1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){ 25 assert( iCol<pTab->nCol ); 26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip) ){ 48 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 49 pExpr = pExpr->pLeft; 50 assert( pExpr!=0 ); 51 } 52 op = pExpr->op; 53 if( op==TK_SELECT ){ 54 assert( pExpr->flags&EP_xIsSelect ); 55 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 56 } 57 if( op==TK_REGISTER ) op = pExpr->op2; 58 #ifndef SQLITE_OMIT_CAST 59 if( op==TK_CAST ){ 60 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 61 return sqlite3AffinityType(pExpr->u.zToken, 0); 62 } 63 #endif 64 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ 65 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 66 } 67 if( op==TK_SELECT_COLUMN ){ 68 assert( pExpr->pLeft->flags&EP_xIsSelect ); 69 return sqlite3ExprAffinity( 70 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 71 ); 72 } 73 if( op==TK_VECTOR ){ 74 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 75 } 76 return pExpr->affExpr; 77 } 78 79 /* 80 ** Set the collating sequence for expression pExpr to be the collating 81 ** sequence named by pToken. Return a pointer to a new Expr node that 82 ** implements the COLLATE operator. 83 ** 84 ** If a memory allocation error occurs, that fact is recorded in pParse->db 85 ** and the pExpr parameter is returned unchanged. 86 */ 87 Expr *sqlite3ExprAddCollateToken( 88 Parse *pParse, /* Parsing context */ 89 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 90 const Token *pCollName, /* Name of collating sequence */ 91 int dequote /* True to dequote pCollName */ 92 ){ 93 if( pCollName->n>0 ){ 94 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 95 if( pNew ){ 96 pNew->pLeft = pExpr; 97 pNew->flags |= EP_Collate|EP_Skip; 98 pExpr = pNew; 99 } 100 } 101 return pExpr; 102 } 103 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 104 Token s; 105 assert( zC!=0 ); 106 sqlite3TokenInit(&s, (char*)zC); 107 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 108 } 109 110 /* 111 ** Skip over any TK_COLLATE operators. 112 */ 113 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 114 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 115 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 116 pExpr = pExpr->pLeft; 117 } 118 return pExpr; 119 } 120 121 /* 122 ** Skip over any TK_COLLATE operators and/or any unlikely() 123 ** or likelihood() or likely() functions at the root of an 124 ** expression. 125 */ 126 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 127 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 128 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 129 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 130 assert( pExpr->x.pList->nExpr>0 ); 131 assert( pExpr->op==TK_FUNCTION ); 132 pExpr = pExpr->x.pList->a[0].pExpr; 133 }else{ 134 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_IF_NULL_ROW ); 135 pExpr = pExpr->pLeft; 136 } 137 } 138 return pExpr; 139 } 140 141 /* 142 ** Return the collation sequence for the expression pExpr. If 143 ** there is no defined collating sequence, return NULL. 144 ** 145 ** See also: sqlite3ExprNNCollSeq() 146 ** 147 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 148 ** default collation if pExpr has no defined collation. 149 ** 150 ** The collating sequence might be determined by a COLLATE operator 151 ** or by the presence of a column with a defined collating sequence. 152 ** COLLATE operators take first precedence. Left operands take 153 ** precedence over right operands. 154 */ 155 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 156 sqlite3 *db = pParse->db; 157 CollSeq *pColl = 0; 158 const Expr *p = pExpr; 159 while( p ){ 160 int op = p->op; 161 if( op==TK_REGISTER ) op = p->op2; 162 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) 163 && p->y.pTab!=0 164 ){ 165 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 166 ** a TK_COLUMN but was previously evaluated and cached in a register */ 167 int j = p->iColumn; 168 if( j>=0 ){ 169 const char *zColl = p->y.pTab->aCol[j].zColl; 170 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 171 } 172 break; 173 } 174 if( op==TK_CAST || op==TK_UPLUS ){ 175 p = p->pLeft; 176 continue; 177 } 178 if( op==TK_VECTOR ){ 179 p = p->x.pList->a[0].pExpr; 180 continue; 181 } 182 if( op==TK_COLLATE ){ 183 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 184 break; 185 } 186 if( p->flags & EP_Collate ){ 187 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 188 p = p->pLeft; 189 }else{ 190 Expr *pNext = p->pRight; 191 /* The Expr.x union is never used at the same time as Expr.pRight */ 192 assert( p->x.pList==0 || p->pRight==0 ); 193 if( p->x.pList!=0 194 && !db->mallocFailed 195 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) 196 ){ 197 int i; 198 for(i=0; i<p->x.pList->nExpr; i++){ 199 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 200 pNext = p->x.pList->a[i].pExpr; 201 break; 202 } 203 } 204 } 205 p = pNext; 206 } 207 }else{ 208 break; 209 } 210 } 211 if( sqlite3CheckCollSeq(pParse, pColl) ){ 212 pColl = 0; 213 } 214 return pColl; 215 } 216 217 /* 218 ** Return the collation sequence for the expression pExpr. If 219 ** there is no defined collating sequence, return a pointer to the 220 ** defautl collation sequence. 221 ** 222 ** See also: sqlite3ExprCollSeq() 223 ** 224 ** The sqlite3ExprCollSeq() routine works the same except that it 225 ** returns NULL if there is no defined collation. 226 */ 227 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 228 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 229 if( p==0 ) p = pParse->db->pDfltColl; 230 assert( p!=0 ); 231 return p; 232 } 233 234 /* 235 ** Return TRUE if the two expressions have equivalent collating sequences. 236 */ 237 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 238 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 239 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 240 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 241 } 242 243 /* 244 ** pExpr is an operand of a comparison operator. aff2 is the 245 ** type affinity of the other operand. This routine returns the 246 ** type affinity that should be used for the comparison operator. 247 */ 248 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 249 char aff1 = sqlite3ExprAffinity(pExpr); 250 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 251 /* Both sides of the comparison are columns. If one has numeric 252 ** affinity, use that. Otherwise use no affinity. 253 */ 254 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 255 return SQLITE_AFF_NUMERIC; 256 }else{ 257 return SQLITE_AFF_BLOB; 258 } 259 }else{ 260 /* One side is a column, the other is not. Use the columns affinity. */ 261 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 262 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 263 } 264 } 265 266 /* 267 ** pExpr is a comparison operator. Return the type affinity that should 268 ** be applied to both operands prior to doing the comparison. 269 */ 270 static char comparisonAffinity(const Expr *pExpr){ 271 char aff; 272 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 273 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 274 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 275 assert( pExpr->pLeft ); 276 aff = sqlite3ExprAffinity(pExpr->pLeft); 277 if( pExpr->pRight ){ 278 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 279 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 280 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 281 }else if( aff==0 ){ 282 aff = SQLITE_AFF_BLOB; 283 } 284 return aff; 285 } 286 287 /* 288 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 289 ** idx_affinity is the affinity of an indexed column. Return true 290 ** if the index with affinity idx_affinity may be used to implement 291 ** the comparison in pExpr. 292 */ 293 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 294 char aff = comparisonAffinity(pExpr); 295 if( aff<SQLITE_AFF_TEXT ){ 296 return 1; 297 } 298 if( aff==SQLITE_AFF_TEXT ){ 299 return idx_affinity==SQLITE_AFF_TEXT; 300 } 301 return sqlite3IsNumericAffinity(idx_affinity); 302 } 303 304 /* 305 ** Return the P5 value that should be used for a binary comparison 306 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 307 */ 308 static u8 binaryCompareP5( 309 const Expr *pExpr1, /* Left operand */ 310 const Expr *pExpr2, /* Right operand */ 311 int jumpIfNull /* Extra flags added to P5 */ 312 ){ 313 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 314 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 315 return aff; 316 } 317 318 /* 319 ** Return a pointer to the collation sequence that should be used by 320 ** a binary comparison operator comparing pLeft and pRight. 321 ** 322 ** If the left hand expression has a collating sequence type, then it is 323 ** used. Otherwise the collation sequence for the right hand expression 324 ** is used, or the default (BINARY) if neither expression has a collating 325 ** type. 326 ** 327 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 328 ** it is not considered. 329 */ 330 CollSeq *sqlite3BinaryCompareCollSeq( 331 Parse *pParse, 332 const Expr *pLeft, 333 const Expr *pRight 334 ){ 335 CollSeq *pColl; 336 assert( pLeft ); 337 if( pLeft->flags & EP_Collate ){ 338 pColl = sqlite3ExprCollSeq(pParse, pLeft); 339 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 340 pColl = sqlite3ExprCollSeq(pParse, pRight); 341 }else{ 342 pColl = sqlite3ExprCollSeq(pParse, pLeft); 343 if( !pColl ){ 344 pColl = sqlite3ExprCollSeq(pParse, pRight); 345 } 346 } 347 return pColl; 348 } 349 350 /* Expresssion p is a comparison operator. Return a collation sequence 351 ** appropriate for the comparison operator. 352 ** 353 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 354 ** However, if the OP_Commuted flag is set, then the order of the operands 355 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 356 ** correct collating sequence is found. 357 */ 358 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 359 if( ExprHasProperty(p, EP_Commuted) ){ 360 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 361 }else{ 362 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 363 } 364 } 365 366 /* 367 ** Generate code for a comparison operator. 368 */ 369 static int codeCompare( 370 Parse *pParse, /* The parsing (and code generating) context */ 371 Expr *pLeft, /* The left operand */ 372 Expr *pRight, /* The right operand */ 373 int opcode, /* The comparison opcode */ 374 int in1, int in2, /* Register holding operands */ 375 int dest, /* Jump here if true. */ 376 int jumpIfNull, /* If true, jump if either operand is NULL */ 377 int isCommuted /* The comparison has been commuted */ 378 ){ 379 int p5; 380 int addr; 381 CollSeq *p4; 382 383 if( pParse->nErr ) return 0; 384 if( isCommuted ){ 385 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 386 }else{ 387 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 388 } 389 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 390 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 391 (void*)p4, P4_COLLSEQ); 392 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 393 return addr; 394 } 395 396 /* 397 ** Return true if expression pExpr is a vector, or false otherwise. 398 ** 399 ** A vector is defined as any expression that results in two or more 400 ** columns of result. Every TK_VECTOR node is an vector because the 401 ** parser will not generate a TK_VECTOR with fewer than two entries. 402 ** But a TK_SELECT might be either a vector or a scalar. It is only 403 ** considered a vector if it has two or more result columns. 404 */ 405 int sqlite3ExprIsVector(Expr *pExpr){ 406 return sqlite3ExprVectorSize(pExpr)>1; 407 } 408 409 /* 410 ** If the expression passed as the only argument is of type TK_VECTOR 411 ** return the number of expressions in the vector. Or, if the expression 412 ** is a sub-select, return the number of columns in the sub-select. For 413 ** any other type of expression, return 1. 414 */ 415 int sqlite3ExprVectorSize(Expr *pExpr){ 416 u8 op = pExpr->op; 417 if( op==TK_REGISTER ) op = pExpr->op2; 418 if( op==TK_VECTOR ){ 419 return pExpr->x.pList->nExpr; 420 }else if( op==TK_SELECT ){ 421 return pExpr->x.pSelect->pEList->nExpr; 422 }else{ 423 return 1; 424 } 425 } 426 427 /* 428 ** Return a pointer to a subexpression of pVector that is the i-th 429 ** column of the vector (numbered starting with 0). The caller must 430 ** ensure that i is within range. 431 ** 432 ** If pVector is really a scalar (and "scalar" here includes subqueries 433 ** that return a single column!) then return pVector unmodified. 434 ** 435 ** pVector retains ownership of the returned subexpression. 436 ** 437 ** If the vector is a (SELECT ...) then the expression returned is 438 ** just the expression for the i-th term of the result set, and may 439 ** not be ready for evaluation because the table cursor has not yet 440 ** been positioned. 441 */ 442 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 443 assert( i<sqlite3ExprVectorSize(pVector) ); 444 if( sqlite3ExprIsVector(pVector) ){ 445 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 446 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 447 return pVector->x.pSelect->pEList->a[i].pExpr; 448 }else{ 449 return pVector->x.pList->a[i].pExpr; 450 } 451 } 452 return pVector; 453 } 454 455 /* 456 ** Compute and return a new Expr object which when passed to 457 ** sqlite3ExprCode() will generate all necessary code to compute 458 ** the iField-th column of the vector expression pVector. 459 ** 460 ** It is ok for pVector to be a scalar (as long as iField==0). 461 ** In that case, this routine works like sqlite3ExprDup(). 462 ** 463 ** The caller owns the returned Expr object and is responsible for 464 ** ensuring that the returned value eventually gets freed. 465 ** 466 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 467 ** then the returned object will reference pVector and so pVector must remain 468 ** valid for the life of the returned object. If pVector is a TK_VECTOR 469 ** or a scalar expression, then it can be deleted as soon as this routine 470 ** returns. 471 ** 472 ** A trick to cause a TK_SELECT pVector to be deleted together with 473 ** the returned Expr object is to attach the pVector to the pRight field 474 ** of the returned TK_SELECT_COLUMN Expr object. 475 */ 476 Expr *sqlite3ExprForVectorField( 477 Parse *pParse, /* Parsing context */ 478 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 479 int iField /* Which column of the vector to return */ 480 ){ 481 Expr *pRet; 482 if( pVector->op==TK_SELECT ){ 483 assert( pVector->flags & EP_xIsSelect ); 484 /* The TK_SELECT_COLUMN Expr node: 485 ** 486 ** pLeft: pVector containing TK_SELECT. Not deleted. 487 ** pRight: not used. But recursively deleted. 488 ** iColumn: Index of a column in pVector 489 ** iTable: 0 or the number of columns on the LHS of an assignment 490 ** pLeft->iTable: First in an array of register holding result, or 0 491 ** if the result is not yet computed. 492 ** 493 ** sqlite3ExprDelete() specifically skips the recursive delete of 494 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 495 ** can be attached to pRight to cause this node to take ownership of 496 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 497 ** with the same pLeft pointer to the pVector, but only one of them 498 ** will own the pVector. 499 */ 500 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 501 if( pRet ){ 502 pRet->iColumn = iField; 503 pRet->pLeft = pVector; 504 } 505 assert( pRet==0 || pRet->iTable==0 ); 506 }else{ 507 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; 508 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 509 sqlite3RenameTokenRemap(pParse, pRet, pVector); 510 } 511 return pRet; 512 } 513 514 /* 515 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 516 ** it. Return the register in which the result is stored (or, if the 517 ** sub-select returns more than one column, the first in an array 518 ** of registers in which the result is stored). 519 ** 520 ** If pExpr is not a TK_SELECT expression, return 0. 521 */ 522 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 523 int reg = 0; 524 #ifndef SQLITE_OMIT_SUBQUERY 525 if( pExpr->op==TK_SELECT ){ 526 reg = sqlite3CodeSubselect(pParse, pExpr); 527 } 528 #endif 529 return reg; 530 } 531 532 /* 533 ** Argument pVector points to a vector expression - either a TK_VECTOR 534 ** or TK_SELECT that returns more than one column. This function returns 535 ** the register number of a register that contains the value of 536 ** element iField of the vector. 537 ** 538 ** If pVector is a TK_SELECT expression, then code for it must have 539 ** already been generated using the exprCodeSubselect() routine. In this 540 ** case parameter regSelect should be the first in an array of registers 541 ** containing the results of the sub-select. 542 ** 543 ** If pVector is of type TK_VECTOR, then code for the requested field 544 ** is generated. In this case (*pRegFree) may be set to the number of 545 ** a temporary register to be freed by the caller before returning. 546 ** 547 ** Before returning, output parameter (*ppExpr) is set to point to the 548 ** Expr object corresponding to element iElem of the vector. 549 */ 550 static int exprVectorRegister( 551 Parse *pParse, /* Parse context */ 552 Expr *pVector, /* Vector to extract element from */ 553 int iField, /* Field to extract from pVector */ 554 int regSelect, /* First in array of registers */ 555 Expr **ppExpr, /* OUT: Expression element */ 556 int *pRegFree /* OUT: Temp register to free */ 557 ){ 558 u8 op = pVector->op; 559 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); 560 if( op==TK_REGISTER ){ 561 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 562 return pVector->iTable+iField; 563 } 564 if( op==TK_SELECT ){ 565 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 566 return regSelect+iField; 567 } 568 *ppExpr = pVector->x.pList->a[iField].pExpr; 569 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 570 } 571 572 /* 573 ** Expression pExpr is a comparison between two vector values. Compute 574 ** the result of the comparison (1, 0, or NULL) and write that 575 ** result into register dest. 576 ** 577 ** The caller must satisfy the following preconditions: 578 ** 579 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 580 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 581 ** otherwise: op==pExpr->op and p5==0 582 */ 583 static void codeVectorCompare( 584 Parse *pParse, /* Code generator context */ 585 Expr *pExpr, /* The comparison operation */ 586 int dest, /* Write results into this register */ 587 u8 op, /* Comparison operator */ 588 u8 p5 /* SQLITE_NULLEQ or zero */ 589 ){ 590 Vdbe *v = pParse->pVdbe; 591 Expr *pLeft = pExpr->pLeft; 592 Expr *pRight = pExpr->pRight; 593 int nLeft = sqlite3ExprVectorSize(pLeft); 594 int i; 595 int regLeft = 0; 596 int regRight = 0; 597 u8 opx = op; 598 int addrDone = sqlite3VdbeMakeLabel(pParse); 599 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 600 601 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 602 if( pParse->nErr ) return; 603 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 604 sqlite3ErrorMsg(pParse, "row value misused"); 605 return; 606 } 607 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 608 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 609 || pExpr->op==TK_LT || pExpr->op==TK_GT 610 || pExpr->op==TK_LE || pExpr->op==TK_GE 611 ); 612 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 613 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 614 assert( p5==0 || pExpr->op!=op ); 615 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 616 617 p5 |= SQLITE_STOREP2; 618 if( opx==TK_LE ) opx = TK_LT; 619 if( opx==TK_GE ) opx = TK_GT; 620 621 regLeft = exprCodeSubselect(pParse, pLeft); 622 regRight = exprCodeSubselect(pParse, pRight); 623 624 for(i=0; 1 /*Loop exits by "break"*/; i++){ 625 int regFree1 = 0, regFree2 = 0; 626 Expr *pL, *pR; 627 int r1, r2; 628 assert( i>=0 && i<nLeft ); 629 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 630 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 631 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); 632 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 633 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 634 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 635 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 636 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 637 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 638 sqlite3ReleaseTempReg(pParse, regFree1); 639 sqlite3ReleaseTempReg(pParse, regFree2); 640 if( i==nLeft-1 ){ 641 break; 642 } 643 if( opx==TK_EQ ){ 644 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); 645 p5 |= SQLITE_KEEPNULL; 646 }else if( opx==TK_NE ){ 647 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); 648 p5 |= SQLITE_KEEPNULL; 649 }else{ 650 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 651 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); 652 VdbeCoverageIf(v, op==TK_LT); 653 VdbeCoverageIf(v, op==TK_GT); 654 VdbeCoverageIf(v, op==TK_LE); 655 VdbeCoverageIf(v, op==TK_GE); 656 if( i==nLeft-2 ) opx = op; 657 } 658 } 659 sqlite3VdbeResolveLabel(v, addrDone); 660 } 661 662 #if SQLITE_MAX_EXPR_DEPTH>0 663 /* 664 ** Check that argument nHeight is less than or equal to the maximum 665 ** expression depth allowed. If it is not, leave an error message in 666 ** pParse. 667 */ 668 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 669 int rc = SQLITE_OK; 670 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 671 if( nHeight>mxHeight ){ 672 sqlite3ErrorMsg(pParse, 673 "Expression tree is too large (maximum depth %d)", mxHeight 674 ); 675 rc = SQLITE_ERROR; 676 } 677 return rc; 678 } 679 680 /* The following three functions, heightOfExpr(), heightOfExprList() 681 ** and heightOfSelect(), are used to determine the maximum height 682 ** of any expression tree referenced by the structure passed as the 683 ** first argument. 684 ** 685 ** If this maximum height is greater than the current value pointed 686 ** to by pnHeight, the second parameter, then set *pnHeight to that 687 ** value. 688 */ 689 static void heightOfExpr(Expr *p, int *pnHeight){ 690 if( p ){ 691 if( p->nHeight>*pnHeight ){ 692 *pnHeight = p->nHeight; 693 } 694 } 695 } 696 static void heightOfExprList(ExprList *p, int *pnHeight){ 697 if( p ){ 698 int i; 699 for(i=0; i<p->nExpr; i++){ 700 heightOfExpr(p->a[i].pExpr, pnHeight); 701 } 702 } 703 } 704 static void heightOfSelect(Select *pSelect, int *pnHeight){ 705 Select *p; 706 for(p=pSelect; p; p=p->pPrior){ 707 heightOfExpr(p->pWhere, pnHeight); 708 heightOfExpr(p->pHaving, pnHeight); 709 heightOfExpr(p->pLimit, pnHeight); 710 heightOfExprList(p->pEList, pnHeight); 711 heightOfExprList(p->pGroupBy, pnHeight); 712 heightOfExprList(p->pOrderBy, pnHeight); 713 } 714 } 715 716 /* 717 ** Set the Expr.nHeight variable in the structure passed as an 718 ** argument. An expression with no children, Expr.pList or 719 ** Expr.pSelect member has a height of 1. Any other expression 720 ** has a height equal to the maximum height of any other 721 ** referenced Expr plus one. 722 ** 723 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 724 ** if appropriate. 725 */ 726 static void exprSetHeight(Expr *p){ 727 int nHeight = 0; 728 heightOfExpr(p->pLeft, &nHeight); 729 heightOfExpr(p->pRight, &nHeight); 730 if( ExprHasProperty(p, EP_xIsSelect) ){ 731 heightOfSelect(p->x.pSelect, &nHeight); 732 }else if( p->x.pList ){ 733 heightOfExprList(p->x.pList, &nHeight); 734 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 735 } 736 p->nHeight = nHeight + 1; 737 } 738 739 /* 740 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 741 ** the height is greater than the maximum allowed expression depth, 742 ** leave an error in pParse. 743 ** 744 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 745 ** Expr.flags. 746 */ 747 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 748 if( pParse->nErr ) return; 749 exprSetHeight(p); 750 sqlite3ExprCheckHeight(pParse, p->nHeight); 751 } 752 753 /* 754 ** Return the maximum height of any expression tree referenced 755 ** by the select statement passed as an argument. 756 */ 757 int sqlite3SelectExprHeight(Select *p){ 758 int nHeight = 0; 759 heightOfSelect(p, &nHeight); 760 return nHeight; 761 } 762 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 763 /* 764 ** Propagate all EP_Propagate flags from the Expr.x.pList into 765 ** Expr.flags. 766 */ 767 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 768 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ 769 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 770 } 771 } 772 #define exprSetHeight(y) 773 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 774 775 /* 776 ** This routine is the core allocator for Expr nodes. 777 ** 778 ** Construct a new expression node and return a pointer to it. Memory 779 ** for this node and for the pToken argument is a single allocation 780 ** obtained from sqlite3DbMalloc(). The calling function 781 ** is responsible for making sure the node eventually gets freed. 782 ** 783 ** If dequote is true, then the token (if it exists) is dequoted. 784 ** If dequote is false, no dequoting is performed. The deQuote 785 ** parameter is ignored if pToken is NULL or if the token does not 786 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 787 ** then the EP_DblQuoted flag is set on the expression node. 788 ** 789 ** Special case: If op==TK_INTEGER and pToken points to a string that 790 ** can be translated into a 32-bit integer, then the token is not 791 ** stored in u.zToken. Instead, the integer values is written 792 ** into u.iValue and the EP_IntValue flag is set. No extra storage 793 ** is allocated to hold the integer text and the dequote flag is ignored. 794 */ 795 Expr *sqlite3ExprAlloc( 796 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 797 int op, /* Expression opcode */ 798 const Token *pToken, /* Token argument. Might be NULL */ 799 int dequote /* True to dequote */ 800 ){ 801 Expr *pNew; 802 int nExtra = 0; 803 int iValue = 0; 804 805 assert( db!=0 ); 806 if( pToken ){ 807 if( op!=TK_INTEGER || pToken->z==0 808 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 809 nExtra = pToken->n+1; 810 assert( iValue>=0 ); 811 } 812 } 813 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 814 if( pNew ){ 815 memset(pNew, 0, sizeof(Expr)); 816 pNew->op = (u8)op; 817 pNew->iAgg = -1; 818 if( pToken ){ 819 if( nExtra==0 ){ 820 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 821 pNew->u.iValue = iValue; 822 }else{ 823 pNew->u.zToken = (char*)&pNew[1]; 824 assert( pToken->z!=0 || pToken->n==0 ); 825 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 826 pNew->u.zToken[pToken->n] = 0; 827 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 828 sqlite3DequoteExpr(pNew); 829 } 830 } 831 } 832 #if SQLITE_MAX_EXPR_DEPTH>0 833 pNew->nHeight = 1; 834 #endif 835 } 836 return pNew; 837 } 838 839 /* 840 ** Allocate a new expression node from a zero-terminated token that has 841 ** already been dequoted. 842 */ 843 Expr *sqlite3Expr( 844 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 845 int op, /* Expression opcode */ 846 const char *zToken /* Token argument. Might be NULL */ 847 ){ 848 Token x; 849 x.z = zToken; 850 x.n = sqlite3Strlen30(zToken); 851 return sqlite3ExprAlloc(db, op, &x, 0); 852 } 853 854 /* 855 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 856 ** 857 ** If pRoot==NULL that means that a memory allocation error has occurred. 858 ** In that case, delete the subtrees pLeft and pRight. 859 */ 860 void sqlite3ExprAttachSubtrees( 861 sqlite3 *db, 862 Expr *pRoot, 863 Expr *pLeft, 864 Expr *pRight 865 ){ 866 if( pRoot==0 ){ 867 assert( db->mallocFailed ); 868 sqlite3ExprDelete(db, pLeft); 869 sqlite3ExprDelete(db, pRight); 870 }else{ 871 if( pRight ){ 872 pRoot->pRight = pRight; 873 pRoot->flags |= EP_Propagate & pRight->flags; 874 } 875 if( pLeft ){ 876 pRoot->pLeft = pLeft; 877 pRoot->flags |= EP_Propagate & pLeft->flags; 878 } 879 exprSetHeight(pRoot); 880 } 881 } 882 883 /* 884 ** Allocate an Expr node which joins as many as two subtrees. 885 ** 886 ** One or both of the subtrees can be NULL. Return a pointer to the new 887 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 888 ** free the subtrees and return NULL. 889 */ 890 Expr *sqlite3PExpr( 891 Parse *pParse, /* Parsing context */ 892 int op, /* Expression opcode */ 893 Expr *pLeft, /* Left operand */ 894 Expr *pRight /* Right operand */ 895 ){ 896 Expr *p; 897 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 898 if( p ){ 899 memset(p, 0, sizeof(Expr)); 900 p->op = op & 0xff; 901 p->iAgg = -1; 902 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 903 sqlite3ExprCheckHeight(pParse, p->nHeight); 904 }else{ 905 sqlite3ExprDelete(pParse->db, pLeft); 906 sqlite3ExprDelete(pParse->db, pRight); 907 } 908 return p; 909 } 910 911 /* 912 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 913 ** do a memory allocation failure) then delete the pSelect object. 914 */ 915 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 916 if( pExpr ){ 917 pExpr->x.pSelect = pSelect; 918 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 919 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 920 }else{ 921 assert( pParse->db->mallocFailed ); 922 sqlite3SelectDelete(pParse->db, pSelect); 923 } 924 } 925 926 927 /* 928 ** Join two expressions using an AND operator. If either expression is 929 ** NULL, then just return the other expression. 930 ** 931 ** If one side or the other of the AND is known to be false, then instead 932 ** of returning an AND expression, just return a constant expression with 933 ** a value of false. 934 */ 935 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 936 sqlite3 *db = pParse->db; 937 if( pLeft==0 ){ 938 return pRight; 939 }else if( pRight==0 ){ 940 return pLeft; 941 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 942 && !IN_RENAME_OBJECT 943 ){ 944 sqlite3ExprDelete(db, pLeft); 945 sqlite3ExprDelete(db, pRight); 946 return sqlite3Expr(db, TK_INTEGER, "0"); 947 }else{ 948 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 949 } 950 } 951 952 /* 953 ** Construct a new expression node for a function with multiple 954 ** arguments. 955 */ 956 Expr *sqlite3ExprFunction( 957 Parse *pParse, /* Parsing context */ 958 ExprList *pList, /* Argument list */ 959 Token *pToken, /* Name of the function */ 960 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 961 ){ 962 Expr *pNew; 963 sqlite3 *db = pParse->db; 964 assert( pToken ); 965 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 966 if( pNew==0 ){ 967 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 968 return 0; 969 } 970 if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 971 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 972 } 973 pNew->x.pList = pList; 974 ExprSetProperty(pNew, EP_HasFunc); 975 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 976 sqlite3ExprSetHeightAndFlags(pParse, pNew); 977 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 978 return pNew; 979 } 980 981 /* 982 ** Check to see if a function is usable according to current access 983 ** rules: 984 ** 985 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 986 ** 987 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 988 ** top-level SQL 989 ** 990 ** If the function is not usable, create an error. 991 */ 992 void sqlite3ExprFunctionUsable( 993 Parse *pParse, /* Parsing and code generating context */ 994 Expr *pExpr, /* The function invocation */ 995 FuncDef *pDef /* The function being invoked */ 996 ){ 997 assert( !IN_RENAME_OBJECT ); 998 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 999 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1000 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1001 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1002 ){ 1003 /* Functions prohibited in triggers and views if: 1004 ** (1) tagged with SQLITE_DIRECTONLY 1005 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1006 ** is tagged with SQLITE_FUNC_UNSAFE) and 1007 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1008 ** that the schema is possibly tainted). 1009 */ 1010 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); 1011 } 1012 } 1013 } 1014 1015 /* 1016 ** Assign a variable number to an expression that encodes a wildcard 1017 ** in the original SQL statement. 1018 ** 1019 ** Wildcards consisting of a single "?" are assigned the next sequential 1020 ** variable number. 1021 ** 1022 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1023 ** sure "nnn" is not too big to avoid a denial of service attack when 1024 ** the SQL statement comes from an external source. 1025 ** 1026 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1027 ** as the previous instance of the same wildcard. Or if this is the first 1028 ** instance of the wildcard, the next sequential variable number is 1029 ** assigned. 1030 */ 1031 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1032 sqlite3 *db = pParse->db; 1033 const char *z; 1034 ynVar x; 1035 1036 if( pExpr==0 ) return; 1037 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1038 z = pExpr->u.zToken; 1039 assert( z!=0 ); 1040 assert( z[0]!=0 ); 1041 assert( n==(u32)sqlite3Strlen30(z) ); 1042 if( z[1]==0 ){ 1043 /* Wildcard of the form "?". Assign the next variable number */ 1044 assert( z[0]=='?' ); 1045 x = (ynVar)(++pParse->nVar); 1046 }else{ 1047 int doAdd = 0; 1048 if( z[0]=='?' ){ 1049 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1050 ** use it as the variable number */ 1051 i64 i; 1052 int bOk; 1053 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1054 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1055 bOk = 1; 1056 }else{ 1057 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1058 } 1059 testcase( i==0 ); 1060 testcase( i==1 ); 1061 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1062 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1063 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1064 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1065 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1066 return; 1067 } 1068 x = (ynVar)i; 1069 if( x>pParse->nVar ){ 1070 pParse->nVar = (int)x; 1071 doAdd = 1; 1072 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1073 doAdd = 1; 1074 } 1075 }else{ 1076 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1077 ** number as the prior appearance of the same name, or if the name 1078 ** has never appeared before, reuse the same variable number 1079 */ 1080 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1081 if( x==0 ){ 1082 x = (ynVar)(++pParse->nVar); 1083 doAdd = 1; 1084 } 1085 } 1086 if( doAdd ){ 1087 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1088 } 1089 } 1090 pExpr->iColumn = x; 1091 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1092 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1093 } 1094 } 1095 1096 /* 1097 ** Recursively delete an expression tree. 1098 */ 1099 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1100 assert( p!=0 ); 1101 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 1102 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 1103 1104 assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); 1105 assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) 1106 || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); 1107 #ifdef SQLITE_DEBUG 1108 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1109 assert( p->pLeft==0 ); 1110 assert( p->pRight==0 ); 1111 assert( p->x.pSelect==0 ); 1112 } 1113 #endif 1114 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1115 /* The Expr.x union is never used at the same time as Expr.pRight */ 1116 assert( p->x.pList==0 || p->pRight==0 ); 1117 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1118 if( p->pRight ){ 1119 assert( !ExprHasProperty(p, EP_WinFunc) ); 1120 sqlite3ExprDeleteNN(db, p->pRight); 1121 }else if( ExprHasProperty(p, EP_xIsSelect) ){ 1122 assert( !ExprHasProperty(p, EP_WinFunc) ); 1123 sqlite3SelectDelete(db, p->x.pSelect); 1124 }else{ 1125 sqlite3ExprListDelete(db, p->x.pList); 1126 #ifndef SQLITE_OMIT_WINDOWFUNC 1127 if( ExprHasProperty(p, EP_WinFunc) ){ 1128 sqlite3WindowDelete(db, p->y.pWin); 1129 } 1130 #endif 1131 } 1132 } 1133 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 1134 if( !ExprHasProperty(p, EP_Static) ){ 1135 sqlite3DbFreeNN(db, p); 1136 } 1137 } 1138 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1139 if( p ) sqlite3ExprDeleteNN(db, p); 1140 } 1141 1142 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1143 ** expression. 1144 */ 1145 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1146 if( p ){ 1147 if( IN_RENAME_OBJECT ){ 1148 sqlite3RenameExprUnmap(pParse, p); 1149 } 1150 sqlite3ExprDeleteNN(pParse->db, p); 1151 } 1152 } 1153 1154 /* 1155 ** Return the number of bytes allocated for the expression structure 1156 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1157 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1158 */ 1159 static int exprStructSize(Expr *p){ 1160 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1161 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1162 return EXPR_FULLSIZE; 1163 } 1164 1165 /* 1166 ** The dupedExpr*Size() routines each return the number of bytes required 1167 ** to store a copy of an expression or expression tree. They differ in 1168 ** how much of the tree is measured. 1169 ** 1170 ** dupedExprStructSize() Size of only the Expr structure 1171 ** dupedExprNodeSize() Size of Expr + space for token 1172 ** dupedExprSize() Expr + token + subtree components 1173 ** 1174 *************************************************************************** 1175 ** 1176 ** The dupedExprStructSize() function returns two values OR-ed together: 1177 ** (1) the space required for a copy of the Expr structure only and 1178 ** (2) the EP_xxx flags that indicate what the structure size should be. 1179 ** The return values is always one of: 1180 ** 1181 ** EXPR_FULLSIZE 1182 ** EXPR_REDUCEDSIZE | EP_Reduced 1183 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1184 ** 1185 ** The size of the structure can be found by masking the return value 1186 ** of this routine with 0xfff. The flags can be found by masking the 1187 ** return value with EP_Reduced|EP_TokenOnly. 1188 ** 1189 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1190 ** (unreduced) Expr objects as they or originally constructed by the parser. 1191 ** During expression analysis, extra information is computed and moved into 1192 ** later parts of the Expr object and that extra information might get chopped 1193 ** off if the expression is reduced. Note also that it does not work to 1194 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1195 ** to reduce a pristine expression tree from the parser. The implementation 1196 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1197 ** to enforce this constraint. 1198 */ 1199 static int dupedExprStructSize(Expr *p, int flags){ 1200 int nSize; 1201 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1202 assert( EXPR_FULLSIZE<=0xfff ); 1203 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1204 if( 0==flags || p->op==TK_SELECT_COLUMN 1205 #ifndef SQLITE_OMIT_WINDOWFUNC 1206 || ExprHasProperty(p, EP_WinFunc) 1207 #endif 1208 ){ 1209 nSize = EXPR_FULLSIZE; 1210 }else{ 1211 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1212 assert( !ExprHasProperty(p, EP_FromJoin) ); 1213 assert( !ExprHasProperty(p, EP_MemToken) ); 1214 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1215 if( p->pLeft || p->x.pList ){ 1216 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1217 }else{ 1218 assert( p->pRight==0 ); 1219 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1220 } 1221 } 1222 return nSize; 1223 } 1224 1225 /* 1226 ** This function returns the space in bytes required to store the copy 1227 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1228 ** string is defined.) 1229 */ 1230 static int dupedExprNodeSize(Expr *p, int flags){ 1231 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1232 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1233 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1234 } 1235 return ROUND8(nByte); 1236 } 1237 1238 /* 1239 ** Return the number of bytes required to create a duplicate of the 1240 ** expression passed as the first argument. The second argument is a 1241 ** mask containing EXPRDUP_XXX flags. 1242 ** 1243 ** The value returned includes space to create a copy of the Expr struct 1244 ** itself and the buffer referred to by Expr.u.zToken, if any. 1245 ** 1246 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1247 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1248 ** and Expr.pRight variables (but not for any structures pointed to or 1249 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1250 */ 1251 static int dupedExprSize(Expr *p, int flags){ 1252 int nByte = 0; 1253 if( p ){ 1254 nByte = dupedExprNodeSize(p, flags); 1255 if( flags&EXPRDUP_REDUCE ){ 1256 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1257 } 1258 } 1259 return nByte; 1260 } 1261 1262 /* 1263 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1264 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1265 ** to store the copy of expression p, the copies of p->u.zToken 1266 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1267 ** if any. Before returning, *pzBuffer is set to the first byte past the 1268 ** portion of the buffer copied into by this function. 1269 */ 1270 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ 1271 Expr *pNew; /* Value to return */ 1272 u8 *zAlloc; /* Memory space from which to build Expr object */ 1273 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1274 1275 assert( db!=0 ); 1276 assert( p ); 1277 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1278 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1279 1280 /* Figure out where to write the new Expr structure. */ 1281 if( pzBuffer ){ 1282 zAlloc = *pzBuffer; 1283 staticFlag = EP_Static; 1284 }else{ 1285 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1286 staticFlag = 0; 1287 } 1288 pNew = (Expr *)zAlloc; 1289 1290 if( pNew ){ 1291 /* Set nNewSize to the size allocated for the structure pointed to 1292 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1293 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1294 ** by the copy of the p->u.zToken string (if any). 1295 */ 1296 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1297 const int nNewSize = nStructSize & 0xfff; 1298 int nToken; 1299 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1300 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1301 }else{ 1302 nToken = 0; 1303 } 1304 if( dupFlags ){ 1305 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1306 memcpy(zAlloc, p, nNewSize); 1307 }else{ 1308 u32 nSize = (u32)exprStructSize(p); 1309 memcpy(zAlloc, p, nSize); 1310 if( nSize<EXPR_FULLSIZE ){ 1311 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1312 } 1313 } 1314 1315 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1316 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 1317 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1318 pNew->flags |= staticFlag; 1319 ExprClearVVAProperties(pNew); 1320 if( dupFlags ){ 1321 ExprSetVVAProperty(pNew, EP_Immutable); 1322 } 1323 1324 /* Copy the p->u.zToken string, if any. */ 1325 if( nToken ){ 1326 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1327 memcpy(zToken, p->u.zToken, nToken); 1328 } 1329 1330 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1331 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1332 if( ExprHasProperty(p, EP_xIsSelect) ){ 1333 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1334 }else{ 1335 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1336 } 1337 } 1338 1339 /* Fill in pNew->pLeft and pNew->pRight. */ 1340 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1341 zAlloc += dupedExprNodeSize(p, dupFlags); 1342 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1343 pNew->pLeft = p->pLeft ? 1344 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1345 pNew->pRight = p->pRight ? 1346 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1347 } 1348 #ifndef SQLITE_OMIT_WINDOWFUNC 1349 if( ExprHasProperty(p, EP_WinFunc) ){ 1350 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1351 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1352 } 1353 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1354 if( pzBuffer ){ 1355 *pzBuffer = zAlloc; 1356 } 1357 }else{ 1358 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1359 if( pNew->op==TK_SELECT_COLUMN ){ 1360 pNew->pLeft = p->pLeft; 1361 assert( p->iColumn==0 || p->pRight==0 ); 1362 assert( p->pRight==0 || p->pRight==p->pLeft ); 1363 }else{ 1364 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1365 } 1366 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1367 } 1368 } 1369 } 1370 return pNew; 1371 } 1372 1373 /* 1374 ** Create and return a deep copy of the object passed as the second 1375 ** argument. If an OOM condition is encountered, NULL is returned 1376 ** and the db->mallocFailed flag set. 1377 */ 1378 #ifndef SQLITE_OMIT_CTE 1379 static With *withDup(sqlite3 *db, With *p){ 1380 With *pRet = 0; 1381 if( p ){ 1382 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1383 pRet = sqlite3DbMallocZero(db, nByte); 1384 if( pRet ){ 1385 int i; 1386 pRet->nCte = p->nCte; 1387 for(i=0; i<p->nCte; i++){ 1388 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1389 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1390 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1391 } 1392 } 1393 } 1394 return pRet; 1395 } 1396 #else 1397 # define withDup(x,y) 0 1398 #endif 1399 1400 #ifndef SQLITE_OMIT_WINDOWFUNC 1401 /* 1402 ** The gatherSelectWindows() procedure and its helper routine 1403 ** gatherSelectWindowsCallback() are used to scan all the expressions 1404 ** an a newly duplicated SELECT statement and gather all of the Window 1405 ** objects found there, assembling them onto the linked list at Select->pWin. 1406 */ 1407 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1408 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1409 Select *pSelect = pWalker->u.pSelect; 1410 Window *pWin = pExpr->y.pWin; 1411 assert( pWin ); 1412 assert( IsWindowFunc(pExpr) ); 1413 assert( pWin->ppThis==0 ); 1414 sqlite3WindowLink(pSelect, pWin); 1415 } 1416 return WRC_Continue; 1417 } 1418 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1419 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1420 } 1421 static void gatherSelectWindows(Select *p){ 1422 Walker w; 1423 w.xExprCallback = gatherSelectWindowsCallback; 1424 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1425 w.xSelectCallback2 = 0; 1426 w.pParse = 0; 1427 w.u.pSelect = p; 1428 sqlite3WalkSelect(&w, p); 1429 } 1430 #endif 1431 1432 1433 /* 1434 ** The following group of routines make deep copies of expressions, 1435 ** expression lists, ID lists, and select statements. The copies can 1436 ** be deleted (by being passed to their respective ...Delete() routines) 1437 ** without effecting the originals. 1438 ** 1439 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1440 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1441 ** by subsequent calls to sqlite*ListAppend() routines. 1442 ** 1443 ** Any tables that the SrcList might point to are not duplicated. 1444 ** 1445 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1446 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1447 ** truncated version of the usual Expr structure that will be stored as 1448 ** part of the in-memory representation of the database schema. 1449 */ 1450 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 1451 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1452 return p ? exprDup(db, p, flags, 0) : 0; 1453 } 1454 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 1455 ExprList *pNew; 1456 struct ExprList_item *pItem, *pOldItem; 1457 int i; 1458 Expr *pPriorSelectCol = 0; 1459 assert( db!=0 ); 1460 if( p==0 ) return 0; 1461 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1462 if( pNew==0 ) return 0; 1463 pNew->nExpr = p->nExpr; 1464 pItem = pNew->a; 1465 pOldItem = p->a; 1466 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1467 Expr *pOldExpr = pOldItem->pExpr; 1468 Expr *pNewExpr; 1469 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1470 if( pOldExpr 1471 && pOldExpr->op==TK_SELECT_COLUMN 1472 && (pNewExpr = pItem->pExpr)!=0 1473 ){ 1474 assert( pNewExpr->iColumn==0 || i>0 ); 1475 if( pNewExpr->iColumn==0 ){ 1476 assert( pOldExpr->pLeft==pOldExpr->pRight ); 1477 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; 1478 }else{ 1479 assert( i>0 ); 1480 assert( pItem[-1].pExpr!=0 ); 1481 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); 1482 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); 1483 pNewExpr->pLeft = pPriorSelectCol; 1484 } 1485 } 1486 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1487 pItem->sortFlags = pOldItem->sortFlags; 1488 pItem->eEName = pOldItem->eEName; 1489 pItem->done = 0; 1490 pItem->bNulls = pOldItem->bNulls; 1491 pItem->bSorterRef = pOldItem->bSorterRef; 1492 pItem->u = pOldItem->u; 1493 } 1494 return pNew; 1495 } 1496 1497 /* 1498 ** If cursors, triggers, views and subqueries are all omitted from 1499 ** the build, then none of the following routines, except for 1500 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1501 ** called with a NULL argument. 1502 */ 1503 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1504 || !defined(SQLITE_OMIT_SUBQUERY) 1505 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 1506 SrcList *pNew; 1507 int i; 1508 int nByte; 1509 assert( db!=0 ); 1510 if( p==0 ) return 0; 1511 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1512 pNew = sqlite3DbMallocRawNN(db, nByte ); 1513 if( pNew==0 ) return 0; 1514 pNew->nSrc = pNew->nAlloc = p->nSrc; 1515 for(i=0; i<p->nSrc; i++){ 1516 struct SrcList_item *pNewItem = &pNew->a[i]; 1517 struct SrcList_item *pOldItem = &p->a[i]; 1518 Table *pTab; 1519 pNewItem->pSchema = pOldItem->pSchema; 1520 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1521 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1522 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1523 pNewItem->fg = pOldItem->fg; 1524 pNewItem->iCursor = pOldItem->iCursor; 1525 pNewItem->addrFillSub = pOldItem->addrFillSub; 1526 pNewItem->regReturn = pOldItem->regReturn; 1527 if( pNewItem->fg.isIndexedBy ){ 1528 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1529 } 1530 pNewItem->pIBIndex = pOldItem->pIBIndex; 1531 if( pNewItem->fg.isTabFunc ){ 1532 pNewItem->u1.pFuncArg = 1533 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1534 } 1535 pTab = pNewItem->pTab = pOldItem->pTab; 1536 if( pTab ){ 1537 pTab->nTabRef++; 1538 } 1539 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1540 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1541 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1542 pNewItem->colUsed = pOldItem->colUsed; 1543 } 1544 return pNew; 1545 } 1546 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1547 IdList *pNew; 1548 int i; 1549 assert( db!=0 ); 1550 if( p==0 ) return 0; 1551 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 1552 if( pNew==0 ) return 0; 1553 pNew->nId = p->nId; 1554 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); 1555 if( pNew->a==0 ){ 1556 sqlite3DbFreeNN(db, pNew); 1557 return 0; 1558 } 1559 /* Note that because the size of the allocation for p->a[] is not 1560 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1561 ** on the duplicate created by this function. */ 1562 for(i=0; i<p->nId; i++){ 1563 struct IdList_item *pNewItem = &pNew->a[i]; 1564 struct IdList_item *pOldItem = &p->a[i]; 1565 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1566 pNewItem->idx = pOldItem->idx; 1567 } 1568 return pNew; 1569 } 1570 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ 1571 Select *pRet = 0; 1572 Select *pNext = 0; 1573 Select **pp = &pRet; 1574 Select *p; 1575 1576 assert( db!=0 ); 1577 for(p=pDup; p; p=p->pPrior){ 1578 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1579 if( pNew==0 ) break; 1580 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1581 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1582 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1583 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1584 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1585 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1586 pNew->op = p->op; 1587 pNew->pNext = pNext; 1588 pNew->pPrior = 0; 1589 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1590 pNew->iLimit = 0; 1591 pNew->iOffset = 0; 1592 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1593 pNew->addrOpenEphm[0] = -1; 1594 pNew->addrOpenEphm[1] = -1; 1595 pNew->nSelectRow = p->nSelectRow; 1596 pNew->pWith = withDup(db, p->pWith); 1597 #ifndef SQLITE_OMIT_WINDOWFUNC 1598 pNew->pWin = 0; 1599 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1600 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1601 #endif 1602 pNew->selId = p->selId; 1603 *pp = pNew; 1604 pp = &pNew->pPrior; 1605 pNext = pNew; 1606 } 1607 1608 return pRet; 1609 } 1610 #else 1611 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1612 assert( p==0 ); 1613 return 0; 1614 } 1615 #endif 1616 1617 1618 /* 1619 ** Add a new element to the end of an expression list. If pList is 1620 ** initially NULL, then create a new expression list. 1621 ** 1622 ** The pList argument must be either NULL or a pointer to an ExprList 1623 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1624 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1625 ** Reason: This routine assumes that the number of slots in pList->a[] 1626 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1627 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1628 ** 1629 ** If a memory allocation error occurs, the entire list is freed and 1630 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1631 ** that the new entry was successfully appended. 1632 */ 1633 ExprList *sqlite3ExprListAppend( 1634 Parse *pParse, /* Parsing context */ 1635 ExprList *pList, /* List to which to append. Might be NULL */ 1636 Expr *pExpr /* Expression to be appended. Might be NULL */ 1637 ){ 1638 struct ExprList_item *pItem; 1639 sqlite3 *db = pParse->db; 1640 assert( db!=0 ); 1641 if( pList==0 ){ 1642 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); 1643 if( pList==0 ){ 1644 goto no_mem; 1645 } 1646 pList->nExpr = 0; 1647 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1648 ExprList *pNew; 1649 pNew = sqlite3DbRealloc(db, pList, 1650 sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); 1651 if( pNew==0 ){ 1652 goto no_mem; 1653 } 1654 pList = pNew; 1655 } 1656 pItem = &pList->a[pList->nExpr++]; 1657 assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); 1658 assert( offsetof(struct ExprList_item,pExpr)==0 ); 1659 memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); 1660 pItem->pExpr = pExpr; 1661 return pList; 1662 1663 no_mem: 1664 /* Avoid leaking memory if malloc has failed. */ 1665 sqlite3ExprDelete(db, pExpr); 1666 sqlite3ExprListDelete(db, pList); 1667 return 0; 1668 } 1669 1670 /* 1671 ** pColumns and pExpr form a vector assignment which is part of the SET 1672 ** clause of an UPDATE statement. Like this: 1673 ** 1674 ** (a,b,c) = (expr1,expr2,expr3) 1675 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1676 ** 1677 ** For each term of the vector assignment, append new entries to the 1678 ** expression list pList. In the case of a subquery on the RHS, append 1679 ** TK_SELECT_COLUMN expressions. 1680 */ 1681 ExprList *sqlite3ExprListAppendVector( 1682 Parse *pParse, /* Parsing context */ 1683 ExprList *pList, /* List to which to append. Might be NULL */ 1684 IdList *pColumns, /* List of names of LHS of the assignment */ 1685 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1686 ){ 1687 sqlite3 *db = pParse->db; 1688 int n; 1689 int i; 1690 int iFirst = pList ? pList->nExpr : 0; 1691 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1692 ** exit prior to this routine being invoked */ 1693 if( NEVER(pColumns==0) ) goto vector_append_error; 1694 if( pExpr==0 ) goto vector_append_error; 1695 1696 /* If the RHS is a vector, then we can immediately check to see that 1697 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1698 ** wildcards ("*") in the result set of the SELECT must be expanded before 1699 ** we can do the size check, so defer the size check until code generation. 1700 */ 1701 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1702 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1703 pColumns->nId, n); 1704 goto vector_append_error; 1705 } 1706 1707 for(i=0; i<pColumns->nId; i++){ 1708 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); 1709 assert( pSubExpr!=0 || db->mallocFailed ); 1710 assert( pSubExpr==0 || pSubExpr->iTable==0 ); 1711 if( pSubExpr==0 ) continue; 1712 pSubExpr->iTable = pColumns->nId; 1713 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1714 if( pList ){ 1715 assert( pList->nExpr==iFirst+i+1 ); 1716 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1717 pColumns->a[i].zName = 0; 1718 } 1719 } 1720 1721 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1722 Expr *pFirst = pList->a[iFirst].pExpr; 1723 assert( pFirst!=0 ); 1724 assert( pFirst->op==TK_SELECT_COLUMN ); 1725 1726 /* Store the SELECT statement in pRight so it will be deleted when 1727 ** sqlite3ExprListDelete() is called */ 1728 pFirst->pRight = pExpr; 1729 pExpr = 0; 1730 1731 /* Remember the size of the LHS in iTable so that we can check that 1732 ** the RHS and LHS sizes match during code generation. */ 1733 pFirst->iTable = pColumns->nId; 1734 } 1735 1736 vector_append_error: 1737 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1738 sqlite3IdListDelete(db, pColumns); 1739 return pList; 1740 } 1741 1742 /* 1743 ** Set the sort order for the last element on the given ExprList. 1744 */ 1745 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1746 struct ExprList_item *pItem; 1747 if( p==0 ) return; 1748 assert( p->nExpr>0 ); 1749 1750 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1751 assert( iSortOrder==SQLITE_SO_UNDEFINED 1752 || iSortOrder==SQLITE_SO_ASC 1753 || iSortOrder==SQLITE_SO_DESC 1754 ); 1755 assert( eNulls==SQLITE_SO_UNDEFINED 1756 || eNulls==SQLITE_SO_ASC 1757 || eNulls==SQLITE_SO_DESC 1758 ); 1759 1760 pItem = &p->a[p->nExpr-1]; 1761 assert( pItem->bNulls==0 ); 1762 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1763 iSortOrder = SQLITE_SO_ASC; 1764 } 1765 pItem->sortFlags = (u8)iSortOrder; 1766 1767 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1768 pItem->bNulls = 1; 1769 if( iSortOrder!=eNulls ){ 1770 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; 1771 } 1772 } 1773 } 1774 1775 /* 1776 ** Set the ExprList.a[].zEName element of the most recently added item 1777 ** on the expression list. 1778 ** 1779 ** pList might be NULL following an OOM error. But pName should never be 1780 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1781 ** is set. 1782 */ 1783 void sqlite3ExprListSetName( 1784 Parse *pParse, /* Parsing context */ 1785 ExprList *pList, /* List to which to add the span. */ 1786 Token *pName, /* Name to be added */ 1787 int dequote /* True to cause the name to be dequoted */ 1788 ){ 1789 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1790 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1791 if( pList ){ 1792 struct ExprList_item *pItem; 1793 assert( pList->nExpr>0 ); 1794 pItem = &pList->a[pList->nExpr-1]; 1795 assert( pItem->zEName==0 ); 1796 assert( pItem->eEName==ENAME_NAME ); 1797 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1798 if( dequote ){ 1799 /* If dequote==0, then pName->z does not point to part of a DDL 1800 ** statement handled by the parser. And so no token need be added 1801 ** to the token-map. */ 1802 sqlite3Dequote(pItem->zEName); 1803 if( IN_RENAME_OBJECT ){ 1804 sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); 1805 } 1806 } 1807 } 1808 } 1809 1810 /* 1811 ** Set the ExprList.a[].zSpan element of the most recently added item 1812 ** on the expression list. 1813 ** 1814 ** pList might be NULL following an OOM error. But pSpan should never be 1815 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1816 ** is set. 1817 */ 1818 void sqlite3ExprListSetSpan( 1819 Parse *pParse, /* Parsing context */ 1820 ExprList *pList, /* List to which to add the span. */ 1821 const char *zStart, /* Start of the span */ 1822 const char *zEnd /* End of the span */ 1823 ){ 1824 sqlite3 *db = pParse->db; 1825 assert( pList!=0 || db->mallocFailed!=0 ); 1826 if( pList ){ 1827 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1828 assert( pList->nExpr>0 ); 1829 if( pItem->zEName==0 ){ 1830 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 1831 pItem->eEName = ENAME_SPAN; 1832 } 1833 } 1834 } 1835 1836 /* 1837 ** If the expression list pEList contains more than iLimit elements, 1838 ** leave an error message in pParse. 1839 */ 1840 void sqlite3ExprListCheckLength( 1841 Parse *pParse, 1842 ExprList *pEList, 1843 const char *zObject 1844 ){ 1845 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1846 testcase( pEList && pEList->nExpr==mx ); 1847 testcase( pEList && pEList->nExpr==mx+1 ); 1848 if( pEList && pEList->nExpr>mx ){ 1849 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1850 } 1851 } 1852 1853 /* 1854 ** Delete an entire expression list. 1855 */ 1856 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 1857 int i = pList->nExpr; 1858 struct ExprList_item *pItem = pList->a; 1859 assert( pList->nExpr>0 ); 1860 do{ 1861 sqlite3ExprDelete(db, pItem->pExpr); 1862 sqlite3DbFree(db, pItem->zEName); 1863 pItem++; 1864 }while( --i>0 ); 1865 sqlite3DbFreeNN(db, pList); 1866 } 1867 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1868 if( pList ) exprListDeleteNN(db, pList); 1869 } 1870 1871 /* 1872 ** Return the bitwise-OR of all Expr.flags fields in the given 1873 ** ExprList. 1874 */ 1875 u32 sqlite3ExprListFlags(const ExprList *pList){ 1876 int i; 1877 u32 m = 0; 1878 assert( pList!=0 ); 1879 for(i=0; i<pList->nExpr; i++){ 1880 Expr *pExpr = pList->a[i].pExpr; 1881 assert( pExpr!=0 ); 1882 m |= pExpr->flags; 1883 } 1884 return m; 1885 } 1886 1887 /* 1888 ** This is a SELECT-node callback for the expression walker that 1889 ** always "fails". By "fail" in this case, we mean set 1890 ** pWalker->eCode to zero and abort. 1891 ** 1892 ** This callback is used by multiple expression walkers. 1893 */ 1894 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 1895 UNUSED_PARAMETER(NotUsed); 1896 pWalker->eCode = 0; 1897 return WRC_Abort; 1898 } 1899 1900 /* 1901 ** Check the input string to see if it is "true" or "false" (in any case). 1902 ** 1903 ** If the string is.... Return 1904 ** "true" EP_IsTrue 1905 ** "false" EP_IsFalse 1906 ** anything else 0 1907 */ 1908 u32 sqlite3IsTrueOrFalse(const char *zIn){ 1909 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 1910 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 1911 return 0; 1912 } 1913 1914 1915 /* 1916 ** If the input expression is an ID with the name "true" or "false" 1917 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 1918 ** the conversion happened, and zero if the expression is unaltered. 1919 */ 1920 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 1921 u32 v; 1922 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 1923 if( !ExprHasProperty(pExpr, EP_Quoted) 1924 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 1925 ){ 1926 pExpr->op = TK_TRUEFALSE; 1927 ExprSetProperty(pExpr, v); 1928 return 1; 1929 } 1930 return 0; 1931 } 1932 1933 /* 1934 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 1935 ** and 0 if it is FALSE. 1936 */ 1937 int sqlite3ExprTruthValue(const Expr *pExpr){ 1938 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 1939 assert( pExpr->op==TK_TRUEFALSE ); 1940 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 1941 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 1942 return pExpr->u.zToken[4]==0; 1943 } 1944 1945 /* 1946 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 1947 ** terms that are always true or false. Return the simplified expression. 1948 ** Or return the original expression if no simplification is possible. 1949 ** 1950 ** Examples: 1951 ** 1952 ** (x<10) AND true => (x<10) 1953 ** (x<10) AND false => false 1954 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 1955 ** (x<10) AND (y=22 OR true) => (x<10) 1956 ** (y=22) OR true => true 1957 */ 1958 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 1959 assert( pExpr!=0 ); 1960 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 1961 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 1962 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 1963 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 1964 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 1965 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 1966 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 1967 } 1968 } 1969 return pExpr; 1970 } 1971 1972 1973 /* 1974 ** These routines are Walker callbacks used to check expressions to 1975 ** see if they are "constant" for some definition of constant. The 1976 ** Walker.eCode value determines the type of "constant" we are looking 1977 ** for. 1978 ** 1979 ** These callback routines are used to implement the following: 1980 ** 1981 ** sqlite3ExprIsConstant() pWalker->eCode==1 1982 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 1983 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 1984 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 1985 ** 1986 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 1987 ** is found to not be a constant. 1988 ** 1989 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 1990 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 1991 ** when parsing an existing schema out of the sqlite_master table and 4 1992 ** when processing a new CREATE TABLE statement. A bound parameter raises 1993 ** an error for new statements, but is silently converted 1994 ** to NULL for existing schemas. This allows sqlite_master tables that 1995 ** contain a bound parameter because they were generated by older versions 1996 ** of SQLite to be parsed by newer versions of SQLite without raising a 1997 ** malformed schema error. 1998 */ 1999 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2000 2001 /* If pWalker->eCode is 2 then any term of the expression that comes from 2002 ** the ON or USING clauses of a left join disqualifies the expression 2003 ** from being considered constant. */ 2004 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ 2005 pWalker->eCode = 0; 2006 return WRC_Abort; 2007 } 2008 2009 switch( pExpr->op ){ 2010 /* Consider functions to be constant if all their arguments are constant 2011 ** and either pWalker->eCode==4 or 5 or the function has the 2012 ** SQLITE_FUNC_CONST flag. */ 2013 case TK_FUNCTION: 2014 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2015 && !ExprHasProperty(pExpr, EP_WinFunc) 2016 ){ 2017 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2018 return WRC_Continue; 2019 }else{ 2020 pWalker->eCode = 0; 2021 return WRC_Abort; 2022 } 2023 case TK_ID: 2024 /* Convert "true" or "false" in a DEFAULT clause into the 2025 ** appropriate TK_TRUEFALSE operator */ 2026 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2027 return WRC_Prune; 2028 } 2029 /* Fall thru */ 2030 case TK_COLUMN: 2031 case TK_AGG_FUNCTION: 2032 case TK_AGG_COLUMN: 2033 testcase( pExpr->op==TK_ID ); 2034 testcase( pExpr->op==TK_COLUMN ); 2035 testcase( pExpr->op==TK_AGG_FUNCTION ); 2036 testcase( pExpr->op==TK_AGG_COLUMN ); 2037 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2038 return WRC_Continue; 2039 } 2040 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2041 return WRC_Continue; 2042 } 2043 /* Fall through */ 2044 case TK_IF_NULL_ROW: 2045 case TK_REGISTER: 2046 testcase( pExpr->op==TK_REGISTER ); 2047 testcase( pExpr->op==TK_IF_NULL_ROW ); 2048 pWalker->eCode = 0; 2049 return WRC_Abort; 2050 case TK_VARIABLE: 2051 if( pWalker->eCode==5 ){ 2052 /* Silently convert bound parameters that appear inside of CREATE 2053 ** statements into a NULL when parsing the CREATE statement text out 2054 ** of the sqlite_master table */ 2055 pExpr->op = TK_NULL; 2056 }else if( pWalker->eCode==4 ){ 2057 /* A bound parameter in a CREATE statement that originates from 2058 ** sqlite3_prepare() causes an error */ 2059 pWalker->eCode = 0; 2060 return WRC_Abort; 2061 } 2062 /* Fall through */ 2063 default: 2064 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2065 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2066 return WRC_Continue; 2067 } 2068 } 2069 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2070 Walker w; 2071 w.eCode = initFlag; 2072 w.xExprCallback = exprNodeIsConstant; 2073 w.xSelectCallback = sqlite3SelectWalkFail; 2074 #ifdef SQLITE_DEBUG 2075 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2076 #endif 2077 w.u.iCur = iCur; 2078 sqlite3WalkExpr(&w, p); 2079 return w.eCode; 2080 } 2081 2082 /* 2083 ** Walk an expression tree. Return non-zero if the expression is constant 2084 ** and 0 if it involves variables or function calls. 2085 ** 2086 ** For the purposes of this function, a double-quoted string (ex: "abc") 2087 ** is considered a variable but a single-quoted string (ex: 'abc') is 2088 ** a constant. 2089 */ 2090 int sqlite3ExprIsConstant(Expr *p){ 2091 return exprIsConst(p, 1, 0); 2092 } 2093 2094 /* 2095 ** Walk an expression tree. Return non-zero if 2096 ** 2097 ** (1) the expression is constant, and 2098 ** (2) the expression does originate in the ON or USING clause 2099 ** of a LEFT JOIN, and 2100 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2101 ** operands created by the constant propagation optimization. 2102 ** 2103 ** When this routine returns true, it indicates that the expression 2104 ** can be added to the pParse->pConstExpr list and evaluated once when 2105 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2106 */ 2107 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2108 return exprIsConst(p, 2, 0); 2109 } 2110 2111 /* 2112 ** Walk an expression tree. Return non-zero if the expression is constant 2113 ** for any single row of the table with cursor iCur. In other words, the 2114 ** expression must not refer to any non-deterministic function nor any 2115 ** table other than iCur. 2116 */ 2117 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2118 return exprIsConst(p, 3, iCur); 2119 } 2120 2121 2122 /* 2123 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2124 */ 2125 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2126 ExprList *pGroupBy = pWalker->u.pGroupBy; 2127 int i; 2128 2129 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2130 ** it constant. */ 2131 for(i=0; i<pGroupBy->nExpr; i++){ 2132 Expr *p = pGroupBy->a[i].pExpr; 2133 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2134 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2135 if( sqlite3IsBinary(pColl) ){ 2136 return WRC_Prune; 2137 } 2138 } 2139 } 2140 2141 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2142 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2143 pWalker->eCode = 0; 2144 return WRC_Abort; 2145 } 2146 2147 return exprNodeIsConstant(pWalker, pExpr); 2148 } 2149 2150 /* 2151 ** Walk the expression tree passed as the first argument. Return non-zero 2152 ** if the expression consists entirely of constants or copies of terms 2153 ** in pGroupBy that sort with the BINARY collation sequence. 2154 ** 2155 ** This routine is used to determine if a term of the HAVING clause can 2156 ** be promoted into the WHERE clause. In order for such a promotion to work, 2157 ** the value of the HAVING clause term must be the same for all members of 2158 ** a "group". The requirement that the GROUP BY term must be BINARY 2159 ** assumes that no other collating sequence will have a finer-grained 2160 ** grouping than binary. In other words (A=B COLLATE binary) implies 2161 ** A=B in every other collating sequence. The requirement that the 2162 ** GROUP BY be BINARY is stricter than necessary. It would also work 2163 ** to promote HAVING clauses that use the same alternative collating 2164 ** sequence as the GROUP BY term, but that is much harder to check, 2165 ** alternative collating sequences are uncommon, and this is only an 2166 ** optimization, so we take the easy way out and simply require the 2167 ** GROUP BY to use the BINARY collating sequence. 2168 */ 2169 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2170 Walker w; 2171 w.eCode = 1; 2172 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2173 w.xSelectCallback = 0; 2174 w.u.pGroupBy = pGroupBy; 2175 w.pParse = pParse; 2176 sqlite3WalkExpr(&w, p); 2177 return w.eCode; 2178 } 2179 2180 /* 2181 ** Walk an expression tree for the DEFAULT field of a column definition 2182 ** in a CREATE TABLE statement. Return non-zero if the expression is 2183 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2184 ** the expression is constant or a function call with constant arguments. 2185 ** Return and 0 if there are any variables. 2186 ** 2187 ** isInit is true when parsing from sqlite_master. isInit is false when 2188 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2189 ** (such as ? or $abc) in the expression are converted into NULL. When 2190 ** isInit is false, parameters raise an error. Parameters should not be 2191 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2192 ** allowed it, so we need to support it when reading sqlite_master for 2193 ** backwards compatibility. 2194 ** 2195 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2196 ** 2197 ** For the purposes of this function, a double-quoted string (ex: "abc") 2198 ** is considered a variable but a single-quoted string (ex: 'abc') is 2199 ** a constant. 2200 */ 2201 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2202 assert( isInit==0 || isInit==1 ); 2203 return exprIsConst(p, 4+isInit, 0); 2204 } 2205 2206 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2207 /* 2208 ** Walk an expression tree. Return 1 if the expression contains a 2209 ** subquery of some kind. Return 0 if there are no subqueries. 2210 */ 2211 int sqlite3ExprContainsSubquery(Expr *p){ 2212 Walker w; 2213 w.eCode = 1; 2214 w.xExprCallback = sqlite3ExprWalkNoop; 2215 w.xSelectCallback = sqlite3SelectWalkFail; 2216 #ifdef SQLITE_DEBUG 2217 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2218 #endif 2219 sqlite3WalkExpr(&w, p); 2220 return w.eCode==0; 2221 } 2222 #endif 2223 2224 /* 2225 ** If the expression p codes a constant integer that is small enough 2226 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2227 ** in *pValue. If the expression is not an integer or if it is too big 2228 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2229 */ 2230 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 2231 int rc = 0; 2232 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2233 2234 /* If an expression is an integer literal that fits in a signed 32-bit 2235 ** integer, then the EP_IntValue flag will have already been set */ 2236 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2237 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2238 2239 if( p->flags & EP_IntValue ){ 2240 *pValue = p->u.iValue; 2241 return 1; 2242 } 2243 switch( p->op ){ 2244 case TK_UPLUS: { 2245 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2246 break; 2247 } 2248 case TK_UMINUS: { 2249 int v; 2250 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2251 assert( v!=(-2147483647-1) ); 2252 *pValue = -v; 2253 rc = 1; 2254 } 2255 break; 2256 } 2257 default: break; 2258 } 2259 return rc; 2260 } 2261 2262 /* 2263 ** Return FALSE if there is no chance that the expression can be NULL. 2264 ** 2265 ** If the expression might be NULL or if the expression is too complex 2266 ** to tell return TRUE. 2267 ** 2268 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2269 ** when we know that a value cannot be NULL. Hence, a false positive 2270 ** (returning TRUE when in fact the expression can never be NULL) might 2271 ** be a small performance hit but is otherwise harmless. On the other 2272 ** hand, a false negative (returning FALSE when the result could be NULL) 2273 ** will likely result in an incorrect answer. So when in doubt, return 2274 ** TRUE. 2275 */ 2276 int sqlite3ExprCanBeNull(const Expr *p){ 2277 u8 op; 2278 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2279 p = p->pLeft; 2280 } 2281 op = p->op; 2282 if( op==TK_REGISTER ) op = p->op2; 2283 switch( op ){ 2284 case TK_INTEGER: 2285 case TK_STRING: 2286 case TK_FLOAT: 2287 case TK_BLOB: 2288 return 0; 2289 case TK_COLUMN: 2290 return ExprHasProperty(p, EP_CanBeNull) || 2291 p->y.pTab==0 || /* Reference to column of index on expression */ 2292 (p->iColumn>=0 2293 && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ 2294 && p->y.pTab->aCol[p->iColumn].notNull==0); 2295 default: 2296 return 1; 2297 } 2298 } 2299 2300 /* 2301 ** Return TRUE if the given expression is a constant which would be 2302 ** unchanged by OP_Affinity with the affinity given in the second 2303 ** argument. 2304 ** 2305 ** This routine is used to determine if the OP_Affinity operation 2306 ** can be omitted. When in doubt return FALSE. A false negative 2307 ** is harmless. A false positive, however, can result in the wrong 2308 ** answer. 2309 */ 2310 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2311 u8 op; 2312 int unaryMinus = 0; 2313 if( aff==SQLITE_AFF_BLOB ) return 1; 2314 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2315 if( p->op==TK_UMINUS ) unaryMinus = 1; 2316 p = p->pLeft; 2317 } 2318 op = p->op; 2319 if( op==TK_REGISTER ) op = p->op2; 2320 switch( op ){ 2321 case TK_INTEGER: { 2322 return aff>=SQLITE_AFF_NUMERIC; 2323 } 2324 case TK_FLOAT: { 2325 return aff>=SQLITE_AFF_NUMERIC; 2326 } 2327 case TK_STRING: { 2328 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2329 } 2330 case TK_BLOB: { 2331 return !unaryMinus; 2332 } 2333 case TK_COLUMN: { 2334 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2335 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2336 } 2337 default: { 2338 return 0; 2339 } 2340 } 2341 } 2342 2343 /* 2344 ** Return TRUE if the given string is a row-id column name. 2345 */ 2346 int sqlite3IsRowid(const char *z){ 2347 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2348 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2349 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2350 return 0; 2351 } 2352 2353 /* 2354 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2355 ** that can be simplified to a direct table access, then return 2356 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2357 ** or if the SELECT statement needs to be manifested into a transient 2358 ** table, then return NULL. 2359 */ 2360 #ifndef SQLITE_OMIT_SUBQUERY 2361 static Select *isCandidateForInOpt(Expr *pX){ 2362 Select *p; 2363 SrcList *pSrc; 2364 ExprList *pEList; 2365 Table *pTab; 2366 int i; 2367 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ 2368 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2369 p = pX->x.pSelect; 2370 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2371 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2372 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2373 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2374 return 0; /* No DISTINCT keyword and no aggregate functions */ 2375 } 2376 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2377 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2378 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2379 pSrc = p->pSrc; 2380 assert( pSrc!=0 ); 2381 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2382 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2383 pTab = pSrc->a[0].pTab; 2384 assert( pTab!=0 ); 2385 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 2386 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2387 pEList = p->pEList; 2388 assert( pEList!=0 ); 2389 /* All SELECT results must be columns. */ 2390 for(i=0; i<pEList->nExpr; i++){ 2391 Expr *pRes = pEList->a[i].pExpr; 2392 if( pRes->op!=TK_COLUMN ) return 0; 2393 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2394 } 2395 return p; 2396 } 2397 #endif /* SQLITE_OMIT_SUBQUERY */ 2398 2399 #ifndef SQLITE_OMIT_SUBQUERY 2400 /* 2401 ** Generate code that checks the left-most column of index table iCur to see if 2402 ** it contains any NULL entries. Cause the register at regHasNull to be set 2403 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2404 ** to be set to NULL if iCur contains one or more NULL values. 2405 */ 2406 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2407 int addr1; 2408 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2409 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2410 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2411 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2412 VdbeComment((v, "first_entry_in(%d)", iCur)); 2413 sqlite3VdbeJumpHere(v, addr1); 2414 } 2415 #endif 2416 2417 2418 #ifndef SQLITE_OMIT_SUBQUERY 2419 /* 2420 ** The argument is an IN operator with a list (not a subquery) on the 2421 ** right-hand side. Return TRUE if that list is constant. 2422 */ 2423 static int sqlite3InRhsIsConstant(Expr *pIn){ 2424 Expr *pLHS; 2425 int res; 2426 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2427 pLHS = pIn->pLeft; 2428 pIn->pLeft = 0; 2429 res = sqlite3ExprIsConstant(pIn); 2430 pIn->pLeft = pLHS; 2431 return res; 2432 } 2433 #endif 2434 2435 /* 2436 ** This function is used by the implementation of the IN (...) operator. 2437 ** The pX parameter is the expression on the RHS of the IN operator, which 2438 ** might be either a list of expressions or a subquery. 2439 ** 2440 ** The job of this routine is to find or create a b-tree object that can 2441 ** be used either to test for membership in the RHS set or to iterate through 2442 ** all members of the RHS set, skipping duplicates. 2443 ** 2444 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2445 ** and pX->iTable is set to the index of that cursor. 2446 ** 2447 ** The returned value of this function indicates the b-tree type, as follows: 2448 ** 2449 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2450 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2451 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2452 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2453 ** populated epheremal table. 2454 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2455 ** implemented as a sequence of comparisons. 2456 ** 2457 ** An existing b-tree might be used if the RHS expression pX is a simple 2458 ** subquery such as: 2459 ** 2460 ** SELECT <column1>, <column2>... FROM <table> 2461 ** 2462 ** If the RHS of the IN operator is a list or a more complex subquery, then 2463 ** an ephemeral table might need to be generated from the RHS and then 2464 ** pX->iTable made to point to the ephemeral table instead of an 2465 ** existing table. 2466 ** 2467 ** The inFlags parameter must contain, at a minimum, one of the bits 2468 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2469 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2470 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2471 ** be used to loop over all values of the RHS of the IN operator. 2472 ** 2473 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2474 ** through the set members) then the b-tree must not contain duplicates. 2475 ** An epheremal table will be created unless the selected columns are guaranteed 2476 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2477 ** a UNIQUE constraint or index. 2478 ** 2479 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2480 ** for fast set membership tests) then an epheremal table must 2481 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2482 ** index can be found with the specified <columns> as its left-most. 2483 ** 2484 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2485 ** if the RHS of the IN operator is a list (not a subquery) then this 2486 ** routine might decide that creating an ephemeral b-tree for membership 2487 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2488 ** calling routine should implement the IN operator using a sequence 2489 ** of Eq or Ne comparison operations. 2490 ** 2491 ** When the b-tree is being used for membership tests, the calling function 2492 ** might need to know whether or not the RHS side of the IN operator 2493 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2494 ** if there is any chance that the (...) might contain a NULL value at 2495 ** runtime, then a register is allocated and the register number written 2496 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2497 ** NULL value, then *prRhsHasNull is left unchanged. 2498 ** 2499 ** If a register is allocated and its location stored in *prRhsHasNull, then 2500 ** the value in that register will be NULL if the b-tree contains one or more 2501 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2502 ** NULL values. 2503 ** 2504 ** If the aiMap parameter is not NULL, it must point to an array containing 2505 ** one element for each column returned by the SELECT statement on the RHS 2506 ** of the IN(...) operator. The i'th entry of the array is populated with the 2507 ** offset of the index column that matches the i'th column returned by the 2508 ** SELECT. For example, if the expression and selected index are: 2509 ** 2510 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2511 ** CREATE INDEX i1 ON t1(b, c, a); 2512 ** 2513 ** then aiMap[] is populated with {2, 0, 1}. 2514 */ 2515 #ifndef SQLITE_OMIT_SUBQUERY 2516 int sqlite3FindInIndex( 2517 Parse *pParse, /* Parsing context */ 2518 Expr *pX, /* The IN expression */ 2519 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2520 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2521 int *aiMap, /* Mapping from Index fields to RHS fields */ 2522 int *piTab /* OUT: index to use */ 2523 ){ 2524 Select *p; /* SELECT to the right of IN operator */ 2525 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2526 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 2527 int mustBeUnique; /* True if RHS must be unique */ 2528 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2529 2530 assert( pX->op==TK_IN ); 2531 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2532 2533 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2534 ** whether or not the SELECT result contains NULL values, check whether 2535 ** or not NULL is actually possible (it may not be, for example, due 2536 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2537 ** set prRhsHasNull to 0 before continuing. */ 2538 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ 2539 int i; 2540 ExprList *pEList = pX->x.pSelect->pEList; 2541 for(i=0; i<pEList->nExpr; i++){ 2542 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2543 } 2544 if( i==pEList->nExpr ){ 2545 prRhsHasNull = 0; 2546 } 2547 } 2548 2549 /* Check to see if an existing table or index can be used to 2550 ** satisfy the query. This is preferable to generating a new 2551 ** ephemeral table. */ 2552 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2553 sqlite3 *db = pParse->db; /* Database connection */ 2554 Table *pTab; /* Table <table>. */ 2555 i16 iDb; /* Database idx for pTab */ 2556 ExprList *pEList = p->pEList; 2557 int nExpr = pEList->nExpr; 2558 2559 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2560 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2561 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2562 pTab = p->pSrc->a[0].pTab; 2563 2564 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2565 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2566 sqlite3CodeVerifySchema(pParse, iDb); 2567 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2568 2569 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2570 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2571 /* The "x IN (SELECT rowid FROM table)" case */ 2572 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2573 VdbeCoverage(v); 2574 2575 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2576 eType = IN_INDEX_ROWID; 2577 ExplainQueryPlan((pParse, 0, 2578 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2579 sqlite3VdbeJumpHere(v, iAddr); 2580 }else{ 2581 Index *pIdx; /* Iterator variable */ 2582 int affinity_ok = 1; 2583 int i; 2584 2585 /* Check that the affinity that will be used to perform each 2586 ** comparison is the same as the affinity of each column in table 2587 ** on the RHS of the IN operator. If it not, it is not possible to 2588 ** use any index of the RHS table. */ 2589 for(i=0; i<nExpr && affinity_ok; i++){ 2590 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2591 int iCol = pEList->a[i].pExpr->iColumn; 2592 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2593 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2594 testcase( cmpaff==SQLITE_AFF_BLOB ); 2595 testcase( cmpaff==SQLITE_AFF_TEXT ); 2596 switch( cmpaff ){ 2597 case SQLITE_AFF_BLOB: 2598 break; 2599 case SQLITE_AFF_TEXT: 2600 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2601 ** other has no affinity and the other side is TEXT. Hence, 2602 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2603 ** and for the term on the LHS of the IN to have no affinity. */ 2604 assert( idxaff==SQLITE_AFF_TEXT ); 2605 break; 2606 default: 2607 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2608 } 2609 } 2610 2611 if( affinity_ok ){ 2612 /* Search for an existing index that will work for this IN operator */ 2613 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2614 Bitmask colUsed; /* Columns of the index used */ 2615 Bitmask mCol; /* Mask for the current column */ 2616 if( pIdx->nColumn<nExpr ) continue; 2617 if( pIdx->pPartIdxWhere!=0 ) continue; 2618 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2619 ** BITMASK(nExpr) without overflowing */ 2620 testcase( pIdx->nColumn==BMS-2 ); 2621 testcase( pIdx->nColumn==BMS-1 ); 2622 if( pIdx->nColumn>=BMS-1 ) continue; 2623 if( mustBeUnique ){ 2624 if( pIdx->nKeyCol>nExpr 2625 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2626 ){ 2627 continue; /* This index is not unique over the IN RHS columns */ 2628 } 2629 } 2630 2631 colUsed = 0; /* Columns of index used so far */ 2632 for(i=0; i<nExpr; i++){ 2633 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2634 Expr *pRhs = pEList->a[i].pExpr; 2635 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2636 int j; 2637 2638 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2639 for(j=0; j<nExpr; j++){ 2640 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2641 assert( pIdx->azColl[j] ); 2642 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2643 continue; 2644 } 2645 break; 2646 } 2647 if( j==nExpr ) break; 2648 mCol = MASKBIT(j); 2649 if( mCol & colUsed ) break; /* Each column used only once */ 2650 colUsed |= mCol; 2651 if( aiMap ) aiMap[i] = j; 2652 } 2653 2654 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2655 if( colUsed==(MASKBIT(nExpr)-1) ){ 2656 /* If we reach this point, that means the index pIdx is usable */ 2657 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2658 ExplainQueryPlan((pParse, 0, 2659 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2660 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2661 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2662 VdbeComment((v, "%s", pIdx->zName)); 2663 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2664 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2665 2666 if( prRhsHasNull ){ 2667 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2668 i64 mask = (1<<nExpr)-1; 2669 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2670 iTab, 0, 0, (u8*)&mask, P4_INT64); 2671 #endif 2672 *prRhsHasNull = ++pParse->nMem; 2673 if( nExpr==1 ){ 2674 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2675 } 2676 } 2677 sqlite3VdbeJumpHere(v, iAddr); 2678 } 2679 } /* End loop over indexes */ 2680 } /* End if( affinity_ok ) */ 2681 } /* End if not an rowid index */ 2682 } /* End attempt to optimize using an index */ 2683 2684 /* If no preexisting index is available for the IN clause 2685 ** and IN_INDEX_NOOP is an allowed reply 2686 ** and the RHS of the IN operator is a list, not a subquery 2687 ** and the RHS is not constant or has two or fewer terms, 2688 ** then it is not worth creating an ephemeral table to evaluate 2689 ** the IN operator so return IN_INDEX_NOOP. 2690 */ 2691 if( eType==0 2692 && (inFlags & IN_INDEX_NOOP_OK) 2693 && !ExprHasProperty(pX, EP_xIsSelect) 2694 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2695 ){ 2696 eType = IN_INDEX_NOOP; 2697 } 2698 2699 if( eType==0 ){ 2700 /* Could not find an existing table or index to use as the RHS b-tree. 2701 ** We will have to generate an ephemeral table to do the job. 2702 */ 2703 u32 savedNQueryLoop = pParse->nQueryLoop; 2704 int rMayHaveNull = 0; 2705 eType = IN_INDEX_EPH; 2706 if( inFlags & IN_INDEX_LOOP ){ 2707 pParse->nQueryLoop = 0; 2708 }else if( prRhsHasNull ){ 2709 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2710 } 2711 assert( pX->op==TK_IN ); 2712 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2713 if( rMayHaveNull ){ 2714 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2715 } 2716 pParse->nQueryLoop = savedNQueryLoop; 2717 } 2718 2719 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2720 int i, n; 2721 n = sqlite3ExprVectorSize(pX->pLeft); 2722 for(i=0; i<n; i++) aiMap[i] = i; 2723 } 2724 *piTab = iTab; 2725 return eType; 2726 } 2727 #endif 2728 2729 #ifndef SQLITE_OMIT_SUBQUERY 2730 /* 2731 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2732 ** function allocates and returns a nul-terminated string containing 2733 ** the affinities to be used for each column of the comparison. 2734 ** 2735 ** It is the responsibility of the caller to ensure that the returned 2736 ** string is eventually freed using sqlite3DbFree(). 2737 */ 2738 static char *exprINAffinity(Parse *pParse, Expr *pExpr){ 2739 Expr *pLeft = pExpr->pLeft; 2740 int nVal = sqlite3ExprVectorSize(pLeft); 2741 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; 2742 char *zRet; 2743 2744 assert( pExpr->op==TK_IN ); 2745 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2746 if( zRet ){ 2747 int i; 2748 for(i=0; i<nVal; i++){ 2749 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2750 char a = sqlite3ExprAffinity(pA); 2751 if( pSelect ){ 2752 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2753 }else{ 2754 zRet[i] = a; 2755 } 2756 } 2757 zRet[nVal] = '\0'; 2758 } 2759 return zRet; 2760 } 2761 #endif 2762 2763 #ifndef SQLITE_OMIT_SUBQUERY 2764 /* 2765 ** Load the Parse object passed as the first argument with an error 2766 ** message of the form: 2767 ** 2768 ** "sub-select returns N columns - expected M" 2769 */ 2770 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 2771 if( pParse->nErr==0 ){ 2772 const char *zFmt = "sub-select returns %d columns - expected %d"; 2773 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 2774 } 2775 } 2776 #endif 2777 2778 /* 2779 ** Expression pExpr is a vector that has been used in a context where 2780 ** it is not permitted. If pExpr is a sub-select vector, this routine 2781 ** loads the Parse object with a message of the form: 2782 ** 2783 ** "sub-select returns N columns - expected 1" 2784 ** 2785 ** Or, if it is a regular scalar vector: 2786 ** 2787 ** "row value misused" 2788 */ 2789 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 2790 #ifndef SQLITE_OMIT_SUBQUERY 2791 if( pExpr->flags & EP_xIsSelect ){ 2792 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 2793 }else 2794 #endif 2795 { 2796 sqlite3ErrorMsg(pParse, "row value misused"); 2797 } 2798 } 2799 2800 #ifndef SQLITE_OMIT_SUBQUERY 2801 /* 2802 ** Generate code that will construct an ephemeral table containing all terms 2803 ** in the RHS of an IN operator. The IN operator can be in either of two 2804 ** forms: 2805 ** 2806 ** x IN (4,5,11) -- IN operator with list on right-hand side 2807 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 2808 ** 2809 ** The pExpr parameter is the IN operator. The cursor number for the 2810 ** constructed ephermeral table is returned. The first time the ephemeral 2811 ** table is computed, the cursor number is also stored in pExpr->iTable, 2812 ** however the cursor number returned might not be the same, as it might 2813 ** have been duplicated using OP_OpenDup. 2814 ** 2815 ** If the LHS expression ("x" in the examples) is a column value, or 2816 ** the SELECT statement returns a column value, then the affinity of that 2817 ** column is used to build the index keys. If both 'x' and the 2818 ** SELECT... statement are columns, then numeric affinity is used 2819 ** if either column has NUMERIC or INTEGER affinity. If neither 2820 ** 'x' nor the SELECT... statement are columns, then numeric affinity 2821 ** is used. 2822 */ 2823 void sqlite3CodeRhsOfIN( 2824 Parse *pParse, /* Parsing context */ 2825 Expr *pExpr, /* The IN operator */ 2826 int iTab /* Use this cursor number */ 2827 ){ 2828 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 2829 int addr; /* Address of OP_OpenEphemeral instruction */ 2830 Expr *pLeft; /* the LHS of the IN operator */ 2831 KeyInfo *pKeyInfo = 0; /* Key information */ 2832 int nVal; /* Size of vector pLeft */ 2833 Vdbe *v; /* The prepared statement under construction */ 2834 2835 v = pParse->pVdbe; 2836 assert( v!=0 ); 2837 2838 /* The evaluation of the IN must be repeated every time it 2839 ** is encountered if any of the following is true: 2840 ** 2841 ** * The right-hand side is a correlated subquery 2842 ** * The right-hand side is an expression list containing variables 2843 ** * We are inside a trigger 2844 ** 2845 ** If all of the above are false, then we can compute the RHS just once 2846 ** and reuse it many names. 2847 */ 2848 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 2849 /* Reuse of the RHS is allowed */ 2850 /* If this routine has already been coded, but the previous code 2851 ** might not have been invoked yet, so invoke it now as a subroutine. 2852 */ 2853 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 2854 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2855 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2856 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 2857 pExpr->x.pSelect->selId)); 2858 } 2859 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 2860 pExpr->y.sub.iAddr); 2861 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 2862 sqlite3VdbeJumpHere(v, addrOnce); 2863 return; 2864 } 2865 2866 /* Begin coding the subroutine */ 2867 ExprSetProperty(pExpr, EP_Subrtn); 2868 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 2869 pExpr->y.sub.regReturn = ++pParse->nMem; 2870 pExpr->y.sub.iAddr = 2871 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 2872 VdbeComment((v, "return address")); 2873 2874 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2875 } 2876 2877 /* Check to see if this is a vector IN operator */ 2878 pLeft = pExpr->pLeft; 2879 nVal = sqlite3ExprVectorSize(pLeft); 2880 2881 /* Construct the ephemeral table that will contain the content of 2882 ** RHS of the IN operator. 2883 */ 2884 pExpr->iTable = iTab; 2885 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 2886 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 2887 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2888 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 2889 }else{ 2890 VdbeComment((v, "RHS of IN operator")); 2891 } 2892 #endif 2893 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 2894 2895 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2896 /* Case 1: expr IN (SELECT ...) 2897 ** 2898 ** Generate code to write the results of the select into the temporary 2899 ** table allocated and opened above. 2900 */ 2901 Select *pSelect = pExpr->x.pSelect; 2902 ExprList *pEList = pSelect->pEList; 2903 2904 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 2905 addrOnce?"":"CORRELATED ", pSelect->selId 2906 )); 2907 /* If the LHS and RHS of the IN operator do not match, that 2908 ** error will have been caught long before we reach this point. */ 2909 if( ALWAYS(pEList->nExpr==nVal) ){ 2910 SelectDest dest; 2911 int i; 2912 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 2913 dest.zAffSdst = exprINAffinity(pParse, pExpr); 2914 pSelect->iLimit = 0; 2915 testcase( pSelect->selFlags & SF_Distinct ); 2916 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 2917 if( sqlite3Select(pParse, pSelect, &dest) ){ 2918 sqlite3DbFree(pParse->db, dest.zAffSdst); 2919 sqlite3KeyInfoUnref(pKeyInfo); 2920 return; 2921 } 2922 sqlite3DbFree(pParse->db, dest.zAffSdst); 2923 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 2924 assert( pEList!=0 ); 2925 assert( pEList->nExpr>0 ); 2926 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2927 for(i=0; i<nVal; i++){ 2928 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 2929 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 2930 pParse, p, pEList->a[i].pExpr 2931 ); 2932 } 2933 } 2934 }else if( ALWAYS(pExpr->x.pList!=0) ){ 2935 /* Case 2: expr IN (exprlist) 2936 ** 2937 ** For each expression, build an index key from the evaluation and 2938 ** store it in the temporary table. If <expr> is a column, then use 2939 ** that columns affinity when building index keys. If <expr> is not 2940 ** a column, use numeric affinity. 2941 */ 2942 char affinity; /* Affinity of the LHS of the IN */ 2943 int i; 2944 ExprList *pList = pExpr->x.pList; 2945 struct ExprList_item *pItem; 2946 int r1, r2; 2947 affinity = sqlite3ExprAffinity(pLeft); 2948 if( affinity<=SQLITE_AFF_NONE ){ 2949 affinity = SQLITE_AFF_BLOB; 2950 }else if( affinity==SQLITE_AFF_REAL ){ 2951 affinity = SQLITE_AFF_NUMERIC; 2952 } 2953 if( pKeyInfo ){ 2954 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 2955 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 2956 } 2957 2958 /* Loop through each expression in <exprlist>. */ 2959 r1 = sqlite3GetTempReg(pParse); 2960 r2 = sqlite3GetTempReg(pParse); 2961 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 2962 Expr *pE2 = pItem->pExpr; 2963 2964 /* If the expression is not constant then we will need to 2965 ** disable the test that was generated above that makes sure 2966 ** this code only executes once. Because for a non-constant 2967 ** expression we need to rerun this code each time. 2968 */ 2969 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 2970 sqlite3VdbeChangeToNoop(v, addrOnce); 2971 ExprClearProperty(pExpr, EP_Subrtn); 2972 addrOnce = 0; 2973 } 2974 2975 /* Evaluate the expression and insert it into the temp table */ 2976 sqlite3ExprCode(pParse, pE2, r1); 2977 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 2978 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 2979 } 2980 sqlite3ReleaseTempReg(pParse, r1); 2981 sqlite3ReleaseTempReg(pParse, r2); 2982 } 2983 if( pKeyInfo ){ 2984 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 2985 } 2986 if( addrOnce ){ 2987 sqlite3VdbeJumpHere(v, addrOnce); 2988 /* Subroutine return */ 2989 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 2990 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 2991 sqlite3ClearTempRegCache(pParse); 2992 } 2993 } 2994 #endif /* SQLITE_OMIT_SUBQUERY */ 2995 2996 /* 2997 ** Generate code for scalar subqueries used as a subquery expression 2998 ** or EXISTS operator: 2999 ** 3000 ** (SELECT a FROM b) -- subquery 3001 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3002 ** 3003 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3004 ** 3005 ** Return the register that holds the result. For a multi-column SELECT, 3006 ** the result is stored in a contiguous array of registers and the 3007 ** return value is the register of the left-most result column. 3008 ** Return 0 if an error occurs. 3009 */ 3010 #ifndef SQLITE_OMIT_SUBQUERY 3011 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3012 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3013 int rReg = 0; /* Register storing resulting */ 3014 Select *pSel; /* SELECT statement to encode */ 3015 SelectDest dest; /* How to deal with SELECT result */ 3016 int nReg; /* Registers to allocate */ 3017 Expr *pLimit; /* New limit expression */ 3018 3019 Vdbe *v = pParse->pVdbe; 3020 assert( v!=0 ); 3021 testcase( pExpr->op==TK_EXISTS ); 3022 testcase( pExpr->op==TK_SELECT ); 3023 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3024 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 3025 pSel = pExpr->x.pSelect; 3026 3027 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3028 ** is encountered if any of the following is true: 3029 ** 3030 ** * The right-hand side is a correlated subquery 3031 ** * The right-hand side is an expression list containing variables 3032 ** * We are inside a trigger 3033 ** 3034 ** If all of the above are false, then we can run this code just once 3035 ** save the results, and reuse the same result on subsequent invocations. 3036 */ 3037 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3038 /* If this routine has already been coded, then invoke it as a 3039 ** subroutine. */ 3040 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3041 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3042 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3043 pExpr->y.sub.iAddr); 3044 return pExpr->iTable; 3045 } 3046 3047 /* Begin coding the subroutine */ 3048 ExprSetProperty(pExpr, EP_Subrtn); 3049 pExpr->y.sub.regReturn = ++pParse->nMem; 3050 pExpr->y.sub.iAddr = 3051 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; 3052 VdbeComment((v, "return address")); 3053 3054 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3055 } 3056 3057 /* For a SELECT, generate code to put the values for all columns of 3058 ** the first row into an array of registers and return the index of 3059 ** the first register. 3060 ** 3061 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3062 ** into a register and return that register number. 3063 ** 3064 ** In both cases, the query is augmented with "LIMIT 1". Any 3065 ** preexisting limit is discarded in place of the new LIMIT 1. 3066 */ 3067 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3068 addrOnce?"":"CORRELATED ", pSel->selId)); 3069 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3070 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3071 pParse->nMem += nReg; 3072 if( pExpr->op==TK_SELECT ){ 3073 dest.eDest = SRT_Mem; 3074 dest.iSdst = dest.iSDParm; 3075 dest.nSdst = nReg; 3076 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3077 VdbeComment((v, "Init subquery result")); 3078 }else{ 3079 dest.eDest = SRT_Exists; 3080 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3081 VdbeComment((v, "Init EXISTS result")); 3082 } 3083 if( pSel->pLimit ){ 3084 /* The subquery already has a limit. If the pre-existing limit is X 3085 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3086 sqlite3 *db = pParse->db; 3087 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3088 if( pLimit ){ 3089 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3090 pLimit = sqlite3PExpr(pParse, TK_NE, 3091 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3092 } 3093 sqlite3ExprDelete(db, pSel->pLimit->pLeft); 3094 pSel->pLimit->pLeft = pLimit; 3095 }else{ 3096 /* If there is no pre-existing limit add a limit of 1 */ 3097 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3098 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3099 } 3100 pSel->iLimit = 0; 3101 if( sqlite3Select(pParse, pSel, &dest) ){ 3102 return 0; 3103 } 3104 pExpr->iTable = rReg = dest.iSDParm; 3105 ExprSetVVAProperty(pExpr, EP_NoReduce); 3106 if( addrOnce ){ 3107 sqlite3VdbeJumpHere(v, addrOnce); 3108 3109 /* Subroutine return */ 3110 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn); 3111 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1); 3112 sqlite3ClearTempRegCache(pParse); 3113 } 3114 3115 return rReg; 3116 } 3117 #endif /* SQLITE_OMIT_SUBQUERY */ 3118 3119 #ifndef SQLITE_OMIT_SUBQUERY 3120 /* 3121 ** Expr pIn is an IN(...) expression. This function checks that the 3122 ** sub-select on the RHS of the IN() operator has the same number of 3123 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3124 ** a sub-query, that the LHS is a vector of size 1. 3125 */ 3126 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3127 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3128 if( (pIn->flags & EP_xIsSelect) ){ 3129 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3130 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3131 return 1; 3132 } 3133 }else if( nVector!=1 ){ 3134 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3135 return 1; 3136 } 3137 return 0; 3138 } 3139 #endif 3140 3141 #ifndef SQLITE_OMIT_SUBQUERY 3142 /* 3143 ** Generate code for an IN expression. 3144 ** 3145 ** x IN (SELECT ...) 3146 ** x IN (value, value, ...) 3147 ** 3148 ** The left-hand side (LHS) is a scalar or vector expression. The 3149 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3150 ** subquery. If the RHS is a subquery, the number of result columns must 3151 ** match the number of columns in the vector on the LHS. If the RHS is 3152 ** a list of values, the LHS must be a scalar. 3153 ** 3154 ** The IN operator is true if the LHS value is contained within the RHS. 3155 ** The result is false if the LHS is definitely not in the RHS. The 3156 ** result is NULL if the presence of the LHS in the RHS cannot be 3157 ** determined due to NULLs. 3158 ** 3159 ** This routine generates code that jumps to destIfFalse if the LHS is not 3160 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3161 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3162 ** within the RHS then fall through. 3163 ** 3164 ** See the separate in-operator.md documentation file in the canonical 3165 ** SQLite source tree for additional information. 3166 */ 3167 static void sqlite3ExprCodeIN( 3168 Parse *pParse, /* Parsing and code generating context */ 3169 Expr *pExpr, /* The IN expression */ 3170 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3171 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3172 ){ 3173 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3174 int eType; /* Type of the RHS */ 3175 int rLhs; /* Register(s) holding the LHS values */ 3176 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3177 Vdbe *v; /* Statement under construction */ 3178 int *aiMap = 0; /* Map from vector field to index column */ 3179 char *zAff = 0; /* Affinity string for comparisons */ 3180 int nVector; /* Size of vectors for this IN operator */ 3181 int iDummy; /* Dummy parameter to exprCodeVector() */ 3182 Expr *pLeft; /* The LHS of the IN operator */ 3183 int i; /* loop counter */ 3184 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3185 int destStep6 = 0; /* Start of code for Step 6 */ 3186 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3187 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3188 int addrTop; /* Top of the step-6 loop */ 3189 int iTab = 0; /* Index to use */ 3190 u8 okConstFactor = pParse->okConstFactor; 3191 3192 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3193 pLeft = pExpr->pLeft; 3194 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3195 zAff = exprINAffinity(pParse, pExpr); 3196 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3197 aiMap = (int*)sqlite3DbMallocZero( 3198 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3199 ); 3200 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3201 3202 /* Attempt to compute the RHS. After this step, if anything other than 3203 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3204 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3205 ** the RHS has not yet been coded. */ 3206 v = pParse->pVdbe; 3207 assert( v!=0 ); /* OOM detected prior to this routine */ 3208 VdbeNoopComment((v, "begin IN expr")); 3209 eType = sqlite3FindInIndex(pParse, pExpr, 3210 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3211 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3212 aiMap, &iTab); 3213 3214 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3215 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3216 ); 3217 #ifdef SQLITE_DEBUG 3218 /* Confirm that aiMap[] contains nVector integer values between 0 and 3219 ** nVector-1. */ 3220 for(i=0; i<nVector; i++){ 3221 int j, cnt; 3222 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3223 assert( cnt==1 ); 3224 } 3225 #endif 3226 3227 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3228 ** vector, then it is stored in an array of nVector registers starting 3229 ** at r1. 3230 ** 3231 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3232 ** so that the fields are in the same order as an existing index. The 3233 ** aiMap[] array contains a mapping from the original LHS field order to 3234 ** the field order that matches the RHS index. 3235 ** 3236 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3237 ** even if it is constant, as OP_Affinity may be used on the register 3238 ** by code generated below. */ 3239 assert( pParse->okConstFactor==okConstFactor ); 3240 pParse->okConstFactor = 0; 3241 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3242 pParse->okConstFactor = okConstFactor; 3243 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3244 if( i==nVector ){ 3245 /* LHS fields are not reordered */ 3246 rLhs = rLhsOrig; 3247 }else{ 3248 /* Need to reorder the LHS fields according to aiMap */ 3249 rLhs = sqlite3GetTempRange(pParse, nVector); 3250 for(i=0; i<nVector; i++){ 3251 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3252 } 3253 } 3254 3255 /* If sqlite3FindInIndex() did not find or create an index that is 3256 ** suitable for evaluating the IN operator, then evaluate using a 3257 ** sequence of comparisons. 3258 ** 3259 ** This is step (1) in the in-operator.md optimized algorithm. 3260 */ 3261 if( eType==IN_INDEX_NOOP ){ 3262 ExprList *pList = pExpr->x.pList; 3263 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3264 int labelOk = sqlite3VdbeMakeLabel(pParse); 3265 int r2, regToFree; 3266 int regCkNull = 0; 3267 int ii; 3268 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3269 if( destIfNull!=destIfFalse ){ 3270 regCkNull = sqlite3GetTempReg(pParse); 3271 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3272 } 3273 for(ii=0; ii<pList->nExpr; ii++){ 3274 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3275 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3276 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3277 } 3278 sqlite3ReleaseTempReg(pParse, regToFree); 3279 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3280 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3281 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3282 (void*)pColl, P4_COLLSEQ); 3283 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3284 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3285 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3286 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3287 sqlite3VdbeChangeP5(v, zAff[0]); 3288 }else{ 3289 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3290 assert( destIfNull==destIfFalse ); 3291 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3292 (void*)pColl, P4_COLLSEQ); 3293 VdbeCoverageIf(v, op==OP_Ne); 3294 VdbeCoverageIf(v, op==OP_IsNull); 3295 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3296 } 3297 } 3298 if( regCkNull ){ 3299 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3300 sqlite3VdbeGoto(v, destIfFalse); 3301 } 3302 sqlite3VdbeResolveLabel(v, labelOk); 3303 sqlite3ReleaseTempReg(pParse, regCkNull); 3304 goto sqlite3ExprCodeIN_finished; 3305 } 3306 3307 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3308 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3309 ** We will then skip the binary search of the RHS. 3310 */ 3311 if( destIfNull==destIfFalse ){ 3312 destStep2 = destIfFalse; 3313 }else{ 3314 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3315 } 3316 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished; 3317 for(i=0; i<nVector; i++){ 3318 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3319 if( sqlite3ExprCanBeNull(p) ){ 3320 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3321 VdbeCoverage(v); 3322 } 3323 } 3324 3325 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3326 ** of the RHS using the LHS as a probe. If found, the result is 3327 ** true. 3328 */ 3329 if( eType==IN_INDEX_ROWID ){ 3330 /* In this case, the RHS is the ROWID of table b-tree and so we also 3331 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3332 ** into a single opcode. */ 3333 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3334 VdbeCoverage(v); 3335 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3336 }else{ 3337 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3338 if( destIfFalse==destIfNull ){ 3339 /* Combine Step 3 and Step 5 into a single opcode */ 3340 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3341 rLhs, nVector); VdbeCoverage(v); 3342 goto sqlite3ExprCodeIN_finished; 3343 } 3344 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3345 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3346 rLhs, nVector); VdbeCoverage(v); 3347 } 3348 3349 /* Step 4. If the RHS is known to be non-NULL and we did not find 3350 ** an match on the search above, then the result must be FALSE. 3351 */ 3352 if( rRhsHasNull && nVector==1 ){ 3353 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3354 VdbeCoverage(v); 3355 } 3356 3357 /* Step 5. If we do not care about the difference between NULL and 3358 ** FALSE, then just return false. 3359 */ 3360 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3361 3362 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3363 ** If any comparison is NULL, then the result is NULL. If all 3364 ** comparisons are FALSE then the final result is FALSE. 3365 ** 3366 ** For a scalar LHS, it is sufficient to check just the first row 3367 ** of the RHS. 3368 */ 3369 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3370 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3371 VdbeCoverage(v); 3372 if( nVector>1 ){ 3373 destNotNull = sqlite3VdbeMakeLabel(pParse); 3374 }else{ 3375 /* For nVector==1, combine steps 6 and 7 by immediately returning 3376 ** FALSE if the first comparison is not NULL */ 3377 destNotNull = destIfFalse; 3378 } 3379 for(i=0; i<nVector; i++){ 3380 Expr *p; 3381 CollSeq *pColl; 3382 int r3 = sqlite3GetTempReg(pParse); 3383 p = sqlite3VectorFieldSubexpr(pLeft, i); 3384 pColl = sqlite3ExprCollSeq(pParse, p); 3385 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3386 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3387 (void*)pColl, P4_COLLSEQ); 3388 VdbeCoverage(v); 3389 sqlite3ReleaseTempReg(pParse, r3); 3390 } 3391 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3392 if( nVector>1 ){ 3393 sqlite3VdbeResolveLabel(v, destNotNull); 3394 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3395 VdbeCoverage(v); 3396 3397 /* Step 7: If we reach this point, we know that the result must 3398 ** be false. */ 3399 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3400 } 3401 3402 /* Jumps here in order to return true. */ 3403 sqlite3VdbeJumpHere(v, addrTruthOp); 3404 3405 sqlite3ExprCodeIN_finished: 3406 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3407 VdbeComment((v, "end IN expr")); 3408 sqlite3ExprCodeIN_oom_error: 3409 sqlite3DbFree(pParse->db, aiMap); 3410 sqlite3DbFree(pParse->db, zAff); 3411 } 3412 #endif /* SQLITE_OMIT_SUBQUERY */ 3413 3414 #ifndef SQLITE_OMIT_FLOATING_POINT 3415 /* 3416 ** Generate an instruction that will put the floating point 3417 ** value described by z[0..n-1] into register iMem. 3418 ** 3419 ** The z[] string will probably not be zero-terminated. But the 3420 ** z[n] character is guaranteed to be something that does not look 3421 ** like the continuation of the number. 3422 */ 3423 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3424 if( ALWAYS(z!=0) ){ 3425 double value; 3426 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3427 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3428 if( negateFlag ) value = -value; 3429 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3430 } 3431 } 3432 #endif 3433 3434 3435 /* 3436 ** Generate an instruction that will put the integer describe by 3437 ** text z[0..n-1] into register iMem. 3438 ** 3439 ** Expr.u.zToken is always UTF8 and zero-terminated. 3440 */ 3441 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3442 Vdbe *v = pParse->pVdbe; 3443 if( pExpr->flags & EP_IntValue ){ 3444 int i = pExpr->u.iValue; 3445 assert( i>=0 ); 3446 if( negFlag ) i = -i; 3447 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3448 }else{ 3449 int c; 3450 i64 value; 3451 const char *z = pExpr->u.zToken; 3452 assert( z!=0 ); 3453 c = sqlite3DecOrHexToI64(z, &value); 3454 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3455 #ifdef SQLITE_OMIT_FLOATING_POINT 3456 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 3457 #else 3458 #ifndef SQLITE_OMIT_HEX_INTEGER 3459 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3460 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z); 3461 }else 3462 #endif 3463 { 3464 codeReal(v, z, negFlag, iMem); 3465 } 3466 #endif 3467 }else{ 3468 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3469 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3470 } 3471 } 3472 } 3473 3474 3475 /* Generate code that will load into register regOut a value that is 3476 ** appropriate for the iIdxCol-th column of index pIdx. 3477 */ 3478 void sqlite3ExprCodeLoadIndexColumn( 3479 Parse *pParse, /* The parsing context */ 3480 Index *pIdx, /* The index whose column is to be loaded */ 3481 int iTabCur, /* Cursor pointing to a table row */ 3482 int iIdxCol, /* The column of the index to be loaded */ 3483 int regOut /* Store the index column value in this register */ 3484 ){ 3485 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3486 if( iTabCol==XN_EXPR ){ 3487 assert( pIdx->aColExpr ); 3488 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3489 pParse->iSelfTab = iTabCur + 1; 3490 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3491 pParse->iSelfTab = 0; 3492 }else{ 3493 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3494 iTabCol, regOut); 3495 } 3496 } 3497 3498 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3499 /* 3500 ** Generate code that will compute the value of generated column pCol 3501 ** and store the result in register regOut 3502 */ 3503 void sqlite3ExprCodeGeneratedColumn( 3504 Parse *pParse, 3505 Column *pCol, 3506 int regOut 3507 ){ 3508 int iAddr; 3509 Vdbe *v = pParse->pVdbe; 3510 assert( v!=0 ); 3511 assert( pParse->iSelfTab!=0 ); 3512 if( pParse->iSelfTab>0 ){ 3513 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3514 }else{ 3515 iAddr = 0; 3516 } 3517 sqlite3ExprCodeCopy(pParse, pCol->pDflt, regOut); 3518 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3519 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3520 } 3521 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3522 } 3523 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3524 3525 /* 3526 ** Generate code to extract the value of the iCol-th column of a table. 3527 */ 3528 void sqlite3ExprCodeGetColumnOfTable( 3529 Vdbe *v, /* Parsing context */ 3530 Table *pTab, /* The table containing the value */ 3531 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3532 int iCol, /* Index of the column to extract */ 3533 int regOut /* Extract the value into this register */ 3534 ){ 3535 Column *pCol; 3536 assert( v!=0 ); 3537 if( pTab==0 ){ 3538 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3539 return; 3540 } 3541 if( iCol<0 || iCol==pTab->iPKey ){ 3542 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3543 }else{ 3544 int op; 3545 int x; 3546 if( IsVirtual(pTab) ){ 3547 op = OP_VColumn; 3548 x = iCol; 3549 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3550 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3551 Parse *pParse = sqlite3VdbeParser(v); 3552 if( pCol->colFlags & COLFLAG_BUSY ){ 3553 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pCol->zName); 3554 }else{ 3555 int savedSelfTab = pParse->iSelfTab; 3556 pCol->colFlags |= COLFLAG_BUSY; 3557 pParse->iSelfTab = iTabCur+1; 3558 sqlite3ExprCodeGeneratedColumn(pParse, pCol, regOut); 3559 pParse->iSelfTab = savedSelfTab; 3560 pCol->colFlags &= ~COLFLAG_BUSY; 3561 } 3562 return; 3563 #endif 3564 }else if( !HasRowid(pTab) ){ 3565 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3566 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3567 op = OP_Column; 3568 }else{ 3569 x = sqlite3TableColumnToStorage(pTab,iCol); 3570 testcase( x!=iCol ); 3571 op = OP_Column; 3572 } 3573 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3574 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3575 } 3576 } 3577 3578 /* 3579 ** Generate code that will extract the iColumn-th column from 3580 ** table pTab and store the column value in register iReg. 3581 ** 3582 ** There must be an open cursor to pTab in iTable when this routine 3583 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3584 */ 3585 int sqlite3ExprCodeGetColumn( 3586 Parse *pParse, /* Parsing and code generating context */ 3587 Table *pTab, /* Description of the table we are reading from */ 3588 int iColumn, /* Index of the table column */ 3589 int iTable, /* The cursor pointing to the table */ 3590 int iReg, /* Store results here */ 3591 u8 p5 /* P5 value for OP_Column + FLAGS */ 3592 ){ 3593 assert( pParse->pVdbe!=0 ); 3594 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3595 if( p5 ){ 3596 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); 3597 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3598 } 3599 return iReg; 3600 } 3601 3602 /* 3603 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3604 ** over to iTo..iTo+nReg-1. 3605 */ 3606 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3607 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3608 } 3609 3610 /* 3611 ** Convert a scalar expression node to a TK_REGISTER referencing 3612 ** register iReg. The caller must ensure that iReg already contains 3613 ** the correct value for the expression. 3614 */ 3615 static void exprToRegister(Expr *pExpr, int iReg){ 3616 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3617 p->op2 = p->op; 3618 p->op = TK_REGISTER; 3619 p->iTable = iReg; 3620 ExprClearProperty(p, EP_Skip); 3621 } 3622 3623 /* 3624 ** Evaluate an expression (either a vector or a scalar expression) and store 3625 ** the result in continguous temporary registers. Return the index of 3626 ** the first register used to store the result. 3627 ** 3628 ** If the returned result register is a temporary scalar, then also write 3629 ** that register number into *piFreeable. If the returned result register 3630 ** is not a temporary or if the expression is a vector set *piFreeable 3631 ** to 0. 3632 */ 3633 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3634 int iResult; 3635 int nResult = sqlite3ExprVectorSize(p); 3636 if( nResult==1 ){ 3637 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3638 }else{ 3639 *piFreeable = 0; 3640 if( p->op==TK_SELECT ){ 3641 #if SQLITE_OMIT_SUBQUERY 3642 iResult = 0; 3643 #else 3644 iResult = sqlite3CodeSubselect(pParse, p); 3645 #endif 3646 }else{ 3647 int i; 3648 iResult = pParse->nMem+1; 3649 pParse->nMem += nResult; 3650 for(i=0; i<nResult; i++){ 3651 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3652 } 3653 } 3654 } 3655 return iResult; 3656 } 3657 3658 /* 3659 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3660 ** so that a subsequent copy will not be merged into this one. 3661 */ 3662 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3663 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ 3664 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3665 } 3666 } 3667 3668 /* 3669 ** Generate code to implement special SQL functions that are implemented 3670 ** in-line rather than by using the usual callbacks. 3671 */ 3672 static int exprCodeInlineFunction( 3673 Parse *pParse, /* Parsing context */ 3674 ExprList *pFarg, /* List of function arguments */ 3675 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3676 int target /* Store function result in this register */ 3677 ){ 3678 int nFarg; 3679 Vdbe *v = pParse->pVdbe; 3680 assert( v!=0 ); 3681 assert( pFarg!=0 ); 3682 nFarg = pFarg->nExpr; 3683 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3684 switch( iFuncId ){ 3685 case INLINEFUNC_coalesce: { 3686 /* Attempt a direct implementation of the built-in COALESCE() and 3687 ** IFNULL() functions. This avoids unnecessary evaluation of 3688 ** arguments past the first non-NULL argument. 3689 */ 3690 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3691 int i; 3692 assert( nFarg>=2 ); 3693 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3694 for(i=1; i<nFarg; i++){ 3695 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3696 VdbeCoverage(v); 3697 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3698 } 3699 setDoNotMergeFlagOnCopy(v); 3700 sqlite3VdbeResolveLabel(v, endCoalesce); 3701 break; 3702 } 3703 case INLINEFUNC_iif: { 3704 Expr caseExpr; 3705 memset(&caseExpr, 0, sizeof(caseExpr)); 3706 caseExpr.op = TK_CASE; 3707 caseExpr.x.pList = pFarg; 3708 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3709 } 3710 3711 default: { 3712 /* The UNLIKELY() function is a no-op. The result is the value 3713 ** of the first argument. 3714 */ 3715 assert( nFarg==1 || nFarg==2 ); 3716 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3717 break; 3718 } 3719 3720 /*********************************************************************** 3721 ** Test-only SQL functions that are only usable if enabled 3722 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3723 */ 3724 case INLINEFUNC_expr_compare: { 3725 /* Compare two expressions using sqlite3ExprCompare() */ 3726 assert( nFarg==2 ); 3727 sqlite3VdbeAddOp2(v, OP_Integer, 3728 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3729 target); 3730 break; 3731 } 3732 3733 case INLINEFUNC_expr_implies_expr: { 3734 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 3735 assert( nFarg==2 ); 3736 sqlite3VdbeAddOp2(v, OP_Integer, 3737 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 3738 target); 3739 break; 3740 } 3741 3742 case INLINEFUNC_implies_nonnull_row: { 3743 /* REsult of sqlite3ExprImpliesNonNullRow() */ 3744 Expr *pA1; 3745 assert( nFarg==2 ); 3746 pA1 = pFarg->a[1].pExpr; 3747 if( pA1->op==TK_COLUMN ){ 3748 sqlite3VdbeAddOp2(v, OP_Integer, 3749 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 3750 target); 3751 }else{ 3752 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3753 } 3754 break; 3755 } 3756 3757 #ifdef SQLITE_DEBUG 3758 case INLINEFUNC_affinity: { 3759 /* The AFFINITY() function evaluates to a string that describes 3760 ** the type affinity of the argument. This is used for testing of 3761 ** the SQLite type logic. 3762 */ 3763 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 3764 char aff; 3765 assert( nFarg==1 ); 3766 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 3767 sqlite3VdbeLoadString(v, target, 3768 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 3769 break; 3770 } 3771 #endif 3772 } 3773 return target; 3774 } 3775 3776 3777 /* 3778 ** Generate code into the current Vdbe to evaluate the given 3779 ** expression. Attempt to store the results in register "target". 3780 ** Return the register where results are stored. 3781 ** 3782 ** With this routine, there is no guarantee that results will 3783 ** be stored in target. The result might be stored in some other 3784 ** register if it is convenient to do so. The calling function 3785 ** must check the return code and move the results to the desired 3786 ** register. 3787 */ 3788 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 3789 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 3790 int op; /* The opcode being coded */ 3791 int inReg = target; /* Results stored in register inReg */ 3792 int regFree1 = 0; /* If non-zero free this temporary register */ 3793 int regFree2 = 0; /* If non-zero free this temporary register */ 3794 int r1, r2; /* Various register numbers */ 3795 Expr tempX; /* Temporary expression node */ 3796 int p5 = 0; 3797 3798 assert( target>0 && target<=pParse->nMem ); 3799 if( v==0 ){ 3800 assert( pParse->db->mallocFailed ); 3801 return 0; 3802 } 3803 3804 expr_code_doover: 3805 if( pExpr==0 ){ 3806 op = TK_NULL; 3807 }else{ 3808 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3809 op = pExpr->op; 3810 } 3811 switch( op ){ 3812 case TK_AGG_COLUMN: { 3813 AggInfo *pAggInfo = pExpr->pAggInfo; 3814 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 3815 if( !pAggInfo->directMode ){ 3816 assert( pCol->iMem>0 ); 3817 return pCol->iMem; 3818 }else if( pAggInfo->useSortingIdx ){ 3819 Table *pTab = pCol->pTab; 3820 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 3821 pCol->iSorterColumn, target); 3822 if( pCol->iColumn<0 ){ 3823 VdbeComment((v,"%s.rowid",pTab->zName)); 3824 }else{ 3825 VdbeComment((v,"%s.%s",pTab->zName,pTab->aCol[pCol->iColumn].zName)); 3826 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 3827 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3828 } 3829 } 3830 return target; 3831 } 3832 /* Otherwise, fall thru into the TK_COLUMN case */ 3833 } 3834 case TK_COLUMN: { 3835 int iTab = pExpr->iTable; 3836 int iReg; 3837 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 3838 /* This COLUMN expression is really a constant due to WHERE clause 3839 ** constraints, and that constant is coded by the pExpr->pLeft 3840 ** expresssion. However, make sure the constant has the correct 3841 ** datatype by applying the Affinity of the table column to the 3842 ** constant. 3843 */ 3844 int aff; 3845 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 3846 if( pExpr->y.pTab ){ 3847 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 3848 }else{ 3849 aff = pExpr->affExpr; 3850 } 3851 if( aff>SQLITE_AFF_BLOB ){ 3852 static const char zAff[] = "B\000C\000D\000E"; 3853 assert( SQLITE_AFF_BLOB=='A' ); 3854 assert( SQLITE_AFF_TEXT=='B' ); 3855 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 3856 &zAff[(aff-'B')*2], P4_STATIC); 3857 } 3858 return iReg; 3859 } 3860 if( iTab<0 ){ 3861 if( pParse->iSelfTab<0 ){ 3862 /* Other columns in the same row for CHECK constraints or 3863 ** generated columns or for inserting into partial index. 3864 ** The row is unpacked into registers beginning at 3865 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 3866 ** immediately prior to the first column. 3867 */ 3868 Column *pCol; 3869 Table *pTab = pExpr->y.pTab; 3870 int iSrc; 3871 int iCol = pExpr->iColumn; 3872 assert( pTab!=0 ); 3873 assert( iCol>=XN_ROWID ); 3874 assert( iCol<pTab->nCol ); 3875 if( iCol<0 ){ 3876 return -1-pParse->iSelfTab; 3877 } 3878 pCol = pTab->aCol + iCol; 3879 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 3880 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 3881 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3882 if( pCol->colFlags & COLFLAG_GENERATED ){ 3883 if( pCol->colFlags & COLFLAG_BUSY ){ 3884 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3885 pCol->zName); 3886 return 0; 3887 } 3888 pCol->colFlags |= COLFLAG_BUSY; 3889 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 3890 sqlite3ExprCodeGeneratedColumn(pParse, pCol, iSrc); 3891 } 3892 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 3893 return iSrc; 3894 }else 3895 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3896 if( pCol->affinity==SQLITE_AFF_REAL ){ 3897 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 3898 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 3899 return target; 3900 }else{ 3901 return iSrc; 3902 } 3903 }else{ 3904 /* Coding an expression that is part of an index where column names 3905 ** in the index refer to the table to which the index belongs */ 3906 iTab = pParse->iSelfTab - 1; 3907 } 3908 } 3909 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 3910 pExpr->iColumn, iTab, target, 3911 pExpr->op2); 3912 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 3913 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 3914 } 3915 return iReg; 3916 } 3917 case TK_INTEGER: { 3918 codeInteger(pParse, pExpr, 0, target); 3919 return target; 3920 } 3921 case TK_TRUEFALSE: { 3922 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 3923 return target; 3924 } 3925 #ifndef SQLITE_OMIT_FLOATING_POINT 3926 case TK_FLOAT: { 3927 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3928 codeReal(v, pExpr->u.zToken, 0, target); 3929 return target; 3930 } 3931 #endif 3932 case TK_STRING: { 3933 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3934 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 3935 return target; 3936 } 3937 default: { 3938 /* Make NULL the default case so that if a bug causes an illegal 3939 ** Expr node to be passed into this function, it will be handled 3940 ** sanely and not crash. But keep the assert() to bring the problem 3941 ** to the attention of the developers. */ 3942 assert( op==TK_NULL ); 3943 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3944 return target; 3945 } 3946 #ifndef SQLITE_OMIT_BLOB_LITERAL 3947 case TK_BLOB: { 3948 int n; 3949 const char *z; 3950 char *zBlob; 3951 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3952 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 3953 assert( pExpr->u.zToken[1]=='\'' ); 3954 z = &pExpr->u.zToken[2]; 3955 n = sqlite3Strlen30(z) - 1; 3956 assert( z[n]=='\'' ); 3957 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 3958 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 3959 return target; 3960 } 3961 #endif 3962 case TK_VARIABLE: { 3963 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3964 assert( pExpr->u.zToken!=0 ); 3965 assert( pExpr->u.zToken[0]!=0 ); 3966 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 3967 if( pExpr->u.zToken[1]!=0 ){ 3968 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 3969 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 3970 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 3971 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 3972 } 3973 return target; 3974 } 3975 case TK_REGISTER: { 3976 return pExpr->iTable; 3977 } 3978 #ifndef SQLITE_OMIT_CAST 3979 case TK_CAST: { 3980 /* Expressions of the form: CAST(pLeft AS token) */ 3981 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 3982 if( inReg!=target ){ 3983 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 3984 inReg = target; 3985 } 3986 sqlite3VdbeAddOp2(v, OP_Cast, target, 3987 sqlite3AffinityType(pExpr->u.zToken, 0)); 3988 return inReg; 3989 } 3990 #endif /* SQLITE_OMIT_CAST */ 3991 case TK_IS: 3992 case TK_ISNOT: 3993 op = (op==TK_IS) ? TK_EQ : TK_NE; 3994 p5 = SQLITE_NULLEQ; 3995 /* fall-through */ 3996 case TK_LT: 3997 case TK_LE: 3998 case TK_GT: 3999 case TK_GE: 4000 case TK_NE: 4001 case TK_EQ: { 4002 Expr *pLeft = pExpr->pLeft; 4003 if( sqlite3ExprIsVector(pLeft) ){ 4004 codeVectorCompare(pParse, pExpr, target, op, p5); 4005 }else{ 4006 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4007 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4008 codeCompare(pParse, pLeft, pExpr->pRight, op, 4009 r1, r2, inReg, SQLITE_STOREP2 | p5, 4010 ExprHasProperty(pExpr,EP_Commuted)); 4011 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4012 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4013 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4014 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4015 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4016 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4017 testcase( regFree1==0 ); 4018 testcase( regFree2==0 ); 4019 } 4020 break; 4021 } 4022 case TK_AND: 4023 case TK_OR: 4024 case TK_PLUS: 4025 case TK_STAR: 4026 case TK_MINUS: 4027 case TK_REM: 4028 case TK_BITAND: 4029 case TK_BITOR: 4030 case TK_SLASH: 4031 case TK_LSHIFT: 4032 case TK_RSHIFT: 4033 case TK_CONCAT: { 4034 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4035 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4036 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4037 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4038 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4039 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4040 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4041 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4042 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4043 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4044 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4045 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4046 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4047 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4048 testcase( regFree1==0 ); 4049 testcase( regFree2==0 ); 4050 break; 4051 } 4052 case TK_UMINUS: { 4053 Expr *pLeft = pExpr->pLeft; 4054 assert( pLeft ); 4055 if( pLeft->op==TK_INTEGER ){ 4056 codeInteger(pParse, pLeft, 1, target); 4057 return target; 4058 #ifndef SQLITE_OMIT_FLOATING_POINT 4059 }else if( pLeft->op==TK_FLOAT ){ 4060 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4061 codeReal(v, pLeft->u.zToken, 1, target); 4062 return target; 4063 #endif 4064 }else{ 4065 tempX.op = TK_INTEGER; 4066 tempX.flags = EP_IntValue|EP_TokenOnly; 4067 tempX.u.iValue = 0; 4068 ExprClearVVAProperties(&tempX); 4069 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4070 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4071 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4072 testcase( regFree2==0 ); 4073 } 4074 break; 4075 } 4076 case TK_BITNOT: 4077 case TK_NOT: { 4078 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4079 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4080 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4081 testcase( regFree1==0 ); 4082 sqlite3VdbeAddOp2(v, op, r1, inReg); 4083 break; 4084 } 4085 case TK_TRUTH: { 4086 int isTrue; /* IS TRUE or IS NOT TRUE */ 4087 int bNormal; /* IS TRUE or IS FALSE */ 4088 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4089 testcase( regFree1==0 ); 4090 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4091 bNormal = pExpr->op2==TK_IS; 4092 testcase( isTrue && bNormal); 4093 testcase( !isTrue && bNormal); 4094 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4095 break; 4096 } 4097 case TK_ISNULL: 4098 case TK_NOTNULL: { 4099 int addr; 4100 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4101 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4102 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4103 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4104 testcase( regFree1==0 ); 4105 addr = sqlite3VdbeAddOp1(v, op, r1); 4106 VdbeCoverageIf(v, op==TK_ISNULL); 4107 VdbeCoverageIf(v, op==TK_NOTNULL); 4108 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4109 sqlite3VdbeJumpHere(v, addr); 4110 break; 4111 } 4112 case TK_AGG_FUNCTION: { 4113 AggInfo *pInfo = pExpr->pAggInfo; 4114 if( pInfo==0 ){ 4115 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4116 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 4117 }else{ 4118 return pInfo->aFunc[pExpr->iAgg].iMem; 4119 } 4120 break; 4121 } 4122 case TK_FUNCTION: { 4123 ExprList *pFarg; /* List of function arguments */ 4124 int nFarg; /* Number of function arguments */ 4125 FuncDef *pDef; /* The function definition object */ 4126 const char *zId; /* The function name */ 4127 u32 constMask = 0; /* Mask of function arguments that are constant */ 4128 int i; /* Loop counter */ 4129 sqlite3 *db = pParse->db; /* The database connection */ 4130 u8 enc = ENC(db); /* The text encoding used by this database */ 4131 CollSeq *pColl = 0; /* A collating sequence */ 4132 4133 #ifndef SQLITE_OMIT_WINDOWFUNC 4134 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4135 return pExpr->y.pWin->regResult; 4136 } 4137 #endif 4138 4139 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4140 /* SQL functions can be expensive. So try to avoid running them 4141 ** multiple times if we know they always give the same result */ 4142 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4143 } 4144 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4145 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4146 pFarg = pExpr->x.pList; 4147 nFarg = pFarg ? pFarg->nExpr : 0; 4148 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4149 zId = pExpr->u.zToken; 4150 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4151 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4152 if( pDef==0 && pParse->explain ){ 4153 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4154 } 4155 #endif 4156 if( pDef==0 || pDef->xFinalize!=0 ){ 4157 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId); 4158 break; 4159 } 4160 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4161 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4162 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4163 return exprCodeInlineFunction(pParse, pFarg, 4164 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4165 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4166 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4167 } 4168 4169 for(i=0; i<nFarg; i++){ 4170 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4171 testcase( i==31 ); 4172 constMask |= MASKBIT32(i); 4173 } 4174 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4175 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4176 } 4177 } 4178 if( pFarg ){ 4179 if( constMask ){ 4180 r1 = pParse->nMem+1; 4181 pParse->nMem += nFarg; 4182 }else{ 4183 r1 = sqlite3GetTempRange(pParse, nFarg); 4184 } 4185 4186 /* For length() and typeof() functions with a column argument, 4187 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4188 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4189 ** loading. 4190 */ 4191 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4192 u8 exprOp; 4193 assert( nFarg==1 ); 4194 assert( pFarg->a[0].pExpr!=0 ); 4195 exprOp = pFarg->a[0].pExpr->op; 4196 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4197 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4198 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4199 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4200 pFarg->a[0].pExpr->op2 = 4201 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4202 } 4203 } 4204 4205 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4206 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4207 }else{ 4208 r1 = 0; 4209 } 4210 #ifndef SQLITE_OMIT_VIRTUALTABLE 4211 /* Possibly overload the function if the first argument is 4212 ** a virtual table column. 4213 ** 4214 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4215 ** second argument, not the first, as the argument to test to 4216 ** see if it is a column in a virtual table. This is done because 4217 ** the left operand of infix functions (the operand we want to 4218 ** control overloading) ends up as the second argument to the 4219 ** function. The expression "A glob B" is equivalent to 4220 ** "glob(B,A). We want to use the A in "A glob B" to test 4221 ** for function overloading. But we use the B term in "glob(B,A)". 4222 */ 4223 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4224 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4225 }else if( nFarg>0 ){ 4226 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4227 } 4228 #endif 4229 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4230 if( !pColl ) pColl = db->pDfltColl; 4231 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4232 } 4233 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4234 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){ 4235 Expr *pArg = pFarg->a[0].pExpr; 4236 if( pArg->op==TK_COLUMN ){ 4237 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 4238 }else{ 4239 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4240 } 4241 }else 4242 #endif 4243 { 4244 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4245 pDef, pExpr->op2); 4246 } 4247 if( nFarg ){ 4248 if( constMask==0 ){ 4249 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4250 }else{ 4251 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4252 } 4253 } 4254 return target; 4255 } 4256 #ifndef SQLITE_OMIT_SUBQUERY 4257 case TK_EXISTS: 4258 case TK_SELECT: { 4259 int nCol; 4260 testcase( op==TK_EXISTS ); 4261 testcase( op==TK_SELECT ); 4262 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){ 4263 sqlite3SubselectError(pParse, nCol, 1); 4264 }else{ 4265 return sqlite3CodeSubselect(pParse, pExpr); 4266 } 4267 break; 4268 } 4269 case TK_SELECT_COLUMN: { 4270 int n; 4271 if( pExpr->pLeft->iTable==0 ){ 4272 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft); 4273 } 4274 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT ); 4275 if( pExpr->iTable!=0 4276 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft)) 4277 ){ 4278 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4279 pExpr->iTable, n); 4280 } 4281 return pExpr->pLeft->iTable + pExpr->iColumn; 4282 } 4283 case TK_IN: { 4284 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4285 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4286 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4287 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4288 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4289 sqlite3VdbeResolveLabel(v, destIfFalse); 4290 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4291 sqlite3VdbeResolveLabel(v, destIfNull); 4292 return target; 4293 } 4294 #endif /* SQLITE_OMIT_SUBQUERY */ 4295 4296 4297 /* 4298 ** x BETWEEN y AND z 4299 ** 4300 ** This is equivalent to 4301 ** 4302 ** x>=y AND x<=z 4303 ** 4304 ** X is stored in pExpr->pLeft. 4305 ** Y is stored in pExpr->pList->a[0].pExpr. 4306 ** Z is stored in pExpr->pList->a[1].pExpr. 4307 */ 4308 case TK_BETWEEN: { 4309 exprCodeBetween(pParse, pExpr, target, 0, 0); 4310 return target; 4311 } 4312 case TK_SPAN: 4313 case TK_COLLATE: 4314 case TK_UPLUS: { 4315 pExpr = pExpr->pLeft; 4316 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4317 } 4318 4319 case TK_TRIGGER: { 4320 /* If the opcode is TK_TRIGGER, then the expression is a reference 4321 ** to a column in the new.* or old.* pseudo-tables available to 4322 ** trigger programs. In this case Expr.iTable is set to 1 for the 4323 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4324 ** is set to the column of the pseudo-table to read, or to -1 to 4325 ** read the rowid field. 4326 ** 4327 ** The expression is implemented using an OP_Param opcode. The p1 4328 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4329 ** to reference another column of the old.* pseudo-table, where 4330 ** i is the index of the column. For a new.rowid reference, p1 is 4331 ** set to (n+1), where n is the number of columns in each pseudo-table. 4332 ** For a reference to any other column in the new.* pseudo-table, p1 4333 ** is set to (n+2+i), where n and i are as defined previously. For 4334 ** example, if the table on which triggers are being fired is 4335 ** declared as: 4336 ** 4337 ** CREATE TABLE t1(a, b); 4338 ** 4339 ** Then p1 is interpreted as follows: 4340 ** 4341 ** p1==0 -> old.rowid p1==3 -> new.rowid 4342 ** p1==1 -> old.a p1==4 -> new.a 4343 ** p1==2 -> old.b p1==5 -> new.b 4344 */ 4345 Table *pTab = pExpr->y.pTab; 4346 int iCol = pExpr->iColumn; 4347 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 4348 + sqlite3TableColumnToStorage(pTab, iCol); 4349 4350 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4351 assert( iCol>=-1 && iCol<pTab->nCol ); 4352 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4353 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4354 4355 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4356 VdbeComment((v, "r[%d]=%s.%s", target, 4357 (pExpr->iTable ? "new" : "old"), 4358 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zName) 4359 )); 4360 4361 #ifndef SQLITE_OMIT_FLOATING_POINT 4362 /* If the column has REAL affinity, it may currently be stored as an 4363 ** integer. Use OP_RealAffinity to make sure it is really real. 4364 ** 4365 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4366 ** floating point when extracting it from the record. */ 4367 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4368 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4369 } 4370 #endif 4371 break; 4372 } 4373 4374 case TK_VECTOR: { 4375 sqlite3ErrorMsg(pParse, "row value misused"); 4376 break; 4377 } 4378 4379 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4380 ** that derive from the right-hand table of a LEFT JOIN. The 4381 ** Expr.iTable value is the table number for the right-hand table. 4382 ** The expression is only evaluated if that table is not currently 4383 ** on a LEFT JOIN NULL row. 4384 */ 4385 case TK_IF_NULL_ROW: { 4386 int addrINR; 4387 u8 okConstFactor = pParse->okConstFactor; 4388 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4389 /* Temporarily disable factoring of constant expressions, since 4390 ** even though expressions may appear to be constant, they are not 4391 ** really constant because they originate from the right-hand side 4392 ** of a LEFT JOIN. */ 4393 pParse->okConstFactor = 0; 4394 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4395 pParse->okConstFactor = okConstFactor; 4396 sqlite3VdbeJumpHere(v, addrINR); 4397 sqlite3VdbeChangeP3(v, addrINR, inReg); 4398 break; 4399 } 4400 4401 /* 4402 ** Form A: 4403 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4404 ** 4405 ** Form B: 4406 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4407 ** 4408 ** Form A is can be transformed into the equivalent form B as follows: 4409 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4410 ** WHEN x=eN THEN rN ELSE y END 4411 ** 4412 ** X (if it exists) is in pExpr->pLeft. 4413 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4414 ** odd. The Y is also optional. If the number of elements in x.pList 4415 ** is even, then Y is omitted and the "otherwise" result is NULL. 4416 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4417 ** 4418 ** The result of the expression is the Ri for the first matching Ei, 4419 ** or if there is no matching Ei, the ELSE term Y, or if there is 4420 ** no ELSE term, NULL. 4421 */ 4422 case TK_CASE: { 4423 int endLabel; /* GOTO label for end of CASE stmt */ 4424 int nextCase; /* GOTO label for next WHEN clause */ 4425 int nExpr; /* 2x number of WHEN terms */ 4426 int i; /* Loop counter */ 4427 ExprList *pEList; /* List of WHEN terms */ 4428 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4429 Expr opCompare; /* The X==Ei expression */ 4430 Expr *pX; /* The X expression */ 4431 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4432 Expr *pDel = 0; 4433 sqlite3 *db = pParse->db; 4434 4435 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 4436 assert(pExpr->x.pList->nExpr > 0); 4437 pEList = pExpr->x.pList; 4438 aListelem = pEList->a; 4439 nExpr = pEList->nExpr; 4440 endLabel = sqlite3VdbeMakeLabel(pParse); 4441 if( (pX = pExpr->pLeft)!=0 ){ 4442 pDel = sqlite3ExprDup(db, pX, 0); 4443 if( db->mallocFailed ){ 4444 sqlite3ExprDelete(db, pDel); 4445 break; 4446 } 4447 testcase( pX->op==TK_COLUMN ); 4448 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4449 testcase( regFree1==0 ); 4450 memset(&opCompare, 0, sizeof(opCompare)); 4451 opCompare.op = TK_EQ; 4452 opCompare.pLeft = pDel; 4453 pTest = &opCompare; 4454 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4455 ** The value in regFree1 might get SCopy-ed into the file result. 4456 ** So make sure that the regFree1 register is not reused for other 4457 ** purposes and possibly overwritten. */ 4458 regFree1 = 0; 4459 } 4460 for(i=0; i<nExpr-1; i=i+2){ 4461 if( pX ){ 4462 assert( pTest!=0 ); 4463 opCompare.pRight = aListelem[i].pExpr; 4464 }else{ 4465 pTest = aListelem[i].pExpr; 4466 } 4467 nextCase = sqlite3VdbeMakeLabel(pParse); 4468 testcase( pTest->op==TK_COLUMN ); 4469 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4470 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4471 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4472 sqlite3VdbeGoto(v, endLabel); 4473 sqlite3VdbeResolveLabel(v, nextCase); 4474 } 4475 if( (nExpr&1)!=0 ){ 4476 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4477 }else{ 4478 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4479 } 4480 sqlite3ExprDelete(db, pDel); 4481 setDoNotMergeFlagOnCopy(v); 4482 sqlite3VdbeResolveLabel(v, endLabel); 4483 break; 4484 } 4485 #ifndef SQLITE_OMIT_TRIGGER 4486 case TK_RAISE: { 4487 assert( pExpr->affExpr==OE_Rollback 4488 || pExpr->affExpr==OE_Abort 4489 || pExpr->affExpr==OE_Fail 4490 || pExpr->affExpr==OE_Ignore 4491 ); 4492 if( !pParse->pTriggerTab && !pParse->nested ){ 4493 sqlite3ErrorMsg(pParse, 4494 "RAISE() may only be used within a trigger-program"); 4495 return 0; 4496 } 4497 if( pExpr->affExpr==OE_Abort ){ 4498 sqlite3MayAbort(pParse); 4499 } 4500 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4501 if( pExpr->affExpr==OE_Ignore ){ 4502 sqlite3VdbeAddOp4( 4503 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4504 VdbeCoverage(v); 4505 }else{ 4506 sqlite3HaltConstraint(pParse, 4507 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4508 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4509 } 4510 4511 break; 4512 } 4513 #endif 4514 } 4515 sqlite3ReleaseTempReg(pParse, regFree1); 4516 sqlite3ReleaseTempReg(pParse, regFree2); 4517 return inReg; 4518 } 4519 4520 /* 4521 ** Generate code that will evaluate expression pExpr just one time 4522 ** per prepared statement execution. 4523 ** 4524 ** If the expression uses functions (that might throw an exception) then 4525 ** guard them with an OP_Once opcode to ensure that the code is only executed 4526 ** once. If no functions are involved, then factor the code out and put it at 4527 ** the end of the prepared statement in the initialization section. 4528 ** 4529 ** If regDest>=0 then the result is always stored in that register and the 4530 ** result is not reusable. If regDest<0 then this routine is free to 4531 ** store the value whereever it wants. The register where the expression 4532 ** is stored is returned. When regDest<0, two identical expressions might 4533 ** code to the same register, if they do not contain function calls and hence 4534 ** are factored out into the initialization section at the end of the 4535 ** prepared statement. 4536 */ 4537 int sqlite3ExprCodeRunJustOnce( 4538 Parse *pParse, /* Parsing context */ 4539 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4540 int regDest /* Store the value in this register */ 4541 ){ 4542 ExprList *p; 4543 assert( ConstFactorOk(pParse) ); 4544 p = pParse->pConstExpr; 4545 if( regDest<0 && p ){ 4546 struct ExprList_item *pItem; 4547 int i; 4548 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4549 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){ 4550 return pItem->u.iConstExprReg; 4551 } 4552 } 4553 } 4554 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4555 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4556 Vdbe *v = pParse->pVdbe; 4557 int addr; 4558 assert( v ); 4559 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4560 pParse->okConstFactor = 0; 4561 if( !pParse->db->mallocFailed ){ 4562 if( regDest<0 ) regDest = ++pParse->nMem; 4563 sqlite3ExprCode(pParse, pExpr, regDest); 4564 } 4565 pParse->okConstFactor = 1; 4566 sqlite3ExprDelete(pParse->db, pExpr); 4567 sqlite3VdbeJumpHere(v, addr); 4568 }else{ 4569 p = sqlite3ExprListAppend(pParse, p, pExpr); 4570 if( p ){ 4571 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4572 pItem->reusable = regDest<0; 4573 if( regDest<0 ) regDest = ++pParse->nMem; 4574 pItem->u.iConstExprReg = regDest; 4575 } 4576 pParse->pConstExpr = p; 4577 } 4578 return regDest; 4579 } 4580 4581 /* 4582 ** Generate code to evaluate an expression and store the results 4583 ** into a register. Return the register number where the results 4584 ** are stored. 4585 ** 4586 ** If the register is a temporary register that can be deallocated, 4587 ** then write its number into *pReg. If the result register is not 4588 ** a temporary, then set *pReg to zero. 4589 ** 4590 ** If pExpr is a constant, then this routine might generate this 4591 ** code to fill the register in the initialization section of the 4592 ** VDBE program, in order to factor it out of the evaluation loop. 4593 */ 4594 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4595 int r2; 4596 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4597 if( ConstFactorOk(pParse) 4598 && pExpr->op!=TK_REGISTER 4599 && sqlite3ExprIsConstantNotJoin(pExpr) 4600 ){ 4601 *pReg = 0; 4602 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4603 }else{ 4604 int r1 = sqlite3GetTempReg(pParse); 4605 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4606 if( r2==r1 ){ 4607 *pReg = r1; 4608 }else{ 4609 sqlite3ReleaseTempReg(pParse, r1); 4610 *pReg = 0; 4611 } 4612 } 4613 return r2; 4614 } 4615 4616 /* 4617 ** Generate code that will evaluate expression pExpr and store the 4618 ** results in register target. The results are guaranteed to appear 4619 ** in register target. 4620 */ 4621 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4622 int inReg; 4623 4624 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4625 assert( target>0 && target<=pParse->nMem ); 4626 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4627 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4628 if( inReg!=target && pParse->pVdbe ){ 4629 u8 op; 4630 if( ExprHasProperty(pExpr,EP_Subquery) ){ 4631 op = OP_Copy; 4632 }else{ 4633 op = OP_SCopy; 4634 } 4635 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 4636 } 4637 } 4638 4639 /* 4640 ** Make a transient copy of expression pExpr and then code it using 4641 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 4642 ** except that the input expression is guaranteed to be unchanged. 4643 */ 4644 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 4645 sqlite3 *db = pParse->db; 4646 pExpr = sqlite3ExprDup(db, pExpr, 0); 4647 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 4648 sqlite3ExprDelete(db, pExpr); 4649 } 4650 4651 /* 4652 ** Generate code that will evaluate expression pExpr and store the 4653 ** results in register target. The results are guaranteed to appear 4654 ** in register target. If the expression is constant, then this routine 4655 ** might choose to code the expression at initialization time. 4656 */ 4657 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 4658 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4659 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 4660 }else{ 4661 sqlite3ExprCodeCopy(pParse, pExpr, target); 4662 } 4663 } 4664 4665 /* 4666 ** Generate code that pushes the value of every element of the given 4667 ** expression list into a sequence of registers beginning at target. 4668 ** 4669 ** Return the number of elements evaluated. The number returned will 4670 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 4671 ** is defined. 4672 ** 4673 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 4674 ** filled using OP_SCopy. OP_Copy must be used instead. 4675 ** 4676 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 4677 ** factored out into initialization code. 4678 ** 4679 ** The SQLITE_ECEL_REF flag means that expressions in the list with 4680 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 4681 ** in registers at srcReg, and so the value can be copied from there. 4682 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 4683 ** are simply omitted rather than being copied from srcReg. 4684 */ 4685 int sqlite3ExprCodeExprList( 4686 Parse *pParse, /* Parsing context */ 4687 ExprList *pList, /* The expression list to be coded */ 4688 int target, /* Where to write results */ 4689 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 4690 u8 flags /* SQLITE_ECEL_* flags */ 4691 ){ 4692 struct ExprList_item *pItem; 4693 int i, j, n; 4694 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 4695 Vdbe *v = pParse->pVdbe; 4696 assert( pList!=0 ); 4697 assert( target>0 ); 4698 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 4699 n = pList->nExpr; 4700 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 4701 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 4702 Expr *pExpr = pItem->pExpr; 4703 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 4704 if( pItem->bSorterRef ){ 4705 i--; 4706 n--; 4707 }else 4708 #endif 4709 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 4710 if( flags & SQLITE_ECEL_OMITREF ){ 4711 i--; 4712 n--; 4713 }else{ 4714 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 4715 } 4716 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 4717 && sqlite3ExprIsConstantNotJoin(pExpr) 4718 ){ 4719 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 4720 }else{ 4721 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 4722 if( inReg!=target+i ){ 4723 VdbeOp *pOp; 4724 if( copyOp==OP_Copy 4725 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 4726 && pOp->p1+pOp->p3+1==inReg 4727 && pOp->p2+pOp->p3+1==target+i 4728 && pOp->p5==0 /* The do-not-merge flag must be clear */ 4729 ){ 4730 pOp->p3++; 4731 }else{ 4732 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 4733 } 4734 } 4735 } 4736 } 4737 return n; 4738 } 4739 4740 /* 4741 ** Generate code for a BETWEEN operator. 4742 ** 4743 ** x BETWEEN y AND z 4744 ** 4745 ** The above is equivalent to 4746 ** 4747 ** x>=y AND x<=z 4748 ** 4749 ** Code it as such, taking care to do the common subexpression 4750 ** elimination of x. 4751 ** 4752 ** The xJumpIf parameter determines details: 4753 ** 4754 ** NULL: Store the boolean result in reg[dest] 4755 ** sqlite3ExprIfTrue: Jump to dest if true 4756 ** sqlite3ExprIfFalse: Jump to dest if false 4757 ** 4758 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 4759 */ 4760 static void exprCodeBetween( 4761 Parse *pParse, /* Parsing and code generating context */ 4762 Expr *pExpr, /* The BETWEEN expression */ 4763 int dest, /* Jump destination or storage location */ 4764 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 4765 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 4766 ){ 4767 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 4768 Expr compLeft; /* The x>=y term */ 4769 Expr compRight; /* The x<=z term */ 4770 int regFree1 = 0; /* Temporary use register */ 4771 Expr *pDel = 0; 4772 sqlite3 *db = pParse->db; 4773 4774 memset(&compLeft, 0, sizeof(Expr)); 4775 memset(&compRight, 0, sizeof(Expr)); 4776 memset(&exprAnd, 0, sizeof(Expr)); 4777 4778 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4779 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 4780 if( db->mallocFailed==0 ){ 4781 exprAnd.op = TK_AND; 4782 exprAnd.pLeft = &compLeft; 4783 exprAnd.pRight = &compRight; 4784 compLeft.op = TK_GE; 4785 compLeft.pLeft = pDel; 4786 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 4787 compRight.op = TK_LE; 4788 compRight.pLeft = pDel; 4789 compRight.pRight = pExpr->x.pList->a[1].pExpr; 4790 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4791 if( xJump ){ 4792 xJump(pParse, &exprAnd, dest, jumpIfNull); 4793 }else{ 4794 /* Mark the expression is being from the ON or USING clause of a join 4795 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 4796 ** it into the Parse.pConstExpr list. We should use a new bit for this, 4797 ** for clarity, but we are out of bits in the Expr.flags field so we 4798 ** have to reuse the EP_FromJoin bit. Bummer. */ 4799 pDel->flags |= EP_FromJoin; 4800 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 4801 } 4802 sqlite3ReleaseTempReg(pParse, regFree1); 4803 } 4804 sqlite3ExprDelete(db, pDel); 4805 4806 /* Ensure adequate test coverage */ 4807 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 4808 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 4809 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 4810 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 4811 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 4812 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 4813 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 4814 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 4815 testcase( xJump==0 ); 4816 } 4817 4818 /* 4819 ** Generate code for a boolean expression such that a jump is made 4820 ** to the label "dest" if the expression is true but execution 4821 ** continues straight thru if the expression is false. 4822 ** 4823 ** If the expression evaluates to NULL (neither true nor false), then 4824 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 4825 ** 4826 ** This code depends on the fact that certain token values (ex: TK_EQ) 4827 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 4828 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 4829 ** the make process cause these values to align. Assert()s in the code 4830 ** below verify that the numbers are aligned correctly. 4831 */ 4832 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4833 Vdbe *v = pParse->pVdbe; 4834 int op = 0; 4835 int regFree1 = 0; 4836 int regFree2 = 0; 4837 int r1, r2; 4838 4839 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4840 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4841 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 4842 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 4843 op = pExpr->op; 4844 switch( op ){ 4845 case TK_AND: 4846 case TK_OR: { 4847 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 4848 if( pAlt!=pExpr ){ 4849 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 4850 }else if( op==TK_AND ){ 4851 int d2 = sqlite3VdbeMakeLabel(pParse); 4852 testcase( jumpIfNull==0 ); 4853 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 4854 jumpIfNull^SQLITE_JUMPIFNULL); 4855 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4856 sqlite3VdbeResolveLabel(v, d2); 4857 }else{ 4858 testcase( jumpIfNull==0 ); 4859 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 4860 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 4861 } 4862 break; 4863 } 4864 case TK_NOT: { 4865 testcase( jumpIfNull==0 ); 4866 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 4867 break; 4868 } 4869 case TK_TRUTH: { 4870 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 4871 int isTrue; /* IS TRUE or IS NOT TRUE */ 4872 testcase( jumpIfNull==0 ); 4873 isNot = pExpr->op2==TK_ISNOT; 4874 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4875 testcase( isTrue && isNot ); 4876 testcase( !isTrue && isNot ); 4877 if( isTrue ^ isNot ){ 4878 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 4879 isNot ? SQLITE_JUMPIFNULL : 0); 4880 }else{ 4881 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 4882 isNot ? SQLITE_JUMPIFNULL : 0); 4883 } 4884 break; 4885 } 4886 case TK_IS: 4887 case TK_ISNOT: 4888 testcase( op==TK_IS ); 4889 testcase( op==TK_ISNOT ); 4890 op = (op==TK_IS) ? TK_EQ : TK_NE; 4891 jumpIfNull = SQLITE_NULLEQ; 4892 /* Fall thru */ 4893 case TK_LT: 4894 case TK_LE: 4895 case TK_GT: 4896 case TK_GE: 4897 case TK_NE: 4898 case TK_EQ: { 4899 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 4900 testcase( jumpIfNull==0 ); 4901 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4902 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4903 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 4904 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 4905 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4906 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4907 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4908 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4909 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 4910 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 4911 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 4912 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 4913 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 4914 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 4915 testcase( regFree1==0 ); 4916 testcase( regFree2==0 ); 4917 break; 4918 } 4919 case TK_ISNULL: 4920 case TK_NOTNULL: { 4921 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4922 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4923 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4924 sqlite3VdbeAddOp2(v, op, r1, dest); 4925 VdbeCoverageIf(v, op==TK_ISNULL); 4926 VdbeCoverageIf(v, op==TK_NOTNULL); 4927 testcase( regFree1==0 ); 4928 break; 4929 } 4930 case TK_BETWEEN: { 4931 testcase( jumpIfNull==0 ); 4932 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 4933 break; 4934 } 4935 #ifndef SQLITE_OMIT_SUBQUERY 4936 case TK_IN: { 4937 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4938 int destIfNull = jumpIfNull ? dest : destIfFalse; 4939 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4940 sqlite3VdbeGoto(v, dest); 4941 sqlite3VdbeResolveLabel(v, destIfFalse); 4942 break; 4943 } 4944 #endif 4945 default: { 4946 default_expr: 4947 if( ExprAlwaysTrue(pExpr) ){ 4948 sqlite3VdbeGoto(v, dest); 4949 }else if( ExprAlwaysFalse(pExpr) ){ 4950 /* No-op */ 4951 }else{ 4952 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 4953 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 4954 VdbeCoverage(v); 4955 testcase( regFree1==0 ); 4956 testcase( jumpIfNull==0 ); 4957 } 4958 break; 4959 } 4960 } 4961 sqlite3ReleaseTempReg(pParse, regFree1); 4962 sqlite3ReleaseTempReg(pParse, regFree2); 4963 } 4964 4965 /* 4966 ** Generate code for a boolean expression such that a jump is made 4967 ** to the label "dest" if the expression is false but execution 4968 ** continues straight thru if the expression is true. 4969 ** 4970 ** If the expression evaluates to NULL (neither true nor false) then 4971 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 4972 ** is 0. 4973 */ 4974 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 4975 Vdbe *v = pParse->pVdbe; 4976 int op = 0; 4977 int regFree1 = 0; 4978 int regFree2 = 0; 4979 int r1, r2; 4980 4981 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 4982 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 4983 if( pExpr==0 ) return; 4984 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4985 4986 /* The value of pExpr->op and op are related as follows: 4987 ** 4988 ** pExpr->op op 4989 ** --------- ---------- 4990 ** TK_ISNULL OP_NotNull 4991 ** TK_NOTNULL OP_IsNull 4992 ** TK_NE OP_Eq 4993 ** TK_EQ OP_Ne 4994 ** TK_GT OP_Le 4995 ** TK_LE OP_Gt 4996 ** TK_GE OP_Lt 4997 ** TK_LT OP_Ge 4998 ** 4999 ** For other values of pExpr->op, op is undefined and unused. 5000 ** The value of TK_ and OP_ constants are arranged such that we 5001 ** can compute the mapping above using the following expression. 5002 ** Assert()s verify that the computation is correct. 5003 */ 5004 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5005 5006 /* Verify correct alignment of TK_ and OP_ constants 5007 */ 5008 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5009 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5010 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5011 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5012 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5013 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5014 assert( pExpr->op!=TK_GT || op==OP_Le ); 5015 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5016 5017 switch( pExpr->op ){ 5018 case TK_AND: 5019 case TK_OR: { 5020 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5021 if( pAlt!=pExpr ){ 5022 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5023 }else if( pExpr->op==TK_AND ){ 5024 testcase( jumpIfNull==0 ); 5025 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5026 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5027 }else{ 5028 int d2 = sqlite3VdbeMakeLabel(pParse); 5029 testcase( jumpIfNull==0 ); 5030 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5031 jumpIfNull^SQLITE_JUMPIFNULL); 5032 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5033 sqlite3VdbeResolveLabel(v, d2); 5034 } 5035 break; 5036 } 5037 case TK_NOT: { 5038 testcase( jumpIfNull==0 ); 5039 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5040 break; 5041 } 5042 case TK_TRUTH: { 5043 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5044 int isTrue; /* IS TRUE or IS NOT TRUE */ 5045 testcase( jumpIfNull==0 ); 5046 isNot = pExpr->op2==TK_ISNOT; 5047 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5048 testcase( isTrue && isNot ); 5049 testcase( !isTrue && isNot ); 5050 if( isTrue ^ isNot ){ 5051 /* IS TRUE and IS NOT FALSE */ 5052 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5053 isNot ? 0 : SQLITE_JUMPIFNULL); 5054 5055 }else{ 5056 /* IS FALSE and IS NOT TRUE */ 5057 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5058 isNot ? 0 : SQLITE_JUMPIFNULL); 5059 } 5060 break; 5061 } 5062 case TK_IS: 5063 case TK_ISNOT: 5064 testcase( pExpr->op==TK_IS ); 5065 testcase( pExpr->op==TK_ISNOT ); 5066 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5067 jumpIfNull = SQLITE_NULLEQ; 5068 /* Fall thru */ 5069 case TK_LT: 5070 case TK_LE: 5071 case TK_GT: 5072 case TK_GE: 5073 case TK_NE: 5074 case TK_EQ: { 5075 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5076 testcase( jumpIfNull==0 ); 5077 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5078 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5079 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5080 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5081 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5082 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5083 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5084 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5085 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5086 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5087 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5088 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5089 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5090 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5091 testcase( regFree1==0 ); 5092 testcase( regFree2==0 ); 5093 break; 5094 } 5095 case TK_ISNULL: 5096 case TK_NOTNULL: { 5097 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5098 sqlite3VdbeAddOp2(v, op, r1, dest); 5099 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5100 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5101 testcase( regFree1==0 ); 5102 break; 5103 } 5104 case TK_BETWEEN: { 5105 testcase( jumpIfNull==0 ); 5106 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5107 break; 5108 } 5109 #ifndef SQLITE_OMIT_SUBQUERY 5110 case TK_IN: { 5111 if( jumpIfNull ){ 5112 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5113 }else{ 5114 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5115 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5116 sqlite3VdbeResolveLabel(v, destIfNull); 5117 } 5118 break; 5119 } 5120 #endif 5121 default: { 5122 default_expr: 5123 if( ExprAlwaysFalse(pExpr) ){ 5124 sqlite3VdbeGoto(v, dest); 5125 }else if( ExprAlwaysTrue(pExpr) ){ 5126 /* no-op */ 5127 }else{ 5128 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5129 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5130 VdbeCoverage(v); 5131 testcase( regFree1==0 ); 5132 testcase( jumpIfNull==0 ); 5133 } 5134 break; 5135 } 5136 } 5137 sqlite3ReleaseTempReg(pParse, regFree1); 5138 sqlite3ReleaseTempReg(pParse, regFree2); 5139 } 5140 5141 /* 5142 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5143 ** code generation, and that copy is deleted after code generation. This 5144 ** ensures that the original pExpr is unchanged. 5145 */ 5146 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5147 sqlite3 *db = pParse->db; 5148 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5149 if( db->mallocFailed==0 ){ 5150 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5151 } 5152 sqlite3ExprDelete(db, pCopy); 5153 } 5154 5155 /* 5156 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5157 ** type of expression. 5158 ** 5159 ** If pExpr is a simple SQL value - an integer, real, string, blob 5160 ** or NULL value - then the VDBE currently being prepared is configured 5161 ** to re-prepare each time a new value is bound to variable pVar. 5162 ** 5163 ** Additionally, if pExpr is a simple SQL value and the value is the 5164 ** same as that currently bound to variable pVar, non-zero is returned. 5165 ** Otherwise, if the values are not the same or if pExpr is not a simple 5166 ** SQL value, zero is returned. 5167 */ 5168 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){ 5169 int res = 0; 5170 int iVar; 5171 sqlite3_value *pL, *pR = 0; 5172 5173 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5174 if( pR ){ 5175 iVar = pVar->iColumn; 5176 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5177 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5178 if( pL ){ 5179 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5180 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5181 } 5182 res = 0==sqlite3MemCompare(pL, pR, 0); 5183 } 5184 sqlite3ValueFree(pR); 5185 sqlite3ValueFree(pL); 5186 } 5187 5188 return res; 5189 } 5190 5191 /* 5192 ** Do a deep comparison of two expression trees. Return 0 if the two 5193 ** expressions are completely identical. Return 1 if they differ only 5194 ** by a COLLATE operator at the top level. Return 2 if there are differences 5195 ** other than the top-level COLLATE operator. 5196 ** 5197 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5198 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5199 ** 5200 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5201 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5202 ** 5203 ** Sometimes this routine will return 2 even if the two expressions 5204 ** really are equivalent. If we cannot prove that the expressions are 5205 ** identical, we return 2 just to be safe. So if this routine 5206 ** returns 2, then you do not really know for certain if the two 5207 ** expressions are the same. But if you get a 0 or 1 return, then you 5208 ** can be sure the expressions are the same. In the places where 5209 ** this routine is used, it does not hurt to get an extra 2 - that 5210 ** just might result in some slightly slower code. But returning 5211 ** an incorrect 0 or 1 could lead to a malfunction. 5212 ** 5213 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5214 ** pParse->pReprepare can be matched against literals in pB. The 5215 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5216 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5217 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5218 ** pB causes a return value of 2. 5219 */ 5220 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){ 5221 u32 combinedFlags; 5222 if( pA==0 || pB==0 ){ 5223 return pB==pA ? 0 : 2; 5224 } 5225 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5226 return 0; 5227 } 5228 combinedFlags = pA->flags | pB->flags; 5229 if( combinedFlags & EP_IntValue ){ 5230 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5231 return 0; 5232 } 5233 return 2; 5234 } 5235 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5236 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5237 return 1; 5238 } 5239 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5240 return 1; 5241 } 5242 return 2; 5243 } 5244 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ 5245 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5246 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5247 #ifndef SQLITE_OMIT_WINDOWFUNC 5248 assert( pA->op==pB->op ); 5249 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5250 return 2; 5251 } 5252 if( ExprHasProperty(pA,EP_WinFunc) ){ 5253 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5254 return 2; 5255 } 5256 } 5257 #endif 5258 }else if( pA->op==TK_NULL ){ 5259 return 0; 5260 }else if( pA->op==TK_COLLATE ){ 5261 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5262 }else if( ALWAYS(pB->u.zToken!=0) && strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 5263 return 2; 5264 } 5265 } 5266 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5267 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5268 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5269 if( combinedFlags & EP_xIsSelect ) return 2; 5270 if( (combinedFlags & EP_FixedCol)==0 5271 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5272 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5273 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5274 if( pA->op!=TK_STRING 5275 && pA->op!=TK_TRUEFALSE 5276 && ALWAYS((combinedFlags & EP_Reduced)==0) 5277 ){ 5278 if( pA->iColumn!=pB->iColumn ) return 2; 5279 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5280 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5281 return 2; 5282 } 5283 } 5284 } 5285 return 0; 5286 } 5287 5288 /* 5289 ** Compare two ExprList objects. Return 0 if they are identical, 1 5290 ** if they are certainly different, or 2 if it is not possible to 5291 ** determine if they are identical or not. 5292 ** 5293 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5294 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5295 ** 5296 ** This routine might return non-zero for equivalent ExprLists. The 5297 ** only consequence will be disabled optimizations. But this routine 5298 ** must never return 0 if the two ExprList objects are different, or 5299 ** a malfunction will result. 5300 ** 5301 ** Two NULL pointers are considered to be the same. But a NULL pointer 5302 ** always differs from a non-NULL pointer. 5303 */ 5304 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 5305 int i; 5306 if( pA==0 && pB==0 ) return 0; 5307 if( pA==0 || pB==0 ) return 1; 5308 if( pA->nExpr!=pB->nExpr ) return 1; 5309 for(i=0; i<pA->nExpr; i++){ 5310 int res; 5311 Expr *pExprA = pA->a[i].pExpr; 5312 Expr *pExprB = pB->a[i].pExpr; 5313 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1; 5314 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5315 } 5316 return 0; 5317 } 5318 5319 /* 5320 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5321 ** are ignored. 5322 */ 5323 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){ 5324 return sqlite3ExprCompare(0, 5325 sqlite3ExprSkipCollateAndLikely(pA), 5326 sqlite3ExprSkipCollateAndLikely(pB), 5327 iTab); 5328 } 5329 5330 /* 5331 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5332 ** 5333 ** Or if seenNot is true, return non-zero if Expr p can only be 5334 ** non-NULL if pNN is not NULL 5335 */ 5336 static int exprImpliesNotNull( 5337 Parse *pParse, /* Parsing context */ 5338 Expr *p, /* The expression to be checked */ 5339 Expr *pNN, /* The expression that is NOT NULL */ 5340 int iTab, /* Table being evaluated */ 5341 int seenNot /* Return true only if p can be any non-NULL value */ 5342 ){ 5343 assert( p ); 5344 assert( pNN ); 5345 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5346 return pNN->op!=TK_NULL; 5347 } 5348 switch( p->op ){ 5349 case TK_IN: { 5350 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5351 assert( ExprHasProperty(p,EP_xIsSelect) 5352 || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5353 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5354 } 5355 case TK_BETWEEN: { 5356 ExprList *pList = p->x.pList; 5357 assert( pList!=0 ); 5358 assert( pList->nExpr==2 ); 5359 if( seenNot ) return 0; 5360 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5361 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5362 ){ 5363 return 1; 5364 } 5365 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5366 } 5367 case TK_EQ: 5368 case TK_NE: 5369 case TK_LT: 5370 case TK_LE: 5371 case TK_GT: 5372 case TK_GE: 5373 case TK_PLUS: 5374 case TK_MINUS: 5375 case TK_BITOR: 5376 case TK_LSHIFT: 5377 case TK_RSHIFT: 5378 case TK_CONCAT: 5379 seenNot = 1; 5380 /* Fall thru */ 5381 case TK_STAR: 5382 case TK_REM: 5383 case TK_BITAND: 5384 case TK_SLASH: { 5385 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5386 /* Fall thru into the next case */ 5387 } 5388 case TK_SPAN: 5389 case TK_COLLATE: 5390 case TK_UPLUS: 5391 case TK_UMINUS: { 5392 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5393 } 5394 case TK_TRUTH: { 5395 if( seenNot ) return 0; 5396 if( p->op2!=TK_IS ) return 0; 5397 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5398 } 5399 case TK_BITNOT: 5400 case TK_NOT: { 5401 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5402 } 5403 } 5404 return 0; 5405 } 5406 5407 /* 5408 ** Return true if we can prove the pE2 will always be true if pE1 is 5409 ** true. Return false if we cannot complete the proof or if pE2 might 5410 ** be false. Examples: 5411 ** 5412 ** pE1: x==5 pE2: x==5 Result: true 5413 ** pE1: x>0 pE2: x==5 Result: false 5414 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5415 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5416 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5417 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5418 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5419 ** 5420 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5421 ** Expr.iTable<0 then assume a table number given by iTab. 5422 ** 5423 ** If pParse is not NULL, then the values of bound variables in pE1 are 5424 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5425 ** modified to record which bound variables are referenced. If pParse 5426 ** is NULL, then false will be returned if pE1 contains any bound variables. 5427 ** 5428 ** When in doubt, return false. Returning true might give a performance 5429 ** improvement. Returning false might cause a performance reduction, but 5430 ** it will always give the correct answer and is hence always safe. 5431 */ 5432 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){ 5433 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5434 return 1; 5435 } 5436 if( pE2->op==TK_OR 5437 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5438 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5439 ){ 5440 return 1; 5441 } 5442 if( pE2->op==TK_NOTNULL 5443 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5444 ){ 5445 return 1; 5446 } 5447 return 0; 5448 } 5449 5450 /* 5451 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5452 ** If the expression node requires that the table at pWalker->iCur 5453 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5454 ** 5455 ** This routine controls an optimization. False positives (setting 5456 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5457 ** (never setting pWalker->eCode) is a harmless missed optimization. 5458 */ 5459 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5460 testcase( pExpr->op==TK_AGG_COLUMN ); 5461 testcase( pExpr->op==TK_AGG_FUNCTION ); 5462 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; 5463 switch( pExpr->op ){ 5464 case TK_ISNOT: 5465 case TK_ISNULL: 5466 case TK_NOTNULL: 5467 case TK_IS: 5468 case TK_OR: 5469 case TK_VECTOR: 5470 case TK_CASE: 5471 case TK_IN: 5472 case TK_FUNCTION: 5473 case TK_TRUTH: 5474 testcase( pExpr->op==TK_ISNOT ); 5475 testcase( pExpr->op==TK_ISNULL ); 5476 testcase( pExpr->op==TK_NOTNULL ); 5477 testcase( pExpr->op==TK_IS ); 5478 testcase( pExpr->op==TK_OR ); 5479 testcase( pExpr->op==TK_VECTOR ); 5480 testcase( pExpr->op==TK_CASE ); 5481 testcase( pExpr->op==TK_IN ); 5482 testcase( pExpr->op==TK_FUNCTION ); 5483 testcase( pExpr->op==TK_TRUTH ); 5484 return WRC_Prune; 5485 case TK_COLUMN: 5486 if( pWalker->u.iCur==pExpr->iTable ){ 5487 pWalker->eCode = 1; 5488 return WRC_Abort; 5489 } 5490 return WRC_Prune; 5491 5492 case TK_AND: 5493 if( pWalker->eCode==0 ){ 5494 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5495 if( pWalker->eCode ){ 5496 pWalker->eCode = 0; 5497 sqlite3WalkExpr(pWalker, pExpr->pRight); 5498 } 5499 } 5500 return WRC_Prune; 5501 5502 case TK_BETWEEN: 5503 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5504 assert( pWalker->eCode ); 5505 return WRC_Abort; 5506 } 5507 return WRC_Prune; 5508 5509 /* Virtual tables are allowed to use constraints like x=NULL. So 5510 ** a term of the form x=y does not prove that y is not null if x 5511 ** is the column of a virtual table */ 5512 case TK_EQ: 5513 case TK_NE: 5514 case TK_LT: 5515 case TK_LE: 5516 case TK_GT: 5517 case TK_GE: { 5518 Expr *pLeft = pExpr->pLeft; 5519 Expr *pRight = pExpr->pRight; 5520 testcase( pExpr->op==TK_EQ ); 5521 testcase( pExpr->op==TK_NE ); 5522 testcase( pExpr->op==TK_LT ); 5523 testcase( pExpr->op==TK_LE ); 5524 testcase( pExpr->op==TK_GT ); 5525 testcase( pExpr->op==TK_GE ); 5526 /* The y.pTab=0 assignment in wherecode.c always happens after the 5527 ** impliesNotNullRow() test */ 5528 if( (pLeft->op==TK_COLUMN && ALWAYS(pLeft->y.pTab!=0) 5529 && IsVirtual(pLeft->y.pTab)) 5530 || (pRight->op==TK_COLUMN && ALWAYS(pRight->y.pTab!=0) 5531 && IsVirtual(pRight->y.pTab)) 5532 ){ 5533 return WRC_Prune; 5534 } 5535 } 5536 default: 5537 return WRC_Continue; 5538 } 5539 } 5540 5541 /* 5542 ** Return true (non-zero) if expression p can only be true if at least 5543 ** one column of table iTab is non-null. In other words, return true 5544 ** if expression p will always be NULL or false if every column of iTab 5545 ** is NULL. 5546 ** 5547 ** False negatives are acceptable. In other words, it is ok to return 5548 ** zero even if expression p will never be true of every column of iTab 5549 ** is NULL. A false negative is merely a missed optimization opportunity. 5550 ** 5551 ** False positives are not allowed, however. A false positive may result 5552 ** in an incorrect answer. 5553 ** 5554 ** Terms of p that are marked with EP_FromJoin (and hence that come from 5555 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis. 5556 ** 5557 ** This routine is used to check if a LEFT JOIN can be converted into 5558 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5559 ** clause requires that some column of the right table of the LEFT JOIN 5560 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5561 ** ordinary join. 5562 */ 5563 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5564 Walker w; 5565 p = sqlite3ExprSkipCollateAndLikely(p); 5566 if( p==0 ) return 0; 5567 if( p->op==TK_NOTNULL ){ 5568 p = p->pLeft; 5569 }else{ 5570 while( p->op==TK_AND ){ 5571 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5572 p = p->pRight; 5573 } 5574 } 5575 w.xExprCallback = impliesNotNullRow; 5576 w.xSelectCallback = 0; 5577 w.xSelectCallback2 = 0; 5578 w.eCode = 0; 5579 w.u.iCur = iTab; 5580 sqlite3WalkExpr(&w, p); 5581 return w.eCode; 5582 } 5583 5584 /* 5585 ** An instance of the following structure is used by the tree walker 5586 ** to determine if an expression can be evaluated by reference to the 5587 ** index only, without having to do a search for the corresponding 5588 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5589 ** is the cursor for the table. 5590 */ 5591 struct IdxCover { 5592 Index *pIdx; /* The index to be tested for coverage */ 5593 int iCur; /* Cursor number for the table corresponding to the index */ 5594 }; 5595 5596 /* 5597 ** Check to see if there are references to columns in table 5598 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 5599 ** pWalker->u.pIdxCover->pIdx. 5600 */ 5601 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 5602 if( pExpr->op==TK_COLUMN 5603 && pExpr->iTable==pWalker->u.pIdxCover->iCur 5604 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 5605 ){ 5606 pWalker->eCode = 1; 5607 return WRC_Abort; 5608 } 5609 return WRC_Continue; 5610 } 5611 5612 /* 5613 ** Determine if an index pIdx on table with cursor iCur contains will 5614 ** the expression pExpr. Return true if the index does cover the 5615 ** expression and false if the pExpr expression references table columns 5616 ** that are not found in the index pIdx. 5617 ** 5618 ** An index covering an expression means that the expression can be 5619 ** evaluated using only the index and without having to lookup the 5620 ** corresponding table entry. 5621 */ 5622 int sqlite3ExprCoveredByIndex( 5623 Expr *pExpr, /* The index to be tested */ 5624 int iCur, /* The cursor number for the corresponding table */ 5625 Index *pIdx /* The index that might be used for coverage */ 5626 ){ 5627 Walker w; 5628 struct IdxCover xcov; 5629 memset(&w, 0, sizeof(w)); 5630 xcov.iCur = iCur; 5631 xcov.pIdx = pIdx; 5632 w.xExprCallback = exprIdxCover; 5633 w.u.pIdxCover = &xcov; 5634 sqlite3WalkExpr(&w, pExpr); 5635 return !w.eCode; 5636 } 5637 5638 5639 /* 5640 ** An instance of the following structure is used by the tree walker 5641 ** to count references to table columns in the arguments of an 5642 ** aggregate function, in order to implement the 5643 ** sqlite3FunctionThisSrc() routine. 5644 */ 5645 struct SrcCount { 5646 SrcList *pSrc; /* One particular FROM clause in a nested query */ 5647 int nThis; /* Number of references to columns in pSrcList */ 5648 int nOther; /* Number of references to columns in other FROM clauses */ 5649 }; 5650 5651 /* 5652 ** Count the number of references to columns. 5653 */ 5654 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 5655 /* There was once a NEVER() on the second term on the grounds that 5656 ** sqlite3FunctionUsesThisSrc() was always called before 5657 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet 5658 ** been converted into TK_AGG_COLUMN. But this is no longer true due 5659 ** to window functions - sqlite3WindowRewrite() may now indirectly call 5660 ** FunctionUsesThisSrc() when creating a new sub-select. */ 5661 if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){ 5662 int i; 5663 struct SrcCount *p = pWalker->u.pSrcCount; 5664 SrcList *pSrc = p->pSrc; 5665 int nSrc = pSrc ? pSrc->nSrc : 0; 5666 for(i=0; i<nSrc; i++){ 5667 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 5668 } 5669 if( i<nSrc ){ 5670 p->nThis++; 5671 }else if( nSrc==0 || pExpr->iTable<pSrc->a[0].iCursor ){ 5672 /* In a well-formed parse tree (no name resolution errors), 5673 ** TK_COLUMN nodes with smaller Expr.iTable values are in an 5674 ** outer context. Those are the only ones to count as "other" */ 5675 p->nOther++; 5676 } 5677 } 5678 return WRC_Continue; 5679 } 5680 5681 /* 5682 ** Determine if any of the arguments to the pExpr Function reference 5683 ** pSrcList. Return true if they do. Also return true if the function 5684 ** has no arguments or has only constant arguments. Return false if pExpr 5685 ** references columns but not columns of tables found in pSrcList. 5686 */ 5687 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 5688 Walker w; 5689 struct SrcCount cnt; 5690 assert( pExpr->op==TK_AGG_FUNCTION ); 5691 memset(&w, 0, sizeof(w)); 5692 w.xExprCallback = exprSrcCount; 5693 w.xSelectCallback = sqlite3SelectWalkNoop; 5694 w.u.pSrcCount = &cnt; 5695 cnt.pSrc = pSrcList; 5696 cnt.nThis = 0; 5697 cnt.nOther = 0; 5698 sqlite3WalkExprList(&w, pExpr->x.pList); 5699 #ifndef SQLITE_OMIT_WINDOWFUNC 5700 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 5701 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 5702 } 5703 #endif 5704 return cnt.nThis>0 || cnt.nOther==0; 5705 } 5706 5707 /* 5708 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 5709 ** the new element. Return a negative number if malloc fails. 5710 */ 5711 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 5712 int i; 5713 pInfo->aCol = sqlite3ArrayAllocate( 5714 db, 5715 pInfo->aCol, 5716 sizeof(pInfo->aCol[0]), 5717 &pInfo->nColumn, 5718 &i 5719 ); 5720 return i; 5721 } 5722 5723 /* 5724 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 5725 ** the new element. Return a negative number if malloc fails. 5726 */ 5727 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 5728 int i; 5729 pInfo->aFunc = sqlite3ArrayAllocate( 5730 db, 5731 pInfo->aFunc, 5732 sizeof(pInfo->aFunc[0]), 5733 &pInfo->nFunc, 5734 &i 5735 ); 5736 return i; 5737 } 5738 5739 /* 5740 ** This is the xExprCallback for a tree walker. It is used to 5741 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 5742 ** for additional information. 5743 */ 5744 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 5745 int i; 5746 NameContext *pNC = pWalker->u.pNC; 5747 Parse *pParse = pNC->pParse; 5748 SrcList *pSrcList = pNC->pSrcList; 5749 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 5750 5751 assert( pNC->ncFlags & NC_UAggInfo ); 5752 switch( pExpr->op ){ 5753 case TK_AGG_COLUMN: 5754 case TK_COLUMN: { 5755 testcase( pExpr->op==TK_AGG_COLUMN ); 5756 testcase( pExpr->op==TK_COLUMN ); 5757 /* Check to see if the column is in one of the tables in the FROM 5758 ** clause of the aggregate query */ 5759 if( ALWAYS(pSrcList!=0) ){ 5760 struct SrcList_item *pItem = pSrcList->a; 5761 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 5762 struct AggInfo_col *pCol; 5763 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5764 if( pExpr->iTable==pItem->iCursor ){ 5765 /* If we reach this point, it means that pExpr refers to a table 5766 ** that is in the FROM clause of the aggregate query. 5767 ** 5768 ** Make an entry for the column in pAggInfo->aCol[] if there 5769 ** is not an entry there already. 5770 */ 5771 int k; 5772 pCol = pAggInfo->aCol; 5773 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 5774 if( pCol->iTable==pExpr->iTable && 5775 pCol->iColumn==pExpr->iColumn ){ 5776 break; 5777 } 5778 } 5779 if( (k>=pAggInfo->nColumn) 5780 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 5781 ){ 5782 pCol = &pAggInfo->aCol[k]; 5783 pCol->pTab = pExpr->y.pTab; 5784 pCol->iTable = pExpr->iTable; 5785 pCol->iColumn = pExpr->iColumn; 5786 pCol->iMem = ++pParse->nMem; 5787 pCol->iSorterColumn = -1; 5788 pCol->pExpr = pExpr; 5789 if( pAggInfo->pGroupBy ){ 5790 int j, n; 5791 ExprList *pGB = pAggInfo->pGroupBy; 5792 struct ExprList_item *pTerm = pGB->a; 5793 n = pGB->nExpr; 5794 for(j=0; j<n; j++, pTerm++){ 5795 Expr *pE = pTerm->pExpr; 5796 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 5797 pE->iColumn==pExpr->iColumn ){ 5798 pCol->iSorterColumn = j; 5799 break; 5800 } 5801 } 5802 } 5803 if( pCol->iSorterColumn<0 ){ 5804 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 5805 } 5806 } 5807 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 5808 ** because it was there before or because we just created it). 5809 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 5810 ** pAggInfo->aCol[] entry. 5811 */ 5812 ExprSetVVAProperty(pExpr, EP_NoReduce); 5813 pExpr->pAggInfo = pAggInfo; 5814 pExpr->op = TK_AGG_COLUMN; 5815 pExpr->iAgg = (i16)k; 5816 break; 5817 } /* endif pExpr->iTable==pItem->iCursor */ 5818 } /* end loop over pSrcList */ 5819 } 5820 return WRC_Prune; 5821 } 5822 case TK_AGG_FUNCTION: { 5823 if( (pNC->ncFlags & NC_InAggFunc)==0 5824 && pWalker->walkerDepth==pExpr->op2 5825 ){ 5826 /* Check to see if pExpr is a duplicate of another aggregate 5827 ** function that is already in the pAggInfo structure 5828 */ 5829 struct AggInfo_func *pItem = pAggInfo->aFunc; 5830 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 5831 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){ 5832 break; 5833 } 5834 } 5835 if( i>=pAggInfo->nFunc ){ 5836 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 5837 */ 5838 u8 enc = ENC(pParse->db); 5839 i = addAggInfoFunc(pParse->db, pAggInfo); 5840 if( i>=0 ){ 5841 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 5842 pItem = &pAggInfo->aFunc[i]; 5843 pItem->pExpr = pExpr; 5844 pItem->iMem = ++pParse->nMem; 5845 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 5846 pItem->pFunc = sqlite3FindFunction(pParse->db, 5847 pExpr->u.zToken, 5848 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 5849 if( pExpr->flags & EP_Distinct ){ 5850 pItem->iDistinct = pParse->nTab++; 5851 }else{ 5852 pItem->iDistinct = -1; 5853 } 5854 } 5855 } 5856 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 5857 */ 5858 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 5859 ExprSetVVAProperty(pExpr, EP_NoReduce); 5860 pExpr->iAgg = (i16)i; 5861 pExpr->pAggInfo = pAggInfo; 5862 return WRC_Prune; 5863 }else{ 5864 return WRC_Continue; 5865 } 5866 } 5867 } 5868 return WRC_Continue; 5869 } 5870 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 5871 UNUSED_PARAMETER(pSelect); 5872 pWalker->walkerDepth++; 5873 return WRC_Continue; 5874 } 5875 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){ 5876 UNUSED_PARAMETER(pSelect); 5877 pWalker->walkerDepth--; 5878 } 5879 5880 /* 5881 ** Analyze the pExpr expression looking for aggregate functions and 5882 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 5883 ** points to. Additional entries are made on the AggInfo object as 5884 ** necessary. 5885 ** 5886 ** This routine should only be called after the expression has been 5887 ** analyzed by sqlite3ResolveExprNames(). 5888 */ 5889 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 5890 Walker w; 5891 w.xExprCallback = analyzeAggregate; 5892 w.xSelectCallback = analyzeAggregatesInSelect; 5893 w.xSelectCallback2 = analyzeAggregatesInSelectEnd; 5894 w.walkerDepth = 0; 5895 w.u.pNC = pNC; 5896 w.pParse = 0; 5897 assert( pNC->pSrcList!=0 ); 5898 sqlite3WalkExpr(&w, pExpr); 5899 } 5900 5901 /* 5902 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 5903 ** expression list. Return the number of errors. 5904 ** 5905 ** If an error is found, the analysis is cut short. 5906 */ 5907 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 5908 struct ExprList_item *pItem; 5909 int i; 5910 if( pList ){ 5911 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 5912 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 5913 } 5914 } 5915 } 5916 5917 /* 5918 ** Allocate a single new register for use to hold some intermediate result. 5919 */ 5920 int sqlite3GetTempReg(Parse *pParse){ 5921 if( pParse->nTempReg==0 ){ 5922 return ++pParse->nMem; 5923 } 5924 return pParse->aTempReg[--pParse->nTempReg]; 5925 } 5926 5927 /* 5928 ** Deallocate a register, making available for reuse for some other 5929 ** purpose. 5930 */ 5931 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 5932 if( iReg ){ 5933 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 5934 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 5935 pParse->aTempReg[pParse->nTempReg++] = iReg; 5936 } 5937 } 5938 } 5939 5940 /* 5941 ** Allocate or deallocate a block of nReg consecutive registers. 5942 */ 5943 int sqlite3GetTempRange(Parse *pParse, int nReg){ 5944 int i, n; 5945 if( nReg==1 ) return sqlite3GetTempReg(pParse); 5946 i = pParse->iRangeReg; 5947 n = pParse->nRangeReg; 5948 if( nReg<=n ){ 5949 pParse->iRangeReg += nReg; 5950 pParse->nRangeReg -= nReg; 5951 }else{ 5952 i = pParse->nMem+1; 5953 pParse->nMem += nReg; 5954 } 5955 return i; 5956 } 5957 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 5958 if( nReg==1 ){ 5959 sqlite3ReleaseTempReg(pParse, iReg); 5960 return; 5961 } 5962 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 5963 if( nReg>pParse->nRangeReg ){ 5964 pParse->nRangeReg = nReg; 5965 pParse->iRangeReg = iReg; 5966 } 5967 } 5968 5969 /* 5970 ** Mark all temporary registers as being unavailable for reuse. 5971 ** 5972 ** Always invoke this procedure after coding a subroutine or co-routine 5973 ** that might be invoked from other parts of the code, to ensure that 5974 ** the sub/co-routine does not use registers in common with the code that 5975 ** invokes the sub/co-routine. 5976 */ 5977 void sqlite3ClearTempRegCache(Parse *pParse){ 5978 pParse->nTempReg = 0; 5979 pParse->nRangeReg = 0; 5980 } 5981 5982 /* 5983 ** Validate that no temporary register falls within the range of 5984 ** iFirst..iLast, inclusive. This routine is only call from within assert() 5985 ** statements. 5986 */ 5987 #ifdef SQLITE_DEBUG 5988 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 5989 int i; 5990 if( pParse->nRangeReg>0 5991 && pParse->iRangeReg+pParse->nRangeReg > iFirst 5992 && pParse->iRangeReg <= iLast 5993 ){ 5994 return 0; 5995 } 5996 for(i=0; i<pParse->nTempReg; i++){ 5997 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 5998 return 0; 5999 } 6000 } 6001 return 1; 6002 } 6003 #endif /* SQLITE_DEBUG */ 6004