xref: /sqlite-3.40.0/src/expr.c (revision b88eaf16)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
56   }
57   if( op==TK_REGISTER ) op = pExpr->op2;
58 #ifndef SQLITE_OMIT_CAST
59   if( op==TK_CAST ){
60     assert( !ExprHasProperty(pExpr, EP_IntValue) );
61     return sqlite3AffinityType(pExpr->u.zToken, 0);
62   }
63 #endif
64   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
65     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
66   }
67   if( op==TK_SELECT_COLUMN ){
68     assert( pExpr->pLeft->flags&EP_xIsSelect );
69     return sqlite3ExprAffinity(
70         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
71     );
72   }
73   if( op==TK_VECTOR ){
74     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
75   }
76   return pExpr->affExpr;
77 }
78 
79 /*
80 ** Set the collating sequence for expression pExpr to be the collating
81 ** sequence named by pToken.   Return a pointer to a new Expr node that
82 ** implements the COLLATE operator.
83 **
84 ** If a memory allocation error occurs, that fact is recorded in pParse->db
85 ** and the pExpr parameter is returned unchanged.
86 */
87 Expr *sqlite3ExprAddCollateToken(
88   Parse *pParse,           /* Parsing context */
89   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
90   const Token *pCollName,  /* Name of collating sequence */
91   int dequote              /* True to dequote pCollName */
92 ){
93   if( pCollName->n>0 ){
94     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
95     if( pNew ){
96       pNew->pLeft = pExpr;
97       pNew->flags |= EP_Collate|EP_Skip;
98       pExpr = pNew;
99     }
100   }
101   return pExpr;
102 }
103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
104   Token s;
105   assert( zC!=0 );
106   sqlite3TokenInit(&s, (char*)zC);
107   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
108 }
109 
110 /*
111 ** Skip over any TK_COLLATE operators.
112 */
113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
114   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
115     assert( pExpr->op==TK_COLLATE );
116     pExpr = pExpr->pLeft;
117   }
118   return pExpr;
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators and/or any unlikely()
123 ** or likelihood() or likely() functions at the root of an
124 ** expression.
125 */
126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
127   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
128     if( ExprHasProperty(pExpr, EP_Unlikely) ){
129       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
130       assert( pExpr->x.pList->nExpr>0 );
131       assert( pExpr->op==TK_FUNCTION );
132       pExpr = pExpr->x.pList->a[0].pExpr;
133     }else{
134       assert( pExpr->op==TK_COLLATE );
135       pExpr = pExpr->pLeft;
136     }
137   }
138   return pExpr;
139 }
140 
141 /*
142 ** Return the collation sequence for the expression pExpr. If
143 ** there is no defined collating sequence, return NULL.
144 **
145 ** See also: sqlite3ExprNNCollSeq()
146 **
147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
148 ** default collation if pExpr has no defined collation.
149 **
150 ** The collating sequence might be determined by a COLLATE operator
151 ** or by the presence of a column with a defined collating sequence.
152 ** COLLATE operators take first precedence.  Left operands take
153 ** precedence over right operands.
154 */
155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
156   sqlite3 *db = pParse->db;
157   CollSeq *pColl = 0;
158   Expr *p = pExpr;
159   while( p ){
160     int op = p->op;
161     if( op==TK_REGISTER ) op = p->op2;
162     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
163      && p->y.pTab!=0
164     ){
165       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
166       ** a TK_COLUMN but was previously evaluated and cached in a register */
167       int j = p->iColumn;
168       if( j>=0 ){
169         const char *zColl = p->y.pTab->aCol[j].zColl;
170         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
171       }
172       break;
173     }
174     if( op==TK_CAST || op==TK_UPLUS ){
175       p = p->pLeft;
176       continue;
177     }
178     if( op==TK_VECTOR ){
179       p = p->x.pList->a[0].pExpr;
180       continue;
181     }
182     if( op==TK_COLLATE ){
183       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
184       break;
185     }
186     if( p->flags & EP_Collate ){
187       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
188         p = p->pLeft;
189       }else{
190         Expr *pNext  = p->pRight;
191         /* The Expr.x union is never used at the same time as Expr.pRight */
192         assert( p->x.pList==0 || p->pRight==0 );
193         if( p->x.pList!=0
194          && !db->mallocFailed
195          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
196         ){
197           int i;
198           for(i=0; i<p->x.pList->nExpr; i++){
199             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
200               pNext = p->x.pList->a[i].pExpr;
201               break;
202             }
203           }
204         }
205         p = pNext;
206       }
207     }else{
208       break;
209     }
210   }
211   if( sqlite3CheckCollSeq(pParse, pColl) ){
212     pColl = 0;
213   }
214   return pColl;
215 }
216 
217 /*
218 ** Return the collation sequence for the expression pExpr. If
219 ** there is no defined collating sequence, return a pointer to the
220 ** defautl collation sequence.
221 **
222 ** See also: sqlite3ExprCollSeq()
223 **
224 ** The sqlite3ExprCollSeq() routine works the same except that it
225 ** returns NULL if there is no defined collation.
226 */
227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
228   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
229   if( p==0 ) p = pParse->db->pDfltColl;
230   assert( p!=0 );
231   return p;
232 }
233 
234 /*
235 ** Return TRUE if the two expressions have equivalent collating sequences.
236 */
237 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
238   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
239   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
240   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
241 }
242 
243 /*
244 ** pExpr is an operand of a comparison operator.  aff2 is the
245 ** type affinity of the other operand.  This routine returns the
246 ** type affinity that should be used for the comparison operator.
247 */
248 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
249   char aff1 = sqlite3ExprAffinity(pExpr);
250   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
251     /* Both sides of the comparison are columns. If one has numeric
252     ** affinity, use that. Otherwise use no affinity.
253     */
254     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
255       return SQLITE_AFF_NUMERIC;
256     }else{
257       return SQLITE_AFF_BLOB;
258     }
259   }else{
260     /* One side is a column, the other is not. Use the columns affinity. */
261     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
262     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
263   }
264 }
265 
266 /*
267 ** pExpr is a comparison operator.  Return the type affinity that should
268 ** be applied to both operands prior to doing the comparison.
269 */
270 static char comparisonAffinity(Expr *pExpr){
271   char aff;
272   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
273           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
274           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
275   assert( pExpr->pLeft );
276   aff = sqlite3ExprAffinity(pExpr->pLeft);
277   if( pExpr->pRight ){
278     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
279   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
280     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
281   }else if( aff==0 ){
282     aff = SQLITE_AFF_BLOB;
283   }
284   return aff;
285 }
286 
287 /*
288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
289 ** idx_affinity is the affinity of an indexed column. Return true
290 ** if the index with affinity idx_affinity may be used to implement
291 ** the comparison in pExpr.
292 */
293 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
294   char aff = comparisonAffinity(pExpr);
295   if( aff<SQLITE_AFF_TEXT ){
296     return 1;
297   }
298   if( aff==SQLITE_AFF_TEXT ){
299     return idx_affinity==SQLITE_AFF_TEXT;
300   }
301   return sqlite3IsNumericAffinity(idx_affinity);
302 }
303 
304 /*
305 ** Return the P5 value that should be used for a binary comparison
306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
307 */
308 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
309   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
310   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
311   return aff;
312 }
313 
314 /*
315 ** Return a pointer to the collation sequence that should be used by
316 ** a binary comparison operator comparing pLeft and pRight.
317 **
318 ** If the left hand expression has a collating sequence type, then it is
319 ** used. Otherwise the collation sequence for the right hand expression
320 ** is used, or the default (BINARY) if neither expression has a collating
321 ** type.
322 **
323 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
324 ** it is not considered.
325 */
326 CollSeq *sqlite3BinaryCompareCollSeq(
327   Parse *pParse,
328   Expr *pLeft,
329   Expr *pRight
330 ){
331   CollSeq *pColl;
332   assert( pLeft );
333   if( pLeft->flags & EP_Collate ){
334     pColl = sqlite3ExprCollSeq(pParse, pLeft);
335   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
336     pColl = sqlite3ExprCollSeq(pParse, pRight);
337   }else{
338     pColl = sqlite3ExprCollSeq(pParse, pLeft);
339     if( !pColl ){
340       pColl = sqlite3ExprCollSeq(pParse, pRight);
341     }
342   }
343   return pColl;
344 }
345 
346 /* Expresssion p is a comparison operator.  Return a collation sequence
347 ** appropriate for the comparison operator.
348 **
349 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
350 ** However, if the OP_Commuted flag is set, then the order of the operands
351 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
352 ** correct collating sequence is found.
353 */
354 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){
355   if( ExprHasProperty(p, EP_Commuted) ){
356     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
357   }else{
358     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
359   }
360 }
361 
362 /*
363 ** Generate code for a comparison operator.
364 */
365 static int codeCompare(
366   Parse *pParse,    /* The parsing (and code generating) context */
367   Expr *pLeft,      /* The left operand */
368   Expr *pRight,     /* The right operand */
369   int opcode,       /* The comparison opcode */
370   int in1, int in2, /* Register holding operands */
371   int dest,         /* Jump here if true.  */
372   int jumpIfNull,   /* If true, jump if either operand is NULL */
373   int isCommuted    /* The comparison has been commuted */
374 ){
375   int p5;
376   int addr;
377   CollSeq *p4;
378 
379   if( isCommuted ){
380     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
381   }else{
382     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
383   }
384   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
385   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
386                            (void*)p4, P4_COLLSEQ);
387   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
388   return addr;
389 }
390 
391 /*
392 ** Return true if expression pExpr is a vector, or false otherwise.
393 **
394 ** A vector is defined as any expression that results in two or more
395 ** columns of result.  Every TK_VECTOR node is an vector because the
396 ** parser will not generate a TK_VECTOR with fewer than two entries.
397 ** But a TK_SELECT might be either a vector or a scalar. It is only
398 ** considered a vector if it has two or more result columns.
399 */
400 int sqlite3ExprIsVector(Expr *pExpr){
401   return sqlite3ExprVectorSize(pExpr)>1;
402 }
403 
404 /*
405 ** If the expression passed as the only argument is of type TK_VECTOR
406 ** return the number of expressions in the vector. Or, if the expression
407 ** is a sub-select, return the number of columns in the sub-select. For
408 ** any other type of expression, return 1.
409 */
410 int sqlite3ExprVectorSize(Expr *pExpr){
411   u8 op = pExpr->op;
412   if( op==TK_REGISTER ) op = pExpr->op2;
413   if( op==TK_VECTOR ){
414     return pExpr->x.pList->nExpr;
415   }else if( op==TK_SELECT ){
416     return pExpr->x.pSelect->pEList->nExpr;
417   }else{
418     return 1;
419   }
420 }
421 
422 /*
423 ** Return a pointer to a subexpression of pVector that is the i-th
424 ** column of the vector (numbered starting with 0).  The caller must
425 ** ensure that i is within range.
426 **
427 ** If pVector is really a scalar (and "scalar" here includes subqueries
428 ** that return a single column!) then return pVector unmodified.
429 **
430 ** pVector retains ownership of the returned subexpression.
431 **
432 ** If the vector is a (SELECT ...) then the expression returned is
433 ** just the expression for the i-th term of the result set, and may
434 ** not be ready for evaluation because the table cursor has not yet
435 ** been positioned.
436 */
437 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
438   assert( i<sqlite3ExprVectorSize(pVector) );
439   if( sqlite3ExprIsVector(pVector) ){
440     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
441     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
442       return pVector->x.pSelect->pEList->a[i].pExpr;
443     }else{
444       return pVector->x.pList->a[i].pExpr;
445     }
446   }
447   return pVector;
448 }
449 
450 /*
451 ** Compute and return a new Expr object which when passed to
452 ** sqlite3ExprCode() will generate all necessary code to compute
453 ** the iField-th column of the vector expression pVector.
454 **
455 ** It is ok for pVector to be a scalar (as long as iField==0).
456 ** In that case, this routine works like sqlite3ExprDup().
457 **
458 ** The caller owns the returned Expr object and is responsible for
459 ** ensuring that the returned value eventually gets freed.
460 **
461 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
462 ** then the returned object will reference pVector and so pVector must remain
463 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
464 ** or a scalar expression, then it can be deleted as soon as this routine
465 ** returns.
466 **
467 ** A trick to cause a TK_SELECT pVector to be deleted together with
468 ** the returned Expr object is to attach the pVector to the pRight field
469 ** of the returned TK_SELECT_COLUMN Expr object.
470 */
471 Expr *sqlite3ExprForVectorField(
472   Parse *pParse,       /* Parsing context */
473   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
474   int iField           /* Which column of the vector to return */
475 ){
476   Expr *pRet;
477   if( pVector->op==TK_SELECT ){
478     assert( pVector->flags & EP_xIsSelect );
479     /* The TK_SELECT_COLUMN Expr node:
480     **
481     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
482     ** pRight:          not used.  But recursively deleted.
483     ** iColumn:         Index of a column in pVector
484     ** iTable:          0 or the number of columns on the LHS of an assignment
485     ** pLeft->iTable:   First in an array of register holding result, or 0
486     **                  if the result is not yet computed.
487     **
488     ** sqlite3ExprDelete() specifically skips the recursive delete of
489     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
490     ** can be attached to pRight to cause this node to take ownership of
491     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
492     ** with the same pLeft pointer to the pVector, but only one of them
493     ** will own the pVector.
494     */
495     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
496     if( pRet ){
497       pRet->iColumn = iField;
498       pRet->pLeft = pVector;
499     }
500     assert( pRet==0 || pRet->iTable==0 );
501   }else{
502     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
503     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
504     sqlite3RenameTokenRemap(pParse, pRet, pVector);
505   }
506   return pRet;
507 }
508 
509 /*
510 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
511 ** it. Return the register in which the result is stored (or, if the
512 ** sub-select returns more than one column, the first in an array
513 ** of registers in which the result is stored).
514 **
515 ** If pExpr is not a TK_SELECT expression, return 0.
516 */
517 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
518   int reg = 0;
519 #ifndef SQLITE_OMIT_SUBQUERY
520   if( pExpr->op==TK_SELECT ){
521     reg = sqlite3CodeSubselect(pParse, pExpr);
522   }
523 #endif
524   return reg;
525 }
526 
527 /*
528 ** Argument pVector points to a vector expression - either a TK_VECTOR
529 ** or TK_SELECT that returns more than one column. This function returns
530 ** the register number of a register that contains the value of
531 ** element iField of the vector.
532 **
533 ** If pVector is a TK_SELECT expression, then code for it must have
534 ** already been generated using the exprCodeSubselect() routine. In this
535 ** case parameter regSelect should be the first in an array of registers
536 ** containing the results of the sub-select.
537 **
538 ** If pVector is of type TK_VECTOR, then code for the requested field
539 ** is generated. In this case (*pRegFree) may be set to the number of
540 ** a temporary register to be freed by the caller before returning.
541 **
542 ** Before returning, output parameter (*ppExpr) is set to point to the
543 ** Expr object corresponding to element iElem of the vector.
544 */
545 static int exprVectorRegister(
546   Parse *pParse,                  /* Parse context */
547   Expr *pVector,                  /* Vector to extract element from */
548   int iField,                     /* Field to extract from pVector */
549   int regSelect,                  /* First in array of registers */
550   Expr **ppExpr,                  /* OUT: Expression element */
551   int *pRegFree                   /* OUT: Temp register to free */
552 ){
553   u8 op = pVector->op;
554   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
555   if( op==TK_REGISTER ){
556     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
557     return pVector->iTable+iField;
558   }
559   if( op==TK_SELECT ){
560     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
561      return regSelect+iField;
562   }
563   *ppExpr = pVector->x.pList->a[iField].pExpr;
564   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
565 }
566 
567 /*
568 ** Expression pExpr is a comparison between two vector values. Compute
569 ** the result of the comparison (1, 0, or NULL) and write that
570 ** result into register dest.
571 **
572 ** The caller must satisfy the following preconditions:
573 **
574 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
575 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
576 **    otherwise:                op==pExpr->op and p5==0
577 */
578 static void codeVectorCompare(
579   Parse *pParse,        /* Code generator context */
580   Expr *pExpr,          /* The comparison operation */
581   int dest,             /* Write results into this register */
582   u8 op,                /* Comparison operator */
583   u8 p5                 /* SQLITE_NULLEQ or zero */
584 ){
585   Vdbe *v = pParse->pVdbe;
586   Expr *pLeft = pExpr->pLeft;
587   Expr *pRight = pExpr->pRight;
588   int nLeft = sqlite3ExprVectorSize(pLeft);
589   int i;
590   int regLeft = 0;
591   int regRight = 0;
592   u8 opx = op;
593   int addrDone = sqlite3VdbeMakeLabel(pParse);
594   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
595 
596   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
597     sqlite3ErrorMsg(pParse, "row value misused");
598     return;
599   }
600   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
601        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
602        || pExpr->op==TK_LT || pExpr->op==TK_GT
603        || pExpr->op==TK_LE || pExpr->op==TK_GE
604   );
605   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
606             || (pExpr->op==TK_ISNOT && op==TK_NE) );
607   assert( p5==0 || pExpr->op!=op );
608   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
609 
610   p5 |= SQLITE_STOREP2;
611   if( opx==TK_LE ) opx = TK_LT;
612   if( opx==TK_GE ) opx = TK_GT;
613 
614   regLeft = exprCodeSubselect(pParse, pLeft);
615   regRight = exprCodeSubselect(pParse, pRight);
616 
617   for(i=0; 1 /*Loop exits by "break"*/; i++){
618     int regFree1 = 0, regFree2 = 0;
619     Expr *pL, *pR;
620     int r1, r2;
621     assert( i>=0 && i<nLeft );
622     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
623     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
624     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
625     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
626     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
627     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
628     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
629     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
630     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
631     sqlite3ReleaseTempReg(pParse, regFree1);
632     sqlite3ReleaseTempReg(pParse, regFree2);
633     if( i==nLeft-1 ){
634       break;
635     }
636     if( opx==TK_EQ ){
637       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
638       p5 |= SQLITE_KEEPNULL;
639     }else if( opx==TK_NE ){
640       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
641       p5 |= SQLITE_KEEPNULL;
642     }else{
643       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
644       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
645       VdbeCoverageIf(v, op==TK_LT);
646       VdbeCoverageIf(v, op==TK_GT);
647       VdbeCoverageIf(v, op==TK_LE);
648       VdbeCoverageIf(v, op==TK_GE);
649       if( i==nLeft-2 ) opx = op;
650     }
651   }
652   sqlite3VdbeResolveLabel(v, addrDone);
653 }
654 
655 #if SQLITE_MAX_EXPR_DEPTH>0
656 /*
657 ** Check that argument nHeight is less than or equal to the maximum
658 ** expression depth allowed. If it is not, leave an error message in
659 ** pParse.
660 */
661 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
662   int rc = SQLITE_OK;
663   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
664   if( nHeight>mxHeight ){
665     sqlite3ErrorMsg(pParse,
666        "Expression tree is too large (maximum depth %d)", mxHeight
667     );
668     rc = SQLITE_ERROR;
669   }
670   return rc;
671 }
672 
673 /* The following three functions, heightOfExpr(), heightOfExprList()
674 ** and heightOfSelect(), are used to determine the maximum height
675 ** of any expression tree referenced by the structure passed as the
676 ** first argument.
677 **
678 ** If this maximum height is greater than the current value pointed
679 ** to by pnHeight, the second parameter, then set *pnHeight to that
680 ** value.
681 */
682 static void heightOfExpr(Expr *p, int *pnHeight){
683   if( p ){
684     if( p->nHeight>*pnHeight ){
685       *pnHeight = p->nHeight;
686     }
687   }
688 }
689 static void heightOfExprList(ExprList *p, int *pnHeight){
690   if( p ){
691     int i;
692     for(i=0; i<p->nExpr; i++){
693       heightOfExpr(p->a[i].pExpr, pnHeight);
694     }
695   }
696 }
697 static void heightOfSelect(Select *pSelect, int *pnHeight){
698   Select *p;
699   for(p=pSelect; p; p=p->pPrior){
700     heightOfExpr(p->pWhere, pnHeight);
701     heightOfExpr(p->pHaving, pnHeight);
702     heightOfExpr(p->pLimit, pnHeight);
703     heightOfExprList(p->pEList, pnHeight);
704     heightOfExprList(p->pGroupBy, pnHeight);
705     heightOfExprList(p->pOrderBy, pnHeight);
706   }
707 }
708 
709 /*
710 ** Set the Expr.nHeight variable in the structure passed as an
711 ** argument. An expression with no children, Expr.pList or
712 ** Expr.pSelect member has a height of 1. Any other expression
713 ** has a height equal to the maximum height of any other
714 ** referenced Expr plus one.
715 **
716 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
717 ** if appropriate.
718 */
719 static void exprSetHeight(Expr *p){
720   int nHeight = 0;
721   heightOfExpr(p->pLeft, &nHeight);
722   heightOfExpr(p->pRight, &nHeight);
723   if( ExprHasProperty(p, EP_xIsSelect) ){
724     heightOfSelect(p->x.pSelect, &nHeight);
725   }else if( p->x.pList ){
726     heightOfExprList(p->x.pList, &nHeight);
727     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
728   }
729   p->nHeight = nHeight + 1;
730 }
731 
732 /*
733 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
734 ** the height is greater than the maximum allowed expression depth,
735 ** leave an error in pParse.
736 **
737 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
738 ** Expr.flags.
739 */
740 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
741   if( pParse->nErr ) return;
742   exprSetHeight(p);
743   sqlite3ExprCheckHeight(pParse, p->nHeight);
744 }
745 
746 /*
747 ** Return the maximum height of any expression tree referenced
748 ** by the select statement passed as an argument.
749 */
750 int sqlite3SelectExprHeight(Select *p){
751   int nHeight = 0;
752   heightOfSelect(p, &nHeight);
753   return nHeight;
754 }
755 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
756 /*
757 ** Propagate all EP_Propagate flags from the Expr.x.pList into
758 ** Expr.flags.
759 */
760 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
761   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
762     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
763   }
764 }
765 #define exprSetHeight(y)
766 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
767 
768 /*
769 ** This routine is the core allocator for Expr nodes.
770 **
771 ** Construct a new expression node and return a pointer to it.  Memory
772 ** for this node and for the pToken argument is a single allocation
773 ** obtained from sqlite3DbMalloc().  The calling function
774 ** is responsible for making sure the node eventually gets freed.
775 **
776 ** If dequote is true, then the token (if it exists) is dequoted.
777 ** If dequote is false, no dequoting is performed.  The deQuote
778 ** parameter is ignored if pToken is NULL or if the token does not
779 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
780 ** then the EP_DblQuoted flag is set on the expression node.
781 **
782 ** Special case:  If op==TK_INTEGER and pToken points to a string that
783 ** can be translated into a 32-bit integer, then the token is not
784 ** stored in u.zToken.  Instead, the integer values is written
785 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
786 ** is allocated to hold the integer text and the dequote flag is ignored.
787 */
788 Expr *sqlite3ExprAlloc(
789   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
790   int op,                 /* Expression opcode */
791   const Token *pToken,    /* Token argument.  Might be NULL */
792   int dequote             /* True to dequote */
793 ){
794   Expr *pNew;
795   int nExtra = 0;
796   int iValue = 0;
797 
798   assert( db!=0 );
799   if( pToken ){
800     if( op!=TK_INTEGER || pToken->z==0
801           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
802       nExtra = pToken->n+1;
803       assert( iValue>=0 );
804     }
805   }
806   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
807   if( pNew ){
808     memset(pNew, 0, sizeof(Expr));
809     pNew->op = (u8)op;
810     pNew->iAgg = -1;
811     if( pToken ){
812       if( nExtra==0 ){
813         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
814         pNew->u.iValue = iValue;
815       }else{
816         pNew->u.zToken = (char*)&pNew[1];
817         assert( pToken->z!=0 || pToken->n==0 );
818         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
819         pNew->u.zToken[pToken->n] = 0;
820         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
821           sqlite3DequoteExpr(pNew);
822         }
823       }
824     }
825 #if SQLITE_MAX_EXPR_DEPTH>0
826     pNew->nHeight = 1;
827 #endif
828   }
829   return pNew;
830 }
831 
832 /*
833 ** Allocate a new expression node from a zero-terminated token that has
834 ** already been dequoted.
835 */
836 Expr *sqlite3Expr(
837   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
838   int op,                 /* Expression opcode */
839   const char *zToken      /* Token argument.  Might be NULL */
840 ){
841   Token x;
842   x.z = zToken;
843   x.n = sqlite3Strlen30(zToken);
844   return sqlite3ExprAlloc(db, op, &x, 0);
845 }
846 
847 /*
848 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
849 **
850 ** If pRoot==NULL that means that a memory allocation error has occurred.
851 ** In that case, delete the subtrees pLeft and pRight.
852 */
853 void sqlite3ExprAttachSubtrees(
854   sqlite3 *db,
855   Expr *pRoot,
856   Expr *pLeft,
857   Expr *pRight
858 ){
859   if( pRoot==0 ){
860     assert( db->mallocFailed );
861     sqlite3ExprDelete(db, pLeft);
862     sqlite3ExprDelete(db, pRight);
863   }else{
864     if( pRight ){
865       pRoot->pRight = pRight;
866       pRoot->flags |= EP_Propagate & pRight->flags;
867     }
868     if( pLeft ){
869       pRoot->pLeft = pLeft;
870       pRoot->flags |= EP_Propagate & pLeft->flags;
871     }
872     exprSetHeight(pRoot);
873   }
874 }
875 
876 /*
877 ** Allocate an Expr node which joins as many as two subtrees.
878 **
879 ** One or both of the subtrees can be NULL.  Return a pointer to the new
880 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
881 ** free the subtrees and return NULL.
882 */
883 Expr *sqlite3PExpr(
884   Parse *pParse,          /* Parsing context */
885   int op,                 /* Expression opcode */
886   Expr *pLeft,            /* Left operand */
887   Expr *pRight            /* Right operand */
888 ){
889   Expr *p;
890   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
891   if( p ){
892     memset(p, 0, sizeof(Expr));
893     p->op = op & 0xff;
894     p->iAgg = -1;
895     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
896     sqlite3ExprCheckHeight(pParse, p->nHeight);
897   }else{
898     sqlite3ExprDelete(pParse->db, pLeft);
899     sqlite3ExprDelete(pParse->db, pRight);
900   }
901   return p;
902 }
903 
904 /*
905 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
906 ** do a memory allocation failure) then delete the pSelect object.
907 */
908 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
909   if( pExpr ){
910     pExpr->x.pSelect = pSelect;
911     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
912     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
913   }else{
914     assert( pParse->db->mallocFailed );
915     sqlite3SelectDelete(pParse->db, pSelect);
916   }
917 }
918 
919 
920 /*
921 ** Join two expressions using an AND operator.  If either expression is
922 ** NULL, then just return the other expression.
923 **
924 ** If one side or the other of the AND is known to be false, then instead
925 ** of returning an AND expression, just return a constant expression with
926 ** a value of false.
927 */
928 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
929   sqlite3 *db = pParse->db;
930   if( pLeft==0  ){
931     return pRight;
932   }else if( pRight==0 ){
933     return pLeft;
934   }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){
935     sqlite3ExprUnmapAndDelete(pParse, pLeft);
936     sqlite3ExprUnmapAndDelete(pParse, pRight);
937     return sqlite3Expr(db, TK_INTEGER, "0");
938   }else{
939     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
940   }
941 }
942 
943 /*
944 ** Construct a new expression node for a function with multiple
945 ** arguments.
946 */
947 Expr *sqlite3ExprFunction(
948   Parse *pParse,        /* Parsing context */
949   ExprList *pList,      /* Argument list */
950   Token *pToken,        /* Name of the function */
951   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
952 ){
953   Expr *pNew;
954   sqlite3 *db = pParse->db;
955   assert( pToken );
956   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
957   if( pNew==0 ){
958     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
959     return 0;
960   }
961   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
962     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
963   }
964   pNew->x.pList = pList;
965   ExprSetProperty(pNew, EP_HasFunc);
966   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
967   sqlite3ExprSetHeightAndFlags(pParse, pNew);
968   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
969   return pNew;
970 }
971 
972 /*
973 ** Assign a variable number to an expression that encodes a wildcard
974 ** in the original SQL statement.
975 **
976 ** Wildcards consisting of a single "?" are assigned the next sequential
977 ** variable number.
978 **
979 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
980 ** sure "nnn" is not too big to avoid a denial of service attack when
981 ** the SQL statement comes from an external source.
982 **
983 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
984 ** as the previous instance of the same wildcard.  Or if this is the first
985 ** instance of the wildcard, the next sequential variable number is
986 ** assigned.
987 */
988 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
989   sqlite3 *db = pParse->db;
990   const char *z;
991   ynVar x;
992 
993   if( pExpr==0 ) return;
994   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
995   z = pExpr->u.zToken;
996   assert( z!=0 );
997   assert( z[0]!=0 );
998   assert( n==(u32)sqlite3Strlen30(z) );
999   if( z[1]==0 ){
1000     /* Wildcard of the form "?".  Assign the next variable number */
1001     assert( z[0]=='?' );
1002     x = (ynVar)(++pParse->nVar);
1003   }else{
1004     int doAdd = 0;
1005     if( z[0]=='?' ){
1006       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1007       ** use it as the variable number */
1008       i64 i;
1009       int bOk;
1010       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1011         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1012         bOk = 1;
1013       }else{
1014         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1015       }
1016       testcase( i==0 );
1017       testcase( i==1 );
1018       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1019       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1020       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1021         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1022             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1023         return;
1024       }
1025       x = (ynVar)i;
1026       if( x>pParse->nVar ){
1027         pParse->nVar = (int)x;
1028         doAdd = 1;
1029       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1030         doAdd = 1;
1031       }
1032     }else{
1033       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1034       ** number as the prior appearance of the same name, or if the name
1035       ** has never appeared before, reuse the same variable number
1036       */
1037       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1038       if( x==0 ){
1039         x = (ynVar)(++pParse->nVar);
1040         doAdd = 1;
1041       }
1042     }
1043     if( doAdd ){
1044       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1045     }
1046   }
1047   pExpr->iColumn = x;
1048   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1049     sqlite3ErrorMsg(pParse, "too many SQL variables");
1050   }
1051 }
1052 
1053 /*
1054 ** Recursively delete an expression tree.
1055 */
1056 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1057   assert( p!=0 );
1058   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1059   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1060 
1061   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1062   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1063           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1064 #ifdef SQLITE_DEBUG
1065   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1066     assert( p->pLeft==0 );
1067     assert( p->pRight==0 );
1068     assert( p->x.pSelect==0 );
1069   }
1070 #endif
1071   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1072     /* The Expr.x union is never used at the same time as Expr.pRight */
1073     assert( p->x.pList==0 || p->pRight==0 );
1074     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1075     if( p->pRight ){
1076       assert( !ExprHasProperty(p, EP_WinFunc) );
1077       sqlite3ExprDeleteNN(db, p->pRight);
1078     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1079       assert( !ExprHasProperty(p, EP_WinFunc) );
1080       sqlite3SelectDelete(db, p->x.pSelect);
1081     }else{
1082       sqlite3ExprListDelete(db, p->x.pList);
1083 #ifndef SQLITE_OMIT_WINDOWFUNC
1084       if( ExprHasProperty(p, EP_WinFunc) ){
1085         sqlite3WindowDelete(db, p->y.pWin);
1086       }
1087 #endif
1088     }
1089   }
1090   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1091   if( !ExprHasProperty(p, EP_Static) ){
1092     sqlite3DbFreeNN(db, p);
1093   }
1094 }
1095 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1096   if( p ) sqlite3ExprDeleteNN(db, p);
1097 }
1098 
1099 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1100 ** expression.
1101 */
1102 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1103   if( p ){
1104     if( IN_RENAME_OBJECT ){
1105       sqlite3RenameExprUnmap(pParse, p);
1106     }
1107     sqlite3ExprDeleteNN(pParse->db, p);
1108   }
1109 }
1110 
1111 /*
1112 ** Return the number of bytes allocated for the expression structure
1113 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1114 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1115 */
1116 static int exprStructSize(Expr *p){
1117   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1118   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1119   return EXPR_FULLSIZE;
1120 }
1121 
1122 /*
1123 ** The dupedExpr*Size() routines each return the number of bytes required
1124 ** to store a copy of an expression or expression tree.  They differ in
1125 ** how much of the tree is measured.
1126 **
1127 **     dupedExprStructSize()     Size of only the Expr structure
1128 **     dupedExprNodeSize()       Size of Expr + space for token
1129 **     dupedExprSize()           Expr + token + subtree components
1130 **
1131 ***************************************************************************
1132 **
1133 ** The dupedExprStructSize() function returns two values OR-ed together:
1134 ** (1) the space required for a copy of the Expr structure only and
1135 ** (2) the EP_xxx flags that indicate what the structure size should be.
1136 ** The return values is always one of:
1137 **
1138 **      EXPR_FULLSIZE
1139 **      EXPR_REDUCEDSIZE   | EP_Reduced
1140 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1141 **
1142 ** The size of the structure can be found by masking the return value
1143 ** of this routine with 0xfff.  The flags can be found by masking the
1144 ** return value with EP_Reduced|EP_TokenOnly.
1145 **
1146 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1147 ** (unreduced) Expr objects as they or originally constructed by the parser.
1148 ** During expression analysis, extra information is computed and moved into
1149 ** later parts of the Expr object and that extra information might get chopped
1150 ** off if the expression is reduced.  Note also that it does not work to
1151 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1152 ** to reduce a pristine expression tree from the parser.  The implementation
1153 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1154 ** to enforce this constraint.
1155 */
1156 static int dupedExprStructSize(Expr *p, int flags){
1157   int nSize;
1158   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1159   assert( EXPR_FULLSIZE<=0xfff );
1160   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1161   if( 0==flags || p->op==TK_SELECT_COLUMN
1162 #ifndef SQLITE_OMIT_WINDOWFUNC
1163    || ExprHasProperty(p, EP_WinFunc)
1164 #endif
1165   ){
1166     nSize = EXPR_FULLSIZE;
1167   }else{
1168     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1169     assert( !ExprHasProperty(p, EP_FromJoin) );
1170     assert( !ExprHasProperty(p, EP_MemToken) );
1171     assert( !ExprHasProperty(p, EP_NoReduce) );
1172     if( p->pLeft || p->x.pList ){
1173       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1174     }else{
1175       assert( p->pRight==0 );
1176       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1177     }
1178   }
1179   return nSize;
1180 }
1181 
1182 /*
1183 ** This function returns the space in bytes required to store the copy
1184 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1185 ** string is defined.)
1186 */
1187 static int dupedExprNodeSize(Expr *p, int flags){
1188   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1189   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1190     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1191   }
1192   return ROUND8(nByte);
1193 }
1194 
1195 /*
1196 ** Return the number of bytes required to create a duplicate of the
1197 ** expression passed as the first argument. The second argument is a
1198 ** mask containing EXPRDUP_XXX flags.
1199 **
1200 ** The value returned includes space to create a copy of the Expr struct
1201 ** itself and the buffer referred to by Expr.u.zToken, if any.
1202 **
1203 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1204 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1205 ** and Expr.pRight variables (but not for any structures pointed to or
1206 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1207 */
1208 static int dupedExprSize(Expr *p, int flags){
1209   int nByte = 0;
1210   if( p ){
1211     nByte = dupedExprNodeSize(p, flags);
1212     if( flags&EXPRDUP_REDUCE ){
1213       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1214     }
1215   }
1216   return nByte;
1217 }
1218 
1219 /*
1220 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1221 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1222 ** to store the copy of expression p, the copies of p->u.zToken
1223 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1224 ** if any. Before returning, *pzBuffer is set to the first byte past the
1225 ** portion of the buffer copied into by this function.
1226 */
1227 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1228   Expr *pNew;           /* Value to return */
1229   u8 *zAlloc;           /* Memory space from which to build Expr object */
1230   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1231 
1232   assert( db!=0 );
1233   assert( p );
1234   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1235   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1236 
1237   /* Figure out where to write the new Expr structure. */
1238   if( pzBuffer ){
1239     zAlloc = *pzBuffer;
1240     staticFlag = EP_Static;
1241   }else{
1242     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1243     staticFlag = 0;
1244   }
1245   pNew = (Expr *)zAlloc;
1246 
1247   if( pNew ){
1248     /* Set nNewSize to the size allocated for the structure pointed to
1249     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1250     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1251     ** by the copy of the p->u.zToken string (if any).
1252     */
1253     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1254     const int nNewSize = nStructSize & 0xfff;
1255     int nToken;
1256     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1257       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1258     }else{
1259       nToken = 0;
1260     }
1261     if( dupFlags ){
1262       assert( ExprHasProperty(p, EP_Reduced)==0 );
1263       memcpy(zAlloc, p, nNewSize);
1264     }else{
1265       u32 nSize = (u32)exprStructSize(p);
1266       memcpy(zAlloc, p, nSize);
1267       if( nSize<EXPR_FULLSIZE ){
1268         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1269       }
1270     }
1271 
1272     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1273     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1274     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1275     pNew->flags |= staticFlag;
1276 
1277     /* Copy the p->u.zToken string, if any. */
1278     if( nToken ){
1279       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1280       memcpy(zToken, p->u.zToken, nToken);
1281     }
1282 
1283     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1284       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1285       if( ExprHasProperty(p, EP_xIsSelect) ){
1286         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1287       }else{
1288         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1289       }
1290     }
1291 
1292     /* Fill in pNew->pLeft and pNew->pRight. */
1293     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1294       zAlloc += dupedExprNodeSize(p, dupFlags);
1295       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1296         pNew->pLeft = p->pLeft ?
1297                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1298         pNew->pRight = p->pRight ?
1299                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1300       }
1301 #ifndef SQLITE_OMIT_WINDOWFUNC
1302       if( ExprHasProperty(p, EP_WinFunc) ){
1303         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1304         assert( ExprHasProperty(pNew, EP_WinFunc) );
1305       }
1306 #endif /* SQLITE_OMIT_WINDOWFUNC */
1307       if( pzBuffer ){
1308         *pzBuffer = zAlloc;
1309       }
1310     }else{
1311       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1312         if( pNew->op==TK_SELECT_COLUMN ){
1313           pNew->pLeft = p->pLeft;
1314           assert( p->iColumn==0 || p->pRight==0 );
1315           assert( p->pRight==0  || p->pRight==p->pLeft );
1316         }else{
1317           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1318         }
1319         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1320       }
1321     }
1322   }
1323   return pNew;
1324 }
1325 
1326 /*
1327 ** Create and return a deep copy of the object passed as the second
1328 ** argument. If an OOM condition is encountered, NULL is returned
1329 ** and the db->mallocFailed flag set.
1330 */
1331 #ifndef SQLITE_OMIT_CTE
1332 static With *withDup(sqlite3 *db, With *p){
1333   With *pRet = 0;
1334   if( p ){
1335     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1336     pRet = sqlite3DbMallocZero(db, nByte);
1337     if( pRet ){
1338       int i;
1339       pRet->nCte = p->nCte;
1340       for(i=0; i<p->nCte; i++){
1341         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1342         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1343         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1344       }
1345     }
1346   }
1347   return pRet;
1348 }
1349 #else
1350 # define withDup(x,y) 0
1351 #endif
1352 
1353 #ifndef SQLITE_OMIT_WINDOWFUNC
1354 /*
1355 ** The gatherSelectWindows() procedure and its helper routine
1356 ** gatherSelectWindowsCallback() are used to scan all the expressions
1357 ** an a newly duplicated SELECT statement and gather all of the Window
1358 ** objects found there, assembling them onto the linked list at Select->pWin.
1359 */
1360 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1361   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1362     Select *pSelect = pWalker->u.pSelect;
1363     Window *pWin = pExpr->y.pWin;
1364     assert( pWin );
1365     assert( IsWindowFunc(pExpr) );
1366     assert( pWin->ppThis==0 );
1367     sqlite3WindowLink(pSelect, pWin);
1368   }
1369   return WRC_Continue;
1370 }
1371 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1372   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1373 }
1374 static void gatherSelectWindows(Select *p){
1375   Walker w;
1376   w.xExprCallback = gatherSelectWindowsCallback;
1377   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1378   w.xSelectCallback2 = 0;
1379   w.pParse = 0;
1380   w.u.pSelect = p;
1381   sqlite3WalkSelect(&w, p);
1382 }
1383 #endif
1384 
1385 
1386 /*
1387 ** The following group of routines make deep copies of expressions,
1388 ** expression lists, ID lists, and select statements.  The copies can
1389 ** be deleted (by being passed to their respective ...Delete() routines)
1390 ** without effecting the originals.
1391 **
1392 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1393 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1394 ** by subsequent calls to sqlite*ListAppend() routines.
1395 **
1396 ** Any tables that the SrcList might point to are not duplicated.
1397 **
1398 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1399 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1400 ** truncated version of the usual Expr structure that will be stored as
1401 ** part of the in-memory representation of the database schema.
1402 */
1403 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1404   assert( flags==0 || flags==EXPRDUP_REDUCE );
1405   return p ? exprDup(db, p, flags, 0) : 0;
1406 }
1407 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1408   ExprList *pNew;
1409   struct ExprList_item *pItem, *pOldItem;
1410   int i;
1411   Expr *pPriorSelectCol = 0;
1412   assert( db!=0 );
1413   if( p==0 ) return 0;
1414   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1415   if( pNew==0 ) return 0;
1416   pNew->nExpr = p->nExpr;
1417   pItem = pNew->a;
1418   pOldItem = p->a;
1419   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1420     Expr *pOldExpr = pOldItem->pExpr;
1421     Expr *pNewExpr;
1422     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1423     if( pOldExpr
1424      && pOldExpr->op==TK_SELECT_COLUMN
1425      && (pNewExpr = pItem->pExpr)!=0
1426     ){
1427       assert( pNewExpr->iColumn==0 || i>0 );
1428       if( pNewExpr->iColumn==0 ){
1429         assert( pOldExpr->pLeft==pOldExpr->pRight );
1430         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1431       }else{
1432         assert( i>0 );
1433         assert( pItem[-1].pExpr!=0 );
1434         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1435         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1436         pNewExpr->pLeft = pPriorSelectCol;
1437       }
1438     }
1439     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1440     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1441     pItem->sortFlags = pOldItem->sortFlags;
1442     pItem->done = 0;
1443     pItem->bNulls = pOldItem->bNulls;
1444     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1445     pItem->bSorterRef = pOldItem->bSorterRef;
1446     pItem->u = pOldItem->u;
1447   }
1448   return pNew;
1449 }
1450 
1451 /*
1452 ** If cursors, triggers, views and subqueries are all omitted from
1453 ** the build, then none of the following routines, except for
1454 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1455 ** called with a NULL argument.
1456 */
1457 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1458  || !defined(SQLITE_OMIT_SUBQUERY)
1459 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1460   SrcList *pNew;
1461   int i;
1462   int nByte;
1463   assert( db!=0 );
1464   if( p==0 ) return 0;
1465   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1466   pNew = sqlite3DbMallocRawNN(db, nByte );
1467   if( pNew==0 ) return 0;
1468   pNew->nSrc = pNew->nAlloc = p->nSrc;
1469   for(i=0; i<p->nSrc; i++){
1470     struct SrcList_item *pNewItem = &pNew->a[i];
1471     struct SrcList_item *pOldItem = &p->a[i];
1472     Table *pTab;
1473     pNewItem->pSchema = pOldItem->pSchema;
1474     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1475     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1476     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1477     pNewItem->fg = pOldItem->fg;
1478     pNewItem->iCursor = pOldItem->iCursor;
1479     pNewItem->addrFillSub = pOldItem->addrFillSub;
1480     pNewItem->regReturn = pOldItem->regReturn;
1481     if( pNewItem->fg.isIndexedBy ){
1482       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1483     }
1484     pNewItem->pIBIndex = pOldItem->pIBIndex;
1485     if( pNewItem->fg.isTabFunc ){
1486       pNewItem->u1.pFuncArg =
1487           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1488     }
1489     pTab = pNewItem->pTab = pOldItem->pTab;
1490     if( pTab ){
1491       pTab->nTabRef++;
1492     }
1493     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1494     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1495     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1496     pNewItem->colUsed = pOldItem->colUsed;
1497   }
1498   return pNew;
1499 }
1500 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1501   IdList *pNew;
1502   int i;
1503   assert( db!=0 );
1504   if( p==0 ) return 0;
1505   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1506   if( pNew==0 ) return 0;
1507   pNew->nId = p->nId;
1508   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1509   if( pNew->a==0 ){
1510     sqlite3DbFreeNN(db, pNew);
1511     return 0;
1512   }
1513   /* Note that because the size of the allocation for p->a[] is not
1514   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1515   ** on the duplicate created by this function. */
1516   for(i=0; i<p->nId; i++){
1517     struct IdList_item *pNewItem = &pNew->a[i];
1518     struct IdList_item *pOldItem = &p->a[i];
1519     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1520     pNewItem->idx = pOldItem->idx;
1521   }
1522   return pNew;
1523 }
1524 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1525   Select *pRet = 0;
1526   Select *pNext = 0;
1527   Select **pp = &pRet;
1528   Select *p;
1529 
1530   assert( db!=0 );
1531   for(p=pDup; p; p=p->pPrior){
1532     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1533     if( pNew==0 ) break;
1534     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1535     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1536     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1537     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1538     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1539     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1540     pNew->op = p->op;
1541     pNew->pNext = pNext;
1542     pNew->pPrior = 0;
1543     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1544     pNew->iLimit = 0;
1545     pNew->iOffset = 0;
1546     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1547     pNew->addrOpenEphm[0] = -1;
1548     pNew->addrOpenEphm[1] = -1;
1549     pNew->nSelectRow = p->nSelectRow;
1550     pNew->pWith = withDup(db, p->pWith);
1551 #ifndef SQLITE_OMIT_WINDOWFUNC
1552     pNew->pWin = 0;
1553     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1554     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1555 #endif
1556     pNew->selId = p->selId;
1557     *pp = pNew;
1558     pp = &pNew->pPrior;
1559     pNext = pNew;
1560   }
1561 
1562   return pRet;
1563 }
1564 #else
1565 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1566   assert( p==0 );
1567   return 0;
1568 }
1569 #endif
1570 
1571 
1572 /*
1573 ** Add a new element to the end of an expression list.  If pList is
1574 ** initially NULL, then create a new expression list.
1575 **
1576 ** The pList argument must be either NULL or a pointer to an ExprList
1577 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1578 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1579 ** Reason:  This routine assumes that the number of slots in pList->a[]
1580 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1581 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1582 **
1583 ** If a memory allocation error occurs, the entire list is freed and
1584 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1585 ** that the new entry was successfully appended.
1586 */
1587 ExprList *sqlite3ExprListAppend(
1588   Parse *pParse,          /* Parsing context */
1589   ExprList *pList,        /* List to which to append. Might be NULL */
1590   Expr *pExpr             /* Expression to be appended. Might be NULL */
1591 ){
1592   struct ExprList_item *pItem;
1593   sqlite3 *db = pParse->db;
1594   assert( db!=0 );
1595   if( pList==0 ){
1596     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1597     if( pList==0 ){
1598       goto no_mem;
1599     }
1600     pList->nExpr = 0;
1601   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1602     ExprList *pNew;
1603     pNew = sqlite3DbRealloc(db, pList,
1604          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1605     if( pNew==0 ){
1606       goto no_mem;
1607     }
1608     pList = pNew;
1609   }
1610   pItem = &pList->a[pList->nExpr++];
1611   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1612   assert( offsetof(struct ExprList_item,pExpr)==0 );
1613   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1614   pItem->pExpr = pExpr;
1615   return pList;
1616 
1617 no_mem:
1618   /* Avoid leaking memory if malloc has failed. */
1619   sqlite3ExprDelete(db, pExpr);
1620   sqlite3ExprListDelete(db, pList);
1621   return 0;
1622 }
1623 
1624 /*
1625 ** pColumns and pExpr form a vector assignment which is part of the SET
1626 ** clause of an UPDATE statement.  Like this:
1627 **
1628 **        (a,b,c) = (expr1,expr2,expr3)
1629 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1630 **
1631 ** For each term of the vector assignment, append new entries to the
1632 ** expression list pList.  In the case of a subquery on the RHS, append
1633 ** TK_SELECT_COLUMN expressions.
1634 */
1635 ExprList *sqlite3ExprListAppendVector(
1636   Parse *pParse,         /* Parsing context */
1637   ExprList *pList,       /* List to which to append. Might be NULL */
1638   IdList *pColumns,      /* List of names of LHS of the assignment */
1639   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1640 ){
1641   sqlite3 *db = pParse->db;
1642   int n;
1643   int i;
1644   int iFirst = pList ? pList->nExpr : 0;
1645   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1646   ** exit prior to this routine being invoked */
1647   if( NEVER(pColumns==0) ) goto vector_append_error;
1648   if( pExpr==0 ) goto vector_append_error;
1649 
1650   /* If the RHS is a vector, then we can immediately check to see that
1651   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1652   ** wildcards ("*") in the result set of the SELECT must be expanded before
1653   ** we can do the size check, so defer the size check until code generation.
1654   */
1655   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1656     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1657                     pColumns->nId, n);
1658     goto vector_append_error;
1659   }
1660 
1661   for(i=0; i<pColumns->nId; i++){
1662     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1663     assert( pSubExpr!=0 || db->mallocFailed );
1664     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1665     if( pSubExpr==0 ) continue;
1666     pSubExpr->iTable = pColumns->nId;
1667     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1668     if( pList ){
1669       assert( pList->nExpr==iFirst+i+1 );
1670       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1671       pColumns->a[i].zName = 0;
1672     }
1673   }
1674 
1675   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1676     Expr *pFirst = pList->a[iFirst].pExpr;
1677     assert( pFirst!=0 );
1678     assert( pFirst->op==TK_SELECT_COLUMN );
1679 
1680     /* Store the SELECT statement in pRight so it will be deleted when
1681     ** sqlite3ExprListDelete() is called */
1682     pFirst->pRight = pExpr;
1683     pExpr = 0;
1684 
1685     /* Remember the size of the LHS in iTable so that we can check that
1686     ** the RHS and LHS sizes match during code generation. */
1687     pFirst->iTable = pColumns->nId;
1688   }
1689 
1690 vector_append_error:
1691   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1692   sqlite3IdListDelete(db, pColumns);
1693   return pList;
1694 }
1695 
1696 /*
1697 ** Set the sort order for the last element on the given ExprList.
1698 */
1699 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1700   struct ExprList_item *pItem;
1701   if( p==0 ) return;
1702   assert( p->nExpr>0 );
1703 
1704   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1705   assert( iSortOrder==SQLITE_SO_UNDEFINED
1706        || iSortOrder==SQLITE_SO_ASC
1707        || iSortOrder==SQLITE_SO_DESC
1708   );
1709   assert( eNulls==SQLITE_SO_UNDEFINED
1710        || eNulls==SQLITE_SO_ASC
1711        || eNulls==SQLITE_SO_DESC
1712   );
1713 
1714   pItem = &p->a[p->nExpr-1];
1715   assert( pItem->bNulls==0 );
1716   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1717     iSortOrder = SQLITE_SO_ASC;
1718   }
1719   pItem->sortFlags = (u8)iSortOrder;
1720 
1721   if( eNulls!=SQLITE_SO_UNDEFINED ){
1722     pItem->bNulls = 1;
1723     if( iSortOrder!=eNulls ){
1724       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1725     }
1726   }
1727 }
1728 
1729 /*
1730 ** Set the ExprList.a[].zName element of the most recently added item
1731 ** on the expression list.
1732 **
1733 ** pList might be NULL following an OOM error.  But pName should never be
1734 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1735 ** is set.
1736 */
1737 void sqlite3ExprListSetName(
1738   Parse *pParse,          /* Parsing context */
1739   ExprList *pList,        /* List to which to add the span. */
1740   Token *pName,           /* Name to be added */
1741   int dequote             /* True to cause the name to be dequoted */
1742 ){
1743   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1744   if( pList ){
1745     struct ExprList_item *pItem;
1746     assert( pList->nExpr>0 );
1747     pItem = &pList->a[pList->nExpr-1];
1748     assert( pItem->zName==0 );
1749     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1750     if( dequote ) sqlite3Dequote(pItem->zName);
1751     if( IN_RENAME_OBJECT ){
1752       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1753     }
1754   }
1755 }
1756 
1757 /*
1758 ** Set the ExprList.a[].zSpan element of the most recently added item
1759 ** on the expression list.
1760 **
1761 ** pList might be NULL following an OOM error.  But pSpan should never be
1762 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1763 ** is set.
1764 */
1765 void sqlite3ExprListSetSpan(
1766   Parse *pParse,          /* Parsing context */
1767   ExprList *pList,        /* List to which to add the span. */
1768   const char *zStart,     /* Start of the span */
1769   const char *zEnd        /* End of the span */
1770 ){
1771   sqlite3 *db = pParse->db;
1772   assert( pList!=0 || db->mallocFailed!=0 );
1773   if( pList ){
1774     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1775     assert( pList->nExpr>0 );
1776     sqlite3DbFree(db, pItem->zSpan);
1777     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1778   }
1779 }
1780 
1781 /*
1782 ** If the expression list pEList contains more than iLimit elements,
1783 ** leave an error message in pParse.
1784 */
1785 void sqlite3ExprListCheckLength(
1786   Parse *pParse,
1787   ExprList *pEList,
1788   const char *zObject
1789 ){
1790   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1791   testcase( pEList && pEList->nExpr==mx );
1792   testcase( pEList && pEList->nExpr==mx+1 );
1793   if( pEList && pEList->nExpr>mx ){
1794     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1795   }
1796 }
1797 
1798 /*
1799 ** Delete an entire expression list.
1800 */
1801 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1802   int i = pList->nExpr;
1803   struct ExprList_item *pItem =  pList->a;
1804   assert( pList->nExpr>0 );
1805   do{
1806     sqlite3ExprDelete(db, pItem->pExpr);
1807     sqlite3DbFree(db, pItem->zName);
1808     sqlite3DbFree(db, pItem->zSpan);
1809     pItem++;
1810   }while( --i>0 );
1811   sqlite3DbFreeNN(db, pList);
1812 }
1813 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1814   if( pList ) exprListDeleteNN(db, pList);
1815 }
1816 
1817 /*
1818 ** Return the bitwise-OR of all Expr.flags fields in the given
1819 ** ExprList.
1820 */
1821 u32 sqlite3ExprListFlags(const ExprList *pList){
1822   int i;
1823   u32 m = 0;
1824   assert( pList!=0 );
1825   for(i=0; i<pList->nExpr; i++){
1826      Expr *pExpr = pList->a[i].pExpr;
1827      assert( pExpr!=0 );
1828      m |= pExpr->flags;
1829   }
1830   return m;
1831 }
1832 
1833 /*
1834 ** This is a SELECT-node callback for the expression walker that
1835 ** always "fails".  By "fail" in this case, we mean set
1836 ** pWalker->eCode to zero and abort.
1837 **
1838 ** This callback is used by multiple expression walkers.
1839 */
1840 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1841   UNUSED_PARAMETER(NotUsed);
1842   pWalker->eCode = 0;
1843   return WRC_Abort;
1844 }
1845 
1846 /*
1847 ** If the input expression is an ID with the name "true" or "false"
1848 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1849 ** the conversion happened, and zero if the expression is unaltered.
1850 */
1851 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1852   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1853   if( !ExprHasProperty(pExpr, EP_Quoted)
1854    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1855        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1856   ){
1857     pExpr->op = TK_TRUEFALSE;
1858     ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse);
1859     return 1;
1860   }
1861   return 0;
1862 }
1863 
1864 /*
1865 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1866 ** and 0 if it is FALSE.
1867 */
1868 int sqlite3ExprTruthValue(const Expr *pExpr){
1869   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1870   assert( pExpr->op==TK_TRUEFALSE );
1871   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1872        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1873   return pExpr->u.zToken[4]==0;
1874 }
1875 
1876 /*
1877 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1878 ** terms that are always true or false.  Return the simplified expression.
1879 ** Or return the original expression if no simplification is possible.
1880 **
1881 ** Examples:
1882 **
1883 **     (x<10) AND true                =>   (x<10)
1884 **     (x<10) AND false               =>   false
1885 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1886 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1887 **     (y=22) OR true                 =>   true
1888 */
1889 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1890   assert( pExpr!=0 );
1891   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1892     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1893     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1894     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1895       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1896     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1897       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1898     }
1899   }
1900   return pExpr;
1901 }
1902 
1903 
1904 /*
1905 ** These routines are Walker callbacks used to check expressions to
1906 ** see if they are "constant" for some definition of constant.  The
1907 ** Walker.eCode value determines the type of "constant" we are looking
1908 ** for.
1909 **
1910 ** These callback routines are used to implement the following:
1911 **
1912 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1913 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1914 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1915 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1916 **
1917 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1918 ** is found to not be a constant.
1919 **
1920 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1921 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1922 ** an existing schema and 4 when processing a new statement.  A bound
1923 ** parameter raises an error for new statements, but is silently converted
1924 ** to NULL for existing schemas.  This allows sqlite_master tables that
1925 ** contain a bound parameter because they were generated by older versions
1926 ** of SQLite to be parsed by newer versions of SQLite without raising a
1927 ** malformed schema error.
1928 */
1929 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1930 
1931   /* If pWalker->eCode is 2 then any term of the expression that comes from
1932   ** the ON or USING clauses of a left join disqualifies the expression
1933   ** from being considered constant. */
1934   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1935     pWalker->eCode = 0;
1936     return WRC_Abort;
1937   }
1938 
1939   switch( pExpr->op ){
1940     /* Consider functions to be constant if all their arguments are constant
1941     ** and either pWalker->eCode==4 or 5 or the function has the
1942     ** SQLITE_FUNC_CONST flag. */
1943     case TK_FUNCTION:
1944       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1945         return WRC_Continue;
1946       }else{
1947         pWalker->eCode = 0;
1948         return WRC_Abort;
1949       }
1950     case TK_ID:
1951       /* Convert "true" or "false" in a DEFAULT clause into the
1952       ** appropriate TK_TRUEFALSE operator */
1953       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1954         return WRC_Prune;
1955       }
1956       /* Fall thru */
1957     case TK_COLUMN:
1958     case TK_AGG_FUNCTION:
1959     case TK_AGG_COLUMN:
1960       testcase( pExpr->op==TK_ID );
1961       testcase( pExpr->op==TK_COLUMN );
1962       testcase( pExpr->op==TK_AGG_FUNCTION );
1963       testcase( pExpr->op==TK_AGG_COLUMN );
1964       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1965         return WRC_Continue;
1966       }
1967       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1968         return WRC_Continue;
1969       }
1970       /* Fall through */
1971     case TK_IF_NULL_ROW:
1972     case TK_REGISTER:
1973       testcase( pExpr->op==TK_REGISTER );
1974       testcase( pExpr->op==TK_IF_NULL_ROW );
1975       pWalker->eCode = 0;
1976       return WRC_Abort;
1977     case TK_VARIABLE:
1978       if( pWalker->eCode==5 ){
1979         /* Silently convert bound parameters that appear inside of CREATE
1980         ** statements into a NULL when parsing the CREATE statement text out
1981         ** of the sqlite_master table */
1982         pExpr->op = TK_NULL;
1983       }else if( pWalker->eCode==4 ){
1984         /* A bound parameter in a CREATE statement that originates from
1985         ** sqlite3_prepare() causes an error */
1986         pWalker->eCode = 0;
1987         return WRC_Abort;
1988       }
1989       /* Fall through */
1990     default:
1991       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1992       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1993       return WRC_Continue;
1994   }
1995 }
1996 static int exprIsConst(Expr *p, int initFlag, int iCur){
1997   Walker w;
1998   w.eCode = initFlag;
1999   w.xExprCallback = exprNodeIsConstant;
2000   w.xSelectCallback = sqlite3SelectWalkFail;
2001 #ifdef SQLITE_DEBUG
2002   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2003 #endif
2004   w.u.iCur = iCur;
2005   sqlite3WalkExpr(&w, p);
2006   return w.eCode;
2007 }
2008 
2009 /*
2010 ** Walk an expression tree.  Return non-zero if the expression is constant
2011 ** and 0 if it involves variables or function calls.
2012 **
2013 ** For the purposes of this function, a double-quoted string (ex: "abc")
2014 ** is considered a variable but a single-quoted string (ex: 'abc') is
2015 ** a constant.
2016 */
2017 int sqlite3ExprIsConstant(Expr *p){
2018   return exprIsConst(p, 1, 0);
2019 }
2020 
2021 /*
2022 ** Walk an expression tree.  Return non-zero if
2023 **
2024 **   (1) the expression is constant, and
2025 **   (2) the expression does originate in the ON or USING clause
2026 **       of a LEFT JOIN, and
2027 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2028 **       operands created by the constant propagation optimization.
2029 **
2030 ** When this routine returns true, it indicates that the expression
2031 ** can be added to the pParse->pConstExpr list and evaluated once when
2032 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
2033 */
2034 int sqlite3ExprIsConstantNotJoin(Expr *p){
2035   return exprIsConst(p, 2, 0);
2036 }
2037 
2038 /*
2039 ** Walk an expression tree.  Return non-zero if the expression is constant
2040 ** for any single row of the table with cursor iCur.  In other words, the
2041 ** expression must not refer to any non-deterministic function nor any
2042 ** table other than iCur.
2043 */
2044 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2045   return exprIsConst(p, 3, iCur);
2046 }
2047 
2048 
2049 /*
2050 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2051 */
2052 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2053   ExprList *pGroupBy = pWalker->u.pGroupBy;
2054   int i;
2055 
2056   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2057   ** it constant.  */
2058   for(i=0; i<pGroupBy->nExpr; i++){
2059     Expr *p = pGroupBy->a[i].pExpr;
2060     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2061       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2062       if( sqlite3IsBinary(pColl) ){
2063         return WRC_Prune;
2064       }
2065     }
2066   }
2067 
2068   /* Check if pExpr is a sub-select. If so, consider it variable. */
2069   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2070     pWalker->eCode = 0;
2071     return WRC_Abort;
2072   }
2073 
2074   return exprNodeIsConstant(pWalker, pExpr);
2075 }
2076 
2077 /*
2078 ** Walk the expression tree passed as the first argument. Return non-zero
2079 ** if the expression consists entirely of constants or copies of terms
2080 ** in pGroupBy that sort with the BINARY collation sequence.
2081 **
2082 ** This routine is used to determine if a term of the HAVING clause can
2083 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2084 ** the value of the HAVING clause term must be the same for all members of
2085 ** a "group".  The requirement that the GROUP BY term must be BINARY
2086 ** assumes that no other collating sequence will have a finer-grained
2087 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2088 ** A=B in every other collating sequence.  The requirement that the
2089 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2090 ** to promote HAVING clauses that use the same alternative collating
2091 ** sequence as the GROUP BY term, but that is much harder to check,
2092 ** alternative collating sequences are uncommon, and this is only an
2093 ** optimization, so we take the easy way out and simply require the
2094 ** GROUP BY to use the BINARY collating sequence.
2095 */
2096 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2097   Walker w;
2098   w.eCode = 1;
2099   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2100   w.xSelectCallback = 0;
2101   w.u.pGroupBy = pGroupBy;
2102   w.pParse = pParse;
2103   sqlite3WalkExpr(&w, p);
2104   return w.eCode;
2105 }
2106 
2107 /*
2108 ** Walk an expression tree.  Return non-zero if the expression is constant
2109 ** or a function call with constant arguments.  Return and 0 if there
2110 ** are any variables.
2111 **
2112 ** For the purposes of this function, a double-quoted string (ex: "abc")
2113 ** is considered a variable but a single-quoted string (ex: 'abc') is
2114 ** a constant.
2115 */
2116 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2117   assert( isInit==0 || isInit==1 );
2118   return exprIsConst(p, 4+isInit, 0);
2119 }
2120 
2121 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2122 /*
2123 ** Walk an expression tree.  Return 1 if the expression contains a
2124 ** subquery of some kind.  Return 0 if there are no subqueries.
2125 */
2126 int sqlite3ExprContainsSubquery(Expr *p){
2127   Walker w;
2128   w.eCode = 1;
2129   w.xExprCallback = sqlite3ExprWalkNoop;
2130   w.xSelectCallback = sqlite3SelectWalkFail;
2131 #ifdef SQLITE_DEBUG
2132   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2133 #endif
2134   sqlite3WalkExpr(&w, p);
2135   return w.eCode==0;
2136 }
2137 #endif
2138 
2139 /*
2140 ** If the expression p codes a constant integer that is small enough
2141 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2142 ** in *pValue.  If the expression is not an integer or if it is too big
2143 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2144 */
2145 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2146   int rc = 0;
2147   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2148 
2149   /* If an expression is an integer literal that fits in a signed 32-bit
2150   ** integer, then the EP_IntValue flag will have already been set */
2151   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2152            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2153 
2154   if( p->flags & EP_IntValue ){
2155     *pValue = p->u.iValue;
2156     return 1;
2157   }
2158   switch( p->op ){
2159     case TK_UPLUS: {
2160       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2161       break;
2162     }
2163     case TK_UMINUS: {
2164       int v;
2165       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2166         assert( v!=(-2147483647-1) );
2167         *pValue = -v;
2168         rc = 1;
2169       }
2170       break;
2171     }
2172     default: break;
2173   }
2174   return rc;
2175 }
2176 
2177 /*
2178 ** Return FALSE if there is no chance that the expression can be NULL.
2179 **
2180 ** If the expression might be NULL or if the expression is too complex
2181 ** to tell return TRUE.
2182 **
2183 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2184 ** when we know that a value cannot be NULL.  Hence, a false positive
2185 ** (returning TRUE when in fact the expression can never be NULL) might
2186 ** be a small performance hit but is otherwise harmless.  On the other
2187 ** hand, a false negative (returning FALSE when the result could be NULL)
2188 ** will likely result in an incorrect answer.  So when in doubt, return
2189 ** TRUE.
2190 */
2191 int sqlite3ExprCanBeNull(const Expr *p){
2192   u8 op;
2193   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2194     p = p->pLeft;
2195   }
2196   op = p->op;
2197   if( op==TK_REGISTER ) op = p->op2;
2198   switch( op ){
2199     case TK_INTEGER:
2200     case TK_STRING:
2201     case TK_FLOAT:
2202     case TK_BLOB:
2203       return 0;
2204     case TK_COLUMN:
2205       return ExprHasProperty(p, EP_CanBeNull) ||
2206              p->y.pTab==0 ||  /* Reference to column of index on expression */
2207              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2208     default:
2209       return 1;
2210   }
2211 }
2212 
2213 /*
2214 ** Return TRUE if the given expression is a constant which would be
2215 ** unchanged by OP_Affinity with the affinity given in the second
2216 ** argument.
2217 **
2218 ** This routine is used to determine if the OP_Affinity operation
2219 ** can be omitted.  When in doubt return FALSE.  A false negative
2220 ** is harmless.  A false positive, however, can result in the wrong
2221 ** answer.
2222 */
2223 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2224   u8 op;
2225   int unaryMinus = 0;
2226   if( aff==SQLITE_AFF_BLOB ) return 1;
2227   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2228     if( p->op==TK_UMINUS ) unaryMinus = 1;
2229     p = p->pLeft;
2230   }
2231   op = p->op;
2232   if( op==TK_REGISTER ) op = p->op2;
2233   switch( op ){
2234     case TK_INTEGER: {
2235       return aff>=SQLITE_AFF_NUMERIC;
2236     }
2237     case TK_FLOAT: {
2238       return aff>=SQLITE_AFF_NUMERIC;
2239     }
2240     case TK_STRING: {
2241       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2242     }
2243     case TK_BLOB: {
2244       return !unaryMinus;
2245     }
2246     case TK_COLUMN: {
2247       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2248       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2249     }
2250     default: {
2251       return 0;
2252     }
2253   }
2254 }
2255 
2256 /*
2257 ** Return TRUE if the given string is a row-id column name.
2258 */
2259 int sqlite3IsRowid(const char *z){
2260   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2261   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2262   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2263   return 0;
2264 }
2265 
2266 /*
2267 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2268 ** that can be simplified to a direct table access, then return
2269 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2270 ** or if the SELECT statement needs to be manifested into a transient
2271 ** table, then return NULL.
2272 */
2273 #ifndef SQLITE_OMIT_SUBQUERY
2274 static Select *isCandidateForInOpt(Expr *pX){
2275   Select *p;
2276   SrcList *pSrc;
2277   ExprList *pEList;
2278   Table *pTab;
2279   int i;
2280   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2281   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2282   p = pX->x.pSelect;
2283   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2284   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2285     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2286     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2287     return 0; /* No DISTINCT keyword and no aggregate functions */
2288   }
2289   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2290   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2291   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2292   pSrc = p->pSrc;
2293   assert( pSrc!=0 );
2294   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2295   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2296   pTab = pSrc->a[0].pTab;
2297   assert( pTab!=0 );
2298   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2299   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2300   pEList = p->pEList;
2301   assert( pEList!=0 );
2302   /* All SELECT results must be columns. */
2303   for(i=0; i<pEList->nExpr; i++){
2304     Expr *pRes = pEList->a[i].pExpr;
2305     if( pRes->op!=TK_COLUMN ) return 0;
2306     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2307   }
2308   return p;
2309 }
2310 #endif /* SQLITE_OMIT_SUBQUERY */
2311 
2312 #ifndef SQLITE_OMIT_SUBQUERY
2313 /*
2314 ** Generate code that checks the left-most column of index table iCur to see if
2315 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2316 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2317 ** to be set to NULL if iCur contains one or more NULL values.
2318 */
2319 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2320   int addr1;
2321   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2322   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2323   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2324   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2325   VdbeComment((v, "first_entry_in(%d)", iCur));
2326   sqlite3VdbeJumpHere(v, addr1);
2327 }
2328 #endif
2329 
2330 
2331 #ifndef SQLITE_OMIT_SUBQUERY
2332 /*
2333 ** The argument is an IN operator with a list (not a subquery) on the
2334 ** right-hand side.  Return TRUE if that list is constant.
2335 */
2336 static int sqlite3InRhsIsConstant(Expr *pIn){
2337   Expr *pLHS;
2338   int res;
2339   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2340   pLHS = pIn->pLeft;
2341   pIn->pLeft = 0;
2342   res = sqlite3ExprIsConstant(pIn);
2343   pIn->pLeft = pLHS;
2344   return res;
2345 }
2346 #endif
2347 
2348 /*
2349 ** This function is used by the implementation of the IN (...) operator.
2350 ** The pX parameter is the expression on the RHS of the IN operator, which
2351 ** might be either a list of expressions or a subquery.
2352 **
2353 ** The job of this routine is to find or create a b-tree object that can
2354 ** be used either to test for membership in the RHS set or to iterate through
2355 ** all members of the RHS set, skipping duplicates.
2356 **
2357 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2358 ** and pX->iTable is set to the index of that cursor.
2359 **
2360 ** The returned value of this function indicates the b-tree type, as follows:
2361 **
2362 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2363 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2364 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2365 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2366 **                         populated epheremal table.
2367 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2368 **                         implemented as a sequence of comparisons.
2369 **
2370 ** An existing b-tree might be used if the RHS expression pX is a simple
2371 ** subquery such as:
2372 **
2373 **     SELECT <column1>, <column2>... FROM <table>
2374 **
2375 ** If the RHS of the IN operator is a list or a more complex subquery, then
2376 ** an ephemeral table might need to be generated from the RHS and then
2377 ** pX->iTable made to point to the ephemeral table instead of an
2378 ** existing table.
2379 **
2380 ** The inFlags parameter must contain, at a minimum, one of the bits
2381 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2382 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2383 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2384 ** be used to loop over all values of the RHS of the IN operator.
2385 **
2386 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2387 ** through the set members) then the b-tree must not contain duplicates.
2388 ** An epheremal table will be created unless the selected columns are guaranteed
2389 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2390 ** a UNIQUE constraint or index.
2391 **
2392 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2393 ** for fast set membership tests) then an epheremal table must
2394 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2395 ** index can be found with the specified <columns> as its left-most.
2396 **
2397 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2398 ** if the RHS of the IN operator is a list (not a subquery) then this
2399 ** routine might decide that creating an ephemeral b-tree for membership
2400 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2401 ** calling routine should implement the IN operator using a sequence
2402 ** of Eq or Ne comparison operations.
2403 **
2404 ** When the b-tree is being used for membership tests, the calling function
2405 ** might need to know whether or not the RHS side of the IN operator
2406 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2407 ** if there is any chance that the (...) might contain a NULL value at
2408 ** runtime, then a register is allocated and the register number written
2409 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2410 ** NULL value, then *prRhsHasNull is left unchanged.
2411 **
2412 ** If a register is allocated and its location stored in *prRhsHasNull, then
2413 ** the value in that register will be NULL if the b-tree contains one or more
2414 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2415 ** NULL values.
2416 **
2417 ** If the aiMap parameter is not NULL, it must point to an array containing
2418 ** one element for each column returned by the SELECT statement on the RHS
2419 ** of the IN(...) operator. The i'th entry of the array is populated with the
2420 ** offset of the index column that matches the i'th column returned by the
2421 ** SELECT. For example, if the expression and selected index are:
2422 **
2423 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2424 **   CREATE INDEX i1 ON t1(b, c, a);
2425 **
2426 ** then aiMap[] is populated with {2, 0, 1}.
2427 */
2428 #ifndef SQLITE_OMIT_SUBQUERY
2429 int sqlite3FindInIndex(
2430   Parse *pParse,             /* Parsing context */
2431   Expr *pX,                  /* The IN expression */
2432   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2433   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2434   int *aiMap,                /* Mapping from Index fields to RHS fields */
2435   int *piTab                 /* OUT: index to use */
2436 ){
2437   Select *p;                            /* SELECT to the right of IN operator */
2438   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2439   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2440   int mustBeUnique;                     /* True if RHS must be unique */
2441   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2442 
2443   assert( pX->op==TK_IN );
2444   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2445 
2446   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2447   ** whether or not the SELECT result contains NULL values, check whether
2448   ** or not NULL is actually possible (it may not be, for example, due
2449   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2450   ** set prRhsHasNull to 0 before continuing.  */
2451   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2452     int i;
2453     ExprList *pEList = pX->x.pSelect->pEList;
2454     for(i=0; i<pEList->nExpr; i++){
2455       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2456     }
2457     if( i==pEList->nExpr ){
2458       prRhsHasNull = 0;
2459     }
2460   }
2461 
2462   /* Check to see if an existing table or index can be used to
2463   ** satisfy the query.  This is preferable to generating a new
2464   ** ephemeral table.  */
2465   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2466     sqlite3 *db = pParse->db;              /* Database connection */
2467     Table *pTab;                           /* Table <table>. */
2468     i16 iDb;                               /* Database idx for pTab */
2469     ExprList *pEList = p->pEList;
2470     int nExpr = pEList->nExpr;
2471 
2472     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2473     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2474     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2475     pTab = p->pSrc->a[0].pTab;
2476 
2477     /* Code an OP_Transaction and OP_TableLock for <table>. */
2478     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2479     sqlite3CodeVerifySchema(pParse, iDb);
2480     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2481 
2482     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2483     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2484       /* The "x IN (SELECT rowid FROM table)" case */
2485       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2486       VdbeCoverage(v);
2487 
2488       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2489       eType = IN_INDEX_ROWID;
2490       ExplainQueryPlan((pParse, 0,
2491             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2492       sqlite3VdbeJumpHere(v, iAddr);
2493     }else{
2494       Index *pIdx;                         /* Iterator variable */
2495       int affinity_ok = 1;
2496       int i;
2497 
2498       /* Check that the affinity that will be used to perform each
2499       ** comparison is the same as the affinity of each column in table
2500       ** on the RHS of the IN operator.  If it not, it is not possible to
2501       ** use any index of the RHS table.  */
2502       for(i=0; i<nExpr && affinity_ok; i++){
2503         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2504         int iCol = pEList->a[i].pExpr->iColumn;
2505         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2506         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2507         testcase( cmpaff==SQLITE_AFF_BLOB );
2508         testcase( cmpaff==SQLITE_AFF_TEXT );
2509         switch( cmpaff ){
2510           case SQLITE_AFF_BLOB:
2511             break;
2512           case SQLITE_AFF_TEXT:
2513             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2514             ** other has no affinity and the other side is TEXT.  Hence,
2515             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2516             ** and for the term on the LHS of the IN to have no affinity. */
2517             assert( idxaff==SQLITE_AFF_TEXT );
2518             break;
2519           default:
2520             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2521         }
2522       }
2523 
2524       if( affinity_ok ){
2525         /* Search for an existing index that will work for this IN operator */
2526         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2527           Bitmask colUsed;      /* Columns of the index used */
2528           Bitmask mCol;         /* Mask for the current column */
2529           if( pIdx->nColumn<nExpr ) continue;
2530           if( pIdx->pPartIdxWhere!=0 ) continue;
2531           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2532           ** BITMASK(nExpr) without overflowing */
2533           testcase( pIdx->nColumn==BMS-2 );
2534           testcase( pIdx->nColumn==BMS-1 );
2535           if( pIdx->nColumn>=BMS-1 ) continue;
2536           if( mustBeUnique ){
2537             if( pIdx->nKeyCol>nExpr
2538              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2539             ){
2540               continue;  /* This index is not unique over the IN RHS columns */
2541             }
2542           }
2543 
2544           colUsed = 0;   /* Columns of index used so far */
2545           for(i=0; i<nExpr; i++){
2546             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2547             Expr *pRhs = pEList->a[i].pExpr;
2548             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2549             int j;
2550 
2551             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2552             for(j=0; j<nExpr; j++){
2553               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2554               assert( pIdx->azColl[j] );
2555               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2556                 continue;
2557               }
2558               break;
2559             }
2560             if( j==nExpr ) break;
2561             mCol = MASKBIT(j);
2562             if( mCol & colUsed ) break; /* Each column used only once */
2563             colUsed |= mCol;
2564             if( aiMap ) aiMap[i] = j;
2565           }
2566 
2567           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2568           if( colUsed==(MASKBIT(nExpr)-1) ){
2569             /* If we reach this point, that means the index pIdx is usable */
2570             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2571             ExplainQueryPlan((pParse, 0,
2572                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2573             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2574             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2575             VdbeComment((v, "%s", pIdx->zName));
2576             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2577             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2578 
2579             if( prRhsHasNull ){
2580 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2581               i64 mask = (1<<nExpr)-1;
2582               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2583                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2584 #endif
2585               *prRhsHasNull = ++pParse->nMem;
2586               if( nExpr==1 ){
2587                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2588               }
2589             }
2590             sqlite3VdbeJumpHere(v, iAddr);
2591           }
2592         } /* End loop over indexes */
2593       } /* End if( affinity_ok ) */
2594     } /* End if not an rowid index */
2595   } /* End attempt to optimize using an index */
2596 
2597   /* If no preexisting index is available for the IN clause
2598   ** and IN_INDEX_NOOP is an allowed reply
2599   ** and the RHS of the IN operator is a list, not a subquery
2600   ** and the RHS is not constant or has two or fewer terms,
2601   ** then it is not worth creating an ephemeral table to evaluate
2602   ** the IN operator so return IN_INDEX_NOOP.
2603   */
2604   if( eType==0
2605    && (inFlags & IN_INDEX_NOOP_OK)
2606    && !ExprHasProperty(pX, EP_xIsSelect)
2607    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2608   ){
2609     eType = IN_INDEX_NOOP;
2610   }
2611 
2612   if( eType==0 ){
2613     /* Could not find an existing table or index to use as the RHS b-tree.
2614     ** We will have to generate an ephemeral table to do the job.
2615     */
2616     u32 savedNQueryLoop = pParse->nQueryLoop;
2617     int rMayHaveNull = 0;
2618     eType = IN_INDEX_EPH;
2619     if( inFlags & IN_INDEX_LOOP ){
2620       pParse->nQueryLoop = 0;
2621     }else if( prRhsHasNull ){
2622       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2623     }
2624     assert( pX->op==TK_IN );
2625     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2626     if( rMayHaveNull ){
2627       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2628     }
2629     pParse->nQueryLoop = savedNQueryLoop;
2630   }
2631 
2632   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2633     int i, n;
2634     n = sqlite3ExprVectorSize(pX->pLeft);
2635     for(i=0; i<n; i++) aiMap[i] = i;
2636   }
2637   *piTab = iTab;
2638   return eType;
2639 }
2640 #endif
2641 
2642 #ifndef SQLITE_OMIT_SUBQUERY
2643 /*
2644 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2645 ** function allocates and returns a nul-terminated string containing
2646 ** the affinities to be used for each column of the comparison.
2647 **
2648 ** It is the responsibility of the caller to ensure that the returned
2649 ** string is eventually freed using sqlite3DbFree().
2650 */
2651 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2652   Expr *pLeft = pExpr->pLeft;
2653   int nVal = sqlite3ExprVectorSize(pLeft);
2654   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2655   char *zRet;
2656 
2657   assert( pExpr->op==TK_IN );
2658   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2659   if( zRet ){
2660     int i;
2661     for(i=0; i<nVal; i++){
2662       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2663       char a = sqlite3ExprAffinity(pA);
2664       if( pSelect ){
2665         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2666       }else{
2667         zRet[i] = a;
2668       }
2669     }
2670     zRet[nVal] = '\0';
2671   }
2672   return zRet;
2673 }
2674 #endif
2675 
2676 #ifndef SQLITE_OMIT_SUBQUERY
2677 /*
2678 ** Load the Parse object passed as the first argument with an error
2679 ** message of the form:
2680 **
2681 **   "sub-select returns N columns - expected M"
2682 */
2683 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2684   const char *zFmt = "sub-select returns %d columns - expected %d";
2685   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2686 }
2687 #endif
2688 
2689 /*
2690 ** Expression pExpr is a vector that has been used in a context where
2691 ** it is not permitted. If pExpr is a sub-select vector, this routine
2692 ** loads the Parse object with a message of the form:
2693 **
2694 **   "sub-select returns N columns - expected 1"
2695 **
2696 ** Or, if it is a regular scalar vector:
2697 **
2698 **   "row value misused"
2699 */
2700 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2701 #ifndef SQLITE_OMIT_SUBQUERY
2702   if( pExpr->flags & EP_xIsSelect ){
2703     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2704   }else
2705 #endif
2706   {
2707     sqlite3ErrorMsg(pParse, "row value misused");
2708   }
2709 }
2710 
2711 #ifndef SQLITE_OMIT_SUBQUERY
2712 /*
2713 ** Generate code that will construct an ephemeral table containing all terms
2714 ** in the RHS of an IN operator.  The IN operator can be in either of two
2715 ** forms:
2716 **
2717 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2718 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2719 **
2720 ** The pExpr parameter is the IN operator.  The cursor number for the
2721 ** constructed ephermeral table is returned.  The first time the ephemeral
2722 ** table is computed, the cursor number is also stored in pExpr->iTable,
2723 ** however the cursor number returned might not be the same, as it might
2724 ** have been duplicated using OP_OpenDup.
2725 **
2726 ** If the LHS expression ("x" in the examples) is a column value, or
2727 ** the SELECT statement returns a column value, then the affinity of that
2728 ** column is used to build the index keys. If both 'x' and the
2729 ** SELECT... statement are columns, then numeric affinity is used
2730 ** if either column has NUMERIC or INTEGER affinity. If neither
2731 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2732 ** is used.
2733 */
2734 void sqlite3CodeRhsOfIN(
2735   Parse *pParse,          /* Parsing context */
2736   Expr *pExpr,            /* The IN operator */
2737   int iTab                /* Use this cursor number */
2738 ){
2739   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2740   int addr;                   /* Address of OP_OpenEphemeral instruction */
2741   Expr *pLeft;                /* the LHS of the IN operator */
2742   KeyInfo *pKeyInfo = 0;      /* Key information */
2743   int nVal;                   /* Size of vector pLeft */
2744   Vdbe *v;                    /* The prepared statement under construction */
2745 
2746   v = pParse->pVdbe;
2747   assert( v!=0 );
2748 
2749   /* The evaluation of the IN must be repeated every time it
2750   ** is encountered if any of the following is true:
2751   **
2752   **    *  The right-hand side is a correlated subquery
2753   **    *  The right-hand side is an expression list containing variables
2754   **    *  We are inside a trigger
2755   **
2756   ** If all of the above are false, then we can compute the RHS just once
2757   ** and reuse it many names.
2758   */
2759   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2760     /* Reuse of the RHS is allowed */
2761     /* If this routine has already been coded, but the previous code
2762     ** might not have been invoked yet, so invoke it now as a subroutine.
2763     */
2764     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2765       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2766       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2767         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2768               pExpr->x.pSelect->selId));
2769       }
2770       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2771                         pExpr->y.sub.iAddr);
2772       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2773       sqlite3VdbeJumpHere(v, addrOnce);
2774       return;
2775     }
2776 
2777     /* Begin coding the subroutine */
2778     ExprSetProperty(pExpr, EP_Subrtn);
2779     pExpr->y.sub.regReturn = ++pParse->nMem;
2780     pExpr->y.sub.iAddr =
2781       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2782     VdbeComment((v, "return address"));
2783 
2784     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2785   }
2786 
2787   /* Check to see if this is a vector IN operator */
2788   pLeft = pExpr->pLeft;
2789   nVal = sqlite3ExprVectorSize(pLeft);
2790 
2791   /* Construct the ephemeral table that will contain the content of
2792   ** RHS of the IN operator.
2793   */
2794   pExpr->iTable = iTab;
2795   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2796 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2797   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2798     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2799   }else{
2800     VdbeComment((v, "RHS of IN operator"));
2801   }
2802 #endif
2803   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2804 
2805   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2806     /* Case 1:     expr IN (SELECT ...)
2807     **
2808     ** Generate code to write the results of the select into the temporary
2809     ** table allocated and opened above.
2810     */
2811     Select *pSelect = pExpr->x.pSelect;
2812     ExprList *pEList = pSelect->pEList;
2813 
2814     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2815         addrOnce?"":"CORRELATED ", pSelect->selId
2816     ));
2817     /* If the LHS and RHS of the IN operator do not match, that
2818     ** error will have been caught long before we reach this point. */
2819     if( ALWAYS(pEList->nExpr==nVal) ){
2820       SelectDest dest;
2821       int i;
2822       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2823       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2824       pSelect->iLimit = 0;
2825       testcase( pSelect->selFlags & SF_Distinct );
2826       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2827       if( sqlite3Select(pParse, pSelect, &dest) ){
2828         sqlite3DbFree(pParse->db, dest.zAffSdst);
2829         sqlite3KeyInfoUnref(pKeyInfo);
2830         return;
2831       }
2832       sqlite3DbFree(pParse->db, dest.zAffSdst);
2833       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2834       assert( pEList!=0 );
2835       assert( pEList->nExpr>0 );
2836       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2837       for(i=0; i<nVal; i++){
2838         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2839         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2840             pParse, p, pEList->a[i].pExpr
2841         );
2842       }
2843     }
2844   }else if( ALWAYS(pExpr->x.pList!=0) ){
2845     /* Case 2:     expr IN (exprlist)
2846     **
2847     ** For each expression, build an index key from the evaluation and
2848     ** store it in the temporary table. If <expr> is a column, then use
2849     ** that columns affinity when building index keys. If <expr> is not
2850     ** a column, use numeric affinity.
2851     */
2852     char affinity;            /* Affinity of the LHS of the IN */
2853     int i;
2854     ExprList *pList = pExpr->x.pList;
2855     struct ExprList_item *pItem;
2856     int r1, r2;
2857     affinity = sqlite3ExprAffinity(pLeft);
2858     if( affinity<=SQLITE_AFF_NONE ){
2859       affinity = SQLITE_AFF_BLOB;
2860     }
2861     if( pKeyInfo ){
2862       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2863       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2864     }
2865 
2866     /* Loop through each expression in <exprlist>. */
2867     r1 = sqlite3GetTempReg(pParse);
2868     r2 = sqlite3GetTempReg(pParse);
2869     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2870       Expr *pE2 = pItem->pExpr;
2871 
2872       /* If the expression is not constant then we will need to
2873       ** disable the test that was generated above that makes sure
2874       ** this code only executes once.  Because for a non-constant
2875       ** expression we need to rerun this code each time.
2876       */
2877       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2878         sqlite3VdbeChangeToNoop(v, addrOnce);
2879         ExprClearProperty(pExpr, EP_Subrtn);
2880         addrOnce = 0;
2881       }
2882 
2883       /* Evaluate the expression and insert it into the temp table */
2884       sqlite3ExprCode(pParse, pE2, r1);
2885       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2886       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2887     }
2888     sqlite3ReleaseTempReg(pParse, r1);
2889     sqlite3ReleaseTempReg(pParse, r2);
2890   }
2891   if( pKeyInfo ){
2892     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2893   }
2894   if( addrOnce ){
2895     sqlite3VdbeJumpHere(v, addrOnce);
2896     /* Subroutine return */
2897     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2898     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2899     sqlite3ClearTempRegCache(pParse);
2900   }
2901 }
2902 #endif /* SQLITE_OMIT_SUBQUERY */
2903 
2904 /*
2905 ** Generate code for scalar subqueries used as a subquery expression
2906 ** or EXISTS operator:
2907 **
2908 **     (SELECT a FROM b)          -- subquery
2909 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2910 **
2911 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2912 **
2913 ** Return the register that holds the result.  For a multi-column SELECT,
2914 ** the result is stored in a contiguous array of registers and the
2915 ** return value is the register of the left-most result column.
2916 ** Return 0 if an error occurs.
2917 */
2918 #ifndef SQLITE_OMIT_SUBQUERY
2919 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2920   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2921   int rReg = 0;               /* Register storing resulting */
2922   Select *pSel;               /* SELECT statement to encode */
2923   SelectDest dest;            /* How to deal with SELECT result */
2924   int nReg;                   /* Registers to allocate */
2925   Expr *pLimit;               /* New limit expression */
2926 
2927   Vdbe *v = pParse->pVdbe;
2928   assert( v!=0 );
2929   testcase( pExpr->op==TK_EXISTS );
2930   testcase( pExpr->op==TK_SELECT );
2931   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2932   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2933   pSel = pExpr->x.pSelect;
2934 
2935   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2936   ** is encountered if any of the following is true:
2937   **
2938   **    *  The right-hand side is a correlated subquery
2939   **    *  The right-hand side is an expression list containing variables
2940   **    *  We are inside a trigger
2941   **
2942   ** If all of the above are false, then we can run this code just once
2943   ** save the results, and reuse the same result on subsequent invocations.
2944   */
2945   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2946     /* If this routine has already been coded, then invoke it as a
2947     ** subroutine. */
2948     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2949       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2950       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2951                         pExpr->y.sub.iAddr);
2952       return pExpr->iTable;
2953     }
2954 
2955     /* Begin coding the subroutine */
2956     ExprSetProperty(pExpr, EP_Subrtn);
2957     pExpr->y.sub.regReturn = ++pParse->nMem;
2958     pExpr->y.sub.iAddr =
2959       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2960     VdbeComment((v, "return address"));
2961 
2962     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2963   }
2964 
2965   /* For a SELECT, generate code to put the values for all columns of
2966   ** the first row into an array of registers and return the index of
2967   ** the first register.
2968   **
2969   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2970   ** into a register and return that register number.
2971   **
2972   ** In both cases, the query is augmented with "LIMIT 1".  Any
2973   ** preexisting limit is discarded in place of the new LIMIT 1.
2974   */
2975   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2976         addrOnce?"":"CORRELATED ", pSel->selId));
2977   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2978   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2979   pParse->nMem += nReg;
2980   if( pExpr->op==TK_SELECT ){
2981     dest.eDest = SRT_Mem;
2982     dest.iSdst = dest.iSDParm;
2983     dest.nSdst = nReg;
2984     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2985     VdbeComment((v, "Init subquery result"));
2986   }else{
2987     dest.eDest = SRT_Exists;
2988     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2989     VdbeComment((v, "Init EXISTS result"));
2990   }
2991   if( pSel->pLimit ){
2992     /* The subquery already has a limit.  If the pre-existing limit is X
2993     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
2994     sqlite3 *db = pParse->db;
2995     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
2996     if( pLimit ){
2997       pLimit->affExpr = SQLITE_AFF_NUMERIC;
2998       pLimit = sqlite3PExpr(pParse, TK_NE,
2999                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3000     }
3001     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3002     pSel->pLimit->pLeft = pLimit;
3003   }else{
3004     /* If there is no pre-existing limit add a limit of 1 */
3005     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3006     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3007   }
3008   pSel->iLimit = 0;
3009   if( sqlite3Select(pParse, pSel, &dest) ){
3010     return 0;
3011   }
3012   pExpr->iTable = rReg = dest.iSDParm;
3013   ExprSetVVAProperty(pExpr, EP_NoReduce);
3014   if( addrOnce ){
3015     sqlite3VdbeJumpHere(v, addrOnce);
3016 
3017     /* Subroutine return */
3018     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3019     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3020     sqlite3ClearTempRegCache(pParse);
3021   }
3022 
3023   return rReg;
3024 }
3025 #endif /* SQLITE_OMIT_SUBQUERY */
3026 
3027 #ifndef SQLITE_OMIT_SUBQUERY
3028 /*
3029 ** Expr pIn is an IN(...) expression. This function checks that the
3030 ** sub-select on the RHS of the IN() operator has the same number of
3031 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3032 ** a sub-query, that the LHS is a vector of size 1.
3033 */
3034 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3035   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3036   if( (pIn->flags & EP_xIsSelect) ){
3037     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3038       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3039       return 1;
3040     }
3041   }else if( nVector!=1 ){
3042     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3043     return 1;
3044   }
3045   return 0;
3046 }
3047 #endif
3048 
3049 #ifndef SQLITE_OMIT_SUBQUERY
3050 /*
3051 ** Generate code for an IN expression.
3052 **
3053 **      x IN (SELECT ...)
3054 **      x IN (value, value, ...)
3055 **
3056 ** The left-hand side (LHS) is a scalar or vector expression.  The
3057 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3058 ** subquery.  If the RHS is a subquery, the number of result columns must
3059 ** match the number of columns in the vector on the LHS.  If the RHS is
3060 ** a list of values, the LHS must be a scalar.
3061 **
3062 ** The IN operator is true if the LHS value is contained within the RHS.
3063 ** The result is false if the LHS is definitely not in the RHS.  The
3064 ** result is NULL if the presence of the LHS in the RHS cannot be
3065 ** determined due to NULLs.
3066 **
3067 ** This routine generates code that jumps to destIfFalse if the LHS is not
3068 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3069 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3070 ** within the RHS then fall through.
3071 **
3072 ** See the separate in-operator.md documentation file in the canonical
3073 ** SQLite source tree for additional information.
3074 */
3075 static void sqlite3ExprCodeIN(
3076   Parse *pParse,        /* Parsing and code generating context */
3077   Expr *pExpr,          /* The IN expression */
3078   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3079   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3080 ){
3081   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3082   int eType;            /* Type of the RHS */
3083   int rLhs;             /* Register(s) holding the LHS values */
3084   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3085   Vdbe *v;              /* Statement under construction */
3086   int *aiMap = 0;       /* Map from vector field to index column */
3087   char *zAff = 0;       /* Affinity string for comparisons */
3088   int nVector;          /* Size of vectors for this IN operator */
3089   int iDummy;           /* Dummy parameter to exprCodeVector() */
3090   Expr *pLeft;          /* The LHS of the IN operator */
3091   int i;                /* loop counter */
3092   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3093   int destStep6 = 0;    /* Start of code for Step 6 */
3094   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3095   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3096   int addrTop;          /* Top of the step-6 loop */
3097   int iTab = 0;         /* Index to use */
3098 
3099   pLeft = pExpr->pLeft;
3100   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3101   zAff = exprINAffinity(pParse, pExpr);
3102   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3103   aiMap = (int*)sqlite3DbMallocZero(
3104       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3105   );
3106   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3107 
3108   /* Attempt to compute the RHS. After this step, if anything other than
3109   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3110   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3111   ** the RHS has not yet been coded.  */
3112   v = pParse->pVdbe;
3113   assert( v!=0 );       /* OOM detected prior to this routine */
3114   VdbeNoopComment((v, "begin IN expr"));
3115   eType = sqlite3FindInIndex(pParse, pExpr,
3116                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3117                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3118                              aiMap, &iTab);
3119 
3120   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3121        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3122   );
3123 #ifdef SQLITE_DEBUG
3124   /* Confirm that aiMap[] contains nVector integer values between 0 and
3125   ** nVector-1. */
3126   for(i=0; i<nVector; i++){
3127     int j, cnt;
3128     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3129     assert( cnt==1 );
3130   }
3131 #endif
3132 
3133   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3134   ** vector, then it is stored in an array of nVector registers starting
3135   ** at r1.
3136   **
3137   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3138   ** so that the fields are in the same order as an existing index.   The
3139   ** aiMap[] array contains a mapping from the original LHS field order to
3140   ** the field order that matches the RHS index.
3141   */
3142   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3143   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3144   if( i==nVector ){
3145     /* LHS fields are not reordered */
3146     rLhs = rLhsOrig;
3147   }else{
3148     /* Need to reorder the LHS fields according to aiMap */
3149     rLhs = sqlite3GetTempRange(pParse, nVector);
3150     for(i=0; i<nVector; i++){
3151       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3152     }
3153   }
3154 
3155   /* If sqlite3FindInIndex() did not find or create an index that is
3156   ** suitable for evaluating the IN operator, then evaluate using a
3157   ** sequence of comparisons.
3158   **
3159   ** This is step (1) in the in-operator.md optimized algorithm.
3160   */
3161   if( eType==IN_INDEX_NOOP ){
3162     ExprList *pList = pExpr->x.pList;
3163     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3164     int labelOk = sqlite3VdbeMakeLabel(pParse);
3165     int r2, regToFree;
3166     int regCkNull = 0;
3167     int ii;
3168     int bLhsReal;  /* True if the LHS of the IN has REAL affinity */
3169     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3170     if( destIfNull!=destIfFalse ){
3171       regCkNull = sqlite3GetTempReg(pParse);
3172       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3173     }
3174     bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL;
3175     for(ii=0; ii<pList->nExpr; ii++){
3176       if( bLhsReal ){
3177         r2 = regToFree = sqlite3GetTempReg(pParse);
3178         sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2);
3179         sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC);
3180       }else{
3181         r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3182       }
3183       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3184         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3185       }
3186       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3187         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3188                           (void*)pColl, P4_COLLSEQ);
3189         VdbeCoverageIf(v, ii<pList->nExpr-1);
3190         VdbeCoverageIf(v, ii==pList->nExpr-1);
3191         sqlite3VdbeChangeP5(v, zAff[0]);
3192       }else{
3193         assert( destIfNull==destIfFalse );
3194         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3195                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3196         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3197       }
3198       sqlite3ReleaseTempReg(pParse, regToFree);
3199     }
3200     if( regCkNull ){
3201       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3202       sqlite3VdbeGoto(v, destIfFalse);
3203     }
3204     sqlite3VdbeResolveLabel(v, labelOk);
3205     sqlite3ReleaseTempReg(pParse, regCkNull);
3206     goto sqlite3ExprCodeIN_finished;
3207   }
3208 
3209   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3210   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3211   ** We will then skip the binary search of the RHS.
3212   */
3213   if( destIfNull==destIfFalse ){
3214     destStep2 = destIfFalse;
3215   }else{
3216     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3217   }
3218   for(i=0; i<nVector; i++){
3219     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3220     if( sqlite3ExprCanBeNull(p) ){
3221       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3222       VdbeCoverage(v);
3223     }
3224   }
3225 
3226   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3227   ** of the RHS using the LHS as a probe.  If found, the result is
3228   ** true.
3229   */
3230   if( eType==IN_INDEX_ROWID ){
3231     /* In this case, the RHS is the ROWID of table b-tree and so we also
3232     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3233     ** into a single opcode. */
3234     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3235     VdbeCoverage(v);
3236     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3237   }else{
3238     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3239     if( destIfFalse==destIfNull ){
3240       /* Combine Step 3 and Step 5 into a single opcode */
3241       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3242                            rLhs, nVector); VdbeCoverage(v);
3243       goto sqlite3ExprCodeIN_finished;
3244     }
3245     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3246     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3247                                       rLhs, nVector); VdbeCoverage(v);
3248   }
3249 
3250   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3251   ** an match on the search above, then the result must be FALSE.
3252   */
3253   if( rRhsHasNull && nVector==1 ){
3254     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3255     VdbeCoverage(v);
3256   }
3257 
3258   /* Step 5.  If we do not care about the difference between NULL and
3259   ** FALSE, then just return false.
3260   */
3261   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3262 
3263   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3264   ** If any comparison is NULL, then the result is NULL.  If all
3265   ** comparisons are FALSE then the final result is FALSE.
3266   **
3267   ** For a scalar LHS, it is sufficient to check just the first row
3268   ** of the RHS.
3269   */
3270   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3271   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3272   VdbeCoverage(v);
3273   if( nVector>1 ){
3274     destNotNull = sqlite3VdbeMakeLabel(pParse);
3275   }else{
3276     /* For nVector==1, combine steps 6 and 7 by immediately returning
3277     ** FALSE if the first comparison is not NULL */
3278     destNotNull = destIfFalse;
3279   }
3280   for(i=0; i<nVector; i++){
3281     Expr *p;
3282     CollSeq *pColl;
3283     int r3 = sqlite3GetTempReg(pParse);
3284     p = sqlite3VectorFieldSubexpr(pLeft, i);
3285     pColl = sqlite3ExprCollSeq(pParse, p);
3286     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3287     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3288                       (void*)pColl, P4_COLLSEQ);
3289     VdbeCoverage(v);
3290     sqlite3ReleaseTempReg(pParse, r3);
3291   }
3292   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3293   if( nVector>1 ){
3294     sqlite3VdbeResolveLabel(v, destNotNull);
3295     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3296     VdbeCoverage(v);
3297 
3298     /* Step 7:  If we reach this point, we know that the result must
3299     ** be false. */
3300     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3301   }
3302 
3303   /* Jumps here in order to return true. */
3304   sqlite3VdbeJumpHere(v, addrTruthOp);
3305 
3306 sqlite3ExprCodeIN_finished:
3307   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3308   VdbeComment((v, "end IN expr"));
3309 sqlite3ExprCodeIN_oom_error:
3310   sqlite3DbFree(pParse->db, aiMap);
3311   sqlite3DbFree(pParse->db, zAff);
3312 }
3313 #endif /* SQLITE_OMIT_SUBQUERY */
3314 
3315 #ifndef SQLITE_OMIT_FLOATING_POINT
3316 /*
3317 ** Generate an instruction that will put the floating point
3318 ** value described by z[0..n-1] into register iMem.
3319 **
3320 ** The z[] string will probably not be zero-terminated.  But the
3321 ** z[n] character is guaranteed to be something that does not look
3322 ** like the continuation of the number.
3323 */
3324 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3325   if( ALWAYS(z!=0) ){
3326     double value;
3327     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3328     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3329     if( negateFlag ) value = -value;
3330     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3331   }
3332 }
3333 #endif
3334 
3335 
3336 /*
3337 ** Generate an instruction that will put the integer describe by
3338 ** text z[0..n-1] into register iMem.
3339 **
3340 ** Expr.u.zToken is always UTF8 and zero-terminated.
3341 */
3342 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3343   Vdbe *v = pParse->pVdbe;
3344   if( pExpr->flags & EP_IntValue ){
3345     int i = pExpr->u.iValue;
3346     assert( i>=0 );
3347     if( negFlag ) i = -i;
3348     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3349   }else{
3350     int c;
3351     i64 value;
3352     const char *z = pExpr->u.zToken;
3353     assert( z!=0 );
3354     c = sqlite3DecOrHexToI64(z, &value);
3355     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3356 #ifdef SQLITE_OMIT_FLOATING_POINT
3357       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3358 #else
3359 #ifndef SQLITE_OMIT_HEX_INTEGER
3360       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3361         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3362       }else
3363 #endif
3364       {
3365         codeReal(v, z, negFlag, iMem);
3366       }
3367 #endif
3368     }else{
3369       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3370       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3371     }
3372   }
3373 }
3374 
3375 
3376 /* Generate code that will load into register regOut a value that is
3377 ** appropriate for the iIdxCol-th column of index pIdx.
3378 */
3379 void sqlite3ExprCodeLoadIndexColumn(
3380   Parse *pParse,  /* The parsing context */
3381   Index *pIdx,    /* The index whose column is to be loaded */
3382   int iTabCur,    /* Cursor pointing to a table row */
3383   int iIdxCol,    /* The column of the index to be loaded */
3384   int regOut      /* Store the index column value in this register */
3385 ){
3386   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3387   if( iTabCol==XN_EXPR ){
3388     assert( pIdx->aColExpr );
3389     assert( pIdx->aColExpr->nExpr>iIdxCol );
3390     pParse->iSelfTab = iTabCur + 1;
3391     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3392     pParse->iSelfTab = 0;
3393   }else{
3394     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3395                                     iTabCol, regOut);
3396   }
3397 }
3398 
3399 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3400 /*
3401 ** Generate code that will compute the value of generated column pCol
3402 ** and store the result in register regOut
3403 */
3404 void sqlite3ExprCodeGeneratedColumn(
3405   Parse *pParse,
3406   Column *pCol,
3407   int regOut
3408 ){
3409   sqlite3ExprCode(pParse, pCol->pDflt, regOut);
3410   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3411     sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, regOut, 1, 0,
3412                       &pCol->affinity, 1);
3413   }
3414 }
3415 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3416 
3417 /*
3418 ** Generate code to extract the value of the iCol-th column of a table.
3419 */
3420 void sqlite3ExprCodeGetColumnOfTable(
3421   Vdbe *v,        /* Parsing context */
3422   Table *pTab,    /* The table containing the value */
3423   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3424   int iCol,       /* Index of the column to extract */
3425   int regOut      /* Extract the value into this register */
3426 ){
3427   Column *pCol;
3428   assert( v!=0 );
3429   if( pTab==0 ){
3430     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3431     return;
3432   }
3433   if( iCol<0 || iCol==pTab->iPKey ){
3434     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3435   }else{
3436     int op;
3437     int x;
3438     if( IsVirtual(pTab) ){
3439       op = OP_VColumn;
3440       x = iCol;
3441 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3442     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3443       Parse *pParse = sqlite3VdbeParser(v);
3444       if( pCol->colFlags & COLFLAG_BUSY ){
3445         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3446       }else{
3447         int savedSelfTab = pParse->iSelfTab;
3448         pCol->colFlags |= COLFLAG_BUSY;
3449         pParse->iSelfTab = iTabCur+1;
3450         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3451         pParse->iSelfTab = savedSelfTab;
3452         pCol->colFlags &= ~COLFLAG_BUSY;
3453       }
3454       return;
3455 #endif
3456     }else if( !HasRowid(pTab) ){
3457       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3458       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3459       op = OP_Column;
3460     }else{
3461       x = sqlite3TableColumnToStorage(pTab,iCol);
3462       testcase( x!=iCol );
3463       op = OP_Column;
3464     }
3465     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3466     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3467   }
3468 }
3469 
3470 /*
3471 ** Generate code that will extract the iColumn-th column from
3472 ** table pTab and store the column value in register iReg.
3473 **
3474 ** There must be an open cursor to pTab in iTable when this routine
3475 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3476 */
3477 int sqlite3ExprCodeGetColumn(
3478   Parse *pParse,   /* Parsing and code generating context */
3479   Table *pTab,     /* Description of the table we are reading from */
3480   int iColumn,     /* Index of the table column */
3481   int iTable,      /* The cursor pointing to the table */
3482   int iReg,        /* Store results here */
3483   u8 p5            /* P5 value for OP_Column + FLAGS */
3484 ){
3485   assert( pParse->pVdbe!=0 );
3486   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3487   if( p5 ){
3488     sqlite3VdbeChangeP5(pParse->pVdbe, p5);
3489   }
3490   return iReg;
3491 }
3492 
3493 /*
3494 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3495 ** over to iTo..iTo+nReg-1.
3496 */
3497 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3498   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3499   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3500 }
3501 
3502 /*
3503 ** Convert a scalar expression node to a TK_REGISTER referencing
3504 ** register iReg.  The caller must ensure that iReg already contains
3505 ** the correct value for the expression.
3506 */
3507 static void exprToRegister(Expr *pExpr, int iReg){
3508   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3509   p->op2 = p->op;
3510   p->op = TK_REGISTER;
3511   p->iTable = iReg;
3512   ExprClearProperty(p, EP_Skip);
3513 }
3514 
3515 /*
3516 ** Evaluate an expression (either a vector or a scalar expression) and store
3517 ** the result in continguous temporary registers.  Return the index of
3518 ** the first register used to store the result.
3519 **
3520 ** If the returned result register is a temporary scalar, then also write
3521 ** that register number into *piFreeable.  If the returned result register
3522 ** is not a temporary or if the expression is a vector set *piFreeable
3523 ** to 0.
3524 */
3525 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3526   int iResult;
3527   int nResult = sqlite3ExprVectorSize(p);
3528   if( nResult==1 ){
3529     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3530   }else{
3531     *piFreeable = 0;
3532     if( p->op==TK_SELECT ){
3533 #if SQLITE_OMIT_SUBQUERY
3534       iResult = 0;
3535 #else
3536       iResult = sqlite3CodeSubselect(pParse, p);
3537 #endif
3538     }else{
3539       int i;
3540       iResult = pParse->nMem+1;
3541       pParse->nMem += nResult;
3542       for(i=0; i<nResult; i++){
3543         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3544       }
3545     }
3546   }
3547   return iResult;
3548 }
3549 
3550 
3551 /*
3552 ** Generate code into the current Vdbe to evaluate the given
3553 ** expression.  Attempt to store the results in register "target".
3554 ** Return the register where results are stored.
3555 **
3556 ** With this routine, there is no guarantee that results will
3557 ** be stored in target.  The result might be stored in some other
3558 ** register if it is convenient to do so.  The calling function
3559 ** must check the return code and move the results to the desired
3560 ** register.
3561 */
3562 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3563   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3564   int op;                   /* The opcode being coded */
3565   int inReg = target;       /* Results stored in register inReg */
3566   int regFree1 = 0;         /* If non-zero free this temporary register */
3567   int regFree2 = 0;         /* If non-zero free this temporary register */
3568   int r1, r2;               /* Various register numbers */
3569   Expr tempX;               /* Temporary expression node */
3570   int p5 = 0;
3571 
3572   assert( target>0 && target<=pParse->nMem );
3573   if( v==0 ){
3574     assert( pParse->db->mallocFailed );
3575     return 0;
3576   }
3577 
3578 expr_code_doover:
3579   if( pExpr==0 ){
3580     op = TK_NULL;
3581   }else{
3582     op = pExpr->op;
3583   }
3584   switch( op ){
3585     case TK_AGG_COLUMN: {
3586       AggInfo *pAggInfo = pExpr->pAggInfo;
3587       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3588       if( !pAggInfo->directMode ){
3589         assert( pCol->iMem>0 );
3590         return pCol->iMem;
3591       }else if( pAggInfo->useSortingIdx ){
3592         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3593                               pCol->iSorterColumn, target);
3594         return target;
3595       }
3596       /* Otherwise, fall thru into the TK_COLUMN case */
3597     }
3598     case TK_COLUMN: {
3599       int iTab = pExpr->iTable;
3600       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3601         /* This COLUMN expression is really a constant due to WHERE clause
3602         ** constraints, and that constant is coded by the pExpr->pLeft
3603         ** expresssion.  However, make sure the constant has the correct
3604         ** datatype by applying the Affinity of the table column to the
3605         ** constant.
3606         */
3607         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3608         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3609         if( aff>SQLITE_AFF_BLOB ){
3610           static const char zAff[] = "B\000C\000D\000E";
3611           assert( SQLITE_AFF_BLOB=='A' );
3612           assert( SQLITE_AFF_TEXT=='B' );
3613           if( iReg!=target ){
3614             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3615             iReg = target;
3616           }
3617           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3618                             &zAff[(aff-'B')*2], P4_STATIC);
3619         }
3620         return iReg;
3621       }
3622       if( iTab<0 ){
3623         if( pParse->iSelfTab<0 ){
3624           /* Other columns in the same row for CHECK constraints or
3625           ** generated columns or for inserting into partial index.
3626           ** The row is unpacked into registers beginning at
3627           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3628           ** immediately prior to the first column.
3629           */
3630           Column *pCol;
3631           Table *pTab = pExpr->y.pTab;
3632           int iSrc;
3633           int iCol = pExpr->iColumn;
3634           assert( pTab!=0 );
3635           assert( iCol>=XN_ROWID );
3636           assert( iCol<pExpr->y.pTab->nCol );
3637           if( iCol<0 ){
3638             return -1-pParse->iSelfTab;
3639           }
3640           pCol = pTab->aCol + iCol;
3641           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3642           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3643 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3644           if( pCol->colFlags & COLFLAG_GENERATED ){
3645             if( pCol->colFlags & COLFLAG_BUSY ){
3646               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3647                               pCol->zName);
3648               return 0;
3649             }
3650             pCol->colFlags |= COLFLAG_BUSY;
3651             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3652               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3653             }
3654             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3655             return iSrc;
3656           }else
3657 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3658           if( pCol->affinity==SQLITE_AFF_REAL ){
3659             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3660             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3661             return target;
3662           }else{
3663             return iSrc;
3664           }
3665         }else{
3666           /* Coding an expression that is part of an index where column names
3667           ** in the index refer to the table to which the index belongs */
3668           iTab = pParse->iSelfTab - 1;
3669         }
3670       }
3671       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3672                                pExpr->iColumn, iTab, target,
3673                                pExpr->op2);
3674     }
3675     case TK_INTEGER: {
3676       codeInteger(pParse, pExpr, 0, target);
3677       return target;
3678     }
3679     case TK_TRUEFALSE: {
3680       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3681       return target;
3682     }
3683 #ifndef SQLITE_OMIT_FLOATING_POINT
3684     case TK_FLOAT: {
3685       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3686       codeReal(v, pExpr->u.zToken, 0, target);
3687       return target;
3688     }
3689 #endif
3690     case TK_STRING: {
3691       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3692       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3693       return target;
3694     }
3695     case TK_NULL: {
3696       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3697       return target;
3698     }
3699 #ifndef SQLITE_OMIT_BLOB_LITERAL
3700     case TK_BLOB: {
3701       int n;
3702       const char *z;
3703       char *zBlob;
3704       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3705       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3706       assert( pExpr->u.zToken[1]=='\'' );
3707       z = &pExpr->u.zToken[2];
3708       n = sqlite3Strlen30(z) - 1;
3709       assert( z[n]=='\'' );
3710       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3711       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3712       return target;
3713     }
3714 #endif
3715     case TK_VARIABLE: {
3716       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3717       assert( pExpr->u.zToken!=0 );
3718       assert( pExpr->u.zToken[0]!=0 );
3719       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3720       if( pExpr->u.zToken[1]!=0 ){
3721         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3722         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3723         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3724         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3725       }
3726       return target;
3727     }
3728     case TK_REGISTER: {
3729       return pExpr->iTable;
3730     }
3731 #ifndef SQLITE_OMIT_CAST
3732     case TK_CAST: {
3733       /* Expressions of the form:   CAST(pLeft AS token) */
3734       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3735       if( inReg!=target ){
3736         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3737         inReg = target;
3738       }
3739       sqlite3VdbeAddOp2(v, OP_Cast, target,
3740                         sqlite3AffinityType(pExpr->u.zToken, 0));
3741       return inReg;
3742     }
3743 #endif /* SQLITE_OMIT_CAST */
3744     case TK_IS:
3745     case TK_ISNOT:
3746       op = (op==TK_IS) ? TK_EQ : TK_NE;
3747       p5 = SQLITE_NULLEQ;
3748       /* fall-through */
3749     case TK_LT:
3750     case TK_LE:
3751     case TK_GT:
3752     case TK_GE:
3753     case TK_NE:
3754     case TK_EQ: {
3755       Expr *pLeft = pExpr->pLeft;
3756       if( sqlite3ExprIsVector(pLeft) ){
3757         codeVectorCompare(pParse, pExpr, target, op, p5);
3758       }else{
3759         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3760         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3761         codeCompare(pParse, pLeft, pExpr->pRight, op,
3762             r1, r2, inReg, SQLITE_STOREP2 | p5,
3763             ExprHasProperty(pExpr,EP_Commuted));
3764         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3765         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3766         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3767         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3768         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3769         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3770         testcase( regFree1==0 );
3771         testcase( regFree2==0 );
3772       }
3773       break;
3774     }
3775     case TK_AND:
3776     case TK_OR:
3777     case TK_PLUS:
3778     case TK_STAR:
3779     case TK_MINUS:
3780     case TK_REM:
3781     case TK_BITAND:
3782     case TK_BITOR:
3783     case TK_SLASH:
3784     case TK_LSHIFT:
3785     case TK_RSHIFT:
3786     case TK_CONCAT: {
3787       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3788       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3789       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3790       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3791       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3792       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3793       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3794       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3795       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3796       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3797       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3798       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3799       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3800       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3801       testcase( regFree1==0 );
3802       testcase( regFree2==0 );
3803       break;
3804     }
3805     case TK_UMINUS: {
3806       Expr *pLeft = pExpr->pLeft;
3807       assert( pLeft );
3808       if( pLeft->op==TK_INTEGER ){
3809         codeInteger(pParse, pLeft, 1, target);
3810         return target;
3811 #ifndef SQLITE_OMIT_FLOATING_POINT
3812       }else if( pLeft->op==TK_FLOAT ){
3813         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3814         codeReal(v, pLeft->u.zToken, 1, target);
3815         return target;
3816 #endif
3817       }else{
3818         tempX.op = TK_INTEGER;
3819         tempX.flags = EP_IntValue|EP_TokenOnly;
3820         tempX.u.iValue = 0;
3821         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3822         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3823         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3824         testcase( regFree2==0 );
3825       }
3826       break;
3827     }
3828     case TK_BITNOT:
3829     case TK_NOT: {
3830       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3831       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3832       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3833       testcase( regFree1==0 );
3834       sqlite3VdbeAddOp2(v, op, r1, inReg);
3835       break;
3836     }
3837     case TK_TRUTH: {
3838       int isTrue;    /* IS TRUE or IS NOT TRUE */
3839       int bNormal;   /* IS TRUE or IS FALSE */
3840       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3841       testcase( regFree1==0 );
3842       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3843       bNormal = pExpr->op2==TK_IS;
3844       testcase( isTrue && bNormal);
3845       testcase( !isTrue && bNormal);
3846       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3847       break;
3848     }
3849     case TK_ISNULL:
3850     case TK_NOTNULL: {
3851       int addr;
3852       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3853       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3854       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3855       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3856       testcase( regFree1==0 );
3857       addr = sqlite3VdbeAddOp1(v, op, r1);
3858       VdbeCoverageIf(v, op==TK_ISNULL);
3859       VdbeCoverageIf(v, op==TK_NOTNULL);
3860       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3861       sqlite3VdbeJumpHere(v, addr);
3862       break;
3863     }
3864     case TK_AGG_FUNCTION: {
3865       AggInfo *pInfo = pExpr->pAggInfo;
3866       if( pInfo==0 ){
3867         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3868         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3869       }else{
3870         return pInfo->aFunc[pExpr->iAgg].iMem;
3871       }
3872       break;
3873     }
3874     case TK_FUNCTION: {
3875       ExprList *pFarg;       /* List of function arguments */
3876       int nFarg;             /* Number of function arguments */
3877       FuncDef *pDef;         /* The function definition object */
3878       const char *zId;       /* The function name */
3879       u32 constMask = 0;     /* Mask of function arguments that are constant */
3880       int i;                 /* Loop counter */
3881       sqlite3 *db = pParse->db;  /* The database connection */
3882       u8 enc = ENC(db);      /* The text encoding used by this database */
3883       CollSeq *pColl = 0;    /* A collating sequence */
3884 
3885 #ifndef SQLITE_OMIT_WINDOWFUNC
3886       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3887         return pExpr->y.pWin->regResult;
3888       }
3889 #endif
3890 
3891       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3892         /* SQL functions can be expensive. So try to move constant functions
3893         ** out of the inner loop, even if that means an extra OP_Copy. */
3894         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3895       }
3896       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3897       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3898         pFarg = 0;
3899       }else{
3900         pFarg = pExpr->x.pList;
3901       }
3902       nFarg = pFarg ? pFarg->nExpr : 0;
3903       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3904       zId = pExpr->u.zToken;
3905       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3906 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3907       if( pDef==0 && pParse->explain ){
3908         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3909       }
3910 #endif
3911       if( pDef==0 || pDef->xFinalize!=0 ){
3912         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3913         break;
3914       }
3915 
3916       /* Attempt a direct implementation of the built-in COALESCE() and
3917       ** IFNULL() functions.  This avoids unnecessary evaluation of
3918       ** arguments past the first non-NULL argument.
3919       */
3920       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3921         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3922         assert( nFarg>=2 );
3923         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3924         for(i=1; i<nFarg; i++){
3925           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3926           VdbeCoverage(v);
3927           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3928         }
3929         sqlite3VdbeResolveLabel(v, endCoalesce);
3930         break;
3931       }
3932 
3933       /* The UNLIKELY() function is a no-op.  The result is the value
3934       ** of the first argument.
3935       */
3936       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3937         assert( nFarg>=1 );
3938         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3939       }
3940 
3941 #ifdef SQLITE_DEBUG
3942       /* The AFFINITY() function evaluates to a string that describes
3943       ** the type affinity of the argument.  This is used for testing of
3944       ** the SQLite type logic.
3945       */
3946       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3947         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3948         char aff;
3949         assert( nFarg==1 );
3950         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3951         sqlite3VdbeLoadString(v, target,
3952                 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3953         return target;
3954       }
3955 #endif
3956 
3957       for(i=0; i<nFarg; i++){
3958         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3959           testcase( i==31 );
3960           constMask |= MASKBIT32(i);
3961         }
3962         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3963           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3964         }
3965       }
3966       if( pFarg ){
3967         if( constMask ){
3968           r1 = pParse->nMem+1;
3969           pParse->nMem += nFarg;
3970         }else{
3971           r1 = sqlite3GetTempRange(pParse, nFarg);
3972         }
3973 
3974         /* For length() and typeof() functions with a column argument,
3975         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3976         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3977         ** loading.
3978         */
3979         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3980           u8 exprOp;
3981           assert( nFarg==1 );
3982           assert( pFarg->a[0].pExpr!=0 );
3983           exprOp = pFarg->a[0].pExpr->op;
3984           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3985             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3986             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3987             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3988             pFarg->a[0].pExpr->op2 =
3989                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3990           }
3991         }
3992 
3993         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3994                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3995       }else{
3996         r1 = 0;
3997       }
3998 #ifndef SQLITE_OMIT_VIRTUALTABLE
3999       /* Possibly overload the function if the first argument is
4000       ** a virtual table column.
4001       **
4002       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4003       ** second argument, not the first, as the argument to test to
4004       ** see if it is a column in a virtual table.  This is done because
4005       ** the left operand of infix functions (the operand we want to
4006       ** control overloading) ends up as the second argument to the
4007       ** function.  The expression "A glob B" is equivalent to
4008       ** "glob(B,A).  We want to use the A in "A glob B" to test
4009       ** for function overloading.  But we use the B term in "glob(B,A)".
4010       */
4011       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4012         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4013       }else if( nFarg>0 ){
4014         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4015       }
4016 #endif
4017       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4018         if( !pColl ) pColl = db->pDfltColl;
4019         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4020       }
4021 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4022       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4023         Expr *pArg = pFarg->a[0].pExpr;
4024         if( pArg->op==TK_COLUMN ){
4025           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4026         }else{
4027           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4028         }
4029       }else
4030 #endif
4031       {
4032         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4033                                    pDef, pExpr->op2);
4034       }
4035       if( nFarg && constMask==0 ){
4036         sqlite3ReleaseTempRange(pParse, r1, nFarg);
4037       }
4038       return target;
4039     }
4040 #ifndef SQLITE_OMIT_SUBQUERY
4041     case TK_EXISTS:
4042     case TK_SELECT: {
4043       int nCol;
4044       testcase( op==TK_EXISTS );
4045       testcase( op==TK_SELECT );
4046       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4047         sqlite3SubselectError(pParse, nCol, 1);
4048       }else{
4049         return sqlite3CodeSubselect(pParse, pExpr);
4050       }
4051       break;
4052     }
4053     case TK_SELECT_COLUMN: {
4054       int n;
4055       if( pExpr->pLeft->iTable==0 ){
4056         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4057       }
4058       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4059       if( pExpr->iTable!=0
4060        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4061       ){
4062         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4063                                 pExpr->iTable, n);
4064       }
4065       return pExpr->pLeft->iTable + pExpr->iColumn;
4066     }
4067     case TK_IN: {
4068       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4069       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4070       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4071       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4072       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4073       sqlite3VdbeResolveLabel(v, destIfFalse);
4074       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4075       sqlite3VdbeResolveLabel(v, destIfNull);
4076       return target;
4077     }
4078 #endif /* SQLITE_OMIT_SUBQUERY */
4079 
4080 
4081     /*
4082     **    x BETWEEN y AND z
4083     **
4084     ** This is equivalent to
4085     **
4086     **    x>=y AND x<=z
4087     **
4088     ** X is stored in pExpr->pLeft.
4089     ** Y is stored in pExpr->pList->a[0].pExpr.
4090     ** Z is stored in pExpr->pList->a[1].pExpr.
4091     */
4092     case TK_BETWEEN: {
4093       exprCodeBetween(pParse, pExpr, target, 0, 0);
4094       return target;
4095     }
4096     case TK_SPAN:
4097     case TK_COLLATE:
4098     case TK_UPLUS: {
4099       pExpr = pExpr->pLeft;
4100       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4101     }
4102 
4103     case TK_TRIGGER: {
4104       /* If the opcode is TK_TRIGGER, then the expression is a reference
4105       ** to a column in the new.* or old.* pseudo-tables available to
4106       ** trigger programs. In this case Expr.iTable is set to 1 for the
4107       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4108       ** is set to the column of the pseudo-table to read, or to -1 to
4109       ** read the rowid field.
4110       **
4111       ** The expression is implemented using an OP_Param opcode. The p1
4112       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4113       ** to reference another column of the old.* pseudo-table, where
4114       ** i is the index of the column. For a new.rowid reference, p1 is
4115       ** set to (n+1), where n is the number of columns in each pseudo-table.
4116       ** For a reference to any other column in the new.* pseudo-table, p1
4117       ** is set to (n+2+i), where n and i are as defined previously. For
4118       ** example, if the table on which triggers are being fired is
4119       ** declared as:
4120       **
4121       **   CREATE TABLE t1(a, b);
4122       **
4123       ** Then p1 is interpreted as follows:
4124       **
4125       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4126       **   p1==1   ->    old.a         p1==4   ->    new.a
4127       **   p1==2   ->    old.b         p1==5   ->    new.b
4128       */
4129       Table *pTab = pExpr->y.pTab;
4130       int iCol = pExpr->iColumn;
4131       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4132                      + (iCol>=0 ? sqlite3TableColumnToStorage(pTab, iCol) : -1);
4133 
4134       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4135       assert( iCol>=-1 && iCol<pTab->nCol );
4136       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4137       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4138 
4139       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4140       VdbeComment((v, "r[%d]=%s.%s", target,
4141         (pExpr->iTable ? "new" : "old"),
4142         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4143       ));
4144 
4145 #ifndef SQLITE_OMIT_FLOATING_POINT
4146       /* If the column has REAL affinity, it may currently be stored as an
4147       ** integer. Use OP_RealAffinity to make sure it is really real.
4148       **
4149       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4150       ** floating point when extracting it from the record.  */
4151       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4152         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4153       }
4154 #endif
4155       break;
4156     }
4157 
4158     case TK_VECTOR: {
4159       sqlite3ErrorMsg(pParse, "row value misused");
4160       break;
4161     }
4162 
4163     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4164     ** that derive from the right-hand table of a LEFT JOIN.  The
4165     ** Expr.iTable value is the table number for the right-hand table.
4166     ** The expression is only evaluated if that table is not currently
4167     ** on a LEFT JOIN NULL row.
4168     */
4169     case TK_IF_NULL_ROW: {
4170       int addrINR;
4171       u8 okConstFactor = pParse->okConstFactor;
4172       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4173       /* Temporarily disable factoring of constant expressions, since
4174       ** even though expressions may appear to be constant, they are not
4175       ** really constant because they originate from the right-hand side
4176       ** of a LEFT JOIN. */
4177       pParse->okConstFactor = 0;
4178       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4179       pParse->okConstFactor = okConstFactor;
4180       sqlite3VdbeJumpHere(v, addrINR);
4181       sqlite3VdbeChangeP3(v, addrINR, inReg);
4182       break;
4183     }
4184 
4185     /*
4186     ** Form A:
4187     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4188     **
4189     ** Form B:
4190     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4191     **
4192     ** Form A is can be transformed into the equivalent form B as follows:
4193     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4194     **        WHEN x=eN THEN rN ELSE y END
4195     **
4196     ** X (if it exists) is in pExpr->pLeft.
4197     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4198     ** odd.  The Y is also optional.  If the number of elements in x.pList
4199     ** is even, then Y is omitted and the "otherwise" result is NULL.
4200     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4201     **
4202     ** The result of the expression is the Ri for the first matching Ei,
4203     ** or if there is no matching Ei, the ELSE term Y, or if there is
4204     ** no ELSE term, NULL.
4205     */
4206     default: assert( op==TK_CASE ); {
4207       int endLabel;                     /* GOTO label for end of CASE stmt */
4208       int nextCase;                     /* GOTO label for next WHEN clause */
4209       int nExpr;                        /* 2x number of WHEN terms */
4210       int i;                            /* Loop counter */
4211       ExprList *pEList;                 /* List of WHEN terms */
4212       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4213       Expr opCompare;                   /* The X==Ei expression */
4214       Expr *pX;                         /* The X expression */
4215       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4216       Expr *pDel = 0;
4217       sqlite3 *db = pParse->db;
4218 
4219       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4220       assert(pExpr->x.pList->nExpr > 0);
4221       pEList = pExpr->x.pList;
4222       aListelem = pEList->a;
4223       nExpr = pEList->nExpr;
4224       endLabel = sqlite3VdbeMakeLabel(pParse);
4225       if( (pX = pExpr->pLeft)!=0 ){
4226         pDel = sqlite3ExprDup(db, pX, 0);
4227         if( db->mallocFailed ){
4228           sqlite3ExprDelete(db, pDel);
4229           break;
4230         }
4231         testcase( pX->op==TK_COLUMN );
4232         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4233         testcase( regFree1==0 );
4234         memset(&opCompare, 0, sizeof(opCompare));
4235         opCompare.op = TK_EQ;
4236         opCompare.pLeft = pDel;
4237         pTest = &opCompare;
4238         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4239         ** The value in regFree1 might get SCopy-ed into the file result.
4240         ** So make sure that the regFree1 register is not reused for other
4241         ** purposes and possibly overwritten.  */
4242         regFree1 = 0;
4243       }
4244       for(i=0; i<nExpr-1; i=i+2){
4245         if( pX ){
4246           assert( pTest!=0 );
4247           opCompare.pRight = aListelem[i].pExpr;
4248         }else{
4249           pTest = aListelem[i].pExpr;
4250         }
4251         nextCase = sqlite3VdbeMakeLabel(pParse);
4252         testcase( pTest->op==TK_COLUMN );
4253         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4254         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4255         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4256         sqlite3VdbeGoto(v, endLabel);
4257         sqlite3VdbeResolveLabel(v, nextCase);
4258       }
4259       if( (nExpr&1)!=0 ){
4260         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4261       }else{
4262         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4263       }
4264       sqlite3ExprDelete(db, pDel);
4265       sqlite3VdbeResolveLabel(v, endLabel);
4266       break;
4267     }
4268 #ifndef SQLITE_OMIT_TRIGGER
4269     case TK_RAISE: {
4270       assert( pExpr->affExpr==OE_Rollback
4271            || pExpr->affExpr==OE_Abort
4272            || pExpr->affExpr==OE_Fail
4273            || pExpr->affExpr==OE_Ignore
4274       );
4275       if( !pParse->pTriggerTab ){
4276         sqlite3ErrorMsg(pParse,
4277                        "RAISE() may only be used within a trigger-program");
4278         return 0;
4279       }
4280       if( pExpr->affExpr==OE_Abort ){
4281         sqlite3MayAbort(pParse);
4282       }
4283       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4284       if( pExpr->affExpr==OE_Ignore ){
4285         sqlite3VdbeAddOp4(
4286             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4287         VdbeCoverage(v);
4288       }else{
4289         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4290                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4291       }
4292 
4293       break;
4294     }
4295 #endif
4296   }
4297   sqlite3ReleaseTempReg(pParse, regFree1);
4298   sqlite3ReleaseTempReg(pParse, regFree2);
4299   return inReg;
4300 }
4301 
4302 /*
4303 ** Factor out the code of the given expression to initialization time.
4304 **
4305 ** If regDest>=0 then the result is always stored in that register and the
4306 ** result is not reusable.  If regDest<0 then this routine is free to
4307 ** store the value whereever it wants.  The register where the expression
4308 ** is stored is returned.  When regDest<0, two identical expressions will
4309 ** code to the same register.
4310 */
4311 int sqlite3ExprCodeAtInit(
4312   Parse *pParse,    /* Parsing context */
4313   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4314   int regDest       /* Store the value in this register */
4315 ){
4316   ExprList *p;
4317   assert( ConstFactorOk(pParse) );
4318   p = pParse->pConstExpr;
4319   if( regDest<0 && p ){
4320     struct ExprList_item *pItem;
4321     int i;
4322     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4323       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4324         return pItem->u.iConstExprReg;
4325       }
4326     }
4327   }
4328   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4329   p = sqlite3ExprListAppend(pParse, p, pExpr);
4330   if( p ){
4331      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4332      pItem->reusable = regDest<0;
4333      if( regDest<0 ) regDest = ++pParse->nMem;
4334      pItem->u.iConstExprReg = regDest;
4335   }
4336   pParse->pConstExpr = p;
4337   return regDest;
4338 }
4339 
4340 /*
4341 ** Generate code to evaluate an expression and store the results
4342 ** into a register.  Return the register number where the results
4343 ** are stored.
4344 **
4345 ** If the register is a temporary register that can be deallocated,
4346 ** then write its number into *pReg.  If the result register is not
4347 ** a temporary, then set *pReg to zero.
4348 **
4349 ** If pExpr is a constant, then this routine might generate this
4350 ** code to fill the register in the initialization section of the
4351 ** VDBE program, in order to factor it out of the evaluation loop.
4352 */
4353 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4354   int r2;
4355   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4356   if( ConstFactorOk(pParse)
4357    && pExpr->op!=TK_REGISTER
4358    && sqlite3ExprIsConstantNotJoin(pExpr)
4359   ){
4360     *pReg  = 0;
4361     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4362   }else{
4363     int r1 = sqlite3GetTempReg(pParse);
4364     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4365     if( r2==r1 ){
4366       *pReg = r1;
4367     }else{
4368       sqlite3ReleaseTempReg(pParse, r1);
4369       *pReg = 0;
4370     }
4371   }
4372   return r2;
4373 }
4374 
4375 /*
4376 ** Generate code that will evaluate expression pExpr and store the
4377 ** results in register target.  The results are guaranteed to appear
4378 ** in register target.
4379 */
4380 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4381   int inReg;
4382 
4383   assert( target>0 && target<=pParse->nMem );
4384   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4385   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4386   if( inReg!=target && pParse->pVdbe ){
4387     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4388   }
4389 }
4390 
4391 /*
4392 ** Make a transient copy of expression pExpr and then code it using
4393 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4394 ** except that the input expression is guaranteed to be unchanged.
4395 */
4396 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4397   sqlite3 *db = pParse->db;
4398   pExpr = sqlite3ExprDup(db, pExpr, 0);
4399   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4400   sqlite3ExprDelete(db, pExpr);
4401 }
4402 
4403 /*
4404 ** Generate code that will evaluate expression pExpr and store the
4405 ** results in register target.  The results are guaranteed to appear
4406 ** in register target.  If the expression is constant, then this routine
4407 ** might choose to code the expression at initialization time.
4408 */
4409 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4410   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4411     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4412   }else{
4413     sqlite3ExprCode(pParse, pExpr, target);
4414   }
4415 }
4416 
4417 /*
4418 ** Generate code that pushes the value of every element of the given
4419 ** expression list into a sequence of registers beginning at target.
4420 **
4421 ** Return the number of elements evaluated.  The number returned will
4422 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4423 ** is defined.
4424 **
4425 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4426 ** filled using OP_SCopy.  OP_Copy must be used instead.
4427 **
4428 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4429 ** factored out into initialization code.
4430 **
4431 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4432 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4433 ** in registers at srcReg, and so the value can be copied from there.
4434 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4435 ** are simply omitted rather than being copied from srcReg.
4436 */
4437 int sqlite3ExprCodeExprList(
4438   Parse *pParse,     /* Parsing context */
4439   ExprList *pList,   /* The expression list to be coded */
4440   int target,        /* Where to write results */
4441   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4442   u8 flags           /* SQLITE_ECEL_* flags */
4443 ){
4444   struct ExprList_item *pItem;
4445   int i, j, n;
4446   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4447   Vdbe *v = pParse->pVdbe;
4448   assert( pList!=0 );
4449   assert( target>0 );
4450   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4451   n = pList->nExpr;
4452   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4453   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4454     Expr *pExpr = pItem->pExpr;
4455 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4456     if( pItem->bSorterRef ){
4457       i--;
4458       n--;
4459     }else
4460 #endif
4461     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4462       if( flags & SQLITE_ECEL_OMITREF ){
4463         i--;
4464         n--;
4465       }else{
4466         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4467       }
4468     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4469            && sqlite3ExprIsConstantNotJoin(pExpr)
4470     ){
4471       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4472     }else{
4473       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4474       if( inReg!=target+i ){
4475         VdbeOp *pOp;
4476         if( copyOp==OP_Copy
4477          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4478          && pOp->p1+pOp->p3+1==inReg
4479          && pOp->p2+pOp->p3+1==target+i
4480         ){
4481           pOp->p3++;
4482         }else{
4483           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4484         }
4485       }
4486     }
4487   }
4488   return n;
4489 }
4490 
4491 /*
4492 ** Generate code for a BETWEEN operator.
4493 **
4494 **    x BETWEEN y AND z
4495 **
4496 ** The above is equivalent to
4497 **
4498 **    x>=y AND x<=z
4499 **
4500 ** Code it as such, taking care to do the common subexpression
4501 ** elimination of x.
4502 **
4503 ** The xJumpIf parameter determines details:
4504 **
4505 **    NULL:                   Store the boolean result in reg[dest]
4506 **    sqlite3ExprIfTrue:      Jump to dest if true
4507 **    sqlite3ExprIfFalse:     Jump to dest if false
4508 **
4509 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4510 */
4511 static void exprCodeBetween(
4512   Parse *pParse,    /* Parsing and code generating context */
4513   Expr *pExpr,      /* The BETWEEN expression */
4514   int dest,         /* Jump destination or storage location */
4515   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4516   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4517 ){
4518   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4519   Expr compLeft;    /* The  x>=y  term */
4520   Expr compRight;   /* The  x<=z  term */
4521   int regFree1 = 0; /* Temporary use register */
4522   Expr *pDel = 0;
4523   sqlite3 *db = pParse->db;
4524 
4525   memset(&compLeft, 0, sizeof(Expr));
4526   memset(&compRight, 0, sizeof(Expr));
4527   memset(&exprAnd, 0, sizeof(Expr));
4528 
4529   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4530   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4531   if( db->mallocFailed==0 ){
4532     exprAnd.op = TK_AND;
4533     exprAnd.pLeft = &compLeft;
4534     exprAnd.pRight = &compRight;
4535     compLeft.op = TK_GE;
4536     compLeft.pLeft = pDel;
4537     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4538     compRight.op = TK_LE;
4539     compRight.pLeft = pDel;
4540     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4541     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4542     if( xJump ){
4543       xJump(pParse, &exprAnd, dest, jumpIfNull);
4544     }else{
4545       /* Mark the expression is being from the ON or USING clause of a join
4546       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4547       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4548       ** for clarity, but we are out of bits in the Expr.flags field so we
4549       ** have to reuse the EP_FromJoin bit.  Bummer. */
4550       pDel->flags |= EP_FromJoin;
4551       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4552     }
4553     sqlite3ReleaseTempReg(pParse, regFree1);
4554   }
4555   sqlite3ExprDelete(db, pDel);
4556 
4557   /* Ensure adequate test coverage */
4558   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4559   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4560   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4561   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4562   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4563   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4564   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4565   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4566   testcase( xJump==0 );
4567 }
4568 
4569 /*
4570 ** Generate code for a boolean expression such that a jump is made
4571 ** to the label "dest" if the expression is true but execution
4572 ** continues straight thru if the expression is false.
4573 **
4574 ** If the expression evaluates to NULL (neither true nor false), then
4575 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4576 **
4577 ** This code depends on the fact that certain token values (ex: TK_EQ)
4578 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4579 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4580 ** the make process cause these values to align.  Assert()s in the code
4581 ** below verify that the numbers are aligned correctly.
4582 */
4583 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4584   Vdbe *v = pParse->pVdbe;
4585   int op = 0;
4586   int regFree1 = 0;
4587   int regFree2 = 0;
4588   int r1, r2;
4589 
4590   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4591   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4592   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4593   op = pExpr->op;
4594   switch( op ){
4595     case TK_AND:
4596     case TK_OR: {
4597       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4598       if( pAlt!=pExpr ){
4599         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4600       }else if( op==TK_AND ){
4601         int d2 = sqlite3VdbeMakeLabel(pParse);
4602         testcase( jumpIfNull==0 );
4603         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4604                            jumpIfNull^SQLITE_JUMPIFNULL);
4605         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4606         sqlite3VdbeResolveLabel(v, d2);
4607       }else{
4608         testcase( jumpIfNull==0 );
4609         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4610         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4611       }
4612       break;
4613     }
4614     case TK_NOT: {
4615       testcase( jumpIfNull==0 );
4616       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4617       break;
4618     }
4619     case TK_TRUTH: {
4620       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4621       int isTrue;     /* IS TRUE or IS NOT TRUE */
4622       testcase( jumpIfNull==0 );
4623       isNot = pExpr->op2==TK_ISNOT;
4624       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4625       testcase( isTrue && isNot );
4626       testcase( !isTrue && isNot );
4627       if( isTrue ^ isNot ){
4628         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4629                           isNot ? SQLITE_JUMPIFNULL : 0);
4630       }else{
4631         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4632                            isNot ? SQLITE_JUMPIFNULL : 0);
4633       }
4634       break;
4635     }
4636     case TK_IS:
4637     case TK_ISNOT:
4638       testcase( op==TK_IS );
4639       testcase( op==TK_ISNOT );
4640       op = (op==TK_IS) ? TK_EQ : TK_NE;
4641       jumpIfNull = SQLITE_NULLEQ;
4642       /* Fall thru */
4643     case TK_LT:
4644     case TK_LE:
4645     case TK_GT:
4646     case TK_GE:
4647     case TK_NE:
4648     case TK_EQ: {
4649       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4650       testcase( jumpIfNull==0 );
4651       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4652       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4653       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4654                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4655       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4656       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4657       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4658       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4659       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4660       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4661       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4662       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4663       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4664       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4665       testcase( regFree1==0 );
4666       testcase( regFree2==0 );
4667       break;
4668     }
4669     case TK_ISNULL:
4670     case TK_NOTNULL: {
4671       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4672       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4673       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4674       sqlite3VdbeAddOp2(v, op, r1, dest);
4675       VdbeCoverageIf(v, op==TK_ISNULL);
4676       VdbeCoverageIf(v, op==TK_NOTNULL);
4677       testcase( regFree1==0 );
4678       break;
4679     }
4680     case TK_BETWEEN: {
4681       testcase( jumpIfNull==0 );
4682       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4683       break;
4684     }
4685 #ifndef SQLITE_OMIT_SUBQUERY
4686     case TK_IN: {
4687       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4688       int destIfNull = jumpIfNull ? dest : destIfFalse;
4689       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4690       sqlite3VdbeGoto(v, dest);
4691       sqlite3VdbeResolveLabel(v, destIfFalse);
4692       break;
4693     }
4694 #endif
4695     default: {
4696     default_expr:
4697       if( ExprAlwaysTrue(pExpr) ){
4698         sqlite3VdbeGoto(v, dest);
4699       }else if( ExprAlwaysFalse(pExpr) ){
4700         /* No-op */
4701       }else{
4702         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4703         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4704         VdbeCoverage(v);
4705         testcase( regFree1==0 );
4706         testcase( jumpIfNull==0 );
4707       }
4708       break;
4709     }
4710   }
4711   sqlite3ReleaseTempReg(pParse, regFree1);
4712   sqlite3ReleaseTempReg(pParse, regFree2);
4713 }
4714 
4715 /*
4716 ** Generate code for a boolean expression such that a jump is made
4717 ** to the label "dest" if the expression is false but execution
4718 ** continues straight thru if the expression is true.
4719 **
4720 ** If the expression evaluates to NULL (neither true nor false) then
4721 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4722 ** is 0.
4723 */
4724 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4725   Vdbe *v = pParse->pVdbe;
4726   int op = 0;
4727   int regFree1 = 0;
4728   int regFree2 = 0;
4729   int r1, r2;
4730 
4731   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4732   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4733   if( pExpr==0 )    return;
4734 
4735   /* The value of pExpr->op and op are related as follows:
4736   **
4737   **       pExpr->op            op
4738   **       ---------          ----------
4739   **       TK_ISNULL          OP_NotNull
4740   **       TK_NOTNULL         OP_IsNull
4741   **       TK_NE              OP_Eq
4742   **       TK_EQ              OP_Ne
4743   **       TK_GT              OP_Le
4744   **       TK_LE              OP_Gt
4745   **       TK_GE              OP_Lt
4746   **       TK_LT              OP_Ge
4747   **
4748   ** For other values of pExpr->op, op is undefined and unused.
4749   ** The value of TK_ and OP_ constants are arranged such that we
4750   ** can compute the mapping above using the following expression.
4751   ** Assert()s verify that the computation is correct.
4752   */
4753   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4754 
4755   /* Verify correct alignment of TK_ and OP_ constants
4756   */
4757   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4758   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4759   assert( pExpr->op!=TK_NE || op==OP_Eq );
4760   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4761   assert( pExpr->op!=TK_LT || op==OP_Ge );
4762   assert( pExpr->op!=TK_LE || op==OP_Gt );
4763   assert( pExpr->op!=TK_GT || op==OP_Le );
4764   assert( pExpr->op!=TK_GE || op==OP_Lt );
4765 
4766   switch( pExpr->op ){
4767     case TK_AND:
4768     case TK_OR: {
4769       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4770       if( pAlt!=pExpr ){
4771         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4772       }else if( pExpr->op==TK_AND ){
4773         testcase( jumpIfNull==0 );
4774         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4775         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4776       }else{
4777         int d2 = sqlite3VdbeMakeLabel(pParse);
4778         testcase( jumpIfNull==0 );
4779         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4780                           jumpIfNull^SQLITE_JUMPIFNULL);
4781         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4782         sqlite3VdbeResolveLabel(v, d2);
4783       }
4784       break;
4785     }
4786     case TK_NOT: {
4787       testcase( jumpIfNull==0 );
4788       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4789       break;
4790     }
4791     case TK_TRUTH: {
4792       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4793       int isTrue;  /* IS TRUE or IS NOT TRUE */
4794       testcase( jumpIfNull==0 );
4795       isNot = pExpr->op2==TK_ISNOT;
4796       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4797       testcase( isTrue && isNot );
4798       testcase( !isTrue && isNot );
4799       if( isTrue ^ isNot ){
4800         /* IS TRUE and IS NOT FALSE */
4801         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4802                            isNot ? 0 : SQLITE_JUMPIFNULL);
4803 
4804       }else{
4805         /* IS FALSE and IS NOT TRUE */
4806         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4807                           isNot ? 0 : SQLITE_JUMPIFNULL);
4808       }
4809       break;
4810     }
4811     case TK_IS:
4812     case TK_ISNOT:
4813       testcase( pExpr->op==TK_IS );
4814       testcase( pExpr->op==TK_ISNOT );
4815       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4816       jumpIfNull = SQLITE_NULLEQ;
4817       /* Fall thru */
4818     case TK_LT:
4819     case TK_LE:
4820     case TK_GT:
4821     case TK_GE:
4822     case TK_NE:
4823     case TK_EQ: {
4824       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4825       testcase( jumpIfNull==0 );
4826       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4827       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4828       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4829                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
4830       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4831       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4832       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4833       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4834       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4835       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4836       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4837       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4838       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4839       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4840       testcase( regFree1==0 );
4841       testcase( regFree2==0 );
4842       break;
4843     }
4844     case TK_ISNULL:
4845     case TK_NOTNULL: {
4846       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4847       sqlite3VdbeAddOp2(v, op, r1, dest);
4848       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4849       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4850       testcase( regFree1==0 );
4851       break;
4852     }
4853     case TK_BETWEEN: {
4854       testcase( jumpIfNull==0 );
4855       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4856       break;
4857     }
4858 #ifndef SQLITE_OMIT_SUBQUERY
4859     case TK_IN: {
4860       if( jumpIfNull ){
4861         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4862       }else{
4863         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4864         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4865         sqlite3VdbeResolveLabel(v, destIfNull);
4866       }
4867       break;
4868     }
4869 #endif
4870     default: {
4871     default_expr:
4872       if( ExprAlwaysFalse(pExpr) ){
4873         sqlite3VdbeGoto(v, dest);
4874       }else if( ExprAlwaysTrue(pExpr) ){
4875         /* no-op */
4876       }else{
4877         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4878         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4879         VdbeCoverage(v);
4880         testcase( regFree1==0 );
4881         testcase( jumpIfNull==0 );
4882       }
4883       break;
4884     }
4885   }
4886   sqlite3ReleaseTempReg(pParse, regFree1);
4887   sqlite3ReleaseTempReg(pParse, regFree2);
4888 }
4889 
4890 /*
4891 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4892 ** code generation, and that copy is deleted after code generation. This
4893 ** ensures that the original pExpr is unchanged.
4894 */
4895 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4896   sqlite3 *db = pParse->db;
4897   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4898   if( db->mallocFailed==0 ){
4899     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4900   }
4901   sqlite3ExprDelete(db, pCopy);
4902 }
4903 
4904 /*
4905 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4906 ** type of expression.
4907 **
4908 ** If pExpr is a simple SQL value - an integer, real, string, blob
4909 ** or NULL value - then the VDBE currently being prepared is configured
4910 ** to re-prepare each time a new value is bound to variable pVar.
4911 **
4912 ** Additionally, if pExpr is a simple SQL value and the value is the
4913 ** same as that currently bound to variable pVar, non-zero is returned.
4914 ** Otherwise, if the values are not the same or if pExpr is not a simple
4915 ** SQL value, zero is returned.
4916 */
4917 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4918   int res = 0;
4919   int iVar;
4920   sqlite3_value *pL, *pR = 0;
4921 
4922   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4923   if( pR ){
4924     iVar = pVar->iColumn;
4925     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4926     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4927     if( pL ){
4928       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4929         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4930       }
4931       res =  0==sqlite3MemCompare(pL, pR, 0);
4932     }
4933     sqlite3ValueFree(pR);
4934     sqlite3ValueFree(pL);
4935   }
4936 
4937   return res;
4938 }
4939 
4940 /*
4941 ** Do a deep comparison of two expression trees.  Return 0 if the two
4942 ** expressions are completely identical.  Return 1 if they differ only
4943 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4944 ** other than the top-level COLLATE operator.
4945 **
4946 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4947 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4948 **
4949 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4950 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4951 **
4952 ** Sometimes this routine will return 2 even if the two expressions
4953 ** really are equivalent.  If we cannot prove that the expressions are
4954 ** identical, we return 2 just to be safe.  So if this routine
4955 ** returns 2, then you do not really know for certain if the two
4956 ** expressions are the same.  But if you get a 0 or 1 return, then you
4957 ** can be sure the expressions are the same.  In the places where
4958 ** this routine is used, it does not hurt to get an extra 2 - that
4959 ** just might result in some slightly slower code.  But returning
4960 ** an incorrect 0 or 1 could lead to a malfunction.
4961 **
4962 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4963 ** pParse->pReprepare can be matched against literals in pB.  The
4964 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4965 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4966 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4967 ** pB causes a return value of 2.
4968 */
4969 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4970   u32 combinedFlags;
4971   if( pA==0 || pB==0 ){
4972     return pB==pA ? 0 : 2;
4973   }
4974   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4975     return 0;
4976   }
4977   combinedFlags = pA->flags | pB->flags;
4978   if( combinedFlags & EP_IntValue ){
4979     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4980       return 0;
4981     }
4982     return 2;
4983   }
4984   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4985     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4986       return 1;
4987     }
4988     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4989       return 1;
4990     }
4991     return 2;
4992   }
4993   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4994     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
4995       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4996 #ifndef SQLITE_OMIT_WINDOWFUNC
4997       assert( pA->op==pB->op );
4998       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
4999         return 2;
5000       }
5001       if( ExprHasProperty(pA,EP_WinFunc) ){
5002         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5003           return 2;
5004         }
5005       }
5006 #endif
5007     }else if( pA->op==TK_NULL ){
5008       return 0;
5009     }else if( pA->op==TK_COLLATE ){
5010       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5011     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5012       return 2;
5013     }
5014   }
5015   if( (pA->flags & (EP_Distinct|EP_Commuted))
5016      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5017   if( (combinedFlags & EP_TokenOnly)==0 ){
5018     if( combinedFlags & EP_xIsSelect ) return 2;
5019     if( (combinedFlags & EP_FixedCol)==0
5020      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5021     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5022     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5023     if( pA->op!=TK_STRING
5024      && pA->op!=TK_TRUEFALSE
5025      && (combinedFlags & EP_Reduced)==0
5026     ){
5027       if( pA->iColumn!=pB->iColumn ) return 2;
5028       if( pA->op2!=pB->op2 ){
5029         if( pA->op==TK_TRUTH ) return 2;
5030         if( pA->op==TK_FUNCTION && iTab<0 ){
5031           /* Ex: CREATE TABLE t1(a CHECK( a<julianday('now') ));
5032           **     INSERT INTO t1(a) VALUES(julianday('now')+10);
5033           ** Without this test, sqlite3ExprCodeAtInit() will run on the
5034           ** the julianday() of INSERT first, and remember that expression.
5035           ** Then sqlite3ExprCodeInit() will see the julianday() in the CHECK
5036           ** constraint as redundant, reusing the one from the INSERT, even
5037           ** though the julianday() in INSERT lacks the critical NC_IsCheck
5038           ** flag.  See ticket [830277d9db6c3ba1] (2019-10-30)
5039           */
5040           return 2;
5041         }
5042       }
5043       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5044         return 2;
5045       }
5046     }
5047   }
5048   return 0;
5049 }
5050 
5051 /*
5052 ** Compare two ExprList objects.  Return 0 if they are identical and
5053 ** non-zero if they differ in any way.
5054 **
5055 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5056 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5057 **
5058 ** This routine might return non-zero for equivalent ExprLists.  The
5059 ** only consequence will be disabled optimizations.  But this routine
5060 ** must never return 0 if the two ExprList objects are different, or
5061 ** a malfunction will result.
5062 **
5063 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5064 ** always differs from a non-NULL pointer.
5065 */
5066 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5067   int i;
5068   if( pA==0 && pB==0 ) return 0;
5069   if( pA==0 || pB==0 ) return 1;
5070   if( pA->nExpr!=pB->nExpr ) return 1;
5071   for(i=0; i<pA->nExpr; i++){
5072     Expr *pExprA = pA->a[i].pExpr;
5073     Expr *pExprB = pB->a[i].pExpr;
5074     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5075     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
5076   }
5077   return 0;
5078 }
5079 
5080 /*
5081 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5082 ** are ignored.
5083 */
5084 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5085   return sqlite3ExprCompare(0,
5086              sqlite3ExprSkipCollateAndLikely(pA),
5087              sqlite3ExprSkipCollateAndLikely(pB),
5088              iTab);
5089 }
5090 
5091 /*
5092 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5093 **
5094 ** Or if seenNot is true, return non-zero if Expr p can only be
5095 ** non-NULL if pNN is not NULL
5096 */
5097 static int exprImpliesNotNull(
5098   Parse *pParse,      /* Parsing context */
5099   Expr *p,            /* The expression to be checked */
5100   Expr *pNN,          /* The expression that is NOT NULL */
5101   int iTab,           /* Table being evaluated */
5102   int seenNot         /* Return true only if p can be any non-NULL value */
5103 ){
5104   assert( p );
5105   assert( pNN );
5106   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5107     return pNN->op!=TK_NULL;
5108   }
5109   switch( p->op ){
5110     case TK_IN: {
5111       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5112       assert( ExprHasProperty(p,EP_xIsSelect)
5113            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5114       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5115     }
5116     case TK_BETWEEN: {
5117       ExprList *pList = p->x.pList;
5118       assert( pList!=0 );
5119       assert( pList->nExpr==2 );
5120       if( seenNot ) return 0;
5121       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5122        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5123       ){
5124         return 1;
5125       }
5126       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5127     }
5128     case TK_EQ:
5129     case TK_NE:
5130     case TK_LT:
5131     case TK_LE:
5132     case TK_GT:
5133     case TK_GE:
5134     case TK_PLUS:
5135     case TK_MINUS:
5136     case TK_BITOR:
5137     case TK_LSHIFT:
5138     case TK_RSHIFT:
5139     case TK_CONCAT:
5140       seenNot = 1;
5141       /* Fall thru */
5142     case TK_STAR:
5143     case TK_REM:
5144     case TK_BITAND:
5145     case TK_SLASH: {
5146       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5147       /* Fall thru into the next case */
5148     }
5149     case TK_SPAN:
5150     case TK_COLLATE:
5151     case TK_UPLUS:
5152     case TK_UMINUS: {
5153       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5154     }
5155     case TK_TRUTH: {
5156       if( seenNot ) return 0;
5157       if( p->op2!=TK_IS ) return 0;
5158       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5159     }
5160     case TK_BITNOT:
5161     case TK_NOT: {
5162       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5163     }
5164   }
5165   return 0;
5166 }
5167 
5168 /*
5169 ** Return true if we can prove the pE2 will always be true if pE1 is
5170 ** true.  Return false if we cannot complete the proof or if pE2 might
5171 ** be false.  Examples:
5172 **
5173 **     pE1: x==5       pE2: x==5             Result: true
5174 **     pE1: x>0        pE2: x==5             Result: false
5175 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5176 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5177 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5178 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5179 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5180 **
5181 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5182 ** Expr.iTable<0 then assume a table number given by iTab.
5183 **
5184 ** If pParse is not NULL, then the values of bound variables in pE1 are
5185 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5186 ** modified to record which bound variables are referenced.  If pParse
5187 ** is NULL, then false will be returned if pE1 contains any bound variables.
5188 **
5189 ** When in doubt, return false.  Returning true might give a performance
5190 ** improvement.  Returning false might cause a performance reduction, but
5191 ** it will always give the correct answer and is hence always safe.
5192 */
5193 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5194   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5195     return 1;
5196   }
5197   if( pE2->op==TK_OR
5198    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5199              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5200   ){
5201     return 1;
5202   }
5203   if( pE2->op==TK_NOTNULL
5204    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5205   ){
5206     return 1;
5207   }
5208   return 0;
5209 }
5210 
5211 /*
5212 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5213 ** If the expression node requires that the table at pWalker->iCur
5214 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5215 **
5216 ** This routine controls an optimization.  False positives (setting
5217 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5218 ** (never setting pWalker->eCode) is a harmless missed optimization.
5219 */
5220 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5221   testcase( pExpr->op==TK_AGG_COLUMN );
5222   testcase( pExpr->op==TK_AGG_FUNCTION );
5223   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5224   switch( pExpr->op ){
5225     case TK_ISNOT:
5226     case TK_ISNULL:
5227     case TK_NOTNULL:
5228     case TK_IS:
5229     case TK_OR:
5230     case TK_VECTOR:
5231     case TK_CASE:
5232     case TK_IN:
5233     case TK_FUNCTION:
5234     case TK_TRUTH:
5235       testcase( pExpr->op==TK_ISNOT );
5236       testcase( pExpr->op==TK_ISNULL );
5237       testcase( pExpr->op==TK_NOTNULL );
5238       testcase( pExpr->op==TK_IS );
5239       testcase( pExpr->op==TK_OR );
5240       testcase( pExpr->op==TK_VECTOR );
5241       testcase( pExpr->op==TK_CASE );
5242       testcase( pExpr->op==TK_IN );
5243       testcase( pExpr->op==TK_FUNCTION );
5244       testcase( pExpr->op==TK_TRUTH );
5245       return WRC_Prune;
5246     case TK_COLUMN:
5247       if( pWalker->u.iCur==pExpr->iTable ){
5248         pWalker->eCode = 1;
5249         return WRC_Abort;
5250       }
5251       return WRC_Prune;
5252 
5253     case TK_AND:
5254       assert( pWalker->eCode==0 );
5255       sqlite3WalkExpr(pWalker, pExpr->pLeft);
5256       if( pWalker->eCode ){
5257         pWalker->eCode = 0;
5258         sqlite3WalkExpr(pWalker, pExpr->pRight);
5259       }
5260       return WRC_Prune;
5261 
5262     case TK_BETWEEN:
5263       sqlite3WalkExpr(pWalker, pExpr->pLeft);
5264       return WRC_Prune;
5265 
5266     /* Virtual tables are allowed to use constraints like x=NULL.  So
5267     ** a term of the form x=y does not prove that y is not null if x
5268     ** is the column of a virtual table */
5269     case TK_EQ:
5270     case TK_NE:
5271     case TK_LT:
5272     case TK_LE:
5273     case TK_GT:
5274     case TK_GE:
5275       testcase( pExpr->op==TK_EQ );
5276       testcase( pExpr->op==TK_NE );
5277       testcase( pExpr->op==TK_LT );
5278       testcase( pExpr->op==TK_LE );
5279       testcase( pExpr->op==TK_GT );
5280       testcase( pExpr->op==TK_GE );
5281       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5282        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5283       ){
5284        return WRC_Prune;
5285       }
5286 
5287     default:
5288       return WRC_Continue;
5289   }
5290 }
5291 
5292 /*
5293 ** Return true (non-zero) if expression p can only be true if at least
5294 ** one column of table iTab is non-null.  In other words, return true
5295 ** if expression p will always be NULL or false if every column of iTab
5296 ** is NULL.
5297 **
5298 ** False negatives are acceptable.  In other words, it is ok to return
5299 ** zero even if expression p will never be true of every column of iTab
5300 ** is NULL.  A false negative is merely a missed optimization opportunity.
5301 **
5302 ** False positives are not allowed, however.  A false positive may result
5303 ** in an incorrect answer.
5304 **
5305 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5306 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5307 **
5308 ** This routine is used to check if a LEFT JOIN can be converted into
5309 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5310 ** clause requires that some column of the right table of the LEFT JOIN
5311 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5312 ** ordinary join.
5313 */
5314 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5315   Walker w;
5316   p = sqlite3ExprSkipCollateAndLikely(p);
5317   if( p==0 ) return 0;
5318   if( p->op==TK_NOTNULL ){
5319     p = p->pLeft;
5320   }else{
5321     while( p->op==TK_AND ){
5322       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5323       p = p->pRight;
5324     }
5325   }
5326   w.xExprCallback = impliesNotNullRow;
5327   w.xSelectCallback = 0;
5328   w.xSelectCallback2 = 0;
5329   w.eCode = 0;
5330   w.u.iCur = iTab;
5331   sqlite3WalkExpr(&w, p);
5332   return w.eCode;
5333 }
5334 
5335 /*
5336 ** An instance of the following structure is used by the tree walker
5337 ** to determine if an expression can be evaluated by reference to the
5338 ** index only, without having to do a search for the corresponding
5339 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5340 ** is the cursor for the table.
5341 */
5342 struct IdxCover {
5343   Index *pIdx;     /* The index to be tested for coverage */
5344   int iCur;        /* Cursor number for the table corresponding to the index */
5345 };
5346 
5347 /*
5348 ** Check to see if there are references to columns in table
5349 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5350 ** pWalker->u.pIdxCover->pIdx.
5351 */
5352 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5353   if( pExpr->op==TK_COLUMN
5354    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5355    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5356   ){
5357     pWalker->eCode = 1;
5358     return WRC_Abort;
5359   }
5360   return WRC_Continue;
5361 }
5362 
5363 /*
5364 ** Determine if an index pIdx on table with cursor iCur contains will
5365 ** the expression pExpr.  Return true if the index does cover the
5366 ** expression and false if the pExpr expression references table columns
5367 ** that are not found in the index pIdx.
5368 **
5369 ** An index covering an expression means that the expression can be
5370 ** evaluated using only the index and without having to lookup the
5371 ** corresponding table entry.
5372 */
5373 int sqlite3ExprCoveredByIndex(
5374   Expr *pExpr,        /* The index to be tested */
5375   int iCur,           /* The cursor number for the corresponding table */
5376   Index *pIdx         /* The index that might be used for coverage */
5377 ){
5378   Walker w;
5379   struct IdxCover xcov;
5380   memset(&w, 0, sizeof(w));
5381   xcov.iCur = iCur;
5382   xcov.pIdx = pIdx;
5383   w.xExprCallback = exprIdxCover;
5384   w.u.pIdxCover = &xcov;
5385   sqlite3WalkExpr(&w, pExpr);
5386   return !w.eCode;
5387 }
5388 
5389 
5390 /*
5391 ** An instance of the following structure is used by the tree walker
5392 ** to count references to table columns in the arguments of an
5393 ** aggregate function, in order to implement the
5394 ** sqlite3FunctionThisSrc() routine.
5395 */
5396 struct SrcCount {
5397   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5398   int nThis;       /* Number of references to columns in pSrcList */
5399   int nOther;      /* Number of references to columns in other FROM clauses */
5400 };
5401 
5402 /*
5403 ** Count the number of references to columns.
5404 */
5405 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5406   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5407   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5408   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5409   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5410   ** NEVER() will need to be removed. */
5411   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5412     int i;
5413     struct SrcCount *p = pWalker->u.pSrcCount;
5414     SrcList *pSrc = p->pSrc;
5415     int nSrc = pSrc ? pSrc->nSrc : 0;
5416     for(i=0; i<nSrc; i++){
5417       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5418     }
5419     if( i<nSrc ){
5420       p->nThis++;
5421     }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){
5422       /* In a well-formed parse tree (no name resolution errors),
5423       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5424       ** outer context.  Those are the only ones to count as "other" */
5425       p->nOther++;
5426     }
5427   }
5428   return WRC_Continue;
5429 }
5430 
5431 /*
5432 ** Determine if any of the arguments to the pExpr Function reference
5433 ** pSrcList.  Return true if they do.  Also return true if the function
5434 ** has no arguments or has only constant arguments.  Return false if pExpr
5435 ** references columns but not columns of tables found in pSrcList.
5436 */
5437 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5438   Walker w;
5439   struct SrcCount cnt;
5440   assert( pExpr->op==TK_AGG_FUNCTION );
5441   memset(&w, 0, sizeof(w));
5442   w.xExprCallback = exprSrcCount;
5443   w.xSelectCallback = sqlite3SelectWalkNoop;
5444   w.u.pSrcCount = &cnt;
5445   cnt.pSrc = pSrcList;
5446   cnt.nThis = 0;
5447   cnt.nOther = 0;
5448   sqlite3WalkExprList(&w, pExpr->x.pList);
5449   return cnt.nThis>0 || cnt.nOther==0;
5450 }
5451 
5452 /*
5453 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5454 ** the new element.  Return a negative number if malloc fails.
5455 */
5456 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5457   int i;
5458   pInfo->aCol = sqlite3ArrayAllocate(
5459        db,
5460        pInfo->aCol,
5461        sizeof(pInfo->aCol[0]),
5462        &pInfo->nColumn,
5463        &i
5464   );
5465   return i;
5466 }
5467 
5468 /*
5469 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5470 ** the new element.  Return a negative number if malloc fails.
5471 */
5472 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5473   int i;
5474   pInfo->aFunc = sqlite3ArrayAllocate(
5475        db,
5476        pInfo->aFunc,
5477        sizeof(pInfo->aFunc[0]),
5478        &pInfo->nFunc,
5479        &i
5480   );
5481   return i;
5482 }
5483 
5484 /*
5485 ** This is the xExprCallback for a tree walker.  It is used to
5486 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5487 ** for additional information.
5488 */
5489 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5490   int i;
5491   NameContext *pNC = pWalker->u.pNC;
5492   Parse *pParse = pNC->pParse;
5493   SrcList *pSrcList = pNC->pSrcList;
5494   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5495 
5496   assert( pNC->ncFlags & NC_UAggInfo );
5497   switch( pExpr->op ){
5498     case TK_AGG_COLUMN:
5499     case TK_COLUMN: {
5500       testcase( pExpr->op==TK_AGG_COLUMN );
5501       testcase( pExpr->op==TK_COLUMN );
5502       /* Check to see if the column is in one of the tables in the FROM
5503       ** clause of the aggregate query */
5504       if( ALWAYS(pSrcList!=0) ){
5505         struct SrcList_item *pItem = pSrcList->a;
5506         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5507           struct AggInfo_col *pCol;
5508           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5509           if( pExpr->iTable==pItem->iCursor ){
5510             /* If we reach this point, it means that pExpr refers to a table
5511             ** that is in the FROM clause of the aggregate query.
5512             **
5513             ** Make an entry for the column in pAggInfo->aCol[] if there
5514             ** is not an entry there already.
5515             */
5516             int k;
5517             pCol = pAggInfo->aCol;
5518             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5519               if( pCol->iTable==pExpr->iTable &&
5520                   pCol->iColumn==pExpr->iColumn ){
5521                 break;
5522               }
5523             }
5524             if( (k>=pAggInfo->nColumn)
5525              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5526             ){
5527               pCol = &pAggInfo->aCol[k];
5528               pCol->pTab = pExpr->y.pTab;
5529               pCol->iTable = pExpr->iTable;
5530               pCol->iColumn = pExpr->iColumn;
5531               pCol->iMem = ++pParse->nMem;
5532               pCol->iSorterColumn = -1;
5533               pCol->pExpr = pExpr;
5534               if( pAggInfo->pGroupBy ){
5535                 int j, n;
5536                 ExprList *pGB = pAggInfo->pGroupBy;
5537                 struct ExprList_item *pTerm = pGB->a;
5538                 n = pGB->nExpr;
5539                 for(j=0; j<n; j++, pTerm++){
5540                   Expr *pE = pTerm->pExpr;
5541                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5542                       pE->iColumn==pExpr->iColumn ){
5543                     pCol->iSorterColumn = j;
5544                     break;
5545                   }
5546                 }
5547               }
5548               if( pCol->iSorterColumn<0 ){
5549                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5550               }
5551             }
5552             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5553             ** because it was there before or because we just created it).
5554             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5555             ** pAggInfo->aCol[] entry.
5556             */
5557             ExprSetVVAProperty(pExpr, EP_NoReduce);
5558             pExpr->pAggInfo = pAggInfo;
5559             pExpr->op = TK_AGG_COLUMN;
5560             pExpr->iAgg = (i16)k;
5561             break;
5562           } /* endif pExpr->iTable==pItem->iCursor */
5563         } /* end loop over pSrcList */
5564       }
5565       return WRC_Prune;
5566     }
5567     case TK_AGG_FUNCTION: {
5568       if( (pNC->ncFlags & NC_InAggFunc)==0
5569        && pWalker->walkerDepth==pExpr->op2
5570       ){
5571         /* Check to see if pExpr is a duplicate of another aggregate
5572         ** function that is already in the pAggInfo structure
5573         */
5574         struct AggInfo_func *pItem = pAggInfo->aFunc;
5575         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5576           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5577             break;
5578           }
5579         }
5580         if( i>=pAggInfo->nFunc ){
5581           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5582           */
5583           u8 enc = ENC(pParse->db);
5584           i = addAggInfoFunc(pParse->db, pAggInfo);
5585           if( i>=0 ){
5586             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5587             pItem = &pAggInfo->aFunc[i];
5588             pItem->pExpr = pExpr;
5589             pItem->iMem = ++pParse->nMem;
5590             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5591             pItem->pFunc = sqlite3FindFunction(pParse->db,
5592                    pExpr->u.zToken,
5593                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5594             if( pExpr->flags & EP_Distinct ){
5595               pItem->iDistinct = pParse->nTab++;
5596             }else{
5597               pItem->iDistinct = -1;
5598             }
5599           }
5600         }
5601         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5602         */
5603         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5604         ExprSetVVAProperty(pExpr, EP_NoReduce);
5605         pExpr->iAgg = (i16)i;
5606         pExpr->pAggInfo = pAggInfo;
5607         return WRC_Prune;
5608       }else{
5609         return WRC_Continue;
5610       }
5611     }
5612   }
5613   return WRC_Continue;
5614 }
5615 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5616   UNUSED_PARAMETER(pSelect);
5617   pWalker->walkerDepth++;
5618   return WRC_Continue;
5619 }
5620 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5621   UNUSED_PARAMETER(pSelect);
5622   pWalker->walkerDepth--;
5623 }
5624 
5625 /*
5626 ** Analyze the pExpr expression looking for aggregate functions and
5627 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5628 ** points to.  Additional entries are made on the AggInfo object as
5629 ** necessary.
5630 **
5631 ** This routine should only be called after the expression has been
5632 ** analyzed by sqlite3ResolveExprNames().
5633 */
5634 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5635   Walker w;
5636   w.xExprCallback = analyzeAggregate;
5637   w.xSelectCallback = analyzeAggregatesInSelect;
5638   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5639   w.walkerDepth = 0;
5640   w.u.pNC = pNC;
5641   w.pParse = 0;
5642   assert( pNC->pSrcList!=0 );
5643   sqlite3WalkExpr(&w, pExpr);
5644 }
5645 
5646 /*
5647 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5648 ** expression list.  Return the number of errors.
5649 **
5650 ** If an error is found, the analysis is cut short.
5651 */
5652 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5653   struct ExprList_item *pItem;
5654   int i;
5655   if( pList ){
5656     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5657       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5658     }
5659   }
5660 }
5661 
5662 /*
5663 ** Allocate a single new register for use to hold some intermediate result.
5664 */
5665 int sqlite3GetTempReg(Parse *pParse){
5666   if( pParse->nTempReg==0 ){
5667     return ++pParse->nMem;
5668   }
5669   return pParse->aTempReg[--pParse->nTempReg];
5670 }
5671 
5672 /*
5673 ** Deallocate a register, making available for reuse for some other
5674 ** purpose.
5675 */
5676 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5677   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5678     pParse->aTempReg[pParse->nTempReg++] = iReg;
5679   }
5680 }
5681 
5682 /*
5683 ** Allocate or deallocate a block of nReg consecutive registers.
5684 */
5685 int sqlite3GetTempRange(Parse *pParse, int nReg){
5686   int i, n;
5687   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5688   i = pParse->iRangeReg;
5689   n = pParse->nRangeReg;
5690   if( nReg<=n ){
5691     pParse->iRangeReg += nReg;
5692     pParse->nRangeReg -= nReg;
5693   }else{
5694     i = pParse->nMem+1;
5695     pParse->nMem += nReg;
5696   }
5697   return i;
5698 }
5699 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5700   if( nReg==1 ){
5701     sqlite3ReleaseTempReg(pParse, iReg);
5702     return;
5703   }
5704   if( nReg>pParse->nRangeReg ){
5705     pParse->nRangeReg = nReg;
5706     pParse->iRangeReg = iReg;
5707   }
5708 }
5709 
5710 /*
5711 ** Mark all temporary registers as being unavailable for reuse.
5712 **
5713 ** Always invoke this procedure after coding a subroutine or co-routine
5714 ** that might be invoked from other parts of the code, to ensure that
5715 ** the sub/co-routine does not use registers in common with the code that
5716 ** invokes the sub/co-routine.
5717 */
5718 void sqlite3ClearTempRegCache(Parse *pParse){
5719   pParse->nTempReg = 0;
5720   pParse->nRangeReg = 0;
5721 }
5722 
5723 /*
5724 ** Validate that no temporary register falls within the range of
5725 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5726 ** statements.
5727 */
5728 #ifdef SQLITE_DEBUG
5729 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5730   int i;
5731   if( pParse->nRangeReg>0
5732    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5733    && pParse->iRangeReg <= iLast
5734   ){
5735      return 0;
5736   }
5737   for(i=0; i<pParse->nTempReg; i++){
5738     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5739       return 0;
5740     }
5741   }
5742   return 1;
5743 }
5744 #endif /* SQLITE_DEBUG */
5745