1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 ** 15 ** $Id: expr.c,v 1.316 2007/11/12 09:50:26 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <ctype.h> 19 20 /* 21 ** Return the 'affinity' of the expression pExpr if any. 22 ** 23 ** If pExpr is a column, a reference to a column via an 'AS' alias, 24 ** or a sub-select with a column as the return value, then the 25 ** affinity of that column is returned. Otherwise, 0x00 is returned, 26 ** indicating no affinity for the expression. 27 ** 28 ** i.e. the WHERE clause expresssions in the following statements all 29 ** have an affinity: 30 ** 31 ** CREATE TABLE t1(a); 32 ** SELECT * FROM t1 WHERE a; 33 ** SELECT a AS b FROM t1 WHERE b; 34 ** SELECT * FROM t1 WHERE (select a from t1); 35 */ 36 char sqlite3ExprAffinity(Expr *pExpr){ 37 int op = pExpr->op; 38 if( op==TK_SELECT ){ 39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 return sqlite3AffinityType(&pExpr->token); 44 } 45 #endif 46 return pExpr->affinity; 47 } 48 49 /* 50 ** Set the collating sequence for expression pExpr to be the collating 51 ** sequence named by pToken. Return a pointer to the revised expression. 52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate 53 ** flag. An explicit collating sequence will override implicit 54 ** collating sequences. 55 */ 56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ 57 char *zColl = 0; /* Dequoted name of collation sequence */ 58 CollSeq *pColl; 59 zColl = sqlite3NameFromToken(pParse->db, pName); 60 if( pExpr && zColl ){ 61 pColl = sqlite3LocateCollSeq(pParse, zColl, -1); 62 if( pColl ){ 63 pExpr->pColl = pColl; 64 pExpr->flags |= EP_ExpCollate; 65 } 66 } 67 sqlite3_free(zColl); 68 return pExpr; 69 } 70 71 /* 72 ** Return the default collation sequence for the expression pExpr. If 73 ** there is no default collation type, return 0. 74 */ 75 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 76 CollSeq *pColl = 0; 77 if( pExpr ){ 78 int op; 79 pColl = pExpr->pColl; 80 op = pExpr->op; 81 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ 82 return sqlite3ExprCollSeq(pParse, pExpr->pLeft); 83 } 84 } 85 if( sqlite3CheckCollSeq(pParse, pColl) ){ 86 pColl = 0; 87 } 88 return pColl; 89 } 90 91 /* 92 ** pExpr is an operand of a comparison operator. aff2 is the 93 ** type affinity of the other operand. This routine returns the 94 ** type affinity that should be used for the comparison operator. 95 */ 96 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 97 char aff1 = sqlite3ExprAffinity(pExpr); 98 if( aff1 && aff2 ){ 99 /* Both sides of the comparison are columns. If one has numeric 100 ** affinity, use that. Otherwise use no affinity. 101 */ 102 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 103 return SQLITE_AFF_NUMERIC; 104 }else{ 105 return SQLITE_AFF_NONE; 106 } 107 }else if( !aff1 && !aff2 ){ 108 /* Neither side of the comparison is a column. Compare the 109 ** results directly. 110 */ 111 return SQLITE_AFF_NONE; 112 }else{ 113 /* One side is a column, the other is not. Use the columns affinity. */ 114 assert( aff1==0 || aff2==0 ); 115 return (aff1 + aff2); 116 } 117 } 118 119 /* 120 ** pExpr is a comparison operator. Return the type affinity that should 121 ** be applied to both operands prior to doing the comparison. 122 */ 123 static char comparisonAffinity(Expr *pExpr){ 124 char aff; 125 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 126 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 127 pExpr->op==TK_NE ); 128 assert( pExpr->pLeft ); 129 aff = sqlite3ExprAffinity(pExpr->pLeft); 130 if( pExpr->pRight ){ 131 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 132 } 133 else if( pExpr->pSelect ){ 134 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); 135 } 136 else if( !aff ){ 137 aff = SQLITE_AFF_NONE; 138 } 139 return aff; 140 } 141 142 /* 143 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 144 ** idx_affinity is the affinity of an indexed column. Return true 145 ** if the index with affinity idx_affinity may be used to implement 146 ** the comparison in pExpr. 147 */ 148 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 149 char aff = comparisonAffinity(pExpr); 150 switch( aff ){ 151 case SQLITE_AFF_NONE: 152 return 1; 153 case SQLITE_AFF_TEXT: 154 return idx_affinity==SQLITE_AFF_TEXT; 155 default: 156 return sqlite3IsNumericAffinity(idx_affinity); 157 } 158 } 159 160 /* 161 ** Return the P1 value that should be used for a binary comparison 162 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 163 ** If jumpIfNull is true, then set the low byte of the returned 164 ** P1 value to tell the opcode to jump if either expression 165 ** evaluates to NULL. 166 */ 167 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 168 char aff = sqlite3ExprAffinity(pExpr2); 169 return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0); 170 } 171 172 /* 173 ** Return a pointer to the collation sequence that should be used by 174 ** a binary comparison operator comparing pLeft and pRight. 175 ** 176 ** If the left hand expression has a collating sequence type, then it is 177 ** used. Otherwise the collation sequence for the right hand expression 178 ** is used, or the default (BINARY) if neither expression has a collating 179 ** type. 180 ** 181 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 182 ** it is not considered. 183 */ 184 CollSeq *sqlite3BinaryCompareCollSeq( 185 Parse *pParse, 186 Expr *pLeft, 187 Expr *pRight 188 ){ 189 CollSeq *pColl; 190 assert( pLeft ); 191 if( pLeft->flags & EP_ExpCollate ){ 192 assert( pLeft->pColl ); 193 pColl = pLeft->pColl; 194 }else if( pRight && pRight->flags & EP_ExpCollate ){ 195 assert( pRight->pColl ); 196 pColl = pRight->pColl; 197 }else{ 198 pColl = sqlite3ExprCollSeq(pParse, pLeft); 199 if( !pColl ){ 200 pColl = sqlite3ExprCollSeq(pParse, pRight); 201 } 202 } 203 return pColl; 204 } 205 206 /* 207 ** Generate code for a comparison operator. 208 */ 209 static int codeCompare( 210 Parse *pParse, /* The parsing (and code generating) context */ 211 Expr *pLeft, /* The left operand */ 212 Expr *pRight, /* The right operand */ 213 int opcode, /* The comparison opcode */ 214 int dest, /* Jump here if true. */ 215 int jumpIfNull /* If true, jump if either operand is NULL */ 216 ){ 217 int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull); 218 CollSeq *p3 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 219 return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ); 220 } 221 222 /* 223 ** Construct a new expression node and return a pointer to it. Memory 224 ** for this node is obtained from sqlite3_malloc(). The calling function 225 ** is responsible for making sure the node eventually gets freed. 226 */ 227 Expr *sqlite3Expr( 228 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 229 int op, /* Expression opcode */ 230 Expr *pLeft, /* Left operand */ 231 Expr *pRight, /* Right operand */ 232 const Token *pToken /* Argument token */ 233 ){ 234 Expr *pNew; 235 pNew = sqlite3DbMallocZero(db, sizeof(Expr)); 236 if( pNew==0 ){ 237 /* When malloc fails, delete pLeft and pRight. Expressions passed to 238 ** this function must always be allocated with sqlite3Expr() for this 239 ** reason. 240 */ 241 sqlite3ExprDelete(pLeft); 242 sqlite3ExprDelete(pRight); 243 return 0; 244 } 245 pNew->op = op; 246 pNew->pLeft = pLeft; 247 pNew->pRight = pRight; 248 pNew->iAgg = -1; 249 if( pToken ){ 250 assert( pToken->dyn==0 ); 251 pNew->span = pNew->token = *pToken; 252 }else if( pLeft ){ 253 if( pRight ){ 254 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); 255 if( pRight->flags & EP_ExpCollate ){ 256 pNew->flags |= EP_ExpCollate; 257 pNew->pColl = pRight->pColl; 258 } 259 } 260 if( pLeft->flags & EP_ExpCollate ){ 261 pNew->flags |= EP_ExpCollate; 262 pNew->pColl = pLeft->pColl; 263 } 264 } 265 266 sqlite3ExprSetHeight(pNew); 267 return pNew; 268 } 269 270 /* 271 ** Works like sqlite3Expr() except that it takes an extra Parse* 272 ** argument and notifies the associated connection object if malloc fails. 273 */ 274 Expr *sqlite3PExpr( 275 Parse *pParse, /* Parsing context */ 276 int op, /* Expression opcode */ 277 Expr *pLeft, /* Left operand */ 278 Expr *pRight, /* Right operand */ 279 const Token *pToken /* Argument token */ 280 ){ 281 return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); 282 } 283 284 /* 285 ** When doing a nested parse, you can include terms in an expression 286 ** that look like this: #0 #1 #2 ... These terms refer to elements 287 ** on the stack. "#0" means the top of the stack. 288 ** "#1" means the next down on the stack. And so forth. 289 ** 290 ** This routine is called by the parser to deal with on of those terms. 291 ** It immediately generates code to store the value in a memory location. 292 ** The returns an expression that will code to extract the value from 293 ** that memory location as needed. 294 */ 295 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ 296 Vdbe *v = pParse->pVdbe; 297 Expr *p; 298 int depth; 299 if( pParse->nested==0 ){ 300 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); 301 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); 302 } 303 if( v==0 ) return 0; 304 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); 305 if( p==0 ){ 306 return 0; /* Malloc failed */ 307 } 308 depth = atoi((char*)&pToken->z[1]); 309 p->iTable = pParse->nMem++; 310 sqlite3VdbeAddOp(v, OP_Dup, depth, 0); 311 sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1); 312 return p; 313 } 314 315 /* 316 ** Join two expressions using an AND operator. If either expression is 317 ** NULL, then just return the other expression. 318 */ 319 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 320 if( pLeft==0 ){ 321 return pRight; 322 }else if( pRight==0 ){ 323 return pLeft; 324 }else{ 325 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); 326 } 327 } 328 329 /* 330 ** Set the Expr.span field of the given expression to span all 331 ** text between the two given tokens. 332 */ 333 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ 334 assert( pRight!=0 ); 335 assert( pLeft!=0 ); 336 if( pExpr && pRight->z && pLeft->z ){ 337 assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); 338 if( pLeft->dyn==0 && pRight->dyn==0 ){ 339 pExpr->span.z = pLeft->z; 340 pExpr->span.n = pRight->n + (pRight->z - pLeft->z); 341 }else{ 342 pExpr->span.z = 0; 343 } 344 } 345 } 346 347 /* 348 ** Construct a new expression node for a function with multiple 349 ** arguments. 350 */ 351 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 352 Expr *pNew; 353 assert( pToken ); 354 pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); 355 if( pNew==0 ){ 356 sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ 357 return 0; 358 } 359 pNew->op = TK_FUNCTION; 360 pNew->pList = pList; 361 assert( pToken->dyn==0 ); 362 pNew->token = *pToken; 363 pNew->span = pNew->token; 364 365 sqlite3ExprSetHeight(pNew); 366 return pNew; 367 } 368 369 /* 370 ** Assign a variable number to an expression that encodes a wildcard 371 ** in the original SQL statement. 372 ** 373 ** Wildcards consisting of a single "?" are assigned the next sequential 374 ** variable number. 375 ** 376 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 377 ** sure "nnn" is not too be to avoid a denial of service attack when 378 ** the SQL statement comes from an external source. 379 ** 380 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number 381 ** as the previous instance of the same wildcard. Or if this is the first 382 ** instance of the wildcard, the next sequenial variable number is 383 ** assigned. 384 */ 385 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 386 Token *pToken; 387 sqlite3 *db = pParse->db; 388 389 if( pExpr==0 ) return; 390 pToken = &pExpr->token; 391 assert( pToken->n>=1 ); 392 assert( pToken->z!=0 ); 393 assert( pToken->z[0]!=0 ); 394 if( pToken->n==1 ){ 395 /* Wildcard of the form "?". Assign the next variable number */ 396 pExpr->iTable = ++pParse->nVar; 397 }else if( pToken->z[0]=='?' ){ 398 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 399 ** use it as the variable number */ 400 int i; 401 pExpr->iTable = i = atoi((char*)&pToken->z[1]); 402 if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){ 403 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 404 SQLITE_MAX_VARIABLE_NUMBER); 405 } 406 if( i>pParse->nVar ){ 407 pParse->nVar = i; 408 } 409 }else{ 410 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable 411 ** number as the prior appearance of the same name, or if the name 412 ** has never appeared before, reuse the same variable number 413 */ 414 int i, n; 415 n = pToken->n; 416 for(i=0; i<pParse->nVarExpr; i++){ 417 Expr *pE; 418 if( (pE = pParse->apVarExpr[i])!=0 419 && pE->token.n==n 420 && memcmp(pE->token.z, pToken->z, n)==0 ){ 421 pExpr->iTable = pE->iTable; 422 break; 423 } 424 } 425 if( i>=pParse->nVarExpr ){ 426 pExpr->iTable = ++pParse->nVar; 427 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ 428 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; 429 pParse->apVarExpr = 430 sqlite3DbReallocOrFree( 431 db, 432 pParse->apVarExpr, 433 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) 434 ); 435 } 436 if( !db->mallocFailed ){ 437 assert( pParse->apVarExpr!=0 ); 438 pParse->apVarExpr[pParse->nVarExpr++] = pExpr; 439 } 440 } 441 } 442 if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){ 443 sqlite3ErrorMsg(pParse, "too many SQL variables"); 444 } 445 } 446 447 /* 448 ** Recursively delete an expression tree. 449 */ 450 void sqlite3ExprDelete(Expr *p){ 451 if( p==0 ) return; 452 if( p->span.dyn ) sqlite3_free((char*)p->span.z); 453 if( p->token.dyn ) sqlite3_free((char*)p->token.z); 454 sqlite3ExprDelete(p->pLeft); 455 sqlite3ExprDelete(p->pRight); 456 sqlite3ExprListDelete(p->pList); 457 sqlite3SelectDelete(p->pSelect); 458 sqlite3_free(p); 459 } 460 461 /* 462 ** The Expr.token field might be a string literal that is quoted. 463 ** If so, remove the quotation marks. 464 */ 465 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ 466 if( ExprHasAnyProperty(p, EP_Dequoted) ){ 467 return; 468 } 469 ExprSetProperty(p, EP_Dequoted); 470 if( p->token.dyn==0 ){ 471 sqlite3TokenCopy(db, &p->token, &p->token); 472 } 473 sqlite3Dequote((char*)p->token.z); 474 } 475 476 477 /* 478 ** The following group of routines make deep copies of expressions, 479 ** expression lists, ID lists, and select statements. The copies can 480 ** be deleted (by being passed to their respective ...Delete() routines) 481 ** without effecting the originals. 482 ** 483 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 484 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 485 ** by subsequent calls to sqlite*ListAppend() routines. 486 ** 487 ** Any tables that the SrcList might point to are not duplicated. 488 */ 489 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ 490 Expr *pNew; 491 if( p==0 ) return 0; 492 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 493 if( pNew==0 ) return 0; 494 memcpy(pNew, p, sizeof(*pNew)); 495 if( p->token.z!=0 ){ 496 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); 497 pNew->token.dyn = 1; 498 }else{ 499 assert( pNew->token.z==0 ); 500 } 501 pNew->span.z = 0; 502 pNew->pLeft = sqlite3ExprDup(db, p->pLeft); 503 pNew->pRight = sqlite3ExprDup(db, p->pRight); 504 pNew->pList = sqlite3ExprListDup(db, p->pList); 505 pNew->pSelect = sqlite3SelectDup(db, p->pSelect); 506 return pNew; 507 } 508 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ 509 if( pTo->dyn ) sqlite3_free((char*)pTo->z); 510 if( pFrom->z ){ 511 pTo->n = pFrom->n; 512 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); 513 pTo->dyn = 1; 514 }else{ 515 pTo->z = 0; 516 } 517 } 518 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ 519 ExprList *pNew; 520 struct ExprList_item *pItem, *pOldItem; 521 int i; 522 if( p==0 ) return 0; 523 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 524 if( pNew==0 ) return 0; 525 pNew->iECursor = 0; 526 pNew->nExpr = pNew->nAlloc = p->nExpr; 527 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); 528 if( pItem==0 ){ 529 sqlite3_free(pNew); 530 return 0; 531 } 532 pOldItem = p->a; 533 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 534 Expr *pNewExpr, *pOldExpr; 535 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); 536 if( pOldExpr->span.z!=0 && pNewExpr ){ 537 /* Always make a copy of the span for top-level expressions in the 538 ** expression list. The logic in SELECT processing that determines 539 ** the names of columns in the result set needs this information */ 540 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); 541 } 542 assert( pNewExpr==0 || pNewExpr->span.z!=0 543 || pOldExpr->span.z==0 544 || db->mallocFailed ); 545 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 546 pItem->sortOrder = pOldItem->sortOrder; 547 pItem->isAgg = pOldItem->isAgg; 548 pItem->done = 0; 549 } 550 return pNew; 551 } 552 553 /* 554 ** If cursors, triggers, views and subqueries are all omitted from 555 ** the build, then none of the following routines, except for 556 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 557 ** called with a NULL argument. 558 */ 559 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 560 || !defined(SQLITE_OMIT_SUBQUERY) 561 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ 562 SrcList *pNew; 563 int i; 564 int nByte; 565 if( p==0 ) return 0; 566 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 567 pNew = sqlite3DbMallocRaw(db, nByte ); 568 if( pNew==0 ) return 0; 569 pNew->nSrc = pNew->nAlloc = p->nSrc; 570 for(i=0; i<p->nSrc; i++){ 571 struct SrcList_item *pNewItem = &pNew->a[i]; 572 struct SrcList_item *pOldItem = &p->a[i]; 573 Table *pTab; 574 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 575 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 576 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 577 pNewItem->jointype = pOldItem->jointype; 578 pNewItem->iCursor = pOldItem->iCursor; 579 pNewItem->isPopulated = pOldItem->isPopulated; 580 pTab = pNewItem->pTab = pOldItem->pTab; 581 if( pTab ){ 582 pTab->nRef++; 583 } 584 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); 585 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); 586 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 587 pNewItem->colUsed = pOldItem->colUsed; 588 } 589 return pNew; 590 } 591 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 592 IdList *pNew; 593 int i; 594 if( p==0 ) return 0; 595 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 596 if( pNew==0 ) return 0; 597 pNew->nId = pNew->nAlloc = p->nId; 598 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 599 if( pNew->a==0 ){ 600 sqlite3_free(pNew); 601 return 0; 602 } 603 for(i=0; i<p->nId; i++){ 604 struct IdList_item *pNewItem = &pNew->a[i]; 605 struct IdList_item *pOldItem = &p->a[i]; 606 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 607 pNewItem->idx = pOldItem->idx; 608 } 609 return pNew; 610 } 611 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 612 Select *pNew; 613 if( p==0 ) return 0; 614 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 615 if( pNew==0 ) return 0; 616 pNew->isDistinct = p->isDistinct; 617 pNew->pEList = sqlite3ExprListDup(db, p->pEList); 618 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); 619 pNew->pWhere = sqlite3ExprDup(db, p->pWhere); 620 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); 621 pNew->pHaving = sqlite3ExprDup(db, p->pHaving); 622 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); 623 pNew->op = p->op; 624 pNew->pPrior = sqlite3SelectDup(db, p->pPrior); 625 pNew->pLimit = sqlite3ExprDup(db, p->pLimit); 626 pNew->pOffset = sqlite3ExprDup(db, p->pOffset); 627 pNew->iLimit = -1; 628 pNew->iOffset = -1; 629 pNew->isResolved = p->isResolved; 630 pNew->isAgg = p->isAgg; 631 pNew->usesEphm = 0; 632 pNew->disallowOrderBy = 0; 633 pNew->pRightmost = 0; 634 pNew->addrOpenEphm[0] = -1; 635 pNew->addrOpenEphm[1] = -1; 636 pNew->addrOpenEphm[2] = -1; 637 return pNew; 638 } 639 #else 640 Select *sqlite3SelectDup(sqlite3 *db, Select *p){ 641 assert( p==0 ); 642 return 0; 643 } 644 #endif 645 646 647 /* 648 ** Add a new element to the end of an expression list. If pList is 649 ** initially NULL, then create a new expression list. 650 */ 651 ExprList *sqlite3ExprListAppend( 652 Parse *pParse, /* Parsing context */ 653 ExprList *pList, /* List to which to append. Might be NULL */ 654 Expr *pExpr, /* Expression to be appended */ 655 Token *pName /* AS keyword for the expression */ 656 ){ 657 sqlite3 *db = pParse->db; 658 if( pList==0 ){ 659 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 660 if( pList==0 ){ 661 goto no_mem; 662 } 663 assert( pList->nAlloc==0 ); 664 } 665 if( pList->nAlloc<=pList->nExpr ){ 666 struct ExprList_item *a; 667 int n = pList->nAlloc*2 + 4; 668 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); 669 if( a==0 ){ 670 goto no_mem; 671 } 672 pList->a = a; 673 pList->nAlloc = n; 674 } 675 assert( pList->a!=0 ); 676 if( pExpr || pName ){ 677 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 678 memset(pItem, 0, sizeof(*pItem)); 679 pItem->zName = sqlite3NameFromToken(db, pName); 680 pItem->pExpr = pExpr; 681 } 682 return pList; 683 684 no_mem: 685 /* Avoid leaking memory if malloc has failed. */ 686 sqlite3ExprDelete(pExpr); 687 sqlite3ExprListDelete(pList); 688 return 0; 689 } 690 691 /* 692 ** If the expression list pEList contains more than iLimit elements, 693 ** leave an error message in pParse. 694 */ 695 void sqlite3ExprListCheckLength( 696 Parse *pParse, 697 ExprList *pEList, 698 int iLimit, 699 const char *zObject 700 ){ 701 if( pEList && pEList->nExpr>iLimit ){ 702 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 703 } 704 } 705 706 707 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 708 /* The following three functions, heightOfExpr(), heightOfExprList() 709 ** and heightOfSelect(), are used to determine the maximum height 710 ** of any expression tree referenced by the structure passed as the 711 ** first argument. 712 ** 713 ** If this maximum height is greater than the current value pointed 714 ** to by pnHeight, the second parameter, then set *pnHeight to that 715 ** value. 716 */ 717 static void heightOfExpr(Expr *p, int *pnHeight){ 718 if( p ){ 719 if( p->nHeight>*pnHeight ){ 720 *pnHeight = p->nHeight; 721 } 722 } 723 } 724 static void heightOfExprList(ExprList *p, int *pnHeight){ 725 if( p ){ 726 int i; 727 for(i=0; i<p->nExpr; i++){ 728 heightOfExpr(p->a[i].pExpr, pnHeight); 729 } 730 } 731 } 732 static void heightOfSelect(Select *p, int *pnHeight){ 733 if( p ){ 734 heightOfExpr(p->pWhere, pnHeight); 735 heightOfExpr(p->pHaving, pnHeight); 736 heightOfExpr(p->pLimit, pnHeight); 737 heightOfExpr(p->pOffset, pnHeight); 738 heightOfExprList(p->pEList, pnHeight); 739 heightOfExprList(p->pGroupBy, pnHeight); 740 heightOfExprList(p->pOrderBy, pnHeight); 741 heightOfSelect(p->pPrior, pnHeight); 742 } 743 } 744 745 /* 746 ** Set the Expr.nHeight variable in the structure passed as an 747 ** argument. An expression with no children, Expr.pList or 748 ** Expr.pSelect member has a height of 1. Any other expression 749 ** has a height equal to the maximum height of any other 750 ** referenced Expr plus one. 751 */ 752 void sqlite3ExprSetHeight(Expr *p){ 753 int nHeight = 0; 754 heightOfExpr(p->pLeft, &nHeight); 755 heightOfExpr(p->pRight, &nHeight); 756 heightOfExprList(p->pList, &nHeight); 757 heightOfSelect(p->pSelect, &nHeight); 758 p->nHeight = nHeight + 1; 759 } 760 761 /* 762 ** Return the maximum height of any expression tree referenced 763 ** by the select statement passed as an argument. 764 */ 765 int sqlite3SelectExprHeight(Select *p){ 766 int nHeight = 0; 767 heightOfSelect(p, &nHeight); 768 return nHeight; 769 } 770 #endif 771 772 /* 773 ** Delete an entire expression list. 774 */ 775 void sqlite3ExprListDelete(ExprList *pList){ 776 int i; 777 struct ExprList_item *pItem; 778 if( pList==0 ) return; 779 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); 780 assert( pList->nExpr<=pList->nAlloc ); 781 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 782 sqlite3ExprDelete(pItem->pExpr); 783 sqlite3_free(pItem->zName); 784 } 785 sqlite3_free(pList->a); 786 sqlite3_free(pList); 787 } 788 789 /* 790 ** Walk an expression tree. Call xFunc for each node visited. 791 ** 792 ** The return value from xFunc determines whether the tree walk continues. 793 ** 0 means continue walking the tree. 1 means do not walk children 794 ** of the current node but continue with siblings. 2 means abandon 795 ** the tree walk completely. 796 ** 797 ** The return value from this routine is 1 to abandon the tree walk 798 ** and 0 to continue. 799 ** 800 ** NOTICE: This routine does *not* descend into subqueries. 801 */ 802 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); 803 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ 804 int rc; 805 if( pExpr==0 ) return 0; 806 rc = (*xFunc)(pArg, pExpr); 807 if( rc==0 ){ 808 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; 809 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; 810 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; 811 } 812 return rc>1; 813 } 814 815 /* 816 ** Call walkExprTree() for every expression in list p. 817 */ 818 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ 819 int i; 820 struct ExprList_item *pItem; 821 if( !p ) return 0; 822 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ 823 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; 824 } 825 return 0; 826 } 827 828 /* 829 ** Call walkExprTree() for every expression in Select p, not including 830 ** expressions that are part of sub-selects in any FROM clause or the LIMIT 831 ** or OFFSET expressions.. 832 */ 833 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ 834 walkExprList(p->pEList, xFunc, pArg); 835 walkExprTree(p->pWhere, xFunc, pArg); 836 walkExprList(p->pGroupBy, xFunc, pArg); 837 walkExprTree(p->pHaving, xFunc, pArg); 838 walkExprList(p->pOrderBy, xFunc, pArg); 839 if( p->pPrior ){ 840 walkSelectExpr(p->pPrior, xFunc, pArg); 841 } 842 return 0; 843 } 844 845 846 /* 847 ** This routine is designed as an xFunc for walkExprTree(). 848 ** 849 ** pArg is really a pointer to an integer. If we can tell by looking 850 ** at pExpr that the expression that contains pExpr is not a constant 851 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk. 852 ** If pExpr does does not disqualify the expression from being a constant 853 ** then do nothing. 854 ** 855 ** After walking the whole tree, if no nodes are found that disqualify 856 ** the expression as constant, then we assume the whole expression 857 ** is constant. See sqlite3ExprIsConstant() for additional information. 858 */ 859 static int exprNodeIsConstant(void *pArg, Expr *pExpr){ 860 int *pN = (int*)pArg; 861 862 /* If *pArg is 3 then any term of the expression that comes from 863 ** the ON or USING clauses of a join disqualifies the expression 864 ** from being considered constant. */ 865 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ 866 *pN = 0; 867 return 2; 868 } 869 870 switch( pExpr->op ){ 871 /* Consider functions to be constant if all their arguments are constant 872 ** and *pArg==2 */ 873 case TK_FUNCTION: 874 if( (*pN)==2 ) return 0; 875 /* Fall through */ 876 case TK_ID: 877 case TK_COLUMN: 878 case TK_DOT: 879 case TK_AGG_FUNCTION: 880 case TK_AGG_COLUMN: 881 #ifndef SQLITE_OMIT_SUBQUERY 882 case TK_SELECT: 883 case TK_EXISTS: 884 #endif 885 *pN = 0; 886 return 2; 887 case TK_IN: 888 if( pExpr->pSelect ){ 889 *pN = 0; 890 return 2; 891 } 892 default: 893 return 0; 894 } 895 } 896 897 /* 898 ** Walk an expression tree. Return 1 if the expression is constant 899 ** and 0 if it involves variables or function calls. 900 ** 901 ** For the purposes of this function, a double-quoted string (ex: "abc") 902 ** is considered a variable but a single-quoted string (ex: 'abc') is 903 ** a constant. 904 */ 905 int sqlite3ExprIsConstant(Expr *p){ 906 int isConst = 1; 907 walkExprTree(p, exprNodeIsConstant, &isConst); 908 return isConst; 909 } 910 911 /* 912 ** Walk an expression tree. Return 1 if the expression is constant 913 ** that does no originate from the ON or USING clauses of a join. 914 ** Return 0 if it involves variables or function calls or terms from 915 ** an ON or USING clause. 916 */ 917 int sqlite3ExprIsConstantNotJoin(Expr *p){ 918 int isConst = 3; 919 walkExprTree(p, exprNodeIsConstant, &isConst); 920 return isConst!=0; 921 } 922 923 /* 924 ** Walk an expression tree. Return 1 if the expression is constant 925 ** or a function call with constant arguments. Return and 0 if there 926 ** are any variables. 927 ** 928 ** For the purposes of this function, a double-quoted string (ex: "abc") 929 ** is considered a variable but a single-quoted string (ex: 'abc') is 930 ** a constant. 931 */ 932 int sqlite3ExprIsConstantOrFunction(Expr *p){ 933 int isConst = 2; 934 walkExprTree(p, exprNodeIsConstant, &isConst); 935 return isConst!=0; 936 } 937 938 /* 939 ** If the expression p codes a constant integer that is small enough 940 ** to fit in a 32-bit integer, return 1 and put the value of the integer 941 ** in *pValue. If the expression is not an integer or if it is too big 942 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 943 */ 944 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 945 switch( p->op ){ 946 case TK_INTEGER: { 947 if( sqlite3GetInt32((char*)p->token.z, pValue) ){ 948 return 1; 949 } 950 break; 951 } 952 case TK_UPLUS: { 953 return sqlite3ExprIsInteger(p->pLeft, pValue); 954 } 955 case TK_UMINUS: { 956 int v; 957 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 958 *pValue = -v; 959 return 1; 960 } 961 break; 962 } 963 default: break; 964 } 965 return 0; 966 } 967 968 /* 969 ** Return TRUE if the given string is a row-id column name. 970 */ 971 int sqlite3IsRowid(const char *z){ 972 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 973 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 974 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 975 return 0; 976 } 977 978 /* 979 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up 980 ** that name in the set of source tables in pSrcList and make the pExpr 981 ** expression node refer back to that source column. The following changes 982 ** are made to pExpr: 983 ** 984 ** pExpr->iDb Set the index in db->aDb[] of the database holding 985 ** the table. 986 ** pExpr->iTable Set to the cursor number for the table obtained 987 ** from pSrcList. 988 ** pExpr->iColumn Set to the column number within the table. 989 ** pExpr->op Set to TK_COLUMN. 990 ** pExpr->pLeft Any expression this points to is deleted 991 ** pExpr->pRight Any expression this points to is deleted. 992 ** 993 ** The pDbToken is the name of the database (the "X"). This value may be 994 ** NULL meaning that name is of the form Y.Z or Z. Any available database 995 ** can be used. The pTableToken is the name of the table (the "Y"). This 996 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it 997 ** means that the form of the name is Z and that columns from any table 998 ** can be used. 999 ** 1000 ** If the name cannot be resolved unambiguously, leave an error message 1001 ** in pParse and return non-zero. Return zero on success. 1002 */ 1003 static int lookupName( 1004 Parse *pParse, /* The parsing context */ 1005 Token *pDbToken, /* Name of the database containing table, or NULL */ 1006 Token *pTableToken, /* Name of table containing column, or NULL */ 1007 Token *pColumnToken, /* Name of the column. */ 1008 NameContext *pNC, /* The name context used to resolve the name */ 1009 Expr *pExpr /* Make this EXPR node point to the selected column */ 1010 ){ 1011 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ 1012 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ 1013 char *zCol = 0; /* Name of the column. The "Z" */ 1014 int i, j; /* Loop counters */ 1015 int cnt = 0; /* Number of matching column names */ 1016 int cntTab = 0; /* Number of matching table names */ 1017 sqlite3 *db = pParse->db; /* The database */ 1018 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ 1019 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ 1020 NameContext *pTopNC = pNC; /* First namecontext in the list */ 1021 Schema *pSchema = 0; /* Schema of the expression */ 1022 1023 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ 1024 zDb = sqlite3NameFromToken(db, pDbToken); 1025 zTab = sqlite3NameFromToken(db, pTableToken); 1026 zCol = sqlite3NameFromToken(db, pColumnToken); 1027 if( db->mallocFailed ){ 1028 goto lookupname_end; 1029 } 1030 1031 pExpr->iTable = -1; 1032 while( pNC && cnt==0 ){ 1033 ExprList *pEList; 1034 SrcList *pSrcList = pNC->pSrcList; 1035 1036 if( pSrcList ){ 1037 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ 1038 Table *pTab; 1039 int iDb; 1040 Column *pCol; 1041 1042 pTab = pItem->pTab; 1043 assert( pTab!=0 ); 1044 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1045 assert( pTab->nCol>0 ); 1046 if( zTab ){ 1047 if( pItem->zAlias ){ 1048 char *zTabName = pItem->zAlias; 1049 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1050 }else{ 1051 char *zTabName = pTab->zName; 1052 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; 1053 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ 1054 continue; 1055 } 1056 } 1057 } 1058 if( 0==(cntTab++) ){ 1059 pExpr->iTable = pItem->iCursor; 1060 pSchema = pTab->pSchema; 1061 pMatch = pItem; 1062 } 1063 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ 1064 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1065 const char *zColl = pTab->aCol[j].zColl; 1066 IdList *pUsing; 1067 cnt++; 1068 pExpr->iTable = pItem->iCursor; 1069 pMatch = pItem; 1070 pSchema = pTab->pSchema; 1071 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ 1072 pExpr->iColumn = j==pTab->iPKey ? -1 : j; 1073 pExpr->affinity = pTab->aCol[j].affinity; 1074 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1075 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1076 } 1077 if( i<pSrcList->nSrc-1 ){ 1078 if( pItem[1].jointype & JT_NATURAL ){ 1079 /* If this match occurred in the left table of a natural join, 1080 ** then skip the right table to avoid a duplicate match */ 1081 pItem++; 1082 i++; 1083 }else if( (pUsing = pItem[1].pUsing)!=0 ){ 1084 /* If this match occurs on a column that is in the USING clause 1085 ** of a join, skip the search of the right table of the join 1086 ** to avoid a duplicate match there. */ 1087 int k; 1088 for(k=0; k<pUsing->nId; k++){ 1089 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ 1090 pItem++; 1091 i++; 1092 break; 1093 } 1094 } 1095 } 1096 } 1097 break; 1098 } 1099 } 1100 } 1101 } 1102 1103 #ifndef SQLITE_OMIT_TRIGGER 1104 /* If we have not already resolved the name, then maybe 1105 ** it is a new.* or old.* trigger argument reference 1106 */ 1107 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ 1108 TriggerStack *pTriggerStack = pParse->trigStack; 1109 Table *pTab = 0; 1110 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ 1111 pExpr->iTable = pTriggerStack->newIdx; 1112 assert( pTriggerStack->pTab ); 1113 pTab = pTriggerStack->pTab; 1114 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ 1115 pExpr->iTable = pTriggerStack->oldIdx; 1116 assert( pTriggerStack->pTab ); 1117 pTab = pTriggerStack->pTab; 1118 } 1119 1120 if( pTab ){ 1121 int iCol; 1122 Column *pCol = pTab->aCol; 1123 1124 pSchema = pTab->pSchema; 1125 cntTab++; 1126 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { 1127 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ 1128 const char *zColl = pTab->aCol[iCol].zColl; 1129 cnt++; 1130 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; 1131 pExpr->affinity = pTab->aCol[iCol].affinity; 1132 if( (pExpr->flags & EP_ExpCollate)==0 ){ 1133 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); 1134 } 1135 pExpr->pTab = pTab; 1136 break; 1137 } 1138 } 1139 } 1140 } 1141 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ 1142 1143 /* 1144 ** Perhaps the name is a reference to the ROWID 1145 */ 1146 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ 1147 cnt = 1; 1148 pExpr->iColumn = -1; 1149 pExpr->affinity = SQLITE_AFF_INTEGER; 1150 } 1151 1152 /* 1153 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z 1154 ** might refer to an result-set alias. This happens, for example, when 1155 ** we are resolving names in the WHERE clause of the following command: 1156 ** 1157 ** SELECT a+b AS x FROM table WHERE x<10; 1158 ** 1159 ** In cases like this, replace pExpr with a copy of the expression that 1160 ** forms the result set entry ("a+b" in the example) and return immediately. 1161 ** Note that the expression in the result set should have already been 1162 ** resolved by the time the WHERE clause is resolved. 1163 */ 1164 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ 1165 for(j=0; j<pEList->nExpr; j++){ 1166 char *zAs = pEList->a[j].zName; 1167 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1168 Expr *pDup, *pOrig; 1169 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 1170 assert( pExpr->pList==0 ); 1171 assert( pExpr->pSelect==0 ); 1172 pOrig = pEList->a[j].pExpr; 1173 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ 1174 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); 1175 sqlite3_free(zCol); 1176 return 2; 1177 } 1178 pDup = sqlite3ExprDup(db, pOrig); 1179 if( pExpr->flags & EP_ExpCollate ){ 1180 pDup->pColl = pExpr->pColl; 1181 pDup->flags |= EP_ExpCollate; 1182 } 1183 if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); 1184 if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); 1185 memcpy(pExpr, pDup, sizeof(*pExpr)); 1186 sqlite3_free(pDup); 1187 cnt = 1; 1188 pMatch = 0; 1189 assert( zTab==0 && zDb==0 ); 1190 goto lookupname_end_2; 1191 } 1192 } 1193 } 1194 1195 /* Advance to the next name context. The loop will exit when either 1196 ** we have a match (cnt>0) or when we run out of name contexts. 1197 */ 1198 if( cnt==0 ){ 1199 pNC = pNC->pNext; 1200 } 1201 } 1202 1203 /* 1204 ** If X and Y are NULL (in other words if only the column name Z is 1205 ** supplied) and the value of Z is enclosed in double-quotes, then 1206 ** Z is a string literal if it doesn't match any column names. In that 1207 ** case, we need to return right away and not make any changes to 1208 ** pExpr. 1209 ** 1210 ** Because no reference was made to outer contexts, the pNC->nRef 1211 ** fields are not changed in any context. 1212 */ 1213 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ 1214 sqlite3_free(zCol); 1215 return 0; 1216 } 1217 1218 /* 1219 ** cnt==0 means there was not match. cnt>1 means there were two or 1220 ** more matches. Either way, we have an error. 1221 */ 1222 if( cnt!=1 ){ 1223 char *z = 0; 1224 char *zErr; 1225 zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s"; 1226 if( zDb ){ 1227 sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0); 1228 }else if( zTab ){ 1229 sqlite3SetString(&z, zTab, ".", zCol, (char*)0); 1230 }else{ 1231 z = sqlite3StrDup(zCol); 1232 } 1233 if( z ){ 1234 sqlite3ErrorMsg(pParse, zErr, z); 1235 sqlite3_free(z); 1236 pTopNC->nErr++; 1237 }else{ 1238 db->mallocFailed = 1; 1239 } 1240 } 1241 1242 /* If a column from a table in pSrcList is referenced, then record 1243 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes 1244 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the 1245 ** column number is greater than the number of bits in the bitmask 1246 ** then set the high-order bit of the bitmask. 1247 */ 1248 if( pExpr->iColumn>=0 && pMatch!=0 ){ 1249 int n = pExpr->iColumn; 1250 if( n>=sizeof(Bitmask)*8 ){ 1251 n = sizeof(Bitmask)*8-1; 1252 } 1253 assert( pMatch->iCursor==pExpr->iTable ); 1254 pMatch->colUsed |= ((Bitmask)1)<<n; 1255 } 1256 1257 lookupname_end: 1258 /* Clean up and return 1259 */ 1260 sqlite3_free(zDb); 1261 sqlite3_free(zTab); 1262 sqlite3ExprDelete(pExpr->pLeft); 1263 pExpr->pLeft = 0; 1264 sqlite3ExprDelete(pExpr->pRight); 1265 pExpr->pRight = 0; 1266 pExpr->op = TK_COLUMN; 1267 lookupname_end_2: 1268 sqlite3_free(zCol); 1269 if( cnt==1 ){ 1270 assert( pNC!=0 ); 1271 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); 1272 if( pMatch && !pMatch->pSelect ){ 1273 pExpr->pTab = pMatch->pTab; 1274 } 1275 /* Increment the nRef value on all name contexts from TopNC up to 1276 ** the point where the name matched. */ 1277 for(;;){ 1278 assert( pTopNC!=0 ); 1279 pTopNC->nRef++; 1280 if( pTopNC==pNC ) break; 1281 pTopNC = pTopNC->pNext; 1282 } 1283 return 0; 1284 } else { 1285 return 1; 1286 } 1287 } 1288 1289 /* 1290 ** This routine is designed as an xFunc for walkExprTree(). 1291 ** 1292 ** Resolve symbolic names into TK_COLUMN operators for the current 1293 ** node in the expression tree. Return 0 to continue the search down 1294 ** the tree or 2 to abort the tree walk. 1295 ** 1296 ** This routine also does error checking and name resolution for 1297 ** function names. The operator for aggregate functions is changed 1298 ** to TK_AGG_FUNCTION. 1299 */ 1300 static int nameResolverStep(void *pArg, Expr *pExpr){ 1301 NameContext *pNC = (NameContext*)pArg; 1302 Parse *pParse; 1303 1304 if( pExpr==0 ) return 1; 1305 assert( pNC!=0 ); 1306 pParse = pNC->pParse; 1307 1308 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; 1309 ExprSetProperty(pExpr, EP_Resolved); 1310 #ifndef NDEBUG 1311 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ 1312 SrcList *pSrcList = pNC->pSrcList; 1313 int i; 1314 for(i=0; i<pNC->pSrcList->nSrc; i++){ 1315 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); 1316 } 1317 } 1318 #endif 1319 switch( pExpr->op ){ 1320 /* Double-quoted strings (ex: "abc") are used as identifiers if 1321 ** possible. Otherwise they remain as strings. Single-quoted 1322 ** strings (ex: 'abc') are always string literals. 1323 */ 1324 case TK_STRING: { 1325 if( pExpr->token.z[0]=='\'' ) break; 1326 /* Fall thru into the TK_ID case if this is a double-quoted string */ 1327 } 1328 /* A lone identifier is the name of a column. 1329 */ 1330 case TK_ID: { 1331 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); 1332 return 1; 1333 } 1334 1335 /* A table name and column name: ID.ID 1336 ** Or a database, table and column: ID.ID.ID 1337 */ 1338 case TK_DOT: { 1339 Token *pColumn; 1340 Token *pTable; 1341 Token *pDb; 1342 Expr *pRight; 1343 1344 /* if( pSrcList==0 ) break; */ 1345 pRight = pExpr->pRight; 1346 if( pRight->op==TK_ID ){ 1347 pDb = 0; 1348 pTable = &pExpr->pLeft->token; 1349 pColumn = &pRight->token; 1350 }else{ 1351 assert( pRight->op==TK_DOT ); 1352 pDb = &pExpr->pLeft->token; 1353 pTable = &pRight->pLeft->token; 1354 pColumn = &pRight->pRight->token; 1355 } 1356 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); 1357 return 1; 1358 } 1359 1360 /* Resolve function names 1361 */ 1362 case TK_CONST_FUNC: 1363 case TK_FUNCTION: { 1364 ExprList *pList = pExpr->pList; /* The argument list */ 1365 int n = pList ? pList->nExpr : 0; /* Number of arguments */ 1366 int no_such_func = 0; /* True if no such function exists */ 1367 int wrong_num_args = 0; /* True if wrong number of arguments */ 1368 int is_agg = 0; /* True if is an aggregate function */ 1369 int i; 1370 int auth; /* Authorization to use the function */ 1371 int nId; /* Number of characters in function name */ 1372 const char *zId; /* The function name. */ 1373 FuncDef *pDef; /* Information about the function */ 1374 int enc = ENC(pParse->db); /* The database encoding */ 1375 1376 zId = (char*)pExpr->token.z; 1377 nId = pExpr->token.n; 1378 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); 1379 if( pDef==0 ){ 1380 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); 1381 if( pDef==0 ){ 1382 no_such_func = 1; 1383 }else{ 1384 wrong_num_args = 1; 1385 } 1386 }else{ 1387 is_agg = pDef->xFunc==0; 1388 } 1389 #ifndef SQLITE_OMIT_AUTHORIZATION 1390 if( pDef ){ 1391 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); 1392 if( auth!=SQLITE_OK ){ 1393 if( auth==SQLITE_DENY ){ 1394 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", 1395 pDef->zName); 1396 pNC->nErr++; 1397 } 1398 pExpr->op = TK_NULL; 1399 return 1; 1400 } 1401 } 1402 #endif 1403 if( is_agg && !pNC->allowAgg ){ 1404 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); 1405 pNC->nErr++; 1406 is_agg = 0; 1407 }else if( no_such_func ){ 1408 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); 1409 pNC->nErr++; 1410 }else if( wrong_num_args ){ 1411 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", 1412 nId, zId); 1413 pNC->nErr++; 1414 } 1415 if( is_agg ){ 1416 pExpr->op = TK_AGG_FUNCTION; 1417 pNC->hasAgg = 1; 1418 } 1419 if( is_agg ) pNC->allowAgg = 0; 1420 for(i=0; pNC->nErr==0 && i<n; i++){ 1421 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); 1422 } 1423 if( is_agg ) pNC->allowAgg = 1; 1424 /* FIX ME: Compute pExpr->affinity based on the expected return 1425 ** type of the function 1426 */ 1427 return is_agg; 1428 } 1429 #ifndef SQLITE_OMIT_SUBQUERY 1430 case TK_SELECT: 1431 case TK_EXISTS: 1432 #endif 1433 case TK_IN: { 1434 if( pExpr->pSelect ){ 1435 int nRef = pNC->nRef; 1436 #ifndef SQLITE_OMIT_CHECK 1437 if( pNC->isCheck ){ 1438 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); 1439 } 1440 #endif 1441 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); 1442 assert( pNC->nRef>=nRef ); 1443 if( nRef!=pNC->nRef ){ 1444 ExprSetProperty(pExpr, EP_VarSelect); 1445 } 1446 } 1447 break; 1448 } 1449 #ifndef SQLITE_OMIT_CHECK 1450 case TK_VARIABLE: { 1451 if( pNC->isCheck ){ 1452 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); 1453 } 1454 break; 1455 } 1456 #endif 1457 } 1458 return 0; 1459 } 1460 1461 /* 1462 ** This routine walks an expression tree and resolves references to 1463 ** table columns. Nodes of the form ID.ID or ID resolve into an 1464 ** index to the table in the table list and a column offset. The 1465 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable 1466 ** value is changed to the index of the referenced table in pTabList 1467 ** plus the "base" value. The base value will ultimately become the 1468 ** VDBE cursor number for a cursor that is pointing into the referenced 1469 ** table. The Expr.iColumn value is changed to the index of the column 1470 ** of the referenced table. The Expr.iColumn value for the special 1471 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an 1472 ** alias for ROWID. 1473 ** 1474 ** Also resolve function names and check the functions for proper 1475 ** usage. Make sure all function names are recognized and all functions 1476 ** have the correct number of arguments. Leave an error message 1477 ** in pParse->zErrMsg if anything is amiss. Return the number of errors. 1478 ** 1479 ** If the expression contains aggregate functions then set the EP_Agg 1480 ** property on the expression. 1481 */ 1482 int sqlite3ExprResolveNames( 1483 NameContext *pNC, /* Namespace to resolve expressions in. */ 1484 Expr *pExpr /* The expression to be analyzed. */ 1485 ){ 1486 int savedHasAgg; 1487 if( pExpr==0 ) return 0; 1488 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1489 if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){ 1490 sqlite3ErrorMsg(pNC->pParse, 1491 "Expression tree is too large (maximum depth %d)", 1492 SQLITE_MAX_EXPR_DEPTH 1493 ); 1494 return 1; 1495 } 1496 pNC->pParse->nHeight += pExpr->nHeight; 1497 #endif 1498 savedHasAgg = pNC->hasAgg; 1499 pNC->hasAgg = 0; 1500 walkExprTree(pExpr, nameResolverStep, pNC); 1501 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 1502 pNC->pParse->nHeight -= pExpr->nHeight; 1503 #endif 1504 if( pNC->nErr>0 ){ 1505 ExprSetProperty(pExpr, EP_Error); 1506 } 1507 if( pNC->hasAgg ){ 1508 ExprSetProperty(pExpr, EP_Agg); 1509 }else if( savedHasAgg ){ 1510 pNC->hasAgg = 1; 1511 } 1512 return ExprHasProperty(pExpr, EP_Error); 1513 } 1514 1515 /* 1516 ** A pointer instance of this structure is used to pass information 1517 ** through walkExprTree into codeSubqueryStep(). 1518 */ 1519 typedef struct QueryCoder QueryCoder; 1520 struct QueryCoder { 1521 Parse *pParse; /* The parsing context */ 1522 NameContext *pNC; /* Namespace of first enclosing query */ 1523 }; 1524 1525 1526 /* 1527 ** Generate code for scalar subqueries used as an expression 1528 ** and IN operators. Examples: 1529 ** 1530 ** (SELECT a FROM b) -- subquery 1531 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1532 ** x IN (4,5,11) -- IN operator with list on right-hand side 1533 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1534 ** 1535 ** The pExpr parameter describes the expression that contains the IN 1536 ** operator or subquery. 1537 */ 1538 #ifndef SQLITE_OMIT_SUBQUERY 1539 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 1540 int testAddr = 0; /* One-time test address */ 1541 Vdbe *v = sqlite3GetVdbe(pParse); 1542 if( v==0 ) return; 1543 1544 1545 /* This code must be run in its entirety every time it is encountered 1546 ** if any of the following is true: 1547 ** 1548 ** * The right-hand side is a correlated subquery 1549 ** * The right-hand side is an expression list containing variables 1550 ** * We are inside a trigger 1551 ** 1552 ** If all of the above are false, then we can run this code just once 1553 ** save the results, and reuse the same result on subsequent invocations. 1554 */ 1555 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ 1556 int mem = pParse->nMem++; 1557 sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0); 1558 testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0); 1559 assert( testAddr>0 || pParse->db->mallocFailed ); 1560 sqlite3VdbeAddOp(v, OP_MemInt, 1, mem); 1561 } 1562 1563 switch( pExpr->op ){ 1564 case TK_IN: { 1565 char affinity; 1566 KeyInfo keyInfo; 1567 int addr; /* Address of OP_OpenEphemeral instruction */ 1568 1569 affinity = sqlite3ExprAffinity(pExpr->pLeft); 1570 1571 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1572 ** expression it is handled the same way. A virtual table is 1573 ** filled with single-field index keys representing the results 1574 ** from the SELECT or the <exprlist>. 1575 ** 1576 ** If the 'x' expression is a column value, or the SELECT... 1577 ** statement returns a column value, then the affinity of that 1578 ** column is used to build the index keys. If both 'x' and the 1579 ** SELECT... statement are columns, then numeric affinity is used 1580 ** if either column has NUMERIC or INTEGER affinity. If neither 1581 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1582 ** is used. 1583 */ 1584 pExpr->iTable = pParse->nTab++; 1585 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0); 1586 memset(&keyInfo, 0, sizeof(keyInfo)); 1587 keyInfo.nField = 1; 1588 sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1); 1589 1590 if( pExpr->pSelect ){ 1591 /* Case 1: expr IN (SELECT ...) 1592 ** 1593 ** Generate code to write the results of the select into the temporary 1594 ** table allocated and opened above. 1595 */ 1596 int iParm = pExpr->iTable + (((int)affinity)<<16); 1597 ExprList *pEList; 1598 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1599 if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){ 1600 return; 1601 } 1602 pEList = pExpr->pSelect->pEList; 1603 if( pEList && pEList->nExpr>0 ){ 1604 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1605 pEList->a[0].pExpr); 1606 } 1607 }else if( pExpr->pList ){ 1608 /* Case 2: expr IN (exprlist) 1609 ** 1610 ** For each expression, build an index key from the evaluation and 1611 ** store it in the temporary table. If <expr> is a column, then use 1612 ** that columns affinity when building index keys. If <expr> is not 1613 ** a column, use numeric affinity. 1614 */ 1615 int i; 1616 ExprList *pList = pExpr->pList; 1617 struct ExprList_item *pItem; 1618 1619 if( !affinity ){ 1620 affinity = SQLITE_AFF_NONE; 1621 } 1622 keyInfo.aColl[0] = pExpr->pLeft->pColl; 1623 1624 /* Loop through each expression in <exprlist>. */ 1625 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1626 Expr *pE2 = pItem->pExpr; 1627 1628 /* If the expression is not constant then we will need to 1629 ** disable the test that was generated above that makes sure 1630 ** this code only executes once. Because for a non-constant 1631 ** expression we need to rerun this code each time. 1632 */ 1633 if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){ 1634 sqlite3VdbeChangeToNoop(v, testAddr-1, 3); 1635 testAddr = 0; 1636 } 1637 1638 /* Evaluate the expression and insert it into the temp table */ 1639 sqlite3ExprCode(pParse, pE2); 1640 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 1641 sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0); 1642 } 1643 } 1644 sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO); 1645 break; 1646 } 1647 1648 case TK_EXISTS: 1649 case TK_SELECT: { 1650 /* This has to be a scalar SELECT. Generate code to put the 1651 ** value of this select in a memory cell and record the number 1652 ** of the memory cell in iColumn. 1653 */ 1654 static const Token one = { (u8*)"1", 0, 1 }; 1655 Select *pSel; 1656 int iMem; 1657 int sop; 1658 1659 pExpr->iColumn = iMem = pParse->nMem++; 1660 pSel = pExpr->pSelect; 1661 if( pExpr->op==TK_SELECT ){ 1662 sop = SRT_Mem; 1663 sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0); 1664 VdbeComment((v, "# Init subquery result")); 1665 }else{ 1666 sop = SRT_Exists; 1667 sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem); 1668 VdbeComment((v, "# Init EXISTS result")); 1669 } 1670 sqlite3ExprDelete(pSel->pLimit); 1671 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); 1672 if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){ 1673 return; 1674 } 1675 break; 1676 } 1677 } 1678 1679 if( testAddr ){ 1680 sqlite3VdbeJumpHere(v, testAddr); 1681 } 1682 1683 return; 1684 } 1685 #endif /* SQLITE_OMIT_SUBQUERY */ 1686 1687 /* 1688 ** Duplicate an 8-byte value 1689 */ 1690 static char *dup8bytes(Vdbe *v, const char *in){ 1691 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 1692 if( out ){ 1693 memcpy(out, in, 8); 1694 } 1695 return out; 1696 } 1697 1698 /* 1699 ** Generate an instruction that will put the floating point 1700 ** value described by z[0..n-1] on the stack. 1701 ** 1702 ** The z[] string will probably not be zero-terminated. But the 1703 ** z[n] character is guaranteed to be something that does not look 1704 ** like the continuation of the number. 1705 */ 1706 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag){ 1707 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1708 if( z ){ 1709 double value; 1710 char *zV; 1711 assert( !isdigit(z[n]) ); 1712 sqlite3AtoF(z, &value); 1713 if( negateFlag ) value = -value; 1714 zV = dup8bytes(v, (char*)&value); 1715 sqlite3VdbeOp3(v, OP_Real, 0, 0, zV, P3_REAL); 1716 } 1717 } 1718 1719 1720 /* 1721 ** Generate an instruction that will put the integer describe by 1722 ** text z[0..n-1] on the stack. 1723 ** 1724 ** The z[] string will probably not be zero-terminated. But the 1725 ** z[n] character is guaranteed to be something that does not look 1726 ** like the continuation of the number. 1727 */ 1728 static void codeInteger(Vdbe *v, const char *z, int n, int negateFlag){ 1729 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); 1730 if( z ){ 1731 int i; 1732 assert( !isdigit(z[n]) ); 1733 if( sqlite3GetInt32(z, &i) ){ 1734 if( negateFlag ) i = -i; 1735 sqlite3VdbeAddOp(v, OP_Integer, i, 0); 1736 }else if( sqlite3FitsIn64Bits(z, negateFlag) ){ 1737 i64 value; 1738 char *zV; 1739 sqlite3Atoi64(z, &value); 1740 if( negateFlag ) value = -value; 1741 zV = dup8bytes(v, (char*)&value); 1742 sqlite3VdbeOp3(v, OP_Int64, 0, 0, zV, P3_INT64); 1743 }else{ 1744 codeReal(v, z, n, negateFlag); 1745 } 1746 } 1747 } 1748 1749 1750 /* 1751 ** Generate code that will extract the iColumn-th column from 1752 ** table pTab and push that column value on the stack. There 1753 ** is an open cursor to pTab in iTable. If iColumn<0 then 1754 ** code is generated that extracts the rowid. 1755 */ 1756 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){ 1757 if( iColumn<0 ){ 1758 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; 1759 sqlite3VdbeAddOp(v, op, iTable, 0); 1760 }else if( pTab==0 ){ 1761 sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn); 1762 }else{ 1763 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 1764 sqlite3VdbeAddOp(v, op, iTable, iColumn); 1765 sqlite3ColumnDefault(v, pTab, iColumn); 1766 #ifndef SQLITE_OMIT_FLOATING_POINT 1767 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ 1768 sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0); 1769 } 1770 #endif 1771 } 1772 } 1773 1774 /* 1775 ** Generate code into the current Vdbe to evaluate the given 1776 ** expression and leave the result on the top of stack. 1777 ** 1778 ** This code depends on the fact that certain token values (ex: TK_EQ) 1779 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 1780 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 1781 ** the make process cause these values to align. Assert()s in the code 1782 ** below verify that the numbers are aligned correctly. 1783 */ 1784 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){ 1785 Vdbe *v = pParse->pVdbe; 1786 int op; 1787 int stackChng = 1; /* Amount of change to stack depth */ 1788 1789 if( v==0 ) return; 1790 if( pExpr==0 ){ 1791 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1792 return; 1793 } 1794 op = pExpr->op; 1795 switch( op ){ 1796 case TK_AGG_COLUMN: { 1797 AggInfo *pAggInfo = pExpr->pAggInfo; 1798 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 1799 if( !pAggInfo->directMode ){ 1800 sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0); 1801 break; 1802 }else if( pAggInfo->useSortingIdx ){ 1803 sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx, 1804 pCol->iSorterColumn); 1805 break; 1806 } 1807 /* Otherwise, fall thru into the TK_COLUMN case */ 1808 } 1809 case TK_COLUMN: { 1810 if( pExpr->iTable<0 ){ 1811 /* This only happens when coding check constraints */ 1812 assert( pParse->ckOffset>0 ); 1813 sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1); 1814 }else{ 1815 sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable); 1816 } 1817 break; 1818 } 1819 case TK_INTEGER: { 1820 codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0); 1821 break; 1822 } 1823 case TK_FLOAT: { 1824 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0); 1825 break; 1826 } 1827 case TK_STRING: { 1828 sqlite3DequoteExpr(pParse->db, pExpr); 1829 sqlite3VdbeOp3(v,OP_String8, 0, 0, (char*)pExpr->token.z, pExpr->token.n); 1830 break; 1831 } 1832 case TK_NULL: { 1833 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1834 break; 1835 } 1836 #ifndef SQLITE_OMIT_BLOB_LITERAL 1837 case TK_BLOB: { 1838 int n; 1839 const char *z; 1840 assert( TK_BLOB==OP_HexBlob ); 1841 n = pExpr->token.n - 3; 1842 z = (char*)pExpr->token.z + 2; 1843 assert( n>=0 ); 1844 if( n==0 ){ 1845 z = ""; 1846 } 1847 sqlite3VdbeOp3(v, op, 0, 0, z, n); 1848 break; 1849 } 1850 #endif 1851 case TK_VARIABLE: { 1852 sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0); 1853 if( pExpr->token.n>1 ){ 1854 sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n); 1855 } 1856 break; 1857 } 1858 case TK_REGISTER: { 1859 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0); 1860 break; 1861 } 1862 #ifndef SQLITE_OMIT_CAST 1863 case TK_CAST: { 1864 /* Expressions of the form: CAST(pLeft AS token) */ 1865 int aff, to_op; 1866 sqlite3ExprCode(pParse, pExpr->pLeft); 1867 aff = sqlite3AffinityType(&pExpr->token); 1868 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 1869 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 1870 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 1871 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 1872 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 1873 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 1874 sqlite3VdbeAddOp(v, to_op, 0, 0); 1875 stackChng = 0; 1876 break; 1877 } 1878 #endif /* SQLITE_OMIT_CAST */ 1879 case TK_LT: 1880 case TK_LE: 1881 case TK_GT: 1882 case TK_GE: 1883 case TK_NE: 1884 case TK_EQ: { 1885 assert( TK_LT==OP_Lt ); 1886 assert( TK_LE==OP_Le ); 1887 assert( TK_GT==OP_Gt ); 1888 assert( TK_GE==OP_Ge ); 1889 assert( TK_EQ==OP_Eq ); 1890 assert( TK_NE==OP_Ne ); 1891 sqlite3ExprCode(pParse, pExpr->pLeft); 1892 sqlite3ExprCode(pParse, pExpr->pRight); 1893 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0); 1894 stackChng = -1; 1895 break; 1896 } 1897 case TK_AND: 1898 case TK_OR: 1899 case TK_PLUS: 1900 case TK_STAR: 1901 case TK_MINUS: 1902 case TK_REM: 1903 case TK_BITAND: 1904 case TK_BITOR: 1905 case TK_SLASH: 1906 case TK_LSHIFT: 1907 case TK_RSHIFT: 1908 case TK_CONCAT: { 1909 assert( TK_AND==OP_And ); 1910 assert( TK_OR==OP_Or ); 1911 assert( TK_PLUS==OP_Add ); 1912 assert( TK_MINUS==OP_Subtract ); 1913 assert( TK_REM==OP_Remainder ); 1914 assert( TK_BITAND==OP_BitAnd ); 1915 assert( TK_BITOR==OP_BitOr ); 1916 assert( TK_SLASH==OP_Divide ); 1917 assert( TK_LSHIFT==OP_ShiftLeft ); 1918 assert( TK_RSHIFT==OP_ShiftRight ); 1919 assert( TK_CONCAT==OP_Concat ); 1920 sqlite3ExprCode(pParse, pExpr->pLeft); 1921 sqlite3ExprCode(pParse, pExpr->pRight); 1922 sqlite3VdbeAddOp(v, op, 0, 0); 1923 stackChng = -1; 1924 break; 1925 } 1926 case TK_UMINUS: { 1927 Expr *pLeft = pExpr->pLeft; 1928 assert( pLeft ); 1929 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ 1930 Token *p = &pLeft->token; 1931 if( pLeft->op==TK_FLOAT ){ 1932 codeReal(v, (char*)p->z, p->n, 1); 1933 }else{ 1934 codeInteger(v, (char*)p->z, p->n, 1); 1935 } 1936 break; 1937 } 1938 /* Fall through into TK_NOT */ 1939 } 1940 case TK_BITNOT: 1941 case TK_NOT: { 1942 assert( TK_BITNOT==OP_BitNot ); 1943 assert( TK_NOT==OP_Not ); 1944 sqlite3ExprCode(pParse, pExpr->pLeft); 1945 sqlite3VdbeAddOp(v, op, 0, 0); 1946 stackChng = 0; 1947 break; 1948 } 1949 case TK_ISNULL: 1950 case TK_NOTNULL: { 1951 int dest; 1952 assert( TK_ISNULL==OP_IsNull ); 1953 assert( TK_NOTNULL==OP_NotNull ); 1954 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1955 sqlite3ExprCode(pParse, pExpr->pLeft); 1956 dest = sqlite3VdbeCurrentAddr(v) + 2; 1957 sqlite3VdbeAddOp(v, op, 1, dest); 1958 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); 1959 stackChng = 0; 1960 break; 1961 } 1962 case TK_AGG_FUNCTION: { 1963 AggInfo *pInfo = pExpr->pAggInfo; 1964 if( pInfo==0 ){ 1965 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", 1966 &pExpr->span); 1967 }else{ 1968 sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0); 1969 } 1970 break; 1971 } 1972 case TK_CONST_FUNC: 1973 case TK_FUNCTION: { 1974 ExprList *pList = pExpr->pList; 1975 int nExpr = pList ? pList->nExpr : 0; 1976 FuncDef *pDef; 1977 int nId; 1978 const char *zId; 1979 int constMask = 0; 1980 int i; 1981 sqlite3 *db = pParse->db; 1982 u8 enc = ENC(db); 1983 CollSeq *pColl = 0; 1984 1985 zId = (char*)pExpr->token.z; 1986 nId = pExpr->token.n; 1987 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); 1988 assert( pDef!=0 ); 1989 nExpr = sqlite3ExprCodeExprList(pParse, pList); 1990 #ifndef SQLITE_OMIT_VIRTUALTABLE 1991 /* Possibly overload the function if the first argument is 1992 ** a virtual table column. 1993 ** 1994 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 1995 ** second argument, not the first, as the argument to test to 1996 ** see if it is a column in a virtual table. This is done because 1997 ** the left operand of infix functions (the operand we want to 1998 ** control overloading) ends up as the second argument to the 1999 ** function. The expression "A glob B" is equivalent to 2000 ** "glob(B,A). We want to use the A in "A glob B" to test 2001 ** for function overloading. But we use the B term in "glob(B,A)". 2002 */ 2003 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ 2004 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); 2005 }else if( nExpr>0 ){ 2006 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); 2007 } 2008 #endif 2009 for(i=0; i<nExpr && i<32; i++){ 2010 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ 2011 constMask |= (1<<i); 2012 } 2013 if( pDef->needCollSeq && !pColl ){ 2014 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 2015 } 2016 } 2017 if( pDef->needCollSeq ){ 2018 if( !pColl ) pColl = pParse->db->pDfltColl; 2019 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2020 } 2021 sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF); 2022 stackChng = 1-nExpr; 2023 break; 2024 } 2025 #ifndef SQLITE_OMIT_SUBQUERY 2026 case TK_EXISTS: 2027 case TK_SELECT: { 2028 if( pExpr->iColumn==0 ){ 2029 sqlite3CodeSubselect(pParse, pExpr); 2030 } 2031 sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0); 2032 VdbeComment((v, "# load subquery result")); 2033 break; 2034 } 2035 case TK_IN: { 2036 int addr; 2037 char affinity; 2038 int ckOffset = pParse->ckOffset; 2039 sqlite3CodeSubselect(pParse, pExpr); 2040 2041 /* Figure out the affinity to use to create a key from the results 2042 ** of the expression. affinityStr stores a static string suitable for 2043 ** P3 of OP_MakeRecord. 2044 */ 2045 affinity = comparisonAffinity(pExpr); 2046 2047 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 2048 pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0); 2049 2050 /* Code the <expr> from "<expr> IN (...)". The temporary table 2051 ** pExpr->iTable contains the values that make up the (...) set. 2052 */ 2053 sqlite3ExprCode(pParse, pExpr->pLeft); 2054 addr = sqlite3VdbeCurrentAddr(v); 2055 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4); /* addr + 0 */ 2056 sqlite3VdbeAddOp(v, OP_Pop, 2, 0); 2057 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2058 sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7); 2059 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); /* addr + 4 */ 2060 sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7); 2061 sqlite3VdbeAddOp(v, OP_AddImm, -1, 0); /* addr + 6 */ 2062 2063 break; 2064 } 2065 #endif 2066 case TK_BETWEEN: { 2067 Expr *pLeft = pExpr->pLeft; 2068 struct ExprList_item *pLItem = pExpr->pList->a; 2069 Expr *pRight = pLItem->pExpr; 2070 sqlite3ExprCode(pParse, pLeft); 2071 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2072 sqlite3ExprCode(pParse, pRight); 2073 codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0); 2074 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 2075 pLItem++; 2076 pRight = pLItem->pExpr; 2077 sqlite3ExprCode(pParse, pRight); 2078 codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0); 2079 sqlite3VdbeAddOp(v, OP_And, 0, 0); 2080 break; 2081 } 2082 case TK_UPLUS: { 2083 sqlite3ExprCode(pParse, pExpr->pLeft); 2084 stackChng = 0; 2085 break; 2086 } 2087 case TK_CASE: { 2088 int expr_end_label; 2089 int jumpInst; 2090 int nExpr; 2091 int i; 2092 ExprList *pEList; 2093 struct ExprList_item *aListelem; 2094 2095 assert(pExpr->pList); 2096 assert((pExpr->pList->nExpr % 2) == 0); 2097 assert(pExpr->pList->nExpr > 0); 2098 pEList = pExpr->pList; 2099 aListelem = pEList->a; 2100 nExpr = pEList->nExpr; 2101 expr_end_label = sqlite3VdbeMakeLabel(v); 2102 if( pExpr->pLeft ){ 2103 sqlite3ExprCode(pParse, pExpr->pLeft); 2104 } 2105 for(i=0; i<nExpr; i=i+2){ 2106 sqlite3ExprCode(pParse, aListelem[i].pExpr); 2107 if( pExpr->pLeft ){ 2108 sqlite3VdbeAddOp(v, OP_Dup, 1, 1); 2109 jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr, 2110 OP_Ne, 0, 1); 2111 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2112 }else{ 2113 jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0); 2114 } 2115 sqlite3ExprCode(pParse, aListelem[i+1].pExpr); 2116 sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label); 2117 sqlite3VdbeJumpHere(v, jumpInst); 2118 } 2119 if( pExpr->pLeft ){ 2120 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2121 } 2122 if( pExpr->pRight ){ 2123 sqlite3ExprCode(pParse, pExpr->pRight); 2124 }else{ 2125 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2126 } 2127 sqlite3VdbeResolveLabel(v, expr_end_label); 2128 break; 2129 } 2130 #ifndef SQLITE_OMIT_TRIGGER 2131 case TK_RAISE: { 2132 if( !pParse->trigStack ){ 2133 sqlite3ErrorMsg(pParse, 2134 "RAISE() may only be used within a trigger-program"); 2135 return; 2136 } 2137 if( pExpr->iColumn!=OE_Ignore ){ 2138 assert( pExpr->iColumn==OE_Rollback || 2139 pExpr->iColumn == OE_Abort || 2140 pExpr->iColumn == OE_Fail ); 2141 sqlite3DequoteExpr(pParse->db, pExpr); 2142 sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 2143 (char*)pExpr->token.z, pExpr->token.n); 2144 } else { 2145 assert( pExpr->iColumn == OE_Ignore ); 2146 sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0); 2147 sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump); 2148 VdbeComment((v, "# raise(IGNORE)")); 2149 } 2150 stackChng = 0; 2151 break; 2152 } 2153 #endif 2154 } 2155 2156 if( pParse->ckOffset ){ 2157 pParse->ckOffset += stackChng; 2158 assert( pParse->ckOffset ); 2159 } 2160 } 2161 2162 #ifndef SQLITE_OMIT_TRIGGER 2163 /* 2164 ** Generate code that evalutes the given expression and leaves the result 2165 ** on the stack. See also sqlite3ExprCode(). 2166 ** 2167 ** This routine might also cache the result and modify the pExpr tree 2168 ** so that it will make use of the cached result on subsequent evaluations 2169 ** rather than evaluate the whole expression again. Trivial expressions are 2170 ** not cached. If the expression is cached, its result is stored in a 2171 ** memory location. 2172 */ 2173 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){ 2174 Vdbe *v = pParse->pVdbe; 2175 int iMem; 2176 int addr1, addr2; 2177 if( v==0 ) return; 2178 addr1 = sqlite3VdbeCurrentAddr(v); 2179 sqlite3ExprCode(pParse, pExpr); 2180 addr2 = sqlite3VdbeCurrentAddr(v); 2181 if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){ 2182 iMem = pExpr->iTable = pParse->nMem++; 2183 sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0); 2184 pExpr->op = TK_REGISTER; 2185 } 2186 } 2187 #endif 2188 2189 /* 2190 ** Generate code that pushes the value of every element of the given 2191 ** expression list onto the stack. 2192 ** 2193 ** Return the number of elements pushed onto the stack. 2194 */ 2195 int sqlite3ExprCodeExprList( 2196 Parse *pParse, /* Parsing context */ 2197 ExprList *pList /* The expression list to be coded */ 2198 ){ 2199 struct ExprList_item *pItem; 2200 int i, n; 2201 if( pList==0 ) return 0; 2202 n = pList->nExpr; 2203 for(pItem=pList->a, i=n; i>0; i--, pItem++){ 2204 sqlite3ExprCode(pParse, pItem->pExpr); 2205 } 2206 return n; 2207 } 2208 2209 /* 2210 ** Generate code for a boolean expression such that a jump is made 2211 ** to the label "dest" if the expression is true but execution 2212 ** continues straight thru if the expression is false. 2213 ** 2214 ** If the expression evaluates to NULL (neither true nor false), then 2215 ** take the jump if the jumpIfNull flag is true. 2216 ** 2217 ** This code depends on the fact that certain token values (ex: TK_EQ) 2218 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 2219 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 2220 ** the make process cause these values to align. Assert()s in the code 2221 ** below verify that the numbers are aligned correctly. 2222 */ 2223 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2224 Vdbe *v = pParse->pVdbe; 2225 int op = 0; 2226 int ckOffset = pParse->ckOffset; 2227 if( v==0 || pExpr==0 ) return; 2228 op = pExpr->op; 2229 switch( op ){ 2230 case TK_AND: { 2231 int d2 = sqlite3VdbeMakeLabel(v); 2232 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull); 2233 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2234 sqlite3VdbeResolveLabel(v, d2); 2235 break; 2236 } 2237 case TK_OR: { 2238 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2239 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 2240 break; 2241 } 2242 case TK_NOT: { 2243 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2244 break; 2245 } 2246 case TK_LT: 2247 case TK_LE: 2248 case TK_GT: 2249 case TK_GE: 2250 case TK_NE: 2251 case TK_EQ: { 2252 assert( TK_LT==OP_Lt ); 2253 assert( TK_LE==OP_Le ); 2254 assert( TK_GT==OP_Gt ); 2255 assert( TK_GE==OP_Ge ); 2256 assert( TK_EQ==OP_Eq ); 2257 assert( TK_NE==OP_Ne ); 2258 sqlite3ExprCode(pParse, pExpr->pLeft); 2259 sqlite3ExprCode(pParse, pExpr->pRight); 2260 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2261 break; 2262 } 2263 case TK_ISNULL: 2264 case TK_NOTNULL: { 2265 assert( TK_ISNULL==OP_IsNull ); 2266 assert( TK_NOTNULL==OP_NotNull ); 2267 sqlite3ExprCode(pParse, pExpr->pLeft); 2268 sqlite3VdbeAddOp(v, op, 1, dest); 2269 break; 2270 } 2271 case TK_BETWEEN: { 2272 /* The expression "x BETWEEN y AND z" is implemented as: 2273 ** 2274 ** 1 IF (x < y) GOTO 3 2275 ** 2 IF (x <= z) GOTO <dest> 2276 ** 3 ... 2277 */ 2278 int addr; 2279 Expr *pLeft = pExpr->pLeft; 2280 Expr *pRight = pExpr->pList->a[0].pExpr; 2281 sqlite3ExprCode(pParse, pLeft); 2282 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2283 sqlite3ExprCode(pParse, pRight); 2284 addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull); 2285 2286 pRight = pExpr->pList->a[1].pExpr; 2287 sqlite3ExprCode(pParse, pRight); 2288 codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull); 2289 2290 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 2291 sqlite3VdbeJumpHere(v, addr); 2292 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2293 break; 2294 } 2295 default: { 2296 sqlite3ExprCode(pParse, pExpr); 2297 sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest); 2298 break; 2299 } 2300 } 2301 pParse->ckOffset = ckOffset; 2302 } 2303 2304 /* 2305 ** Generate code for a boolean expression such that a jump is made 2306 ** to the label "dest" if the expression is false but execution 2307 ** continues straight thru if the expression is true. 2308 ** 2309 ** If the expression evaluates to NULL (neither true nor false) then 2310 ** jump if jumpIfNull is true or fall through if jumpIfNull is false. 2311 */ 2312 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 2313 Vdbe *v = pParse->pVdbe; 2314 int op = 0; 2315 int ckOffset = pParse->ckOffset; 2316 if( v==0 || pExpr==0 ) return; 2317 2318 /* The value of pExpr->op and op are related as follows: 2319 ** 2320 ** pExpr->op op 2321 ** --------- ---------- 2322 ** TK_ISNULL OP_NotNull 2323 ** TK_NOTNULL OP_IsNull 2324 ** TK_NE OP_Eq 2325 ** TK_EQ OP_Ne 2326 ** TK_GT OP_Le 2327 ** TK_LE OP_Gt 2328 ** TK_GE OP_Lt 2329 ** TK_LT OP_Ge 2330 ** 2331 ** For other values of pExpr->op, op is undefined and unused. 2332 ** The value of TK_ and OP_ constants are arranged such that we 2333 ** can compute the mapping above using the following expression. 2334 ** Assert()s verify that the computation is correct. 2335 */ 2336 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 2337 2338 /* Verify correct alignment of TK_ and OP_ constants 2339 */ 2340 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 2341 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 2342 assert( pExpr->op!=TK_NE || op==OP_Eq ); 2343 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 2344 assert( pExpr->op!=TK_LT || op==OP_Ge ); 2345 assert( pExpr->op!=TK_LE || op==OP_Gt ); 2346 assert( pExpr->op!=TK_GT || op==OP_Le ); 2347 assert( pExpr->op!=TK_GE || op==OP_Lt ); 2348 2349 switch( pExpr->op ){ 2350 case TK_AND: { 2351 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 2352 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2353 break; 2354 } 2355 case TK_OR: { 2356 int d2 = sqlite3VdbeMakeLabel(v); 2357 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull); 2358 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 2359 sqlite3VdbeResolveLabel(v, d2); 2360 break; 2361 } 2362 case TK_NOT: { 2363 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 2364 break; 2365 } 2366 case TK_LT: 2367 case TK_LE: 2368 case TK_GT: 2369 case TK_GE: 2370 case TK_NE: 2371 case TK_EQ: { 2372 sqlite3ExprCode(pParse, pExpr->pLeft); 2373 sqlite3ExprCode(pParse, pExpr->pRight); 2374 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull); 2375 break; 2376 } 2377 case TK_ISNULL: 2378 case TK_NOTNULL: { 2379 sqlite3ExprCode(pParse, pExpr->pLeft); 2380 sqlite3VdbeAddOp(v, op, 1, dest); 2381 break; 2382 } 2383 case TK_BETWEEN: { 2384 /* The expression is "x BETWEEN y AND z". It is implemented as: 2385 ** 2386 ** 1 IF (x >= y) GOTO 3 2387 ** 2 GOTO <dest> 2388 ** 3 IF (x > z) GOTO <dest> 2389 */ 2390 int addr; 2391 Expr *pLeft = pExpr->pLeft; 2392 Expr *pRight = pExpr->pList->a[0].pExpr; 2393 sqlite3ExprCode(pParse, pLeft); 2394 sqlite3VdbeAddOp(v, OP_Dup, 0, 0); 2395 sqlite3ExprCode(pParse, pRight); 2396 addr = sqlite3VdbeCurrentAddr(v); 2397 codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull); 2398 2399 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 2400 sqlite3VdbeAddOp(v, OP_Goto, 0, dest); 2401 pRight = pExpr->pList->a[1].pExpr; 2402 sqlite3ExprCode(pParse, pRight); 2403 codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull); 2404 break; 2405 } 2406 default: { 2407 sqlite3ExprCode(pParse, pExpr); 2408 sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest); 2409 break; 2410 } 2411 } 2412 pParse->ckOffset = ckOffset; 2413 } 2414 2415 /* 2416 ** Do a deep comparison of two expression trees. Return TRUE (non-zero) 2417 ** if they are identical and return FALSE if they differ in any way. 2418 ** 2419 ** Sometimes this routine will return FALSE even if the two expressions 2420 ** really are equivalent. If we cannot prove that the expressions are 2421 ** identical, we return FALSE just to be safe. So if this routine 2422 ** returns false, then you do not really know for certain if the two 2423 ** expressions are the same. But if you get a TRUE return, then you 2424 ** can be sure the expressions are the same. In the places where 2425 ** this routine is used, it does not hurt to get an extra FALSE - that 2426 ** just might result in some slightly slower code. But returning 2427 ** an incorrect TRUE could lead to a malfunction. 2428 */ 2429 int sqlite3ExprCompare(Expr *pA, Expr *pB){ 2430 int i; 2431 if( pA==0||pB==0 ){ 2432 return pB==pA; 2433 } 2434 if( pA->op!=pB->op ) return 0; 2435 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; 2436 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; 2437 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; 2438 if( pA->pList ){ 2439 if( pB->pList==0 ) return 0; 2440 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; 2441 for(i=0; i<pA->pList->nExpr; i++){ 2442 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ 2443 return 0; 2444 } 2445 } 2446 }else if( pB->pList ){ 2447 return 0; 2448 } 2449 if( pA->pSelect || pB->pSelect ) return 0; 2450 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; 2451 if( pA->op!=TK_COLUMN && pA->token.z ){ 2452 if( pB->token.z==0 ) return 0; 2453 if( pB->token.n!=pA->token.n ) return 0; 2454 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ 2455 return 0; 2456 } 2457 } 2458 return 1; 2459 } 2460 2461 2462 /* 2463 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 2464 ** the new element. Return a negative number if malloc fails. 2465 */ 2466 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 2467 int i; 2468 pInfo->aCol = sqlite3ArrayAllocate( 2469 db, 2470 pInfo->aCol, 2471 sizeof(pInfo->aCol[0]), 2472 3, 2473 &pInfo->nColumn, 2474 &pInfo->nColumnAlloc, 2475 &i 2476 ); 2477 return i; 2478 } 2479 2480 /* 2481 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 2482 ** the new element. Return a negative number if malloc fails. 2483 */ 2484 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 2485 int i; 2486 pInfo->aFunc = sqlite3ArrayAllocate( 2487 db, 2488 pInfo->aFunc, 2489 sizeof(pInfo->aFunc[0]), 2490 3, 2491 &pInfo->nFunc, 2492 &pInfo->nFuncAlloc, 2493 &i 2494 ); 2495 return i; 2496 } 2497 2498 /* 2499 ** This is an xFunc for walkExprTree() used to implement 2500 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 2501 ** for additional information. 2502 ** 2503 ** This routine analyzes the aggregate function at pExpr. 2504 */ 2505 static int analyzeAggregate(void *pArg, Expr *pExpr){ 2506 int i; 2507 NameContext *pNC = (NameContext *)pArg; 2508 Parse *pParse = pNC->pParse; 2509 SrcList *pSrcList = pNC->pSrcList; 2510 AggInfo *pAggInfo = pNC->pAggInfo; 2511 2512 switch( pExpr->op ){ 2513 case TK_AGG_COLUMN: 2514 case TK_COLUMN: { 2515 /* Check to see if the column is in one of the tables in the FROM 2516 ** clause of the aggregate query */ 2517 if( pSrcList ){ 2518 struct SrcList_item *pItem = pSrcList->a; 2519 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 2520 struct AggInfo_col *pCol; 2521 if( pExpr->iTable==pItem->iCursor ){ 2522 /* If we reach this point, it means that pExpr refers to a table 2523 ** that is in the FROM clause of the aggregate query. 2524 ** 2525 ** Make an entry for the column in pAggInfo->aCol[] if there 2526 ** is not an entry there already. 2527 */ 2528 int k; 2529 pCol = pAggInfo->aCol; 2530 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 2531 if( pCol->iTable==pExpr->iTable && 2532 pCol->iColumn==pExpr->iColumn ){ 2533 break; 2534 } 2535 } 2536 if( (k>=pAggInfo->nColumn) 2537 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 2538 ){ 2539 pCol = &pAggInfo->aCol[k]; 2540 pCol->pTab = pExpr->pTab; 2541 pCol->iTable = pExpr->iTable; 2542 pCol->iColumn = pExpr->iColumn; 2543 pCol->iMem = pParse->nMem++; 2544 pCol->iSorterColumn = -1; 2545 pCol->pExpr = pExpr; 2546 if( pAggInfo->pGroupBy ){ 2547 int j, n; 2548 ExprList *pGB = pAggInfo->pGroupBy; 2549 struct ExprList_item *pTerm = pGB->a; 2550 n = pGB->nExpr; 2551 for(j=0; j<n; j++, pTerm++){ 2552 Expr *pE = pTerm->pExpr; 2553 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 2554 pE->iColumn==pExpr->iColumn ){ 2555 pCol->iSorterColumn = j; 2556 break; 2557 } 2558 } 2559 } 2560 if( pCol->iSorterColumn<0 ){ 2561 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 2562 } 2563 } 2564 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 2565 ** because it was there before or because we just created it). 2566 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 2567 ** pAggInfo->aCol[] entry. 2568 */ 2569 pExpr->pAggInfo = pAggInfo; 2570 pExpr->op = TK_AGG_COLUMN; 2571 pExpr->iAgg = k; 2572 break; 2573 } /* endif pExpr->iTable==pItem->iCursor */ 2574 } /* end loop over pSrcList */ 2575 } 2576 return 1; 2577 } 2578 case TK_AGG_FUNCTION: { 2579 /* The pNC->nDepth==0 test causes aggregate functions in subqueries 2580 ** to be ignored */ 2581 if( pNC->nDepth==0 ){ 2582 /* Check to see if pExpr is a duplicate of another aggregate 2583 ** function that is already in the pAggInfo structure 2584 */ 2585 struct AggInfo_func *pItem = pAggInfo->aFunc; 2586 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 2587 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ 2588 break; 2589 } 2590 } 2591 if( i>=pAggInfo->nFunc ){ 2592 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 2593 */ 2594 u8 enc = ENC(pParse->db); 2595 i = addAggInfoFunc(pParse->db, pAggInfo); 2596 if( i>=0 ){ 2597 pItem = &pAggInfo->aFunc[i]; 2598 pItem->pExpr = pExpr; 2599 pItem->iMem = pParse->nMem++; 2600 pItem->pFunc = sqlite3FindFunction(pParse->db, 2601 (char*)pExpr->token.z, pExpr->token.n, 2602 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); 2603 if( pExpr->flags & EP_Distinct ){ 2604 pItem->iDistinct = pParse->nTab++; 2605 }else{ 2606 pItem->iDistinct = -1; 2607 } 2608 } 2609 } 2610 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 2611 */ 2612 pExpr->iAgg = i; 2613 pExpr->pAggInfo = pAggInfo; 2614 return 1; 2615 } 2616 } 2617 } 2618 2619 /* Recursively walk subqueries looking for TK_COLUMN nodes that need 2620 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that 2621 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. 2622 */ 2623 if( pExpr->pSelect ){ 2624 pNC->nDepth++; 2625 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); 2626 pNC->nDepth--; 2627 } 2628 return 0; 2629 } 2630 2631 /* 2632 ** Analyze the given expression looking for aggregate functions and 2633 ** for variables that need to be added to the pParse->aAgg[] array. 2634 ** Make additional entries to the pParse->aAgg[] array as necessary. 2635 ** 2636 ** This routine should only be called after the expression has been 2637 ** analyzed by sqlite3ExprResolveNames(). 2638 ** 2639 ** If errors are seen, leave an error message in zErrMsg and return 2640 ** the number of errors. 2641 */ 2642 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 2643 int nErr = pNC->pParse->nErr; 2644 walkExprTree(pExpr, analyzeAggregate, pNC); 2645 return pNC->pParse->nErr - nErr; 2646 } 2647 2648 /* 2649 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 2650 ** expression list. Return the number of errors. 2651 ** 2652 ** If an error is found, the analysis is cut short. 2653 */ 2654 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 2655 struct ExprList_item *pItem; 2656 int i; 2657 int nErr = 0; 2658 if( pList ){ 2659 for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){ 2660 nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 2661 } 2662 } 2663 return nErr; 2664 } 2665