xref: /sqlite-3.40.0/src/expr.c (revision b8a8d523)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   if( pExpr->flags & EP_Generic ) return 0;
48   while( ExprHasProperty(pExpr, EP_Skip) ){
49     assert( pExpr->op==TK_COLLATE );
50     pExpr = pExpr->pLeft;
51     assert( pExpr!=0 );
52   }
53   op = pExpr->op;
54   if( op==TK_SELECT ){
55     assert( pExpr->flags&EP_xIsSelect );
56     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
57   }
58   if( op==TK_REGISTER ) op = pExpr->op2;
59 #ifndef SQLITE_OMIT_CAST
60   if( op==TK_CAST ){
61     assert( !ExprHasProperty(pExpr, EP_IntValue) );
62     return sqlite3AffinityType(pExpr->u.zToken, 0);
63   }
64 #endif
65   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
66     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
67   }
68   if( op==TK_SELECT_COLUMN ){
69     assert( pExpr->pLeft->flags&EP_xIsSelect );
70     return sqlite3ExprAffinity(
71         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
72     );
73   }
74   return pExpr->affExpr;
75 }
76 
77 /*
78 ** Set the collating sequence for expression pExpr to be the collating
79 ** sequence named by pToken.   Return a pointer to a new Expr node that
80 ** implements the COLLATE operator.
81 **
82 ** If a memory allocation error occurs, that fact is recorded in pParse->db
83 ** and the pExpr parameter is returned unchanged.
84 */
85 Expr *sqlite3ExprAddCollateToken(
86   Parse *pParse,           /* Parsing context */
87   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
88   const Token *pCollName,  /* Name of collating sequence */
89   int dequote              /* True to dequote pCollName */
90 ){
91   if( pCollName->n>0 ){
92     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
93     if( pNew ){
94       pNew->pLeft = pExpr;
95       pNew->flags |= EP_Collate|EP_Skip;
96       pExpr = pNew;
97     }
98   }
99   return pExpr;
100 }
101 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
102   Token s;
103   assert( zC!=0 );
104   sqlite3TokenInit(&s, (char*)zC);
105   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
106 }
107 
108 /*
109 ** Skip over any TK_COLLATE operators and any unlikely()
110 ** or likelihood() function at the root of an expression.
111 */
112 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
113   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
114     if( ExprHasProperty(pExpr, EP_Unlikely) ){
115       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
116       assert( pExpr->x.pList->nExpr>0 );
117       assert( pExpr->op==TK_FUNCTION );
118       pExpr = pExpr->x.pList->a[0].pExpr;
119     }else{
120       assert( pExpr->op==TK_COLLATE );
121       pExpr = pExpr->pLeft;
122     }
123   }
124   return pExpr;
125 }
126 
127 /*
128 ** Return the collation sequence for the expression pExpr. If
129 ** there is no defined collating sequence, return NULL.
130 **
131 ** See also: sqlite3ExprNNCollSeq()
132 **
133 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
134 ** default collation if pExpr has no defined collation.
135 **
136 ** The collating sequence might be determined by a COLLATE operator
137 ** or by the presence of a column with a defined collating sequence.
138 ** COLLATE operators take first precedence.  Left operands take
139 ** precedence over right operands.
140 */
141 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
142   sqlite3 *db = pParse->db;
143   CollSeq *pColl = 0;
144   Expr *p = pExpr;
145   while( p ){
146     int op = p->op;
147     if( p->flags & EP_Generic ) break;
148     if( op==TK_REGISTER ) op = p->op2;
149     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
150      && p->y.pTab!=0
151     ){
152       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
153       ** a TK_COLUMN but was previously evaluated and cached in a register */
154       int j = p->iColumn;
155       if( j>=0 ){
156         const char *zColl = p->y.pTab->aCol[j].zColl;
157         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
158       }
159       break;
160     }
161     if( op==TK_CAST || op==TK_UPLUS ){
162       p = p->pLeft;
163       continue;
164     }
165     if( op==TK_COLLATE ){
166       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
167       break;
168     }
169     if( p->flags & EP_Collate ){
170       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
171         p = p->pLeft;
172       }else{
173         Expr *pNext  = p->pRight;
174         /* The Expr.x union is never used at the same time as Expr.pRight */
175         assert( p->x.pList==0 || p->pRight==0 );
176         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
177         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
178         ** least one EP_Collate. Thus the following two ALWAYS. */
179         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
180           int i;
181           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
182             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
183               pNext = p->x.pList->a[i].pExpr;
184               break;
185             }
186           }
187         }
188         p = pNext;
189       }
190     }else{
191       break;
192     }
193   }
194   if( sqlite3CheckCollSeq(pParse, pColl) ){
195     pColl = 0;
196   }
197   return pColl;
198 }
199 
200 /*
201 ** Return the collation sequence for the expression pExpr. If
202 ** there is no defined collating sequence, return a pointer to the
203 ** defautl collation sequence.
204 **
205 ** See also: sqlite3ExprCollSeq()
206 **
207 ** The sqlite3ExprCollSeq() routine works the same except that it
208 ** returns NULL if there is no defined collation.
209 */
210 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
211   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
212   if( p==0 ) p = pParse->db->pDfltColl;
213   assert( p!=0 );
214   return p;
215 }
216 
217 /*
218 ** Return TRUE if the two expressions have equivalent collating sequences.
219 */
220 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
221   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
222   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
223   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
224 }
225 
226 /*
227 ** pExpr is an operand of a comparison operator.  aff2 is the
228 ** type affinity of the other operand.  This routine returns the
229 ** type affinity that should be used for the comparison operator.
230 */
231 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
232   char aff1 = sqlite3ExprAffinity(pExpr);
233   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
234     /* Both sides of the comparison are columns. If one has numeric
235     ** affinity, use that. Otherwise use no affinity.
236     */
237     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
238       return SQLITE_AFF_NUMERIC;
239     }else{
240       return SQLITE_AFF_BLOB;
241     }
242   }else{
243     /* One side is a column, the other is not. Use the columns affinity. */
244     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
245     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
246   }
247 }
248 
249 /*
250 ** pExpr is a comparison operator.  Return the type affinity that should
251 ** be applied to both operands prior to doing the comparison.
252 */
253 static char comparisonAffinity(Expr *pExpr){
254   char aff;
255   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
256           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
257           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
258   assert( pExpr->pLeft );
259   aff = sqlite3ExprAffinity(pExpr->pLeft);
260   if( pExpr->pRight ){
261     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
262   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
263     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
264   }else if( aff==0 ){
265     aff = SQLITE_AFF_BLOB;
266   }
267   return aff;
268 }
269 
270 /*
271 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
272 ** idx_affinity is the affinity of an indexed column. Return true
273 ** if the index with affinity idx_affinity may be used to implement
274 ** the comparison in pExpr.
275 */
276 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
277   char aff = comparisonAffinity(pExpr);
278   if( aff<SQLITE_AFF_TEXT ){
279     return 1;
280   }
281   if( aff==SQLITE_AFF_TEXT ){
282     return idx_affinity==SQLITE_AFF_TEXT;
283   }
284   return sqlite3IsNumericAffinity(idx_affinity);
285 }
286 
287 /*
288 ** Return the P5 value that should be used for a binary comparison
289 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
290 */
291 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
292   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
293   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
294   return aff;
295 }
296 
297 /*
298 ** Return a pointer to the collation sequence that should be used by
299 ** a binary comparison operator comparing pLeft and pRight.
300 **
301 ** If the left hand expression has a collating sequence type, then it is
302 ** used. Otherwise the collation sequence for the right hand expression
303 ** is used, or the default (BINARY) if neither expression has a collating
304 ** type.
305 **
306 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
307 ** it is not considered.
308 */
309 CollSeq *sqlite3BinaryCompareCollSeq(
310   Parse *pParse,
311   Expr *pLeft,
312   Expr *pRight
313 ){
314   CollSeq *pColl;
315   assert( pLeft );
316   if( pLeft->flags & EP_Collate ){
317     pColl = sqlite3ExprCollSeq(pParse, pLeft);
318   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
319     pColl = sqlite3ExprCollSeq(pParse, pRight);
320   }else{
321     pColl = sqlite3ExprCollSeq(pParse, pLeft);
322     if( !pColl ){
323       pColl = sqlite3ExprCollSeq(pParse, pRight);
324     }
325   }
326   return pColl;
327 }
328 
329 /*
330 ** Generate code for a comparison operator.
331 */
332 static int codeCompare(
333   Parse *pParse,    /* The parsing (and code generating) context */
334   Expr *pLeft,      /* The left operand */
335   Expr *pRight,     /* The right operand */
336   int opcode,       /* The comparison opcode */
337   int in1, int in2, /* Register holding operands */
338   int dest,         /* Jump here if true.  */
339   int jumpIfNull    /* If true, jump if either operand is NULL */
340 ){
341   int p5;
342   int addr;
343   CollSeq *p4;
344 
345   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
346   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
347   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
348                            (void*)p4, P4_COLLSEQ);
349   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
350   return addr;
351 }
352 
353 /*
354 ** Return true if expression pExpr is a vector, or false otherwise.
355 **
356 ** A vector is defined as any expression that results in two or more
357 ** columns of result.  Every TK_VECTOR node is an vector because the
358 ** parser will not generate a TK_VECTOR with fewer than two entries.
359 ** But a TK_SELECT might be either a vector or a scalar. It is only
360 ** considered a vector if it has two or more result columns.
361 */
362 int sqlite3ExprIsVector(Expr *pExpr){
363   return sqlite3ExprVectorSize(pExpr)>1;
364 }
365 
366 /*
367 ** If the expression passed as the only argument is of type TK_VECTOR
368 ** return the number of expressions in the vector. Or, if the expression
369 ** is a sub-select, return the number of columns in the sub-select. For
370 ** any other type of expression, return 1.
371 */
372 int sqlite3ExprVectorSize(Expr *pExpr){
373   u8 op = pExpr->op;
374   if( op==TK_REGISTER ) op = pExpr->op2;
375   if( op==TK_VECTOR ){
376     return pExpr->x.pList->nExpr;
377   }else if( op==TK_SELECT ){
378     return pExpr->x.pSelect->pEList->nExpr;
379   }else{
380     return 1;
381   }
382 }
383 
384 /*
385 ** Return a pointer to a subexpression of pVector that is the i-th
386 ** column of the vector (numbered starting with 0).  The caller must
387 ** ensure that i is within range.
388 **
389 ** If pVector is really a scalar (and "scalar" here includes subqueries
390 ** that return a single column!) then return pVector unmodified.
391 **
392 ** pVector retains ownership of the returned subexpression.
393 **
394 ** If the vector is a (SELECT ...) then the expression returned is
395 ** just the expression for the i-th term of the result set, and may
396 ** not be ready for evaluation because the table cursor has not yet
397 ** been positioned.
398 */
399 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
400   assert( i<sqlite3ExprVectorSize(pVector) );
401   if( sqlite3ExprIsVector(pVector) ){
402     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
403     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
404       return pVector->x.pSelect->pEList->a[i].pExpr;
405     }else{
406       return pVector->x.pList->a[i].pExpr;
407     }
408   }
409   return pVector;
410 }
411 
412 /*
413 ** Compute and return a new Expr object which when passed to
414 ** sqlite3ExprCode() will generate all necessary code to compute
415 ** the iField-th column of the vector expression pVector.
416 **
417 ** It is ok for pVector to be a scalar (as long as iField==0).
418 ** In that case, this routine works like sqlite3ExprDup().
419 **
420 ** The caller owns the returned Expr object and is responsible for
421 ** ensuring that the returned value eventually gets freed.
422 **
423 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
424 ** then the returned object will reference pVector and so pVector must remain
425 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
426 ** or a scalar expression, then it can be deleted as soon as this routine
427 ** returns.
428 **
429 ** A trick to cause a TK_SELECT pVector to be deleted together with
430 ** the returned Expr object is to attach the pVector to the pRight field
431 ** of the returned TK_SELECT_COLUMN Expr object.
432 */
433 Expr *sqlite3ExprForVectorField(
434   Parse *pParse,       /* Parsing context */
435   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
436   int iField           /* Which column of the vector to return */
437 ){
438   Expr *pRet;
439   if( pVector->op==TK_SELECT ){
440     assert( pVector->flags & EP_xIsSelect );
441     /* The TK_SELECT_COLUMN Expr node:
442     **
443     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
444     ** pRight:          not used.  But recursively deleted.
445     ** iColumn:         Index of a column in pVector
446     ** iTable:          0 or the number of columns on the LHS of an assignment
447     ** pLeft->iTable:   First in an array of register holding result, or 0
448     **                  if the result is not yet computed.
449     **
450     ** sqlite3ExprDelete() specifically skips the recursive delete of
451     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
452     ** can be attached to pRight to cause this node to take ownership of
453     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
454     ** with the same pLeft pointer to the pVector, but only one of them
455     ** will own the pVector.
456     */
457     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
458     if( pRet ){
459       pRet->iColumn = iField;
460       pRet->pLeft = pVector;
461     }
462     assert( pRet==0 || pRet->iTable==0 );
463   }else{
464     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
465     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
466     sqlite3RenameTokenRemap(pParse, pRet, pVector);
467   }
468   return pRet;
469 }
470 
471 /*
472 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
473 ** it. Return the register in which the result is stored (or, if the
474 ** sub-select returns more than one column, the first in an array
475 ** of registers in which the result is stored).
476 **
477 ** If pExpr is not a TK_SELECT expression, return 0.
478 */
479 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
480   int reg = 0;
481 #ifndef SQLITE_OMIT_SUBQUERY
482   if( pExpr->op==TK_SELECT ){
483     reg = sqlite3CodeSubselect(pParse, pExpr);
484   }
485 #endif
486   return reg;
487 }
488 
489 /*
490 ** Argument pVector points to a vector expression - either a TK_VECTOR
491 ** or TK_SELECT that returns more than one column. This function returns
492 ** the register number of a register that contains the value of
493 ** element iField of the vector.
494 **
495 ** If pVector is a TK_SELECT expression, then code for it must have
496 ** already been generated using the exprCodeSubselect() routine. In this
497 ** case parameter regSelect should be the first in an array of registers
498 ** containing the results of the sub-select.
499 **
500 ** If pVector is of type TK_VECTOR, then code for the requested field
501 ** is generated. In this case (*pRegFree) may be set to the number of
502 ** a temporary register to be freed by the caller before returning.
503 **
504 ** Before returning, output parameter (*ppExpr) is set to point to the
505 ** Expr object corresponding to element iElem of the vector.
506 */
507 static int exprVectorRegister(
508   Parse *pParse,                  /* Parse context */
509   Expr *pVector,                  /* Vector to extract element from */
510   int iField,                     /* Field to extract from pVector */
511   int regSelect,                  /* First in array of registers */
512   Expr **ppExpr,                  /* OUT: Expression element */
513   int *pRegFree                   /* OUT: Temp register to free */
514 ){
515   u8 op = pVector->op;
516   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
517   if( op==TK_REGISTER ){
518     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
519     return pVector->iTable+iField;
520   }
521   if( op==TK_SELECT ){
522     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
523      return regSelect+iField;
524   }
525   *ppExpr = pVector->x.pList->a[iField].pExpr;
526   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
527 }
528 
529 /*
530 ** Expression pExpr is a comparison between two vector values. Compute
531 ** the result of the comparison (1, 0, or NULL) and write that
532 ** result into register dest.
533 **
534 ** The caller must satisfy the following preconditions:
535 **
536 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
537 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
538 **    otherwise:                op==pExpr->op and p5==0
539 */
540 static void codeVectorCompare(
541   Parse *pParse,        /* Code generator context */
542   Expr *pExpr,          /* The comparison operation */
543   int dest,             /* Write results into this register */
544   u8 op,                /* Comparison operator */
545   u8 p5                 /* SQLITE_NULLEQ or zero */
546 ){
547   Vdbe *v = pParse->pVdbe;
548   Expr *pLeft = pExpr->pLeft;
549   Expr *pRight = pExpr->pRight;
550   int nLeft = sqlite3ExprVectorSize(pLeft);
551   int i;
552   int regLeft = 0;
553   int regRight = 0;
554   u8 opx = op;
555   int addrDone = sqlite3VdbeMakeLabel(pParse);
556 
557   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
558     sqlite3ErrorMsg(pParse, "row value misused");
559     return;
560   }
561   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
562        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
563        || pExpr->op==TK_LT || pExpr->op==TK_GT
564        || pExpr->op==TK_LE || pExpr->op==TK_GE
565   );
566   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
567             || (pExpr->op==TK_ISNOT && op==TK_NE) );
568   assert( p5==0 || pExpr->op!=op );
569   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
570 
571   p5 |= SQLITE_STOREP2;
572   if( opx==TK_LE ) opx = TK_LT;
573   if( opx==TK_GE ) opx = TK_GT;
574 
575   regLeft = exprCodeSubselect(pParse, pLeft);
576   regRight = exprCodeSubselect(pParse, pRight);
577 
578   for(i=0; 1 /*Loop exits by "break"*/; i++){
579     int regFree1 = 0, regFree2 = 0;
580     Expr *pL, *pR;
581     int r1, r2;
582     assert( i>=0 && i<nLeft );
583     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
584     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
585     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
586     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
587     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
588     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
589     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
590     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
591     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
592     sqlite3ReleaseTempReg(pParse, regFree1);
593     sqlite3ReleaseTempReg(pParse, regFree2);
594     if( i==nLeft-1 ){
595       break;
596     }
597     if( opx==TK_EQ ){
598       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
599       p5 |= SQLITE_KEEPNULL;
600     }else if( opx==TK_NE ){
601       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
602       p5 |= SQLITE_KEEPNULL;
603     }else{
604       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
605       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
606       VdbeCoverageIf(v, op==TK_LT);
607       VdbeCoverageIf(v, op==TK_GT);
608       VdbeCoverageIf(v, op==TK_LE);
609       VdbeCoverageIf(v, op==TK_GE);
610       if( i==nLeft-2 ) opx = op;
611     }
612   }
613   sqlite3VdbeResolveLabel(v, addrDone);
614 }
615 
616 #if SQLITE_MAX_EXPR_DEPTH>0
617 /*
618 ** Check that argument nHeight is less than or equal to the maximum
619 ** expression depth allowed. If it is not, leave an error message in
620 ** pParse.
621 */
622 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
623   int rc = SQLITE_OK;
624   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
625   if( nHeight>mxHeight ){
626     sqlite3ErrorMsg(pParse,
627        "Expression tree is too large (maximum depth %d)", mxHeight
628     );
629     rc = SQLITE_ERROR;
630   }
631   return rc;
632 }
633 
634 /* The following three functions, heightOfExpr(), heightOfExprList()
635 ** and heightOfSelect(), are used to determine the maximum height
636 ** of any expression tree referenced by the structure passed as the
637 ** first argument.
638 **
639 ** If this maximum height is greater than the current value pointed
640 ** to by pnHeight, the second parameter, then set *pnHeight to that
641 ** value.
642 */
643 static void heightOfExpr(Expr *p, int *pnHeight){
644   if( p ){
645     if( p->nHeight>*pnHeight ){
646       *pnHeight = p->nHeight;
647     }
648   }
649 }
650 static void heightOfExprList(ExprList *p, int *pnHeight){
651   if( p ){
652     int i;
653     for(i=0; i<p->nExpr; i++){
654       heightOfExpr(p->a[i].pExpr, pnHeight);
655     }
656   }
657 }
658 static void heightOfSelect(Select *pSelect, int *pnHeight){
659   Select *p;
660   for(p=pSelect; p; p=p->pPrior){
661     heightOfExpr(p->pWhere, pnHeight);
662     heightOfExpr(p->pHaving, pnHeight);
663     heightOfExpr(p->pLimit, pnHeight);
664     heightOfExprList(p->pEList, pnHeight);
665     heightOfExprList(p->pGroupBy, pnHeight);
666     heightOfExprList(p->pOrderBy, pnHeight);
667   }
668 }
669 
670 /*
671 ** Set the Expr.nHeight variable in the structure passed as an
672 ** argument. An expression with no children, Expr.pList or
673 ** Expr.pSelect member has a height of 1. Any other expression
674 ** has a height equal to the maximum height of any other
675 ** referenced Expr plus one.
676 **
677 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
678 ** if appropriate.
679 */
680 static void exprSetHeight(Expr *p){
681   int nHeight = 0;
682   heightOfExpr(p->pLeft, &nHeight);
683   heightOfExpr(p->pRight, &nHeight);
684   if( ExprHasProperty(p, EP_xIsSelect) ){
685     heightOfSelect(p->x.pSelect, &nHeight);
686   }else if( p->x.pList ){
687     heightOfExprList(p->x.pList, &nHeight);
688     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
689   }
690   p->nHeight = nHeight + 1;
691 }
692 
693 /*
694 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
695 ** the height is greater than the maximum allowed expression depth,
696 ** leave an error in pParse.
697 **
698 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
699 ** Expr.flags.
700 */
701 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
702   if( pParse->nErr ) return;
703   exprSetHeight(p);
704   sqlite3ExprCheckHeight(pParse, p->nHeight);
705 }
706 
707 /*
708 ** Return the maximum height of any expression tree referenced
709 ** by the select statement passed as an argument.
710 */
711 int sqlite3SelectExprHeight(Select *p){
712   int nHeight = 0;
713   heightOfSelect(p, &nHeight);
714   return nHeight;
715 }
716 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
717 /*
718 ** Propagate all EP_Propagate flags from the Expr.x.pList into
719 ** Expr.flags.
720 */
721 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
722   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
723     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
724   }
725 }
726 #define exprSetHeight(y)
727 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
728 
729 /*
730 ** This routine is the core allocator for Expr nodes.
731 **
732 ** Construct a new expression node and return a pointer to it.  Memory
733 ** for this node and for the pToken argument is a single allocation
734 ** obtained from sqlite3DbMalloc().  The calling function
735 ** is responsible for making sure the node eventually gets freed.
736 **
737 ** If dequote is true, then the token (if it exists) is dequoted.
738 ** If dequote is false, no dequoting is performed.  The deQuote
739 ** parameter is ignored if pToken is NULL or if the token does not
740 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
741 ** then the EP_DblQuoted flag is set on the expression node.
742 **
743 ** Special case:  If op==TK_INTEGER and pToken points to a string that
744 ** can be translated into a 32-bit integer, then the token is not
745 ** stored in u.zToken.  Instead, the integer values is written
746 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
747 ** is allocated to hold the integer text and the dequote flag is ignored.
748 */
749 Expr *sqlite3ExprAlloc(
750   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
751   int op,                 /* Expression opcode */
752   const Token *pToken,    /* Token argument.  Might be NULL */
753   int dequote             /* True to dequote */
754 ){
755   Expr *pNew;
756   int nExtra = 0;
757   int iValue = 0;
758 
759   assert( db!=0 );
760   if( pToken ){
761     if( op!=TK_INTEGER || pToken->z==0
762           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
763       nExtra = pToken->n+1;
764       assert( iValue>=0 );
765     }
766   }
767   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
768   if( pNew ){
769     memset(pNew, 0, sizeof(Expr));
770     pNew->op = (u8)op;
771     pNew->iAgg = -1;
772     if( pToken ){
773       if( nExtra==0 ){
774         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
775         pNew->u.iValue = iValue;
776       }else{
777         pNew->u.zToken = (char*)&pNew[1];
778         assert( pToken->z!=0 || pToken->n==0 );
779         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
780         pNew->u.zToken[pToken->n] = 0;
781         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
782           sqlite3DequoteExpr(pNew);
783         }
784       }
785     }
786 #if SQLITE_MAX_EXPR_DEPTH>0
787     pNew->nHeight = 1;
788 #endif
789   }
790   return pNew;
791 }
792 
793 /*
794 ** Allocate a new expression node from a zero-terminated token that has
795 ** already been dequoted.
796 */
797 Expr *sqlite3Expr(
798   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
799   int op,                 /* Expression opcode */
800   const char *zToken      /* Token argument.  Might be NULL */
801 ){
802   Token x;
803   x.z = zToken;
804   x.n = sqlite3Strlen30(zToken);
805   return sqlite3ExprAlloc(db, op, &x, 0);
806 }
807 
808 /*
809 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
810 **
811 ** If pRoot==NULL that means that a memory allocation error has occurred.
812 ** In that case, delete the subtrees pLeft and pRight.
813 */
814 void sqlite3ExprAttachSubtrees(
815   sqlite3 *db,
816   Expr *pRoot,
817   Expr *pLeft,
818   Expr *pRight
819 ){
820   if( pRoot==0 ){
821     assert( db->mallocFailed );
822     sqlite3ExprDelete(db, pLeft);
823     sqlite3ExprDelete(db, pRight);
824   }else{
825     if( pRight ){
826       pRoot->pRight = pRight;
827       pRoot->flags |= EP_Propagate & pRight->flags;
828     }
829     if( pLeft ){
830       pRoot->pLeft = pLeft;
831       pRoot->flags |= EP_Propagate & pLeft->flags;
832     }
833     exprSetHeight(pRoot);
834   }
835 }
836 
837 /*
838 ** Allocate an Expr node which joins as many as two subtrees.
839 **
840 ** One or both of the subtrees can be NULL.  Return a pointer to the new
841 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
842 ** free the subtrees and return NULL.
843 */
844 Expr *sqlite3PExpr(
845   Parse *pParse,          /* Parsing context */
846   int op,                 /* Expression opcode */
847   Expr *pLeft,            /* Left operand */
848   Expr *pRight            /* Right operand */
849 ){
850   Expr *p;
851   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
852   if( p ){
853     memset(p, 0, sizeof(Expr));
854     p->op = op & 0xff;
855     p->iAgg = -1;
856     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
857     sqlite3ExprCheckHeight(pParse, p->nHeight);
858   }else{
859     sqlite3ExprDelete(pParse->db, pLeft);
860     sqlite3ExprDelete(pParse->db, pRight);
861   }
862   return p;
863 }
864 
865 /*
866 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
867 ** do a memory allocation failure) then delete the pSelect object.
868 */
869 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
870   if( pExpr ){
871     pExpr->x.pSelect = pSelect;
872     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
873     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
874   }else{
875     assert( pParse->db->mallocFailed );
876     sqlite3SelectDelete(pParse->db, pSelect);
877   }
878 }
879 
880 
881 /*
882 ** Join two expressions using an AND operator.  If either expression is
883 ** NULL, then just return the other expression.
884 **
885 ** If one side or the other of the AND is known to be false, then instead
886 ** of returning an AND expression, just return a constant expression with
887 ** a value of false.
888 */
889 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
890   sqlite3 *db = pParse->db;
891   if( pLeft==0  ){
892     return pRight;
893   }else if( pRight==0 ){
894     return pLeft;
895   }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){
896     sqlite3ExprUnmapAndDelete(pParse, pLeft);
897     sqlite3ExprUnmapAndDelete(pParse, pRight);
898     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
899   }else{
900     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
901   }
902 }
903 
904 /*
905 ** Construct a new expression node for a function with multiple
906 ** arguments.
907 */
908 Expr *sqlite3ExprFunction(
909   Parse *pParse,        /* Parsing context */
910   ExprList *pList,      /* Argument list */
911   Token *pToken,        /* Name of the function */
912   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
913 ){
914   Expr *pNew;
915   sqlite3 *db = pParse->db;
916   assert( pToken );
917   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
918   if( pNew==0 ){
919     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
920     return 0;
921   }
922   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
923     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
924   }
925   pNew->x.pList = pList;
926   ExprSetProperty(pNew, EP_HasFunc);
927   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
928   sqlite3ExprSetHeightAndFlags(pParse, pNew);
929   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
930   return pNew;
931 }
932 
933 /*
934 ** Assign a variable number to an expression that encodes a wildcard
935 ** in the original SQL statement.
936 **
937 ** Wildcards consisting of a single "?" are assigned the next sequential
938 ** variable number.
939 **
940 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
941 ** sure "nnn" is not too big to avoid a denial of service attack when
942 ** the SQL statement comes from an external source.
943 **
944 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
945 ** as the previous instance of the same wildcard.  Or if this is the first
946 ** instance of the wildcard, the next sequential variable number is
947 ** assigned.
948 */
949 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
950   sqlite3 *db = pParse->db;
951   const char *z;
952   ynVar x;
953 
954   if( pExpr==0 ) return;
955   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
956   z = pExpr->u.zToken;
957   assert( z!=0 );
958   assert( z[0]!=0 );
959   assert( n==(u32)sqlite3Strlen30(z) );
960   if( z[1]==0 ){
961     /* Wildcard of the form "?".  Assign the next variable number */
962     assert( z[0]=='?' );
963     x = (ynVar)(++pParse->nVar);
964   }else{
965     int doAdd = 0;
966     if( z[0]=='?' ){
967       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
968       ** use it as the variable number */
969       i64 i;
970       int bOk;
971       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
972         i = z[1]-'0';  /* The common case of ?N for a single digit N */
973         bOk = 1;
974       }else{
975         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
976       }
977       testcase( i==0 );
978       testcase( i==1 );
979       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
980       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
981       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
982         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
983             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
984         return;
985       }
986       x = (ynVar)i;
987       if( x>pParse->nVar ){
988         pParse->nVar = (int)x;
989         doAdd = 1;
990       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
991         doAdd = 1;
992       }
993     }else{
994       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
995       ** number as the prior appearance of the same name, or if the name
996       ** has never appeared before, reuse the same variable number
997       */
998       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
999       if( x==0 ){
1000         x = (ynVar)(++pParse->nVar);
1001         doAdd = 1;
1002       }
1003     }
1004     if( doAdd ){
1005       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1006     }
1007   }
1008   pExpr->iColumn = x;
1009   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1010     sqlite3ErrorMsg(pParse, "too many SQL variables");
1011   }
1012 }
1013 
1014 /*
1015 ** Recursively delete an expression tree.
1016 */
1017 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1018   assert( p!=0 );
1019   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1020   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1021 
1022   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1023   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1024           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1025 #ifdef SQLITE_DEBUG
1026   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1027     assert( p->pLeft==0 );
1028     assert( p->pRight==0 );
1029     assert( p->x.pSelect==0 );
1030   }
1031 #endif
1032   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1033     /* The Expr.x union is never used at the same time as Expr.pRight */
1034     assert( p->x.pList==0 || p->pRight==0 );
1035     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1036     if( p->pRight ){
1037       assert( !ExprHasProperty(p, EP_WinFunc) );
1038       sqlite3ExprDeleteNN(db, p->pRight);
1039     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1040       assert( !ExprHasProperty(p, EP_WinFunc) );
1041       sqlite3SelectDelete(db, p->x.pSelect);
1042     }else{
1043       sqlite3ExprListDelete(db, p->x.pList);
1044 #ifndef SQLITE_OMIT_WINDOWFUNC
1045       if( ExprHasProperty(p, EP_WinFunc) ){
1046         sqlite3WindowDelete(db, p->y.pWin);
1047       }
1048 #endif
1049     }
1050   }
1051   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1052   if( !ExprHasProperty(p, EP_Static) ){
1053     sqlite3DbFreeNN(db, p);
1054   }
1055 }
1056 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1057   if( p ) sqlite3ExprDeleteNN(db, p);
1058 }
1059 
1060 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1061 ** expression.
1062 */
1063 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1064   if( p ){
1065     if( IN_RENAME_OBJECT ){
1066       sqlite3RenameExprUnmap(pParse, p);
1067     }
1068     sqlite3ExprDeleteNN(pParse->db, p);
1069   }
1070 }
1071 
1072 /*
1073 ** Return the number of bytes allocated for the expression structure
1074 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1075 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1076 */
1077 static int exprStructSize(Expr *p){
1078   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1079   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1080   return EXPR_FULLSIZE;
1081 }
1082 
1083 /*
1084 ** The dupedExpr*Size() routines each return the number of bytes required
1085 ** to store a copy of an expression or expression tree.  They differ in
1086 ** how much of the tree is measured.
1087 **
1088 **     dupedExprStructSize()     Size of only the Expr structure
1089 **     dupedExprNodeSize()       Size of Expr + space for token
1090 **     dupedExprSize()           Expr + token + subtree components
1091 **
1092 ***************************************************************************
1093 **
1094 ** The dupedExprStructSize() function returns two values OR-ed together:
1095 ** (1) the space required for a copy of the Expr structure only and
1096 ** (2) the EP_xxx flags that indicate what the structure size should be.
1097 ** The return values is always one of:
1098 **
1099 **      EXPR_FULLSIZE
1100 **      EXPR_REDUCEDSIZE   | EP_Reduced
1101 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1102 **
1103 ** The size of the structure can be found by masking the return value
1104 ** of this routine with 0xfff.  The flags can be found by masking the
1105 ** return value with EP_Reduced|EP_TokenOnly.
1106 **
1107 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1108 ** (unreduced) Expr objects as they or originally constructed by the parser.
1109 ** During expression analysis, extra information is computed and moved into
1110 ** later parts of the Expr object and that extra information might get chopped
1111 ** off if the expression is reduced.  Note also that it does not work to
1112 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1113 ** to reduce a pristine expression tree from the parser.  The implementation
1114 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1115 ** to enforce this constraint.
1116 */
1117 static int dupedExprStructSize(Expr *p, int flags){
1118   int nSize;
1119   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1120   assert( EXPR_FULLSIZE<=0xfff );
1121   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1122   if( 0==flags || p->op==TK_SELECT_COLUMN
1123 #ifndef SQLITE_OMIT_WINDOWFUNC
1124    || ExprHasProperty(p, EP_WinFunc)
1125 #endif
1126   ){
1127     nSize = EXPR_FULLSIZE;
1128   }else{
1129     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1130     assert( !ExprHasProperty(p, EP_FromJoin) );
1131     assert( !ExprHasProperty(p, EP_MemToken) );
1132     assert( !ExprHasProperty(p, EP_NoReduce) );
1133     if( p->pLeft || p->x.pList ){
1134       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1135     }else{
1136       assert( p->pRight==0 );
1137       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1138     }
1139   }
1140   return nSize;
1141 }
1142 
1143 /*
1144 ** This function returns the space in bytes required to store the copy
1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1146 ** string is defined.)
1147 */
1148 static int dupedExprNodeSize(Expr *p, int flags){
1149   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1150   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1151     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1152   }
1153   return ROUND8(nByte);
1154 }
1155 
1156 /*
1157 ** Return the number of bytes required to create a duplicate of the
1158 ** expression passed as the first argument. The second argument is a
1159 ** mask containing EXPRDUP_XXX flags.
1160 **
1161 ** The value returned includes space to create a copy of the Expr struct
1162 ** itself and the buffer referred to by Expr.u.zToken, if any.
1163 **
1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1166 ** and Expr.pRight variables (but not for any structures pointed to or
1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1168 */
1169 static int dupedExprSize(Expr *p, int flags){
1170   int nByte = 0;
1171   if( p ){
1172     nByte = dupedExprNodeSize(p, flags);
1173     if( flags&EXPRDUP_REDUCE ){
1174       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1175     }
1176   }
1177   return nByte;
1178 }
1179 
1180 /*
1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1183 ** to store the copy of expression p, the copies of p->u.zToken
1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1185 ** if any. Before returning, *pzBuffer is set to the first byte past the
1186 ** portion of the buffer copied into by this function.
1187 */
1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1189   Expr *pNew;           /* Value to return */
1190   u8 *zAlloc;           /* Memory space from which to build Expr object */
1191   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1192 
1193   assert( db!=0 );
1194   assert( p );
1195   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1196   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1197 
1198   /* Figure out where to write the new Expr structure. */
1199   if( pzBuffer ){
1200     zAlloc = *pzBuffer;
1201     staticFlag = EP_Static;
1202   }else{
1203     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1204     staticFlag = 0;
1205   }
1206   pNew = (Expr *)zAlloc;
1207 
1208   if( pNew ){
1209     /* Set nNewSize to the size allocated for the structure pointed to
1210     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1211     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1212     ** by the copy of the p->u.zToken string (if any).
1213     */
1214     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1215     const int nNewSize = nStructSize & 0xfff;
1216     int nToken;
1217     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1218       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1219     }else{
1220       nToken = 0;
1221     }
1222     if( dupFlags ){
1223       assert( ExprHasProperty(p, EP_Reduced)==0 );
1224       memcpy(zAlloc, p, nNewSize);
1225     }else{
1226       u32 nSize = (u32)exprStructSize(p);
1227       memcpy(zAlloc, p, nSize);
1228       if( nSize<EXPR_FULLSIZE ){
1229         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1230       }
1231     }
1232 
1233     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1234     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1235     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1236     pNew->flags |= staticFlag;
1237 
1238     /* Copy the p->u.zToken string, if any. */
1239     if( nToken ){
1240       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1241       memcpy(zToken, p->u.zToken, nToken);
1242     }
1243 
1244     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1245       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1246       if( ExprHasProperty(p, EP_xIsSelect) ){
1247         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1248       }else{
1249         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1250       }
1251     }
1252 
1253     /* Fill in pNew->pLeft and pNew->pRight. */
1254     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1255       zAlloc += dupedExprNodeSize(p, dupFlags);
1256       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1257         pNew->pLeft = p->pLeft ?
1258                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1259         pNew->pRight = p->pRight ?
1260                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1261       }
1262 #ifndef SQLITE_OMIT_WINDOWFUNC
1263       if( ExprHasProperty(p, EP_WinFunc) ){
1264         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1265         assert( ExprHasProperty(pNew, EP_WinFunc) );
1266       }
1267 #endif /* SQLITE_OMIT_WINDOWFUNC */
1268       if( pzBuffer ){
1269         *pzBuffer = zAlloc;
1270       }
1271     }else{
1272       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1273         if( pNew->op==TK_SELECT_COLUMN ){
1274           pNew->pLeft = p->pLeft;
1275           assert( p->iColumn==0 || p->pRight==0 );
1276           assert( p->pRight==0  || p->pRight==p->pLeft );
1277         }else{
1278           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1279         }
1280         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1281       }
1282     }
1283   }
1284   return pNew;
1285 }
1286 
1287 /*
1288 ** Create and return a deep copy of the object passed as the second
1289 ** argument. If an OOM condition is encountered, NULL is returned
1290 ** and the db->mallocFailed flag set.
1291 */
1292 #ifndef SQLITE_OMIT_CTE
1293 static With *withDup(sqlite3 *db, With *p){
1294   With *pRet = 0;
1295   if( p ){
1296     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1297     pRet = sqlite3DbMallocZero(db, nByte);
1298     if( pRet ){
1299       int i;
1300       pRet->nCte = p->nCte;
1301       for(i=0; i<p->nCte; i++){
1302         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1303         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1304         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1305       }
1306     }
1307   }
1308   return pRet;
1309 }
1310 #else
1311 # define withDup(x,y) 0
1312 #endif
1313 
1314 #ifndef SQLITE_OMIT_WINDOWFUNC
1315 /*
1316 ** The gatherSelectWindows() procedure and its helper routine
1317 ** gatherSelectWindowsCallback() are used to scan all the expressions
1318 ** an a newly duplicated SELECT statement and gather all of the Window
1319 ** objects found there, assembling them onto the linked list at Select->pWin.
1320 */
1321 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1322   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1323     Select *pSelect = pWalker->u.pSelect;
1324     Window *pWin = pExpr->y.pWin;
1325     assert( pWin );
1326     assert( IsWindowFunc(pExpr) );
1327     assert( pWin->ppThis==0 );
1328     if( pSelect->pWin ){
1329       pSelect->pWin->ppThis = &pWin->pNextWin;
1330     }
1331     pWin->pNextWin = pSelect->pWin;
1332     pWin->ppThis = &pSelect->pWin;
1333     pSelect->pWin = pWin;
1334   }
1335   return WRC_Continue;
1336 }
1337 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1338   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1339 }
1340 static void gatherSelectWindows(Select *p){
1341   Walker w;
1342   w.xExprCallback = gatherSelectWindowsCallback;
1343   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1344   w.xSelectCallback2 = 0;
1345   w.pParse = 0;
1346   w.u.pSelect = p;
1347   sqlite3WalkSelect(&w, p);
1348 }
1349 #endif
1350 
1351 
1352 /*
1353 ** The following group of routines make deep copies of expressions,
1354 ** expression lists, ID lists, and select statements.  The copies can
1355 ** be deleted (by being passed to their respective ...Delete() routines)
1356 ** without effecting the originals.
1357 **
1358 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1359 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1360 ** by subsequent calls to sqlite*ListAppend() routines.
1361 **
1362 ** Any tables that the SrcList might point to are not duplicated.
1363 **
1364 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1365 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1366 ** truncated version of the usual Expr structure that will be stored as
1367 ** part of the in-memory representation of the database schema.
1368 */
1369 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1370   assert( flags==0 || flags==EXPRDUP_REDUCE );
1371   return p ? exprDup(db, p, flags, 0) : 0;
1372 }
1373 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1374   ExprList *pNew;
1375   struct ExprList_item *pItem, *pOldItem;
1376   int i;
1377   Expr *pPriorSelectCol = 0;
1378   assert( db!=0 );
1379   if( p==0 ) return 0;
1380   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1381   if( pNew==0 ) return 0;
1382   pNew->nExpr = p->nExpr;
1383   pItem = pNew->a;
1384   pOldItem = p->a;
1385   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1386     Expr *pOldExpr = pOldItem->pExpr;
1387     Expr *pNewExpr;
1388     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1389     if( pOldExpr
1390      && pOldExpr->op==TK_SELECT_COLUMN
1391      && (pNewExpr = pItem->pExpr)!=0
1392     ){
1393       assert( pNewExpr->iColumn==0 || i>0 );
1394       if( pNewExpr->iColumn==0 ){
1395         assert( pOldExpr->pLeft==pOldExpr->pRight );
1396         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1397       }else{
1398         assert( i>0 );
1399         assert( pItem[-1].pExpr!=0 );
1400         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1401         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1402         pNewExpr->pLeft = pPriorSelectCol;
1403       }
1404     }
1405     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1406     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1407     pItem->sortOrder = pOldItem->sortOrder;
1408     pItem->done = 0;
1409     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1410     pItem->bSorterRef = pOldItem->bSorterRef;
1411     pItem->u = pOldItem->u;
1412   }
1413   return pNew;
1414 }
1415 
1416 /*
1417 ** If cursors, triggers, views and subqueries are all omitted from
1418 ** the build, then none of the following routines, except for
1419 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1420 ** called with a NULL argument.
1421 */
1422 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1423  || !defined(SQLITE_OMIT_SUBQUERY)
1424 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1425   SrcList *pNew;
1426   int i;
1427   int nByte;
1428   assert( db!=0 );
1429   if( p==0 ) return 0;
1430   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1431   pNew = sqlite3DbMallocRawNN(db, nByte );
1432   if( pNew==0 ) return 0;
1433   pNew->nSrc = pNew->nAlloc = p->nSrc;
1434   for(i=0; i<p->nSrc; i++){
1435     struct SrcList_item *pNewItem = &pNew->a[i];
1436     struct SrcList_item *pOldItem = &p->a[i];
1437     Table *pTab;
1438     pNewItem->pSchema = pOldItem->pSchema;
1439     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1440     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1441     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1442     pNewItem->fg = pOldItem->fg;
1443     pNewItem->iCursor = pOldItem->iCursor;
1444     pNewItem->addrFillSub = pOldItem->addrFillSub;
1445     pNewItem->regReturn = pOldItem->regReturn;
1446     if( pNewItem->fg.isIndexedBy ){
1447       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1448     }
1449     pNewItem->pIBIndex = pOldItem->pIBIndex;
1450     if( pNewItem->fg.isTabFunc ){
1451       pNewItem->u1.pFuncArg =
1452           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1453     }
1454     pTab = pNewItem->pTab = pOldItem->pTab;
1455     if( pTab ){
1456       pTab->nTabRef++;
1457     }
1458     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1459     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1460     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1461     pNewItem->colUsed = pOldItem->colUsed;
1462   }
1463   return pNew;
1464 }
1465 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1466   IdList *pNew;
1467   int i;
1468   assert( db!=0 );
1469   if( p==0 ) return 0;
1470   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1471   if( pNew==0 ) return 0;
1472   pNew->nId = p->nId;
1473   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1474   if( pNew->a==0 ){
1475     sqlite3DbFreeNN(db, pNew);
1476     return 0;
1477   }
1478   /* Note that because the size of the allocation for p->a[] is not
1479   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1480   ** on the duplicate created by this function. */
1481   for(i=0; i<p->nId; i++){
1482     struct IdList_item *pNewItem = &pNew->a[i];
1483     struct IdList_item *pOldItem = &p->a[i];
1484     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1485     pNewItem->idx = pOldItem->idx;
1486   }
1487   return pNew;
1488 }
1489 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1490   Select *pRet = 0;
1491   Select *pNext = 0;
1492   Select **pp = &pRet;
1493   Select *p;
1494 
1495   assert( db!=0 );
1496   for(p=pDup; p; p=p->pPrior){
1497     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1498     if( pNew==0 ) break;
1499     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1500     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1501     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1502     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1503     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1504     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1505     pNew->op = p->op;
1506     pNew->pNext = pNext;
1507     pNew->pPrior = 0;
1508     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1509     pNew->iLimit = 0;
1510     pNew->iOffset = 0;
1511     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1512     pNew->addrOpenEphm[0] = -1;
1513     pNew->addrOpenEphm[1] = -1;
1514     pNew->nSelectRow = p->nSelectRow;
1515     pNew->pWith = withDup(db, p->pWith);
1516 #ifndef SQLITE_OMIT_WINDOWFUNC
1517     pNew->pWin = 0;
1518     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1519     if( p->pWin ) gatherSelectWindows(pNew);
1520 #endif
1521     pNew->selId = p->selId;
1522     *pp = pNew;
1523     pp = &pNew->pPrior;
1524     pNext = pNew;
1525   }
1526 
1527   return pRet;
1528 }
1529 #else
1530 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1531   assert( p==0 );
1532   return 0;
1533 }
1534 #endif
1535 
1536 
1537 /*
1538 ** Add a new element to the end of an expression list.  If pList is
1539 ** initially NULL, then create a new expression list.
1540 **
1541 ** The pList argument must be either NULL or a pointer to an ExprList
1542 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1543 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1544 ** Reason:  This routine assumes that the number of slots in pList->a[]
1545 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1546 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1547 **
1548 ** If a memory allocation error occurs, the entire list is freed and
1549 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1550 ** that the new entry was successfully appended.
1551 */
1552 ExprList *sqlite3ExprListAppend(
1553   Parse *pParse,          /* Parsing context */
1554   ExprList *pList,        /* List to which to append. Might be NULL */
1555   Expr *pExpr             /* Expression to be appended. Might be NULL */
1556 ){
1557   struct ExprList_item *pItem;
1558   sqlite3 *db = pParse->db;
1559   assert( db!=0 );
1560   if( pList==0 ){
1561     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1562     if( pList==0 ){
1563       goto no_mem;
1564     }
1565     pList->nExpr = 0;
1566   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1567     ExprList *pNew;
1568     pNew = sqlite3DbRealloc(db, pList,
1569          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1570     if( pNew==0 ){
1571       goto no_mem;
1572     }
1573     pList = pNew;
1574   }
1575   pItem = &pList->a[pList->nExpr++];
1576   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1577   assert( offsetof(struct ExprList_item,pExpr)==0 );
1578   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1579   pItem->pExpr = pExpr;
1580   return pList;
1581 
1582 no_mem:
1583   /* Avoid leaking memory if malloc has failed. */
1584   sqlite3ExprDelete(db, pExpr);
1585   sqlite3ExprListDelete(db, pList);
1586   return 0;
1587 }
1588 
1589 /*
1590 ** pColumns and pExpr form a vector assignment which is part of the SET
1591 ** clause of an UPDATE statement.  Like this:
1592 **
1593 **        (a,b,c) = (expr1,expr2,expr3)
1594 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1595 **
1596 ** For each term of the vector assignment, append new entries to the
1597 ** expression list pList.  In the case of a subquery on the RHS, append
1598 ** TK_SELECT_COLUMN expressions.
1599 */
1600 ExprList *sqlite3ExprListAppendVector(
1601   Parse *pParse,         /* Parsing context */
1602   ExprList *pList,       /* List to which to append. Might be NULL */
1603   IdList *pColumns,      /* List of names of LHS of the assignment */
1604   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1605 ){
1606   sqlite3 *db = pParse->db;
1607   int n;
1608   int i;
1609   int iFirst = pList ? pList->nExpr : 0;
1610   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1611   ** exit prior to this routine being invoked */
1612   if( NEVER(pColumns==0) ) goto vector_append_error;
1613   if( pExpr==0 ) goto vector_append_error;
1614 
1615   /* If the RHS is a vector, then we can immediately check to see that
1616   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1617   ** wildcards ("*") in the result set of the SELECT must be expanded before
1618   ** we can do the size check, so defer the size check until code generation.
1619   */
1620   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1621     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1622                     pColumns->nId, n);
1623     goto vector_append_error;
1624   }
1625 
1626   for(i=0; i<pColumns->nId; i++){
1627     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1628     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1629     if( pList ){
1630       assert( pList->nExpr==iFirst+i+1 );
1631       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1632       pColumns->a[i].zName = 0;
1633     }
1634   }
1635 
1636   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1637     Expr *pFirst = pList->a[iFirst].pExpr;
1638     assert( pFirst!=0 );
1639     assert( pFirst->op==TK_SELECT_COLUMN );
1640 
1641     /* Store the SELECT statement in pRight so it will be deleted when
1642     ** sqlite3ExprListDelete() is called */
1643     pFirst->pRight = pExpr;
1644     pExpr = 0;
1645 
1646     /* Remember the size of the LHS in iTable so that we can check that
1647     ** the RHS and LHS sizes match during code generation. */
1648     pFirst->iTable = pColumns->nId;
1649   }
1650 
1651 vector_append_error:
1652   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1653   sqlite3IdListDelete(db, pColumns);
1654   return pList;
1655 }
1656 
1657 /*
1658 ** Set the sort order for the last element on the given ExprList.
1659 */
1660 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1661   if( p==0 ) return;
1662   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1663   assert( p->nExpr>0 );
1664   if( iSortOrder<0 ){
1665     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1666     return;
1667   }
1668   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1669 }
1670 
1671 /*
1672 ** Set the ExprList.a[].zName element of the most recently added item
1673 ** on the expression list.
1674 **
1675 ** pList might be NULL following an OOM error.  But pName should never be
1676 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1677 ** is set.
1678 */
1679 void sqlite3ExprListSetName(
1680   Parse *pParse,          /* Parsing context */
1681   ExprList *pList,        /* List to which to add the span. */
1682   Token *pName,           /* Name to be added */
1683   int dequote             /* True to cause the name to be dequoted */
1684 ){
1685   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1686   if( pList ){
1687     struct ExprList_item *pItem;
1688     assert( pList->nExpr>0 );
1689     pItem = &pList->a[pList->nExpr-1];
1690     assert( pItem->zName==0 );
1691     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1692     if( dequote ) sqlite3Dequote(pItem->zName);
1693     if( IN_RENAME_OBJECT ){
1694       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1695     }
1696   }
1697 }
1698 
1699 /*
1700 ** Set the ExprList.a[].zSpan element of the most recently added item
1701 ** on the expression list.
1702 **
1703 ** pList might be NULL following an OOM error.  But pSpan should never be
1704 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1705 ** is set.
1706 */
1707 void sqlite3ExprListSetSpan(
1708   Parse *pParse,          /* Parsing context */
1709   ExprList *pList,        /* List to which to add the span. */
1710   const char *zStart,     /* Start of the span */
1711   const char *zEnd        /* End of the span */
1712 ){
1713   sqlite3 *db = pParse->db;
1714   assert( pList!=0 || db->mallocFailed!=0 );
1715   if( pList ){
1716     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1717     assert( pList->nExpr>0 );
1718     sqlite3DbFree(db, pItem->zSpan);
1719     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1720   }
1721 }
1722 
1723 /*
1724 ** If the expression list pEList contains more than iLimit elements,
1725 ** leave an error message in pParse.
1726 */
1727 void sqlite3ExprListCheckLength(
1728   Parse *pParse,
1729   ExprList *pEList,
1730   const char *zObject
1731 ){
1732   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1733   testcase( pEList && pEList->nExpr==mx );
1734   testcase( pEList && pEList->nExpr==mx+1 );
1735   if( pEList && pEList->nExpr>mx ){
1736     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1737   }
1738 }
1739 
1740 /*
1741 ** Delete an entire expression list.
1742 */
1743 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1744   int i = pList->nExpr;
1745   struct ExprList_item *pItem =  pList->a;
1746   assert( pList->nExpr>0 );
1747   do{
1748     sqlite3ExprDelete(db, pItem->pExpr);
1749     sqlite3DbFree(db, pItem->zName);
1750     sqlite3DbFree(db, pItem->zSpan);
1751     pItem++;
1752   }while( --i>0 );
1753   sqlite3DbFreeNN(db, pList);
1754 }
1755 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1756   if( pList ) exprListDeleteNN(db, pList);
1757 }
1758 
1759 /*
1760 ** Return the bitwise-OR of all Expr.flags fields in the given
1761 ** ExprList.
1762 */
1763 u32 sqlite3ExprListFlags(const ExprList *pList){
1764   int i;
1765   u32 m = 0;
1766   assert( pList!=0 );
1767   for(i=0; i<pList->nExpr; i++){
1768      Expr *pExpr = pList->a[i].pExpr;
1769      assert( pExpr!=0 );
1770      m |= pExpr->flags;
1771   }
1772   return m;
1773 }
1774 
1775 /*
1776 ** This is a SELECT-node callback for the expression walker that
1777 ** always "fails".  By "fail" in this case, we mean set
1778 ** pWalker->eCode to zero and abort.
1779 **
1780 ** This callback is used by multiple expression walkers.
1781 */
1782 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1783   UNUSED_PARAMETER(NotUsed);
1784   pWalker->eCode = 0;
1785   return WRC_Abort;
1786 }
1787 
1788 /*
1789 ** If the input expression is an ID with the name "true" or "false"
1790 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1791 ** the conversion happened, and zero if the expression is unaltered.
1792 */
1793 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1794   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1795   if( !ExprHasProperty(pExpr, EP_Quoted)
1796    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1797        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1798   ){
1799     pExpr->op = TK_TRUEFALSE;
1800     ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse);
1801     return 1;
1802   }
1803   return 0;
1804 }
1805 
1806 /*
1807 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1808 ** and 0 if it is FALSE.
1809 */
1810 int sqlite3ExprTruthValue(const Expr *pExpr){
1811   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1812   assert( pExpr->op==TK_TRUEFALSE );
1813   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1814        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1815   return pExpr->u.zToken[4]==0;
1816 }
1817 
1818 /*
1819 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1820 ** terms that are always true or false.  Return the simplified expression.
1821 ** Or return the original expression if no simplification is possible.
1822 **
1823 ** Examples:
1824 **
1825 **     (x<10) AND true                =>   (x<10)
1826 **     (x<10) AND false               =>   false
1827 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1828 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1829 **     (y=22) OR true                 =>   true
1830 */
1831 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1832   assert( pExpr!=0 );
1833   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1834     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1835     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1836     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1837       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1838     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1839       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1840     }
1841   }
1842   return pExpr;
1843 }
1844 
1845 
1846 /*
1847 ** These routines are Walker callbacks used to check expressions to
1848 ** see if they are "constant" for some definition of constant.  The
1849 ** Walker.eCode value determines the type of "constant" we are looking
1850 ** for.
1851 **
1852 ** These callback routines are used to implement the following:
1853 **
1854 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1855 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1856 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1857 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1858 **
1859 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1860 ** is found to not be a constant.
1861 **
1862 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1863 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1864 ** an existing schema and 4 when processing a new statement.  A bound
1865 ** parameter raises an error for new statements, but is silently converted
1866 ** to NULL for existing schemas.  This allows sqlite_master tables that
1867 ** contain a bound parameter because they were generated by older versions
1868 ** of SQLite to be parsed by newer versions of SQLite without raising a
1869 ** malformed schema error.
1870 */
1871 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1872 
1873   /* If pWalker->eCode is 2 then any term of the expression that comes from
1874   ** the ON or USING clauses of a left join disqualifies the expression
1875   ** from being considered constant. */
1876   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1877     pWalker->eCode = 0;
1878     return WRC_Abort;
1879   }
1880 
1881   switch( pExpr->op ){
1882     /* Consider functions to be constant if all their arguments are constant
1883     ** and either pWalker->eCode==4 or 5 or the function has the
1884     ** SQLITE_FUNC_CONST flag. */
1885     case TK_FUNCTION:
1886       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1887         return WRC_Continue;
1888       }else{
1889         pWalker->eCode = 0;
1890         return WRC_Abort;
1891       }
1892     case TK_ID:
1893       /* Convert "true" or "false" in a DEFAULT clause into the
1894       ** appropriate TK_TRUEFALSE operator */
1895       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1896         return WRC_Prune;
1897       }
1898       /* Fall thru */
1899     case TK_COLUMN:
1900     case TK_AGG_FUNCTION:
1901     case TK_AGG_COLUMN:
1902       testcase( pExpr->op==TK_ID );
1903       testcase( pExpr->op==TK_COLUMN );
1904       testcase( pExpr->op==TK_AGG_FUNCTION );
1905       testcase( pExpr->op==TK_AGG_COLUMN );
1906       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1907         return WRC_Continue;
1908       }
1909       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1910         return WRC_Continue;
1911       }
1912       /* Fall through */
1913     case TK_IF_NULL_ROW:
1914     case TK_REGISTER:
1915       testcase( pExpr->op==TK_REGISTER );
1916       testcase( pExpr->op==TK_IF_NULL_ROW );
1917       pWalker->eCode = 0;
1918       return WRC_Abort;
1919     case TK_VARIABLE:
1920       if( pWalker->eCode==5 ){
1921         /* Silently convert bound parameters that appear inside of CREATE
1922         ** statements into a NULL when parsing the CREATE statement text out
1923         ** of the sqlite_master table */
1924         pExpr->op = TK_NULL;
1925       }else if( pWalker->eCode==4 ){
1926         /* A bound parameter in a CREATE statement that originates from
1927         ** sqlite3_prepare() causes an error */
1928         pWalker->eCode = 0;
1929         return WRC_Abort;
1930       }
1931       /* Fall through */
1932     default:
1933       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1934       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1935       return WRC_Continue;
1936   }
1937 }
1938 static int exprIsConst(Expr *p, int initFlag, int iCur){
1939   Walker w;
1940   w.eCode = initFlag;
1941   w.xExprCallback = exprNodeIsConstant;
1942   w.xSelectCallback = sqlite3SelectWalkFail;
1943 #ifdef SQLITE_DEBUG
1944   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1945 #endif
1946   w.u.iCur = iCur;
1947   sqlite3WalkExpr(&w, p);
1948   return w.eCode;
1949 }
1950 
1951 /*
1952 ** Walk an expression tree.  Return non-zero if the expression is constant
1953 ** and 0 if it involves variables or function calls.
1954 **
1955 ** For the purposes of this function, a double-quoted string (ex: "abc")
1956 ** is considered a variable but a single-quoted string (ex: 'abc') is
1957 ** a constant.
1958 */
1959 int sqlite3ExprIsConstant(Expr *p){
1960   return exprIsConst(p, 1, 0);
1961 }
1962 
1963 /*
1964 ** Walk an expression tree.  Return non-zero if
1965 **
1966 **   (1) the expression is constant, and
1967 **   (2) the expression does originate in the ON or USING clause
1968 **       of a LEFT JOIN, and
1969 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1970 **       operands created by the constant propagation optimization.
1971 **
1972 ** When this routine returns true, it indicates that the expression
1973 ** can be added to the pParse->pConstExpr list and evaluated once when
1974 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1975 */
1976 int sqlite3ExprIsConstantNotJoin(Expr *p){
1977   return exprIsConst(p, 2, 0);
1978 }
1979 
1980 /*
1981 ** Walk an expression tree.  Return non-zero if the expression is constant
1982 ** for any single row of the table with cursor iCur.  In other words, the
1983 ** expression must not refer to any non-deterministic function nor any
1984 ** table other than iCur.
1985 */
1986 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1987   return exprIsConst(p, 3, iCur);
1988 }
1989 
1990 
1991 /*
1992 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1993 */
1994 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1995   ExprList *pGroupBy = pWalker->u.pGroupBy;
1996   int i;
1997 
1998   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1999   ** it constant.  */
2000   for(i=0; i<pGroupBy->nExpr; i++){
2001     Expr *p = pGroupBy->a[i].pExpr;
2002     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2003       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2004       if( sqlite3IsBinary(pColl) ){
2005         return WRC_Prune;
2006       }
2007     }
2008   }
2009 
2010   /* Check if pExpr is a sub-select. If so, consider it variable. */
2011   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2012     pWalker->eCode = 0;
2013     return WRC_Abort;
2014   }
2015 
2016   return exprNodeIsConstant(pWalker, pExpr);
2017 }
2018 
2019 /*
2020 ** Walk the expression tree passed as the first argument. Return non-zero
2021 ** if the expression consists entirely of constants or copies of terms
2022 ** in pGroupBy that sort with the BINARY collation sequence.
2023 **
2024 ** This routine is used to determine if a term of the HAVING clause can
2025 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2026 ** the value of the HAVING clause term must be the same for all members of
2027 ** a "group".  The requirement that the GROUP BY term must be BINARY
2028 ** assumes that no other collating sequence will have a finer-grained
2029 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2030 ** A=B in every other collating sequence.  The requirement that the
2031 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2032 ** to promote HAVING clauses that use the same alternative collating
2033 ** sequence as the GROUP BY term, but that is much harder to check,
2034 ** alternative collating sequences are uncommon, and this is only an
2035 ** optimization, so we take the easy way out and simply require the
2036 ** GROUP BY to use the BINARY collating sequence.
2037 */
2038 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2039   Walker w;
2040   w.eCode = 1;
2041   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2042   w.xSelectCallback = 0;
2043   w.u.pGroupBy = pGroupBy;
2044   w.pParse = pParse;
2045   sqlite3WalkExpr(&w, p);
2046   return w.eCode;
2047 }
2048 
2049 /*
2050 ** Walk an expression tree.  Return non-zero if the expression is constant
2051 ** or a function call with constant arguments.  Return and 0 if there
2052 ** are any variables.
2053 **
2054 ** For the purposes of this function, a double-quoted string (ex: "abc")
2055 ** is considered a variable but a single-quoted string (ex: 'abc') is
2056 ** a constant.
2057 */
2058 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2059   assert( isInit==0 || isInit==1 );
2060   return exprIsConst(p, 4+isInit, 0);
2061 }
2062 
2063 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2064 /*
2065 ** Walk an expression tree.  Return 1 if the expression contains a
2066 ** subquery of some kind.  Return 0 if there are no subqueries.
2067 */
2068 int sqlite3ExprContainsSubquery(Expr *p){
2069   Walker w;
2070   w.eCode = 1;
2071   w.xExprCallback = sqlite3ExprWalkNoop;
2072   w.xSelectCallback = sqlite3SelectWalkFail;
2073 #ifdef SQLITE_DEBUG
2074   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2075 #endif
2076   sqlite3WalkExpr(&w, p);
2077   return w.eCode==0;
2078 }
2079 #endif
2080 
2081 /*
2082 ** If the expression p codes a constant integer that is small enough
2083 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2084 ** in *pValue.  If the expression is not an integer or if it is too big
2085 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2086 */
2087 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2088   int rc = 0;
2089   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2090 
2091   /* If an expression is an integer literal that fits in a signed 32-bit
2092   ** integer, then the EP_IntValue flag will have already been set */
2093   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2094            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2095 
2096   if( p->flags & EP_IntValue ){
2097     *pValue = p->u.iValue;
2098     return 1;
2099   }
2100   switch( p->op ){
2101     case TK_UPLUS: {
2102       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2103       break;
2104     }
2105     case TK_UMINUS: {
2106       int v;
2107       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2108         assert( v!=(-2147483647-1) );
2109         *pValue = -v;
2110         rc = 1;
2111       }
2112       break;
2113     }
2114     default: break;
2115   }
2116   return rc;
2117 }
2118 
2119 /*
2120 ** Return FALSE if there is no chance that the expression can be NULL.
2121 **
2122 ** If the expression might be NULL or if the expression is too complex
2123 ** to tell return TRUE.
2124 **
2125 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2126 ** when we know that a value cannot be NULL.  Hence, a false positive
2127 ** (returning TRUE when in fact the expression can never be NULL) might
2128 ** be a small performance hit but is otherwise harmless.  On the other
2129 ** hand, a false negative (returning FALSE when the result could be NULL)
2130 ** will likely result in an incorrect answer.  So when in doubt, return
2131 ** TRUE.
2132 */
2133 int sqlite3ExprCanBeNull(const Expr *p){
2134   u8 op;
2135   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2136     p = p->pLeft;
2137   }
2138   op = p->op;
2139   if( op==TK_REGISTER ) op = p->op2;
2140   switch( op ){
2141     case TK_INTEGER:
2142     case TK_STRING:
2143     case TK_FLOAT:
2144     case TK_BLOB:
2145       return 0;
2146     case TK_COLUMN:
2147       return ExprHasProperty(p, EP_CanBeNull) ||
2148              p->y.pTab==0 ||  /* Reference to column of index on expression */
2149              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2150     default:
2151       return 1;
2152   }
2153 }
2154 
2155 /*
2156 ** Return TRUE if the given expression is a constant which would be
2157 ** unchanged by OP_Affinity with the affinity given in the second
2158 ** argument.
2159 **
2160 ** This routine is used to determine if the OP_Affinity operation
2161 ** can be omitted.  When in doubt return FALSE.  A false negative
2162 ** is harmless.  A false positive, however, can result in the wrong
2163 ** answer.
2164 */
2165 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2166   u8 op;
2167   if( aff==SQLITE_AFF_BLOB ) return 1;
2168   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2169   op = p->op;
2170   if( op==TK_REGISTER ) op = p->op2;
2171   switch( op ){
2172     case TK_INTEGER: {
2173       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2174     }
2175     case TK_FLOAT: {
2176       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2177     }
2178     case TK_STRING: {
2179       return aff==SQLITE_AFF_TEXT;
2180     }
2181     case TK_BLOB: {
2182       return 1;
2183     }
2184     case TK_COLUMN: {
2185       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2186       return p->iColumn<0
2187           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2188     }
2189     default: {
2190       return 0;
2191     }
2192   }
2193 }
2194 
2195 /*
2196 ** Return TRUE if the given string is a row-id column name.
2197 */
2198 int sqlite3IsRowid(const char *z){
2199   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2200   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2201   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2202   return 0;
2203 }
2204 
2205 /*
2206 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2207 ** that can be simplified to a direct table access, then return
2208 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2209 ** or if the SELECT statement needs to be manifested into a transient
2210 ** table, then return NULL.
2211 */
2212 #ifndef SQLITE_OMIT_SUBQUERY
2213 static Select *isCandidateForInOpt(Expr *pX){
2214   Select *p;
2215   SrcList *pSrc;
2216   ExprList *pEList;
2217   Table *pTab;
2218   int i;
2219   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2220   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2221   p = pX->x.pSelect;
2222   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2223   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2224     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2225     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2226     return 0; /* No DISTINCT keyword and no aggregate functions */
2227   }
2228   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2229   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2230   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2231   pSrc = p->pSrc;
2232   assert( pSrc!=0 );
2233   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2234   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2235   pTab = pSrc->a[0].pTab;
2236   assert( pTab!=0 );
2237   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2238   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2239   pEList = p->pEList;
2240   assert( pEList!=0 );
2241   /* All SELECT results must be columns. */
2242   for(i=0; i<pEList->nExpr; i++){
2243     Expr *pRes = pEList->a[i].pExpr;
2244     if( pRes->op!=TK_COLUMN ) return 0;
2245     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2246   }
2247   return p;
2248 }
2249 #endif /* SQLITE_OMIT_SUBQUERY */
2250 
2251 #ifndef SQLITE_OMIT_SUBQUERY
2252 /*
2253 ** Generate code that checks the left-most column of index table iCur to see if
2254 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2255 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2256 ** to be set to NULL if iCur contains one or more NULL values.
2257 */
2258 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2259   int addr1;
2260   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2261   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2262   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2263   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2264   VdbeComment((v, "first_entry_in(%d)", iCur));
2265   sqlite3VdbeJumpHere(v, addr1);
2266 }
2267 #endif
2268 
2269 
2270 #ifndef SQLITE_OMIT_SUBQUERY
2271 /*
2272 ** The argument is an IN operator with a list (not a subquery) on the
2273 ** right-hand side.  Return TRUE if that list is constant.
2274 */
2275 static int sqlite3InRhsIsConstant(Expr *pIn){
2276   Expr *pLHS;
2277   int res;
2278   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2279   pLHS = pIn->pLeft;
2280   pIn->pLeft = 0;
2281   res = sqlite3ExprIsConstant(pIn);
2282   pIn->pLeft = pLHS;
2283   return res;
2284 }
2285 #endif
2286 
2287 /*
2288 ** This function is used by the implementation of the IN (...) operator.
2289 ** The pX parameter is the expression on the RHS of the IN operator, which
2290 ** might be either a list of expressions or a subquery.
2291 **
2292 ** The job of this routine is to find or create a b-tree object that can
2293 ** be used either to test for membership in the RHS set or to iterate through
2294 ** all members of the RHS set, skipping duplicates.
2295 **
2296 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2297 ** and pX->iTable is set to the index of that cursor.
2298 **
2299 ** The returned value of this function indicates the b-tree type, as follows:
2300 **
2301 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2302 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2303 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2304 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2305 **                         populated epheremal table.
2306 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2307 **                         implemented as a sequence of comparisons.
2308 **
2309 ** An existing b-tree might be used if the RHS expression pX is a simple
2310 ** subquery such as:
2311 **
2312 **     SELECT <column1>, <column2>... FROM <table>
2313 **
2314 ** If the RHS of the IN operator is a list or a more complex subquery, then
2315 ** an ephemeral table might need to be generated from the RHS and then
2316 ** pX->iTable made to point to the ephemeral table instead of an
2317 ** existing table.
2318 **
2319 ** The inFlags parameter must contain, at a minimum, one of the bits
2320 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2321 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2322 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2323 ** be used to loop over all values of the RHS of the IN operator.
2324 **
2325 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2326 ** through the set members) then the b-tree must not contain duplicates.
2327 ** An epheremal table will be created unless the selected columns are guaranteed
2328 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2329 ** a UNIQUE constraint or index.
2330 **
2331 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2332 ** for fast set membership tests) then an epheremal table must
2333 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2334 ** index can be found with the specified <columns> as its left-most.
2335 **
2336 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2337 ** if the RHS of the IN operator is a list (not a subquery) then this
2338 ** routine might decide that creating an ephemeral b-tree for membership
2339 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2340 ** calling routine should implement the IN operator using a sequence
2341 ** of Eq or Ne comparison operations.
2342 **
2343 ** When the b-tree is being used for membership tests, the calling function
2344 ** might need to know whether or not the RHS side of the IN operator
2345 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2346 ** if there is any chance that the (...) might contain a NULL value at
2347 ** runtime, then a register is allocated and the register number written
2348 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2349 ** NULL value, then *prRhsHasNull is left unchanged.
2350 **
2351 ** If a register is allocated and its location stored in *prRhsHasNull, then
2352 ** the value in that register will be NULL if the b-tree contains one or more
2353 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2354 ** NULL values.
2355 **
2356 ** If the aiMap parameter is not NULL, it must point to an array containing
2357 ** one element for each column returned by the SELECT statement on the RHS
2358 ** of the IN(...) operator. The i'th entry of the array is populated with the
2359 ** offset of the index column that matches the i'th column returned by the
2360 ** SELECT. For example, if the expression and selected index are:
2361 **
2362 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2363 **   CREATE INDEX i1 ON t1(b, c, a);
2364 **
2365 ** then aiMap[] is populated with {2, 0, 1}.
2366 */
2367 #ifndef SQLITE_OMIT_SUBQUERY
2368 int sqlite3FindInIndex(
2369   Parse *pParse,             /* Parsing context */
2370   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2371   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2372   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2373   int *aiMap,                /* Mapping from Index fields to RHS fields */
2374   int *piTab                 /* OUT: index to use */
2375 ){
2376   Select *p;                            /* SELECT to the right of IN operator */
2377   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2378   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2379   int mustBeUnique;                     /* True if RHS must be unique */
2380   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2381 
2382   assert( pX->op==TK_IN );
2383   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2384 
2385   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2386   ** whether or not the SELECT result contains NULL values, check whether
2387   ** or not NULL is actually possible (it may not be, for example, due
2388   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2389   ** set prRhsHasNull to 0 before continuing.  */
2390   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2391     int i;
2392     ExprList *pEList = pX->x.pSelect->pEList;
2393     for(i=0; i<pEList->nExpr; i++){
2394       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2395     }
2396     if( i==pEList->nExpr ){
2397       prRhsHasNull = 0;
2398     }
2399   }
2400 
2401   /* Check to see if an existing table or index can be used to
2402   ** satisfy the query.  This is preferable to generating a new
2403   ** ephemeral table.  */
2404   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2405     sqlite3 *db = pParse->db;              /* Database connection */
2406     Table *pTab;                           /* Table <table>. */
2407     i16 iDb;                               /* Database idx for pTab */
2408     ExprList *pEList = p->pEList;
2409     int nExpr = pEList->nExpr;
2410 
2411     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2412     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2413     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2414     pTab = p->pSrc->a[0].pTab;
2415 
2416     /* Code an OP_Transaction and OP_TableLock for <table>. */
2417     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2418     sqlite3CodeVerifySchema(pParse, iDb);
2419     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2420 
2421     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2422     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2423       /* The "x IN (SELECT rowid FROM table)" case */
2424       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2425       VdbeCoverage(v);
2426 
2427       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2428       eType = IN_INDEX_ROWID;
2429       ExplainQueryPlan((pParse, 0,
2430             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2431       sqlite3VdbeJumpHere(v, iAddr);
2432     }else{
2433       Index *pIdx;                         /* Iterator variable */
2434       int affinity_ok = 1;
2435       int i;
2436 
2437       /* Check that the affinity that will be used to perform each
2438       ** comparison is the same as the affinity of each column in table
2439       ** on the RHS of the IN operator.  If it not, it is not possible to
2440       ** use any index of the RHS table.  */
2441       for(i=0; i<nExpr && affinity_ok; i++){
2442         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2443         int iCol = pEList->a[i].pExpr->iColumn;
2444         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2445         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2446         testcase( cmpaff==SQLITE_AFF_BLOB );
2447         testcase( cmpaff==SQLITE_AFF_TEXT );
2448         switch( cmpaff ){
2449           case SQLITE_AFF_BLOB:
2450             break;
2451           case SQLITE_AFF_TEXT:
2452             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2453             ** other has no affinity and the other side is TEXT.  Hence,
2454             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2455             ** and for the term on the LHS of the IN to have no affinity. */
2456             assert( idxaff==SQLITE_AFF_TEXT );
2457             break;
2458           default:
2459             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2460         }
2461       }
2462 
2463       if( affinity_ok ){
2464         /* Search for an existing index that will work for this IN operator */
2465         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2466           Bitmask colUsed;      /* Columns of the index used */
2467           Bitmask mCol;         /* Mask for the current column */
2468           if( pIdx->nColumn<nExpr ) continue;
2469           if( pIdx->pPartIdxWhere!=0 ) continue;
2470           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2471           ** BITMASK(nExpr) without overflowing */
2472           testcase( pIdx->nColumn==BMS-2 );
2473           testcase( pIdx->nColumn==BMS-1 );
2474           if( pIdx->nColumn>=BMS-1 ) continue;
2475           if( mustBeUnique ){
2476             if( pIdx->nKeyCol>nExpr
2477              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2478             ){
2479               continue;  /* This index is not unique over the IN RHS columns */
2480             }
2481           }
2482 
2483           colUsed = 0;   /* Columns of index used so far */
2484           for(i=0; i<nExpr; i++){
2485             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2486             Expr *pRhs = pEList->a[i].pExpr;
2487             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2488             int j;
2489 
2490             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2491             for(j=0; j<nExpr; j++){
2492               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2493               assert( pIdx->azColl[j] );
2494               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2495                 continue;
2496               }
2497               break;
2498             }
2499             if( j==nExpr ) break;
2500             mCol = MASKBIT(j);
2501             if( mCol & colUsed ) break; /* Each column used only once */
2502             colUsed |= mCol;
2503             if( aiMap ) aiMap[i] = j;
2504           }
2505 
2506           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2507           if( colUsed==(MASKBIT(nExpr)-1) ){
2508             /* If we reach this point, that means the index pIdx is usable */
2509             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2510             ExplainQueryPlan((pParse, 0,
2511                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2512             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2513             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2514             VdbeComment((v, "%s", pIdx->zName));
2515             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2516             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2517 
2518             if( prRhsHasNull ){
2519 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2520               i64 mask = (1<<nExpr)-1;
2521               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2522                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2523 #endif
2524               *prRhsHasNull = ++pParse->nMem;
2525               if( nExpr==1 ){
2526                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2527               }
2528             }
2529             sqlite3VdbeJumpHere(v, iAddr);
2530           }
2531         } /* End loop over indexes */
2532       } /* End if( affinity_ok ) */
2533     } /* End if not an rowid index */
2534   } /* End attempt to optimize using an index */
2535 
2536   /* If no preexisting index is available for the IN clause
2537   ** and IN_INDEX_NOOP is an allowed reply
2538   ** and the RHS of the IN operator is a list, not a subquery
2539   ** and the RHS is not constant or has two or fewer terms,
2540   ** then it is not worth creating an ephemeral table to evaluate
2541   ** the IN operator so return IN_INDEX_NOOP.
2542   */
2543   if( eType==0
2544    && (inFlags & IN_INDEX_NOOP_OK)
2545    && !ExprHasProperty(pX, EP_xIsSelect)
2546    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2547   ){
2548     eType = IN_INDEX_NOOP;
2549   }
2550 
2551   if( eType==0 ){
2552     /* Could not find an existing table or index to use as the RHS b-tree.
2553     ** We will have to generate an ephemeral table to do the job.
2554     */
2555     u32 savedNQueryLoop = pParse->nQueryLoop;
2556     int rMayHaveNull = 0;
2557     eType = IN_INDEX_EPH;
2558     if( inFlags & IN_INDEX_LOOP ){
2559       pParse->nQueryLoop = 0;
2560     }else if( prRhsHasNull ){
2561       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2562     }
2563     assert( pX->op==TK_IN );
2564     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2565     if( rMayHaveNull ){
2566       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2567     }
2568     pParse->nQueryLoop = savedNQueryLoop;
2569   }
2570 
2571   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2572     int i, n;
2573     n = sqlite3ExprVectorSize(pX->pLeft);
2574     for(i=0; i<n; i++) aiMap[i] = i;
2575   }
2576   *piTab = iTab;
2577   return eType;
2578 }
2579 #endif
2580 
2581 #ifndef SQLITE_OMIT_SUBQUERY
2582 /*
2583 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2584 ** function allocates and returns a nul-terminated string containing
2585 ** the affinities to be used for each column of the comparison.
2586 **
2587 ** It is the responsibility of the caller to ensure that the returned
2588 ** string is eventually freed using sqlite3DbFree().
2589 */
2590 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2591   Expr *pLeft = pExpr->pLeft;
2592   int nVal = sqlite3ExprVectorSize(pLeft);
2593   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2594   char *zRet;
2595 
2596   assert( pExpr->op==TK_IN );
2597   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2598   if( zRet ){
2599     int i;
2600     for(i=0; i<nVal; i++){
2601       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2602       char a = sqlite3ExprAffinity(pA);
2603       if( pSelect ){
2604         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2605       }else{
2606         zRet[i] = a;
2607       }
2608     }
2609     zRet[nVal] = '\0';
2610   }
2611   return zRet;
2612 }
2613 #endif
2614 
2615 #ifndef SQLITE_OMIT_SUBQUERY
2616 /*
2617 ** Load the Parse object passed as the first argument with an error
2618 ** message of the form:
2619 **
2620 **   "sub-select returns N columns - expected M"
2621 */
2622 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2623   const char *zFmt = "sub-select returns %d columns - expected %d";
2624   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2625 }
2626 #endif
2627 
2628 /*
2629 ** Expression pExpr is a vector that has been used in a context where
2630 ** it is not permitted. If pExpr is a sub-select vector, this routine
2631 ** loads the Parse object with a message of the form:
2632 **
2633 **   "sub-select returns N columns - expected 1"
2634 **
2635 ** Or, if it is a regular scalar vector:
2636 **
2637 **   "row value misused"
2638 */
2639 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2640 #ifndef SQLITE_OMIT_SUBQUERY
2641   if( pExpr->flags & EP_xIsSelect ){
2642     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2643   }else
2644 #endif
2645   {
2646     sqlite3ErrorMsg(pParse, "row value misused");
2647   }
2648 }
2649 
2650 #ifndef SQLITE_OMIT_SUBQUERY
2651 /*
2652 ** Generate code that will construct an ephemeral table containing all terms
2653 ** in the RHS of an IN operator.  The IN operator can be in either of two
2654 ** forms:
2655 **
2656 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2657 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2658 **
2659 ** The pExpr parameter is the IN operator.  The cursor number for the
2660 ** constructed ephermeral table is returned.  The first time the ephemeral
2661 ** table is computed, the cursor number is also stored in pExpr->iTable,
2662 ** however the cursor number returned might not be the same, as it might
2663 ** have been duplicated using OP_OpenDup.
2664 **
2665 ** If the LHS expression ("x" in the examples) is a column value, or
2666 ** the SELECT statement returns a column value, then the affinity of that
2667 ** column is used to build the index keys. If both 'x' and the
2668 ** SELECT... statement are columns, then numeric affinity is used
2669 ** if either column has NUMERIC or INTEGER affinity. If neither
2670 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2671 ** is used.
2672 */
2673 void sqlite3CodeRhsOfIN(
2674   Parse *pParse,          /* Parsing context */
2675   Expr *pExpr,            /* The IN operator */
2676   int iTab                /* Use this cursor number */
2677 ){
2678   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2679   int addr;                   /* Address of OP_OpenEphemeral instruction */
2680   Expr *pLeft;                /* the LHS of the IN operator */
2681   KeyInfo *pKeyInfo = 0;      /* Key information */
2682   int nVal;                   /* Size of vector pLeft */
2683   Vdbe *v;                    /* The prepared statement under construction */
2684 
2685   v = pParse->pVdbe;
2686   assert( v!=0 );
2687 
2688   /* The evaluation of the IN must be repeated every time it
2689   ** is encountered if any of the following is true:
2690   **
2691   **    *  The right-hand side is a correlated subquery
2692   **    *  The right-hand side is an expression list containing variables
2693   **    *  We are inside a trigger
2694   **
2695   ** If all of the above are false, then we can compute the RHS just once
2696   ** and reuse it many names.
2697   */
2698   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2699     /* Reuse of the RHS is allowed */
2700     /* If this routine has already been coded, but the previous code
2701     ** might not have been invoked yet, so invoke it now as a subroutine.
2702     */
2703     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2704       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2705       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2706         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2707               pExpr->x.pSelect->selId));
2708       }
2709       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2710                         pExpr->y.sub.iAddr);
2711       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2712       sqlite3VdbeJumpHere(v, addrOnce);
2713       return;
2714     }
2715 
2716     /* Begin coding the subroutine */
2717     ExprSetProperty(pExpr, EP_Subrtn);
2718     pExpr->y.sub.regReturn = ++pParse->nMem;
2719     pExpr->y.sub.iAddr =
2720       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2721     VdbeComment((v, "return address"));
2722 
2723     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2724   }
2725 
2726   /* Check to see if this is a vector IN operator */
2727   pLeft = pExpr->pLeft;
2728   nVal = sqlite3ExprVectorSize(pLeft);
2729 
2730   /* Construct the ephemeral table that will contain the content of
2731   ** RHS of the IN operator.
2732   */
2733   pExpr->iTable = iTab;
2734   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2735 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2736   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2737     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2738   }else{
2739     VdbeComment((v, "RHS of IN operator"));
2740   }
2741 #endif
2742   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2743 
2744   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2745     /* Case 1:     expr IN (SELECT ...)
2746     **
2747     ** Generate code to write the results of the select into the temporary
2748     ** table allocated and opened above.
2749     */
2750     Select *pSelect = pExpr->x.pSelect;
2751     ExprList *pEList = pSelect->pEList;
2752 
2753     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2754         addrOnce?"":"CORRELATED ", pSelect->selId
2755     ));
2756     /* If the LHS and RHS of the IN operator do not match, that
2757     ** error will have been caught long before we reach this point. */
2758     if( ALWAYS(pEList->nExpr==nVal) ){
2759       SelectDest dest;
2760       int i;
2761       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2762       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2763       pSelect->iLimit = 0;
2764       testcase( pSelect->selFlags & SF_Distinct );
2765       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2766       if( sqlite3Select(pParse, pSelect, &dest) ){
2767         sqlite3DbFree(pParse->db, dest.zAffSdst);
2768         sqlite3KeyInfoUnref(pKeyInfo);
2769         return;
2770       }
2771       sqlite3DbFree(pParse->db, dest.zAffSdst);
2772       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2773       assert( pEList!=0 );
2774       assert( pEList->nExpr>0 );
2775       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2776       for(i=0; i<nVal; i++){
2777         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2778         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2779             pParse, p, pEList->a[i].pExpr
2780         );
2781       }
2782     }
2783   }else if( ALWAYS(pExpr->x.pList!=0) ){
2784     /* Case 2:     expr IN (exprlist)
2785     **
2786     ** For each expression, build an index key from the evaluation and
2787     ** store it in the temporary table. If <expr> is a column, then use
2788     ** that columns affinity when building index keys. If <expr> is not
2789     ** a column, use numeric affinity.
2790     */
2791     char affinity;            /* Affinity of the LHS of the IN */
2792     int i;
2793     ExprList *pList = pExpr->x.pList;
2794     struct ExprList_item *pItem;
2795     int r1, r2, r3;
2796     affinity = sqlite3ExprAffinity(pLeft);
2797     if( affinity<=SQLITE_AFF_NONE ){
2798       affinity = SQLITE_AFF_BLOB;
2799     }
2800     if( pKeyInfo ){
2801       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2802       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2803     }
2804 
2805     /* Loop through each expression in <exprlist>. */
2806     r1 = sqlite3GetTempReg(pParse);
2807     r2 = sqlite3GetTempReg(pParse);
2808     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2809       Expr *pE2 = pItem->pExpr;
2810 
2811       /* If the expression is not constant then we will need to
2812       ** disable the test that was generated above that makes sure
2813       ** this code only executes once.  Because for a non-constant
2814       ** expression we need to rerun this code each time.
2815       */
2816       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2817         sqlite3VdbeChangeToNoop(v, addrOnce);
2818         ExprClearProperty(pExpr, EP_Subrtn);
2819         addrOnce = 0;
2820       }
2821 
2822       /* Evaluate the expression and insert it into the temp table */
2823       r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2824       sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2825       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r3, 1);
2826     }
2827     sqlite3ReleaseTempReg(pParse, r1);
2828     sqlite3ReleaseTempReg(pParse, r2);
2829   }
2830   if( pKeyInfo ){
2831     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2832   }
2833   if( addrOnce ){
2834     sqlite3VdbeJumpHere(v, addrOnce);
2835     /* Subroutine return */
2836     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2837     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2838   }
2839 }
2840 #endif /* SQLITE_OMIT_SUBQUERY */
2841 
2842 /*
2843 ** Generate code for scalar subqueries used as a subquery expression
2844 ** or EXISTS operator:
2845 **
2846 **     (SELECT a FROM b)          -- subquery
2847 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2848 **
2849 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2850 **
2851 ** The register that holds the result.  For a multi-column SELECT,
2852 ** the result is stored in a contiguous array of registers and the
2853 ** return value is the register of the left-most result column.
2854 ** Return 0 if an error occurs.
2855 */
2856 #ifndef SQLITE_OMIT_SUBQUERY
2857 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2858   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2859   int rReg = 0;               /* Register storing resulting */
2860   Select *pSel;               /* SELECT statement to encode */
2861   SelectDest dest;            /* How to deal with SELECT result */
2862   int nReg;                   /* Registers to allocate */
2863   Expr *pLimit;               /* New limit expression */
2864 
2865   Vdbe *v = pParse->pVdbe;
2866   assert( v!=0 );
2867   testcase( pExpr->op==TK_EXISTS );
2868   testcase( pExpr->op==TK_SELECT );
2869   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2870   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2871   pSel = pExpr->x.pSelect;
2872 
2873   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2874   ** is encountered if any of the following is true:
2875   **
2876   **    *  The right-hand side is a correlated subquery
2877   **    *  The right-hand side is an expression list containing variables
2878   **    *  We are inside a trigger
2879   **
2880   ** If all of the above are false, then we can run this code just once
2881   ** save the results, and reuse the same result on subsequent invocations.
2882   */
2883   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2884     /* If this routine has already been coded, then invoke it as a
2885     ** subroutine. */
2886     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2887       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2888       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2889                         pExpr->y.sub.iAddr);
2890       return pExpr->iTable;
2891     }
2892 
2893     /* Begin coding the subroutine */
2894     ExprSetProperty(pExpr, EP_Subrtn);
2895     pExpr->y.sub.regReturn = ++pParse->nMem;
2896     pExpr->y.sub.iAddr =
2897       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2898     VdbeComment((v, "return address"));
2899 
2900     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2901   }
2902 
2903   /* For a SELECT, generate code to put the values for all columns of
2904   ** the first row into an array of registers and return the index of
2905   ** the first register.
2906   **
2907   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2908   ** into a register and return that register number.
2909   **
2910   ** In both cases, the query is augmented with "LIMIT 1".  Any
2911   ** preexisting limit is discarded in place of the new LIMIT 1.
2912   */
2913   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2914         addrOnce?"":"CORRELATED ", pSel->selId));
2915   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2916   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2917   pParse->nMem += nReg;
2918   if( pExpr->op==TK_SELECT ){
2919     dest.eDest = SRT_Mem;
2920     dest.iSdst = dest.iSDParm;
2921     dest.nSdst = nReg;
2922     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2923     VdbeComment((v, "Init subquery result"));
2924   }else{
2925     dest.eDest = SRT_Exists;
2926     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2927     VdbeComment((v, "Init EXISTS result"));
2928   }
2929   pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2930   if( pSel->pLimit ){
2931     sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2932     pSel->pLimit->pLeft = pLimit;
2933   }else{
2934     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2935   }
2936   pSel->iLimit = 0;
2937   if( sqlite3Select(pParse, pSel, &dest) ){
2938     return 0;
2939   }
2940   pExpr->iTable = rReg = dest.iSDParm;
2941   ExprSetVVAProperty(pExpr, EP_NoReduce);
2942   if( addrOnce ){
2943     sqlite3VdbeJumpHere(v, addrOnce);
2944 
2945     /* Subroutine return */
2946     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2947     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2948   }
2949 
2950   return rReg;
2951 }
2952 #endif /* SQLITE_OMIT_SUBQUERY */
2953 
2954 #ifndef SQLITE_OMIT_SUBQUERY
2955 /*
2956 ** Expr pIn is an IN(...) expression. This function checks that the
2957 ** sub-select on the RHS of the IN() operator has the same number of
2958 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2959 ** a sub-query, that the LHS is a vector of size 1.
2960 */
2961 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2962   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2963   if( (pIn->flags & EP_xIsSelect) ){
2964     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2965       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2966       return 1;
2967     }
2968   }else if( nVector!=1 ){
2969     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2970     return 1;
2971   }
2972   return 0;
2973 }
2974 #endif
2975 
2976 #ifndef SQLITE_OMIT_SUBQUERY
2977 /*
2978 ** Generate code for an IN expression.
2979 **
2980 **      x IN (SELECT ...)
2981 **      x IN (value, value, ...)
2982 **
2983 ** The left-hand side (LHS) is a scalar or vector expression.  The
2984 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2985 ** subquery.  If the RHS is a subquery, the number of result columns must
2986 ** match the number of columns in the vector on the LHS.  If the RHS is
2987 ** a list of values, the LHS must be a scalar.
2988 **
2989 ** The IN operator is true if the LHS value is contained within the RHS.
2990 ** The result is false if the LHS is definitely not in the RHS.  The
2991 ** result is NULL if the presence of the LHS in the RHS cannot be
2992 ** determined due to NULLs.
2993 **
2994 ** This routine generates code that jumps to destIfFalse if the LHS is not
2995 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2996 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2997 ** within the RHS then fall through.
2998 **
2999 ** See the separate in-operator.md documentation file in the canonical
3000 ** SQLite source tree for additional information.
3001 */
3002 static void sqlite3ExprCodeIN(
3003   Parse *pParse,        /* Parsing and code generating context */
3004   Expr *pExpr,          /* The IN expression */
3005   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3006   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3007 ){
3008   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3009   int eType;            /* Type of the RHS */
3010   int rLhs;             /* Register(s) holding the LHS values */
3011   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3012   Vdbe *v;              /* Statement under construction */
3013   int *aiMap = 0;       /* Map from vector field to index column */
3014   char *zAff = 0;       /* Affinity string for comparisons */
3015   int nVector;          /* Size of vectors for this IN operator */
3016   int iDummy;           /* Dummy parameter to exprCodeVector() */
3017   Expr *pLeft;          /* The LHS of the IN operator */
3018   int i;                /* loop counter */
3019   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3020   int destStep6 = 0;    /* Start of code for Step 6 */
3021   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3022   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3023   int addrTop;          /* Top of the step-6 loop */
3024   int iTab = 0;         /* Index to use */
3025 
3026   pLeft = pExpr->pLeft;
3027   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3028   zAff = exprINAffinity(pParse, pExpr);
3029   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3030   aiMap = (int*)sqlite3DbMallocZero(
3031       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3032   );
3033   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3034 
3035   /* Attempt to compute the RHS. After this step, if anything other than
3036   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3037   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3038   ** the RHS has not yet been coded.  */
3039   v = pParse->pVdbe;
3040   assert( v!=0 );       /* OOM detected prior to this routine */
3041   VdbeNoopComment((v, "begin IN expr"));
3042   eType = sqlite3FindInIndex(pParse, pExpr,
3043                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3044                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3045                              aiMap, &iTab);
3046 
3047   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3048        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3049   );
3050 #ifdef SQLITE_DEBUG
3051   /* Confirm that aiMap[] contains nVector integer values between 0 and
3052   ** nVector-1. */
3053   for(i=0; i<nVector; i++){
3054     int j, cnt;
3055     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3056     assert( cnt==1 );
3057   }
3058 #endif
3059 
3060   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3061   ** vector, then it is stored in an array of nVector registers starting
3062   ** at r1.
3063   **
3064   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3065   ** so that the fields are in the same order as an existing index.   The
3066   ** aiMap[] array contains a mapping from the original LHS field order to
3067   ** the field order that matches the RHS index.
3068   */
3069   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3070   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3071   if( i==nVector ){
3072     /* LHS fields are not reordered */
3073     rLhs = rLhsOrig;
3074   }else{
3075     /* Need to reorder the LHS fields according to aiMap */
3076     rLhs = sqlite3GetTempRange(pParse, nVector);
3077     for(i=0; i<nVector; i++){
3078       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3079     }
3080   }
3081 
3082   /* If sqlite3FindInIndex() did not find or create an index that is
3083   ** suitable for evaluating the IN operator, then evaluate using a
3084   ** sequence of comparisons.
3085   **
3086   ** This is step (1) in the in-operator.md optimized algorithm.
3087   */
3088   if( eType==IN_INDEX_NOOP ){
3089     ExprList *pList = pExpr->x.pList;
3090     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3091     int labelOk = sqlite3VdbeMakeLabel(pParse);
3092     int r2, regToFree;
3093     int regCkNull = 0;
3094     int ii;
3095     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3096     if( destIfNull!=destIfFalse ){
3097       regCkNull = sqlite3GetTempReg(pParse);
3098       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3099     }
3100     for(ii=0; ii<pList->nExpr; ii++){
3101       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3102       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3103         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3104       }
3105       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3106         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3107                           (void*)pColl, P4_COLLSEQ);
3108         VdbeCoverageIf(v, ii<pList->nExpr-1);
3109         VdbeCoverageIf(v, ii==pList->nExpr-1);
3110         sqlite3VdbeChangeP5(v, zAff[0]);
3111       }else{
3112         assert( destIfNull==destIfFalse );
3113         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3114                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3115         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3116       }
3117       sqlite3ReleaseTempReg(pParse, regToFree);
3118     }
3119     if( regCkNull ){
3120       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3121       sqlite3VdbeGoto(v, destIfFalse);
3122     }
3123     sqlite3VdbeResolveLabel(v, labelOk);
3124     sqlite3ReleaseTempReg(pParse, regCkNull);
3125     goto sqlite3ExprCodeIN_finished;
3126   }
3127 
3128   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3129   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3130   ** We will then skip the binary search of the RHS.
3131   */
3132   if( destIfNull==destIfFalse ){
3133     destStep2 = destIfFalse;
3134   }else{
3135     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3136   }
3137   for(i=0; i<nVector; i++){
3138     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3139     if( sqlite3ExprCanBeNull(p) ){
3140       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3141       VdbeCoverage(v);
3142     }
3143   }
3144 
3145   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3146   ** of the RHS using the LHS as a probe.  If found, the result is
3147   ** true.
3148   */
3149   if( eType==IN_INDEX_ROWID ){
3150     /* In this case, the RHS is the ROWID of table b-tree and so we also
3151     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3152     ** into a single opcode. */
3153     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3154     VdbeCoverage(v);
3155     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3156   }else{
3157     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3158     if( destIfFalse==destIfNull ){
3159       /* Combine Step 3 and Step 5 into a single opcode */
3160       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3161                            rLhs, nVector); VdbeCoverage(v);
3162       goto sqlite3ExprCodeIN_finished;
3163     }
3164     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3165     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3166                                       rLhs, nVector); VdbeCoverage(v);
3167   }
3168 
3169   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3170   ** an match on the search above, then the result must be FALSE.
3171   */
3172   if( rRhsHasNull && nVector==1 ){
3173     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3174     VdbeCoverage(v);
3175   }
3176 
3177   /* Step 5.  If we do not care about the difference between NULL and
3178   ** FALSE, then just return false.
3179   */
3180   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3181 
3182   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3183   ** If any comparison is NULL, then the result is NULL.  If all
3184   ** comparisons are FALSE then the final result is FALSE.
3185   **
3186   ** For a scalar LHS, it is sufficient to check just the first row
3187   ** of the RHS.
3188   */
3189   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3190   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3191   VdbeCoverage(v);
3192   if( nVector>1 ){
3193     destNotNull = sqlite3VdbeMakeLabel(pParse);
3194   }else{
3195     /* For nVector==1, combine steps 6 and 7 by immediately returning
3196     ** FALSE if the first comparison is not NULL */
3197     destNotNull = destIfFalse;
3198   }
3199   for(i=0; i<nVector; i++){
3200     Expr *p;
3201     CollSeq *pColl;
3202     int r3 = sqlite3GetTempReg(pParse);
3203     p = sqlite3VectorFieldSubexpr(pLeft, i);
3204     pColl = sqlite3ExprCollSeq(pParse, p);
3205     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3206     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3207                       (void*)pColl, P4_COLLSEQ);
3208     VdbeCoverage(v);
3209     sqlite3ReleaseTempReg(pParse, r3);
3210   }
3211   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3212   if( nVector>1 ){
3213     sqlite3VdbeResolveLabel(v, destNotNull);
3214     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3215     VdbeCoverage(v);
3216 
3217     /* Step 7:  If we reach this point, we know that the result must
3218     ** be false. */
3219     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3220   }
3221 
3222   /* Jumps here in order to return true. */
3223   sqlite3VdbeJumpHere(v, addrTruthOp);
3224 
3225 sqlite3ExprCodeIN_finished:
3226   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3227   VdbeComment((v, "end IN expr"));
3228 sqlite3ExprCodeIN_oom_error:
3229   sqlite3DbFree(pParse->db, aiMap);
3230   sqlite3DbFree(pParse->db, zAff);
3231 }
3232 #endif /* SQLITE_OMIT_SUBQUERY */
3233 
3234 #ifndef SQLITE_OMIT_FLOATING_POINT
3235 /*
3236 ** Generate an instruction that will put the floating point
3237 ** value described by z[0..n-1] into register iMem.
3238 **
3239 ** The z[] string will probably not be zero-terminated.  But the
3240 ** z[n] character is guaranteed to be something that does not look
3241 ** like the continuation of the number.
3242 */
3243 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3244   if( ALWAYS(z!=0) ){
3245     double value;
3246     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3247     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3248     if( negateFlag ) value = -value;
3249     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3250   }
3251 }
3252 #endif
3253 
3254 
3255 /*
3256 ** Generate an instruction that will put the integer describe by
3257 ** text z[0..n-1] into register iMem.
3258 **
3259 ** Expr.u.zToken is always UTF8 and zero-terminated.
3260 */
3261 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3262   Vdbe *v = pParse->pVdbe;
3263   if( pExpr->flags & EP_IntValue ){
3264     int i = pExpr->u.iValue;
3265     assert( i>=0 );
3266     if( negFlag ) i = -i;
3267     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3268   }else{
3269     int c;
3270     i64 value;
3271     const char *z = pExpr->u.zToken;
3272     assert( z!=0 );
3273     c = sqlite3DecOrHexToI64(z, &value);
3274     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3275 #ifdef SQLITE_OMIT_FLOATING_POINT
3276       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3277 #else
3278 #ifndef SQLITE_OMIT_HEX_INTEGER
3279       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3280         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3281       }else
3282 #endif
3283       {
3284         codeReal(v, z, negFlag, iMem);
3285       }
3286 #endif
3287     }else{
3288       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3289       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3290     }
3291   }
3292 }
3293 
3294 
3295 /* Generate code that will load into register regOut a value that is
3296 ** appropriate for the iIdxCol-th column of index pIdx.
3297 */
3298 void sqlite3ExprCodeLoadIndexColumn(
3299   Parse *pParse,  /* The parsing context */
3300   Index *pIdx,    /* The index whose column is to be loaded */
3301   int iTabCur,    /* Cursor pointing to a table row */
3302   int iIdxCol,    /* The column of the index to be loaded */
3303   int regOut      /* Store the index column value in this register */
3304 ){
3305   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3306   if( iTabCol==XN_EXPR ){
3307     assert( pIdx->aColExpr );
3308     assert( pIdx->aColExpr->nExpr>iIdxCol );
3309     pParse->iSelfTab = iTabCur + 1;
3310     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3311     pParse->iSelfTab = 0;
3312   }else{
3313     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3314                                     iTabCol, regOut);
3315   }
3316 }
3317 
3318 /*
3319 ** Generate code to extract the value of the iCol-th column of a table.
3320 */
3321 void sqlite3ExprCodeGetColumnOfTable(
3322   Vdbe *v,        /* The VDBE under construction */
3323   Table *pTab,    /* The table containing the value */
3324   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3325   int iCol,       /* Index of the column to extract */
3326   int regOut      /* Extract the value into this register */
3327 ){
3328   if( pTab==0 ){
3329     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3330     return;
3331   }
3332   if( iCol<0 || iCol==pTab->iPKey ){
3333     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3334   }else{
3335     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3336     int x = iCol;
3337     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3338       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3339     }
3340     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3341   }
3342   if( iCol>=0 ){
3343     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3344   }
3345 }
3346 
3347 /*
3348 ** Generate code that will extract the iColumn-th column from
3349 ** table pTab and store the column value in register iReg.
3350 **
3351 ** There must be an open cursor to pTab in iTable when this routine
3352 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3353 */
3354 int sqlite3ExprCodeGetColumn(
3355   Parse *pParse,   /* Parsing and code generating context */
3356   Table *pTab,     /* Description of the table we are reading from */
3357   int iColumn,     /* Index of the table column */
3358   int iTable,      /* The cursor pointing to the table */
3359   int iReg,        /* Store results here */
3360   u8 p5            /* P5 value for OP_Column + FLAGS */
3361 ){
3362   Vdbe *v = pParse->pVdbe;
3363   assert( v!=0 );
3364   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3365   if( p5 ){
3366     sqlite3VdbeChangeP5(v, p5);
3367   }
3368   return iReg;
3369 }
3370 
3371 /*
3372 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3373 ** over to iTo..iTo+nReg-1.
3374 */
3375 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3376   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3377   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3378 }
3379 
3380 /*
3381 ** Convert a scalar expression node to a TK_REGISTER referencing
3382 ** register iReg.  The caller must ensure that iReg already contains
3383 ** the correct value for the expression.
3384 */
3385 static void exprToRegister(Expr *pExpr, int iReg){
3386   Expr *p = sqlite3ExprSkipCollate(pExpr);
3387   p->op2 = p->op;
3388   p->op = TK_REGISTER;
3389   p->iTable = iReg;
3390   ExprClearProperty(p, EP_Skip);
3391 }
3392 
3393 /*
3394 ** Evaluate an expression (either a vector or a scalar expression) and store
3395 ** the result in continguous temporary registers.  Return the index of
3396 ** the first register used to store the result.
3397 **
3398 ** If the returned result register is a temporary scalar, then also write
3399 ** that register number into *piFreeable.  If the returned result register
3400 ** is not a temporary or if the expression is a vector set *piFreeable
3401 ** to 0.
3402 */
3403 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3404   int iResult;
3405   int nResult = sqlite3ExprVectorSize(p);
3406   if( nResult==1 ){
3407     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3408   }else{
3409     *piFreeable = 0;
3410     if( p->op==TK_SELECT ){
3411 #if SQLITE_OMIT_SUBQUERY
3412       iResult = 0;
3413 #else
3414       iResult = sqlite3CodeSubselect(pParse, p);
3415 #endif
3416     }else{
3417       int i;
3418       iResult = pParse->nMem+1;
3419       pParse->nMem += nResult;
3420       for(i=0; i<nResult; i++){
3421         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3422       }
3423     }
3424   }
3425   return iResult;
3426 }
3427 
3428 
3429 /*
3430 ** Generate code into the current Vdbe to evaluate the given
3431 ** expression.  Attempt to store the results in register "target".
3432 ** Return the register where results are stored.
3433 **
3434 ** With this routine, there is no guarantee that results will
3435 ** be stored in target.  The result might be stored in some other
3436 ** register if it is convenient to do so.  The calling function
3437 ** must check the return code and move the results to the desired
3438 ** register.
3439 */
3440 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3441   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3442   int op;                   /* The opcode being coded */
3443   int inReg = target;       /* Results stored in register inReg */
3444   int regFree1 = 0;         /* If non-zero free this temporary register */
3445   int regFree2 = 0;         /* If non-zero free this temporary register */
3446   int r1, r2;               /* Various register numbers */
3447   Expr tempX;               /* Temporary expression node */
3448   int p5 = 0;
3449 
3450   assert( target>0 && target<=pParse->nMem );
3451   if( v==0 ){
3452     assert( pParse->db->mallocFailed );
3453     return 0;
3454   }
3455 
3456 expr_code_doover:
3457   if( pExpr==0 ){
3458     op = TK_NULL;
3459   }else{
3460     op = pExpr->op;
3461   }
3462   switch( op ){
3463     case TK_AGG_COLUMN: {
3464       AggInfo *pAggInfo = pExpr->pAggInfo;
3465       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3466       if( !pAggInfo->directMode ){
3467         assert( pCol->iMem>0 );
3468         return pCol->iMem;
3469       }else if( pAggInfo->useSortingIdx ){
3470         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3471                               pCol->iSorterColumn, target);
3472         return target;
3473       }
3474       /* Otherwise, fall thru into the TK_COLUMN case */
3475     }
3476     case TK_COLUMN: {
3477       int iTab = pExpr->iTable;
3478       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3479         /* This COLUMN expression is really a constant due to WHERE clause
3480         ** constraints, and that constant is coded by the pExpr->pLeft
3481         ** expresssion.  However, make sure the constant has the correct
3482         ** datatype by applying the Affinity of the table column to the
3483         ** constant.
3484         */
3485         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3486         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3487         if( aff>SQLITE_AFF_BLOB ){
3488           static const char zAff[] = "B\000C\000D\000E";
3489           assert( SQLITE_AFF_BLOB=='A' );
3490           assert( SQLITE_AFF_TEXT=='B' );
3491           if( iReg!=target ){
3492             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3493             iReg = target;
3494           }
3495           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3496                             &zAff[(aff-'B')*2], P4_STATIC);
3497         }
3498         return iReg;
3499       }
3500       if( iTab<0 ){
3501         if( pParse->iSelfTab<0 ){
3502           /* Generating CHECK constraints or inserting into partial index */
3503           return pExpr->iColumn - pParse->iSelfTab;
3504         }else{
3505           /* Coding an expression that is part of an index where column names
3506           ** in the index refer to the table to which the index belongs */
3507           iTab = pParse->iSelfTab - 1;
3508         }
3509       }
3510       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3511                                pExpr->iColumn, iTab, target,
3512                                pExpr->op2);
3513     }
3514     case TK_INTEGER: {
3515       codeInteger(pParse, pExpr, 0, target);
3516       return target;
3517     }
3518     case TK_TRUEFALSE: {
3519       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3520       return target;
3521     }
3522 #ifndef SQLITE_OMIT_FLOATING_POINT
3523     case TK_FLOAT: {
3524       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3525       codeReal(v, pExpr->u.zToken, 0, target);
3526       return target;
3527     }
3528 #endif
3529     case TK_STRING: {
3530       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3531       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3532       return target;
3533     }
3534     case TK_NULL: {
3535       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3536       return target;
3537     }
3538 #ifndef SQLITE_OMIT_BLOB_LITERAL
3539     case TK_BLOB: {
3540       int n;
3541       const char *z;
3542       char *zBlob;
3543       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3544       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3545       assert( pExpr->u.zToken[1]=='\'' );
3546       z = &pExpr->u.zToken[2];
3547       n = sqlite3Strlen30(z) - 1;
3548       assert( z[n]=='\'' );
3549       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3550       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3551       return target;
3552     }
3553 #endif
3554     case TK_VARIABLE: {
3555       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3556       assert( pExpr->u.zToken!=0 );
3557       assert( pExpr->u.zToken[0]!=0 );
3558       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3559       if( pExpr->u.zToken[1]!=0 ){
3560         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3561         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3562         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3563         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3564       }
3565       return target;
3566     }
3567     case TK_REGISTER: {
3568       return pExpr->iTable;
3569     }
3570 #ifndef SQLITE_OMIT_CAST
3571     case TK_CAST: {
3572       /* Expressions of the form:   CAST(pLeft AS token) */
3573       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3574       if( inReg!=target ){
3575         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3576         inReg = target;
3577       }
3578       sqlite3VdbeAddOp2(v, OP_Cast, target,
3579                         sqlite3AffinityType(pExpr->u.zToken, 0));
3580       return inReg;
3581     }
3582 #endif /* SQLITE_OMIT_CAST */
3583     case TK_IS:
3584     case TK_ISNOT:
3585       op = (op==TK_IS) ? TK_EQ : TK_NE;
3586       p5 = SQLITE_NULLEQ;
3587       /* fall-through */
3588     case TK_LT:
3589     case TK_LE:
3590     case TK_GT:
3591     case TK_GE:
3592     case TK_NE:
3593     case TK_EQ: {
3594       Expr *pLeft = pExpr->pLeft;
3595       if( sqlite3ExprIsVector(pLeft) ){
3596         codeVectorCompare(pParse, pExpr, target, op, p5);
3597       }else{
3598         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3599         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3600         codeCompare(pParse, pLeft, pExpr->pRight, op,
3601             r1, r2, inReg, SQLITE_STOREP2 | p5);
3602         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3603         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3604         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3605         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3606         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3607         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3608         testcase( regFree1==0 );
3609         testcase( regFree2==0 );
3610       }
3611       break;
3612     }
3613     case TK_AND:
3614     case TK_OR:
3615     case TK_PLUS:
3616     case TK_STAR:
3617     case TK_MINUS:
3618     case TK_REM:
3619     case TK_BITAND:
3620     case TK_BITOR:
3621     case TK_SLASH:
3622     case TK_LSHIFT:
3623     case TK_RSHIFT:
3624     case TK_CONCAT: {
3625       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3626       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3627       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3628       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3629       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3630       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3631       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3632       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3633       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3634       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3635       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3636       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3637       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3638       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3639       testcase( regFree1==0 );
3640       testcase( regFree2==0 );
3641       break;
3642     }
3643     case TK_UMINUS: {
3644       Expr *pLeft = pExpr->pLeft;
3645       assert( pLeft );
3646       if( pLeft->op==TK_INTEGER ){
3647         codeInteger(pParse, pLeft, 1, target);
3648         return target;
3649 #ifndef SQLITE_OMIT_FLOATING_POINT
3650       }else if( pLeft->op==TK_FLOAT ){
3651         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3652         codeReal(v, pLeft->u.zToken, 1, target);
3653         return target;
3654 #endif
3655       }else{
3656         tempX.op = TK_INTEGER;
3657         tempX.flags = EP_IntValue|EP_TokenOnly;
3658         tempX.u.iValue = 0;
3659         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3660         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3661         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3662         testcase( regFree2==0 );
3663       }
3664       break;
3665     }
3666     case TK_BITNOT:
3667     case TK_NOT: {
3668       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3669       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3670       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3671       testcase( regFree1==0 );
3672       sqlite3VdbeAddOp2(v, op, r1, inReg);
3673       break;
3674     }
3675     case TK_TRUTH: {
3676       int isTrue;    /* IS TRUE or IS NOT TRUE */
3677       int bNormal;   /* IS TRUE or IS FALSE */
3678       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3679       testcase( regFree1==0 );
3680       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3681       bNormal = pExpr->op2==TK_IS;
3682       testcase( isTrue && bNormal);
3683       testcase( !isTrue && bNormal);
3684       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3685       break;
3686     }
3687     case TK_ISNULL:
3688     case TK_NOTNULL: {
3689       int addr;
3690       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3691       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3692       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3693       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3694       testcase( regFree1==0 );
3695       addr = sqlite3VdbeAddOp1(v, op, r1);
3696       VdbeCoverageIf(v, op==TK_ISNULL);
3697       VdbeCoverageIf(v, op==TK_NOTNULL);
3698       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3699       sqlite3VdbeJumpHere(v, addr);
3700       break;
3701     }
3702     case TK_AGG_FUNCTION: {
3703       AggInfo *pInfo = pExpr->pAggInfo;
3704       if( pInfo==0 ){
3705         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3706         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3707       }else{
3708         return pInfo->aFunc[pExpr->iAgg].iMem;
3709       }
3710       break;
3711     }
3712     case TK_FUNCTION: {
3713       ExprList *pFarg;       /* List of function arguments */
3714       int nFarg;             /* Number of function arguments */
3715       FuncDef *pDef;         /* The function definition object */
3716       const char *zId;       /* The function name */
3717       u32 constMask = 0;     /* Mask of function arguments that are constant */
3718       int i;                 /* Loop counter */
3719       sqlite3 *db = pParse->db;  /* The database connection */
3720       u8 enc = ENC(db);      /* The text encoding used by this database */
3721       CollSeq *pColl = 0;    /* A collating sequence */
3722 
3723 #ifndef SQLITE_OMIT_WINDOWFUNC
3724       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3725         return pExpr->y.pWin->regResult;
3726       }
3727 #endif
3728 
3729       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3730         /* SQL functions can be expensive. So try to move constant functions
3731         ** out of the inner loop, even if that means an extra OP_Copy. */
3732         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3733       }
3734       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3735       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3736         pFarg = 0;
3737       }else{
3738         pFarg = pExpr->x.pList;
3739       }
3740       nFarg = pFarg ? pFarg->nExpr : 0;
3741       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3742       zId = pExpr->u.zToken;
3743       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3744 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3745       if( pDef==0 && pParse->explain ){
3746         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3747       }
3748 #endif
3749       if( pDef==0 || pDef->xFinalize!=0 ){
3750         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3751         break;
3752       }
3753 
3754       /* Attempt a direct implementation of the built-in COALESCE() and
3755       ** IFNULL() functions.  This avoids unnecessary evaluation of
3756       ** arguments past the first non-NULL argument.
3757       */
3758       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3759         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3760         assert( nFarg>=2 );
3761         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3762         for(i=1; i<nFarg; i++){
3763           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3764           VdbeCoverage(v);
3765           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3766         }
3767         sqlite3VdbeResolveLabel(v, endCoalesce);
3768         break;
3769       }
3770 
3771       /* The UNLIKELY() function is a no-op.  The result is the value
3772       ** of the first argument.
3773       */
3774       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3775         assert( nFarg>=1 );
3776         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3777       }
3778 
3779 #ifdef SQLITE_DEBUG
3780       /* The AFFINITY() function evaluates to a string that describes
3781       ** the type affinity of the argument.  This is used for testing of
3782       ** the SQLite type logic.
3783       */
3784       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3785         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3786         char aff;
3787         assert( nFarg==1 );
3788         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3789         sqlite3VdbeLoadString(v, target,
3790                 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3791         return target;
3792       }
3793 #endif
3794 
3795       for(i=0; i<nFarg; i++){
3796         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3797           testcase( i==31 );
3798           constMask |= MASKBIT32(i);
3799         }
3800         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3801           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3802         }
3803       }
3804       if( pFarg ){
3805         if( constMask ){
3806           r1 = pParse->nMem+1;
3807           pParse->nMem += nFarg;
3808         }else{
3809           r1 = sqlite3GetTempRange(pParse, nFarg);
3810         }
3811 
3812         /* For length() and typeof() functions with a column argument,
3813         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3814         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3815         ** loading.
3816         */
3817         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3818           u8 exprOp;
3819           assert( nFarg==1 );
3820           assert( pFarg->a[0].pExpr!=0 );
3821           exprOp = pFarg->a[0].pExpr->op;
3822           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3823             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3824             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3825             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3826             pFarg->a[0].pExpr->op2 =
3827                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3828           }
3829         }
3830 
3831         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3832                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3833       }else{
3834         r1 = 0;
3835       }
3836 #ifndef SQLITE_OMIT_VIRTUALTABLE
3837       /* Possibly overload the function if the first argument is
3838       ** a virtual table column.
3839       **
3840       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3841       ** second argument, not the first, as the argument to test to
3842       ** see if it is a column in a virtual table.  This is done because
3843       ** the left operand of infix functions (the operand we want to
3844       ** control overloading) ends up as the second argument to the
3845       ** function.  The expression "A glob B" is equivalent to
3846       ** "glob(B,A).  We want to use the A in "A glob B" to test
3847       ** for function overloading.  But we use the B term in "glob(B,A)".
3848       */
3849       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3850         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3851       }else if( nFarg>0 ){
3852         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3853       }
3854 #endif
3855       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3856         if( !pColl ) pColl = db->pDfltColl;
3857         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3858       }
3859 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3860       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3861         Expr *pArg = pFarg->a[0].pExpr;
3862         if( pArg->op==TK_COLUMN ){
3863           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3864         }else{
3865           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3866         }
3867       }else
3868 #endif
3869       {
3870         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3871                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3872         sqlite3VdbeChangeP5(v, (u8)nFarg);
3873       }
3874       if( nFarg && constMask==0 ){
3875         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3876       }
3877       return target;
3878     }
3879 #ifndef SQLITE_OMIT_SUBQUERY
3880     case TK_EXISTS:
3881     case TK_SELECT: {
3882       int nCol;
3883       testcase( op==TK_EXISTS );
3884       testcase( op==TK_SELECT );
3885       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3886         sqlite3SubselectError(pParse, nCol, 1);
3887       }else{
3888         return sqlite3CodeSubselect(pParse, pExpr);
3889       }
3890       break;
3891     }
3892     case TK_SELECT_COLUMN: {
3893       int n;
3894       if( pExpr->pLeft->iTable==0 ){
3895         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
3896       }
3897       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3898       if( pExpr->iTable
3899        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3900       ){
3901         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3902                                 pExpr->iTable, n);
3903       }
3904       return pExpr->pLeft->iTable + pExpr->iColumn;
3905     }
3906     case TK_IN: {
3907       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
3908       int destIfNull = sqlite3VdbeMakeLabel(pParse);
3909       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3910       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3911       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3912       sqlite3VdbeResolveLabel(v, destIfFalse);
3913       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3914       sqlite3VdbeResolveLabel(v, destIfNull);
3915       return target;
3916     }
3917 #endif /* SQLITE_OMIT_SUBQUERY */
3918 
3919 
3920     /*
3921     **    x BETWEEN y AND z
3922     **
3923     ** This is equivalent to
3924     **
3925     **    x>=y AND x<=z
3926     **
3927     ** X is stored in pExpr->pLeft.
3928     ** Y is stored in pExpr->pList->a[0].pExpr.
3929     ** Z is stored in pExpr->pList->a[1].pExpr.
3930     */
3931     case TK_BETWEEN: {
3932       exprCodeBetween(pParse, pExpr, target, 0, 0);
3933       return target;
3934     }
3935     case TK_SPAN:
3936     case TK_COLLATE:
3937     case TK_UPLUS: {
3938       pExpr = pExpr->pLeft;
3939       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3940     }
3941 
3942     case TK_TRIGGER: {
3943       /* If the opcode is TK_TRIGGER, then the expression is a reference
3944       ** to a column in the new.* or old.* pseudo-tables available to
3945       ** trigger programs. In this case Expr.iTable is set to 1 for the
3946       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3947       ** is set to the column of the pseudo-table to read, or to -1 to
3948       ** read the rowid field.
3949       **
3950       ** The expression is implemented using an OP_Param opcode. The p1
3951       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3952       ** to reference another column of the old.* pseudo-table, where
3953       ** i is the index of the column. For a new.rowid reference, p1 is
3954       ** set to (n+1), where n is the number of columns in each pseudo-table.
3955       ** For a reference to any other column in the new.* pseudo-table, p1
3956       ** is set to (n+2+i), where n and i are as defined previously. For
3957       ** example, if the table on which triggers are being fired is
3958       ** declared as:
3959       **
3960       **   CREATE TABLE t1(a, b);
3961       **
3962       ** Then p1 is interpreted as follows:
3963       **
3964       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3965       **   p1==1   ->    old.a         p1==4   ->    new.a
3966       **   p1==2   ->    old.b         p1==5   ->    new.b
3967       */
3968       Table *pTab = pExpr->y.pTab;
3969       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3970 
3971       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3972       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3973       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3974       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3975 
3976       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3977       VdbeComment((v, "r[%d]=%s.%s", target,
3978         (pExpr->iTable ? "new" : "old"),
3979         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
3980       ));
3981 
3982 #ifndef SQLITE_OMIT_FLOATING_POINT
3983       /* If the column has REAL affinity, it may currently be stored as an
3984       ** integer. Use OP_RealAffinity to make sure it is really real.
3985       **
3986       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3987       ** floating point when extracting it from the record.  */
3988       if( pExpr->iColumn>=0
3989        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3990       ){
3991         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3992       }
3993 #endif
3994       break;
3995     }
3996 
3997     case TK_VECTOR: {
3998       sqlite3ErrorMsg(pParse, "row value misused");
3999       break;
4000     }
4001 
4002     case TK_IF_NULL_ROW: {
4003       int addrINR;
4004       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4005       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4006       sqlite3VdbeJumpHere(v, addrINR);
4007       sqlite3VdbeChangeP3(v, addrINR, inReg);
4008       break;
4009     }
4010 
4011     /*
4012     ** Form A:
4013     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4014     **
4015     ** Form B:
4016     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4017     **
4018     ** Form A is can be transformed into the equivalent form B as follows:
4019     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4020     **        WHEN x=eN THEN rN ELSE y END
4021     **
4022     ** X (if it exists) is in pExpr->pLeft.
4023     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4024     ** odd.  The Y is also optional.  If the number of elements in x.pList
4025     ** is even, then Y is omitted and the "otherwise" result is NULL.
4026     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4027     **
4028     ** The result of the expression is the Ri for the first matching Ei,
4029     ** or if there is no matching Ei, the ELSE term Y, or if there is
4030     ** no ELSE term, NULL.
4031     */
4032     default: assert( op==TK_CASE ); {
4033       int endLabel;                     /* GOTO label for end of CASE stmt */
4034       int nextCase;                     /* GOTO label for next WHEN clause */
4035       int nExpr;                        /* 2x number of WHEN terms */
4036       int i;                            /* Loop counter */
4037       ExprList *pEList;                 /* List of WHEN terms */
4038       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4039       Expr opCompare;                   /* The X==Ei expression */
4040       Expr *pX;                         /* The X expression */
4041       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4042       Expr *pDel = 0;
4043       sqlite3 *db = pParse->db;
4044 
4045       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4046       assert(pExpr->x.pList->nExpr > 0);
4047       pEList = pExpr->x.pList;
4048       aListelem = pEList->a;
4049       nExpr = pEList->nExpr;
4050       endLabel = sqlite3VdbeMakeLabel(pParse);
4051       if( (pX = pExpr->pLeft)!=0 ){
4052         pDel = sqlite3ExprDup(db, pX, 0);
4053         if( db->mallocFailed ){
4054           sqlite3ExprDelete(db, pDel);
4055           break;
4056         }
4057         testcase( pX->op==TK_COLUMN );
4058         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4059         testcase( regFree1==0 );
4060         memset(&opCompare, 0, sizeof(opCompare));
4061         opCompare.op = TK_EQ;
4062         opCompare.pLeft = pDel;
4063         pTest = &opCompare;
4064         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4065         ** The value in regFree1 might get SCopy-ed into the file result.
4066         ** So make sure that the regFree1 register is not reused for other
4067         ** purposes and possibly overwritten.  */
4068         regFree1 = 0;
4069       }
4070       for(i=0; i<nExpr-1; i=i+2){
4071         if( pX ){
4072           assert( pTest!=0 );
4073           opCompare.pRight = aListelem[i].pExpr;
4074         }else{
4075           pTest = aListelem[i].pExpr;
4076         }
4077         nextCase = sqlite3VdbeMakeLabel(pParse);
4078         testcase( pTest->op==TK_COLUMN );
4079         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4080         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4081         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4082         sqlite3VdbeGoto(v, endLabel);
4083         sqlite3VdbeResolveLabel(v, nextCase);
4084       }
4085       if( (nExpr&1)!=0 ){
4086         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4087       }else{
4088         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4089       }
4090       sqlite3ExprDelete(db, pDel);
4091       sqlite3VdbeResolveLabel(v, endLabel);
4092       break;
4093     }
4094 #ifndef SQLITE_OMIT_TRIGGER
4095     case TK_RAISE: {
4096       assert( pExpr->affExpr==OE_Rollback
4097            || pExpr->affExpr==OE_Abort
4098            || pExpr->affExpr==OE_Fail
4099            || pExpr->affExpr==OE_Ignore
4100       );
4101       if( !pParse->pTriggerTab ){
4102         sqlite3ErrorMsg(pParse,
4103                        "RAISE() may only be used within a trigger-program");
4104         return 0;
4105       }
4106       if( pExpr->affExpr==OE_Abort ){
4107         sqlite3MayAbort(pParse);
4108       }
4109       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4110       if( pExpr->affExpr==OE_Ignore ){
4111         sqlite3VdbeAddOp4(
4112             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4113         VdbeCoverage(v);
4114       }else{
4115         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4116                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4117       }
4118 
4119       break;
4120     }
4121 #endif
4122   }
4123   sqlite3ReleaseTempReg(pParse, regFree1);
4124   sqlite3ReleaseTempReg(pParse, regFree2);
4125   return inReg;
4126 }
4127 
4128 /*
4129 ** Factor out the code of the given expression to initialization time.
4130 **
4131 ** If regDest>=0 then the result is always stored in that register and the
4132 ** result is not reusable.  If regDest<0 then this routine is free to
4133 ** store the value whereever it wants.  The register where the expression
4134 ** is stored is returned.  When regDest<0, two identical expressions will
4135 ** code to the same register.
4136 */
4137 int sqlite3ExprCodeAtInit(
4138   Parse *pParse,    /* Parsing context */
4139   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4140   int regDest       /* Store the value in this register */
4141 ){
4142   ExprList *p;
4143   assert( ConstFactorOk(pParse) );
4144   p = pParse->pConstExpr;
4145   if( regDest<0 && p ){
4146     struct ExprList_item *pItem;
4147     int i;
4148     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4149       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4150         return pItem->u.iConstExprReg;
4151       }
4152     }
4153   }
4154   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4155   p = sqlite3ExprListAppend(pParse, p, pExpr);
4156   if( p ){
4157      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4158      pItem->reusable = regDest<0;
4159      if( regDest<0 ) regDest = ++pParse->nMem;
4160      pItem->u.iConstExprReg = regDest;
4161   }
4162   pParse->pConstExpr = p;
4163   return regDest;
4164 }
4165 
4166 /*
4167 ** Generate code to evaluate an expression and store the results
4168 ** into a register.  Return the register number where the results
4169 ** are stored.
4170 **
4171 ** If the register is a temporary register that can be deallocated,
4172 ** then write its number into *pReg.  If the result register is not
4173 ** a temporary, then set *pReg to zero.
4174 **
4175 ** If pExpr is a constant, then this routine might generate this
4176 ** code to fill the register in the initialization section of the
4177 ** VDBE program, in order to factor it out of the evaluation loop.
4178 */
4179 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4180   int r2;
4181   pExpr = sqlite3ExprSkipCollate(pExpr);
4182   if( ConstFactorOk(pParse)
4183    && pExpr->op!=TK_REGISTER
4184    && sqlite3ExprIsConstantNotJoin(pExpr)
4185   ){
4186     *pReg  = 0;
4187     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4188   }else{
4189     int r1 = sqlite3GetTempReg(pParse);
4190     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4191     if( r2==r1 ){
4192       *pReg = r1;
4193     }else{
4194       sqlite3ReleaseTempReg(pParse, r1);
4195       *pReg = 0;
4196     }
4197   }
4198   return r2;
4199 }
4200 
4201 /*
4202 ** Generate code that will evaluate expression pExpr and store the
4203 ** results in register target.  The results are guaranteed to appear
4204 ** in register target.
4205 */
4206 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4207   int inReg;
4208 
4209   assert( target>0 && target<=pParse->nMem );
4210   if( pExpr && pExpr->op==TK_REGISTER ){
4211     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4212   }else{
4213     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4214     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4215     if( inReg!=target && pParse->pVdbe ){
4216       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4217     }
4218   }
4219 }
4220 
4221 /*
4222 ** Make a transient copy of expression pExpr and then code it using
4223 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4224 ** except that the input expression is guaranteed to be unchanged.
4225 */
4226 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4227   sqlite3 *db = pParse->db;
4228   pExpr = sqlite3ExprDup(db, pExpr, 0);
4229   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4230   sqlite3ExprDelete(db, pExpr);
4231 }
4232 
4233 /*
4234 ** Generate code that will evaluate expression pExpr and store the
4235 ** results in register target.  The results are guaranteed to appear
4236 ** in register target.  If the expression is constant, then this routine
4237 ** might choose to code the expression at initialization time.
4238 */
4239 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4240   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4241     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4242   }else{
4243     sqlite3ExprCode(pParse, pExpr, target);
4244   }
4245 }
4246 
4247 /*
4248 ** Generate code that evaluates the given expression and puts the result
4249 ** in register target.
4250 **
4251 ** Also make a copy of the expression results into another "cache" register
4252 ** and modify the expression so that the next time it is evaluated,
4253 ** the result is a copy of the cache register.
4254 **
4255 ** This routine is used for expressions that are used multiple
4256 ** times.  They are evaluated once and the results of the expression
4257 ** are reused.
4258 */
4259 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4260   Vdbe *v = pParse->pVdbe;
4261   int iMem;
4262 
4263   assert( target>0 );
4264   assert( pExpr->op!=TK_REGISTER );
4265   sqlite3ExprCode(pParse, pExpr, target);
4266   iMem = ++pParse->nMem;
4267   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4268   exprToRegister(pExpr, iMem);
4269 }
4270 
4271 /*
4272 ** Generate code that pushes the value of every element of the given
4273 ** expression list into a sequence of registers beginning at target.
4274 **
4275 ** Return the number of elements evaluated.  The number returned will
4276 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4277 ** is defined.
4278 **
4279 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4280 ** filled using OP_SCopy.  OP_Copy must be used instead.
4281 **
4282 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4283 ** factored out into initialization code.
4284 **
4285 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4286 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4287 ** in registers at srcReg, and so the value can be copied from there.
4288 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4289 ** are simply omitted rather than being copied from srcReg.
4290 */
4291 int sqlite3ExprCodeExprList(
4292   Parse *pParse,     /* Parsing context */
4293   ExprList *pList,   /* The expression list to be coded */
4294   int target,        /* Where to write results */
4295   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4296   u8 flags           /* SQLITE_ECEL_* flags */
4297 ){
4298   struct ExprList_item *pItem;
4299   int i, j, n;
4300   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4301   Vdbe *v = pParse->pVdbe;
4302   assert( pList!=0 );
4303   assert( target>0 );
4304   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4305   n = pList->nExpr;
4306   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4307   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4308     Expr *pExpr = pItem->pExpr;
4309 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4310     if( pItem->bSorterRef ){
4311       i--;
4312       n--;
4313     }else
4314 #endif
4315     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4316       if( flags & SQLITE_ECEL_OMITREF ){
4317         i--;
4318         n--;
4319       }else{
4320         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4321       }
4322     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4323            && sqlite3ExprIsConstantNotJoin(pExpr)
4324     ){
4325       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4326     }else{
4327       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4328       if( inReg!=target+i ){
4329         VdbeOp *pOp;
4330         if( copyOp==OP_Copy
4331          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4332          && pOp->p1+pOp->p3+1==inReg
4333          && pOp->p2+pOp->p3+1==target+i
4334         ){
4335           pOp->p3++;
4336         }else{
4337           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4338         }
4339       }
4340     }
4341   }
4342   return n;
4343 }
4344 
4345 /*
4346 ** Generate code for a BETWEEN operator.
4347 **
4348 **    x BETWEEN y AND z
4349 **
4350 ** The above is equivalent to
4351 **
4352 **    x>=y AND x<=z
4353 **
4354 ** Code it as such, taking care to do the common subexpression
4355 ** elimination of x.
4356 **
4357 ** The xJumpIf parameter determines details:
4358 **
4359 **    NULL:                   Store the boolean result in reg[dest]
4360 **    sqlite3ExprIfTrue:      Jump to dest if true
4361 **    sqlite3ExprIfFalse:     Jump to dest if false
4362 **
4363 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4364 */
4365 static void exprCodeBetween(
4366   Parse *pParse,    /* Parsing and code generating context */
4367   Expr *pExpr,      /* The BETWEEN expression */
4368   int dest,         /* Jump destination or storage location */
4369   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4370   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4371 ){
4372   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4373   Expr compLeft;    /* The  x>=y  term */
4374   Expr compRight;   /* The  x<=z  term */
4375   int regFree1 = 0; /* Temporary use register */
4376   Expr *pDel = 0;
4377   sqlite3 *db = pParse->db;
4378 
4379   memset(&compLeft, 0, sizeof(Expr));
4380   memset(&compRight, 0, sizeof(Expr));
4381   memset(&exprAnd, 0, sizeof(Expr));
4382 
4383   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4384   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4385   if( db->mallocFailed==0 ){
4386     exprAnd.op = TK_AND;
4387     exprAnd.pLeft = &compLeft;
4388     exprAnd.pRight = &compRight;
4389     compLeft.op = TK_GE;
4390     compLeft.pLeft = pDel;
4391     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4392     compRight.op = TK_LE;
4393     compRight.pLeft = pDel;
4394     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4395     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4396     if( xJump ){
4397       xJump(pParse, &exprAnd, dest, jumpIfNull);
4398     }else{
4399       /* Mark the expression is being from the ON or USING clause of a join
4400       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4401       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4402       ** for clarity, but we are out of bits in the Expr.flags field so we
4403       ** have to reuse the EP_FromJoin bit.  Bummer. */
4404       pDel->flags |= EP_FromJoin;
4405       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4406     }
4407     sqlite3ReleaseTempReg(pParse, regFree1);
4408   }
4409   sqlite3ExprDelete(db, pDel);
4410 
4411   /* Ensure adequate test coverage */
4412   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4413   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4414   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4415   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4416   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4417   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4418   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4419   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4420   testcase( xJump==0 );
4421 }
4422 
4423 /*
4424 ** Generate code for a boolean expression such that a jump is made
4425 ** to the label "dest" if the expression is true but execution
4426 ** continues straight thru if the expression is false.
4427 **
4428 ** If the expression evaluates to NULL (neither true nor false), then
4429 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4430 **
4431 ** This code depends on the fact that certain token values (ex: TK_EQ)
4432 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4433 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4434 ** the make process cause these values to align.  Assert()s in the code
4435 ** below verify that the numbers are aligned correctly.
4436 */
4437 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4438   Vdbe *v = pParse->pVdbe;
4439   int op = 0;
4440   int regFree1 = 0;
4441   int regFree2 = 0;
4442   int r1, r2;
4443 
4444   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4445   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4446   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4447   op = pExpr->op;
4448   switch( op ){
4449     case TK_AND:
4450     case TK_OR: {
4451       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4452       if( pAlt!=pExpr ){
4453         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4454       }else if( op==TK_AND ){
4455         int d2 = sqlite3VdbeMakeLabel(pParse);
4456         testcase( jumpIfNull==0 );
4457         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4458                            jumpIfNull^SQLITE_JUMPIFNULL);
4459         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4460         sqlite3VdbeResolveLabel(v, d2);
4461       }else{
4462         testcase( jumpIfNull==0 );
4463         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4464         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4465       }
4466       break;
4467     }
4468     case TK_NOT: {
4469       testcase( jumpIfNull==0 );
4470       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4471       break;
4472     }
4473     case TK_TRUTH: {
4474       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4475       int isTrue;     /* IS TRUE or IS NOT TRUE */
4476       testcase( jumpIfNull==0 );
4477       isNot = pExpr->op2==TK_ISNOT;
4478       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4479       testcase( isTrue && isNot );
4480       testcase( !isTrue && isNot );
4481       if( isTrue ^ isNot ){
4482         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4483                           isNot ? SQLITE_JUMPIFNULL : 0);
4484       }else{
4485         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4486                            isNot ? SQLITE_JUMPIFNULL : 0);
4487       }
4488       break;
4489     }
4490     case TK_IS:
4491     case TK_ISNOT:
4492       testcase( op==TK_IS );
4493       testcase( op==TK_ISNOT );
4494       op = (op==TK_IS) ? TK_EQ : TK_NE;
4495       jumpIfNull = SQLITE_NULLEQ;
4496       /* Fall thru */
4497     case TK_LT:
4498     case TK_LE:
4499     case TK_GT:
4500     case TK_GE:
4501     case TK_NE:
4502     case TK_EQ: {
4503       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4504       testcase( jumpIfNull==0 );
4505       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4506       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4507       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4508                   r1, r2, dest, jumpIfNull);
4509       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4510       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4511       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4512       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4513       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4514       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4515       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4516       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4517       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4518       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4519       testcase( regFree1==0 );
4520       testcase( regFree2==0 );
4521       break;
4522     }
4523     case TK_ISNULL:
4524     case TK_NOTNULL: {
4525       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4526       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4527       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4528       sqlite3VdbeAddOp2(v, op, r1, dest);
4529       VdbeCoverageIf(v, op==TK_ISNULL);
4530       VdbeCoverageIf(v, op==TK_NOTNULL);
4531       testcase( regFree1==0 );
4532       break;
4533     }
4534     case TK_BETWEEN: {
4535       testcase( jumpIfNull==0 );
4536       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4537       break;
4538     }
4539 #ifndef SQLITE_OMIT_SUBQUERY
4540     case TK_IN: {
4541       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4542       int destIfNull = jumpIfNull ? dest : destIfFalse;
4543       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4544       sqlite3VdbeGoto(v, dest);
4545       sqlite3VdbeResolveLabel(v, destIfFalse);
4546       break;
4547     }
4548 #endif
4549     default: {
4550     default_expr:
4551       if( ExprAlwaysTrue(pExpr) ){
4552         sqlite3VdbeGoto(v, dest);
4553       }else if( ExprAlwaysFalse(pExpr) ){
4554         /* No-op */
4555       }else{
4556         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4557         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4558         VdbeCoverage(v);
4559         testcase( regFree1==0 );
4560         testcase( jumpIfNull==0 );
4561       }
4562       break;
4563     }
4564   }
4565   sqlite3ReleaseTempReg(pParse, regFree1);
4566   sqlite3ReleaseTempReg(pParse, regFree2);
4567 }
4568 
4569 /*
4570 ** Generate code for a boolean expression such that a jump is made
4571 ** to the label "dest" if the expression is false but execution
4572 ** continues straight thru if the expression is true.
4573 **
4574 ** If the expression evaluates to NULL (neither true nor false) then
4575 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4576 ** is 0.
4577 */
4578 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4579   Vdbe *v = pParse->pVdbe;
4580   int op = 0;
4581   int regFree1 = 0;
4582   int regFree2 = 0;
4583   int r1, r2;
4584 
4585   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4586   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4587   if( pExpr==0 )    return;
4588 
4589   /* The value of pExpr->op and op are related as follows:
4590   **
4591   **       pExpr->op            op
4592   **       ---------          ----------
4593   **       TK_ISNULL          OP_NotNull
4594   **       TK_NOTNULL         OP_IsNull
4595   **       TK_NE              OP_Eq
4596   **       TK_EQ              OP_Ne
4597   **       TK_GT              OP_Le
4598   **       TK_LE              OP_Gt
4599   **       TK_GE              OP_Lt
4600   **       TK_LT              OP_Ge
4601   **
4602   ** For other values of pExpr->op, op is undefined and unused.
4603   ** The value of TK_ and OP_ constants are arranged such that we
4604   ** can compute the mapping above using the following expression.
4605   ** Assert()s verify that the computation is correct.
4606   */
4607   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4608 
4609   /* Verify correct alignment of TK_ and OP_ constants
4610   */
4611   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4612   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4613   assert( pExpr->op!=TK_NE || op==OP_Eq );
4614   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4615   assert( pExpr->op!=TK_LT || op==OP_Ge );
4616   assert( pExpr->op!=TK_LE || op==OP_Gt );
4617   assert( pExpr->op!=TK_GT || op==OP_Le );
4618   assert( pExpr->op!=TK_GE || op==OP_Lt );
4619 
4620   switch( pExpr->op ){
4621     case TK_AND:
4622     case TK_OR: {
4623       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4624       if( pAlt!=pExpr ){
4625         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4626       }else if( pExpr->op==TK_AND ){
4627         testcase( jumpIfNull==0 );
4628         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4629         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4630       }else{
4631         int d2 = sqlite3VdbeMakeLabel(pParse);
4632         testcase( jumpIfNull==0 );
4633         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4634                           jumpIfNull^SQLITE_JUMPIFNULL);
4635         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4636         sqlite3VdbeResolveLabel(v, d2);
4637       }
4638       break;
4639     }
4640     case TK_NOT: {
4641       testcase( jumpIfNull==0 );
4642       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4643       break;
4644     }
4645     case TK_TRUTH: {
4646       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4647       int isTrue;  /* IS TRUE or IS NOT TRUE */
4648       testcase( jumpIfNull==0 );
4649       isNot = pExpr->op2==TK_ISNOT;
4650       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4651       testcase( isTrue && isNot );
4652       testcase( !isTrue && isNot );
4653       if( isTrue ^ isNot ){
4654         /* IS TRUE and IS NOT FALSE */
4655         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4656                            isNot ? 0 : SQLITE_JUMPIFNULL);
4657 
4658       }else{
4659         /* IS FALSE and IS NOT TRUE */
4660         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4661                           isNot ? 0 : SQLITE_JUMPIFNULL);
4662       }
4663       break;
4664     }
4665     case TK_IS:
4666     case TK_ISNOT:
4667       testcase( pExpr->op==TK_IS );
4668       testcase( pExpr->op==TK_ISNOT );
4669       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4670       jumpIfNull = SQLITE_NULLEQ;
4671       /* Fall thru */
4672     case TK_LT:
4673     case TK_LE:
4674     case TK_GT:
4675     case TK_GE:
4676     case TK_NE:
4677     case TK_EQ: {
4678       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4679       testcase( jumpIfNull==0 );
4680       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4681       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4682       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4683                   r1, r2, dest, jumpIfNull);
4684       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4685       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4686       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4687       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4688       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4689       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4690       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4691       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4692       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4693       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4694       testcase( regFree1==0 );
4695       testcase( regFree2==0 );
4696       break;
4697     }
4698     case TK_ISNULL:
4699     case TK_NOTNULL: {
4700       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4701       sqlite3VdbeAddOp2(v, op, r1, dest);
4702       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4703       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4704       testcase( regFree1==0 );
4705       break;
4706     }
4707     case TK_BETWEEN: {
4708       testcase( jumpIfNull==0 );
4709       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4710       break;
4711     }
4712 #ifndef SQLITE_OMIT_SUBQUERY
4713     case TK_IN: {
4714       if( jumpIfNull ){
4715         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4716       }else{
4717         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4718         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4719         sqlite3VdbeResolveLabel(v, destIfNull);
4720       }
4721       break;
4722     }
4723 #endif
4724     default: {
4725     default_expr:
4726       if( ExprAlwaysFalse(pExpr) ){
4727         sqlite3VdbeGoto(v, dest);
4728       }else if( ExprAlwaysTrue(pExpr) ){
4729         /* no-op */
4730       }else{
4731         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4732         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4733         VdbeCoverage(v);
4734         testcase( regFree1==0 );
4735         testcase( jumpIfNull==0 );
4736       }
4737       break;
4738     }
4739   }
4740   sqlite3ReleaseTempReg(pParse, regFree1);
4741   sqlite3ReleaseTempReg(pParse, regFree2);
4742 }
4743 
4744 /*
4745 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4746 ** code generation, and that copy is deleted after code generation. This
4747 ** ensures that the original pExpr is unchanged.
4748 */
4749 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4750   sqlite3 *db = pParse->db;
4751   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4752   if( db->mallocFailed==0 ){
4753     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4754   }
4755   sqlite3ExprDelete(db, pCopy);
4756 }
4757 
4758 /*
4759 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4760 ** type of expression.
4761 **
4762 ** If pExpr is a simple SQL value - an integer, real, string, blob
4763 ** or NULL value - then the VDBE currently being prepared is configured
4764 ** to re-prepare each time a new value is bound to variable pVar.
4765 **
4766 ** Additionally, if pExpr is a simple SQL value and the value is the
4767 ** same as that currently bound to variable pVar, non-zero is returned.
4768 ** Otherwise, if the values are not the same or if pExpr is not a simple
4769 ** SQL value, zero is returned.
4770 */
4771 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4772   int res = 0;
4773   int iVar;
4774   sqlite3_value *pL, *pR = 0;
4775 
4776   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4777   if( pR ){
4778     iVar = pVar->iColumn;
4779     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4780     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4781     if( pL ){
4782       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4783         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4784       }
4785       res =  0==sqlite3MemCompare(pL, pR, 0);
4786     }
4787     sqlite3ValueFree(pR);
4788     sqlite3ValueFree(pL);
4789   }
4790 
4791   return res;
4792 }
4793 
4794 /*
4795 ** Do a deep comparison of two expression trees.  Return 0 if the two
4796 ** expressions are completely identical.  Return 1 if they differ only
4797 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4798 ** other than the top-level COLLATE operator.
4799 **
4800 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4801 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4802 **
4803 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4804 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4805 **
4806 ** Sometimes this routine will return 2 even if the two expressions
4807 ** really are equivalent.  If we cannot prove that the expressions are
4808 ** identical, we return 2 just to be safe.  So if this routine
4809 ** returns 2, then you do not really know for certain if the two
4810 ** expressions are the same.  But if you get a 0 or 1 return, then you
4811 ** can be sure the expressions are the same.  In the places where
4812 ** this routine is used, it does not hurt to get an extra 2 - that
4813 ** just might result in some slightly slower code.  But returning
4814 ** an incorrect 0 or 1 could lead to a malfunction.
4815 **
4816 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4817 ** pParse->pReprepare can be matched against literals in pB.  The
4818 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4819 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4820 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4821 ** pB causes a return value of 2.
4822 */
4823 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4824   u32 combinedFlags;
4825   if( pA==0 || pB==0 ){
4826     return pB==pA ? 0 : 2;
4827   }
4828   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4829     return 0;
4830   }
4831   combinedFlags = pA->flags | pB->flags;
4832   if( combinedFlags & EP_IntValue ){
4833     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4834       return 0;
4835     }
4836     return 2;
4837   }
4838   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4839     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4840       return 1;
4841     }
4842     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4843       return 1;
4844     }
4845     return 2;
4846   }
4847   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4848     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
4849       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4850 #ifndef SQLITE_OMIT_WINDOWFUNC
4851       assert( pA->op==pB->op );
4852       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
4853         return 2;
4854       }
4855       if( ExprHasProperty(pA,EP_WinFunc) ){
4856         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
4857           return 2;
4858         }
4859       }
4860 #endif
4861     }else if( pA->op==TK_NULL ){
4862       return 0;
4863     }else if( pA->op==TK_COLLATE ){
4864       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4865     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4866       return 2;
4867     }
4868   }
4869   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4870   if( (combinedFlags & EP_TokenOnly)==0 ){
4871     if( combinedFlags & EP_xIsSelect ) return 2;
4872     if( (combinedFlags & EP_FixedCol)==0
4873      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4874     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4875     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4876     if( pA->op!=TK_STRING
4877      && pA->op!=TK_TRUEFALSE
4878      && (combinedFlags & EP_Reduced)==0
4879     ){
4880       if( pA->iColumn!=pB->iColumn ) return 2;
4881       if( pA->op2!=pB->op2 ) return 2;
4882       if( pA->iTable!=pB->iTable
4883        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4884     }
4885   }
4886   return 0;
4887 }
4888 
4889 /*
4890 ** Compare two ExprList objects.  Return 0 if they are identical and
4891 ** non-zero if they differ in any way.
4892 **
4893 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4894 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4895 **
4896 ** This routine might return non-zero for equivalent ExprLists.  The
4897 ** only consequence will be disabled optimizations.  But this routine
4898 ** must never return 0 if the two ExprList objects are different, or
4899 ** a malfunction will result.
4900 **
4901 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4902 ** always differs from a non-NULL pointer.
4903 */
4904 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4905   int i;
4906   if( pA==0 && pB==0 ) return 0;
4907   if( pA==0 || pB==0 ) return 1;
4908   if( pA->nExpr!=pB->nExpr ) return 1;
4909   for(i=0; i<pA->nExpr; i++){
4910     Expr *pExprA = pA->a[i].pExpr;
4911     Expr *pExprB = pB->a[i].pExpr;
4912     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4913     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4914   }
4915   return 0;
4916 }
4917 
4918 /*
4919 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4920 ** are ignored.
4921 */
4922 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4923   return sqlite3ExprCompare(0,
4924              sqlite3ExprSkipCollate(pA),
4925              sqlite3ExprSkipCollate(pB),
4926              iTab);
4927 }
4928 
4929 /*
4930 ** Return non-zero if Expr p can only be true if pNN is not NULL.
4931 */
4932 static int exprImpliesNotNull(
4933   Parse *pParse,      /* Parsing context */
4934   Expr *p,            /* The expression to be checked */
4935   Expr *pNN,          /* The expression that is NOT NULL */
4936   int iTab,           /* Table being evaluated */
4937   int seenNot         /* True if p is an operand of NOT */
4938 ){
4939   assert( p );
4940   assert( pNN );
4941   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
4942     return pNN->op!=TK_NULL;
4943   }
4944   switch( p->op ){
4945     case TK_IN: {
4946       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
4947       assert( ExprHasProperty(p,EP_xIsSelect)
4948            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
4949       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4950     }
4951     case TK_BETWEEN: {
4952       ExprList *pList = p->x.pList;
4953       assert( pList!=0 );
4954       assert( pList->nExpr==2 );
4955       if( seenNot ) return 0;
4956       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, seenNot)
4957        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, seenNot)
4958       ){
4959         return 1;
4960       }
4961       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4962     }
4963     case TK_EQ:
4964     case TK_NE:
4965     case TK_LT:
4966     case TK_LE:
4967     case TK_GT:
4968     case TK_GE:
4969     case TK_PLUS:
4970     case TK_MINUS:
4971     case TK_STAR:
4972     case TK_REM:
4973     case TK_BITAND:
4974     case TK_BITOR:
4975     case TK_SLASH:
4976     case TK_LSHIFT:
4977     case TK_RSHIFT:
4978     case TK_CONCAT: {
4979       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
4980       /* Fall thru into the next case */
4981     }
4982     case TK_SPAN:
4983     case TK_COLLATE:
4984     case TK_BITNOT:
4985     case TK_UPLUS:
4986     case TK_UMINUS: {
4987       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4988     }
4989     case TK_TRUTH: {
4990       if( seenNot ) return 0;
4991       if( p->op2!=TK_IS ) return 0;
4992       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
4993     }
4994     case TK_NOT: {
4995       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
4996     }
4997   }
4998   return 0;
4999 }
5000 
5001 /*
5002 ** Return true if we can prove the pE2 will always be true if pE1 is
5003 ** true.  Return false if we cannot complete the proof or if pE2 might
5004 ** be false.  Examples:
5005 **
5006 **     pE1: x==5       pE2: x==5             Result: true
5007 **     pE1: x>0        pE2: x==5             Result: false
5008 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5009 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5010 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5011 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5012 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5013 **
5014 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5015 ** Expr.iTable<0 then assume a table number given by iTab.
5016 **
5017 ** If pParse is not NULL, then the values of bound variables in pE1 are
5018 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5019 ** modified to record which bound variables are referenced.  If pParse
5020 ** is NULL, then false will be returned if pE1 contains any bound variables.
5021 **
5022 ** When in doubt, return false.  Returning true might give a performance
5023 ** improvement.  Returning false might cause a performance reduction, but
5024 ** it will always give the correct answer and is hence always safe.
5025 */
5026 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5027   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5028     return 1;
5029   }
5030   if( pE2->op==TK_OR
5031    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5032              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5033   ){
5034     return 1;
5035   }
5036   if( pE2->op==TK_NOTNULL
5037    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5038   ){
5039     return 1;
5040   }
5041   return 0;
5042 }
5043 
5044 /*
5045 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5046 ** If the expression node requires that the table at pWalker->iCur
5047 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5048 **
5049 ** This routine controls an optimization.  False positives (setting
5050 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5051 ** (never setting pWalker->eCode) is a harmless missed optimization.
5052 */
5053 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5054   testcase( pExpr->op==TK_AGG_COLUMN );
5055   testcase( pExpr->op==TK_AGG_FUNCTION );
5056   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5057   switch( pExpr->op ){
5058     case TK_ISNOT:
5059     case TK_NOT:
5060     case TK_ISNULL:
5061     case TK_NOTNULL:
5062     case TK_IS:
5063     case TK_OR:
5064     case TK_CASE:
5065     case TK_IN:
5066     case TK_FUNCTION:
5067       testcase( pExpr->op==TK_ISNOT );
5068       testcase( pExpr->op==TK_NOT );
5069       testcase( pExpr->op==TK_ISNULL );
5070       testcase( pExpr->op==TK_NOTNULL );
5071       testcase( pExpr->op==TK_IS );
5072       testcase( pExpr->op==TK_OR );
5073       testcase( pExpr->op==TK_CASE );
5074       testcase( pExpr->op==TK_IN );
5075       testcase( pExpr->op==TK_FUNCTION );
5076       return WRC_Prune;
5077     case TK_COLUMN:
5078       if( pWalker->u.iCur==pExpr->iTable ){
5079         pWalker->eCode = 1;
5080         return WRC_Abort;
5081       }
5082       return WRC_Prune;
5083 
5084     /* Virtual tables are allowed to use constraints like x=NULL.  So
5085     ** a term of the form x=y does not prove that y is not null if x
5086     ** is the column of a virtual table */
5087     case TK_EQ:
5088     case TK_NE:
5089     case TK_LT:
5090     case TK_LE:
5091     case TK_GT:
5092     case TK_GE:
5093       testcase( pExpr->op==TK_EQ );
5094       testcase( pExpr->op==TK_NE );
5095       testcase( pExpr->op==TK_LT );
5096       testcase( pExpr->op==TK_LE );
5097       testcase( pExpr->op==TK_GT );
5098       testcase( pExpr->op==TK_GE );
5099       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5100        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5101       ){
5102        return WRC_Prune;
5103       }
5104     default:
5105       return WRC_Continue;
5106   }
5107 }
5108 
5109 /*
5110 ** Return true (non-zero) if expression p can only be true if at least
5111 ** one column of table iTab is non-null.  In other words, return true
5112 ** if expression p will always be NULL or false if every column of iTab
5113 ** is NULL.
5114 **
5115 ** False negatives are acceptable.  In other words, it is ok to return
5116 ** zero even if expression p will never be true of every column of iTab
5117 ** is NULL.  A false negative is merely a missed optimization opportunity.
5118 **
5119 ** False positives are not allowed, however.  A false positive may result
5120 ** in an incorrect answer.
5121 **
5122 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5123 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5124 **
5125 ** This routine is used to check if a LEFT JOIN can be converted into
5126 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5127 ** clause requires that some column of the right table of the LEFT JOIN
5128 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5129 ** ordinary join.
5130 */
5131 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5132   Walker w;
5133   p = sqlite3ExprSkipCollate(p);
5134   while( p ){
5135     if( p->op==TK_NOTNULL ){
5136       p = p->pLeft;
5137     }else if( p->op==TK_AND ){
5138       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5139       p = p->pRight;
5140     }else{
5141       break;
5142     }
5143   }
5144   w.xExprCallback = impliesNotNullRow;
5145   w.xSelectCallback = 0;
5146   w.xSelectCallback2 = 0;
5147   w.eCode = 0;
5148   w.u.iCur = iTab;
5149   sqlite3WalkExpr(&w, p);
5150   return w.eCode;
5151 }
5152 
5153 /*
5154 ** An instance of the following structure is used by the tree walker
5155 ** to determine if an expression can be evaluated by reference to the
5156 ** index only, without having to do a search for the corresponding
5157 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5158 ** is the cursor for the table.
5159 */
5160 struct IdxCover {
5161   Index *pIdx;     /* The index to be tested for coverage */
5162   int iCur;        /* Cursor number for the table corresponding to the index */
5163 };
5164 
5165 /*
5166 ** Check to see if there are references to columns in table
5167 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5168 ** pWalker->u.pIdxCover->pIdx.
5169 */
5170 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5171   if( pExpr->op==TK_COLUMN
5172    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5173    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5174   ){
5175     pWalker->eCode = 1;
5176     return WRC_Abort;
5177   }
5178   return WRC_Continue;
5179 }
5180 
5181 /*
5182 ** Determine if an index pIdx on table with cursor iCur contains will
5183 ** the expression pExpr.  Return true if the index does cover the
5184 ** expression and false if the pExpr expression references table columns
5185 ** that are not found in the index pIdx.
5186 **
5187 ** An index covering an expression means that the expression can be
5188 ** evaluated using only the index and without having to lookup the
5189 ** corresponding table entry.
5190 */
5191 int sqlite3ExprCoveredByIndex(
5192   Expr *pExpr,        /* The index to be tested */
5193   int iCur,           /* The cursor number for the corresponding table */
5194   Index *pIdx         /* The index that might be used for coverage */
5195 ){
5196   Walker w;
5197   struct IdxCover xcov;
5198   memset(&w, 0, sizeof(w));
5199   xcov.iCur = iCur;
5200   xcov.pIdx = pIdx;
5201   w.xExprCallback = exprIdxCover;
5202   w.u.pIdxCover = &xcov;
5203   sqlite3WalkExpr(&w, pExpr);
5204   return !w.eCode;
5205 }
5206 
5207 
5208 /*
5209 ** An instance of the following structure is used by the tree walker
5210 ** to count references to table columns in the arguments of an
5211 ** aggregate function, in order to implement the
5212 ** sqlite3FunctionThisSrc() routine.
5213 */
5214 struct SrcCount {
5215   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5216   int nThis;       /* Number of references to columns in pSrcList */
5217   int nOther;      /* Number of references to columns in other FROM clauses */
5218 };
5219 
5220 /*
5221 ** Count the number of references to columns.
5222 */
5223 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5224   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5225   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5226   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5227   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5228   ** NEVER() will need to be removed. */
5229   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5230     int i;
5231     struct SrcCount *p = pWalker->u.pSrcCount;
5232     SrcList *pSrc = p->pSrc;
5233     int nSrc = pSrc ? pSrc->nSrc : 0;
5234     for(i=0; i<nSrc; i++){
5235       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5236     }
5237     if( i<nSrc ){
5238       p->nThis++;
5239     }else{
5240       p->nOther++;
5241     }
5242   }
5243   return WRC_Continue;
5244 }
5245 
5246 /*
5247 ** Determine if any of the arguments to the pExpr Function reference
5248 ** pSrcList.  Return true if they do.  Also return true if the function
5249 ** has no arguments or has only constant arguments.  Return false if pExpr
5250 ** references columns but not columns of tables found in pSrcList.
5251 */
5252 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5253   Walker w;
5254   struct SrcCount cnt;
5255   assert( pExpr->op==TK_AGG_FUNCTION );
5256   w.xExprCallback = exprSrcCount;
5257   w.xSelectCallback = 0;
5258   w.u.pSrcCount = &cnt;
5259   cnt.pSrc = pSrcList;
5260   cnt.nThis = 0;
5261   cnt.nOther = 0;
5262   sqlite3WalkExprList(&w, pExpr->x.pList);
5263   return cnt.nThis>0 || cnt.nOther==0;
5264 }
5265 
5266 /*
5267 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5268 ** the new element.  Return a negative number if malloc fails.
5269 */
5270 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5271   int i;
5272   pInfo->aCol = sqlite3ArrayAllocate(
5273        db,
5274        pInfo->aCol,
5275        sizeof(pInfo->aCol[0]),
5276        &pInfo->nColumn,
5277        &i
5278   );
5279   return i;
5280 }
5281 
5282 /*
5283 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5284 ** the new element.  Return a negative number if malloc fails.
5285 */
5286 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5287   int i;
5288   pInfo->aFunc = sqlite3ArrayAllocate(
5289        db,
5290        pInfo->aFunc,
5291        sizeof(pInfo->aFunc[0]),
5292        &pInfo->nFunc,
5293        &i
5294   );
5295   return i;
5296 }
5297 
5298 /*
5299 ** This is the xExprCallback for a tree walker.  It is used to
5300 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5301 ** for additional information.
5302 */
5303 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5304   int i;
5305   NameContext *pNC = pWalker->u.pNC;
5306   Parse *pParse = pNC->pParse;
5307   SrcList *pSrcList = pNC->pSrcList;
5308   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5309 
5310   assert( pNC->ncFlags & NC_UAggInfo );
5311   switch( pExpr->op ){
5312     case TK_AGG_COLUMN:
5313     case TK_COLUMN: {
5314       testcase( pExpr->op==TK_AGG_COLUMN );
5315       testcase( pExpr->op==TK_COLUMN );
5316       /* Check to see if the column is in one of the tables in the FROM
5317       ** clause of the aggregate query */
5318       if( ALWAYS(pSrcList!=0) ){
5319         struct SrcList_item *pItem = pSrcList->a;
5320         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5321           struct AggInfo_col *pCol;
5322           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5323           if( pExpr->iTable==pItem->iCursor ){
5324             /* If we reach this point, it means that pExpr refers to a table
5325             ** that is in the FROM clause of the aggregate query.
5326             **
5327             ** Make an entry for the column in pAggInfo->aCol[] if there
5328             ** is not an entry there already.
5329             */
5330             int k;
5331             pCol = pAggInfo->aCol;
5332             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5333               if( pCol->iTable==pExpr->iTable &&
5334                   pCol->iColumn==pExpr->iColumn ){
5335                 break;
5336               }
5337             }
5338             if( (k>=pAggInfo->nColumn)
5339              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5340             ){
5341               pCol = &pAggInfo->aCol[k];
5342               pCol->pTab = pExpr->y.pTab;
5343               pCol->iTable = pExpr->iTable;
5344               pCol->iColumn = pExpr->iColumn;
5345               pCol->iMem = ++pParse->nMem;
5346               pCol->iSorterColumn = -1;
5347               pCol->pExpr = pExpr;
5348               if( pAggInfo->pGroupBy ){
5349                 int j, n;
5350                 ExprList *pGB = pAggInfo->pGroupBy;
5351                 struct ExprList_item *pTerm = pGB->a;
5352                 n = pGB->nExpr;
5353                 for(j=0; j<n; j++, pTerm++){
5354                   Expr *pE = pTerm->pExpr;
5355                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5356                       pE->iColumn==pExpr->iColumn ){
5357                     pCol->iSorterColumn = j;
5358                     break;
5359                   }
5360                 }
5361               }
5362               if( pCol->iSorterColumn<0 ){
5363                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5364               }
5365             }
5366             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5367             ** because it was there before or because we just created it).
5368             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5369             ** pAggInfo->aCol[] entry.
5370             */
5371             ExprSetVVAProperty(pExpr, EP_NoReduce);
5372             pExpr->pAggInfo = pAggInfo;
5373             pExpr->op = TK_AGG_COLUMN;
5374             pExpr->iAgg = (i16)k;
5375             break;
5376           } /* endif pExpr->iTable==pItem->iCursor */
5377         } /* end loop over pSrcList */
5378       }
5379       return WRC_Prune;
5380     }
5381     case TK_AGG_FUNCTION: {
5382       if( (pNC->ncFlags & NC_InAggFunc)==0
5383        && pWalker->walkerDepth==pExpr->op2
5384       ){
5385         /* Check to see if pExpr is a duplicate of another aggregate
5386         ** function that is already in the pAggInfo structure
5387         */
5388         struct AggInfo_func *pItem = pAggInfo->aFunc;
5389         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5390           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5391             break;
5392           }
5393         }
5394         if( i>=pAggInfo->nFunc ){
5395           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5396           */
5397           u8 enc = ENC(pParse->db);
5398           i = addAggInfoFunc(pParse->db, pAggInfo);
5399           if( i>=0 ){
5400             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5401             pItem = &pAggInfo->aFunc[i];
5402             pItem->pExpr = pExpr;
5403             pItem->iMem = ++pParse->nMem;
5404             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5405             pItem->pFunc = sqlite3FindFunction(pParse->db,
5406                    pExpr->u.zToken,
5407                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5408             if( pExpr->flags & EP_Distinct ){
5409               pItem->iDistinct = pParse->nTab++;
5410             }else{
5411               pItem->iDistinct = -1;
5412             }
5413           }
5414         }
5415         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5416         */
5417         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5418         ExprSetVVAProperty(pExpr, EP_NoReduce);
5419         pExpr->iAgg = (i16)i;
5420         pExpr->pAggInfo = pAggInfo;
5421         return WRC_Prune;
5422       }else{
5423         return WRC_Continue;
5424       }
5425     }
5426   }
5427   return WRC_Continue;
5428 }
5429 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5430   UNUSED_PARAMETER(pSelect);
5431   pWalker->walkerDepth++;
5432   return WRC_Continue;
5433 }
5434 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5435   UNUSED_PARAMETER(pSelect);
5436   pWalker->walkerDepth--;
5437 }
5438 
5439 /*
5440 ** Analyze the pExpr expression looking for aggregate functions and
5441 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5442 ** points to.  Additional entries are made on the AggInfo object as
5443 ** necessary.
5444 **
5445 ** This routine should only be called after the expression has been
5446 ** analyzed by sqlite3ResolveExprNames().
5447 */
5448 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5449   Walker w;
5450   w.xExprCallback = analyzeAggregate;
5451   w.xSelectCallback = analyzeAggregatesInSelect;
5452   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5453   w.walkerDepth = 0;
5454   w.u.pNC = pNC;
5455   w.pParse = 0;
5456   assert( pNC->pSrcList!=0 );
5457   sqlite3WalkExpr(&w, pExpr);
5458 }
5459 
5460 /*
5461 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5462 ** expression list.  Return the number of errors.
5463 **
5464 ** If an error is found, the analysis is cut short.
5465 */
5466 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5467   struct ExprList_item *pItem;
5468   int i;
5469   if( pList ){
5470     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5471       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5472     }
5473   }
5474 }
5475 
5476 /*
5477 ** Allocate a single new register for use to hold some intermediate result.
5478 */
5479 int sqlite3GetTempReg(Parse *pParse){
5480   if( pParse->nTempReg==0 ){
5481     return ++pParse->nMem;
5482   }
5483   return pParse->aTempReg[--pParse->nTempReg];
5484 }
5485 
5486 /*
5487 ** Deallocate a register, making available for reuse for some other
5488 ** purpose.
5489 */
5490 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5491   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5492     pParse->aTempReg[pParse->nTempReg++] = iReg;
5493   }
5494 }
5495 
5496 /*
5497 ** Allocate or deallocate a block of nReg consecutive registers.
5498 */
5499 int sqlite3GetTempRange(Parse *pParse, int nReg){
5500   int i, n;
5501   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5502   i = pParse->iRangeReg;
5503   n = pParse->nRangeReg;
5504   if( nReg<=n ){
5505     pParse->iRangeReg += nReg;
5506     pParse->nRangeReg -= nReg;
5507   }else{
5508     i = pParse->nMem+1;
5509     pParse->nMem += nReg;
5510   }
5511   return i;
5512 }
5513 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5514   if( nReg==1 ){
5515     sqlite3ReleaseTempReg(pParse, iReg);
5516     return;
5517   }
5518   if( nReg>pParse->nRangeReg ){
5519     pParse->nRangeReg = nReg;
5520     pParse->iRangeReg = iReg;
5521   }
5522 }
5523 
5524 /*
5525 ** Mark all temporary registers as being unavailable for reuse.
5526 */
5527 void sqlite3ClearTempRegCache(Parse *pParse){
5528   pParse->nTempReg = 0;
5529   pParse->nRangeReg = 0;
5530 }
5531 
5532 /*
5533 ** Validate that no temporary register falls within the range of
5534 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5535 ** statements.
5536 */
5537 #ifdef SQLITE_DEBUG
5538 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5539   int i;
5540   if( pParse->nRangeReg>0
5541    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5542    && pParse->iRangeReg <= iLast
5543   ){
5544      return 0;
5545   }
5546   for(i=0; i<pParse->nTempReg; i++){
5547     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5548       return 0;
5549     }
5550   }
5551   return 1;
5552 }
5553 #endif /* SQLITE_DEBUG */
5554