1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 309 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 310 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 311 return aff; 312 } 313 314 /* 315 ** Return a pointer to the collation sequence that should be used by 316 ** a binary comparison operator comparing pLeft and pRight. 317 ** 318 ** If the left hand expression has a collating sequence type, then it is 319 ** used. Otherwise the collation sequence for the right hand expression 320 ** is used, or the default (BINARY) if neither expression has a collating 321 ** type. 322 ** 323 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 324 ** it is not considered. 325 */ 326 CollSeq *sqlite3BinaryCompareCollSeq( 327 Parse *pParse, 328 Expr *pLeft, 329 Expr *pRight 330 ){ 331 CollSeq *pColl; 332 assert( pLeft ); 333 if( pLeft->flags & EP_Collate ){ 334 pColl = sqlite3ExprCollSeq(pParse, pLeft); 335 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 336 pColl = sqlite3ExprCollSeq(pParse, pRight); 337 }else{ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 if( !pColl ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 } 342 } 343 return pColl; 344 } 345 346 /* Expresssion p is a comparison operator. Return a collation sequence 347 ** appropriate for the comparison operator. 348 ** 349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 350 ** However, if the OP_Commuted flag is set, then the order of the operands 351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 352 ** correct collating sequence is found. 353 */ 354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){ 355 if( ExprHasProperty(p, EP_Commuted) ){ 356 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 357 }else{ 358 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 359 } 360 } 361 362 /* 363 ** Generate code for a comparison operator. 364 */ 365 static int codeCompare( 366 Parse *pParse, /* The parsing (and code generating) context */ 367 Expr *pLeft, /* The left operand */ 368 Expr *pRight, /* The right operand */ 369 int opcode, /* The comparison opcode */ 370 int in1, int in2, /* Register holding operands */ 371 int dest, /* Jump here if true. */ 372 int jumpIfNull, /* If true, jump if either operand is NULL */ 373 int isCommuted /* The comparison has been commuted */ 374 ){ 375 int p5; 376 int addr; 377 CollSeq *p4; 378 379 if( isCommuted ){ 380 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 381 }else{ 382 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 383 } 384 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 385 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 386 (void*)p4, P4_COLLSEQ); 387 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 388 return addr; 389 } 390 391 /* 392 ** Return true if expression pExpr is a vector, or false otherwise. 393 ** 394 ** A vector is defined as any expression that results in two or more 395 ** columns of result. Every TK_VECTOR node is an vector because the 396 ** parser will not generate a TK_VECTOR with fewer than two entries. 397 ** But a TK_SELECT might be either a vector or a scalar. It is only 398 ** considered a vector if it has two or more result columns. 399 */ 400 int sqlite3ExprIsVector(Expr *pExpr){ 401 return sqlite3ExprVectorSize(pExpr)>1; 402 } 403 404 /* 405 ** If the expression passed as the only argument is of type TK_VECTOR 406 ** return the number of expressions in the vector. Or, if the expression 407 ** is a sub-select, return the number of columns in the sub-select. For 408 ** any other type of expression, return 1. 409 */ 410 int sqlite3ExprVectorSize(Expr *pExpr){ 411 u8 op = pExpr->op; 412 if( op==TK_REGISTER ) op = pExpr->op2; 413 if( op==TK_VECTOR ){ 414 return pExpr->x.pList->nExpr; 415 }else if( op==TK_SELECT ){ 416 return pExpr->x.pSelect->pEList->nExpr; 417 }else{ 418 return 1; 419 } 420 } 421 422 /* 423 ** Return a pointer to a subexpression of pVector that is the i-th 424 ** column of the vector (numbered starting with 0). The caller must 425 ** ensure that i is within range. 426 ** 427 ** If pVector is really a scalar (and "scalar" here includes subqueries 428 ** that return a single column!) then return pVector unmodified. 429 ** 430 ** pVector retains ownership of the returned subexpression. 431 ** 432 ** If the vector is a (SELECT ...) then the expression returned is 433 ** just the expression for the i-th term of the result set, and may 434 ** not be ready for evaluation because the table cursor has not yet 435 ** been positioned. 436 */ 437 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 438 assert( i<sqlite3ExprVectorSize(pVector) ); 439 if( sqlite3ExprIsVector(pVector) ){ 440 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 441 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 442 return pVector->x.pSelect->pEList->a[i].pExpr; 443 }else{ 444 return pVector->x.pList->a[i].pExpr; 445 } 446 } 447 return pVector; 448 } 449 450 /* 451 ** Compute and return a new Expr object which when passed to 452 ** sqlite3ExprCode() will generate all necessary code to compute 453 ** the iField-th column of the vector expression pVector. 454 ** 455 ** It is ok for pVector to be a scalar (as long as iField==0). 456 ** In that case, this routine works like sqlite3ExprDup(). 457 ** 458 ** The caller owns the returned Expr object and is responsible for 459 ** ensuring that the returned value eventually gets freed. 460 ** 461 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 462 ** then the returned object will reference pVector and so pVector must remain 463 ** valid for the life of the returned object. If pVector is a TK_VECTOR 464 ** or a scalar expression, then it can be deleted as soon as this routine 465 ** returns. 466 ** 467 ** A trick to cause a TK_SELECT pVector to be deleted together with 468 ** the returned Expr object is to attach the pVector to the pRight field 469 ** of the returned TK_SELECT_COLUMN Expr object. 470 */ 471 Expr *sqlite3ExprForVectorField( 472 Parse *pParse, /* Parsing context */ 473 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 474 int iField /* Which column of the vector to return */ 475 ){ 476 Expr *pRet; 477 if( pVector->op==TK_SELECT ){ 478 assert( pVector->flags & EP_xIsSelect ); 479 /* The TK_SELECT_COLUMN Expr node: 480 ** 481 ** pLeft: pVector containing TK_SELECT. Not deleted. 482 ** pRight: not used. But recursively deleted. 483 ** iColumn: Index of a column in pVector 484 ** iTable: 0 or the number of columns on the LHS of an assignment 485 ** pLeft->iTable: First in an array of register holding result, or 0 486 ** if the result is not yet computed. 487 ** 488 ** sqlite3ExprDelete() specifically skips the recursive delete of 489 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 490 ** can be attached to pRight to cause this node to take ownership of 491 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 492 ** with the same pLeft pointer to the pVector, but only one of them 493 ** will own the pVector. 494 */ 495 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 496 if( pRet ){ 497 pRet->iColumn = iField; 498 pRet->pLeft = pVector; 499 } 500 assert( pRet==0 || pRet->iTable==0 ); 501 }else{ 502 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 503 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 504 sqlite3RenameTokenRemap(pParse, pRet, pVector); 505 } 506 return pRet; 507 } 508 509 /* 510 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 511 ** it. Return the register in which the result is stored (or, if the 512 ** sub-select returns more than one column, the first in an array 513 ** of registers in which the result is stored). 514 ** 515 ** If pExpr is not a TK_SELECT expression, return 0. 516 */ 517 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 518 int reg = 0; 519 #ifndef SQLITE_OMIT_SUBQUERY 520 if( pExpr->op==TK_SELECT ){ 521 reg = sqlite3CodeSubselect(pParse, pExpr); 522 } 523 #endif 524 return reg; 525 } 526 527 /* 528 ** Argument pVector points to a vector expression - either a TK_VECTOR 529 ** or TK_SELECT that returns more than one column. This function returns 530 ** the register number of a register that contains the value of 531 ** element iField of the vector. 532 ** 533 ** If pVector is a TK_SELECT expression, then code for it must have 534 ** already been generated using the exprCodeSubselect() routine. In this 535 ** case parameter regSelect should be the first in an array of registers 536 ** containing the results of the sub-select. 537 ** 538 ** If pVector is of type TK_VECTOR, then code for the requested field 539 ** is generated. In this case (*pRegFree) may be set to the number of 540 ** a temporary register to be freed by the caller before returning. 541 ** 542 ** Before returning, output parameter (*ppExpr) is set to point to the 543 ** Expr object corresponding to element iElem of the vector. 544 */ 545 static int exprVectorRegister( 546 Parse *pParse, /* Parse context */ 547 Expr *pVector, /* Vector to extract element from */ 548 int iField, /* Field to extract from pVector */ 549 int regSelect, /* First in array of registers */ 550 Expr **ppExpr, /* OUT: Expression element */ 551 int *pRegFree /* OUT: Temp register to free */ 552 ){ 553 u8 op = pVector->op; 554 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 555 if( op==TK_REGISTER ){ 556 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 557 return pVector->iTable+iField; 558 } 559 if( op==TK_SELECT ){ 560 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 561 return regSelect+iField; 562 } 563 *ppExpr = pVector->x.pList->a[iField].pExpr; 564 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 565 } 566 567 /* 568 ** Expression pExpr is a comparison between two vector values. Compute 569 ** the result of the comparison (1, 0, or NULL) and write that 570 ** result into register dest. 571 ** 572 ** The caller must satisfy the following preconditions: 573 ** 574 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 575 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 576 ** otherwise: op==pExpr->op and p5==0 577 */ 578 static void codeVectorCompare( 579 Parse *pParse, /* Code generator context */ 580 Expr *pExpr, /* The comparison operation */ 581 int dest, /* Write results into this register */ 582 u8 op, /* Comparison operator */ 583 u8 p5 /* SQLITE_NULLEQ or zero */ 584 ){ 585 Vdbe *v = pParse->pVdbe; 586 Expr *pLeft = pExpr->pLeft; 587 Expr *pRight = pExpr->pRight; 588 int nLeft = sqlite3ExprVectorSize(pLeft); 589 int i; 590 int regLeft = 0; 591 int regRight = 0; 592 u8 opx = op; 593 int addrDone = sqlite3VdbeMakeLabel(pParse); 594 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 595 596 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 597 sqlite3ErrorMsg(pParse, "row value misused"); 598 return; 599 } 600 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 601 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 602 || pExpr->op==TK_LT || pExpr->op==TK_GT 603 || pExpr->op==TK_LE || pExpr->op==TK_GE 604 ); 605 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 606 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 607 assert( p5==0 || pExpr->op!=op ); 608 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 609 610 p5 |= SQLITE_STOREP2; 611 if( opx==TK_LE ) opx = TK_LT; 612 if( opx==TK_GE ) opx = TK_GT; 613 614 regLeft = exprCodeSubselect(pParse, pLeft); 615 regRight = exprCodeSubselect(pParse, pRight); 616 617 for(i=0; 1 /*Loop exits by "break"*/; i++){ 618 int regFree1 = 0, regFree2 = 0; 619 Expr *pL, *pR; 620 int r1, r2; 621 assert( i>=0 && i<nLeft ); 622 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 623 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 624 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 625 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 626 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 627 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 628 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 629 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 630 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 631 sqlite3ReleaseTempReg(pParse, regFree1); 632 sqlite3ReleaseTempReg(pParse, regFree2); 633 if( i==nLeft-1 ){ 634 break; 635 } 636 if( opx==TK_EQ ){ 637 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 638 p5 |= SQLITE_KEEPNULL; 639 }else if( opx==TK_NE ){ 640 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 641 p5 |= SQLITE_KEEPNULL; 642 }else{ 643 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 644 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 645 VdbeCoverageIf(v, op==TK_LT); 646 VdbeCoverageIf(v, op==TK_GT); 647 VdbeCoverageIf(v, op==TK_LE); 648 VdbeCoverageIf(v, op==TK_GE); 649 if( i==nLeft-2 ) opx = op; 650 } 651 } 652 sqlite3VdbeResolveLabel(v, addrDone); 653 } 654 655 #if SQLITE_MAX_EXPR_DEPTH>0 656 /* 657 ** Check that argument nHeight is less than or equal to the maximum 658 ** expression depth allowed. If it is not, leave an error message in 659 ** pParse. 660 */ 661 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 662 int rc = SQLITE_OK; 663 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 664 if( nHeight>mxHeight ){ 665 sqlite3ErrorMsg(pParse, 666 "Expression tree is too large (maximum depth %d)", mxHeight 667 ); 668 rc = SQLITE_ERROR; 669 } 670 return rc; 671 } 672 673 /* The following three functions, heightOfExpr(), heightOfExprList() 674 ** and heightOfSelect(), are used to determine the maximum height 675 ** of any expression tree referenced by the structure passed as the 676 ** first argument. 677 ** 678 ** If this maximum height is greater than the current value pointed 679 ** to by pnHeight, the second parameter, then set *pnHeight to that 680 ** value. 681 */ 682 static void heightOfExpr(Expr *p, int *pnHeight){ 683 if( p ){ 684 if( p->nHeight>*pnHeight ){ 685 *pnHeight = p->nHeight; 686 } 687 } 688 } 689 static void heightOfExprList(ExprList *p, int *pnHeight){ 690 if( p ){ 691 int i; 692 for(i=0; i<p->nExpr; i++){ 693 heightOfExpr(p->a[i].pExpr, pnHeight); 694 } 695 } 696 } 697 static void heightOfSelect(Select *pSelect, int *pnHeight){ 698 Select *p; 699 for(p=pSelect; p; p=p->pPrior){ 700 heightOfExpr(p->pWhere, pnHeight); 701 heightOfExpr(p->pHaving, pnHeight); 702 heightOfExpr(p->pLimit, pnHeight); 703 heightOfExprList(p->pEList, pnHeight); 704 heightOfExprList(p->pGroupBy, pnHeight); 705 heightOfExprList(p->pOrderBy, pnHeight); 706 } 707 } 708 709 /* 710 ** Set the Expr.nHeight variable in the structure passed as an 711 ** argument. An expression with no children, Expr.pList or 712 ** Expr.pSelect member has a height of 1. Any other expression 713 ** has a height equal to the maximum height of any other 714 ** referenced Expr plus one. 715 ** 716 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 717 ** if appropriate. 718 */ 719 static void exprSetHeight(Expr *p){ 720 int nHeight = 0; 721 heightOfExpr(p->pLeft, &nHeight); 722 heightOfExpr(p->pRight, &nHeight); 723 if( ExprHasProperty(p, EP_xIsSelect) ){ 724 heightOfSelect(p->x.pSelect, &nHeight); 725 }else if( p->x.pList ){ 726 heightOfExprList(p->x.pList, &nHeight); 727 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 728 } 729 p->nHeight = nHeight + 1; 730 } 731 732 /* 733 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 734 ** the height is greater than the maximum allowed expression depth, 735 ** leave an error in pParse. 736 ** 737 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 738 ** Expr.flags. 739 */ 740 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 741 if( pParse->nErr ) return; 742 exprSetHeight(p); 743 sqlite3ExprCheckHeight(pParse, p->nHeight); 744 } 745 746 /* 747 ** Return the maximum height of any expression tree referenced 748 ** by the select statement passed as an argument. 749 */ 750 int sqlite3SelectExprHeight(Select *p){ 751 int nHeight = 0; 752 heightOfSelect(p, &nHeight); 753 return nHeight; 754 } 755 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 756 /* 757 ** Propagate all EP_Propagate flags from the Expr.x.pList into 758 ** Expr.flags. 759 */ 760 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 761 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 762 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 763 } 764 } 765 #define exprSetHeight(y) 766 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 767 768 /* 769 ** This routine is the core allocator for Expr nodes. 770 ** 771 ** Construct a new expression node and return a pointer to it. Memory 772 ** for this node and for the pToken argument is a single allocation 773 ** obtained from sqlite3DbMalloc(). The calling function 774 ** is responsible for making sure the node eventually gets freed. 775 ** 776 ** If dequote is true, then the token (if it exists) is dequoted. 777 ** If dequote is false, no dequoting is performed. The deQuote 778 ** parameter is ignored if pToken is NULL or if the token does not 779 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 780 ** then the EP_DblQuoted flag is set on the expression node. 781 ** 782 ** Special case: If op==TK_INTEGER and pToken points to a string that 783 ** can be translated into a 32-bit integer, then the token is not 784 ** stored in u.zToken. Instead, the integer values is written 785 ** into u.iValue and the EP_IntValue flag is set. No extra storage 786 ** is allocated to hold the integer text and the dequote flag is ignored. 787 */ 788 Expr *sqlite3ExprAlloc( 789 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 790 int op, /* Expression opcode */ 791 const Token *pToken, /* Token argument. Might be NULL */ 792 int dequote /* True to dequote */ 793 ){ 794 Expr *pNew; 795 int nExtra = 0; 796 int iValue = 0; 797 798 assert( db!=0 ); 799 if( pToken ){ 800 if( op!=TK_INTEGER || pToken->z==0 801 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 802 nExtra = pToken->n+1; 803 assert( iValue>=0 ); 804 } 805 } 806 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 807 if( pNew ){ 808 memset(pNew, 0, sizeof(Expr)); 809 pNew->op = (u8)op; 810 pNew->iAgg = -1; 811 if( pToken ){ 812 if( nExtra==0 ){ 813 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 814 pNew->u.iValue = iValue; 815 }else{ 816 pNew->u.zToken = (char*)&pNew[1]; 817 assert( pToken->z!=0 || pToken->n==0 ); 818 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 819 pNew->u.zToken[pToken->n] = 0; 820 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 821 sqlite3DequoteExpr(pNew); 822 } 823 } 824 } 825 #if SQLITE_MAX_EXPR_DEPTH>0 826 pNew->nHeight = 1; 827 #endif 828 } 829 return pNew; 830 } 831 832 /* 833 ** Allocate a new expression node from a zero-terminated token that has 834 ** already been dequoted. 835 */ 836 Expr *sqlite3Expr( 837 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 838 int op, /* Expression opcode */ 839 const char *zToken /* Token argument. Might be NULL */ 840 ){ 841 Token x; 842 x.z = zToken; 843 x.n = sqlite3Strlen30(zToken); 844 return sqlite3ExprAlloc(db, op, &x, 0); 845 } 846 847 /* 848 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 849 ** 850 ** If pRoot==NULL that means that a memory allocation error has occurred. 851 ** In that case, delete the subtrees pLeft and pRight. 852 */ 853 void sqlite3ExprAttachSubtrees( 854 sqlite3 *db, 855 Expr *pRoot, 856 Expr *pLeft, 857 Expr *pRight 858 ){ 859 if( pRoot==0 ){ 860 assert( db->mallocFailed ); 861 sqlite3ExprDelete(db, pLeft); 862 sqlite3ExprDelete(db, pRight); 863 }else{ 864 if( pRight ){ 865 pRoot->pRight = pRight; 866 pRoot->flags |= EP_Propagate & pRight->flags; 867 } 868 if( pLeft ){ 869 pRoot->pLeft = pLeft; 870 pRoot->flags |= EP_Propagate & pLeft->flags; 871 } 872 exprSetHeight(pRoot); 873 } 874 } 875 876 /* 877 ** Allocate an Expr node which joins as many as two subtrees. 878 ** 879 ** One or both of the subtrees can be NULL. Return a pointer to the new 880 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 881 ** free the subtrees and return NULL. 882 */ 883 Expr *sqlite3PExpr( 884 Parse *pParse, /* Parsing context */ 885 int op, /* Expression opcode */ 886 Expr *pLeft, /* Left operand */ 887 Expr *pRight /* Right operand */ 888 ){ 889 Expr *p; 890 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 891 if( p ){ 892 memset(p, 0, sizeof(Expr)); 893 p->op = op & 0xff; 894 p->iAgg = -1; 895 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 896 sqlite3ExprCheckHeight(pParse, p->nHeight); 897 }else{ 898 sqlite3ExprDelete(pParse->db, pLeft); 899 sqlite3ExprDelete(pParse->db, pRight); 900 } 901 return p; 902 } 903 904 /* 905 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 906 ** do a memory allocation failure) then delete the pSelect object. 907 */ 908 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 909 if( pExpr ){ 910 pExpr->x.pSelect = pSelect; 911 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 912 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 913 }else{ 914 assert( pParse->db->mallocFailed ); 915 sqlite3SelectDelete(pParse->db, pSelect); 916 } 917 } 918 919 920 /* 921 ** Join two expressions using an AND operator. If either expression is 922 ** NULL, then just return the other expression. 923 ** 924 ** If one side or the other of the AND is known to be false, then instead 925 ** of returning an AND expression, just return a constant expression with 926 ** a value of false. 927 */ 928 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 929 sqlite3 *db = pParse->db; 930 if( pLeft==0 ){ 931 return pRight; 932 }else if( pRight==0 ){ 933 return pLeft; 934 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 935 sqlite3ExprUnmapAndDelete(pParse, pLeft); 936 sqlite3ExprUnmapAndDelete(pParse, pRight); 937 return sqlite3Expr(db, TK_INTEGER, "0"); 938 }else{ 939 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 940 } 941 } 942 943 /* 944 ** Construct a new expression node for a function with multiple 945 ** arguments. 946 */ 947 Expr *sqlite3ExprFunction( 948 Parse *pParse, /* Parsing context */ 949 ExprList *pList, /* Argument list */ 950 Token *pToken, /* Name of the function */ 951 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 952 ){ 953 Expr *pNew; 954 sqlite3 *db = pParse->db; 955 assert( pToken ); 956 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 957 if( pNew==0 ){ 958 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 959 return 0; 960 } 961 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 962 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 963 } 964 pNew->x.pList = pList; 965 ExprSetProperty(pNew, EP_HasFunc); 966 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 967 sqlite3ExprSetHeightAndFlags(pParse, pNew); 968 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 969 return pNew; 970 } 971 972 /* 973 ** Assign a variable number to an expression that encodes a wildcard 974 ** in the original SQL statement. 975 ** 976 ** Wildcards consisting of a single "?" are assigned the next sequential 977 ** variable number. 978 ** 979 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 980 ** sure "nnn" is not too big to avoid a denial of service attack when 981 ** the SQL statement comes from an external source. 982 ** 983 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 984 ** as the previous instance of the same wildcard. Or if this is the first 985 ** instance of the wildcard, the next sequential variable number is 986 ** assigned. 987 */ 988 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 989 sqlite3 *db = pParse->db; 990 const char *z; 991 ynVar x; 992 993 if( pExpr==0 ) return; 994 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 995 z = pExpr->u.zToken; 996 assert( z!=0 ); 997 assert( z[0]!=0 ); 998 assert( n==(u32)sqlite3Strlen30(z) ); 999 if( z[1]==0 ){ 1000 /* Wildcard of the form "?". Assign the next variable number */ 1001 assert( z[0]=='?' ); 1002 x = (ynVar)(++pParse->nVar); 1003 }else{ 1004 int doAdd = 0; 1005 if( z[0]=='?' ){ 1006 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1007 ** use it as the variable number */ 1008 i64 i; 1009 int bOk; 1010 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1011 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1012 bOk = 1; 1013 }else{ 1014 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1015 } 1016 testcase( i==0 ); 1017 testcase( i==1 ); 1018 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1019 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1020 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1021 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1022 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1023 return; 1024 } 1025 x = (ynVar)i; 1026 if( x>pParse->nVar ){ 1027 pParse->nVar = (int)x; 1028 doAdd = 1; 1029 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1030 doAdd = 1; 1031 } 1032 }else{ 1033 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1034 ** number as the prior appearance of the same name, or if the name 1035 ** has never appeared before, reuse the same variable number 1036 */ 1037 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1038 if( x==0 ){ 1039 x = (ynVar)(++pParse->nVar); 1040 doAdd = 1; 1041 } 1042 } 1043 if( doAdd ){ 1044 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1045 } 1046 } 1047 pExpr->iColumn = x; 1048 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1049 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1050 } 1051 } 1052 1053 /* 1054 ** Recursively delete an expression tree. 1055 */ 1056 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1057 assert( p!=0 ); 1058 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1059 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1060 1061 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1062 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1063 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1064 #ifdef SQLITE_DEBUG 1065 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1066 assert( p->pLeft==0 ); 1067 assert( p->pRight==0 ); 1068 assert( p->x.pSelect==0 ); 1069 } 1070 #endif 1071 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1072 /* The Expr.x union is never used at the same time as Expr.pRight */ 1073 assert( p->x.pList==0 || p->pRight==0 ); 1074 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1075 if( p->pRight ){ 1076 assert( !ExprHasProperty(p, EP_WinFunc) ); 1077 sqlite3ExprDeleteNN(db, p->pRight); 1078 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1079 assert( !ExprHasProperty(p, EP_WinFunc) ); 1080 sqlite3SelectDelete(db, p->x.pSelect); 1081 }else{ 1082 sqlite3ExprListDelete(db, p->x.pList); 1083 #ifndef SQLITE_OMIT_WINDOWFUNC 1084 if( ExprHasProperty(p, EP_WinFunc) ){ 1085 sqlite3WindowDelete(db, p->y.pWin); 1086 } 1087 #endif 1088 } 1089 } 1090 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1091 if( !ExprHasProperty(p, EP_Static) ){ 1092 sqlite3DbFreeNN(db, p); 1093 } 1094 } 1095 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1096 if( p ) sqlite3ExprDeleteNN(db, p); 1097 } 1098 1099 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1100 ** expression. 1101 */ 1102 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1103 if( p ){ 1104 if( IN_RENAME_OBJECT ){ 1105 sqlite3RenameExprUnmap(pParse, p); 1106 } 1107 sqlite3ExprDeleteNN(pParse->db, p); 1108 } 1109 } 1110 1111 /* 1112 ** Return the number of bytes allocated for the expression structure 1113 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1114 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1115 */ 1116 static int exprStructSize(Expr *p){ 1117 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1118 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1119 return EXPR_FULLSIZE; 1120 } 1121 1122 /* 1123 ** The dupedExpr*Size() routines each return the number of bytes required 1124 ** to store a copy of an expression or expression tree. They differ in 1125 ** how much of the tree is measured. 1126 ** 1127 ** dupedExprStructSize() Size of only the Expr structure 1128 ** dupedExprNodeSize() Size of Expr + space for token 1129 ** dupedExprSize() Expr + token + subtree components 1130 ** 1131 *************************************************************************** 1132 ** 1133 ** The dupedExprStructSize() function returns two values OR-ed together: 1134 ** (1) the space required for a copy of the Expr structure only and 1135 ** (2) the EP_xxx flags that indicate what the structure size should be. 1136 ** The return values is always one of: 1137 ** 1138 ** EXPR_FULLSIZE 1139 ** EXPR_REDUCEDSIZE | EP_Reduced 1140 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1141 ** 1142 ** The size of the structure can be found by masking the return value 1143 ** of this routine with 0xfff. The flags can be found by masking the 1144 ** return value with EP_Reduced|EP_TokenOnly. 1145 ** 1146 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1147 ** (unreduced) Expr objects as they or originally constructed by the parser. 1148 ** During expression analysis, extra information is computed and moved into 1149 ** later parts of the Expr object and that extra information might get chopped 1150 ** off if the expression is reduced. Note also that it does not work to 1151 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1152 ** to reduce a pristine expression tree from the parser. The implementation 1153 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1154 ** to enforce this constraint. 1155 */ 1156 static int dupedExprStructSize(Expr *p, int flags){ 1157 int nSize; 1158 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1159 assert( EXPR_FULLSIZE<=0xfff ); 1160 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1161 if( 0==flags || p->op==TK_SELECT_COLUMN 1162 #ifndef SQLITE_OMIT_WINDOWFUNC 1163 || ExprHasProperty(p, EP_WinFunc) 1164 #endif 1165 ){ 1166 nSize = EXPR_FULLSIZE; 1167 }else{ 1168 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1169 assert( !ExprHasProperty(p, EP_FromJoin) ); 1170 assert( !ExprHasProperty(p, EP_MemToken) ); 1171 assert( !ExprHasProperty(p, EP_NoReduce) ); 1172 if( p->pLeft || p->x.pList ){ 1173 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1174 }else{ 1175 assert( p->pRight==0 ); 1176 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1177 } 1178 } 1179 return nSize; 1180 } 1181 1182 /* 1183 ** This function returns the space in bytes required to store the copy 1184 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1185 ** string is defined.) 1186 */ 1187 static int dupedExprNodeSize(Expr *p, int flags){ 1188 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1189 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1190 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1191 } 1192 return ROUND8(nByte); 1193 } 1194 1195 /* 1196 ** Return the number of bytes required to create a duplicate of the 1197 ** expression passed as the first argument. The second argument is a 1198 ** mask containing EXPRDUP_XXX flags. 1199 ** 1200 ** The value returned includes space to create a copy of the Expr struct 1201 ** itself and the buffer referred to by Expr.u.zToken, if any. 1202 ** 1203 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1204 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1205 ** and Expr.pRight variables (but not for any structures pointed to or 1206 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1207 */ 1208 static int dupedExprSize(Expr *p, int flags){ 1209 int nByte = 0; 1210 if( p ){ 1211 nByte = dupedExprNodeSize(p, flags); 1212 if( flags&EXPRDUP_REDUCE ){ 1213 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1214 } 1215 } 1216 return nByte; 1217 } 1218 1219 /* 1220 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1221 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1222 ** to store the copy of expression p, the copies of p->u.zToken 1223 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1224 ** if any. Before returning, *pzBuffer is set to the first byte past the 1225 ** portion of the buffer copied into by this function. 1226 */ 1227 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1228 Expr *pNew; /* Value to return */ 1229 u8 *zAlloc; /* Memory space from which to build Expr object */ 1230 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1231 1232 assert( db!=0 ); 1233 assert( p ); 1234 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1235 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1236 1237 /* Figure out where to write the new Expr structure. */ 1238 if( pzBuffer ){ 1239 zAlloc = *pzBuffer; 1240 staticFlag = EP_Static; 1241 }else{ 1242 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1243 staticFlag = 0; 1244 } 1245 pNew = (Expr *)zAlloc; 1246 1247 if( pNew ){ 1248 /* Set nNewSize to the size allocated for the structure pointed to 1249 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1250 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1251 ** by the copy of the p->u.zToken string (if any). 1252 */ 1253 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1254 const int nNewSize = nStructSize & 0xfff; 1255 int nToken; 1256 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1257 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1258 }else{ 1259 nToken = 0; 1260 } 1261 if( dupFlags ){ 1262 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1263 memcpy(zAlloc, p, nNewSize); 1264 }else{ 1265 u32 nSize = (u32)exprStructSize(p); 1266 memcpy(zAlloc, p, nSize); 1267 if( nSize<EXPR_FULLSIZE ){ 1268 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1269 } 1270 } 1271 1272 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1273 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1274 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1275 pNew->flags |= staticFlag; 1276 1277 /* Copy the p->u.zToken string, if any. */ 1278 if( nToken ){ 1279 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1280 memcpy(zToken, p->u.zToken, nToken); 1281 } 1282 1283 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1284 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1285 if( ExprHasProperty(p, EP_xIsSelect) ){ 1286 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1287 }else{ 1288 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1289 } 1290 } 1291 1292 /* Fill in pNew->pLeft and pNew->pRight. */ 1293 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1294 zAlloc += dupedExprNodeSize(p, dupFlags); 1295 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1296 pNew->pLeft = p->pLeft ? 1297 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1298 pNew->pRight = p->pRight ? 1299 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1300 } 1301 #ifndef SQLITE_OMIT_WINDOWFUNC 1302 if( ExprHasProperty(p, EP_WinFunc) ){ 1303 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1304 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1305 } 1306 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1307 if( pzBuffer ){ 1308 *pzBuffer = zAlloc; 1309 } 1310 }else{ 1311 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1312 if( pNew->op==TK_SELECT_COLUMN ){ 1313 pNew->pLeft = p->pLeft; 1314 assert( p->iColumn==0 || p->pRight==0 ); 1315 assert( p->pRight==0 || p->pRight==p->pLeft ); 1316 }else{ 1317 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1318 } 1319 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1320 } 1321 } 1322 } 1323 return pNew; 1324 } 1325 1326 /* 1327 ** Create and return a deep copy of the object passed as the second 1328 ** argument. If an OOM condition is encountered, NULL is returned 1329 ** and the db->mallocFailed flag set. 1330 */ 1331 #ifndef SQLITE_OMIT_CTE 1332 static With *withDup(sqlite3 *db, With *p){ 1333 With *pRet = 0; 1334 if( p ){ 1335 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1336 pRet = sqlite3DbMallocZero(db, nByte); 1337 if( pRet ){ 1338 int i; 1339 pRet->nCte = p->nCte; 1340 for(i=0; i<p->nCte; i++){ 1341 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1342 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1343 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1344 } 1345 } 1346 } 1347 return pRet; 1348 } 1349 #else 1350 # define withDup(x,y) 0 1351 #endif 1352 1353 #ifndef SQLITE_OMIT_WINDOWFUNC 1354 /* 1355 ** The gatherSelectWindows() procedure and its helper routine 1356 ** gatherSelectWindowsCallback() are used to scan all the expressions 1357 ** an a newly duplicated SELECT statement and gather all of the Window 1358 ** objects found there, assembling them onto the linked list at Select->pWin. 1359 */ 1360 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1361 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1362 Select *pSelect = pWalker->u.pSelect; 1363 Window *pWin = pExpr->y.pWin; 1364 assert( pWin ); 1365 assert( IsWindowFunc(pExpr) ); 1366 assert( pWin->ppThis==0 ); 1367 sqlite3WindowLink(pSelect, pWin); 1368 } 1369 return WRC_Continue; 1370 } 1371 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1372 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1373 } 1374 static void gatherSelectWindows(Select *p){ 1375 Walker w; 1376 w.xExprCallback = gatherSelectWindowsCallback; 1377 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1378 w.xSelectCallback2 = 0; 1379 w.pParse = 0; 1380 w.u.pSelect = p; 1381 sqlite3WalkSelect(&w, p); 1382 } 1383 #endif 1384 1385 1386 /* 1387 ** The following group of routines make deep copies of expressions, 1388 ** expression lists, ID lists, and select statements. The copies can 1389 ** be deleted (by being passed to their respective ...Delete() routines) 1390 ** without effecting the originals. 1391 ** 1392 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1393 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1394 ** by subsequent calls to sqlite*ListAppend() routines. 1395 ** 1396 ** Any tables that the SrcList might point to are not duplicated. 1397 ** 1398 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1399 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1400 ** truncated version of the usual Expr structure that will be stored as 1401 ** part of the in-memory representation of the database schema. 1402 */ 1403 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1404 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1405 return p ? exprDup(db, p, flags, 0) : 0; 1406 } 1407 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1408 ExprList *pNew; 1409 struct ExprList_item *pItem, *pOldItem; 1410 int i; 1411 Expr *pPriorSelectCol = 0; 1412 assert( db!=0 ); 1413 if( p==0 ) return 0; 1414 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1415 if( pNew==0 ) return 0; 1416 pNew->nExpr = p->nExpr; 1417 pItem = pNew->a; 1418 pOldItem = p->a; 1419 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1420 Expr *pOldExpr = pOldItem->pExpr; 1421 Expr *pNewExpr; 1422 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1423 if( pOldExpr 1424 && pOldExpr->op==TK_SELECT_COLUMN 1425 && (pNewExpr = pItem->pExpr)!=0 1426 ){ 1427 assert( pNewExpr->iColumn==0 || i>0 ); 1428 if( pNewExpr->iColumn==0 ){ 1429 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1430 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1431 }else{ 1432 assert( i>0 ); 1433 assert( pItem[-1].pExpr!=0 ); 1434 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1435 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1436 pNewExpr->pLeft = pPriorSelectCol; 1437 } 1438 } 1439 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1440 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1441 pItem->sortFlags = pOldItem->sortFlags; 1442 pItem->done = 0; 1443 pItem->bNulls = pOldItem->bNulls; 1444 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1445 pItem->bSorterRef = pOldItem->bSorterRef; 1446 pItem->u = pOldItem->u; 1447 } 1448 return pNew; 1449 } 1450 1451 /* 1452 ** If cursors, triggers, views and subqueries are all omitted from 1453 ** the build, then none of the following routines, except for 1454 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1455 ** called with a NULL argument. 1456 */ 1457 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1458 || !defined(SQLITE_OMIT_SUBQUERY) 1459 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1460 SrcList *pNew; 1461 int i; 1462 int nByte; 1463 assert( db!=0 ); 1464 if( p==0 ) return 0; 1465 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1466 pNew = sqlite3DbMallocRawNN(db, nByte ); 1467 if( pNew==0 ) return 0; 1468 pNew->nSrc = pNew->nAlloc = p->nSrc; 1469 for(i=0; i<p->nSrc; i++){ 1470 struct SrcList_item *pNewItem = &pNew->a[i]; 1471 struct SrcList_item *pOldItem = &p->a[i]; 1472 Table *pTab; 1473 pNewItem->pSchema = pOldItem->pSchema; 1474 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1475 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1476 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1477 pNewItem->fg = pOldItem->fg; 1478 pNewItem->iCursor = pOldItem->iCursor; 1479 pNewItem->addrFillSub = pOldItem->addrFillSub; 1480 pNewItem->regReturn = pOldItem->regReturn; 1481 if( pNewItem->fg.isIndexedBy ){ 1482 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1483 } 1484 pNewItem->pIBIndex = pOldItem->pIBIndex; 1485 if( pNewItem->fg.isTabFunc ){ 1486 pNewItem->u1.pFuncArg = 1487 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1488 } 1489 pTab = pNewItem->pTab = pOldItem->pTab; 1490 if( pTab ){ 1491 pTab->nTabRef++; 1492 } 1493 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1494 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1495 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1496 pNewItem->colUsed = pOldItem->colUsed; 1497 } 1498 return pNew; 1499 } 1500 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1501 IdList *pNew; 1502 int i; 1503 assert( db!=0 ); 1504 if( p==0 ) return 0; 1505 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1506 if( pNew==0 ) return 0; 1507 pNew->nId = p->nId; 1508 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1509 if( pNew->a==0 ){ 1510 sqlite3DbFreeNN(db, pNew); 1511 return 0; 1512 } 1513 /* Note that because the size of the allocation for p->a[] is not 1514 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1515 ** on the duplicate created by this function. */ 1516 for(i=0; i<p->nId; i++){ 1517 struct IdList_item *pNewItem = &pNew->a[i]; 1518 struct IdList_item *pOldItem = &p->a[i]; 1519 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1520 pNewItem->idx = pOldItem->idx; 1521 } 1522 return pNew; 1523 } 1524 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1525 Select *pRet = 0; 1526 Select *pNext = 0; 1527 Select **pp = &pRet; 1528 Select *p; 1529 1530 assert( db!=0 ); 1531 for(p=pDup; p; p=p->pPrior){ 1532 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1533 if( pNew==0 ) break; 1534 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1535 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1536 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1537 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1538 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1539 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1540 pNew->op = p->op; 1541 pNew->pNext = pNext; 1542 pNew->pPrior = 0; 1543 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1544 pNew->iLimit = 0; 1545 pNew->iOffset = 0; 1546 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1547 pNew->addrOpenEphm[0] = -1; 1548 pNew->addrOpenEphm[1] = -1; 1549 pNew->nSelectRow = p->nSelectRow; 1550 pNew->pWith = withDup(db, p->pWith); 1551 #ifndef SQLITE_OMIT_WINDOWFUNC 1552 pNew->pWin = 0; 1553 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1554 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1555 #endif 1556 pNew->selId = p->selId; 1557 *pp = pNew; 1558 pp = &pNew->pPrior; 1559 pNext = pNew; 1560 } 1561 1562 return pRet; 1563 } 1564 #else 1565 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1566 assert( p==0 ); 1567 return 0; 1568 } 1569 #endif 1570 1571 1572 /* 1573 ** Add a new element to the end of an expression list. If pList is 1574 ** initially NULL, then create a new expression list. 1575 ** 1576 ** The pList argument must be either NULL or a pointer to an ExprList 1577 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1578 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1579 ** Reason: This routine assumes that the number of slots in pList->a[] 1580 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1581 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1582 ** 1583 ** If a memory allocation error occurs, the entire list is freed and 1584 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1585 ** that the new entry was successfully appended. 1586 */ 1587 ExprList *sqlite3ExprListAppend( 1588 Parse *pParse, /* Parsing context */ 1589 ExprList *pList, /* List to which to append. Might be NULL */ 1590 Expr *pExpr /* Expression to be appended. Might be NULL */ 1591 ){ 1592 struct ExprList_item *pItem; 1593 sqlite3 *db = pParse->db; 1594 assert( db!=0 ); 1595 if( pList==0 ){ 1596 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1597 if( pList==0 ){ 1598 goto no_mem; 1599 } 1600 pList->nExpr = 0; 1601 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1602 ExprList *pNew; 1603 pNew = sqlite3DbRealloc(db, pList, 1604 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1605 if( pNew==0 ){ 1606 goto no_mem; 1607 } 1608 pList = pNew; 1609 } 1610 pItem = &pList->a[pList->nExpr++]; 1611 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1612 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1613 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1614 pItem->pExpr = pExpr; 1615 return pList; 1616 1617 no_mem: 1618 /* Avoid leaking memory if malloc has failed. */ 1619 sqlite3ExprDelete(db, pExpr); 1620 sqlite3ExprListDelete(db, pList); 1621 return 0; 1622 } 1623 1624 /* 1625 ** pColumns and pExpr form a vector assignment which is part of the SET 1626 ** clause of an UPDATE statement. Like this: 1627 ** 1628 ** (a,b,c) = (expr1,expr2,expr3) 1629 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1630 ** 1631 ** For each term of the vector assignment, append new entries to the 1632 ** expression list pList. In the case of a subquery on the RHS, append 1633 ** TK_SELECT_COLUMN expressions. 1634 */ 1635 ExprList *sqlite3ExprListAppendVector( 1636 Parse *pParse, /* Parsing context */ 1637 ExprList *pList, /* List to which to append. Might be NULL */ 1638 IdList *pColumns, /* List of names of LHS of the assignment */ 1639 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1640 ){ 1641 sqlite3 *db = pParse->db; 1642 int n; 1643 int i; 1644 int iFirst = pList ? pList->nExpr : 0; 1645 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1646 ** exit prior to this routine being invoked */ 1647 if( NEVER(pColumns==0) ) goto vector_append_error; 1648 if( pExpr==0 ) goto vector_append_error; 1649 1650 /* If the RHS is a vector, then we can immediately check to see that 1651 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1652 ** wildcards ("*") in the result set of the SELECT must be expanded before 1653 ** we can do the size check, so defer the size check until code generation. 1654 */ 1655 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1656 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1657 pColumns->nId, n); 1658 goto vector_append_error; 1659 } 1660 1661 for(i=0; i<pColumns->nId; i++){ 1662 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1663 assert( pSubExpr!=0 || db->mallocFailed ); 1664 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1665 if( pSubExpr==0 ) continue; 1666 pSubExpr->iTable = pColumns->nId; 1667 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1668 if( pList ){ 1669 assert( pList->nExpr==iFirst+i+1 ); 1670 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1671 pColumns->a[i].zName = 0; 1672 } 1673 } 1674 1675 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1676 Expr *pFirst = pList->a[iFirst].pExpr; 1677 assert( pFirst!=0 ); 1678 assert( pFirst->op==TK_SELECT_COLUMN ); 1679 1680 /* Store the SELECT statement in pRight so it will be deleted when 1681 ** sqlite3ExprListDelete() is called */ 1682 pFirst->pRight = pExpr; 1683 pExpr = 0; 1684 1685 /* Remember the size of the LHS in iTable so that we can check that 1686 ** the RHS and LHS sizes match during code generation. */ 1687 pFirst->iTable = pColumns->nId; 1688 } 1689 1690 vector_append_error: 1691 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1692 sqlite3IdListDelete(db, pColumns); 1693 return pList; 1694 } 1695 1696 /* 1697 ** Set the sort order for the last element on the given ExprList. 1698 */ 1699 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1700 struct ExprList_item *pItem; 1701 if( p==0 ) return; 1702 assert( p->nExpr>0 ); 1703 1704 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1705 assert( iSortOrder==SQLITE_SO_UNDEFINED 1706 || iSortOrder==SQLITE_SO_ASC 1707 || iSortOrder==SQLITE_SO_DESC 1708 ); 1709 assert( eNulls==SQLITE_SO_UNDEFINED 1710 || eNulls==SQLITE_SO_ASC 1711 || eNulls==SQLITE_SO_DESC 1712 ); 1713 1714 pItem = &p->a[p->nExpr-1]; 1715 assert( pItem->bNulls==0 ); 1716 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1717 iSortOrder = SQLITE_SO_ASC; 1718 } 1719 pItem->sortFlags = (u8)iSortOrder; 1720 1721 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1722 pItem->bNulls = 1; 1723 if( iSortOrder!=eNulls ){ 1724 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1725 } 1726 } 1727 } 1728 1729 /* 1730 ** Set the ExprList.a[].zName element of the most recently added item 1731 ** on the expression list. 1732 ** 1733 ** pList might be NULL following an OOM error. But pName should never be 1734 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1735 ** is set. 1736 */ 1737 void sqlite3ExprListSetName( 1738 Parse *pParse, /* Parsing context */ 1739 ExprList *pList, /* List to which to add the span. */ 1740 Token *pName, /* Name to be added */ 1741 int dequote /* True to cause the name to be dequoted */ 1742 ){ 1743 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1744 if( pList ){ 1745 struct ExprList_item *pItem; 1746 assert( pList->nExpr>0 ); 1747 pItem = &pList->a[pList->nExpr-1]; 1748 assert( pItem->zName==0 ); 1749 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1750 if( dequote ) sqlite3Dequote(pItem->zName); 1751 if( IN_RENAME_OBJECT ){ 1752 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1753 } 1754 } 1755 } 1756 1757 /* 1758 ** Set the ExprList.a[].zSpan element of the most recently added item 1759 ** on the expression list. 1760 ** 1761 ** pList might be NULL following an OOM error. But pSpan should never be 1762 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1763 ** is set. 1764 */ 1765 void sqlite3ExprListSetSpan( 1766 Parse *pParse, /* Parsing context */ 1767 ExprList *pList, /* List to which to add the span. */ 1768 const char *zStart, /* Start of the span */ 1769 const char *zEnd /* End of the span */ 1770 ){ 1771 sqlite3 *db = pParse->db; 1772 assert( pList!=0 || db->mallocFailed!=0 ); 1773 if( pList ){ 1774 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1775 assert( pList->nExpr>0 ); 1776 sqlite3DbFree(db, pItem->zSpan); 1777 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1778 } 1779 } 1780 1781 /* 1782 ** If the expression list pEList contains more than iLimit elements, 1783 ** leave an error message in pParse. 1784 */ 1785 void sqlite3ExprListCheckLength( 1786 Parse *pParse, 1787 ExprList *pEList, 1788 const char *zObject 1789 ){ 1790 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1791 testcase( pEList && pEList->nExpr==mx ); 1792 testcase( pEList && pEList->nExpr==mx+1 ); 1793 if( pEList && pEList->nExpr>mx ){ 1794 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1795 } 1796 } 1797 1798 /* 1799 ** Delete an entire expression list. 1800 */ 1801 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1802 int i = pList->nExpr; 1803 struct ExprList_item *pItem = pList->a; 1804 assert( pList->nExpr>0 ); 1805 do{ 1806 sqlite3ExprDelete(db, pItem->pExpr); 1807 sqlite3DbFree(db, pItem->zName); 1808 sqlite3DbFree(db, pItem->zSpan); 1809 pItem++; 1810 }while( --i>0 ); 1811 sqlite3DbFreeNN(db, pList); 1812 } 1813 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1814 if( pList ) exprListDeleteNN(db, pList); 1815 } 1816 1817 /* 1818 ** Return the bitwise-OR of all Expr.flags fields in the given 1819 ** ExprList. 1820 */ 1821 u32 sqlite3ExprListFlags(const ExprList *pList){ 1822 int i; 1823 u32 m = 0; 1824 assert( pList!=0 ); 1825 for(i=0; i<pList->nExpr; i++){ 1826 Expr *pExpr = pList->a[i].pExpr; 1827 assert( pExpr!=0 ); 1828 m |= pExpr->flags; 1829 } 1830 return m; 1831 } 1832 1833 /* 1834 ** This is a SELECT-node callback for the expression walker that 1835 ** always "fails". By "fail" in this case, we mean set 1836 ** pWalker->eCode to zero and abort. 1837 ** 1838 ** This callback is used by multiple expression walkers. 1839 */ 1840 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1841 UNUSED_PARAMETER(NotUsed); 1842 pWalker->eCode = 0; 1843 return WRC_Abort; 1844 } 1845 1846 /* 1847 ** If the input expression is an ID with the name "true" or "false" 1848 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1849 ** the conversion happened, and zero if the expression is unaltered. 1850 */ 1851 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1852 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1853 if( !ExprHasProperty(pExpr, EP_Quoted) 1854 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1855 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1856 ){ 1857 pExpr->op = TK_TRUEFALSE; 1858 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1859 return 1; 1860 } 1861 return 0; 1862 } 1863 1864 /* 1865 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1866 ** and 0 if it is FALSE. 1867 */ 1868 int sqlite3ExprTruthValue(const Expr *pExpr){ 1869 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1870 assert( pExpr->op==TK_TRUEFALSE ); 1871 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1872 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1873 return pExpr->u.zToken[4]==0; 1874 } 1875 1876 /* 1877 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1878 ** terms that are always true or false. Return the simplified expression. 1879 ** Or return the original expression if no simplification is possible. 1880 ** 1881 ** Examples: 1882 ** 1883 ** (x<10) AND true => (x<10) 1884 ** (x<10) AND false => false 1885 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1886 ** (x<10) AND (y=22 OR true) => (x<10) 1887 ** (y=22) OR true => true 1888 */ 1889 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1890 assert( pExpr!=0 ); 1891 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1892 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1893 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1894 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1895 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1896 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1897 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1898 } 1899 } 1900 return pExpr; 1901 } 1902 1903 1904 /* 1905 ** These routines are Walker callbacks used to check expressions to 1906 ** see if they are "constant" for some definition of constant. The 1907 ** Walker.eCode value determines the type of "constant" we are looking 1908 ** for. 1909 ** 1910 ** These callback routines are used to implement the following: 1911 ** 1912 ** sqlite3ExprIsConstant() pWalker->eCode==1 1913 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1914 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1915 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1916 ** 1917 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1918 ** is found to not be a constant. 1919 ** 1920 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1921 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1922 ** an existing schema and 4 when processing a new statement. A bound 1923 ** parameter raises an error for new statements, but is silently converted 1924 ** to NULL for existing schemas. This allows sqlite_master tables that 1925 ** contain a bound parameter because they were generated by older versions 1926 ** of SQLite to be parsed by newer versions of SQLite without raising a 1927 ** malformed schema error. 1928 */ 1929 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1930 1931 /* If pWalker->eCode is 2 then any term of the expression that comes from 1932 ** the ON or USING clauses of a left join disqualifies the expression 1933 ** from being considered constant. */ 1934 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1935 pWalker->eCode = 0; 1936 return WRC_Abort; 1937 } 1938 1939 switch( pExpr->op ){ 1940 /* Consider functions to be constant if all their arguments are constant 1941 ** and either pWalker->eCode==4 or 5 or the function has the 1942 ** SQLITE_FUNC_CONST flag. */ 1943 case TK_FUNCTION: 1944 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1945 return WRC_Continue; 1946 }else{ 1947 pWalker->eCode = 0; 1948 return WRC_Abort; 1949 } 1950 case TK_ID: 1951 /* Convert "true" or "false" in a DEFAULT clause into the 1952 ** appropriate TK_TRUEFALSE operator */ 1953 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1954 return WRC_Prune; 1955 } 1956 /* Fall thru */ 1957 case TK_COLUMN: 1958 case TK_AGG_FUNCTION: 1959 case TK_AGG_COLUMN: 1960 testcase( pExpr->op==TK_ID ); 1961 testcase( pExpr->op==TK_COLUMN ); 1962 testcase( pExpr->op==TK_AGG_FUNCTION ); 1963 testcase( pExpr->op==TK_AGG_COLUMN ); 1964 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1965 return WRC_Continue; 1966 } 1967 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1968 return WRC_Continue; 1969 } 1970 /* Fall through */ 1971 case TK_IF_NULL_ROW: 1972 case TK_REGISTER: 1973 testcase( pExpr->op==TK_REGISTER ); 1974 testcase( pExpr->op==TK_IF_NULL_ROW ); 1975 pWalker->eCode = 0; 1976 return WRC_Abort; 1977 case TK_VARIABLE: 1978 if( pWalker->eCode==5 ){ 1979 /* Silently convert bound parameters that appear inside of CREATE 1980 ** statements into a NULL when parsing the CREATE statement text out 1981 ** of the sqlite_master table */ 1982 pExpr->op = TK_NULL; 1983 }else if( pWalker->eCode==4 ){ 1984 /* A bound parameter in a CREATE statement that originates from 1985 ** sqlite3_prepare() causes an error */ 1986 pWalker->eCode = 0; 1987 return WRC_Abort; 1988 } 1989 /* Fall through */ 1990 default: 1991 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1992 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1993 return WRC_Continue; 1994 } 1995 } 1996 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1997 Walker w; 1998 w.eCode = initFlag; 1999 w.xExprCallback = exprNodeIsConstant; 2000 w.xSelectCallback = sqlite3SelectWalkFail; 2001 #ifdef SQLITE_DEBUG 2002 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2003 #endif 2004 w.u.iCur = iCur; 2005 sqlite3WalkExpr(&w, p); 2006 return w.eCode; 2007 } 2008 2009 /* 2010 ** Walk an expression tree. Return non-zero if the expression is constant 2011 ** and 0 if it involves variables or function calls. 2012 ** 2013 ** For the purposes of this function, a double-quoted string (ex: "abc") 2014 ** is considered a variable but a single-quoted string (ex: 'abc') is 2015 ** a constant. 2016 */ 2017 int sqlite3ExprIsConstant(Expr *p){ 2018 return exprIsConst(p, 1, 0); 2019 } 2020 2021 /* 2022 ** Walk an expression tree. Return non-zero if 2023 ** 2024 ** (1) the expression is constant, and 2025 ** (2) the expression does originate in the ON or USING clause 2026 ** of a LEFT JOIN, and 2027 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2028 ** operands created by the constant propagation optimization. 2029 ** 2030 ** When this routine returns true, it indicates that the expression 2031 ** can be added to the pParse->pConstExpr list and evaluated once when 2032 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 2033 */ 2034 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2035 return exprIsConst(p, 2, 0); 2036 } 2037 2038 /* 2039 ** Walk an expression tree. Return non-zero if the expression is constant 2040 ** for any single row of the table with cursor iCur. In other words, the 2041 ** expression must not refer to any non-deterministic function nor any 2042 ** table other than iCur. 2043 */ 2044 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2045 return exprIsConst(p, 3, iCur); 2046 } 2047 2048 2049 /* 2050 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2051 */ 2052 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2053 ExprList *pGroupBy = pWalker->u.pGroupBy; 2054 int i; 2055 2056 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2057 ** it constant. */ 2058 for(i=0; i<pGroupBy->nExpr; i++){ 2059 Expr *p = pGroupBy->a[i].pExpr; 2060 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2061 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2062 if( sqlite3IsBinary(pColl) ){ 2063 return WRC_Prune; 2064 } 2065 } 2066 } 2067 2068 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2069 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2070 pWalker->eCode = 0; 2071 return WRC_Abort; 2072 } 2073 2074 return exprNodeIsConstant(pWalker, pExpr); 2075 } 2076 2077 /* 2078 ** Walk the expression tree passed as the first argument. Return non-zero 2079 ** if the expression consists entirely of constants or copies of terms 2080 ** in pGroupBy that sort with the BINARY collation sequence. 2081 ** 2082 ** This routine is used to determine if a term of the HAVING clause can 2083 ** be promoted into the WHERE clause. In order for such a promotion to work, 2084 ** the value of the HAVING clause term must be the same for all members of 2085 ** a "group". The requirement that the GROUP BY term must be BINARY 2086 ** assumes that no other collating sequence will have a finer-grained 2087 ** grouping than binary. In other words (A=B COLLATE binary) implies 2088 ** A=B in every other collating sequence. The requirement that the 2089 ** GROUP BY be BINARY is stricter than necessary. It would also work 2090 ** to promote HAVING clauses that use the same alternative collating 2091 ** sequence as the GROUP BY term, but that is much harder to check, 2092 ** alternative collating sequences are uncommon, and this is only an 2093 ** optimization, so we take the easy way out and simply require the 2094 ** GROUP BY to use the BINARY collating sequence. 2095 */ 2096 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2097 Walker w; 2098 w.eCode = 1; 2099 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2100 w.xSelectCallback = 0; 2101 w.u.pGroupBy = pGroupBy; 2102 w.pParse = pParse; 2103 sqlite3WalkExpr(&w, p); 2104 return w.eCode; 2105 } 2106 2107 /* 2108 ** Walk an expression tree. Return non-zero if the expression is constant 2109 ** or a function call with constant arguments. Return and 0 if there 2110 ** are any variables. 2111 ** 2112 ** For the purposes of this function, a double-quoted string (ex: "abc") 2113 ** is considered a variable but a single-quoted string (ex: 'abc') is 2114 ** a constant. 2115 */ 2116 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2117 assert( isInit==0 || isInit==1 ); 2118 return exprIsConst(p, 4+isInit, 0); 2119 } 2120 2121 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2122 /* 2123 ** Walk an expression tree. Return 1 if the expression contains a 2124 ** subquery of some kind. Return 0 if there are no subqueries. 2125 */ 2126 int sqlite3ExprContainsSubquery(Expr *p){ 2127 Walker w; 2128 w.eCode = 1; 2129 w.xExprCallback = sqlite3ExprWalkNoop; 2130 w.xSelectCallback = sqlite3SelectWalkFail; 2131 #ifdef SQLITE_DEBUG 2132 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2133 #endif 2134 sqlite3WalkExpr(&w, p); 2135 return w.eCode==0; 2136 } 2137 #endif 2138 2139 /* 2140 ** If the expression p codes a constant integer that is small enough 2141 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2142 ** in *pValue. If the expression is not an integer or if it is too big 2143 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2144 */ 2145 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2146 int rc = 0; 2147 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2148 2149 /* If an expression is an integer literal that fits in a signed 32-bit 2150 ** integer, then the EP_IntValue flag will have already been set */ 2151 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2152 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2153 2154 if( p->flags & EP_IntValue ){ 2155 *pValue = p->u.iValue; 2156 return 1; 2157 } 2158 switch( p->op ){ 2159 case TK_UPLUS: { 2160 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2161 break; 2162 } 2163 case TK_UMINUS: { 2164 int v; 2165 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2166 assert( v!=(-2147483647-1) ); 2167 *pValue = -v; 2168 rc = 1; 2169 } 2170 break; 2171 } 2172 default: break; 2173 } 2174 return rc; 2175 } 2176 2177 /* 2178 ** Return FALSE if there is no chance that the expression can be NULL. 2179 ** 2180 ** If the expression might be NULL or if the expression is too complex 2181 ** to tell return TRUE. 2182 ** 2183 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2184 ** when we know that a value cannot be NULL. Hence, a false positive 2185 ** (returning TRUE when in fact the expression can never be NULL) might 2186 ** be a small performance hit but is otherwise harmless. On the other 2187 ** hand, a false negative (returning FALSE when the result could be NULL) 2188 ** will likely result in an incorrect answer. So when in doubt, return 2189 ** TRUE. 2190 */ 2191 int sqlite3ExprCanBeNull(const Expr *p){ 2192 u8 op; 2193 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2194 p = p->pLeft; 2195 } 2196 op = p->op; 2197 if( op==TK_REGISTER ) op = p->op2; 2198 switch( op ){ 2199 case TK_INTEGER: 2200 case TK_STRING: 2201 case TK_FLOAT: 2202 case TK_BLOB: 2203 return 0; 2204 case TK_COLUMN: 2205 return ExprHasProperty(p, EP_CanBeNull) || 2206 p->y.pTab==0 || /* Reference to column of index on expression */ 2207 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2208 default: 2209 return 1; 2210 } 2211 } 2212 2213 /* 2214 ** Return TRUE if the given expression is a constant which would be 2215 ** unchanged by OP_Affinity with the affinity given in the second 2216 ** argument. 2217 ** 2218 ** This routine is used to determine if the OP_Affinity operation 2219 ** can be omitted. When in doubt return FALSE. A false negative 2220 ** is harmless. A false positive, however, can result in the wrong 2221 ** answer. 2222 */ 2223 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2224 u8 op; 2225 int unaryMinus = 0; 2226 if( aff==SQLITE_AFF_BLOB ) return 1; 2227 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2228 if( p->op==TK_UMINUS ) unaryMinus = 1; 2229 p = p->pLeft; 2230 } 2231 op = p->op; 2232 if( op==TK_REGISTER ) op = p->op2; 2233 switch( op ){ 2234 case TK_INTEGER: { 2235 return aff>=SQLITE_AFF_NUMERIC; 2236 } 2237 case TK_FLOAT: { 2238 return aff>=SQLITE_AFF_NUMERIC; 2239 } 2240 case TK_STRING: { 2241 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2242 } 2243 case TK_BLOB: { 2244 return !unaryMinus; 2245 } 2246 case TK_COLUMN: { 2247 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2248 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2249 } 2250 default: { 2251 return 0; 2252 } 2253 } 2254 } 2255 2256 /* 2257 ** Return TRUE if the given string is a row-id column name. 2258 */ 2259 int sqlite3IsRowid(const char *z){ 2260 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2261 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2262 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2263 return 0; 2264 } 2265 2266 /* 2267 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2268 ** that can be simplified to a direct table access, then return 2269 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2270 ** or if the SELECT statement needs to be manifested into a transient 2271 ** table, then return NULL. 2272 */ 2273 #ifndef SQLITE_OMIT_SUBQUERY 2274 static Select *isCandidateForInOpt(Expr *pX){ 2275 Select *p; 2276 SrcList *pSrc; 2277 ExprList *pEList; 2278 Table *pTab; 2279 int i; 2280 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2281 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2282 p = pX->x.pSelect; 2283 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2284 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2285 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2286 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2287 return 0; /* No DISTINCT keyword and no aggregate functions */ 2288 } 2289 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2290 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2291 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2292 pSrc = p->pSrc; 2293 assert( pSrc!=0 ); 2294 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2295 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2296 pTab = pSrc->a[0].pTab; 2297 assert( pTab!=0 ); 2298 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2299 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2300 pEList = p->pEList; 2301 assert( pEList!=0 ); 2302 /* All SELECT results must be columns. */ 2303 for(i=0; i<pEList->nExpr; i++){ 2304 Expr *pRes = pEList->a[i].pExpr; 2305 if( pRes->op!=TK_COLUMN ) return 0; 2306 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2307 } 2308 return p; 2309 } 2310 #endif /* SQLITE_OMIT_SUBQUERY */ 2311 2312 #ifndef SQLITE_OMIT_SUBQUERY 2313 /* 2314 ** Generate code that checks the left-most column of index table iCur to see if 2315 ** it contains any NULL entries. Cause the register at regHasNull to be set 2316 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2317 ** to be set to NULL if iCur contains one or more NULL values. 2318 */ 2319 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2320 int addr1; 2321 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2322 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2323 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2324 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2325 VdbeComment((v, "first_entry_in(%d)", iCur)); 2326 sqlite3VdbeJumpHere(v, addr1); 2327 } 2328 #endif 2329 2330 2331 #ifndef SQLITE_OMIT_SUBQUERY 2332 /* 2333 ** The argument is an IN operator with a list (not a subquery) on the 2334 ** right-hand side. Return TRUE if that list is constant. 2335 */ 2336 static int sqlite3InRhsIsConstant(Expr *pIn){ 2337 Expr *pLHS; 2338 int res; 2339 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2340 pLHS = pIn->pLeft; 2341 pIn->pLeft = 0; 2342 res = sqlite3ExprIsConstant(pIn); 2343 pIn->pLeft = pLHS; 2344 return res; 2345 } 2346 #endif 2347 2348 /* 2349 ** This function is used by the implementation of the IN (...) operator. 2350 ** The pX parameter is the expression on the RHS of the IN operator, which 2351 ** might be either a list of expressions or a subquery. 2352 ** 2353 ** The job of this routine is to find or create a b-tree object that can 2354 ** be used either to test for membership in the RHS set or to iterate through 2355 ** all members of the RHS set, skipping duplicates. 2356 ** 2357 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2358 ** and pX->iTable is set to the index of that cursor. 2359 ** 2360 ** The returned value of this function indicates the b-tree type, as follows: 2361 ** 2362 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2363 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2364 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2365 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2366 ** populated epheremal table. 2367 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2368 ** implemented as a sequence of comparisons. 2369 ** 2370 ** An existing b-tree might be used if the RHS expression pX is a simple 2371 ** subquery such as: 2372 ** 2373 ** SELECT <column1>, <column2>... FROM <table> 2374 ** 2375 ** If the RHS of the IN operator is a list or a more complex subquery, then 2376 ** an ephemeral table might need to be generated from the RHS and then 2377 ** pX->iTable made to point to the ephemeral table instead of an 2378 ** existing table. 2379 ** 2380 ** The inFlags parameter must contain, at a minimum, one of the bits 2381 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2382 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2383 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2384 ** be used to loop over all values of the RHS of the IN operator. 2385 ** 2386 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2387 ** through the set members) then the b-tree must not contain duplicates. 2388 ** An epheremal table will be created unless the selected columns are guaranteed 2389 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2390 ** a UNIQUE constraint or index. 2391 ** 2392 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2393 ** for fast set membership tests) then an epheremal table must 2394 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2395 ** index can be found with the specified <columns> as its left-most. 2396 ** 2397 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2398 ** if the RHS of the IN operator is a list (not a subquery) then this 2399 ** routine might decide that creating an ephemeral b-tree for membership 2400 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2401 ** calling routine should implement the IN operator using a sequence 2402 ** of Eq or Ne comparison operations. 2403 ** 2404 ** When the b-tree is being used for membership tests, the calling function 2405 ** might need to know whether or not the RHS side of the IN operator 2406 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2407 ** if there is any chance that the (...) might contain a NULL value at 2408 ** runtime, then a register is allocated and the register number written 2409 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2410 ** NULL value, then *prRhsHasNull is left unchanged. 2411 ** 2412 ** If a register is allocated and its location stored in *prRhsHasNull, then 2413 ** the value in that register will be NULL if the b-tree contains one or more 2414 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2415 ** NULL values. 2416 ** 2417 ** If the aiMap parameter is not NULL, it must point to an array containing 2418 ** one element for each column returned by the SELECT statement on the RHS 2419 ** of the IN(...) operator. The i'th entry of the array is populated with the 2420 ** offset of the index column that matches the i'th column returned by the 2421 ** SELECT. For example, if the expression and selected index are: 2422 ** 2423 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2424 ** CREATE INDEX i1 ON t1(b, c, a); 2425 ** 2426 ** then aiMap[] is populated with {2, 0, 1}. 2427 */ 2428 #ifndef SQLITE_OMIT_SUBQUERY 2429 int sqlite3FindInIndex( 2430 Parse *pParse, /* Parsing context */ 2431 Expr *pX, /* The IN expression */ 2432 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2433 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2434 int *aiMap, /* Mapping from Index fields to RHS fields */ 2435 int *piTab /* OUT: index to use */ 2436 ){ 2437 Select *p; /* SELECT to the right of IN operator */ 2438 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2439 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2440 int mustBeUnique; /* True if RHS must be unique */ 2441 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2442 2443 assert( pX->op==TK_IN ); 2444 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2445 2446 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2447 ** whether or not the SELECT result contains NULL values, check whether 2448 ** or not NULL is actually possible (it may not be, for example, due 2449 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2450 ** set prRhsHasNull to 0 before continuing. */ 2451 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2452 int i; 2453 ExprList *pEList = pX->x.pSelect->pEList; 2454 for(i=0; i<pEList->nExpr; i++){ 2455 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2456 } 2457 if( i==pEList->nExpr ){ 2458 prRhsHasNull = 0; 2459 } 2460 } 2461 2462 /* Check to see if an existing table or index can be used to 2463 ** satisfy the query. This is preferable to generating a new 2464 ** ephemeral table. */ 2465 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2466 sqlite3 *db = pParse->db; /* Database connection */ 2467 Table *pTab; /* Table <table>. */ 2468 i16 iDb; /* Database idx for pTab */ 2469 ExprList *pEList = p->pEList; 2470 int nExpr = pEList->nExpr; 2471 2472 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2473 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2474 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2475 pTab = p->pSrc->a[0].pTab; 2476 2477 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2478 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2479 sqlite3CodeVerifySchema(pParse, iDb); 2480 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2481 2482 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2483 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2484 /* The "x IN (SELECT rowid FROM table)" case */ 2485 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2486 VdbeCoverage(v); 2487 2488 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2489 eType = IN_INDEX_ROWID; 2490 ExplainQueryPlan((pParse, 0, 2491 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2492 sqlite3VdbeJumpHere(v, iAddr); 2493 }else{ 2494 Index *pIdx; /* Iterator variable */ 2495 int affinity_ok = 1; 2496 int i; 2497 2498 /* Check that the affinity that will be used to perform each 2499 ** comparison is the same as the affinity of each column in table 2500 ** on the RHS of the IN operator. If it not, it is not possible to 2501 ** use any index of the RHS table. */ 2502 for(i=0; i<nExpr && affinity_ok; i++){ 2503 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2504 int iCol = pEList->a[i].pExpr->iColumn; 2505 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2506 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2507 testcase( cmpaff==SQLITE_AFF_BLOB ); 2508 testcase( cmpaff==SQLITE_AFF_TEXT ); 2509 switch( cmpaff ){ 2510 case SQLITE_AFF_BLOB: 2511 break; 2512 case SQLITE_AFF_TEXT: 2513 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2514 ** other has no affinity and the other side is TEXT. Hence, 2515 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2516 ** and for the term on the LHS of the IN to have no affinity. */ 2517 assert( idxaff==SQLITE_AFF_TEXT ); 2518 break; 2519 default: 2520 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2521 } 2522 } 2523 2524 if( affinity_ok ){ 2525 /* Search for an existing index that will work for this IN operator */ 2526 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2527 Bitmask colUsed; /* Columns of the index used */ 2528 Bitmask mCol; /* Mask for the current column */ 2529 if( pIdx->nColumn<nExpr ) continue; 2530 if( pIdx->pPartIdxWhere!=0 ) continue; 2531 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2532 ** BITMASK(nExpr) without overflowing */ 2533 testcase( pIdx->nColumn==BMS-2 ); 2534 testcase( pIdx->nColumn==BMS-1 ); 2535 if( pIdx->nColumn>=BMS-1 ) continue; 2536 if( mustBeUnique ){ 2537 if( pIdx->nKeyCol>nExpr 2538 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2539 ){ 2540 continue; /* This index is not unique over the IN RHS columns */ 2541 } 2542 } 2543 2544 colUsed = 0; /* Columns of index used so far */ 2545 for(i=0; i<nExpr; i++){ 2546 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2547 Expr *pRhs = pEList->a[i].pExpr; 2548 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2549 int j; 2550 2551 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2552 for(j=0; j<nExpr; j++){ 2553 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2554 assert( pIdx->azColl[j] ); 2555 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2556 continue; 2557 } 2558 break; 2559 } 2560 if( j==nExpr ) break; 2561 mCol = MASKBIT(j); 2562 if( mCol & colUsed ) break; /* Each column used only once */ 2563 colUsed |= mCol; 2564 if( aiMap ) aiMap[i] = j; 2565 } 2566 2567 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2568 if( colUsed==(MASKBIT(nExpr)-1) ){ 2569 /* If we reach this point, that means the index pIdx is usable */ 2570 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2571 ExplainQueryPlan((pParse, 0, 2572 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2573 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2574 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2575 VdbeComment((v, "%s", pIdx->zName)); 2576 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2577 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2578 2579 if( prRhsHasNull ){ 2580 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2581 i64 mask = (1<<nExpr)-1; 2582 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2583 iTab, 0, 0, (u8*)&mask, P4_INT64); 2584 #endif 2585 *prRhsHasNull = ++pParse->nMem; 2586 if( nExpr==1 ){ 2587 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2588 } 2589 } 2590 sqlite3VdbeJumpHere(v, iAddr); 2591 } 2592 } /* End loop over indexes */ 2593 } /* End if( affinity_ok ) */ 2594 } /* End if not an rowid index */ 2595 } /* End attempt to optimize using an index */ 2596 2597 /* If no preexisting index is available for the IN clause 2598 ** and IN_INDEX_NOOP is an allowed reply 2599 ** and the RHS of the IN operator is a list, not a subquery 2600 ** and the RHS is not constant or has two or fewer terms, 2601 ** then it is not worth creating an ephemeral table to evaluate 2602 ** the IN operator so return IN_INDEX_NOOP. 2603 */ 2604 if( eType==0 2605 && (inFlags & IN_INDEX_NOOP_OK) 2606 && !ExprHasProperty(pX, EP_xIsSelect) 2607 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2608 ){ 2609 eType = IN_INDEX_NOOP; 2610 } 2611 2612 if( eType==0 ){ 2613 /* Could not find an existing table or index to use as the RHS b-tree. 2614 ** We will have to generate an ephemeral table to do the job. 2615 */ 2616 u32 savedNQueryLoop = pParse->nQueryLoop; 2617 int rMayHaveNull = 0; 2618 eType = IN_INDEX_EPH; 2619 if( inFlags & IN_INDEX_LOOP ){ 2620 pParse->nQueryLoop = 0; 2621 }else if( prRhsHasNull ){ 2622 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2623 } 2624 assert( pX->op==TK_IN ); 2625 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2626 if( rMayHaveNull ){ 2627 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2628 } 2629 pParse->nQueryLoop = savedNQueryLoop; 2630 } 2631 2632 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2633 int i, n; 2634 n = sqlite3ExprVectorSize(pX->pLeft); 2635 for(i=0; i<n; i++) aiMap[i] = i; 2636 } 2637 *piTab = iTab; 2638 return eType; 2639 } 2640 #endif 2641 2642 #ifndef SQLITE_OMIT_SUBQUERY 2643 /* 2644 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2645 ** function allocates and returns a nul-terminated string containing 2646 ** the affinities to be used for each column of the comparison. 2647 ** 2648 ** It is the responsibility of the caller to ensure that the returned 2649 ** string is eventually freed using sqlite3DbFree(). 2650 */ 2651 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2652 Expr *pLeft = pExpr->pLeft; 2653 int nVal = sqlite3ExprVectorSize(pLeft); 2654 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2655 char *zRet; 2656 2657 assert( pExpr->op==TK_IN ); 2658 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2659 if( zRet ){ 2660 int i; 2661 for(i=0; i<nVal; i++){ 2662 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2663 char a = sqlite3ExprAffinity(pA); 2664 if( pSelect ){ 2665 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2666 }else{ 2667 zRet[i] = a; 2668 } 2669 } 2670 zRet[nVal] = '\0'; 2671 } 2672 return zRet; 2673 } 2674 #endif 2675 2676 #ifndef SQLITE_OMIT_SUBQUERY 2677 /* 2678 ** Load the Parse object passed as the first argument with an error 2679 ** message of the form: 2680 ** 2681 ** "sub-select returns N columns - expected M" 2682 */ 2683 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2684 const char *zFmt = "sub-select returns %d columns - expected %d"; 2685 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2686 } 2687 #endif 2688 2689 /* 2690 ** Expression pExpr is a vector that has been used in a context where 2691 ** it is not permitted. If pExpr is a sub-select vector, this routine 2692 ** loads the Parse object with a message of the form: 2693 ** 2694 ** "sub-select returns N columns - expected 1" 2695 ** 2696 ** Or, if it is a regular scalar vector: 2697 ** 2698 ** "row value misused" 2699 */ 2700 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2701 #ifndef SQLITE_OMIT_SUBQUERY 2702 if( pExpr->flags & EP_xIsSelect ){ 2703 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2704 }else 2705 #endif 2706 { 2707 sqlite3ErrorMsg(pParse, "row value misused"); 2708 } 2709 } 2710 2711 #ifndef SQLITE_OMIT_SUBQUERY 2712 /* 2713 ** Generate code that will construct an ephemeral table containing all terms 2714 ** in the RHS of an IN operator. The IN operator can be in either of two 2715 ** forms: 2716 ** 2717 ** x IN (4,5,11) -- IN operator with list on right-hand side 2718 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2719 ** 2720 ** The pExpr parameter is the IN operator. The cursor number for the 2721 ** constructed ephermeral table is returned. The first time the ephemeral 2722 ** table is computed, the cursor number is also stored in pExpr->iTable, 2723 ** however the cursor number returned might not be the same, as it might 2724 ** have been duplicated using OP_OpenDup. 2725 ** 2726 ** If the LHS expression ("x" in the examples) is a column value, or 2727 ** the SELECT statement returns a column value, then the affinity of that 2728 ** column is used to build the index keys. If both 'x' and the 2729 ** SELECT... statement are columns, then numeric affinity is used 2730 ** if either column has NUMERIC or INTEGER affinity. If neither 2731 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2732 ** is used. 2733 */ 2734 void sqlite3CodeRhsOfIN( 2735 Parse *pParse, /* Parsing context */ 2736 Expr *pExpr, /* The IN operator */ 2737 int iTab /* Use this cursor number */ 2738 ){ 2739 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2740 int addr; /* Address of OP_OpenEphemeral instruction */ 2741 Expr *pLeft; /* the LHS of the IN operator */ 2742 KeyInfo *pKeyInfo = 0; /* Key information */ 2743 int nVal; /* Size of vector pLeft */ 2744 Vdbe *v; /* The prepared statement under construction */ 2745 2746 v = pParse->pVdbe; 2747 assert( v!=0 ); 2748 2749 /* The evaluation of the IN must be repeated every time it 2750 ** is encountered if any of the following is true: 2751 ** 2752 ** * The right-hand side is a correlated subquery 2753 ** * The right-hand side is an expression list containing variables 2754 ** * We are inside a trigger 2755 ** 2756 ** If all of the above are false, then we can compute the RHS just once 2757 ** and reuse it many names. 2758 */ 2759 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2760 /* Reuse of the RHS is allowed */ 2761 /* If this routine has already been coded, but the previous code 2762 ** might not have been invoked yet, so invoke it now as a subroutine. 2763 */ 2764 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2765 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2766 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2767 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2768 pExpr->x.pSelect->selId)); 2769 } 2770 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2771 pExpr->y.sub.iAddr); 2772 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2773 sqlite3VdbeJumpHere(v, addrOnce); 2774 return; 2775 } 2776 2777 /* Begin coding the subroutine */ 2778 ExprSetProperty(pExpr, EP_Subrtn); 2779 pExpr->y.sub.regReturn = ++pParse->nMem; 2780 pExpr->y.sub.iAddr = 2781 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2782 VdbeComment((v, "return address")); 2783 2784 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2785 } 2786 2787 /* Check to see if this is a vector IN operator */ 2788 pLeft = pExpr->pLeft; 2789 nVal = sqlite3ExprVectorSize(pLeft); 2790 2791 /* Construct the ephemeral table that will contain the content of 2792 ** RHS of the IN operator. 2793 */ 2794 pExpr->iTable = iTab; 2795 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2796 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2797 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2798 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2799 }else{ 2800 VdbeComment((v, "RHS of IN operator")); 2801 } 2802 #endif 2803 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2804 2805 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2806 /* Case 1: expr IN (SELECT ...) 2807 ** 2808 ** Generate code to write the results of the select into the temporary 2809 ** table allocated and opened above. 2810 */ 2811 Select *pSelect = pExpr->x.pSelect; 2812 ExprList *pEList = pSelect->pEList; 2813 2814 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2815 addrOnce?"":"CORRELATED ", pSelect->selId 2816 )); 2817 /* If the LHS and RHS of the IN operator do not match, that 2818 ** error will have been caught long before we reach this point. */ 2819 if( ALWAYS(pEList->nExpr==nVal) ){ 2820 SelectDest dest; 2821 int i; 2822 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2823 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2824 pSelect->iLimit = 0; 2825 testcase( pSelect->selFlags & SF_Distinct ); 2826 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2827 if( sqlite3Select(pParse, pSelect, &dest) ){ 2828 sqlite3DbFree(pParse->db, dest.zAffSdst); 2829 sqlite3KeyInfoUnref(pKeyInfo); 2830 return; 2831 } 2832 sqlite3DbFree(pParse->db, dest.zAffSdst); 2833 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2834 assert( pEList!=0 ); 2835 assert( pEList->nExpr>0 ); 2836 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2837 for(i=0; i<nVal; i++){ 2838 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2839 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2840 pParse, p, pEList->a[i].pExpr 2841 ); 2842 } 2843 } 2844 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2845 /* Case 2: expr IN (exprlist) 2846 ** 2847 ** For each expression, build an index key from the evaluation and 2848 ** store it in the temporary table. If <expr> is a column, then use 2849 ** that columns affinity when building index keys. If <expr> is not 2850 ** a column, use numeric affinity. 2851 */ 2852 char affinity; /* Affinity of the LHS of the IN */ 2853 int i; 2854 ExprList *pList = pExpr->x.pList; 2855 struct ExprList_item *pItem; 2856 int r1, r2; 2857 affinity = sqlite3ExprAffinity(pLeft); 2858 if( affinity<=SQLITE_AFF_NONE ){ 2859 affinity = SQLITE_AFF_BLOB; 2860 } 2861 if( pKeyInfo ){ 2862 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2863 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2864 } 2865 2866 /* Loop through each expression in <exprlist>. */ 2867 r1 = sqlite3GetTempReg(pParse); 2868 r2 = sqlite3GetTempReg(pParse); 2869 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2870 Expr *pE2 = pItem->pExpr; 2871 2872 /* If the expression is not constant then we will need to 2873 ** disable the test that was generated above that makes sure 2874 ** this code only executes once. Because for a non-constant 2875 ** expression we need to rerun this code each time. 2876 */ 2877 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2878 sqlite3VdbeChangeToNoop(v, addrOnce); 2879 ExprClearProperty(pExpr, EP_Subrtn); 2880 addrOnce = 0; 2881 } 2882 2883 /* Evaluate the expression and insert it into the temp table */ 2884 sqlite3ExprCode(pParse, pE2, r1); 2885 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2886 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2887 } 2888 sqlite3ReleaseTempReg(pParse, r1); 2889 sqlite3ReleaseTempReg(pParse, r2); 2890 } 2891 if( pKeyInfo ){ 2892 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2893 } 2894 if( addrOnce ){ 2895 sqlite3VdbeJumpHere(v, addrOnce); 2896 /* Subroutine return */ 2897 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2898 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2899 sqlite3ClearTempRegCache(pParse); 2900 } 2901 } 2902 #endif /* SQLITE_OMIT_SUBQUERY */ 2903 2904 /* 2905 ** Generate code for scalar subqueries used as a subquery expression 2906 ** or EXISTS operator: 2907 ** 2908 ** (SELECT a FROM b) -- subquery 2909 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2910 ** 2911 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2912 ** 2913 ** Return the register that holds the result. For a multi-column SELECT, 2914 ** the result is stored in a contiguous array of registers and the 2915 ** return value is the register of the left-most result column. 2916 ** Return 0 if an error occurs. 2917 */ 2918 #ifndef SQLITE_OMIT_SUBQUERY 2919 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2920 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2921 int rReg = 0; /* Register storing resulting */ 2922 Select *pSel; /* SELECT statement to encode */ 2923 SelectDest dest; /* How to deal with SELECT result */ 2924 int nReg; /* Registers to allocate */ 2925 Expr *pLimit; /* New limit expression */ 2926 2927 Vdbe *v = pParse->pVdbe; 2928 assert( v!=0 ); 2929 testcase( pExpr->op==TK_EXISTS ); 2930 testcase( pExpr->op==TK_SELECT ); 2931 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2932 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2933 pSel = pExpr->x.pSelect; 2934 2935 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2936 ** is encountered if any of the following is true: 2937 ** 2938 ** * The right-hand side is a correlated subquery 2939 ** * The right-hand side is an expression list containing variables 2940 ** * We are inside a trigger 2941 ** 2942 ** If all of the above are false, then we can run this code just once 2943 ** save the results, and reuse the same result on subsequent invocations. 2944 */ 2945 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2946 /* If this routine has already been coded, then invoke it as a 2947 ** subroutine. */ 2948 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2949 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2950 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2951 pExpr->y.sub.iAddr); 2952 return pExpr->iTable; 2953 } 2954 2955 /* Begin coding the subroutine */ 2956 ExprSetProperty(pExpr, EP_Subrtn); 2957 pExpr->y.sub.regReturn = ++pParse->nMem; 2958 pExpr->y.sub.iAddr = 2959 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2960 VdbeComment((v, "return address")); 2961 2962 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2963 } 2964 2965 /* For a SELECT, generate code to put the values for all columns of 2966 ** the first row into an array of registers and return the index of 2967 ** the first register. 2968 ** 2969 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2970 ** into a register and return that register number. 2971 ** 2972 ** In both cases, the query is augmented with "LIMIT 1". Any 2973 ** preexisting limit is discarded in place of the new LIMIT 1. 2974 */ 2975 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2976 addrOnce?"":"CORRELATED ", pSel->selId)); 2977 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2978 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2979 pParse->nMem += nReg; 2980 if( pExpr->op==TK_SELECT ){ 2981 dest.eDest = SRT_Mem; 2982 dest.iSdst = dest.iSDParm; 2983 dest.nSdst = nReg; 2984 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2985 VdbeComment((v, "Init subquery result")); 2986 }else{ 2987 dest.eDest = SRT_Exists; 2988 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2989 VdbeComment((v, "Init EXISTS result")); 2990 } 2991 if( pSel->pLimit ){ 2992 /* The subquery already has a limit. If the pre-existing limit is X 2993 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 2994 sqlite3 *db = pParse->db; 2995 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 2996 if( pLimit ){ 2997 pLimit->affExpr = SQLITE_AFF_NUMERIC; 2998 pLimit = sqlite3PExpr(pParse, TK_NE, 2999 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3000 } 3001 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3002 pSel->pLimit->pLeft = pLimit; 3003 }else{ 3004 /* If there is no pre-existing limit add a limit of 1 */ 3005 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3006 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3007 } 3008 pSel->iLimit = 0; 3009 if( sqlite3Select(pParse, pSel, &dest) ){ 3010 return 0; 3011 } 3012 pExpr->iTable = rReg = dest.iSDParm; 3013 ExprSetVVAProperty(pExpr, EP_NoReduce); 3014 if( addrOnce ){ 3015 sqlite3VdbeJumpHere(v, addrOnce); 3016 3017 /* Subroutine return */ 3018 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3019 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3020 sqlite3ClearTempRegCache(pParse); 3021 } 3022 3023 return rReg; 3024 } 3025 #endif /* SQLITE_OMIT_SUBQUERY */ 3026 3027 #ifndef SQLITE_OMIT_SUBQUERY 3028 /* 3029 ** Expr pIn is an IN(...) expression. This function checks that the 3030 ** sub-select on the RHS of the IN() operator has the same number of 3031 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3032 ** a sub-query, that the LHS is a vector of size 1. 3033 */ 3034 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3035 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3036 if( (pIn->flags & EP_xIsSelect) ){ 3037 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3038 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3039 return 1; 3040 } 3041 }else if( nVector!=1 ){ 3042 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3043 return 1; 3044 } 3045 return 0; 3046 } 3047 #endif 3048 3049 #ifndef SQLITE_OMIT_SUBQUERY 3050 /* 3051 ** Generate code for an IN expression. 3052 ** 3053 ** x IN (SELECT ...) 3054 ** x IN (value, value, ...) 3055 ** 3056 ** The left-hand side (LHS) is a scalar or vector expression. The 3057 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3058 ** subquery. If the RHS is a subquery, the number of result columns must 3059 ** match the number of columns in the vector on the LHS. If the RHS is 3060 ** a list of values, the LHS must be a scalar. 3061 ** 3062 ** The IN operator is true if the LHS value is contained within the RHS. 3063 ** The result is false if the LHS is definitely not in the RHS. The 3064 ** result is NULL if the presence of the LHS in the RHS cannot be 3065 ** determined due to NULLs. 3066 ** 3067 ** This routine generates code that jumps to destIfFalse if the LHS is not 3068 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3069 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3070 ** within the RHS then fall through. 3071 ** 3072 ** See the separate in-operator.md documentation file in the canonical 3073 ** SQLite source tree for additional information. 3074 */ 3075 static void sqlite3ExprCodeIN( 3076 Parse *pParse, /* Parsing and code generating context */ 3077 Expr *pExpr, /* The IN expression */ 3078 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3079 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3080 ){ 3081 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3082 int eType; /* Type of the RHS */ 3083 int rLhs; /* Register(s) holding the LHS values */ 3084 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3085 Vdbe *v; /* Statement under construction */ 3086 int *aiMap = 0; /* Map from vector field to index column */ 3087 char *zAff = 0; /* Affinity string for comparisons */ 3088 int nVector; /* Size of vectors for this IN operator */ 3089 int iDummy; /* Dummy parameter to exprCodeVector() */ 3090 Expr *pLeft; /* The LHS of the IN operator */ 3091 int i; /* loop counter */ 3092 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3093 int destStep6 = 0; /* Start of code for Step 6 */ 3094 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3095 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3096 int addrTop; /* Top of the step-6 loop */ 3097 int iTab = 0; /* Index to use */ 3098 3099 pLeft = pExpr->pLeft; 3100 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3101 zAff = exprINAffinity(pParse, pExpr); 3102 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3103 aiMap = (int*)sqlite3DbMallocZero( 3104 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3105 ); 3106 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3107 3108 /* Attempt to compute the RHS. After this step, if anything other than 3109 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3110 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3111 ** the RHS has not yet been coded. */ 3112 v = pParse->pVdbe; 3113 assert( v!=0 ); /* OOM detected prior to this routine */ 3114 VdbeNoopComment((v, "begin IN expr")); 3115 eType = sqlite3FindInIndex(pParse, pExpr, 3116 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3117 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3118 aiMap, &iTab); 3119 3120 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3121 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3122 ); 3123 #ifdef SQLITE_DEBUG 3124 /* Confirm that aiMap[] contains nVector integer values between 0 and 3125 ** nVector-1. */ 3126 for(i=0; i<nVector; i++){ 3127 int j, cnt; 3128 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3129 assert( cnt==1 ); 3130 } 3131 #endif 3132 3133 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3134 ** vector, then it is stored in an array of nVector registers starting 3135 ** at r1. 3136 ** 3137 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3138 ** so that the fields are in the same order as an existing index. The 3139 ** aiMap[] array contains a mapping from the original LHS field order to 3140 ** the field order that matches the RHS index. 3141 */ 3142 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3143 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3144 if( i==nVector ){ 3145 /* LHS fields are not reordered */ 3146 rLhs = rLhsOrig; 3147 }else{ 3148 /* Need to reorder the LHS fields according to aiMap */ 3149 rLhs = sqlite3GetTempRange(pParse, nVector); 3150 for(i=0; i<nVector; i++){ 3151 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3152 } 3153 } 3154 3155 /* If sqlite3FindInIndex() did not find or create an index that is 3156 ** suitable for evaluating the IN operator, then evaluate using a 3157 ** sequence of comparisons. 3158 ** 3159 ** This is step (1) in the in-operator.md optimized algorithm. 3160 */ 3161 if( eType==IN_INDEX_NOOP ){ 3162 ExprList *pList = pExpr->x.pList; 3163 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3164 int labelOk = sqlite3VdbeMakeLabel(pParse); 3165 int r2, regToFree; 3166 int regCkNull = 0; 3167 int ii; 3168 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3169 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3170 if( destIfNull!=destIfFalse ){ 3171 regCkNull = sqlite3GetTempReg(pParse); 3172 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3173 } 3174 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3175 for(ii=0; ii<pList->nExpr; ii++){ 3176 if( bLhsReal ){ 3177 r2 = regToFree = sqlite3GetTempReg(pParse); 3178 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3179 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3180 }else{ 3181 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3182 } 3183 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3184 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3185 } 3186 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3187 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3188 (void*)pColl, P4_COLLSEQ); 3189 VdbeCoverageIf(v, ii<pList->nExpr-1); 3190 VdbeCoverageIf(v, ii==pList->nExpr-1); 3191 sqlite3VdbeChangeP5(v, zAff[0]); 3192 }else{ 3193 assert( destIfNull==destIfFalse ); 3194 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3195 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3196 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3197 } 3198 sqlite3ReleaseTempReg(pParse, regToFree); 3199 } 3200 if( regCkNull ){ 3201 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3202 sqlite3VdbeGoto(v, destIfFalse); 3203 } 3204 sqlite3VdbeResolveLabel(v, labelOk); 3205 sqlite3ReleaseTempReg(pParse, regCkNull); 3206 goto sqlite3ExprCodeIN_finished; 3207 } 3208 3209 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3210 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3211 ** We will then skip the binary search of the RHS. 3212 */ 3213 if( destIfNull==destIfFalse ){ 3214 destStep2 = destIfFalse; 3215 }else{ 3216 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3217 } 3218 for(i=0; i<nVector; i++){ 3219 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3220 if( sqlite3ExprCanBeNull(p) ){ 3221 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3222 VdbeCoverage(v); 3223 } 3224 } 3225 3226 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3227 ** of the RHS using the LHS as a probe. If found, the result is 3228 ** true. 3229 */ 3230 if( eType==IN_INDEX_ROWID ){ 3231 /* In this case, the RHS is the ROWID of table b-tree and so we also 3232 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3233 ** into a single opcode. */ 3234 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3235 VdbeCoverage(v); 3236 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3237 }else{ 3238 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3239 if( destIfFalse==destIfNull ){ 3240 /* Combine Step 3 and Step 5 into a single opcode */ 3241 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3242 rLhs, nVector); VdbeCoverage(v); 3243 goto sqlite3ExprCodeIN_finished; 3244 } 3245 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3246 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3247 rLhs, nVector); VdbeCoverage(v); 3248 } 3249 3250 /* Step 4. If the RHS is known to be non-NULL and we did not find 3251 ** an match on the search above, then the result must be FALSE. 3252 */ 3253 if( rRhsHasNull && nVector==1 ){ 3254 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3255 VdbeCoverage(v); 3256 } 3257 3258 /* Step 5. If we do not care about the difference between NULL and 3259 ** FALSE, then just return false. 3260 */ 3261 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3262 3263 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3264 ** If any comparison is NULL, then the result is NULL. If all 3265 ** comparisons are FALSE then the final result is FALSE. 3266 ** 3267 ** For a scalar LHS, it is sufficient to check just the first row 3268 ** of the RHS. 3269 */ 3270 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3271 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3272 VdbeCoverage(v); 3273 if( nVector>1 ){ 3274 destNotNull = sqlite3VdbeMakeLabel(pParse); 3275 }else{ 3276 /* For nVector==1, combine steps 6 and 7 by immediately returning 3277 ** FALSE if the first comparison is not NULL */ 3278 destNotNull = destIfFalse; 3279 } 3280 for(i=0; i<nVector; i++){ 3281 Expr *p; 3282 CollSeq *pColl; 3283 int r3 = sqlite3GetTempReg(pParse); 3284 p = sqlite3VectorFieldSubexpr(pLeft, i); 3285 pColl = sqlite3ExprCollSeq(pParse, p); 3286 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3287 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3288 (void*)pColl, P4_COLLSEQ); 3289 VdbeCoverage(v); 3290 sqlite3ReleaseTempReg(pParse, r3); 3291 } 3292 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3293 if( nVector>1 ){ 3294 sqlite3VdbeResolveLabel(v, destNotNull); 3295 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3296 VdbeCoverage(v); 3297 3298 /* Step 7: If we reach this point, we know that the result must 3299 ** be false. */ 3300 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3301 } 3302 3303 /* Jumps here in order to return true. */ 3304 sqlite3VdbeJumpHere(v, addrTruthOp); 3305 3306 sqlite3ExprCodeIN_finished: 3307 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3308 VdbeComment((v, "end IN expr")); 3309 sqlite3ExprCodeIN_oom_error: 3310 sqlite3DbFree(pParse->db, aiMap); 3311 sqlite3DbFree(pParse->db, zAff); 3312 } 3313 #endif /* SQLITE_OMIT_SUBQUERY */ 3314 3315 #ifndef SQLITE_OMIT_FLOATING_POINT 3316 /* 3317 ** Generate an instruction that will put the floating point 3318 ** value described by z[0..n-1] into register iMem. 3319 ** 3320 ** The z[] string will probably not be zero-terminated. But the 3321 ** z[n] character is guaranteed to be something that does not look 3322 ** like the continuation of the number. 3323 */ 3324 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3325 if( ALWAYS(z!=0) ){ 3326 double value; 3327 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3328 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3329 if( negateFlag ) value = -value; 3330 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3331 } 3332 } 3333 #endif 3334 3335 3336 /* 3337 ** Generate an instruction that will put the integer describe by 3338 ** text z[0..n-1] into register iMem. 3339 ** 3340 ** Expr.u.zToken is always UTF8 and zero-terminated. 3341 */ 3342 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3343 Vdbe *v = pParse->pVdbe; 3344 if( pExpr->flags & EP_IntValue ){ 3345 int i = pExpr->u.iValue; 3346 assert( i>=0 ); 3347 if( negFlag ) i = -i; 3348 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3349 }else{ 3350 int c; 3351 i64 value; 3352 const char *z = pExpr->u.zToken; 3353 assert( z!=0 ); 3354 c = sqlite3DecOrHexToI64(z, &value); 3355 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3356 #ifdef SQLITE_OMIT_FLOATING_POINT 3357 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3358 #else 3359 #ifndef SQLITE_OMIT_HEX_INTEGER 3360 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3361 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3362 }else 3363 #endif 3364 { 3365 codeReal(v, z, negFlag, iMem); 3366 } 3367 #endif 3368 }else{ 3369 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3370 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3371 } 3372 } 3373 } 3374 3375 3376 /* Generate code that will load into register regOut a value that is 3377 ** appropriate for the iIdxCol-th column of index pIdx. 3378 */ 3379 void sqlite3ExprCodeLoadIndexColumn( 3380 Parse *pParse, /* The parsing context */ 3381 Index *pIdx, /* The index whose column is to be loaded */ 3382 int iTabCur, /* Cursor pointing to a table row */ 3383 int iIdxCol, /* The column of the index to be loaded */ 3384 int regOut /* Store the index column value in this register */ 3385 ){ 3386 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3387 if( iTabCol==XN_EXPR ){ 3388 assert( pIdx->aColExpr ); 3389 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3390 pParse->iSelfTab = iTabCur + 1; 3391 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3392 pParse->iSelfTab = 0; 3393 }else{ 3394 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3395 iTabCol, regOut); 3396 } 3397 } 3398 3399 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3400 /* 3401 ** Generate code that will compute the value of generated column pCol 3402 ** and store the result in register regOut 3403 */ 3404 void sqlite3ExprCodeGeneratedColumn( 3405 Parse *pParse, 3406 Column *pCol, 3407 int regOut 3408 ){ 3409 sqlite3ExprCode(pParse, pCol->pDflt, regOut); 3410 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3411 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, regOut, 1, 0, 3412 &pCol->affinity, 1); 3413 } 3414 } 3415 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3416 3417 /* 3418 ** Generate code to extract the value of the iCol-th column of a table. 3419 */ 3420 void sqlite3ExprCodeGetColumnOfTable( 3421 Vdbe *v, /* Parsing context */ 3422 Table *pTab, /* The table containing the value */ 3423 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3424 int iCol, /* Index of the column to extract */ 3425 int regOut /* Extract the value into this register */ 3426 ){ 3427 Column *pCol; 3428 assert( v!=0 ); 3429 if( pTab==0 ){ 3430 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3431 return; 3432 } 3433 if( iCol<0 || iCol==pTab->iPKey ){ 3434 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3435 }else{ 3436 int op; 3437 int x; 3438 if( IsVirtual(pTab) ){ 3439 op = OP_VColumn; 3440 x = iCol; 3441 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3442 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3443 Parse *pParse = sqlite3VdbeParser(v); 3444 if( pCol->colFlags & COLFLAG_BUSY ){ 3445 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3446 }else{ 3447 int savedSelfTab = pParse->iSelfTab; 3448 pCol->colFlags |= COLFLAG_BUSY; 3449 pParse->iSelfTab = iTabCur+1; 3450 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3451 pParse->iSelfTab = savedSelfTab; 3452 pCol->colFlags &= ~COLFLAG_BUSY; 3453 } 3454 return; 3455 #endif 3456 }else if( !HasRowid(pTab) ){ 3457 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3458 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3459 op = OP_Column; 3460 }else{ 3461 x = sqlite3TableColumnToStorage(pTab,iCol); 3462 testcase( x!=iCol ); 3463 op = OP_Column; 3464 } 3465 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3466 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3467 } 3468 } 3469 3470 /* 3471 ** Generate code that will extract the iColumn-th column from 3472 ** table pTab and store the column value in register iReg. 3473 ** 3474 ** There must be an open cursor to pTab in iTable when this routine 3475 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3476 */ 3477 int sqlite3ExprCodeGetColumn( 3478 Parse *pParse, /* Parsing and code generating context */ 3479 Table *pTab, /* Description of the table we are reading from */ 3480 int iColumn, /* Index of the table column */ 3481 int iTable, /* The cursor pointing to the table */ 3482 int iReg, /* Store results here */ 3483 u8 p5 /* P5 value for OP_Column + FLAGS */ 3484 ){ 3485 assert( pParse->pVdbe!=0 ); 3486 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3487 if( p5 ){ 3488 sqlite3VdbeChangeP5(pParse->pVdbe, p5); 3489 } 3490 return iReg; 3491 } 3492 3493 /* 3494 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3495 ** over to iTo..iTo+nReg-1. 3496 */ 3497 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3498 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3499 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3500 } 3501 3502 /* 3503 ** Convert a scalar expression node to a TK_REGISTER referencing 3504 ** register iReg. The caller must ensure that iReg already contains 3505 ** the correct value for the expression. 3506 */ 3507 static void exprToRegister(Expr *pExpr, int iReg){ 3508 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3509 p->op2 = p->op; 3510 p->op = TK_REGISTER; 3511 p->iTable = iReg; 3512 ExprClearProperty(p, EP_Skip); 3513 } 3514 3515 /* 3516 ** Evaluate an expression (either a vector or a scalar expression) and store 3517 ** the result in continguous temporary registers. Return the index of 3518 ** the first register used to store the result. 3519 ** 3520 ** If the returned result register is a temporary scalar, then also write 3521 ** that register number into *piFreeable. If the returned result register 3522 ** is not a temporary or if the expression is a vector set *piFreeable 3523 ** to 0. 3524 */ 3525 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3526 int iResult; 3527 int nResult = sqlite3ExprVectorSize(p); 3528 if( nResult==1 ){ 3529 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3530 }else{ 3531 *piFreeable = 0; 3532 if( p->op==TK_SELECT ){ 3533 #if SQLITE_OMIT_SUBQUERY 3534 iResult = 0; 3535 #else 3536 iResult = sqlite3CodeSubselect(pParse, p); 3537 #endif 3538 }else{ 3539 int i; 3540 iResult = pParse->nMem+1; 3541 pParse->nMem += nResult; 3542 for(i=0; i<nResult; i++){ 3543 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3544 } 3545 } 3546 } 3547 return iResult; 3548 } 3549 3550 3551 /* 3552 ** Generate code into the current Vdbe to evaluate the given 3553 ** expression. Attempt to store the results in register "target". 3554 ** Return the register where results are stored. 3555 ** 3556 ** With this routine, there is no guarantee that results will 3557 ** be stored in target. The result might be stored in some other 3558 ** register if it is convenient to do so. The calling function 3559 ** must check the return code and move the results to the desired 3560 ** register. 3561 */ 3562 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3563 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3564 int op; /* The opcode being coded */ 3565 int inReg = target; /* Results stored in register inReg */ 3566 int regFree1 = 0; /* If non-zero free this temporary register */ 3567 int regFree2 = 0; /* If non-zero free this temporary register */ 3568 int r1, r2; /* Various register numbers */ 3569 Expr tempX; /* Temporary expression node */ 3570 int p5 = 0; 3571 3572 assert( target>0 && target<=pParse->nMem ); 3573 if( v==0 ){ 3574 assert( pParse->db->mallocFailed ); 3575 return 0; 3576 } 3577 3578 expr_code_doover: 3579 if( pExpr==0 ){ 3580 op = TK_NULL; 3581 }else{ 3582 op = pExpr->op; 3583 } 3584 switch( op ){ 3585 case TK_AGG_COLUMN: { 3586 AggInfo *pAggInfo = pExpr->pAggInfo; 3587 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3588 if( !pAggInfo->directMode ){ 3589 assert( pCol->iMem>0 ); 3590 return pCol->iMem; 3591 }else if( pAggInfo->useSortingIdx ){ 3592 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3593 pCol->iSorterColumn, target); 3594 return target; 3595 } 3596 /* Otherwise, fall thru into the TK_COLUMN case */ 3597 } 3598 case TK_COLUMN: { 3599 int iTab = pExpr->iTable; 3600 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3601 /* This COLUMN expression is really a constant due to WHERE clause 3602 ** constraints, and that constant is coded by the pExpr->pLeft 3603 ** expresssion. However, make sure the constant has the correct 3604 ** datatype by applying the Affinity of the table column to the 3605 ** constant. 3606 */ 3607 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3608 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3609 if( aff>SQLITE_AFF_BLOB ){ 3610 static const char zAff[] = "B\000C\000D\000E"; 3611 assert( SQLITE_AFF_BLOB=='A' ); 3612 assert( SQLITE_AFF_TEXT=='B' ); 3613 if( iReg!=target ){ 3614 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3615 iReg = target; 3616 } 3617 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3618 &zAff[(aff-'B')*2], P4_STATIC); 3619 } 3620 return iReg; 3621 } 3622 if( iTab<0 ){ 3623 if( pParse->iSelfTab<0 ){ 3624 /* Other columns in the same row for CHECK constraints or 3625 ** generated columns or for inserting into partial index. 3626 ** The row is unpacked into registers beginning at 3627 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3628 ** immediately prior to the first column. 3629 */ 3630 Column *pCol; 3631 Table *pTab = pExpr->y.pTab; 3632 int iSrc; 3633 int iCol = pExpr->iColumn; 3634 assert( pTab!=0 ); 3635 assert( iCol>=XN_ROWID ); 3636 assert( iCol<pExpr->y.pTab->nCol ); 3637 if( iCol<0 ){ 3638 return -1-pParse->iSelfTab; 3639 } 3640 pCol = pTab->aCol + iCol; 3641 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3642 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3643 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3644 if( pCol->colFlags & COLFLAG_GENERATED ){ 3645 if( pCol->colFlags & COLFLAG_BUSY ){ 3646 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3647 pCol->zName); 3648 return 0; 3649 } 3650 pCol->colFlags |= COLFLAG_BUSY; 3651 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3652 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3653 } 3654 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3655 return iSrc; 3656 }else 3657 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3658 if( pCol->affinity==SQLITE_AFF_REAL ){ 3659 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3660 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3661 return target; 3662 }else{ 3663 return iSrc; 3664 } 3665 }else{ 3666 /* Coding an expression that is part of an index where column names 3667 ** in the index refer to the table to which the index belongs */ 3668 iTab = pParse->iSelfTab - 1; 3669 } 3670 } 3671 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3672 pExpr->iColumn, iTab, target, 3673 pExpr->op2); 3674 } 3675 case TK_INTEGER: { 3676 codeInteger(pParse, pExpr, 0, target); 3677 return target; 3678 } 3679 case TK_TRUEFALSE: { 3680 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3681 return target; 3682 } 3683 #ifndef SQLITE_OMIT_FLOATING_POINT 3684 case TK_FLOAT: { 3685 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3686 codeReal(v, pExpr->u.zToken, 0, target); 3687 return target; 3688 } 3689 #endif 3690 case TK_STRING: { 3691 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3692 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3693 return target; 3694 } 3695 case TK_NULL: { 3696 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3697 return target; 3698 } 3699 #ifndef SQLITE_OMIT_BLOB_LITERAL 3700 case TK_BLOB: { 3701 int n; 3702 const char *z; 3703 char *zBlob; 3704 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3705 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3706 assert( pExpr->u.zToken[1]=='\'' ); 3707 z = &pExpr->u.zToken[2]; 3708 n = sqlite3Strlen30(z) - 1; 3709 assert( z[n]=='\'' ); 3710 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3711 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3712 return target; 3713 } 3714 #endif 3715 case TK_VARIABLE: { 3716 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3717 assert( pExpr->u.zToken!=0 ); 3718 assert( pExpr->u.zToken[0]!=0 ); 3719 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3720 if( pExpr->u.zToken[1]!=0 ){ 3721 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3722 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3723 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3724 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3725 } 3726 return target; 3727 } 3728 case TK_REGISTER: { 3729 return pExpr->iTable; 3730 } 3731 #ifndef SQLITE_OMIT_CAST 3732 case TK_CAST: { 3733 /* Expressions of the form: CAST(pLeft AS token) */ 3734 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3735 if( inReg!=target ){ 3736 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3737 inReg = target; 3738 } 3739 sqlite3VdbeAddOp2(v, OP_Cast, target, 3740 sqlite3AffinityType(pExpr->u.zToken, 0)); 3741 return inReg; 3742 } 3743 #endif /* SQLITE_OMIT_CAST */ 3744 case TK_IS: 3745 case TK_ISNOT: 3746 op = (op==TK_IS) ? TK_EQ : TK_NE; 3747 p5 = SQLITE_NULLEQ; 3748 /* fall-through */ 3749 case TK_LT: 3750 case TK_LE: 3751 case TK_GT: 3752 case TK_GE: 3753 case TK_NE: 3754 case TK_EQ: { 3755 Expr *pLeft = pExpr->pLeft; 3756 if( sqlite3ExprIsVector(pLeft) ){ 3757 codeVectorCompare(pParse, pExpr, target, op, p5); 3758 }else{ 3759 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3760 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3761 codeCompare(pParse, pLeft, pExpr->pRight, op, 3762 r1, r2, inReg, SQLITE_STOREP2 | p5, 3763 ExprHasProperty(pExpr,EP_Commuted)); 3764 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3765 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3766 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3767 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3768 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3769 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3770 testcase( regFree1==0 ); 3771 testcase( regFree2==0 ); 3772 } 3773 break; 3774 } 3775 case TK_AND: 3776 case TK_OR: 3777 case TK_PLUS: 3778 case TK_STAR: 3779 case TK_MINUS: 3780 case TK_REM: 3781 case TK_BITAND: 3782 case TK_BITOR: 3783 case TK_SLASH: 3784 case TK_LSHIFT: 3785 case TK_RSHIFT: 3786 case TK_CONCAT: { 3787 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3788 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3789 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3790 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3791 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3792 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3793 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3794 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3795 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3796 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3797 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3798 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3799 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3800 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3801 testcase( regFree1==0 ); 3802 testcase( regFree2==0 ); 3803 break; 3804 } 3805 case TK_UMINUS: { 3806 Expr *pLeft = pExpr->pLeft; 3807 assert( pLeft ); 3808 if( pLeft->op==TK_INTEGER ){ 3809 codeInteger(pParse, pLeft, 1, target); 3810 return target; 3811 #ifndef SQLITE_OMIT_FLOATING_POINT 3812 }else if( pLeft->op==TK_FLOAT ){ 3813 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3814 codeReal(v, pLeft->u.zToken, 1, target); 3815 return target; 3816 #endif 3817 }else{ 3818 tempX.op = TK_INTEGER; 3819 tempX.flags = EP_IntValue|EP_TokenOnly; 3820 tempX.u.iValue = 0; 3821 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3822 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3823 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3824 testcase( regFree2==0 ); 3825 } 3826 break; 3827 } 3828 case TK_BITNOT: 3829 case TK_NOT: { 3830 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3831 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3832 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3833 testcase( regFree1==0 ); 3834 sqlite3VdbeAddOp2(v, op, r1, inReg); 3835 break; 3836 } 3837 case TK_TRUTH: { 3838 int isTrue; /* IS TRUE or IS NOT TRUE */ 3839 int bNormal; /* IS TRUE or IS FALSE */ 3840 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3841 testcase( regFree1==0 ); 3842 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3843 bNormal = pExpr->op2==TK_IS; 3844 testcase( isTrue && bNormal); 3845 testcase( !isTrue && bNormal); 3846 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3847 break; 3848 } 3849 case TK_ISNULL: 3850 case TK_NOTNULL: { 3851 int addr; 3852 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3853 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3854 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3855 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3856 testcase( regFree1==0 ); 3857 addr = sqlite3VdbeAddOp1(v, op, r1); 3858 VdbeCoverageIf(v, op==TK_ISNULL); 3859 VdbeCoverageIf(v, op==TK_NOTNULL); 3860 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3861 sqlite3VdbeJumpHere(v, addr); 3862 break; 3863 } 3864 case TK_AGG_FUNCTION: { 3865 AggInfo *pInfo = pExpr->pAggInfo; 3866 if( pInfo==0 ){ 3867 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3868 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3869 }else{ 3870 return pInfo->aFunc[pExpr->iAgg].iMem; 3871 } 3872 break; 3873 } 3874 case TK_FUNCTION: { 3875 ExprList *pFarg; /* List of function arguments */ 3876 int nFarg; /* Number of function arguments */ 3877 FuncDef *pDef; /* The function definition object */ 3878 const char *zId; /* The function name */ 3879 u32 constMask = 0; /* Mask of function arguments that are constant */ 3880 int i; /* Loop counter */ 3881 sqlite3 *db = pParse->db; /* The database connection */ 3882 u8 enc = ENC(db); /* The text encoding used by this database */ 3883 CollSeq *pColl = 0; /* A collating sequence */ 3884 3885 #ifndef SQLITE_OMIT_WINDOWFUNC 3886 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3887 return pExpr->y.pWin->regResult; 3888 } 3889 #endif 3890 3891 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3892 /* SQL functions can be expensive. So try to move constant functions 3893 ** out of the inner loop, even if that means an extra OP_Copy. */ 3894 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3895 } 3896 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3897 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3898 pFarg = 0; 3899 }else{ 3900 pFarg = pExpr->x.pList; 3901 } 3902 nFarg = pFarg ? pFarg->nExpr : 0; 3903 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3904 zId = pExpr->u.zToken; 3905 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3906 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3907 if( pDef==0 && pParse->explain ){ 3908 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3909 } 3910 #endif 3911 if( pDef==0 || pDef->xFinalize!=0 ){ 3912 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3913 break; 3914 } 3915 3916 /* Attempt a direct implementation of the built-in COALESCE() and 3917 ** IFNULL() functions. This avoids unnecessary evaluation of 3918 ** arguments past the first non-NULL argument. 3919 */ 3920 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3921 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3922 assert( nFarg>=2 ); 3923 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3924 for(i=1; i<nFarg; i++){ 3925 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3926 VdbeCoverage(v); 3927 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3928 } 3929 sqlite3VdbeResolveLabel(v, endCoalesce); 3930 break; 3931 } 3932 3933 /* The UNLIKELY() function is a no-op. The result is the value 3934 ** of the first argument. 3935 */ 3936 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3937 assert( nFarg>=1 ); 3938 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3939 } 3940 3941 #ifdef SQLITE_DEBUG 3942 /* The AFFINITY() function evaluates to a string that describes 3943 ** the type affinity of the argument. This is used for testing of 3944 ** the SQLite type logic. 3945 */ 3946 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3947 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3948 char aff; 3949 assert( nFarg==1 ); 3950 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3951 sqlite3VdbeLoadString(v, target, 3952 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3953 return target; 3954 } 3955 #endif 3956 3957 for(i=0; i<nFarg; i++){ 3958 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3959 testcase( i==31 ); 3960 constMask |= MASKBIT32(i); 3961 } 3962 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3963 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3964 } 3965 } 3966 if( pFarg ){ 3967 if( constMask ){ 3968 r1 = pParse->nMem+1; 3969 pParse->nMem += nFarg; 3970 }else{ 3971 r1 = sqlite3GetTempRange(pParse, nFarg); 3972 } 3973 3974 /* For length() and typeof() functions with a column argument, 3975 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3976 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3977 ** loading. 3978 */ 3979 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3980 u8 exprOp; 3981 assert( nFarg==1 ); 3982 assert( pFarg->a[0].pExpr!=0 ); 3983 exprOp = pFarg->a[0].pExpr->op; 3984 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3985 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3986 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3987 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3988 pFarg->a[0].pExpr->op2 = 3989 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3990 } 3991 } 3992 3993 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3994 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3995 }else{ 3996 r1 = 0; 3997 } 3998 #ifndef SQLITE_OMIT_VIRTUALTABLE 3999 /* Possibly overload the function if the first argument is 4000 ** a virtual table column. 4001 ** 4002 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4003 ** second argument, not the first, as the argument to test to 4004 ** see if it is a column in a virtual table. This is done because 4005 ** the left operand of infix functions (the operand we want to 4006 ** control overloading) ends up as the second argument to the 4007 ** function. The expression "A glob B" is equivalent to 4008 ** "glob(B,A). We want to use the A in "A glob B" to test 4009 ** for function overloading. But we use the B term in "glob(B,A)". 4010 */ 4011 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4012 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4013 }else if( nFarg>0 ){ 4014 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4015 } 4016 #endif 4017 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4018 if( !pColl ) pColl = db->pDfltColl; 4019 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4020 } 4021 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4022 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4023 Expr *pArg = pFarg->a[0].pExpr; 4024 if( pArg->op==TK_COLUMN ){ 4025 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4026 }else{ 4027 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4028 } 4029 }else 4030 #endif 4031 { 4032 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4033 pDef, pExpr->op2); 4034 } 4035 if( nFarg && constMask==0 ){ 4036 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4037 } 4038 return target; 4039 } 4040 #ifndef SQLITE_OMIT_SUBQUERY 4041 case TK_EXISTS: 4042 case TK_SELECT: { 4043 int nCol; 4044 testcase( op==TK_EXISTS ); 4045 testcase( op==TK_SELECT ); 4046 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4047 sqlite3SubselectError(pParse, nCol, 1); 4048 }else{ 4049 return sqlite3CodeSubselect(pParse, pExpr); 4050 } 4051 break; 4052 } 4053 case TK_SELECT_COLUMN: { 4054 int n; 4055 if( pExpr->pLeft->iTable==0 ){ 4056 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4057 } 4058 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4059 if( pExpr->iTable!=0 4060 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4061 ){ 4062 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4063 pExpr->iTable, n); 4064 } 4065 return pExpr->pLeft->iTable + pExpr->iColumn; 4066 } 4067 case TK_IN: { 4068 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4069 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4070 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4071 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4072 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4073 sqlite3VdbeResolveLabel(v, destIfFalse); 4074 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4075 sqlite3VdbeResolveLabel(v, destIfNull); 4076 return target; 4077 } 4078 #endif /* SQLITE_OMIT_SUBQUERY */ 4079 4080 4081 /* 4082 ** x BETWEEN y AND z 4083 ** 4084 ** This is equivalent to 4085 ** 4086 ** x>=y AND x<=z 4087 ** 4088 ** X is stored in pExpr->pLeft. 4089 ** Y is stored in pExpr->pList->a[0].pExpr. 4090 ** Z is stored in pExpr->pList->a[1].pExpr. 4091 */ 4092 case TK_BETWEEN: { 4093 exprCodeBetween(pParse, pExpr, target, 0, 0); 4094 return target; 4095 } 4096 case TK_SPAN: 4097 case TK_COLLATE: 4098 case TK_UPLUS: { 4099 pExpr = pExpr->pLeft; 4100 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4101 } 4102 4103 case TK_TRIGGER: { 4104 /* If the opcode is TK_TRIGGER, then the expression is a reference 4105 ** to a column in the new.* or old.* pseudo-tables available to 4106 ** trigger programs. In this case Expr.iTable is set to 1 for the 4107 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4108 ** is set to the column of the pseudo-table to read, or to -1 to 4109 ** read the rowid field. 4110 ** 4111 ** The expression is implemented using an OP_Param opcode. The p1 4112 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4113 ** to reference another column of the old.* pseudo-table, where 4114 ** i is the index of the column. For a new.rowid reference, p1 is 4115 ** set to (n+1), where n is the number of columns in each pseudo-table. 4116 ** For a reference to any other column in the new.* pseudo-table, p1 4117 ** is set to (n+2+i), where n and i are as defined previously. For 4118 ** example, if the table on which triggers are being fired is 4119 ** declared as: 4120 ** 4121 ** CREATE TABLE t1(a, b); 4122 ** 4123 ** Then p1 is interpreted as follows: 4124 ** 4125 ** p1==0 -> old.rowid p1==3 -> new.rowid 4126 ** p1==1 -> old.a p1==4 -> new.a 4127 ** p1==2 -> old.b p1==5 -> new.b 4128 */ 4129 Table *pTab = pExpr->y.pTab; 4130 int iCol = pExpr->iColumn; 4131 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4132 + (iCol>=0 ? sqlite3TableColumnToStorage(pTab, iCol) : -1); 4133 4134 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4135 assert( iCol>=-1 && iCol<pTab->nCol ); 4136 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4137 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4138 4139 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4140 VdbeComment((v, "r[%d]=%s.%s", target, 4141 (pExpr->iTable ? "new" : "old"), 4142 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4143 )); 4144 4145 #ifndef SQLITE_OMIT_FLOATING_POINT 4146 /* If the column has REAL affinity, it may currently be stored as an 4147 ** integer. Use OP_RealAffinity to make sure it is really real. 4148 ** 4149 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4150 ** floating point when extracting it from the record. */ 4151 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4152 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4153 } 4154 #endif 4155 break; 4156 } 4157 4158 case TK_VECTOR: { 4159 sqlite3ErrorMsg(pParse, "row value misused"); 4160 break; 4161 } 4162 4163 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4164 ** that derive from the right-hand table of a LEFT JOIN. The 4165 ** Expr.iTable value is the table number for the right-hand table. 4166 ** The expression is only evaluated if that table is not currently 4167 ** on a LEFT JOIN NULL row. 4168 */ 4169 case TK_IF_NULL_ROW: { 4170 int addrINR; 4171 u8 okConstFactor = pParse->okConstFactor; 4172 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4173 /* Temporarily disable factoring of constant expressions, since 4174 ** even though expressions may appear to be constant, they are not 4175 ** really constant because they originate from the right-hand side 4176 ** of a LEFT JOIN. */ 4177 pParse->okConstFactor = 0; 4178 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4179 pParse->okConstFactor = okConstFactor; 4180 sqlite3VdbeJumpHere(v, addrINR); 4181 sqlite3VdbeChangeP3(v, addrINR, inReg); 4182 break; 4183 } 4184 4185 /* 4186 ** Form A: 4187 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4188 ** 4189 ** Form B: 4190 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4191 ** 4192 ** Form A is can be transformed into the equivalent form B as follows: 4193 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4194 ** WHEN x=eN THEN rN ELSE y END 4195 ** 4196 ** X (if it exists) is in pExpr->pLeft. 4197 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4198 ** odd. The Y is also optional. If the number of elements in x.pList 4199 ** is even, then Y is omitted and the "otherwise" result is NULL. 4200 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4201 ** 4202 ** The result of the expression is the Ri for the first matching Ei, 4203 ** or if there is no matching Ei, the ELSE term Y, or if there is 4204 ** no ELSE term, NULL. 4205 */ 4206 default: assert( op==TK_CASE ); { 4207 int endLabel; /* GOTO label for end of CASE stmt */ 4208 int nextCase; /* GOTO label for next WHEN clause */ 4209 int nExpr; /* 2x number of WHEN terms */ 4210 int i; /* Loop counter */ 4211 ExprList *pEList; /* List of WHEN terms */ 4212 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4213 Expr opCompare; /* The X==Ei expression */ 4214 Expr *pX; /* The X expression */ 4215 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4216 Expr *pDel = 0; 4217 sqlite3 *db = pParse->db; 4218 4219 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4220 assert(pExpr->x.pList->nExpr > 0); 4221 pEList = pExpr->x.pList; 4222 aListelem = pEList->a; 4223 nExpr = pEList->nExpr; 4224 endLabel = sqlite3VdbeMakeLabel(pParse); 4225 if( (pX = pExpr->pLeft)!=0 ){ 4226 pDel = sqlite3ExprDup(db, pX, 0); 4227 if( db->mallocFailed ){ 4228 sqlite3ExprDelete(db, pDel); 4229 break; 4230 } 4231 testcase( pX->op==TK_COLUMN ); 4232 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4233 testcase( regFree1==0 ); 4234 memset(&opCompare, 0, sizeof(opCompare)); 4235 opCompare.op = TK_EQ; 4236 opCompare.pLeft = pDel; 4237 pTest = &opCompare; 4238 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4239 ** The value in regFree1 might get SCopy-ed into the file result. 4240 ** So make sure that the regFree1 register is not reused for other 4241 ** purposes and possibly overwritten. */ 4242 regFree1 = 0; 4243 } 4244 for(i=0; i<nExpr-1; i=i+2){ 4245 if( pX ){ 4246 assert( pTest!=0 ); 4247 opCompare.pRight = aListelem[i].pExpr; 4248 }else{ 4249 pTest = aListelem[i].pExpr; 4250 } 4251 nextCase = sqlite3VdbeMakeLabel(pParse); 4252 testcase( pTest->op==TK_COLUMN ); 4253 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4254 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4255 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4256 sqlite3VdbeGoto(v, endLabel); 4257 sqlite3VdbeResolveLabel(v, nextCase); 4258 } 4259 if( (nExpr&1)!=0 ){ 4260 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4261 }else{ 4262 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4263 } 4264 sqlite3ExprDelete(db, pDel); 4265 sqlite3VdbeResolveLabel(v, endLabel); 4266 break; 4267 } 4268 #ifndef SQLITE_OMIT_TRIGGER 4269 case TK_RAISE: { 4270 assert( pExpr->affExpr==OE_Rollback 4271 || pExpr->affExpr==OE_Abort 4272 || pExpr->affExpr==OE_Fail 4273 || pExpr->affExpr==OE_Ignore 4274 ); 4275 if( !pParse->pTriggerTab ){ 4276 sqlite3ErrorMsg(pParse, 4277 "RAISE() may only be used within a trigger-program"); 4278 return 0; 4279 } 4280 if( pExpr->affExpr==OE_Abort ){ 4281 sqlite3MayAbort(pParse); 4282 } 4283 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4284 if( pExpr->affExpr==OE_Ignore ){ 4285 sqlite3VdbeAddOp4( 4286 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4287 VdbeCoverage(v); 4288 }else{ 4289 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4290 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4291 } 4292 4293 break; 4294 } 4295 #endif 4296 } 4297 sqlite3ReleaseTempReg(pParse, regFree1); 4298 sqlite3ReleaseTempReg(pParse, regFree2); 4299 return inReg; 4300 } 4301 4302 /* 4303 ** Factor out the code of the given expression to initialization time. 4304 ** 4305 ** If regDest>=0 then the result is always stored in that register and the 4306 ** result is not reusable. If regDest<0 then this routine is free to 4307 ** store the value whereever it wants. The register where the expression 4308 ** is stored is returned. When regDest<0, two identical expressions will 4309 ** code to the same register. 4310 */ 4311 int sqlite3ExprCodeAtInit( 4312 Parse *pParse, /* Parsing context */ 4313 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4314 int regDest /* Store the value in this register */ 4315 ){ 4316 ExprList *p; 4317 assert( ConstFactorOk(pParse) ); 4318 p = pParse->pConstExpr; 4319 if( regDest<0 && p ){ 4320 struct ExprList_item *pItem; 4321 int i; 4322 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4323 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4324 return pItem->u.iConstExprReg; 4325 } 4326 } 4327 } 4328 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4329 p = sqlite3ExprListAppend(pParse, p, pExpr); 4330 if( p ){ 4331 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4332 pItem->reusable = regDest<0; 4333 if( regDest<0 ) regDest = ++pParse->nMem; 4334 pItem->u.iConstExprReg = regDest; 4335 } 4336 pParse->pConstExpr = p; 4337 return regDest; 4338 } 4339 4340 /* 4341 ** Generate code to evaluate an expression and store the results 4342 ** into a register. Return the register number where the results 4343 ** are stored. 4344 ** 4345 ** If the register is a temporary register that can be deallocated, 4346 ** then write its number into *pReg. If the result register is not 4347 ** a temporary, then set *pReg to zero. 4348 ** 4349 ** If pExpr is a constant, then this routine might generate this 4350 ** code to fill the register in the initialization section of the 4351 ** VDBE program, in order to factor it out of the evaluation loop. 4352 */ 4353 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4354 int r2; 4355 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4356 if( ConstFactorOk(pParse) 4357 && pExpr->op!=TK_REGISTER 4358 && sqlite3ExprIsConstantNotJoin(pExpr) 4359 ){ 4360 *pReg = 0; 4361 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4362 }else{ 4363 int r1 = sqlite3GetTempReg(pParse); 4364 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4365 if( r2==r1 ){ 4366 *pReg = r1; 4367 }else{ 4368 sqlite3ReleaseTempReg(pParse, r1); 4369 *pReg = 0; 4370 } 4371 } 4372 return r2; 4373 } 4374 4375 /* 4376 ** Generate code that will evaluate expression pExpr and store the 4377 ** results in register target. The results are guaranteed to appear 4378 ** in register target. 4379 */ 4380 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4381 int inReg; 4382 4383 assert( target>0 && target<=pParse->nMem ); 4384 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4385 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4386 if( inReg!=target && pParse->pVdbe ){ 4387 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4388 } 4389 } 4390 4391 /* 4392 ** Make a transient copy of expression pExpr and then code it using 4393 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4394 ** except that the input expression is guaranteed to be unchanged. 4395 */ 4396 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4397 sqlite3 *db = pParse->db; 4398 pExpr = sqlite3ExprDup(db, pExpr, 0); 4399 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4400 sqlite3ExprDelete(db, pExpr); 4401 } 4402 4403 /* 4404 ** Generate code that will evaluate expression pExpr and store the 4405 ** results in register target. The results are guaranteed to appear 4406 ** in register target. If the expression is constant, then this routine 4407 ** might choose to code the expression at initialization time. 4408 */ 4409 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4410 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4411 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4412 }else{ 4413 sqlite3ExprCode(pParse, pExpr, target); 4414 } 4415 } 4416 4417 /* 4418 ** Generate code that pushes the value of every element of the given 4419 ** expression list into a sequence of registers beginning at target. 4420 ** 4421 ** Return the number of elements evaluated. The number returned will 4422 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4423 ** is defined. 4424 ** 4425 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4426 ** filled using OP_SCopy. OP_Copy must be used instead. 4427 ** 4428 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4429 ** factored out into initialization code. 4430 ** 4431 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4432 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4433 ** in registers at srcReg, and so the value can be copied from there. 4434 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4435 ** are simply omitted rather than being copied from srcReg. 4436 */ 4437 int sqlite3ExprCodeExprList( 4438 Parse *pParse, /* Parsing context */ 4439 ExprList *pList, /* The expression list to be coded */ 4440 int target, /* Where to write results */ 4441 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4442 u8 flags /* SQLITE_ECEL_* flags */ 4443 ){ 4444 struct ExprList_item *pItem; 4445 int i, j, n; 4446 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4447 Vdbe *v = pParse->pVdbe; 4448 assert( pList!=0 ); 4449 assert( target>0 ); 4450 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4451 n = pList->nExpr; 4452 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4453 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4454 Expr *pExpr = pItem->pExpr; 4455 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4456 if( pItem->bSorterRef ){ 4457 i--; 4458 n--; 4459 }else 4460 #endif 4461 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4462 if( flags & SQLITE_ECEL_OMITREF ){ 4463 i--; 4464 n--; 4465 }else{ 4466 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4467 } 4468 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4469 && sqlite3ExprIsConstantNotJoin(pExpr) 4470 ){ 4471 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4472 }else{ 4473 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4474 if( inReg!=target+i ){ 4475 VdbeOp *pOp; 4476 if( copyOp==OP_Copy 4477 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4478 && pOp->p1+pOp->p3+1==inReg 4479 && pOp->p2+pOp->p3+1==target+i 4480 ){ 4481 pOp->p3++; 4482 }else{ 4483 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4484 } 4485 } 4486 } 4487 } 4488 return n; 4489 } 4490 4491 /* 4492 ** Generate code for a BETWEEN operator. 4493 ** 4494 ** x BETWEEN y AND z 4495 ** 4496 ** The above is equivalent to 4497 ** 4498 ** x>=y AND x<=z 4499 ** 4500 ** Code it as such, taking care to do the common subexpression 4501 ** elimination of x. 4502 ** 4503 ** The xJumpIf parameter determines details: 4504 ** 4505 ** NULL: Store the boolean result in reg[dest] 4506 ** sqlite3ExprIfTrue: Jump to dest if true 4507 ** sqlite3ExprIfFalse: Jump to dest if false 4508 ** 4509 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4510 */ 4511 static void exprCodeBetween( 4512 Parse *pParse, /* Parsing and code generating context */ 4513 Expr *pExpr, /* The BETWEEN expression */ 4514 int dest, /* Jump destination or storage location */ 4515 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4516 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4517 ){ 4518 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4519 Expr compLeft; /* The x>=y term */ 4520 Expr compRight; /* The x<=z term */ 4521 int regFree1 = 0; /* Temporary use register */ 4522 Expr *pDel = 0; 4523 sqlite3 *db = pParse->db; 4524 4525 memset(&compLeft, 0, sizeof(Expr)); 4526 memset(&compRight, 0, sizeof(Expr)); 4527 memset(&exprAnd, 0, sizeof(Expr)); 4528 4529 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4530 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4531 if( db->mallocFailed==0 ){ 4532 exprAnd.op = TK_AND; 4533 exprAnd.pLeft = &compLeft; 4534 exprAnd.pRight = &compRight; 4535 compLeft.op = TK_GE; 4536 compLeft.pLeft = pDel; 4537 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4538 compRight.op = TK_LE; 4539 compRight.pLeft = pDel; 4540 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4541 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4542 if( xJump ){ 4543 xJump(pParse, &exprAnd, dest, jumpIfNull); 4544 }else{ 4545 /* Mark the expression is being from the ON or USING clause of a join 4546 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4547 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4548 ** for clarity, but we are out of bits in the Expr.flags field so we 4549 ** have to reuse the EP_FromJoin bit. Bummer. */ 4550 pDel->flags |= EP_FromJoin; 4551 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4552 } 4553 sqlite3ReleaseTempReg(pParse, regFree1); 4554 } 4555 sqlite3ExprDelete(db, pDel); 4556 4557 /* Ensure adequate test coverage */ 4558 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4559 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4560 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4561 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4562 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4563 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4564 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4565 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4566 testcase( xJump==0 ); 4567 } 4568 4569 /* 4570 ** Generate code for a boolean expression such that a jump is made 4571 ** to the label "dest" if the expression is true but execution 4572 ** continues straight thru if the expression is false. 4573 ** 4574 ** If the expression evaluates to NULL (neither true nor false), then 4575 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4576 ** 4577 ** This code depends on the fact that certain token values (ex: TK_EQ) 4578 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4579 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4580 ** the make process cause these values to align. Assert()s in the code 4581 ** below verify that the numbers are aligned correctly. 4582 */ 4583 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4584 Vdbe *v = pParse->pVdbe; 4585 int op = 0; 4586 int regFree1 = 0; 4587 int regFree2 = 0; 4588 int r1, r2; 4589 4590 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4591 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4592 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4593 op = pExpr->op; 4594 switch( op ){ 4595 case TK_AND: 4596 case TK_OR: { 4597 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4598 if( pAlt!=pExpr ){ 4599 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4600 }else if( op==TK_AND ){ 4601 int d2 = sqlite3VdbeMakeLabel(pParse); 4602 testcase( jumpIfNull==0 ); 4603 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4604 jumpIfNull^SQLITE_JUMPIFNULL); 4605 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4606 sqlite3VdbeResolveLabel(v, d2); 4607 }else{ 4608 testcase( jumpIfNull==0 ); 4609 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4610 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4611 } 4612 break; 4613 } 4614 case TK_NOT: { 4615 testcase( jumpIfNull==0 ); 4616 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4617 break; 4618 } 4619 case TK_TRUTH: { 4620 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4621 int isTrue; /* IS TRUE or IS NOT TRUE */ 4622 testcase( jumpIfNull==0 ); 4623 isNot = pExpr->op2==TK_ISNOT; 4624 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4625 testcase( isTrue && isNot ); 4626 testcase( !isTrue && isNot ); 4627 if( isTrue ^ isNot ){ 4628 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4629 isNot ? SQLITE_JUMPIFNULL : 0); 4630 }else{ 4631 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4632 isNot ? SQLITE_JUMPIFNULL : 0); 4633 } 4634 break; 4635 } 4636 case TK_IS: 4637 case TK_ISNOT: 4638 testcase( op==TK_IS ); 4639 testcase( op==TK_ISNOT ); 4640 op = (op==TK_IS) ? TK_EQ : TK_NE; 4641 jumpIfNull = SQLITE_NULLEQ; 4642 /* Fall thru */ 4643 case TK_LT: 4644 case TK_LE: 4645 case TK_GT: 4646 case TK_GE: 4647 case TK_NE: 4648 case TK_EQ: { 4649 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4650 testcase( jumpIfNull==0 ); 4651 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4652 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4653 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4654 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4655 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4656 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4657 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4658 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4659 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4660 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4661 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4662 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4663 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4664 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4665 testcase( regFree1==0 ); 4666 testcase( regFree2==0 ); 4667 break; 4668 } 4669 case TK_ISNULL: 4670 case TK_NOTNULL: { 4671 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4672 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4673 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4674 sqlite3VdbeAddOp2(v, op, r1, dest); 4675 VdbeCoverageIf(v, op==TK_ISNULL); 4676 VdbeCoverageIf(v, op==TK_NOTNULL); 4677 testcase( regFree1==0 ); 4678 break; 4679 } 4680 case TK_BETWEEN: { 4681 testcase( jumpIfNull==0 ); 4682 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4683 break; 4684 } 4685 #ifndef SQLITE_OMIT_SUBQUERY 4686 case TK_IN: { 4687 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4688 int destIfNull = jumpIfNull ? dest : destIfFalse; 4689 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4690 sqlite3VdbeGoto(v, dest); 4691 sqlite3VdbeResolveLabel(v, destIfFalse); 4692 break; 4693 } 4694 #endif 4695 default: { 4696 default_expr: 4697 if( ExprAlwaysTrue(pExpr) ){ 4698 sqlite3VdbeGoto(v, dest); 4699 }else if( ExprAlwaysFalse(pExpr) ){ 4700 /* No-op */ 4701 }else{ 4702 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4703 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4704 VdbeCoverage(v); 4705 testcase( regFree1==0 ); 4706 testcase( jumpIfNull==0 ); 4707 } 4708 break; 4709 } 4710 } 4711 sqlite3ReleaseTempReg(pParse, regFree1); 4712 sqlite3ReleaseTempReg(pParse, regFree2); 4713 } 4714 4715 /* 4716 ** Generate code for a boolean expression such that a jump is made 4717 ** to the label "dest" if the expression is false but execution 4718 ** continues straight thru if the expression is true. 4719 ** 4720 ** If the expression evaluates to NULL (neither true nor false) then 4721 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4722 ** is 0. 4723 */ 4724 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4725 Vdbe *v = pParse->pVdbe; 4726 int op = 0; 4727 int regFree1 = 0; 4728 int regFree2 = 0; 4729 int r1, r2; 4730 4731 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4732 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4733 if( pExpr==0 ) return; 4734 4735 /* The value of pExpr->op and op are related as follows: 4736 ** 4737 ** pExpr->op op 4738 ** --------- ---------- 4739 ** TK_ISNULL OP_NotNull 4740 ** TK_NOTNULL OP_IsNull 4741 ** TK_NE OP_Eq 4742 ** TK_EQ OP_Ne 4743 ** TK_GT OP_Le 4744 ** TK_LE OP_Gt 4745 ** TK_GE OP_Lt 4746 ** TK_LT OP_Ge 4747 ** 4748 ** For other values of pExpr->op, op is undefined and unused. 4749 ** The value of TK_ and OP_ constants are arranged such that we 4750 ** can compute the mapping above using the following expression. 4751 ** Assert()s verify that the computation is correct. 4752 */ 4753 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4754 4755 /* Verify correct alignment of TK_ and OP_ constants 4756 */ 4757 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4758 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4759 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4760 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4761 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4762 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4763 assert( pExpr->op!=TK_GT || op==OP_Le ); 4764 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4765 4766 switch( pExpr->op ){ 4767 case TK_AND: 4768 case TK_OR: { 4769 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4770 if( pAlt!=pExpr ){ 4771 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4772 }else if( pExpr->op==TK_AND ){ 4773 testcase( jumpIfNull==0 ); 4774 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4775 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4776 }else{ 4777 int d2 = sqlite3VdbeMakeLabel(pParse); 4778 testcase( jumpIfNull==0 ); 4779 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4780 jumpIfNull^SQLITE_JUMPIFNULL); 4781 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4782 sqlite3VdbeResolveLabel(v, d2); 4783 } 4784 break; 4785 } 4786 case TK_NOT: { 4787 testcase( jumpIfNull==0 ); 4788 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4789 break; 4790 } 4791 case TK_TRUTH: { 4792 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4793 int isTrue; /* IS TRUE or IS NOT TRUE */ 4794 testcase( jumpIfNull==0 ); 4795 isNot = pExpr->op2==TK_ISNOT; 4796 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4797 testcase( isTrue && isNot ); 4798 testcase( !isTrue && isNot ); 4799 if( isTrue ^ isNot ){ 4800 /* IS TRUE and IS NOT FALSE */ 4801 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4802 isNot ? 0 : SQLITE_JUMPIFNULL); 4803 4804 }else{ 4805 /* IS FALSE and IS NOT TRUE */ 4806 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4807 isNot ? 0 : SQLITE_JUMPIFNULL); 4808 } 4809 break; 4810 } 4811 case TK_IS: 4812 case TK_ISNOT: 4813 testcase( pExpr->op==TK_IS ); 4814 testcase( pExpr->op==TK_ISNOT ); 4815 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4816 jumpIfNull = SQLITE_NULLEQ; 4817 /* Fall thru */ 4818 case TK_LT: 4819 case TK_LE: 4820 case TK_GT: 4821 case TK_GE: 4822 case TK_NE: 4823 case TK_EQ: { 4824 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4825 testcase( jumpIfNull==0 ); 4826 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4827 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4828 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4829 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 4830 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4831 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4832 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4833 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4834 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4835 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4836 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4837 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4838 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4839 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4840 testcase( regFree1==0 ); 4841 testcase( regFree2==0 ); 4842 break; 4843 } 4844 case TK_ISNULL: 4845 case TK_NOTNULL: { 4846 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4847 sqlite3VdbeAddOp2(v, op, r1, dest); 4848 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4849 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4850 testcase( regFree1==0 ); 4851 break; 4852 } 4853 case TK_BETWEEN: { 4854 testcase( jumpIfNull==0 ); 4855 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4856 break; 4857 } 4858 #ifndef SQLITE_OMIT_SUBQUERY 4859 case TK_IN: { 4860 if( jumpIfNull ){ 4861 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4862 }else{ 4863 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4864 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4865 sqlite3VdbeResolveLabel(v, destIfNull); 4866 } 4867 break; 4868 } 4869 #endif 4870 default: { 4871 default_expr: 4872 if( ExprAlwaysFalse(pExpr) ){ 4873 sqlite3VdbeGoto(v, dest); 4874 }else if( ExprAlwaysTrue(pExpr) ){ 4875 /* no-op */ 4876 }else{ 4877 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4878 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4879 VdbeCoverage(v); 4880 testcase( regFree1==0 ); 4881 testcase( jumpIfNull==0 ); 4882 } 4883 break; 4884 } 4885 } 4886 sqlite3ReleaseTempReg(pParse, regFree1); 4887 sqlite3ReleaseTempReg(pParse, regFree2); 4888 } 4889 4890 /* 4891 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4892 ** code generation, and that copy is deleted after code generation. This 4893 ** ensures that the original pExpr is unchanged. 4894 */ 4895 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4896 sqlite3 *db = pParse->db; 4897 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4898 if( db->mallocFailed==0 ){ 4899 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4900 } 4901 sqlite3ExprDelete(db, pCopy); 4902 } 4903 4904 /* 4905 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4906 ** type of expression. 4907 ** 4908 ** If pExpr is a simple SQL value - an integer, real, string, blob 4909 ** or NULL value - then the VDBE currently being prepared is configured 4910 ** to re-prepare each time a new value is bound to variable pVar. 4911 ** 4912 ** Additionally, if pExpr is a simple SQL value and the value is the 4913 ** same as that currently bound to variable pVar, non-zero is returned. 4914 ** Otherwise, if the values are not the same or if pExpr is not a simple 4915 ** SQL value, zero is returned. 4916 */ 4917 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4918 int res = 0; 4919 int iVar; 4920 sqlite3_value *pL, *pR = 0; 4921 4922 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4923 if( pR ){ 4924 iVar = pVar->iColumn; 4925 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4926 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4927 if( pL ){ 4928 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4929 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4930 } 4931 res = 0==sqlite3MemCompare(pL, pR, 0); 4932 } 4933 sqlite3ValueFree(pR); 4934 sqlite3ValueFree(pL); 4935 } 4936 4937 return res; 4938 } 4939 4940 /* 4941 ** Do a deep comparison of two expression trees. Return 0 if the two 4942 ** expressions are completely identical. Return 1 if they differ only 4943 ** by a COLLATE operator at the top level. Return 2 if there are differences 4944 ** other than the top-level COLLATE operator. 4945 ** 4946 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4947 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4948 ** 4949 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4950 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4951 ** 4952 ** Sometimes this routine will return 2 even if the two expressions 4953 ** really are equivalent. If we cannot prove that the expressions are 4954 ** identical, we return 2 just to be safe. So if this routine 4955 ** returns 2, then you do not really know for certain if the two 4956 ** expressions are the same. But if you get a 0 or 1 return, then you 4957 ** can be sure the expressions are the same. In the places where 4958 ** this routine is used, it does not hurt to get an extra 2 - that 4959 ** just might result in some slightly slower code. But returning 4960 ** an incorrect 0 or 1 could lead to a malfunction. 4961 ** 4962 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4963 ** pParse->pReprepare can be matched against literals in pB. The 4964 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4965 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4966 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4967 ** pB causes a return value of 2. 4968 */ 4969 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4970 u32 combinedFlags; 4971 if( pA==0 || pB==0 ){ 4972 return pB==pA ? 0 : 2; 4973 } 4974 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4975 return 0; 4976 } 4977 combinedFlags = pA->flags | pB->flags; 4978 if( combinedFlags & EP_IntValue ){ 4979 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4980 return 0; 4981 } 4982 return 2; 4983 } 4984 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4985 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4986 return 1; 4987 } 4988 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4989 return 1; 4990 } 4991 return 2; 4992 } 4993 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4994 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 4995 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4996 #ifndef SQLITE_OMIT_WINDOWFUNC 4997 assert( pA->op==pB->op ); 4998 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 4999 return 2; 5000 } 5001 if( ExprHasProperty(pA,EP_WinFunc) ){ 5002 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5003 return 2; 5004 } 5005 } 5006 #endif 5007 }else if( pA->op==TK_NULL ){ 5008 return 0; 5009 }else if( pA->op==TK_COLLATE ){ 5010 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5011 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5012 return 2; 5013 } 5014 } 5015 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5016 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5017 if( (combinedFlags & EP_TokenOnly)==0 ){ 5018 if( combinedFlags & EP_xIsSelect ) return 2; 5019 if( (combinedFlags & EP_FixedCol)==0 5020 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5021 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5022 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5023 if( pA->op!=TK_STRING 5024 && pA->op!=TK_TRUEFALSE 5025 && (combinedFlags & EP_Reduced)==0 5026 ){ 5027 if( pA->iColumn!=pB->iColumn ) return 2; 5028 if( pA->op2!=pB->op2 ){ 5029 if( pA->op==TK_TRUTH ) return 2; 5030 if( pA->op==TK_FUNCTION && iTab<0 ){ 5031 /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') )); 5032 ** INSERT INTO t1(a) VALUES(julianday('now')+10); 5033 ** Without this test, sqlite3ExprCodeAtInit() will run on the 5034 ** the julianday() of INSERT first, and remember that expression. 5035 ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK 5036 ** constraint as redundant, reusing the one from the INSERT, even 5037 ** though the julianday() in INSERT lacks the critical NC_IsCheck 5038 ** flag. See ticket [830277d9db6c3ba1] (2019-10-30) 5039 */ 5040 return 2; 5041 } 5042 } 5043 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5044 return 2; 5045 } 5046 } 5047 } 5048 return 0; 5049 } 5050 5051 /* 5052 ** Compare two ExprList objects. Return 0 if they are identical and 5053 ** non-zero if they differ in any way. 5054 ** 5055 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5056 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5057 ** 5058 ** This routine might return non-zero for equivalent ExprLists. The 5059 ** only consequence will be disabled optimizations. But this routine 5060 ** must never return 0 if the two ExprList objects are different, or 5061 ** a malfunction will result. 5062 ** 5063 ** Two NULL pointers are considered to be the same. But a NULL pointer 5064 ** always differs from a non-NULL pointer. 5065 */ 5066 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5067 int i; 5068 if( pA==0 && pB==0 ) return 0; 5069 if( pA==0 || pB==0 ) return 1; 5070 if( pA->nExpr!=pB->nExpr ) return 1; 5071 for(i=0; i<pA->nExpr; i++){ 5072 Expr *pExprA = pA->a[i].pExpr; 5073 Expr *pExprB = pB->a[i].pExpr; 5074 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5075 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 5076 } 5077 return 0; 5078 } 5079 5080 /* 5081 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5082 ** are ignored. 5083 */ 5084 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5085 return sqlite3ExprCompare(0, 5086 sqlite3ExprSkipCollateAndLikely(pA), 5087 sqlite3ExprSkipCollateAndLikely(pB), 5088 iTab); 5089 } 5090 5091 /* 5092 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5093 ** 5094 ** Or if seenNot is true, return non-zero if Expr p can only be 5095 ** non-NULL if pNN is not NULL 5096 */ 5097 static int exprImpliesNotNull( 5098 Parse *pParse, /* Parsing context */ 5099 Expr *p, /* The expression to be checked */ 5100 Expr *pNN, /* The expression that is NOT NULL */ 5101 int iTab, /* Table being evaluated */ 5102 int seenNot /* Return true only if p can be any non-NULL value */ 5103 ){ 5104 assert( p ); 5105 assert( pNN ); 5106 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5107 return pNN->op!=TK_NULL; 5108 } 5109 switch( p->op ){ 5110 case TK_IN: { 5111 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5112 assert( ExprHasProperty(p,EP_xIsSelect) 5113 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5114 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5115 } 5116 case TK_BETWEEN: { 5117 ExprList *pList = p->x.pList; 5118 assert( pList!=0 ); 5119 assert( pList->nExpr==2 ); 5120 if( seenNot ) return 0; 5121 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5122 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5123 ){ 5124 return 1; 5125 } 5126 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5127 } 5128 case TK_EQ: 5129 case TK_NE: 5130 case TK_LT: 5131 case TK_LE: 5132 case TK_GT: 5133 case TK_GE: 5134 case TK_PLUS: 5135 case TK_MINUS: 5136 case TK_BITOR: 5137 case TK_LSHIFT: 5138 case TK_RSHIFT: 5139 case TK_CONCAT: 5140 seenNot = 1; 5141 /* Fall thru */ 5142 case TK_STAR: 5143 case TK_REM: 5144 case TK_BITAND: 5145 case TK_SLASH: { 5146 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5147 /* Fall thru into the next case */ 5148 } 5149 case TK_SPAN: 5150 case TK_COLLATE: 5151 case TK_UPLUS: 5152 case TK_UMINUS: { 5153 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5154 } 5155 case TK_TRUTH: { 5156 if( seenNot ) return 0; 5157 if( p->op2!=TK_IS ) return 0; 5158 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5159 } 5160 case TK_BITNOT: 5161 case TK_NOT: { 5162 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5163 } 5164 } 5165 return 0; 5166 } 5167 5168 /* 5169 ** Return true if we can prove the pE2 will always be true if pE1 is 5170 ** true. Return false if we cannot complete the proof or if pE2 might 5171 ** be false. Examples: 5172 ** 5173 ** pE1: x==5 pE2: x==5 Result: true 5174 ** pE1: x>0 pE2: x==5 Result: false 5175 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5176 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5177 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5178 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5179 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5180 ** 5181 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5182 ** Expr.iTable<0 then assume a table number given by iTab. 5183 ** 5184 ** If pParse is not NULL, then the values of bound variables in pE1 are 5185 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5186 ** modified to record which bound variables are referenced. If pParse 5187 ** is NULL, then false will be returned if pE1 contains any bound variables. 5188 ** 5189 ** When in doubt, return false. Returning true might give a performance 5190 ** improvement. Returning false might cause a performance reduction, but 5191 ** it will always give the correct answer and is hence always safe. 5192 */ 5193 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5194 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5195 return 1; 5196 } 5197 if( pE2->op==TK_OR 5198 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5199 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5200 ){ 5201 return 1; 5202 } 5203 if( pE2->op==TK_NOTNULL 5204 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5205 ){ 5206 return 1; 5207 } 5208 return 0; 5209 } 5210 5211 /* 5212 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5213 ** If the expression node requires that the table at pWalker->iCur 5214 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5215 ** 5216 ** This routine controls an optimization. False positives (setting 5217 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5218 ** (never setting pWalker->eCode) is a harmless missed optimization. 5219 */ 5220 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5221 testcase( pExpr->op==TK_AGG_COLUMN ); 5222 testcase( pExpr->op==TK_AGG_FUNCTION ); 5223 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5224 switch( pExpr->op ){ 5225 case TK_ISNOT: 5226 case TK_ISNULL: 5227 case TK_NOTNULL: 5228 case TK_IS: 5229 case TK_OR: 5230 case TK_VECTOR: 5231 case TK_CASE: 5232 case TK_IN: 5233 case TK_FUNCTION: 5234 case TK_TRUTH: 5235 testcase( pExpr->op==TK_ISNOT ); 5236 testcase( pExpr->op==TK_ISNULL ); 5237 testcase( pExpr->op==TK_NOTNULL ); 5238 testcase( pExpr->op==TK_IS ); 5239 testcase( pExpr->op==TK_OR ); 5240 testcase( pExpr->op==TK_VECTOR ); 5241 testcase( pExpr->op==TK_CASE ); 5242 testcase( pExpr->op==TK_IN ); 5243 testcase( pExpr->op==TK_FUNCTION ); 5244 testcase( pExpr->op==TK_TRUTH ); 5245 return WRC_Prune; 5246 case TK_COLUMN: 5247 if( pWalker->u.iCur==pExpr->iTable ){ 5248 pWalker->eCode = 1; 5249 return WRC_Abort; 5250 } 5251 return WRC_Prune; 5252 5253 case TK_AND: 5254 assert( pWalker->eCode==0 ); 5255 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5256 if( pWalker->eCode ){ 5257 pWalker->eCode = 0; 5258 sqlite3WalkExpr(pWalker, pExpr->pRight); 5259 } 5260 return WRC_Prune; 5261 5262 case TK_BETWEEN: 5263 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5264 return WRC_Prune; 5265 5266 /* Virtual tables are allowed to use constraints like x=NULL. So 5267 ** a term of the form x=y does not prove that y is not null if x 5268 ** is the column of a virtual table */ 5269 case TK_EQ: 5270 case TK_NE: 5271 case TK_LT: 5272 case TK_LE: 5273 case TK_GT: 5274 case TK_GE: 5275 testcase( pExpr->op==TK_EQ ); 5276 testcase( pExpr->op==TK_NE ); 5277 testcase( pExpr->op==TK_LT ); 5278 testcase( pExpr->op==TK_LE ); 5279 testcase( pExpr->op==TK_GT ); 5280 testcase( pExpr->op==TK_GE ); 5281 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5282 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5283 ){ 5284 return WRC_Prune; 5285 } 5286 5287 default: 5288 return WRC_Continue; 5289 } 5290 } 5291 5292 /* 5293 ** Return true (non-zero) if expression p can only be true if at least 5294 ** one column of table iTab is non-null. In other words, return true 5295 ** if expression p will always be NULL or false if every column of iTab 5296 ** is NULL. 5297 ** 5298 ** False negatives are acceptable. In other words, it is ok to return 5299 ** zero even if expression p will never be true of every column of iTab 5300 ** is NULL. A false negative is merely a missed optimization opportunity. 5301 ** 5302 ** False positives are not allowed, however. A false positive may result 5303 ** in an incorrect answer. 5304 ** 5305 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5306 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5307 ** 5308 ** This routine is used to check if a LEFT JOIN can be converted into 5309 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5310 ** clause requires that some column of the right table of the LEFT JOIN 5311 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5312 ** ordinary join. 5313 */ 5314 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5315 Walker w; 5316 p = sqlite3ExprSkipCollateAndLikely(p); 5317 if( p==0 ) return 0; 5318 if( p->op==TK_NOTNULL ){ 5319 p = p->pLeft; 5320 }else{ 5321 while( p->op==TK_AND ){ 5322 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5323 p = p->pRight; 5324 } 5325 } 5326 w.xExprCallback = impliesNotNullRow; 5327 w.xSelectCallback = 0; 5328 w.xSelectCallback2 = 0; 5329 w.eCode = 0; 5330 w.u.iCur = iTab; 5331 sqlite3WalkExpr(&w, p); 5332 return w.eCode; 5333 } 5334 5335 /* 5336 ** An instance of the following structure is used by the tree walker 5337 ** to determine if an expression can be evaluated by reference to the 5338 ** index only, without having to do a search for the corresponding 5339 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5340 ** is the cursor for the table. 5341 */ 5342 struct IdxCover { 5343 Index *pIdx; /* The index to be tested for coverage */ 5344 int iCur; /* Cursor number for the table corresponding to the index */ 5345 }; 5346 5347 /* 5348 ** Check to see if there are references to columns in table 5349 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5350 ** pWalker->u.pIdxCover->pIdx. 5351 */ 5352 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5353 if( pExpr->op==TK_COLUMN 5354 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5355 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5356 ){ 5357 pWalker->eCode = 1; 5358 return WRC_Abort; 5359 } 5360 return WRC_Continue; 5361 } 5362 5363 /* 5364 ** Determine if an index pIdx on table with cursor iCur contains will 5365 ** the expression pExpr. Return true if the index does cover the 5366 ** expression and false if the pExpr expression references table columns 5367 ** that are not found in the index pIdx. 5368 ** 5369 ** An index covering an expression means that the expression can be 5370 ** evaluated using only the index and without having to lookup the 5371 ** corresponding table entry. 5372 */ 5373 int sqlite3ExprCoveredByIndex( 5374 Expr *pExpr, /* The index to be tested */ 5375 int iCur, /* The cursor number for the corresponding table */ 5376 Index *pIdx /* The index that might be used for coverage */ 5377 ){ 5378 Walker w; 5379 struct IdxCover xcov; 5380 memset(&w, 0, sizeof(w)); 5381 xcov.iCur = iCur; 5382 xcov.pIdx = pIdx; 5383 w.xExprCallback = exprIdxCover; 5384 w.u.pIdxCover = &xcov; 5385 sqlite3WalkExpr(&w, pExpr); 5386 return !w.eCode; 5387 } 5388 5389 5390 /* 5391 ** An instance of the following structure is used by the tree walker 5392 ** to count references to table columns in the arguments of an 5393 ** aggregate function, in order to implement the 5394 ** sqlite3FunctionThisSrc() routine. 5395 */ 5396 struct SrcCount { 5397 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5398 int nThis; /* Number of references to columns in pSrcList */ 5399 int nOther; /* Number of references to columns in other FROM clauses */ 5400 }; 5401 5402 /* 5403 ** Count the number of references to columns. 5404 */ 5405 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5406 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5407 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5408 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5409 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5410 ** NEVER() will need to be removed. */ 5411 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5412 int i; 5413 struct SrcCount *p = pWalker->u.pSrcCount; 5414 SrcList *pSrc = p->pSrc; 5415 int nSrc = pSrc ? pSrc->nSrc : 0; 5416 for(i=0; i<nSrc; i++){ 5417 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5418 } 5419 if( i<nSrc ){ 5420 p->nThis++; 5421 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5422 /* In a well-formed parse tree (no name resolution errors), 5423 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5424 ** outer context. Those are the only ones to count as "other" */ 5425 p->nOther++; 5426 } 5427 } 5428 return WRC_Continue; 5429 } 5430 5431 /* 5432 ** Determine if any of the arguments to the pExpr Function reference 5433 ** pSrcList. Return true if they do. Also return true if the function 5434 ** has no arguments or has only constant arguments. Return false if pExpr 5435 ** references columns but not columns of tables found in pSrcList. 5436 */ 5437 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5438 Walker w; 5439 struct SrcCount cnt; 5440 assert( pExpr->op==TK_AGG_FUNCTION ); 5441 memset(&w, 0, sizeof(w)); 5442 w.xExprCallback = exprSrcCount; 5443 w.xSelectCallback = sqlite3SelectWalkNoop; 5444 w.u.pSrcCount = &cnt; 5445 cnt.pSrc = pSrcList; 5446 cnt.nThis = 0; 5447 cnt.nOther = 0; 5448 sqlite3WalkExprList(&w, pExpr->x.pList); 5449 return cnt.nThis>0 || cnt.nOther==0; 5450 } 5451 5452 /* 5453 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5454 ** the new element. Return a negative number if malloc fails. 5455 */ 5456 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5457 int i; 5458 pInfo->aCol = sqlite3ArrayAllocate( 5459 db, 5460 pInfo->aCol, 5461 sizeof(pInfo->aCol[0]), 5462 &pInfo->nColumn, 5463 &i 5464 ); 5465 return i; 5466 } 5467 5468 /* 5469 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5470 ** the new element. Return a negative number if malloc fails. 5471 */ 5472 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5473 int i; 5474 pInfo->aFunc = sqlite3ArrayAllocate( 5475 db, 5476 pInfo->aFunc, 5477 sizeof(pInfo->aFunc[0]), 5478 &pInfo->nFunc, 5479 &i 5480 ); 5481 return i; 5482 } 5483 5484 /* 5485 ** This is the xExprCallback for a tree walker. It is used to 5486 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5487 ** for additional information. 5488 */ 5489 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5490 int i; 5491 NameContext *pNC = pWalker->u.pNC; 5492 Parse *pParse = pNC->pParse; 5493 SrcList *pSrcList = pNC->pSrcList; 5494 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5495 5496 assert( pNC->ncFlags & NC_UAggInfo ); 5497 switch( pExpr->op ){ 5498 case TK_AGG_COLUMN: 5499 case TK_COLUMN: { 5500 testcase( pExpr->op==TK_AGG_COLUMN ); 5501 testcase( pExpr->op==TK_COLUMN ); 5502 /* Check to see if the column is in one of the tables in the FROM 5503 ** clause of the aggregate query */ 5504 if( ALWAYS(pSrcList!=0) ){ 5505 struct SrcList_item *pItem = pSrcList->a; 5506 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5507 struct AggInfo_col *pCol; 5508 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5509 if( pExpr->iTable==pItem->iCursor ){ 5510 /* If we reach this point, it means that pExpr refers to a table 5511 ** that is in the FROM clause of the aggregate query. 5512 ** 5513 ** Make an entry for the column in pAggInfo->aCol[] if there 5514 ** is not an entry there already. 5515 */ 5516 int k; 5517 pCol = pAggInfo->aCol; 5518 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5519 if( pCol->iTable==pExpr->iTable && 5520 pCol->iColumn==pExpr->iColumn ){ 5521 break; 5522 } 5523 } 5524 if( (k>=pAggInfo->nColumn) 5525 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5526 ){ 5527 pCol = &pAggInfo->aCol[k]; 5528 pCol->pTab = pExpr->y.pTab; 5529 pCol->iTable = pExpr->iTable; 5530 pCol->iColumn = pExpr->iColumn; 5531 pCol->iMem = ++pParse->nMem; 5532 pCol->iSorterColumn = -1; 5533 pCol->pExpr = pExpr; 5534 if( pAggInfo->pGroupBy ){ 5535 int j, n; 5536 ExprList *pGB = pAggInfo->pGroupBy; 5537 struct ExprList_item *pTerm = pGB->a; 5538 n = pGB->nExpr; 5539 for(j=0; j<n; j++, pTerm++){ 5540 Expr *pE = pTerm->pExpr; 5541 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5542 pE->iColumn==pExpr->iColumn ){ 5543 pCol->iSorterColumn = j; 5544 break; 5545 } 5546 } 5547 } 5548 if( pCol->iSorterColumn<0 ){ 5549 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5550 } 5551 } 5552 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5553 ** because it was there before or because we just created it). 5554 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5555 ** pAggInfo->aCol[] entry. 5556 */ 5557 ExprSetVVAProperty(pExpr, EP_NoReduce); 5558 pExpr->pAggInfo = pAggInfo; 5559 pExpr->op = TK_AGG_COLUMN; 5560 pExpr->iAgg = (i16)k; 5561 break; 5562 } /* endif pExpr->iTable==pItem->iCursor */ 5563 } /* end loop over pSrcList */ 5564 } 5565 return WRC_Prune; 5566 } 5567 case TK_AGG_FUNCTION: { 5568 if( (pNC->ncFlags & NC_InAggFunc)==0 5569 && pWalker->walkerDepth==pExpr->op2 5570 ){ 5571 /* Check to see if pExpr is a duplicate of another aggregate 5572 ** function that is already in the pAggInfo structure 5573 */ 5574 struct AggInfo_func *pItem = pAggInfo->aFunc; 5575 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5576 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5577 break; 5578 } 5579 } 5580 if( i>=pAggInfo->nFunc ){ 5581 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5582 */ 5583 u8 enc = ENC(pParse->db); 5584 i = addAggInfoFunc(pParse->db, pAggInfo); 5585 if( i>=0 ){ 5586 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5587 pItem = &pAggInfo->aFunc[i]; 5588 pItem->pExpr = pExpr; 5589 pItem->iMem = ++pParse->nMem; 5590 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5591 pItem->pFunc = sqlite3FindFunction(pParse->db, 5592 pExpr->u.zToken, 5593 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5594 if( pExpr->flags & EP_Distinct ){ 5595 pItem->iDistinct = pParse->nTab++; 5596 }else{ 5597 pItem->iDistinct = -1; 5598 } 5599 } 5600 } 5601 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5602 */ 5603 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5604 ExprSetVVAProperty(pExpr, EP_NoReduce); 5605 pExpr->iAgg = (i16)i; 5606 pExpr->pAggInfo = pAggInfo; 5607 return WRC_Prune; 5608 }else{ 5609 return WRC_Continue; 5610 } 5611 } 5612 } 5613 return WRC_Continue; 5614 } 5615 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5616 UNUSED_PARAMETER(pSelect); 5617 pWalker->walkerDepth++; 5618 return WRC_Continue; 5619 } 5620 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5621 UNUSED_PARAMETER(pSelect); 5622 pWalker->walkerDepth--; 5623 } 5624 5625 /* 5626 ** Analyze the pExpr expression looking for aggregate functions and 5627 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5628 ** points to. Additional entries are made on the AggInfo object as 5629 ** necessary. 5630 ** 5631 ** This routine should only be called after the expression has been 5632 ** analyzed by sqlite3ResolveExprNames(). 5633 */ 5634 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5635 Walker w; 5636 w.xExprCallback = analyzeAggregate; 5637 w.xSelectCallback = analyzeAggregatesInSelect; 5638 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5639 w.walkerDepth = 0; 5640 w.u.pNC = pNC; 5641 w.pParse = 0; 5642 assert( pNC->pSrcList!=0 ); 5643 sqlite3WalkExpr(&w, pExpr); 5644 } 5645 5646 /* 5647 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5648 ** expression list. Return the number of errors. 5649 ** 5650 ** If an error is found, the analysis is cut short. 5651 */ 5652 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5653 struct ExprList_item *pItem; 5654 int i; 5655 if( pList ){ 5656 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5657 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5658 } 5659 } 5660 } 5661 5662 /* 5663 ** Allocate a single new register for use to hold some intermediate result. 5664 */ 5665 int sqlite3GetTempReg(Parse *pParse){ 5666 if( pParse->nTempReg==0 ){ 5667 return ++pParse->nMem; 5668 } 5669 return pParse->aTempReg[--pParse->nTempReg]; 5670 } 5671 5672 /* 5673 ** Deallocate a register, making available for reuse for some other 5674 ** purpose. 5675 */ 5676 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5677 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5678 pParse->aTempReg[pParse->nTempReg++] = iReg; 5679 } 5680 } 5681 5682 /* 5683 ** Allocate or deallocate a block of nReg consecutive registers. 5684 */ 5685 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5686 int i, n; 5687 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5688 i = pParse->iRangeReg; 5689 n = pParse->nRangeReg; 5690 if( nReg<=n ){ 5691 pParse->iRangeReg += nReg; 5692 pParse->nRangeReg -= nReg; 5693 }else{ 5694 i = pParse->nMem+1; 5695 pParse->nMem += nReg; 5696 } 5697 return i; 5698 } 5699 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5700 if( nReg==1 ){ 5701 sqlite3ReleaseTempReg(pParse, iReg); 5702 return; 5703 } 5704 if( nReg>pParse->nRangeReg ){ 5705 pParse->nRangeReg = nReg; 5706 pParse->iRangeReg = iReg; 5707 } 5708 } 5709 5710 /* 5711 ** Mark all temporary registers as being unavailable for reuse. 5712 ** 5713 ** Always invoke this procedure after coding a subroutine or co-routine 5714 ** that might be invoked from other parts of the code, to ensure that 5715 ** the sub/co-routine does not use registers in common with the code that 5716 ** invokes the sub/co-routine. 5717 */ 5718 void sqlite3ClearTempRegCache(Parse *pParse){ 5719 pParse->nTempReg = 0; 5720 pParse->nRangeReg = 0; 5721 } 5722 5723 /* 5724 ** Validate that no temporary register falls within the range of 5725 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5726 ** statements. 5727 */ 5728 #ifdef SQLITE_DEBUG 5729 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5730 int i; 5731 if( pParse->nRangeReg>0 5732 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5733 && pParse->iRangeReg <= iLast 5734 ){ 5735 return 0; 5736 } 5737 for(i=0; i<pParse->nTempReg; i++){ 5738 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5739 return 0; 5740 } 5741 } 5742 return 1; 5743 } 5744 #endif /* SQLITE_DEBUG */ 5745