg>=2 ); 3761 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3762 for(i=1; i<nFarg; i++){ 3763 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3764 VdbeCoverage(v); 3765 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3766 } 3767 sqlite3VdbeResolveLabel(v, endCoalesce); 3768 break; 3769 } 3770 3771 /* The UNLIKELY() function is a no-op. The result is the value 3772 ** of the first argument. 3773 */ 3774 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3775 assert( nFarg>=1 ); 3776 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3777 } 3778 3779 #ifdef SQLITE_DEBUG 3780 /* The AFFINITY() function evaluates to a string that describes 3781 ** the type affinity of the argument. This is used for testing of 3782 ** the SQLite type logic. 3783 */ 3784 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3785 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3786 char aff; 3787 assert( nFarg==1 ); 3788 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3789 sqlite3VdbeLoadString(v, target, 3790 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3791 return target; 3792 } 3793 #endif 3794 3795 for(i=0; i<nFarg; i++){ 3796 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3797 testcase( i==31 ); 3798 constMask |= MASKBIT32(i); 3799 } 3800 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3801 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3802 } 3803 } 3804 if( pFarg ){ 3805 if( constMask ){ 3806 r1 = pParse->nMem+1; 3807 pParse->nMem += nFarg; 3808 }else{ 3809 r1 = sqlite3GetTempRange(pParse, nFarg); 3810 } 3811 3812 /* For length() and typeof() functions with a column argument, 3813 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3814 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3815 ** loading. 3816 */ 3817 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3818 u8 exprOp; 3819 assert( nFarg==1 ); 3820 assert( pFarg->a[0].pExpr!=0 ); 3821 exprOp = pFarg->a[0].pExpr->op; 3822 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3823 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3824 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3825 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3826 pFarg->a[0].pExpr->op2 = 3827 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3828 } 3829 } 3830 3831 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3832 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3833 }else{ 3834 r1 = 0; 3835 } 3836 #ifndef SQLITE_OMIT_VIRTUALTABLE 3837 /* Possibly overload the function if the first argument is 3838 ** a virtual table column. 3839 ** 3840 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3841 ** second argument, not the first, as the argument to test to 3842 ** see if it is a column in a virtual table. This is done because 3843 ** the left operand of infix functions (the operand we want to 3844 ** control overloading) ends up as the second argument to the 3845 ** function. The expression "A glob B" is equivalent to 3846 ** "glob(B,A). We want to use the A in "A glob B" to test 3847 ** for function overloading. But we use the B term in "glob(B,A)". 3848 */ 3849 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3850 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3851 }else if( nFarg>0 ){ 3852 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3853 } 3854 #endif 3855 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3856 if( !pColl ) pColl = db->pDfltColl; 3857 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3858 } 3859 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3860 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3861 Expr *pArg = pFarg->a[0].pExpr; 3862 if( pArg->op==TK_COLUMN ){ 3863 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3864 }else{ 3865 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3866 } 3867 }else 3868 #endif 3869 { 3870 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3871 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3872 sqlite3VdbeChangeP5(v, (u8)nFarg); 3873 } 3874 if( nFarg && constMask==0 ){ 3875 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3876 } 3877 return target; 3878 } 3879 #ifndef SQLITE_OMIT_SUBQUERY 3880 case TK_EXISTS: 3881 case TK_SELECT: { 3882 int nCol; 3883 testcase( op==TK_EXISTS ); 3884 testcase( op==TK_SELECT ); 3885 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3886 sqlite3SubselectError(pParse, nCol, 1); 3887 }else{ 3888 return sqlite3CodeSubselect(pParse, pExpr); 3889 } 3890 break; 3891 } 3892 case TK_SELECT_COLUMN: { 3893 int n; 3894 if( pExpr->pLeft->iTable==0 ){ 3895 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 3896 } 3897 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3898 if( pExpr->iTable 3899 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3900 ){ 3901 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3902 pExpr->iTable, n); 3903 } 3904 return pExpr->pLeft->iTable + pExpr->iColumn; 3905 } 3906 case TK_IN: { 3907 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 3908 int destIfNull = sqlite3VdbeMakeLabel(pParse); 3909 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3910 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3911 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3912 sqlite3VdbeResolveLabel(v, destIfFalse); 3913 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3914 sqlite3VdbeResolveLabel(v, destIfNull); 3915 return target; 3916 } 3917 #endif /* SQLITE_OMIT_SUBQUERY */ 3918 3919 3920 /* 3921 ** x BETWEEN y AND z 3922 ** 3923 ** This is equivalent to 3924 ** 3925 ** x>=y AND x<=z 3926 ** 3927 ** X is stored in pExpr->pLeft. 3928 ** Y is stored in pExpr->pList->a[0].pExpr. 3929 ** Z is stored in pExpr->pList->a[1].pExpr. 3930 */ 3931 case TK_BETWEEN: { 3932 exprCodeBetween(pParse, pExpr, target, 0, 0); 3933 return target; 3934 } 3935 case TK_SPAN: 3936 case TK_COLLATE: 3937 case TK_UPLUS: { 3938 pExpr = pExpr->pLeft; 3939 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 3940 } 3941 3942 case TK_TRIGGER: { 3943 /* If the opcode is TK_TRIGGER, then the expression is a reference 3944 ** to a column in the new.* or old.* pseudo-tables available to 3945 ** trigger programs. In this case Expr.iTable is set to 1 for the 3946 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3947 ** is set to the column of the pseudo-table to read, or to -1 to 3948 ** read the rowid field. 3949 ** 3950 ** The expression is implemented using an OP_Param opcode. The p1 3951 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 3952 ** to reference another column of the old.* pseudo-table, where 3953 ** i is the index of the column. For a new.rowid reference, p1 is 3954 ** set to (n+1), where n is the number of columns in each pseudo-table. 3955 ** For a reference to any other column in the new.* pseudo-table, p1 3956 ** is set to (n+2+i), where n and i are as defined previously. For 3957 ** example, if the table on which triggers are being fired is 3958 ** declared as: 3959 ** 3960 ** CREATE TABLE t1(a, b); 3961 ** 3962 ** Then p1 is interpreted as follows: 3963 ** 3964 ** p1==0 -> old.rowid p1==3 -> new.rowid 3965 ** p1==1 -> old.a p1==4 -> new.a 3966 ** p1==2 -> old.b p1==5 -> new.b 3967 */ 3968 Table *pTab = pExpr->y.pTab; 3969 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 3970 3971 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 3972 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 3973 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 3974 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 3975 3976 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 3977 VdbeComment((v, "r[%d]=%s.%s", target, 3978 (pExpr->iTable ? "new" : "old"), 3979 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 3980 )); 3981 3982 #ifndef SQLITE_OMIT_FLOATING_POINT 3983 /* If the column has REAL affinity, it may currently be stored as an 3984 ** integer. Use OP_RealAffinity to make sure it is really real. 3985 ** 3986 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 3987 ** floating point when extracting it from the record. */ 3988 if( pExpr->iColumn>=0 3989 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3990 ){ 3991 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3992 } 3993 #endif 3994 break; 3995 } 3996 3997 case TK_VECTOR: { 3998 sqlite3ErrorMsg(pParse, "row value misused"); 3999 break; 4000 } 4001 4002 case TK_IF_NULL_ROW: { 4003 int addrINR; 4004 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4005 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4006 sqlite3VdbeJumpHere(v, addrINR); 4007 sqlite3VdbeChangeP3(v, addrINR, inReg); 4008 break; 4009 } 4010 4011 /* 4012 ** Form A: 4013 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4014 ** 4015 ** Form B: 4016 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4017 ** 4018 ** Form A is can be transformed into the equivalent form B as follows: 4019 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4020 ** WHEN x=eN THEN rN ELSE y END 4021 ** 4022 ** X (if it exists) is in pExpr->pLeft. 4023 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4024 ** odd. The Y is also optional. If the number of elements in x.pList 4025 ** is even, then Y is omitted and the "otherwise" result is NULL. 4026 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4027 ** 4028 ** The result of the expression is the Ri for the first matching Ei, 4029 ** or if there is no matching Ei, the ELSE term Y, or if there is 4030 ** no ELSE term, NULL. 4031 */ 4032 default: assert( op==TK_CASE ); { 4033 int endLabel; /* GOTO label for end of CASE stmt */ 4034 int nextCase; /* GOTO label for next WHEN clause */ 4035 int nExpr; /* 2x number of WHEN terms */ 4036 int i; /* Loop counter */ 4037 ExprList *pEList; /* List of WHEN terms */ 4038 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4039 Expr opCompare; /* The X==Ei expression */ 4040 Expr *pX; /* The X expression */ 4041 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4042 Expr *pDel = 0; 4043 sqlite3 *db = pParse->db; 4044 4045 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4046 assert(pExpr->x.pList->nExpr > 0); 4047 pEList = pExpr->x.pList; 4048 aListelem = pEList->a; 4049 nExpr = pEList->nExpr; 4050 endLabel = sqlite3VdbeMakeLabel(pParse); 4051 if( (pX = pExpr->pLeft)!=0 ){ 4052 pDel = sqlite3ExprDup(db, pX, 0); 4053 if( db->mallocFailed ){ 4054 sqlite3ExprDelete(db, pDel); 4055 break; 4056 } 4057 testcase( pX->op==TK_COLUMN ); 4058 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4059 testcase( regFree1==0 ); 4060 memset(&opCompare, 0, sizeof(opCompare)); 4061 opCompare.op = TK_EQ; 4062 opCompare.pLeft = pDel; 4063 pTest = &opCompare; 4064 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4065 ** The value in regFree1 might get SCopy-ed into the file result. 4066 ** So make sure that the regFree1 register is not reused for other 4067 ** purposes and possibly overwritten. */ 4068 regFree1 = 0; 4069 } 4070 for(i=0; i<nExpr-1; i=i+2){ 4071 if( pX ){ 4072 assert( pTest!=0 ); 4073 opCompare.pRight = aListelem[i].pExpr; 4074 }else{ 4075 pTest = aListelem[i].pExpr; 4076 } 4077 nextCase = sqlite3VdbeMakeLabel(pParse); 4078 testcase( pTest->op==TK_COLUMN ); 4079 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4080 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4081 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4082 sqlite3VdbeGoto(v, endLabel); 4083 sqlite3VdbeResolveLabel(v, nextCase); 4084 } 4085 if( (nExpr&1)!=0 ){ 4086 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4087 }else{ 4088 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4089 } 4090 sqlite3ExprDelete(db, pDel); 4091 sqlite3VdbeResolveLabel(v, endLabel); 4092 break; 4093 } 4094 #ifndef SQLITE_OMIT_TRIGGER 4095 case TK_RAISE: { 4096 assert( pExpr->affExpr==OE_Rollback 4097 || pExpr->affExpr==OE_Abort 4098 || pExpr->affExpr==OE_Fail 4099 || pExpr->affExpr==OE_Ignore 4100 ); 4101 if( !pParse->pTriggerTab ){ 4102 sqlite3ErrorMsg(pParse, 4103 "RAISE() may only be used within a trigger-program"); 4104 return 0; 4105 } 4106 if( pExpr->affExpr==OE_Abort ){ 4107 sqlite3MayAbort(pParse); 4108 } 4109 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4110 if( pExpr->affExpr==OE_Ignore ){ 4111 sqlite3VdbeAddOp4( 4112 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4113 VdbeCoverage(v); 4114 }else{ 4115 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4116 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4117 } 4118 4119 break; 4120 } 4121 #endif 4122 } 4123 sqlite3ReleaseTempReg(pParse, regFree1); 4124 sqlite3ReleaseTempReg(pParse, regFree2); 4125 return inReg; 4126 } 4127 4128 /* 4129 ** Factor out the code of the given expression to initialization time. 4130 ** 4131 ** If regDest>=0 then the result is always stored in that register and the 4132 ** result is not reusable. If regDest<0 then this routine is free to 4133 ** store the value whereever it wants. The register where the expression 4134 ** is stored is returned. When regDest<0, two identical expressions will 4135 ** code to the same register. 4136 */ 4137 int sqlite3ExprCodeAtInit( 4138 Parse *pParse, /* Parsing context */ 4139 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4140 int regDest /* Store the value in this register */ 4141 ){ 4142 ExprList *p; 4143 assert( ConstFactorOk(pParse) ); 4144 p = pParse->pConstExpr; 4145 if( regDest<0 && p ){ 4146 struct ExprList_item *pItem; 4147 int i; 4148 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4149 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4150 return pItem->u.iConstExprReg; 4151 } 4152 } 4153 } 4154 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4155 p = sqlite3ExprListAppend(pParse, p, pExpr); 4156 if( p ){ 4157 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4158 pItem->reusable = regDest<0; 4159 if( regDest<0 ) regDest = ++pParse->nMem; 4160 pItem->u.iConstExprReg = regDest; 4161 } 4162 pParse->pConstExpr = p; 4163 return regDest; 4164 } 4165 4166 /* 4167 ** Generate code to evaluate an expression and store the results 4168 ** into a register. Return the register number where the results 4169 ** are stored. 4170 ** 4171 ** If the register is a temporary register that can be deallocated, 4172 ** then write its number into *pReg. If the result register is not 4173 ** a temporary, then set *pReg to zero. 4174 ** 4175 ** If pExpr is a constant, then this routine might generate this 4176 ** code to fill the register in the initialization section of the 4177 ** VDBE program, in order to factor it out of the evaluation loop. 4178 */ 4179 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4180 int r2; 4181 pExpr = sqlite3ExprSkipCollate(pExpr); 4182 if( ConstFactorOk(pParse) 4183 && pExpr->op!=TK_REGISTER 4184 && sqlite3ExprIsConstantNotJoin(pExpr) 4185 ){ 4186 *pReg = 0; 4187 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4188 }else{ 4189 int r1 = sqlite3GetTempReg(pParse); 4190 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4191 if( r2==r1 ){ 4192 *pReg = r1; 4193 }else{ 4194 sqlite3ReleaseTempReg(pParse, r1); 4195 *pReg = 0; 4196 } 4197 } 4198 return r2; 4199 } 4200 4201 /* 4202 ** Generate code that will evaluate expression pExpr and store the 4203 ** results in register target. The results are guaranteed to appear 4204 ** in register target. 4205 */ 4206 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4207 int inReg; 4208 4209 assert( target>0 && target<=pParse->nMem ); 4210 if( pExpr && pExpr->op==TK_REGISTER ){ 4211 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4212 }else{ 4213 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4214 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4215 if( inReg!=target && pParse->pVdbe ){ 4216 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4217 } 4218 } 4219 } 4220 4221 /* 4222 ** Make a transient copy of expression pExpr and then code it using 4223 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4224 ** except that the input expression is guaranteed to be unchanged. 4225 */ 4226 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4227 sqlite3 *db = pParse->db; 4228 pExpr = sqlite3ExprDup(db, pExpr, 0); 4229 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4230 sqlite3ExprDelete(db, pExpr); 4231 } 4232 4233 /* 4234 ** Generate code that will evaluate expression pExpr and store the 4235 ** results in register target. The results are guaranteed to appear 4236 ** in register target. If the expression is constant, then this routine 4237 ** might choose to code the expression at initialization time. 4238 */ 4239 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4240 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4241 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4242 }else{ 4243 sqlite3ExprCode(pParse, pExpr, target); 4244 } 4245 } 4246 4247 /* 4248 ** Generate code that evaluates the given expression and puts the result 4249 ** in register target. 4250 ** 4251 ** Also make a copy of the expression results into another "cache" register 4252 ** and modify the expression so that the next time it is evaluated, 4253 ** the result is a copy of the cache register. 4254 ** 4255 ** This routine is used for expressions that are used multiple 4256 ** times. They are evaluated once and the results of the expression 4257 ** are reused. 4258 */ 4259 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4260 Vdbe *v = pParse->pVdbe; 4261 int iMem; 4262 4263 assert( target>0 ); 4264 assert( pExpr->op!=TK_REGISTER ); 4265 sqlite3ExprCode(pParse, pExpr, target); 4266 iMem = ++pParse->nMem; 4267 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4268 exprToRegister(pExpr, iMem); 4269 } 4270 4271 /* 4272 ** Generate code that pushes the value of every element of the given 4273 ** expression list into a sequence of registers beginning at target. 4274 ** 4275 ** Return the number of elements evaluated. The number returned will 4276 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4277 ** is defined. 4278 ** 4279 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4280 ** filled using OP_SCopy. OP_Copy must be used instead. 4281 ** 4282 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4283 ** factored out into initialization code. 4284 ** 4285 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4286 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4287 ** in registers at srcReg, and so the value can be copied from there. 4288 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4289 ** are simply omitted rather than being copied from srcReg. 4290 */ 4291 int sqlite3ExprCodeExprList( 4292 Parse *pParse, /* Parsing context */ 4293 ExprList *pList, /* The expression list to be coded */ 4294 int target, /* Where to write results */ 4295 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4296 u8 flags /* SQLITE_ECEL_* flags */ 4297 ){ 4298 struct ExprList_item *pItem; 4299 int i, j, n; 4300 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4301 Vdbe *v = pParse->pVdbe; 4302 assert( pList!=0 ); 4303 assert( target>0 ); 4304 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4305 n = pList->nExpr; 4306 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4307 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4308 Expr *pExpr = pItem->pExpr; 4309 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4310 if( pItem->bSorterRef ){ 4311 i--; 4312 n--; 4313 }else 4314 #endif 4315 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4316 if( flags & SQLITE_ECEL_OMITREF ){ 4317 i--; 4318 n--; 4319 }else{ 4320 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4321 } 4322 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4323 && sqlite3ExprIsConstantNotJoin(pExpr) 4324 ){ 4325 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4326 }else{ 4327 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4328 if( inReg!=target+i ){ 4329 VdbeOp *pOp; 4330 if( copyOp==OP_Copy 4331 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4332 && pOp->p1+pOp->p3+1==inReg 4333 && pOp->p2+pOp->p3+1==target+i 4334 ){ 4335 pOp->p3++; 4336 }else{ 4337 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4338 } 4339 } 4340 } 4341 } 4342 return n; 4343 } 4344 4345 /* 4346 ** Generate code for a BETWEEN operator. 4347 ** 4348 ** x BETWEEN y AND z 4349 ** 4350 ** The above is equivalent to 4351 ** 4352 ** x>=y AND x<=z 4353 ** 4354 ** Code it as such, taking care to do the common subexpression 4355 ** elimination of x. 4356 ** 4357 ** The xJumpIf parameter determines details: 4358 ** 4359 ** NULL: Store the boolean result in reg[dest] 4360 ** sqlite3ExprIfTrue: Jump to dest if true 4361 ** sqlite3ExprIfFalse: Jump to dest if false 4362 ** 4363 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4364 */ 4365 static void exprCodeBetween( 4366 Parse *pParse, /* Parsing and code generating context */ 4367 Expr *pExpr, /* The BETWEEN expression */ 4368 int dest, /* Jump destination or storage location */ 4369 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4370 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4371 ){ 4372 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4373 Expr compLeft; /* The x>=y term */ 4374 Expr compRight; /* The x<=z term */ 4375 int regFree1 = 0; /* Temporary use register */ 4376 Expr *pDel = 0; 4377 sqlite3 *db = pParse->db; 4378 4379 memset(&compLeft, 0, sizeof(Expr)); 4380 memset(&compRight, 0, sizeof(Expr)); 4381 memset(&exprAnd, 0, sizeof(Expr)); 4382 4383 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4384 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4385 if( db->mallocFailed==0 ){ 4386 exprAnd.op = TK_AND; 4387 exprAnd.pLeft = &compLeft; 4388 exprAnd.pRight = &compRight; 4389 compLeft.op = TK_GE; 4390 compLeft.pLeft = pDel; 4391 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4392 compRight.op = TK_LE; 4393 compRight.pLeft = pDel; 4394 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4395 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4396 if( xJump ){ 4397 xJump(pParse, &exprAnd, dest, jumpIfNull); 4398 }else{ 4399 /* Mark the expression is being from the ON or USING clause of a join 4400 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4401 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4402 ** for clarity, but we are out of bits in the Expr.flags field so we 4403 ** have to reuse the EP_FromJoin bit. Bummer. */ 4404 pDel->flags |= EP_FromJoin; 4405 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4406 } 4407 sqlite3ReleaseTempReg(pParse, regFree1); 4408 } 4409 sqlite3ExprDelete(db, pDel); 4410 4411 /* Ensure adequate test coverage */ 4412 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4413 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4414 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4415 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4416 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4417 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4418 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4419 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4420 testcase( xJump==0 ); 4421 } 4422 4423 /* 4424 ** Generate code for a boolean expression such that a jump is made 4425 ** to the label "dest" if the expression is true but execution 4426 ** continues straight thru if the expression is false. 4427 ** 4428 ** If the expression evaluates to NULL (neither true nor false), then 4429 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4430 ** 4431 ** This code depends on the fact that certain token values (ex: TK_EQ) 4432 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4433 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4434 ** the make process cause these values to align. Assert()s in the code 4435 ** below verify that the numbers are aligned correctly. 4436 */ 4437 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4438 Vdbe *v = pParse->pVdbe; 4439 int op = 0; 4440 int regFree1 = 0; 4441 int regFree2 = 0; 4442 int r1, r2; 4443 4444 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4445 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4446 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4447 op = pExpr->op; 4448 switch( op ){ 4449 case TK_AND: 4450 case TK_OR: { 4451 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4452 if( pAlt!=pExpr ){ 4453 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4454 }else if( op==TK_AND ){ 4455 int d2 = sqlite3VdbeMakeLabel(pParse); 4456 testcase( jumpIfNull==0 ); 4457 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4458 jumpIfNull^SQLITE_JUMPIFNULL); 4459 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4460 sqlite3VdbeResolveLabel(v, d2); 4461 }else{ 4462 testcase( jumpIfNull==0 ); 4463 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4464 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4465 } 4466 break; 4467 } 4468 case TK_NOT: { 4469 testcase( jumpIfNull==0 ); 4470 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4471 break; 4472 } 4473 case TK_TRUTH: { 4474 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4475 int isTrue; /* IS TRUE or IS NOT TRUE */ 4476 testcase( jumpIfNull==0 ); 4477 isNot = pExpr->op2==TK_ISNOT; 4478 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4479 testcase( isTrue && isNot ); 4480 testcase( !isTrue && isNot ); 4481 if( isTrue ^ isNot ){ 4482 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4483 isNot ? SQLITE_JUMPIFNULL : 0); 4484 }else{ 4485 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4486 isNot ? SQLITE_JUMPIFNULL : 0); 4487 } 4488 break; 4489 } 4490 case TK_IS: 4491 case TK_ISNOT: 4492 testcase( op==TK_IS ); 4493 testcase( op==TK_ISNOT ); 4494 op = (op==TK_IS) ? TK_EQ : TK_NE; 4495 jumpIfNull = SQLITE_NULLEQ; 4496 /* Fall thru */ 4497 case TK_LT: 4498 case TK_LE: 4499 case TK_GT: 4500 case TK_GE: 4501 case TK_NE: 4502 case TK_EQ: { 4503 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4504 testcase( jumpIfNull==0 ); 4505 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4506 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4507 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4508 r1, r2, dest, jumpIfNull); 4509 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4510 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4511 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4512 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4513 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4514 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4515 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4516 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4517 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4518 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4519 testcase( regFree1==0 ); 4520 testcase( regFree2==0 ); 4521 break; 4522 } 4523 case TK_ISNULL: 4524 case TK_NOTNULL: { 4525 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4526 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4527 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4528 sqlite3VdbeAddOp2(v, op, r1, dest); 4529 VdbeCoverageIf(v, op==TK_ISNULL); 4530 VdbeCoverageIf(v, op==TK_NOTNULL); 4531 testcase( regFree1==0 ); 4532 break; 4533 } 4534 case TK_BETWEEN: { 4535 testcase( jumpIfNull==0 ); 4536 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4537 break; 4538 } 4539 #ifndef SQLITE_OMIT_SUBQUERY 4540 case TK_IN: { 4541 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4542 int destIfNull = jumpIfNull ? dest : destIfFalse; 4543 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4544 sqlite3VdbeGoto(v, dest); 4545 sqlite3VdbeResolveLabel(v, destIfFalse); 4546 break; 4547 } 4548 #endif 4549 default: { 4550 default_expr: 4551 if( ExprAlwaysTrue(pExpr) ){ 4552 sqlite3VdbeGoto(v, dest); 4553 }else if( ExprAlwaysFalse(pExpr) ){ 4554 /* No-op */ 4555 }else{ 4556 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4557 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4558 VdbeCoverage(v); 4559 testcase( regFree1==0 ); 4560 testcase( jumpIfNull==0 ); 4561 } 4562 break; 4563 } 4564 } 4565 sqlite3ReleaseTempReg(pParse, regFree1); 4566 sqlite3ReleaseTempReg(pParse, regFree2); 4567 } 4568 4569 /* 4570 ** Generate code for a boolean expression such that a jump is made 4571 ** to the label "dest" if the expression is false but execution 4572 ** continues straight thru if the expression is true. 4573 ** 4574 ** If the expression evaluates to NULL (neither true nor false) then 4575 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4576 ** is 0. 4577 */ 4578 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4579 Vdbe *v = pParse->pVdbe; 4580 int op = 0; 4581 int regFree1 = 0; 4582 int regFree2 = 0; 4583 int r1, r2; 4584 4585 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4586 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4587 if( pExpr==0 ) return; 4588 4589 /* The value of pExpr->op and op are related as follows: 4590 ** 4591 ** pExpr->op op 4592 ** --------- ---------- 4593 ** TK_ISNULL OP_NotNull 4594 ** TK_NOTNULL OP_IsNull 4595 ** TK_NE OP_Eq 4596 ** TK_EQ OP_Ne 4597 ** TK_GT OP_Le 4598 ** TK_LE OP_Gt 4599 ** TK_GE OP_Lt 4600 ** TK_LT OP_Ge 4601 ** 4602 ** For other values of pExpr->op, op is undefined and unused. 4603 ** The value of TK_ and OP_ constants are arranged such that we 4604 ** can compute the mapping above using the following expression. 4605 ** Assert()s verify that the computation is correct. 4606 */ 4607 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4608 4609 /* Verify correct alignment of TK_ and OP_ constants 4610 */ 4611 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4612 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4613 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4614 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4615 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4616 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4617 assert( pExpr->op!=TK_GT || op==OP_Le ); 4618 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4619 4620 switch( pExpr->op ){ 4621 case TK_AND: 4622 case TK_OR: { 4623 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4624 if( pAlt!=pExpr ){ 4625 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4626 }else if( pExpr->op==TK_AND ){ 4627 testcase( jumpIfNull==0 ); 4628 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4629 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4630 }else{ 4631 int d2 = sqlite3VdbeMakeLabel(pParse); 4632 testcase( jumpIfNull==0 ); 4633 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4634 jumpIfNull^SQLITE_JUMPIFNULL); 4635 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4636 sqlite3VdbeResolveLabel(v, d2); 4637 } 4638 break; 4639 } 4640 case TK_NOT: { 4641 testcase( jumpIfNull==0 ); 4642 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4643 break; 4644 } 4645 case TK_TRUTH: { 4646 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4647 int isTrue; /* IS TRUE or IS NOT TRUE */ 4648 testcase( jumpIfNull==0 ); 4649 isNot = pExpr->op2==TK_ISNOT; 4650 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4651 testcase( isTrue && isNot ); 4652 testcase( !isTrue && isNot ); 4653 if( isTrue ^ isNot ){ 4654 /* IS TRUE and IS NOT FALSE */ 4655 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4656 isNot ? 0 : SQLITE_JUMPIFNULL); 4657 4658 }else{ 4659 /* IS FALSE and IS NOT TRUE */ 4660 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4661 isNot ? 0 : SQLITE_JUMPIFNULL); 4662 } 4663 break; 4664 } 4665 case TK_IS: 4666 case TK_ISNOT: 4667 testcase( pExpr->op==TK_IS ); 4668 testcase( pExpr->op==TK_ISNOT ); 4669 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4670 jumpIfNull = SQLITE_NULLEQ; 4671 /* Fall thru */ 4672 case TK_LT: 4673 case TK_LE: 4674 case TK_GT: 4675 case TK_GE: 4676 case TK_NE: 4677 case TK_EQ: { 4678 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4679 testcase( jumpIfNull==0 ); 4680 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4681 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4682 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4683 r1, r2, dest, jumpIfNull); 4684 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4685 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4686 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4687 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4688 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4689 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4690 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4691 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4692 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4693 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4694 testcase( regFree1==0 ); 4695 testcase( regFree2==0 ); 4696 break; 4697 } 4698 case TK_ISNULL: 4699 case TK_NOTNULL: { 4700 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4701 sqlite3VdbeAddOp2(v, op, r1, dest); 4702 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4703 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4704 testcase( regFree1==0 ); 4705 break; 4706 } 4707 case TK_BETWEEN: { 4708 testcase( jumpIfNull==0 ); 4709 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4710 break; 4711 } 4712 #ifndef SQLITE_OMIT_SUBQUERY 4713 case TK_IN: { 4714 if( jumpIfNull ){ 4715 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4716 }else{ 4717 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4718 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4719 sqlite3VdbeResolveLabel(v, destIfNull); 4720 } 4721 break; 4722 } 4723 #endif 4724 default: { 4725 default_expr: 4726 if( ExprAlwaysFalse(pExpr) ){ 4727 sqlite3VdbeGoto(v, dest); 4728 }else if( ExprAlwaysTrue(pExpr) ){ 4729 /* no-op */ 4730 }else{ 4731 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4732 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4733 VdbeCoverage(v); 4734 testcase( regFree1==0 ); 4735 testcase( jumpIfNull==0 ); 4736 } 4737 break; 4738 } 4739 } 4740 sqlite3ReleaseTempReg(pParse, regFree1); 4741 sqlite3ReleaseTempReg(pParse, regFree2); 4742 } 4743 4744 /* 4745 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4746 ** code generation, and that copy is deleted after code generation. This 4747 ** ensures that the original pExpr is unchanged. 4748 */ 4749 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4750 sqlite3 *db = pParse->db; 4751 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4752 if( db->mallocFailed==0 ){ 4753 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4754 } 4755 sqlite3ExprDelete(db, pCopy); 4756 } 4757 4758 /* 4759 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4760 ** type of expression. 4761 ** 4762 ** If pExpr is a simple SQL value - an integer, real, string, blob 4763 ** or NULL value - then the VDBE currently being prepared is configured 4764 ** to re-prepare each time a new value is bound to variable pVar. 4765 ** 4766 ** Additionally, if pExpr is a simple SQL value and the value is the 4767 ** same as that currently bound to variable pVar, non-zero is returned. 4768 ** Otherwise, if the values are not the same or if pExpr is not a simple 4769 ** SQL value, zero is returned. 4770 */ 4771 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4772 int res = 0; 4773 int iVar; 4774 sqlite3_value *pL, *pR = 0; 4775 4776 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4777 if( pR ){ 4778 iVar = pVar->iColumn; 4779 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4780 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4781 if( pL ){ 4782 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4783 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4784 } 4785 res = 0==sqlite3MemCompare(pL, pR, 0); 4786 } 4787 sqlite3ValueFree(pR); 4788 sqlite3ValueFree(pL); 4789 } 4790 4791 return res; 4792 } 4793 4794 /* 4795 ** Do a deep comparison of two expression trees. Return 0 if the two 4796 ** expressions are completely identical. Return 1 if they differ only 4797 ** by a COLLATE operator at the top level. Return 2 if there are differences 4798 ** other than the top-level COLLATE operator. 4799 ** 4800 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4801 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4802 ** 4803 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4804 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4805 ** 4806 ** Sometimes this routine will return 2 even if the two expressions 4807 ** really are equivalent. If we cannot prove that the expressions are 4808 ** identical, we return 2 just to be safe. So if this routine 4809 ** returns 2, then you do not really know for certain if the two 4810 ** expressions are the same. But if you get a 0 or 1 return, then you 4811 ** can be sure the expressions are the same. In the places where 4812 ** this routine is used, it does not hurt to get an extra 2 - that 4813 ** just might result in some slightly slower code. But returning 4814 ** an incorrect 0 or 1 could lead to a malfunction. 4815 ** 4816 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4817 ** pParse->pReprepare can be matched against literals in pB. The 4818 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4819 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4820 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4821 ** pB causes a return value of 2. 4822 */ 4823 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4824 u32 combinedFlags; 4825 if( pA==0 || pB==0 ){ 4826 return pB==pA ? 0 : 2; 4827 } 4828 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4829 return 0; 4830 } 4831 combinedFlags = pA->flags | pB->flags; 4832 if( combinedFlags & EP_IntValue ){ 4833 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4834 return 0; 4835 } 4836 return 2; 4837 } 4838 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4839 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4840 return 1; 4841 } 4842 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4843 return 1; 4844 } 4845 return 2; 4846 } 4847 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4848 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 4849 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4850 #ifndef SQLITE_OMIT_WINDOWFUNC 4851 assert( pA->op==pB->op ); 4852 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 4853 return 2; 4854 } 4855 if( ExprHasProperty(pA,EP_WinFunc) ){ 4856 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 4857 return 2; 4858 } 4859 } 4860 #endif 4861 }else if( pA->op==TK_NULL ){ 4862 return 0; 4863 }else if( pA->op==TK_COLLATE ){ 4864 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4865 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4866 return 2; 4867 } 4868 } 4869 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4870 if( (combinedFlags & EP_TokenOnly)==0 ){ 4871 if( combinedFlags & EP_xIsSelect ) return 2; 4872 if( (combinedFlags & EP_FixedCol)==0 4873 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4874 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4875 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4876 if( pA->op!=TK_STRING 4877 && pA->op!=TK_TRUEFALSE 4878 && (combinedFlags & EP_Reduced)==0 4879 ){ 4880 if( pA->iColumn!=pB->iColumn ) return 2; 4881 if( pA->op2!=pB->op2 ) return 2; 4882 if( pA->iTable!=pB->iTable 4883 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4884 } 4885 } 4886 return 0; 4887 } 4888 4889 /* 4890 ** Compare two ExprList objects. Return 0 if they are identical and 4891 ** non-zero if they differ in any way. 4892 ** 4893 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4894 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4895 ** 4896 ** This routine might return non-zero for equivalent ExprLists. The 4897 ** only consequence will be disabled optimizations. But this routine 4898 ** must never return 0 if the two ExprList objects are different, or 4899 ** a malfunction will result. 4900 ** 4901 ** Two NULL pointers are considered to be the same. But a NULL pointer 4902 ** always differs from a non-NULL pointer. 4903 */ 4904 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4905 int i; 4906 if( pA==0 && pB==0 ) return 0; 4907 if( pA==0 || pB==0 ) return 1; 4908 if( pA->nExpr!=pB->nExpr ) return 1; 4909 for(i=0; i<pA->nExpr; i++){ 4910 Expr *pExprA = pA->a[i].pExpr; 4911 Expr *pExprB = pB->a[i].pExpr; 4912 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 4913 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4914 } 4915 return 0; 4916 } 4917 4918 /* 4919 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 4920 ** are ignored. 4921 */ 4922 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 4923 return sqlite3ExprCompare(0, 4924 sqlite3ExprSkipCollate(pA), 4925 sqlite3ExprSkipCollate(pB), 4926 iTab); 4927 } 4928 4929 /* 4930 ** Return non-zero if Expr p can only be true if pNN is not NULL. 4931 */ 4932 static int exprImpliesNotNull( 4933 Parse *pParse, /* Parsing context */ 4934 Expr *p, /* The expression to be checked */ 4935 Expr *pNN, /* The expression that is NOT NULL */ 4936 int iTab, /* Table being evaluated */ 4937 int seenNot /* True if p is an operand of NOT */ 4938 ){ 4939 assert( p ); 4940 assert( pNN ); 4941 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 4942 return pNN->op!=TK_NULL; 4943 } 4944 switch( p->op ){ 4945 case TK_IN: { 4946 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 4947 assert( ExprHasProperty(p,EP_xIsSelect) 4948 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 4949 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4950 } 4951 case TK_BETWEEN: { 4952 ExprList *pList = p->x.pList; 4953 assert( pList!=0 ); 4954 assert( pList->nExpr==2 ); 4955 if( seenNot ) return 0; 4956 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, seenNot) 4957 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, seenNot) 4958 ){ 4959 return 1; 4960 } 4961 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4962 } 4963 case TK_EQ: 4964 case TK_NE: 4965 case TK_LT: 4966 case TK_LE: 4967 case TK_GT: 4968 case TK_GE: 4969 case TK_PLUS: 4970 case TK_MINUS: 4971 case TK_STAR: 4972 case TK_REM: 4973 case TK_BITAND: 4974 case TK_BITOR: 4975 case TK_SLASH: 4976 case TK_LSHIFT: 4977 case TK_RSHIFT: 4978 case TK_CONCAT: { 4979 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 4980 /* Fall thru into the next case */ 4981 } 4982 case TK_SPAN: 4983 case TK_COLLATE: 4984 case TK_BITNOT: 4985 case TK_UPLUS: 4986 case TK_UMINUS: { 4987 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4988 } 4989 case TK_TRUTH: { 4990 if( seenNot ) return 0; 4991 if( p->op2!=TK_IS ) return 0; 4992 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 4993 } 4994 case TK_NOT: { 4995 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 4996 } 4997 } 4998 return 0; 4999 } 5000 5001 /* 5002 ** Return true if we can prove the pE2 will always be true if pE1 is 5003 ** true. Return false if we cannot complete the proof or if pE2 might 5004 ** be false. Examples: 5005 ** 5006 ** pE1: x==5 pE2: x==5 Result: true 5007 ** pE1: x>0 pE2: x==5 Result: false 5008 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5009 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5010 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5011 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5012 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5013 ** 5014 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5015 ** Expr.iTable<0 then assume a table number given by iTab. 5016 ** 5017 ** If pParse is not NULL, then the values of bound variables in pE1 are 5018 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5019 ** modified to record which bound variables are referenced. If pParse 5020 ** is NULL, then false will be returned if pE1 contains any bound variables. 5021 ** 5022 ** When in doubt, return false. Returning true might give a performance 5023 ** improvement. Returning false might cause a performance reduction, but 5024 ** it will always give the correct answer and is hence always safe. 5025 */ 5026 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5027 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5028 return 1; 5029 } 5030 if( pE2->op==TK_OR 5031 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5032 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5033 ){ 5034 return 1; 5035 } 5036 if( pE2->op==TK_NOTNULL 5037 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5038 ){ 5039 return 1; 5040 } 5041 return 0; 5042 } 5043 5044 /* 5045 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 5046 ** If the expression node requires that the table at pWalker->iCur 5047 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5048 ** 5049 ** This routine controls an optimization. False positives (setting 5050 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5051 ** (never setting pWalker->eCode) is a harmless missed optimization. 5052 */ 5053 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5054 testcase( pExpr->op==TK_AGG_COLUMN ); 5055 testcase( pExpr->op==TK_AGG_FUNCTION ); 5056 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5057 switch( pExpr->op ){ 5058 case TK_ISNOT: 5059 case TK_NOT: 5060 case TK_ISNULL: 5061 case TK_NOTNULL: 5062 case TK_IS: 5063 case TK_OR: 5064 case TK_CASE: 5065 case TK_IN: 5066 case TK_FUNCTION: 5067 testcase( pExpr->op==TK_ISNOT ); 5068 testcase( pExpr->op==TK_NOT ); 5069 testcase( pExpr->op==TK_ISNULL ); 5070 testcase( pExpr->op==TK_NOTNULL ); 5071 testcase( pExpr->op==TK_IS ); 5072 testcase( pExpr->op==TK_OR ); 5073 testcase( pExpr->op==TK_CASE ); 5074 testcase( pExpr->op==TK_IN ); 5075 testcase( pExpr->op==TK_FUNCTION ); 5076 return WRC_Prune; 5077 case TK_COLUMN: 5078 if( pWalker->u.iCur==pExpr->iTable ){ 5079 pWalker->eCode = 1; 5080 return WRC_Abort; 5081 } 5082 return WRC_Prune; 5083 5084 /* Virtual tables are allowed to use constraints like x=NULL. So 5085 ** a term of the form x=y does not prove that y is not null if x 5086 ** is the column of a virtual table */ 5087 case TK_EQ: 5088 case TK_NE: 5089 case TK_LT: 5090 case TK_LE: 5091 case TK_GT: 5092 case TK_GE: 5093 testcase( pExpr->op==TK_EQ ); 5094 testcase( pExpr->op==TK_NE ); 5095 testcase( pExpr->op==TK_LT ); 5096 testcase( pExpr->op==TK_LE ); 5097 testcase( pExpr->op==TK_GT ); 5098 testcase( pExpr->op==TK_GE ); 5099 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5100 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5101 ){ 5102 return WRC_Prune; 5103 } 5104 default: 5105 return WRC_Continue; 5106 } 5107 } 5108 5109 /* 5110 ** Return true (non-zero) if expression p can only be true if at least 5111 ** one column of table iTab is non-null. In other words, return true 5112 ** if expression p will always be NULL or false if every column of iTab 5113 ** is NULL. 5114 ** 5115 ** False negatives are acceptable. In other words, it is ok to return 5116 ** zero even if expression p will never be true of every column of iTab 5117 ** is NULL. A false negative is merely a missed optimization opportunity. 5118 ** 5119 ** False positives are not allowed, however. A false positive may result 5120 ** in an incorrect answer. 5121 ** 5122 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5123 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5124 ** 5125 ** This routine is used to check if a LEFT JOIN can be converted into 5126 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5127 ** clause requires that some column of the right table of the LEFT JOIN 5128 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5129 ** ordinary join. 5130 */ 5131 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5132 Walker w; 5133 p = sqlite3ExprSkipCollate(p); 5134 while( p ){ 5135 if( p->op==TK_NOTNULL ){ 5136 p = p->pLeft; 5137 }else if( p->op==TK_AND ){ 5138 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5139 p = p->pRight; 5140 }else{ 5141 break; 5142 } 5143 } 5144 w.xExprCallback = impliesNotNullRow; 5145 w.xSelectCallback = 0; 5146 w.xSelectCallback2 = 0; 5147 w.eCode = 0; 5148 w.u.iCur = iTab; 5149 sqlite3WalkExpr(&w, p); 5150 return w.eCode; 5151 } 5152 5153 /* 5154 ** An instance of the following structure is used by the tree walker 5155 ** to determine if an expression can be evaluated by reference to the 5156 ** index only, without having to do a search for the corresponding 5157 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5158 ** is the cursor for the table. 5159 */ 5160 struct IdxCover { 5161 Index *pIdx; /* The index to be tested for coverage */ 5162 int iCur; /* Cursor number for the table corresponding to the index */ 5163 }; 5164 5165 /* 5166 ** Check to see if there are references to columns in table 5167 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5168 ** pWalker->u.pIdxCover->pIdx. 5169 */ 5170 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5171 if( pExpr->op==TK_COLUMN 5172 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5173 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5174 ){ 5175 pWalker->eCode = 1; 5176 return WRC_Abort; 5177 } 5178 return WRC_Continue; 5179 } 5180 5181 /* 5182 ** Determine if an index pIdx on table with cursor iCur contains will 5183 ** the expression pExpr. Return true if the index does cover the 5184 ** expression and false if the pExpr expression references table columns 5185 ** that are not found in the index pIdx. 5186 ** 5187 ** An index covering an expression means that the expression can be 5188 ** evaluated using only the index and without having to lookup the 5189 ** corresponding table entry. 5190 */ 5191 int sqlite3ExprCoveredByIndex( 5192 Expr *pExpr, /* The index to be tested */ 5193 int iCur, /* The cursor number for the corresponding table */ 5194 Index *pIdx /* The index that might be used for coverage */ 5195 ){ 5196 Walker w; 5197 struct IdxCover xcov; 5198 memset(&w, 0, sizeof(w)); 5199 xcov.iCur = iCur; 5200 xcov.pIdx = pIdx; 5201 w.xExprCallback = exprIdxCover; 5202 w.u.pIdxCover = &xcov; 5203 sqlite3WalkExpr(&w, pExpr); 5204 return !w.eCode; 5205 } 5206 5207 5208 /* 5209 ** An instance of the following structure is used by the tree walker 5210 ** to count references to table columns in the arguments of an 5211 ** aggregate function, in order to implement the 5212 ** sqlite3FunctionThisSrc() routine. 5213 */ 5214 struct SrcCount { 5215 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5216 int nThis; /* Number of references to columns in pSrcList */ 5217 int nOther; /* Number of references to columns in other FROM clauses */ 5218 }; 5219 5220 /* 5221 ** Count the number of references to columns. 5222 */ 5223 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5224 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5225 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5226 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5227 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5228 ** NEVER() will need to be removed. */ 5229 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5230 int i; 5231 struct SrcCount *p = pWalker->u.pSrcCount; 5232 SrcList *pSrc = p->pSrc; 5233 int nSrc = pSrc ? pSrc->nSrc : 0; 5234 for(i=0; i<nSrc; i++){ 5235 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5236 } 5237 if( i<nSrc ){ 5238 p->nThis++; 5239 }else{ 5240 p->nOther++; 5241 } 5242 } 5243 return WRC_Continue; 5244 } 5245 5246 /* 5247 ** Determine if any of the arguments to the pExpr Function reference 5248 ** pSrcList. Return true if they do. Also return true if the function 5249 ** has no arguments or has only constant arguments. Return false if pExpr 5250 ** references columns but not columns of tables found in pSrcList. 5251 */ 5252 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5253 Walker w; 5254 struct SrcCount cnt; 5255 assert( pExpr->op==TK_AGG_FUNCTION ); 5256 w.xExprCallback = exprSrcCount; 5257 w.xSelectCallback = 0; 5258 w.u.pSrcCount = &cnt; 5259 cnt.pSrc = pSrcList; 5260 cnt.nThis = 0; 5261 cnt.nOther = 0; 5262 sqlite3WalkExprList(&w, pExpr->x.pList); 5263 return cnt.nThis>0 || cnt.nOther==0; 5264 } 5265 5266 /* 5267 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5268 ** the new element. Return a negative number if malloc fails. 5269 */ 5270 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5271 int i; 5272 pInfo->aCol = sqlite3ArrayAllocate( 5273 db, 5274 pInfo->aCol, 5275 sizeof(pInfo->aCol[0]), 5276 &pInfo->nColumn, 5277 &i 5278 ); 5279 return i; 5280 } 5281 5282 /* 5283 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5284 ** the new element. Return a negative number if malloc fails. 5285 */ 5286 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5287 int i; 5288 pInfo->aFunc = sqlite3ArrayAllocate( 5289 db, 5290 pInfo->aFunc, 5291 sizeof(pInfo->aFunc[0]), 5292 &pInfo->nFunc, 5293 &i 5294 ); 5295 return i; 5296 } 5297 5298 /* 5299 ** This is the xExprCallback for a tree walker. It is used to 5300 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5301 ** for additional information. 5302 */ 5303 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5304 int i; 5305 NameContext *pNC = pWalker->u.pNC; 5306 Parse *pParse = pNC->pParse; 5307 SrcList *pSrcList = pNC->pSrcList; 5308 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5309 5310 assert( pNC->ncFlags & NC_UAggInfo ); 5311 switch( pExpr->op ){ 5312 case TK_AGG_COLUMN: 5313 case TK_COLUMN: { 5314 testcase( pExpr->op==TK_AGG_COLUMN ); 5315 testcase( pExpr->op==TK_COLUMN ); 5316 /* Check to see if the column is in one of the tables in the FROM 5317 ** clause of the aggregate query */ 5318 if( ALWAYS(pSrcList!=0) ){ 5319 struct SrcList_item *pItem = pSrcList->a; 5320 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5321 struct AggInfo_col *pCol; 5322 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5323 if( pExpr->iTable==pItem->iCursor ){ 5324 /* If we reach this point, it means that pExpr refers to a table 5325 ** that is in the FROM clause of the aggregate query. 5326 ** 5327 ** Make an entry for the column in pAggInfo->aCol[] if there 5328 ** is not an entry there already. 5329 */ 5330 int k; 5331 pCol = pAggInfo->aCol; 5332 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5333 if( pCol->iTable==pExpr->iTable && 5334 pCol->iColumn==pExpr->iColumn ){ 5335 break; 5336 } 5337 } 5338 if( (k>=pAggInfo->nColumn) 5339 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5340 ){ 5341 pCol = &pAggInfo->aCol[k]; 5342 pCol->pTab = pExpr->y.pTab; 5343 pCol->iTable = pExpr->iTable; 5344 pCol->iColumn = pExpr->iColumn; 5345 pCol->iMem = ++pParse->nMem; 5346 pCol->iSorterColumn = -1; 5347 pCol->pExpr = pExpr; 5348 if( pAggInfo->pGroupBy ){ 5349 int j, n; 5350 ExprList *pGB = pAggInfo->pGroupBy; 5351 struct ExprList_item *pTerm = pGB->a; 5352 n = pGB->nExpr; 5353 for(j=0; j<n; j++, pTerm++){ 5354 Expr *pE = pTerm->pExpr; 5355 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5356 pE->iColumn==pExpr->iColumn ){ 5357 pCol->iSorterColumn = j; 5358 break; 5359 } 5360 } 5361 } 5362 if( pCol->iSorterColumn<0 ){ 5363 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5364 } 5365 } 5366 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5367 ** because it was there before or because we just created it). 5368 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5369 ** pAggInfo->aCol[] entry. 5370 */ 5371 ExprSetVVAProperty(pExpr, EP_NoReduce); 5372 pExpr->pAggInfo = pAggInfo; 5373 pExpr->op = TK_AGG_COLUMN; 5374 pExpr->iAgg = (i16)k; 5375 break; 5376 } /* endif pExpr->iTable==pItem->iCursor */ 5377 } /* end loop over pSrcList */ 5378 } 5379 return WRC_Prune; 5380 } 5381 case TK_AGG_FUNCTION: { 5382 if( (pNC->ncFlags & NC_InAggFunc)==0 5383 && pWalker->walkerDepth==pExpr->op2 5384 ){ 5385 /* Check to see if pExpr is a duplicate of another aggregate 5386 ** function that is already in the pAggInfo structure 5387 */ 5388 struct AggInfo_func *pItem = pAggInfo->aFunc; 5389 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5390 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5391 break; 5392 } 5393 } 5394 if( i>=pAggInfo->nFunc ){ 5395 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5396 */ 5397 u8 enc = ENC(pParse->db); 5398 i = addAggInfoFunc(pParse->db, pAggInfo); 5399 if( i>=0 ){ 5400 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5401 pItem = &pAggInfo->aFunc[i]; 5402 pItem->pExpr = pExpr; 5403 pItem->iMem = ++pParse->nMem; 5404 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5405 pItem->pFunc = sqlite3FindFunction(pParse->db, 5406 pExpr->u.zToken, 5407 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5408 if( pExpr->flags & EP_Distinct ){ 5409 pItem->iDistinct = pParse->nTab++; 5410 }else{ 5411 pItem->iDistinct = -1; 5412 } 5413 } 5414 } 5415 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5416 */ 5417 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5418 ExprSetVVAProperty(pExpr, EP_NoReduce); 5419 pExpr->iAgg = (i16)i; 5420 pExpr->pAggInfo = pAggInfo; 5421 return WRC_Prune; 5422 }else{ 5423 return WRC_Continue; 5424 } 5425 } 5426 } 5427 return WRC_Continue; 5428 } 5429 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5430 UNUSED_PARAMETER(pSelect); 5431 pWalker->walkerDepth++; 5432 return WRC_Continue; 5433 } 5434 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5435 UNUSED_PARAMETER(pSelect); 5436 pWalker->walkerDepth--; 5437 } 5438 5439 /* 5440 ** Analyze the pExpr expression looking for aggregate functions and 5441 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5442 ** points to. Additional entries are made on the AggInfo object as 5443 ** necessary. 5444 ** 5445 ** This routine should only be called after the expression has been 5446 ** analyzed by sqlite3ResolveExprNames(). 5447 */ 5448 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5449 Walker w; 5450 w.xExprCallback = analyzeAggregate; 5451 w.xSelectCallback = analyzeAggregatesInSelect; 5452 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5453 w.walkerDepth = 0; 5454 w.u.pNC = pNC; 5455 w.pParse = 0; 5456 assert( pNC->pSrcList!=0 ); 5457 sqlite3WalkExpr(&w, pExpr); 5458 } 5459 5460 /* 5461 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5462 ** expression list. Return the number of errors. 5463 ** 5464 ** If an error is found, the analysis is cut short. 5465 */ 5466 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5467 struct ExprList_item *pItem; 5468 int i; 5469 if( pList ){ 5470 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5471 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5472 } 5473 } 5474 } 5475 5476 /* 5477 ** Allocate a single new register for use to hold some intermediate result. 5478 */ 5479 int sqlite3GetTempReg(Parse *pParse){ 5480 if( pParse->nTempReg==0 ){ 5481 return ++pParse->nMem; 5482 } 5483 return pParse->aTempReg[--pParse->nTempReg]; 5484 } 5485 5486 /* 5487 ** Deallocate a register, making available for reuse for some other 5488 ** purpose. 5489 */ 5490 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5491 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5492 pParse->aTempReg[pParse->nTempReg++] = iReg; 5493 } 5494 } 5495 5496 /* 5497 ** Allocate or deallocate a block of nReg consecutive registers. 5498 */ 5499 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5500 int i, n; 5501 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5502 i = pParse->iRangeReg; 5503 n = pParse->nRangeReg; 5504 if( nReg<=n ){ 5505 pParse->iRangeReg += nReg; 5506 pParse->nRangeReg -= nReg; 5507 }else{ 5508 i = pParse->nMem+1; 5509 pParse->nMem += nReg; 5510 } 5511 return i; 5512 } 5513 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5514 if( nReg==1 ){ 5515 sqlite3ReleaseTempReg(pParse, iReg); 5516 return; 5517 } 5518 if( nReg>pParse->nRangeReg ){ 5519 pParse->nRangeReg = nReg; 5520 pParse->iRangeReg = iReg; 5521 } 5522 } 5523 5524 /* 5525 ** Mark all temporary registers as being unavailable for reuse. 5526 */ 5527 void sqlite3ClearTempRegCache(Parse *pParse){ 5528 pParse->nTempReg = 0; 5529 pParse->nRangeReg = 0; 5530 } 5531 5532 /* 5533 ** Validate that no temporary register falls within the range of 5534 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5535 ** statements. 5536 */ 5537 #ifdef SQLITE_DEBUG 5538 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5539 int i; 5540 if( pParse->nRangeReg>0 5541 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5542 && pParse->iRangeReg <= iLast 5543 ){ 5544 return 0; 5545 } 5546 for(i=0; i<pParse->nTempReg; i++){ 5547 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5548 return 0; 5549 } 5550 } 5551 return 1; 5552 } 5553 #endif /* SQLITE_DEBUG */ 5554