xref: /sqlite-3.40.0/src/expr.c (revision b163b572)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   pExpr = sqlite3ExprSkipCollate(pExpr);
48   if( pExpr->flags & EP_Generic ) return 0;
49   op = pExpr->op;
50   if( op==TK_SELECT ){
51     assert( pExpr->flags&EP_xIsSelect );
52     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
53   }
54   if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56   if( op==TK_CAST ){
57     assert( !ExprHasProperty(pExpr, EP_IntValue) );
58     return sqlite3AffinityType(pExpr->u.zToken, 0);
59   }
60 #endif
61   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
62     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
63   }
64   if( op==TK_SELECT_COLUMN ){
65     assert( pExpr->pLeft->flags&EP_xIsSelect );
66     return sqlite3ExprAffinity(
67         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
68     );
69   }
70   return pExpr->affinity;
71 }
72 
73 /*
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken.   Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
77 **
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
80 */
81 Expr *sqlite3ExprAddCollateToken(
82   Parse *pParse,           /* Parsing context */
83   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
84   const Token *pCollName,  /* Name of collating sequence */
85   int dequote              /* True to dequote pCollName */
86 ){
87   if( pCollName->n>0 ){
88     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89     if( pNew ){
90       pNew->pLeft = pExpr;
91       pNew->flags |= EP_Collate|EP_Skip;
92       pExpr = pNew;
93     }
94   }
95   return pExpr;
96 }
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98   Token s;
99   assert( zC!=0 );
100   sqlite3TokenInit(&s, (char*)zC);
101   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
102 }
103 
104 /*
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
107 */
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110     if( ExprHasProperty(pExpr, EP_Unlikely) ){
111       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112       assert( pExpr->x.pList->nExpr>0 );
113       assert( pExpr->op==TK_FUNCTION );
114       pExpr = pExpr->x.pList->a[0].pExpr;
115     }else{
116       assert( pExpr->op==TK_COLLATE );
117       pExpr = pExpr->pLeft;
118     }
119   }
120   return pExpr;
121 }
122 
123 /*
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
126 **
127 ** See also: sqlite3ExprNNCollSeq()
128 **
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
131 **
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence.  Left operands take
135 ** precedence over right operands.
136 */
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138   sqlite3 *db = pParse->db;
139   CollSeq *pColl = 0;
140   Expr *p = pExpr;
141   while( p ){
142     int op = p->op;
143     if( p->flags & EP_Generic ) break;
144     if( op==TK_REGISTER ) op = p->op2;
145     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
146      && p->y.pTab!=0
147     ){
148       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
149       ** a TK_COLUMN but was previously evaluated and cached in a register */
150       int j = p->iColumn;
151       if( j>=0 ){
152         const char *zColl = p->y.pTab->aCol[j].zColl;
153         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
154       }
155       break;
156     }
157     if( op==TK_CAST || op==TK_UPLUS ){
158       p = p->pLeft;
159       continue;
160     }
161     if( op==TK_COLLATE ){
162       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
163       break;
164     }
165     if( p->flags & EP_Collate ){
166       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167         p = p->pLeft;
168       }else{
169         Expr *pNext  = p->pRight;
170         /* The Expr.x union is never used at the same time as Expr.pRight */
171         assert( p->x.pList==0 || p->pRight==0 );
172         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
173         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
174         ** least one EP_Collate. Thus the following two ALWAYS. */
175         if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176           int i;
177           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179               pNext = p->x.pList->a[i].pExpr;
180               break;
181             }
182           }
183         }
184         p = pNext;
185       }
186     }else{
187       break;
188     }
189   }
190   if( sqlite3CheckCollSeq(pParse, pColl) ){
191     pColl = 0;
192   }
193   return pColl;
194 }
195 
196 /*
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
200 **
201 ** See also: sqlite3ExprCollSeq()
202 **
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
205 */
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208   if( p==0 ) p = pParse->db->pDfltColl;
209   assert( p!=0 );
210   return p;
211 }
212 
213 /*
214 ** Return TRUE if the two expressions have equivalent collating sequences.
215 */
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
220 }
221 
222 /*
223 ** pExpr is an operand of a comparison operator.  aff2 is the
224 ** type affinity of the other operand.  This routine returns the
225 ** type affinity that should be used for the comparison operator.
226 */
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228   char aff1 = sqlite3ExprAffinity(pExpr);
229   if( aff1 && aff2 ){
230     /* Both sides of the comparison are columns. If one has numeric
231     ** affinity, use that. Otherwise use no affinity.
232     */
233     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234       return SQLITE_AFF_NUMERIC;
235     }else{
236       return SQLITE_AFF_BLOB;
237     }
238   }else if( !aff1 && !aff2 ){
239     /* Neither side of the comparison is a column.  Compare the
240     ** results directly.
241     */
242     return SQLITE_AFF_BLOB;
243   }else{
244     /* One side is a column, the other is not. Use the columns affinity. */
245     assert( aff1==0 || aff2==0 );
246     return (aff1 + aff2);
247   }
248 }
249 
250 /*
251 ** pExpr is a comparison operator.  Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
253 */
254 static char comparisonAffinity(Expr *pExpr){
255   char aff;
256   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259   assert( pExpr->pLeft );
260   aff = sqlite3ExprAffinity(pExpr->pLeft);
261   if( pExpr->pRight ){
262     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265   }else if( aff==0 ){
266     aff = SQLITE_AFF_BLOB;
267   }
268   return aff;
269 }
270 
271 /*
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
276 */
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278   char aff = comparisonAffinity(pExpr);
279   switch( aff ){
280     case SQLITE_AFF_BLOB:
281       return 1;
282     case SQLITE_AFF_TEXT:
283       return idx_affinity==SQLITE_AFF_TEXT;
284     default:
285       return sqlite3IsNumericAffinity(idx_affinity);
286   }
287 }
288 
289 /*
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
292 */
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296   return aff;
297 }
298 
299 /*
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
302 **
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
307 **
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
310 */
311 CollSeq *sqlite3BinaryCompareCollSeq(
312   Parse *pParse,
313   Expr *pLeft,
314   Expr *pRight
315 ){
316   CollSeq *pColl;
317   assert( pLeft );
318   if( pLeft->flags & EP_Collate ){
319     pColl = sqlite3ExprCollSeq(pParse, pLeft);
320   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321     pColl = sqlite3ExprCollSeq(pParse, pRight);
322   }else{
323     pColl = sqlite3ExprCollSeq(pParse, pLeft);
324     if( !pColl ){
325       pColl = sqlite3ExprCollSeq(pParse, pRight);
326     }
327   }
328   return pColl;
329 }
330 
331 /*
332 ** Generate code for a comparison operator.
333 */
334 static int codeCompare(
335   Parse *pParse,    /* The parsing (and code generating) context */
336   Expr *pLeft,      /* The left operand */
337   Expr *pRight,     /* The right operand */
338   int opcode,       /* The comparison opcode */
339   int in1, int in2, /* Register holding operands */
340   int dest,         /* Jump here if true.  */
341   int jumpIfNull    /* If true, jump if either operand is NULL */
342 ){
343   int p5;
344   int addr;
345   CollSeq *p4;
346 
347   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350                            (void*)p4, P4_COLLSEQ);
351   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352   return addr;
353 }
354 
355 /*
356 ** Return true if expression pExpr is a vector, or false otherwise.
357 **
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result.  Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
363 */
364 int sqlite3ExprIsVector(Expr *pExpr){
365   return sqlite3ExprVectorSize(pExpr)>1;
366 }
367 
368 /*
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
373 */
374 int sqlite3ExprVectorSize(Expr *pExpr){
375   u8 op = pExpr->op;
376   if( op==TK_REGISTER ) op = pExpr->op2;
377   if( op==TK_VECTOR ){
378     return pExpr->x.pList->nExpr;
379   }else if( op==TK_SELECT ){
380     return pExpr->x.pSelect->pEList->nExpr;
381   }else{
382     return 1;
383   }
384 }
385 
386 /*
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0).  The caller must
389 ** ensure that i is within range.
390 **
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
393 **
394 ** pVector retains ownership of the returned subexpression.
395 **
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
400 */
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402   assert( i<sqlite3ExprVectorSize(pVector) );
403   if( sqlite3ExprIsVector(pVector) ){
404     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406       return pVector->x.pSelect->pEList->a[i].pExpr;
407     }else{
408       return pVector->x.pList->a[i].pExpr;
409     }
410   }
411   return pVector;
412 }
413 
414 /*
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
418 **
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
421 **
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
424 **
425 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
430 **
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
434 */
435 Expr *sqlite3ExprForVectorField(
436   Parse *pParse,       /* Parsing context */
437   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
438   int iField           /* Which column of the vector to return */
439 ){
440   Expr *pRet;
441   if( pVector->op==TK_SELECT ){
442     assert( pVector->flags & EP_xIsSelect );
443     /* The TK_SELECT_COLUMN Expr node:
444     **
445     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
446     ** pRight:          not used.  But recursively deleted.
447     ** iColumn:         Index of a column in pVector
448     ** iTable:          0 or the number of columns on the LHS of an assignment
449     ** pLeft->iTable:   First in an array of register holding result, or 0
450     **                  if the result is not yet computed.
451     **
452     ** sqlite3ExprDelete() specifically skips the recursive delete of
453     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
454     ** can be attached to pRight to cause this node to take ownership of
455     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
456     ** with the same pLeft pointer to the pVector, but only one of them
457     ** will own the pVector.
458     */
459     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460     if( pRet ){
461       pRet->iColumn = iField;
462       pRet->pLeft = pVector;
463     }
464     assert( pRet==0 || pRet->iTable==0 );
465   }else{
466     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
468   }
469   return pRet;
470 }
471 
472 /*
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
477 **
478 ** If pExpr is not a TK_SELECT expression, return 0.
479 */
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481   int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483   if( pExpr->op==TK_SELECT ){
484     reg = sqlite3CodeSubselect(pParse, pExpr);
485   }
486 #endif
487   return reg;
488 }
489 
490 /*
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
495 **
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
500 **
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
504 **
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
507 */
508 static int exprVectorRegister(
509   Parse *pParse,                  /* Parse context */
510   Expr *pVector,                  /* Vector to extract element from */
511   int iField,                     /* Field to extract from pVector */
512   int regSelect,                  /* First in array of registers */
513   Expr **ppExpr,                  /* OUT: Expression element */
514   int *pRegFree                   /* OUT: Temp register to free */
515 ){
516   u8 op = pVector->op;
517   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518   if( op==TK_REGISTER ){
519     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520     return pVector->iTable+iField;
521   }
522   if( op==TK_SELECT ){
523     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524      return regSelect+iField;
525   }
526   *ppExpr = pVector->x.pList->a[iField].pExpr;
527   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
528 }
529 
530 /*
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
534 **
535 ** The caller must satisfy the following preconditions:
536 **
537 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
538 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
539 **    otherwise:                op==pExpr->op and p5==0
540 */
541 static void codeVectorCompare(
542   Parse *pParse,        /* Code generator context */
543   Expr *pExpr,          /* The comparison operation */
544   int dest,             /* Write results into this register */
545   u8 op,                /* Comparison operator */
546   u8 p5                 /* SQLITE_NULLEQ or zero */
547 ){
548   Vdbe *v = pParse->pVdbe;
549   Expr *pLeft = pExpr->pLeft;
550   Expr *pRight = pExpr->pRight;
551   int nLeft = sqlite3ExprVectorSize(pLeft);
552   int i;
553   int regLeft = 0;
554   int regRight = 0;
555   u8 opx = op;
556   int addrDone = sqlite3VdbeMakeLabel(v);
557 
558   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559     sqlite3ErrorMsg(pParse, "row value misused");
560     return;
561   }
562   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564        || pExpr->op==TK_LT || pExpr->op==TK_GT
565        || pExpr->op==TK_LE || pExpr->op==TK_GE
566   );
567   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568             || (pExpr->op==TK_ISNOT && op==TK_NE) );
569   assert( p5==0 || pExpr->op!=op );
570   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
571 
572   p5 |= SQLITE_STOREP2;
573   if( opx==TK_LE ) opx = TK_LT;
574   if( opx==TK_GE ) opx = TK_GT;
575 
576   regLeft = exprCodeSubselect(pParse, pLeft);
577   regRight = exprCodeSubselect(pParse, pRight);
578 
579   for(i=0; 1 /*Loop exits by "break"*/; i++){
580     int regFree1 = 0, regFree2 = 0;
581     Expr *pL, *pR;
582     int r1, r2;
583     assert( i>=0 && i<nLeft );
584     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
585     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
586     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
587     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
588     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
589     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
590     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
591     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
592     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
593     sqlite3ReleaseTempReg(pParse, regFree1);
594     sqlite3ReleaseTempReg(pParse, regFree2);
595     if( i==nLeft-1 ){
596       break;
597     }
598     if( opx==TK_EQ ){
599       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
600       p5 |= SQLITE_KEEPNULL;
601     }else if( opx==TK_NE ){
602       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
603       p5 |= SQLITE_KEEPNULL;
604     }else{
605       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
606       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
607       VdbeCoverageIf(v, op==TK_LT);
608       VdbeCoverageIf(v, op==TK_GT);
609       VdbeCoverageIf(v, op==TK_LE);
610       VdbeCoverageIf(v, op==TK_GE);
611       if( i==nLeft-2 ) opx = op;
612     }
613   }
614   sqlite3VdbeResolveLabel(v, addrDone);
615 }
616 
617 #if SQLITE_MAX_EXPR_DEPTH>0
618 /*
619 ** Check that argument nHeight is less than or equal to the maximum
620 ** expression depth allowed. If it is not, leave an error message in
621 ** pParse.
622 */
623 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
624   int rc = SQLITE_OK;
625   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
626   if( nHeight>mxHeight ){
627     sqlite3ErrorMsg(pParse,
628        "Expression tree is too large (maximum depth %d)", mxHeight
629     );
630     rc = SQLITE_ERROR;
631   }
632   return rc;
633 }
634 
635 /* The following three functions, heightOfExpr(), heightOfExprList()
636 ** and heightOfSelect(), are used to determine the maximum height
637 ** of any expression tree referenced by the structure passed as the
638 ** first argument.
639 **
640 ** If this maximum height is greater than the current value pointed
641 ** to by pnHeight, the second parameter, then set *pnHeight to that
642 ** value.
643 */
644 static void heightOfExpr(Expr *p, int *pnHeight){
645   if( p ){
646     if( p->nHeight>*pnHeight ){
647       *pnHeight = p->nHeight;
648     }
649   }
650 }
651 static void heightOfExprList(ExprList *p, int *pnHeight){
652   if( p ){
653     int i;
654     for(i=0; i<p->nExpr; i++){
655       heightOfExpr(p->a[i].pExpr, pnHeight);
656     }
657   }
658 }
659 static void heightOfSelect(Select *pSelect, int *pnHeight){
660   Select *p;
661   for(p=pSelect; p; p=p->pPrior){
662     heightOfExpr(p->pWhere, pnHeight);
663     heightOfExpr(p->pHaving, pnHeight);
664     heightOfExpr(p->pLimit, pnHeight);
665     heightOfExprList(p->pEList, pnHeight);
666     heightOfExprList(p->pGroupBy, pnHeight);
667     heightOfExprList(p->pOrderBy, pnHeight);
668   }
669 }
670 
671 /*
672 ** Set the Expr.nHeight variable in the structure passed as an
673 ** argument. An expression with no children, Expr.pList or
674 ** Expr.pSelect member has a height of 1. Any other expression
675 ** has a height equal to the maximum height of any other
676 ** referenced Expr plus one.
677 **
678 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
679 ** if appropriate.
680 */
681 static void exprSetHeight(Expr *p){
682   int nHeight = 0;
683   heightOfExpr(p->pLeft, &nHeight);
684   heightOfExpr(p->pRight, &nHeight);
685   if( ExprHasProperty(p, EP_xIsSelect) ){
686     heightOfSelect(p->x.pSelect, &nHeight);
687   }else if( p->x.pList ){
688     heightOfExprList(p->x.pList, &nHeight);
689     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
690   }
691   p->nHeight = nHeight + 1;
692 }
693 
694 /*
695 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
696 ** the height is greater than the maximum allowed expression depth,
697 ** leave an error in pParse.
698 **
699 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
700 ** Expr.flags.
701 */
702 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
703   if( pParse->nErr ) return;
704   exprSetHeight(p);
705   sqlite3ExprCheckHeight(pParse, p->nHeight);
706 }
707 
708 /*
709 ** Return the maximum height of any expression tree referenced
710 ** by the select statement passed as an argument.
711 */
712 int sqlite3SelectExprHeight(Select *p){
713   int nHeight = 0;
714   heightOfSelect(p, &nHeight);
715   return nHeight;
716 }
717 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
718 /*
719 ** Propagate all EP_Propagate flags from the Expr.x.pList into
720 ** Expr.flags.
721 */
722 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
723   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
724     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
725   }
726 }
727 #define exprSetHeight(y)
728 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
729 
730 /*
731 ** This routine is the core allocator for Expr nodes.
732 **
733 ** Construct a new expression node and return a pointer to it.  Memory
734 ** for this node and for the pToken argument is a single allocation
735 ** obtained from sqlite3DbMalloc().  The calling function
736 ** is responsible for making sure the node eventually gets freed.
737 **
738 ** If dequote is true, then the token (if it exists) is dequoted.
739 ** If dequote is false, no dequoting is performed.  The deQuote
740 ** parameter is ignored if pToken is NULL or if the token does not
741 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
742 ** then the EP_DblQuoted flag is set on the expression node.
743 **
744 ** Special case:  If op==TK_INTEGER and pToken points to a string that
745 ** can be translated into a 32-bit integer, then the token is not
746 ** stored in u.zToken.  Instead, the integer values is written
747 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
748 ** is allocated to hold the integer text and the dequote flag is ignored.
749 */
750 Expr *sqlite3ExprAlloc(
751   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
752   int op,                 /* Expression opcode */
753   const Token *pToken,    /* Token argument.  Might be NULL */
754   int dequote             /* True to dequote */
755 ){
756   Expr *pNew;
757   int nExtra = 0;
758   int iValue = 0;
759 
760   assert( db!=0 );
761   if( pToken ){
762     if( op!=TK_INTEGER || pToken->z==0
763           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
764       nExtra = pToken->n+1;
765       assert( iValue>=0 );
766     }
767   }
768   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
769   if( pNew ){
770     memset(pNew, 0, sizeof(Expr));
771     pNew->op = (u8)op;
772     pNew->iAgg = -1;
773     if( pToken ){
774       if( nExtra==0 ){
775         pNew->flags |= EP_IntValue|EP_Leaf;
776         pNew->u.iValue = iValue;
777       }else{
778         pNew->u.zToken = (char*)&pNew[1];
779         assert( pToken->z!=0 || pToken->n==0 );
780         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
781         pNew->u.zToken[pToken->n] = 0;
782         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
783           if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
784           sqlite3Dequote(pNew->u.zToken);
785         }
786       }
787     }
788 #if SQLITE_MAX_EXPR_DEPTH>0
789     pNew->nHeight = 1;
790 #endif
791   }
792   return pNew;
793 }
794 
795 /*
796 ** Allocate a new expression node from a zero-terminated token that has
797 ** already been dequoted.
798 */
799 Expr *sqlite3Expr(
800   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
801   int op,                 /* Expression opcode */
802   const char *zToken      /* Token argument.  Might be NULL */
803 ){
804   Token x;
805   x.z = zToken;
806   x.n = sqlite3Strlen30(zToken);
807   return sqlite3ExprAlloc(db, op, &x, 0);
808 }
809 
810 /*
811 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
812 **
813 ** If pRoot==NULL that means that a memory allocation error has occurred.
814 ** In that case, delete the subtrees pLeft and pRight.
815 */
816 void sqlite3ExprAttachSubtrees(
817   sqlite3 *db,
818   Expr *pRoot,
819   Expr *pLeft,
820   Expr *pRight
821 ){
822   if( pRoot==0 ){
823     assert( db->mallocFailed );
824     sqlite3ExprDelete(db, pLeft);
825     sqlite3ExprDelete(db, pRight);
826   }else{
827     if( pRight ){
828       pRoot->pRight = pRight;
829       pRoot->flags |= EP_Propagate & pRight->flags;
830     }
831     if( pLeft ){
832       pRoot->pLeft = pLeft;
833       pRoot->flags |= EP_Propagate & pLeft->flags;
834     }
835     exprSetHeight(pRoot);
836   }
837 }
838 
839 /*
840 ** Allocate an Expr node which joins as many as two subtrees.
841 **
842 ** One or both of the subtrees can be NULL.  Return a pointer to the new
843 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
844 ** free the subtrees and return NULL.
845 */
846 Expr *sqlite3PExpr(
847   Parse *pParse,          /* Parsing context */
848   int op,                 /* Expression opcode */
849   Expr *pLeft,            /* Left operand */
850   Expr *pRight            /* Right operand */
851 ){
852   Expr *p;
853   if( op==TK_AND && pParse->nErr==0 ){
854     /* Take advantage of short-circuit false optimization for AND */
855     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
856   }else{
857     p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
858     if( p ){
859       memset(p, 0, sizeof(Expr));
860       p->op = op & TKFLG_MASK;
861       p->iAgg = -1;
862     }
863     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
864   }
865   if( p ) {
866     sqlite3ExprCheckHeight(pParse, p->nHeight);
867   }
868   return p;
869 }
870 
871 /*
872 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
873 ** do a memory allocation failure) then delete the pSelect object.
874 */
875 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
876   if( pExpr ){
877     pExpr->x.pSelect = pSelect;
878     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
879     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
880   }else{
881     assert( pParse->db->mallocFailed );
882     sqlite3SelectDelete(pParse->db, pSelect);
883   }
884 }
885 
886 
887 /*
888 ** If the expression is always either TRUE or FALSE (respectively),
889 ** then return 1.  If one cannot determine the truth value of the
890 ** expression at compile-time return 0.
891 **
892 ** This is an optimization.  If is OK to return 0 here even if
893 ** the expression really is always false or false (a false negative).
894 ** But it is a bug to return 1 if the expression might have different
895 ** boolean values in different circumstances (a false positive.)
896 **
897 ** Note that if the expression is part of conditional for a
898 ** LEFT JOIN, then we cannot determine at compile-time whether or not
899 ** is it true or false, so always return 0.
900 */
901 static int exprAlwaysTrue(Expr *p){
902   int v = 0;
903   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
904   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
905   return v!=0;
906 }
907 static int exprAlwaysFalse(Expr *p){
908   int v = 0;
909   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
910   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
911   return v==0;
912 }
913 
914 /*
915 ** Join two expressions using an AND operator.  If either expression is
916 ** NULL, then just return the other expression.
917 **
918 ** If one side or the other of the AND is known to be false, then instead
919 ** of returning an AND expression, just return a constant expression with
920 ** a value of false.
921 */
922 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
923   if( pLeft==0 ){
924     return pRight;
925   }else if( pRight==0 ){
926     return pLeft;
927   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
928     sqlite3ExprDelete(db, pLeft);
929     sqlite3ExprDelete(db, pRight);
930     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
931   }else{
932     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
933     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
934     return pNew;
935   }
936 }
937 
938 /*
939 ** Construct a new expression node for a function with multiple
940 ** arguments.
941 */
942 Expr *sqlite3ExprFunction(
943   Parse *pParse,        /* Parsing context */
944   ExprList *pList,      /* Argument list */
945   Token *pToken,        /* Name of the function */
946   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
947 ){
948   Expr *pNew;
949   sqlite3 *db = pParse->db;
950   assert( pToken );
951   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
952   if( pNew==0 ){
953     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
954     return 0;
955   }
956   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
957     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
958   }
959   pNew->x.pList = pList;
960   ExprSetProperty(pNew, EP_HasFunc);
961   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
962   sqlite3ExprSetHeightAndFlags(pParse, pNew);
963   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
964   return pNew;
965 }
966 
967 /*
968 ** Assign a variable number to an expression that encodes a wildcard
969 ** in the original SQL statement.
970 **
971 ** Wildcards consisting of a single "?" are assigned the next sequential
972 ** variable number.
973 **
974 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
975 ** sure "nnn" is not too big to avoid a denial of service attack when
976 ** the SQL statement comes from an external source.
977 **
978 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
979 ** as the previous instance of the same wildcard.  Or if this is the first
980 ** instance of the wildcard, the next sequential variable number is
981 ** assigned.
982 */
983 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
984   sqlite3 *db = pParse->db;
985   const char *z;
986   ynVar x;
987 
988   if( pExpr==0 ) return;
989   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
990   z = pExpr->u.zToken;
991   assert( z!=0 );
992   assert( z[0]!=0 );
993   assert( n==(u32)sqlite3Strlen30(z) );
994   if( z[1]==0 ){
995     /* Wildcard of the form "?".  Assign the next variable number */
996     assert( z[0]=='?' );
997     x = (ynVar)(++pParse->nVar);
998   }else{
999     int doAdd = 0;
1000     if( z[0]=='?' ){
1001       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1002       ** use it as the variable number */
1003       i64 i;
1004       int bOk;
1005       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1006         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1007         bOk = 1;
1008       }else{
1009         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1010       }
1011       testcase( i==0 );
1012       testcase( i==1 );
1013       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1014       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1015       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1016         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1017             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1018         return;
1019       }
1020       x = (ynVar)i;
1021       if( x>pParse->nVar ){
1022         pParse->nVar = (int)x;
1023         doAdd = 1;
1024       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1025         doAdd = 1;
1026       }
1027     }else{
1028       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1029       ** number as the prior appearance of the same name, or if the name
1030       ** has never appeared before, reuse the same variable number
1031       */
1032       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1033       if( x==0 ){
1034         x = (ynVar)(++pParse->nVar);
1035         doAdd = 1;
1036       }
1037     }
1038     if( doAdd ){
1039       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1040     }
1041   }
1042   pExpr->iColumn = x;
1043   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1044     sqlite3ErrorMsg(pParse, "too many SQL variables");
1045   }
1046 }
1047 
1048 /*
1049 ** Recursively delete an expression tree.
1050 */
1051 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1052   assert( p!=0 );
1053   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1054   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1055 
1056   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1057   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1058           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1059 #ifdef SQLITE_DEBUG
1060   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1061     assert( p->pLeft==0 );
1062     assert( p->pRight==0 );
1063     assert( p->x.pSelect==0 );
1064   }
1065 #endif
1066   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1067     /* The Expr.x union is never used at the same time as Expr.pRight */
1068     assert( p->x.pList==0 || p->pRight==0 );
1069     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1070     if( p->pRight ){
1071       sqlite3ExprDeleteNN(db, p->pRight);
1072     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1073       sqlite3SelectDelete(db, p->x.pSelect);
1074     }else{
1075       sqlite3ExprListDelete(db, p->x.pList);
1076     }
1077     if( ExprHasProperty(p, EP_WinFunc) ){
1078       assert( p->op==TK_FUNCTION );
1079       sqlite3WindowDelete(db, p->y.pWin);
1080     }
1081   }
1082   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1083   if( !ExprHasProperty(p, EP_Static) ){
1084     sqlite3DbFreeNN(db, p);
1085   }
1086 }
1087 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1088   if( p ) sqlite3ExprDeleteNN(db, p);
1089 }
1090 
1091 /*
1092 ** Return the number of bytes allocated for the expression structure
1093 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1094 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1095 */
1096 static int exprStructSize(Expr *p){
1097   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1098   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1099   return EXPR_FULLSIZE;
1100 }
1101 
1102 /*
1103 ** The dupedExpr*Size() routines each return the number of bytes required
1104 ** to store a copy of an expression or expression tree.  They differ in
1105 ** how much of the tree is measured.
1106 **
1107 **     dupedExprStructSize()     Size of only the Expr structure
1108 **     dupedExprNodeSize()       Size of Expr + space for token
1109 **     dupedExprSize()           Expr + token + subtree components
1110 **
1111 ***************************************************************************
1112 **
1113 ** The dupedExprStructSize() function returns two values OR-ed together:
1114 ** (1) the space required for a copy of the Expr structure only and
1115 ** (2) the EP_xxx flags that indicate what the structure size should be.
1116 ** The return values is always one of:
1117 **
1118 **      EXPR_FULLSIZE
1119 **      EXPR_REDUCEDSIZE   | EP_Reduced
1120 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1121 **
1122 ** The size of the structure can be found by masking the return value
1123 ** of this routine with 0xfff.  The flags can be found by masking the
1124 ** return value with EP_Reduced|EP_TokenOnly.
1125 **
1126 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1127 ** (unreduced) Expr objects as they or originally constructed by the parser.
1128 ** During expression analysis, extra information is computed and moved into
1129 ** later parts of the Expr object and that extra information might get chopped
1130 ** off if the expression is reduced.  Note also that it does not work to
1131 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1132 ** to reduce a pristine expression tree from the parser.  The implementation
1133 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1134 ** to enforce this constraint.
1135 */
1136 static int dupedExprStructSize(Expr *p, int flags){
1137   int nSize;
1138   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1139   assert( EXPR_FULLSIZE<=0xfff );
1140   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1141   if( 0==flags || p->op==TK_SELECT_COLUMN
1142 #ifndef SQLITE_OMIT_WINDOWFUNC
1143    || ExprHasProperty(p, EP_WinFunc)
1144 #endif
1145   ){
1146     nSize = EXPR_FULLSIZE;
1147   }else{
1148     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1149     assert( !ExprHasProperty(p, EP_FromJoin) );
1150     assert( !ExprHasProperty(p, EP_MemToken) );
1151     assert( !ExprHasProperty(p, EP_NoReduce) );
1152     if( p->pLeft || p->x.pList ){
1153       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1154     }else{
1155       assert( p->pRight==0 );
1156       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1157     }
1158   }
1159   return nSize;
1160 }
1161 
1162 /*
1163 ** This function returns the space in bytes required to store the copy
1164 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1165 ** string is defined.)
1166 */
1167 static int dupedExprNodeSize(Expr *p, int flags){
1168   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1169   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1170     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1171   }
1172   return ROUND8(nByte);
1173 }
1174 
1175 /*
1176 ** Return the number of bytes required to create a duplicate of the
1177 ** expression passed as the first argument. The second argument is a
1178 ** mask containing EXPRDUP_XXX flags.
1179 **
1180 ** The value returned includes space to create a copy of the Expr struct
1181 ** itself and the buffer referred to by Expr.u.zToken, if any.
1182 **
1183 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1184 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1185 ** and Expr.pRight variables (but not for any structures pointed to or
1186 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1187 */
1188 static int dupedExprSize(Expr *p, int flags){
1189   int nByte = 0;
1190   if( p ){
1191     nByte = dupedExprNodeSize(p, flags);
1192     if( flags&EXPRDUP_REDUCE ){
1193       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1194     }
1195   }
1196   return nByte;
1197 }
1198 
1199 /*
1200 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1201 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1202 ** to store the copy of expression p, the copies of p->u.zToken
1203 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1204 ** if any. Before returning, *pzBuffer is set to the first byte past the
1205 ** portion of the buffer copied into by this function.
1206 */
1207 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1208   Expr *pNew;           /* Value to return */
1209   u8 *zAlloc;           /* Memory space from which to build Expr object */
1210   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1211 
1212   assert( db!=0 );
1213   assert( p );
1214   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1215   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1216 
1217   /* Figure out where to write the new Expr structure. */
1218   if( pzBuffer ){
1219     zAlloc = *pzBuffer;
1220     staticFlag = EP_Static;
1221   }else{
1222     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1223     staticFlag = 0;
1224   }
1225   pNew = (Expr *)zAlloc;
1226 
1227   if( pNew ){
1228     /* Set nNewSize to the size allocated for the structure pointed to
1229     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1230     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1231     ** by the copy of the p->u.zToken string (if any).
1232     */
1233     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1234     const int nNewSize = nStructSize & 0xfff;
1235     int nToken;
1236     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1237       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1238     }else{
1239       nToken = 0;
1240     }
1241     if( dupFlags ){
1242       assert( ExprHasProperty(p, EP_Reduced)==0 );
1243       memcpy(zAlloc, p, nNewSize);
1244     }else{
1245       u32 nSize = (u32)exprStructSize(p);
1246       memcpy(zAlloc, p, nSize);
1247       if( nSize<EXPR_FULLSIZE ){
1248         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1249       }
1250     }
1251 
1252     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1253     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1254     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1255     pNew->flags |= staticFlag;
1256 
1257     /* Copy the p->u.zToken string, if any. */
1258     if( nToken ){
1259       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1260       memcpy(zToken, p->u.zToken, nToken);
1261     }
1262 
1263     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1264       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1265       if( ExprHasProperty(p, EP_xIsSelect) ){
1266         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1267       }else{
1268         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1269       }
1270     }
1271 
1272     /* Fill in pNew->pLeft and pNew->pRight. */
1273     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1274       zAlloc += dupedExprNodeSize(p, dupFlags);
1275       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1276         pNew->pLeft = p->pLeft ?
1277                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1278         pNew->pRight = p->pRight ?
1279                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1280       }
1281 #ifndef SQLITE_OMIT_WINDOWFUNC
1282       if( ExprHasProperty(p, EP_WinFunc) ){
1283         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1284         assert( ExprHasProperty(pNew, EP_WinFunc) );
1285       }
1286 #endif /* SQLITE_OMIT_WINDOWFUNC */
1287       if( pzBuffer ){
1288         *pzBuffer = zAlloc;
1289       }
1290     }else{
1291       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1292         if( pNew->op==TK_SELECT_COLUMN ){
1293           pNew->pLeft = p->pLeft;
1294           assert( p->iColumn==0 || p->pRight==0 );
1295           assert( p->pRight==0  || p->pRight==p->pLeft );
1296         }else{
1297           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1298         }
1299         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1300       }
1301     }
1302   }
1303   return pNew;
1304 }
1305 
1306 /*
1307 ** Create and return a deep copy of the object passed as the second
1308 ** argument. If an OOM condition is encountered, NULL is returned
1309 ** and the db->mallocFailed flag set.
1310 */
1311 #ifndef SQLITE_OMIT_CTE
1312 static With *withDup(sqlite3 *db, With *p){
1313   With *pRet = 0;
1314   if( p ){
1315     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1316     pRet = sqlite3DbMallocZero(db, nByte);
1317     if( pRet ){
1318       int i;
1319       pRet->nCte = p->nCte;
1320       for(i=0; i<p->nCte; i++){
1321         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1322         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1323         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1324       }
1325     }
1326   }
1327   return pRet;
1328 }
1329 #else
1330 # define withDup(x,y) 0
1331 #endif
1332 
1333 #ifndef SQLITE_OMIT_WINDOWFUNC
1334 /*
1335 ** The gatherSelectWindows() procedure and its helper routine
1336 ** gatherSelectWindowsCallback() are used to scan all the expressions
1337 ** an a newly duplicated SELECT statement and gather all of the Window
1338 ** objects found there, assembling them onto the linked list at Select->pWin.
1339 */
1340 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1341   if( pExpr->op==TK_FUNCTION && pExpr->y.pWin!=0 ){
1342     assert( ExprHasProperty(pExpr, EP_WinFunc) );
1343     pExpr->y.pWin->pNextWin = pWalker->u.pSelect->pWin;
1344     pWalker->u.pSelect->pWin = pExpr->y.pWin;
1345   }
1346   return WRC_Continue;
1347 }
1348 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1349   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1350 }
1351 static void gatherSelectWindows(Select *p){
1352   Walker w;
1353   w.xExprCallback = gatherSelectWindowsCallback;
1354   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1355   w.xSelectCallback2 = 0;
1356   w.u.pSelect = p;
1357   sqlite3WalkSelect(&w, p);
1358 }
1359 #endif
1360 
1361 
1362 /*
1363 ** The following group of routines make deep copies of expressions,
1364 ** expression lists, ID lists, and select statements.  The copies can
1365 ** be deleted (by being passed to their respective ...Delete() routines)
1366 ** without effecting the originals.
1367 **
1368 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1369 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1370 ** by subsequent calls to sqlite*ListAppend() routines.
1371 **
1372 ** Any tables that the SrcList might point to are not duplicated.
1373 **
1374 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1375 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1376 ** truncated version of the usual Expr structure that will be stored as
1377 ** part of the in-memory representation of the database schema.
1378 */
1379 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1380   assert( flags==0 || flags==EXPRDUP_REDUCE );
1381   return p ? exprDup(db, p, flags, 0) : 0;
1382 }
1383 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1384   ExprList *pNew;
1385   struct ExprList_item *pItem, *pOldItem;
1386   int i;
1387   Expr *pPriorSelectCol = 0;
1388   assert( db!=0 );
1389   if( p==0 ) return 0;
1390   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1391   if( pNew==0 ) return 0;
1392   pNew->nExpr = p->nExpr;
1393   pItem = pNew->a;
1394   pOldItem = p->a;
1395   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1396     Expr *pOldExpr = pOldItem->pExpr;
1397     Expr *pNewExpr;
1398     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1399     if( pOldExpr
1400      && pOldExpr->op==TK_SELECT_COLUMN
1401      && (pNewExpr = pItem->pExpr)!=0
1402     ){
1403       assert( pNewExpr->iColumn==0 || i>0 );
1404       if( pNewExpr->iColumn==0 ){
1405         assert( pOldExpr->pLeft==pOldExpr->pRight );
1406         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1407       }else{
1408         assert( i>0 );
1409         assert( pItem[-1].pExpr!=0 );
1410         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1411         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1412         pNewExpr->pLeft = pPriorSelectCol;
1413       }
1414     }
1415     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1416     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1417     pItem->sortOrder = pOldItem->sortOrder;
1418     pItem->done = 0;
1419     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1420     pItem->bSorterRef = pOldItem->bSorterRef;
1421     pItem->u = pOldItem->u;
1422   }
1423   return pNew;
1424 }
1425 
1426 /*
1427 ** If cursors, triggers, views and subqueries are all omitted from
1428 ** the build, then none of the following routines, except for
1429 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1430 ** called with a NULL argument.
1431 */
1432 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1433  || !defined(SQLITE_OMIT_SUBQUERY)
1434 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1435   SrcList *pNew;
1436   int i;
1437   int nByte;
1438   assert( db!=0 );
1439   if( p==0 ) return 0;
1440   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1441   pNew = sqlite3DbMallocRawNN(db, nByte );
1442   if( pNew==0 ) return 0;
1443   pNew->nSrc = pNew->nAlloc = p->nSrc;
1444   for(i=0; i<p->nSrc; i++){
1445     struct SrcList_item *pNewItem = &pNew->a[i];
1446     struct SrcList_item *pOldItem = &p->a[i];
1447     Table *pTab;
1448     pNewItem->pSchema = pOldItem->pSchema;
1449     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1450     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1451     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1452     pNewItem->fg = pOldItem->fg;
1453     pNewItem->iCursor = pOldItem->iCursor;
1454     pNewItem->addrFillSub = pOldItem->addrFillSub;
1455     pNewItem->regReturn = pOldItem->regReturn;
1456     if( pNewItem->fg.isIndexedBy ){
1457       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1458     }
1459     pNewItem->pIBIndex = pOldItem->pIBIndex;
1460     if( pNewItem->fg.isTabFunc ){
1461       pNewItem->u1.pFuncArg =
1462           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1463     }
1464     pTab = pNewItem->pTab = pOldItem->pTab;
1465     if( pTab ){
1466       pTab->nTabRef++;
1467     }
1468     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1469     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1470     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1471     pNewItem->colUsed = pOldItem->colUsed;
1472   }
1473   return pNew;
1474 }
1475 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1476   IdList *pNew;
1477   int i;
1478   assert( db!=0 );
1479   if( p==0 ) return 0;
1480   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1481   if( pNew==0 ) return 0;
1482   pNew->nId = p->nId;
1483   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1484   if( pNew->a==0 ){
1485     sqlite3DbFreeNN(db, pNew);
1486     return 0;
1487   }
1488   /* Note that because the size of the allocation for p->a[] is not
1489   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1490   ** on the duplicate created by this function. */
1491   for(i=0; i<p->nId; i++){
1492     struct IdList_item *pNewItem = &pNew->a[i];
1493     struct IdList_item *pOldItem = &p->a[i];
1494     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1495     pNewItem->idx = pOldItem->idx;
1496   }
1497   return pNew;
1498 }
1499 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1500   Select *pRet = 0;
1501   Select *pNext = 0;
1502   Select **pp = &pRet;
1503   Select *p;
1504 
1505   assert( db!=0 );
1506   for(p=pDup; p; p=p->pPrior){
1507     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1508     if( pNew==0 ) break;
1509     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1510     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1511     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1512     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1513     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1514     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1515     pNew->op = p->op;
1516     pNew->pNext = pNext;
1517     pNew->pPrior = 0;
1518     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1519     pNew->iLimit = 0;
1520     pNew->iOffset = 0;
1521     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1522     pNew->addrOpenEphm[0] = -1;
1523     pNew->addrOpenEphm[1] = -1;
1524     pNew->nSelectRow = p->nSelectRow;
1525     pNew->pWith = withDup(db, p->pWith);
1526 #ifndef SQLITE_OMIT_WINDOWFUNC
1527     pNew->pWin = 0;
1528     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1529     if( p->pWin ) gatherSelectWindows(pNew);
1530 #endif
1531     pNew->selId = p->selId;
1532     *pp = pNew;
1533     pp = &pNew->pPrior;
1534     pNext = pNew;
1535   }
1536 
1537   return pRet;
1538 }
1539 #else
1540 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1541   assert( p==0 );
1542   return 0;
1543 }
1544 #endif
1545 
1546 
1547 /*
1548 ** Add a new element to the end of an expression list.  If pList is
1549 ** initially NULL, then create a new expression list.
1550 **
1551 ** The pList argument must be either NULL or a pointer to an ExprList
1552 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1553 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1554 ** Reason:  This routine assumes that the number of slots in pList->a[]
1555 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1556 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1557 **
1558 ** If a memory allocation error occurs, the entire list is freed and
1559 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1560 ** that the new entry was successfully appended.
1561 */
1562 ExprList *sqlite3ExprListAppend(
1563   Parse *pParse,          /* Parsing context */
1564   ExprList *pList,        /* List to which to append. Might be NULL */
1565   Expr *pExpr             /* Expression to be appended. Might be NULL */
1566 ){
1567   struct ExprList_item *pItem;
1568   sqlite3 *db = pParse->db;
1569   assert( db!=0 );
1570   if( pList==0 ){
1571     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1572     if( pList==0 ){
1573       goto no_mem;
1574     }
1575     pList->nExpr = 0;
1576   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1577     ExprList *pNew;
1578     pNew = sqlite3DbRealloc(db, pList,
1579              sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1580     if( pNew==0 ){
1581       goto no_mem;
1582     }
1583     pList = pNew;
1584   }
1585   pItem = &pList->a[pList->nExpr++];
1586   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1587   assert( offsetof(struct ExprList_item,pExpr)==0 );
1588   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1589   pItem->pExpr = pExpr;
1590   return pList;
1591 
1592 no_mem:
1593   /* Avoid leaking memory if malloc has failed. */
1594   sqlite3ExprDelete(db, pExpr);
1595   sqlite3ExprListDelete(db, pList);
1596   return 0;
1597 }
1598 
1599 /*
1600 ** pColumns and pExpr form a vector assignment which is part of the SET
1601 ** clause of an UPDATE statement.  Like this:
1602 **
1603 **        (a,b,c) = (expr1,expr2,expr3)
1604 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1605 **
1606 ** For each term of the vector assignment, append new entries to the
1607 ** expression list pList.  In the case of a subquery on the RHS, append
1608 ** TK_SELECT_COLUMN expressions.
1609 */
1610 ExprList *sqlite3ExprListAppendVector(
1611   Parse *pParse,         /* Parsing context */
1612   ExprList *pList,       /* List to which to append. Might be NULL */
1613   IdList *pColumns,      /* List of names of LHS of the assignment */
1614   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1615 ){
1616   sqlite3 *db = pParse->db;
1617   int n;
1618   int i;
1619   int iFirst = pList ? pList->nExpr : 0;
1620   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1621   ** exit prior to this routine being invoked */
1622   if( NEVER(pColumns==0) ) goto vector_append_error;
1623   if( pExpr==0 ) goto vector_append_error;
1624 
1625   /* If the RHS is a vector, then we can immediately check to see that
1626   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1627   ** wildcards ("*") in the result set of the SELECT must be expanded before
1628   ** we can do the size check, so defer the size check until code generation.
1629   */
1630   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1631     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1632                     pColumns->nId, n);
1633     goto vector_append_error;
1634   }
1635 
1636   for(i=0; i<pColumns->nId; i++){
1637     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1638     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1639     if( pList ){
1640       assert( pList->nExpr==iFirst+i+1 );
1641       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1642       pColumns->a[i].zName = 0;
1643     }
1644   }
1645 
1646   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1647     Expr *pFirst = pList->a[iFirst].pExpr;
1648     assert( pFirst!=0 );
1649     assert( pFirst->op==TK_SELECT_COLUMN );
1650 
1651     /* Store the SELECT statement in pRight so it will be deleted when
1652     ** sqlite3ExprListDelete() is called */
1653     pFirst->pRight = pExpr;
1654     pExpr = 0;
1655 
1656     /* Remember the size of the LHS in iTable so that we can check that
1657     ** the RHS and LHS sizes match during code generation. */
1658     pFirst->iTable = pColumns->nId;
1659   }
1660 
1661 vector_append_error:
1662   sqlite3ExprDelete(db, pExpr);
1663   sqlite3IdListDelete(db, pColumns);
1664   return pList;
1665 }
1666 
1667 /*
1668 ** Set the sort order for the last element on the given ExprList.
1669 */
1670 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1671   if( p==0 ) return;
1672   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1673   assert( p->nExpr>0 );
1674   if( iSortOrder<0 ){
1675     assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1676     return;
1677   }
1678   p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1679 }
1680 
1681 /*
1682 ** Set the ExprList.a[].zName element of the most recently added item
1683 ** on the expression list.
1684 **
1685 ** pList might be NULL following an OOM error.  But pName should never be
1686 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1687 ** is set.
1688 */
1689 void sqlite3ExprListSetName(
1690   Parse *pParse,          /* Parsing context */
1691   ExprList *pList,        /* List to which to add the span. */
1692   Token *pName,           /* Name to be added */
1693   int dequote             /* True to cause the name to be dequoted */
1694 ){
1695   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1696   if( pList ){
1697     struct ExprList_item *pItem;
1698     assert( pList->nExpr>0 );
1699     pItem = &pList->a[pList->nExpr-1];
1700     assert( pItem->zName==0 );
1701     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1702     if( dequote ) sqlite3Dequote(pItem->zName);
1703     if( IN_RENAME_OBJECT ){
1704       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1705     }
1706   }
1707 }
1708 
1709 /*
1710 ** Set the ExprList.a[].zSpan element of the most recently added item
1711 ** on the expression list.
1712 **
1713 ** pList might be NULL following an OOM error.  But pSpan should never be
1714 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1715 ** is set.
1716 */
1717 void sqlite3ExprListSetSpan(
1718   Parse *pParse,          /* Parsing context */
1719   ExprList *pList,        /* List to which to add the span. */
1720   const char *zStart,     /* Start of the span */
1721   const char *zEnd        /* End of the span */
1722 ){
1723   sqlite3 *db = pParse->db;
1724   assert( pList!=0 || db->mallocFailed!=0 );
1725   if( pList ){
1726     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1727     assert( pList->nExpr>0 );
1728     sqlite3DbFree(db, pItem->zSpan);
1729     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1730   }
1731 }
1732 
1733 /*
1734 ** If the expression list pEList contains more than iLimit elements,
1735 ** leave an error message in pParse.
1736 */
1737 void sqlite3ExprListCheckLength(
1738   Parse *pParse,
1739   ExprList *pEList,
1740   const char *zObject
1741 ){
1742   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1743   testcase( pEList && pEList->nExpr==mx );
1744   testcase( pEList && pEList->nExpr==mx+1 );
1745   if( pEList && pEList->nExpr>mx ){
1746     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1747   }
1748 }
1749 
1750 /*
1751 ** Delete an entire expression list.
1752 */
1753 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1754   int i = pList->nExpr;
1755   struct ExprList_item *pItem =  pList->a;
1756   assert( pList->nExpr>0 );
1757   do{
1758     sqlite3ExprDelete(db, pItem->pExpr);
1759     sqlite3DbFree(db, pItem->zName);
1760     sqlite3DbFree(db, pItem->zSpan);
1761     pItem++;
1762   }while( --i>0 );
1763   sqlite3DbFreeNN(db, pList);
1764 }
1765 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1766   if( pList ) exprListDeleteNN(db, pList);
1767 }
1768 
1769 /*
1770 ** Return the bitwise-OR of all Expr.flags fields in the given
1771 ** ExprList.
1772 */
1773 u32 sqlite3ExprListFlags(const ExprList *pList){
1774   int i;
1775   u32 m = 0;
1776   assert( pList!=0 );
1777   for(i=0; i<pList->nExpr; i++){
1778      Expr *pExpr = pList->a[i].pExpr;
1779      assert( pExpr!=0 );
1780      m |= pExpr->flags;
1781   }
1782   return m;
1783 }
1784 
1785 /*
1786 ** This is a SELECT-node callback for the expression walker that
1787 ** always "fails".  By "fail" in this case, we mean set
1788 ** pWalker->eCode to zero and abort.
1789 **
1790 ** This callback is used by multiple expression walkers.
1791 */
1792 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1793   UNUSED_PARAMETER(NotUsed);
1794   pWalker->eCode = 0;
1795   return WRC_Abort;
1796 }
1797 
1798 /*
1799 ** If the input expression is an ID with the name "true" or "false"
1800 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1801 ** the conversion happened, and zero if the expression is unaltered.
1802 */
1803 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1804   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1805   if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1806    || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1807   ){
1808     pExpr->op = TK_TRUEFALSE;
1809     return 1;
1810   }
1811   return 0;
1812 }
1813 
1814 /*
1815 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1816 ** and 0 if it is FALSE.
1817 */
1818 int sqlite3ExprTruthValue(const Expr *pExpr){
1819   assert( pExpr->op==TK_TRUEFALSE );
1820   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1821        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1822   return pExpr->u.zToken[4]==0;
1823 }
1824 
1825 
1826 /*
1827 ** These routines are Walker callbacks used to check expressions to
1828 ** see if they are "constant" for some definition of constant.  The
1829 ** Walker.eCode value determines the type of "constant" we are looking
1830 ** for.
1831 **
1832 ** These callback routines are used to implement the following:
1833 **
1834 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1835 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1836 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1837 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1838 **
1839 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1840 ** is found to not be a constant.
1841 **
1842 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1843 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1844 ** an existing schema and 4 when processing a new statement.  A bound
1845 ** parameter raises an error for new statements, but is silently converted
1846 ** to NULL for existing schemas.  This allows sqlite_master tables that
1847 ** contain a bound parameter because they were generated by older versions
1848 ** of SQLite to be parsed by newer versions of SQLite without raising a
1849 ** malformed schema error.
1850 */
1851 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1852 
1853   /* If pWalker->eCode is 2 then any term of the expression that comes from
1854   ** the ON or USING clauses of a left join disqualifies the expression
1855   ** from being considered constant. */
1856   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1857     pWalker->eCode = 0;
1858     return WRC_Abort;
1859   }
1860 
1861   switch( pExpr->op ){
1862     /* Consider functions to be constant if all their arguments are constant
1863     ** and either pWalker->eCode==4 or 5 or the function has the
1864     ** SQLITE_FUNC_CONST flag. */
1865     case TK_FUNCTION:
1866       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1867         return WRC_Continue;
1868       }else{
1869         pWalker->eCode = 0;
1870         return WRC_Abort;
1871       }
1872     case TK_ID:
1873       /* Convert "true" or "false" in a DEFAULT clause into the
1874       ** appropriate TK_TRUEFALSE operator */
1875       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1876         return WRC_Prune;
1877       }
1878       /* Fall thru */
1879     case TK_COLUMN:
1880     case TK_AGG_FUNCTION:
1881     case TK_AGG_COLUMN:
1882       testcase( pExpr->op==TK_ID );
1883       testcase( pExpr->op==TK_COLUMN );
1884       testcase( pExpr->op==TK_AGG_FUNCTION );
1885       testcase( pExpr->op==TK_AGG_COLUMN );
1886       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1887         return WRC_Continue;
1888       }
1889       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1890         return WRC_Continue;
1891       }
1892       /* Fall through */
1893     case TK_IF_NULL_ROW:
1894     case TK_REGISTER:
1895       testcase( pExpr->op==TK_REGISTER );
1896       testcase( pExpr->op==TK_IF_NULL_ROW );
1897       pWalker->eCode = 0;
1898       return WRC_Abort;
1899     case TK_VARIABLE:
1900       if( pWalker->eCode==5 ){
1901         /* Silently convert bound parameters that appear inside of CREATE
1902         ** statements into a NULL when parsing the CREATE statement text out
1903         ** of the sqlite_master table */
1904         pExpr->op = TK_NULL;
1905       }else if( pWalker->eCode==4 ){
1906         /* A bound parameter in a CREATE statement that originates from
1907         ** sqlite3_prepare() causes an error */
1908         pWalker->eCode = 0;
1909         return WRC_Abort;
1910       }
1911       /* Fall through */
1912     default:
1913       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1914       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1915       return WRC_Continue;
1916   }
1917 }
1918 static int exprIsConst(Expr *p, int initFlag, int iCur){
1919   Walker w;
1920   w.eCode = initFlag;
1921   w.xExprCallback = exprNodeIsConstant;
1922   w.xSelectCallback = sqlite3SelectWalkFail;
1923 #ifdef SQLITE_DEBUG
1924   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1925 #endif
1926   w.u.iCur = iCur;
1927   sqlite3WalkExpr(&w, p);
1928   return w.eCode;
1929 }
1930 
1931 /*
1932 ** Walk an expression tree.  Return non-zero if the expression is constant
1933 ** and 0 if it involves variables or function calls.
1934 **
1935 ** For the purposes of this function, a double-quoted string (ex: "abc")
1936 ** is considered a variable but a single-quoted string (ex: 'abc') is
1937 ** a constant.
1938 */
1939 int sqlite3ExprIsConstant(Expr *p){
1940   return exprIsConst(p, 1, 0);
1941 }
1942 
1943 /*
1944 ** Walk an expression tree.  Return non-zero if
1945 **
1946 **   (1) the expression is constant, and
1947 **   (2) the expression does originate in the ON or USING clause
1948 **       of a LEFT JOIN, and
1949 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
1950 **       operands created by the constant propagation optimization.
1951 **
1952 ** When this routine returns true, it indicates that the expression
1953 ** can be added to the pParse->pConstExpr list and evaluated once when
1954 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
1955 */
1956 int sqlite3ExprIsConstantNotJoin(Expr *p){
1957   return exprIsConst(p, 2, 0);
1958 }
1959 
1960 /*
1961 ** Walk an expression tree.  Return non-zero if the expression is constant
1962 ** for any single row of the table with cursor iCur.  In other words, the
1963 ** expression must not refer to any non-deterministic function nor any
1964 ** table other than iCur.
1965 */
1966 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1967   return exprIsConst(p, 3, iCur);
1968 }
1969 
1970 
1971 /*
1972 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1973 */
1974 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1975   ExprList *pGroupBy = pWalker->u.pGroupBy;
1976   int i;
1977 
1978   /* Check if pExpr is identical to any GROUP BY term. If so, consider
1979   ** it constant.  */
1980   for(i=0; i<pGroupBy->nExpr; i++){
1981     Expr *p = pGroupBy->a[i].pExpr;
1982     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1983       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1984       if( sqlite3IsBinary(pColl) ){
1985         return WRC_Prune;
1986       }
1987     }
1988   }
1989 
1990   /* Check if pExpr is a sub-select. If so, consider it variable. */
1991   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1992     pWalker->eCode = 0;
1993     return WRC_Abort;
1994   }
1995 
1996   return exprNodeIsConstant(pWalker, pExpr);
1997 }
1998 
1999 /*
2000 ** Walk the expression tree passed as the first argument. Return non-zero
2001 ** if the expression consists entirely of constants or copies of terms
2002 ** in pGroupBy that sort with the BINARY collation sequence.
2003 **
2004 ** This routine is used to determine if a term of the HAVING clause can
2005 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2006 ** the value of the HAVING clause term must be the same for all members of
2007 ** a "group".  The requirement that the GROUP BY term must be BINARY
2008 ** assumes that no other collating sequence will have a finer-grained
2009 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2010 ** A=B in every other collating sequence.  The requirement that the
2011 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2012 ** to promote HAVING clauses that use the same alternative collating
2013 ** sequence as the GROUP BY term, but that is much harder to check,
2014 ** alternative collating sequences are uncommon, and this is only an
2015 ** optimization, so we take the easy way out and simply require the
2016 ** GROUP BY to use the BINARY collating sequence.
2017 */
2018 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2019   Walker w;
2020   w.eCode = 1;
2021   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2022   w.xSelectCallback = 0;
2023   w.u.pGroupBy = pGroupBy;
2024   w.pParse = pParse;
2025   sqlite3WalkExpr(&w, p);
2026   return w.eCode;
2027 }
2028 
2029 /*
2030 ** Walk an expression tree.  Return non-zero if the expression is constant
2031 ** or a function call with constant arguments.  Return and 0 if there
2032 ** are any variables.
2033 **
2034 ** For the purposes of this function, a double-quoted string (ex: "abc")
2035 ** is considered a variable but a single-quoted string (ex: 'abc') is
2036 ** a constant.
2037 */
2038 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2039   assert( isInit==0 || isInit==1 );
2040   return exprIsConst(p, 4+isInit, 0);
2041 }
2042 
2043 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2044 /*
2045 ** Walk an expression tree.  Return 1 if the expression contains a
2046 ** subquery of some kind.  Return 0 if there are no subqueries.
2047 */
2048 int sqlite3ExprContainsSubquery(Expr *p){
2049   Walker w;
2050   w.eCode = 1;
2051   w.xExprCallback = sqlite3ExprWalkNoop;
2052   w.xSelectCallback = sqlite3SelectWalkFail;
2053 #ifdef SQLITE_DEBUG
2054   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2055 #endif
2056   sqlite3WalkExpr(&w, p);
2057   return w.eCode==0;
2058 }
2059 #endif
2060 
2061 /*
2062 ** If the expression p codes a constant integer that is small enough
2063 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2064 ** in *pValue.  If the expression is not an integer or if it is too big
2065 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2066 */
2067 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2068   int rc = 0;
2069   if( p==0 ) return 0;  /* Can only happen following on OOM */
2070 
2071   /* If an expression is an integer literal that fits in a signed 32-bit
2072   ** integer, then the EP_IntValue flag will have already been set */
2073   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2074            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2075 
2076   if( p->flags & EP_IntValue ){
2077     *pValue = p->u.iValue;
2078     return 1;
2079   }
2080   switch( p->op ){
2081     case TK_UPLUS: {
2082       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2083       break;
2084     }
2085     case TK_UMINUS: {
2086       int v;
2087       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2088         assert( v!=(-2147483647-1) );
2089         *pValue = -v;
2090         rc = 1;
2091       }
2092       break;
2093     }
2094     default: break;
2095   }
2096   return rc;
2097 }
2098 
2099 /*
2100 ** Return FALSE if there is no chance that the expression can be NULL.
2101 **
2102 ** If the expression might be NULL or if the expression is too complex
2103 ** to tell return TRUE.
2104 **
2105 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2106 ** when we know that a value cannot be NULL.  Hence, a false positive
2107 ** (returning TRUE when in fact the expression can never be NULL) might
2108 ** be a small performance hit but is otherwise harmless.  On the other
2109 ** hand, a false negative (returning FALSE when the result could be NULL)
2110 ** will likely result in an incorrect answer.  So when in doubt, return
2111 ** TRUE.
2112 */
2113 int sqlite3ExprCanBeNull(const Expr *p){
2114   u8 op;
2115   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2116     p = p->pLeft;
2117   }
2118   op = p->op;
2119   if( op==TK_REGISTER ) op = p->op2;
2120   switch( op ){
2121     case TK_INTEGER:
2122     case TK_STRING:
2123     case TK_FLOAT:
2124     case TK_BLOB:
2125       return 0;
2126     case TK_COLUMN:
2127       return ExprHasProperty(p, EP_CanBeNull) ||
2128              p->y.pTab==0 ||  /* Reference to column of index on expression */
2129              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2130     default:
2131       return 1;
2132   }
2133 }
2134 
2135 /*
2136 ** Return TRUE if the given expression is a constant which would be
2137 ** unchanged by OP_Affinity with the affinity given in the second
2138 ** argument.
2139 **
2140 ** This routine is used to determine if the OP_Affinity operation
2141 ** can be omitted.  When in doubt return FALSE.  A false negative
2142 ** is harmless.  A false positive, however, can result in the wrong
2143 ** answer.
2144 */
2145 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2146   u8 op;
2147   if( aff==SQLITE_AFF_BLOB ) return 1;
2148   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2149   op = p->op;
2150   if( op==TK_REGISTER ) op = p->op2;
2151   switch( op ){
2152     case TK_INTEGER: {
2153       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2154     }
2155     case TK_FLOAT: {
2156       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2157     }
2158     case TK_STRING: {
2159       return aff==SQLITE_AFF_TEXT;
2160     }
2161     case TK_BLOB: {
2162       return 1;
2163     }
2164     case TK_COLUMN: {
2165       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2166       return p->iColumn<0
2167           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2168     }
2169     default: {
2170       return 0;
2171     }
2172   }
2173 }
2174 
2175 /*
2176 ** Return TRUE if the given string is a row-id column name.
2177 */
2178 int sqlite3IsRowid(const char *z){
2179   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2180   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2181   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2182   return 0;
2183 }
2184 
2185 /*
2186 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2187 ** that can be simplified to a direct table access, then return
2188 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2189 ** or if the SELECT statement needs to be manifested into a transient
2190 ** table, then return NULL.
2191 */
2192 #ifndef SQLITE_OMIT_SUBQUERY
2193 static Select *isCandidateForInOpt(Expr *pX){
2194   Select *p;
2195   SrcList *pSrc;
2196   ExprList *pEList;
2197   Table *pTab;
2198   int i;
2199   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2200   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2201   p = pX->x.pSelect;
2202   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2203   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2204     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2205     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2206     return 0; /* No DISTINCT keyword and no aggregate functions */
2207   }
2208   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2209   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2210   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2211   pSrc = p->pSrc;
2212   assert( pSrc!=0 );
2213   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2214   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2215   pTab = pSrc->a[0].pTab;
2216   assert( pTab!=0 );
2217   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2218   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2219   pEList = p->pEList;
2220   assert( pEList!=0 );
2221   /* All SELECT results must be columns. */
2222   for(i=0; i<pEList->nExpr; i++){
2223     Expr *pRes = pEList->a[i].pExpr;
2224     if( pRes->op!=TK_COLUMN ) return 0;
2225     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2226   }
2227   return p;
2228 }
2229 #endif /* SQLITE_OMIT_SUBQUERY */
2230 
2231 #ifndef SQLITE_OMIT_SUBQUERY
2232 /*
2233 ** Generate code that checks the left-most column of index table iCur to see if
2234 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2235 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2236 ** to be set to NULL if iCur contains one or more NULL values.
2237 */
2238 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2239   int addr1;
2240   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2241   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2242   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2243   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2244   VdbeComment((v, "first_entry_in(%d)", iCur));
2245   sqlite3VdbeJumpHere(v, addr1);
2246 }
2247 #endif
2248 
2249 
2250 #ifndef SQLITE_OMIT_SUBQUERY
2251 /*
2252 ** The argument is an IN operator with a list (not a subquery) on the
2253 ** right-hand side.  Return TRUE if that list is constant.
2254 */
2255 static int sqlite3InRhsIsConstant(Expr *pIn){
2256   Expr *pLHS;
2257   int res;
2258   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2259   pLHS = pIn->pLeft;
2260   pIn->pLeft = 0;
2261   res = sqlite3ExprIsConstant(pIn);
2262   pIn->pLeft = pLHS;
2263   return res;
2264 }
2265 #endif
2266 
2267 /*
2268 ** This function is used by the implementation of the IN (...) operator.
2269 ** The pX parameter is the expression on the RHS of the IN operator, which
2270 ** might be either a list of expressions or a subquery.
2271 **
2272 ** The job of this routine is to find or create a b-tree object that can
2273 ** be used either to test for membership in the RHS set or to iterate through
2274 ** all members of the RHS set, skipping duplicates.
2275 **
2276 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2277 ** and pX->iTable is set to the index of that cursor.
2278 **
2279 ** The returned value of this function indicates the b-tree type, as follows:
2280 **
2281 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2282 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2283 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2284 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2285 **                         populated epheremal table.
2286 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2287 **                         implemented as a sequence of comparisons.
2288 **
2289 ** An existing b-tree might be used if the RHS expression pX is a simple
2290 ** subquery such as:
2291 **
2292 **     SELECT <column1>, <column2>... FROM <table>
2293 **
2294 ** If the RHS of the IN operator is a list or a more complex subquery, then
2295 ** an ephemeral table might need to be generated from the RHS and then
2296 ** pX->iTable made to point to the ephemeral table instead of an
2297 ** existing table.
2298 **
2299 ** The inFlags parameter must contain, at a minimum, one of the bits
2300 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2301 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2302 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2303 ** be used to loop over all values of the RHS of the IN operator.
2304 **
2305 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2306 ** through the set members) then the b-tree must not contain duplicates.
2307 ** An epheremal table will be created unless the selected columns are guaranteed
2308 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2309 ** a UNIQUE constraint or index.
2310 **
2311 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2312 ** for fast set membership tests) then an epheremal table must
2313 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2314 ** index can be found with the specified <columns> as its left-most.
2315 **
2316 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2317 ** if the RHS of the IN operator is a list (not a subquery) then this
2318 ** routine might decide that creating an ephemeral b-tree for membership
2319 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2320 ** calling routine should implement the IN operator using a sequence
2321 ** of Eq or Ne comparison operations.
2322 **
2323 ** When the b-tree is being used for membership tests, the calling function
2324 ** might need to know whether or not the RHS side of the IN operator
2325 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2326 ** if there is any chance that the (...) might contain a NULL value at
2327 ** runtime, then a register is allocated and the register number written
2328 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2329 ** NULL value, then *prRhsHasNull is left unchanged.
2330 **
2331 ** If a register is allocated and its location stored in *prRhsHasNull, then
2332 ** the value in that register will be NULL if the b-tree contains one or more
2333 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2334 ** NULL values.
2335 **
2336 ** If the aiMap parameter is not NULL, it must point to an array containing
2337 ** one element for each column returned by the SELECT statement on the RHS
2338 ** of the IN(...) operator. The i'th entry of the array is populated with the
2339 ** offset of the index column that matches the i'th column returned by the
2340 ** SELECT. For example, if the expression and selected index are:
2341 **
2342 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2343 **   CREATE INDEX i1 ON t1(b, c, a);
2344 **
2345 ** then aiMap[] is populated with {2, 0, 1}.
2346 */
2347 #ifndef SQLITE_OMIT_SUBQUERY
2348 int sqlite3FindInIndex(
2349   Parse *pParse,             /* Parsing context */
2350   Expr *pX,                  /* The right-hand side (RHS) of the IN operator */
2351   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2352   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2353   int *aiMap                 /* Mapping from Index fields to RHS fields */
2354 ){
2355   Select *p;                            /* SELECT to the right of IN operator */
2356   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2357   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2358   int mustBeUnique;                     /* True if RHS must be unique */
2359   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2360 
2361   assert( pX->op==TK_IN );
2362   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2363 
2364   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2365   ** whether or not the SELECT result contains NULL values, check whether
2366   ** or not NULL is actually possible (it may not be, for example, due
2367   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2368   ** set prRhsHasNull to 0 before continuing.  */
2369   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2370     int i;
2371     ExprList *pEList = pX->x.pSelect->pEList;
2372     for(i=0; i<pEList->nExpr; i++){
2373       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2374     }
2375     if( i==pEList->nExpr ){
2376       prRhsHasNull = 0;
2377     }
2378   }
2379 
2380   /* Check to see if an existing table or index can be used to
2381   ** satisfy the query.  This is preferable to generating a new
2382   ** ephemeral table.  */
2383   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2384     sqlite3 *db = pParse->db;              /* Database connection */
2385     Table *pTab;                           /* Table <table>. */
2386     i16 iDb;                               /* Database idx for pTab */
2387     ExprList *pEList = p->pEList;
2388     int nExpr = pEList->nExpr;
2389 
2390     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2391     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2392     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2393     pTab = p->pSrc->a[0].pTab;
2394 
2395     /* Code an OP_Transaction and OP_TableLock for <table>. */
2396     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2397     sqlite3CodeVerifySchema(pParse, iDb);
2398     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2399 
2400     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2401     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2402       /* The "x IN (SELECT rowid FROM table)" case */
2403       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2404       VdbeCoverage(v);
2405 
2406       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2407       eType = IN_INDEX_ROWID;
2408       ExplainQueryPlan((pParse, 0,
2409             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2410       sqlite3VdbeJumpHere(v, iAddr);
2411     }else{
2412       Index *pIdx;                         /* Iterator variable */
2413       int affinity_ok = 1;
2414       int i;
2415 
2416       /* Check that the affinity that will be used to perform each
2417       ** comparison is the same as the affinity of each column in table
2418       ** on the RHS of the IN operator.  If it not, it is not possible to
2419       ** use any index of the RHS table.  */
2420       for(i=0; i<nExpr && affinity_ok; i++){
2421         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2422         int iCol = pEList->a[i].pExpr->iColumn;
2423         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2424         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2425         testcase( cmpaff==SQLITE_AFF_BLOB );
2426         testcase( cmpaff==SQLITE_AFF_TEXT );
2427         switch( cmpaff ){
2428           case SQLITE_AFF_BLOB:
2429             break;
2430           case SQLITE_AFF_TEXT:
2431             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2432             ** other has no affinity and the other side is TEXT.  Hence,
2433             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2434             ** and for the term on the LHS of the IN to have no affinity. */
2435             assert( idxaff==SQLITE_AFF_TEXT );
2436             break;
2437           default:
2438             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2439         }
2440       }
2441 
2442       if( affinity_ok ){
2443         /* Search for an existing index that will work for this IN operator */
2444         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2445           Bitmask colUsed;      /* Columns of the index used */
2446           Bitmask mCol;         /* Mask for the current column */
2447           if( pIdx->nColumn<nExpr ) continue;
2448           if( pIdx->pPartIdxWhere!=0 ) continue;
2449           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2450           ** BITMASK(nExpr) without overflowing */
2451           testcase( pIdx->nColumn==BMS-2 );
2452           testcase( pIdx->nColumn==BMS-1 );
2453           if( pIdx->nColumn>=BMS-1 ) continue;
2454           if( mustBeUnique ){
2455             if( pIdx->nKeyCol>nExpr
2456              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2457             ){
2458               continue;  /* This index is not unique over the IN RHS columns */
2459             }
2460           }
2461 
2462           colUsed = 0;   /* Columns of index used so far */
2463           for(i=0; i<nExpr; i++){
2464             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2465             Expr *pRhs = pEList->a[i].pExpr;
2466             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2467             int j;
2468 
2469             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2470             for(j=0; j<nExpr; j++){
2471               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2472               assert( pIdx->azColl[j] );
2473               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2474                 continue;
2475               }
2476               break;
2477             }
2478             if( j==nExpr ) break;
2479             mCol = MASKBIT(j);
2480             if( mCol & colUsed ) break; /* Each column used only once */
2481             colUsed |= mCol;
2482             if( aiMap ) aiMap[i] = j;
2483           }
2484 
2485           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2486           if( colUsed==(MASKBIT(nExpr)-1) ){
2487             /* If we reach this point, that means the index pIdx is usable */
2488             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2489             ExplainQueryPlan((pParse, 0,
2490                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2491             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2492             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2493             VdbeComment((v, "%s", pIdx->zName));
2494             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2495             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2496 
2497             if( prRhsHasNull ){
2498 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2499               i64 mask = (1<<nExpr)-1;
2500               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2501                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2502 #endif
2503               *prRhsHasNull = ++pParse->nMem;
2504               if( nExpr==1 ){
2505                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2506               }
2507             }
2508             sqlite3VdbeJumpHere(v, iAddr);
2509           }
2510         } /* End loop over indexes */
2511       } /* End if( affinity_ok ) */
2512     } /* End if not an rowid index */
2513   } /* End attempt to optimize using an index */
2514 
2515   /* If no preexisting index is available for the IN clause
2516   ** and IN_INDEX_NOOP is an allowed reply
2517   ** and the RHS of the IN operator is a list, not a subquery
2518   ** and the RHS is not constant or has two or fewer terms,
2519   ** then it is not worth creating an ephemeral table to evaluate
2520   ** the IN operator so return IN_INDEX_NOOP.
2521   */
2522   if( eType==0
2523    && (inFlags & IN_INDEX_NOOP_OK)
2524    && !ExprHasProperty(pX, EP_xIsSelect)
2525    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2526   ){
2527     eType = IN_INDEX_NOOP;
2528   }
2529 
2530   if( eType==0 ){
2531     /* Could not find an existing table or index to use as the RHS b-tree.
2532     ** We will have to generate an ephemeral table to do the job.
2533     */
2534     u32 savedNQueryLoop = pParse->nQueryLoop;
2535     int rMayHaveNull = 0;
2536     eType = IN_INDEX_EPH;
2537     if( inFlags & IN_INDEX_LOOP ){
2538       pParse->nQueryLoop = 0;
2539       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2540         eType = IN_INDEX_ROWID;
2541       }
2542     }else if( prRhsHasNull ){
2543       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2544     }
2545     assert( pX->op==TK_IN );
2546     sqlite3CodeRhsOfIN(pParse, pX, eType==IN_INDEX_ROWID);
2547     if( rMayHaveNull ){
2548       sqlite3SetHasNullFlag(v, pX->iTable, rMayHaveNull);
2549     }
2550     pParse->nQueryLoop = savedNQueryLoop;
2551   }else{
2552     pX->iTable = iTab;
2553   }
2554 
2555   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2556     int i, n;
2557     n = sqlite3ExprVectorSize(pX->pLeft);
2558     for(i=0; i<n; i++) aiMap[i] = i;
2559   }
2560   return eType;
2561 }
2562 #endif
2563 
2564 #ifndef SQLITE_OMIT_SUBQUERY
2565 /*
2566 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2567 ** function allocates and returns a nul-terminated string containing
2568 ** the affinities to be used for each column of the comparison.
2569 **
2570 ** It is the responsibility of the caller to ensure that the returned
2571 ** string is eventually freed using sqlite3DbFree().
2572 */
2573 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2574   Expr *pLeft = pExpr->pLeft;
2575   int nVal = sqlite3ExprVectorSize(pLeft);
2576   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2577   char *zRet;
2578 
2579   assert( pExpr->op==TK_IN );
2580   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2581   if( zRet ){
2582     int i;
2583     for(i=0; i<nVal; i++){
2584       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2585       char a = sqlite3ExprAffinity(pA);
2586       if( pSelect ){
2587         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2588       }else{
2589         zRet[i] = a;
2590       }
2591     }
2592     zRet[nVal] = '\0';
2593   }
2594   return zRet;
2595 }
2596 #endif
2597 
2598 #ifndef SQLITE_OMIT_SUBQUERY
2599 /*
2600 ** Load the Parse object passed as the first argument with an error
2601 ** message of the form:
2602 **
2603 **   "sub-select returns N columns - expected M"
2604 */
2605 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2606   const char *zFmt = "sub-select returns %d columns - expected %d";
2607   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2608 }
2609 #endif
2610 
2611 /*
2612 ** Expression pExpr is a vector that has been used in a context where
2613 ** it is not permitted. If pExpr is a sub-select vector, this routine
2614 ** loads the Parse object with a message of the form:
2615 **
2616 **   "sub-select returns N columns - expected 1"
2617 **
2618 ** Or, if it is a regular scalar vector:
2619 **
2620 **   "row value misused"
2621 */
2622 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2623 #ifndef SQLITE_OMIT_SUBQUERY
2624   if( pExpr->flags & EP_xIsSelect ){
2625     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2626   }else
2627 #endif
2628   {
2629     sqlite3ErrorMsg(pParse, "row value misused");
2630   }
2631 }
2632 
2633 #ifndef SQLITE_OMIT_SUBQUERY
2634 /*
2635 ** Generate code that will construct an ephemeral table containing all terms
2636 ** in the RHS of an IN operator.  The IN operator can be in either of two
2637 ** forms:
2638 **
2639 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2640 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2641 **
2642 ** The pExpr parameter is the IN operator.
2643 **
2644 ** If parameter isRowid is non-zero, then LHS of the IN operator is guaranteed
2645 ** to be a non-null integer. In this case, the ephemeral table can be an
2646 ** table B-Tree that keyed by only integers.  The more general cases uses
2647 ** an index B-Tree which can have arbitrary keys, but is slower to both
2648 ** read and write.
2649 **
2650 ** If the LHS expression ("x" in the examples) is a column value, or
2651 ** the SELECT statement returns a column value, then the affinity of that
2652 ** column is used to build the index keys. If both 'x' and the
2653 ** SELECT... statement are columns, then numeric affinity is used
2654 ** if either column has NUMERIC or INTEGER affinity. If neither
2655 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2656 ** is used.
2657 */
2658 void sqlite3CodeRhsOfIN(
2659   Parse *pParse,          /* Parsing context */
2660   Expr *pExpr,            /* The IN operator */
2661   int isRowid             /* If true, LHS is a rowid */
2662 ){
2663   int jmpIfDynamic = -1;      /* One-time test address */
2664   int addr;                   /* Address of OP_OpenEphemeral instruction */
2665   Expr *pLeft;                /* the LHS of the IN operator */
2666   KeyInfo *pKeyInfo = 0;      /* Key information */
2667   int nVal;                   /* Size of vector pLeft */
2668   Vdbe *v;                    /* The prepared statement under construction */
2669 
2670   v = sqlite3GetVdbe(pParse);
2671   assert( v!=0 );
2672 
2673   /* The evaluation of the RHS of IN operator must be repeated every time it
2674   ** is encountered if any of the following is true:
2675   **
2676   **    *  The right-hand side is a correlated subquery
2677   **    *  The right-hand side is an expression list containing variables
2678   **    *  We are inside a trigger
2679   **
2680   ** If all of the above are false, then we can run this code just once
2681   ** save the results, and reuse the same result on subsequent invocations.
2682   */
2683   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2684     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2685   }
2686 
2687   /* Check to see if this is a vector IN operator */
2688   pLeft = pExpr->pLeft;
2689   nVal = sqlite3ExprVectorSize(pLeft);
2690   assert( !isRowid || nVal==1 );
2691 
2692   /* Construct the ephemeral table that will contain the content of
2693   ** RHS of the IN operator.
2694   */
2695   pExpr->iTable = pParse->nTab++;
2696   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2697       pExpr->iTable, (isRowid?0:nVal));
2698   pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2699 
2700   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2701     /* Case 1:     expr IN (SELECT ...)
2702     **
2703     ** Generate code to write the results of the select into the temporary
2704     ** table allocated and opened above.
2705     */
2706     Select *pSelect = pExpr->x.pSelect;
2707     ExprList *pEList = pSelect->pEList;
2708 
2709     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY",
2710         jmpIfDynamic>=0?"":"CORRELATED "
2711     ));
2712     assert( !isRowid );
2713     /* If the LHS and RHS of the IN operator do not match, that
2714     ** error will have been caught long before we reach this point. */
2715     if( ALWAYS(pEList->nExpr==nVal) ){
2716       SelectDest dest;
2717       int i;
2718       sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2719       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2720       pSelect->iLimit = 0;
2721       testcase( pSelect->selFlags & SF_Distinct );
2722       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2723       if( sqlite3Select(pParse, pSelect, &dest) ){
2724         sqlite3DbFree(pParse->db, dest.zAffSdst);
2725         sqlite3KeyInfoUnref(pKeyInfo);
2726         return;
2727       }
2728       sqlite3DbFree(pParse->db, dest.zAffSdst);
2729       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2730       assert( pEList!=0 );
2731       assert( pEList->nExpr>0 );
2732       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2733       for(i=0; i<nVal; i++){
2734         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2735         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2736             pParse, p, pEList->a[i].pExpr
2737         );
2738       }
2739     }
2740   }else if( ALWAYS(pExpr->x.pList!=0) ){
2741     /* Case 2:     expr IN (exprlist)
2742     **
2743     ** For each expression, build an index key from the evaluation and
2744     ** store it in the temporary table. If <expr> is a column, then use
2745     ** that columns affinity when building index keys. If <expr> is not
2746     ** a column, use numeric affinity.
2747     */
2748     char affinity;            /* Affinity of the LHS of the IN */
2749     int i;
2750     ExprList *pList = pExpr->x.pList;
2751     struct ExprList_item *pItem;
2752     int r1, r2, r3;
2753     affinity = sqlite3ExprAffinity(pLeft);
2754     if( !affinity ){
2755       affinity = SQLITE_AFF_BLOB;
2756     }
2757     if( pKeyInfo ){
2758       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2759       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2760     }
2761 
2762     /* Loop through each expression in <exprlist>. */
2763     r1 = sqlite3GetTempReg(pParse);
2764     r2 = sqlite3GetTempReg(pParse);
2765     if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2766     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2767       Expr *pE2 = pItem->pExpr;
2768       int iValToIns;
2769 
2770       /* If the expression is not constant then we will need to
2771       ** disable the test that was generated above that makes sure
2772       ** this code only executes once.  Because for a non-constant
2773       ** expression we need to rerun this code each time.
2774       */
2775       if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2776         sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2777         jmpIfDynamic = -1;
2778       }
2779 
2780       /* Evaluate the expression and insert it into the temp table */
2781       if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2782         sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2783       }else{
2784         r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2785         if( isRowid ){
2786           sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2787                             sqlite3VdbeCurrentAddr(v)+2);
2788           VdbeCoverage(v);
2789           sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2790         }else{
2791           sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2792           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2793         }
2794       }
2795     }
2796     sqlite3ReleaseTempReg(pParse, r1);
2797     sqlite3ReleaseTempReg(pParse, r2);
2798   }
2799   if( pKeyInfo ){
2800     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2801   }
2802   if( jmpIfDynamic>=0 ){
2803     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2804   }
2805 }
2806 #endif /* SQLITE_OMIT_SUBQUERY */
2807 
2808 /*
2809 ** Generate code for scalar subqueries used as a subquery expression
2810 ** or EXISTS operator:
2811 **
2812 **     (SELECT a FROM b)          -- subquery
2813 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2814 **
2815 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2816 **
2817 ** The register that holds the result.  For a multi-column SELECT,
2818 ** the result is stored in a contiguous array of registers and the
2819 ** return value is the register of the left-most result column.
2820 ** Return 0 if an error occurs.
2821 */
2822 #ifndef SQLITE_OMIT_SUBQUERY
2823 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2824   int jmpIfDynamic = -1;      /* One-time test address */
2825   int rReg = 0;               /* Register storing resulting */
2826   Select *pSel;               /* SELECT statement to encode */
2827   SelectDest dest;            /* How to deal with SELECT result */
2828   int nReg;                   /* Registers to allocate */
2829   Expr *pLimit;               /* New limit expression */
2830   Vdbe *v = sqlite3GetVdbe(pParse);
2831   assert( v!=0 );
2832 
2833   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2834   ** is encountered if any of the following is true:
2835   **
2836   **    *  The right-hand side is a correlated subquery
2837   **    *  The right-hand side is an expression list containing variables
2838   **    *  We are inside a trigger
2839   **
2840   ** If all of the above are false, then we can run this code just once
2841   ** save the results, and reuse the same result on subsequent invocations.
2842   */
2843   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2844     jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2845   }
2846 
2847   /* For a SELECT, generate code to put the values for all columns of
2848   ** the first row into an array of registers and return the index of
2849   ** the first register.
2850   **
2851   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2852   ** into a register and return that register number.
2853   **
2854   ** In both cases, the query is augmented with "LIMIT 1".  Any
2855   ** preexisting limit is discarded in place of the new LIMIT 1.
2856   */
2857   testcase( pExpr->op==TK_EXISTS );
2858   testcase( pExpr->op==TK_SELECT );
2859   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2860   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2861 
2862   pSel = pExpr->x.pSelect;
2863   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY",
2864         jmpIfDynamic>=0?"":"CORRELATED "));
2865   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2866   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2867   pParse->nMem += nReg;
2868   if( pExpr->op==TK_SELECT ){
2869     dest.eDest = SRT_Mem;
2870     dest.iSdst = dest.iSDParm;
2871     dest.nSdst = nReg;
2872     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2873     VdbeComment((v, "Init subquery result"));
2874   }else{
2875     dest.eDest = SRT_Exists;
2876     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2877     VdbeComment((v, "Init EXISTS result"));
2878   }
2879   pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2880   if( pSel->pLimit ){
2881     sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2882     pSel->pLimit->pLeft = pLimit;
2883   }else{
2884     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2885   }
2886   pSel->iLimit = 0;
2887   if( sqlite3Select(pParse, pSel, &dest) ){
2888     return 0;
2889   }
2890   rReg = dest.iSDParm;
2891   ExprSetVVAProperty(pExpr, EP_NoReduce);
2892 
2893   if( jmpIfDynamic>=0 ){
2894     sqlite3VdbeJumpHere(v, jmpIfDynamic);
2895   }
2896 
2897   return rReg;
2898 }
2899 #endif /* SQLITE_OMIT_SUBQUERY */
2900 
2901 #ifndef SQLITE_OMIT_SUBQUERY
2902 /*
2903 ** Expr pIn is an IN(...) expression. This function checks that the
2904 ** sub-select on the RHS of the IN() operator has the same number of
2905 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2906 ** a sub-query, that the LHS is a vector of size 1.
2907 */
2908 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2909   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2910   if( (pIn->flags & EP_xIsSelect) ){
2911     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2912       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2913       return 1;
2914     }
2915   }else if( nVector!=1 ){
2916     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2917     return 1;
2918   }
2919   return 0;
2920 }
2921 #endif
2922 
2923 #ifndef SQLITE_OMIT_SUBQUERY
2924 /*
2925 ** Generate code for an IN expression.
2926 **
2927 **      x IN (SELECT ...)
2928 **      x IN (value, value, ...)
2929 **
2930 ** The left-hand side (LHS) is a scalar or vector expression.  The
2931 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2932 ** subquery.  If the RHS is a subquery, the number of result columns must
2933 ** match the number of columns in the vector on the LHS.  If the RHS is
2934 ** a list of values, the LHS must be a scalar.
2935 **
2936 ** The IN operator is true if the LHS value is contained within the RHS.
2937 ** The result is false if the LHS is definitely not in the RHS.  The
2938 ** result is NULL if the presence of the LHS in the RHS cannot be
2939 ** determined due to NULLs.
2940 **
2941 ** This routine generates code that jumps to destIfFalse if the LHS is not
2942 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
2943 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
2944 ** within the RHS then fall through.
2945 **
2946 ** See the separate in-operator.md documentation file in the canonical
2947 ** SQLite source tree for additional information.
2948 */
2949 static void sqlite3ExprCodeIN(
2950   Parse *pParse,        /* Parsing and code generating context */
2951   Expr *pExpr,          /* The IN expression */
2952   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
2953   int destIfNull        /* Jump here if the results are unknown due to NULLs */
2954 ){
2955   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
2956   int eType;            /* Type of the RHS */
2957   int rLhs;             /* Register(s) holding the LHS values */
2958   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
2959   Vdbe *v;              /* Statement under construction */
2960   int *aiMap = 0;       /* Map from vector field to index column */
2961   char *zAff = 0;       /* Affinity string for comparisons */
2962   int nVector;          /* Size of vectors for this IN operator */
2963   int iDummy;           /* Dummy parameter to exprCodeVector() */
2964   Expr *pLeft;          /* The LHS of the IN operator */
2965   int i;                /* loop counter */
2966   int destStep2;        /* Where to jump when NULLs seen in step 2 */
2967   int destStep6 = 0;    /* Start of code for Step 6 */
2968   int addrTruthOp;      /* Address of opcode that determines the IN is true */
2969   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
2970   int addrTop;          /* Top of the step-6 loop */
2971 
2972   pLeft = pExpr->pLeft;
2973   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2974   zAff = exprINAffinity(pParse, pExpr);
2975   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2976   aiMap = (int*)sqlite3DbMallocZero(
2977       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2978   );
2979   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2980 
2981   /* Attempt to compute the RHS. After this step, if anything other than
2982   ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2983   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2984   ** the RHS has not yet been coded.  */
2985   v = pParse->pVdbe;
2986   assert( v!=0 );       /* OOM detected prior to this routine */
2987   VdbeNoopComment((v, "begin IN expr"));
2988   eType = sqlite3FindInIndex(pParse, pExpr,
2989                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2990                              destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2991 
2992   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2993        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2994   );
2995 #ifdef SQLITE_DEBUG
2996   /* Confirm that aiMap[] contains nVector integer values between 0 and
2997   ** nVector-1. */
2998   for(i=0; i<nVector; i++){
2999     int j, cnt;
3000     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3001     assert( cnt==1 );
3002   }
3003 #endif
3004 
3005   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3006   ** vector, then it is stored in an array of nVector registers starting
3007   ** at r1.
3008   **
3009   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3010   ** so that the fields are in the same order as an existing index.   The
3011   ** aiMap[] array contains a mapping from the original LHS field order to
3012   ** the field order that matches the RHS index.
3013   */
3014   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3015   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3016   if( i==nVector ){
3017     /* LHS fields are not reordered */
3018     rLhs = rLhsOrig;
3019   }else{
3020     /* Need to reorder the LHS fields according to aiMap */
3021     rLhs = sqlite3GetTempRange(pParse, nVector);
3022     for(i=0; i<nVector; i++){
3023       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3024     }
3025   }
3026 
3027   /* If sqlite3FindInIndex() did not find or create an index that is
3028   ** suitable for evaluating the IN operator, then evaluate using a
3029   ** sequence of comparisons.
3030   **
3031   ** This is step (1) in the in-operator.md optimized algorithm.
3032   */
3033   if( eType==IN_INDEX_NOOP ){
3034     ExprList *pList = pExpr->x.pList;
3035     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3036     int labelOk = sqlite3VdbeMakeLabel(v);
3037     int r2, regToFree;
3038     int regCkNull = 0;
3039     int ii;
3040     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3041     if( destIfNull!=destIfFalse ){
3042       regCkNull = sqlite3GetTempReg(pParse);
3043       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3044     }
3045     for(ii=0; ii<pList->nExpr; ii++){
3046       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3047       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3048         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3049       }
3050       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3051         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3052                           (void*)pColl, P4_COLLSEQ);
3053         VdbeCoverageIf(v, ii<pList->nExpr-1);
3054         VdbeCoverageIf(v, ii==pList->nExpr-1);
3055         sqlite3VdbeChangeP5(v, zAff[0]);
3056       }else{
3057         assert( destIfNull==destIfFalse );
3058         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3059                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3060         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3061       }
3062       sqlite3ReleaseTempReg(pParse, regToFree);
3063     }
3064     if( regCkNull ){
3065       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3066       sqlite3VdbeGoto(v, destIfFalse);
3067     }
3068     sqlite3VdbeResolveLabel(v, labelOk);
3069     sqlite3ReleaseTempReg(pParse, regCkNull);
3070     goto sqlite3ExprCodeIN_finished;
3071   }
3072 
3073   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3074   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3075   ** We will then skip the binary search of the RHS.
3076   */
3077   if( destIfNull==destIfFalse ){
3078     destStep2 = destIfFalse;
3079   }else{
3080     destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3081   }
3082   for(i=0; i<nVector; i++){
3083     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3084     if( sqlite3ExprCanBeNull(p) ){
3085       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3086       VdbeCoverage(v);
3087     }
3088   }
3089 
3090   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3091   ** of the RHS using the LHS as a probe.  If found, the result is
3092   ** true.
3093   */
3094   if( eType==IN_INDEX_ROWID ){
3095     /* In this case, the RHS is the ROWID of table b-tree and so we also
3096     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3097     ** into a single opcode. */
3098     sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3099     VdbeCoverage(v);
3100     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3101   }else{
3102     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3103     if( destIfFalse==destIfNull ){
3104       /* Combine Step 3 and Step 5 into a single opcode */
3105       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3106                            rLhs, nVector); VdbeCoverage(v);
3107       goto sqlite3ExprCodeIN_finished;
3108     }
3109     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3110     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3111                                       rLhs, nVector); VdbeCoverage(v);
3112   }
3113 
3114   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3115   ** an match on the search above, then the result must be FALSE.
3116   */
3117   if( rRhsHasNull && nVector==1 ){
3118     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3119     VdbeCoverage(v);
3120   }
3121 
3122   /* Step 5.  If we do not care about the difference between NULL and
3123   ** FALSE, then just return false.
3124   */
3125   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3126 
3127   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3128   ** If any comparison is NULL, then the result is NULL.  If all
3129   ** comparisons are FALSE then the final result is FALSE.
3130   **
3131   ** For a scalar LHS, it is sufficient to check just the first row
3132   ** of the RHS.
3133   */
3134   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3135   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3136   VdbeCoverage(v);
3137   if( nVector>1 ){
3138     destNotNull = sqlite3VdbeMakeLabel(v);
3139   }else{
3140     /* For nVector==1, combine steps 6 and 7 by immediately returning
3141     ** FALSE if the first comparison is not NULL */
3142     destNotNull = destIfFalse;
3143   }
3144   for(i=0; i<nVector; i++){
3145     Expr *p;
3146     CollSeq *pColl;
3147     int r3 = sqlite3GetTempReg(pParse);
3148     p = sqlite3VectorFieldSubexpr(pLeft, i);
3149     pColl = sqlite3ExprCollSeq(pParse, p);
3150     sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3151     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3152                       (void*)pColl, P4_COLLSEQ);
3153     VdbeCoverage(v);
3154     sqlite3ReleaseTempReg(pParse, r3);
3155   }
3156   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3157   if( nVector>1 ){
3158     sqlite3VdbeResolveLabel(v, destNotNull);
3159     sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3160     VdbeCoverage(v);
3161 
3162     /* Step 7:  If we reach this point, we know that the result must
3163     ** be false. */
3164     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3165   }
3166 
3167   /* Jumps here in order to return true. */
3168   sqlite3VdbeJumpHere(v, addrTruthOp);
3169 
3170 sqlite3ExprCodeIN_finished:
3171   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3172   VdbeComment((v, "end IN expr"));
3173 sqlite3ExprCodeIN_oom_error:
3174   sqlite3DbFree(pParse->db, aiMap);
3175   sqlite3DbFree(pParse->db, zAff);
3176 }
3177 #endif /* SQLITE_OMIT_SUBQUERY */
3178 
3179 #ifndef SQLITE_OMIT_FLOATING_POINT
3180 /*
3181 ** Generate an instruction that will put the floating point
3182 ** value described by z[0..n-1] into register iMem.
3183 **
3184 ** The z[] string will probably not be zero-terminated.  But the
3185 ** z[n] character is guaranteed to be something that does not look
3186 ** like the continuation of the number.
3187 */
3188 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3189   if( ALWAYS(z!=0) ){
3190     double value;
3191     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3192     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3193     if( negateFlag ) value = -value;
3194     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3195   }
3196 }
3197 #endif
3198 
3199 
3200 /*
3201 ** Generate an instruction that will put the integer describe by
3202 ** text z[0..n-1] into register iMem.
3203 **
3204 ** Expr.u.zToken is always UTF8 and zero-terminated.
3205 */
3206 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3207   Vdbe *v = pParse->pVdbe;
3208   if( pExpr->flags & EP_IntValue ){
3209     int i = pExpr->u.iValue;
3210     assert( i>=0 );
3211     if( negFlag ) i = -i;
3212     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3213   }else{
3214     int c;
3215     i64 value;
3216     const char *z = pExpr->u.zToken;
3217     assert( z!=0 );
3218     c = sqlite3DecOrHexToI64(z, &value);
3219     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3220 #ifdef SQLITE_OMIT_FLOATING_POINT
3221       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3222 #else
3223 #ifndef SQLITE_OMIT_HEX_INTEGER
3224       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3225         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3226       }else
3227 #endif
3228       {
3229         codeReal(v, z, negFlag, iMem);
3230       }
3231 #endif
3232     }else{
3233       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3234       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3235     }
3236   }
3237 }
3238 
3239 
3240 /* Generate code that will load into register regOut a value that is
3241 ** appropriate for the iIdxCol-th column of index pIdx.
3242 */
3243 void sqlite3ExprCodeLoadIndexColumn(
3244   Parse *pParse,  /* The parsing context */
3245   Index *pIdx,    /* The index whose column is to be loaded */
3246   int iTabCur,    /* Cursor pointing to a table row */
3247   int iIdxCol,    /* The column of the index to be loaded */
3248   int regOut      /* Store the index column value in this register */
3249 ){
3250   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3251   if( iTabCol==XN_EXPR ){
3252     assert( pIdx->aColExpr );
3253     assert( pIdx->aColExpr->nExpr>iIdxCol );
3254     pParse->iSelfTab = iTabCur + 1;
3255     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3256     pParse->iSelfTab = 0;
3257   }else{
3258     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3259                                     iTabCol, regOut);
3260   }
3261 }
3262 
3263 /*
3264 ** Generate code to extract the value of the iCol-th column of a table.
3265 */
3266 void sqlite3ExprCodeGetColumnOfTable(
3267   Vdbe *v,        /* The VDBE under construction */
3268   Table *pTab,    /* The table containing the value */
3269   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3270   int iCol,       /* Index of the column to extract */
3271   int regOut      /* Extract the value into this register */
3272 ){
3273   if( pTab==0 ){
3274     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3275     return;
3276   }
3277   if( iCol<0 || iCol==pTab->iPKey ){
3278     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3279   }else{
3280     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3281     int x = iCol;
3282     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3283       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3284     }
3285     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3286   }
3287   if( iCol>=0 ){
3288     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3289   }
3290 }
3291 
3292 /*
3293 ** Generate code that will extract the iColumn-th column from
3294 ** table pTab and store the column value in register iReg.
3295 **
3296 ** There must be an open cursor to pTab in iTable when this routine
3297 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3298 */
3299 int sqlite3ExprCodeGetColumn(
3300   Parse *pParse,   /* Parsing and code generating context */
3301   Table *pTab,     /* Description of the table we are reading from */
3302   int iColumn,     /* Index of the table column */
3303   int iTable,      /* The cursor pointing to the table */
3304   int iReg,        /* Store results here */
3305   u8 p5            /* P5 value for OP_Column + FLAGS */
3306 ){
3307   Vdbe *v = pParse->pVdbe;
3308   assert( v!=0 );
3309   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3310   if( p5 ){
3311     sqlite3VdbeChangeP5(v, p5);
3312   }
3313   return iReg;
3314 }
3315 
3316 /*
3317 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3318 ** over to iTo..iTo+nReg-1.
3319 */
3320 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3321   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3322   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3323 }
3324 
3325 /*
3326 ** Convert a scalar expression node to a TK_REGISTER referencing
3327 ** register iReg.  The caller must ensure that iReg already contains
3328 ** the correct value for the expression.
3329 */
3330 static void exprToRegister(Expr *p, int iReg){
3331   p->op2 = p->op;
3332   p->op = TK_REGISTER;
3333   p->iTable = iReg;
3334   ExprClearProperty(p, EP_Skip);
3335 }
3336 
3337 /*
3338 ** Evaluate an expression (either a vector or a scalar expression) and store
3339 ** the result in continguous temporary registers.  Return the index of
3340 ** the first register used to store the result.
3341 **
3342 ** If the returned result register is a temporary scalar, then also write
3343 ** that register number into *piFreeable.  If the returned result register
3344 ** is not a temporary or if the expression is a vector set *piFreeable
3345 ** to 0.
3346 */
3347 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3348   int iResult;
3349   int nResult = sqlite3ExprVectorSize(p);
3350   if( nResult==1 ){
3351     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3352   }else{
3353     *piFreeable = 0;
3354     if( p->op==TK_SELECT ){
3355 #if SQLITE_OMIT_SUBQUERY
3356       iResult = 0;
3357 #else
3358       iResult = sqlite3CodeSubselect(pParse, p);
3359 #endif
3360     }else{
3361       int i;
3362       iResult = pParse->nMem+1;
3363       pParse->nMem += nResult;
3364       for(i=0; i<nResult; i++){
3365         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3366       }
3367     }
3368   }
3369   return iResult;
3370 }
3371 
3372 
3373 /*
3374 ** Generate code into the current Vdbe to evaluate the given
3375 ** expression.  Attempt to store the results in register "target".
3376 ** Return the register where results are stored.
3377 **
3378 ** With this routine, there is no guarantee that results will
3379 ** be stored in target.  The result might be stored in some other
3380 ** register if it is convenient to do so.  The calling function
3381 ** must check the return code and move the results to the desired
3382 ** register.
3383 */
3384 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3385   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3386   int op;                   /* The opcode being coded */
3387   int inReg = target;       /* Results stored in register inReg */
3388   int regFree1 = 0;         /* If non-zero free this temporary register */
3389   int regFree2 = 0;         /* If non-zero free this temporary register */
3390   int r1, r2;               /* Various register numbers */
3391   Expr tempX;               /* Temporary expression node */
3392   int p5 = 0;
3393 
3394   assert( target>0 && target<=pParse->nMem );
3395   if( v==0 ){
3396     assert( pParse->db->mallocFailed );
3397     return 0;
3398   }
3399 
3400 expr_code_doover:
3401   if( pExpr==0 ){
3402     op = TK_NULL;
3403   }else{
3404     op = pExpr->op;
3405   }
3406   switch( op ){
3407     case TK_AGG_COLUMN: {
3408       AggInfo *pAggInfo = pExpr->pAggInfo;
3409       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3410       if( !pAggInfo->directMode ){
3411         assert( pCol->iMem>0 );
3412         return pCol->iMem;
3413       }else if( pAggInfo->useSortingIdx ){
3414         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3415                               pCol->iSorterColumn, target);
3416         return target;
3417       }
3418       /* Otherwise, fall thru into the TK_COLUMN case */
3419     }
3420     case TK_COLUMN: {
3421       int iTab = pExpr->iTable;
3422       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3423         /* This COLUMN expression is really a constant due to WHERE clause
3424         ** constraints, and that constant is coded by the pExpr->pLeft
3425         ** expresssion.  However, make sure the constant has the correct
3426         ** datatype by applying the Affinity of the table column to the
3427         ** constant.
3428         */
3429         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3430         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3431         if( aff!=SQLITE_AFF_BLOB ){
3432           static const char zAff[] = "B\000C\000D\000E";
3433           assert( SQLITE_AFF_BLOB=='A' );
3434           assert( SQLITE_AFF_TEXT=='B' );
3435           if( iReg!=target ){
3436             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3437             iReg = target;
3438           }
3439           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3440                             &zAff[(aff-'B')*2], P4_STATIC);
3441         }
3442         return iReg;
3443       }
3444       if( iTab<0 ){
3445         if( pParse->iSelfTab<0 ){
3446           /* Generating CHECK constraints or inserting into partial index */
3447           return pExpr->iColumn - pParse->iSelfTab;
3448         }else{
3449           /* Coding an expression that is part of an index where column names
3450           ** in the index refer to the table to which the index belongs */
3451           iTab = pParse->iSelfTab - 1;
3452         }
3453       }
3454       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3455                                pExpr->iColumn, iTab, target,
3456                                pExpr->op2);
3457     }
3458     case TK_INTEGER: {
3459       codeInteger(pParse, pExpr, 0, target);
3460       return target;
3461     }
3462     case TK_TRUEFALSE: {
3463       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3464       return target;
3465     }
3466 #ifndef SQLITE_OMIT_FLOATING_POINT
3467     case TK_FLOAT: {
3468       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3469       codeReal(v, pExpr->u.zToken, 0, target);
3470       return target;
3471     }
3472 #endif
3473     case TK_STRING: {
3474       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3475       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3476       return target;
3477     }
3478     case TK_NULL: {
3479       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3480       return target;
3481     }
3482 #ifndef SQLITE_OMIT_BLOB_LITERAL
3483     case TK_BLOB: {
3484       int n;
3485       const char *z;
3486       char *zBlob;
3487       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3488       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3489       assert( pExpr->u.zToken[1]=='\'' );
3490       z = &pExpr->u.zToken[2];
3491       n = sqlite3Strlen30(z) - 1;
3492       assert( z[n]=='\'' );
3493       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3494       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3495       return target;
3496     }
3497 #endif
3498     case TK_VARIABLE: {
3499       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3500       assert( pExpr->u.zToken!=0 );
3501       assert( pExpr->u.zToken[0]!=0 );
3502       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3503       if( pExpr->u.zToken[1]!=0 ){
3504         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3505         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3506         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3507         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3508       }
3509       return target;
3510     }
3511     case TK_REGISTER: {
3512       return pExpr->iTable;
3513     }
3514 #ifndef SQLITE_OMIT_CAST
3515     case TK_CAST: {
3516       /* Expressions of the form:   CAST(pLeft AS token) */
3517       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3518       if( inReg!=target ){
3519         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3520         inReg = target;
3521       }
3522       sqlite3VdbeAddOp2(v, OP_Cast, target,
3523                         sqlite3AffinityType(pExpr->u.zToken, 0));
3524       return inReg;
3525     }
3526 #endif /* SQLITE_OMIT_CAST */
3527     case TK_IS:
3528     case TK_ISNOT:
3529       op = (op==TK_IS) ? TK_EQ : TK_NE;
3530       p5 = SQLITE_NULLEQ;
3531       /* fall-through */
3532     case TK_LT:
3533     case TK_LE:
3534     case TK_GT:
3535     case TK_GE:
3536     case TK_NE:
3537     case TK_EQ: {
3538       Expr *pLeft = pExpr->pLeft;
3539       if( sqlite3ExprIsVector(pLeft) ){
3540         codeVectorCompare(pParse, pExpr, target, op, p5);
3541       }else{
3542         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3543         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3544         codeCompare(pParse, pLeft, pExpr->pRight, op,
3545             r1, r2, inReg, SQLITE_STOREP2 | p5);
3546         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3547         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3548         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3549         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3550         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3551         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3552         testcase( regFree1==0 );
3553         testcase( regFree2==0 );
3554       }
3555       break;
3556     }
3557     case TK_AND:
3558     case TK_OR:
3559     case TK_PLUS:
3560     case TK_STAR:
3561     case TK_MINUS:
3562     case TK_REM:
3563     case TK_BITAND:
3564     case TK_BITOR:
3565     case TK_SLASH:
3566     case TK_LSHIFT:
3567     case TK_RSHIFT:
3568     case TK_CONCAT: {
3569       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3570       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3571       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3572       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3573       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3574       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3575       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3576       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3577       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3578       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3579       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3580       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3581       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3582       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3583       testcase( regFree1==0 );
3584       testcase( regFree2==0 );
3585       break;
3586     }
3587     case TK_UMINUS: {
3588       Expr *pLeft = pExpr->pLeft;
3589       assert( pLeft );
3590       if( pLeft->op==TK_INTEGER ){
3591         codeInteger(pParse, pLeft, 1, target);
3592         return target;
3593 #ifndef SQLITE_OMIT_FLOATING_POINT
3594       }else if( pLeft->op==TK_FLOAT ){
3595         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3596         codeReal(v, pLeft->u.zToken, 1, target);
3597         return target;
3598 #endif
3599       }else{
3600         tempX.op = TK_INTEGER;
3601         tempX.flags = EP_IntValue|EP_TokenOnly;
3602         tempX.u.iValue = 0;
3603         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3604         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3605         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3606         testcase( regFree2==0 );
3607       }
3608       break;
3609     }
3610     case TK_BITNOT:
3611     case TK_NOT: {
3612       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3613       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3614       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3615       testcase( regFree1==0 );
3616       sqlite3VdbeAddOp2(v, op, r1, inReg);
3617       break;
3618     }
3619     case TK_TRUTH: {
3620       int isTrue;    /* IS TRUE or IS NOT TRUE */
3621       int bNormal;   /* IS TRUE or IS FALSE */
3622       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3623       testcase( regFree1==0 );
3624       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3625       bNormal = pExpr->op2==TK_IS;
3626       testcase( isTrue && bNormal);
3627       testcase( !isTrue && bNormal);
3628       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3629       break;
3630     }
3631     case TK_ISNULL:
3632     case TK_NOTNULL: {
3633       int addr;
3634       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3635       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3636       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3637       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3638       testcase( regFree1==0 );
3639       addr = sqlite3VdbeAddOp1(v, op, r1);
3640       VdbeCoverageIf(v, op==TK_ISNULL);
3641       VdbeCoverageIf(v, op==TK_NOTNULL);
3642       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3643       sqlite3VdbeJumpHere(v, addr);
3644       break;
3645     }
3646     case TK_AGG_FUNCTION: {
3647       AggInfo *pInfo = pExpr->pAggInfo;
3648       if( pInfo==0 ){
3649         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3650         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3651       }else{
3652         return pInfo->aFunc[pExpr->iAgg].iMem;
3653       }
3654       break;
3655     }
3656     case TK_FUNCTION: {
3657       ExprList *pFarg;       /* List of function arguments */
3658       int nFarg;             /* Number of function arguments */
3659       FuncDef *pDef;         /* The function definition object */
3660       const char *zId;       /* The function name */
3661       u32 constMask = 0;     /* Mask of function arguments that are constant */
3662       int i;                 /* Loop counter */
3663       sqlite3 *db = pParse->db;  /* The database connection */
3664       u8 enc = ENC(db);      /* The text encoding used by this database */
3665       CollSeq *pColl = 0;    /* A collating sequence */
3666 
3667 #ifndef SQLITE_OMIT_WINDOWFUNC
3668       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3669         return pExpr->y.pWin->regResult;
3670       }
3671 #endif
3672 
3673       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3674         /* SQL functions can be expensive. So try to move constant functions
3675         ** out of the inner loop, even if that means an extra OP_Copy. */
3676         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3677       }
3678       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3679       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3680         pFarg = 0;
3681       }else{
3682         pFarg = pExpr->x.pList;
3683       }
3684       nFarg = pFarg ? pFarg->nExpr : 0;
3685       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3686       zId = pExpr->u.zToken;
3687       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3688 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3689       if( pDef==0 && pParse->explain ){
3690         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3691       }
3692 #endif
3693       if( pDef==0 || pDef->xFinalize!=0 ){
3694         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3695         break;
3696       }
3697 
3698       /* Attempt a direct implementation of the built-in COALESCE() and
3699       ** IFNULL() functions.  This avoids unnecessary evaluation of
3700       ** arguments past the first non-NULL argument.
3701       */
3702       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3703         int endCoalesce = sqlite3VdbeMakeLabel(v);
3704         assert( nFarg>=2 );
3705         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3706         for(i=1; i<nFarg; i++){
3707           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3708           VdbeCoverage(v);
3709           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3710         }
3711         sqlite3VdbeResolveLabel(v, endCoalesce);
3712         break;
3713       }
3714 
3715       /* The UNLIKELY() function is a no-op.  The result is the value
3716       ** of the first argument.
3717       */
3718       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3719         assert( nFarg>=1 );
3720         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3721       }
3722 
3723 #ifdef SQLITE_DEBUG
3724       /* The AFFINITY() function evaluates to a string that describes
3725       ** the type affinity of the argument.  This is used for testing of
3726       ** the SQLite type logic.
3727       */
3728       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3729         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3730         char aff;
3731         assert( nFarg==1 );
3732         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3733         sqlite3VdbeLoadString(v, target,
3734                               aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3735         return target;
3736       }
3737 #endif
3738 
3739       for(i=0; i<nFarg; i++){
3740         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3741           testcase( i==31 );
3742           constMask |= MASKBIT32(i);
3743         }
3744         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3745           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3746         }
3747       }
3748       if( pFarg ){
3749         if( constMask ){
3750           r1 = pParse->nMem+1;
3751           pParse->nMem += nFarg;
3752         }else{
3753           r1 = sqlite3GetTempRange(pParse, nFarg);
3754         }
3755 
3756         /* For length() and typeof() functions with a column argument,
3757         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3758         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3759         ** loading.
3760         */
3761         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3762           u8 exprOp;
3763           assert( nFarg==1 );
3764           assert( pFarg->a[0].pExpr!=0 );
3765           exprOp = pFarg->a[0].pExpr->op;
3766           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3767             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3768             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3769             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3770             pFarg->a[0].pExpr->op2 =
3771                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3772           }
3773         }
3774 
3775         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3776                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3777       }else{
3778         r1 = 0;
3779       }
3780 #ifndef SQLITE_OMIT_VIRTUALTABLE
3781       /* Possibly overload the function if the first argument is
3782       ** a virtual table column.
3783       **
3784       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3785       ** second argument, not the first, as the argument to test to
3786       ** see if it is a column in a virtual table.  This is done because
3787       ** the left operand of infix functions (the operand we want to
3788       ** control overloading) ends up as the second argument to the
3789       ** function.  The expression "A glob B" is equivalent to
3790       ** "glob(B,A).  We want to use the A in "A glob B" to test
3791       ** for function overloading.  But we use the B term in "glob(B,A)".
3792       */
3793       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3794         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3795       }else if( nFarg>0 ){
3796         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3797       }
3798 #endif
3799       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3800         if( !pColl ) pColl = db->pDfltColl;
3801         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3802       }
3803 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3804       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3805         Expr *pArg = pFarg->a[0].pExpr;
3806         if( pArg->op==TK_COLUMN ){
3807           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3808         }else{
3809           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3810         }
3811       }else
3812 #endif
3813       {
3814         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3815                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3816         sqlite3VdbeChangeP5(v, (u8)nFarg);
3817       }
3818       if( nFarg && constMask==0 ){
3819         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3820       }
3821       return target;
3822     }
3823 #ifndef SQLITE_OMIT_SUBQUERY
3824     case TK_EXISTS:
3825     case TK_SELECT: {
3826       int nCol;
3827       testcase( op==TK_EXISTS );
3828       testcase( op==TK_SELECT );
3829       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3830         sqlite3SubselectError(pParse, nCol, 1);
3831       }else{
3832         return sqlite3CodeSubselect(pParse, pExpr);
3833       }
3834       break;
3835     }
3836     case TK_SELECT_COLUMN: {
3837       int n;
3838       if( pExpr->pLeft->iTable==0 ){
3839         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
3840       }
3841       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3842       if( pExpr->iTable
3843        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3844       ){
3845         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3846                                 pExpr->iTable, n);
3847       }
3848       return pExpr->pLeft->iTable + pExpr->iColumn;
3849     }
3850     case TK_IN: {
3851       int destIfFalse = sqlite3VdbeMakeLabel(v);
3852       int destIfNull = sqlite3VdbeMakeLabel(v);
3853       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3854       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3855       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3856       sqlite3VdbeResolveLabel(v, destIfFalse);
3857       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3858       sqlite3VdbeResolveLabel(v, destIfNull);
3859       return target;
3860     }
3861 #endif /* SQLITE_OMIT_SUBQUERY */
3862 
3863 
3864     /*
3865     **    x BETWEEN y AND z
3866     **
3867     ** This is equivalent to
3868     **
3869     **    x>=y AND x<=z
3870     **
3871     ** X is stored in pExpr->pLeft.
3872     ** Y is stored in pExpr->pList->a[0].pExpr.
3873     ** Z is stored in pExpr->pList->a[1].pExpr.
3874     */
3875     case TK_BETWEEN: {
3876       exprCodeBetween(pParse, pExpr, target, 0, 0);
3877       return target;
3878     }
3879     case TK_SPAN:
3880     case TK_COLLATE:
3881     case TK_UPLUS: {
3882       pExpr = pExpr->pLeft;
3883       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
3884     }
3885 
3886     case TK_TRIGGER: {
3887       /* If the opcode is TK_TRIGGER, then the expression is a reference
3888       ** to a column in the new.* or old.* pseudo-tables available to
3889       ** trigger programs. In this case Expr.iTable is set to 1 for the
3890       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3891       ** is set to the column of the pseudo-table to read, or to -1 to
3892       ** read the rowid field.
3893       **
3894       ** The expression is implemented using an OP_Param opcode. The p1
3895       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3896       ** to reference another column of the old.* pseudo-table, where
3897       ** i is the index of the column. For a new.rowid reference, p1 is
3898       ** set to (n+1), where n is the number of columns in each pseudo-table.
3899       ** For a reference to any other column in the new.* pseudo-table, p1
3900       ** is set to (n+2+i), where n and i are as defined previously. For
3901       ** example, if the table on which triggers are being fired is
3902       ** declared as:
3903       **
3904       **   CREATE TABLE t1(a, b);
3905       **
3906       ** Then p1 is interpreted as follows:
3907       **
3908       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
3909       **   p1==1   ->    old.a         p1==4   ->    new.a
3910       **   p1==2   ->    old.b         p1==5   ->    new.b
3911       */
3912       Table *pTab = pExpr->y.pTab;
3913       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3914 
3915       assert( pExpr->iTable==0 || pExpr->iTable==1 );
3916       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3917       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3918       assert( p1>=0 && p1<(pTab->nCol*2+2) );
3919 
3920       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3921       VdbeComment((v, "r[%d]=%s.%s", target,
3922         (pExpr->iTable ? "new" : "old"),
3923         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
3924       ));
3925 
3926 #ifndef SQLITE_OMIT_FLOATING_POINT
3927       /* If the column has REAL affinity, it may currently be stored as an
3928       ** integer. Use OP_RealAffinity to make sure it is really real.
3929       **
3930       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3931       ** floating point when extracting it from the record.  */
3932       if( pExpr->iColumn>=0
3933        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3934       ){
3935         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3936       }
3937 #endif
3938       break;
3939     }
3940 
3941     case TK_VECTOR: {
3942       sqlite3ErrorMsg(pParse, "row value misused");
3943       break;
3944     }
3945 
3946     case TK_IF_NULL_ROW: {
3947       int addrINR;
3948       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
3949       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3950       sqlite3VdbeJumpHere(v, addrINR);
3951       sqlite3VdbeChangeP3(v, addrINR, inReg);
3952       break;
3953     }
3954 
3955     /*
3956     ** Form A:
3957     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3958     **
3959     ** Form B:
3960     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3961     **
3962     ** Form A is can be transformed into the equivalent form B as follows:
3963     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3964     **        WHEN x=eN THEN rN ELSE y END
3965     **
3966     ** X (if it exists) is in pExpr->pLeft.
3967     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3968     ** odd.  The Y is also optional.  If the number of elements in x.pList
3969     ** is even, then Y is omitted and the "otherwise" result is NULL.
3970     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3971     **
3972     ** The result of the expression is the Ri for the first matching Ei,
3973     ** or if there is no matching Ei, the ELSE term Y, or if there is
3974     ** no ELSE term, NULL.
3975     */
3976     default: assert( op==TK_CASE ); {
3977       int endLabel;                     /* GOTO label for end of CASE stmt */
3978       int nextCase;                     /* GOTO label for next WHEN clause */
3979       int nExpr;                        /* 2x number of WHEN terms */
3980       int i;                            /* Loop counter */
3981       ExprList *pEList;                 /* List of WHEN terms */
3982       struct ExprList_item *aListelem;  /* Array of WHEN terms */
3983       Expr opCompare;                   /* The X==Ei expression */
3984       Expr *pX;                         /* The X expression */
3985       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
3986 
3987       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3988       assert(pExpr->x.pList->nExpr > 0);
3989       pEList = pExpr->x.pList;
3990       aListelem = pEList->a;
3991       nExpr = pEList->nExpr;
3992       endLabel = sqlite3VdbeMakeLabel(v);
3993       if( (pX = pExpr->pLeft)!=0 ){
3994         tempX = *pX;
3995         testcase( pX->op==TK_COLUMN );
3996         exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
3997         testcase( regFree1==0 );
3998         memset(&opCompare, 0, sizeof(opCompare));
3999         opCompare.op = TK_EQ;
4000         opCompare.pLeft = &tempX;
4001         pTest = &opCompare;
4002         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4003         ** The value in regFree1 might get SCopy-ed into the file result.
4004         ** So make sure that the regFree1 register is not reused for other
4005         ** purposes and possibly overwritten.  */
4006         regFree1 = 0;
4007       }
4008       for(i=0; i<nExpr-1; i=i+2){
4009         if( pX ){
4010           assert( pTest!=0 );
4011           opCompare.pRight = aListelem[i].pExpr;
4012         }else{
4013           pTest = aListelem[i].pExpr;
4014         }
4015         nextCase = sqlite3VdbeMakeLabel(v);
4016         testcase( pTest->op==TK_COLUMN );
4017         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4018         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4019         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4020         sqlite3VdbeGoto(v, endLabel);
4021         sqlite3VdbeResolveLabel(v, nextCase);
4022       }
4023       if( (nExpr&1)!=0 ){
4024         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4025       }else{
4026         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4027       }
4028       sqlite3VdbeResolveLabel(v, endLabel);
4029       break;
4030     }
4031 #ifndef SQLITE_OMIT_TRIGGER
4032     case TK_RAISE: {
4033       assert( pExpr->affinity==OE_Rollback
4034            || pExpr->affinity==OE_Abort
4035            || pExpr->affinity==OE_Fail
4036            || pExpr->affinity==OE_Ignore
4037       );
4038       if( !pParse->pTriggerTab ){
4039         sqlite3ErrorMsg(pParse,
4040                        "RAISE() may only be used within a trigger-program");
4041         return 0;
4042       }
4043       if( pExpr->affinity==OE_Abort ){
4044         sqlite3MayAbort(pParse);
4045       }
4046       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4047       if( pExpr->affinity==OE_Ignore ){
4048         sqlite3VdbeAddOp4(
4049             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4050         VdbeCoverage(v);
4051       }else{
4052         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4053                               pExpr->affinity, pExpr->u.zToken, 0, 0);
4054       }
4055 
4056       break;
4057     }
4058 #endif
4059   }
4060   sqlite3ReleaseTempReg(pParse, regFree1);
4061   sqlite3ReleaseTempReg(pParse, regFree2);
4062   return inReg;
4063 }
4064 
4065 /*
4066 ** Factor out the code of the given expression to initialization time.
4067 **
4068 ** If regDest>=0 then the result is always stored in that register and the
4069 ** result is not reusable.  If regDest<0 then this routine is free to
4070 ** store the value whereever it wants.  The register where the expression
4071 ** is stored is returned.  When regDest<0, two identical expressions will
4072 ** code to the same register.
4073 */
4074 int sqlite3ExprCodeAtInit(
4075   Parse *pParse,    /* Parsing context */
4076   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4077   int regDest       /* Store the value in this register */
4078 ){
4079   ExprList *p;
4080   assert( ConstFactorOk(pParse) );
4081   p = pParse->pConstExpr;
4082   if( regDest<0 && p ){
4083     struct ExprList_item *pItem;
4084     int i;
4085     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4086       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4087         return pItem->u.iConstExprReg;
4088       }
4089     }
4090   }
4091   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4092   p = sqlite3ExprListAppend(pParse, p, pExpr);
4093   if( p ){
4094      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4095      pItem->reusable = regDest<0;
4096      if( regDest<0 ) regDest = ++pParse->nMem;
4097      pItem->u.iConstExprReg = regDest;
4098   }
4099   pParse->pConstExpr = p;
4100   return regDest;
4101 }
4102 
4103 /*
4104 ** Generate code to evaluate an expression and store the results
4105 ** into a register.  Return the register number where the results
4106 ** are stored.
4107 **
4108 ** If the register is a temporary register that can be deallocated,
4109 ** then write its number into *pReg.  If the result register is not
4110 ** a temporary, then set *pReg to zero.
4111 **
4112 ** If pExpr is a constant, then this routine might generate this
4113 ** code to fill the register in the initialization section of the
4114 ** VDBE program, in order to factor it out of the evaluation loop.
4115 */
4116 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4117   int r2;
4118   pExpr = sqlite3ExprSkipCollate(pExpr);
4119   if( ConstFactorOk(pParse)
4120    && pExpr->op!=TK_REGISTER
4121    && sqlite3ExprIsConstantNotJoin(pExpr)
4122   ){
4123     *pReg  = 0;
4124     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4125   }else{
4126     int r1 = sqlite3GetTempReg(pParse);
4127     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4128     if( r2==r1 ){
4129       *pReg = r1;
4130     }else{
4131       sqlite3ReleaseTempReg(pParse, r1);
4132       *pReg = 0;
4133     }
4134   }
4135   return r2;
4136 }
4137 
4138 /*
4139 ** Generate code that will evaluate expression pExpr and store the
4140 ** results in register target.  The results are guaranteed to appear
4141 ** in register target.
4142 */
4143 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4144   int inReg;
4145 
4146   assert( target>0 && target<=pParse->nMem );
4147   if( pExpr && pExpr->op==TK_REGISTER ){
4148     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4149   }else{
4150     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4151     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4152     if( inReg!=target && pParse->pVdbe ){
4153       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4154     }
4155   }
4156 }
4157 
4158 /*
4159 ** Make a transient copy of expression pExpr and then code it using
4160 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4161 ** except that the input expression is guaranteed to be unchanged.
4162 */
4163 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4164   sqlite3 *db = pParse->db;
4165   pExpr = sqlite3ExprDup(db, pExpr, 0);
4166   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4167   sqlite3ExprDelete(db, pExpr);
4168 }
4169 
4170 /*
4171 ** Generate code that will evaluate expression pExpr and store the
4172 ** results in register target.  The results are guaranteed to appear
4173 ** in register target.  If the expression is constant, then this routine
4174 ** might choose to code the expression at initialization time.
4175 */
4176 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4177   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4178     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4179   }else{
4180     sqlite3ExprCode(pParse, pExpr, target);
4181   }
4182 }
4183 
4184 /*
4185 ** Generate code that evaluates the given expression and puts the result
4186 ** in register target.
4187 **
4188 ** Also make a copy of the expression results into another "cache" register
4189 ** and modify the expression so that the next time it is evaluated,
4190 ** the result is a copy of the cache register.
4191 **
4192 ** This routine is used for expressions that are used multiple
4193 ** times.  They are evaluated once and the results of the expression
4194 ** are reused.
4195 */
4196 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4197   Vdbe *v = pParse->pVdbe;
4198   int iMem;
4199 
4200   assert( target>0 );
4201   assert( pExpr->op!=TK_REGISTER );
4202   sqlite3ExprCode(pParse, pExpr, target);
4203   iMem = ++pParse->nMem;
4204   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4205   exprToRegister(pExpr, iMem);
4206 }
4207 
4208 /*
4209 ** Generate code that pushes the value of every element of the given
4210 ** expression list into a sequence of registers beginning at target.
4211 **
4212 ** Return the number of elements evaluated.  The number returned will
4213 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4214 ** is defined.
4215 **
4216 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4217 ** filled using OP_SCopy.  OP_Copy must be used instead.
4218 **
4219 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4220 ** factored out into initialization code.
4221 **
4222 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4223 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4224 ** in registers at srcReg, and so the value can be copied from there.
4225 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4226 ** are simply omitted rather than being copied from srcReg.
4227 */
4228 int sqlite3ExprCodeExprList(
4229   Parse *pParse,     /* Parsing context */
4230   ExprList *pList,   /* The expression list to be coded */
4231   int target,        /* Where to write results */
4232   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4233   u8 flags           /* SQLITE_ECEL_* flags */
4234 ){
4235   struct ExprList_item *pItem;
4236   int i, j, n;
4237   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4238   Vdbe *v = pParse->pVdbe;
4239   assert( pList!=0 );
4240   assert( target>0 );
4241   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4242   n = pList->nExpr;
4243   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4244   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4245     Expr *pExpr = pItem->pExpr;
4246 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4247     if( pItem->bSorterRef ){
4248       i--;
4249       n--;
4250     }else
4251 #endif
4252     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4253       if( flags & SQLITE_ECEL_OMITREF ){
4254         i--;
4255         n--;
4256       }else{
4257         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4258       }
4259     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4260            && sqlite3ExprIsConstantNotJoin(pExpr)
4261     ){
4262       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4263     }else{
4264       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4265       if( inReg!=target+i ){
4266         VdbeOp *pOp;
4267         if( copyOp==OP_Copy
4268          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4269          && pOp->p1+pOp->p3+1==inReg
4270          && pOp->p2+pOp->p3+1==target+i
4271         ){
4272           pOp->p3++;
4273         }else{
4274           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4275         }
4276       }
4277     }
4278   }
4279   return n;
4280 }
4281 
4282 /*
4283 ** Generate code for a BETWEEN operator.
4284 **
4285 **    x BETWEEN y AND z
4286 **
4287 ** The above is equivalent to
4288 **
4289 **    x>=y AND x<=z
4290 **
4291 ** Code it as such, taking care to do the common subexpression
4292 ** elimination of x.
4293 **
4294 ** The xJumpIf parameter determines details:
4295 **
4296 **    NULL:                   Store the boolean result in reg[dest]
4297 **    sqlite3ExprIfTrue:      Jump to dest if true
4298 **    sqlite3ExprIfFalse:     Jump to dest if false
4299 **
4300 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4301 */
4302 static void exprCodeBetween(
4303   Parse *pParse,    /* Parsing and code generating context */
4304   Expr *pExpr,      /* The BETWEEN expression */
4305   int dest,         /* Jump destination or storage location */
4306   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4307   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4308 ){
4309  Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4310   Expr compLeft;    /* The  x>=y  term */
4311   Expr compRight;   /* The  x<=z  term */
4312   Expr exprX;       /* The  x  subexpression */
4313   int regFree1 = 0; /* Temporary use register */
4314 
4315 
4316   memset(&compLeft, 0, sizeof(Expr));
4317   memset(&compRight, 0, sizeof(Expr));
4318   memset(&exprAnd, 0, sizeof(Expr));
4319 
4320   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4321   exprX = *pExpr->pLeft;
4322   exprAnd.op = TK_AND;
4323   exprAnd.pLeft = &compLeft;
4324   exprAnd.pRight = &compRight;
4325   compLeft.op = TK_GE;
4326   compLeft.pLeft = &exprX;
4327   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4328   compRight.op = TK_LE;
4329   compRight.pLeft = &exprX;
4330   compRight.pRight = pExpr->x.pList->a[1].pExpr;
4331   exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4332   if( xJump ){
4333     xJump(pParse, &exprAnd, dest, jumpIfNull);
4334   }else{
4335     /* Mark the expression is being from the ON or USING clause of a join
4336     ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4337     ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4338     ** for clarity, but we are out of bits in the Expr.flags field so we
4339     ** have to reuse the EP_FromJoin bit.  Bummer. */
4340     exprX.flags |= EP_FromJoin;
4341     sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4342   }
4343   sqlite3ReleaseTempReg(pParse, regFree1);
4344 
4345   /* Ensure adequate test coverage */
4346   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4347   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4348   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4349   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4350   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4351   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4352   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4353   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4354   testcase( xJump==0 );
4355 }
4356 
4357 /*
4358 ** Generate code for a boolean expression such that a jump is made
4359 ** to the label "dest" if the expression is true but execution
4360 ** continues straight thru if the expression is false.
4361 **
4362 ** If the expression evaluates to NULL (neither true nor false), then
4363 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4364 **
4365 ** This code depends on the fact that certain token values (ex: TK_EQ)
4366 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4367 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4368 ** the make process cause these values to align.  Assert()s in the code
4369 ** below verify that the numbers are aligned correctly.
4370 */
4371 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4372   Vdbe *v = pParse->pVdbe;
4373   int op = 0;
4374   int regFree1 = 0;
4375   int regFree2 = 0;
4376   int r1, r2;
4377 
4378   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4379   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4380   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4381   op = pExpr->op;
4382   switch( op ){
4383     case TK_AND: {
4384       int d2 = sqlite3VdbeMakeLabel(v);
4385       testcase( jumpIfNull==0 );
4386       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4387       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4388       sqlite3VdbeResolveLabel(v, d2);
4389       break;
4390     }
4391     case TK_OR: {
4392       testcase( jumpIfNull==0 );
4393       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4394       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4395       break;
4396     }
4397     case TK_NOT: {
4398       testcase( jumpIfNull==0 );
4399       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4400       break;
4401     }
4402     case TK_TRUTH: {
4403       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4404       int isTrue;     /* IS TRUE or IS NOT TRUE */
4405       testcase( jumpIfNull==0 );
4406       isNot = pExpr->op2==TK_ISNOT;
4407       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4408       testcase( isTrue && isNot );
4409       testcase( !isTrue && isNot );
4410       if( isTrue ^ isNot ){
4411         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4412                           isNot ? SQLITE_JUMPIFNULL : 0);
4413       }else{
4414         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4415                            isNot ? SQLITE_JUMPIFNULL : 0);
4416       }
4417       break;
4418     }
4419     case TK_IS:
4420     case TK_ISNOT:
4421       testcase( op==TK_IS );
4422       testcase( op==TK_ISNOT );
4423       op = (op==TK_IS) ? TK_EQ : TK_NE;
4424       jumpIfNull = SQLITE_NULLEQ;
4425       /* Fall thru */
4426     case TK_LT:
4427     case TK_LE:
4428     case TK_GT:
4429     case TK_GE:
4430     case TK_NE:
4431     case TK_EQ: {
4432       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4433       testcase( jumpIfNull==0 );
4434       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4435       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4436       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4437                   r1, r2, dest, jumpIfNull);
4438       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4439       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4440       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4441       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4442       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4443       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4444       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4445       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4446       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4447       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4448       testcase( regFree1==0 );
4449       testcase( regFree2==0 );
4450       break;
4451     }
4452     case TK_ISNULL:
4453     case TK_NOTNULL: {
4454       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4455       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4456       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4457       sqlite3VdbeAddOp2(v, op, r1, dest);
4458       VdbeCoverageIf(v, op==TK_ISNULL);
4459       VdbeCoverageIf(v, op==TK_NOTNULL);
4460       testcase( regFree1==0 );
4461       break;
4462     }
4463     case TK_BETWEEN: {
4464       testcase( jumpIfNull==0 );
4465       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4466       break;
4467     }
4468 #ifndef SQLITE_OMIT_SUBQUERY
4469     case TK_IN: {
4470       int destIfFalse = sqlite3VdbeMakeLabel(v);
4471       int destIfNull = jumpIfNull ? dest : destIfFalse;
4472       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4473       sqlite3VdbeGoto(v, dest);
4474       sqlite3VdbeResolveLabel(v, destIfFalse);
4475       break;
4476     }
4477 #endif
4478     default: {
4479     default_expr:
4480       if( exprAlwaysTrue(pExpr) ){
4481         sqlite3VdbeGoto(v, dest);
4482       }else if( exprAlwaysFalse(pExpr) ){
4483         /* No-op */
4484       }else{
4485         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4486         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4487         VdbeCoverage(v);
4488         testcase( regFree1==0 );
4489         testcase( jumpIfNull==0 );
4490       }
4491       break;
4492     }
4493   }
4494   sqlite3ReleaseTempReg(pParse, regFree1);
4495   sqlite3ReleaseTempReg(pParse, regFree2);
4496 }
4497 
4498 /*
4499 ** Generate code for a boolean expression such that a jump is made
4500 ** to the label "dest" if the expression is false but execution
4501 ** continues straight thru if the expression is true.
4502 **
4503 ** If the expression evaluates to NULL (neither true nor false) then
4504 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4505 ** is 0.
4506 */
4507 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4508   Vdbe *v = pParse->pVdbe;
4509   int op = 0;
4510   int regFree1 = 0;
4511   int regFree2 = 0;
4512   int r1, r2;
4513 
4514   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4515   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4516   if( pExpr==0 )    return;
4517 
4518   /* The value of pExpr->op and op are related as follows:
4519   **
4520   **       pExpr->op            op
4521   **       ---------          ----------
4522   **       TK_ISNULL          OP_NotNull
4523   **       TK_NOTNULL         OP_IsNull
4524   **       TK_NE              OP_Eq
4525   **       TK_EQ              OP_Ne
4526   **       TK_GT              OP_Le
4527   **       TK_LE              OP_Gt
4528   **       TK_GE              OP_Lt
4529   **       TK_LT              OP_Ge
4530   **
4531   ** For other values of pExpr->op, op is undefined and unused.
4532   ** The value of TK_ and OP_ constants are arranged such that we
4533   ** can compute the mapping above using the following expression.
4534   ** Assert()s verify that the computation is correct.
4535   */
4536   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4537 
4538   /* Verify correct alignment of TK_ and OP_ constants
4539   */
4540   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4541   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4542   assert( pExpr->op!=TK_NE || op==OP_Eq );
4543   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4544   assert( pExpr->op!=TK_LT || op==OP_Ge );
4545   assert( pExpr->op!=TK_LE || op==OP_Gt );
4546   assert( pExpr->op!=TK_GT || op==OP_Le );
4547   assert( pExpr->op!=TK_GE || op==OP_Lt );
4548 
4549   switch( pExpr->op ){
4550     case TK_AND: {
4551       testcase( jumpIfNull==0 );
4552       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4553       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4554       break;
4555     }
4556     case TK_OR: {
4557       int d2 = sqlite3VdbeMakeLabel(v);
4558       testcase( jumpIfNull==0 );
4559       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4560       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4561       sqlite3VdbeResolveLabel(v, d2);
4562       break;
4563     }
4564     case TK_NOT: {
4565       testcase( jumpIfNull==0 );
4566       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4567       break;
4568     }
4569     case TK_TRUTH: {
4570       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4571       int isTrue;  /* IS TRUE or IS NOT TRUE */
4572       testcase( jumpIfNull==0 );
4573       isNot = pExpr->op2==TK_ISNOT;
4574       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4575       testcase( isTrue && isNot );
4576       testcase( !isTrue && isNot );
4577       if( isTrue ^ isNot ){
4578         /* IS TRUE and IS NOT FALSE */
4579         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4580                            isNot ? 0 : SQLITE_JUMPIFNULL);
4581 
4582       }else{
4583         /* IS FALSE and IS NOT TRUE */
4584         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4585                           isNot ? 0 : SQLITE_JUMPIFNULL);
4586       }
4587       break;
4588     }
4589     case TK_IS:
4590     case TK_ISNOT:
4591       testcase( pExpr->op==TK_IS );
4592       testcase( pExpr->op==TK_ISNOT );
4593       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4594       jumpIfNull = SQLITE_NULLEQ;
4595       /* Fall thru */
4596     case TK_LT:
4597     case TK_LE:
4598     case TK_GT:
4599     case TK_GE:
4600     case TK_NE:
4601     case TK_EQ: {
4602       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4603       testcase( jumpIfNull==0 );
4604       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4605       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4606       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4607                   r1, r2, dest, jumpIfNull);
4608       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4609       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4610       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4611       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4612       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4613       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4614       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4615       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4616       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4617       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4618       testcase( regFree1==0 );
4619       testcase( regFree2==0 );
4620       break;
4621     }
4622     case TK_ISNULL:
4623     case TK_NOTNULL: {
4624       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4625       sqlite3VdbeAddOp2(v, op, r1, dest);
4626       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4627       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4628       testcase( regFree1==0 );
4629       break;
4630     }
4631     case TK_BETWEEN: {
4632       testcase( jumpIfNull==0 );
4633       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4634       break;
4635     }
4636 #ifndef SQLITE_OMIT_SUBQUERY
4637     case TK_IN: {
4638       if( jumpIfNull ){
4639         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4640       }else{
4641         int destIfNull = sqlite3VdbeMakeLabel(v);
4642         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4643         sqlite3VdbeResolveLabel(v, destIfNull);
4644       }
4645       break;
4646     }
4647 #endif
4648     default: {
4649     default_expr:
4650       if( exprAlwaysFalse(pExpr) ){
4651         sqlite3VdbeGoto(v, dest);
4652       }else if( exprAlwaysTrue(pExpr) ){
4653         /* no-op */
4654       }else{
4655         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4656         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4657         VdbeCoverage(v);
4658         testcase( regFree1==0 );
4659         testcase( jumpIfNull==0 );
4660       }
4661       break;
4662     }
4663   }
4664   sqlite3ReleaseTempReg(pParse, regFree1);
4665   sqlite3ReleaseTempReg(pParse, regFree2);
4666 }
4667 
4668 /*
4669 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4670 ** code generation, and that copy is deleted after code generation. This
4671 ** ensures that the original pExpr is unchanged.
4672 */
4673 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4674   sqlite3 *db = pParse->db;
4675   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4676   if( db->mallocFailed==0 ){
4677     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4678   }
4679   sqlite3ExprDelete(db, pCopy);
4680 }
4681 
4682 /*
4683 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4684 ** type of expression.
4685 **
4686 ** If pExpr is a simple SQL value - an integer, real, string, blob
4687 ** or NULL value - then the VDBE currently being prepared is configured
4688 ** to re-prepare each time a new value is bound to variable pVar.
4689 **
4690 ** Additionally, if pExpr is a simple SQL value and the value is the
4691 ** same as that currently bound to variable pVar, non-zero is returned.
4692 ** Otherwise, if the values are not the same or if pExpr is not a simple
4693 ** SQL value, zero is returned.
4694 */
4695 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4696   int res = 0;
4697   int iVar;
4698   sqlite3_value *pL, *pR = 0;
4699 
4700   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4701   if( pR ){
4702     iVar = pVar->iColumn;
4703     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4704     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4705     if( pL ){
4706       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4707         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4708       }
4709       res =  0==sqlite3MemCompare(pL, pR, 0);
4710     }
4711     sqlite3ValueFree(pR);
4712     sqlite3ValueFree(pL);
4713   }
4714 
4715   return res;
4716 }
4717 
4718 /*
4719 ** Do a deep comparison of two expression trees.  Return 0 if the two
4720 ** expressions are completely identical.  Return 1 if they differ only
4721 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4722 ** other than the top-level COLLATE operator.
4723 **
4724 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4725 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4726 **
4727 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4728 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4729 **
4730 ** Sometimes this routine will return 2 even if the two expressions
4731 ** really are equivalent.  If we cannot prove that the expressions are
4732 ** identical, we return 2 just to be safe.  So if this routine
4733 ** returns 2, then you do not really know for certain if the two
4734 ** expressions are the same.  But if you get a 0 or 1 return, then you
4735 ** can be sure the expressions are the same.  In the places where
4736 ** this routine is used, it does not hurt to get an extra 2 - that
4737 ** just might result in some slightly slower code.  But returning
4738 ** an incorrect 0 or 1 could lead to a malfunction.
4739 **
4740 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4741 ** pParse->pReprepare can be matched against literals in pB.  The
4742 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4743 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4744 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4745 ** pB causes a return value of 2.
4746 */
4747 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4748   u32 combinedFlags;
4749   if( pA==0 || pB==0 ){
4750     return pB==pA ? 0 : 2;
4751   }
4752   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4753     return 0;
4754   }
4755   combinedFlags = pA->flags | pB->flags;
4756   if( combinedFlags & EP_IntValue ){
4757     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4758       return 0;
4759     }
4760     return 2;
4761   }
4762   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4763     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4764       return 1;
4765     }
4766     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4767       return 1;
4768     }
4769     return 2;
4770   }
4771   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4772     if( pA->op==TK_FUNCTION ){
4773       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4774 #ifndef SQLITE_OMIT_WINDOWFUNC
4775       /* Justification for the assert():
4776       ** window functions have p->op==TK_FUNCTION but aggregate functions
4777       ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
4778       ** function and a window function should have failed before reaching
4779       ** this point.  And, it is not possible to have a window function and
4780       ** a scalar function with the same name and number of arguments.  So
4781       ** if we reach this point, either A and B both window functions or
4782       ** neither are a window functions. */
4783       assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) );
4784       if( ExprHasProperty(pA,EP_WinFunc) ){
4785         if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2;
4786       }
4787 #endif
4788     }else if( pA->op==TK_COLLATE ){
4789       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4790     }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4791       return 2;
4792     }
4793   }
4794   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4795   if( (combinedFlags & EP_TokenOnly)==0 ){
4796     if( combinedFlags & EP_xIsSelect ) return 2;
4797     if( (combinedFlags & EP_FixedCol)==0
4798      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4799     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4800     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4801     if( pA->op!=TK_STRING
4802      && pA->op!=TK_TRUEFALSE
4803      && (combinedFlags & EP_Reduced)==0
4804     ){
4805       if( pA->iColumn!=pB->iColumn ) return 2;
4806       if( pA->iTable!=pB->iTable
4807        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4808     }
4809   }
4810   return 0;
4811 }
4812 
4813 /*
4814 ** Compare two ExprList objects.  Return 0 if they are identical and
4815 ** non-zero if they differ in any way.
4816 **
4817 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4818 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4819 **
4820 ** This routine might return non-zero for equivalent ExprLists.  The
4821 ** only consequence will be disabled optimizations.  But this routine
4822 ** must never return 0 if the two ExprList objects are different, or
4823 ** a malfunction will result.
4824 **
4825 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4826 ** always differs from a non-NULL pointer.
4827 */
4828 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4829   int i;
4830   if( pA==0 && pB==0 ) return 0;
4831   if( pA==0 || pB==0 ) return 1;
4832   if( pA->nExpr!=pB->nExpr ) return 1;
4833   for(i=0; i<pA->nExpr; i++){
4834     Expr *pExprA = pA->a[i].pExpr;
4835     Expr *pExprB = pB->a[i].pExpr;
4836     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4837     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4838   }
4839   return 0;
4840 }
4841 
4842 /*
4843 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4844 ** are ignored.
4845 */
4846 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4847   return sqlite3ExprCompare(0,
4848              sqlite3ExprSkipCollate(pA),
4849              sqlite3ExprSkipCollate(pB),
4850              iTab);
4851 }
4852 
4853 /*
4854 ** Return true if we can prove the pE2 will always be true if pE1 is
4855 ** true.  Return false if we cannot complete the proof or if pE2 might
4856 ** be false.  Examples:
4857 **
4858 **     pE1: x==5       pE2: x==5             Result: true
4859 **     pE1: x>0        pE2: x==5             Result: false
4860 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
4861 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
4862 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
4863 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
4864 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
4865 **
4866 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4867 ** Expr.iTable<0 then assume a table number given by iTab.
4868 **
4869 ** If pParse is not NULL, then the values of bound variables in pE1 are
4870 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4871 ** modified to record which bound variables are referenced.  If pParse
4872 ** is NULL, then false will be returned if pE1 contains any bound variables.
4873 **
4874 ** When in doubt, return false.  Returning true might give a performance
4875 ** improvement.  Returning false might cause a performance reduction, but
4876 ** it will always give the correct answer and is hence always safe.
4877 */
4878 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4879   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4880     return 1;
4881   }
4882   if( pE2->op==TK_OR
4883    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4884              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4885   ){
4886     return 1;
4887   }
4888   if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4889     Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4890     testcase( pX!=pE1->pLeft );
4891     if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4892   }
4893   return 0;
4894 }
4895 
4896 /*
4897 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
4898 ** If the expression node requires that the table at pWalker->iCur
4899 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
4900 **
4901 ** This routine controls an optimization.  False positives (setting
4902 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
4903 ** (never setting pWalker->eCode) is a harmless missed optimization.
4904 */
4905 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
4906   testcase( pExpr->op==TK_AGG_COLUMN );
4907   testcase( pExpr->op==TK_AGG_FUNCTION );
4908   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
4909   switch( pExpr->op ){
4910     case TK_ISNOT:
4911     case TK_NOT:
4912     case TK_ISNULL:
4913     case TK_IS:
4914     case TK_OR:
4915     case TK_CASE:
4916     case TK_IN:
4917     case TK_FUNCTION:
4918       testcase( pExpr->op==TK_ISNOT );
4919       testcase( pExpr->op==TK_NOT );
4920       testcase( pExpr->op==TK_ISNULL );
4921       testcase( pExpr->op==TK_IS );
4922       testcase( pExpr->op==TK_OR );
4923       testcase( pExpr->op==TK_CASE );
4924       testcase( pExpr->op==TK_IN );
4925       testcase( pExpr->op==TK_FUNCTION );
4926       return WRC_Prune;
4927     case TK_COLUMN:
4928       if( pWalker->u.iCur==pExpr->iTable ){
4929         pWalker->eCode = 1;
4930         return WRC_Abort;
4931       }
4932       return WRC_Prune;
4933 
4934     /* Virtual tables are allowed to use constraints like x=NULL.  So
4935     ** a term of the form x=y does not prove that y is not null if x
4936     ** is the column of a virtual table */
4937     case TK_EQ:
4938     case TK_NE:
4939     case TK_LT:
4940     case TK_LE:
4941     case TK_GT:
4942     case TK_GE:
4943       testcase( pExpr->op==TK_EQ );
4944       testcase( pExpr->op==TK_NE );
4945       testcase( pExpr->op==TK_LT );
4946       testcase( pExpr->op==TK_LE );
4947       testcase( pExpr->op==TK_GT );
4948       testcase( pExpr->op==TK_GE );
4949       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
4950        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
4951       ){
4952        return WRC_Prune;
4953       }
4954     default:
4955       return WRC_Continue;
4956   }
4957 }
4958 
4959 /*
4960 ** Return true (non-zero) if expression p can only be true if at least
4961 ** one column of table iTab is non-null.  In other words, return true
4962 ** if expression p will always be NULL or false if every column of iTab
4963 ** is NULL.
4964 **
4965 ** False negatives are acceptable.  In other words, it is ok to return
4966 ** zero even if expression p will never be true of every column of iTab
4967 ** is NULL.  A false negative is merely a missed optimization opportunity.
4968 **
4969 ** False positives are not allowed, however.  A false positive may result
4970 ** in an incorrect answer.
4971 **
4972 ** Terms of p that are marked with EP_FromJoin (and hence that come from
4973 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
4974 **
4975 ** This routine is used to check if a LEFT JOIN can be converted into
4976 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
4977 ** clause requires that some column of the right table of the LEFT JOIN
4978 ** be non-NULL, then the LEFT JOIN can be safely converted into an
4979 ** ordinary join.
4980 */
4981 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
4982   Walker w;
4983   w.xExprCallback = impliesNotNullRow;
4984   w.xSelectCallback = 0;
4985   w.xSelectCallback2 = 0;
4986   w.eCode = 0;
4987   w.u.iCur = iTab;
4988   sqlite3WalkExpr(&w, p);
4989   return w.eCode;
4990 }
4991 
4992 /*
4993 ** An instance of the following structure is used by the tree walker
4994 ** to determine if an expression can be evaluated by reference to the
4995 ** index only, without having to do a search for the corresponding
4996 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
4997 ** is the cursor for the table.
4998 */
4999 struct IdxCover {
5000   Index *pIdx;     /* The index to be tested for coverage */
5001   int iCur;        /* Cursor number for the table corresponding to the index */
5002 };
5003 
5004 /*
5005 ** Check to see if there are references to columns in table
5006 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5007 ** pWalker->u.pIdxCover->pIdx.
5008 */
5009 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5010   if( pExpr->op==TK_COLUMN
5011    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5012    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5013   ){
5014     pWalker->eCode = 1;
5015     return WRC_Abort;
5016   }
5017   return WRC_Continue;
5018 }
5019 
5020 /*
5021 ** Determine if an index pIdx on table with cursor iCur contains will
5022 ** the expression pExpr.  Return true if the index does cover the
5023 ** expression and false if the pExpr expression references table columns
5024 ** that are not found in the index pIdx.
5025 **
5026 ** An index covering an expression means that the expression can be
5027 ** evaluated using only the index and without having to lookup the
5028 ** corresponding table entry.
5029 */
5030 int sqlite3ExprCoveredByIndex(
5031   Expr *pExpr,        /* The index to be tested */
5032   int iCur,           /* The cursor number for the corresponding table */
5033   Index *pIdx         /* The index that might be used for coverage */
5034 ){
5035   Walker w;
5036   struct IdxCover xcov;
5037   memset(&w, 0, sizeof(w));
5038   xcov.iCur = iCur;
5039   xcov.pIdx = pIdx;
5040   w.xExprCallback = exprIdxCover;
5041   w.u.pIdxCover = &xcov;
5042   sqlite3WalkExpr(&w, pExpr);
5043   return !w.eCode;
5044 }
5045 
5046 
5047 /*
5048 ** An instance of the following structure is used by the tree walker
5049 ** to count references to table columns in the arguments of an
5050 ** aggregate function, in order to implement the
5051 ** sqlite3FunctionThisSrc() routine.
5052 */
5053 struct SrcCount {
5054   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5055   int nThis;       /* Number of references to columns in pSrcList */
5056   int nOther;      /* Number of references to columns in other FROM clauses */
5057 };
5058 
5059 /*
5060 ** Count the number of references to columns.
5061 */
5062 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5063   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5064   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5065   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5066   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5067   ** NEVER() will need to be removed. */
5068   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5069     int i;
5070     struct SrcCount *p = pWalker->u.pSrcCount;
5071     SrcList *pSrc = p->pSrc;
5072     int nSrc = pSrc ? pSrc->nSrc : 0;
5073     for(i=0; i<nSrc; i++){
5074       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5075     }
5076     if( i<nSrc ){
5077       p->nThis++;
5078     }else{
5079       p->nOther++;
5080     }
5081   }
5082   return WRC_Continue;
5083 }
5084 
5085 /*
5086 ** Determine if any of the arguments to the pExpr Function reference
5087 ** pSrcList.  Return true if they do.  Also return true if the function
5088 ** has no arguments or has only constant arguments.  Return false if pExpr
5089 ** references columns but not columns of tables found in pSrcList.
5090 */
5091 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5092   Walker w;
5093   struct SrcCount cnt;
5094   assert( pExpr->op==TK_AGG_FUNCTION );
5095   w.xExprCallback = exprSrcCount;
5096   w.xSelectCallback = 0;
5097   w.u.pSrcCount = &cnt;
5098   cnt.pSrc = pSrcList;
5099   cnt.nThis = 0;
5100   cnt.nOther = 0;
5101   sqlite3WalkExprList(&w, pExpr->x.pList);
5102   return cnt.nThis>0 || cnt.nOther==0;
5103 }
5104 
5105 /*
5106 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5107 ** the new element.  Return a negative number if malloc fails.
5108 */
5109 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5110   int i;
5111   pInfo->aCol = sqlite3ArrayAllocate(
5112        db,
5113        pInfo->aCol,
5114        sizeof(pInfo->aCol[0]),
5115        &pInfo->nColumn,
5116        &i
5117   );
5118   return i;
5119 }
5120 
5121 /*
5122 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5123 ** the new element.  Return a negative number if malloc fails.
5124 */
5125 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5126   int i;
5127   pInfo->aFunc = sqlite3ArrayAllocate(
5128        db,
5129        pInfo->aFunc,
5130        sizeof(pInfo->aFunc[0]),
5131        &pInfo->nFunc,
5132        &i
5133   );
5134   return i;
5135 }
5136 
5137 /*
5138 ** This is the xExprCallback for a tree walker.  It is used to
5139 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5140 ** for additional information.
5141 */
5142 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5143   int i;
5144   NameContext *pNC = pWalker->u.pNC;
5145   Parse *pParse = pNC->pParse;
5146   SrcList *pSrcList = pNC->pSrcList;
5147   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5148 
5149   assert( pNC->ncFlags & NC_UAggInfo );
5150   switch( pExpr->op ){
5151     case TK_AGG_COLUMN:
5152     case TK_COLUMN: {
5153       testcase( pExpr->op==TK_AGG_COLUMN );
5154       testcase( pExpr->op==TK_COLUMN );
5155       /* Check to see if the column is in one of the tables in the FROM
5156       ** clause of the aggregate query */
5157       if( ALWAYS(pSrcList!=0) ){
5158         struct SrcList_item *pItem = pSrcList->a;
5159         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5160           struct AggInfo_col *pCol;
5161           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5162           if( pExpr->iTable==pItem->iCursor ){
5163             /* If we reach this point, it means that pExpr refers to a table
5164             ** that is in the FROM clause of the aggregate query.
5165             **
5166             ** Make an entry for the column in pAggInfo->aCol[] if there
5167             ** is not an entry there already.
5168             */
5169             int k;
5170             pCol = pAggInfo->aCol;
5171             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5172               if( pCol->iTable==pExpr->iTable &&
5173                   pCol->iColumn==pExpr->iColumn ){
5174                 break;
5175               }
5176             }
5177             if( (k>=pAggInfo->nColumn)
5178              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5179             ){
5180               pCol = &pAggInfo->aCol[k];
5181               pCol->pTab = pExpr->y.pTab;
5182               pCol->iTable = pExpr->iTable;
5183               pCol->iColumn = pExpr->iColumn;
5184               pCol->iMem = ++pParse->nMem;
5185               pCol->iSorterColumn = -1;
5186               pCol->pExpr = pExpr;
5187               if( pAggInfo->pGroupBy ){
5188                 int j, n;
5189                 ExprList *pGB = pAggInfo->pGroupBy;
5190                 struct ExprList_item *pTerm = pGB->a;
5191                 n = pGB->nExpr;
5192                 for(j=0; j<n; j++, pTerm++){
5193                   Expr *pE = pTerm->pExpr;
5194                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5195                       pE->iColumn==pExpr->iColumn ){
5196                     pCol->iSorterColumn = j;
5197                     break;
5198                   }
5199                 }
5200               }
5201               if( pCol->iSorterColumn<0 ){
5202                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5203               }
5204             }
5205             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5206             ** because it was there before or because we just created it).
5207             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5208             ** pAggInfo->aCol[] entry.
5209             */
5210             ExprSetVVAProperty(pExpr, EP_NoReduce);
5211             pExpr->pAggInfo = pAggInfo;
5212             pExpr->op = TK_AGG_COLUMN;
5213             pExpr->iAgg = (i16)k;
5214             break;
5215           } /* endif pExpr->iTable==pItem->iCursor */
5216         } /* end loop over pSrcList */
5217       }
5218       return WRC_Prune;
5219     }
5220     case TK_AGG_FUNCTION: {
5221       if( (pNC->ncFlags & NC_InAggFunc)==0
5222        && pWalker->walkerDepth==pExpr->op2
5223       ){
5224         /* Check to see if pExpr is a duplicate of another aggregate
5225         ** function that is already in the pAggInfo structure
5226         */
5227         struct AggInfo_func *pItem = pAggInfo->aFunc;
5228         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5229           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5230             break;
5231           }
5232         }
5233         if( i>=pAggInfo->nFunc ){
5234           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5235           */
5236           u8 enc = ENC(pParse->db);
5237           i = addAggInfoFunc(pParse->db, pAggInfo);
5238           if( i>=0 ){
5239             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5240             pItem = &pAggInfo->aFunc[i];
5241             pItem->pExpr = pExpr;
5242             pItem->iMem = ++pParse->nMem;
5243             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5244             pItem->pFunc = sqlite3FindFunction(pParse->db,
5245                    pExpr->u.zToken,
5246                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5247             if( pExpr->flags & EP_Distinct ){
5248               pItem->iDistinct = pParse->nTab++;
5249             }else{
5250               pItem->iDistinct = -1;
5251             }
5252           }
5253         }
5254         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5255         */
5256         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5257         ExprSetVVAProperty(pExpr, EP_NoReduce);
5258         pExpr->iAgg = (i16)i;
5259         pExpr->pAggInfo = pAggInfo;
5260         return WRC_Prune;
5261       }else{
5262         return WRC_Continue;
5263       }
5264     }
5265   }
5266   return WRC_Continue;
5267 }
5268 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5269   UNUSED_PARAMETER(pSelect);
5270   pWalker->walkerDepth++;
5271   return WRC_Continue;
5272 }
5273 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5274   UNUSED_PARAMETER(pSelect);
5275   pWalker->walkerDepth--;
5276 }
5277 
5278 /*
5279 ** Analyze the pExpr expression looking for aggregate functions and
5280 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5281 ** points to.  Additional entries are made on the AggInfo object as
5282 ** necessary.
5283 **
5284 ** This routine should only be called after the expression has been
5285 ** analyzed by sqlite3ResolveExprNames().
5286 */
5287 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5288   Walker w;
5289   w.xExprCallback = analyzeAggregate;
5290   w.xSelectCallback = analyzeAggregatesInSelect;
5291   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5292   w.walkerDepth = 0;
5293   w.u.pNC = pNC;
5294   assert( pNC->pSrcList!=0 );
5295   sqlite3WalkExpr(&w, pExpr);
5296 }
5297 
5298 /*
5299 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5300 ** expression list.  Return the number of errors.
5301 **
5302 ** If an error is found, the analysis is cut short.
5303 */
5304 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5305   struct ExprList_item *pItem;
5306   int i;
5307   if( pList ){
5308     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5309       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5310     }
5311   }
5312 }
5313 
5314 /*
5315 ** Allocate a single new register for use to hold some intermediate result.
5316 */
5317 int sqlite3GetTempReg(Parse *pParse){
5318   if( pParse->nTempReg==0 ){
5319     return ++pParse->nMem;
5320   }
5321   return pParse->aTempReg[--pParse->nTempReg];
5322 }
5323 
5324 /*
5325 ** Deallocate a register, making available for reuse for some other
5326 ** purpose.
5327 */
5328 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5329   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5330     pParse->aTempReg[pParse->nTempReg++] = iReg;
5331   }
5332 }
5333 
5334 /*
5335 ** Allocate or deallocate a block of nReg consecutive registers.
5336 */
5337 int sqlite3GetTempRange(Parse *pParse, int nReg){
5338   int i, n;
5339   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5340   i = pParse->iRangeReg;
5341   n = pParse->nRangeReg;
5342   if( nReg<=n ){
5343     pParse->iRangeReg += nReg;
5344     pParse->nRangeReg -= nReg;
5345   }else{
5346     i = pParse->nMem+1;
5347     pParse->nMem += nReg;
5348   }
5349   return i;
5350 }
5351 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5352   if( nReg==1 ){
5353     sqlite3ReleaseTempReg(pParse, iReg);
5354     return;
5355   }
5356   if( nReg>pParse->nRangeReg ){
5357     pParse->nRangeReg = nReg;
5358     pParse->iRangeReg = iReg;
5359   }
5360 }
5361 
5362 /*
5363 ** Mark all temporary registers as being unavailable for reuse.
5364 */
5365 void sqlite3ClearTempRegCache(Parse *pParse){
5366   pParse->nTempReg = 0;
5367   pParse->nRangeReg = 0;
5368 }
5369 
5370 /*
5371 ** Validate that no temporary register falls within the range of
5372 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5373 ** statements.
5374 */
5375 #ifdef SQLITE_DEBUG
5376 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5377   int i;
5378   if( pParse->nRangeReg>0
5379    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5380    && pParse->iRangeReg <= iLast
5381   ){
5382      return 0;
5383   }
5384   for(i=0; i<pParse->nTempReg; i++){
5385     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5386       return 0;
5387     }
5388   }
5389   return 1;
5390 }
5391 #endif /* SQLITE_DEBUG */
5392