xref: /sqlite-3.40.0/src/expr.c (revision af94adf0)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
56   }
57   if( op==TK_REGISTER ) op = pExpr->op2;
58 #ifndef SQLITE_OMIT_CAST
59   if( op==TK_CAST ){
60     assert( !ExprHasProperty(pExpr, EP_IntValue) );
61     return sqlite3AffinityType(pExpr->u.zToken, 0);
62   }
63 #endif
64   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
65     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
66   }
67   if( op==TK_SELECT_COLUMN ){
68     assert( pExpr->pLeft->flags&EP_xIsSelect );
69     return sqlite3ExprAffinity(
70         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
71     );
72   }
73   return pExpr->affExpr;
74 }
75 
76 /*
77 ** Set the collating sequence for expression pExpr to be the collating
78 ** sequence named by pToken.   Return a pointer to a new Expr node that
79 ** implements the COLLATE operator.
80 **
81 ** If a memory allocation error occurs, that fact is recorded in pParse->db
82 ** and the pExpr parameter is returned unchanged.
83 */
84 Expr *sqlite3ExprAddCollateToken(
85   Parse *pParse,           /* Parsing context */
86   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
87   const Token *pCollName,  /* Name of collating sequence */
88   int dequote              /* True to dequote pCollName */
89 ){
90   if( pCollName->n>0 ){
91     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
92     if( pNew ){
93       pNew->pLeft = pExpr;
94       pNew->flags |= EP_Collate|EP_Skip;
95       pExpr = pNew;
96     }
97   }
98   return pExpr;
99 }
100 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
101   Token s;
102   assert( zC!=0 );
103   sqlite3TokenInit(&s, (char*)zC);
104   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
105 }
106 
107 /*
108 ** Skip over any TK_COLLATE operators.
109 */
110 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
111   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
112     assert( pExpr->op==TK_COLLATE );
113     pExpr = pExpr->pLeft;
114   }
115   return pExpr;
116 }
117 
118 /*
119 ** Skip over any TK_COLLATE operators and/or any unlikely()
120 ** or likelihood() or likely() functions at the root of an
121 ** expression.
122 */
123 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
124   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
125     if( ExprHasProperty(pExpr, EP_Unlikely) ){
126       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
127       assert( pExpr->x.pList->nExpr>0 );
128       assert( pExpr->op==TK_FUNCTION );
129       pExpr = pExpr->x.pList->a[0].pExpr;
130     }else{
131       assert( pExpr->op==TK_COLLATE );
132       pExpr = pExpr->pLeft;
133     }
134   }
135   return pExpr;
136 }
137 
138 /*
139 ** Return the collation sequence for the expression pExpr. If
140 ** there is no defined collating sequence, return NULL.
141 **
142 ** See also: sqlite3ExprNNCollSeq()
143 **
144 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
145 ** default collation if pExpr has no defined collation.
146 **
147 ** The collating sequence might be determined by a COLLATE operator
148 ** or by the presence of a column with a defined collating sequence.
149 ** COLLATE operators take first precedence.  Left operands take
150 ** precedence over right operands.
151 */
152 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
153   sqlite3 *db = pParse->db;
154   CollSeq *pColl = 0;
155   Expr *p = pExpr;
156   while( p ){
157     int op = p->op;
158     if( op==TK_REGISTER ) op = p->op2;
159     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
160      && p->y.pTab!=0
161     ){
162       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
163       ** a TK_COLUMN but was previously evaluated and cached in a register */
164       int j = p->iColumn;
165       if( j>=0 ){
166         const char *zColl = p->y.pTab->aCol[j].zColl;
167         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
168       }
169       break;
170     }
171     if( op==TK_CAST || op==TK_UPLUS ){
172       p = p->pLeft;
173       continue;
174     }
175     if( op==TK_COLLATE ){
176       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
177       break;
178     }
179     if( p->flags & EP_Collate ){
180       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
181         p = p->pLeft;
182       }else{
183         Expr *pNext  = p->pRight;
184         /* The Expr.x union is never used at the same time as Expr.pRight */
185         assert( p->x.pList==0 || p->pRight==0 );
186         /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
187         ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
188         ** least one EP_Collate. Thus the following two ALWAYS. */
189         if( p->x.pList!=0
190          && !db->mallocFailed
191          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
192         ){
193           int i;
194           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
195             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
196               pNext = p->x.pList->a[i].pExpr;
197               break;
198             }
199           }
200         }
201         p = pNext;
202       }
203     }else{
204       break;
205     }
206   }
207   if( sqlite3CheckCollSeq(pParse, pColl) ){
208     pColl = 0;
209   }
210   return pColl;
211 }
212 
213 /*
214 ** Return the collation sequence for the expression pExpr. If
215 ** there is no defined collating sequence, return a pointer to the
216 ** defautl collation sequence.
217 **
218 ** See also: sqlite3ExprCollSeq()
219 **
220 ** The sqlite3ExprCollSeq() routine works the same except that it
221 ** returns NULL if there is no defined collation.
222 */
223 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
224   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
225   if( p==0 ) p = pParse->db->pDfltColl;
226   assert( p!=0 );
227   return p;
228 }
229 
230 /*
231 ** Return TRUE if the two expressions have equivalent collating sequences.
232 */
233 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
234   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
235   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
236   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
237 }
238 
239 /*
240 ** pExpr is an operand of a comparison operator.  aff2 is the
241 ** type affinity of the other operand.  This routine returns the
242 ** type affinity that should be used for the comparison operator.
243 */
244 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
245   char aff1 = sqlite3ExprAffinity(pExpr);
246   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
247     /* Both sides of the comparison are columns. If one has numeric
248     ** affinity, use that. Otherwise use no affinity.
249     */
250     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
251       return SQLITE_AFF_NUMERIC;
252     }else{
253       return SQLITE_AFF_BLOB;
254     }
255   }else{
256     /* One side is a column, the other is not. Use the columns affinity. */
257     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
258     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
259   }
260 }
261 
262 /*
263 ** pExpr is a comparison operator.  Return the type affinity that should
264 ** be applied to both operands prior to doing the comparison.
265 */
266 static char comparisonAffinity(Expr *pExpr){
267   char aff;
268   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
269           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
270           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
271   assert( pExpr->pLeft );
272   aff = sqlite3ExprAffinity(pExpr->pLeft);
273   if( pExpr->pRight ){
274     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
275   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
276     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
277   }else if( aff==0 ){
278     aff = SQLITE_AFF_BLOB;
279   }
280   return aff;
281 }
282 
283 /*
284 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
285 ** idx_affinity is the affinity of an indexed column. Return true
286 ** if the index with affinity idx_affinity may be used to implement
287 ** the comparison in pExpr.
288 */
289 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
290   char aff = comparisonAffinity(pExpr);
291   if( aff<SQLITE_AFF_TEXT ){
292     return 1;
293   }
294   if( aff==SQLITE_AFF_TEXT ){
295     return idx_affinity==SQLITE_AFF_TEXT;
296   }
297   return sqlite3IsNumericAffinity(idx_affinity);
298 }
299 
300 /*
301 ** Return the P5 value that should be used for a binary comparison
302 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
303 */
304 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
305   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
306   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
307   return aff;
308 }
309 
310 /*
311 ** Return a pointer to the collation sequence that should be used by
312 ** a binary comparison operator comparing pLeft and pRight.
313 **
314 ** If the left hand expression has a collating sequence type, then it is
315 ** used. Otherwise the collation sequence for the right hand expression
316 ** is used, or the default (BINARY) if neither expression has a collating
317 ** type.
318 **
319 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
320 ** it is not considered.
321 */
322 CollSeq *sqlite3BinaryCompareCollSeq(
323   Parse *pParse,
324   Expr *pLeft,
325   Expr *pRight
326 ){
327   CollSeq *pColl;
328   assert( pLeft );
329   if( pLeft->flags & EP_Collate ){
330     pColl = sqlite3ExprCollSeq(pParse, pLeft);
331   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
332     pColl = sqlite3ExprCollSeq(pParse, pRight);
333   }else{
334     pColl = sqlite3ExprCollSeq(pParse, pLeft);
335     if( !pColl ){
336       pColl = sqlite3ExprCollSeq(pParse, pRight);
337     }
338   }
339   return pColl;
340 }
341 
342 /*
343 ** Generate code for a comparison operator.
344 */
345 static int codeCompare(
346   Parse *pParse,    /* The parsing (and code generating) context */
347   Expr *pLeft,      /* The left operand */
348   Expr *pRight,     /* The right operand */
349   int opcode,       /* The comparison opcode */
350   int in1, int in2, /* Register holding operands */
351   int dest,         /* Jump here if true.  */
352   int jumpIfNull    /* If true, jump if either operand is NULL */
353 ){
354   int p5;
355   int addr;
356   CollSeq *p4;
357 
358   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
359   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
360   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
361                            (void*)p4, P4_COLLSEQ);
362   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
363   return addr;
364 }
365 
366 /*
367 ** Return true if expression pExpr is a vector, or false otherwise.
368 **
369 ** A vector is defined as any expression that results in two or more
370 ** columns of result.  Every TK_VECTOR node is an vector because the
371 ** parser will not generate a TK_VECTOR with fewer than two entries.
372 ** But a TK_SELECT might be either a vector or a scalar. It is only
373 ** considered a vector if it has two or more result columns.
374 */
375 int sqlite3ExprIsVector(Expr *pExpr){
376   return sqlite3ExprVectorSize(pExpr)>1;
377 }
378 
379 /*
380 ** If the expression passed as the only argument is of type TK_VECTOR
381 ** return the number of expressions in the vector. Or, if the expression
382 ** is a sub-select, return the number of columns in the sub-select. For
383 ** any other type of expression, return 1.
384 */
385 int sqlite3ExprVectorSize(Expr *pExpr){
386   u8 op = pExpr->op;
387   if( op==TK_REGISTER ) op = pExpr->op2;
388   if( op==TK_VECTOR ){
389     return pExpr->x.pList->nExpr;
390   }else if( op==TK_SELECT ){
391     return pExpr->x.pSelect->pEList->nExpr;
392   }else{
393     return 1;
394   }
395 }
396 
397 /*
398 ** Return a pointer to a subexpression of pVector that is the i-th
399 ** column of the vector (numbered starting with 0).  The caller must
400 ** ensure that i is within range.
401 **
402 ** If pVector is really a scalar (and "scalar" here includes subqueries
403 ** that return a single column!) then return pVector unmodified.
404 **
405 ** pVector retains ownership of the returned subexpression.
406 **
407 ** If the vector is a (SELECT ...) then the expression returned is
408 ** just the expression for the i-th term of the result set, and may
409 ** not be ready for evaluation because the table cursor has not yet
410 ** been positioned.
411 */
412 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
413   assert( i<sqlite3ExprVectorSize(pVector) );
414   if( sqlite3ExprIsVector(pVector) ){
415     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
416     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
417       return pVector->x.pSelect->pEList->a[i].pExpr;
418     }else{
419       return pVector->x.pList->a[i].pExpr;
420     }
421   }
422   return pVector;
423 }
424 
425 /*
426 ** Compute and return a new Expr object which when passed to
427 ** sqlite3ExprCode() will generate all necessary code to compute
428 ** the iField-th column of the vector expression pVector.
429 **
430 ** It is ok for pVector to be a scalar (as long as iField==0).
431 ** In that case, this routine works like sqlite3ExprDup().
432 **
433 ** The caller owns the returned Expr object and is responsible for
434 ** ensuring that the returned value eventually gets freed.
435 **
436 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
437 ** then the returned object will reference pVector and so pVector must remain
438 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
439 ** or a scalar expression, then it can be deleted as soon as this routine
440 ** returns.
441 **
442 ** A trick to cause a TK_SELECT pVector to be deleted together with
443 ** the returned Expr object is to attach the pVector to the pRight field
444 ** of the returned TK_SELECT_COLUMN Expr object.
445 */
446 Expr *sqlite3ExprForVectorField(
447   Parse *pParse,       /* Parsing context */
448   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
449   int iField           /* Which column of the vector to return */
450 ){
451   Expr *pRet;
452   if( pVector->op==TK_SELECT ){
453     assert( pVector->flags & EP_xIsSelect );
454     /* The TK_SELECT_COLUMN Expr node:
455     **
456     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
457     ** pRight:          not used.  But recursively deleted.
458     ** iColumn:         Index of a column in pVector
459     ** iTable:          0 or the number of columns on the LHS of an assignment
460     ** pLeft->iTable:   First in an array of register holding result, or 0
461     **                  if the result is not yet computed.
462     **
463     ** sqlite3ExprDelete() specifically skips the recursive delete of
464     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
465     ** can be attached to pRight to cause this node to take ownership of
466     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
467     ** with the same pLeft pointer to the pVector, but only one of them
468     ** will own the pVector.
469     */
470     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
471     if( pRet ){
472       pRet->iColumn = iField;
473       pRet->pLeft = pVector;
474     }
475     assert( pRet==0 || pRet->iTable==0 );
476   }else{
477     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
478     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
479     sqlite3RenameTokenRemap(pParse, pRet, pVector);
480   }
481   return pRet;
482 }
483 
484 /*
485 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
486 ** it. Return the register in which the result is stored (or, if the
487 ** sub-select returns more than one column, the first in an array
488 ** of registers in which the result is stored).
489 **
490 ** If pExpr is not a TK_SELECT expression, return 0.
491 */
492 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
493   int reg = 0;
494 #ifndef SQLITE_OMIT_SUBQUERY
495   if( pExpr->op==TK_SELECT ){
496     reg = sqlite3CodeSubselect(pParse, pExpr);
497   }
498 #endif
499   return reg;
500 }
501 
502 /*
503 ** Argument pVector points to a vector expression - either a TK_VECTOR
504 ** or TK_SELECT that returns more than one column. This function returns
505 ** the register number of a register that contains the value of
506 ** element iField of the vector.
507 **
508 ** If pVector is a TK_SELECT expression, then code for it must have
509 ** already been generated using the exprCodeSubselect() routine. In this
510 ** case parameter regSelect should be the first in an array of registers
511 ** containing the results of the sub-select.
512 **
513 ** If pVector is of type TK_VECTOR, then code for the requested field
514 ** is generated. In this case (*pRegFree) may be set to the number of
515 ** a temporary register to be freed by the caller before returning.
516 **
517 ** Before returning, output parameter (*ppExpr) is set to point to the
518 ** Expr object corresponding to element iElem of the vector.
519 */
520 static int exprVectorRegister(
521   Parse *pParse,                  /* Parse context */
522   Expr *pVector,                  /* Vector to extract element from */
523   int iField,                     /* Field to extract from pVector */
524   int regSelect,                  /* First in array of registers */
525   Expr **ppExpr,                  /* OUT: Expression element */
526   int *pRegFree                   /* OUT: Temp register to free */
527 ){
528   u8 op = pVector->op;
529   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
530   if( op==TK_REGISTER ){
531     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
532     return pVector->iTable+iField;
533   }
534   if( op==TK_SELECT ){
535     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
536      return regSelect+iField;
537   }
538   *ppExpr = pVector->x.pList->a[iField].pExpr;
539   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
540 }
541 
542 /*
543 ** Expression pExpr is a comparison between two vector values. Compute
544 ** the result of the comparison (1, 0, or NULL) and write that
545 ** result into register dest.
546 **
547 ** The caller must satisfy the following preconditions:
548 **
549 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
550 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
551 **    otherwise:                op==pExpr->op and p5==0
552 */
553 static void codeVectorCompare(
554   Parse *pParse,        /* Code generator context */
555   Expr *pExpr,          /* The comparison operation */
556   int dest,             /* Write results into this register */
557   u8 op,                /* Comparison operator */
558   u8 p5                 /* SQLITE_NULLEQ or zero */
559 ){
560   Vdbe *v = pParse->pVdbe;
561   Expr *pLeft = pExpr->pLeft;
562   Expr *pRight = pExpr->pRight;
563   int nLeft = sqlite3ExprVectorSize(pLeft);
564   int i;
565   int regLeft = 0;
566   int regRight = 0;
567   u8 opx = op;
568   int addrDone = sqlite3VdbeMakeLabel(pParse);
569 
570   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
571     sqlite3ErrorMsg(pParse, "row value misused");
572     return;
573   }
574   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
575        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
576        || pExpr->op==TK_LT || pExpr->op==TK_GT
577        || pExpr->op==TK_LE || pExpr->op==TK_GE
578   );
579   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
580             || (pExpr->op==TK_ISNOT && op==TK_NE) );
581   assert( p5==0 || pExpr->op!=op );
582   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
583 
584   p5 |= SQLITE_STOREP2;
585   if( opx==TK_LE ) opx = TK_LT;
586   if( opx==TK_GE ) opx = TK_GT;
587 
588   regLeft = exprCodeSubselect(pParse, pLeft);
589   regRight = exprCodeSubselect(pParse, pRight);
590 
591   for(i=0; 1 /*Loop exits by "break"*/; i++){
592     int regFree1 = 0, regFree2 = 0;
593     Expr *pL, *pR;
594     int r1, r2;
595     assert( i>=0 && i<nLeft );
596     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
597     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
598     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
599     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
600     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
601     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
602     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
603     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
604     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
605     sqlite3ReleaseTempReg(pParse, regFree1);
606     sqlite3ReleaseTempReg(pParse, regFree2);
607     if( i==nLeft-1 ){
608       break;
609     }
610     if( opx==TK_EQ ){
611       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
612       p5 |= SQLITE_KEEPNULL;
613     }else if( opx==TK_NE ){
614       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
615       p5 |= SQLITE_KEEPNULL;
616     }else{
617       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
618       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
619       VdbeCoverageIf(v, op==TK_LT);
620       VdbeCoverageIf(v, op==TK_GT);
621       VdbeCoverageIf(v, op==TK_LE);
622       VdbeCoverageIf(v, op==TK_GE);
623       if( i==nLeft-2 ) opx = op;
624     }
625   }
626   sqlite3VdbeResolveLabel(v, addrDone);
627 }
628 
629 #if SQLITE_MAX_EXPR_DEPTH>0
630 /*
631 ** Check that argument nHeight is less than or equal to the maximum
632 ** expression depth allowed. If it is not, leave an error message in
633 ** pParse.
634 */
635 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
636   int rc = SQLITE_OK;
637   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
638   if( nHeight>mxHeight ){
639     sqlite3ErrorMsg(pParse,
640        "Expression tree is too large (maximum depth %d)", mxHeight
641     );
642     rc = SQLITE_ERROR;
643   }
644   return rc;
645 }
646 
647 /* The following three functions, heightOfExpr(), heightOfExprList()
648 ** and heightOfSelect(), are used to determine the maximum height
649 ** of any expression tree referenced by the structure passed as the
650 ** first argument.
651 **
652 ** If this maximum height is greater than the current value pointed
653 ** to by pnHeight, the second parameter, then set *pnHeight to that
654 ** value.
655 */
656 static void heightOfExpr(Expr *p, int *pnHeight){
657   if( p ){
658     if( p->nHeight>*pnHeight ){
659       *pnHeight = p->nHeight;
660     }
661   }
662 }
663 static void heightOfExprList(ExprList *p, int *pnHeight){
664   if( p ){
665     int i;
666     for(i=0; i<p->nExpr; i++){
667       heightOfExpr(p->a[i].pExpr, pnHeight);
668     }
669   }
670 }
671 static void heightOfSelect(Select *pSelect, int *pnHeight){
672   Select *p;
673   for(p=pSelect; p; p=p->pPrior){
674     heightOfExpr(p->pWhere, pnHeight);
675     heightOfExpr(p->pHaving, pnHeight);
676     heightOfExpr(p->pLimit, pnHeight);
677     heightOfExprList(p->pEList, pnHeight);
678     heightOfExprList(p->pGroupBy, pnHeight);
679     heightOfExprList(p->pOrderBy, pnHeight);
680   }
681 }
682 
683 /*
684 ** Set the Expr.nHeight variable in the structure passed as an
685 ** argument. An expression with no children, Expr.pList or
686 ** Expr.pSelect member has a height of 1. Any other expression
687 ** has a height equal to the maximum height of any other
688 ** referenced Expr plus one.
689 **
690 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
691 ** if appropriate.
692 */
693 static void exprSetHeight(Expr *p){
694   int nHeight = 0;
695   heightOfExpr(p->pLeft, &nHeight);
696   heightOfExpr(p->pRight, &nHeight);
697   if( ExprHasProperty(p, EP_xIsSelect) ){
698     heightOfSelect(p->x.pSelect, &nHeight);
699   }else if( p->x.pList ){
700     heightOfExprList(p->x.pList, &nHeight);
701     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
702   }
703   p->nHeight = nHeight + 1;
704 }
705 
706 /*
707 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
708 ** the height is greater than the maximum allowed expression depth,
709 ** leave an error in pParse.
710 **
711 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
712 ** Expr.flags.
713 */
714 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
715   if( pParse->nErr ) return;
716   exprSetHeight(p);
717   sqlite3ExprCheckHeight(pParse, p->nHeight);
718 }
719 
720 /*
721 ** Return the maximum height of any expression tree referenced
722 ** by the select statement passed as an argument.
723 */
724 int sqlite3SelectExprHeight(Select *p){
725   int nHeight = 0;
726   heightOfSelect(p, &nHeight);
727   return nHeight;
728 }
729 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
730 /*
731 ** Propagate all EP_Propagate flags from the Expr.x.pList into
732 ** Expr.flags.
733 */
734 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
735   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
736     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
737   }
738 }
739 #define exprSetHeight(y)
740 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
741 
742 /*
743 ** This routine is the core allocator for Expr nodes.
744 **
745 ** Construct a new expression node and return a pointer to it.  Memory
746 ** for this node and for the pToken argument is a single allocation
747 ** obtained from sqlite3DbMalloc().  The calling function
748 ** is responsible for making sure the node eventually gets freed.
749 **
750 ** If dequote is true, then the token (if it exists) is dequoted.
751 ** If dequote is false, no dequoting is performed.  The deQuote
752 ** parameter is ignored if pToken is NULL or if the token does not
753 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
754 ** then the EP_DblQuoted flag is set on the expression node.
755 **
756 ** Special case:  If op==TK_INTEGER and pToken points to a string that
757 ** can be translated into a 32-bit integer, then the token is not
758 ** stored in u.zToken.  Instead, the integer values is written
759 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
760 ** is allocated to hold the integer text and the dequote flag is ignored.
761 */
762 Expr *sqlite3ExprAlloc(
763   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
764   int op,                 /* Expression opcode */
765   const Token *pToken,    /* Token argument.  Might be NULL */
766   int dequote             /* True to dequote */
767 ){
768   Expr *pNew;
769   int nExtra = 0;
770   int iValue = 0;
771 
772   assert( db!=0 );
773   if( pToken ){
774     if( op!=TK_INTEGER || pToken->z==0
775           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
776       nExtra = pToken->n+1;
777       assert( iValue>=0 );
778     }
779   }
780   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
781   if( pNew ){
782     memset(pNew, 0, sizeof(Expr));
783     pNew->op = (u8)op;
784     pNew->iAgg = -1;
785     if( pToken ){
786       if( nExtra==0 ){
787         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
788         pNew->u.iValue = iValue;
789       }else{
790         pNew->u.zToken = (char*)&pNew[1];
791         assert( pToken->z!=0 || pToken->n==0 );
792         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
793         pNew->u.zToken[pToken->n] = 0;
794         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
795           sqlite3DequoteExpr(pNew);
796         }
797       }
798     }
799 #if SQLITE_MAX_EXPR_DEPTH>0
800     pNew->nHeight = 1;
801 #endif
802   }
803   return pNew;
804 }
805 
806 /*
807 ** Allocate a new expression node from a zero-terminated token that has
808 ** already been dequoted.
809 */
810 Expr *sqlite3Expr(
811   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
812   int op,                 /* Expression opcode */
813   const char *zToken      /* Token argument.  Might be NULL */
814 ){
815   Token x;
816   x.z = zToken;
817   x.n = sqlite3Strlen30(zToken);
818   return sqlite3ExprAlloc(db, op, &x, 0);
819 }
820 
821 /*
822 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
823 **
824 ** If pRoot==NULL that means that a memory allocation error has occurred.
825 ** In that case, delete the subtrees pLeft and pRight.
826 */
827 void sqlite3ExprAttachSubtrees(
828   sqlite3 *db,
829   Expr *pRoot,
830   Expr *pLeft,
831   Expr *pRight
832 ){
833   if( pRoot==0 ){
834     assert( db->mallocFailed );
835     sqlite3ExprDelete(db, pLeft);
836     sqlite3ExprDelete(db, pRight);
837   }else{
838     if( pRight ){
839       pRoot->pRight = pRight;
840       pRoot->flags |= EP_Propagate & pRight->flags;
841     }
842     if( pLeft ){
843       pRoot->pLeft = pLeft;
844       pRoot->flags |= EP_Propagate & pLeft->flags;
845     }
846     exprSetHeight(pRoot);
847   }
848 }
849 
850 /*
851 ** Allocate an Expr node which joins as many as two subtrees.
852 **
853 ** One or both of the subtrees can be NULL.  Return a pointer to the new
854 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
855 ** free the subtrees and return NULL.
856 */
857 Expr *sqlite3PExpr(
858   Parse *pParse,          /* Parsing context */
859   int op,                 /* Expression opcode */
860   Expr *pLeft,            /* Left operand */
861   Expr *pRight            /* Right operand */
862 ){
863   Expr *p;
864   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
865   if( p ){
866     memset(p, 0, sizeof(Expr));
867     p->op = op & 0xff;
868     p->iAgg = -1;
869     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
870     sqlite3ExprCheckHeight(pParse, p->nHeight);
871   }else{
872     sqlite3ExprDelete(pParse->db, pLeft);
873     sqlite3ExprDelete(pParse->db, pRight);
874   }
875   return p;
876 }
877 
878 /*
879 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
880 ** do a memory allocation failure) then delete the pSelect object.
881 */
882 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
883   if( pExpr ){
884     pExpr->x.pSelect = pSelect;
885     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
886     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
887   }else{
888     assert( pParse->db->mallocFailed );
889     sqlite3SelectDelete(pParse->db, pSelect);
890   }
891 }
892 
893 
894 /*
895 ** Join two expressions using an AND operator.  If either expression is
896 ** NULL, then just return the other expression.
897 **
898 ** If one side or the other of the AND is known to be false, then instead
899 ** of returning an AND expression, just return a constant expression with
900 ** a value of false.
901 */
902 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
903   sqlite3 *db = pParse->db;
904   if( pLeft==0  ){
905     return pRight;
906   }else if( pRight==0 ){
907     return pLeft;
908   }else if( ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight) ){
909     sqlite3ExprUnmapAndDelete(pParse, pLeft);
910     sqlite3ExprUnmapAndDelete(pParse, pRight);
911     return sqlite3Expr(db, TK_INTEGER, "0");
912   }else{
913     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
914   }
915 }
916 
917 /*
918 ** Construct a new expression node for a function with multiple
919 ** arguments.
920 */
921 Expr *sqlite3ExprFunction(
922   Parse *pParse,        /* Parsing context */
923   ExprList *pList,      /* Argument list */
924   Token *pToken,        /* Name of the function */
925   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
926 ){
927   Expr *pNew;
928   sqlite3 *db = pParse->db;
929   assert( pToken );
930   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
931   if( pNew==0 ){
932     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
933     return 0;
934   }
935   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
936     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
937   }
938   pNew->x.pList = pList;
939   ExprSetProperty(pNew, EP_HasFunc);
940   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
941   sqlite3ExprSetHeightAndFlags(pParse, pNew);
942   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
943   return pNew;
944 }
945 
946 /*
947 ** Assign a variable number to an expression that encodes a wildcard
948 ** in the original SQL statement.
949 **
950 ** Wildcards consisting of a single "?" are assigned the next sequential
951 ** variable number.
952 **
953 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
954 ** sure "nnn" is not too big to avoid a denial of service attack when
955 ** the SQL statement comes from an external source.
956 **
957 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
958 ** as the previous instance of the same wildcard.  Or if this is the first
959 ** instance of the wildcard, the next sequential variable number is
960 ** assigned.
961 */
962 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
963   sqlite3 *db = pParse->db;
964   const char *z;
965   ynVar x;
966 
967   if( pExpr==0 ) return;
968   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
969   z = pExpr->u.zToken;
970   assert( z!=0 );
971   assert( z[0]!=0 );
972   assert( n==(u32)sqlite3Strlen30(z) );
973   if( z[1]==0 ){
974     /* Wildcard of the form "?".  Assign the next variable number */
975     assert( z[0]=='?' );
976     x = (ynVar)(++pParse->nVar);
977   }else{
978     int doAdd = 0;
979     if( z[0]=='?' ){
980       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
981       ** use it as the variable number */
982       i64 i;
983       int bOk;
984       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
985         i = z[1]-'0';  /* The common case of ?N for a single digit N */
986         bOk = 1;
987       }else{
988         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
989       }
990       testcase( i==0 );
991       testcase( i==1 );
992       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
993       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
994       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
995         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
996             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
997         return;
998       }
999       x = (ynVar)i;
1000       if( x>pParse->nVar ){
1001         pParse->nVar = (int)x;
1002         doAdd = 1;
1003       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1004         doAdd = 1;
1005       }
1006     }else{
1007       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1008       ** number as the prior appearance of the same name, or if the name
1009       ** has never appeared before, reuse the same variable number
1010       */
1011       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1012       if( x==0 ){
1013         x = (ynVar)(++pParse->nVar);
1014         doAdd = 1;
1015       }
1016     }
1017     if( doAdd ){
1018       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1019     }
1020   }
1021   pExpr->iColumn = x;
1022   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1023     sqlite3ErrorMsg(pParse, "too many SQL variables");
1024   }
1025 }
1026 
1027 /*
1028 ** Recursively delete an expression tree.
1029 */
1030 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1031   assert( p!=0 );
1032   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1033   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1034 
1035   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1036   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1037           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1038 #ifdef SQLITE_DEBUG
1039   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1040     assert( p->pLeft==0 );
1041     assert( p->pRight==0 );
1042     assert( p->x.pSelect==0 );
1043   }
1044 #endif
1045   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1046     /* The Expr.x union is never used at the same time as Expr.pRight */
1047     assert( p->x.pList==0 || p->pRight==0 );
1048     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1049     if( p->pRight ){
1050       assert( !ExprHasProperty(p, EP_WinFunc) );
1051       sqlite3ExprDeleteNN(db, p->pRight);
1052     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1053       assert( !ExprHasProperty(p, EP_WinFunc) );
1054       sqlite3SelectDelete(db, p->x.pSelect);
1055     }else{
1056       sqlite3ExprListDelete(db, p->x.pList);
1057 #ifndef SQLITE_OMIT_WINDOWFUNC
1058       if( ExprHasProperty(p, EP_WinFunc) ){
1059         sqlite3WindowDelete(db, p->y.pWin);
1060       }
1061 #endif
1062     }
1063   }
1064   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1065   if( !ExprHasProperty(p, EP_Static) ){
1066     sqlite3DbFreeNN(db, p);
1067   }
1068 }
1069 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1070   if( p ) sqlite3ExprDeleteNN(db, p);
1071 }
1072 
1073 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1074 ** expression.
1075 */
1076 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1077   if( p ){
1078     if( IN_RENAME_OBJECT ){
1079       sqlite3RenameExprUnmap(pParse, p);
1080     }
1081     sqlite3ExprDeleteNN(pParse->db, p);
1082   }
1083 }
1084 
1085 /*
1086 ** Return the number of bytes allocated for the expression structure
1087 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1088 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1089 */
1090 static int exprStructSize(Expr *p){
1091   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1092   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1093   return EXPR_FULLSIZE;
1094 }
1095 
1096 /*
1097 ** The dupedExpr*Size() routines each return the number of bytes required
1098 ** to store a copy of an expression or expression tree.  They differ in
1099 ** how much of the tree is measured.
1100 **
1101 **     dupedExprStructSize()     Size of only the Expr structure
1102 **     dupedExprNodeSize()       Size of Expr + space for token
1103 **     dupedExprSize()           Expr + token + subtree components
1104 **
1105 ***************************************************************************
1106 **
1107 ** The dupedExprStructSize() function returns two values OR-ed together:
1108 ** (1) the space required for a copy of the Expr structure only and
1109 ** (2) the EP_xxx flags that indicate what the structure size should be.
1110 ** The return values is always one of:
1111 **
1112 **      EXPR_FULLSIZE
1113 **      EXPR_REDUCEDSIZE   | EP_Reduced
1114 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1115 **
1116 ** The size of the structure can be found by masking the return value
1117 ** of this routine with 0xfff.  The flags can be found by masking the
1118 ** return value with EP_Reduced|EP_TokenOnly.
1119 **
1120 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1121 ** (unreduced) Expr objects as they or originally constructed by the parser.
1122 ** During expression analysis, extra information is computed and moved into
1123 ** later parts of the Expr object and that extra information might get chopped
1124 ** off if the expression is reduced.  Note also that it does not work to
1125 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1126 ** to reduce a pristine expression tree from the parser.  The implementation
1127 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1128 ** to enforce this constraint.
1129 */
1130 static int dupedExprStructSize(Expr *p, int flags){
1131   int nSize;
1132   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1133   assert( EXPR_FULLSIZE<=0xfff );
1134   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1135   if( 0==flags || p->op==TK_SELECT_COLUMN
1136 #ifndef SQLITE_OMIT_WINDOWFUNC
1137    || ExprHasProperty(p, EP_WinFunc)
1138 #endif
1139   ){
1140     nSize = EXPR_FULLSIZE;
1141   }else{
1142     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1143     assert( !ExprHasProperty(p, EP_FromJoin) );
1144     assert( !ExprHasProperty(p, EP_MemToken) );
1145     assert( !ExprHasProperty(p, EP_NoReduce) );
1146     if( p->pLeft || p->x.pList ){
1147       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1148     }else{
1149       assert( p->pRight==0 );
1150       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1151     }
1152   }
1153   return nSize;
1154 }
1155 
1156 /*
1157 ** This function returns the space in bytes required to store the copy
1158 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1159 ** string is defined.)
1160 */
1161 static int dupedExprNodeSize(Expr *p, int flags){
1162   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1163   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1164     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1165   }
1166   return ROUND8(nByte);
1167 }
1168 
1169 /*
1170 ** Return the number of bytes required to create a duplicate of the
1171 ** expression passed as the first argument. The second argument is a
1172 ** mask containing EXPRDUP_XXX flags.
1173 **
1174 ** The value returned includes space to create a copy of the Expr struct
1175 ** itself and the buffer referred to by Expr.u.zToken, if any.
1176 **
1177 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1178 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1179 ** and Expr.pRight variables (but not for any structures pointed to or
1180 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1181 */
1182 static int dupedExprSize(Expr *p, int flags){
1183   int nByte = 0;
1184   if( p ){
1185     nByte = dupedExprNodeSize(p, flags);
1186     if( flags&EXPRDUP_REDUCE ){
1187       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1188     }
1189   }
1190   return nByte;
1191 }
1192 
1193 /*
1194 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1195 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1196 ** to store the copy of expression p, the copies of p->u.zToken
1197 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1198 ** if any. Before returning, *pzBuffer is set to the first byte past the
1199 ** portion of the buffer copied into by this function.
1200 */
1201 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1202   Expr *pNew;           /* Value to return */
1203   u8 *zAlloc;           /* Memory space from which to build Expr object */
1204   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1205 
1206   assert( db!=0 );
1207   assert( p );
1208   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1209   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1210 
1211   /* Figure out where to write the new Expr structure. */
1212   if( pzBuffer ){
1213     zAlloc = *pzBuffer;
1214     staticFlag = EP_Static;
1215   }else{
1216     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1217     staticFlag = 0;
1218   }
1219   pNew = (Expr *)zAlloc;
1220 
1221   if( pNew ){
1222     /* Set nNewSize to the size allocated for the structure pointed to
1223     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1224     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1225     ** by the copy of the p->u.zToken string (if any).
1226     */
1227     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1228     const int nNewSize = nStructSize & 0xfff;
1229     int nToken;
1230     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1231       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1232     }else{
1233       nToken = 0;
1234     }
1235     if( dupFlags ){
1236       assert( ExprHasProperty(p, EP_Reduced)==0 );
1237       memcpy(zAlloc, p, nNewSize);
1238     }else{
1239       u32 nSize = (u32)exprStructSize(p);
1240       memcpy(zAlloc, p, nSize);
1241       if( nSize<EXPR_FULLSIZE ){
1242         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1243       }
1244     }
1245 
1246     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1247     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1248     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1249     pNew->flags |= staticFlag;
1250 
1251     /* Copy the p->u.zToken string, if any. */
1252     if( nToken ){
1253       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1254       memcpy(zToken, p->u.zToken, nToken);
1255     }
1256 
1257     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1258       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1259       if( ExprHasProperty(p, EP_xIsSelect) ){
1260         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1261       }else{
1262         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1263       }
1264     }
1265 
1266     /* Fill in pNew->pLeft and pNew->pRight. */
1267     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1268       zAlloc += dupedExprNodeSize(p, dupFlags);
1269       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1270         pNew->pLeft = p->pLeft ?
1271                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1272         pNew->pRight = p->pRight ?
1273                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1274       }
1275 #ifndef SQLITE_OMIT_WINDOWFUNC
1276       if( ExprHasProperty(p, EP_WinFunc) ){
1277         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1278         assert( ExprHasProperty(pNew, EP_WinFunc) );
1279       }
1280 #endif /* SQLITE_OMIT_WINDOWFUNC */
1281       if( pzBuffer ){
1282         *pzBuffer = zAlloc;
1283       }
1284     }else{
1285       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1286         if( pNew->op==TK_SELECT_COLUMN ){
1287           pNew->pLeft = p->pLeft;
1288           assert( p->iColumn==0 || p->pRight==0 );
1289           assert( p->pRight==0  || p->pRight==p->pLeft );
1290         }else{
1291           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1292         }
1293         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1294       }
1295     }
1296   }
1297   return pNew;
1298 }
1299 
1300 /*
1301 ** Create and return a deep copy of the object passed as the second
1302 ** argument. If an OOM condition is encountered, NULL is returned
1303 ** and the db->mallocFailed flag set.
1304 */
1305 #ifndef SQLITE_OMIT_CTE
1306 static With *withDup(sqlite3 *db, With *p){
1307   With *pRet = 0;
1308   if( p ){
1309     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1310     pRet = sqlite3DbMallocZero(db, nByte);
1311     if( pRet ){
1312       int i;
1313       pRet->nCte = p->nCte;
1314       for(i=0; i<p->nCte; i++){
1315         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1316         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1317         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1318       }
1319     }
1320   }
1321   return pRet;
1322 }
1323 #else
1324 # define withDup(x,y) 0
1325 #endif
1326 
1327 #ifndef SQLITE_OMIT_WINDOWFUNC
1328 /*
1329 ** The gatherSelectWindows() procedure and its helper routine
1330 ** gatherSelectWindowsCallback() are used to scan all the expressions
1331 ** an a newly duplicated SELECT statement and gather all of the Window
1332 ** objects found there, assembling them onto the linked list at Select->pWin.
1333 */
1334 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1335   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1336     Select *pSelect = pWalker->u.pSelect;
1337     Window *pWin = pExpr->y.pWin;
1338     assert( pWin );
1339     assert( IsWindowFunc(pExpr) );
1340     assert( pWin->ppThis==0 );
1341     sqlite3WindowLink(pSelect, pWin);
1342   }
1343   return WRC_Continue;
1344 }
1345 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1346   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1347 }
1348 static void gatherSelectWindows(Select *p){
1349   Walker w;
1350   w.xExprCallback = gatherSelectWindowsCallback;
1351   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1352   w.xSelectCallback2 = 0;
1353   w.pParse = 0;
1354   w.u.pSelect = p;
1355   sqlite3WalkSelect(&w, p);
1356 }
1357 #endif
1358 
1359 
1360 /*
1361 ** The following group of routines make deep copies of expressions,
1362 ** expression lists, ID lists, and select statements.  The copies can
1363 ** be deleted (by being passed to their respective ...Delete() routines)
1364 ** without effecting the originals.
1365 **
1366 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1367 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1368 ** by subsequent calls to sqlite*ListAppend() routines.
1369 **
1370 ** Any tables that the SrcList might point to are not duplicated.
1371 **
1372 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1373 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1374 ** truncated version of the usual Expr structure that will be stored as
1375 ** part of the in-memory representation of the database schema.
1376 */
1377 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1378   assert( flags==0 || flags==EXPRDUP_REDUCE );
1379   return p ? exprDup(db, p, flags, 0) : 0;
1380 }
1381 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1382   ExprList *pNew;
1383   struct ExprList_item *pItem, *pOldItem;
1384   int i;
1385   Expr *pPriorSelectCol = 0;
1386   assert( db!=0 );
1387   if( p==0 ) return 0;
1388   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1389   if( pNew==0 ) return 0;
1390   pNew->nExpr = p->nExpr;
1391   pItem = pNew->a;
1392   pOldItem = p->a;
1393   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1394     Expr *pOldExpr = pOldItem->pExpr;
1395     Expr *pNewExpr;
1396     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1397     if( pOldExpr
1398      && pOldExpr->op==TK_SELECT_COLUMN
1399      && (pNewExpr = pItem->pExpr)!=0
1400     ){
1401       assert( pNewExpr->iColumn==0 || i>0 );
1402       if( pNewExpr->iColumn==0 ){
1403         assert( pOldExpr->pLeft==pOldExpr->pRight );
1404         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1405       }else{
1406         assert( i>0 );
1407         assert( pItem[-1].pExpr!=0 );
1408         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1409         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1410         pNewExpr->pLeft = pPriorSelectCol;
1411       }
1412     }
1413     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1414     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1415     pItem->sortFlags = pOldItem->sortFlags;
1416     pItem->done = 0;
1417     pItem->bNulls = pOldItem->bNulls;
1418     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1419     pItem->bSorterRef = pOldItem->bSorterRef;
1420     pItem->u = pOldItem->u;
1421   }
1422   return pNew;
1423 }
1424 
1425 /*
1426 ** If cursors, triggers, views and subqueries are all omitted from
1427 ** the build, then none of the following routines, except for
1428 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1429 ** called with a NULL argument.
1430 */
1431 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1432  || !defined(SQLITE_OMIT_SUBQUERY)
1433 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1434   SrcList *pNew;
1435   int i;
1436   int nByte;
1437   assert( db!=0 );
1438   if( p==0 ) return 0;
1439   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1440   pNew = sqlite3DbMallocRawNN(db, nByte );
1441   if( pNew==0 ) return 0;
1442   pNew->nSrc = pNew->nAlloc = p->nSrc;
1443   for(i=0; i<p->nSrc; i++){
1444     struct SrcList_item *pNewItem = &pNew->a[i];
1445     struct SrcList_item *pOldItem = &p->a[i];
1446     Table *pTab;
1447     pNewItem->pSchema = pOldItem->pSchema;
1448     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1449     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1450     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1451     pNewItem->fg = pOldItem->fg;
1452     pNewItem->iCursor = pOldItem->iCursor;
1453     pNewItem->addrFillSub = pOldItem->addrFillSub;
1454     pNewItem->regReturn = pOldItem->regReturn;
1455     if( pNewItem->fg.isIndexedBy ){
1456       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1457     }
1458     pNewItem->pIBIndex = pOldItem->pIBIndex;
1459     if( pNewItem->fg.isTabFunc ){
1460       pNewItem->u1.pFuncArg =
1461           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1462     }
1463     pTab = pNewItem->pTab = pOldItem->pTab;
1464     if( pTab ){
1465       pTab->nTabRef++;
1466     }
1467     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1468     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1469     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1470     pNewItem->colUsed = pOldItem->colUsed;
1471   }
1472   return pNew;
1473 }
1474 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1475   IdList *pNew;
1476   int i;
1477   assert( db!=0 );
1478   if( p==0 ) return 0;
1479   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1480   if( pNew==0 ) return 0;
1481   pNew->nId = p->nId;
1482   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1483   if( pNew->a==0 ){
1484     sqlite3DbFreeNN(db, pNew);
1485     return 0;
1486   }
1487   /* Note that because the size of the allocation for p->a[] is not
1488   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1489   ** on the duplicate created by this function. */
1490   for(i=0; i<p->nId; i++){
1491     struct IdList_item *pNewItem = &pNew->a[i];
1492     struct IdList_item *pOldItem = &p->a[i];
1493     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1494     pNewItem->idx = pOldItem->idx;
1495   }
1496   return pNew;
1497 }
1498 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1499   Select *pRet = 0;
1500   Select *pNext = 0;
1501   Select **pp = &pRet;
1502   Select *p;
1503 
1504   assert( db!=0 );
1505   for(p=pDup; p; p=p->pPrior){
1506     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1507     if( pNew==0 ) break;
1508     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1509     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1510     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1511     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1512     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1513     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1514     pNew->op = p->op;
1515     pNew->pNext = pNext;
1516     pNew->pPrior = 0;
1517     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1518     pNew->iLimit = 0;
1519     pNew->iOffset = 0;
1520     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1521     pNew->addrOpenEphm[0] = -1;
1522     pNew->addrOpenEphm[1] = -1;
1523     pNew->nSelectRow = p->nSelectRow;
1524     pNew->pWith = withDup(db, p->pWith);
1525 #ifndef SQLITE_OMIT_WINDOWFUNC
1526     pNew->pWin = 0;
1527     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1528     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1529 #endif
1530     pNew->selId = p->selId;
1531     *pp = pNew;
1532     pp = &pNew->pPrior;
1533     pNext = pNew;
1534   }
1535 
1536   return pRet;
1537 }
1538 #else
1539 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1540   assert( p==0 );
1541   return 0;
1542 }
1543 #endif
1544 
1545 
1546 /*
1547 ** Add a new element to the end of an expression list.  If pList is
1548 ** initially NULL, then create a new expression list.
1549 **
1550 ** The pList argument must be either NULL or a pointer to an ExprList
1551 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1552 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1553 ** Reason:  This routine assumes that the number of slots in pList->a[]
1554 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1555 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1556 **
1557 ** If a memory allocation error occurs, the entire list is freed and
1558 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1559 ** that the new entry was successfully appended.
1560 */
1561 ExprList *sqlite3ExprListAppend(
1562   Parse *pParse,          /* Parsing context */
1563   ExprList *pList,        /* List to which to append. Might be NULL */
1564   Expr *pExpr             /* Expression to be appended. Might be NULL */
1565 ){
1566   struct ExprList_item *pItem;
1567   sqlite3 *db = pParse->db;
1568   assert( db!=0 );
1569   if( pList==0 ){
1570     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1571     if( pList==0 ){
1572       goto no_mem;
1573     }
1574     pList->nExpr = 0;
1575   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1576     ExprList *pNew;
1577     pNew = sqlite3DbRealloc(db, pList,
1578          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1579     if( pNew==0 ){
1580       goto no_mem;
1581     }
1582     pList = pNew;
1583   }
1584   pItem = &pList->a[pList->nExpr++];
1585   assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1586   assert( offsetof(struct ExprList_item,pExpr)==0 );
1587   memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1588   pItem->pExpr = pExpr;
1589   return pList;
1590 
1591 no_mem:
1592   /* Avoid leaking memory if malloc has failed. */
1593   sqlite3ExprDelete(db, pExpr);
1594   sqlite3ExprListDelete(db, pList);
1595   return 0;
1596 }
1597 
1598 /*
1599 ** pColumns and pExpr form a vector assignment which is part of the SET
1600 ** clause of an UPDATE statement.  Like this:
1601 **
1602 **        (a,b,c) = (expr1,expr2,expr3)
1603 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1604 **
1605 ** For each term of the vector assignment, append new entries to the
1606 ** expression list pList.  In the case of a subquery on the RHS, append
1607 ** TK_SELECT_COLUMN expressions.
1608 */
1609 ExprList *sqlite3ExprListAppendVector(
1610   Parse *pParse,         /* Parsing context */
1611   ExprList *pList,       /* List to which to append. Might be NULL */
1612   IdList *pColumns,      /* List of names of LHS of the assignment */
1613   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1614 ){
1615   sqlite3 *db = pParse->db;
1616   int n;
1617   int i;
1618   int iFirst = pList ? pList->nExpr : 0;
1619   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1620   ** exit prior to this routine being invoked */
1621   if( NEVER(pColumns==0) ) goto vector_append_error;
1622   if( pExpr==0 ) goto vector_append_error;
1623 
1624   /* If the RHS is a vector, then we can immediately check to see that
1625   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1626   ** wildcards ("*") in the result set of the SELECT must be expanded before
1627   ** we can do the size check, so defer the size check until code generation.
1628   */
1629   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1630     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1631                     pColumns->nId, n);
1632     goto vector_append_error;
1633   }
1634 
1635   for(i=0; i<pColumns->nId; i++){
1636     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1637     assert( pSubExpr!=0 || db->mallocFailed );
1638     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1639     if( pSubExpr==0 ) continue;
1640     pSubExpr->iTable = pColumns->nId;
1641     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1642     if( pList ){
1643       assert( pList->nExpr==iFirst+i+1 );
1644       pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1645       pColumns->a[i].zName = 0;
1646     }
1647   }
1648 
1649   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1650     Expr *pFirst = pList->a[iFirst].pExpr;
1651     assert( pFirst!=0 );
1652     assert( pFirst->op==TK_SELECT_COLUMN );
1653 
1654     /* Store the SELECT statement in pRight so it will be deleted when
1655     ** sqlite3ExprListDelete() is called */
1656     pFirst->pRight = pExpr;
1657     pExpr = 0;
1658 
1659     /* Remember the size of the LHS in iTable so that we can check that
1660     ** the RHS and LHS sizes match during code generation. */
1661     pFirst->iTable = pColumns->nId;
1662   }
1663 
1664 vector_append_error:
1665   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1666   sqlite3IdListDelete(db, pColumns);
1667   return pList;
1668 }
1669 
1670 /*
1671 ** Set the sort order for the last element on the given ExprList.
1672 */
1673 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1674   struct ExprList_item *pItem;
1675   if( p==0 ) return;
1676   assert( p->nExpr>0 );
1677 
1678   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1679   assert( iSortOrder==SQLITE_SO_UNDEFINED
1680        || iSortOrder==SQLITE_SO_ASC
1681        || iSortOrder==SQLITE_SO_DESC
1682   );
1683   assert( eNulls==SQLITE_SO_UNDEFINED
1684        || eNulls==SQLITE_SO_ASC
1685        || eNulls==SQLITE_SO_DESC
1686   );
1687 
1688   pItem = &p->a[p->nExpr-1];
1689   assert( pItem->bNulls==0 );
1690   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1691     iSortOrder = SQLITE_SO_ASC;
1692   }
1693   pItem->sortFlags = (u8)iSortOrder;
1694 
1695   if( eNulls!=SQLITE_SO_UNDEFINED ){
1696     pItem->bNulls = 1;
1697     if( iSortOrder!=eNulls ){
1698       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1699     }
1700   }
1701 }
1702 
1703 /*
1704 ** Set the ExprList.a[].zName element of the most recently added item
1705 ** on the expression list.
1706 **
1707 ** pList might be NULL following an OOM error.  But pName should never be
1708 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1709 ** is set.
1710 */
1711 void sqlite3ExprListSetName(
1712   Parse *pParse,          /* Parsing context */
1713   ExprList *pList,        /* List to which to add the span. */
1714   Token *pName,           /* Name to be added */
1715   int dequote             /* True to cause the name to be dequoted */
1716 ){
1717   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1718   if( pList ){
1719     struct ExprList_item *pItem;
1720     assert( pList->nExpr>0 );
1721     pItem = &pList->a[pList->nExpr-1];
1722     assert( pItem->zName==0 );
1723     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1724     if( dequote ) sqlite3Dequote(pItem->zName);
1725     if( IN_RENAME_OBJECT ){
1726       sqlite3RenameTokenMap(pParse, (void*)pItem->zName, pName);
1727     }
1728   }
1729 }
1730 
1731 /*
1732 ** Set the ExprList.a[].zSpan element of the most recently added item
1733 ** on the expression list.
1734 **
1735 ** pList might be NULL following an OOM error.  But pSpan should never be
1736 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1737 ** is set.
1738 */
1739 void sqlite3ExprListSetSpan(
1740   Parse *pParse,          /* Parsing context */
1741   ExprList *pList,        /* List to which to add the span. */
1742   const char *zStart,     /* Start of the span */
1743   const char *zEnd        /* End of the span */
1744 ){
1745   sqlite3 *db = pParse->db;
1746   assert( pList!=0 || db->mallocFailed!=0 );
1747   if( pList ){
1748     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1749     assert( pList->nExpr>0 );
1750     sqlite3DbFree(db, pItem->zSpan);
1751     pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1752   }
1753 }
1754 
1755 /*
1756 ** If the expression list pEList contains more than iLimit elements,
1757 ** leave an error message in pParse.
1758 */
1759 void sqlite3ExprListCheckLength(
1760   Parse *pParse,
1761   ExprList *pEList,
1762   const char *zObject
1763 ){
1764   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1765   testcase( pEList && pEList->nExpr==mx );
1766   testcase( pEList && pEList->nExpr==mx+1 );
1767   if( pEList && pEList->nExpr>mx ){
1768     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1769   }
1770 }
1771 
1772 /*
1773 ** Delete an entire expression list.
1774 */
1775 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1776   int i = pList->nExpr;
1777   struct ExprList_item *pItem =  pList->a;
1778   assert( pList->nExpr>0 );
1779   do{
1780     sqlite3ExprDelete(db, pItem->pExpr);
1781     sqlite3DbFree(db, pItem->zName);
1782     sqlite3DbFree(db, pItem->zSpan);
1783     pItem++;
1784   }while( --i>0 );
1785   sqlite3DbFreeNN(db, pList);
1786 }
1787 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1788   if( pList ) exprListDeleteNN(db, pList);
1789 }
1790 
1791 /*
1792 ** Return the bitwise-OR of all Expr.flags fields in the given
1793 ** ExprList.
1794 */
1795 u32 sqlite3ExprListFlags(const ExprList *pList){
1796   int i;
1797   u32 m = 0;
1798   assert( pList!=0 );
1799   for(i=0; i<pList->nExpr; i++){
1800      Expr *pExpr = pList->a[i].pExpr;
1801      assert( pExpr!=0 );
1802      m |= pExpr->flags;
1803   }
1804   return m;
1805 }
1806 
1807 /*
1808 ** This is a SELECT-node callback for the expression walker that
1809 ** always "fails".  By "fail" in this case, we mean set
1810 ** pWalker->eCode to zero and abort.
1811 **
1812 ** This callback is used by multiple expression walkers.
1813 */
1814 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1815   UNUSED_PARAMETER(NotUsed);
1816   pWalker->eCode = 0;
1817   return WRC_Abort;
1818 }
1819 
1820 /*
1821 ** If the input expression is an ID with the name "true" or "false"
1822 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1823 ** the conversion happened, and zero if the expression is unaltered.
1824 */
1825 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1826   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1827   if( !ExprHasProperty(pExpr, EP_Quoted)
1828    && (sqlite3StrICmp(pExpr->u.zToken, "true")==0
1829        || sqlite3StrICmp(pExpr->u.zToken, "false")==0)
1830   ){
1831     pExpr->op = TK_TRUEFALSE;
1832     ExprSetProperty(pExpr, pExpr->u.zToken[4]==0 ? EP_IsTrue : EP_IsFalse);
1833     return 1;
1834   }
1835   return 0;
1836 }
1837 
1838 /*
1839 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1840 ** and 0 if it is FALSE.
1841 */
1842 int sqlite3ExprTruthValue(const Expr *pExpr){
1843   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1844   assert( pExpr->op==TK_TRUEFALSE );
1845   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1846        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1847   return pExpr->u.zToken[4]==0;
1848 }
1849 
1850 /*
1851 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1852 ** terms that are always true or false.  Return the simplified expression.
1853 ** Or return the original expression if no simplification is possible.
1854 **
1855 ** Examples:
1856 **
1857 **     (x<10) AND true                =>   (x<10)
1858 **     (x<10) AND false               =>   false
1859 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1860 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1861 **     (y=22) OR true                 =>   true
1862 */
1863 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1864   assert( pExpr!=0 );
1865   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1866     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1867     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1868     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1869       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1870     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1871       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1872     }
1873   }
1874   return pExpr;
1875 }
1876 
1877 
1878 /*
1879 ** These routines are Walker callbacks used to check expressions to
1880 ** see if they are "constant" for some definition of constant.  The
1881 ** Walker.eCode value determines the type of "constant" we are looking
1882 ** for.
1883 **
1884 ** These callback routines are used to implement the following:
1885 **
1886 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1887 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1888 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1889 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1890 **
1891 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1892 ** is found to not be a constant.
1893 **
1894 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1895 ** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
1896 ** an existing schema and 4 when processing a new statement.  A bound
1897 ** parameter raises an error for new statements, but is silently converted
1898 ** to NULL for existing schemas.  This allows sqlite_master tables that
1899 ** contain a bound parameter because they were generated by older versions
1900 ** of SQLite to be parsed by newer versions of SQLite without raising a
1901 ** malformed schema error.
1902 */
1903 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1904 
1905   /* If pWalker->eCode is 2 then any term of the expression that comes from
1906   ** the ON or USING clauses of a left join disqualifies the expression
1907   ** from being considered constant. */
1908   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1909     pWalker->eCode = 0;
1910     return WRC_Abort;
1911   }
1912 
1913   switch( pExpr->op ){
1914     /* Consider functions to be constant if all their arguments are constant
1915     ** and either pWalker->eCode==4 or 5 or the function has the
1916     ** SQLITE_FUNC_CONST flag. */
1917     case TK_FUNCTION:
1918       if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1919         return WRC_Continue;
1920       }else{
1921         pWalker->eCode = 0;
1922         return WRC_Abort;
1923       }
1924     case TK_ID:
1925       /* Convert "true" or "false" in a DEFAULT clause into the
1926       ** appropriate TK_TRUEFALSE operator */
1927       if( sqlite3ExprIdToTrueFalse(pExpr) ){
1928         return WRC_Prune;
1929       }
1930       /* Fall thru */
1931     case TK_COLUMN:
1932     case TK_AGG_FUNCTION:
1933     case TK_AGG_COLUMN:
1934       testcase( pExpr->op==TK_ID );
1935       testcase( pExpr->op==TK_COLUMN );
1936       testcase( pExpr->op==TK_AGG_FUNCTION );
1937       testcase( pExpr->op==TK_AGG_COLUMN );
1938       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
1939         return WRC_Continue;
1940       }
1941       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1942         return WRC_Continue;
1943       }
1944       /* Fall through */
1945     case TK_IF_NULL_ROW:
1946     case TK_REGISTER:
1947       testcase( pExpr->op==TK_REGISTER );
1948       testcase( pExpr->op==TK_IF_NULL_ROW );
1949       pWalker->eCode = 0;
1950       return WRC_Abort;
1951     case TK_VARIABLE:
1952       if( pWalker->eCode==5 ){
1953         /* Silently convert bound parameters that appear inside of CREATE
1954         ** statements into a NULL when parsing the CREATE statement text out
1955         ** of the sqlite_master table */
1956         pExpr->op = TK_NULL;
1957       }else if( pWalker->eCode==4 ){
1958         /* A bound parameter in a CREATE statement that originates from
1959         ** sqlite3_prepare() causes an error */
1960         pWalker->eCode = 0;
1961         return WRC_Abort;
1962       }
1963       /* Fall through */
1964     default:
1965       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1966       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1967       return WRC_Continue;
1968   }
1969 }
1970 static int exprIsConst(Expr *p, int initFlag, int iCur){
1971   Walker w;
1972   w.eCode = initFlag;
1973   w.xExprCallback = exprNodeIsConstant;
1974   w.xSelectCallback = sqlite3SelectWalkFail;
1975 #ifdef SQLITE_DEBUG
1976   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1977 #endif
1978   w.u.iCur = iCur;
1979   sqlite3WalkExpr(&w, p);
1980   return w.eCode;
1981 }
1982 
1983 /*
1984 ** Walk an expression tree.  Return non-zero if the expression is constant
1985 ** and 0 if it involves variables or function calls.
1986 **
1987 ** For the purposes of this function, a double-quoted string (ex: "abc")
1988 ** is considered a variable but a single-quoted string (ex: 'abc') is
1989 ** a constant.
1990 */
1991 int sqlite3ExprIsConstant(Expr *p){
1992   return exprIsConst(p, 1, 0);
1993 }
1994 
1995 /*
1996 ** Walk an expression tree.  Return non-zero if
1997 **
1998 **   (1) the expression is constant, and
1999 **   (2) the expression does originate in the ON or USING clause
2000 **       of a LEFT JOIN, and
2001 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2002 **       operands created by the constant propagation optimization.
2003 **
2004 ** When this routine returns true, it indicates that the expression
2005 ** can be added to the pParse->pConstExpr list and evaluated once when
2006 ** the prepared statement starts up.  See sqlite3ExprCodeAtInit().
2007 */
2008 int sqlite3ExprIsConstantNotJoin(Expr *p){
2009   return exprIsConst(p, 2, 0);
2010 }
2011 
2012 /*
2013 ** Walk an expression tree.  Return non-zero if the expression is constant
2014 ** for any single row of the table with cursor iCur.  In other words, the
2015 ** expression must not refer to any non-deterministic function nor any
2016 ** table other than iCur.
2017 */
2018 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2019   return exprIsConst(p, 3, iCur);
2020 }
2021 
2022 
2023 /*
2024 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2025 */
2026 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2027   ExprList *pGroupBy = pWalker->u.pGroupBy;
2028   int i;
2029 
2030   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2031   ** it constant.  */
2032   for(i=0; i<pGroupBy->nExpr; i++){
2033     Expr *p = pGroupBy->a[i].pExpr;
2034     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2035       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2036       if( sqlite3IsBinary(pColl) ){
2037         return WRC_Prune;
2038       }
2039     }
2040   }
2041 
2042   /* Check if pExpr is a sub-select. If so, consider it variable. */
2043   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2044     pWalker->eCode = 0;
2045     return WRC_Abort;
2046   }
2047 
2048   return exprNodeIsConstant(pWalker, pExpr);
2049 }
2050 
2051 /*
2052 ** Walk the expression tree passed as the first argument. Return non-zero
2053 ** if the expression consists entirely of constants or copies of terms
2054 ** in pGroupBy that sort with the BINARY collation sequence.
2055 **
2056 ** This routine is used to determine if a term of the HAVING clause can
2057 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2058 ** the value of the HAVING clause term must be the same for all members of
2059 ** a "group".  The requirement that the GROUP BY term must be BINARY
2060 ** assumes that no other collating sequence will have a finer-grained
2061 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2062 ** A=B in every other collating sequence.  The requirement that the
2063 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2064 ** to promote HAVING clauses that use the same alternative collating
2065 ** sequence as the GROUP BY term, but that is much harder to check,
2066 ** alternative collating sequences are uncommon, and this is only an
2067 ** optimization, so we take the easy way out and simply require the
2068 ** GROUP BY to use the BINARY collating sequence.
2069 */
2070 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2071   Walker w;
2072   w.eCode = 1;
2073   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2074   w.xSelectCallback = 0;
2075   w.u.pGroupBy = pGroupBy;
2076   w.pParse = pParse;
2077   sqlite3WalkExpr(&w, p);
2078   return w.eCode;
2079 }
2080 
2081 /*
2082 ** Walk an expression tree.  Return non-zero if the expression is constant
2083 ** or a function call with constant arguments.  Return and 0 if there
2084 ** are any variables.
2085 **
2086 ** For the purposes of this function, a double-quoted string (ex: "abc")
2087 ** is considered a variable but a single-quoted string (ex: 'abc') is
2088 ** a constant.
2089 */
2090 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2091   assert( isInit==0 || isInit==1 );
2092   return exprIsConst(p, 4+isInit, 0);
2093 }
2094 
2095 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2096 /*
2097 ** Walk an expression tree.  Return 1 if the expression contains a
2098 ** subquery of some kind.  Return 0 if there are no subqueries.
2099 */
2100 int sqlite3ExprContainsSubquery(Expr *p){
2101   Walker w;
2102   w.eCode = 1;
2103   w.xExprCallback = sqlite3ExprWalkNoop;
2104   w.xSelectCallback = sqlite3SelectWalkFail;
2105 #ifdef SQLITE_DEBUG
2106   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2107 #endif
2108   sqlite3WalkExpr(&w, p);
2109   return w.eCode==0;
2110 }
2111 #endif
2112 
2113 /*
2114 ** If the expression p codes a constant integer that is small enough
2115 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2116 ** in *pValue.  If the expression is not an integer or if it is too big
2117 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2118 */
2119 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2120   int rc = 0;
2121   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2122 
2123   /* If an expression is an integer literal that fits in a signed 32-bit
2124   ** integer, then the EP_IntValue flag will have already been set */
2125   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2126            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2127 
2128   if( p->flags & EP_IntValue ){
2129     *pValue = p->u.iValue;
2130     return 1;
2131   }
2132   switch( p->op ){
2133     case TK_UPLUS: {
2134       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2135       break;
2136     }
2137     case TK_UMINUS: {
2138       int v;
2139       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2140         assert( v!=(-2147483647-1) );
2141         *pValue = -v;
2142         rc = 1;
2143       }
2144       break;
2145     }
2146     default: break;
2147   }
2148   return rc;
2149 }
2150 
2151 /*
2152 ** Return FALSE if there is no chance that the expression can be NULL.
2153 **
2154 ** If the expression might be NULL or if the expression is too complex
2155 ** to tell return TRUE.
2156 **
2157 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2158 ** when we know that a value cannot be NULL.  Hence, a false positive
2159 ** (returning TRUE when in fact the expression can never be NULL) might
2160 ** be a small performance hit but is otherwise harmless.  On the other
2161 ** hand, a false negative (returning FALSE when the result could be NULL)
2162 ** will likely result in an incorrect answer.  So when in doubt, return
2163 ** TRUE.
2164 */
2165 int sqlite3ExprCanBeNull(const Expr *p){
2166   u8 op;
2167   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2168     p = p->pLeft;
2169   }
2170   op = p->op;
2171   if( op==TK_REGISTER ) op = p->op2;
2172   switch( op ){
2173     case TK_INTEGER:
2174     case TK_STRING:
2175     case TK_FLOAT:
2176     case TK_BLOB:
2177       return 0;
2178     case TK_COLUMN:
2179       return ExprHasProperty(p, EP_CanBeNull) ||
2180              p->y.pTab==0 ||  /* Reference to column of index on expression */
2181              (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
2182     default:
2183       return 1;
2184   }
2185 }
2186 
2187 /*
2188 ** Return TRUE if the given expression is a constant which would be
2189 ** unchanged by OP_Affinity with the affinity given in the second
2190 ** argument.
2191 **
2192 ** This routine is used to determine if the OP_Affinity operation
2193 ** can be omitted.  When in doubt return FALSE.  A false negative
2194 ** is harmless.  A false positive, however, can result in the wrong
2195 ** answer.
2196 */
2197 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2198   u8 op;
2199   int unaryMinus = 0;
2200   if( aff==SQLITE_AFF_BLOB ) return 1;
2201   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2202     if( p->op==TK_UMINUS ) unaryMinus = 1;
2203     p = p->pLeft;
2204   }
2205   op = p->op;
2206   if( op==TK_REGISTER ) op = p->op2;
2207   switch( op ){
2208     case TK_INTEGER: {
2209       return aff>=SQLITE_AFF_NUMERIC;
2210     }
2211     case TK_FLOAT: {
2212       return aff>=SQLITE_AFF_NUMERIC;
2213     }
2214     case TK_STRING: {
2215       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2216     }
2217     case TK_BLOB: {
2218       return !unaryMinus;
2219     }
2220     case TK_COLUMN: {
2221       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2222       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2223     }
2224     default: {
2225       return 0;
2226     }
2227   }
2228 }
2229 
2230 /*
2231 ** Return TRUE if the given string is a row-id column name.
2232 */
2233 int sqlite3IsRowid(const char *z){
2234   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2235   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2236   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2237   return 0;
2238 }
2239 
2240 /*
2241 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2242 ** that can be simplified to a direct table access, then return
2243 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2244 ** or if the SELECT statement needs to be manifested into a transient
2245 ** table, then return NULL.
2246 */
2247 #ifndef SQLITE_OMIT_SUBQUERY
2248 static Select *isCandidateForInOpt(Expr *pX){
2249   Select *p;
2250   SrcList *pSrc;
2251   ExprList *pEList;
2252   Table *pTab;
2253   int i;
2254   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2255   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2256   p = pX->x.pSelect;
2257   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2258   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2259     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2260     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2261     return 0; /* No DISTINCT keyword and no aggregate functions */
2262   }
2263   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2264   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2265   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2266   pSrc = p->pSrc;
2267   assert( pSrc!=0 );
2268   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2269   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2270   pTab = pSrc->a[0].pTab;
2271   assert( pTab!=0 );
2272   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2273   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2274   pEList = p->pEList;
2275   assert( pEList!=0 );
2276   /* All SELECT results must be columns. */
2277   for(i=0; i<pEList->nExpr; i++){
2278     Expr *pRes = pEList->a[i].pExpr;
2279     if( pRes->op!=TK_COLUMN ) return 0;
2280     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2281   }
2282   return p;
2283 }
2284 #endif /* SQLITE_OMIT_SUBQUERY */
2285 
2286 #ifndef SQLITE_OMIT_SUBQUERY
2287 /*
2288 ** Generate code that checks the left-most column of index table iCur to see if
2289 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2290 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2291 ** to be set to NULL if iCur contains one or more NULL values.
2292 */
2293 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2294   int addr1;
2295   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2296   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2297   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2298   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2299   VdbeComment((v, "first_entry_in(%d)", iCur));
2300   sqlite3VdbeJumpHere(v, addr1);
2301 }
2302 #endif
2303 
2304 
2305 #ifndef SQLITE_OMIT_SUBQUERY
2306 /*
2307 ** The argument is an IN operator with a list (not a subquery) on the
2308 ** right-hand side.  Return TRUE if that list is constant.
2309 */
2310 static int sqlite3InRhsIsConstant(Expr *pIn){
2311   Expr *pLHS;
2312   int res;
2313   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2314   pLHS = pIn->pLeft;
2315   pIn->pLeft = 0;
2316   res = sqlite3ExprIsConstant(pIn);
2317   pIn->pLeft = pLHS;
2318   return res;
2319 }
2320 #endif
2321 
2322 /*
2323 ** This function is used by the implementation of the IN (...) operator.
2324 ** The pX parameter is the expression on the RHS of the IN operator, which
2325 ** might be either a list of expressions or a subquery.
2326 **
2327 ** The job of this routine is to find or create a b-tree object that can
2328 ** be used either to test for membership in the RHS set or to iterate through
2329 ** all members of the RHS set, skipping duplicates.
2330 **
2331 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2332 ** and pX->iTable is set to the index of that cursor.
2333 **
2334 ** The returned value of this function indicates the b-tree type, as follows:
2335 **
2336 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2337 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2338 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2339 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2340 **                         populated epheremal table.
2341 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2342 **                         implemented as a sequence of comparisons.
2343 **
2344 ** An existing b-tree might be used if the RHS expression pX is a simple
2345 ** subquery such as:
2346 **
2347 **     SELECT <column1>, <column2>... FROM <table>
2348 **
2349 ** If the RHS of the IN operator is a list or a more complex subquery, then
2350 ** an ephemeral table might need to be generated from the RHS and then
2351 ** pX->iTable made to point to the ephemeral table instead of an
2352 ** existing table.
2353 **
2354 ** The inFlags parameter must contain, at a minimum, one of the bits
2355 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2356 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2357 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2358 ** be used to loop over all values of the RHS of the IN operator.
2359 **
2360 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2361 ** through the set members) then the b-tree must not contain duplicates.
2362 ** An epheremal table will be created unless the selected columns are guaranteed
2363 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2364 ** a UNIQUE constraint or index.
2365 **
2366 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2367 ** for fast set membership tests) then an epheremal table must
2368 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2369 ** index can be found with the specified <columns> as its left-most.
2370 **
2371 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2372 ** if the RHS of the IN operator is a list (not a subquery) then this
2373 ** routine might decide that creating an ephemeral b-tree for membership
2374 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2375 ** calling routine should implement the IN operator using a sequence
2376 ** of Eq or Ne comparison operations.
2377 **
2378 ** When the b-tree is being used for membership tests, the calling function
2379 ** might need to know whether or not the RHS side of the IN operator
2380 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2381 ** if there is any chance that the (...) might contain a NULL value at
2382 ** runtime, then a register is allocated and the register number written
2383 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2384 ** NULL value, then *prRhsHasNull is left unchanged.
2385 **
2386 ** If a register is allocated and its location stored in *prRhsHasNull, then
2387 ** the value in that register will be NULL if the b-tree contains one or more
2388 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2389 ** NULL values.
2390 **
2391 ** If the aiMap parameter is not NULL, it must point to an array containing
2392 ** one element for each column returned by the SELECT statement on the RHS
2393 ** of the IN(...) operator. The i'th entry of the array is populated with the
2394 ** offset of the index column that matches the i'th column returned by the
2395 ** SELECT. For example, if the expression and selected index are:
2396 **
2397 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2398 **   CREATE INDEX i1 ON t1(b, c, a);
2399 **
2400 ** then aiMap[] is populated with {2, 0, 1}.
2401 */
2402 #ifndef SQLITE_OMIT_SUBQUERY
2403 int sqlite3FindInIndex(
2404   Parse *pParse,             /* Parsing context */
2405   Expr *pX,                  /* The IN expression */
2406   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2407   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2408   int *aiMap,                /* Mapping from Index fields to RHS fields */
2409   int *piTab                 /* OUT: index to use */
2410 ){
2411   Select *p;                            /* SELECT to the right of IN operator */
2412   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2413   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2414   int mustBeUnique;                     /* True if RHS must be unique */
2415   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2416 
2417   assert( pX->op==TK_IN );
2418   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2419 
2420   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2421   ** whether or not the SELECT result contains NULL values, check whether
2422   ** or not NULL is actually possible (it may not be, for example, due
2423   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2424   ** set prRhsHasNull to 0 before continuing.  */
2425   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2426     int i;
2427     ExprList *pEList = pX->x.pSelect->pEList;
2428     for(i=0; i<pEList->nExpr; i++){
2429       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2430     }
2431     if( i==pEList->nExpr ){
2432       prRhsHasNull = 0;
2433     }
2434   }
2435 
2436   /* Check to see if an existing table or index can be used to
2437   ** satisfy the query.  This is preferable to generating a new
2438   ** ephemeral table.  */
2439   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2440     sqlite3 *db = pParse->db;              /* Database connection */
2441     Table *pTab;                           /* Table <table>. */
2442     i16 iDb;                               /* Database idx for pTab */
2443     ExprList *pEList = p->pEList;
2444     int nExpr = pEList->nExpr;
2445 
2446     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2447     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2448     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2449     pTab = p->pSrc->a[0].pTab;
2450 
2451     /* Code an OP_Transaction and OP_TableLock for <table>. */
2452     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2453     sqlite3CodeVerifySchema(pParse, iDb);
2454     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2455 
2456     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2457     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2458       /* The "x IN (SELECT rowid FROM table)" case */
2459       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2460       VdbeCoverage(v);
2461 
2462       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2463       eType = IN_INDEX_ROWID;
2464       ExplainQueryPlan((pParse, 0,
2465             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2466       sqlite3VdbeJumpHere(v, iAddr);
2467     }else{
2468       Index *pIdx;                         /* Iterator variable */
2469       int affinity_ok = 1;
2470       int i;
2471 
2472       /* Check that the affinity that will be used to perform each
2473       ** comparison is the same as the affinity of each column in table
2474       ** on the RHS of the IN operator.  If it not, it is not possible to
2475       ** use any index of the RHS table.  */
2476       for(i=0; i<nExpr && affinity_ok; i++){
2477         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2478         int iCol = pEList->a[i].pExpr->iColumn;
2479         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2480         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2481         testcase( cmpaff==SQLITE_AFF_BLOB );
2482         testcase( cmpaff==SQLITE_AFF_TEXT );
2483         switch( cmpaff ){
2484           case SQLITE_AFF_BLOB:
2485             break;
2486           case SQLITE_AFF_TEXT:
2487             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2488             ** other has no affinity and the other side is TEXT.  Hence,
2489             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2490             ** and for the term on the LHS of the IN to have no affinity. */
2491             assert( idxaff==SQLITE_AFF_TEXT );
2492             break;
2493           default:
2494             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2495         }
2496       }
2497 
2498       if( affinity_ok ){
2499         /* Search for an existing index that will work for this IN operator */
2500         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2501           Bitmask colUsed;      /* Columns of the index used */
2502           Bitmask mCol;         /* Mask for the current column */
2503           if( pIdx->nColumn<nExpr ) continue;
2504           if( pIdx->pPartIdxWhere!=0 ) continue;
2505           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2506           ** BITMASK(nExpr) without overflowing */
2507           testcase( pIdx->nColumn==BMS-2 );
2508           testcase( pIdx->nColumn==BMS-1 );
2509           if( pIdx->nColumn>=BMS-1 ) continue;
2510           if( mustBeUnique ){
2511             if( pIdx->nKeyCol>nExpr
2512              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2513             ){
2514               continue;  /* This index is not unique over the IN RHS columns */
2515             }
2516           }
2517 
2518           colUsed = 0;   /* Columns of index used so far */
2519           for(i=0; i<nExpr; i++){
2520             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2521             Expr *pRhs = pEList->a[i].pExpr;
2522             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2523             int j;
2524 
2525             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2526             for(j=0; j<nExpr; j++){
2527               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2528               assert( pIdx->azColl[j] );
2529               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2530                 continue;
2531               }
2532               break;
2533             }
2534             if( j==nExpr ) break;
2535             mCol = MASKBIT(j);
2536             if( mCol & colUsed ) break; /* Each column used only once */
2537             colUsed |= mCol;
2538             if( aiMap ) aiMap[i] = j;
2539           }
2540 
2541           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2542           if( colUsed==(MASKBIT(nExpr)-1) ){
2543             /* If we reach this point, that means the index pIdx is usable */
2544             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2545             ExplainQueryPlan((pParse, 0,
2546                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2547             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2548             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2549             VdbeComment((v, "%s", pIdx->zName));
2550             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2551             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2552 
2553             if( prRhsHasNull ){
2554 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2555               i64 mask = (1<<nExpr)-1;
2556               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2557                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2558 #endif
2559               *prRhsHasNull = ++pParse->nMem;
2560               if( nExpr==1 ){
2561                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2562               }
2563             }
2564             sqlite3VdbeJumpHere(v, iAddr);
2565           }
2566         } /* End loop over indexes */
2567       } /* End if( affinity_ok ) */
2568     } /* End if not an rowid index */
2569   } /* End attempt to optimize using an index */
2570 
2571   /* If no preexisting index is available for the IN clause
2572   ** and IN_INDEX_NOOP is an allowed reply
2573   ** and the RHS of the IN operator is a list, not a subquery
2574   ** and the RHS is not constant or has two or fewer terms,
2575   ** then it is not worth creating an ephemeral table to evaluate
2576   ** the IN operator so return IN_INDEX_NOOP.
2577   */
2578   if( eType==0
2579    && (inFlags & IN_INDEX_NOOP_OK)
2580    && !ExprHasProperty(pX, EP_xIsSelect)
2581    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2582   ){
2583     eType = IN_INDEX_NOOP;
2584   }
2585 
2586   if( eType==0 ){
2587     /* Could not find an existing table or index to use as the RHS b-tree.
2588     ** We will have to generate an ephemeral table to do the job.
2589     */
2590     u32 savedNQueryLoop = pParse->nQueryLoop;
2591     int rMayHaveNull = 0;
2592     eType = IN_INDEX_EPH;
2593     if( inFlags & IN_INDEX_LOOP ){
2594       pParse->nQueryLoop = 0;
2595     }else if( prRhsHasNull ){
2596       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2597     }
2598     assert( pX->op==TK_IN );
2599     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2600     if( rMayHaveNull ){
2601       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2602     }
2603     pParse->nQueryLoop = savedNQueryLoop;
2604   }
2605 
2606   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2607     int i, n;
2608     n = sqlite3ExprVectorSize(pX->pLeft);
2609     for(i=0; i<n; i++) aiMap[i] = i;
2610   }
2611   *piTab = iTab;
2612   return eType;
2613 }
2614 #endif
2615 
2616 #ifndef SQLITE_OMIT_SUBQUERY
2617 /*
2618 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2619 ** function allocates and returns a nul-terminated string containing
2620 ** the affinities to be used for each column of the comparison.
2621 **
2622 ** It is the responsibility of the caller to ensure that the returned
2623 ** string is eventually freed using sqlite3DbFree().
2624 */
2625 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2626   Expr *pLeft = pExpr->pLeft;
2627   int nVal = sqlite3ExprVectorSize(pLeft);
2628   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2629   char *zRet;
2630 
2631   assert( pExpr->op==TK_IN );
2632   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2633   if( zRet ){
2634     int i;
2635     for(i=0; i<nVal; i++){
2636       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2637       char a = sqlite3ExprAffinity(pA);
2638       if( pSelect ){
2639         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2640       }else{
2641         zRet[i] = a;
2642       }
2643     }
2644     zRet[nVal] = '\0';
2645   }
2646   return zRet;
2647 }
2648 #endif
2649 
2650 #ifndef SQLITE_OMIT_SUBQUERY
2651 /*
2652 ** Load the Parse object passed as the first argument with an error
2653 ** message of the form:
2654 **
2655 **   "sub-select returns N columns - expected M"
2656 */
2657 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2658   const char *zFmt = "sub-select returns %d columns - expected %d";
2659   sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2660 }
2661 #endif
2662 
2663 /*
2664 ** Expression pExpr is a vector that has been used in a context where
2665 ** it is not permitted. If pExpr is a sub-select vector, this routine
2666 ** loads the Parse object with a message of the form:
2667 **
2668 **   "sub-select returns N columns - expected 1"
2669 **
2670 ** Or, if it is a regular scalar vector:
2671 **
2672 **   "row value misused"
2673 */
2674 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2675 #ifndef SQLITE_OMIT_SUBQUERY
2676   if( pExpr->flags & EP_xIsSelect ){
2677     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2678   }else
2679 #endif
2680   {
2681     sqlite3ErrorMsg(pParse, "row value misused");
2682   }
2683 }
2684 
2685 #ifndef SQLITE_OMIT_SUBQUERY
2686 /*
2687 ** Generate code that will construct an ephemeral table containing all terms
2688 ** in the RHS of an IN operator.  The IN operator can be in either of two
2689 ** forms:
2690 **
2691 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2692 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2693 **
2694 ** The pExpr parameter is the IN operator.  The cursor number for the
2695 ** constructed ephermeral table is returned.  The first time the ephemeral
2696 ** table is computed, the cursor number is also stored in pExpr->iTable,
2697 ** however the cursor number returned might not be the same, as it might
2698 ** have been duplicated using OP_OpenDup.
2699 **
2700 ** If the LHS expression ("x" in the examples) is a column value, or
2701 ** the SELECT statement returns a column value, then the affinity of that
2702 ** column is used to build the index keys. If both 'x' and the
2703 ** SELECT... statement are columns, then numeric affinity is used
2704 ** if either column has NUMERIC or INTEGER affinity. If neither
2705 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2706 ** is used.
2707 */
2708 void sqlite3CodeRhsOfIN(
2709   Parse *pParse,          /* Parsing context */
2710   Expr *pExpr,            /* The IN operator */
2711   int iTab                /* Use this cursor number */
2712 ){
2713   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2714   int addr;                   /* Address of OP_OpenEphemeral instruction */
2715   Expr *pLeft;                /* the LHS of the IN operator */
2716   KeyInfo *pKeyInfo = 0;      /* Key information */
2717   int nVal;                   /* Size of vector pLeft */
2718   Vdbe *v;                    /* The prepared statement under construction */
2719 
2720   v = pParse->pVdbe;
2721   assert( v!=0 );
2722 
2723   /* The evaluation of the IN must be repeated every time it
2724   ** is encountered if any of the following is true:
2725   **
2726   **    *  The right-hand side is a correlated subquery
2727   **    *  The right-hand side is an expression list containing variables
2728   **    *  We are inside a trigger
2729   **
2730   ** If all of the above are false, then we can compute the RHS just once
2731   ** and reuse it many names.
2732   */
2733   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2734     /* Reuse of the RHS is allowed */
2735     /* If this routine has already been coded, but the previous code
2736     ** might not have been invoked yet, so invoke it now as a subroutine.
2737     */
2738     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2739       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2740       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2741         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2742               pExpr->x.pSelect->selId));
2743       }
2744       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2745                         pExpr->y.sub.iAddr);
2746       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2747       sqlite3VdbeJumpHere(v, addrOnce);
2748       return;
2749     }
2750 
2751     /* Begin coding the subroutine */
2752     ExprSetProperty(pExpr, EP_Subrtn);
2753     pExpr->y.sub.regReturn = ++pParse->nMem;
2754     pExpr->y.sub.iAddr =
2755       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2756     VdbeComment((v, "return address"));
2757 
2758     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2759   }
2760 
2761   /* Check to see if this is a vector IN operator */
2762   pLeft = pExpr->pLeft;
2763   nVal = sqlite3ExprVectorSize(pLeft);
2764 
2765   /* Construct the ephemeral table that will contain the content of
2766   ** RHS of the IN operator.
2767   */
2768   pExpr->iTable = iTab;
2769   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2770 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2771   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2772     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2773   }else{
2774     VdbeComment((v, "RHS of IN operator"));
2775   }
2776 #endif
2777   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2778 
2779   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2780     /* Case 1:     expr IN (SELECT ...)
2781     **
2782     ** Generate code to write the results of the select into the temporary
2783     ** table allocated and opened above.
2784     */
2785     Select *pSelect = pExpr->x.pSelect;
2786     ExprList *pEList = pSelect->pEList;
2787 
2788     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2789         addrOnce?"":"CORRELATED ", pSelect->selId
2790     ));
2791     /* If the LHS and RHS of the IN operator do not match, that
2792     ** error will have been caught long before we reach this point. */
2793     if( ALWAYS(pEList->nExpr==nVal) ){
2794       SelectDest dest;
2795       int i;
2796       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2797       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2798       pSelect->iLimit = 0;
2799       testcase( pSelect->selFlags & SF_Distinct );
2800       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2801       if( sqlite3Select(pParse, pSelect, &dest) ){
2802         sqlite3DbFree(pParse->db, dest.zAffSdst);
2803         sqlite3KeyInfoUnref(pKeyInfo);
2804         return;
2805       }
2806       sqlite3DbFree(pParse->db, dest.zAffSdst);
2807       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2808       assert( pEList!=0 );
2809       assert( pEList->nExpr>0 );
2810       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2811       for(i=0; i<nVal; i++){
2812         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2813         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2814             pParse, p, pEList->a[i].pExpr
2815         );
2816       }
2817     }
2818   }else if( ALWAYS(pExpr->x.pList!=0) ){
2819     /* Case 2:     expr IN (exprlist)
2820     **
2821     ** For each expression, build an index key from the evaluation and
2822     ** store it in the temporary table. If <expr> is a column, then use
2823     ** that columns affinity when building index keys. If <expr> is not
2824     ** a column, use numeric affinity.
2825     */
2826     char affinity;            /* Affinity of the LHS of the IN */
2827     int i;
2828     ExprList *pList = pExpr->x.pList;
2829     struct ExprList_item *pItem;
2830     int r1, r2;
2831     affinity = sqlite3ExprAffinity(pLeft);
2832     if( affinity<=SQLITE_AFF_NONE ){
2833       affinity = SQLITE_AFF_BLOB;
2834     }
2835     if( pKeyInfo ){
2836       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2837       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2838     }
2839 
2840     /* Loop through each expression in <exprlist>. */
2841     r1 = sqlite3GetTempReg(pParse);
2842     r2 = sqlite3GetTempReg(pParse);
2843     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2844       Expr *pE2 = pItem->pExpr;
2845 
2846       /* If the expression is not constant then we will need to
2847       ** disable the test that was generated above that makes sure
2848       ** this code only executes once.  Because for a non-constant
2849       ** expression we need to rerun this code each time.
2850       */
2851       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2852         sqlite3VdbeChangeToNoop(v, addrOnce);
2853         ExprClearProperty(pExpr, EP_Subrtn);
2854         addrOnce = 0;
2855       }
2856 
2857       /* Evaluate the expression and insert it into the temp table */
2858       sqlite3ExprCode(pParse, pE2, r1);
2859       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2860       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2861     }
2862     sqlite3ReleaseTempReg(pParse, r1);
2863     sqlite3ReleaseTempReg(pParse, r2);
2864   }
2865   if( pKeyInfo ){
2866     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2867   }
2868   if( addrOnce ){
2869     sqlite3VdbeJumpHere(v, addrOnce);
2870     /* Subroutine return */
2871     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2872     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2873     sqlite3ClearTempRegCache(pParse);
2874   }
2875 }
2876 #endif /* SQLITE_OMIT_SUBQUERY */
2877 
2878 /*
2879 ** Generate code for scalar subqueries used as a subquery expression
2880 ** or EXISTS operator:
2881 **
2882 **     (SELECT a FROM b)          -- subquery
2883 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
2884 **
2885 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
2886 **
2887 ** Return the register that holds the result.  For a multi-column SELECT,
2888 ** the result is stored in a contiguous array of registers and the
2889 ** return value is the register of the left-most result column.
2890 ** Return 0 if an error occurs.
2891 */
2892 #ifndef SQLITE_OMIT_SUBQUERY
2893 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
2894   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
2895   int rReg = 0;               /* Register storing resulting */
2896   Select *pSel;               /* SELECT statement to encode */
2897   SelectDest dest;            /* How to deal with SELECT result */
2898   int nReg;                   /* Registers to allocate */
2899   Expr *pLimit;               /* New limit expression */
2900 
2901   Vdbe *v = pParse->pVdbe;
2902   assert( v!=0 );
2903   testcase( pExpr->op==TK_EXISTS );
2904   testcase( pExpr->op==TK_SELECT );
2905   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2906   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2907   pSel = pExpr->x.pSelect;
2908 
2909   /* The evaluation of the EXISTS/SELECT must be repeated every time it
2910   ** is encountered if any of the following is true:
2911   **
2912   **    *  The right-hand side is a correlated subquery
2913   **    *  The right-hand side is an expression list containing variables
2914   **    *  We are inside a trigger
2915   **
2916   ** If all of the above are false, then we can run this code just once
2917   ** save the results, and reuse the same result on subsequent invocations.
2918   */
2919   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2920     /* If this routine has already been coded, then invoke it as a
2921     ** subroutine. */
2922     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2923       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
2924       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2925                         pExpr->y.sub.iAddr);
2926       return pExpr->iTable;
2927     }
2928 
2929     /* Begin coding the subroutine */
2930     ExprSetProperty(pExpr, EP_Subrtn);
2931     pExpr->y.sub.regReturn = ++pParse->nMem;
2932     pExpr->y.sub.iAddr =
2933       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2934     VdbeComment((v, "return address"));
2935 
2936     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2937   }
2938 
2939   /* For a SELECT, generate code to put the values for all columns of
2940   ** the first row into an array of registers and return the index of
2941   ** the first register.
2942   **
2943   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2944   ** into a register and return that register number.
2945   **
2946   ** In both cases, the query is augmented with "LIMIT 1".  Any
2947   ** preexisting limit is discarded in place of the new LIMIT 1.
2948   */
2949   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
2950         addrOnce?"":"CORRELATED ", pSel->selId));
2951   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2952   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2953   pParse->nMem += nReg;
2954   if( pExpr->op==TK_SELECT ){
2955     dest.eDest = SRT_Mem;
2956     dest.iSdst = dest.iSDParm;
2957     dest.nSdst = nReg;
2958     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2959     VdbeComment((v, "Init subquery result"));
2960   }else{
2961     dest.eDest = SRT_Exists;
2962     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2963     VdbeComment((v, "Init EXISTS result"));
2964   }
2965   if( pSel->pLimit ){
2966     /* The subquery already has a limit.  If the pre-existing limit is X
2967     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
2968     sqlite3 *db = pParse->db;
2969     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
2970     if( pLimit ){
2971       pLimit->affExpr = SQLITE_AFF_NUMERIC;
2972       pLimit = sqlite3PExpr(pParse, TK_NE,
2973                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
2974     }
2975     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
2976     pSel->pLimit->pLeft = pLimit;
2977   }else{
2978     /* If there is no pre-existing limit add a limit of 1 */
2979     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
2980     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2981   }
2982   pSel->iLimit = 0;
2983   if( sqlite3Select(pParse, pSel, &dest) ){
2984     return 0;
2985   }
2986   pExpr->iTable = rReg = dest.iSDParm;
2987   ExprSetVVAProperty(pExpr, EP_NoReduce);
2988   if( addrOnce ){
2989     sqlite3VdbeJumpHere(v, addrOnce);
2990 
2991     /* Subroutine return */
2992     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2993     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2994     sqlite3ClearTempRegCache(pParse);
2995   }
2996 
2997   return rReg;
2998 }
2999 #endif /* SQLITE_OMIT_SUBQUERY */
3000 
3001 #ifndef SQLITE_OMIT_SUBQUERY
3002 /*
3003 ** Expr pIn is an IN(...) expression. This function checks that the
3004 ** sub-select on the RHS of the IN() operator has the same number of
3005 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3006 ** a sub-query, that the LHS is a vector of size 1.
3007 */
3008 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3009   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3010   if( (pIn->flags & EP_xIsSelect) ){
3011     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3012       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3013       return 1;
3014     }
3015   }else if( nVector!=1 ){
3016     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3017     return 1;
3018   }
3019   return 0;
3020 }
3021 #endif
3022 
3023 #ifndef SQLITE_OMIT_SUBQUERY
3024 /*
3025 ** Generate code for an IN expression.
3026 **
3027 **      x IN (SELECT ...)
3028 **      x IN (value, value, ...)
3029 **
3030 ** The left-hand side (LHS) is a scalar or vector expression.  The
3031 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3032 ** subquery.  If the RHS is a subquery, the number of result columns must
3033 ** match the number of columns in the vector on the LHS.  If the RHS is
3034 ** a list of values, the LHS must be a scalar.
3035 **
3036 ** The IN operator is true if the LHS value is contained within the RHS.
3037 ** The result is false if the LHS is definitely not in the RHS.  The
3038 ** result is NULL if the presence of the LHS in the RHS cannot be
3039 ** determined due to NULLs.
3040 **
3041 ** This routine generates code that jumps to destIfFalse if the LHS is not
3042 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3043 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3044 ** within the RHS then fall through.
3045 **
3046 ** See the separate in-operator.md documentation file in the canonical
3047 ** SQLite source tree for additional information.
3048 */
3049 static void sqlite3ExprCodeIN(
3050   Parse *pParse,        /* Parsing and code generating context */
3051   Expr *pExpr,          /* The IN expression */
3052   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3053   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3054 ){
3055   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3056   int eType;            /* Type of the RHS */
3057   int rLhs;             /* Register(s) holding the LHS values */
3058   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3059   Vdbe *v;              /* Statement under construction */
3060   int *aiMap = 0;       /* Map from vector field to index column */
3061   char *zAff = 0;       /* Affinity string for comparisons */
3062   int nVector;          /* Size of vectors for this IN operator */
3063   int iDummy;           /* Dummy parameter to exprCodeVector() */
3064   Expr *pLeft;          /* The LHS of the IN operator */
3065   int i;                /* loop counter */
3066   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3067   int destStep6 = 0;    /* Start of code for Step 6 */
3068   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3069   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3070   int addrTop;          /* Top of the step-6 loop */
3071   int iTab = 0;         /* Index to use */
3072 
3073   pLeft = pExpr->pLeft;
3074   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3075   zAff = exprINAffinity(pParse, pExpr);
3076   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3077   aiMap = (int*)sqlite3DbMallocZero(
3078       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3079   );
3080   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3081 
3082   /* Attempt to compute the RHS. After this step, if anything other than
3083   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3084   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3085   ** the RHS has not yet been coded.  */
3086   v = pParse->pVdbe;
3087   assert( v!=0 );       /* OOM detected prior to this routine */
3088   VdbeNoopComment((v, "begin IN expr"));
3089   eType = sqlite3FindInIndex(pParse, pExpr,
3090                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3091                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3092                              aiMap, &iTab);
3093 
3094   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3095        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3096   );
3097 #ifdef SQLITE_DEBUG
3098   /* Confirm that aiMap[] contains nVector integer values between 0 and
3099   ** nVector-1. */
3100   for(i=0; i<nVector; i++){
3101     int j, cnt;
3102     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3103     assert( cnt==1 );
3104   }
3105 #endif
3106 
3107   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3108   ** vector, then it is stored in an array of nVector registers starting
3109   ** at r1.
3110   **
3111   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3112   ** so that the fields are in the same order as an existing index.   The
3113   ** aiMap[] array contains a mapping from the original LHS field order to
3114   ** the field order that matches the RHS index.
3115   */
3116   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3117   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3118   if( i==nVector ){
3119     /* LHS fields are not reordered */
3120     rLhs = rLhsOrig;
3121   }else{
3122     /* Need to reorder the LHS fields according to aiMap */
3123     rLhs = sqlite3GetTempRange(pParse, nVector);
3124     for(i=0; i<nVector; i++){
3125       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3126     }
3127   }
3128 
3129   /* If sqlite3FindInIndex() did not find or create an index that is
3130   ** suitable for evaluating the IN operator, then evaluate using a
3131   ** sequence of comparisons.
3132   **
3133   ** This is step (1) in the in-operator.md optimized algorithm.
3134   */
3135   if( eType==IN_INDEX_NOOP ){
3136     ExprList *pList = pExpr->x.pList;
3137     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3138     int labelOk = sqlite3VdbeMakeLabel(pParse);
3139     int r2, regToFree;
3140     int regCkNull = 0;
3141     int ii;
3142     int bLhsReal;  /* True if the LHS of the IN has REAL affinity */
3143     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3144     if( destIfNull!=destIfFalse ){
3145       regCkNull = sqlite3GetTempReg(pParse);
3146       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3147     }
3148     bLhsReal = sqlite3ExprAffinity(pExpr->pLeft)==SQLITE_AFF_REAL;
3149     for(ii=0; ii<pList->nExpr; ii++){
3150       if( bLhsReal ){
3151         r2 = regToFree = sqlite3GetTempReg(pParse);
3152         sqlite3ExprCode(pParse, pList->a[ii].pExpr, r2);
3153         sqlite3VdbeAddOp4(v, OP_Affinity, r2, 1, 0, "E", P4_STATIC);
3154       }else{
3155         r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3156       }
3157       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3158         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3159       }
3160       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3161         sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
3162                           (void*)pColl, P4_COLLSEQ);
3163         VdbeCoverageIf(v, ii<pList->nExpr-1);
3164         VdbeCoverageIf(v, ii==pList->nExpr-1);
3165         sqlite3VdbeChangeP5(v, zAff[0]);
3166       }else{
3167         assert( destIfNull==destIfFalse );
3168         sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
3169                           (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
3170         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3171       }
3172       sqlite3ReleaseTempReg(pParse, regToFree);
3173     }
3174     if( regCkNull ){
3175       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3176       sqlite3VdbeGoto(v, destIfFalse);
3177     }
3178     sqlite3VdbeResolveLabel(v, labelOk);
3179     sqlite3ReleaseTempReg(pParse, regCkNull);
3180     goto sqlite3ExprCodeIN_finished;
3181   }
3182 
3183   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3184   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3185   ** We will then skip the binary search of the RHS.
3186   */
3187   if( destIfNull==destIfFalse ){
3188     destStep2 = destIfFalse;
3189   }else{
3190     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3191   }
3192   for(i=0; i<nVector; i++){
3193     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3194     if( sqlite3ExprCanBeNull(p) ){
3195       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3196       VdbeCoverage(v);
3197     }
3198   }
3199 
3200   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3201   ** of the RHS using the LHS as a probe.  If found, the result is
3202   ** true.
3203   */
3204   if( eType==IN_INDEX_ROWID ){
3205     /* In this case, the RHS is the ROWID of table b-tree and so we also
3206     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3207     ** into a single opcode. */
3208     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3209     VdbeCoverage(v);
3210     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3211   }else{
3212     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3213     if( destIfFalse==destIfNull ){
3214       /* Combine Step 3 and Step 5 into a single opcode */
3215       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3216                            rLhs, nVector); VdbeCoverage(v);
3217       goto sqlite3ExprCodeIN_finished;
3218     }
3219     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3220     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3221                                       rLhs, nVector); VdbeCoverage(v);
3222   }
3223 
3224   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3225   ** an match on the search above, then the result must be FALSE.
3226   */
3227   if( rRhsHasNull && nVector==1 ){
3228     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3229     VdbeCoverage(v);
3230   }
3231 
3232   /* Step 5.  If we do not care about the difference between NULL and
3233   ** FALSE, then just return false.
3234   */
3235   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3236 
3237   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3238   ** If any comparison is NULL, then the result is NULL.  If all
3239   ** comparisons are FALSE then the final result is FALSE.
3240   **
3241   ** For a scalar LHS, it is sufficient to check just the first row
3242   ** of the RHS.
3243   */
3244   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3245   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3246   VdbeCoverage(v);
3247   if( nVector>1 ){
3248     destNotNull = sqlite3VdbeMakeLabel(pParse);
3249   }else{
3250     /* For nVector==1, combine steps 6 and 7 by immediately returning
3251     ** FALSE if the first comparison is not NULL */
3252     destNotNull = destIfFalse;
3253   }
3254   for(i=0; i<nVector; i++){
3255     Expr *p;
3256     CollSeq *pColl;
3257     int r3 = sqlite3GetTempReg(pParse);
3258     p = sqlite3VectorFieldSubexpr(pLeft, i);
3259     pColl = sqlite3ExprCollSeq(pParse, p);
3260     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3261     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3262                       (void*)pColl, P4_COLLSEQ);
3263     VdbeCoverage(v);
3264     sqlite3ReleaseTempReg(pParse, r3);
3265   }
3266   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3267   if( nVector>1 ){
3268     sqlite3VdbeResolveLabel(v, destNotNull);
3269     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3270     VdbeCoverage(v);
3271 
3272     /* Step 7:  If we reach this point, we know that the result must
3273     ** be false. */
3274     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3275   }
3276 
3277   /* Jumps here in order to return true. */
3278   sqlite3VdbeJumpHere(v, addrTruthOp);
3279 
3280 sqlite3ExprCodeIN_finished:
3281   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3282   VdbeComment((v, "end IN expr"));
3283 sqlite3ExprCodeIN_oom_error:
3284   sqlite3DbFree(pParse->db, aiMap);
3285   sqlite3DbFree(pParse->db, zAff);
3286 }
3287 #endif /* SQLITE_OMIT_SUBQUERY */
3288 
3289 #ifndef SQLITE_OMIT_FLOATING_POINT
3290 /*
3291 ** Generate an instruction that will put the floating point
3292 ** value described by z[0..n-1] into register iMem.
3293 **
3294 ** The z[] string will probably not be zero-terminated.  But the
3295 ** z[n] character is guaranteed to be something that does not look
3296 ** like the continuation of the number.
3297 */
3298 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3299   if( ALWAYS(z!=0) ){
3300     double value;
3301     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3302     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3303     if( negateFlag ) value = -value;
3304     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3305   }
3306 }
3307 #endif
3308 
3309 
3310 /*
3311 ** Generate an instruction that will put the integer describe by
3312 ** text z[0..n-1] into register iMem.
3313 **
3314 ** Expr.u.zToken is always UTF8 and zero-terminated.
3315 */
3316 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3317   Vdbe *v = pParse->pVdbe;
3318   if( pExpr->flags & EP_IntValue ){
3319     int i = pExpr->u.iValue;
3320     assert( i>=0 );
3321     if( negFlag ) i = -i;
3322     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3323   }else{
3324     int c;
3325     i64 value;
3326     const char *z = pExpr->u.zToken;
3327     assert( z!=0 );
3328     c = sqlite3DecOrHexToI64(z, &value);
3329     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3330 #ifdef SQLITE_OMIT_FLOATING_POINT
3331       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3332 #else
3333 #ifndef SQLITE_OMIT_HEX_INTEGER
3334       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3335         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3336       }else
3337 #endif
3338       {
3339         codeReal(v, z, negFlag, iMem);
3340       }
3341 #endif
3342     }else{
3343       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3344       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3345     }
3346   }
3347 }
3348 
3349 
3350 /* Generate code that will load into register regOut a value that is
3351 ** appropriate for the iIdxCol-th column of index pIdx.
3352 */
3353 void sqlite3ExprCodeLoadIndexColumn(
3354   Parse *pParse,  /* The parsing context */
3355   Index *pIdx,    /* The index whose column is to be loaded */
3356   int iTabCur,    /* Cursor pointing to a table row */
3357   int iIdxCol,    /* The column of the index to be loaded */
3358   int regOut      /* Store the index column value in this register */
3359 ){
3360   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3361   if( iTabCol==XN_EXPR ){
3362     assert( pIdx->aColExpr );
3363     assert( pIdx->aColExpr->nExpr>iIdxCol );
3364     pParse->iSelfTab = iTabCur + 1;
3365     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3366     pParse->iSelfTab = 0;
3367   }else{
3368     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3369                                     iTabCol, regOut);
3370   }
3371 }
3372 
3373 /*
3374 ** Generate code to extract the value of the iCol-th column of a table.
3375 */
3376 void sqlite3ExprCodeGetColumnOfTable(
3377   Vdbe *v,        /* The VDBE under construction */
3378   Table *pTab,    /* The table containing the value */
3379   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3380   int iCol,       /* Index of the column to extract */
3381   int regOut      /* Extract the value into this register */
3382 ){
3383   if( pTab==0 ){
3384     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3385     return;
3386   }
3387   if( iCol<0 || iCol==pTab->iPKey ){
3388     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3389   }else{
3390     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3391     int x = iCol;
3392     if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3393       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3394     }
3395     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3396   }
3397   if( iCol>=0 ){
3398     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3399   }
3400 }
3401 
3402 /*
3403 ** Generate code that will extract the iColumn-th column from
3404 ** table pTab and store the column value in register iReg.
3405 **
3406 ** There must be an open cursor to pTab in iTable when this routine
3407 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3408 */
3409 int sqlite3ExprCodeGetColumn(
3410   Parse *pParse,   /* Parsing and code generating context */
3411   Table *pTab,     /* Description of the table we are reading from */
3412   int iColumn,     /* Index of the table column */
3413   int iTable,      /* The cursor pointing to the table */
3414   int iReg,        /* Store results here */
3415   u8 p5            /* P5 value for OP_Column + FLAGS */
3416 ){
3417   Vdbe *v = pParse->pVdbe;
3418   assert( v!=0 );
3419   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3420   if( p5 ){
3421     sqlite3VdbeChangeP5(v, p5);
3422   }
3423   return iReg;
3424 }
3425 
3426 /*
3427 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3428 ** over to iTo..iTo+nReg-1.
3429 */
3430 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3431   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3432   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3433 }
3434 
3435 /*
3436 ** Convert a scalar expression node to a TK_REGISTER referencing
3437 ** register iReg.  The caller must ensure that iReg already contains
3438 ** the correct value for the expression.
3439 */
3440 static void exprToRegister(Expr *pExpr, int iReg){
3441   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3442   p->op2 = p->op;
3443   p->op = TK_REGISTER;
3444   p->iTable = iReg;
3445   ExprClearProperty(p, EP_Skip);
3446 }
3447 
3448 /*
3449 ** Evaluate an expression (either a vector or a scalar expression) and store
3450 ** the result in continguous temporary registers.  Return the index of
3451 ** the first register used to store the result.
3452 **
3453 ** If the returned result register is a temporary scalar, then also write
3454 ** that register number into *piFreeable.  If the returned result register
3455 ** is not a temporary or if the expression is a vector set *piFreeable
3456 ** to 0.
3457 */
3458 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3459   int iResult;
3460   int nResult = sqlite3ExprVectorSize(p);
3461   if( nResult==1 ){
3462     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3463   }else{
3464     *piFreeable = 0;
3465     if( p->op==TK_SELECT ){
3466 #if SQLITE_OMIT_SUBQUERY
3467       iResult = 0;
3468 #else
3469       iResult = sqlite3CodeSubselect(pParse, p);
3470 #endif
3471     }else{
3472       int i;
3473       iResult = pParse->nMem+1;
3474       pParse->nMem += nResult;
3475       for(i=0; i<nResult; i++){
3476         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3477       }
3478     }
3479   }
3480   return iResult;
3481 }
3482 
3483 
3484 /*
3485 ** Generate code into the current Vdbe to evaluate the given
3486 ** expression.  Attempt to store the results in register "target".
3487 ** Return the register where results are stored.
3488 **
3489 ** With this routine, there is no guarantee that results will
3490 ** be stored in target.  The result might be stored in some other
3491 ** register if it is convenient to do so.  The calling function
3492 ** must check the return code and move the results to the desired
3493 ** register.
3494 */
3495 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3496   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3497   int op;                   /* The opcode being coded */
3498   int inReg = target;       /* Results stored in register inReg */
3499   int regFree1 = 0;         /* If non-zero free this temporary register */
3500   int regFree2 = 0;         /* If non-zero free this temporary register */
3501   int r1, r2;               /* Various register numbers */
3502   Expr tempX;               /* Temporary expression node */
3503   int p5 = 0;
3504 
3505   assert( target>0 && target<=pParse->nMem );
3506   if( v==0 ){
3507     assert( pParse->db->mallocFailed );
3508     return 0;
3509   }
3510 
3511 expr_code_doover:
3512   if( pExpr==0 ){
3513     op = TK_NULL;
3514   }else{
3515     op = pExpr->op;
3516   }
3517   switch( op ){
3518     case TK_AGG_COLUMN: {
3519       AggInfo *pAggInfo = pExpr->pAggInfo;
3520       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3521       if( !pAggInfo->directMode ){
3522         assert( pCol->iMem>0 );
3523         return pCol->iMem;
3524       }else if( pAggInfo->useSortingIdx ){
3525         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3526                               pCol->iSorterColumn, target);
3527         return target;
3528       }
3529       /* Otherwise, fall thru into the TK_COLUMN case */
3530     }
3531     case TK_COLUMN: {
3532       int iTab = pExpr->iTable;
3533       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3534         /* This COLUMN expression is really a constant due to WHERE clause
3535         ** constraints, and that constant is coded by the pExpr->pLeft
3536         ** expresssion.  However, make sure the constant has the correct
3537         ** datatype by applying the Affinity of the table column to the
3538         ** constant.
3539         */
3540         int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3541         int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3542         if( aff>SQLITE_AFF_BLOB ){
3543           static const char zAff[] = "B\000C\000D\000E";
3544           assert( SQLITE_AFF_BLOB=='A' );
3545           assert( SQLITE_AFF_TEXT=='B' );
3546           if( iReg!=target ){
3547             sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
3548             iReg = target;
3549           }
3550           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3551                             &zAff[(aff-'B')*2], P4_STATIC);
3552         }
3553         return iReg;
3554       }
3555       if( iTab<0 ){
3556         if( pParse->iSelfTab<0 ){
3557           /* Generating CHECK constraints or inserting into partial index */
3558           assert( pExpr->y.pTab!=0 );
3559           assert( pExpr->iColumn>=XN_ROWID );
3560           assert( pExpr->iColumn<pExpr->y.pTab->nCol );
3561           if( pExpr->iColumn>=0
3562             && pExpr->y.pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3563           ){
3564             sqlite3VdbeAddOp2(v, OP_SCopy, pExpr->iColumn - pParse->iSelfTab,
3565                               target);
3566             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3567             return target;
3568           }else{
3569             return pExpr->iColumn - pParse->iSelfTab;
3570           }
3571         }else{
3572           /* Coding an expression that is part of an index where column names
3573           ** in the index refer to the table to which the index belongs */
3574           iTab = pParse->iSelfTab - 1;
3575         }
3576       }
3577       return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3578                                pExpr->iColumn, iTab, target,
3579                                pExpr->op2);
3580     }
3581     case TK_INTEGER: {
3582       codeInteger(pParse, pExpr, 0, target);
3583       return target;
3584     }
3585     case TK_TRUEFALSE: {
3586       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3587       return target;
3588     }
3589 #ifndef SQLITE_OMIT_FLOATING_POINT
3590     case TK_FLOAT: {
3591       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3592       codeReal(v, pExpr->u.zToken, 0, target);
3593       return target;
3594     }
3595 #endif
3596     case TK_STRING: {
3597       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3598       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3599       return target;
3600     }
3601     case TK_NULL: {
3602       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3603       return target;
3604     }
3605 #ifndef SQLITE_OMIT_BLOB_LITERAL
3606     case TK_BLOB: {
3607       int n;
3608       const char *z;
3609       char *zBlob;
3610       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3611       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3612       assert( pExpr->u.zToken[1]=='\'' );
3613       z = &pExpr->u.zToken[2];
3614       n = sqlite3Strlen30(z) - 1;
3615       assert( z[n]=='\'' );
3616       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3617       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3618       return target;
3619     }
3620 #endif
3621     case TK_VARIABLE: {
3622       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3623       assert( pExpr->u.zToken!=0 );
3624       assert( pExpr->u.zToken[0]!=0 );
3625       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3626       if( pExpr->u.zToken[1]!=0 ){
3627         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3628         assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3629         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3630         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3631       }
3632       return target;
3633     }
3634     case TK_REGISTER: {
3635       return pExpr->iTable;
3636     }
3637 #ifndef SQLITE_OMIT_CAST
3638     case TK_CAST: {
3639       /* Expressions of the form:   CAST(pLeft AS token) */
3640       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3641       if( inReg!=target ){
3642         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3643         inReg = target;
3644       }
3645       sqlite3VdbeAddOp2(v, OP_Cast, target,
3646                         sqlite3AffinityType(pExpr->u.zToken, 0));
3647       return inReg;
3648     }
3649 #endif /* SQLITE_OMIT_CAST */
3650     case TK_IS:
3651     case TK_ISNOT:
3652       op = (op==TK_IS) ? TK_EQ : TK_NE;
3653       p5 = SQLITE_NULLEQ;
3654       /* fall-through */
3655     case TK_LT:
3656     case TK_LE:
3657     case TK_GT:
3658     case TK_GE:
3659     case TK_NE:
3660     case TK_EQ: {
3661       Expr *pLeft = pExpr->pLeft;
3662       if( sqlite3ExprIsVector(pLeft) ){
3663         codeVectorCompare(pParse, pExpr, target, op, p5);
3664       }else{
3665         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3666         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3667         codeCompare(pParse, pLeft, pExpr->pRight, op,
3668             r1, r2, inReg, SQLITE_STOREP2 | p5);
3669         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3670         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3671         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3672         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3673         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3674         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3675         testcase( regFree1==0 );
3676         testcase( regFree2==0 );
3677       }
3678       break;
3679     }
3680     case TK_AND:
3681     case TK_OR:
3682     case TK_PLUS:
3683     case TK_STAR:
3684     case TK_MINUS:
3685     case TK_REM:
3686     case TK_BITAND:
3687     case TK_BITOR:
3688     case TK_SLASH:
3689     case TK_LSHIFT:
3690     case TK_RSHIFT:
3691     case TK_CONCAT: {
3692       assert( TK_AND==OP_And );            testcase( op==TK_AND );
3693       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
3694       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
3695       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
3696       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
3697       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
3698       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
3699       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
3700       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
3701       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
3702       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
3703       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3704       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3705       sqlite3VdbeAddOp3(v, op, r2, r1, target);
3706       testcase( regFree1==0 );
3707       testcase( regFree2==0 );
3708       break;
3709     }
3710     case TK_UMINUS: {
3711       Expr *pLeft = pExpr->pLeft;
3712       assert( pLeft );
3713       if( pLeft->op==TK_INTEGER ){
3714         codeInteger(pParse, pLeft, 1, target);
3715         return target;
3716 #ifndef SQLITE_OMIT_FLOATING_POINT
3717       }else if( pLeft->op==TK_FLOAT ){
3718         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3719         codeReal(v, pLeft->u.zToken, 1, target);
3720         return target;
3721 #endif
3722       }else{
3723         tempX.op = TK_INTEGER;
3724         tempX.flags = EP_IntValue|EP_TokenOnly;
3725         tempX.u.iValue = 0;
3726         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3727         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3728         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3729         testcase( regFree2==0 );
3730       }
3731       break;
3732     }
3733     case TK_BITNOT:
3734     case TK_NOT: {
3735       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
3736       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
3737       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3738       testcase( regFree1==0 );
3739       sqlite3VdbeAddOp2(v, op, r1, inReg);
3740       break;
3741     }
3742     case TK_TRUTH: {
3743       int isTrue;    /* IS TRUE or IS NOT TRUE */
3744       int bNormal;   /* IS TRUE or IS FALSE */
3745       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3746       testcase( regFree1==0 );
3747       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3748       bNormal = pExpr->op2==TK_IS;
3749       testcase( isTrue && bNormal);
3750       testcase( !isTrue && bNormal);
3751       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3752       break;
3753     }
3754     case TK_ISNULL:
3755     case TK_NOTNULL: {
3756       int addr;
3757       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
3758       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3759       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3760       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3761       testcase( regFree1==0 );
3762       addr = sqlite3VdbeAddOp1(v, op, r1);
3763       VdbeCoverageIf(v, op==TK_ISNULL);
3764       VdbeCoverageIf(v, op==TK_NOTNULL);
3765       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3766       sqlite3VdbeJumpHere(v, addr);
3767       break;
3768     }
3769     case TK_AGG_FUNCTION: {
3770       AggInfo *pInfo = pExpr->pAggInfo;
3771       if( pInfo==0 ){
3772         assert( !ExprHasProperty(pExpr, EP_IntValue) );
3773         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3774       }else{
3775         return pInfo->aFunc[pExpr->iAgg].iMem;
3776       }
3777       break;
3778     }
3779     case TK_FUNCTION: {
3780       ExprList *pFarg;       /* List of function arguments */
3781       int nFarg;             /* Number of function arguments */
3782       FuncDef *pDef;         /* The function definition object */
3783       const char *zId;       /* The function name */
3784       u32 constMask = 0;     /* Mask of function arguments that are constant */
3785       int i;                 /* Loop counter */
3786       sqlite3 *db = pParse->db;  /* The database connection */
3787       u8 enc = ENC(db);      /* The text encoding used by this database */
3788       CollSeq *pColl = 0;    /* A collating sequence */
3789 
3790 #ifndef SQLITE_OMIT_WINDOWFUNC
3791       if( ExprHasProperty(pExpr, EP_WinFunc) ){
3792         return pExpr->y.pWin->regResult;
3793       }
3794 #endif
3795 
3796       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3797         /* SQL functions can be expensive. So try to move constant functions
3798         ** out of the inner loop, even if that means an extra OP_Copy. */
3799         return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3800       }
3801       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3802       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3803         pFarg = 0;
3804       }else{
3805         pFarg = pExpr->x.pList;
3806       }
3807       nFarg = pFarg ? pFarg->nExpr : 0;
3808       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3809       zId = pExpr->u.zToken;
3810       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3811 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3812       if( pDef==0 && pParse->explain ){
3813         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3814       }
3815 #endif
3816       if( pDef==0 || pDef->xFinalize!=0 ){
3817         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3818         break;
3819       }
3820 
3821       /* Attempt a direct implementation of the built-in COALESCE() and
3822       ** IFNULL() functions.  This avoids unnecessary evaluation of
3823       ** arguments past the first non-NULL argument.
3824       */
3825       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3826         int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3827         assert( nFarg>=2 );
3828         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3829         for(i=1; i<nFarg; i++){
3830           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3831           VdbeCoverage(v);
3832           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3833         }
3834         sqlite3VdbeResolveLabel(v, endCoalesce);
3835         break;
3836       }
3837 
3838       /* The UNLIKELY() function is a no-op.  The result is the value
3839       ** of the first argument.
3840       */
3841       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3842         assert( nFarg>=1 );
3843         return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3844       }
3845 
3846 #ifdef SQLITE_DEBUG
3847       /* The AFFINITY() function evaluates to a string that describes
3848       ** the type affinity of the argument.  This is used for testing of
3849       ** the SQLite type logic.
3850       */
3851       if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3852         const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3853         char aff;
3854         assert( nFarg==1 );
3855         aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3856         sqlite3VdbeLoadString(v, target,
3857                 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3858         return target;
3859       }
3860 #endif
3861 
3862       for(i=0; i<nFarg; i++){
3863         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3864           testcase( i==31 );
3865           constMask |= MASKBIT32(i);
3866         }
3867         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3868           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3869         }
3870       }
3871       if( pFarg ){
3872         if( constMask ){
3873           r1 = pParse->nMem+1;
3874           pParse->nMem += nFarg;
3875         }else{
3876           r1 = sqlite3GetTempRange(pParse, nFarg);
3877         }
3878 
3879         /* For length() and typeof() functions with a column argument,
3880         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3881         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3882         ** loading.
3883         */
3884         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3885           u8 exprOp;
3886           assert( nFarg==1 );
3887           assert( pFarg->a[0].pExpr!=0 );
3888           exprOp = pFarg->a[0].pExpr->op;
3889           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3890             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3891             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3892             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3893             pFarg->a[0].pExpr->op2 =
3894                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3895           }
3896         }
3897 
3898         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3899                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3900       }else{
3901         r1 = 0;
3902       }
3903 #ifndef SQLITE_OMIT_VIRTUALTABLE
3904       /* Possibly overload the function if the first argument is
3905       ** a virtual table column.
3906       **
3907       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3908       ** second argument, not the first, as the argument to test to
3909       ** see if it is a column in a virtual table.  This is done because
3910       ** the left operand of infix functions (the operand we want to
3911       ** control overloading) ends up as the second argument to the
3912       ** function.  The expression "A glob B" is equivalent to
3913       ** "glob(B,A).  We want to use the A in "A glob B" to test
3914       ** for function overloading.  But we use the B term in "glob(B,A)".
3915       */
3916       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
3917         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3918       }else if( nFarg>0 ){
3919         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3920       }
3921 #endif
3922       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3923         if( !pColl ) pColl = db->pDfltColl;
3924         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3925       }
3926 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3927       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3928         Expr *pArg = pFarg->a[0].pExpr;
3929         if( pArg->op==TK_COLUMN ){
3930           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3931         }else{
3932           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3933         }
3934       }else
3935 #endif
3936       {
3937         sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3938                           constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3939         sqlite3VdbeChangeP5(v, (u8)nFarg);
3940       }
3941       if( nFarg && constMask==0 ){
3942         sqlite3ReleaseTempRange(pParse, r1, nFarg);
3943       }
3944       return target;
3945     }
3946 #ifndef SQLITE_OMIT_SUBQUERY
3947     case TK_EXISTS:
3948     case TK_SELECT: {
3949       int nCol;
3950       testcase( op==TK_EXISTS );
3951       testcase( op==TK_SELECT );
3952       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3953         sqlite3SubselectError(pParse, nCol, 1);
3954       }else{
3955         return sqlite3CodeSubselect(pParse, pExpr);
3956       }
3957       break;
3958     }
3959     case TK_SELECT_COLUMN: {
3960       int n;
3961       if( pExpr->pLeft->iTable==0 ){
3962         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
3963       }
3964       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3965       if( pExpr->iTable!=0
3966        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3967       ){
3968         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3969                                 pExpr->iTable, n);
3970       }
3971       return pExpr->pLeft->iTable + pExpr->iColumn;
3972     }
3973     case TK_IN: {
3974       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
3975       int destIfNull = sqlite3VdbeMakeLabel(pParse);
3976       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3977       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3978       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3979       sqlite3VdbeResolveLabel(v, destIfFalse);
3980       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3981       sqlite3VdbeResolveLabel(v, destIfNull);
3982       return target;
3983     }
3984 #endif /* SQLITE_OMIT_SUBQUERY */
3985 
3986 
3987     /*
3988     **    x BETWEEN y AND z
3989     **
3990     ** This is equivalent to
3991     **
3992     **    x>=y AND x<=z
3993     **
3994     ** X is stored in pExpr->pLeft.
3995     ** Y is stored in pExpr->pList->a[0].pExpr.
3996     ** Z is stored in pExpr->pList->a[1].pExpr.
3997     */
3998     case TK_BETWEEN: {
3999       exprCodeBetween(pParse, pExpr, target, 0, 0);
4000       return target;
4001     }
4002     case TK_SPAN:
4003     case TK_COLLATE:
4004     case TK_UPLUS: {
4005       pExpr = pExpr->pLeft;
4006       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4007     }
4008 
4009     case TK_TRIGGER: {
4010       /* If the opcode is TK_TRIGGER, then the expression is a reference
4011       ** to a column in the new.* or old.* pseudo-tables available to
4012       ** trigger programs. In this case Expr.iTable is set to 1 for the
4013       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4014       ** is set to the column of the pseudo-table to read, or to -1 to
4015       ** read the rowid field.
4016       **
4017       ** The expression is implemented using an OP_Param opcode. The p1
4018       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4019       ** to reference another column of the old.* pseudo-table, where
4020       ** i is the index of the column. For a new.rowid reference, p1 is
4021       ** set to (n+1), where n is the number of columns in each pseudo-table.
4022       ** For a reference to any other column in the new.* pseudo-table, p1
4023       ** is set to (n+2+i), where n and i are as defined previously. For
4024       ** example, if the table on which triggers are being fired is
4025       ** declared as:
4026       **
4027       **   CREATE TABLE t1(a, b);
4028       **
4029       ** Then p1 is interpreted as follows:
4030       **
4031       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4032       **   p1==1   ->    old.a         p1==4   ->    new.a
4033       **   p1==2   ->    old.b         p1==5   ->    new.b
4034       */
4035       Table *pTab = pExpr->y.pTab;
4036       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
4037 
4038       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4039       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
4040       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
4041       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4042 
4043       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4044       VdbeComment((v, "r[%d]=%s.%s", target,
4045         (pExpr->iTable ? "new" : "old"),
4046         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
4047       ));
4048 
4049 #ifndef SQLITE_OMIT_FLOATING_POINT
4050       /* If the column has REAL affinity, it may currently be stored as an
4051       ** integer. Use OP_RealAffinity to make sure it is really real.
4052       **
4053       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4054       ** floating point when extracting it from the record.  */
4055       if( pExpr->iColumn>=0
4056        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
4057       ){
4058         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4059       }
4060 #endif
4061       break;
4062     }
4063 
4064     case TK_VECTOR: {
4065       sqlite3ErrorMsg(pParse, "row value misused");
4066       break;
4067     }
4068 
4069     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4070     ** that derive from the right-hand table of a LEFT JOIN.  The
4071     ** Expr.iTable value is the table number for the right-hand table.
4072     ** The expression is only evaluated if that table is not currently
4073     ** on a LEFT JOIN NULL row.
4074     */
4075     case TK_IF_NULL_ROW: {
4076       int addrINR;
4077       u8 okConstFactor = pParse->okConstFactor;
4078       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4079       /* Temporarily disable factoring of constant expressions, since
4080       ** even though expressions may appear to be constant, they are not
4081       ** really constant because they originate from the right-hand side
4082       ** of a LEFT JOIN. */
4083       pParse->okConstFactor = 0;
4084       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4085       pParse->okConstFactor = okConstFactor;
4086       sqlite3VdbeJumpHere(v, addrINR);
4087       sqlite3VdbeChangeP3(v, addrINR, inReg);
4088       break;
4089     }
4090 
4091     /*
4092     ** Form A:
4093     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4094     **
4095     ** Form B:
4096     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4097     **
4098     ** Form A is can be transformed into the equivalent form B as follows:
4099     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4100     **        WHEN x=eN THEN rN ELSE y END
4101     **
4102     ** X (if it exists) is in pExpr->pLeft.
4103     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4104     ** odd.  The Y is also optional.  If the number of elements in x.pList
4105     ** is even, then Y is omitted and the "otherwise" result is NULL.
4106     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4107     **
4108     ** The result of the expression is the Ri for the first matching Ei,
4109     ** or if there is no matching Ei, the ELSE term Y, or if there is
4110     ** no ELSE term, NULL.
4111     */
4112     default: assert( op==TK_CASE ); {
4113       int endLabel;                     /* GOTO label for end of CASE stmt */
4114       int nextCase;                     /* GOTO label for next WHEN clause */
4115       int nExpr;                        /* 2x number of WHEN terms */
4116       int i;                            /* Loop counter */
4117       ExprList *pEList;                 /* List of WHEN terms */
4118       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4119       Expr opCompare;                   /* The X==Ei expression */
4120       Expr *pX;                         /* The X expression */
4121       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4122       Expr *pDel = 0;
4123       sqlite3 *db = pParse->db;
4124 
4125       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4126       assert(pExpr->x.pList->nExpr > 0);
4127       pEList = pExpr->x.pList;
4128       aListelem = pEList->a;
4129       nExpr = pEList->nExpr;
4130       endLabel = sqlite3VdbeMakeLabel(pParse);
4131       if( (pX = pExpr->pLeft)!=0 ){
4132         pDel = sqlite3ExprDup(db, pX, 0);
4133         if( db->mallocFailed ){
4134           sqlite3ExprDelete(db, pDel);
4135           break;
4136         }
4137         testcase( pX->op==TK_COLUMN );
4138         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4139         testcase( regFree1==0 );
4140         memset(&opCompare, 0, sizeof(opCompare));
4141         opCompare.op = TK_EQ;
4142         opCompare.pLeft = pDel;
4143         pTest = &opCompare;
4144         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4145         ** The value in regFree1 might get SCopy-ed into the file result.
4146         ** So make sure that the regFree1 register is not reused for other
4147         ** purposes and possibly overwritten.  */
4148         regFree1 = 0;
4149       }
4150       for(i=0; i<nExpr-1; i=i+2){
4151         if( pX ){
4152           assert( pTest!=0 );
4153           opCompare.pRight = aListelem[i].pExpr;
4154         }else{
4155           pTest = aListelem[i].pExpr;
4156         }
4157         nextCase = sqlite3VdbeMakeLabel(pParse);
4158         testcase( pTest->op==TK_COLUMN );
4159         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4160         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4161         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4162         sqlite3VdbeGoto(v, endLabel);
4163         sqlite3VdbeResolveLabel(v, nextCase);
4164       }
4165       if( (nExpr&1)!=0 ){
4166         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4167       }else{
4168         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4169       }
4170       sqlite3ExprDelete(db, pDel);
4171       sqlite3VdbeResolveLabel(v, endLabel);
4172       break;
4173     }
4174 #ifndef SQLITE_OMIT_TRIGGER
4175     case TK_RAISE: {
4176       assert( pExpr->affExpr==OE_Rollback
4177            || pExpr->affExpr==OE_Abort
4178            || pExpr->affExpr==OE_Fail
4179            || pExpr->affExpr==OE_Ignore
4180       );
4181       if( !pParse->pTriggerTab ){
4182         sqlite3ErrorMsg(pParse,
4183                        "RAISE() may only be used within a trigger-program");
4184         return 0;
4185       }
4186       if( pExpr->affExpr==OE_Abort ){
4187         sqlite3MayAbort(pParse);
4188       }
4189       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4190       if( pExpr->affExpr==OE_Ignore ){
4191         sqlite3VdbeAddOp4(
4192             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4193         VdbeCoverage(v);
4194       }else{
4195         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4196                               pExpr->affExpr, pExpr->u.zToken, 0, 0);
4197       }
4198 
4199       break;
4200     }
4201 #endif
4202   }
4203   sqlite3ReleaseTempReg(pParse, regFree1);
4204   sqlite3ReleaseTempReg(pParse, regFree2);
4205   return inReg;
4206 }
4207 
4208 /*
4209 ** Factor out the code of the given expression to initialization time.
4210 **
4211 ** If regDest>=0 then the result is always stored in that register and the
4212 ** result is not reusable.  If regDest<0 then this routine is free to
4213 ** store the value whereever it wants.  The register where the expression
4214 ** is stored is returned.  When regDest<0, two identical expressions will
4215 ** code to the same register.
4216 */
4217 int sqlite3ExprCodeAtInit(
4218   Parse *pParse,    /* Parsing context */
4219   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4220   int regDest       /* Store the value in this register */
4221 ){
4222   ExprList *p;
4223   assert( ConstFactorOk(pParse) );
4224   p = pParse->pConstExpr;
4225   if( regDest<0 && p ){
4226     struct ExprList_item *pItem;
4227     int i;
4228     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4229       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4230         return pItem->u.iConstExprReg;
4231       }
4232     }
4233   }
4234   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4235   p = sqlite3ExprListAppend(pParse, p, pExpr);
4236   if( p ){
4237      struct ExprList_item *pItem = &p->a[p->nExpr-1];
4238      pItem->reusable = regDest<0;
4239      if( regDest<0 ) regDest = ++pParse->nMem;
4240      pItem->u.iConstExprReg = regDest;
4241   }
4242   pParse->pConstExpr = p;
4243   return regDest;
4244 }
4245 
4246 /*
4247 ** Generate code to evaluate an expression and store the results
4248 ** into a register.  Return the register number where the results
4249 ** are stored.
4250 **
4251 ** If the register is a temporary register that can be deallocated,
4252 ** then write its number into *pReg.  If the result register is not
4253 ** a temporary, then set *pReg to zero.
4254 **
4255 ** If pExpr is a constant, then this routine might generate this
4256 ** code to fill the register in the initialization section of the
4257 ** VDBE program, in order to factor it out of the evaluation loop.
4258 */
4259 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4260   int r2;
4261   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4262   if( ConstFactorOk(pParse)
4263    && pExpr->op!=TK_REGISTER
4264    && sqlite3ExprIsConstantNotJoin(pExpr)
4265   ){
4266     *pReg  = 0;
4267     r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4268   }else{
4269     int r1 = sqlite3GetTempReg(pParse);
4270     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4271     if( r2==r1 ){
4272       *pReg = r1;
4273     }else{
4274       sqlite3ReleaseTempReg(pParse, r1);
4275       *pReg = 0;
4276     }
4277   }
4278   return r2;
4279 }
4280 
4281 /*
4282 ** Generate code that will evaluate expression pExpr and store the
4283 ** results in register target.  The results are guaranteed to appear
4284 ** in register target.
4285 */
4286 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4287   int inReg;
4288 
4289   assert( target>0 && target<=pParse->nMem );
4290   if( pExpr && pExpr->op==TK_REGISTER ){
4291     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4292   }else{
4293     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4294     assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4295     if( inReg!=target && pParse->pVdbe ){
4296       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4297     }
4298   }
4299 }
4300 
4301 /*
4302 ** Make a transient copy of expression pExpr and then code it using
4303 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4304 ** except that the input expression is guaranteed to be unchanged.
4305 */
4306 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4307   sqlite3 *db = pParse->db;
4308   pExpr = sqlite3ExprDup(db, pExpr, 0);
4309   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4310   sqlite3ExprDelete(db, pExpr);
4311 }
4312 
4313 /*
4314 ** Generate code that will evaluate expression pExpr and store the
4315 ** results in register target.  The results are guaranteed to appear
4316 ** in register target.  If the expression is constant, then this routine
4317 ** might choose to code the expression at initialization time.
4318 */
4319 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4320   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4321     sqlite3ExprCodeAtInit(pParse, pExpr, target);
4322   }else{
4323     sqlite3ExprCode(pParse, pExpr, target);
4324   }
4325 }
4326 
4327 /*
4328 ** Generate code that evaluates the given expression and puts the result
4329 ** in register target.
4330 **
4331 ** Also make a copy of the expression results into another "cache" register
4332 ** and modify the expression so that the next time it is evaluated,
4333 ** the result is a copy of the cache register.
4334 **
4335 ** This routine is used for expressions that are used multiple
4336 ** times.  They are evaluated once and the results of the expression
4337 ** are reused.
4338 */
4339 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4340   Vdbe *v = pParse->pVdbe;
4341   int iMem;
4342 
4343   assert( target>0 );
4344   assert( pExpr->op!=TK_REGISTER );
4345   sqlite3ExprCode(pParse, pExpr, target);
4346   iMem = ++pParse->nMem;
4347   sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4348   exprToRegister(pExpr, iMem);
4349 }
4350 
4351 /*
4352 ** Generate code that pushes the value of every element of the given
4353 ** expression list into a sequence of registers beginning at target.
4354 **
4355 ** Return the number of elements evaluated.  The number returned will
4356 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4357 ** is defined.
4358 **
4359 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4360 ** filled using OP_SCopy.  OP_Copy must be used instead.
4361 **
4362 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4363 ** factored out into initialization code.
4364 **
4365 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4366 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4367 ** in registers at srcReg, and so the value can be copied from there.
4368 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4369 ** are simply omitted rather than being copied from srcReg.
4370 */
4371 int sqlite3ExprCodeExprList(
4372   Parse *pParse,     /* Parsing context */
4373   ExprList *pList,   /* The expression list to be coded */
4374   int target,        /* Where to write results */
4375   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4376   u8 flags           /* SQLITE_ECEL_* flags */
4377 ){
4378   struct ExprList_item *pItem;
4379   int i, j, n;
4380   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4381   Vdbe *v = pParse->pVdbe;
4382   assert( pList!=0 );
4383   assert( target>0 );
4384   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4385   n = pList->nExpr;
4386   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4387   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4388     Expr *pExpr = pItem->pExpr;
4389 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4390     if( pItem->bSorterRef ){
4391       i--;
4392       n--;
4393     }else
4394 #endif
4395     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4396       if( flags & SQLITE_ECEL_OMITREF ){
4397         i--;
4398         n--;
4399       }else{
4400         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4401       }
4402     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4403            && sqlite3ExprIsConstantNotJoin(pExpr)
4404     ){
4405       sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4406     }else{
4407       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4408       if( inReg!=target+i ){
4409         VdbeOp *pOp;
4410         if( copyOp==OP_Copy
4411          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4412          && pOp->p1+pOp->p3+1==inReg
4413          && pOp->p2+pOp->p3+1==target+i
4414         ){
4415           pOp->p3++;
4416         }else{
4417           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4418         }
4419       }
4420     }
4421   }
4422   return n;
4423 }
4424 
4425 /*
4426 ** Generate code for a BETWEEN operator.
4427 **
4428 **    x BETWEEN y AND z
4429 **
4430 ** The above is equivalent to
4431 **
4432 **    x>=y AND x<=z
4433 **
4434 ** Code it as such, taking care to do the common subexpression
4435 ** elimination of x.
4436 **
4437 ** The xJumpIf parameter determines details:
4438 **
4439 **    NULL:                   Store the boolean result in reg[dest]
4440 **    sqlite3ExprIfTrue:      Jump to dest if true
4441 **    sqlite3ExprIfFalse:     Jump to dest if false
4442 **
4443 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4444 */
4445 static void exprCodeBetween(
4446   Parse *pParse,    /* Parsing and code generating context */
4447   Expr *pExpr,      /* The BETWEEN expression */
4448   int dest,         /* Jump destination or storage location */
4449   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4450   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4451 ){
4452   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4453   Expr compLeft;    /* The  x>=y  term */
4454   Expr compRight;   /* The  x<=z  term */
4455   int regFree1 = 0; /* Temporary use register */
4456   Expr *pDel = 0;
4457   sqlite3 *db = pParse->db;
4458 
4459   memset(&compLeft, 0, sizeof(Expr));
4460   memset(&compRight, 0, sizeof(Expr));
4461   memset(&exprAnd, 0, sizeof(Expr));
4462 
4463   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4464   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4465   if( db->mallocFailed==0 ){
4466     exprAnd.op = TK_AND;
4467     exprAnd.pLeft = &compLeft;
4468     exprAnd.pRight = &compRight;
4469     compLeft.op = TK_GE;
4470     compLeft.pLeft = pDel;
4471     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4472     compRight.op = TK_LE;
4473     compRight.pLeft = pDel;
4474     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4475     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4476     if( xJump ){
4477       xJump(pParse, &exprAnd, dest, jumpIfNull);
4478     }else{
4479       /* Mark the expression is being from the ON or USING clause of a join
4480       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4481       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4482       ** for clarity, but we are out of bits in the Expr.flags field so we
4483       ** have to reuse the EP_FromJoin bit.  Bummer. */
4484       pDel->flags |= EP_FromJoin;
4485       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4486     }
4487     sqlite3ReleaseTempReg(pParse, regFree1);
4488   }
4489   sqlite3ExprDelete(db, pDel);
4490 
4491   /* Ensure adequate test coverage */
4492   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4493   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4494   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4495   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4496   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4497   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4498   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4499   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4500   testcase( xJump==0 );
4501 }
4502 
4503 /*
4504 ** Generate code for a boolean expression such that a jump is made
4505 ** to the label "dest" if the expression is true but execution
4506 ** continues straight thru if the expression is false.
4507 **
4508 ** If the expression evaluates to NULL (neither true nor false), then
4509 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4510 **
4511 ** This code depends on the fact that certain token values (ex: TK_EQ)
4512 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4513 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4514 ** the make process cause these values to align.  Assert()s in the code
4515 ** below verify that the numbers are aligned correctly.
4516 */
4517 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4518   Vdbe *v = pParse->pVdbe;
4519   int op = 0;
4520   int regFree1 = 0;
4521   int regFree2 = 0;
4522   int r1, r2;
4523 
4524   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4525   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4526   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4527   op = pExpr->op;
4528   switch( op ){
4529     case TK_AND:
4530     case TK_OR: {
4531       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4532       if( pAlt!=pExpr ){
4533         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4534       }else if( op==TK_AND ){
4535         int d2 = sqlite3VdbeMakeLabel(pParse);
4536         testcase( jumpIfNull==0 );
4537         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4538                            jumpIfNull^SQLITE_JUMPIFNULL);
4539         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4540         sqlite3VdbeResolveLabel(v, d2);
4541       }else{
4542         testcase( jumpIfNull==0 );
4543         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4544         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4545       }
4546       break;
4547     }
4548     case TK_NOT: {
4549       testcase( jumpIfNull==0 );
4550       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4551       break;
4552     }
4553     case TK_TRUTH: {
4554       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4555       int isTrue;     /* IS TRUE or IS NOT TRUE */
4556       testcase( jumpIfNull==0 );
4557       isNot = pExpr->op2==TK_ISNOT;
4558       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4559       testcase( isTrue && isNot );
4560       testcase( !isTrue && isNot );
4561       if( isTrue ^ isNot ){
4562         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4563                           isNot ? SQLITE_JUMPIFNULL : 0);
4564       }else{
4565         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4566                            isNot ? SQLITE_JUMPIFNULL : 0);
4567       }
4568       break;
4569     }
4570     case TK_IS:
4571     case TK_ISNOT:
4572       testcase( op==TK_IS );
4573       testcase( op==TK_ISNOT );
4574       op = (op==TK_IS) ? TK_EQ : TK_NE;
4575       jumpIfNull = SQLITE_NULLEQ;
4576       /* Fall thru */
4577     case TK_LT:
4578     case TK_LE:
4579     case TK_GT:
4580     case TK_GE:
4581     case TK_NE:
4582     case TK_EQ: {
4583       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4584       testcase( jumpIfNull==0 );
4585       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4586       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4587       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4588                   r1, r2, dest, jumpIfNull);
4589       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4590       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4591       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4592       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4593       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4594       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4595       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4596       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4597       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4598       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4599       testcase( regFree1==0 );
4600       testcase( regFree2==0 );
4601       break;
4602     }
4603     case TK_ISNULL:
4604     case TK_NOTNULL: {
4605       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4606       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4607       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4608       sqlite3VdbeAddOp2(v, op, r1, dest);
4609       VdbeCoverageIf(v, op==TK_ISNULL);
4610       VdbeCoverageIf(v, op==TK_NOTNULL);
4611       testcase( regFree1==0 );
4612       break;
4613     }
4614     case TK_BETWEEN: {
4615       testcase( jumpIfNull==0 );
4616       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4617       break;
4618     }
4619 #ifndef SQLITE_OMIT_SUBQUERY
4620     case TK_IN: {
4621       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4622       int destIfNull = jumpIfNull ? dest : destIfFalse;
4623       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4624       sqlite3VdbeGoto(v, dest);
4625       sqlite3VdbeResolveLabel(v, destIfFalse);
4626       break;
4627     }
4628 #endif
4629     default: {
4630     default_expr:
4631       if( ExprAlwaysTrue(pExpr) ){
4632         sqlite3VdbeGoto(v, dest);
4633       }else if( ExprAlwaysFalse(pExpr) ){
4634         /* No-op */
4635       }else{
4636         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4637         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4638         VdbeCoverage(v);
4639         testcase( regFree1==0 );
4640         testcase( jumpIfNull==0 );
4641       }
4642       break;
4643     }
4644   }
4645   sqlite3ReleaseTempReg(pParse, regFree1);
4646   sqlite3ReleaseTempReg(pParse, regFree2);
4647 }
4648 
4649 /*
4650 ** Generate code for a boolean expression such that a jump is made
4651 ** to the label "dest" if the expression is false but execution
4652 ** continues straight thru if the expression is true.
4653 **
4654 ** If the expression evaluates to NULL (neither true nor false) then
4655 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4656 ** is 0.
4657 */
4658 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4659   Vdbe *v = pParse->pVdbe;
4660   int op = 0;
4661   int regFree1 = 0;
4662   int regFree2 = 0;
4663   int r1, r2;
4664 
4665   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4666   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4667   if( pExpr==0 )    return;
4668 
4669   /* The value of pExpr->op and op are related as follows:
4670   **
4671   **       pExpr->op            op
4672   **       ---------          ----------
4673   **       TK_ISNULL          OP_NotNull
4674   **       TK_NOTNULL         OP_IsNull
4675   **       TK_NE              OP_Eq
4676   **       TK_EQ              OP_Ne
4677   **       TK_GT              OP_Le
4678   **       TK_LE              OP_Gt
4679   **       TK_GE              OP_Lt
4680   **       TK_LT              OP_Ge
4681   **
4682   ** For other values of pExpr->op, op is undefined and unused.
4683   ** The value of TK_ and OP_ constants are arranged such that we
4684   ** can compute the mapping above using the following expression.
4685   ** Assert()s verify that the computation is correct.
4686   */
4687   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4688 
4689   /* Verify correct alignment of TK_ and OP_ constants
4690   */
4691   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4692   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4693   assert( pExpr->op!=TK_NE || op==OP_Eq );
4694   assert( pExpr->op!=TK_EQ || op==OP_Ne );
4695   assert( pExpr->op!=TK_LT || op==OP_Ge );
4696   assert( pExpr->op!=TK_LE || op==OP_Gt );
4697   assert( pExpr->op!=TK_GT || op==OP_Le );
4698   assert( pExpr->op!=TK_GE || op==OP_Lt );
4699 
4700   switch( pExpr->op ){
4701     case TK_AND:
4702     case TK_OR: {
4703       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4704       if( pAlt!=pExpr ){
4705         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
4706       }else if( pExpr->op==TK_AND ){
4707         testcase( jumpIfNull==0 );
4708         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4709         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4710       }else{
4711         int d2 = sqlite3VdbeMakeLabel(pParse);
4712         testcase( jumpIfNull==0 );
4713         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
4714                           jumpIfNull^SQLITE_JUMPIFNULL);
4715         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4716         sqlite3VdbeResolveLabel(v, d2);
4717       }
4718       break;
4719     }
4720     case TK_NOT: {
4721       testcase( jumpIfNull==0 );
4722       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4723       break;
4724     }
4725     case TK_TRUTH: {
4726       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
4727       int isTrue;  /* IS TRUE or IS NOT TRUE */
4728       testcase( jumpIfNull==0 );
4729       isNot = pExpr->op2==TK_ISNOT;
4730       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4731       testcase( isTrue && isNot );
4732       testcase( !isTrue && isNot );
4733       if( isTrue ^ isNot ){
4734         /* IS TRUE and IS NOT FALSE */
4735         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4736                            isNot ? 0 : SQLITE_JUMPIFNULL);
4737 
4738       }else{
4739         /* IS FALSE and IS NOT TRUE */
4740         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4741                           isNot ? 0 : SQLITE_JUMPIFNULL);
4742       }
4743       break;
4744     }
4745     case TK_IS:
4746     case TK_ISNOT:
4747       testcase( pExpr->op==TK_IS );
4748       testcase( pExpr->op==TK_ISNOT );
4749       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4750       jumpIfNull = SQLITE_NULLEQ;
4751       /* Fall thru */
4752     case TK_LT:
4753     case TK_LE:
4754     case TK_GT:
4755     case TK_GE:
4756     case TK_NE:
4757     case TK_EQ: {
4758       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4759       testcase( jumpIfNull==0 );
4760       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4761       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4762       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4763                   r1, r2, dest, jumpIfNull);
4764       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4765       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4766       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4767       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4768       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4769       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4770       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4771       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4772       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4773       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4774       testcase( regFree1==0 );
4775       testcase( regFree2==0 );
4776       break;
4777     }
4778     case TK_ISNULL:
4779     case TK_NOTNULL: {
4780       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4781       sqlite3VdbeAddOp2(v, op, r1, dest);
4782       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
4783       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
4784       testcase( regFree1==0 );
4785       break;
4786     }
4787     case TK_BETWEEN: {
4788       testcase( jumpIfNull==0 );
4789       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4790       break;
4791     }
4792 #ifndef SQLITE_OMIT_SUBQUERY
4793     case TK_IN: {
4794       if( jumpIfNull ){
4795         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4796       }else{
4797         int destIfNull = sqlite3VdbeMakeLabel(pParse);
4798         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4799         sqlite3VdbeResolveLabel(v, destIfNull);
4800       }
4801       break;
4802     }
4803 #endif
4804     default: {
4805     default_expr:
4806       if( ExprAlwaysFalse(pExpr) ){
4807         sqlite3VdbeGoto(v, dest);
4808       }else if( ExprAlwaysTrue(pExpr) ){
4809         /* no-op */
4810       }else{
4811         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4812         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4813         VdbeCoverage(v);
4814         testcase( regFree1==0 );
4815         testcase( jumpIfNull==0 );
4816       }
4817       break;
4818     }
4819   }
4820   sqlite3ReleaseTempReg(pParse, regFree1);
4821   sqlite3ReleaseTempReg(pParse, regFree2);
4822 }
4823 
4824 /*
4825 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4826 ** code generation, and that copy is deleted after code generation. This
4827 ** ensures that the original pExpr is unchanged.
4828 */
4829 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4830   sqlite3 *db = pParse->db;
4831   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4832   if( db->mallocFailed==0 ){
4833     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4834   }
4835   sqlite3ExprDelete(db, pCopy);
4836 }
4837 
4838 /*
4839 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4840 ** type of expression.
4841 **
4842 ** If pExpr is a simple SQL value - an integer, real, string, blob
4843 ** or NULL value - then the VDBE currently being prepared is configured
4844 ** to re-prepare each time a new value is bound to variable pVar.
4845 **
4846 ** Additionally, if pExpr is a simple SQL value and the value is the
4847 ** same as that currently bound to variable pVar, non-zero is returned.
4848 ** Otherwise, if the values are not the same or if pExpr is not a simple
4849 ** SQL value, zero is returned.
4850 */
4851 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4852   int res = 0;
4853   int iVar;
4854   sqlite3_value *pL, *pR = 0;
4855 
4856   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4857   if( pR ){
4858     iVar = pVar->iColumn;
4859     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4860     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4861     if( pL ){
4862       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4863         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4864       }
4865       res =  0==sqlite3MemCompare(pL, pR, 0);
4866     }
4867     sqlite3ValueFree(pR);
4868     sqlite3ValueFree(pL);
4869   }
4870 
4871   return res;
4872 }
4873 
4874 /*
4875 ** Do a deep comparison of two expression trees.  Return 0 if the two
4876 ** expressions are completely identical.  Return 1 if they differ only
4877 ** by a COLLATE operator at the top level.  Return 2 if there are differences
4878 ** other than the top-level COLLATE operator.
4879 **
4880 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4881 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4882 **
4883 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
4884 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4885 **
4886 ** Sometimes this routine will return 2 even if the two expressions
4887 ** really are equivalent.  If we cannot prove that the expressions are
4888 ** identical, we return 2 just to be safe.  So if this routine
4889 ** returns 2, then you do not really know for certain if the two
4890 ** expressions are the same.  But if you get a 0 or 1 return, then you
4891 ** can be sure the expressions are the same.  In the places where
4892 ** this routine is used, it does not hurt to get an extra 2 - that
4893 ** just might result in some slightly slower code.  But returning
4894 ** an incorrect 0 or 1 could lead to a malfunction.
4895 **
4896 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4897 ** pParse->pReprepare can be matched against literals in pB.  The
4898 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4899 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4900 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4901 ** pB causes a return value of 2.
4902 */
4903 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4904   u32 combinedFlags;
4905   if( pA==0 || pB==0 ){
4906     return pB==pA ? 0 : 2;
4907   }
4908   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4909     return 0;
4910   }
4911   combinedFlags = pA->flags | pB->flags;
4912   if( combinedFlags & EP_IntValue ){
4913     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4914       return 0;
4915     }
4916     return 2;
4917   }
4918   if( pA->op!=pB->op || pA->op==TK_RAISE ){
4919     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4920       return 1;
4921     }
4922     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4923       return 1;
4924     }
4925     return 2;
4926   }
4927   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4928     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
4929       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4930 #ifndef SQLITE_OMIT_WINDOWFUNC
4931       assert( pA->op==pB->op );
4932       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
4933         return 2;
4934       }
4935       if( ExprHasProperty(pA,EP_WinFunc) ){
4936         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
4937           return 2;
4938         }
4939       }
4940 #endif
4941     }else if( pA->op==TK_NULL ){
4942       return 0;
4943     }else if( pA->op==TK_COLLATE ){
4944       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4945     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4946       return 2;
4947     }
4948   }
4949   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4950   if( (combinedFlags & EP_TokenOnly)==0 ){
4951     if( combinedFlags & EP_xIsSelect ) return 2;
4952     if( (combinedFlags & EP_FixedCol)==0
4953      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4954     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4955     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4956     if( pA->op!=TK_STRING
4957      && pA->op!=TK_TRUEFALSE
4958      && (combinedFlags & EP_Reduced)==0
4959     ){
4960       if( pA->iColumn!=pB->iColumn ) return 2;
4961       if( pA->op2!=pB->op2 ) return 2;
4962       if( pA->op!=TK_IN
4963        && pA->iTable!=pB->iTable
4964        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4965     }
4966   }
4967   return 0;
4968 }
4969 
4970 /*
4971 ** Compare two ExprList objects.  Return 0 if they are identical and
4972 ** non-zero if they differ in any way.
4973 **
4974 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4975 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4976 **
4977 ** This routine might return non-zero for equivalent ExprLists.  The
4978 ** only consequence will be disabled optimizations.  But this routine
4979 ** must never return 0 if the two ExprList objects are different, or
4980 ** a malfunction will result.
4981 **
4982 ** Two NULL pointers are considered to be the same.  But a NULL pointer
4983 ** always differs from a non-NULL pointer.
4984 */
4985 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4986   int i;
4987   if( pA==0 && pB==0 ) return 0;
4988   if( pA==0 || pB==0 ) return 1;
4989   if( pA->nExpr!=pB->nExpr ) return 1;
4990   for(i=0; i<pA->nExpr; i++){
4991     Expr *pExprA = pA->a[i].pExpr;
4992     Expr *pExprB = pB->a[i].pExpr;
4993     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
4994     if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4995   }
4996   return 0;
4997 }
4998 
4999 /*
5000 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5001 ** are ignored.
5002 */
5003 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5004   return sqlite3ExprCompare(0,
5005              sqlite3ExprSkipCollateAndLikely(pA),
5006              sqlite3ExprSkipCollateAndLikely(pB),
5007              iTab);
5008 }
5009 
5010 /*
5011 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5012 **
5013 ** Or if seenNot is true, return non-zero if Expr p can only be
5014 ** non-NULL if pNN is not NULL
5015 */
5016 static int exprImpliesNotNull(
5017   Parse *pParse,      /* Parsing context */
5018   Expr *p,            /* The expression to be checked */
5019   Expr *pNN,          /* The expression that is NOT NULL */
5020   int iTab,           /* Table being evaluated */
5021   int seenNot         /* Return true only if p can be any non-NULL value */
5022 ){
5023   assert( p );
5024   assert( pNN );
5025   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5026     return pNN->op!=TK_NULL;
5027   }
5028   switch( p->op ){
5029     case TK_IN: {
5030       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5031       assert( ExprHasProperty(p,EP_xIsSelect)
5032            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5033       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5034     }
5035     case TK_BETWEEN: {
5036       ExprList *pList = p->x.pList;
5037       assert( pList!=0 );
5038       assert( pList->nExpr==2 );
5039       if( seenNot ) return 0;
5040       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5041        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5042       ){
5043         return 1;
5044       }
5045       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5046     }
5047     case TK_EQ:
5048     case TK_NE:
5049     case TK_LT:
5050     case TK_LE:
5051     case TK_GT:
5052     case TK_GE:
5053     case TK_PLUS:
5054     case TK_MINUS:
5055     case TK_BITOR:
5056     case TK_LSHIFT:
5057     case TK_RSHIFT:
5058     case TK_CONCAT:
5059       seenNot = 1;
5060       /* Fall thru */
5061     case TK_STAR:
5062     case TK_REM:
5063     case TK_BITAND:
5064     case TK_SLASH: {
5065       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5066       /* Fall thru into the next case */
5067     }
5068     case TK_SPAN:
5069     case TK_COLLATE:
5070     case TK_UPLUS:
5071     case TK_UMINUS: {
5072       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5073     }
5074     case TK_TRUTH: {
5075       if( seenNot ) return 0;
5076       if( p->op2!=TK_IS ) return 0;
5077       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5078     }
5079     case TK_BITNOT:
5080     case TK_NOT: {
5081       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5082     }
5083   }
5084   return 0;
5085 }
5086 
5087 /*
5088 ** Return true if we can prove the pE2 will always be true if pE1 is
5089 ** true.  Return false if we cannot complete the proof or if pE2 might
5090 ** be false.  Examples:
5091 **
5092 **     pE1: x==5       pE2: x==5             Result: true
5093 **     pE1: x>0        pE2: x==5             Result: false
5094 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5095 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5096 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5097 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5098 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5099 **
5100 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5101 ** Expr.iTable<0 then assume a table number given by iTab.
5102 **
5103 ** If pParse is not NULL, then the values of bound variables in pE1 are
5104 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5105 ** modified to record which bound variables are referenced.  If pParse
5106 ** is NULL, then false will be returned if pE1 contains any bound variables.
5107 **
5108 ** When in doubt, return false.  Returning true might give a performance
5109 ** improvement.  Returning false might cause a performance reduction, but
5110 ** it will always give the correct answer and is hence always safe.
5111 */
5112 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5113   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5114     return 1;
5115   }
5116   if( pE2->op==TK_OR
5117    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5118              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5119   ){
5120     return 1;
5121   }
5122   if( pE2->op==TK_NOTNULL
5123    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5124   ){
5125     return 1;
5126   }
5127   return 0;
5128 }
5129 
5130 /*
5131 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5132 ** If the expression node requires that the table at pWalker->iCur
5133 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5134 **
5135 ** This routine controls an optimization.  False positives (setting
5136 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5137 ** (never setting pWalker->eCode) is a harmless missed optimization.
5138 */
5139 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5140   testcase( pExpr->op==TK_AGG_COLUMN );
5141   testcase( pExpr->op==TK_AGG_FUNCTION );
5142   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5143   switch( pExpr->op ){
5144     case TK_ISNOT:
5145     case TK_ISNULL:
5146     case TK_NOTNULL:
5147     case TK_IS:
5148     case TK_OR:
5149     case TK_CASE:
5150     case TK_IN:
5151     case TK_FUNCTION:
5152     case TK_TRUTH:
5153       testcase( pExpr->op==TK_ISNOT );
5154       testcase( pExpr->op==TK_ISNULL );
5155       testcase( pExpr->op==TK_NOTNULL );
5156       testcase( pExpr->op==TK_IS );
5157       testcase( pExpr->op==TK_OR );
5158       testcase( pExpr->op==TK_CASE );
5159       testcase( pExpr->op==TK_IN );
5160       testcase( pExpr->op==TK_FUNCTION );
5161       testcase( pExpr->op==TK_TRUTH );
5162       return WRC_Prune;
5163     case TK_COLUMN:
5164       if( pWalker->u.iCur==pExpr->iTable ){
5165         pWalker->eCode = 1;
5166         return WRC_Abort;
5167       }
5168       return WRC_Prune;
5169 
5170     case TK_AND:
5171       assert( pWalker->eCode==0 );
5172       sqlite3WalkExpr(pWalker, pExpr->pLeft);
5173       if( pWalker->eCode ){
5174         pWalker->eCode = 0;
5175         sqlite3WalkExpr(pWalker, pExpr->pRight);
5176       }
5177       return WRC_Prune;
5178 
5179     case TK_BETWEEN:
5180       sqlite3WalkExpr(pWalker, pExpr->pLeft);
5181       return WRC_Prune;
5182 
5183     /* Virtual tables are allowed to use constraints like x=NULL.  So
5184     ** a term of the form x=y does not prove that y is not null if x
5185     ** is the column of a virtual table */
5186     case TK_EQ:
5187     case TK_NE:
5188     case TK_LT:
5189     case TK_LE:
5190     case TK_GT:
5191     case TK_GE:
5192       testcase( pExpr->op==TK_EQ );
5193       testcase( pExpr->op==TK_NE );
5194       testcase( pExpr->op==TK_LT );
5195       testcase( pExpr->op==TK_LE );
5196       testcase( pExpr->op==TK_GT );
5197       testcase( pExpr->op==TK_GE );
5198       if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
5199        || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
5200       ){
5201        return WRC_Prune;
5202       }
5203 
5204     default:
5205       return WRC_Continue;
5206   }
5207 }
5208 
5209 /*
5210 ** Return true (non-zero) if expression p can only be true if at least
5211 ** one column of table iTab is non-null.  In other words, return true
5212 ** if expression p will always be NULL or false if every column of iTab
5213 ** is NULL.
5214 **
5215 ** False negatives are acceptable.  In other words, it is ok to return
5216 ** zero even if expression p will never be true of every column of iTab
5217 ** is NULL.  A false negative is merely a missed optimization opportunity.
5218 **
5219 ** False positives are not allowed, however.  A false positive may result
5220 ** in an incorrect answer.
5221 **
5222 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5223 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5224 **
5225 ** This routine is used to check if a LEFT JOIN can be converted into
5226 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5227 ** clause requires that some column of the right table of the LEFT JOIN
5228 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5229 ** ordinary join.
5230 */
5231 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5232   Walker w;
5233   p = sqlite3ExprSkipCollateAndLikely(p);
5234   if( p && p->op==TK_NOTNULL ){
5235     p = p->pLeft;
5236   }
5237   w.xExprCallback = impliesNotNullRow;
5238   w.xSelectCallback = 0;
5239   w.xSelectCallback2 = 0;
5240   w.eCode = 0;
5241   w.u.iCur = iTab;
5242   sqlite3WalkExpr(&w, p);
5243   return w.eCode;
5244 }
5245 
5246 /*
5247 ** An instance of the following structure is used by the tree walker
5248 ** to determine if an expression can be evaluated by reference to the
5249 ** index only, without having to do a search for the corresponding
5250 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5251 ** is the cursor for the table.
5252 */
5253 struct IdxCover {
5254   Index *pIdx;     /* The index to be tested for coverage */
5255   int iCur;        /* Cursor number for the table corresponding to the index */
5256 };
5257 
5258 /*
5259 ** Check to see if there are references to columns in table
5260 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5261 ** pWalker->u.pIdxCover->pIdx.
5262 */
5263 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5264   if( pExpr->op==TK_COLUMN
5265    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5266    && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5267   ){
5268     pWalker->eCode = 1;
5269     return WRC_Abort;
5270   }
5271   return WRC_Continue;
5272 }
5273 
5274 /*
5275 ** Determine if an index pIdx on table with cursor iCur contains will
5276 ** the expression pExpr.  Return true if the index does cover the
5277 ** expression and false if the pExpr expression references table columns
5278 ** that are not found in the index pIdx.
5279 **
5280 ** An index covering an expression means that the expression can be
5281 ** evaluated using only the index and without having to lookup the
5282 ** corresponding table entry.
5283 */
5284 int sqlite3ExprCoveredByIndex(
5285   Expr *pExpr,        /* The index to be tested */
5286   int iCur,           /* The cursor number for the corresponding table */
5287   Index *pIdx         /* The index that might be used for coverage */
5288 ){
5289   Walker w;
5290   struct IdxCover xcov;
5291   memset(&w, 0, sizeof(w));
5292   xcov.iCur = iCur;
5293   xcov.pIdx = pIdx;
5294   w.xExprCallback = exprIdxCover;
5295   w.u.pIdxCover = &xcov;
5296   sqlite3WalkExpr(&w, pExpr);
5297   return !w.eCode;
5298 }
5299 
5300 
5301 /*
5302 ** An instance of the following structure is used by the tree walker
5303 ** to count references to table columns in the arguments of an
5304 ** aggregate function, in order to implement the
5305 ** sqlite3FunctionThisSrc() routine.
5306 */
5307 struct SrcCount {
5308   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5309   int nThis;       /* Number of references to columns in pSrcList */
5310   int nOther;      /* Number of references to columns in other FROM clauses */
5311 };
5312 
5313 /*
5314 ** Count the number of references to columns.
5315 */
5316 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5317   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5318   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5319   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
5320   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5321   ** NEVER() will need to be removed. */
5322   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5323     int i;
5324     struct SrcCount *p = pWalker->u.pSrcCount;
5325     SrcList *pSrc = p->pSrc;
5326     int nSrc = pSrc ? pSrc->nSrc : 0;
5327     for(i=0; i<nSrc; i++){
5328       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5329     }
5330     if( i<nSrc ){
5331       p->nThis++;
5332     }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){
5333       /* In a well-formed parse tree (no name resolution errors),
5334       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5335       ** outer context.  Those are the only ones to count as "other" */
5336       p->nOther++;
5337     }
5338   }
5339   return WRC_Continue;
5340 }
5341 
5342 /*
5343 ** Determine if any of the arguments to the pExpr Function reference
5344 ** pSrcList.  Return true if they do.  Also return true if the function
5345 ** has no arguments or has only constant arguments.  Return false if pExpr
5346 ** references columns but not columns of tables found in pSrcList.
5347 */
5348 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5349   Walker w;
5350   struct SrcCount cnt;
5351   assert( pExpr->op==TK_AGG_FUNCTION );
5352   memset(&w, 0, sizeof(w));
5353   w.xExprCallback = exprSrcCount;
5354   w.xSelectCallback = sqlite3SelectWalkNoop;
5355   w.u.pSrcCount = &cnt;
5356   cnt.pSrc = pSrcList;
5357   cnt.nThis = 0;
5358   cnt.nOther = 0;
5359   sqlite3WalkExprList(&w, pExpr->x.pList);
5360   return cnt.nThis>0 || cnt.nOther==0;
5361 }
5362 
5363 /*
5364 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5365 ** the new element.  Return a negative number if malloc fails.
5366 */
5367 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5368   int i;
5369   pInfo->aCol = sqlite3ArrayAllocate(
5370        db,
5371        pInfo->aCol,
5372        sizeof(pInfo->aCol[0]),
5373        &pInfo->nColumn,
5374        &i
5375   );
5376   return i;
5377 }
5378 
5379 /*
5380 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5381 ** the new element.  Return a negative number if malloc fails.
5382 */
5383 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5384   int i;
5385   pInfo->aFunc = sqlite3ArrayAllocate(
5386        db,
5387        pInfo->aFunc,
5388        sizeof(pInfo->aFunc[0]),
5389        &pInfo->nFunc,
5390        &i
5391   );
5392   return i;
5393 }
5394 
5395 /*
5396 ** This is the xExprCallback for a tree walker.  It is used to
5397 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5398 ** for additional information.
5399 */
5400 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5401   int i;
5402   NameContext *pNC = pWalker->u.pNC;
5403   Parse *pParse = pNC->pParse;
5404   SrcList *pSrcList = pNC->pSrcList;
5405   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5406 
5407   assert( pNC->ncFlags & NC_UAggInfo );
5408   switch( pExpr->op ){
5409     case TK_AGG_COLUMN:
5410     case TK_COLUMN: {
5411       testcase( pExpr->op==TK_AGG_COLUMN );
5412       testcase( pExpr->op==TK_COLUMN );
5413       /* Check to see if the column is in one of the tables in the FROM
5414       ** clause of the aggregate query */
5415       if( ALWAYS(pSrcList!=0) ){
5416         struct SrcList_item *pItem = pSrcList->a;
5417         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5418           struct AggInfo_col *pCol;
5419           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5420           if( pExpr->iTable==pItem->iCursor ){
5421             /* If we reach this point, it means that pExpr refers to a table
5422             ** that is in the FROM clause of the aggregate query.
5423             **
5424             ** Make an entry for the column in pAggInfo->aCol[] if there
5425             ** is not an entry there already.
5426             */
5427             int k;
5428             pCol = pAggInfo->aCol;
5429             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5430               if( pCol->iTable==pExpr->iTable &&
5431                   pCol->iColumn==pExpr->iColumn ){
5432                 break;
5433               }
5434             }
5435             if( (k>=pAggInfo->nColumn)
5436              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5437             ){
5438               pCol = &pAggInfo->aCol[k];
5439               pCol->pTab = pExpr->y.pTab;
5440               pCol->iTable = pExpr->iTable;
5441               pCol->iColumn = pExpr->iColumn;
5442               pCol->iMem = ++pParse->nMem;
5443               pCol->iSorterColumn = -1;
5444               pCol->pExpr = pExpr;
5445               if( pAggInfo->pGroupBy ){
5446                 int j, n;
5447                 ExprList *pGB = pAggInfo->pGroupBy;
5448                 struct ExprList_item *pTerm = pGB->a;
5449                 n = pGB->nExpr;
5450                 for(j=0; j<n; j++, pTerm++){
5451                   Expr *pE = pTerm->pExpr;
5452                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5453                       pE->iColumn==pExpr->iColumn ){
5454                     pCol->iSorterColumn = j;
5455                     break;
5456                   }
5457                 }
5458               }
5459               if( pCol->iSorterColumn<0 ){
5460                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5461               }
5462             }
5463             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5464             ** because it was there before or because we just created it).
5465             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5466             ** pAggInfo->aCol[] entry.
5467             */
5468             ExprSetVVAProperty(pExpr, EP_NoReduce);
5469             pExpr->pAggInfo = pAggInfo;
5470             pExpr->op = TK_AGG_COLUMN;
5471             pExpr->iAgg = (i16)k;
5472             break;
5473           } /* endif pExpr->iTable==pItem->iCursor */
5474         } /* end loop over pSrcList */
5475       }
5476       return WRC_Prune;
5477     }
5478     case TK_AGG_FUNCTION: {
5479       if( (pNC->ncFlags & NC_InAggFunc)==0
5480        && pWalker->walkerDepth==pExpr->op2
5481       ){
5482         /* Check to see if pExpr is a duplicate of another aggregate
5483         ** function that is already in the pAggInfo structure
5484         */
5485         struct AggInfo_func *pItem = pAggInfo->aFunc;
5486         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5487           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5488             break;
5489           }
5490         }
5491         if( i>=pAggInfo->nFunc ){
5492           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5493           */
5494           u8 enc = ENC(pParse->db);
5495           i = addAggInfoFunc(pParse->db, pAggInfo);
5496           if( i>=0 ){
5497             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5498             pItem = &pAggInfo->aFunc[i];
5499             pItem->pExpr = pExpr;
5500             pItem->iMem = ++pParse->nMem;
5501             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5502             pItem->pFunc = sqlite3FindFunction(pParse->db,
5503                    pExpr->u.zToken,
5504                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5505             if( pExpr->flags & EP_Distinct ){
5506               pItem->iDistinct = pParse->nTab++;
5507             }else{
5508               pItem->iDistinct = -1;
5509             }
5510           }
5511         }
5512         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5513         */
5514         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5515         ExprSetVVAProperty(pExpr, EP_NoReduce);
5516         pExpr->iAgg = (i16)i;
5517         pExpr->pAggInfo = pAggInfo;
5518         return WRC_Prune;
5519       }else{
5520         return WRC_Continue;
5521       }
5522     }
5523   }
5524   return WRC_Continue;
5525 }
5526 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5527   UNUSED_PARAMETER(pSelect);
5528   pWalker->walkerDepth++;
5529   return WRC_Continue;
5530 }
5531 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5532   UNUSED_PARAMETER(pSelect);
5533   pWalker->walkerDepth--;
5534 }
5535 
5536 /*
5537 ** Analyze the pExpr expression looking for aggregate functions and
5538 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5539 ** points to.  Additional entries are made on the AggInfo object as
5540 ** necessary.
5541 **
5542 ** This routine should only be called after the expression has been
5543 ** analyzed by sqlite3ResolveExprNames().
5544 */
5545 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5546   Walker w;
5547   w.xExprCallback = analyzeAggregate;
5548   w.xSelectCallback = analyzeAggregatesInSelect;
5549   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5550   w.walkerDepth = 0;
5551   w.u.pNC = pNC;
5552   w.pParse = 0;
5553   assert( pNC->pSrcList!=0 );
5554   sqlite3WalkExpr(&w, pExpr);
5555 }
5556 
5557 /*
5558 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5559 ** expression list.  Return the number of errors.
5560 **
5561 ** If an error is found, the analysis is cut short.
5562 */
5563 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5564   struct ExprList_item *pItem;
5565   int i;
5566   if( pList ){
5567     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5568       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5569     }
5570   }
5571 }
5572 
5573 /*
5574 ** Allocate a single new register for use to hold some intermediate result.
5575 */
5576 int sqlite3GetTempReg(Parse *pParse){
5577   if( pParse->nTempReg==0 ){
5578     return ++pParse->nMem;
5579   }
5580   return pParse->aTempReg[--pParse->nTempReg];
5581 }
5582 
5583 /*
5584 ** Deallocate a register, making available for reuse for some other
5585 ** purpose.
5586 */
5587 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5588   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5589     pParse->aTempReg[pParse->nTempReg++] = iReg;
5590   }
5591 }
5592 
5593 /*
5594 ** Allocate or deallocate a block of nReg consecutive registers.
5595 */
5596 int sqlite3GetTempRange(Parse *pParse, int nReg){
5597   int i, n;
5598   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5599   i = pParse->iRangeReg;
5600   n = pParse->nRangeReg;
5601   if( nReg<=n ){
5602     pParse->iRangeReg += nReg;
5603     pParse->nRangeReg -= nReg;
5604   }else{
5605     i = pParse->nMem+1;
5606     pParse->nMem += nReg;
5607   }
5608   return i;
5609 }
5610 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5611   if( nReg==1 ){
5612     sqlite3ReleaseTempReg(pParse, iReg);
5613     return;
5614   }
5615   if( nReg>pParse->nRangeReg ){
5616     pParse->nRangeReg = nReg;
5617     pParse->iRangeReg = iReg;
5618   }
5619 }
5620 
5621 /*
5622 ** Mark all temporary registers as being unavailable for reuse.
5623 **
5624 ** Always invoke this procedure after coding a subroutine or co-routine
5625 ** that might be invoked from other parts of the code, to ensure that
5626 ** the sub/co-routine does not use registers in common with the code that
5627 ** invokes the sub/co-routine.
5628 */
5629 void sqlite3ClearTempRegCache(Parse *pParse){
5630   pParse->nTempReg = 0;
5631   pParse->nRangeReg = 0;
5632 }
5633 
5634 /*
5635 ** Validate that no temporary register falls within the range of
5636 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5637 ** statements.
5638 */
5639 #ifdef SQLITE_DEBUG
5640 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5641   int i;
5642   if( pParse->nRangeReg>0
5643    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5644    && pParse->iRangeReg <= iLast
5645   ){
5646      return 0;
5647   }
5648   for(i=0; i<pParse->nTempReg; i++){
5649     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5650       return 0;
5651     }
5652   }
5653   return 1;
5654 }
5655 #endif /* SQLITE_DEBUG */
5656