1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 return pExpr->affExpr; 74 } 75 76 /* 77 ** Set the collating sequence for expression pExpr to be the collating 78 ** sequence named by pToken. Return a pointer to a new Expr node that 79 ** implements the COLLATE operator. 80 ** 81 ** If a memory allocation error occurs, that fact is recorded in pParse->db 82 ** and the pExpr parameter is returned unchanged. 83 */ 84 Expr *sqlite3ExprAddCollateToken( 85 Parse *pParse, /* Parsing context */ 86 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 87 const Token *pCollName, /* Name of collating sequence */ 88 int dequote /* True to dequote pCollName */ 89 ){ 90 if( pCollName->n>0 ){ 91 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 92 if( pNew ){ 93 pNew->pLeft = pExpr; 94 pNew->flags |= EP_Collate|EP_Skip; 95 pExpr = pNew; 96 } 97 } 98 return pExpr; 99 } 100 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 101 Token s; 102 assert( zC!=0 ); 103 sqlite3TokenInit(&s, (char*)zC); 104 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 105 } 106 107 /* 108 ** Skip over any TK_COLLATE operators. 109 */ 110 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 111 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 112 assert( pExpr->op==TK_COLLATE ); 113 pExpr = pExpr->pLeft; 114 } 115 return pExpr; 116 } 117 118 /* 119 ** Skip over any TK_COLLATE operators and/or any unlikely() 120 ** or likelihood() or likely() functions at the root of an 121 ** expression. 122 */ 123 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 124 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 125 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 126 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 127 assert( pExpr->x.pList->nExpr>0 ); 128 assert( pExpr->op==TK_FUNCTION ); 129 pExpr = pExpr->x.pList->a[0].pExpr; 130 }else{ 131 assert( pExpr->op==TK_COLLATE ); 132 pExpr = pExpr->pLeft; 133 } 134 } 135 return pExpr; 136 } 137 138 /* 139 ** Return the collation sequence for the expression pExpr. If 140 ** there is no defined collating sequence, return NULL. 141 ** 142 ** See also: sqlite3ExprNNCollSeq() 143 ** 144 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 145 ** default collation if pExpr has no defined collation. 146 ** 147 ** The collating sequence might be determined by a COLLATE operator 148 ** or by the presence of a column with a defined collating sequence. 149 ** COLLATE operators take first precedence. Left operands take 150 ** precedence over right operands. 151 */ 152 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 153 sqlite3 *db = pParse->db; 154 CollSeq *pColl = 0; 155 Expr *p = pExpr; 156 while( p ){ 157 int op = p->op; 158 if( op==TK_REGISTER ) op = p->op2; 159 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 160 && p->y.pTab!=0 161 ){ 162 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 163 ** a TK_COLUMN but was previously evaluated and cached in a register */ 164 int j = p->iColumn; 165 if( j>=0 ){ 166 const char *zColl = p->y.pTab->aCol[j].zColl; 167 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 168 } 169 break; 170 } 171 if( op==TK_CAST || op==TK_UPLUS ){ 172 p = p->pLeft; 173 continue; 174 } 175 if( op==TK_COLLATE ){ 176 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 177 break; 178 } 179 if( p->flags & EP_Collate ){ 180 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 181 p = p->pLeft; 182 }else{ 183 Expr *pNext = p->pRight; 184 /* The Expr.x union is never used at the same time as Expr.pRight */ 185 assert( p->x.pList==0 || p->pRight==0 ); 186 /* p->flags holds EP_Collate and p->pLeft->flags does not. And 187 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at 188 ** least one EP_Collate. Thus the following two ALWAYS. */ 189 if( p->x.pList!=0 190 && !db->mallocFailed 191 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 192 ){ 193 int i; 194 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 195 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 196 pNext = p->x.pList->a[i].pExpr; 197 break; 198 } 199 } 200 } 201 p = pNext; 202 } 203 }else{ 204 break; 205 } 206 } 207 if( sqlite3CheckCollSeq(pParse, pColl) ){ 208 pColl = 0; 209 } 210 return pColl; 211 } 212 213 /* 214 ** Return the collation sequence for the expression pExpr. If 215 ** there is no defined collating sequence, return a pointer to the 216 ** defautl collation sequence. 217 ** 218 ** See also: sqlite3ExprCollSeq() 219 ** 220 ** The sqlite3ExprCollSeq() routine works the same except that it 221 ** returns NULL if there is no defined collation. 222 */ 223 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ 224 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 225 if( p==0 ) p = pParse->db->pDfltColl; 226 assert( p!=0 ); 227 return p; 228 } 229 230 /* 231 ** Return TRUE if the two expressions have equivalent collating sequences. 232 */ 233 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ 234 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 235 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 236 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 237 } 238 239 /* 240 ** pExpr is an operand of a comparison operator. aff2 is the 241 ** type affinity of the other operand. This routine returns the 242 ** type affinity that should be used for the comparison operator. 243 */ 244 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 245 char aff1 = sqlite3ExprAffinity(pExpr); 246 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 247 /* Both sides of the comparison are columns. If one has numeric 248 ** affinity, use that. Otherwise use no affinity. 249 */ 250 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 251 return SQLITE_AFF_NUMERIC; 252 }else{ 253 return SQLITE_AFF_BLOB; 254 } 255 }else{ 256 /* One side is a column, the other is not. Use the columns affinity. */ 257 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 258 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 259 } 260 } 261 262 /* 263 ** pExpr is a comparison operator. Return the type affinity that should 264 ** be applied to both operands prior to doing the comparison. 265 */ 266 static char comparisonAffinity(Expr *pExpr){ 267 char aff; 268 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 269 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 270 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 271 assert( pExpr->pLeft ); 272 aff = sqlite3ExprAffinity(pExpr->pLeft); 273 if( pExpr->pRight ){ 274 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 275 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 276 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 277 }else if( aff==0 ){ 278 aff = SQLITE_AFF_BLOB; 279 } 280 return aff; 281 } 282 283 /* 284 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 285 ** idx_affinity is the affinity of an indexed column. Return true 286 ** if the index with affinity idx_affinity may be used to implement 287 ** the comparison in pExpr. 288 */ 289 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 290 char aff = comparisonAffinity(pExpr); 291 if( aff<SQLITE_AFF_TEXT ){ 292 return 1; 293 } 294 if( aff==SQLITE_AFF_TEXT ){ 295 return idx_affinity==SQLITE_AFF_TEXT; 296 } 297 return sqlite3IsNumericAffinity(idx_affinity); 298 } 299 300 /* 301 ** Return the P5 value that should be used for a binary comparison 302 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 303 */ 304 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 305 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 306 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 307 return aff; 308 } 309 310 /* 311 ** Return a pointer to the collation sequence that should be used by 312 ** a binary comparison operator comparing pLeft and pRight. 313 ** 314 ** If the left hand expression has a collating sequence type, then it is 315 ** used. Otherwise the collation sequence for the right hand expression 316 ** is used, or the default (BINARY) if neither expression has a collating 317 ** type. 318 ** 319 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 320 ** it is not considered. 321 */ 322 CollSeq *sqlite3BinaryCompareCollSeq( 323 Parse *pParse, 324 Expr *pLeft, 325 Expr *pRight 326 ){ 327 CollSeq *pColl; 328 assert( pLeft ); 329 if( pLeft->flags & EP_Collate ){ 330 pColl = sqlite3ExprCollSeq(pParse, pLeft); 331 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 332 pColl = sqlite3ExprCollSeq(pParse, pRight); 333 }else{ 334 pColl = sqlite3ExprCollSeq(pParse, pLeft); 335 if( !pColl ){ 336 pColl = sqlite3ExprCollSeq(pParse, pRight); 337 } 338 } 339 return pColl; 340 } 341 342 /* 343 ** Generate code for a comparison operator. 344 */ 345 static int codeCompare( 346 Parse *pParse, /* The parsing (and code generating) context */ 347 Expr *pLeft, /* The left operand */ 348 Expr *pRight, /* The right operand */ 349 int opcode, /* The comparison opcode */ 350 int in1, int in2, /* Register holding operands */ 351 int dest, /* Jump here if true. */ 352 int jumpIfNull /* If true, jump if either operand is NULL */ 353 ){ 354 int p5; 355 int addr; 356 CollSeq *p4; 357 358 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 359 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 360 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 361 (void*)p4, P4_COLLSEQ); 362 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 363 return addr; 364 } 365 366 /* 367 ** Return true if expression pExpr is a vector, or false otherwise. 368 ** 369 ** A vector is defined as any expression that results in two or more 370 ** columns of result. Every TK_VECTOR node is an vector because the 371 ** parser will not generate a TK_VECTOR with fewer than two entries. 372 ** But a TK_SELECT might be either a vector or a scalar. It is only 373 ** considered a vector if it has two or more result columns. 374 */ 375 int sqlite3ExprIsVector(Expr *pExpr){ 376 return sqlite3ExprVectorSize(pExpr)>1; 377 } 378 379 /* 380 ** If the expression passed as the only argument is of type TK_VECTOR 381 ** return the number of expressions in the vector. Or, if the expression 382 ** is a sub-select, return the number of columns in the sub-select. For 383 ** any other type of expression, return 1. 384 */ 385 int sqlite3ExprVectorSize(Expr *pExpr){ 386 u8 op = pExpr->op; 387 if( op==TK_REGISTER ) op = pExpr->op2; 388 if( op==TK_VECTOR ){ 389 return pExpr->x.pList->nExpr; 390 }else if( op==TK_SELECT ){ 391 return pExpr->x.pSelect->pEList->nExpr; 392 }else{ 393 return 1; 394 } 395 } 396 397 /* 398 ** Return a pointer to a subexpression of pVector that is the i-th 399 ** column of the vector (numbered starting with 0). The caller must 400 ** ensure that i is within range. 401 ** 402 ** If pVector is really a scalar (and "scalar" here includes subqueries 403 ** that return a single column!) then return pVector unmodified. 404 ** 405 ** pVector retains ownership of the returned subexpression. 406 ** 407 ** If the vector is a (SELECT ...) then the expression returned is 408 ** just the expression for the i-th term of the result set, and may 409 ** not be ready for evaluation because the table cursor has not yet 410 ** been positioned. 411 */ 412 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 413 assert( i<sqlite3ExprVectorSize(pVector) ); 414 if( sqlite3ExprIsVector(pVector) ){ 415 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 416 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 417 return pVector->x.pSelect->pEList->a[i].pExpr; 418 }else{ 419 return pVector->x.pList->a[i].pExpr; 420 } 421 } 422 return pVector; 423 } 424 425 /* 426 ** Compute and return a new Expr object which when passed to 427 ** sqlite3ExprCode() will generate all necessary code to compute 428 ** the iField-th column of the vector expression pVector. 429 ** 430 ** It is ok for pVector to be a scalar (as long as iField==0). 431 ** In that case, this routine works like sqlite3ExprDup(). 432 ** 433 ** The caller owns the returned Expr object and is responsible for 434 ** ensuring that the returned value eventually gets freed. 435 ** 436 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 437 ** then the returned object will reference pVector and so pVector must remain 438 ** valid for the life of the returned object. If pVector is a TK_VECTOR 439 ** or a scalar expression, then it can be deleted as soon as this routine 440 ** returns. 441 ** 442 ** A trick to cause a TK_SELECT pVector to be deleted together with 443 ** the returned Expr object is to attach the pVector to the pRight field 444 ** of the returned TK_SELECT_COLUMN Expr object. 445 */ 446 Expr *sqlite3ExprForVectorField( 447 Parse *pParse, /* Parsing context */ 448 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 449 int iField /* Which column of the vector to return */ 450 ){ 451 Expr *pRet; 452 if( pVector->op==TK_SELECT ){ 453 assert( pVector->flags & EP_xIsSelect ); 454 /* The TK_SELECT_COLUMN Expr node: 455 ** 456 ** pLeft: pVector containing TK_SELECT. Not deleted. 457 ** pRight: not used. But recursively deleted. 458 ** iColumn: Index of a column in pVector 459 ** iTable: 0 or the number of columns on the LHS of an assignment 460 ** pLeft->iTable: First in an array of register holding result, or 0 461 ** if the result is not yet computed. 462 ** 463 ** sqlite3ExprDelete() specifically skips the recursive delete of 464 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 465 ** can be attached to pRight to cause this node to take ownership of 466 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 467 ** with the same pLeft pointer to the pVector, but only one of them 468 ** will own the pVector. 469 */ 470 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 471 if( pRet ){ 472 pRet->iColumn = iField; 473 pRet->pLeft = pVector; 474 } 475 assert( pRet==0 || pRet->iTable==0 ); 476 }else{ 477 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 478 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 479 sqlite3RenameTokenRemap(pParse, pRet, pVector); 480 } 481 return pRet; 482 } 483 484 /* 485 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 486 ** it. Return the register in which the result is stored (or, if the 487 ** sub-select returns more than one column, the first in an array 488 ** of registers in which the result is stored). 489 ** 490 ** If pExpr is not a TK_SELECT expression, return 0. 491 */ 492 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 493 int reg = 0; 494 #ifndef SQLITE_OMIT_SUBQUERY 495 if( pExpr->op==TK_SELECT ){ 496 reg = sqlite3CodeSubselect(pParse, pExpr); 497 } 498 #endif 499 return reg; 500 } 501 502 /* 503 ** Argument pVector points to a vector expression - either a TK_VECTOR 504 ** or TK_SELECT that returns more than one column. This function returns 505 ** the register number of a register that contains the value of 506 ** element iField of the vector. 507 ** 508 ** If pVector is a TK_SELECT expression, then code for it must have 509 ** already been generated using the exprCodeSubselect() routine. In this 510 ** case parameter regSelect should be the first in an array of registers 511 ** containing the results of the sub-select. 512 ** 513 ** If pVector is of type TK_VECTOR, then code for the requested field 514 ** is generated. In this case (*pRegFree) may be set to the number of 515 ** a temporary register to be freed by the caller before returning. 516 ** 517 ** Before returning, output parameter (*ppExpr) is set to point to the 518 ** Expr object corresponding to element iElem of the vector. 519 */ 520 static int exprVectorRegister( 521 Parse *pParse, /* Parse context */ 522 Expr *pVector, /* Vector to extract element from */ 523 int iField, /* Field to extract from pVector */ 524 int regSelect, /* First in array of registers */ 525 Expr **ppExpr, /* OUT: Expression element */ 526 int *pRegFree /* OUT: Temp register to free */ 527 ){ 528 u8 op = pVector->op; 529 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 530 if( op==TK_REGISTER ){ 531 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 532 return pVector->iTable+iField; 533 } 534 if( op==TK_SELECT ){ 535 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 536 return regSelect+iField; 537 } 538 *ppExpr = pVector->x.pList->a[iField].pExpr; 539 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 540 } 541 542 /* 543 ** Expression pExpr is a comparison between two vector values. Compute 544 ** the result of the comparison (1, 0, or NULL) and write that 545 ** result into register dest. 546 ** 547 ** The caller must satisfy the following preconditions: 548 ** 549 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 550 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 551 ** otherwise: op==pExpr->op and p5==0 552 */ 553 static void codeVectorCompare( 554 Parse *pParse, /* Code generator context */ 555 Expr *pExpr, /* The comparison operation */ 556 int dest, /* Write results into this register */ 557 u8 op, /* Comparison operator */ 558 u8 p5 /* SQLITE_NULLEQ or zero */ 559 ){ 560 Vdbe *v = pParse->pVdbe; 561 Expr *pLeft = pExpr->pLeft; 562 Expr *pRight = pExpr->pRight; 563 int nLeft = sqlite3ExprVectorSize(pLeft); 564 int i; 565 int regLeft = 0; 566 int regRight = 0; 567 u8 opx = op; 568 int addrDone = sqlite3VdbeMakeLabel(pParse); 569 570 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 571 sqlite3ErrorMsg(pParse, "row value misused"); 572 return; 573 } 574 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 575 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 576 || pExpr->op==TK_LT || pExpr->op==TK_GT 577 || pExpr->op==TK_LE || pExpr->op==TK_GE 578 ); 579 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 580 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 581 assert( p5==0 || pExpr->op!=op ); 582 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 583 584 p5 |= SQLITE_STOREP2; 585 if( opx==TK_LE ) opx = TK_LT; 586 if( opx==TK_GE ) opx = TK_GT; 587 588 regLeft = exprCodeSubselect(pParse, pLeft); 589 regRight = exprCodeSubselect(pParse, pRight); 590 591 for(i=0; 1 /*Loop exits by "break"*/; i++){ 592 int regFree1 = 0, regFree2 = 0; 593 Expr *pL, *pR; 594 int r1, r2; 595 assert( i>=0 && i<nLeft ); 596 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 597 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 598 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5); 599 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 600 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 601 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 602 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 603 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 604 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 605 sqlite3ReleaseTempReg(pParse, regFree1); 606 sqlite3ReleaseTempReg(pParse, regFree2); 607 if( i==nLeft-1 ){ 608 break; 609 } 610 if( opx==TK_EQ ){ 611 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 612 p5 |= SQLITE_KEEPNULL; 613 }else if( opx==TK_NE ){ 614 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 615 p5 |= SQLITE_KEEPNULL; 616 }else{ 617 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 618 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 619 VdbeCoverageIf(v, op==TK_LT); 620 VdbeCoverageIf(v, op==TK_GT); 621 VdbeCoverageIf(v, op==TK_LE); 622 VdbeCoverageIf(v, op==TK_GE); 623 if( i==nLeft-2 ) opx = op; 624 } 625 } 626 sqlite3VdbeResolveLabel(v, addrDone); 627 } 628 629 #if SQLITE_MAX_EXPR_DEPTH>0 630 /* 631 ** Check that argument nHeight is less than or equal to the maximum 632 ** expression depth allowed. If it is not, leave an error message in 633 ** pParse. 634 */ 635 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 636 int rc = SQLITE_OK; 637 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 638 if( nHeight>mxHeight ){ 639 sqlite3ErrorMsg(pParse, 640 "Expression tree is too large (maximum depth %d)", mxHeight 641 ); 642 rc = SQLITE_ERROR; 643 } 644 return rc; 645 } 646 647 /* The following three functions, heightOfExpr(), heightOfExprList() 648 ** and heightOfSelect(), are used to determine the maximum height 649 ** of any expression tree referenced by the structure passed as the 650 ** first argument. 651 ** 652 ** If this maximum height is greater than the current value pointed 653 ** to by pnHeight, the second parameter, then set *pnHeight to that 654 ** value. 655 */ 656 static void heightOfExpr(Expr *p, int *pnHeight){ 657 if( p ){ 658 if( p->nHeight>*pnHeight ){ 659 *pnHeight = p->nHeight; 660 } 661 } 662 } 663 static void heightOfExprList(ExprList *p, int *pnHeight){ 664 if( p ){ 665 int i; 666 for(i=0; i<p->nExpr; i++){ 667 heightOfExpr(p->a[i].pExpr, pnHeight); 668 } 669 } 670 } 671 static void heightOfSelect(Select *pSelect, int *pnHeight){ 672 Select *p; 673 for(p=pSelect; p; p=p->pPrior){ 674 heightOfExpr(p->pWhere, pnHeight); 675 heightOfExpr(p->pHaving, pnHeight); 676 heightOfExpr(p->pLimit, pnHeight); 677 heightOfExprList(p->pEList, pnHeight); 678 heightOfExprList(p->pGroupBy, pnHeight); 679 heightOfExprList(p->pOrderBy, pnHeight); 680 } 681 } 682 683 /* 684 ** Set the Expr.nHeight variable in the structure passed as an 685 ** argument. An expression with no children, Expr.pList or 686 ** Expr.pSelect member has a height of 1. Any other expression 687 ** has a height equal to the maximum height of any other 688 ** referenced Expr plus one. 689 ** 690 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 691 ** if appropriate. 692 */ 693 static void exprSetHeight(Expr *p){ 694 int nHeight = 0; 695 heightOfExpr(p->pLeft, &nHeight); 696 heightOfExpr(p->pRight, &nHeight); 697 if( ExprHasProperty(p, EP_xIsSelect) ){ 698 heightOfSelect(p->x.pSelect, &nHeight); 699 }else if( p->x.pList ){ 700 heightOfExprList(p->x.pList, &nHeight); 701 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 702 } 703 p->nHeight = nHeight + 1; 704 } 705 706 /* 707 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 708 ** the height is greater than the maximum allowed expression depth, 709 ** leave an error in pParse. 710 ** 711 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 712 ** Expr.flags. 713 */ 714 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 715 if( pParse->nErr ) return; 716 exprSetHeight(p); 717 sqlite3ExprCheckHeight(pParse, p->nHeight); 718 } 719 720 /* 721 ** Return the maximum height of any expression tree referenced 722 ** by the select statement passed as an argument. 723 */ 724 int sqlite3SelectExprHeight(Select *p){ 725 int nHeight = 0; 726 heightOfSelect(p, &nHeight); 727 return nHeight; 728 } 729 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 730 /* 731 ** Propagate all EP_Propagate flags from the Expr.x.pList into 732 ** Expr.flags. 733 */ 734 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 735 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 736 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 737 } 738 } 739 #define exprSetHeight(y) 740 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 741 742 /* 743 ** This routine is the core allocator for Expr nodes. 744 ** 745 ** Construct a new expression node and return a pointer to it. Memory 746 ** for this node and for the pToken argument is a single allocation 747 ** obtained from sqlite3DbMalloc(). The calling function 748 ** is responsible for making sure the node eventually gets freed. 749 ** 750 ** If dequote is true, then the token (if it exists) is dequoted. 751 ** If dequote is false, no dequoting is performed. The deQuote 752 ** parameter is ignored if pToken is NULL or if the token does not 753 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 754 ** then the EP_DblQuoted flag is set on the expression node. 755 ** 756 ** Special case: If op==TK_INTEGER and pToken points to a string that 757 ** can be translated into a 32-bit integer, then the token is not 758 ** stored in u.zToken. Instead, the integer values is written 759 ** into u.iValue and the EP_IntValue flag is set. No extra storage 760 ** is allocated to hold the integer text and the dequote flag is ignored. 761 */ 762 Expr *sqlite3ExprAlloc( 763 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 764 int op, /* Expression opcode */ 765 const Token *pToken, /* Token argument. Might be NULL */ 766 int dequote /* True to dequote */ 767 ){ 768 Expr *pNew; 769 int nExtra = 0; 770 int iValue = 0; 771 772 assert( db!=0 ); 773 if( pToken ){ 774 if( op!=TK_INTEGER || pToken->z==0 775 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 776 nExtra = pToken->n+1; 777 assert( iValue>=0 ); 778 } 779 } 780 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 781 if( pNew ){ 782 memset(pNew, 0, sizeof(Expr)); 783 pNew->op = (u8)op; 784 pNew->iAgg = -1; 785 if( pToken ){ 786 if( nExtra==0 ){ 787 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 788 pNew->u.iValue = iValue; 789 }else{ 790 pNew->u.zToken = (char*)&pNew[1]; 791 assert( pToken->z!=0 || pToken->n==0 ); 792 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 793 pNew->u.zToken[pToken->n] = 0; 794 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 795 sqlite3DequoteExpr(pNew); 796 } 797 } 798 } 799 #if SQLITE_MAX_EXPR_DEPTH>0 800 pNew->nHeight = 1; 801 #endif 802 } 803 return pNew; 804 } 805 806 /* 807 ** Allocate a new expression node from a zero-terminated token that has 808 ** already been dequoted. 809 */ 810 Expr *sqlite3Expr( 811 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 812 int op, /* Expression opcode */ 813 const char *zToken /* Token argument. Might be NULL */ 814 ){ 815 Token x; 816 x.z = zToken; 817 x.n = sqlite3Strlen30(zToken); 818 return sqlite3ExprAlloc(db, op, &x, 0); 819 } 820 821 /* 822 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 823 ** 824 ** If pRoot==NULL that means that a memory allocation error has occurred. 825 ** In that case, delete the subtrees pLeft and pRight. 826 */ 827 void sqlite3ExprAttachSubtrees( 828 sqlite3 *db, 829 Expr *pRoot, 830 Expr *pLeft, 831 Expr *pRight 832 ){ 833 if( pRoot==0 ){ 834 assert( db->mallocFailed ); 835 sqlite3ExprDelete(db, pLeft); 836 sqlite3ExprDelete(db, pRight); 837 }else{ 838 if( pRight ){ 839 pRoot->pRight = pRight; 840 pRoot->flags |= EP_Propagate & pRight->flags; 841 } 842 if( pLeft ){ 843 pRoot->pLeft = pLeft; 844 pRoot->flags |= EP_Propagate & pLeft->flags; 845 } 846 exprSetHeight(pRoot); 847 } 848 } 849 850 /* 851 ** Allocate an Expr node which joins as many as two subtrees. 852 ** 853 ** One or both of the subtrees can be NULL. Return a pointer to the new 854 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 855 ** free the subtrees and return NULL. 856 */ 857 Expr *sqlite3PExpr( 858 Parse *pParse, /* Parsing context */ 859 int op, /* Expression opcode */ 860 Expr *pLeft, /* Left operand */ 861 Expr *pRight /* Right operand */ 862 ){ 863 Expr *p; 864 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 865 if( p ){ 866 memset(p, 0, sizeof(Expr)); 867 p->op = op & 0xff; 868 p->iAgg = -1; 869 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 870 sqlite3ExprCheckHeight(pParse, p->nHeight); 871 }else{ 872 sqlite3ExprDelete(pParse->db, pLeft); 873 sqlite3ExprDelete(pParse->db, pRight); 874 } 875 return p; 876 } 877 878 /* 879 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 880 ** do a memory allocation failure) then delete the pSelect object. 881 */ 882 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 883 if( pExpr ){ 884 pExpr->x.pSelect = pSelect; 885 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 886 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 887 }else{ 888 assert( pParse->db->mallocFailed ); 889 sqlite3SelectDelete(pParse->db, pSelect); 890 } 891 } 892 893 894 /* 895 ** Join two expressions using an AND operator. If either expression is 896 ** NULL, then just return the other expression. 897 ** 898 ** If one side or the other of the AND is known to be false, then instead 899 ** of returning an AND expression, just return a constant expression with 900 ** a value of false. 901 */ 902 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 903 sqlite3 *db = pParse->db; 904 if( pLeft==0 ){ 905 return pRight; 906 }else if( pRight==0 ){ 907 return pLeft; 908 }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){ 909 sqlite3ExprUnmapAndDelete(pParse, pLeft); 910 sqlite3ExprUnmapAndDelete(pParse, pRight); 911 return sqlite3Expr(db, TK_INTEGER, "0"); 912 }else{ 913 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 914 } 915 } 916 917 /* 918 ** Construct a new expression node for a function with multiple 919 ** arguments. 920 */ 921 Expr *sqlite3ExprFunction( 922 Parse *pParse, /* Parsing context */ 923 ExprList *pList, /* Argument list */ 924 Token *pToken, /* Name of the function */ 925 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 926 ){ 927 Expr *pNew; 928 sqlite3 *db = pParse->db; 929 assert( pToken ); 930 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 931 if( pNew==0 ){ 932 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 933 return 0; 934 } 935 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 936 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 937 } 938 pNew->x.pList = pList; 939 ExprSetProperty(pNew, EP_HasFunc); 940 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 941 sqlite3ExprSetHeightAndFlags(pParse, pNew); 942 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 943 return pNew; 944 } 945 946 /* 947 ** Assign a variable number to an expression that encodes a wildcard 948 ** in the original SQL statement. 949 ** 950 ** Wildcards consisting of a single "?" are assigned the next sequential 951 ** variable number. 952 ** 953 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 954 ** sure "nnn" is not too big to avoid a denial of service attack when 955 ** the SQL statement comes from an external source. 956 ** 957 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 958 ** as the previous instance of the same wildcard. Or if this is the first 959 ** instance of the wildcard, the next sequential variable number is 960 ** assigned. 961 */ 962 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 963 sqlite3 *db = pParse->db; 964 const char *z; 965 ynVar x; 966 967 if( pExpr==0 ) return; 968 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 969 z = pExpr->u.zToken; 970 assert( z!=0 ); 971 assert( z[0]!=0 ); 972 assert( n==(u32)sqlite3Strlen30(z) ); 973 if( z[1]==0 ){ 974 /* Wildcard of the form "?". Assign the next variable number */ 975 assert( z[0]=='?' ); 976 x = (ynVar)(++pParse->nVar); 977 }else{ 978 int doAdd = 0; 979 if( z[0]=='?' ){ 980 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 981 ** use it as the variable number */ 982 i64 i; 983 int bOk; 984 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 985 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 986 bOk = 1; 987 }else{ 988 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 989 } 990 testcase( i==0 ); 991 testcase( i==1 ); 992 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 993 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 994 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 995 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 996 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 997 return; 998 } 999 x = (ynVar)i; 1000 if( x>pParse->nVar ){ 1001 pParse->nVar = (int)x; 1002 doAdd = 1; 1003 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1004 doAdd = 1; 1005 } 1006 }else{ 1007 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1008 ** number as the prior appearance of the same name, or if the name 1009 ** has never appeared before, reuse the same variable number 1010 */ 1011 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1012 if( x==0 ){ 1013 x = (ynVar)(++pParse->nVar); 1014 doAdd = 1; 1015 } 1016 } 1017 if( doAdd ){ 1018 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1019 } 1020 } 1021 pExpr->iColumn = x; 1022 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1023 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1024 } 1025 } 1026 1027 /* 1028 ** Recursively delete an expression tree. 1029 */ 1030 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1031 assert( p!=0 ); 1032 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1033 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1034 1035 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1036 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1037 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1038 #ifdef SQLITE_DEBUG 1039 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1040 assert( p->pLeft==0 ); 1041 assert( p->pRight==0 ); 1042 assert( p->x.pSelect==0 ); 1043 } 1044 #endif 1045 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1046 /* The Expr.x union is never used at the same time as Expr.pRight */ 1047 assert( p->x.pList==0 || p->pRight==0 ); 1048 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1049 if( p->pRight ){ 1050 assert( !ExprHasProperty(p, EP_WinFunc) ); 1051 sqlite3ExprDeleteNN(db, p->pRight); 1052 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1053 assert( !ExprHasProperty(p, EP_WinFunc) ); 1054 sqlite3SelectDelete(db, p->x.pSelect); 1055 }else{ 1056 sqlite3ExprListDelete(db, p->x.pList); 1057 #ifndef SQLITE_OMIT_WINDOWFUNC 1058 if( ExprHasProperty(p, EP_WinFunc) ){ 1059 sqlite3WindowDelete(db, p->y.pWin); 1060 } 1061 #endif 1062 } 1063 } 1064 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1065 if( !ExprHasProperty(p, EP_Static) ){ 1066 sqlite3DbFreeNN(db, p); 1067 } 1068 } 1069 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1070 if( p ) sqlite3ExprDeleteNN(db, p); 1071 } 1072 1073 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1074 ** expression. 1075 */ 1076 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1077 if( p ){ 1078 if( IN_RENAME_OBJECT ){ 1079 sqlite3RenameExprUnmap(pParse, p); 1080 } 1081 sqlite3ExprDeleteNN(pParse->db, p); 1082 } 1083 } 1084 1085 /* 1086 ** Return the number of bytes allocated for the expression structure 1087 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1088 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1089 */ 1090 static int exprStructSize(Expr *p){ 1091 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1092 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1093 return EXPR_FULLSIZE; 1094 } 1095 1096 /* 1097 ** The dupedExpr*Size() routines each return the number of bytes required 1098 ** to store a copy of an expression or expression tree. They differ in 1099 ** how much of the tree is measured. 1100 ** 1101 ** dupedExprStructSize() Size of only the Expr structure 1102 ** dupedExprNodeSize() Size of Expr + space for token 1103 ** dupedExprSize() Expr + token + subtree components 1104 ** 1105 *************************************************************************** 1106 ** 1107 ** The dupedExprStructSize() function returns two values OR-ed together: 1108 ** (1) the space required for a copy of the Expr structure only and 1109 ** (2) the EP_xxx flags that indicate what the structure size should be. 1110 ** The return values is always one of: 1111 ** 1112 ** EXPR_FULLSIZE 1113 ** EXPR_REDUCEDSIZE | EP_Reduced 1114 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1115 ** 1116 ** The size of the structure can be found by masking the return value 1117 ** of this routine with 0xfff. The flags can be found by masking the 1118 ** return value with EP_Reduced|EP_TokenOnly. 1119 ** 1120 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1121 ** (unreduced) Expr objects as they or originally constructed by the parser. 1122 ** During expression analysis, extra information is computed and moved into 1123 ** later parts of the Expr object and that extra information might get chopped 1124 ** off if the expression is reduced. Note also that it does not work to 1125 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1126 ** to reduce a pristine expression tree from the parser. The implementation 1127 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1128 ** to enforce this constraint. 1129 */ 1130 static int dupedExprStructSize(Expr *p, int flags){ 1131 int nSize; 1132 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1133 assert( EXPR_FULLSIZE<=0xfff ); 1134 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1135 if( 0==flags || p->op==TK_SELECT_COLUMN 1136 #ifndef SQLITE_OMIT_WINDOWFUNC 1137 || ExprHasProperty(p, EP_WinFunc) 1138 #endif 1139 ){ 1140 nSize = EXPR_FULLSIZE; 1141 }else{ 1142 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1143 assert( !ExprHasProperty(p, EP_FromJoin) ); 1144 assert( !ExprHasProperty(p, EP_MemToken) ); 1145 assert( !ExprHasProperty(p, EP_NoReduce) ); 1146 if( p->pLeft || p->x.pList ){ 1147 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1148 }else{ 1149 assert( p->pRight==0 ); 1150 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1151 } 1152 } 1153 return nSize; 1154 } 1155 1156 /* 1157 ** This function returns the space in bytes required to store the copy 1158 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1159 ** string is defined.) 1160 */ 1161 static int dupedExprNodeSize(Expr *p, int flags){ 1162 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1163 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1164 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1165 } 1166 return ROUND8(nByte); 1167 } 1168 1169 /* 1170 ** Return the number of bytes required to create a duplicate of the 1171 ** expression passed as the first argument. The second argument is a 1172 ** mask containing EXPRDUP_XXX flags. 1173 ** 1174 ** The value returned includes space to create a copy of the Expr struct 1175 ** itself and the buffer referred to by Expr.u.zToken, if any. 1176 ** 1177 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1178 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1179 ** and Expr.pRight variables (but not for any structures pointed to or 1180 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1181 */ 1182 static int dupedExprSize(Expr *p, int flags){ 1183 int nByte = 0; 1184 if( p ){ 1185 nByte = dupedExprNodeSize(p, flags); 1186 if( flags&EXPRDUP_REDUCE ){ 1187 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1188 } 1189 } 1190 return nByte; 1191 } 1192 1193 /* 1194 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1195 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1196 ** to store the copy of expression p, the copies of p->u.zToken 1197 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1198 ** if any. Before returning, *pzBuffer is set to the first byte past the 1199 ** portion of the buffer copied into by this function. 1200 */ 1201 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1202 Expr *pNew; /* Value to return */ 1203 u8 *zAlloc; /* Memory space from which to build Expr object */ 1204 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1205 1206 assert( db!=0 ); 1207 assert( p ); 1208 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1209 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1210 1211 /* Figure out where to write the new Expr structure. */ 1212 if( pzBuffer ){ 1213 zAlloc = *pzBuffer; 1214 staticFlag = EP_Static; 1215 }else{ 1216 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1217 staticFlag = 0; 1218 } 1219 pNew = (Expr *)zAlloc; 1220 1221 if( pNew ){ 1222 /* Set nNewSize to the size allocated for the structure pointed to 1223 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1224 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1225 ** by the copy of the p->u.zToken string (if any). 1226 */ 1227 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1228 const int nNewSize = nStructSize & 0xfff; 1229 int nToken; 1230 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1231 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1232 }else{ 1233 nToken = 0; 1234 } 1235 if( dupFlags ){ 1236 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1237 memcpy(zAlloc, p, nNewSize); 1238 }else{ 1239 u32 nSize = (u32)exprStructSize(p); 1240 memcpy(zAlloc, p, nSize); 1241 if( nSize<EXPR_FULLSIZE ){ 1242 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1243 } 1244 } 1245 1246 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1247 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1248 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1249 pNew->flags |= staticFlag; 1250 1251 /* Copy the p->u.zToken string, if any. */ 1252 if( nToken ){ 1253 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1254 memcpy(zToken, p->u.zToken, nToken); 1255 } 1256 1257 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1258 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1259 if( ExprHasProperty(p, EP_xIsSelect) ){ 1260 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1261 }else{ 1262 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1263 } 1264 } 1265 1266 /* Fill in pNew->pLeft and pNew->pRight. */ 1267 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1268 zAlloc += dupedExprNodeSize(p, dupFlags); 1269 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1270 pNew->pLeft = p->pLeft ? 1271 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1272 pNew->pRight = p->pRight ? 1273 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1274 } 1275 #ifndef SQLITE_OMIT_WINDOWFUNC 1276 if( ExprHasProperty(p, EP_WinFunc) ){ 1277 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1278 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1279 } 1280 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1281 if( pzBuffer ){ 1282 *pzBuffer = zAlloc; 1283 } 1284 }else{ 1285 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1286 if( pNew->op==TK_SELECT_COLUMN ){ 1287 pNew->pLeft = p->pLeft; 1288 assert( p->iColumn==0 || p->pRight==0 ); 1289 assert( p->pRight==0 || p->pRight==p->pLeft ); 1290 }else{ 1291 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1292 } 1293 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1294 } 1295 } 1296 } 1297 return pNew; 1298 } 1299 1300 /* 1301 ** Create and return a deep copy of the object passed as the second 1302 ** argument. If an OOM condition is encountered, NULL is returned 1303 ** and the db->mallocFailed flag set. 1304 */ 1305 #ifndef SQLITE_OMIT_CTE 1306 static With *withDup(sqlite3 *db, With *p){ 1307 With *pRet = 0; 1308 if( p ){ 1309 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1310 pRet = sqlite3DbMallocZero(db, nByte); 1311 if( pRet ){ 1312 int i; 1313 pRet->nCte = p->nCte; 1314 for(i=0; i<p->nCte; i++){ 1315 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1316 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1317 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1318 } 1319 } 1320 } 1321 return pRet; 1322 } 1323 #else 1324 # define withDup(x,y) 0 1325 #endif 1326 1327 #ifndef SQLITE_OMIT_WINDOWFUNC 1328 /* 1329 ** The gatherSelectWindows() procedure and its helper routine 1330 ** gatherSelectWindowsCallback() are used to scan all the expressions 1331 ** an a newly duplicated SELECT statement and gather all of the Window 1332 ** objects found there, assembling them onto the linked list at Select->pWin. 1333 */ 1334 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1335 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1336 Select *pSelect = pWalker->u.pSelect; 1337 Window *pWin = pExpr->y.pWin; 1338 assert( pWin ); 1339 assert( IsWindowFunc(pExpr) ); 1340 assert( pWin->ppThis==0 ); 1341 sqlite3WindowLink(pSelect, pWin); 1342 } 1343 return WRC_Continue; 1344 } 1345 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1346 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1347 } 1348 static void gatherSelectWindows(Select *p){ 1349 Walker w; 1350 w.xExprCallback = gatherSelectWindowsCallback; 1351 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1352 w.xSelectCallback2 = 0; 1353 w.pParse = 0; 1354 w.u.pSelect = p; 1355 sqlite3WalkSelect(&w, p); 1356 } 1357 #endif 1358 1359 1360 /* 1361 ** The following group of routines make deep copies of expressions, 1362 ** expression lists, ID lists, and select statements. The copies can 1363 ** be deleted (by being passed to their respective ...Delete() routines) 1364 ** without effecting the originals. 1365 ** 1366 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1367 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1368 ** by subsequent calls to sqlite*ListAppend() routines. 1369 ** 1370 ** Any tables that the SrcList might point to are not duplicated. 1371 ** 1372 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1373 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1374 ** truncated version of the usual Expr structure that will be stored as 1375 ** part of the in-memory representation of the database schema. 1376 */ 1377 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1378 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1379 return p ? exprDup(db, p, flags, 0) : 0; 1380 } 1381 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1382 ExprList *pNew; 1383 struct ExprList_item *pItem, *pOldItem; 1384 int i; 1385 Expr *pPriorSelectCol = 0; 1386 assert( db!=0 ); 1387 if( p==0 ) return 0; 1388 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1389 if( pNew==0 ) return 0; 1390 pNew->nExpr = p->nExpr; 1391 pItem = pNew->a; 1392 pOldItem = p->a; 1393 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1394 Expr *pOldExpr = pOldItem->pExpr; 1395 Expr *pNewExpr; 1396 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1397 if( pOldExpr 1398 && pOldExpr->op==TK_SELECT_COLUMN 1399 && (pNewExpr = pItem->pExpr)!=0 1400 ){ 1401 assert( pNewExpr->iColumn==0 || i>0 ); 1402 if( pNewExpr->iColumn==0 ){ 1403 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1404 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1405 }else{ 1406 assert( i>0 ); 1407 assert( pItem[-1].pExpr!=0 ); 1408 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1409 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1410 pNewExpr->pLeft = pPriorSelectCol; 1411 } 1412 } 1413 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1414 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 1415 pItem->sortFlags = pOldItem->sortFlags; 1416 pItem->done = 0; 1417 pItem->bNulls = pOldItem->bNulls; 1418 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 1419 pItem->bSorterRef = pOldItem->bSorterRef; 1420 pItem->u = pOldItem->u; 1421 } 1422 return pNew; 1423 } 1424 1425 /* 1426 ** If cursors, triggers, views and subqueries are all omitted from 1427 ** the build, then none of the following routines, except for 1428 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1429 ** called with a NULL argument. 1430 */ 1431 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1432 || !defined(SQLITE_OMIT_SUBQUERY) 1433 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1434 SrcList *pNew; 1435 int i; 1436 int nByte; 1437 assert( db!=0 ); 1438 if( p==0 ) return 0; 1439 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1440 pNew = sqlite3DbMallocRawNN(db, nByte ); 1441 if( pNew==0 ) return 0; 1442 pNew->nSrc = pNew->nAlloc = p->nSrc; 1443 for(i=0; i<p->nSrc; i++){ 1444 struct SrcList_item *pNewItem = &pNew->a[i]; 1445 struct SrcList_item *pOldItem = &p->a[i]; 1446 Table *pTab; 1447 pNewItem->pSchema = pOldItem->pSchema; 1448 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1449 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1450 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1451 pNewItem->fg = pOldItem->fg; 1452 pNewItem->iCursor = pOldItem->iCursor; 1453 pNewItem->addrFillSub = pOldItem->addrFillSub; 1454 pNewItem->regReturn = pOldItem->regReturn; 1455 if( pNewItem->fg.isIndexedBy ){ 1456 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1457 } 1458 pNewItem->pIBIndex = pOldItem->pIBIndex; 1459 if( pNewItem->fg.isTabFunc ){ 1460 pNewItem->u1.pFuncArg = 1461 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1462 } 1463 pTab = pNewItem->pTab = pOldItem->pTab; 1464 if( pTab ){ 1465 pTab->nTabRef++; 1466 } 1467 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1468 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1469 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1470 pNewItem->colUsed = pOldItem->colUsed; 1471 } 1472 return pNew; 1473 } 1474 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1475 IdList *pNew; 1476 int i; 1477 assert( db!=0 ); 1478 if( p==0 ) return 0; 1479 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1480 if( pNew==0 ) return 0; 1481 pNew->nId = p->nId; 1482 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1483 if( pNew->a==0 ){ 1484 sqlite3DbFreeNN(db, pNew); 1485 return 0; 1486 } 1487 /* Note that because the size of the allocation for p->a[] is not 1488 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1489 ** on the duplicate created by this function. */ 1490 for(i=0; i<p->nId; i++){ 1491 struct IdList_item *pNewItem = &pNew->a[i]; 1492 struct IdList_item *pOldItem = &p->a[i]; 1493 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1494 pNewItem->idx = pOldItem->idx; 1495 } 1496 return pNew; 1497 } 1498 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1499 Select *pRet = 0; 1500 Select *pNext = 0; 1501 Select **pp = &pRet; 1502 Select *p; 1503 1504 assert( db!=0 ); 1505 for(p=pDup; p; p=p->pPrior){ 1506 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1507 if( pNew==0 ) break; 1508 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1509 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1510 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1511 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1512 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1513 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1514 pNew->op = p->op; 1515 pNew->pNext = pNext; 1516 pNew->pPrior = 0; 1517 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1518 pNew->iLimit = 0; 1519 pNew->iOffset = 0; 1520 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1521 pNew->addrOpenEphm[0] = -1; 1522 pNew->addrOpenEphm[1] = -1; 1523 pNew->nSelectRow = p->nSelectRow; 1524 pNew->pWith = withDup(db, p->pWith); 1525 #ifndef SQLITE_OMIT_WINDOWFUNC 1526 pNew->pWin = 0; 1527 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1528 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1529 #endif 1530 pNew->selId = p->selId; 1531 *pp = pNew; 1532 pp = &pNew->pPrior; 1533 pNext = pNew; 1534 } 1535 1536 return pRet; 1537 } 1538 #else 1539 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1540 assert( p==0 ); 1541 return 0; 1542 } 1543 #endif 1544 1545 1546 /* 1547 ** Add a new element to the end of an expression list. If pList is 1548 ** initially NULL, then create a new expression list. 1549 ** 1550 ** The pList argument must be either NULL or a pointer to an ExprList 1551 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1552 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1553 ** Reason: This routine assumes that the number of slots in pList->a[] 1554 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1555 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1556 ** 1557 ** If a memory allocation error occurs, the entire list is freed and 1558 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1559 ** that the new entry was successfully appended. 1560 */ 1561 ExprList *sqlite3ExprListAppend( 1562 Parse *pParse, /* Parsing context */ 1563 ExprList *pList, /* List to which to append. Might be NULL */ 1564 Expr *pExpr /* Expression to be appended. Might be NULL */ 1565 ){ 1566 struct ExprList_item *pItem; 1567 sqlite3 *db = pParse->db; 1568 assert( db!=0 ); 1569 if( pList==0 ){ 1570 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1571 if( pList==0 ){ 1572 goto no_mem; 1573 } 1574 pList->nExpr = 0; 1575 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1576 ExprList *pNew; 1577 pNew = sqlite3DbRealloc(db, pList, 1578 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1579 if( pNew==0 ){ 1580 goto no_mem; 1581 } 1582 pList = pNew; 1583 } 1584 pItem = &pList->a[pList->nExpr++]; 1585 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) ); 1586 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1587 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName)); 1588 pItem->pExpr = pExpr; 1589 return pList; 1590 1591 no_mem: 1592 /* Avoid leaking memory if malloc has failed. */ 1593 sqlite3ExprDelete(db, pExpr); 1594 sqlite3ExprListDelete(db, pList); 1595 return 0; 1596 } 1597 1598 /* 1599 ** pColumns and pExpr form a vector assignment which is part of the SET 1600 ** clause of an UPDATE statement. Like this: 1601 ** 1602 ** (a,b,c) = (expr1,expr2,expr3) 1603 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1604 ** 1605 ** For each term of the vector assignment, append new entries to the 1606 ** expression list pList. In the case of a subquery on the RHS, append 1607 ** TK_SELECT_COLUMN expressions. 1608 */ 1609 ExprList *sqlite3ExprListAppendVector( 1610 Parse *pParse, /* Parsing context */ 1611 ExprList *pList, /* List to which to append. Might be NULL */ 1612 IdList *pColumns, /* List of names of LHS of the assignment */ 1613 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1614 ){ 1615 sqlite3 *db = pParse->db; 1616 int n; 1617 int i; 1618 int iFirst = pList ? pList->nExpr : 0; 1619 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1620 ** exit prior to this routine being invoked */ 1621 if( NEVER(pColumns==0) ) goto vector_append_error; 1622 if( pExpr==0 ) goto vector_append_error; 1623 1624 /* If the RHS is a vector, then we can immediately check to see that 1625 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1626 ** wildcards ("*") in the result set of the SELECT must be expanded before 1627 ** we can do the size check, so defer the size check until code generation. 1628 */ 1629 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1630 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1631 pColumns->nId, n); 1632 goto vector_append_error; 1633 } 1634 1635 for(i=0; i<pColumns->nId; i++){ 1636 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1637 assert( pSubExpr!=0 || db->mallocFailed ); 1638 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1639 if( pSubExpr==0 ) continue; 1640 pSubExpr->iTable = pColumns->nId; 1641 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1642 if( pList ){ 1643 assert( pList->nExpr==iFirst+i+1 ); 1644 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName; 1645 pColumns->a[i].zName = 0; 1646 } 1647 } 1648 1649 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1650 Expr *pFirst = pList->a[iFirst].pExpr; 1651 assert( pFirst!=0 ); 1652 assert( pFirst->op==TK_SELECT_COLUMN ); 1653 1654 /* Store the SELECT statement in pRight so it will be deleted when 1655 ** sqlite3ExprListDelete() is called */ 1656 pFirst->pRight = pExpr; 1657 pExpr = 0; 1658 1659 /* Remember the size of the LHS in iTable so that we can check that 1660 ** the RHS and LHS sizes match during code generation. */ 1661 pFirst->iTable = pColumns->nId; 1662 } 1663 1664 vector_append_error: 1665 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1666 sqlite3IdListDelete(db, pColumns); 1667 return pList; 1668 } 1669 1670 /* 1671 ** Set the sort order for the last element on the given ExprList. 1672 */ 1673 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1674 struct ExprList_item *pItem; 1675 if( p==0 ) return; 1676 assert( p->nExpr>0 ); 1677 1678 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1679 assert( iSortOrder==SQLITE_SO_UNDEFINED 1680 || iSortOrder==SQLITE_SO_ASC 1681 || iSortOrder==SQLITE_SO_DESC 1682 ); 1683 assert( eNulls==SQLITE_SO_UNDEFINED 1684 || eNulls==SQLITE_SO_ASC 1685 || eNulls==SQLITE_SO_DESC 1686 ); 1687 1688 pItem = &p->a[p->nExpr-1]; 1689 assert( pItem->bNulls==0 ); 1690 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1691 iSortOrder = SQLITE_SO_ASC; 1692 } 1693 pItem->sortFlags = (u8)iSortOrder; 1694 1695 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1696 pItem->bNulls = 1; 1697 if( iSortOrder!=eNulls ){ 1698 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1699 } 1700 } 1701 } 1702 1703 /* 1704 ** Set the ExprList.a[].zName element of the most recently added item 1705 ** on the expression list. 1706 ** 1707 ** pList might be NULL following an OOM error. But pName should never be 1708 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1709 ** is set. 1710 */ 1711 void sqlite3ExprListSetName( 1712 Parse *pParse, /* Parsing context */ 1713 ExprList *pList, /* List to which to add the span. */ 1714 Token *pName, /* Name to be added */ 1715 int dequote /* True to cause the name to be dequoted */ 1716 ){ 1717 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1718 if( pList ){ 1719 struct ExprList_item *pItem; 1720 assert( pList->nExpr>0 ); 1721 pItem = &pList->a[pList->nExpr-1]; 1722 assert( pItem->zName==0 ); 1723 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1724 if( dequote ) sqlite3Dequote(pItem->zName); 1725 if( IN_RENAME_OBJECT ){ 1726 sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName); 1727 } 1728 } 1729 } 1730 1731 /* 1732 ** Set the ExprList.a[].zSpan element of the most recently added item 1733 ** on the expression list. 1734 ** 1735 ** pList might be NULL following an OOM error. But pSpan should never be 1736 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1737 ** is set. 1738 */ 1739 void sqlite3ExprListSetSpan( 1740 Parse *pParse, /* Parsing context */ 1741 ExprList *pList, /* List to which to add the span. */ 1742 const char *zStart, /* Start of the span */ 1743 const char *zEnd /* End of the span */ 1744 ){ 1745 sqlite3 *db = pParse->db; 1746 assert( pList!=0 || db->mallocFailed!=0 ); 1747 if( pList ){ 1748 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1749 assert( pList->nExpr>0 ); 1750 sqlite3DbFree(db, pItem->zSpan); 1751 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd); 1752 } 1753 } 1754 1755 /* 1756 ** If the expression list pEList contains more than iLimit elements, 1757 ** leave an error message in pParse. 1758 */ 1759 void sqlite3ExprListCheckLength( 1760 Parse *pParse, 1761 ExprList *pEList, 1762 const char *zObject 1763 ){ 1764 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1765 testcase( pEList && pEList->nExpr==mx ); 1766 testcase( pEList && pEList->nExpr==mx+1 ); 1767 if( pEList && pEList->nExpr>mx ){ 1768 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1769 } 1770 } 1771 1772 /* 1773 ** Delete an entire expression list. 1774 */ 1775 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1776 int i = pList->nExpr; 1777 struct ExprList_item *pItem = pList->a; 1778 assert( pList->nExpr>0 ); 1779 do{ 1780 sqlite3ExprDelete(db, pItem->pExpr); 1781 sqlite3DbFree(db, pItem->zName); 1782 sqlite3DbFree(db, pItem->zSpan); 1783 pItem++; 1784 }while( --i>0 ); 1785 sqlite3DbFreeNN(db, pList); 1786 } 1787 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1788 if( pList ) exprListDeleteNN(db, pList); 1789 } 1790 1791 /* 1792 ** Return the bitwise-OR of all Expr.flags fields in the given 1793 ** ExprList. 1794 */ 1795 u32 sqlite3ExprListFlags(const ExprList *pList){ 1796 int i; 1797 u32 m = 0; 1798 assert( pList!=0 ); 1799 for(i=0; i<pList->nExpr; i++){ 1800 Expr *pExpr = pList->a[i].pExpr; 1801 assert( pExpr!=0 ); 1802 m |= pExpr->flags; 1803 } 1804 return m; 1805 } 1806 1807 /* 1808 ** This is a SELECT-node callback for the expression walker that 1809 ** always "fails". By "fail" in this case, we mean set 1810 ** pWalker->eCode to zero and abort. 1811 ** 1812 ** This callback is used by multiple expression walkers. 1813 */ 1814 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1815 UNUSED_PARAMETER(NotUsed); 1816 pWalker->eCode = 0; 1817 return WRC_Abort; 1818 } 1819 1820 /* 1821 ** If the input expression is an ID with the name "true" or "false" 1822 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1823 ** the conversion happened, and zero if the expression is unaltered. 1824 */ 1825 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1826 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1827 if( !ExprHasProperty(pExpr, EP_Quoted) 1828 && (sqlite3StrICmp(pExpr->u.zToken, "true")==0 1829 || sqlite3StrICmp(pExpr->u.zToken, "false")==0) 1830 ){ 1831 pExpr->op = TK_TRUEFALSE; 1832 ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse); 1833 return 1; 1834 } 1835 return 0; 1836 } 1837 1838 /* 1839 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1840 ** and 0 if it is FALSE. 1841 */ 1842 int sqlite3ExprTruthValue(const Expr *pExpr){ 1843 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1844 assert( pExpr->op==TK_TRUEFALSE ); 1845 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1846 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1847 return pExpr->u.zToken[4]==0; 1848 } 1849 1850 /* 1851 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1852 ** terms that are always true or false. Return the simplified expression. 1853 ** Or return the original expression if no simplification is possible. 1854 ** 1855 ** Examples: 1856 ** 1857 ** (x<10) AND true => (x<10) 1858 ** (x<10) AND false => false 1859 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1860 ** (x<10) AND (y=22 OR true) => (x<10) 1861 ** (y=22) OR true => true 1862 */ 1863 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1864 assert( pExpr!=0 ); 1865 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1866 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1867 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1868 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1869 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1870 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1871 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1872 } 1873 } 1874 return pExpr; 1875 } 1876 1877 1878 /* 1879 ** These routines are Walker callbacks used to check expressions to 1880 ** see if they are "constant" for some definition of constant. The 1881 ** Walker.eCode value determines the type of "constant" we are looking 1882 ** for. 1883 ** 1884 ** These callback routines are used to implement the following: 1885 ** 1886 ** sqlite3ExprIsConstant() pWalker->eCode==1 1887 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1888 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1889 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1890 ** 1891 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1892 ** is found to not be a constant. 1893 ** 1894 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions 1895 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing 1896 ** an existing schema and 4 when processing a new statement. A bound 1897 ** parameter raises an error for new statements, but is silently converted 1898 ** to NULL for existing schemas. This allows sqlite_master tables that 1899 ** contain a bound parameter because they were generated by older versions 1900 ** of SQLite to be parsed by newer versions of SQLite without raising a 1901 ** malformed schema error. 1902 */ 1903 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1904 1905 /* If pWalker->eCode is 2 then any term of the expression that comes from 1906 ** the ON or USING clauses of a left join disqualifies the expression 1907 ** from being considered constant. */ 1908 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1909 pWalker->eCode = 0; 1910 return WRC_Abort; 1911 } 1912 1913 switch( pExpr->op ){ 1914 /* Consider functions to be constant if all their arguments are constant 1915 ** and either pWalker->eCode==4 or 5 or the function has the 1916 ** SQLITE_FUNC_CONST flag. */ 1917 case TK_FUNCTION: 1918 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ 1919 return WRC_Continue; 1920 }else{ 1921 pWalker->eCode = 0; 1922 return WRC_Abort; 1923 } 1924 case TK_ID: 1925 /* Convert "true" or "false" in a DEFAULT clause into the 1926 ** appropriate TK_TRUEFALSE operator */ 1927 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 1928 return WRC_Prune; 1929 } 1930 /* Fall thru */ 1931 case TK_COLUMN: 1932 case TK_AGG_FUNCTION: 1933 case TK_AGG_COLUMN: 1934 testcase( pExpr->op==TK_ID ); 1935 testcase( pExpr->op==TK_COLUMN ); 1936 testcase( pExpr->op==TK_AGG_FUNCTION ); 1937 testcase( pExpr->op==TK_AGG_COLUMN ); 1938 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 1939 return WRC_Continue; 1940 } 1941 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 1942 return WRC_Continue; 1943 } 1944 /* Fall through */ 1945 case TK_IF_NULL_ROW: 1946 case TK_REGISTER: 1947 testcase( pExpr->op==TK_REGISTER ); 1948 testcase( pExpr->op==TK_IF_NULL_ROW ); 1949 pWalker->eCode = 0; 1950 return WRC_Abort; 1951 case TK_VARIABLE: 1952 if( pWalker->eCode==5 ){ 1953 /* Silently convert bound parameters that appear inside of CREATE 1954 ** statements into a NULL when parsing the CREATE statement text out 1955 ** of the sqlite_master table */ 1956 pExpr->op = TK_NULL; 1957 }else if( pWalker->eCode==4 ){ 1958 /* A bound parameter in a CREATE statement that originates from 1959 ** sqlite3_prepare() causes an error */ 1960 pWalker->eCode = 0; 1961 return WRC_Abort; 1962 } 1963 /* Fall through */ 1964 default: 1965 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 1966 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 1967 return WRC_Continue; 1968 } 1969 } 1970 static int exprIsConst(Expr *p, int initFlag, int iCur){ 1971 Walker w; 1972 w.eCode = initFlag; 1973 w.xExprCallback = exprNodeIsConstant; 1974 w.xSelectCallback = sqlite3SelectWalkFail; 1975 #ifdef SQLITE_DEBUG 1976 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 1977 #endif 1978 w.u.iCur = iCur; 1979 sqlite3WalkExpr(&w, p); 1980 return w.eCode; 1981 } 1982 1983 /* 1984 ** Walk an expression tree. Return non-zero if the expression is constant 1985 ** and 0 if it involves variables or function calls. 1986 ** 1987 ** For the purposes of this function, a double-quoted string (ex: "abc") 1988 ** is considered a variable but a single-quoted string (ex: 'abc') is 1989 ** a constant. 1990 */ 1991 int sqlite3ExprIsConstant(Expr *p){ 1992 return exprIsConst(p, 1, 0); 1993 } 1994 1995 /* 1996 ** Walk an expression tree. Return non-zero if 1997 ** 1998 ** (1) the expression is constant, and 1999 ** (2) the expression does originate in the ON or USING clause 2000 ** of a LEFT JOIN, and 2001 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2002 ** operands created by the constant propagation optimization. 2003 ** 2004 ** When this routine returns true, it indicates that the expression 2005 ** can be added to the pParse->pConstExpr list and evaluated once when 2006 ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). 2007 */ 2008 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2009 return exprIsConst(p, 2, 0); 2010 } 2011 2012 /* 2013 ** Walk an expression tree. Return non-zero if the expression is constant 2014 ** for any single row of the table with cursor iCur. In other words, the 2015 ** expression must not refer to any non-deterministic function nor any 2016 ** table other than iCur. 2017 */ 2018 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2019 return exprIsConst(p, 3, iCur); 2020 } 2021 2022 2023 /* 2024 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2025 */ 2026 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2027 ExprList *pGroupBy = pWalker->u.pGroupBy; 2028 int i; 2029 2030 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2031 ** it constant. */ 2032 for(i=0; i<pGroupBy->nExpr; i++){ 2033 Expr *p = pGroupBy->a[i].pExpr; 2034 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2035 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2036 if( sqlite3IsBinary(pColl) ){ 2037 return WRC_Prune; 2038 } 2039 } 2040 } 2041 2042 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2043 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2044 pWalker->eCode = 0; 2045 return WRC_Abort; 2046 } 2047 2048 return exprNodeIsConstant(pWalker, pExpr); 2049 } 2050 2051 /* 2052 ** Walk the expression tree passed as the first argument. Return non-zero 2053 ** if the expression consists entirely of constants or copies of terms 2054 ** in pGroupBy that sort with the BINARY collation sequence. 2055 ** 2056 ** This routine is used to determine if a term of the HAVING clause can 2057 ** be promoted into the WHERE clause. In order for such a promotion to work, 2058 ** the value of the HAVING clause term must be the same for all members of 2059 ** a "group". The requirement that the GROUP BY term must be BINARY 2060 ** assumes that no other collating sequence will have a finer-grained 2061 ** grouping than binary. In other words (A=B COLLATE binary) implies 2062 ** A=B in every other collating sequence. The requirement that the 2063 ** GROUP BY be BINARY is stricter than necessary. It would also work 2064 ** to promote HAVING clauses that use the same alternative collating 2065 ** sequence as the GROUP BY term, but that is much harder to check, 2066 ** alternative collating sequences are uncommon, and this is only an 2067 ** optimization, so we take the easy way out and simply require the 2068 ** GROUP BY to use the BINARY collating sequence. 2069 */ 2070 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2071 Walker w; 2072 w.eCode = 1; 2073 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2074 w.xSelectCallback = 0; 2075 w.u.pGroupBy = pGroupBy; 2076 w.pParse = pParse; 2077 sqlite3WalkExpr(&w, p); 2078 return w.eCode; 2079 } 2080 2081 /* 2082 ** Walk an expression tree. Return non-zero if the expression is constant 2083 ** or a function call with constant arguments. Return and 0 if there 2084 ** are any variables. 2085 ** 2086 ** For the purposes of this function, a double-quoted string (ex: "abc") 2087 ** is considered a variable but a single-quoted string (ex: 'abc') is 2088 ** a constant. 2089 */ 2090 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2091 assert( isInit==0 || isInit==1 ); 2092 return exprIsConst(p, 4+isInit, 0); 2093 } 2094 2095 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2096 /* 2097 ** Walk an expression tree. Return 1 if the expression contains a 2098 ** subquery of some kind. Return 0 if there are no subqueries. 2099 */ 2100 int sqlite3ExprContainsSubquery(Expr *p){ 2101 Walker w; 2102 w.eCode = 1; 2103 w.xExprCallback = sqlite3ExprWalkNoop; 2104 w.xSelectCallback = sqlite3SelectWalkFail; 2105 #ifdef SQLITE_DEBUG 2106 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2107 #endif 2108 sqlite3WalkExpr(&w, p); 2109 return w.eCode==0; 2110 } 2111 #endif 2112 2113 /* 2114 ** If the expression p codes a constant integer that is small enough 2115 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2116 ** in *pValue. If the expression is not an integer or if it is too big 2117 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2118 */ 2119 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2120 int rc = 0; 2121 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2122 2123 /* If an expression is an integer literal that fits in a signed 32-bit 2124 ** integer, then the EP_IntValue flag will have already been set */ 2125 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2126 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2127 2128 if( p->flags & EP_IntValue ){ 2129 *pValue = p->u.iValue; 2130 return 1; 2131 } 2132 switch( p->op ){ 2133 case TK_UPLUS: { 2134 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2135 break; 2136 } 2137 case TK_UMINUS: { 2138 int v; 2139 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2140 assert( v!=(-2147483647-1) ); 2141 *pValue = -v; 2142 rc = 1; 2143 } 2144 break; 2145 } 2146 default: break; 2147 } 2148 return rc; 2149 } 2150 2151 /* 2152 ** Return FALSE if there is no chance that the expression can be NULL. 2153 ** 2154 ** If the expression might be NULL or if the expression is too complex 2155 ** to tell return TRUE. 2156 ** 2157 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2158 ** when we know that a value cannot be NULL. Hence, a false positive 2159 ** (returning TRUE when in fact the expression can never be NULL) might 2160 ** be a small performance hit but is otherwise harmless. On the other 2161 ** hand, a false negative (returning FALSE when the result could be NULL) 2162 ** will likely result in an incorrect answer. So when in doubt, return 2163 ** TRUE. 2164 */ 2165 int sqlite3ExprCanBeNull(const Expr *p){ 2166 u8 op; 2167 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2168 p = p->pLeft; 2169 } 2170 op = p->op; 2171 if( op==TK_REGISTER ) op = p->op2; 2172 switch( op ){ 2173 case TK_INTEGER: 2174 case TK_STRING: 2175 case TK_FLOAT: 2176 case TK_BLOB: 2177 return 0; 2178 case TK_COLUMN: 2179 return ExprHasProperty(p, EP_CanBeNull) || 2180 p->y.pTab==0 || /* Reference to column of index on expression */ 2181 (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); 2182 default: 2183 return 1; 2184 } 2185 } 2186 2187 /* 2188 ** Return TRUE if the given expression is a constant which would be 2189 ** unchanged by OP_Affinity with the affinity given in the second 2190 ** argument. 2191 ** 2192 ** This routine is used to determine if the OP_Affinity operation 2193 ** can be omitted. When in doubt return FALSE. A false negative 2194 ** is harmless. A false positive, however, can result in the wrong 2195 ** answer. 2196 */ 2197 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2198 u8 op; 2199 int unaryMinus = 0; 2200 if( aff==SQLITE_AFF_BLOB ) return 1; 2201 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2202 if( p->op==TK_UMINUS ) unaryMinus = 1; 2203 p = p->pLeft; 2204 } 2205 op = p->op; 2206 if( op==TK_REGISTER ) op = p->op2; 2207 switch( op ){ 2208 case TK_INTEGER: { 2209 return aff>=SQLITE_AFF_NUMERIC; 2210 } 2211 case TK_FLOAT: { 2212 return aff>=SQLITE_AFF_NUMERIC; 2213 } 2214 case TK_STRING: { 2215 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2216 } 2217 case TK_BLOB: { 2218 return !unaryMinus; 2219 } 2220 case TK_COLUMN: { 2221 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2222 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2223 } 2224 default: { 2225 return 0; 2226 } 2227 } 2228 } 2229 2230 /* 2231 ** Return TRUE if the given string is a row-id column name. 2232 */ 2233 int sqlite3IsRowid(const char *z){ 2234 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2235 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2236 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2237 return 0; 2238 } 2239 2240 /* 2241 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2242 ** that can be simplified to a direct table access, then return 2243 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2244 ** or if the SELECT statement needs to be manifested into a transient 2245 ** table, then return NULL. 2246 */ 2247 #ifndef SQLITE_OMIT_SUBQUERY 2248 static Select *isCandidateForInOpt(Expr *pX){ 2249 Select *p; 2250 SrcList *pSrc; 2251 ExprList *pEList; 2252 Table *pTab; 2253 int i; 2254 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2255 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2256 p = pX->x.pSelect; 2257 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2258 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2259 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2260 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2261 return 0; /* No DISTINCT keyword and no aggregate functions */ 2262 } 2263 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2264 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2265 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2266 pSrc = p->pSrc; 2267 assert( pSrc!=0 ); 2268 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2269 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2270 pTab = pSrc->a[0].pTab; 2271 assert( pTab!=0 ); 2272 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2273 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2274 pEList = p->pEList; 2275 assert( pEList!=0 ); 2276 /* All SELECT results must be columns. */ 2277 for(i=0; i<pEList->nExpr; i++){ 2278 Expr *pRes = pEList->a[i].pExpr; 2279 if( pRes->op!=TK_COLUMN ) return 0; 2280 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2281 } 2282 return p; 2283 } 2284 #endif /* SQLITE_OMIT_SUBQUERY */ 2285 2286 #ifndef SQLITE_OMIT_SUBQUERY 2287 /* 2288 ** Generate code that checks the left-most column of index table iCur to see if 2289 ** it contains any NULL entries. Cause the register at regHasNull to be set 2290 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2291 ** to be set to NULL if iCur contains one or more NULL values. 2292 */ 2293 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2294 int addr1; 2295 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2296 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2297 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2298 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2299 VdbeComment((v, "first_entry_in(%d)", iCur)); 2300 sqlite3VdbeJumpHere(v, addr1); 2301 } 2302 #endif 2303 2304 2305 #ifndef SQLITE_OMIT_SUBQUERY 2306 /* 2307 ** The argument is an IN operator with a list (not a subquery) on the 2308 ** right-hand side. Return TRUE if that list is constant. 2309 */ 2310 static int sqlite3InRhsIsConstant(Expr *pIn){ 2311 Expr *pLHS; 2312 int res; 2313 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2314 pLHS = pIn->pLeft; 2315 pIn->pLeft = 0; 2316 res = sqlite3ExprIsConstant(pIn); 2317 pIn->pLeft = pLHS; 2318 return res; 2319 } 2320 #endif 2321 2322 /* 2323 ** This function is used by the implementation of the IN (...) operator. 2324 ** The pX parameter is the expression on the RHS of the IN operator, which 2325 ** might be either a list of expressions or a subquery. 2326 ** 2327 ** The job of this routine is to find or create a b-tree object that can 2328 ** be used either to test for membership in the RHS set or to iterate through 2329 ** all members of the RHS set, skipping duplicates. 2330 ** 2331 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2332 ** and pX->iTable is set to the index of that cursor. 2333 ** 2334 ** The returned value of this function indicates the b-tree type, as follows: 2335 ** 2336 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2337 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2338 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2339 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2340 ** populated epheremal table. 2341 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2342 ** implemented as a sequence of comparisons. 2343 ** 2344 ** An existing b-tree might be used if the RHS expression pX is a simple 2345 ** subquery such as: 2346 ** 2347 ** SELECT <column1>, <column2>... FROM <table> 2348 ** 2349 ** If the RHS of the IN operator is a list or a more complex subquery, then 2350 ** an ephemeral table might need to be generated from the RHS and then 2351 ** pX->iTable made to point to the ephemeral table instead of an 2352 ** existing table. 2353 ** 2354 ** The inFlags parameter must contain, at a minimum, one of the bits 2355 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2356 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2357 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2358 ** be used to loop over all values of the RHS of the IN operator. 2359 ** 2360 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2361 ** through the set members) then the b-tree must not contain duplicates. 2362 ** An epheremal table will be created unless the selected columns are guaranteed 2363 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2364 ** a UNIQUE constraint or index. 2365 ** 2366 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2367 ** for fast set membership tests) then an epheremal table must 2368 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2369 ** index can be found with the specified <columns> as its left-most. 2370 ** 2371 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2372 ** if the RHS of the IN operator is a list (not a subquery) then this 2373 ** routine might decide that creating an ephemeral b-tree for membership 2374 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2375 ** calling routine should implement the IN operator using a sequence 2376 ** of Eq or Ne comparison operations. 2377 ** 2378 ** When the b-tree is being used for membership tests, the calling function 2379 ** might need to know whether or not the RHS side of the IN operator 2380 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2381 ** if there is any chance that the (...) might contain a NULL value at 2382 ** runtime, then a register is allocated and the register number written 2383 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2384 ** NULL value, then *prRhsHasNull is left unchanged. 2385 ** 2386 ** If a register is allocated and its location stored in *prRhsHasNull, then 2387 ** the value in that register will be NULL if the b-tree contains one or more 2388 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2389 ** NULL values. 2390 ** 2391 ** If the aiMap parameter is not NULL, it must point to an array containing 2392 ** one element for each column returned by the SELECT statement on the RHS 2393 ** of the IN(...) operator. The i'th entry of the array is populated with the 2394 ** offset of the index column that matches the i'th column returned by the 2395 ** SELECT. For example, if the expression and selected index are: 2396 ** 2397 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2398 ** CREATE INDEX i1 ON t1(b, c, a); 2399 ** 2400 ** then aiMap[] is populated with {2, 0, 1}. 2401 */ 2402 #ifndef SQLITE_OMIT_SUBQUERY 2403 int sqlite3FindInIndex( 2404 Parse *pParse, /* Parsing context */ 2405 Expr *pX, /* The IN expression */ 2406 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2407 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2408 int *aiMap, /* Mapping from Index fields to RHS fields */ 2409 int *piTab /* OUT: index to use */ 2410 ){ 2411 Select *p; /* SELECT to the right of IN operator */ 2412 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2413 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2414 int mustBeUnique; /* True if RHS must be unique */ 2415 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2416 2417 assert( pX->op==TK_IN ); 2418 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2419 2420 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2421 ** whether or not the SELECT result contains NULL values, check whether 2422 ** or not NULL is actually possible (it may not be, for example, due 2423 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2424 ** set prRhsHasNull to 0 before continuing. */ 2425 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2426 int i; 2427 ExprList *pEList = pX->x.pSelect->pEList; 2428 for(i=0; i<pEList->nExpr; i++){ 2429 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2430 } 2431 if( i==pEList->nExpr ){ 2432 prRhsHasNull = 0; 2433 } 2434 } 2435 2436 /* Check to see if an existing table or index can be used to 2437 ** satisfy the query. This is preferable to generating a new 2438 ** ephemeral table. */ 2439 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2440 sqlite3 *db = pParse->db; /* Database connection */ 2441 Table *pTab; /* Table <table>. */ 2442 i16 iDb; /* Database idx for pTab */ 2443 ExprList *pEList = p->pEList; 2444 int nExpr = pEList->nExpr; 2445 2446 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2447 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2448 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2449 pTab = p->pSrc->a[0].pTab; 2450 2451 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2452 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2453 sqlite3CodeVerifySchema(pParse, iDb); 2454 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2455 2456 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2457 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2458 /* The "x IN (SELECT rowid FROM table)" case */ 2459 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2460 VdbeCoverage(v); 2461 2462 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2463 eType = IN_INDEX_ROWID; 2464 ExplainQueryPlan((pParse, 0, 2465 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2466 sqlite3VdbeJumpHere(v, iAddr); 2467 }else{ 2468 Index *pIdx; /* Iterator variable */ 2469 int affinity_ok = 1; 2470 int i; 2471 2472 /* Check that the affinity that will be used to perform each 2473 ** comparison is the same as the affinity of each column in table 2474 ** on the RHS of the IN operator. If it not, it is not possible to 2475 ** use any index of the RHS table. */ 2476 for(i=0; i<nExpr && affinity_ok; i++){ 2477 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2478 int iCol = pEList->a[i].pExpr->iColumn; 2479 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2480 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2481 testcase( cmpaff==SQLITE_AFF_BLOB ); 2482 testcase( cmpaff==SQLITE_AFF_TEXT ); 2483 switch( cmpaff ){ 2484 case SQLITE_AFF_BLOB: 2485 break; 2486 case SQLITE_AFF_TEXT: 2487 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2488 ** other has no affinity and the other side is TEXT. Hence, 2489 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2490 ** and for the term on the LHS of the IN to have no affinity. */ 2491 assert( idxaff==SQLITE_AFF_TEXT ); 2492 break; 2493 default: 2494 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2495 } 2496 } 2497 2498 if( affinity_ok ){ 2499 /* Search for an existing index that will work for this IN operator */ 2500 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2501 Bitmask colUsed; /* Columns of the index used */ 2502 Bitmask mCol; /* Mask for the current column */ 2503 if( pIdx->nColumn<nExpr ) continue; 2504 if( pIdx->pPartIdxWhere!=0 ) continue; 2505 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2506 ** BITMASK(nExpr) without overflowing */ 2507 testcase( pIdx->nColumn==BMS-2 ); 2508 testcase( pIdx->nColumn==BMS-1 ); 2509 if( pIdx->nColumn>=BMS-1 ) continue; 2510 if( mustBeUnique ){ 2511 if( pIdx->nKeyCol>nExpr 2512 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2513 ){ 2514 continue; /* This index is not unique over the IN RHS columns */ 2515 } 2516 } 2517 2518 colUsed = 0; /* Columns of index used so far */ 2519 for(i=0; i<nExpr; i++){ 2520 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2521 Expr *pRhs = pEList->a[i].pExpr; 2522 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2523 int j; 2524 2525 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2526 for(j=0; j<nExpr; j++){ 2527 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2528 assert( pIdx->azColl[j] ); 2529 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2530 continue; 2531 } 2532 break; 2533 } 2534 if( j==nExpr ) break; 2535 mCol = MASKBIT(j); 2536 if( mCol & colUsed ) break; /* Each column used only once */ 2537 colUsed |= mCol; 2538 if( aiMap ) aiMap[i] = j; 2539 } 2540 2541 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2542 if( colUsed==(MASKBIT(nExpr)-1) ){ 2543 /* If we reach this point, that means the index pIdx is usable */ 2544 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2545 ExplainQueryPlan((pParse, 0, 2546 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2547 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2548 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2549 VdbeComment((v, "%s", pIdx->zName)); 2550 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2551 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2552 2553 if( prRhsHasNull ){ 2554 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2555 i64 mask = (1<<nExpr)-1; 2556 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2557 iTab, 0, 0, (u8*)&mask, P4_INT64); 2558 #endif 2559 *prRhsHasNull = ++pParse->nMem; 2560 if( nExpr==1 ){ 2561 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2562 } 2563 } 2564 sqlite3VdbeJumpHere(v, iAddr); 2565 } 2566 } /* End loop over indexes */ 2567 } /* End if( affinity_ok ) */ 2568 } /* End if not an rowid index */ 2569 } /* End attempt to optimize using an index */ 2570 2571 /* If no preexisting index is available for the IN clause 2572 ** and IN_INDEX_NOOP is an allowed reply 2573 ** and the RHS of the IN operator is a list, not a subquery 2574 ** and the RHS is not constant or has two or fewer terms, 2575 ** then it is not worth creating an ephemeral table to evaluate 2576 ** the IN operator so return IN_INDEX_NOOP. 2577 */ 2578 if( eType==0 2579 && (inFlags & IN_INDEX_NOOP_OK) 2580 && !ExprHasProperty(pX, EP_xIsSelect) 2581 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2582 ){ 2583 eType = IN_INDEX_NOOP; 2584 } 2585 2586 if( eType==0 ){ 2587 /* Could not find an existing table or index to use as the RHS b-tree. 2588 ** We will have to generate an ephemeral table to do the job. 2589 */ 2590 u32 savedNQueryLoop = pParse->nQueryLoop; 2591 int rMayHaveNull = 0; 2592 eType = IN_INDEX_EPH; 2593 if( inFlags & IN_INDEX_LOOP ){ 2594 pParse->nQueryLoop = 0; 2595 }else if( prRhsHasNull ){ 2596 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2597 } 2598 assert( pX->op==TK_IN ); 2599 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2600 if( rMayHaveNull ){ 2601 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2602 } 2603 pParse->nQueryLoop = savedNQueryLoop; 2604 } 2605 2606 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2607 int i, n; 2608 n = sqlite3ExprVectorSize(pX->pLeft); 2609 for(i=0; i<n; i++) aiMap[i] = i; 2610 } 2611 *piTab = iTab; 2612 return eType; 2613 } 2614 #endif 2615 2616 #ifndef SQLITE_OMIT_SUBQUERY 2617 /* 2618 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2619 ** function allocates and returns a nul-terminated string containing 2620 ** the affinities to be used for each column of the comparison. 2621 ** 2622 ** It is the responsibility of the caller to ensure that the returned 2623 ** string is eventually freed using sqlite3DbFree(). 2624 */ 2625 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2626 Expr *pLeft = pExpr->pLeft; 2627 int nVal = sqlite3ExprVectorSize(pLeft); 2628 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2629 char *zRet; 2630 2631 assert( pExpr->op==TK_IN ); 2632 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2633 if( zRet ){ 2634 int i; 2635 for(i=0; i<nVal; i++){ 2636 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2637 char a = sqlite3ExprAffinity(pA); 2638 if( pSelect ){ 2639 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2640 }else{ 2641 zRet[i] = a; 2642 } 2643 } 2644 zRet[nVal] = '\0'; 2645 } 2646 return zRet; 2647 } 2648 #endif 2649 2650 #ifndef SQLITE_OMIT_SUBQUERY 2651 /* 2652 ** Load the Parse object passed as the first argument with an error 2653 ** message of the form: 2654 ** 2655 ** "sub-select returns N columns - expected M" 2656 */ 2657 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2658 const char *zFmt = "sub-select returns %d columns - expected %d"; 2659 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2660 } 2661 #endif 2662 2663 /* 2664 ** Expression pExpr is a vector that has been used in a context where 2665 ** it is not permitted. If pExpr is a sub-select vector, this routine 2666 ** loads the Parse object with a message of the form: 2667 ** 2668 ** "sub-select returns N columns - expected 1" 2669 ** 2670 ** Or, if it is a regular scalar vector: 2671 ** 2672 ** "row value misused" 2673 */ 2674 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2675 #ifndef SQLITE_OMIT_SUBQUERY 2676 if( pExpr->flags & EP_xIsSelect ){ 2677 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2678 }else 2679 #endif 2680 { 2681 sqlite3ErrorMsg(pParse, "row value misused"); 2682 } 2683 } 2684 2685 #ifndef SQLITE_OMIT_SUBQUERY 2686 /* 2687 ** Generate code that will construct an ephemeral table containing all terms 2688 ** in the RHS of an IN operator. The IN operator can be in either of two 2689 ** forms: 2690 ** 2691 ** x IN (4,5,11) -- IN operator with list on right-hand side 2692 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2693 ** 2694 ** The pExpr parameter is the IN operator. The cursor number for the 2695 ** constructed ephermeral table is returned. The first time the ephemeral 2696 ** table is computed, the cursor number is also stored in pExpr->iTable, 2697 ** however the cursor number returned might not be the same, as it might 2698 ** have been duplicated using OP_OpenDup. 2699 ** 2700 ** If the LHS expression ("x" in the examples) is a column value, or 2701 ** the SELECT statement returns a column value, then the affinity of that 2702 ** column is used to build the index keys. If both 'x' and the 2703 ** SELECT... statement are columns, then numeric affinity is used 2704 ** if either column has NUMERIC or INTEGER affinity. If neither 2705 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2706 ** is used. 2707 */ 2708 void sqlite3CodeRhsOfIN( 2709 Parse *pParse, /* Parsing context */ 2710 Expr *pExpr, /* The IN operator */ 2711 int iTab /* Use this cursor number */ 2712 ){ 2713 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2714 int addr; /* Address of OP_OpenEphemeral instruction */ 2715 Expr *pLeft; /* the LHS of the IN operator */ 2716 KeyInfo *pKeyInfo = 0; /* Key information */ 2717 int nVal; /* Size of vector pLeft */ 2718 Vdbe *v; /* The prepared statement under construction */ 2719 2720 v = pParse->pVdbe; 2721 assert( v!=0 ); 2722 2723 /* The evaluation of the IN must be repeated every time it 2724 ** is encountered if any of the following is true: 2725 ** 2726 ** * The right-hand side is a correlated subquery 2727 ** * The right-hand side is an expression list containing variables 2728 ** * We are inside a trigger 2729 ** 2730 ** If all of the above are false, then we can compute the RHS just once 2731 ** and reuse it many names. 2732 */ 2733 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2734 /* Reuse of the RHS is allowed */ 2735 /* If this routine has already been coded, but the previous code 2736 ** might not have been invoked yet, so invoke it now as a subroutine. 2737 */ 2738 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2739 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2740 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2741 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2742 pExpr->x.pSelect->selId)); 2743 } 2744 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2745 pExpr->y.sub.iAddr); 2746 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2747 sqlite3VdbeJumpHere(v, addrOnce); 2748 return; 2749 } 2750 2751 /* Begin coding the subroutine */ 2752 ExprSetProperty(pExpr, EP_Subrtn); 2753 pExpr->y.sub.regReturn = ++pParse->nMem; 2754 pExpr->y.sub.iAddr = 2755 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2756 VdbeComment((v, "return address")); 2757 2758 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2759 } 2760 2761 /* Check to see if this is a vector IN operator */ 2762 pLeft = pExpr->pLeft; 2763 nVal = sqlite3ExprVectorSize(pLeft); 2764 2765 /* Construct the ephemeral table that will contain the content of 2766 ** RHS of the IN operator. 2767 */ 2768 pExpr->iTable = iTab; 2769 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2770 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2771 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2772 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2773 }else{ 2774 VdbeComment((v, "RHS of IN operator")); 2775 } 2776 #endif 2777 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2778 2779 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2780 /* Case 1: expr IN (SELECT ...) 2781 ** 2782 ** Generate code to write the results of the select into the temporary 2783 ** table allocated and opened above. 2784 */ 2785 Select *pSelect = pExpr->x.pSelect; 2786 ExprList *pEList = pSelect->pEList; 2787 2788 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2789 addrOnce?"":"CORRELATED ", pSelect->selId 2790 )); 2791 /* If the LHS and RHS of the IN operator do not match, that 2792 ** error will have been caught long before we reach this point. */ 2793 if( ALWAYS(pEList->nExpr==nVal) ){ 2794 SelectDest dest; 2795 int i; 2796 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2797 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2798 pSelect->iLimit = 0; 2799 testcase( pSelect->selFlags & SF_Distinct ); 2800 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2801 if( sqlite3Select(pParse, pSelect, &dest) ){ 2802 sqlite3DbFree(pParse->db, dest.zAffSdst); 2803 sqlite3KeyInfoUnref(pKeyInfo); 2804 return; 2805 } 2806 sqlite3DbFree(pParse->db, dest.zAffSdst); 2807 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2808 assert( pEList!=0 ); 2809 assert( pEList->nExpr>0 ); 2810 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2811 for(i=0; i<nVal; i++){ 2812 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2813 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2814 pParse, p, pEList->a[i].pExpr 2815 ); 2816 } 2817 } 2818 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2819 /* Case 2: expr IN (exprlist) 2820 ** 2821 ** For each expression, build an index key from the evaluation and 2822 ** store it in the temporary table. If <expr> is a column, then use 2823 ** that columns affinity when building index keys. If <expr> is not 2824 ** a column, use numeric affinity. 2825 */ 2826 char affinity; /* Affinity of the LHS of the IN */ 2827 int i; 2828 ExprList *pList = pExpr->x.pList; 2829 struct ExprList_item *pItem; 2830 int r1, r2; 2831 affinity = sqlite3ExprAffinity(pLeft); 2832 if( affinity<=SQLITE_AFF_NONE ){ 2833 affinity = SQLITE_AFF_BLOB; 2834 } 2835 if( pKeyInfo ){ 2836 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2837 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2838 } 2839 2840 /* Loop through each expression in <exprlist>. */ 2841 r1 = sqlite3GetTempReg(pParse); 2842 r2 = sqlite3GetTempReg(pParse); 2843 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2844 Expr *pE2 = pItem->pExpr; 2845 2846 /* If the expression is not constant then we will need to 2847 ** disable the test that was generated above that makes sure 2848 ** this code only executes once. Because for a non-constant 2849 ** expression we need to rerun this code each time. 2850 */ 2851 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2852 sqlite3VdbeChangeToNoop(v, addrOnce); 2853 ExprClearProperty(pExpr, EP_Subrtn); 2854 addrOnce = 0; 2855 } 2856 2857 /* Evaluate the expression and insert it into the temp table */ 2858 sqlite3ExprCode(pParse, pE2, r1); 2859 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2860 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2861 } 2862 sqlite3ReleaseTempReg(pParse, r1); 2863 sqlite3ReleaseTempReg(pParse, r2); 2864 } 2865 if( pKeyInfo ){ 2866 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2867 } 2868 if( addrOnce ){ 2869 sqlite3VdbeJumpHere(v, addrOnce); 2870 /* Subroutine return */ 2871 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2872 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2873 sqlite3ClearTempRegCache(pParse); 2874 } 2875 } 2876 #endif /* SQLITE_OMIT_SUBQUERY */ 2877 2878 /* 2879 ** Generate code for scalar subqueries used as a subquery expression 2880 ** or EXISTS operator: 2881 ** 2882 ** (SELECT a FROM b) -- subquery 2883 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 2884 ** 2885 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 2886 ** 2887 ** Return the register that holds the result. For a multi-column SELECT, 2888 ** the result is stored in a contiguous array of registers and the 2889 ** return value is the register of the left-most result column. 2890 ** Return 0 if an error occurs. 2891 */ 2892 #ifndef SQLITE_OMIT_SUBQUERY 2893 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 2894 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 2895 int rReg = 0; /* Register storing resulting */ 2896 Select *pSel; /* SELECT statement to encode */ 2897 SelectDest dest; /* How to deal with SELECT result */ 2898 int nReg; /* Registers to allocate */ 2899 Expr *pLimit; /* New limit expression */ 2900 2901 Vdbe *v = pParse->pVdbe; 2902 assert( v!=0 ); 2903 testcase( pExpr->op==TK_EXISTS ); 2904 testcase( pExpr->op==TK_SELECT ); 2905 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 2906 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 2907 pSel = pExpr->x.pSelect; 2908 2909 /* The evaluation of the EXISTS/SELECT must be repeated every time it 2910 ** is encountered if any of the following is true: 2911 ** 2912 ** * The right-hand side is a correlated subquery 2913 ** * The right-hand side is an expression list containing variables 2914 ** * We are inside a trigger 2915 ** 2916 ** If all of the above are false, then we can run this code just once 2917 ** save the results, and reuse the same result on subsequent invocations. 2918 */ 2919 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 2920 /* If this routine has already been coded, then invoke it as a 2921 ** subroutine. */ 2922 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2923 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 2924 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2925 pExpr->y.sub.iAddr); 2926 return pExpr->iTable; 2927 } 2928 2929 /* Begin coding the subroutine */ 2930 ExprSetProperty(pExpr, EP_Subrtn); 2931 pExpr->y.sub.regReturn = ++pParse->nMem; 2932 pExpr->y.sub.iAddr = 2933 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2934 VdbeComment((v, "return address")); 2935 2936 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2937 } 2938 2939 /* For a SELECT, generate code to put the values for all columns of 2940 ** the first row into an array of registers and return the index of 2941 ** the first register. 2942 ** 2943 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 2944 ** into a register and return that register number. 2945 ** 2946 ** In both cases, the query is augmented with "LIMIT 1". Any 2947 ** preexisting limit is discarded in place of the new LIMIT 1. 2948 */ 2949 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 2950 addrOnce?"":"CORRELATED ", pSel->selId)); 2951 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 2952 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 2953 pParse->nMem += nReg; 2954 if( pExpr->op==TK_SELECT ){ 2955 dest.eDest = SRT_Mem; 2956 dest.iSdst = dest.iSDParm; 2957 dest.nSdst = nReg; 2958 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 2959 VdbeComment((v, "Init subquery result")); 2960 }else{ 2961 dest.eDest = SRT_Exists; 2962 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 2963 VdbeComment((v, "Init EXISTS result")); 2964 } 2965 if( pSel->pLimit ){ 2966 /* The subquery already has a limit. If the pre-existing limit is X 2967 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 2968 sqlite3 *db = pParse->db; 2969 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 2970 if( pLimit ){ 2971 pLimit->affExpr = SQLITE_AFF_NUMERIC; 2972 pLimit = sqlite3PExpr(pParse, TK_NE, 2973 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 2974 } 2975 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 2976 pSel->pLimit->pLeft = pLimit; 2977 }else{ 2978 /* If there is no pre-existing limit add a limit of 1 */ 2979 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 2980 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 2981 } 2982 pSel->iLimit = 0; 2983 if( sqlite3Select(pParse, pSel, &dest) ){ 2984 return 0; 2985 } 2986 pExpr->iTable = rReg = dest.iSDParm; 2987 ExprSetVVAProperty(pExpr, EP_NoReduce); 2988 if( addrOnce ){ 2989 sqlite3VdbeJumpHere(v, addrOnce); 2990 2991 /* Subroutine return */ 2992 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2993 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2994 sqlite3ClearTempRegCache(pParse); 2995 } 2996 2997 return rReg; 2998 } 2999 #endif /* SQLITE_OMIT_SUBQUERY */ 3000 3001 #ifndef SQLITE_OMIT_SUBQUERY 3002 /* 3003 ** Expr pIn is an IN(...) expression. This function checks that the 3004 ** sub-select on the RHS of the IN() operator has the same number of 3005 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3006 ** a sub-query, that the LHS is a vector of size 1. 3007 */ 3008 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3009 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3010 if( (pIn->flags & EP_xIsSelect) ){ 3011 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3012 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3013 return 1; 3014 } 3015 }else if( nVector!=1 ){ 3016 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3017 return 1; 3018 } 3019 return 0; 3020 } 3021 #endif 3022 3023 #ifndef SQLITE_OMIT_SUBQUERY 3024 /* 3025 ** Generate code for an IN expression. 3026 ** 3027 ** x IN (SELECT ...) 3028 ** x IN (value, value, ...) 3029 ** 3030 ** The left-hand side (LHS) is a scalar or vector expression. The 3031 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3032 ** subquery. If the RHS is a subquery, the number of result columns must 3033 ** match the number of columns in the vector on the LHS. If the RHS is 3034 ** a list of values, the LHS must be a scalar. 3035 ** 3036 ** The IN operator is true if the LHS value is contained within the RHS. 3037 ** The result is false if the LHS is definitely not in the RHS. The 3038 ** result is NULL if the presence of the LHS in the RHS cannot be 3039 ** determined due to NULLs. 3040 ** 3041 ** This routine generates code that jumps to destIfFalse if the LHS is not 3042 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3043 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3044 ** within the RHS then fall through. 3045 ** 3046 ** See the separate in-operator.md documentation file in the canonical 3047 ** SQLite source tree for additional information. 3048 */ 3049 static void sqlite3ExprCodeIN( 3050 Parse *pParse, /* Parsing and code generating context */ 3051 Expr *pExpr, /* The IN expression */ 3052 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3053 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3054 ){ 3055 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3056 int eType; /* Type of the RHS */ 3057 int rLhs; /* Register(s) holding the LHS values */ 3058 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3059 Vdbe *v; /* Statement under construction */ 3060 int *aiMap = 0; /* Map from vector field to index column */ 3061 char *zAff = 0; /* Affinity string for comparisons */ 3062 int nVector; /* Size of vectors for this IN operator */ 3063 int iDummy; /* Dummy parameter to exprCodeVector() */ 3064 Expr *pLeft; /* The LHS of the IN operator */ 3065 int i; /* loop counter */ 3066 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3067 int destStep6 = 0; /* Start of code for Step 6 */ 3068 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3069 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3070 int addrTop; /* Top of the step-6 loop */ 3071 int iTab = 0; /* Index to use */ 3072 3073 pLeft = pExpr->pLeft; 3074 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3075 zAff = exprINAffinity(pParse, pExpr); 3076 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3077 aiMap = (int*)sqlite3DbMallocZero( 3078 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3079 ); 3080 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3081 3082 /* Attempt to compute the RHS. After this step, if anything other than 3083 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3084 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3085 ** the RHS has not yet been coded. */ 3086 v = pParse->pVdbe; 3087 assert( v!=0 ); /* OOM detected prior to this routine */ 3088 VdbeNoopComment((v, "begin IN expr")); 3089 eType = sqlite3FindInIndex(pParse, pExpr, 3090 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3091 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3092 aiMap, &iTab); 3093 3094 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3095 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3096 ); 3097 #ifdef SQLITE_DEBUG 3098 /* Confirm that aiMap[] contains nVector integer values between 0 and 3099 ** nVector-1. */ 3100 for(i=0; i<nVector; i++){ 3101 int j, cnt; 3102 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3103 assert( cnt==1 ); 3104 } 3105 #endif 3106 3107 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3108 ** vector, then it is stored in an array of nVector registers starting 3109 ** at r1. 3110 ** 3111 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3112 ** so that the fields are in the same order as an existing index. The 3113 ** aiMap[] array contains a mapping from the original LHS field order to 3114 ** the field order that matches the RHS index. 3115 */ 3116 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3117 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3118 if( i==nVector ){ 3119 /* LHS fields are not reordered */ 3120 rLhs = rLhsOrig; 3121 }else{ 3122 /* Need to reorder the LHS fields according to aiMap */ 3123 rLhs = sqlite3GetTempRange(pParse, nVector); 3124 for(i=0; i<nVector; i++){ 3125 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3126 } 3127 } 3128 3129 /* If sqlite3FindInIndex() did not find or create an index that is 3130 ** suitable for evaluating the IN operator, then evaluate using a 3131 ** sequence of comparisons. 3132 ** 3133 ** This is step (1) in the in-operator.md optimized algorithm. 3134 */ 3135 if( eType==IN_INDEX_NOOP ){ 3136 ExprList *pList = pExpr->x.pList; 3137 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3138 int labelOk = sqlite3VdbeMakeLabel(pParse); 3139 int r2, regToFree; 3140 int regCkNull = 0; 3141 int ii; 3142 int bLhsReal; /* True if the LHS of the IN has REAL affinity */ 3143 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3144 if( destIfNull!=destIfFalse ){ 3145 regCkNull = sqlite3GetTempReg(pParse); 3146 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3147 } 3148 bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL; 3149 for(ii=0; ii<pList->nExpr; ii++){ 3150 if( bLhsReal ){ 3151 r2 = regToFree = sqlite3GetTempReg(pParse); 3152 sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2); 3153 sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC); 3154 }else{ 3155 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3156 } 3157 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3158 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3159 } 3160 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3161 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2, 3162 (void*)pColl, P4_COLLSEQ); 3163 VdbeCoverageIf(v, ii<pList->nExpr-1); 3164 VdbeCoverageIf(v, ii==pList->nExpr-1); 3165 sqlite3VdbeChangeP5(v, zAff[0]); 3166 }else{ 3167 assert( destIfNull==destIfFalse ); 3168 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2, 3169 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); 3170 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3171 } 3172 sqlite3ReleaseTempReg(pParse, regToFree); 3173 } 3174 if( regCkNull ){ 3175 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3176 sqlite3VdbeGoto(v, destIfFalse); 3177 } 3178 sqlite3VdbeResolveLabel(v, labelOk); 3179 sqlite3ReleaseTempReg(pParse, regCkNull); 3180 goto sqlite3ExprCodeIN_finished; 3181 } 3182 3183 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3184 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3185 ** We will then skip the binary search of the RHS. 3186 */ 3187 if( destIfNull==destIfFalse ){ 3188 destStep2 = destIfFalse; 3189 }else{ 3190 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3191 } 3192 for(i=0; i<nVector; i++){ 3193 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3194 if( sqlite3ExprCanBeNull(p) ){ 3195 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3196 VdbeCoverage(v); 3197 } 3198 } 3199 3200 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3201 ** of the RHS using the LHS as a probe. If found, the result is 3202 ** true. 3203 */ 3204 if( eType==IN_INDEX_ROWID ){ 3205 /* In this case, the RHS is the ROWID of table b-tree and so we also 3206 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3207 ** into a single opcode. */ 3208 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3209 VdbeCoverage(v); 3210 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3211 }else{ 3212 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3213 if( destIfFalse==destIfNull ){ 3214 /* Combine Step 3 and Step 5 into a single opcode */ 3215 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3216 rLhs, nVector); VdbeCoverage(v); 3217 goto sqlite3ExprCodeIN_finished; 3218 } 3219 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3220 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3221 rLhs, nVector); VdbeCoverage(v); 3222 } 3223 3224 /* Step 4. If the RHS is known to be non-NULL and we did not find 3225 ** an match on the search above, then the result must be FALSE. 3226 */ 3227 if( rRhsHasNull && nVector==1 ){ 3228 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3229 VdbeCoverage(v); 3230 } 3231 3232 /* Step 5. If we do not care about the difference between NULL and 3233 ** FALSE, then just return false. 3234 */ 3235 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3236 3237 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3238 ** If any comparison is NULL, then the result is NULL. If all 3239 ** comparisons are FALSE then the final result is FALSE. 3240 ** 3241 ** For a scalar LHS, it is sufficient to check just the first row 3242 ** of the RHS. 3243 */ 3244 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3245 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3246 VdbeCoverage(v); 3247 if( nVector>1 ){ 3248 destNotNull = sqlite3VdbeMakeLabel(pParse); 3249 }else{ 3250 /* For nVector==1, combine steps 6 and 7 by immediately returning 3251 ** FALSE if the first comparison is not NULL */ 3252 destNotNull = destIfFalse; 3253 } 3254 for(i=0; i<nVector; i++){ 3255 Expr *p; 3256 CollSeq *pColl; 3257 int r3 = sqlite3GetTempReg(pParse); 3258 p = sqlite3VectorFieldSubexpr(pLeft, i); 3259 pColl = sqlite3ExprCollSeq(pParse, p); 3260 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3261 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3262 (void*)pColl, P4_COLLSEQ); 3263 VdbeCoverage(v); 3264 sqlite3ReleaseTempReg(pParse, r3); 3265 } 3266 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3267 if( nVector>1 ){ 3268 sqlite3VdbeResolveLabel(v, destNotNull); 3269 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3270 VdbeCoverage(v); 3271 3272 /* Step 7: If we reach this point, we know that the result must 3273 ** be false. */ 3274 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3275 } 3276 3277 /* Jumps here in order to return true. */ 3278 sqlite3VdbeJumpHere(v, addrTruthOp); 3279 3280 sqlite3ExprCodeIN_finished: 3281 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3282 VdbeComment((v, "end IN expr")); 3283 sqlite3ExprCodeIN_oom_error: 3284 sqlite3DbFree(pParse->db, aiMap); 3285 sqlite3DbFree(pParse->db, zAff); 3286 } 3287 #endif /* SQLITE_OMIT_SUBQUERY */ 3288 3289 #ifndef SQLITE_OMIT_FLOATING_POINT 3290 /* 3291 ** Generate an instruction that will put the floating point 3292 ** value described by z[0..n-1] into register iMem. 3293 ** 3294 ** The z[] string will probably not be zero-terminated. But the 3295 ** z[n] character is guaranteed to be something that does not look 3296 ** like the continuation of the number. 3297 */ 3298 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3299 if( ALWAYS(z!=0) ){ 3300 double value; 3301 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3302 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3303 if( negateFlag ) value = -value; 3304 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3305 } 3306 } 3307 #endif 3308 3309 3310 /* 3311 ** Generate an instruction that will put the integer describe by 3312 ** text z[0..n-1] into register iMem. 3313 ** 3314 ** Expr.u.zToken is always UTF8 and zero-terminated. 3315 */ 3316 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3317 Vdbe *v = pParse->pVdbe; 3318 if( pExpr->flags & EP_IntValue ){ 3319 int i = pExpr->u.iValue; 3320 assert( i>=0 ); 3321 if( negFlag ) i = -i; 3322 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3323 }else{ 3324 int c; 3325 i64 value; 3326 const char *z = pExpr->u.zToken; 3327 assert( z!=0 ); 3328 c = sqlite3DecOrHexToI64(z, &value); 3329 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3330 #ifdef SQLITE_OMIT_FLOATING_POINT 3331 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3332 #else 3333 #ifndef SQLITE_OMIT_HEX_INTEGER 3334 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3335 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3336 }else 3337 #endif 3338 { 3339 codeReal(v, z, negFlag, iMem); 3340 } 3341 #endif 3342 }else{ 3343 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3344 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3345 } 3346 } 3347 } 3348 3349 3350 /* Generate code that will load into register regOut a value that is 3351 ** appropriate for the iIdxCol-th column of index pIdx. 3352 */ 3353 void sqlite3ExprCodeLoadIndexColumn( 3354 Parse *pParse, /* The parsing context */ 3355 Index *pIdx, /* The index whose column is to be loaded */ 3356 int iTabCur, /* Cursor pointing to a table row */ 3357 int iIdxCol, /* The column of the index to be loaded */ 3358 int regOut /* Store the index column value in this register */ 3359 ){ 3360 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3361 if( iTabCol==XN_EXPR ){ 3362 assert( pIdx->aColExpr ); 3363 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3364 pParse->iSelfTab = iTabCur + 1; 3365 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3366 pParse->iSelfTab = 0; 3367 }else{ 3368 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3369 iTabCol, regOut); 3370 } 3371 } 3372 3373 /* 3374 ** Generate code to extract the value of the iCol-th column of a table. 3375 */ 3376 void sqlite3ExprCodeGetColumnOfTable( 3377 Vdbe *v, /* The VDBE under construction */ 3378 Table *pTab, /* The table containing the value */ 3379 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3380 int iCol, /* Index of the column to extract */ 3381 int regOut /* Extract the value into this register */ 3382 ){ 3383 if( pTab==0 ){ 3384 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3385 return; 3386 } 3387 if( iCol<0 || iCol==pTab->iPKey ){ 3388 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3389 }else{ 3390 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 3391 int x = iCol; 3392 if( !HasRowid(pTab) && !IsVirtual(pTab) ){ 3393 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3394 } 3395 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3396 } 3397 if( iCol>=0 ){ 3398 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3399 } 3400 } 3401 3402 /* 3403 ** Generate code that will extract the iColumn-th column from 3404 ** table pTab and store the column value in register iReg. 3405 ** 3406 ** There must be an open cursor to pTab in iTable when this routine 3407 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3408 */ 3409 int sqlite3ExprCodeGetColumn( 3410 Parse *pParse, /* Parsing and code generating context */ 3411 Table *pTab, /* Description of the table we are reading from */ 3412 int iColumn, /* Index of the table column */ 3413 int iTable, /* The cursor pointing to the table */ 3414 int iReg, /* Store results here */ 3415 u8 p5 /* P5 value for OP_Column + FLAGS */ 3416 ){ 3417 Vdbe *v = pParse->pVdbe; 3418 assert( v!=0 ); 3419 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 3420 if( p5 ){ 3421 sqlite3VdbeChangeP5(v, p5); 3422 } 3423 return iReg; 3424 } 3425 3426 /* 3427 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3428 ** over to iTo..iTo+nReg-1. 3429 */ 3430 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3431 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 3432 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3433 } 3434 3435 /* 3436 ** Convert a scalar expression node to a TK_REGISTER referencing 3437 ** register iReg. The caller must ensure that iReg already contains 3438 ** the correct value for the expression. 3439 */ 3440 static void exprToRegister(Expr *pExpr, int iReg){ 3441 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3442 p->op2 = p->op; 3443 p->op = TK_REGISTER; 3444 p->iTable = iReg; 3445 ExprClearProperty(p, EP_Skip); 3446 } 3447 3448 /* 3449 ** Evaluate an expression (either a vector or a scalar expression) and store 3450 ** the result in continguous temporary registers. Return the index of 3451 ** the first register used to store the result. 3452 ** 3453 ** If the returned result register is a temporary scalar, then also write 3454 ** that register number into *piFreeable. If the returned result register 3455 ** is not a temporary or if the expression is a vector set *piFreeable 3456 ** to 0. 3457 */ 3458 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3459 int iResult; 3460 int nResult = sqlite3ExprVectorSize(p); 3461 if( nResult==1 ){ 3462 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3463 }else{ 3464 *piFreeable = 0; 3465 if( p->op==TK_SELECT ){ 3466 #if SQLITE_OMIT_SUBQUERY 3467 iResult = 0; 3468 #else 3469 iResult = sqlite3CodeSubselect(pParse, p); 3470 #endif 3471 }else{ 3472 int i; 3473 iResult = pParse->nMem+1; 3474 pParse->nMem += nResult; 3475 for(i=0; i<nResult; i++){ 3476 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3477 } 3478 } 3479 } 3480 return iResult; 3481 } 3482 3483 3484 /* 3485 ** Generate code into the current Vdbe to evaluate the given 3486 ** expression. Attempt to store the results in register "target". 3487 ** Return the register where results are stored. 3488 ** 3489 ** With this routine, there is no guarantee that results will 3490 ** be stored in target. The result might be stored in some other 3491 ** register if it is convenient to do so. The calling function 3492 ** must check the return code and move the results to the desired 3493 ** register. 3494 */ 3495 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3496 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3497 int op; /* The opcode being coded */ 3498 int inReg = target; /* Results stored in register inReg */ 3499 int regFree1 = 0; /* If non-zero free this temporary register */ 3500 int regFree2 = 0; /* If non-zero free this temporary register */ 3501 int r1, r2; /* Various register numbers */ 3502 Expr tempX; /* Temporary expression node */ 3503 int p5 = 0; 3504 3505 assert( target>0 && target<=pParse->nMem ); 3506 if( v==0 ){ 3507 assert( pParse->db->mallocFailed ); 3508 return 0; 3509 } 3510 3511 expr_code_doover: 3512 if( pExpr==0 ){ 3513 op = TK_NULL; 3514 }else{ 3515 op = pExpr->op; 3516 } 3517 switch( op ){ 3518 case TK_AGG_COLUMN: { 3519 AggInfo *pAggInfo = pExpr->pAggInfo; 3520 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3521 if( !pAggInfo->directMode ){ 3522 assert( pCol->iMem>0 ); 3523 return pCol->iMem; 3524 }else if( pAggInfo->useSortingIdx ){ 3525 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3526 pCol->iSorterColumn, target); 3527 return target; 3528 } 3529 /* Otherwise, fall thru into the TK_COLUMN case */ 3530 } 3531 case TK_COLUMN: { 3532 int iTab = pExpr->iTable; 3533 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3534 /* This COLUMN expression is really a constant due to WHERE clause 3535 ** constraints, and that constant is coded by the pExpr->pLeft 3536 ** expresssion. However, make sure the constant has the correct 3537 ** datatype by applying the Affinity of the table column to the 3538 ** constant. 3539 */ 3540 int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3541 int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3542 if( aff>SQLITE_AFF_BLOB ){ 3543 static const char zAff[] = "B\000C\000D\000E"; 3544 assert( SQLITE_AFF_BLOB=='A' ); 3545 assert( SQLITE_AFF_TEXT=='B' ); 3546 if( iReg!=target ){ 3547 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); 3548 iReg = target; 3549 } 3550 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3551 &zAff[(aff-'B')*2], P4_STATIC); 3552 } 3553 return iReg; 3554 } 3555 if( iTab<0 ){ 3556 if( pParse->iSelfTab<0 ){ 3557 /* Generating CHECK constraints or inserting into partial index */ 3558 assert( pExpr->y.pTab!=0 ); 3559 assert( pExpr->iColumn>=XN_ROWID ); 3560 assert( pExpr->iColumn<pExpr->y.pTab->nCol ); 3561 if( pExpr->iColumn>=0 3562 && pExpr->y.pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 3563 ){ 3564 sqlite3VdbeAddOp2(v, OP_SCopy, pExpr->iColumn - pParse->iSelfTab, 3565 target); 3566 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3567 return target; 3568 }else{ 3569 return pExpr->iColumn - pParse->iSelfTab; 3570 } 3571 }else{ 3572 /* Coding an expression that is part of an index where column names 3573 ** in the index refer to the table to which the index belongs */ 3574 iTab = pParse->iSelfTab - 1; 3575 } 3576 } 3577 return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3578 pExpr->iColumn, iTab, target, 3579 pExpr->op2); 3580 } 3581 case TK_INTEGER: { 3582 codeInteger(pParse, pExpr, 0, target); 3583 return target; 3584 } 3585 case TK_TRUEFALSE: { 3586 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3587 return target; 3588 } 3589 #ifndef SQLITE_OMIT_FLOATING_POINT 3590 case TK_FLOAT: { 3591 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3592 codeReal(v, pExpr->u.zToken, 0, target); 3593 return target; 3594 } 3595 #endif 3596 case TK_STRING: { 3597 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3598 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3599 return target; 3600 } 3601 case TK_NULL: { 3602 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3603 return target; 3604 } 3605 #ifndef SQLITE_OMIT_BLOB_LITERAL 3606 case TK_BLOB: { 3607 int n; 3608 const char *z; 3609 char *zBlob; 3610 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3611 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3612 assert( pExpr->u.zToken[1]=='\'' ); 3613 z = &pExpr->u.zToken[2]; 3614 n = sqlite3Strlen30(z) - 1; 3615 assert( z[n]=='\'' ); 3616 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3617 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3618 return target; 3619 } 3620 #endif 3621 case TK_VARIABLE: { 3622 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3623 assert( pExpr->u.zToken!=0 ); 3624 assert( pExpr->u.zToken[0]!=0 ); 3625 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3626 if( pExpr->u.zToken[1]!=0 ){ 3627 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3628 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 ); 3629 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3630 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3631 } 3632 return target; 3633 } 3634 case TK_REGISTER: { 3635 return pExpr->iTable; 3636 } 3637 #ifndef SQLITE_OMIT_CAST 3638 case TK_CAST: { 3639 /* Expressions of the form: CAST(pLeft AS token) */ 3640 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3641 if( inReg!=target ){ 3642 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3643 inReg = target; 3644 } 3645 sqlite3VdbeAddOp2(v, OP_Cast, target, 3646 sqlite3AffinityType(pExpr->u.zToken, 0)); 3647 return inReg; 3648 } 3649 #endif /* SQLITE_OMIT_CAST */ 3650 case TK_IS: 3651 case TK_ISNOT: 3652 op = (op==TK_IS) ? TK_EQ : TK_NE; 3653 p5 = SQLITE_NULLEQ; 3654 /* fall-through */ 3655 case TK_LT: 3656 case TK_LE: 3657 case TK_GT: 3658 case TK_GE: 3659 case TK_NE: 3660 case TK_EQ: { 3661 Expr *pLeft = pExpr->pLeft; 3662 if( sqlite3ExprIsVector(pLeft) ){ 3663 codeVectorCompare(pParse, pExpr, target, op, p5); 3664 }else{ 3665 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 3666 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3667 codeCompare(pParse, pLeft, pExpr->pRight, op, 3668 r1, r2, inReg, SQLITE_STOREP2 | p5); 3669 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 3670 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 3671 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 3672 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 3673 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 3674 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 3675 testcase( regFree1==0 ); 3676 testcase( regFree2==0 ); 3677 } 3678 break; 3679 } 3680 case TK_AND: 3681 case TK_OR: 3682 case TK_PLUS: 3683 case TK_STAR: 3684 case TK_MINUS: 3685 case TK_REM: 3686 case TK_BITAND: 3687 case TK_BITOR: 3688 case TK_SLASH: 3689 case TK_LSHIFT: 3690 case TK_RSHIFT: 3691 case TK_CONCAT: { 3692 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 3693 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 3694 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 3695 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 3696 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 3697 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 3698 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 3699 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 3700 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 3701 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 3702 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 3703 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3704 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3705 sqlite3VdbeAddOp3(v, op, r2, r1, target); 3706 testcase( regFree1==0 ); 3707 testcase( regFree2==0 ); 3708 break; 3709 } 3710 case TK_UMINUS: { 3711 Expr *pLeft = pExpr->pLeft; 3712 assert( pLeft ); 3713 if( pLeft->op==TK_INTEGER ){ 3714 codeInteger(pParse, pLeft, 1, target); 3715 return target; 3716 #ifndef SQLITE_OMIT_FLOATING_POINT 3717 }else if( pLeft->op==TK_FLOAT ){ 3718 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3719 codeReal(v, pLeft->u.zToken, 1, target); 3720 return target; 3721 #endif 3722 }else{ 3723 tempX.op = TK_INTEGER; 3724 tempX.flags = EP_IntValue|EP_TokenOnly; 3725 tempX.u.iValue = 0; 3726 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 3727 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 3728 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 3729 testcase( regFree2==0 ); 3730 } 3731 break; 3732 } 3733 case TK_BITNOT: 3734 case TK_NOT: { 3735 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 3736 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 3737 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3738 testcase( regFree1==0 ); 3739 sqlite3VdbeAddOp2(v, op, r1, inReg); 3740 break; 3741 } 3742 case TK_TRUTH: { 3743 int isTrue; /* IS TRUE or IS NOT TRUE */ 3744 int bNormal; /* IS TRUE or IS FALSE */ 3745 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3746 testcase( regFree1==0 ); 3747 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 3748 bNormal = pExpr->op2==TK_IS; 3749 testcase( isTrue && bNormal); 3750 testcase( !isTrue && bNormal); 3751 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 3752 break; 3753 } 3754 case TK_ISNULL: 3755 case TK_NOTNULL: { 3756 int addr; 3757 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 3758 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 3759 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3760 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3761 testcase( regFree1==0 ); 3762 addr = sqlite3VdbeAddOp1(v, op, r1); 3763 VdbeCoverageIf(v, op==TK_ISNULL); 3764 VdbeCoverageIf(v, op==TK_NOTNULL); 3765 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 3766 sqlite3VdbeJumpHere(v, addr); 3767 break; 3768 } 3769 case TK_AGG_FUNCTION: { 3770 AggInfo *pInfo = pExpr->pAggInfo; 3771 if( pInfo==0 ){ 3772 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3773 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 3774 }else{ 3775 return pInfo->aFunc[pExpr->iAgg].iMem; 3776 } 3777 break; 3778 } 3779 case TK_FUNCTION: { 3780 ExprList *pFarg; /* List of function arguments */ 3781 int nFarg; /* Number of function arguments */ 3782 FuncDef *pDef; /* The function definition object */ 3783 const char *zId; /* The function name */ 3784 u32 constMask = 0; /* Mask of function arguments that are constant */ 3785 int i; /* Loop counter */ 3786 sqlite3 *db = pParse->db; /* The database connection */ 3787 u8 enc = ENC(db); /* The text encoding used by this database */ 3788 CollSeq *pColl = 0; /* A collating sequence */ 3789 3790 #ifndef SQLITE_OMIT_WINDOWFUNC 3791 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3792 return pExpr->y.pWin->regResult; 3793 } 3794 #endif 3795 3796 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 3797 /* SQL functions can be expensive. So try to move constant functions 3798 ** out of the inner loop, even if that means an extra OP_Copy. */ 3799 return sqlite3ExprCodeAtInit(pParse, pExpr, -1); 3800 } 3801 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3802 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3803 pFarg = 0; 3804 }else{ 3805 pFarg = pExpr->x.pList; 3806 } 3807 nFarg = pFarg ? pFarg->nExpr : 0; 3808 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3809 zId = pExpr->u.zToken; 3810 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 3811 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 3812 if( pDef==0 && pParse->explain ){ 3813 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 3814 } 3815 #endif 3816 if( pDef==0 || pDef->xFinalize!=0 ){ 3817 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 3818 break; 3819 } 3820 3821 /* Attempt a direct implementation of the built-in COALESCE() and 3822 ** IFNULL() functions. This avoids unnecessary evaluation of 3823 ** arguments past the first non-NULL argument. 3824 */ 3825 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 3826 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3827 assert( nFarg>=2 ); 3828 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3829 for(i=1; i<nFarg; i++){ 3830 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3831 VdbeCoverage(v); 3832 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3833 } 3834 sqlite3VdbeResolveLabel(v, endCoalesce); 3835 break; 3836 } 3837 3838 /* The UNLIKELY() function is a no-op. The result is the value 3839 ** of the first argument. 3840 */ 3841 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 3842 assert( nFarg>=1 ); 3843 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3844 } 3845 3846 #ifdef SQLITE_DEBUG 3847 /* The AFFINITY() function evaluates to a string that describes 3848 ** the type affinity of the argument. This is used for testing of 3849 ** the SQLite type logic. 3850 */ 3851 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){ 3852 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3853 char aff; 3854 assert( nFarg==1 ); 3855 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3856 sqlite3VdbeLoadString(v, target, 3857 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3858 return target; 3859 } 3860 #endif 3861 3862 for(i=0; i<nFarg; i++){ 3863 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 3864 testcase( i==31 ); 3865 constMask |= MASKBIT32(i); 3866 } 3867 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 3868 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 3869 } 3870 } 3871 if( pFarg ){ 3872 if( constMask ){ 3873 r1 = pParse->nMem+1; 3874 pParse->nMem += nFarg; 3875 }else{ 3876 r1 = sqlite3GetTempRange(pParse, nFarg); 3877 } 3878 3879 /* For length() and typeof() functions with a column argument, 3880 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 3881 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 3882 ** loading. 3883 */ 3884 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 3885 u8 exprOp; 3886 assert( nFarg==1 ); 3887 assert( pFarg->a[0].pExpr!=0 ); 3888 exprOp = pFarg->a[0].pExpr->op; 3889 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 3890 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 3891 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 3892 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 3893 pFarg->a[0].pExpr->op2 = 3894 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 3895 } 3896 } 3897 3898 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 3899 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 3900 }else{ 3901 r1 = 0; 3902 } 3903 #ifndef SQLITE_OMIT_VIRTUALTABLE 3904 /* Possibly overload the function if the first argument is 3905 ** a virtual table column. 3906 ** 3907 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 3908 ** second argument, not the first, as the argument to test to 3909 ** see if it is a column in a virtual table. This is done because 3910 ** the left operand of infix functions (the operand we want to 3911 ** control overloading) ends up as the second argument to the 3912 ** function. The expression "A glob B" is equivalent to 3913 ** "glob(B,A). We want to use the A in "A glob B" to test 3914 ** for function overloading. But we use the B term in "glob(B,A)". 3915 */ 3916 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 3917 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 3918 }else if( nFarg>0 ){ 3919 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 3920 } 3921 #endif 3922 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 3923 if( !pColl ) pColl = db->pDfltColl; 3924 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3925 } 3926 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3927 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 3928 Expr *pArg = pFarg->a[0].pExpr; 3929 if( pArg->op==TK_COLUMN ){ 3930 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3931 }else{ 3932 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3933 } 3934 }else 3935 #endif 3936 { 3937 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0, 3938 constMask, r1, target, (char*)pDef, P4_FUNCDEF); 3939 sqlite3VdbeChangeP5(v, (u8)nFarg); 3940 } 3941 if( nFarg && constMask==0 ){ 3942 sqlite3ReleaseTempRange(pParse, r1, nFarg); 3943 } 3944 return target; 3945 } 3946 #ifndef SQLITE_OMIT_SUBQUERY 3947 case TK_EXISTS: 3948 case TK_SELECT: { 3949 int nCol; 3950 testcase( op==TK_EXISTS ); 3951 testcase( op==TK_SELECT ); 3952 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 3953 sqlite3SubselectError(pParse, nCol, 1); 3954 }else{ 3955 return sqlite3CodeSubselect(pParse, pExpr); 3956 } 3957 break; 3958 } 3959 case TK_SELECT_COLUMN: { 3960 int n; 3961 if( pExpr->pLeft->iTable==0 ){ 3962 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 3963 } 3964 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 3965 if( pExpr->iTable!=0 3966 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 3967 ){ 3968 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 3969 pExpr->iTable, n); 3970 } 3971 return pExpr->pLeft->iTable + pExpr->iColumn; 3972 } 3973 case TK_IN: { 3974 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 3975 int destIfNull = sqlite3VdbeMakeLabel(pParse); 3976 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3977 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3978 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 3979 sqlite3VdbeResolveLabel(v, destIfFalse); 3980 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 3981 sqlite3VdbeResolveLabel(v, destIfNull); 3982 return target; 3983 } 3984 #endif /* SQLITE_OMIT_SUBQUERY */ 3985 3986 3987 /* 3988 ** x BETWEEN y AND z 3989 ** 3990 ** This is equivalent to 3991 ** 3992 ** x>=y AND x<=z 3993 ** 3994 ** X is stored in pExpr->pLeft. 3995 ** Y is stored in pExpr->pList->a[0].pExpr. 3996 ** Z is stored in pExpr->pList->a[1].pExpr. 3997 */ 3998 case TK_BETWEEN: { 3999 exprCodeBetween(pParse, pExpr, target, 0, 0); 4000 return target; 4001 } 4002 case TK_SPAN: 4003 case TK_COLLATE: 4004 case TK_UPLUS: { 4005 pExpr = pExpr->pLeft; 4006 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4007 } 4008 4009 case TK_TRIGGER: { 4010 /* If the opcode is TK_TRIGGER, then the expression is a reference 4011 ** to a column in the new.* or old.* pseudo-tables available to 4012 ** trigger programs. In this case Expr.iTable is set to 1 for the 4013 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4014 ** is set to the column of the pseudo-table to read, or to -1 to 4015 ** read the rowid field. 4016 ** 4017 ** The expression is implemented using an OP_Param opcode. The p1 4018 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4019 ** to reference another column of the old.* pseudo-table, where 4020 ** i is the index of the column. For a new.rowid reference, p1 is 4021 ** set to (n+1), where n is the number of columns in each pseudo-table. 4022 ** For a reference to any other column in the new.* pseudo-table, p1 4023 ** is set to (n+2+i), where n and i are as defined previously. For 4024 ** example, if the table on which triggers are being fired is 4025 ** declared as: 4026 ** 4027 ** CREATE TABLE t1(a, b); 4028 ** 4029 ** Then p1 is interpreted as follows: 4030 ** 4031 ** p1==0 -> old.rowid p1==3 -> new.rowid 4032 ** p1==1 -> old.a p1==4 -> new.a 4033 ** p1==2 -> old.b p1==5 -> new.b 4034 */ 4035 Table *pTab = pExpr->y.pTab; 4036 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 4037 4038 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4039 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 4040 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 4041 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4042 4043 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4044 VdbeComment((v, "r[%d]=%s.%s", target, 4045 (pExpr->iTable ? "new" : "old"), 4046 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) 4047 )); 4048 4049 #ifndef SQLITE_OMIT_FLOATING_POINT 4050 /* If the column has REAL affinity, it may currently be stored as an 4051 ** integer. Use OP_RealAffinity to make sure it is really real. 4052 ** 4053 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4054 ** floating point when extracting it from the record. */ 4055 if( pExpr->iColumn>=0 4056 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 4057 ){ 4058 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4059 } 4060 #endif 4061 break; 4062 } 4063 4064 case TK_VECTOR: { 4065 sqlite3ErrorMsg(pParse, "row value misused"); 4066 break; 4067 } 4068 4069 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4070 ** that derive from the right-hand table of a LEFT JOIN. The 4071 ** Expr.iTable value is the table number for the right-hand table. 4072 ** The expression is only evaluated if that table is not currently 4073 ** on a LEFT JOIN NULL row. 4074 */ 4075 case TK_IF_NULL_ROW: { 4076 int addrINR; 4077 u8 okConstFactor = pParse->okConstFactor; 4078 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4079 /* Temporarily disable factoring of constant expressions, since 4080 ** even though expressions may appear to be constant, they are not 4081 ** really constant because they originate from the right-hand side 4082 ** of a LEFT JOIN. */ 4083 pParse->okConstFactor = 0; 4084 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4085 pParse->okConstFactor = okConstFactor; 4086 sqlite3VdbeJumpHere(v, addrINR); 4087 sqlite3VdbeChangeP3(v, addrINR, inReg); 4088 break; 4089 } 4090 4091 /* 4092 ** Form A: 4093 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4094 ** 4095 ** Form B: 4096 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4097 ** 4098 ** Form A is can be transformed into the equivalent form B as follows: 4099 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4100 ** WHEN x=eN THEN rN ELSE y END 4101 ** 4102 ** X (if it exists) is in pExpr->pLeft. 4103 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4104 ** odd. The Y is also optional. If the number of elements in x.pList 4105 ** is even, then Y is omitted and the "otherwise" result is NULL. 4106 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4107 ** 4108 ** The result of the expression is the Ri for the first matching Ei, 4109 ** or if there is no matching Ei, the ELSE term Y, or if there is 4110 ** no ELSE term, NULL. 4111 */ 4112 default: assert( op==TK_CASE ); { 4113 int endLabel; /* GOTO label for end of CASE stmt */ 4114 int nextCase; /* GOTO label for next WHEN clause */ 4115 int nExpr; /* 2x number of WHEN terms */ 4116 int i; /* Loop counter */ 4117 ExprList *pEList; /* List of WHEN terms */ 4118 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4119 Expr opCompare; /* The X==Ei expression */ 4120 Expr *pX; /* The X expression */ 4121 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4122 Expr *pDel = 0; 4123 sqlite3 *db = pParse->db; 4124 4125 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4126 assert(pExpr->x.pList->nExpr > 0); 4127 pEList = pExpr->x.pList; 4128 aListelem = pEList->a; 4129 nExpr = pEList->nExpr; 4130 endLabel = sqlite3VdbeMakeLabel(pParse); 4131 if( (pX = pExpr->pLeft)!=0 ){ 4132 pDel = sqlite3ExprDup(db, pX, 0); 4133 if( db->mallocFailed ){ 4134 sqlite3ExprDelete(db, pDel); 4135 break; 4136 } 4137 testcase( pX->op==TK_COLUMN ); 4138 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4139 testcase( regFree1==0 ); 4140 memset(&opCompare, 0, sizeof(opCompare)); 4141 opCompare.op = TK_EQ; 4142 opCompare.pLeft = pDel; 4143 pTest = &opCompare; 4144 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4145 ** The value in regFree1 might get SCopy-ed into the file result. 4146 ** So make sure that the regFree1 register is not reused for other 4147 ** purposes and possibly overwritten. */ 4148 regFree1 = 0; 4149 } 4150 for(i=0; i<nExpr-1; i=i+2){ 4151 if( pX ){ 4152 assert( pTest!=0 ); 4153 opCompare.pRight = aListelem[i].pExpr; 4154 }else{ 4155 pTest = aListelem[i].pExpr; 4156 } 4157 nextCase = sqlite3VdbeMakeLabel(pParse); 4158 testcase( pTest->op==TK_COLUMN ); 4159 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4160 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4161 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4162 sqlite3VdbeGoto(v, endLabel); 4163 sqlite3VdbeResolveLabel(v, nextCase); 4164 } 4165 if( (nExpr&1)!=0 ){ 4166 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4167 }else{ 4168 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4169 } 4170 sqlite3ExprDelete(db, pDel); 4171 sqlite3VdbeResolveLabel(v, endLabel); 4172 break; 4173 } 4174 #ifndef SQLITE_OMIT_TRIGGER 4175 case TK_RAISE: { 4176 assert( pExpr->affExpr==OE_Rollback 4177 || pExpr->affExpr==OE_Abort 4178 || pExpr->affExpr==OE_Fail 4179 || pExpr->affExpr==OE_Ignore 4180 ); 4181 if( !pParse->pTriggerTab ){ 4182 sqlite3ErrorMsg(pParse, 4183 "RAISE() may only be used within a trigger-program"); 4184 return 0; 4185 } 4186 if( pExpr->affExpr==OE_Abort ){ 4187 sqlite3MayAbort(pParse); 4188 } 4189 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4190 if( pExpr->affExpr==OE_Ignore ){ 4191 sqlite3VdbeAddOp4( 4192 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4193 VdbeCoverage(v); 4194 }else{ 4195 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 4196 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4197 } 4198 4199 break; 4200 } 4201 #endif 4202 } 4203 sqlite3ReleaseTempReg(pParse, regFree1); 4204 sqlite3ReleaseTempReg(pParse, regFree2); 4205 return inReg; 4206 } 4207 4208 /* 4209 ** Factor out the code of the given expression to initialization time. 4210 ** 4211 ** If regDest>=0 then the result is always stored in that register and the 4212 ** result is not reusable. If regDest<0 then this routine is free to 4213 ** store the value whereever it wants. The register where the expression 4214 ** is stored is returned. When regDest<0, two identical expressions will 4215 ** code to the same register. 4216 */ 4217 int sqlite3ExprCodeAtInit( 4218 Parse *pParse, /* Parsing context */ 4219 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4220 int regDest /* Store the value in this register */ 4221 ){ 4222 ExprList *p; 4223 assert( ConstFactorOk(pParse) ); 4224 p = pParse->pConstExpr; 4225 if( regDest<0 && p ){ 4226 struct ExprList_item *pItem; 4227 int i; 4228 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4229 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4230 return pItem->u.iConstExprReg; 4231 } 4232 } 4233 } 4234 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4235 p = sqlite3ExprListAppend(pParse, p, pExpr); 4236 if( p ){ 4237 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4238 pItem->reusable = regDest<0; 4239 if( regDest<0 ) regDest = ++pParse->nMem; 4240 pItem->u.iConstExprReg = regDest; 4241 } 4242 pParse->pConstExpr = p; 4243 return regDest; 4244 } 4245 4246 /* 4247 ** Generate code to evaluate an expression and store the results 4248 ** into a register. Return the register number where the results 4249 ** are stored. 4250 ** 4251 ** If the register is a temporary register that can be deallocated, 4252 ** then write its number into *pReg. If the result register is not 4253 ** a temporary, then set *pReg to zero. 4254 ** 4255 ** If pExpr is a constant, then this routine might generate this 4256 ** code to fill the register in the initialization section of the 4257 ** VDBE program, in order to factor it out of the evaluation loop. 4258 */ 4259 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4260 int r2; 4261 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4262 if( ConstFactorOk(pParse) 4263 && pExpr->op!=TK_REGISTER 4264 && sqlite3ExprIsConstantNotJoin(pExpr) 4265 ){ 4266 *pReg = 0; 4267 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1); 4268 }else{ 4269 int r1 = sqlite3GetTempReg(pParse); 4270 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4271 if( r2==r1 ){ 4272 *pReg = r1; 4273 }else{ 4274 sqlite3ReleaseTempReg(pParse, r1); 4275 *pReg = 0; 4276 } 4277 } 4278 return r2; 4279 } 4280 4281 /* 4282 ** Generate code that will evaluate expression pExpr and store the 4283 ** results in register target. The results are guaranteed to appear 4284 ** in register target. 4285 */ 4286 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4287 int inReg; 4288 4289 assert( target>0 && target<=pParse->nMem ); 4290 if( pExpr && pExpr->op==TK_REGISTER ){ 4291 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 4292 }else{ 4293 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4294 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4295 if( inReg!=target && pParse->pVdbe ){ 4296 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 4297 } 4298 } 4299 } 4300 4301 /* 4302 ** Make a transient copy of expression pExpr and then code it using 4303 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4304 ** except that the input expression is guaranteed to be unchanged. 4305 */ 4306 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4307 sqlite3 *db = pParse->db; 4308 pExpr = sqlite3ExprDup(db, pExpr, 0); 4309 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4310 sqlite3ExprDelete(db, pExpr); 4311 } 4312 4313 /* 4314 ** Generate code that will evaluate expression pExpr and store the 4315 ** results in register target. The results are guaranteed to appear 4316 ** in register target. If the expression is constant, then this routine 4317 ** might choose to code the expression at initialization time. 4318 */ 4319 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4320 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4321 sqlite3ExprCodeAtInit(pParse, pExpr, target); 4322 }else{ 4323 sqlite3ExprCode(pParse, pExpr, target); 4324 } 4325 } 4326 4327 /* 4328 ** Generate code that evaluates the given expression and puts the result 4329 ** in register target. 4330 ** 4331 ** Also make a copy of the expression results into another "cache" register 4332 ** and modify the expression so that the next time it is evaluated, 4333 ** the result is a copy of the cache register. 4334 ** 4335 ** This routine is used for expressions that are used multiple 4336 ** times. They are evaluated once and the results of the expression 4337 ** are reused. 4338 */ 4339 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 4340 Vdbe *v = pParse->pVdbe; 4341 int iMem; 4342 4343 assert( target>0 ); 4344 assert( pExpr->op!=TK_REGISTER ); 4345 sqlite3ExprCode(pParse, pExpr, target); 4346 iMem = ++pParse->nMem; 4347 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); 4348 exprToRegister(pExpr, iMem); 4349 } 4350 4351 /* 4352 ** Generate code that pushes the value of every element of the given 4353 ** expression list into a sequence of registers beginning at target. 4354 ** 4355 ** Return the number of elements evaluated. The number returned will 4356 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4357 ** is defined. 4358 ** 4359 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4360 ** filled using OP_SCopy. OP_Copy must be used instead. 4361 ** 4362 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4363 ** factored out into initialization code. 4364 ** 4365 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4366 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4367 ** in registers at srcReg, and so the value can be copied from there. 4368 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4369 ** are simply omitted rather than being copied from srcReg. 4370 */ 4371 int sqlite3ExprCodeExprList( 4372 Parse *pParse, /* Parsing context */ 4373 ExprList *pList, /* The expression list to be coded */ 4374 int target, /* Where to write results */ 4375 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4376 u8 flags /* SQLITE_ECEL_* flags */ 4377 ){ 4378 struct ExprList_item *pItem; 4379 int i, j, n; 4380 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4381 Vdbe *v = pParse->pVdbe; 4382 assert( pList!=0 ); 4383 assert( target>0 ); 4384 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4385 n = pList->nExpr; 4386 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4387 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4388 Expr *pExpr = pItem->pExpr; 4389 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4390 if( pItem->bSorterRef ){ 4391 i--; 4392 n--; 4393 }else 4394 #endif 4395 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4396 if( flags & SQLITE_ECEL_OMITREF ){ 4397 i--; 4398 n--; 4399 }else{ 4400 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4401 } 4402 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4403 && sqlite3ExprIsConstantNotJoin(pExpr) 4404 ){ 4405 sqlite3ExprCodeAtInit(pParse, pExpr, target+i); 4406 }else{ 4407 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4408 if( inReg!=target+i ){ 4409 VdbeOp *pOp; 4410 if( copyOp==OP_Copy 4411 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4412 && pOp->p1+pOp->p3+1==inReg 4413 && pOp->p2+pOp->p3+1==target+i 4414 ){ 4415 pOp->p3++; 4416 }else{ 4417 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4418 } 4419 } 4420 } 4421 } 4422 return n; 4423 } 4424 4425 /* 4426 ** Generate code for a BETWEEN operator. 4427 ** 4428 ** x BETWEEN y AND z 4429 ** 4430 ** The above is equivalent to 4431 ** 4432 ** x>=y AND x<=z 4433 ** 4434 ** Code it as such, taking care to do the common subexpression 4435 ** elimination of x. 4436 ** 4437 ** The xJumpIf parameter determines details: 4438 ** 4439 ** NULL: Store the boolean result in reg[dest] 4440 ** sqlite3ExprIfTrue: Jump to dest if true 4441 ** sqlite3ExprIfFalse: Jump to dest if false 4442 ** 4443 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4444 */ 4445 static void exprCodeBetween( 4446 Parse *pParse, /* Parsing and code generating context */ 4447 Expr *pExpr, /* The BETWEEN expression */ 4448 int dest, /* Jump destination or storage location */ 4449 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4450 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4451 ){ 4452 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4453 Expr compLeft; /* The x>=y term */ 4454 Expr compRight; /* The x<=z term */ 4455 int regFree1 = 0; /* Temporary use register */ 4456 Expr *pDel = 0; 4457 sqlite3 *db = pParse->db; 4458 4459 memset(&compLeft, 0, sizeof(Expr)); 4460 memset(&compRight, 0, sizeof(Expr)); 4461 memset(&exprAnd, 0, sizeof(Expr)); 4462 4463 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4464 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4465 if( db->mallocFailed==0 ){ 4466 exprAnd.op = TK_AND; 4467 exprAnd.pLeft = &compLeft; 4468 exprAnd.pRight = &compRight; 4469 compLeft.op = TK_GE; 4470 compLeft.pLeft = pDel; 4471 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4472 compRight.op = TK_LE; 4473 compRight.pLeft = pDel; 4474 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4475 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4476 if( xJump ){ 4477 xJump(pParse, &exprAnd, dest, jumpIfNull); 4478 }else{ 4479 /* Mark the expression is being from the ON or USING clause of a join 4480 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4481 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4482 ** for clarity, but we are out of bits in the Expr.flags field so we 4483 ** have to reuse the EP_FromJoin bit. Bummer. */ 4484 pDel->flags |= EP_FromJoin; 4485 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4486 } 4487 sqlite3ReleaseTempReg(pParse, regFree1); 4488 } 4489 sqlite3ExprDelete(db, pDel); 4490 4491 /* Ensure adequate test coverage */ 4492 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4493 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4494 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4495 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4496 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4497 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4498 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4499 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4500 testcase( xJump==0 ); 4501 } 4502 4503 /* 4504 ** Generate code for a boolean expression such that a jump is made 4505 ** to the label "dest" if the expression is true but execution 4506 ** continues straight thru if the expression is false. 4507 ** 4508 ** If the expression evaluates to NULL (neither true nor false), then 4509 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4510 ** 4511 ** This code depends on the fact that certain token values (ex: TK_EQ) 4512 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4513 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4514 ** the make process cause these values to align. Assert()s in the code 4515 ** below verify that the numbers are aligned correctly. 4516 */ 4517 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4518 Vdbe *v = pParse->pVdbe; 4519 int op = 0; 4520 int regFree1 = 0; 4521 int regFree2 = 0; 4522 int r1, r2; 4523 4524 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4525 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4526 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4527 op = pExpr->op; 4528 switch( op ){ 4529 case TK_AND: 4530 case TK_OR: { 4531 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4532 if( pAlt!=pExpr ){ 4533 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4534 }else if( op==TK_AND ){ 4535 int d2 = sqlite3VdbeMakeLabel(pParse); 4536 testcase( jumpIfNull==0 ); 4537 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4538 jumpIfNull^SQLITE_JUMPIFNULL); 4539 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4540 sqlite3VdbeResolveLabel(v, d2); 4541 }else{ 4542 testcase( jumpIfNull==0 ); 4543 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4544 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4545 } 4546 break; 4547 } 4548 case TK_NOT: { 4549 testcase( jumpIfNull==0 ); 4550 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4551 break; 4552 } 4553 case TK_TRUTH: { 4554 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4555 int isTrue; /* IS TRUE or IS NOT TRUE */ 4556 testcase( jumpIfNull==0 ); 4557 isNot = pExpr->op2==TK_ISNOT; 4558 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4559 testcase( isTrue && isNot ); 4560 testcase( !isTrue && isNot ); 4561 if( isTrue ^ isNot ){ 4562 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4563 isNot ? SQLITE_JUMPIFNULL : 0); 4564 }else{ 4565 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4566 isNot ? SQLITE_JUMPIFNULL : 0); 4567 } 4568 break; 4569 } 4570 case TK_IS: 4571 case TK_ISNOT: 4572 testcase( op==TK_IS ); 4573 testcase( op==TK_ISNOT ); 4574 op = (op==TK_IS) ? TK_EQ : TK_NE; 4575 jumpIfNull = SQLITE_NULLEQ; 4576 /* Fall thru */ 4577 case TK_LT: 4578 case TK_LE: 4579 case TK_GT: 4580 case TK_GE: 4581 case TK_NE: 4582 case TK_EQ: { 4583 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4584 testcase( jumpIfNull==0 ); 4585 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4586 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4587 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4588 r1, r2, dest, jumpIfNull); 4589 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4590 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4591 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4592 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4593 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4594 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4595 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4596 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4597 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4598 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4599 testcase( regFree1==0 ); 4600 testcase( regFree2==0 ); 4601 break; 4602 } 4603 case TK_ISNULL: 4604 case TK_NOTNULL: { 4605 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4606 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4607 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4608 sqlite3VdbeAddOp2(v, op, r1, dest); 4609 VdbeCoverageIf(v, op==TK_ISNULL); 4610 VdbeCoverageIf(v, op==TK_NOTNULL); 4611 testcase( regFree1==0 ); 4612 break; 4613 } 4614 case TK_BETWEEN: { 4615 testcase( jumpIfNull==0 ); 4616 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4617 break; 4618 } 4619 #ifndef SQLITE_OMIT_SUBQUERY 4620 case TK_IN: { 4621 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4622 int destIfNull = jumpIfNull ? dest : destIfFalse; 4623 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4624 sqlite3VdbeGoto(v, dest); 4625 sqlite3VdbeResolveLabel(v, destIfFalse); 4626 break; 4627 } 4628 #endif 4629 default: { 4630 default_expr: 4631 if( ExprAlwaysTrue(pExpr) ){ 4632 sqlite3VdbeGoto(v, dest); 4633 }else if( ExprAlwaysFalse(pExpr) ){ 4634 /* No-op */ 4635 }else{ 4636 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4637 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4638 VdbeCoverage(v); 4639 testcase( regFree1==0 ); 4640 testcase( jumpIfNull==0 ); 4641 } 4642 break; 4643 } 4644 } 4645 sqlite3ReleaseTempReg(pParse, regFree1); 4646 sqlite3ReleaseTempReg(pParse, regFree2); 4647 } 4648 4649 /* 4650 ** Generate code for a boolean expression such that a jump is made 4651 ** to the label "dest" if the expression is false but execution 4652 ** continues straight thru if the expression is true. 4653 ** 4654 ** If the expression evaluates to NULL (neither true nor false) then 4655 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4656 ** is 0. 4657 */ 4658 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4659 Vdbe *v = pParse->pVdbe; 4660 int op = 0; 4661 int regFree1 = 0; 4662 int regFree2 = 0; 4663 int r1, r2; 4664 4665 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4666 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4667 if( pExpr==0 ) return; 4668 4669 /* The value of pExpr->op and op are related as follows: 4670 ** 4671 ** pExpr->op op 4672 ** --------- ---------- 4673 ** TK_ISNULL OP_NotNull 4674 ** TK_NOTNULL OP_IsNull 4675 ** TK_NE OP_Eq 4676 ** TK_EQ OP_Ne 4677 ** TK_GT OP_Le 4678 ** TK_LE OP_Gt 4679 ** TK_GE OP_Lt 4680 ** TK_LT OP_Ge 4681 ** 4682 ** For other values of pExpr->op, op is undefined and unused. 4683 ** The value of TK_ and OP_ constants are arranged such that we 4684 ** can compute the mapping above using the following expression. 4685 ** Assert()s verify that the computation is correct. 4686 */ 4687 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 4688 4689 /* Verify correct alignment of TK_ and OP_ constants 4690 */ 4691 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 4692 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 4693 assert( pExpr->op!=TK_NE || op==OP_Eq ); 4694 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 4695 assert( pExpr->op!=TK_LT || op==OP_Ge ); 4696 assert( pExpr->op!=TK_LE || op==OP_Gt ); 4697 assert( pExpr->op!=TK_GT || op==OP_Le ); 4698 assert( pExpr->op!=TK_GE || op==OP_Lt ); 4699 4700 switch( pExpr->op ){ 4701 case TK_AND: 4702 case TK_OR: { 4703 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4704 if( pAlt!=pExpr ){ 4705 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 4706 }else if( pExpr->op==TK_AND ){ 4707 testcase( jumpIfNull==0 ); 4708 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4709 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4710 }else{ 4711 int d2 = sqlite3VdbeMakeLabel(pParse); 4712 testcase( jumpIfNull==0 ); 4713 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 4714 jumpIfNull^SQLITE_JUMPIFNULL); 4715 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 4716 sqlite3VdbeResolveLabel(v, d2); 4717 } 4718 break; 4719 } 4720 case TK_NOT: { 4721 testcase( jumpIfNull==0 ); 4722 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4723 break; 4724 } 4725 case TK_TRUTH: { 4726 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4727 int isTrue; /* IS TRUE or IS NOT TRUE */ 4728 testcase( jumpIfNull==0 ); 4729 isNot = pExpr->op2==TK_ISNOT; 4730 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4731 testcase( isTrue && isNot ); 4732 testcase( !isTrue && isNot ); 4733 if( isTrue ^ isNot ){ 4734 /* IS TRUE and IS NOT FALSE */ 4735 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4736 isNot ? 0 : SQLITE_JUMPIFNULL); 4737 4738 }else{ 4739 /* IS FALSE and IS NOT TRUE */ 4740 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4741 isNot ? 0 : SQLITE_JUMPIFNULL); 4742 } 4743 break; 4744 } 4745 case TK_IS: 4746 case TK_ISNOT: 4747 testcase( pExpr->op==TK_IS ); 4748 testcase( pExpr->op==TK_ISNOT ); 4749 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 4750 jumpIfNull = SQLITE_NULLEQ; 4751 /* Fall thru */ 4752 case TK_LT: 4753 case TK_LE: 4754 case TK_GT: 4755 case TK_GE: 4756 case TK_NE: 4757 case TK_EQ: { 4758 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4759 testcase( jumpIfNull==0 ); 4760 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4761 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4762 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4763 r1, r2, dest, jumpIfNull); 4764 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4765 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4766 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4767 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4768 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4769 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4770 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4771 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4772 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4773 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4774 testcase( regFree1==0 ); 4775 testcase( regFree2==0 ); 4776 break; 4777 } 4778 case TK_ISNULL: 4779 case TK_NOTNULL: { 4780 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4781 sqlite3VdbeAddOp2(v, op, r1, dest); 4782 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 4783 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 4784 testcase( regFree1==0 ); 4785 break; 4786 } 4787 case TK_BETWEEN: { 4788 testcase( jumpIfNull==0 ); 4789 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 4790 break; 4791 } 4792 #ifndef SQLITE_OMIT_SUBQUERY 4793 case TK_IN: { 4794 if( jumpIfNull ){ 4795 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 4796 }else{ 4797 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4798 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 4799 sqlite3VdbeResolveLabel(v, destIfNull); 4800 } 4801 break; 4802 } 4803 #endif 4804 default: { 4805 default_expr: 4806 if( ExprAlwaysFalse(pExpr) ){ 4807 sqlite3VdbeGoto(v, dest); 4808 }else if( ExprAlwaysTrue(pExpr) ){ 4809 /* no-op */ 4810 }else{ 4811 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4812 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 4813 VdbeCoverage(v); 4814 testcase( regFree1==0 ); 4815 testcase( jumpIfNull==0 ); 4816 } 4817 break; 4818 } 4819 } 4820 sqlite3ReleaseTempReg(pParse, regFree1); 4821 sqlite3ReleaseTempReg(pParse, regFree2); 4822 } 4823 4824 /* 4825 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 4826 ** code generation, and that copy is deleted after code generation. This 4827 ** ensures that the original pExpr is unchanged. 4828 */ 4829 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 4830 sqlite3 *db = pParse->db; 4831 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 4832 if( db->mallocFailed==0 ){ 4833 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 4834 } 4835 sqlite3ExprDelete(db, pCopy); 4836 } 4837 4838 /* 4839 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 4840 ** type of expression. 4841 ** 4842 ** If pExpr is a simple SQL value - an integer, real, string, blob 4843 ** or NULL value - then the VDBE currently being prepared is configured 4844 ** to re-prepare each time a new value is bound to variable pVar. 4845 ** 4846 ** Additionally, if pExpr is a simple SQL value and the value is the 4847 ** same as that currently bound to variable pVar, non-zero is returned. 4848 ** Otherwise, if the values are not the same or if pExpr is not a simple 4849 ** SQL value, zero is returned. 4850 */ 4851 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 4852 int res = 0; 4853 int iVar; 4854 sqlite3_value *pL, *pR = 0; 4855 4856 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 4857 if( pR ){ 4858 iVar = pVar->iColumn; 4859 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 4860 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 4861 if( pL ){ 4862 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 4863 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 4864 } 4865 res = 0==sqlite3MemCompare(pL, pR, 0); 4866 } 4867 sqlite3ValueFree(pR); 4868 sqlite3ValueFree(pL); 4869 } 4870 4871 return res; 4872 } 4873 4874 /* 4875 ** Do a deep comparison of two expression trees. Return 0 if the two 4876 ** expressions are completely identical. Return 1 if they differ only 4877 ** by a COLLATE operator at the top level. Return 2 if there are differences 4878 ** other than the top-level COLLATE operator. 4879 ** 4880 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4881 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4882 ** 4883 ** The pA side might be using TK_REGISTER. If that is the case and pB is 4884 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 4885 ** 4886 ** Sometimes this routine will return 2 even if the two expressions 4887 ** really are equivalent. If we cannot prove that the expressions are 4888 ** identical, we return 2 just to be safe. So if this routine 4889 ** returns 2, then you do not really know for certain if the two 4890 ** expressions are the same. But if you get a 0 or 1 return, then you 4891 ** can be sure the expressions are the same. In the places where 4892 ** this routine is used, it does not hurt to get an extra 2 - that 4893 ** just might result in some slightly slower code. But returning 4894 ** an incorrect 0 or 1 could lead to a malfunction. 4895 ** 4896 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 4897 ** pParse->pReprepare can be matched against literals in pB. The 4898 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 4899 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 4900 ** Argument pParse should normally be NULL. If it is not NULL and pA or 4901 ** pB causes a return value of 2. 4902 */ 4903 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 4904 u32 combinedFlags; 4905 if( pA==0 || pB==0 ){ 4906 return pB==pA ? 0 : 2; 4907 } 4908 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 4909 return 0; 4910 } 4911 combinedFlags = pA->flags | pB->flags; 4912 if( combinedFlags & EP_IntValue ){ 4913 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 4914 return 0; 4915 } 4916 return 2; 4917 } 4918 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 4919 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 4920 return 1; 4921 } 4922 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 4923 return 1; 4924 } 4925 return 2; 4926 } 4927 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 4928 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 4929 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4930 #ifndef SQLITE_OMIT_WINDOWFUNC 4931 assert( pA->op==pB->op ); 4932 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 4933 return 2; 4934 } 4935 if( ExprHasProperty(pA,EP_WinFunc) ){ 4936 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 4937 return 2; 4938 } 4939 } 4940 #endif 4941 }else if( pA->op==TK_NULL ){ 4942 return 0; 4943 }else if( pA->op==TK_COLLATE ){ 4944 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 4945 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 4946 return 2; 4947 } 4948 } 4949 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 4950 if( (combinedFlags & EP_TokenOnly)==0 ){ 4951 if( combinedFlags & EP_xIsSelect ) return 2; 4952 if( (combinedFlags & EP_FixedCol)==0 4953 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 4954 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 4955 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 4956 if( pA->op!=TK_STRING 4957 && pA->op!=TK_TRUEFALSE 4958 && (combinedFlags & EP_Reduced)==0 4959 ){ 4960 if( pA->iColumn!=pB->iColumn ) return 2; 4961 if( pA->op2!=pB->op2 ) return 2; 4962 if( pA->op!=TK_IN 4963 && pA->iTable!=pB->iTable 4964 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 4965 } 4966 } 4967 return 0; 4968 } 4969 4970 /* 4971 ** Compare two ExprList objects. Return 0 if they are identical and 4972 ** non-zero if they differ in any way. 4973 ** 4974 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 4975 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 4976 ** 4977 ** This routine might return non-zero for equivalent ExprLists. The 4978 ** only consequence will be disabled optimizations. But this routine 4979 ** must never return 0 if the two ExprList objects are different, or 4980 ** a malfunction will result. 4981 ** 4982 ** Two NULL pointers are considered to be the same. But a NULL pointer 4983 ** always differs from a non-NULL pointer. 4984 */ 4985 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 4986 int i; 4987 if( pA==0 && pB==0 ) return 0; 4988 if( pA==0 || pB==0 ) return 1; 4989 if( pA->nExpr!=pB->nExpr ) return 1; 4990 for(i=0; i<pA->nExpr; i++){ 4991 Expr *pExprA = pA->a[i].pExpr; 4992 Expr *pExprB = pB->a[i].pExpr; 4993 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 4994 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1; 4995 } 4996 return 0; 4997 } 4998 4999 /* 5000 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5001 ** are ignored. 5002 */ 5003 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5004 return sqlite3ExprCompare(0, 5005 sqlite3ExprSkipCollateAndLikely(pA), 5006 sqlite3ExprSkipCollateAndLikely(pB), 5007 iTab); 5008 } 5009 5010 /* 5011 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5012 ** 5013 ** Or if seenNot is true, return non-zero if Expr p can only be 5014 ** non-NULL if pNN is not NULL 5015 */ 5016 static int exprImpliesNotNull( 5017 Parse *pParse, /* Parsing context */ 5018 Expr *p, /* The expression to be checked */ 5019 Expr *pNN, /* The expression that is NOT NULL */ 5020 int iTab, /* Table being evaluated */ 5021 int seenNot /* Return true only if p can be any non-NULL value */ 5022 ){ 5023 assert( p ); 5024 assert( pNN ); 5025 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5026 return pNN->op!=TK_NULL; 5027 } 5028 switch( p->op ){ 5029 case TK_IN: { 5030 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5031 assert( ExprHasProperty(p,EP_xIsSelect) 5032 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5033 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5034 } 5035 case TK_BETWEEN: { 5036 ExprList *pList = p->x.pList; 5037 assert( pList!=0 ); 5038 assert( pList->nExpr==2 ); 5039 if( seenNot ) return 0; 5040 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5041 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5042 ){ 5043 return 1; 5044 } 5045 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5046 } 5047 case TK_EQ: 5048 case TK_NE: 5049 case TK_LT: 5050 case TK_LE: 5051 case TK_GT: 5052 case TK_GE: 5053 case TK_PLUS: 5054 case TK_MINUS: 5055 case TK_BITOR: 5056 case TK_LSHIFT: 5057 case TK_RSHIFT: 5058 case TK_CONCAT: 5059 seenNot = 1; 5060 /* Fall thru */ 5061 case TK_STAR: 5062 case TK_REM: 5063 case TK_BITAND: 5064 case TK_SLASH: { 5065 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5066 /* Fall thru into the next case */ 5067 } 5068 case TK_SPAN: 5069 case TK_COLLATE: 5070 case TK_UPLUS: 5071 case TK_UMINUS: { 5072 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5073 } 5074 case TK_TRUTH: { 5075 if( seenNot ) return 0; 5076 if( p->op2!=TK_IS ) return 0; 5077 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5078 } 5079 case TK_BITNOT: 5080 case TK_NOT: { 5081 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5082 } 5083 } 5084 return 0; 5085 } 5086 5087 /* 5088 ** Return true if we can prove the pE2 will always be true if pE1 is 5089 ** true. Return false if we cannot complete the proof or if pE2 might 5090 ** be false. Examples: 5091 ** 5092 ** pE1: x==5 pE2: x==5 Result: true 5093 ** pE1: x>0 pE2: x==5 Result: false 5094 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5095 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5096 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5097 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5098 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5099 ** 5100 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5101 ** Expr.iTable<0 then assume a table number given by iTab. 5102 ** 5103 ** If pParse is not NULL, then the values of bound variables in pE1 are 5104 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5105 ** modified to record which bound variables are referenced. If pParse 5106 ** is NULL, then false will be returned if pE1 contains any bound variables. 5107 ** 5108 ** When in doubt, return false. Returning true might give a performance 5109 ** improvement. Returning false might cause a performance reduction, but 5110 ** it will always give the correct answer and is hence always safe. 5111 */ 5112 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5113 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5114 return 1; 5115 } 5116 if( pE2->op==TK_OR 5117 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5118 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5119 ){ 5120 return 1; 5121 } 5122 if( pE2->op==TK_NOTNULL 5123 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5124 ){ 5125 return 1; 5126 } 5127 return 0; 5128 } 5129 5130 /* 5131 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). 5132 ** If the expression node requires that the table at pWalker->iCur 5133 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5134 ** 5135 ** This routine controls an optimization. False positives (setting 5136 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5137 ** (never setting pWalker->eCode) is a harmless missed optimization. 5138 */ 5139 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5140 testcase( pExpr->op==TK_AGG_COLUMN ); 5141 testcase( pExpr->op==TK_AGG_FUNCTION ); 5142 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5143 switch( pExpr->op ){ 5144 case TK_ISNOT: 5145 case TK_ISNULL: 5146 case TK_NOTNULL: 5147 case TK_IS: 5148 case TK_OR: 5149 case TK_CASE: 5150 case TK_IN: 5151 case TK_FUNCTION: 5152 case TK_TRUTH: 5153 testcase( pExpr->op==TK_ISNOT ); 5154 testcase( pExpr->op==TK_ISNULL ); 5155 testcase( pExpr->op==TK_NOTNULL ); 5156 testcase( pExpr->op==TK_IS ); 5157 testcase( pExpr->op==TK_OR ); 5158 testcase( pExpr->op==TK_CASE ); 5159 testcase( pExpr->op==TK_IN ); 5160 testcase( pExpr->op==TK_FUNCTION ); 5161 testcase( pExpr->op==TK_TRUTH ); 5162 return WRC_Prune; 5163 case TK_COLUMN: 5164 if( pWalker->u.iCur==pExpr->iTable ){ 5165 pWalker->eCode = 1; 5166 return WRC_Abort; 5167 } 5168 return WRC_Prune; 5169 5170 case TK_AND: 5171 assert( pWalker->eCode==0 ); 5172 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5173 if( pWalker->eCode ){ 5174 pWalker->eCode = 0; 5175 sqlite3WalkExpr(pWalker, pExpr->pRight); 5176 } 5177 return WRC_Prune; 5178 5179 case TK_BETWEEN: 5180 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5181 return WRC_Prune; 5182 5183 /* Virtual tables are allowed to use constraints like x=NULL. So 5184 ** a term of the form x=y does not prove that y is not null if x 5185 ** is the column of a virtual table */ 5186 case TK_EQ: 5187 case TK_NE: 5188 case TK_LT: 5189 case TK_LE: 5190 case TK_GT: 5191 case TK_GE: 5192 testcase( pExpr->op==TK_EQ ); 5193 testcase( pExpr->op==TK_NE ); 5194 testcase( pExpr->op==TK_LT ); 5195 testcase( pExpr->op==TK_LE ); 5196 testcase( pExpr->op==TK_GT ); 5197 testcase( pExpr->op==TK_GE ); 5198 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) 5199 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) 5200 ){ 5201 return WRC_Prune; 5202 } 5203 5204 default: 5205 return WRC_Continue; 5206 } 5207 } 5208 5209 /* 5210 ** Return true (non-zero) if expression p can only be true if at least 5211 ** one column of table iTab is non-null. In other words, return true 5212 ** if expression p will always be NULL or false if every column of iTab 5213 ** is NULL. 5214 ** 5215 ** False negatives are acceptable. In other words, it is ok to return 5216 ** zero even if expression p will never be true of every column of iTab 5217 ** is NULL. A false negative is merely a missed optimization opportunity. 5218 ** 5219 ** False positives are not allowed, however. A false positive may result 5220 ** in an incorrect answer. 5221 ** 5222 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5223 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5224 ** 5225 ** This routine is used to check if a LEFT JOIN can be converted into 5226 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5227 ** clause requires that some column of the right table of the LEFT JOIN 5228 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5229 ** ordinary join. 5230 */ 5231 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5232 Walker w; 5233 p = sqlite3ExprSkipCollateAndLikely(p); 5234 if( p && p->op==TK_NOTNULL ){ 5235 p = p->pLeft; 5236 } 5237 w.xExprCallback = impliesNotNullRow; 5238 w.xSelectCallback = 0; 5239 w.xSelectCallback2 = 0; 5240 w.eCode = 0; 5241 w.u.iCur = iTab; 5242 sqlite3WalkExpr(&w, p); 5243 return w.eCode; 5244 } 5245 5246 /* 5247 ** An instance of the following structure is used by the tree walker 5248 ** to determine if an expression can be evaluated by reference to the 5249 ** index only, without having to do a search for the corresponding 5250 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5251 ** is the cursor for the table. 5252 */ 5253 struct IdxCover { 5254 Index *pIdx; /* The index to be tested for coverage */ 5255 int iCur; /* Cursor number for the table corresponding to the index */ 5256 }; 5257 5258 /* 5259 ** Check to see if there are references to columns in table 5260 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5261 ** pWalker->u.pIdxCover->pIdx. 5262 */ 5263 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5264 if( pExpr->op==TK_COLUMN 5265 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5266 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5267 ){ 5268 pWalker->eCode = 1; 5269 return WRC_Abort; 5270 } 5271 return WRC_Continue; 5272 } 5273 5274 /* 5275 ** Determine if an index pIdx on table with cursor iCur contains will 5276 ** the expression pExpr. Return true if the index does cover the 5277 ** expression and false if the pExpr expression references table columns 5278 ** that are not found in the index pIdx. 5279 ** 5280 ** An index covering an expression means that the expression can be 5281 ** evaluated using only the index and without having to lookup the 5282 ** corresponding table entry. 5283 */ 5284 int sqlite3ExprCoveredByIndex( 5285 Expr *pExpr, /* The index to be tested */ 5286 int iCur, /* The cursor number for the corresponding table */ 5287 Index *pIdx /* The index that might be used for coverage */ 5288 ){ 5289 Walker w; 5290 struct IdxCover xcov; 5291 memset(&w, 0, sizeof(w)); 5292 xcov.iCur = iCur; 5293 xcov.pIdx = pIdx; 5294 w.xExprCallback = exprIdxCover; 5295 w.u.pIdxCover = &xcov; 5296 sqlite3WalkExpr(&w, pExpr); 5297 return !w.eCode; 5298 } 5299 5300 5301 /* 5302 ** An instance of the following structure is used by the tree walker 5303 ** to count references to table columns in the arguments of an 5304 ** aggregate function, in order to implement the 5305 ** sqlite3FunctionThisSrc() routine. 5306 */ 5307 struct SrcCount { 5308 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5309 int nThis; /* Number of references to columns in pSrcList */ 5310 int nOther; /* Number of references to columns in other FROM clauses */ 5311 }; 5312 5313 /* 5314 ** Count the number of references to columns. 5315 */ 5316 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5317 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 5318 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 5319 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 5320 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 5321 ** NEVER() will need to be removed. */ 5322 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 5323 int i; 5324 struct SrcCount *p = pWalker->u.pSrcCount; 5325 SrcList *pSrc = p->pSrc; 5326 int nSrc = pSrc ? pSrc->nSrc : 0; 5327 for(i=0; i<nSrc; i++){ 5328 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5329 } 5330 if( i<nSrc ){ 5331 p->nThis++; 5332 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5333 /* In a well-formed parse tree (no name resolution errors), 5334 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5335 ** outer context. Those are the only ones to count as "other" */ 5336 p->nOther++; 5337 } 5338 } 5339 return WRC_Continue; 5340 } 5341 5342 /* 5343 ** Determine if any of the arguments to the pExpr Function reference 5344 ** pSrcList. Return true if they do. Also return true if the function 5345 ** has no arguments or has only constant arguments. Return false if pExpr 5346 ** references columns but not columns of tables found in pSrcList. 5347 */ 5348 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5349 Walker w; 5350 struct SrcCount cnt; 5351 assert( pExpr->op==TK_AGG_FUNCTION ); 5352 memset(&w, 0, sizeof(w)); 5353 w.xExprCallback = exprSrcCount; 5354 w.xSelectCallback = sqlite3SelectWalkNoop; 5355 w.u.pSrcCount = &cnt; 5356 cnt.pSrc = pSrcList; 5357 cnt.nThis = 0; 5358 cnt.nOther = 0; 5359 sqlite3WalkExprList(&w, pExpr->x.pList); 5360 return cnt.nThis>0 || cnt.nOther==0; 5361 } 5362 5363 /* 5364 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5365 ** the new element. Return a negative number if malloc fails. 5366 */ 5367 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5368 int i; 5369 pInfo->aCol = sqlite3ArrayAllocate( 5370 db, 5371 pInfo->aCol, 5372 sizeof(pInfo->aCol[0]), 5373 &pInfo->nColumn, 5374 &i 5375 ); 5376 return i; 5377 } 5378 5379 /* 5380 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5381 ** the new element. Return a negative number if malloc fails. 5382 */ 5383 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5384 int i; 5385 pInfo->aFunc = sqlite3ArrayAllocate( 5386 db, 5387 pInfo->aFunc, 5388 sizeof(pInfo->aFunc[0]), 5389 &pInfo->nFunc, 5390 &i 5391 ); 5392 return i; 5393 } 5394 5395 /* 5396 ** This is the xExprCallback for a tree walker. It is used to 5397 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5398 ** for additional information. 5399 */ 5400 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5401 int i; 5402 NameContext *pNC = pWalker->u.pNC; 5403 Parse *pParse = pNC->pParse; 5404 SrcList *pSrcList = pNC->pSrcList; 5405 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5406 5407 assert( pNC->ncFlags & NC_UAggInfo ); 5408 switch( pExpr->op ){ 5409 case TK_AGG_COLUMN: 5410 case TK_COLUMN: { 5411 testcase( pExpr->op==TK_AGG_COLUMN ); 5412 testcase( pExpr->op==TK_COLUMN ); 5413 /* Check to see if the column is in one of the tables in the FROM 5414 ** clause of the aggregate query */ 5415 if( ALWAYS(pSrcList!=0) ){ 5416 struct SrcList_item *pItem = pSrcList->a; 5417 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5418 struct AggInfo_col *pCol; 5419 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5420 if( pExpr->iTable==pItem->iCursor ){ 5421 /* If we reach this point, it means that pExpr refers to a table 5422 ** that is in the FROM clause of the aggregate query. 5423 ** 5424 ** Make an entry for the column in pAggInfo->aCol[] if there 5425 ** is not an entry there already. 5426 */ 5427 int k; 5428 pCol = pAggInfo->aCol; 5429 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5430 if( pCol->iTable==pExpr->iTable && 5431 pCol->iColumn==pExpr->iColumn ){ 5432 break; 5433 } 5434 } 5435 if( (k>=pAggInfo->nColumn) 5436 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5437 ){ 5438 pCol = &pAggInfo->aCol[k]; 5439 pCol->pTab = pExpr->y.pTab; 5440 pCol->iTable = pExpr->iTable; 5441 pCol->iColumn = pExpr->iColumn; 5442 pCol->iMem = ++pParse->nMem; 5443 pCol->iSorterColumn = -1; 5444 pCol->pExpr = pExpr; 5445 if( pAggInfo->pGroupBy ){ 5446 int j, n; 5447 ExprList *pGB = pAggInfo->pGroupBy; 5448 struct ExprList_item *pTerm = pGB->a; 5449 n = pGB->nExpr; 5450 for(j=0; j<n; j++, pTerm++){ 5451 Expr *pE = pTerm->pExpr; 5452 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5453 pE->iColumn==pExpr->iColumn ){ 5454 pCol->iSorterColumn = j; 5455 break; 5456 } 5457 } 5458 } 5459 if( pCol->iSorterColumn<0 ){ 5460 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5461 } 5462 } 5463 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5464 ** because it was there before or because we just created it). 5465 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5466 ** pAggInfo->aCol[] entry. 5467 */ 5468 ExprSetVVAProperty(pExpr, EP_NoReduce); 5469 pExpr->pAggInfo = pAggInfo; 5470 pExpr->op = TK_AGG_COLUMN; 5471 pExpr->iAgg = (i16)k; 5472 break; 5473 } /* endif pExpr->iTable==pItem->iCursor */ 5474 } /* end loop over pSrcList */ 5475 } 5476 return WRC_Prune; 5477 } 5478 case TK_AGG_FUNCTION: { 5479 if( (pNC->ncFlags & NC_InAggFunc)==0 5480 && pWalker->walkerDepth==pExpr->op2 5481 ){ 5482 /* Check to see if pExpr is a duplicate of another aggregate 5483 ** function that is already in the pAggInfo structure 5484 */ 5485 struct AggInfo_func *pItem = pAggInfo->aFunc; 5486 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5487 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5488 break; 5489 } 5490 } 5491 if( i>=pAggInfo->nFunc ){ 5492 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5493 */ 5494 u8 enc = ENC(pParse->db); 5495 i = addAggInfoFunc(pParse->db, pAggInfo); 5496 if( i>=0 ){ 5497 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5498 pItem = &pAggInfo->aFunc[i]; 5499 pItem->pExpr = pExpr; 5500 pItem->iMem = ++pParse->nMem; 5501 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5502 pItem->pFunc = sqlite3FindFunction(pParse->db, 5503 pExpr->u.zToken, 5504 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5505 if( pExpr->flags & EP_Distinct ){ 5506 pItem->iDistinct = pParse->nTab++; 5507 }else{ 5508 pItem->iDistinct = -1; 5509 } 5510 } 5511 } 5512 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5513 */ 5514 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5515 ExprSetVVAProperty(pExpr, EP_NoReduce); 5516 pExpr->iAgg = (i16)i; 5517 pExpr->pAggInfo = pAggInfo; 5518 return WRC_Prune; 5519 }else{ 5520 return WRC_Continue; 5521 } 5522 } 5523 } 5524 return WRC_Continue; 5525 } 5526 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5527 UNUSED_PARAMETER(pSelect); 5528 pWalker->walkerDepth++; 5529 return WRC_Continue; 5530 } 5531 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5532 UNUSED_PARAMETER(pSelect); 5533 pWalker->walkerDepth--; 5534 } 5535 5536 /* 5537 ** Analyze the pExpr expression looking for aggregate functions and 5538 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5539 ** points to. Additional entries are made on the AggInfo object as 5540 ** necessary. 5541 ** 5542 ** This routine should only be called after the expression has been 5543 ** analyzed by sqlite3ResolveExprNames(). 5544 */ 5545 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5546 Walker w; 5547 w.xExprCallback = analyzeAggregate; 5548 w.xSelectCallback = analyzeAggregatesInSelect; 5549 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5550 w.walkerDepth = 0; 5551 w.u.pNC = pNC; 5552 w.pParse = 0; 5553 assert( pNC->pSrcList!=0 ); 5554 sqlite3WalkExpr(&w, pExpr); 5555 } 5556 5557 /* 5558 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5559 ** expression list. Return the number of errors. 5560 ** 5561 ** If an error is found, the analysis is cut short. 5562 */ 5563 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5564 struct ExprList_item *pItem; 5565 int i; 5566 if( pList ){ 5567 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5568 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5569 } 5570 } 5571 } 5572 5573 /* 5574 ** Allocate a single new register for use to hold some intermediate result. 5575 */ 5576 int sqlite3GetTempReg(Parse *pParse){ 5577 if( pParse->nTempReg==0 ){ 5578 return ++pParse->nMem; 5579 } 5580 return pParse->aTempReg[--pParse->nTempReg]; 5581 } 5582 5583 /* 5584 ** Deallocate a register, making available for reuse for some other 5585 ** purpose. 5586 */ 5587 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5588 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5589 pParse->aTempReg[pParse->nTempReg++] = iReg; 5590 } 5591 } 5592 5593 /* 5594 ** Allocate or deallocate a block of nReg consecutive registers. 5595 */ 5596 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5597 int i, n; 5598 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5599 i = pParse->iRangeReg; 5600 n = pParse->nRangeReg; 5601 if( nReg<=n ){ 5602 pParse->iRangeReg += nReg; 5603 pParse->nRangeReg -= nReg; 5604 }else{ 5605 i = pParse->nMem+1; 5606 pParse->nMem += nReg; 5607 } 5608 return i; 5609 } 5610 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5611 if( nReg==1 ){ 5612 sqlite3ReleaseTempReg(pParse, iReg); 5613 return; 5614 } 5615 if( nReg>pParse->nRangeReg ){ 5616 pParse->nRangeReg = nReg; 5617 pParse->iRangeReg = iReg; 5618 } 5619 } 5620 5621 /* 5622 ** Mark all temporary registers as being unavailable for reuse. 5623 ** 5624 ** Always invoke this procedure after coding a subroutine or co-routine 5625 ** that might be invoked from other parts of the code, to ensure that 5626 ** the sub/co-routine does not use registers in common with the code that 5627 ** invokes the sub/co-routine. 5628 */ 5629 void sqlite3ClearTempRegCache(Parse *pParse){ 5630 pParse->nTempReg = 0; 5631 pParse->nRangeReg = 0; 5632 } 5633 5634 /* 5635 ** Validate that no temporary register falls within the range of 5636 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5637 ** statements. 5638 */ 5639 #ifdef SQLITE_DEBUG 5640 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5641 int i; 5642 if( pParse->nRangeReg>0 5643 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5644 && pParse->iRangeReg <= iLast 5645 ){ 5646 return 0; 5647 } 5648 for(i=0; i<pParse->nTempReg; i++){ 5649 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5650 return 0; 5651 } 5652 } 5653 return 1; 5654 } 5655 #endif /* SQLITE_DEBUG */ 5656