xref: /sqlite-3.40.0/src/expr.c (revision a8e41eca)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25   assert( iCol<pTab->nCol );
26   return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip) ){
48     assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
49     pExpr = pExpr->pLeft;
50     assert( pExpr!=0 );
51   }
52   op = pExpr->op;
53   if( op==TK_SELECT ){
54     assert( pExpr->flags&EP_xIsSelect );
55     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
56   }
57   if( op==TK_REGISTER ) op = pExpr->op2;
58 #ifndef SQLITE_OMIT_CAST
59   if( op==TK_CAST ){
60     assert( !ExprHasProperty(pExpr, EP_IntValue) );
61     return sqlite3AffinityType(pExpr->u.zToken, 0);
62   }
63 #endif
64   if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
65     return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
66   }
67   if( op==TK_SELECT_COLUMN ){
68     assert( pExpr->pLeft->flags&EP_xIsSelect );
69     return sqlite3ExprAffinity(
70         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
71     );
72   }
73   if( op==TK_VECTOR ){
74     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
75   }
76   return pExpr->affExpr;
77 }
78 
79 /*
80 ** Set the collating sequence for expression pExpr to be the collating
81 ** sequence named by pToken.   Return a pointer to a new Expr node that
82 ** implements the COLLATE operator.
83 **
84 ** If a memory allocation error occurs, that fact is recorded in pParse->db
85 ** and the pExpr parameter is returned unchanged.
86 */
87 Expr *sqlite3ExprAddCollateToken(
88   Parse *pParse,           /* Parsing context */
89   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
90   const Token *pCollName,  /* Name of collating sequence */
91   int dequote              /* True to dequote pCollName */
92 ){
93   if( pCollName->n>0 ){
94     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
95     if( pNew ){
96       pNew->pLeft = pExpr;
97       pNew->flags |= EP_Collate|EP_Skip;
98       pExpr = pNew;
99     }
100   }
101   return pExpr;
102 }
103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
104   Token s;
105   assert( zC!=0 );
106   sqlite3TokenInit(&s, (char*)zC);
107   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
108 }
109 
110 /*
111 ** Skip over any TK_COLLATE operators.
112 */
113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
114   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
115     assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
116     pExpr = pExpr->pLeft;
117   }
118   return pExpr;
119 }
120 
121 /*
122 ** Skip over any TK_COLLATE operators and/or any unlikely()
123 ** or likelihood() or likely() functions at the root of an
124 ** expression.
125 */
126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
127   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
128     if( ExprHasProperty(pExpr, EP_Unlikely) ){
129       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
130       assert( pExpr->x.pList->nExpr>0 );
131       assert( pExpr->op==TK_FUNCTION );
132       pExpr = pExpr->x.pList->a[0].pExpr;
133     }else{
134       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW );
135       pExpr = pExpr->pLeft;
136     }
137   }
138   return pExpr;
139 }
140 
141 /*
142 ** Return the collation sequence for the expression pExpr. If
143 ** there is no defined collating sequence, return NULL.
144 **
145 ** See also: sqlite3ExprNNCollSeq()
146 **
147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
148 ** default collation if pExpr has no defined collation.
149 **
150 ** The collating sequence might be determined by a COLLATE operator
151 ** or by the presence of a column with a defined collating sequence.
152 ** COLLATE operators take first precedence.  Left operands take
153 ** precedence over right operands.
154 */
155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
156   sqlite3 *db = pParse->db;
157   CollSeq *pColl = 0;
158   const Expr *p = pExpr;
159   while( p ){
160     int op = p->op;
161     if( op==TK_REGISTER ) op = p->op2;
162     if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER)
163      && p->y.pTab!=0
164     ){
165       /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
166       ** a TK_COLUMN but was previously evaluated and cached in a register */
167       int j = p->iColumn;
168       if( j>=0 ){
169         const char *zColl = p->y.pTab->aCol[j].zColl;
170         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
171       }
172       break;
173     }
174     if( op==TK_CAST || op==TK_UPLUS ){
175       p = p->pLeft;
176       continue;
177     }
178     if( op==TK_VECTOR ){
179       p = p->x.pList->a[0].pExpr;
180       continue;
181     }
182     if( op==TK_COLLATE ){
183       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
184       break;
185     }
186     if( p->flags & EP_Collate ){
187       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
188         p = p->pLeft;
189       }else{
190         Expr *pNext  = p->pRight;
191         /* The Expr.x union is never used at the same time as Expr.pRight */
192         assert( p->x.pList==0 || p->pRight==0 );
193         if( p->x.pList!=0
194          && !db->mallocFailed
195          && ALWAYS(!ExprHasProperty(p, EP_xIsSelect))
196         ){
197           int i;
198           for(i=0; i<p->x.pList->nExpr; i++){
199             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
200               pNext = p->x.pList->a[i].pExpr;
201               break;
202             }
203           }
204         }
205         p = pNext;
206       }
207     }else{
208       break;
209     }
210   }
211   if( sqlite3CheckCollSeq(pParse, pColl) ){
212     pColl = 0;
213   }
214   return pColl;
215 }
216 
217 /*
218 ** Return the collation sequence for the expression pExpr. If
219 ** there is no defined collating sequence, return a pointer to the
220 ** defautl collation sequence.
221 **
222 ** See also: sqlite3ExprCollSeq()
223 **
224 ** The sqlite3ExprCollSeq() routine works the same except that it
225 ** returns NULL if there is no defined collation.
226 */
227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
228   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
229   if( p==0 ) p = pParse->db->pDfltColl;
230   assert( p!=0 );
231   return p;
232 }
233 
234 /*
235 ** Return TRUE if the two expressions have equivalent collating sequences.
236 */
237 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
238   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
239   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
240   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
241 }
242 
243 /*
244 ** pExpr is an operand of a comparison operator.  aff2 is the
245 ** type affinity of the other operand.  This routine returns the
246 ** type affinity that should be used for the comparison operator.
247 */
248 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
249   char aff1 = sqlite3ExprAffinity(pExpr);
250   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
251     /* Both sides of the comparison are columns. If one has numeric
252     ** affinity, use that. Otherwise use no affinity.
253     */
254     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
255       return SQLITE_AFF_NUMERIC;
256     }else{
257       return SQLITE_AFF_BLOB;
258     }
259   }else{
260     /* One side is a column, the other is not. Use the columns affinity. */
261     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
262     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
263   }
264 }
265 
266 /*
267 ** pExpr is a comparison operator.  Return the type affinity that should
268 ** be applied to both operands prior to doing the comparison.
269 */
270 static char comparisonAffinity(const Expr *pExpr){
271   char aff;
272   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
273           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
274           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
275   assert( pExpr->pLeft );
276   aff = sqlite3ExprAffinity(pExpr->pLeft);
277   if( pExpr->pRight ){
278     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
279   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
280     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
281   }else if( aff==0 ){
282     aff = SQLITE_AFF_BLOB;
283   }
284   return aff;
285 }
286 
287 /*
288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
289 ** idx_affinity is the affinity of an indexed column. Return true
290 ** if the index with affinity idx_affinity may be used to implement
291 ** the comparison in pExpr.
292 */
293 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
294   char aff = comparisonAffinity(pExpr);
295   if( aff<SQLITE_AFF_TEXT ){
296     return 1;
297   }
298   if( aff==SQLITE_AFF_TEXT ){
299     return idx_affinity==SQLITE_AFF_TEXT;
300   }
301   return sqlite3IsNumericAffinity(idx_affinity);
302 }
303 
304 /*
305 ** Return the P5 value that should be used for a binary comparison
306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
307 */
308 static u8 binaryCompareP5(
309   const Expr *pExpr1,   /* Left operand */
310   const Expr *pExpr2,   /* Right operand */
311   int jumpIfNull        /* Extra flags added to P5 */
312 ){
313   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
314   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
315   return aff;
316 }
317 
318 /*
319 ** Return a pointer to the collation sequence that should be used by
320 ** a binary comparison operator comparing pLeft and pRight.
321 **
322 ** If the left hand expression has a collating sequence type, then it is
323 ** used. Otherwise the collation sequence for the right hand expression
324 ** is used, or the default (BINARY) if neither expression has a collating
325 ** type.
326 **
327 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
328 ** it is not considered.
329 */
330 CollSeq *sqlite3BinaryCompareCollSeq(
331   Parse *pParse,
332   const Expr *pLeft,
333   const Expr *pRight
334 ){
335   CollSeq *pColl;
336   assert( pLeft );
337   if( pLeft->flags & EP_Collate ){
338     pColl = sqlite3ExprCollSeq(pParse, pLeft);
339   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
340     pColl = sqlite3ExprCollSeq(pParse, pRight);
341   }else{
342     pColl = sqlite3ExprCollSeq(pParse, pLeft);
343     if( !pColl ){
344       pColl = sqlite3ExprCollSeq(pParse, pRight);
345     }
346   }
347   return pColl;
348 }
349 
350 /* Expresssion p is a comparison operator.  Return a collation sequence
351 ** appropriate for the comparison operator.
352 **
353 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
354 ** However, if the OP_Commuted flag is set, then the order of the operands
355 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
356 ** correct collating sequence is found.
357 */
358 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
359   if( ExprHasProperty(p, EP_Commuted) ){
360     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
361   }else{
362     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
363   }
364 }
365 
366 /*
367 ** Generate code for a comparison operator.
368 */
369 static int codeCompare(
370   Parse *pParse,    /* The parsing (and code generating) context */
371   Expr *pLeft,      /* The left operand */
372   Expr *pRight,     /* The right operand */
373   int opcode,       /* The comparison opcode */
374   int in1, int in2, /* Register holding operands */
375   int dest,         /* Jump here if true.  */
376   int jumpIfNull,   /* If true, jump if either operand is NULL */
377   int isCommuted    /* The comparison has been commuted */
378 ){
379   int p5;
380   int addr;
381   CollSeq *p4;
382 
383   if( pParse->nErr ) return 0;
384   if( isCommuted ){
385     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
386   }else{
387     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
388   }
389   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
390   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
391                            (void*)p4, P4_COLLSEQ);
392   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
393   return addr;
394 }
395 
396 /*
397 ** Return true if expression pExpr is a vector, or false otherwise.
398 **
399 ** A vector is defined as any expression that results in two or more
400 ** columns of result.  Every TK_VECTOR node is an vector because the
401 ** parser will not generate a TK_VECTOR with fewer than two entries.
402 ** But a TK_SELECT might be either a vector or a scalar. It is only
403 ** considered a vector if it has two or more result columns.
404 */
405 int sqlite3ExprIsVector(Expr *pExpr){
406   return sqlite3ExprVectorSize(pExpr)>1;
407 }
408 
409 /*
410 ** If the expression passed as the only argument is of type TK_VECTOR
411 ** return the number of expressions in the vector. Or, if the expression
412 ** is a sub-select, return the number of columns in the sub-select. For
413 ** any other type of expression, return 1.
414 */
415 int sqlite3ExprVectorSize(Expr *pExpr){
416   u8 op = pExpr->op;
417   if( op==TK_REGISTER ) op = pExpr->op2;
418   if( op==TK_VECTOR ){
419     return pExpr->x.pList->nExpr;
420   }else if( op==TK_SELECT ){
421     return pExpr->x.pSelect->pEList->nExpr;
422   }else{
423     return 1;
424   }
425 }
426 
427 /*
428 ** Return a pointer to a subexpression of pVector that is the i-th
429 ** column of the vector (numbered starting with 0).  The caller must
430 ** ensure that i is within range.
431 **
432 ** If pVector is really a scalar (and "scalar" here includes subqueries
433 ** that return a single column!) then return pVector unmodified.
434 **
435 ** pVector retains ownership of the returned subexpression.
436 **
437 ** If the vector is a (SELECT ...) then the expression returned is
438 ** just the expression for the i-th term of the result set, and may
439 ** not be ready for evaluation because the table cursor has not yet
440 ** been positioned.
441 */
442 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
443   assert( i<sqlite3ExprVectorSize(pVector) );
444   if( sqlite3ExprIsVector(pVector) ){
445     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
446     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
447       return pVector->x.pSelect->pEList->a[i].pExpr;
448     }else{
449       return pVector->x.pList->a[i].pExpr;
450     }
451   }
452   return pVector;
453 }
454 
455 /*
456 ** Compute and return a new Expr object which when passed to
457 ** sqlite3ExprCode() will generate all necessary code to compute
458 ** the iField-th column of the vector expression pVector.
459 **
460 ** It is ok for pVector to be a scalar (as long as iField==0).
461 ** In that case, this routine works like sqlite3ExprDup().
462 **
463 ** The caller owns the returned Expr object and is responsible for
464 ** ensuring that the returned value eventually gets freed.
465 **
466 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
467 ** then the returned object will reference pVector and so pVector must remain
468 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
469 ** or a scalar expression, then it can be deleted as soon as this routine
470 ** returns.
471 **
472 ** A trick to cause a TK_SELECT pVector to be deleted together with
473 ** the returned Expr object is to attach the pVector to the pRight field
474 ** of the returned TK_SELECT_COLUMN Expr object.
475 */
476 Expr *sqlite3ExprForVectorField(
477   Parse *pParse,       /* Parsing context */
478   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
479   int iField           /* Which column of the vector to return */
480 ){
481   Expr *pRet;
482   if( pVector->op==TK_SELECT ){
483     assert( pVector->flags & EP_xIsSelect );
484     /* The TK_SELECT_COLUMN Expr node:
485     **
486     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
487     ** pRight:          not used.  But recursively deleted.
488     ** iColumn:         Index of a column in pVector
489     ** iTable:          0 or the number of columns on the LHS of an assignment
490     ** pLeft->iTable:   First in an array of register holding result, or 0
491     **                  if the result is not yet computed.
492     **
493     ** sqlite3ExprDelete() specifically skips the recursive delete of
494     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
495     ** can be attached to pRight to cause this node to take ownership of
496     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
497     ** with the same pLeft pointer to the pVector, but only one of them
498     ** will own the pVector.
499     */
500     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
501     if( pRet ){
502       pRet->iColumn = iField;
503       pRet->pLeft = pVector;
504     }
505     assert( pRet==0 || pRet->iTable==0 );
506   }else{
507     if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
508     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
509     sqlite3RenameTokenRemap(pParse, pRet, pVector);
510   }
511   return pRet;
512 }
513 
514 /*
515 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
516 ** it. Return the register in which the result is stored (or, if the
517 ** sub-select returns more than one column, the first in an array
518 ** of registers in which the result is stored).
519 **
520 ** If pExpr is not a TK_SELECT expression, return 0.
521 */
522 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
523   int reg = 0;
524 #ifndef SQLITE_OMIT_SUBQUERY
525   if( pExpr->op==TK_SELECT ){
526     reg = sqlite3CodeSubselect(pParse, pExpr);
527   }
528 #endif
529   return reg;
530 }
531 
532 /*
533 ** Argument pVector points to a vector expression - either a TK_VECTOR
534 ** or TK_SELECT that returns more than one column. This function returns
535 ** the register number of a register that contains the value of
536 ** element iField of the vector.
537 **
538 ** If pVector is a TK_SELECT expression, then code for it must have
539 ** already been generated using the exprCodeSubselect() routine. In this
540 ** case parameter regSelect should be the first in an array of registers
541 ** containing the results of the sub-select.
542 **
543 ** If pVector is of type TK_VECTOR, then code for the requested field
544 ** is generated. In this case (*pRegFree) may be set to the number of
545 ** a temporary register to be freed by the caller before returning.
546 **
547 ** Before returning, output parameter (*ppExpr) is set to point to the
548 ** Expr object corresponding to element iElem of the vector.
549 */
550 static int exprVectorRegister(
551   Parse *pParse,                  /* Parse context */
552   Expr *pVector,                  /* Vector to extract element from */
553   int iField,                     /* Field to extract from pVector */
554   int regSelect,                  /* First in array of registers */
555   Expr **ppExpr,                  /* OUT: Expression element */
556   int *pRegFree                   /* OUT: Temp register to free */
557 ){
558   u8 op = pVector->op;
559   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
560   if( op==TK_REGISTER ){
561     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
562     return pVector->iTable+iField;
563   }
564   if( op==TK_SELECT ){
565     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
566      return regSelect+iField;
567   }
568   *ppExpr = pVector->x.pList->a[iField].pExpr;
569   return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
570 }
571 
572 /*
573 ** Expression pExpr is a comparison between two vector values. Compute
574 ** the result of the comparison (1, 0, or NULL) and write that
575 ** result into register dest.
576 **
577 ** The caller must satisfy the following preconditions:
578 **
579 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
580 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
581 **    otherwise:                op==pExpr->op and p5==0
582 */
583 static void codeVectorCompare(
584   Parse *pParse,        /* Code generator context */
585   Expr *pExpr,          /* The comparison operation */
586   int dest,             /* Write results into this register */
587   u8 op,                /* Comparison operator */
588   u8 p5                 /* SQLITE_NULLEQ or zero */
589 ){
590   Vdbe *v = pParse->pVdbe;
591   Expr *pLeft = pExpr->pLeft;
592   Expr *pRight = pExpr->pRight;
593   int nLeft = sqlite3ExprVectorSize(pLeft);
594   int i;
595   int regLeft = 0;
596   int regRight = 0;
597   u8 opx = op;
598   int addrDone = sqlite3VdbeMakeLabel(pParse);
599   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
600 
601   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
602   if( pParse->nErr ) return;
603   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
604     sqlite3ErrorMsg(pParse, "row value misused");
605     return;
606   }
607   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
608        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
609        || pExpr->op==TK_LT || pExpr->op==TK_GT
610        || pExpr->op==TK_LE || pExpr->op==TK_GE
611   );
612   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
613             || (pExpr->op==TK_ISNOT && op==TK_NE) );
614   assert( p5==0 || pExpr->op!=op );
615   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
616 
617   p5 |= SQLITE_STOREP2;
618   if( opx==TK_LE ) opx = TK_LT;
619   if( opx==TK_GE ) opx = TK_GT;
620 
621   regLeft = exprCodeSubselect(pParse, pLeft);
622   regRight = exprCodeSubselect(pParse, pRight);
623 
624   for(i=0; 1 /*Loop exits by "break"*/; i++){
625     int regFree1 = 0, regFree2 = 0;
626     Expr *pL, *pR;
627     int r1, r2;
628     assert( i>=0 && i<nLeft );
629     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
630     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
631     codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted);
632     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
633     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
634     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
635     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
636     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
637     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
638     sqlite3ReleaseTempReg(pParse, regFree1);
639     sqlite3ReleaseTempReg(pParse, regFree2);
640     if( i==nLeft-1 ){
641       break;
642     }
643     if( opx==TK_EQ ){
644       sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
645       p5 |= SQLITE_KEEPNULL;
646     }else if( opx==TK_NE ){
647       sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
648       p5 |= SQLITE_KEEPNULL;
649     }else{
650       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
651       sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
652       VdbeCoverageIf(v, op==TK_LT);
653       VdbeCoverageIf(v, op==TK_GT);
654       VdbeCoverageIf(v, op==TK_LE);
655       VdbeCoverageIf(v, op==TK_GE);
656       if( i==nLeft-2 ) opx = op;
657     }
658   }
659   sqlite3VdbeResolveLabel(v, addrDone);
660 }
661 
662 #if SQLITE_MAX_EXPR_DEPTH>0
663 /*
664 ** Check that argument nHeight is less than or equal to the maximum
665 ** expression depth allowed. If it is not, leave an error message in
666 ** pParse.
667 */
668 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
669   int rc = SQLITE_OK;
670   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
671   if( nHeight>mxHeight ){
672     sqlite3ErrorMsg(pParse,
673        "Expression tree is too large (maximum depth %d)", mxHeight
674     );
675     rc = SQLITE_ERROR;
676   }
677   return rc;
678 }
679 
680 /* The following three functions, heightOfExpr(), heightOfExprList()
681 ** and heightOfSelect(), are used to determine the maximum height
682 ** of any expression tree referenced by the structure passed as the
683 ** first argument.
684 **
685 ** If this maximum height is greater than the current value pointed
686 ** to by pnHeight, the second parameter, then set *pnHeight to that
687 ** value.
688 */
689 static void heightOfExpr(Expr *p, int *pnHeight){
690   if( p ){
691     if( p->nHeight>*pnHeight ){
692       *pnHeight = p->nHeight;
693     }
694   }
695 }
696 static void heightOfExprList(ExprList *p, int *pnHeight){
697   if( p ){
698     int i;
699     for(i=0; i<p->nExpr; i++){
700       heightOfExpr(p->a[i].pExpr, pnHeight);
701     }
702   }
703 }
704 static void heightOfSelect(Select *pSelect, int *pnHeight){
705   Select *p;
706   for(p=pSelect; p; p=p->pPrior){
707     heightOfExpr(p->pWhere, pnHeight);
708     heightOfExpr(p->pHaving, pnHeight);
709     heightOfExpr(p->pLimit, pnHeight);
710     heightOfExprList(p->pEList, pnHeight);
711     heightOfExprList(p->pGroupBy, pnHeight);
712     heightOfExprList(p->pOrderBy, pnHeight);
713   }
714 }
715 
716 /*
717 ** Set the Expr.nHeight variable in the structure passed as an
718 ** argument. An expression with no children, Expr.pList or
719 ** Expr.pSelect member has a height of 1. Any other expression
720 ** has a height equal to the maximum height of any other
721 ** referenced Expr plus one.
722 **
723 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
724 ** if appropriate.
725 */
726 static void exprSetHeight(Expr *p){
727   int nHeight = 0;
728   heightOfExpr(p->pLeft, &nHeight);
729   heightOfExpr(p->pRight, &nHeight);
730   if( ExprHasProperty(p, EP_xIsSelect) ){
731     heightOfSelect(p->x.pSelect, &nHeight);
732   }else if( p->x.pList ){
733     heightOfExprList(p->x.pList, &nHeight);
734     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
735   }
736   p->nHeight = nHeight + 1;
737 }
738 
739 /*
740 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
741 ** the height is greater than the maximum allowed expression depth,
742 ** leave an error in pParse.
743 **
744 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
745 ** Expr.flags.
746 */
747 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
748   if( pParse->nErr ) return;
749   exprSetHeight(p);
750   sqlite3ExprCheckHeight(pParse, p->nHeight);
751 }
752 
753 /*
754 ** Return the maximum height of any expression tree referenced
755 ** by the select statement passed as an argument.
756 */
757 int sqlite3SelectExprHeight(Select *p){
758   int nHeight = 0;
759   heightOfSelect(p, &nHeight);
760   return nHeight;
761 }
762 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
763 /*
764 ** Propagate all EP_Propagate flags from the Expr.x.pList into
765 ** Expr.flags.
766 */
767 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
768   if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
769     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
770   }
771 }
772 #define exprSetHeight(y)
773 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
774 
775 /*
776 ** This routine is the core allocator for Expr nodes.
777 **
778 ** Construct a new expression node and return a pointer to it.  Memory
779 ** for this node and for the pToken argument is a single allocation
780 ** obtained from sqlite3DbMalloc().  The calling function
781 ** is responsible for making sure the node eventually gets freed.
782 **
783 ** If dequote is true, then the token (if it exists) is dequoted.
784 ** If dequote is false, no dequoting is performed.  The deQuote
785 ** parameter is ignored if pToken is NULL or if the token does not
786 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
787 ** then the EP_DblQuoted flag is set on the expression node.
788 **
789 ** Special case:  If op==TK_INTEGER and pToken points to a string that
790 ** can be translated into a 32-bit integer, then the token is not
791 ** stored in u.zToken.  Instead, the integer values is written
792 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
793 ** is allocated to hold the integer text and the dequote flag is ignored.
794 */
795 Expr *sqlite3ExprAlloc(
796   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
797   int op,                 /* Expression opcode */
798   const Token *pToken,    /* Token argument.  Might be NULL */
799   int dequote             /* True to dequote */
800 ){
801   Expr *pNew;
802   int nExtra = 0;
803   int iValue = 0;
804 
805   assert( db!=0 );
806   if( pToken ){
807     if( op!=TK_INTEGER || pToken->z==0
808           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
809       nExtra = pToken->n+1;
810       assert( iValue>=0 );
811     }
812   }
813   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
814   if( pNew ){
815     memset(pNew, 0, sizeof(Expr));
816     pNew->op = (u8)op;
817     pNew->iAgg = -1;
818     if( pToken ){
819       if( nExtra==0 ){
820         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
821         pNew->u.iValue = iValue;
822       }else{
823         pNew->u.zToken = (char*)&pNew[1];
824         assert( pToken->z!=0 || pToken->n==0 );
825         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
826         pNew->u.zToken[pToken->n] = 0;
827         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
828           sqlite3DequoteExpr(pNew);
829         }
830       }
831     }
832 #if SQLITE_MAX_EXPR_DEPTH>0
833     pNew->nHeight = 1;
834 #endif
835   }
836   return pNew;
837 }
838 
839 /*
840 ** Allocate a new expression node from a zero-terminated token that has
841 ** already been dequoted.
842 */
843 Expr *sqlite3Expr(
844   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
845   int op,                 /* Expression opcode */
846   const char *zToken      /* Token argument.  Might be NULL */
847 ){
848   Token x;
849   x.z = zToken;
850   x.n = sqlite3Strlen30(zToken);
851   return sqlite3ExprAlloc(db, op, &x, 0);
852 }
853 
854 /*
855 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
856 **
857 ** If pRoot==NULL that means that a memory allocation error has occurred.
858 ** In that case, delete the subtrees pLeft and pRight.
859 */
860 void sqlite3ExprAttachSubtrees(
861   sqlite3 *db,
862   Expr *pRoot,
863   Expr *pLeft,
864   Expr *pRight
865 ){
866   if( pRoot==0 ){
867     assert( db->mallocFailed );
868     sqlite3ExprDelete(db, pLeft);
869     sqlite3ExprDelete(db, pRight);
870   }else{
871     if( pRight ){
872       pRoot->pRight = pRight;
873       pRoot->flags |= EP_Propagate & pRight->flags;
874     }
875     if( pLeft ){
876       pRoot->pLeft = pLeft;
877       pRoot->flags |= EP_Propagate & pLeft->flags;
878     }
879     exprSetHeight(pRoot);
880   }
881 }
882 
883 /*
884 ** Allocate an Expr node which joins as many as two subtrees.
885 **
886 ** One or both of the subtrees can be NULL.  Return a pointer to the new
887 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
888 ** free the subtrees and return NULL.
889 */
890 Expr *sqlite3PExpr(
891   Parse *pParse,          /* Parsing context */
892   int op,                 /* Expression opcode */
893   Expr *pLeft,            /* Left operand */
894   Expr *pRight            /* Right operand */
895 ){
896   Expr *p;
897   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
898   if( p ){
899     memset(p, 0, sizeof(Expr));
900     p->op = op & 0xff;
901     p->iAgg = -1;
902     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
903     sqlite3ExprCheckHeight(pParse, p->nHeight);
904   }else{
905     sqlite3ExprDelete(pParse->db, pLeft);
906     sqlite3ExprDelete(pParse->db, pRight);
907   }
908   return p;
909 }
910 
911 /*
912 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
913 ** do a memory allocation failure) then delete the pSelect object.
914 */
915 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
916   if( pExpr ){
917     pExpr->x.pSelect = pSelect;
918     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
919     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
920   }else{
921     assert( pParse->db->mallocFailed );
922     sqlite3SelectDelete(pParse->db, pSelect);
923   }
924 }
925 
926 
927 /*
928 ** Join two expressions using an AND operator.  If either expression is
929 ** NULL, then just return the other expression.
930 **
931 ** If one side or the other of the AND is known to be false, then instead
932 ** of returning an AND expression, just return a constant expression with
933 ** a value of false.
934 */
935 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
936   sqlite3 *db = pParse->db;
937   if( pLeft==0  ){
938     return pRight;
939   }else if( pRight==0 ){
940     return pLeft;
941   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
942          && !IN_RENAME_OBJECT
943   ){
944     sqlite3ExprDelete(db, pLeft);
945     sqlite3ExprDelete(db, pRight);
946     return sqlite3Expr(db, TK_INTEGER, "0");
947   }else{
948     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
949   }
950 }
951 
952 /*
953 ** Construct a new expression node for a function with multiple
954 ** arguments.
955 */
956 Expr *sqlite3ExprFunction(
957   Parse *pParse,        /* Parsing context */
958   ExprList *pList,      /* Argument list */
959   Token *pToken,        /* Name of the function */
960   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
961 ){
962   Expr *pNew;
963   sqlite3 *db = pParse->db;
964   assert( pToken );
965   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
966   if( pNew==0 ){
967     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
968     return 0;
969   }
970   if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
971     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
972   }
973   pNew->x.pList = pList;
974   ExprSetProperty(pNew, EP_HasFunc);
975   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
976   sqlite3ExprSetHeightAndFlags(pParse, pNew);
977   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
978   return pNew;
979 }
980 
981 /*
982 ** Check to see if a function is usable according to current access
983 ** rules:
984 **
985 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
986 **
987 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
988 **                                top-level SQL
989 **
990 ** If the function is not usable, create an error.
991 */
992 void sqlite3ExprFunctionUsable(
993   Parse *pParse,         /* Parsing and code generating context */
994   Expr *pExpr,           /* The function invocation */
995   FuncDef *pDef          /* The function being invoked */
996 ){
997   assert( !IN_RENAME_OBJECT );
998   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
999   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1000     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1001      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1002     ){
1003       /* Functions prohibited in triggers and views if:
1004       **     (1) tagged with SQLITE_DIRECTONLY
1005       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1006       **         is tagged with SQLITE_FUNC_UNSAFE) and
1007       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1008       **         that the schema is possibly tainted).
1009       */
1010       sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1011     }
1012   }
1013 }
1014 
1015 /*
1016 ** Assign a variable number to an expression that encodes a wildcard
1017 ** in the original SQL statement.
1018 **
1019 ** Wildcards consisting of a single "?" are assigned the next sequential
1020 ** variable number.
1021 **
1022 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1023 ** sure "nnn" is not too big to avoid a denial of service attack when
1024 ** the SQL statement comes from an external source.
1025 **
1026 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1027 ** as the previous instance of the same wildcard.  Or if this is the first
1028 ** instance of the wildcard, the next sequential variable number is
1029 ** assigned.
1030 */
1031 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1032   sqlite3 *db = pParse->db;
1033   const char *z;
1034   ynVar x;
1035 
1036   if( pExpr==0 ) return;
1037   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1038   z = pExpr->u.zToken;
1039   assert( z!=0 );
1040   assert( z[0]!=0 );
1041   assert( n==(u32)sqlite3Strlen30(z) );
1042   if( z[1]==0 ){
1043     /* Wildcard of the form "?".  Assign the next variable number */
1044     assert( z[0]=='?' );
1045     x = (ynVar)(++pParse->nVar);
1046   }else{
1047     int doAdd = 0;
1048     if( z[0]=='?' ){
1049       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1050       ** use it as the variable number */
1051       i64 i;
1052       int bOk;
1053       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1054         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1055         bOk = 1;
1056       }else{
1057         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1058       }
1059       testcase( i==0 );
1060       testcase( i==1 );
1061       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1062       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1063       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1064         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1065             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1066         return;
1067       }
1068       x = (ynVar)i;
1069       if( x>pParse->nVar ){
1070         pParse->nVar = (int)x;
1071         doAdd = 1;
1072       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1073         doAdd = 1;
1074       }
1075     }else{
1076       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1077       ** number as the prior appearance of the same name, or if the name
1078       ** has never appeared before, reuse the same variable number
1079       */
1080       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1081       if( x==0 ){
1082         x = (ynVar)(++pParse->nVar);
1083         doAdd = 1;
1084       }
1085     }
1086     if( doAdd ){
1087       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1088     }
1089   }
1090   pExpr->iColumn = x;
1091   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1092     sqlite3ErrorMsg(pParse, "too many SQL variables");
1093   }
1094 }
1095 
1096 /*
1097 ** Recursively delete an expression tree.
1098 */
1099 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1100   assert( p!=0 );
1101   /* Sanity check: Assert that the IntValue is non-negative if it exists */
1102   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1103 
1104   assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
1105   assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
1106           || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
1107 #ifdef SQLITE_DEBUG
1108   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1109     assert( p->pLeft==0 );
1110     assert( p->pRight==0 );
1111     assert( p->x.pSelect==0 );
1112   }
1113 #endif
1114   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1115     /* The Expr.x union is never used at the same time as Expr.pRight */
1116     assert( p->x.pList==0 || p->pRight==0 );
1117     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1118     if( p->pRight ){
1119       assert( !ExprHasProperty(p, EP_WinFunc) );
1120       sqlite3ExprDeleteNN(db, p->pRight);
1121     }else if( ExprHasProperty(p, EP_xIsSelect) ){
1122       assert( !ExprHasProperty(p, EP_WinFunc) );
1123       sqlite3SelectDelete(db, p->x.pSelect);
1124     }else{
1125       sqlite3ExprListDelete(db, p->x.pList);
1126 #ifndef SQLITE_OMIT_WINDOWFUNC
1127       if( ExprHasProperty(p, EP_WinFunc) ){
1128         sqlite3WindowDelete(db, p->y.pWin);
1129       }
1130 #endif
1131     }
1132   }
1133   if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1134   if( !ExprHasProperty(p, EP_Static) ){
1135     sqlite3DbFreeNN(db, p);
1136   }
1137 }
1138 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1139   if( p ) sqlite3ExprDeleteNN(db, p);
1140 }
1141 
1142 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1143 ** expression.
1144 */
1145 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1146   if( p ){
1147     if( IN_RENAME_OBJECT ){
1148       sqlite3RenameExprUnmap(pParse, p);
1149     }
1150     sqlite3ExprDeleteNN(pParse->db, p);
1151   }
1152 }
1153 
1154 /*
1155 ** Return the number of bytes allocated for the expression structure
1156 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1157 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1158 */
1159 static int exprStructSize(Expr *p){
1160   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1161   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1162   return EXPR_FULLSIZE;
1163 }
1164 
1165 /*
1166 ** The dupedExpr*Size() routines each return the number of bytes required
1167 ** to store a copy of an expression or expression tree.  They differ in
1168 ** how much of the tree is measured.
1169 **
1170 **     dupedExprStructSize()     Size of only the Expr structure
1171 **     dupedExprNodeSize()       Size of Expr + space for token
1172 **     dupedExprSize()           Expr + token + subtree components
1173 **
1174 ***************************************************************************
1175 **
1176 ** The dupedExprStructSize() function returns two values OR-ed together:
1177 ** (1) the space required for a copy of the Expr structure only and
1178 ** (2) the EP_xxx flags that indicate what the structure size should be.
1179 ** The return values is always one of:
1180 **
1181 **      EXPR_FULLSIZE
1182 **      EXPR_REDUCEDSIZE   | EP_Reduced
1183 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1184 **
1185 ** The size of the structure can be found by masking the return value
1186 ** of this routine with 0xfff.  The flags can be found by masking the
1187 ** return value with EP_Reduced|EP_TokenOnly.
1188 **
1189 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1190 ** (unreduced) Expr objects as they or originally constructed by the parser.
1191 ** During expression analysis, extra information is computed and moved into
1192 ** later parts of the Expr object and that extra information might get chopped
1193 ** off if the expression is reduced.  Note also that it does not work to
1194 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1195 ** to reduce a pristine expression tree from the parser.  The implementation
1196 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1197 ** to enforce this constraint.
1198 */
1199 static int dupedExprStructSize(Expr *p, int flags){
1200   int nSize;
1201   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1202   assert( EXPR_FULLSIZE<=0xfff );
1203   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1204   if( 0==flags || p->op==TK_SELECT_COLUMN
1205 #ifndef SQLITE_OMIT_WINDOWFUNC
1206    || ExprHasProperty(p, EP_WinFunc)
1207 #endif
1208   ){
1209     nSize = EXPR_FULLSIZE;
1210   }else{
1211     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1212     assert( !ExprHasProperty(p, EP_FromJoin) );
1213     assert( !ExprHasProperty(p, EP_MemToken) );
1214     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1215     if( p->pLeft || p->x.pList ){
1216       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1217     }else{
1218       assert( p->pRight==0 );
1219       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1220     }
1221   }
1222   return nSize;
1223 }
1224 
1225 /*
1226 ** This function returns the space in bytes required to store the copy
1227 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1228 ** string is defined.)
1229 */
1230 static int dupedExprNodeSize(Expr *p, int flags){
1231   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1232   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1233     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1234   }
1235   return ROUND8(nByte);
1236 }
1237 
1238 /*
1239 ** Return the number of bytes required to create a duplicate of the
1240 ** expression passed as the first argument. The second argument is a
1241 ** mask containing EXPRDUP_XXX flags.
1242 **
1243 ** The value returned includes space to create a copy of the Expr struct
1244 ** itself and the buffer referred to by Expr.u.zToken, if any.
1245 **
1246 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1247 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1248 ** and Expr.pRight variables (but not for any structures pointed to or
1249 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1250 */
1251 static int dupedExprSize(Expr *p, int flags){
1252   int nByte = 0;
1253   if( p ){
1254     nByte = dupedExprNodeSize(p, flags);
1255     if( flags&EXPRDUP_REDUCE ){
1256       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1257     }
1258   }
1259   return nByte;
1260 }
1261 
1262 /*
1263 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1264 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1265 ** to store the copy of expression p, the copies of p->u.zToken
1266 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1267 ** if any. Before returning, *pzBuffer is set to the first byte past the
1268 ** portion of the buffer copied into by this function.
1269 */
1270 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1271   Expr *pNew;           /* Value to return */
1272   u8 *zAlloc;           /* Memory space from which to build Expr object */
1273   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1274 
1275   assert( db!=0 );
1276   assert( p );
1277   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1278   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1279 
1280   /* Figure out where to write the new Expr structure. */
1281   if( pzBuffer ){
1282     zAlloc = *pzBuffer;
1283     staticFlag = EP_Static;
1284   }else{
1285     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1286     staticFlag = 0;
1287   }
1288   pNew = (Expr *)zAlloc;
1289 
1290   if( pNew ){
1291     /* Set nNewSize to the size allocated for the structure pointed to
1292     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1293     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1294     ** by the copy of the p->u.zToken string (if any).
1295     */
1296     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1297     const int nNewSize = nStructSize & 0xfff;
1298     int nToken;
1299     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1300       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1301     }else{
1302       nToken = 0;
1303     }
1304     if( dupFlags ){
1305       assert( ExprHasProperty(p, EP_Reduced)==0 );
1306       memcpy(zAlloc, p, nNewSize);
1307     }else{
1308       u32 nSize = (u32)exprStructSize(p);
1309       memcpy(zAlloc, p, nSize);
1310       if( nSize<EXPR_FULLSIZE ){
1311         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1312       }
1313     }
1314 
1315     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1316     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1317     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1318     pNew->flags |= staticFlag;
1319     ExprClearVVAProperties(pNew);
1320     if( dupFlags ){
1321       ExprSetVVAProperty(pNew, EP_Immutable);
1322     }
1323 
1324     /* Copy the p->u.zToken string, if any. */
1325     if( nToken ){
1326       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1327       memcpy(zToken, p->u.zToken, nToken);
1328     }
1329 
1330     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1331       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1332       if( ExprHasProperty(p, EP_xIsSelect) ){
1333         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1334       }else{
1335         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1336       }
1337     }
1338 
1339     /* Fill in pNew->pLeft and pNew->pRight. */
1340     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1341       zAlloc += dupedExprNodeSize(p, dupFlags);
1342       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1343         pNew->pLeft = p->pLeft ?
1344                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1345         pNew->pRight = p->pRight ?
1346                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1347       }
1348 #ifndef SQLITE_OMIT_WINDOWFUNC
1349       if( ExprHasProperty(p, EP_WinFunc) ){
1350         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1351         assert( ExprHasProperty(pNew, EP_WinFunc) );
1352       }
1353 #endif /* SQLITE_OMIT_WINDOWFUNC */
1354       if( pzBuffer ){
1355         *pzBuffer = zAlloc;
1356       }
1357     }else{
1358       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1359         if( pNew->op==TK_SELECT_COLUMN ){
1360           pNew->pLeft = p->pLeft;
1361           assert( p->iColumn==0 || p->pRight==0 );
1362           assert( p->pRight==0  || p->pRight==p->pLeft );
1363         }else{
1364           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1365         }
1366         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1367       }
1368     }
1369   }
1370   return pNew;
1371 }
1372 
1373 /*
1374 ** Create and return a deep copy of the object passed as the second
1375 ** argument. If an OOM condition is encountered, NULL is returned
1376 ** and the db->mallocFailed flag set.
1377 */
1378 #ifndef SQLITE_OMIT_CTE
1379 static With *withDup(sqlite3 *db, With *p){
1380   With *pRet = 0;
1381   if( p ){
1382     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1383     pRet = sqlite3DbMallocZero(db, nByte);
1384     if( pRet ){
1385       int i;
1386       pRet->nCte = p->nCte;
1387       for(i=0; i<p->nCte; i++){
1388         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1389         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1390         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1391       }
1392     }
1393   }
1394   return pRet;
1395 }
1396 #else
1397 # define withDup(x,y) 0
1398 #endif
1399 
1400 #ifndef SQLITE_OMIT_WINDOWFUNC
1401 /*
1402 ** The gatherSelectWindows() procedure and its helper routine
1403 ** gatherSelectWindowsCallback() are used to scan all the expressions
1404 ** an a newly duplicated SELECT statement and gather all of the Window
1405 ** objects found there, assembling them onto the linked list at Select->pWin.
1406 */
1407 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1408   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1409     Select *pSelect = pWalker->u.pSelect;
1410     Window *pWin = pExpr->y.pWin;
1411     assert( pWin );
1412     assert( IsWindowFunc(pExpr) );
1413     assert( pWin->ppThis==0 );
1414     sqlite3WindowLink(pSelect, pWin);
1415   }
1416   return WRC_Continue;
1417 }
1418 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1419   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1420 }
1421 static void gatherSelectWindows(Select *p){
1422   Walker w;
1423   w.xExprCallback = gatherSelectWindowsCallback;
1424   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1425   w.xSelectCallback2 = 0;
1426   w.pParse = 0;
1427   w.u.pSelect = p;
1428   sqlite3WalkSelect(&w, p);
1429 }
1430 #endif
1431 
1432 
1433 /*
1434 ** The following group of routines make deep copies of expressions,
1435 ** expression lists, ID lists, and select statements.  The copies can
1436 ** be deleted (by being passed to their respective ...Delete() routines)
1437 ** without effecting the originals.
1438 **
1439 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1440 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1441 ** by subsequent calls to sqlite*ListAppend() routines.
1442 **
1443 ** Any tables that the SrcList might point to are not duplicated.
1444 **
1445 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1446 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1447 ** truncated version of the usual Expr structure that will be stored as
1448 ** part of the in-memory representation of the database schema.
1449 */
1450 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1451   assert( flags==0 || flags==EXPRDUP_REDUCE );
1452   return p ? exprDup(db, p, flags, 0) : 0;
1453 }
1454 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1455   ExprList *pNew;
1456   struct ExprList_item *pItem, *pOldItem;
1457   int i;
1458   Expr *pPriorSelectCol = 0;
1459   assert( db!=0 );
1460   if( p==0 ) return 0;
1461   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1462   if( pNew==0 ) return 0;
1463   pNew->nExpr = p->nExpr;
1464   pItem = pNew->a;
1465   pOldItem = p->a;
1466   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1467     Expr *pOldExpr = pOldItem->pExpr;
1468     Expr *pNewExpr;
1469     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1470     if( pOldExpr
1471      && pOldExpr->op==TK_SELECT_COLUMN
1472      && (pNewExpr = pItem->pExpr)!=0
1473     ){
1474       assert( pNewExpr->iColumn==0 || i>0 );
1475       if( pNewExpr->iColumn==0 ){
1476         assert( pOldExpr->pLeft==pOldExpr->pRight );
1477         pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1478       }else{
1479         assert( i>0 );
1480         assert( pItem[-1].pExpr!=0 );
1481         assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1482         assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1483         pNewExpr->pLeft = pPriorSelectCol;
1484       }
1485     }
1486     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1487     pItem->sortFlags = pOldItem->sortFlags;
1488     pItem->eEName = pOldItem->eEName;
1489     pItem->done = 0;
1490     pItem->bNulls = pOldItem->bNulls;
1491     pItem->bSorterRef = pOldItem->bSorterRef;
1492     pItem->u = pOldItem->u;
1493   }
1494   return pNew;
1495 }
1496 
1497 /*
1498 ** If cursors, triggers, views and subqueries are all omitted from
1499 ** the build, then none of the following routines, except for
1500 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1501 ** called with a NULL argument.
1502 */
1503 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1504  || !defined(SQLITE_OMIT_SUBQUERY)
1505 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1506   SrcList *pNew;
1507   int i;
1508   int nByte;
1509   assert( db!=0 );
1510   if( p==0 ) return 0;
1511   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1512   pNew = sqlite3DbMallocRawNN(db, nByte );
1513   if( pNew==0 ) return 0;
1514   pNew->nSrc = pNew->nAlloc = p->nSrc;
1515   for(i=0; i<p->nSrc; i++){
1516     struct SrcList_item *pNewItem = &pNew->a[i];
1517     struct SrcList_item *pOldItem = &p->a[i];
1518     Table *pTab;
1519     pNewItem->pSchema = pOldItem->pSchema;
1520     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1521     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1522     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1523     pNewItem->fg = pOldItem->fg;
1524     pNewItem->iCursor = pOldItem->iCursor;
1525     pNewItem->addrFillSub = pOldItem->addrFillSub;
1526     pNewItem->regReturn = pOldItem->regReturn;
1527     if( pNewItem->fg.isIndexedBy ){
1528       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1529     }
1530     pNewItem->pIBIndex = pOldItem->pIBIndex;
1531     if( pNewItem->fg.isTabFunc ){
1532       pNewItem->u1.pFuncArg =
1533           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1534     }
1535     pTab = pNewItem->pTab = pOldItem->pTab;
1536     if( pTab ){
1537       pTab->nTabRef++;
1538     }
1539     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1540     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1541     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1542     pNewItem->colUsed = pOldItem->colUsed;
1543   }
1544   return pNew;
1545 }
1546 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1547   IdList *pNew;
1548   int i;
1549   assert( db!=0 );
1550   if( p==0 ) return 0;
1551   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1552   if( pNew==0 ) return 0;
1553   pNew->nId = p->nId;
1554   pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1555   if( pNew->a==0 ){
1556     sqlite3DbFreeNN(db, pNew);
1557     return 0;
1558   }
1559   /* Note that because the size of the allocation for p->a[] is not
1560   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1561   ** on the duplicate created by this function. */
1562   for(i=0; i<p->nId; i++){
1563     struct IdList_item *pNewItem = &pNew->a[i];
1564     struct IdList_item *pOldItem = &p->a[i];
1565     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1566     pNewItem->idx = pOldItem->idx;
1567   }
1568   return pNew;
1569 }
1570 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1571   Select *pRet = 0;
1572   Select *pNext = 0;
1573   Select **pp = &pRet;
1574   Select *p;
1575 
1576   assert( db!=0 );
1577   for(p=pDup; p; p=p->pPrior){
1578     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1579     if( pNew==0 ) break;
1580     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1581     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1582     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1583     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1584     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1585     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1586     pNew->op = p->op;
1587     pNew->pNext = pNext;
1588     pNew->pPrior = 0;
1589     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1590     pNew->iLimit = 0;
1591     pNew->iOffset = 0;
1592     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1593     pNew->addrOpenEphm[0] = -1;
1594     pNew->addrOpenEphm[1] = -1;
1595     pNew->nSelectRow = p->nSelectRow;
1596     pNew->pWith = withDup(db, p->pWith);
1597 #ifndef SQLITE_OMIT_WINDOWFUNC
1598     pNew->pWin = 0;
1599     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1600     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1601 #endif
1602     pNew->selId = p->selId;
1603     *pp = pNew;
1604     pp = &pNew->pPrior;
1605     pNext = pNew;
1606   }
1607 
1608   return pRet;
1609 }
1610 #else
1611 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1612   assert( p==0 );
1613   return 0;
1614 }
1615 #endif
1616 
1617 
1618 /*
1619 ** Add a new element to the end of an expression list.  If pList is
1620 ** initially NULL, then create a new expression list.
1621 **
1622 ** The pList argument must be either NULL or a pointer to an ExprList
1623 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1624 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1625 ** Reason:  This routine assumes that the number of slots in pList->a[]
1626 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1627 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1628 **
1629 ** If a memory allocation error occurs, the entire list is freed and
1630 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1631 ** that the new entry was successfully appended.
1632 */
1633 ExprList *sqlite3ExprListAppend(
1634   Parse *pParse,          /* Parsing context */
1635   ExprList *pList,        /* List to which to append. Might be NULL */
1636   Expr *pExpr             /* Expression to be appended. Might be NULL */
1637 ){
1638   struct ExprList_item *pItem;
1639   sqlite3 *db = pParse->db;
1640   assert( db!=0 );
1641   if( pList==0 ){
1642     pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1643     if( pList==0 ){
1644       goto no_mem;
1645     }
1646     pList->nExpr = 0;
1647   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1648     ExprList *pNew;
1649     pNew = sqlite3DbRealloc(db, pList,
1650          sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0]));
1651     if( pNew==0 ){
1652       goto no_mem;
1653     }
1654     pList = pNew;
1655   }
1656   pItem = &pList->a[pList->nExpr++];
1657   assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) );
1658   assert( offsetof(struct ExprList_item,pExpr)==0 );
1659   memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName));
1660   pItem->pExpr = pExpr;
1661   return pList;
1662 
1663 no_mem:
1664   /* Avoid leaking memory if malloc has failed. */
1665   sqlite3ExprDelete(db, pExpr);
1666   sqlite3ExprListDelete(db, pList);
1667   return 0;
1668 }
1669 
1670 /*
1671 ** pColumns and pExpr form a vector assignment which is part of the SET
1672 ** clause of an UPDATE statement.  Like this:
1673 **
1674 **        (a,b,c) = (expr1,expr2,expr3)
1675 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1676 **
1677 ** For each term of the vector assignment, append new entries to the
1678 ** expression list pList.  In the case of a subquery on the RHS, append
1679 ** TK_SELECT_COLUMN expressions.
1680 */
1681 ExprList *sqlite3ExprListAppendVector(
1682   Parse *pParse,         /* Parsing context */
1683   ExprList *pList,       /* List to which to append. Might be NULL */
1684   IdList *pColumns,      /* List of names of LHS of the assignment */
1685   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1686 ){
1687   sqlite3 *db = pParse->db;
1688   int n;
1689   int i;
1690   int iFirst = pList ? pList->nExpr : 0;
1691   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1692   ** exit prior to this routine being invoked */
1693   if( NEVER(pColumns==0) ) goto vector_append_error;
1694   if( pExpr==0 ) goto vector_append_error;
1695 
1696   /* If the RHS is a vector, then we can immediately check to see that
1697   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1698   ** wildcards ("*") in the result set of the SELECT must be expanded before
1699   ** we can do the size check, so defer the size check until code generation.
1700   */
1701   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1702     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1703                     pColumns->nId, n);
1704     goto vector_append_error;
1705   }
1706 
1707   for(i=0; i<pColumns->nId; i++){
1708     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1709     assert( pSubExpr!=0 || db->mallocFailed );
1710     assert( pSubExpr==0 || pSubExpr->iTable==0 );
1711     if( pSubExpr==0 ) continue;
1712     pSubExpr->iTable = pColumns->nId;
1713     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1714     if( pList ){
1715       assert( pList->nExpr==iFirst+i+1 );
1716       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1717       pColumns->a[i].zName = 0;
1718     }
1719   }
1720 
1721   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1722     Expr *pFirst = pList->a[iFirst].pExpr;
1723     assert( pFirst!=0 );
1724     assert( pFirst->op==TK_SELECT_COLUMN );
1725 
1726     /* Store the SELECT statement in pRight so it will be deleted when
1727     ** sqlite3ExprListDelete() is called */
1728     pFirst->pRight = pExpr;
1729     pExpr = 0;
1730 
1731     /* Remember the size of the LHS in iTable so that we can check that
1732     ** the RHS and LHS sizes match during code generation. */
1733     pFirst->iTable = pColumns->nId;
1734   }
1735 
1736 vector_append_error:
1737   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1738   sqlite3IdListDelete(db, pColumns);
1739   return pList;
1740 }
1741 
1742 /*
1743 ** Set the sort order for the last element on the given ExprList.
1744 */
1745 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1746   struct ExprList_item *pItem;
1747   if( p==0 ) return;
1748   assert( p->nExpr>0 );
1749 
1750   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1751   assert( iSortOrder==SQLITE_SO_UNDEFINED
1752        || iSortOrder==SQLITE_SO_ASC
1753        || iSortOrder==SQLITE_SO_DESC
1754   );
1755   assert( eNulls==SQLITE_SO_UNDEFINED
1756        || eNulls==SQLITE_SO_ASC
1757        || eNulls==SQLITE_SO_DESC
1758   );
1759 
1760   pItem = &p->a[p->nExpr-1];
1761   assert( pItem->bNulls==0 );
1762   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1763     iSortOrder = SQLITE_SO_ASC;
1764   }
1765   pItem->sortFlags = (u8)iSortOrder;
1766 
1767   if( eNulls!=SQLITE_SO_UNDEFINED ){
1768     pItem->bNulls = 1;
1769     if( iSortOrder!=eNulls ){
1770       pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1771     }
1772   }
1773 }
1774 
1775 /*
1776 ** Set the ExprList.a[].zEName element of the most recently added item
1777 ** on the expression list.
1778 **
1779 ** pList might be NULL following an OOM error.  But pName should never be
1780 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1781 ** is set.
1782 */
1783 void sqlite3ExprListSetName(
1784   Parse *pParse,          /* Parsing context */
1785   ExprList *pList,        /* List to which to add the span. */
1786   Token *pName,           /* Name to be added */
1787   int dequote             /* True to cause the name to be dequoted */
1788 ){
1789   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1790   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1791   if( pList ){
1792     struct ExprList_item *pItem;
1793     assert( pList->nExpr>0 );
1794     pItem = &pList->a[pList->nExpr-1];
1795     assert( pItem->zEName==0 );
1796     assert( pItem->eEName==ENAME_NAME );
1797     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1798     if( dequote ){
1799       /* If dequote==0, then pName->z does not point to part of a DDL
1800       ** statement handled by the parser. And so no token need be added
1801       ** to the token-map.  */
1802       sqlite3Dequote(pItem->zEName);
1803       if( IN_RENAME_OBJECT ){
1804         sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName);
1805       }
1806     }
1807   }
1808 }
1809 
1810 /*
1811 ** Set the ExprList.a[].zSpan element of the most recently added item
1812 ** on the expression list.
1813 **
1814 ** pList might be NULL following an OOM error.  But pSpan should never be
1815 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1816 ** is set.
1817 */
1818 void sqlite3ExprListSetSpan(
1819   Parse *pParse,          /* Parsing context */
1820   ExprList *pList,        /* List to which to add the span. */
1821   const char *zStart,     /* Start of the span */
1822   const char *zEnd        /* End of the span */
1823 ){
1824   sqlite3 *db = pParse->db;
1825   assert( pList!=0 || db->mallocFailed!=0 );
1826   if( pList ){
1827     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1828     assert( pList->nExpr>0 );
1829     if( pItem->zEName==0 ){
1830       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1831       pItem->eEName = ENAME_SPAN;
1832     }
1833   }
1834 }
1835 
1836 /*
1837 ** If the expression list pEList contains more than iLimit elements,
1838 ** leave an error message in pParse.
1839 */
1840 void sqlite3ExprListCheckLength(
1841   Parse *pParse,
1842   ExprList *pEList,
1843   const char *zObject
1844 ){
1845   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1846   testcase( pEList && pEList->nExpr==mx );
1847   testcase( pEList && pEList->nExpr==mx+1 );
1848   if( pEList && pEList->nExpr>mx ){
1849     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1850   }
1851 }
1852 
1853 /*
1854 ** Delete an entire expression list.
1855 */
1856 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1857   int i = pList->nExpr;
1858   struct ExprList_item *pItem =  pList->a;
1859   assert( pList->nExpr>0 );
1860   do{
1861     sqlite3ExprDelete(db, pItem->pExpr);
1862     sqlite3DbFree(db, pItem->zEName);
1863     pItem++;
1864   }while( --i>0 );
1865   sqlite3DbFreeNN(db, pList);
1866 }
1867 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1868   if( pList ) exprListDeleteNN(db, pList);
1869 }
1870 
1871 /*
1872 ** Return the bitwise-OR of all Expr.flags fields in the given
1873 ** ExprList.
1874 */
1875 u32 sqlite3ExprListFlags(const ExprList *pList){
1876   int i;
1877   u32 m = 0;
1878   assert( pList!=0 );
1879   for(i=0; i<pList->nExpr; i++){
1880      Expr *pExpr = pList->a[i].pExpr;
1881      assert( pExpr!=0 );
1882      m |= pExpr->flags;
1883   }
1884   return m;
1885 }
1886 
1887 /*
1888 ** This is a SELECT-node callback for the expression walker that
1889 ** always "fails".  By "fail" in this case, we mean set
1890 ** pWalker->eCode to zero and abort.
1891 **
1892 ** This callback is used by multiple expression walkers.
1893 */
1894 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1895   UNUSED_PARAMETER(NotUsed);
1896   pWalker->eCode = 0;
1897   return WRC_Abort;
1898 }
1899 
1900 /*
1901 ** Check the input string to see if it is "true" or "false" (in any case).
1902 **
1903 **       If the string is....           Return
1904 **         "true"                         EP_IsTrue
1905 **         "false"                        EP_IsFalse
1906 **         anything else                  0
1907 */
1908 u32 sqlite3IsTrueOrFalse(const char *zIn){
1909   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
1910   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
1911   return 0;
1912 }
1913 
1914 
1915 /*
1916 ** If the input expression is an ID with the name "true" or "false"
1917 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
1918 ** the conversion happened, and zero if the expression is unaltered.
1919 */
1920 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1921   u32 v;
1922   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1923   if( !ExprHasProperty(pExpr, EP_Quoted)
1924    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
1925   ){
1926     pExpr->op = TK_TRUEFALSE;
1927     ExprSetProperty(pExpr, v);
1928     return 1;
1929   }
1930   return 0;
1931 }
1932 
1933 /*
1934 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
1935 ** and 0 if it is FALSE.
1936 */
1937 int sqlite3ExprTruthValue(const Expr *pExpr){
1938   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
1939   assert( pExpr->op==TK_TRUEFALSE );
1940   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1941        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1942   return pExpr->u.zToken[4]==0;
1943 }
1944 
1945 /*
1946 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1947 ** terms that are always true or false.  Return the simplified expression.
1948 ** Or return the original expression if no simplification is possible.
1949 **
1950 ** Examples:
1951 **
1952 **     (x<10) AND true                =>   (x<10)
1953 **     (x<10) AND false               =>   false
1954 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
1955 **     (x<10) AND (y=22 OR true)      =>   (x<10)
1956 **     (y=22) OR true                 =>   true
1957 */
1958 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
1959   assert( pExpr!=0 );
1960   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
1961     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
1962     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
1963     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
1964       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
1965     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
1966       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
1967     }
1968   }
1969   return pExpr;
1970 }
1971 
1972 
1973 /*
1974 ** These routines are Walker callbacks used to check expressions to
1975 ** see if they are "constant" for some definition of constant.  The
1976 ** Walker.eCode value determines the type of "constant" we are looking
1977 ** for.
1978 **
1979 ** These callback routines are used to implement the following:
1980 **
1981 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
1982 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
1983 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
1984 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
1985 **
1986 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1987 ** is found to not be a constant.
1988 **
1989 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
1990 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
1991 ** when parsing an existing schema out of the sqlite_master table and 4
1992 ** when processing a new CREATE TABLE statement.  A bound parameter raises
1993 ** an error for new statements, but is silently converted
1994 ** to NULL for existing schemas.  This allows sqlite_master tables that
1995 ** contain a bound parameter because they were generated by older versions
1996 ** of SQLite to be parsed by newer versions of SQLite without raising a
1997 ** malformed schema error.
1998 */
1999 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2000 
2001   /* If pWalker->eCode is 2 then any term of the expression that comes from
2002   ** the ON or USING clauses of a left join disqualifies the expression
2003   ** from being considered constant. */
2004   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2005     pWalker->eCode = 0;
2006     return WRC_Abort;
2007   }
2008 
2009   switch( pExpr->op ){
2010     /* Consider functions to be constant if all their arguments are constant
2011     ** and either pWalker->eCode==4 or 5 or the function has the
2012     ** SQLITE_FUNC_CONST flag. */
2013     case TK_FUNCTION:
2014       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2015        && !ExprHasProperty(pExpr, EP_WinFunc)
2016       ){
2017         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2018         return WRC_Continue;
2019       }else{
2020         pWalker->eCode = 0;
2021         return WRC_Abort;
2022       }
2023     case TK_ID:
2024       /* Convert "true" or "false" in a DEFAULT clause into the
2025       ** appropriate TK_TRUEFALSE operator */
2026       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2027         return WRC_Prune;
2028       }
2029       /* Fall thru */
2030     case TK_COLUMN:
2031     case TK_AGG_FUNCTION:
2032     case TK_AGG_COLUMN:
2033       testcase( pExpr->op==TK_ID );
2034       testcase( pExpr->op==TK_COLUMN );
2035       testcase( pExpr->op==TK_AGG_FUNCTION );
2036       testcase( pExpr->op==TK_AGG_COLUMN );
2037       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2038         return WRC_Continue;
2039       }
2040       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2041         return WRC_Continue;
2042       }
2043       /* Fall through */
2044     case TK_IF_NULL_ROW:
2045     case TK_REGISTER:
2046       testcase( pExpr->op==TK_REGISTER );
2047       testcase( pExpr->op==TK_IF_NULL_ROW );
2048       pWalker->eCode = 0;
2049       return WRC_Abort;
2050     case TK_VARIABLE:
2051       if( pWalker->eCode==5 ){
2052         /* Silently convert bound parameters that appear inside of CREATE
2053         ** statements into a NULL when parsing the CREATE statement text out
2054         ** of the sqlite_master table */
2055         pExpr->op = TK_NULL;
2056       }else if( pWalker->eCode==4 ){
2057         /* A bound parameter in a CREATE statement that originates from
2058         ** sqlite3_prepare() causes an error */
2059         pWalker->eCode = 0;
2060         return WRC_Abort;
2061       }
2062       /* Fall through */
2063     default:
2064       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2065       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2066       return WRC_Continue;
2067   }
2068 }
2069 static int exprIsConst(Expr *p, int initFlag, int iCur){
2070   Walker w;
2071   w.eCode = initFlag;
2072   w.xExprCallback = exprNodeIsConstant;
2073   w.xSelectCallback = sqlite3SelectWalkFail;
2074 #ifdef SQLITE_DEBUG
2075   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2076 #endif
2077   w.u.iCur = iCur;
2078   sqlite3WalkExpr(&w, p);
2079   return w.eCode;
2080 }
2081 
2082 /*
2083 ** Walk an expression tree.  Return non-zero if the expression is constant
2084 ** and 0 if it involves variables or function calls.
2085 **
2086 ** For the purposes of this function, a double-quoted string (ex: "abc")
2087 ** is considered a variable but a single-quoted string (ex: 'abc') is
2088 ** a constant.
2089 */
2090 int sqlite3ExprIsConstant(Expr *p){
2091   return exprIsConst(p, 1, 0);
2092 }
2093 
2094 /*
2095 ** Walk an expression tree.  Return non-zero if
2096 **
2097 **   (1) the expression is constant, and
2098 **   (2) the expression does originate in the ON or USING clause
2099 **       of a LEFT JOIN, and
2100 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2101 **       operands created by the constant propagation optimization.
2102 **
2103 ** When this routine returns true, it indicates that the expression
2104 ** can be added to the pParse->pConstExpr list and evaluated once when
2105 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2106 */
2107 int sqlite3ExprIsConstantNotJoin(Expr *p){
2108   return exprIsConst(p, 2, 0);
2109 }
2110 
2111 /*
2112 ** Walk an expression tree.  Return non-zero if the expression is constant
2113 ** for any single row of the table with cursor iCur.  In other words, the
2114 ** expression must not refer to any non-deterministic function nor any
2115 ** table other than iCur.
2116 */
2117 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2118   return exprIsConst(p, 3, iCur);
2119 }
2120 
2121 
2122 /*
2123 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2124 */
2125 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2126   ExprList *pGroupBy = pWalker->u.pGroupBy;
2127   int i;
2128 
2129   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2130   ** it constant.  */
2131   for(i=0; i<pGroupBy->nExpr; i++){
2132     Expr *p = pGroupBy->a[i].pExpr;
2133     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2134       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2135       if( sqlite3IsBinary(pColl) ){
2136         return WRC_Prune;
2137       }
2138     }
2139   }
2140 
2141   /* Check if pExpr is a sub-select. If so, consider it variable. */
2142   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2143     pWalker->eCode = 0;
2144     return WRC_Abort;
2145   }
2146 
2147   return exprNodeIsConstant(pWalker, pExpr);
2148 }
2149 
2150 /*
2151 ** Walk the expression tree passed as the first argument. Return non-zero
2152 ** if the expression consists entirely of constants or copies of terms
2153 ** in pGroupBy that sort with the BINARY collation sequence.
2154 **
2155 ** This routine is used to determine if a term of the HAVING clause can
2156 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2157 ** the value of the HAVING clause term must be the same for all members of
2158 ** a "group".  The requirement that the GROUP BY term must be BINARY
2159 ** assumes that no other collating sequence will have a finer-grained
2160 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2161 ** A=B in every other collating sequence.  The requirement that the
2162 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2163 ** to promote HAVING clauses that use the same alternative collating
2164 ** sequence as the GROUP BY term, but that is much harder to check,
2165 ** alternative collating sequences are uncommon, and this is only an
2166 ** optimization, so we take the easy way out and simply require the
2167 ** GROUP BY to use the BINARY collating sequence.
2168 */
2169 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2170   Walker w;
2171   w.eCode = 1;
2172   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2173   w.xSelectCallback = 0;
2174   w.u.pGroupBy = pGroupBy;
2175   w.pParse = pParse;
2176   sqlite3WalkExpr(&w, p);
2177   return w.eCode;
2178 }
2179 
2180 /*
2181 ** Walk an expression tree for the DEFAULT field of a column definition
2182 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2183 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2184 ** the expression is constant or a function call with constant arguments.
2185 ** Return and 0 if there are any variables.
2186 **
2187 ** isInit is true when parsing from sqlite_master.  isInit is false when
2188 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2189 ** (such as ? or $abc) in the expression are converted into NULL.  When
2190 ** isInit is false, parameters raise an error.  Parameters should not be
2191 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2192 ** allowed it, so we need to support it when reading sqlite_master for
2193 ** backwards compatibility.
2194 **
2195 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2196 **
2197 ** For the purposes of this function, a double-quoted string (ex: "abc")
2198 ** is considered a variable but a single-quoted string (ex: 'abc') is
2199 ** a constant.
2200 */
2201 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2202   assert( isInit==0 || isInit==1 );
2203   return exprIsConst(p, 4+isInit, 0);
2204 }
2205 
2206 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2207 /*
2208 ** Walk an expression tree.  Return 1 if the expression contains a
2209 ** subquery of some kind.  Return 0 if there are no subqueries.
2210 */
2211 int sqlite3ExprContainsSubquery(Expr *p){
2212   Walker w;
2213   w.eCode = 1;
2214   w.xExprCallback = sqlite3ExprWalkNoop;
2215   w.xSelectCallback = sqlite3SelectWalkFail;
2216 #ifdef SQLITE_DEBUG
2217   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2218 #endif
2219   sqlite3WalkExpr(&w, p);
2220   return w.eCode==0;
2221 }
2222 #endif
2223 
2224 /*
2225 ** If the expression p codes a constant integer that is small enough
2226 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2227 ** in *pValue.  If the expression is not an integer or if it is too big
2228 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2229 */
2230 int sqlite3ExprIsInteger(Expr *p, int *pValue){
2231   int rc = 0;
2232   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2233 
2234   /* If an expression is an integer literal that fits in a signed 32-bit
2235   ** integer, then the EP_IntValue flag will have already been set */
2236   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2237            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2238 
2239   if( p->flags & EP_IntValue ){
2240     *pValue = p->u.iValue;
2241     return 1;
2242   }
2243   switch( p->op ){
2244     case TK_UPLUS: {
2245       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2246       break;
2247     }
2248     case TK_UMINUS: {
2249       int v;
2250       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2251         assert( v!=(-2147483647-1) );
2252         *pValue = -v;
2253         rc = 1;
2254       }
2255       break;
2256     }
2257     default: break;
2258   }
2259   return rc;
2260 }
2261 
2262 /*
2263 ** Return FALSE if there is no chance that the expression can be NULL.
2264 **
2265 ** If the expression might be NULL or if the expression is too complex
2266 ** to tell return TRUE.
2267 **
2268 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2269 ** when we know that a value cannot be NULL.  Hence, a false positive
2270 ** (returning TRUE when in fact the expression can never be NULL) might
2271 ** be a small performance hit but is otherwise harmless.  On the other
2272 ** hand, a false negative (returning FALSE when the result could be NULL)
2273 ** will likely result in an incorrect answer.  So when in doubt, return
2274 ** TRUE.
2275 */
2276 int sqlite3ExprCanBeNull(const Expr *p){
2277   u8 op;
2278   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2279     p = p->pLeft;
2280   }
2281   op = p->op;
2282   if( op==TK_REGISTER ) op = p->op2;
2283   switch( op ){
2284     case TK_INTEGER:
2285     case TK_STRING:
2286     case TK_FLOAT:
2287     case TK_BLOB:
2288       return 0;
2289     case TK_COLUMN:
2290       return ExprHasProperty(p, EP_CanBeNull) ||
2291              p->y.pTab==0 ||  /* Reference to column of index on expression */
2292              (p->iColumn>=0
2293               && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */
2294               && p->y.pTab->aCol[p->iColumn].notNull==0);
2295     default:
2296       return 1;
2297   }
2298 }
2299 
2300 /*
2301 ** Return TRUE if the given expression is a constant which would be
2302 ** unchanged by OP_Affinity with the affinity given in the second
2303 ** argument.
2304 **
2305 ** This routine is used to determine if the OP_Affinity operation
2306 ** can be omitted.  When in doubt return FALSE.  A false negative
2307 ** is harmless.  A false positive, however, can result in the wrong
2308 ** answer.
2309 */
2310 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2311   u8 op;
2312   int unaryMinus = 0;
2313   if( aff==SQLITE_AFF_BLOB ) return 1;
2314   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2315     if( p->op==TK_UMINUS ) unaryMinus = 1;
2316     p = p->pLeft;
2317   }
2318   op = p->op;
2319   if( op==TK_REGISTER ) op = p->op2;
2320   switch( op ){
2321     case TK_INTEGER: {
2322       return aff>=SQLITE_AFF_NUMERIC;
2323     }
2324     case TK_FLOAT: {
2325       return aff>=SQLITE_AFF_NUMERIC;
2326     }
2327     case TK_STRING: {
2328       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2329     }
2330     case TK_BLOB: {
2331       return !unaryMinus;
2332     }
2333     case TK_COLUMN: {
2334       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2335       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2336     }
2337     default: {
2338       return 0;
2339     }
2340   }
2341 }
2342 
2343 /*
2344 ** Return TRUE if the given string is a row-id column name.
2345 */
2346 int sqlite3IsRowid(const char *z){
2347   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2348   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2349   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2350   return 0;
2351 }
2352 
2353 /*
2354 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2355 ** that can be simplified to a direct table access, then return
2356 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2357 ** or if the SELECT statement needs to be manifested into a transient
2358 ** table, then return NULL.
2359 */
2360 #ifndef SQLITE_OMIT_SUBQUERY
2361 static Select *isCandidateForInOpt(Expr *pX){
2362   Select *p;
2363   SrcList *pSrc;
2364   ExprList *pEList;
2365   Table *pTab;
2366   int i;
2367   if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0;  /* Not a subquery */
2368   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2369   p = pX->x.pSelect;
2370   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2371   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2372     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2373     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2374     return 0; /* No DISTINCT keyword and no aggregate functions */
2375   }
2376   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2377   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2378   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2379   pSrc = p->pSrc;
2380   assert( pSrc!=0 );
2381   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2382   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2383   pTab = pSrc->a[0].pTab;
2384   assert( pTab!=0 );
2385   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
2386   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2387   pEList = p->pEList;
2388   assert( pEList!=0 );
2389   /* All SELECT results must be columns. */
2390   for(i=0; i<pEList->nExpr; i++){
2391     Expr *pRes = pEList->a[i].pExpr;
2392     if( pRes->op!=TK_COLUMN ) return 0;
2393     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2394   }
2395   return p;
2396 }
2397 #endif /* SQLITE_OMIT_SUBQUERY */
2398 
2399 #ifndef SQLITE_OMIT_SUBQUERY
2400 /*
2401 ** Generate code that checks the left-most column of index table iCur to see if
2402 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2403 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2404 ** to be set to NULL if iCur contains one or more NULL values.
2405 */
2406 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2407   int addr1;
2408   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2409   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2410   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2411   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2412   VdbeComment((v, "first_entry_in(%d)", iCur));
2413   sqlite3VdbeJumpHere(v, addr1);
2414 }
2415 #endif
2416 
2417 
2418 #ifndef SQLITE_OMIT_SUBQUERY
2419 /*
2420 ** The argument is an IN operator with a list (not a subquery) on the
2421 ** right-hand side.  Return TRUE if that list is constant.
2422 */
2423 static int sqlite3InRhsIsConstant(Expr *pIn){
2424   Expr *pLHS;
2425   int res;
2426   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2427   pLHS = pIn->pLeft;
2428   pIn->pLeft = 0;
2429   res = sqlite3ExprIsConstant(pIn);
2430   pIn->pLeft = pLHS;
2431   return res;
2432 }
2433 #endif
2434 
2435 /*
2436 ** This function is used by the implementation of the IN (...) operator.
2437 ** The pX parameter is the expression on the RHS of the IN operator, which
2438 ** might be either a list of expressions or a subquery.
2439 **
2440 ** The job of this routine is to find or create a b-tree object that can
2441 ** be used either to test for membership in the RHS set or to iterate through
2442 ** all members of the RHS set, skipping duplicates.
2443 **
2444 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2445 ** and pX->iTable is set to the index of that cursor.
2446 **
2447 ** The returned value of this function indicates the b-tree type, as follows:
2448 **
2449 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2450 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2451 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2452 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2453 **                         populated epheremal table.
2454 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2455 **                         implemented as a sequence of comparisons.
2456 **
2457 ** An existing b-tree might be used if the RHS expression pX is a simple
2458 ** subquery such as:
2459 **
2460 **     SELECT <column1>, <column2>... FROM <table>
2461 **
2462 ** If the RHS of the IN operator is a list or a more complex subquery, then
2463 ** an ephemeral table might need to be generated from the RHS and then
2464 ** pX->iTable made to point to the ephemeral table instead of an
2465 ** existing table.
2466 **
2467 ** The inFlags parameter must contain, at a minimum, one of the bits
2468 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2469 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2470 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2471 ** be used to loop over all values of the RHS of the IN operator.
2472 **
2473 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2474 ** through the set members) then the b-tree must not contain duplicates.
2475 ** An epheremal table will be created unless the selected columns are guaranteed
2476 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2477 ** a UNIQUE constraint or index.
2478 **
2479 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2480 ** for fast set membership tests) then an epheremal table must
2481 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2482 ** index can be found with the specified <columns> as its left-most.
2483 **
2484 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2485 ** if the RHS of the IN operator is a list (not a subquery) then this
2486 ** routine might decide that creating an ephemeral b-tree for membership
2487 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2488 ** calling routine should implement the IN operator using a sequence
2489 ** of Eq or Ne comparison operations.
2490 **
2491 ** When the b-tree is being used for membership tests, the calling function
2492 ** might need to know whether or not the RHS side of the IN operator
2493 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2494 ** if there is any chance that the (...) might contain a NULL value at
2495 ** runtime, then a register is allocated and the register number written
2496 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2497 ** NULL value, then *prRhsHasNull is left unchanged.
2498 **
2499 ** If a register is allocated and its location stored in *prRhsHasNull, then
2500 ** the value in that register will be NULL if the b-tree contains one or more
2501 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2502 ** NULL values.
2503 **
2504 ** If the aiMap parameter is not NULL, it must point to an array containing
2505 ** one element for each column returned by the SELECT statement on the RHS
2506 ** of the IN(...) operator. The i'th entry of the array is populated with the
2507 ** offset of the index column that matches the i'th column returned by the
2508 ** SELECT. For example, if the expression and selected index are:
2509 **
2510 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2511 **   CREATE INDEX i1 ON t1(b, c, a);
2512 **
2513 ** then aiMap[] is populated with {2, 0, 1}.
2514 */
2515 #ifndef SQLITE_OMIT_SUBQUERY
2516 int sqlite3FindInIndex(
2517   Parse *pParse,             /* Parsing context */
2518   Expr *pX,                  /* The IN expression */
2519   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2520   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2521   int *aiMap,                /* Mapping from Index fields to RHS fields */
2522   int *piTab                 /* OUT: index to use */
2523 ){
2524   Select *p;                            /* SELECT to the right of IN operator */
2525   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2526   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
2527   int mustBeUnique;                     /* True if RHS must be unique */
2528   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2529 
2530   assert( pX->op==TK_IN );
2531   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2532 
2533   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2534   ** whether or not the SELECT result contains NULL values, check whether
2535   ** or not NULL is actually possible (it may not be, for example, due
2536   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2537   ** set prRhsHasNull to 0 before continuing.  */
2538   if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2539     int i;
2540     ExprList *pEList = pX->x.pSelect->pEList;
2541     for(i=0; i<pEList->nExpr; i++){
2542       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2543     }
2544     if( i==pEList->nExpr ){
2545       prRhsHasNull = 0;
2546     }
2547   }
2548 
2549   /* Check to see if an existing table or index can be used to
2550   ** satisfy the query.  This is preferable to generating a new
2551   ** ephemeral table.  */
2552   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2553     sqlite3 *db = pParse->db;              /* Database connection */
2554     Table *pTab;                           /* Table <table>. */
2555     i16 iDb;                               /* Database idx for pTab */
2556     ExprList *pEList = p->pEList;
2557     int nExpr = pEList->nExpr;
2558 
2559     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2560     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2561     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2562     pTab = p->pSrc->a[0].pTab;
2563 
2564     /* Code an OP_Transaction and OP_TableLock for <table>. */
2565     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2566     sqlite3CodeVerifySchema(pParse, iDb);
2567     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2568 
2569     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2570     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2571       /* The "x IN (SELECT rowid FROM table)" case */
2572       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2573       VdbeCoverage(v);
2574 
2575       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2576       eType = IN_INDEX_ROWID;
2577       ExplainQueryPlan((pParse, 0,
2578             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2579       sqlite3VdbeJumpHere(v, iAddr);
2580     }else{
2581       Index *pIdx;                         /* Iterator variable */
2582       int affinity_ok = 1;
2583       int i;
2584 
2585       /* Check that the affinity that will be used to perform each
2586       ** comparison is the same as the affinity of each column in table
2587       ** on the RHS of the IN operator.  If it not, it is not possible to
2588       ** use any index of the RHS table.  */
2589       for(i=0; i<nExpr && affinity_ok; i++){
2590         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2591         int iCol = pEList->a[i].pExpr->iColumn;
2592         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2593         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2594         testcase( cmpaff==SQLITE_AFF_BLOB );
2595         testcase( cmpaff==SQLITE_AFF_TEXT );
2596         switch( cmpaff ){
2597           case SQLITE_AFF_BLOB:
2598             break;
2599           case SQLITE_AFF_TEXT:
2600             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2601             ** other has no affinity and the other side is TEXT.  Hence,
2602             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2603             ** and for the term on the LHS of the IN to have no affinity. */
2604             assert( idxaff==SQLITE_AFF_TEXT );
2605             break;
2606           default:
2607             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2608         }
2609       }
2610 
2611       if( affinity_ok ){
2612         /* Search for an existing index that will work for this IN operator */
2613         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2614           Bitmask colUsed;      /* Columns of the index used */
2615           Bitmask mCol;         /* Mask for the current column */
2616           if( pIdx->nColumn<nExpr ) continue;
2617           if( pIdx->pPartIdxWhere!=0 ) continue;
2618           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2619           ** BITMASK(nExpr) without overflowing */
2620           testcase( pIdx->nColumn==BMS-2 );
2621           testcase( pIdx->nColumn==BMS-1 );
2622           if( pIdx->nColumn>=BMS-1 ) continue;
2623           if( mustBeUnique ){
2624             if( pIdx->nKeyCol>nExpr
2625              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2626             ){
2627               continue;  /* This index is not unique over the IN RHS columns */
2628             }
2629           }
2630 
2631           colUsed = 0;   /* Columns of index used so far */
2632           for(i=0; i<nExpr; i++){
2633             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2634             Expr *pRhs = pEList->a[i].pExpr;
2635             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2636             int j;
2637 
2638             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2639             for(j=0; j<nExpr; j++){
2640               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2641               assert( pIdx->azColl[j] );
2642               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2643                 continue;
2644               }
2645               break;
2646             }
2647             if( j==nExpr ) break;
2648             mCol = MASKBIT(j);
2649             if( mCol & colUsed ) break; /* Each column used only once */
2650             colUsed |= mCol;
2651             if( aiMap ) aiMap[i] = j;
2652           }
2653 
2654           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2655           if( colUsed==(MASKBIT(nExpr)-1) ){
2656             /* If we reach this point, that means the index pIdx is usable */
2657             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2658             ExplainQueryPlan((pParse, 0,
2659                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2660             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2661             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2662             VdbeComment((v, "%s", pIdx->zName));
2663             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2664             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2665 
2666             if( prRhsHasNull ){
2667 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2668               i64 mask = (1<<nExpr)-1;
2669               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2670                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2671 #endif
2672               *prRhsHasNull = ++pParse->nMem;
2673               if( nExpr==1 ){
2674                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2675               }
2676             }
2677             sqlite3VdbeJumpHere(v, iAddr);
2678           }
2679         } /* End loop over indexes */
2680       } /* End if( affinity_ok ) */
2681     } /* End if not an rowid index */
2682   } /* End attempt to optimize using an index */
2683 
2684   /* If no preexisting index is available for the IN clause
2685   ** and IN_INDEX_NOOP is an allowed reply
2686   ** and the RHS of the IN operator is a list, not a subquery
2687   ** and the RHS is not constant or has two or fewer terms,
2688   ** then it is not worth creating an ephemeral table to evaluate
2689   ** the IN operator so return IN_INDEX_NOOP.
2690   */
2691   if( eType==0
2692    && (inFlags & IN_INDEX_NOOP_OK)
2693    && !ExprHasProperty(pX, EP_xIsSelect)
2694    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2695   ){
2696     eType = IN_INDEX_NOOP;
2697   }
2698 
2699   if( eType==0 ){
2700     /* Could not find an existing table or index to use as the RHS b-tree.
2701     ** We will have to generate an ephemeral table to do the job.
2702     */
2703     u32 savedNQueryLoop = pParse->nQueryLoop;
2704     int rMayHaveNull = 0;
2705     eType = IN_INDEX_EPH;
2706     if( inFlags & IN_INDEX_LOOP ){
2707       pParse->nQueryLoop = 0;
2708     }else if( prRhsHasNull ){
2709       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2710     }
2711     assert( pX->op==TK_IN );
2712     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2713     if( rMayHaveNull ){
2714       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2715     }
2716     pParse->nQueryLoop = savedNQueryLoop;
2717   }
2718 
2719   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2720     int i, n;
2721     n = sqlite3ExprVectorSize(pX->pLeft);
2722     for(i=0; i<n; i++) aiMap[i] = i;
2723   }
2724   *piTab = iTab;
2725   return eType;
2726 }
2727 #endif
2728 
2729 #ifndef SQLITE_OMIT_SUBQUERY
2730 /*
2731 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2732 ** function allocates and returns a nul-terminated string containing
2733 ** the affinities to be used for each column of the comparison.
2734 **
2735 ** It is the responsibility of the caller to ensure that the returned
2736 ** string is eventually freed using sqlite3DbFree().
2737 */
2738 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2739   Expr *pLeft = pExpr->pLeft;
2740   int nVal = sqlite3ExprVectorSize(pLeft);
2741   Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2742   char *zRet;
2743 
2744   assert( pExpr->op==TK_IN );
2745   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2746   if( zRet ){
2747     int i;
2748     for(i=0; i<nVal; i++){
2749       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2750       char a = sqlite3ExprAffinity(pA);
2751       if( pSelect ){
2752         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2753       }else{
2754         zRet[i] = a;
2755       }
2756     }
2757     zRet[nVal] = '\0';
2758   }
2759   return zRet;
2760 }
2761 #endif
2762 
2763 #ifndef SQLITE_OMIT_SUBQUERY
2764 /*
2765 ** Load the Parse object passed as the first argument with an error
2766 ** message of the form:
2767 **
2768 **   "sub-select returns N columns - expected M"
2769 */
2770 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2771   if( pParse->nErr==0 ){
2772     const char *zFmt = "sub-select returns %d columns - expected %d";
2773     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2774   }
2775 }
2776 #endif
2777 
2778 /*
2779 ** Expression pExpr is a vector that has been used in a context where
2780 ** it is not permitted. If pExpr is a sub-select vector, this routine
2781 ** loads the Parse object with a message of the form:
2782 **
2783 **   "sub-select returns N columns - expected 1"
2784 **
2785 ** Or, if it is a regular scalar vector:
2786 **
2787 **   "row value misused"
2788 */
2789 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2790 #ifndef SQLITE_OMIT_SUBQUERY
2791   if( pExpr->flags & EP_xIsSelect ){
2792     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2793   }else
2794 #endif
2795   {
2796     sqlite3ErrorMsg(pParse, "row value misused");
2797   }
2798 }
2799 
2800 #ifndef SQLITE_OMIT_SUBQUERY
2801 /*
2802 ** Generate code that will construct an ephemeral table containing all terms
2803 ** in the RHS of an IN operator.  The IN operator can be in either of two
2804 ** forms:
2805 **
2806 **     x IN (4,5,11)              -- IN operator with list on right-hand side
2807 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
2808 **
2809 ** The pExpr parameter is the IN operator.  The cursor number for the
2810 ** constructed ephermeral table is returned.  The first time the ephemeral
2811 ** table is computed, the cursor number is also stored in pExpr->iTable,
2812 ** however the cursor number returned might not be the same, as it might
2813 ** have been duplicated using OP_OpenDup.
2814 **
2815 ** If the LHS expression ("x" in the examples) is a column value, or
2816 ** the SELECT statement returns a column value, then the affinity of that
2817 ** column is used to build the index keys. If both 'x' and the
2818 ** SELECT... statement are columns, then numeric affinity is used
2819 ** if either column has NUMERIC or INTEGER affinity. If neither
2820 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2821 ** is used.
2822 */
2823 void sqlite3CodeRhsOfIN(
2824   Parse *pParse,          /* Parsing context */
2825   Expr *pExpr,            /* The IN operator */
2826   int iTab                /* Use this cursor number */
2827 ){
2828   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
2829   int addr;                   /* Address of OP_OpenEphemeral instruction */
2830   Expr *pLeft;                /* the LHS of the IN operator */
2831   KeyInfo *pKeyInfo = 0;      /* Key information */
2832   int nVal;                   /* Size of vector pLeft */
2833   Vdbe *v;                    /* The prepared statement under construction */
2834 
2835   v = pParse->pVdbe;
2836   assert( v!=0 );
2837 
2838   /* The evaluation of the IN must be repeated every time it
2839   ** is encountered if any of the following is true:
2840   **
2841   **    *  The right-hand side is a correlated subquery
2842   **    *  The right-hand side is an expression list containing variables
2843   **    *  We are inside a trigger
2844   **
2845   ** If all of the above are false, then we can compute the RHS just once
2846   ** and reuse it many names.
2847   */
2848   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
2849     /* Reuse of the RHS is allowed */
2850     /* If this routine has already been coded, but the previous code
2851     ** might not have been invoked yet, so invoke it now as a subroutine.
2852     */
2853     if( ExprHasProperty(pExpr, EP_Subrtn) ){
2854       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2855       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2856         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
2857               pExpr->x.pSelect->selId));
2858       }
2859       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
2860                         pExpr->y.sub.iAddr);
2861       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
2862       sqlite3VdbeJumpHere(v, addrOnce);
2863       return;
2864     }
2865 
2866     /* Begin coding the subroutine */
2867     ExprSetProperty(pExpr, EP_Subrtn);
2868     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
2869     pExpr->y.sub.regReturn = ++pParse->nMem;
2870     pExpr->y.sub.iAddr =
2871       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
2872     VdbeComment((v, "return address"));
2873 
2874     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2875   }
2876 
2877   /* Check to see if this is a vector IN operator */
2878   pLeft = pExpr->pLeft;
2879   nVal = sqlite3ExprVectorSize(pLeft);
2880 
2881   /* Construct the ephemeral table that will contain the content of
2882   ** RHS of the IN operator.
2883   */
2884   pExpr->iTable = iTab;
2885   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
2886 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2887   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2888     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
2889   }else{
2890     VdbeComment((v, "RHS of IN operator"));
2891   }
2892 #endif
2893   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2894 
2895   if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2896     /* Case 1:     expr IN (SELECT ...)
2897     **
2898     ** Generate code to write the results of the select into the temporary
2899     ** table allocated and opened above.
2900     */
2901     Select *pSelect = pExpr->x.pSelect;
2902     ExprList *pEList = pSelect->pEList;
2903 
2904     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
2905         addrOnce?"":"CORRELATED ", pSelect->selId
2906     ));
2907     /* If the LHS and RHS of the IN operator do not match, that
2908     ** error will have been caught long before we reach this point. */
2909     if( ALWAYS(pEList->nExpr==nVal) ){
2910       SelectDest dest;
2911       int i;
2912       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
2913       dest.zAffSdst = exprINAffinity(pParse, pExpr);
2914       pSelect->iLimit = 0;
2915       testcase( pSelect->selFlags & SF_Distinct );
2916       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2917       if( sqlite3Select(pParse, pSelect, &dest) ){
2918         sqlite3DbFree(pParse->db, dest.zAffSdst);
2919         sqlite3KeyInfoUnref(pKeyInfo);
2920         return;
2921       }
2922       sqlite3DbFree(pParse->db, dest.zAffSdst);
2923       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2924       assert( pEList!=0 );
2925       assert( pEList->nExpr>0 );
2926       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2927       for(i=0; i<nVal; i++){
2928         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2929         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2930             pParse, p, pEList->a[i].pExpr
2931         );
2932       }
2933     }
2934   }else if( ALWAYS(pExpr->x.pList!=0) ){
2935     /* Case 2:     expr IN (exprlist)
2936     **
2937     ** For each expression, build an index key from the evaluation and
2938     ** store it in the temporary table. If <expr> is a column, then use
2939     ** that columns affinity when building index keys. If <expr> is not
2940     ** a column, use numeric affinity.
2941     */
2942     char affinity;            /* Affinity of the LHS of the IN */
2943     int i;
2944     ExprList *pList = pExpr->x.pList;
2945     struct ExprList_item *pItem;
2946     int r1, r2;
2947     affinity = sqlite3ExprAffinity(pLeft);
2948     if( affinity<=SQLITE_AFF_NONE ){
2949       affinity = SQLITE_AFF_BLOB;
2950     }else if( affinity==SQLITE_AFF_REAL ){
2951       affinity = SQLITE_AFF_NUMERIC;
2952     }
2953     if( pKeyInfo ){
2954       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2955       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2956     }
2957 
2958     /* Loop through each expression in <exprlist>. */
2959     r1 = sqlite3GetTempReg(pParse);
2960     r2 = sqlite3GetTempReg(pParse);
2961     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2962       Expr *pE2 = pItem->pExpr;
2963 
2964       /* If the expression is not constant then we will need to
2965       ** disable the test that was generated above that makes sure
2966       ** this code only executes once.  Because for a non-constant
2967       ** expression we need to rerun this code each time.
2968       */
2969       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
2970         sqlite3VdbeChangeToNoop(v, addrOnce);
2971         ExprClearProperty(pExpr, EP_Subrtn);
2972         addrOnce = 0;
2973       }
2974 
2975       /* Evaluate the expression and insert it into the temp table */
2976       sqlite3ExprCode(pParse, pE2, r1);
2977       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
2978       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
2979     }
2980     sqlite3ReleaseTempReg(pParse, r1);
2981     sqlite3ReleaseTempReg(pParse, r2);
2982   }
2983   if( pKeyInfo ){
2984     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2985   }
2986   if( addrOnce ){
2987     sqlite3VdbeJumpHere(v, addrOnce);
2988     /* Subroutine return */
2989     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
2990     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
2991     sqlite3ClearTempRegCache(pParse);
2992   }
2993 }
2994 #endif /* SQLITE_OMIT_SUBQUERY */
2995 
2996 /*
2997 ** Generate code for scalar subqueries used as a subquery expression
2998 ** or EXISTS operator:
2999 **
3000 **     (SELECT a FROM b)          -- subquery
3001 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3002 **
3003 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3004 **
3005 ** Return the register that holds the result.  For a multi-column SELECT,
3006 ** the result is stored in a contiguous array of registers and the
3007 ** return value is the register of the left-most result column.
3008 ** Return 0 if an error occurs.
3009 */
3010 #ifndef SQLITE_OMIT_SUBQUERY
3011 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3012   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3013   int rReg = 0;               /* Register storing resulting */
3014   Select *pSel;               /* SELECT statement to encode */
3015   SelectDest dest;            /* How to deal with SELECT result */
3016   int nReg;                   /* Registers to allocate */
3017   Expr *pLimit;               /* New limit expression */
3018 
3019   Vdbe *v = pParse->pVdbe;
3020   assert( v!=0 );
3021   testcase( pExpr->op==TK_EXISTS );
3022   testcase( pExpr->op==TK_SELECT );
3023   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3024   assert( ExprHasProperty(pExpr, EP_xIsSelect) );
3025   pSel = pExpr->x.pSelect;
3026 
3027   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3028   ** is encountered if any of the following is true:
3029   **
3030   **    *  The right-hand side is a correlated subquery
3031   **    *  The right-hand side is an expression list containing variables
3032   **    *  We are inside a trigger
3033   **
3034   ** If all of the above are false, then we can run this code just once
3035   ** save the results, and reuse the same result on subsequent invocations.
3036   */
3037   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3038     /* If this routine has already been coded, then invoke it as a
3039     ** subroutine. */
3040     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3041       ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3042       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3043                         pExpr->y.sub.iAddr);
3044       return pExpr->iTable;
3045     }
3046 
3047     /* Begin coding the subroutine */
3048     ExprSetProperty(pExpr, EP_Subrtn);
3049     pExpr->y.sub.regReturn = ++pParse->nMem;
3050     pExpr->y.sub.iAddr =
3051       sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3052     VdbeComment((v, "return address"));
3053 
3054     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3055   }
3056 
3057   /* For a SELECT, generate code to put the values for all columns of
3058   ** the first row into an array of registers and return the index of
3059   ** the first register.
3060   **
3061   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3062   ** into a register and return that register number.
3063   **
3064   ** In both cases, the query is augmented with "LIMIT 1".  Any
3065   ** preexisting limit is discarded in place of the new LIMIT 1.
3066   */
3067   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3068         addrOnce?"":"CORRELATED ", pSel->selId));
3069   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3070   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3071   pParse->nMem += nReg;
3072   if( pExpr->op==TK_SELECT ){
3073     dest.eDest = SRT_Mem;
3074     dest.iSdst = dest.iSDParm;
3075     dest.nSdst = nReg;
3076     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3077     VdbeComment((v, "Init subquery result"));
3078   }else{
3079     dest.eDest = SRT_Exists;
3080     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3081     VdbeComment((v, "Init EXISTS result"));
3082   }
3083   if( pSel->pLimit ){
3084     /* The subquery already has a limit.  If the pre-existing limit is X
3085     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3086     sqlite3 *db = pParse->db;
3087     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3088     if( pLimit ){
3089       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3090       pLimit = sqlite3PExpr(pParse, TK_NE,
3091                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3092     }
3093     sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3094     pSel->pLimit->pLeft = pLimit;
3095   }else{
3096     /* If there is no pre-existing limit add a limit of 1 */
3097     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3098     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3099   }
3100   pSel->iLimit = 0;
3101   if( sqlite3Select(pParse, pSel, &dest) ){
3102     return 0;
3103   }
3104   pExpr->iTable = rReg = dest.iSDParm;
3105   ExprSetVVAProperty(pExpr, EP_NoReduce);
3106   if( addrOnce ){
3107     sqlite3VdbeJumpHere(v, addrOnce);
3108 
3109     /* Subroutine return */
3110     sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3111     sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3112     sqlite3ClearTempRegCache(pParse);
3113   }
3114 
3115   return rReg;
3116 }
3117 #endif /* SQLITE_OMIT_SUBQUERY */
3118 
3119 #ifndef SQLITE_OMIT_SUBQUERY
3120 /*
3121 ** Expr pIn is an IN(...) expression. This function checks that the
3122 ** sub-select on the RHS of the IN() operator has the same number of
3123 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3124 ** a sub-query, that the LHS is a vector of size 1.
3125 */
3126 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3127   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3128   if( (pIn->flags & EP_xIsSelect) ){
3129     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3130       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3131       return 1;
3132     }
3133   }else if( nVector!=1 ){
3134     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3135     return 1;
3136   }
3137   return 0;
3138 }
3139 #endif
3140 
3141 #ifndef SQLITE_OMIT_SUBQUERY
3142 /*
3143 ** Generate code for an IN expression.
3144 **
3145 **      x IN (SELECT ...)
3146 **      x IN (value, value, ...)
3147 **
3148 ** The left-hand side (LHS) is a scalar or vector expression.  The
3149 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3150 ** subquery.  If the RHS is a subquery, the number of result columns must
3151 ** match the number of columns in the vector on the LHS.  If the RHS is
3152 ** a list of values, the LHS must be a scalar.
3153 **
3154 ** The IN operator is true if the LHS value is contained within the RHS.
3155 ** The result is false if the LHS is definitely not in the RHS.  The
3156 ** result is NULL if the presence of the LHS in the RHS cannot be
3157 ** determined due to NULLs.
3158 **
3159 ** This routine generates code that jumps to destIfFalse if the LHS is not
3160 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3161 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3162 ** within the RHS then fall through.
3163 **
3164 ** See the separate in-operator.md documentation file in the canonical
3165 ** SQLite source tree for additional information.
3166 */
3167 static void sqlite3ExprCodeIN(
3168   Parse *pParse,        /* Parsing and code generating context */
3169   Expr *pExpr,          /* The IN expression */
3170   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3171   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3172 ){
3173   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3174   int eType;            /* Type of the RHS */
3175   int rLhs;             /* Register(s) holding the LHS values */
3176   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3177   Vdbe *v;              /* Statement under construction */
3178   int *aiMap = 0;       /* Map from vector field to index column */
3179   char *zAff = 0;       /* Affinity string for comparisons */
3180   int nVector;          /* Size of vectors for this IN operator */
3181   int iDummy;           /* Dummy parameter to exprCodeVector() */
3182   Expr *pLeft;          /* The LHS of the IN operator */
3183   int i;                /* loop counter */
3184   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3185   int destStep6 = 0;    /* Start of code for Step 6 */
3186   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3187   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3188   int addrTop;          /* Top of the step-6 loop */
3189   int iTab = 0;         /* Index to use */
3190   u8 okConstFactor = pParse->okConstFactor;
3191 
3192   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3193   pLeft = pExpr->pLeft;
3194   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3195   zAff = exprINAffinity(pParse, pExpr);
3196   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3197   aiMap = (int*)sqlite3DbMallocZero(
3198       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3199   );
3200   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3201 
3202   /* Attempt to compute the RHS. After this step, if anything other than
3203   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3204   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3205   ** the RHS has not yet been coded.  */
3206   v = pParse->pVdbe;
3207   assert( v!=0 );       /* OOM detected prior to this routine */
3208   VdbeNoopComment((v, "begin IN expr"));
3209   eType = sqlite3FindInIndex(pParse, pExpr,
3210                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3211                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3212                              aiMap, &iTab);
3213 
3214   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3215        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3216   );
3217 #ifdef SQLITE_DEBUG
3218   /* Confirm that aiMap[] contains nVector integer values between 0 and
3219   ** nVector-1. */
3220   for(i=0; i<nVector; i++){
3221     int j, cnt;
3222     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3223     assert( cnt==1 );
3224   }
3225 #endif
3226 
3227   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3228   ** vector, then it is stored in an array of nVector registers starting
3229   ** at r1.
3230   **
3231   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3232   ** so that the fields are in the same order as an existing index.   The
3233   ** aiMap[] array contains a mapping from the original LHS field order to
3234   ** the field order that matches the RHS index.
3235   **
3236   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3237   ** even if it is constant, as OP_Affinity may be used on the register
3238   ** by code generated below.  */
3239   assert( pParse->okConstFactor==okConstFactor );
3240   pParse->okConstFactor = 0;
3241   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3242   pParse->okConstFactor = okConstFactor;
3243   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3244   if( i==nVector ){
3245     /* LHS fields are not reordered */
3246     rLhs = rLhsOrig;
3247   }else{
3248     /* Need to reorder the LHS fields according to aiMap */
3249     rLhs = sqlite3GetTempRange(pParse, nVector);
3250     for(i=0; i<nVector; i++){
3251       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3252     }
3253   }
3254 
3255   /* If sqlite3FindInIndex() did not find or create an index that is
3256   ** suitable for evaluating the IN operator, then evaluate using a
3257   ** sequence of comparisons.
3258   **
3259   ** This is step (1) in the in-operator.md optimized algorithm.
3260   */
3261   if( eType==IN_INDEX_NOOP ){
3262     ExprList *pList = pExpr->x.pList;
3263     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3264     int labelOk = sqlite3VdbeMakeLabel(pParse);
3265     int r2, regToFree;
3266     int regCkNull = 0;
3267     int ii;
3268     assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3269     if( destIfNull!=destIfFalse ){
3270       regCkNull = sqlite3GetTempReg(pParse);
3271       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3272     }
3273     for(ii=0; ii<pList->nExpr; ii++){
3274       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3275       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3276         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3277       }
3278       sqlite3ReleaseTempReg(pParse, regToFree);
3279       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3280         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3281         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3282                           (void*)pColl, P4_COLLSEQ);
3283         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3284         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3285         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3286         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3287         sqlite3VdbeChangeP5(v, zAff[0]);
3288       }else{
3289         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3290         assert( destIfNull==destIfFalse );
3291         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3292                           (void*)pColl, P4_COLLSEQ);
3293         VdbeCoverageIf(v, op==OP_Ne);
3294         VdbeCoverageIf(v, op==OP_IsNull);
3295         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3296       }
3297     }
3298     if( regCkNull ){
3299       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3300       sqlite3VdbeGoto(v, destIfFalse);
3301     }
3302     sqlite3VdbeResolveLabel(v, labelOk);
3303     sqlite3ReleaseTempReg(pParse, regCkNull);
3304     goto sqlite3ExprCodeIN_finished;
3305   }
3306 
3307   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3308   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3309   ** We will then skip the binary search of the RHS.
3310   */
3311   if( destIfNull==destIfFalse ){
3312     destStep2 = destIfFalse;
3313   }else{
3314     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3315   }
3316   if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3317   for(i=0; i<nVector; i++){
3318     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3319     if( sqlite3ExprCanBeNull(p) ){
3320       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3321       VdbeCoverage(v);
3322     }
3323   }
3324 
3325   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3326   ** of the RHS using the LHS as a probe.  If found, the result is
3327   ** true.
3328   */
3329   if( eType==IN_INDEX_ROWID ){
3330     /* In this case, the RHS is the ROWID of table b-tree and so we also
3331     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3332     ** into a single opcode. */
3333     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3334     VdbeCoverage(v);
3335     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3336   }else{
3337     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3338     if( destIfFalse==destIfNull ){
3339       /* Combine Step 3 and Step 5 into a single opcode */
3340       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3341                            rLhs, nVector); VdbeCoverage(v);
3342       goto sqlite3ExprCodeIN_finished;
3343     }
3344     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3345     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3346                                       rLhs, nVector); VdbeCoverage(v);
3347   }
3348 
3349   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3350   ** an match on the search above, then the result must be FALSE.
3351   */
3352   if( rRhsHasNull && nVector==1 ){
3353     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3354     VdbeCoverage(v);
3355   }
3356 
3357   /* Step 5.  If we do not care about the difference between NULL and
3358   ** FALSE, then just return false.
3359   */
3360   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3361 
3362   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3363   ** If any comparison is NULL, then the result is NULL.  If all
3364   ** comparisons are FALSE then the final result is FALSE.
3365   **
3366   ** For a scalar LHS, it is sufficient to check just the first row
3367   ** of the RHS.
3368   */
3369   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3370   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3371   VdbeCoverage(v);
3372   if( nVector>1 ){
3373     destNotNull = sqlite3VdbeMakeLabel(pParse);
3374   }else{
3375     /* For nVector==1, combine steps 6 and 7 by immediately returning
3376     ** FALSE if the first comparison is not NULL */
3377     destNotNull = destIfFalse;
3378   }
3379   for(i=0; i<nVector; i++){
3380     Expr *p;
3381     CollSeq *pColl;
3382     int r3 = sqlite3GetTempReg(pParse);
3383     p = sqlite3VectorFieldSubexpr(pLeft, i);
3384     pColl = sqlite3ExprCollSeq(pParse, p);
3385     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3386     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3387                       (void*)pColl, P4_COLLSEQ);
3388     VdbeCoverage(v);
3389     sqlite3ReleaseTempReg(pParse, r3);
3390   }
3391   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3392   if( nVector>1 ){
3393     sqlite3VdbeResolveLabel(v, destNotNull);
3394     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3395     VdbeCoverage(v);
3396 
3397     /* Step 7:  If we reach this point, we know that the result must
3398     ** be false. */
3399     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3400   }
3401 
3402   /* Jumps here in order to return true. */
3403   sqlite3VdbeJumpHere(v, addrTruthOp);
3404 
3405 sqlite3ExprCodeIN_finished:
3406   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3407   VdbeComment((v, "end IN expr"));
3408 sqlite3ExprCodeIN_oom_error:
3409   sqlite3DbFree(pParse->db, aiMap);
3410   sqlite3DbFree(pParse->db, zAff);
3411 }
3412 #endif /* SQLITE_OMIT_SUBQUERY */
3413 
3414 #ifndef SQLITE_OMIT_FLOATING_POINT
3415 /*
3416 ** Generate an instruction that will put the floating point
3417 ** value described by z[0..n-1] into register iMem.
3418 **
3419 ** The z[] string will probably not be zero-terminated.  But the
3420 ** z[n] character is guaranteed to be something that does not look
3421 ** like the continuation of the number.
3422 */
3423 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3424   if( ALWAYS(z!=0) ){
3425     double value;
3426     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3427     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3428     if( negateFlag ) value = -value;
3429     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3430   }
3431 }
3432 #endif
3433 
3434 
3435 /*
3436 ** Generate an instruction that will put the integer describe by
3437 ** text z[0..n-1] into register iMem.
3438 **
3439 ** Expr.u.zToken is always UTF8 and zero-terminated.
3440 */
3441 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3442   Vdbe *v = pParse->pVdbe;
3443   if( pExpr->flags & EP_IntValue ){
3444     int i = pExpr->u.iValue;
3445     assert( i>=0 );
3446     if( negFlag ) i = -i;
3447     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3448   }else{
3449     int c;
3450     i64 value;
3451     const char *z = pExpr->u.zToken;
3452     assert( z!=0 );
3453     c = sqlite3DecOrHexToI64(z, &value);
3454     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3455 #ifdef SQLITE_OMIT_FLOATING_POINT
3456       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3457 #else
3458 #ifndef SQLITE_OMIT_HEX_INTEGER
3459       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3460         sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3461       }else
3462 #endif
3463       {
3464         codeReal(v, z, negFlag, iMem);
3465       }
3466 #endif
3467     }else{
3468       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3469       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3470     }
3471   }
3472 }
3473 
3474 
3475 /* Generate code that will load into register regOut a value that is
3476 ** appropriate for the iIdxCol-th column of index pIdx.
3477 */
3478 void sqlite3ExprCodeLoadIndexColumn(
3479   Parse *pParse,  /* The parsing context */
3480   Index *pIdx,    /* The index whose column is to be loaded */
3481   int iTabCur,    /* Cursor pointing to a table row */
3482   int iIdxCol,    /* The column of the index to be loaded */
3483   int regOut      /* Store the index column value in this register */
3484 ){
3485   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3486   if( iTabCol==XN_EXPR ){
3487     assert( pIdx->aColExpr );
3488     assert( pIdx->aColExpr->nExpr>iIdxCol );
3489     pParse->iSelfTab = iTabCur + 1;
3490     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3491     pParse->iSelfTab = 0;
3492   }else{
3493     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3494                                     iTabCol, regOut);
3495   }
3496 }
3497 
3498 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3499 /*
3500 ** Generate code that will compute the value of generated column pCol
3501 ** and store the result in register regOut
3502 */
3503 void sqlite3ExprCodeGeneratedColumn(
3504   Parse *pParse,
3505   Column *pCol,
3506   int regOut
3507 ){
3508   int iAddr;
3509   Vdbe *v = pParse->pVdbe;
3510   assert( v!=0 );
3511   assert( pParse->iSelfTab!=0 );
3512   if( pParse->iSelfTab>0 ){
3513     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3514   }else{
3515     iAddr = 0;
3516   }
3517   sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut);
3518   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3519     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3520   }
3521   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3522 }
3523 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3524 
3525 /*
3526 ** Generate code to extract the value of the iCol-th column of a table.
3527 */
3528 void sqlite3ExprCodeGetColumnOfTable(
3529   Vdbe *v,        /* Parsing context */
3530   Table *pTab,    /* The table containing the value */
3531   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3532   int iCol,       /* Index of the column to extract */
3533   int regOut      /* Extract the value into this register */
3534 ){
3535   Column *pCol;
3536   assert( v!=0 );
3537   if( pTab==0 ){
3538     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3539     return;
3540   }
3541   if( iCol<0 || iCol==pTab->iPKey ){
3542     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3543   }else{
3544     int op;
3545     int x;
3546     if( IsVirtual(pTab) ){
3547       op = OP_VColumn;
3548       x = iCol;
3549 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3550     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3551       Parse *pParse = sqlite3VdbeParser(v);
3552       if( pCol->colFlags & COLFLAG_BUSY ){
3553         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName);
3554       }else{
3555         int savedSelfTab = pParse->iSelfTab;
3556         pCol->colFlags |= COLFLAG_BUSY;
3557         pParse->iSelfTab = iTabCur+1;
3558         sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut);
3559         pParse->iSelfTab = savedSelfTab;
3560         pCol->colFlags &= ~COLFLAG_BUSY;
3561       }
3562       return;
3563 #endif
3564     }else if( !HasRowid(pTab) ){
3565       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3566       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3567       op = OP_Column;
3568     }else{
3569       x = sqlite3TableColumnToStorage(pTab,iCol);
3570       testcase( x!=iCol );
3571       op = OP_Column;
3572     }
3573     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3574     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3575   }
3576 }
3577 
3578 /*
3579 ** Generate code that will extract the iColumn-th column from
3580 ** table pTab and store the column value in register iReg.
3581 **
3582 ** There must be an open cursor to pTab in iTable when this routine
3583 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3584 */
3585 int sqlite3ExprCodeGetColumn(
3586   Parse *pParse,   /* Parsing and code generating context */
3587   Table *pTab,     /* Description of the table we are reading from */
3588   int iColumn,     /* Index of the table column */
3589   int iTable,      /* The cursor pointing to the table */
3590   int iReg,        /* Store results here */
3591   u8 p5            /* P5 value for OP_Column + FLAGS */
3592 ){
3593   assert( pParse->pVdbe!=0 );
3594   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3595   if( p5 ){
3596     VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3597     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3598   }
3599   return iReg;
3600 }
3601 
3602 /*
3603 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3604 ** over to iTo..iTo+nReg-1.
3605 */
3606 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3607   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3608 }
3609 
3610 /*
3611 ** Convert a scalar expression node to a TK_REGISTER referencing
3612 ** register iReg.  The caller must ensure that iReg already contains
3613 ** the correct value for the expression.
3614 */
3615 static void exprToRegister(Expr *pExpr, int iReg){
3616   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3617   p->op2 = p->op;
3618   p->op = TK_REGISTER;
3619   p->iTable = iReg;
3620   ExprClearProperty(p, EP_Skip);
3621 }
3622 
3623 /*
3624 ** Evaluate an expression (either a vector or a scalar expression) and store
3625 ** the result in continguous temporary registers.  Return the index of
3626 ** the first register used to store the result.
3627 **
3628 ** If the returned result register is a temporary scalar, then also write
3629 ** that register number into *piFreeable.  If the returned result register
3630 ** is not a temporary or if the expression is a vector set *piFreeable
3631 ** to 0.
3632 */
3633 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3634   int iResult;
3635   int nResult = sqlite3ExprVectorSize(p);
3636   if( nResult==1 ){
3637     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3638   }else{
3639     *piFreeable = 0;
3640     if( p->op==TK_SELECT ){
3641 #if SQLITE_OMIT_SUBQUERY
3642       iResult = 0;
3643 #else
3644       iResult = sqlite3CodeSubselect(pParse, p);
3645 #endif
3646     }else{
3647       int i;
3648       iResult = pParse->nMem+1;
3649       pParse->nMem += nResult;
3650       for(i=0; i<nResult; i++){
3651         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3652       }
3653     }
3654   }
3655   return iResult;
3656 }
3657 
3658 /*
3659 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3660 ** so that a subsequent copy will not be merged into this one.
3661 */
3662 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3663   if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3664     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3665   }
3666 }
3667 
3668 /*
3669 ** Generate code to implement special SQL functions that are implemented
3670 ** in-line rather than by using the usual callbacks.
3671 */
3672 static int exprCodeInlineFunction(
3673   Parse *pParse,        /* Parsing context */
3674   ExprList *pFarg,      /* List of function arguments */
3675   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3676   int target            /* Store function result in this register */
3677 ){
3678   int nFarg;
3679   Vdbe *v = pParse->pVdbe;
3680   assert( v!=0 );
3681   assert( pFarg!=0 );
3682   nFarg = pFarg->nExpr;
3683   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3684   switch( iFuncId ){
3685     case INLINEFUNC_coalesce: {
3686       /* Attempt a direct implementation of the built-in COALESCE() and
3687       ** IFNULL() functions.  This avoids unnecessary evaluation of
3688       ** arguments past the first non-NULL argument.
3689       */
3690       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3691       int i;
3692       assert( nFarg>=2 );
3693       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3694       for(i=1; i<nFarg; i++){
3695         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3696         VdbeCoverage(v);
3697         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3698       }
3699       setDoNotMergeFlagOnCopy(v);
3700       sqlite3VdbeResolveLabel(v, endCoalesce);
3701       break;
3702     }
3703     case INLINEFUNC_iif: {
3704       Expr caseExpr;
3705       memset(&caseExpr, 0, sizeof(caseExpr));
3706       caseExpr.op = TK_CASE;
3707       caseExpr.x.pList = pFarg;
3708       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3709     }
3710 
3711     default: {
3712       /* The UNLIKELY() function is a no-op.  The result is the value
3713       ** of the first argument.
3714       */
3715       assert( nFarg==1 || nFarg==2 );
3716       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3717       break;
3718     }
3719 
3720   /***********************************************************************
3721   ** Test-only SQL functions that are only usable if enabled
3722   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3723   */
3724     case INLINEFUNC_expr_compare: {
3725       /* Compare two expressions using sqlite3ExprCompare() */
3726       assert( nFarg==2 );
3727       sqlite3VdbeAddOp2(v, OP_Integer,
3728          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3729          target);
3730       break;
3731     }
3732 
3733     case INLINEFUNC_expr_implies_expr: {
3734       /* Compare two expressions using sqlite3ExprImpliesExpr() */
3735       assert( nFarg==2 );
3736       sqlite3VdbeAddOp2(v, OP_Integer,
3737          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3738          target);
3739       break;
3740     }
3741 
3742     case INLINEFUNC_implies_nonnull_row: {
3743       /* REsult of sqlite3ExprImpliesNonNullRow() */
3744       Expr *pA1;
3745       assert( nFarg==2 );
3746       pA1 = pFarg->a[1].pExpr;
3747       if( pA1->op==TK_COLUMN ){
3748         sqlite3VdbeAddOp2(v, OP_Integer,
3749            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3750            target);
3751       }else{
3752         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3753       }
3754       break;
3755     }
3756 
3757 #ifdef SQLITE_DEBUG
3758     case INLINEFUNC_affinity: {
3759       /* The AFFINITY() function evaluates to a string that describes
3760       ** the type affinity of the argument.  This is used for testing of
3761       ** the SQLite type logic.
3762       */
3763       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3764       char aff;
3765       assert( nFarg==1 );
3766       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3767       sqlite3VdbeLoadString(v, target,
3768               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3769       break;
3770     }
3771 #endif
3772   }
3773   return target;
3774 }
3775 
3776 
3777 /*
3778 ** Generate code into the current Vdbe to evaluate the given
3779 ** expression.  Attempt to store the results in register "target".
3780 ** Return the register where results are stored.
3781 **
3782 ** With this routine, there is no guarantee that results will
3783 ** be stored in target.  The result might be stored in some other
3784 ** register if it is convenient to do so.  The calling function
3785 ** must check the return code and move the results to the desired
3786 ** register.
3787 */
3788 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3789   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
3790   int op;                   /* The opcode being coded */
3791   int inReg = target;       /* Results stored in register inReg */
3792   int regFree1 = 0;         /* If non-zero free this temporary register */
3793   int regFree2 = 0;         /* If non-zero free this temporary register */
3794   int r1, r2;               /* Various register numbers */
3795   Expr tempX;               /* Temporary expression node */
3796   int p5 = 0;
3797 
3798   assert( target>0 && target<=pParse->nMem );
3799   if( v==0 ){
3800     assert( pParse->db->mallocFailed );
3801     return 0;
3802   }
3803 
3804 expr_code_doover:
3805   if( pExpr==0 ){
3806     op = TK_NULL;
3807   }else{
3808     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3809     op = pExpr->op;
3810   }
3811   switch( op ){
3812     case TK_AGG_COLUMN: {
3813       AggInfo *pAggInfo = pExpr->pAggInfo;
3814       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3815       if( !pAggInfo->directMode ){
3816         assert( pCol->iMem>0 );
3817         return pCol->iMem;
3818       }else if( pAggInfo->useSortingIdx ){
3819         Table *pTab = pCol->pTab;
3820         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3821                               pCol->iSorterColumn, target);
3822         if( pCol->iColumn<0 ){
3823           VdbeComment((v,"%s.rowid",pTab->zName));
3824         }else{
3825           VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName));
3826           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
3827             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3828           }
3829         }
3830         return target;
3831       }
3832       /* Otherwise, fall thru into the TK_COLUMN case */
3833     }
3834     case TK_COLUMN: {
3835       int iTab = pExpr->iTable;
3836       int iReg;
3837       if( ExprHasProperty(pExpr, EP_FixedCol) ){
3838         /* This COLUMN expression is really a constant due to WHERE clause
3839         ** constraints, and that constant is coded by the pExpr->pLeft
3840         ** expresssion.  However, make sure the constant has the correct
3841         ** datatype by applying the Affinity of the table column to the
3842         ** constant.
3843         */
3844         int aff;
3845         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
3846         if( pExpr->y.pTab ){
3847           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
3848         }else{
3849           aff = pExpr->affExpr;
3850         }
3851         if( aff>SQLITE_AFF_BLOB ){
3852           static const char zAff[] = "B\000C\000D\000E";
3853           assert( SQLITE_AFF_BLOB=='A' );
3854           assert( SQLITE_AFF_TEXT=='B' );
3855           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
3856                             &zAff[(aff-'B')*2], P4_STATIC);
3857         }
3858         return iReg;
3859       }
3860       if( iTab<0 ){
3861         if( pParse->iSelfTab<0 ){
3862           /* Other columns in the same row for CHECK constraints or
3863           ** generated columns or for inserting into partial index.
3864           ** The row is unpacked into registers beginning at
3865           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
3866           ** immediately prior to the first column.
3867           */
3868           Column *pCol;
3869           Table *pTab = pExpr->y.pTab;
3870           int iSrc;
3871           int iCol = pExpr->iColumn;
3872           assert( pTab!=0 );
3873           assert( iCol>=XN_ROWID );
3874           assert( iCol<pTab->nCol );
3875           if( iCol<0 ){
3876             return -1-pParse->iSelfTab;
3877           }
3878           pCol = pTab->aCol + iCol;
3879           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
3880           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
3881 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3882           if( pCol->colFlags & COLFLAG_GENERATED ){
3883             if( pCol->colFlags & COLFLAG_BUSY ){
3884               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3885                               pCol->zName);
3886               return 0;
3887             }
3888             pCol->colFlags |= COLFLAG_BUSY;
3889             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
3890               sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc);
3891             }
3892             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
3893             return iSrc;
3894           }else
3895 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3896           if( pCol->affinity==SQLITE_AFF_REAL ){
3897             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
3898             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3899             return target;
3900           }else{
3901             return iSrc;
3902           }
3903         }else{
3904           /* Coding an expression that is part of an index where column names
3905           ** in the index refer to the table to which the index belongs */
3906           iTab = pParse->iSelfTab - 1;
3907         }
3908       }
3909       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
3910                                pExpr->iColumn, iTab, target,
3911                                pExpr->op2);
3912       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
3913         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
3914       }
3915       return iReg;
3916     }
3917     case TK_INTEGER: {
3918       codeInteger(pParse, pExpr, 0, target);
3919       return target;
3920     }
3921     case TK_TRUEFALSE: {
3922       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3923       return target;
3924     }
3925 #ifndef SQLITE_OMIT_FLOATING_POINT
3926     case TK_FLOAT: {
3927       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3928       codeReal(v, pExpr->u.zToken, 0, target);
3929       return target;
3930     }
3931 #endif
3932     case TK_STRING: {
3933       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3934       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3935       return target;
3936     }
3937     default: {
3938       /* Make NULL the default case so that if a bug causes an illegal
3939       ** Expr node to be passed into this function, it will be handled
3940       ** sanely and not crash.  But keep the assert() to bring the problem
3941       ** to the attention of the developers. */
3942       assert( op==TK_NULL );
3943       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3944       return target;
3945     }
3946 #ifndef SQLITE_OMIT_BLOB_LITERAL
3947     case TK_BLOB: {
3948       int n;
3949       const char *z;
3950       char *zBlob;
3951       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3952       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3953       assert( pExpr->u.zToken[1]=='\'' );
3954       z = &pExpr->u.zToken[2];
3955       n = sqlite3Strlen30(z) - 1;
3956       assert( z[n]=='\'' );
3957       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3958       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3959       return target;
3960     }
3961 #endif
3962     case TK_VARIABLE: {
3963       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3964       assert( pExpr->u.zToken!=0 );
3965       assert( pExpr->u.zToken[0]!=0 );
3966       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3967       if( pExpr->u.zToken[1]!=0 ){
3968         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3969         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
3970         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3971         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3972       }
3973       return target;
3974     }
3975     case TK_REGISTER: {
3976       return pExpr->iTable;
3977     }
3978 #ifndef SQLITE_OMIT_CAST
3979     case TK_CAST: {
3980       /* Expressions of the form:   CAST(pLeft AS token) */
3981       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3982       if( inReg!=target ){
3983         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3984         inReg = target;
3985       }
3986       sqlite3VdbeAddOp2(v, OP_Cast, target,
3987                         sqlite3AffinityType(pExpr->u.zToken, 0));
3988       return inReg;
3989     }
3990 #endif /* SQLITE_OMIT_CAST */
3991     case TK_IS:
3992     case TK_ISNOT:
3993       op = (op==TK_IS) ? TK_EQ : TK_NE;
3994       p5 = SQLITE_NULLEQ;
3995       /* fall-through */
3996     case TK_LT:
3997     case TK_LE:
3998     case TK_GT:
3999     case TK_GE:
4000     case TK_NE:
4001     case TK_EQ: {
4002       Expr *pLeft = pExpr->pLeft;
4003       if( sqlite3ExprIsVector(pLeft) ){
4004         codeVectorCompare(pParse, pExpr, target, op, p5);
4005       }else{
4006         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4007         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4008         codeCompare(pParse, pLeft, pExpr->pRight, op,
4009             r1, r2, inReg, SQLITE_STOREP2 | p5,
4010             ExprHasProperty(pExpr,EP_Commuted));
4011         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4012         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4013         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4014         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4015         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4016         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4017         testcase( regFree1==0 );
4018         testcase( regFree2==0 );
4019       }
4020       break;
4021     }
4022     case TK_AND:
4023     case TK_OR:
4024     case TK_PLUS:
4025     case TK_STAR:
4026     case TK_MINUS:
4027     case TK_REM:
4028     case TK_BITAND:
4029     case TK_BITOR:
4030     case TK_SLASH:
4031     case TK_LSHIFT:
4032     case TK_RSHIFT:
4033     case TK_CONCAT: {
4034       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4035       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4036       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4037       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4038       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4039       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4040       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4041       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4042       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4043       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4044       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4045       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4046       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4047       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4048       testcase( regFree1==0 );
4049       testcase( regFree2==0 );
4050       break;
4051     }
4052     case TK_UMINUS: {
4053       Expr *pLeft = pExpr->pLeft;
4054       assert( pLeft );
4055       if( pLeft->op==TK_INTEGER ){
4056         codeInteger(pParse, pLeft, 1, target);
4057         return target;
4058 #ifndef SQLITE_OMIT_FLOATING_POINT
4059       }else if( pLeft->op==TK_FLOAT ){
4060         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4061         codeReal(v, pLeft->u.zToken, 1, target);
4062         return target;
4063 #endif
4064       }else{
4065         tempX.op = TK_INTEGER;
4066         tempX.flags = EP_IntValue|EP_TokenOnly;
4067         tempX.u.iValue = 0;
4068         ExprClearVVAProperties(&tempX);
4069         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4070         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4071         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4072         testcase( regFree2==0 );
4073       }
4074       break;
4075     }
4076     case TK_BITNOT:
4077     case TK_NOT: {
4078       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4079       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4080       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4081       testcase( regFree1==0 );
4082       sqlite3VdbeAddOp2(v, op, r1, inReg);
4083       break;
4084     }
4085     case TK_TRUTH: {
4086       int isTrue;    /* IS TRUE or IS NOT TRUE */
4087       int bNormal;   /* IS TRUE or IS FALSE */
4088       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4089       testcase( regFree1==0 );
4090       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4091       bNormal = pExpr->op2==TK_IS;
4092       testcase( isTrue && bNormal);
4093       testcase( !isTrue && bNormal);
4094       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4095       break;
4096     }
4097     case TK_ISNULL:
4098     case TK_NOTNULL: {
4099       int addr;
4100       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4101       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4102       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4103       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4104       testcase( regFree1==0 );
4105       addr = sqlite3VdbeAddOp1(v, op, r1);
4106       VdbeCoverageIf(v, op==TK_ISNULL);
4107       VdbeCoverageIf(v, op==TK_NOTNULL);
4108       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4109       sqlite3VdbeJumpHere(v, addr);
4110       break;
4111     }
4112     case TK_AGG_FUNCTION: {
4113       AggInfo *pInfo = pExpr->pAggInfo;
4114       if( pInfo==0 ){
4115         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4116         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4117       }else{
4118         return pInfo->aFunc[pExpr->iAgg].iMem;
4119       }
4120       break;
4121     }
4122     case TK_FUNCTION: {
4123       ExprList *pFarg;       /* List of function arguments */
4124       int nFarg;             /* Number of function arguments */
4125       FuncDef *pDef;         /* The function definition object */
4126       const char *zId;       /* The function name */
4127       u32 constMask = 0;     /* Mask of function arguments that are constant */
4128       int i;                 /* Loop counter */
4129       sqlite3 *db = pParse->db;  /* The database connection */
4130       u8 enc = ENC(db);      /* The text encoding used by this database */
4131       CollSeq *pColl = 0;    /* A collating sequence */
4132 
4133 #ifndef SQLITE_OMIT_WINDOWFUNC
4134       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4135         return pExpr->y.pWin->regResult;
4136       }
4137 #endif
4138 
4139       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4140         /* SQL functions can be expensive. So try to avoid running them
4141         ** multiple times if we know they always give the same result */
4142         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4143       }
4144       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4145       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4146       pFarg = pExpr->x.pList;
4147       nFarg = pFarg ? pFarg->nExpr : 0;
4148       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4149       zId = pExpr->u.zToken;
4150       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4151 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4152       if( pDef==0 && pParse->explain ){
4153         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4154       }
4155 #endif
4156       if( pDef==0 || pDef->xFinalize!=0 ){
4157         sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4158         break;
4159       }
4160       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4161         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4162         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4163         return exprCodeInlineFunction(pParse, pFarg,
4164              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4165       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4166         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4167       }
4168 
4169       for(i=0; i<nFarg; i++){
4170         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4171           testcase( i==31 );
4172           constMask |= MASKBIT32(i);
4173         }
4174         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4175           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4176         }
4177       }
4178       if( pFarg ){
4179         if( constMask ){
4180           r1 = pParse->nMem+1;
4181           pParse->nMem += nFarg;
4182         }else{
4183           r1 = sqlite3GetTempRange(pParse, nFarg);
4184         }
4185 
4186         /* For length() and typeof() functions with a column argument,
4187         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4188         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4189         ** loading.
4190         */
4191         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4192           u8 exprOp;
4193           assert( nFarg==1 );
4194           assert( pFarg->a[0].pExpr!=0 );
4195           exprOp = pFarg->a[0].pExpr->op;
4196           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4197             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4198             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4199             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4200             pFarg->a[0].pExpr->op2 =
4201                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4202           }
4203         }
4204 
4205         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4206                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4207       }else{
4208         r1 = 0;
4209       }
4210 #ifndef SQLITE_OMIT_VIRTUALTABLE
4211       /* Possibly overload the function if the first argument is
4212       ** a virtual table column.
4213       **
4214       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4215       ** second argument, not the first, as the argument to test to
4216       ** see if it is a column in a virtual table.  This is done because
4217       ** the left operand of infix functions (the operand we want to
4218       ** control overloading) ends up as the second argument to the
4219       ** function.  The expression "A glob B" is equivalent to
4220       ** "glob(B,A).  We want to use the A in "A glob B" to test
4221       ** for function overloading.  But we use the B term in "glob(B,A)".
4222       */
4223       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4224         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4225       }else if( nFarg>0 ){
4226         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4227       }
4228 #endif
4229       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4230         if( !pColl ) pColl = db->pDfltColl;
4231         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4232       }
4233 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4234       if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
4235         Expr *pArg = pFarg->a[0].pExpr;
4236         if( pArg->op==TK_COLUMN ){
4237           sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4238         }else{
4239           sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4240         }
4241       }else
4242 #endif
4243       {
4244         sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4245                                    pDef, pExpr->op2);
4246       }
4247       if( nFarg ){
4248         if( constMask==0 ){
4249           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4250         }else{
4251           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4252         }
4253       }
4254       return target;
4255     }
4256 #ifndef SQLITE_OMIT_SUBQUERY
4257     case TK_EXISTS:
4258     case TK_SELECT: {
4259       int nCol;
4260       testcase( op==TK_EXISTS );
4261       testcase( op==TK_SELECT );
4262       if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
4263         sqlite3SubselectError(pParse, nCol, 1);
4264       }else{
4265         return sqlite3CodeSubselect(pParse, pExpr);
4266       }
4267       break;
4268     }
4269     case TK_SELECT_COLUMN: {
4270       int n;
4271       if( pExpr->pLeft->iTable==0 ){
4272         pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4273       }
4274       assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
4275       if( pExpr->iTable!=0
4276        && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
4277       ){
4278         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4279                                 pExpr->iTable, n);
4280       }
4281       return pExpr->pLeft->iTable + pExpr->iColumn;
4282     }
4283     case TK_IN: {
4284       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4285       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4286       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4287       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4288       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4289       sqlite3VdbeResolveLabel(v, destIfFalse);
4290       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4291       sqlite3VdbeResolveLabel(v, destIfNull);
4292       return target;
4293     }
4294 #endif /* SQLITE_OMIT_SUBQUERY */
4295 
4296 
4297     /*
4298     **    x BETWEEN y AND z
4299     **
4300     ** This is equivalent to
4301     **
4302     **    x>=y AND x<=z
4303     **
4304     ** X is stored in pExpr->pLeft.
4305     ** Y is stored in pExpr->pList->a[0].pExpr.
4306     ** Z is stored in pExpr->pList->a[1].pExpr.
4307     */
4308     case TK_BETWEEN: {
4309       exprCodeBetween(pParse, pExpr, target, 0, 0);
4310       return target;
4311     }
4312     case TK_SPAN:
4313     case TK_COLLATE:
4314     case TK_UPLUS: {
4315       pExpr = pExpr->pLeft;
4316       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4317     }
4318 
4319     case TK_TRIGGER: {
4320       /* If the opcode is TK_TRIGGER, then the expression is a reference
4321       ** to a column in the new.* or old.* pseudo-tables available to
4322       ** trigger programs. In this case Expr.iTable is set to 1 for the
4323       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4324       ** is set to the column of the pseudo-table to read, or to -1 to
4325       ** read the rowid field.
4326       **
4327       ** The expression is implemented using an OP_Param opcode. The p1
4328       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4329       ** to reference another column of the old.* pseudo-table, where
4330       ** i is the index of the column. For a new.rowid reference, p1 is
4331       ** set to (n+1), where n is the number of columns in each pseudo-table.
4332       ** For a reference to any other column in the new.* pseudo-table, p1
4333       ** is set to (n+2+i), where n and i are as defined previously. For
4334       ** example, if the table on which triggers are being fired is
4335       ** declared as:
4336       **
4337       **   CREATE TABLE t1(a, b);
4338       **
4339       ** Then p1 is interpreted as follows:
4340       **
4341       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4342       **   p1==1   ->    old.a         p1==4   ->    new.a
4343       **   p1==2   ->    old.b         p1==5   ->    new.b
4344       */
4345       Table *pTab = pExpr->y.pTab;
4346       int iCol = pExpr->iColumn;
4347       int p1 = pExpr->iTable * (pTab->nCol+1) + 1
4348                      + sqlite3TableColumnToStorage(pTab, iCol);
4349 
4350       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4351       assert( iCol>=-1 && iCol<pTab->nCol );
4352       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4353       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4354 
4355       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4356       VdbeComment((v, "r[%d]=%s.%s", target,
4357         (pExpr->iTable ? "new" : "old"),
4358         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName)
4359       ));
4360 
4361 #ifndef SQLITE_OMIT_FLOATING_POINT
4362       /* If the column has REAL affinity, it may currently be stored as an
4363       ** integer. Use OP_RealAffinity to make sure it is really real.
4364       **
4365       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4366       ** floating point when extracting it from the record.  */
4367       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4368         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4369       }
4370 #endif
4371       break;
4372     }
4373 
4374     case TK_VECTOR: {
4375       sqlite3ErrorMsg(pParse, "row value misused");
4376       break;
4377     }
4378 
4379     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4380     ** that derive from the right-hand table of a LEFT JOIN.  The
4381     ** Expr.iTable value is the table number for the right-hand table.
4382     ** The expression is only evaluated if that table is not currently
4383     ** on a LEFT JOIN NULL row.
4384     */
4385     case TK_IF_NULL_ROW: {
4386       int addrINR;
4387       u8 okConstFactor = pParse->okConstFactor;
4388       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4389       /* Temporarily disable factoring of constant expressions, since
4390       ** even though expressions may appear to be constant, they are not
4391       ** really constant because they originate from the right-hand side
4392       ** of a LEFT JOIN. */
4393       pParse->okConstFactor = 0;
4394       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4395       pParse->okConstFactor = okConstFactor;
4396       sqlite3VdbeJumpHere(v, addrINR);
4397       sqlite3VdbeChangeP3(v, addrINR, inReg);
4398       break;
4399     }
4400 
4401     /*
4402     ** Form A:
4403     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4404     **
4405     ** Form B:
4406     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4407     **
4408     ** Form A is can be transformed into the equivalent form B as follows:
4409     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4410     **        WHEN x=eN THEN rN ELSE y END
4411     **
4412     ** X (if it exists) is in pExpr->pLeft.
4413     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4414     ** odd.  The Y is also optional.  If the number of elements in x.pList
4415     ** is even, then Y is omitted and the "otherwise" result is NULL.
4416     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4417     **
4418     ** The result of the expression is the Ri for the first matching Ei,
4419     ** or if there is no matching Ei, the ELSE term Y, or if there is
4420     ** no ELSE term, NULL.
4421     */
4422     case TK_CASE: {
4423       int endLabel;                     /* GOTO label for end of CASE stmt */
4424       int nextCase;                     /* GOTO label for next WHEN clause */
4425       int nExpr;                        /* 2x number of WHEN terms */
4426       int i;                            /* Loop counter */
4427       ExprList *pEList;                 /* List of WHEN terms */
4428       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4429       Expr opCompare;                   /* The X==Ei expression */
4430       Expr *pX;                         /* The X expression */
4431       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4432       Expr *pDel = 0;
4433       sqlite3 *db = pParse->db;
4434 
4435       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4436       assert(pExpr->x.pList->nExpr > 0);
4437       pEList = pExpr->x.pList;
4438       aListelem = pEList->a;
4439       nExpr = pEList->nExpr;
4440       endLabel = sqlite3VdbeMakeLabel(pParse);
4441       if( (pX = pExpr->pLeft)!=0 ){
4442         pDel = sqlite3ExprDup(db, pX, 0);
4443         if( db->mallocFailed ){
4444           sqlite3ExprDelete(db, pDel);
4445           break;
4446         }
4447         testcase( pX->op==TK_COLUMN );
4448         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4449         testcase( regFree1==0 );
4450         memset(&opCompare, 0, sizeof(opCompare));
4451         opCompare.op = TK_EQ;
4452         opCompare.pLeft = pDel;
4453         pTest = &opCompare;
4454         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4455         ** The value in regFree1 might get SCopy-ed into the file result.
4456         ** So make sure that the regFree1 register is not reused for other
4457         ** purposes and possibly overwritten.  */
4458         regFree1 = 0;
4459       }
4460       for(i=0; i<nExpr-1; i=i+2){
4461         if( pX ){
4462           assert( pTest!=0 );
4463           opCompare.pRight = aListelem[i].pExpr;
4464         }else{
4465           pTest = aListelem[i].pExpr;
4466         }
4467         nextCase = sqlite3VdbeMakeLabel(pParse);
4468         testcase( pTest->op==TK_COLUMN );
4469         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4470         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4471         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4472         sqlite3VdbeGoto(v, endLabel);
4473         sqlite3VdbeResolveLabel(v, nextCase);
4474       }
4475       if( (nExpr&1)!=0 ){
4476         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4477       }else{
4478         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4479       }
4480       sqlite3ExprDelete(db, pDel);
4481       setDoNotMergeFlagOnCopy(v);
4482       sqlite3VdbeResolveLabel(v, endLabel);
4483       break;
4484     }
4485 #ifndef SQLITE_OMIT_TRIGGER
4486     case TK_RAISE: {
4487       assert( pExpr->affExpr==OE_Rollback
4488            || pExpr->affExpr==OE_Abort
4489            || pExpr->affExpr==OE_Fail
4490            || pExpr->affExpr==OE_Ignore
4491       );
4492       if( !pParse->pTriggerTab && !pParse->nested ){
4493         sqlite3ErrorMsg(pParse,
4494                        "RAISE() may only be used within a trigger-program");
4495         return 0;
4496       }
4497       if( pExpr->affExpr==OE_Abort ){
4498         sqlite3MayAbort(pParse);
4499       }
4500       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4501       if( pExpr->affExpr==OE_Ignore ){
4502         sqlite3VdbeAddOp4(
4503             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4504         VdbeCoverage(v);
4505       }else{
4506         sqlite3HaltConstraint(pParse,
4507              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4508              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4509       }
4510 
4511       break;
4512     }
4513 #endif
4514   }
4515   sqlite3ReleaseTempReg(pParse, regFree1);
4516   sqlite3ReleaseTempReg(pParse, regFree2);
4517   return inReg;
4518 }
4519 
4520 /*
4521 ** Generate code that will evaluate expression pExpr just one time
4522 ** per prepared statement execution.
4523 **
4524 ** If the expression uses functions (that might throw an exception) then
4525 ** guard them with an OP_Once opcode to ensure that the code is only executed
4526 ** once. If no functions are involved, then factor the code out and put it at
4527 ** the end of the prepared statement in the initialization section.
4528 **
4529 ** If regDest>=0 then the result is always stored in that register and the
4530 ** result is not reusable.  If regDest<0 then this routine is free to
4531 ** store the value whereever it wants.  The register where the expression
4532 ** is stored is returned.  When regDest<0, two identical expressions might
4533 ** code to the same register, if they do not contain function calls and hence
4534 ** are factored out into the initialization section at the end of the
4535 ** prepared statement.
4536 */
4537 int sqlite3ExprCodeRunJustOnce(
4538   Parse *pParse,    /* Parsing context */
4539   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4540   int regDest       /* Store the value in this register */
4541 ){
4542   ExprList *p;
4543   assert( ConstFactorOk(pParse) );
4544   p = pParse->pConstExpr;
4545   if( regDest<0 && p ){
4546     struct ExprList_item *pItem;
4547     int i;
4548     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4549       if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4550         return pItem->u.iConstExprReg;
4551       }
4552     }
4553   }
4554   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4555   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4556     Vdbe *v = pParse->pVdbe;
4557     int addr;
4558     assert( v );
4559     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4560     pParse->okConstFactor = 0;
4561     if( !pParse->db->mallocFailed ){
4562       if( regDest<0 ) regDest = ++pParse->nMem;
4563       sqlite3ExprCode(pParse, pExpr, regDest);
4564     }
4565     pParse->okConstFactor = 1;
4566     sqlite3ExprDelete(pParse->db, pExpr);
4567     sqlite3VdbeJumpHere(v, addr);
4568   }else{
4569     p = sqlite3ExprListAppend(pParse, p, pExpr);
4570     if( p ){
4571        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4572        pItem->reusable = regDest<0;
4573        if( regDest<0 ) regDest = ++pParse->nMem;
4574        pItem->u.iConstExprReg = regDest;
4575     }
4576     pParse->pConstExpr = p;
4577   }
4578   return regDest;
4579 }
4580 
4581 /*
4582 ** Generate code to evaluate an expression and store the results
4583 ** into a register.  Return the register number where the results
4584 ** are stored.
4585 **
4586 ** If the register is a temporary register that can be deallocated,
4587 ** then write its number into *pReg.  If the result register is not
4588 ** a temporary, then set *pReg to zero.
4589 **
4590 ** If pExpr is a constant, then this routine might generate this
4591 ** code to fill the register in the initialization section of the
4592 ** VDBE program, in order to factor it out of the evaluation loop.
4593 */
4594 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4595   int r2;
4596   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4597   if( ConstFactorOk(pParse)
4598    && pExpr->op!=TK_REGISTER
4599    && sqlite3ExprIsConstantNotJoin(pExpr)
4600   ){
4601     *pReg  = 0;
4602     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4603   }else{
4604     int r1 = sqlite3GetTempReg(pParse);
4605     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4606     if( r2==r1 ){
4607       *pReg = r1;
4608     }else{
4609       sqlite3ReleaseTempReg(pParse, r1);
4610       *pReg = 0;
4611     }
4612   }
4613   return r2;
4614 }
4615 
4616 /*
4617 ** Generate code that will evaluate expression pExpr and store the
4618 ** results in register target.  The results are guaranteed to appear
4619 ** in register target.
4620 */
4621 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4622   int inReg;
4623 
4624   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4625   assert( target>0 && target<=pParse->nMem );
4626   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4627   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4628   if( inReg!=target && pParse->pVdbe ){
4629     u8 op;
4630     if( ExprHasProperty(pExpr,EP_Subquery) ){
4631       op = OP_Copy;
4632     }else{
4633       op = OP_SCopy;
4634     }
4635     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4636   }
4637 }
4638 
4639 /*
4640 ** Make a transient copy of expression pExpr and then code it using
4641 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4642 ** except that the input expression is guaranteed to be unchanged.
4643 */
4644 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4645   sqlite3 *db = pParse->db;
4646   pExpr = sqlite3ExprDup(db, pExpr, 0);
4647   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4648   sqlite3ExprDelete(db, pExpr);
4649 }
4650 
4651 /*
4652 ** Generate code that will evaluate expression pExpr and store the
4653 ** results in register target.  The results are guaranteed to appear
4654 ** in register target.  If the expression is constant, then this routine
4655 ** might choose to code the expression at initialization time.
4656 */
4657 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4658   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4659     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4660   }else{
4661     sqlite3ExprCodeCopy(pParse, pExpr, target);
4662   }
4663 }
4664 
4665 /*
4666 ** Generate code that pushes the value of every element of the given
4667 ** expression list into a sequence of registers beginning at target.
4668 **
4669 ** Return the number of elements evaluated.  The number returned will
4670 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4671 ** is defined.
4672 **
4673 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4674 ** filled using OP_SCopy.  OP_Copy must be used instead.
4675 **
4676 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4677 ** factored out into initialization code.
4678 **
4679 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4680 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4681 ** in registers at srcReg, and so the value can be copied from there.
4682 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4683 ** are simply omitted rather than being copied from srcReg.
4684 */
4685 int sqlite3ExprCodeExprList(
4686   Parse *pParse,     /* Parsing context */
4687   ExprList *pList,   /* The expression list to be coded */
4688   int target,        /* Where to write results */
4689   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
4690   u8 flags           /* SQLITE_ECEL_* flags */
4691 ){
4692   struct ExprList_item *pItem;
4693   int i, j, n;
4694   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4695   Vdbe *v = pParse->pVdbe;
4696   assert( pList!=0 );
4697   assert( target>0 );
4698   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
4699   n = pList->nExpr;
4700   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4701   for(pItem=pList->a, i=0; i<n; i++, pItem++){
4702     Expr *pExpr = pItem->pExpr;
4703 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4704     if( pItem->bSorterRef ){
4705       i--;
4706       n--;
4707     }else
4708 #endif
4709     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4710       if( flags & SQLITE_ECEL_OMITREF ){
4711         i--;
4712         n--;
4713       }else{
4714         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4715       }
4716     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4717            && sqlite3ExprIsConstantNotJoin(pExpr)
4718     ){
4719       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4720     }else{
4721       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4722       if( inReg!=target+i ){
4723         VdbeOp *pOp;
4724         if( copyOp==OP_Copy
4725          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4726          && pOp->p1+pOp->p3+1==inReg
4727          && pOp->p2+pOp->p3+1==target+i
4728          && pOp->p5==0  /* The do-not-merge flag must be clear */
4729         ){
4730           pOp->p3++;
4731         }else{
4732           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4733         }
4734       }
4735     }
4736   }
4737   return n;
4738 }
4739 
4740 /*
4741 ** Generate code for a BETWEEN operator.
4742 **
4743 **    x BETWEEN y AND z
4744 **
4745 ** The above is equivalent to
4746 **
4747 **    x>=y AND x<=z
4748 **
4749 ** Code it as such, taking care to do the common subexpression
4750 ** elimination of x.
4751 **
4752 ** The xJumpIf parameter determines details:
4753 **
4754 **    NULL:                   Store the boolean result in reg[dest]
4755 **    sqlite3ExprIfTrue:      Jump to dest if true
4756 **    sqlite3ExprIfFalse:     Jump to dest if false
4757 **
4758 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4759 */
4760 static void exprCodeBetween(
4761   Parse *pParse,    /* Parsing and code generating context */
4762   Expr *pExpr,      /* The BETWEEN expression */
4763   int dest,         /* Jump destination or storage location */
4764   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4765   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
4766 ){
4767   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
4768   Expr compLeft;    /* The  x>=y  term */
4769   Expr compRight;   /* The  x<=z  term */
4770   int regFree1 = 0; /* Temporary use register */
4771   Expr *pDel = 0;
4772   sqlite3 *db = pParse->db;
4773 
4774   memset(&compLeft, 0, sizeof(Expr));
4775   memset(&compRight, 0, sizeof(Expr));
4776   memset(&exprAnd, 0, sizeof(Expr));
4777 
4778   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4779   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4780   if( db->mallocFailed==0 ){
4781     exprAnd.op = TK_AND;
4782     exprAnd.pLeft = &compLeft;
4783     exprAnd.pRight = &compRight;
4784     compLeft.op = TK_GE;
4785     compLeft.pLeft = pDel;
4786     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4787     compRight.op = TK_LE;
4788     compRight.pLeft = pDel;
4789     compRight.pRight = pExpr->x.pList->a[1].pExpr;
4790     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4791     if( xJump ){
4792       xJump(pParse, &exprAnd, dest, jumpIfNull);
4793     }else{
4794       /* Mark the expression is being from the ON or USING clause of a join
4795       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4796       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
4797       ** for clarity, but we are out of bits in the Expr.flags field so we
4798       ** have to reuse the EP_FromJoin bit.  Bummer. */
4799       pDel->flags |= EP_FromJoin;
4800       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4801     }
4802     sqlite3ReleaseTempReg(pParse, regFree1);
4803   }
4804   sqlite3ExprDelete(db, pDel);
4805 
4806   /* Ensure adequate test coverage */
4807   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
4808   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
4809   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
4810   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
4811   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4812   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4813   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4814   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4815   testcase( xJump==0 );
4816 }
4817 
4818 /*
4819 ** Generate code for a boolean expression such that a jump is made
4820 ** to the label "dest" if the expression is true but execution
4821 ** continues straight thru if the expression is false.
4822 **
4823 ** If the expression evaluates to NULL (neither true nor false), then
4824 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4825 **
4826 ** This code depends on the fact that certain token values (ex: TK_EQ)
4827 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4828 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
4829 ** the make process cause these values to align.  Assert()s in the code
4830 ** below verify that the numbers are aligned correctly.
4831 */
4832 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4833   Vdbe *v = pParse->pVdbe;
4834   int op = 0;
4835   int regFree1 = 0;
4836   int regFree2 = 0;
4837   int r1, r2;
4838 
4839   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4840   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
4841   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
4842   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
4843   op = pExpr->op;
4844   switch( op ){
4845     case TK_AND:
4846     case TK_OR: {
4847       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
4848       if( pAlt!=pExpr ){
4849         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
4850       }else if( op==TK_AND ){
4851         int d2 = sqlite3VdbeMakeLabel(pParse);
4852         testcase( jumpIfNull==0 );
4853         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
4854                            jumpIfNull^SQLITE_JUMPIFNULL);
4855         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4856         sqlite3VdbeResolveLabel(v, d2);
4857       }else{
4858         testcase( jumpIfNull==0 );
4859         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4860         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4861       }
4862       break;
4863     }
4864     case TK_NOT: {
4865       testcase( jumpIfNull==0 );
4866       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4867       break;
4868     }
4869     case TK_TRUTH: {
4870       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
4871       int isTrue;     /* IS TRUE or IS NOT TRUE */
4872       testcase( jumpIfNull==0 );
4873       isNot = pExpr->op2==TK_ISNOT;
4874       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4875       testcase( isTrue && isNot );
4876       testcase( !isTrue && isNot );
4877       if( isTrue ^ isNot ){
4878         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4879                           isNot ? SQLITE_JUMPIFNULL : 0);
4880       }else{
4881         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4882                            isNot ? SQLITE_JUMPIFNULL : 0);
4883       }
4884       break;
4885     }
4886     case TK_IS:
4887     case TK_ISNOT:
4888       testcase( op==TK_IS );
4889       testcase( op==TK_ISNOT );
4890       op = (op==TK_IS) ? TK_EQ : TK_NE;
4891       jumpIfNull = SQLITE_NULLEQ;
4892       /* Fall thru */
4893     case TK_LT:
4894     case TK_LE:
4895     case TK_GT:
4896     case TK_GE:
4897     case TK_NE:
4898     case TK_EQ: {
4899       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4900       testcase( jumpIfNull==0 );
4901       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4902       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4903       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4904                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
4905       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4906       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4907       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4908       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4909       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4910       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4911       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4912       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4913       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4914       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4915       testcase( regFree1==0 );
4916       testcase( regFree2==0 );
4917       break;
4918     }
4919     case TK_ISNULL:
4920     case TK_NOTNULL: {
4921       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4922       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4923       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4924       sqlite3VdbeAddOp2(v, op, r1, dest);
4925       VdbeCoverageIf(v, op==TK_ISNULL);
4926       VdbeCoverageIf(v, op==TK_NOTNULL);
4927       testcase( regFree1==0 );
4928       break;
4929     }
4930     case TK_BETWEEN: {
4931       testcase( jumpIfNull==0 );
4932       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4933       break;
4934     }
4935 #ifndef SQLITE_OMIT_SUBQUERY
4936     case TK_IN: {
4937       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4938       int destIfNull = jumpIfNull ? dest : destIfFalse;
4939       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4940       sqlite3VdbeGoto(v, dest);
4941       sqlite3VdbeResolveLabel(v, destIfFalse);
4942       break;
4943     }
4944 #endif
4945     default: {
4946     default_expr:
4947       if( ExprAlwaysTrue(pExpr) ){
4948         sqlite3VdbeGoto(v, dest);
4949       }else if( ExprAlwaysFalse(pExpr) ){
4950         /* No-op */
4951       }else{
4952         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4953         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4954         VdbeCoverage(v);
4955         testcase( regFree1==0 );
4956         testcase( jumpIfNull==0 );
4957       }
4958       break;
4959     }
4960   }
4961   sqlite3ReleaseTempReg(pParse, regFree1);
4962   sqlite3ReleaseTempReg(pParse, regFree2);
4963 }
4964 
4965 /*
4966 ** Generate code for a boolean expression such that a jump is made
4967 ** to the label "dest" if the expression is false but execution
4968 ** continues straight thru if the expression is true.
4969 **
4970 ** If the expression evaluates to NULL (neither true nor false) then
4971 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4972 ** is 0.
4973 */
4974 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4975   Vdbe *v = pParse->pVdbe;
4976   int op = 0;
4977   int regFree1 = 0;
4978   int regFree2 = 0;
4979   int r1, r2;
4980 
4981   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4982   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4983   if( pExpr==0 )    return;
4984   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4985 
4986   /* The value of pExpr->op and op are related as follows:
4987   **
4988   **       pExpr->op            op
4989   **       ---------          ----------
4990   **       TK_ISNULL          OP_NotNull
4991   **       TK_NOTNULL         OP_IsNull
4992   **       TK_NE              OP_Eq
4993   **       TK_EQ              OP_Ne
4994   **       TK_GT              OP_Le
4995   **       TK_LE              OP_Gt
4996   **       TK_GE              OP_Lt
4997   **       TK_LT              OP_Ge
4998   **
4999   ** For other values of pExpr->op, op is undefined and unused.
5000   ** The value of TK_ and OP_ constants are arranged such that we
5001   ** can compute the mapping above using the following expression.
5002   ** Assert()s verify that the computation is correct.
5003   */
5004   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5005 
5006   /* Verify correct alignment of TK_ and OP_ constants
5007   */
5008   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5009   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5010   assert( pExpr->op!=TK_NE || op==OP_Eq );
5011   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5012   assert( pExpr->op!=TK_LT || op==OP_Ge );
5013   assert( pExpr->op!=TK_LE || op==OP_Gt );
5014   assert( pExpr->op!=TK_GT || op==OP_Le );
5015   assert( pExpr->op!=TK_GE || op==OP_Lt );
5016 
5017   switch( pExpr->op ){
5018     case TK_AND:
5019     case TK_OR: {
5020       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5021       if( pAlt!=pExpr ){
5022         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5023       }else if( pExpr->op==TK_AND ){
5024         testcase( jumpIfNull==0 );
5025         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5026         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5027       }else{
5028         int d2 = sqlite3VdbeMakeLabel(pParse);
5029         testcase( jumpIfNull==0 );
5030         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5031                           jumpIfNull^SQLITE_JUMPIFNULL);
5032         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5033         sqlite3VdbeResolveLabel(v, d2);
5034       }
5035       break;
5036     }
5037     case TK_NOT: {
5038       testcase( jumpIfNull==0 );
5039       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5040       break;
5041     }
5042     case TK_TRUTH: {
5043       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5044       int isTrue;  /* IS TRUE or IS NOT TRUE */
5045       testcase( jumpIfNull==0 );
5046       isNot = pExpr->op2==TK_ISNOT;
5047       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5048       testcase( isTrue && isNot );
5049       testcase( !isTrue && isNot );
5050       if( isTrue ^ isNot ){
5051         /* IS TRUE and IS NOT FALSE */
5052         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5053                            isNot ? 0 : SQLITE_JUMPIFNULL);
5054 
5055       }else{
5056         /* IS FALSE and IS NOT TRUE */
5057         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5058                           isNot ? 0 : SQLITE_JUMPIFNULL);
5059       }
5060       break;
5061     }
5062     case TK_IS:
5063     case TK_ISNOT:
5064       testcase( pExpr->op==TK_IS );
5065       testcase( pExpr->op==TK_ISNOT );
5066       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5067       jumpIfNull = SQLITE_NULLEQ;
5068       /* Fall thru */
5069     case TK_LT:
5070     case TK_LE:
5071     case TK_GT:
5072     case TK_GE:
5073     case TK_NE:
5074     case TK_EQ: {
5075       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5076       testcase( jumpIfNull==0 );
5077       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5078       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5079       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5080                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5081       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5082       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5083       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5084       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5085       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5086       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5087       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5088       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5089       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5090       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5091       testcase( regFree1==0 );
5092       testcase( regFree2==0 );
5093       break;
5094     }
5095     case TK_ISNULL:
5096     case TK_NOTNULL: {
5097       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5098       sqlite3VdbeAddOp2(v, op, r1, dest);
5099       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5100       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5101       testcase( regFree1==0 );
5102       break;
5103     }
5104     case TK_BETWEEN: {
5105       testcase( jumpIfNull==0 );
5106       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5107       break;
5108     }
5109 #ifndef SQLITE_OMIT_SUBQUERY
5110     case TK_IN: {
5111       if( jumpIfNull ){
5112         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5113       }else{
5114         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5115         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5116         sqlite3VdbeResolveLabel(v, destIfNull);
5117       }
5118       break;
5119     }
5120 #endif
5121     default: {
5122     default_expr:
5123       if( ExprAlwaysFalse(pExpr) ){
5124         sqlite3VdbeGoto(v, dest);
5125       }else if( ExprAlwaysTrue(pExpr) ){
5126         /* no-op */
5127       }else{
5128         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5129         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5130         VdbeCoverage(v);
5131         testcase( regFree1==0 );
5132         testcase( jumpIfNull==0 );
5133       }
5134       break;
5135     }
5136   }
5137   sqlite3ReleaseTempReg(pParse, regFree1);
5138   sqlite3ReleaseTempReg(pParse, regFree2);
5139 }
5140 
5141 /*
5142 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5143 ** code generation, and that copy is deleted after code generation. This
5144 ** ensures that the original pExpr is unchanged.
5145 */
5146 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5147   sqlite3 *db = pParse->db;
5148   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5149   if( db->mallocFailed==0 ){
5150     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5151   }
5152   sqlite3ExprDelete(db, pCopy);
5153 }
5154 
5155 /*
5156 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5157 ** type of expression.
5158 **
5159 ** If pExpr is a simple SQL value - an integer, real, string, blob
5160 ** or NULL value - then the VDBE currently being prepared is configured
5161 ** to re-prepare each time a new value is bound to variable pVar.
5162 **
5163 ** Additionally, if pExpr is a simple SQL value and the value is the
5164 ** same as that currently bound to variable pVar, non-zero is returned.
5165 ** Otherwise, if the values are not the same or if pExpr is not a simple
5166 ** SQL value, zero is returned.
5167 */
5168 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
5169   int res = 0;
5170   int iVar;
5171   sqlite3_value *pL, *pR = 0;
5172 
5173   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5174   if( pR ){
5175     iVar = pVar->iColumn;
5176     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5177     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5178     if( pL ){
5179       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5180         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5181       }
5182       res =  0==sqlite3MemCompare(pL, pR, 0);
5183     }
5184     sqlite3ValueFree(pR);
5185     sqlite3ValueFree(pL);
5186   }
5187 
5188   return res;
5189 }
5190 
5191 /*
5192 ** Do a deep comparison of two expression trees.  Return 0 if the two
5193 ** expressions are completely identical.  Return 1 if they differ only
5194 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5195 ** other than the top-level COLLATE operator.
5196 **
5197 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5198 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5199 **
5200 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5201 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5202 **
5203 ** Sometimes this routine will return 2 even if the two expressions
5204 ** really are equivalent.  If we cannot prove that the expressions are
5205 ** identical, we return 2 just to be safe.  So if this routine
5206 ** returns 2, then you do not really know for certain if the two
5207 ** expressions are the same.  But if you get a 0 or 1 return, then you
5208 ** can be sure the expressions are the same.  In the places where
5209 ** this routine is used, it does not hurt to get an extra 2 - that
5210 ** just might result in some slightly slower code.  But returning
5211 ** an incorrect 0 or 1 could lead to a malfunction.
5212 **
5213 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5214 ** pParse->pReprepare can be matched against literals in pB.  The
5215 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5216 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5217 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5218 ** pB causes a return value of 2.
5219 */
5220 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
5221   u32 combinedFlags;
5222   if( pA==0 || pB==0 ){
5223     return pB==pA ? 0 : 2;
5224   }
5225   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5226     return 0;
5227   }
5228   combinedFlags = pA->flags | pB->flags;
5229   if( combinedFlags & EP_IntValue ){
5230     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5231       return 0;
5232     }
5233     return 2;
5234   }
5235   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5236     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5237       return 1;
5238     }
5239     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5240       return 1;
5241     }
5242     return 2;
5243   }
5244   if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
5245     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5246       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5247 #ifndef SQLITE_OMIT_WINDOWFUNC
5248       assert( pA->op==pB->op );
5249       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5250         return 2;
5251       }
5252       if( ExprHasProperty(pA,EP_WinFunc) ){
5253         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5254           return 2;
5255         }
5256       }
5257 #endif
5258     }else if( pA->op==TK_NULL ){
5259       return 0;
5260     }else if( pA->op==TK_COLLATE ){
5261       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5262     }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
5263       return 2;
5264     }
5265   }
5266   if( (pA->flags & (EP_Distinct|EP_Commuted))
5267      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5268   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5269     if( combinedFlags & EP_xIsSelect ) return 2;
5270     if( (combinedFlags & EP_FixedCol)==0
5271      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5272     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5273     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5274     if( pA->op!=TK_STRING
5275      && pA->op!=TK_TRUEFALSE
5276      && ALWAYS((combinedFlags & EP_Reduced)==0)
5277     ){
5278       if( pA->iColumn!=pB->iColumn ) return 2;
5279       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5280       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5281         return 2;
5282       }
5283     }
5284   }
5285   return 0;
5286 }
5287 
5288 /*
5289 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5290 ** if they are certainly different, or 2 if it is not possible to
5291 ** determine if they are identical or not.
5292 **
5293 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5294 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5295 **
5296 ** This routine might return non-zero for equivalent ExprLists.  The
5297 ** only consequence will be disabled optimizations.  But this routine
5298 ** must never return 0 if the two ExprList objects are different, or
5299 ** a malfunction will result.
5300 **
5301 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5302 ** always differs from a non-NULL pointer.
5303 */
5304 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
5305   int i;
5306   if( pA==0 && pB==0 ) return 0;
5307   if( pA==0 || pB==0 ) return 1;
5308   if( pA->nExpr!=pB->nExpr ) return 1;
5309   for(i=0; i<pA->nExpr; i++){
5310     int res;
5311     Expr *pExprA = pA->a[i].pExpr;
5312     Expr *pExprB = pB->a[i].pExpr;
5313     if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5314     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5315   }
5316   return 0;
5317 }
5318 
5319 /*
5320 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5321 ** are ignored.
5322 */
5323 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
5324   return sqlite3ExprCompare(0,
5325              sqlite3ExprSkipCollateAndLikely(pA),
5326              sqlite3ExprSkipCollateAndLikely(pB),
5327              iTab);
5328 }
5329 
5330 /*
5331 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5332 **
5333 ** Or if seenNot is true, return non-zero if Expr p can only be
5334 ** non-NULL if pNN is not NULL
5335 */
5336 static int exprImpliesNotNull(
5337   Parse *pParse,      /* Parsing context */
5338   Expr *p,            /* The expression to be checked */
5339   Expr *pNN,          /* The expression that is NOT NULL */
5340   int iTab,           /* Table being evaluated */
5341   int seenNot         /* Return true only if p can be any non-NULL value */
5342 ){
5343   assert( p );
5344   assert( pNN );
5345   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5346     return pNN->op!=TK_NULL;
5347   }
5348   switch( p->op ){
5349     case TK_IN: {
5350       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5351       assert( ExprHasProperty(p,EP_xIsSelect)
5352            || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5353       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5354     }
5355     case TK_BETWEEN: {
5356       ExprList *pList = p->x.pList;
5357       assert( pList!=0 );
5358       assert( pList->nExpr==2 );
5359       if( seenNot ) return 0;
5360       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5361        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5362       ){
5363         return 1;
5364       }
5365       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5366     }
5367     case TK_EQ:
5368     case TK_NE:
5369     case TK_LT:
5370     case TK_LE:
5371     case TK_GT:
5372     case TK_GE:
5373     case TK_PLUS:
5374     case TK_MINUS:
5375     case TK_BITOR:
5376     case TK_LSHIFT:
5377     case TK_RSHIFT:
5378     case TK_CONCAT:
5379       seenNot = 1;
5380       /* Fall thru */
5381     case TK_STAR:
5382     case TK_REM:
5383     case TK_BITAND:
5384     case TK_SLASH: {
5385       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5386       /* Fall thru into the next case */
5387     }
5388     case TK_SPAN:
5389     case TK_COLLATE:
5390     case TK_UPLUS:
5391     case TK_UMINUS: {
5392       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5393     }
5394     case TK_TRUTH: {
5395       if( seenNot ) return 0;
5396       if( p->op2!=TK_IS ) return 0;
5397       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5398     }
5399     case TK_BITNOT:
5400     case TK_NOT: {
5401       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5402     }
5403   }
5404   return 0;
5405 }
5406 
5407 /*
5408 ** Return true if we can prove the pE2 will always be true if pE1 is
5409 ** true.  Return false if we cannot complete the proof or if pE2 might
5410 ** be false.  Examples:
5411 **
5412 **     pE1: x==5       pE2: x==5             Result: true
5413 **     pE1: x>0        pE2: x==5             Result: false
5414 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5415 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5416 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5417 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5418 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5419 **
5420 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5421 ** Expr.iTable<0 then assume a table number given by iTab.
5422 **
5423 ** If pParse is not NULL, then the values of bound variables in pE1 are
5424 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5425 ** modified to record which bound variables are referenced.  If pParse
5426 ** is NULL, then false will be returned if pE1 contains any bound variables.
5427 **
5428 ** When in doubt, return false.  Returning true might give a performance
5429 ** improvement.  Returning false might cause a performance reduction, but
5430 ** it will always give the correct answer and is hence always safe.
5431 */
5432 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5433   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5434     return 1;
5435   }
5436   if( pE2->op==TK_OR
5437    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5438              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5439   ){
5440     return 1;
5441   }
5442   if( pE2->op==TK_NOTNULL
5443    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5444   ){
5445     return 1;
5446   }
5447   return 0;
5448 }
5449 
5450 /*
5451 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5452 ** If the expression node requires that the table at pWalker->iCur
5453 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5454 **
5455 ** This routine controls an optimization.  False positives (setting
5456 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5457 ** (never setting pWalker->eCode) is a harmless missed optimization.
5458 */
5459 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5460   testcase( pExpr->op==TK_AGG_COLUMN );
5461   testcase( pExpr->op==TK_AGG_FUNCTION );
5462   if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5463   switch( pExpr->op ){
5464     case TK_ISNOT:
5465     case TK_ISNULL:
5466     case TK_NOTNULL:
5467     case TK_IS:
5468     case TK_OR:
5469     case TK_VECTOR:
5470     case TK_CASE:
5471     case TK_IN:
5472     case TK_FUNCTION:
5473     case TK_TRUTH:
5474       testcase( pExpr->op==TK_ISNOT );
5475       testcase( pExpr->op==TK_ISNULL );
5476       testcase( pExpr->op==TK_NOTNULL );
5477       testcase( pExpr->op==TK_IS );
5478       testcase( pExpr->op==TK_OR );
5479       testcase( pExpr->op==TK_VECTOR );
5480       testcase( pExpr->op==TK_CASE );
5481       testcase( pExpr->op==TK_IN );
5482       testcase( pExpr->op==TK_FUNCTION );
5483       testcase( pExpr->op==TK_TRUTH );
5484       return WRC_Prune;
5485     case TK_COLUMN:
5486       if( pWalker->u.iCur==pExpr->iTable ){
5487         pWalker->eCode = 1;
5488         return WRC_Abort;
5489       }
5490       return WRC_Prune;
5491 
5492     case TK_AND:
5493       if( pWalker->eCode==0 ){
5494         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5495         if( pWalker->eCode ){
5496           pWalker->eCode = 0;
5497           sqlite3WalkExpr(pWalker, pExpr->pRight);
5498         }
5499       }
5500       return WRC_Prune;
5501 
5502     case TK_BETWEEN:
5503       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5504         assert( pWalker->eCode );
5505         return WRC_Abort;
5506       }
5507       return WRC_Prune;
5508 
5509     /* Virtual tables are allowed to use constraints like x=NULL.  So
5510     ** a term of the form x=y does not prove that y is not null if x
5511     ** is the column of a virtual table */
5512     case TK_EQ:
5513     case TK_NE:
5514     case TK_LT:
5515     case TK_LE:
5516     case TK_GT:
5517     case TK_GE: {
5518       Expr *pLeft = pExpr->pLeft;
5519       Expr *pRight = pExpr->pRight;
5520       testcase( pExpr->op==TK_EQ );
5521       testcase( pExpr->op==TK_NE );
5522       testcase( pExpr->op==TK_LT );
5523       testcase( pExpr->op==TK_LE );
5524       testcase( pExpr->op==TK_GT );
5525       testcase( pExpr->op==TK_GE );
5526       /* The y.pTab=0 assignment in wherecode.c always happens after the
5527       ** impliesNotNullRow() test */
5528       if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0)
5529                                && IsVirtual(pLeft->y.pTab))
5530        || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0)
5531                                && IsVirtual(pRight->y.pTab))
5532       ){
5533         return WRC_Prune;
5534       }
5535     }
5536     default:
5537       return WRC_Continue;
5538   }
5539 }
5540 
5541 /*
5542 ** Return true (non-zero) if expression p can only be true if at least
5543 ** one column of table iTab is non-null.  In other words, return true
5544 ** if expression p will always be NULL or false if every column of iTab
5545 ** is NULL.
5546 **
5547 ** False negatives are acceptable.  In other words, it is ok to return
5548 ** zero even if expression p will never be true of every column of iTab
5549 ** is NULL.  A false negative is merely a missed optimization opportunity.
5550 **
5551 ** False positives are not allowed, however.  A false positive may result
5552 ** in an incorrect answer.
5553 **
5554 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5555 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5556 **
5557 ** This routine is used to check if a LEFT JOIN can be converted into
5558 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5559 ** clause requires that some column of the right table of the LEFT JOIN
5560 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5561 ** ordinary join.
5562 */
5563 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5564   Walker w;
5565   p = sqlite3ExprSkipCollateAndLikely(p);
5566   if( p==0 ) return 0;
5567   if( p->op==TK_NOTNULL ){
5568     p = p->pLeft;
5569   }else{
5570     while( p->op==TK_AND ){
5571       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5572       p = p->pRight;
5573     }
5574   }
5575   w.xExprCallback = impliesNotNullRow;
5576   w.xSelectCallback = 0;
5577   w.xSelectCallback2 = 0;
5578   w.eCode = 0;
5579   w.u.iCur = iTab;
5580   sqlite3WalkExpr(&w, p);
5581   return w.eCode;
5582 }
5583 
5584 /*
5585 ** An instance of the following structure is used by the tree walker
5586 ** to determine if an expression can be evaluated by reference to the
5587 ** index only, without having to do a search for the corresponding
5588 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5589 ** is the cursor for the table.
5590 */
5591 struct IdxCover {
5592   Index *pIdx;     /* The index to be tested for coverage */
5593   int iCur;        /* Cursor number for the table corresponding to the index */
5594 };
5595 
5596 /*
5597 ** Check to see if there are references to columns in table
5598 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5599 ** pWalker->u.pIdxCover->pIdx.
5600 */
5601 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5602   if( pExpr->op==TK_COLUMN
5603    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5604    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5605   ){
5606     pWalker->eCode = 1;
5607     return WRC_Abort;
5608   }
5609   return WRC_Continue;
5610 }
5611 
5612 /*
5613 ** Determine if an index pIdx on table with cursor iCur contains will
5614 ** the expression pExpr.  Return true if the index does cover the
5615 ** expression and false if the pExpr expression references table columns
5616 ** that are not found in the index pIdx.
5617 **
5618 ** An index covering an expression means that the expression can be
5619 ** evaluated using only the index and without having to lookup the
5620 ** corresponding table entry.
5621 */
5622 int sqlite3ExprCoveredByIndex(
5623   Expr *pExpr,        /* The index to be tested */
5624   int iCur,           /* The cursor number for the corresponding table */
5625   Index *pIdx         /* The index that might be used for coverage */
5626 ){
5627   Walker w;
5628   struct IdxCover xcov;
5629   memset(&w, 0, sizeof(w));
5630   xcov.iCur = iCur;
5631   xcov.pIdx = pIdx;
5632   w.xExprCallback = exprIdxCover;
5633   w.u.pIdxCover = &xcov;
5634   sqlite3WalkExpr(&w, pExpr);
5635   return !w.eCode;
5636 }
5637 
5638 
5639 /*
5640 ** An instance of the following structure is used by the tree walker
5641 ** to count references to table columns in the arguments of an
5642 ** aggregate function, in order to implement the
5643 ** sqlite3FunctionThisSrc() routine.
5644 */
5645 struct SrcCount {
5646   SrcList *pSrc;   /* One particular FROM clause in a nested query */
5647   int nThis;       /* Number of references to columns in pSrcList */
5648   int nOther;      /* Number of references to columns in other FROM clauses */
5649 };
5650 
5651 /*
5652 ** Count the number of references to columns.
5653 */
5654 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5655   /* There was once a NEVER() on the second term on the grounds that
5656   ** sqlite3FunctionUsesThisSrc() was always called before
5657   ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5658   ** been converted into TK_AGG_COLUMN. But this is no longer true due
5659   ** to window functions - sqlite3WindowRewrite() may now indirectly call
5660   ** FunctionUsesThisSrc() when creating a new sub-select. */
5661   if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
5662     int i;
5663     struct SrcCount *p = pWalker->u.pSrcCount;
5664     SrcList *pSrc = p->pSrc;
5665     int nSrc = pSrc ? pSrc->nSrc : 0;
5666     for(i=0; i<nSrc; i++){
5667       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5668     }
5669     if( i<nSrc ){
5670       p->nThis++;
5671     }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){
5672       /* In a well-formed parse tree (no name resolution errors),
5673       ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5674       ** outer context.  Those are the only ones to count as "other" */
5675       p->nOther++;
5676     }
5677   }
5678   return WRC_Continue;
5679 }
5680 
5681 /*
5682 ** Determine if any of the arguments to the pExpr Function reference
5683 ** pSrcList.  Return true if they do.  Also return true if the function
5684 ** has no arguments or has only constant arguments.  Return false if pExpr
5685 ** references columns but not columns of tables found in pSrcList.
5686 */
5687 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5688   Walker w;
5689   struct SrcCount cnt;
5690   assert( pExpr->op==TK_AGG_FUNCTION );
5691   memset(&w, 0, sizeof(w));
5692   w.xExprCallback = exprSrcCount;
5693   w.xSelectCallback = sqlite3SelectWalkNoop;
5694   w.u.pSrcCount = &cnt;
5695   cnt.pSrc = pSrcList;
5696   cnt.nThis = 0;
5697   cnt.nOther = 0;
5698   sqlite3WalkExprList(&w, pExpr->x.pList);
5699 #ifndef SQLITE_OMIT_WINDOWFUNC
5700   if( ExprHasProperty(pExpr, EP_WinFunc) ){
5701     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5702   }
5703 #endif
5704   return cnt.nThis>0 || cnt.nOther==0;
5705 }
5706 
5707 /*
5708 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
5709 ** the new element.  Return a negative number if malloc fails.
5710 */
5711 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5712   int i;
5713   pInfo->aCol = sqlite3ArrayAllocate(
5714        db,
5715        pInfo->aCol,
5716        sizeof(pInfo->aCol[0]),
5717        &pInfo->nColumn,
5718        &i
5719   );
5720   return i;
5721 }
5722 
5723 /*
5724 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
5725 ** the new element.  Return a negative number if malloc fails.
5726 */
5727 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5728   int i;
5729   pInfo->aFunc = sqlite3ArrayAllocate(
5730        db,
5731        pInfo->aFunc,
5732        sizeof(pInfo->aFunc[0]),
5733        &pInfo->nFunc,
5734        &i
5735   );
5736   return i;
5737 }
5738 
5739 /*
5740 ** This is the xExprCallback for a tree walker.  It is used to
5741 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
5742 ** for additional information.
5743 */
5744 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5745   int i;
5746   NameContext *pNC = pWalker->u.pNC;
5747   Parse *pParse = pNC->pParse;
5748   SrcList *pSrcList = pNC->pSrcList;
5749   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5750 
5751   assert( pNC->ncFlags & NC_UAggInfo );
5752   switch( pExpr->op ){
5753     case TK_AGG_COLUMN:
5754     case TK_COLUMN: {
5755       testcase( pExpr->op==TK_AGG_COLUMN );
5756       testcase( pExpr->op==TK_COLUMN );
5757       /* Check to see if the column is in one of the tables in the FROM
5758       ** clause of the aggregate query */
5759       if( ALWAYS(pSrcList!=0) ){
5760         struct SrcList_item *pItem = pSrcList->a;
5761         for(i=0; i<pSrcList->nSrc; i++, pItem++){
5762           struct AggInfo_col *pCol;
5763           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5764           if( pExpr->iTable==pItem->iCursor ){
5765             /* If we reach this point, it means that pExpr refers to a table
5766             ** that is in the FROM clause of the aggregate query.
5767             **
5768             ** Make an entry for the column in pAggInfo->aCol[] if there
5769             ** is not an entry there already.
5770             */
5771             int k;
5772             pCol = pAggInfo->aCol;
5773             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5774               if( pCol->iTable==pExpr->iTable &&
5775                   pCol->iColumn==pExpr->iColumn ){
5776                 break;
5777               }
5778             }
5779             if( (k>=pAggInfo->nColumn)
5780              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5781             ){
5782               pCol = &pAggInfo->aCol[k];
5783               pCol->pTab = pExpr->y.pTab;
5784               pCol->iTable = pExpr->iTable;
5785               pCol->iColumn = pExpr->iColumn;
5786               pCol->iMem = ++pParse->nMem;
5787               pCol->iSorterColumn = -1;
5788               pCol->pExpr = pExpr;
5789               if( pAggInfo->pGroupBy ){
5790                 int j, n;
5791                 ExprList *pGB = pAggInfo->pGroupBy;
5792                 struct ExprList_item *pTerm = pGB->a;
5793                 n = pGB->nExpr;
5794                 for(j=0; j<n; j++, pTerm++){
5795                   Expr *pE = pTerm->pExpr;
5796                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5797                       pE->iColumn==pExpr->iColumn ){
5798                     pCol->iSorterColumn = j;
5799                     break;
5800                   }
5801                 }
5802               }
5803               if( pCol->iSorterColumn<0 ){
5804                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5805               }
5806             }
5807             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5808             ** because it was there before or because we just created it).
5809             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5810             ** pAggInfo->aCol[] entry.
5811             */
5812             ExprSetVVAProperty(pExpr, EP_NoReduce);
5813             pExpr->pAggInfo = pAggInfo;
5814             pExpr->op = TK_AGG_COLUMN;
5815             pExpr->iAgg = (i16)k;
5816             break;
5817           } /* endif pExpr->iTable==pItem->iCursor */
5818         } /* end loop over pSrcList */
5819       }
5820       return WRC_Prune;
5821     }
5822     case TK_AGG_FUNCTION: {
5823       if( (pNC->ncFlags & NC_InAggFunc)==0
5824        && pWalker->walkerDepth==pExpr->op2
5825       ){
5826         /* Check to see if pExpr is a duplicate of another aggregate
5827         ** function that is already in the pAggInfo structure
5828         */
5829         struct AggInfo_func *pItem = pAggInfo->aFunc;
5830         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5831           if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5832             break;
5833           }
5834         }
5835         if( i>=pAggInfo->nFunc ){
5836           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
5837           */
5838           u8 enc = ENC(pParse->db);
5839           i = addAggInfoFunc(pParse->db, pAggInfo);
5840           if( i>=0 ){
5841             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5842             pItem = &pAggInfo->aFunc[i];
5843             pItem->pExpr = pExpr;
5844             pItem->iMem = ++pParse->nMem;
5845             assert( !ExprHasProperty(pExpr, EP_IntValue) );
5846             pItem->pFunc = sqlite3FindFunction(pParse->db,
5847                    pExpr->u.zToken,
5848                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5849             if( pExpr->flags & EP_Distinct ){
5850               pItem->iDistinct = pParse->nTab++;
5851             }else{
5852               pItem->iDistinct = -1;
5853             }
5854           }
5855         }
5856         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5857         */
5858         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5859         ExprSetVVAProperty(pExpr, EP_NoReduce);
5860         pExpr->iAgg = (i16)i;
5861         pExpr->pAggInfo = pAggInfo;
5862         return WRC_Prune;
5863       }else{
5864         return WRC_Continue;
5865       }
5866     }
5867   }
5868   return WRC_Continue;
5869 }
5870 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5871   UNUSED_PARAMETER(pSelect);
5872   pWalker->walkerDepth++;
5873   return WRC_Continue;
5874 }
5875 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5876   UNUSED_PARAMETER(pSelect);
5877   pWalker->walkerDepth--;
5878 }
5879 
5880 /*
5881 ** Analyze the pExpr expression looking for aggregate functions and
5882 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5883 ** points to.  Additional entries are made on the AggInfo object as
5884 ** necessary.
5885 **
5886 ** This routine should only be called after the expression has been
5887 ** analyzed by sqlite3ResolveExprNames().
5888 */
5889 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5890   Walker w;
5891   w.xExprCallback = analyzeAggregate;
5892   w.xSelectCallback = analyzeAggregatesInSelect;
5893   w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5894   w.walkerDepth = 0;
5895   w.u.pNC = pNC;
5896   w.pParse = 0;
5897   assert( pNC->pSrcList!=0 );
5898   sqlite3WalkExpr(&w, pExpr);
5899 }
5900 
5901 /*
5902 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5903 ** expression list.  Return the number of errors.
5904 **
5905 ** If an error is found, the analysis is cut short.
5906 */
5907 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5908   struct ExprList_item *pItem;
5909   int i;
5910   if( pList ){
5911     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5912       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5913     }
5914   }
5915 }
5916 
5917 /*
5918 ** Allocate a single new register for use to hold some intermediate result.
5919 */
5920 int sqlite3GetTempReg(Parse *pParse){
5921   if( pParse->nTempReg==0 ){
5922     return ++pParse->nMem;
5923   }
5924   return pParse->aTempReg[--pParse->nTempReg];
5925 }
5926 
5927 /*
5928 ** Deallocate a register, making available for reuse for some other
5929 ** purpose.
5930 */
5931 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5932   if( iReg ){
5933     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
5934     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5935       pParse->aTempReg[pParse->nTempReg++] = iReg;
5936     }
5937   }
5938 }
5939 
5940 /*
5941 ** Allocate or deallocate a block of nReg consecutive registers.
5942 */
5943 int sqlite3GetTempRange(Parse *pParse, int nReg){
5944   int i, n;
5945   if( nReg==1 ) return sqlite3GetTempReg(pParse);
5946   i = pParse->iRangeReg;
5947   n = pParse->nRangeReg;
5948   if( nReg<=n ){
5949     pParse->iRangeReg += nReg;
5950     pParse->nRangeReg -= nReg;
5951   }else{
5952     i = pParse->nMem+1;
5953     pParse->nMem += nReg;
5954   }
5955   return i;
5956 }
5957 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5958   if( nReg==1 ){
5959     sqlite3ReleaseTempReg(pParse, iReg);
5960     return;
5961   }
5962   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
5963   if( nReg>pParse->nRangeReg ){
5964     pParse->nRangeReg = nReg;
5965     pParse->iRangeReg = iReg;
5966   }
5967 }
5968 
5969 /*
5970 ** Mark all temporary registers as being unavailable for reuse.
5971 **
5972 ** Always invoke this procedure after coding a subroutine or co-routine
5973 ** that might be invoked from other parts of the code, to ensure that
5974 ** the sub/co-routine does not use registers in common with the code that
5975 ** invokes the sub/co-routine.
5976 */
5977 void sqlite3ClearTempRegCache(Parse *pParse){
5978   pParse->nTempReg = 0;
5979   pParse->nRangeReg = 0;
5980 }
5981 
5982 /*
5983 ** Validate that no temporary register falls within the range of
5984 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
5985 ** statements.
5986 */
5987 #ifdef SQLITE_DEBUG
5988 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5989   int i;
5990   if( pParse->nRangeReg>0
5991    && pParse->iRangeReg+pParse->nRangeReg > iFirst
5992    && pParse->iRangeReg <= iLast
5993   ){
5994      return 0;
5995   }
5996   for(i=0; i<pParse->nTempReg; i++){
5997     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5998       return 0;
5999     }
6000   }
6001   return 1;
6002 }
6003 #endif /* SQLITE_DEBUG */
6004