xref: /sqlite-3.40.0/src/expr.c (revision a4b2f419)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
20 
21 /*
22 ** Return the affinity character for a single column of a table.
23 */
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25   if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26   return pTab->aCol[iCol].affinity;
27 }
28 
29 /*
30 ** Return the 'affinity' of the expression pExpr if any.
31 **
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
36 **
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
39 **
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
44 */
45 char sqlite3ExprAffinity(const Expr *pExpr){
46   int op;
47   while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48     assert( pExpr->op==TK_COLLATE
49          || pExpr->op==TK_IF_NULL_ROW
50          || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51     pExpr = pExpr->pLeft;
52     assert( pExpr!=0 );
53   }
54   op = pExpr->op;
55   if( op==TK_REGISTER ) op = pExpr->op2;
56   if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57     assert( ExprUseYTab(pExpr) );
58     if( pExpr->y.pTab ){
59       return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
60     }
61   }
62   if( op==TK_SELECT ){
63     assert( ExprUseXSelect(pExpr) );
64     assert( pExpr->x.pSelect!=0 );
65     assert( pExpr->x.pSelect->pEList!=0 );
66     assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
68   }
69 #ifndef SQLITE_OMIT_CAST
70   if( op==TK_CAST ){
71     assert( !ExprHasProperty(pExpr, EP_IntValue) );
72     return sqlite3AffinityType(pExpr->u.zToken, 0);
73   }
74 #endif
75   if( op==TK_SELECT_COLUMN ){
76     assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77     assert( pExpr->iColumn < pExpr->iTable );
78     assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79     return sqlite3ExprAffinity(
80         pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
81     );
82   }
83   if( op==TK_VECTOR ){
84     assert( ExprUseXList(pExpr) );
85     return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
86   }
87   return pExpr->affExpr;
88 }
89 
90 /*
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken.   Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
94 **
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
97 */
98 Expr *sqlite3ExprAddCollateToken(
99   const Parse *pParse,     /* Parsing context */
100   Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
101   const Token *pCollName,  /* Name of collating sequence */
102   int dequote              /* True to dequote pCollName */
103 ){
104   if( pCollName->n>0 ){
105     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106     if( pNew ){
107       pNew->pLeft = pExpr;
108       pNew->flags |= EP_Collate|EP_Skip;
109       pExpr = pNew;
110     }
111   }
112   return pExpr;
113 }
114 Expr *sqlite3ExprAddCollateString(
115   const Parse *pParse,  /* Parsing context */
116   Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
117   const char *zC        /* The collating sequence name */
118 ){
119   Token s;
120   assert( zC!=0 );
121   sqlite3TokenInit(&s, (char*)zC);
122   return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
123 }
124 
125 /*
126 ** Skip over any TK_COLLATE operators.
127 */
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130     assert( pExpr->op==TK_COLLATE );
131     pExpr = pExpr->pLeft;
132   }
133   return pExpr;
134 }
135 
136 /*
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
140 */
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142   while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143     if( ExprHasProperty(pExpr, EP_Unlikely) ){
144       assert( ExprUseXList(pExpr) );
145       assert( pExpr->x.pList->nExpr>0 );
146       assert( pExpr->op==TK_FUNCTION );
147       pExpr = pExpr->x.pList->a[0].pExpr;
148     }else{
149       assert( pExpr->op==TK_COLLATE );
150       pExpr = pExpr->pLeft;
151     }
152   }
153   return pExpr;
154 }
155 
156 /*
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
159 **
160 ** See also: sqlite3ExprNNCollSeq()
161 **
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
164 **
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence.  Left operands take
168 ** precedence over right operands.
169 */
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171   sqlite3 *db = pParse->db;
172   CollSeq *pColl = 0;
173   const Expr *p = pExpr;
174   while( p ){
175     int op = p->op;
176     if( op==TK_REGISTER ) op = p->op2;
177     if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178       assert( ExprUseYTab(p) );
179       if( p->y.pTab!=0 ){
180         /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181         ** a TK_COLUMN but was previously evaluated and cached in a register */
182         int j = p->iColumn;
183         if( j>=0 ){
184           const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185           pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
186         }
187         break;
188       }
189     }
190     if( op==TK_CAST || op==TK_UPLUS ){
191       p = p->pLeft;
192       continue;
193     }
194     if( op==TK_VECTOR ){
195       assert( ExprUseXList(p) );
196       p = p->x.pList->a[0].pExpr;
197       continue;
198     }
199     if( op==TK_COLLATE ){
200       assert( !ExprHasProperty(p, EP_IntValue) );
201       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202       break;
203     }
204     if( p->flags & EP_Collate ){
205       if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206         p = p->pLeft;
207       }else{
208         Expr *pNext  = p->pRight;
209         /* The Expr.x union is never used at the same time as Expr.pRight */
210         assert( ExprUseXList(p) );
211         assert( p->x.pList==0 || p->pRight==0 );
212         if( p->x.pList!=0 && !db->mallocFailed ){
213           int i;
214           for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215             if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216               pNext = p->x.pList->a[i].pExpr;
217               break;
218             }
219           }
220         }
221         p = pNext;
222       }
223     }else{
224       break;
225     }
226   }
227   if( sqlite3CheckCollSeq(pParse, pColl) ){
228     pColl = 0;
229   }
230   return pColl;
231 }
232 
233 /*
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
237 **
238 ** See also: sqlite3ExprCollSeq()
239 **
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
242 */
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244   CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245   if( p==0 ) p = pParse->db->pDfltColl;
246   assert( p!=0 );
247   return p;
248 }
249 
250 /*
251 ** Return TRUE if the two expressions have equivalent collating sequences.
252 */
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254   CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255   CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256   return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
257 }
258 
259 /*
260 ** pExpr is an operand of a comparison operator.  aff2 is the
261 ** type affinity of the other operand.  This routine returns the
262 ** type affinity that should be used for the comparison operator.
263 */
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265   char aff1 = sqlite3ExprAffinity(pExpr);
266   if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267     /* Both sides of the comparison are columns. If one has numeric
268     ** affinity, use that. Otherwise use no affinity.
269     */
270     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271       return SQLITE_AFF_NUMERIC;
272     }else{
273       return SQLITE_AFF_BLOB;
274     }
275   }else{
276     /* One side is a column, the other is not. Use the columns affinity. */
277     assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278     return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
279   }
280 }
281 
282 /*
283 ** pExpr is a comparison operator.  Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
285 */
286 static char comparisonAffinity(const Expr *pExpr){
287   char aff;
288   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291   assert( pExpr->pLeft );
292   aff = sqlite3ExprAffinity(pExpr->pLeft);
293   if( pExpr->pRight ){
294     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295   }else if( ExprUseXSelect(pExpr) ){
296     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297   }else if( aff==0 ){
298     aff = SQLITE_AFF_BLOB;
299   }
300   return aff;
301 }
302 
303 /*
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
308 */
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310   char aff = comparisonAffinity(pExpr);
311   if( aff<SQLITE_AFF_TEXT ){
312     return 1;
313   }
314   if( aff==SQLITE_AFF_TEXT ){
315     return idx_affinity==SQLITE_AFF_TEXT;
316   }
317   return sqlite3IsNumericAffinity(idx_affinity);
318 }
319 
320 /*
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
323 */
324 static u8 binaryCompareP5(
325   const Expr *pExpr1,   /* Left operand */
326   const Expr *pExpr2,   /* Right operand */
327   int jumpIfNull        /* Extra flags added to P5 */
328 ){
329   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331   return aff;
332 }
333 
334 /*
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
337 **
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
342 **
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
345 */
346 CollSeq *sqlite3BinaryCompareCollSeq(
347   Parse *pParse,
348   const Expr *pLeft,
349   const Expr *pRight
350 ){
351   CollSeq *pColl;
352   assert( pLeft );
353   if( pLeft->flags & EP_Collate ){
354     pColl = sqlite3ExprCollSeq(pParse, pLeft);
355   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356     pColl = sqlite3ExprCollSeq(pParse, pRight);
357   }else{
358     pColl = sqlite3ExprCollSeq(pParse, pLeft);
359     if( !pColl ){
360       pColl = sqlite3ExprCollSeq(pParse, pRight);
361     }
362   }
363   return pColl;
364 }
365 
366 /* Expresssion p is a comparison operator.  Return a collation sequence
367 ** appropriate for the comparison operator.
368 **
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
373 */
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375   if( ExprHasProperty(p, EP_Commuted) ){
376     return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377   }else{
378     return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
379   }
380 }
381 
382 /*
383 ** Generate code for a comparison operator.
384 */
385 static int codeCompare(
386   Parse *pParse,    /* The parsing (and code generating) context */
387   Expr *pLeft,      /* The left operand */
388   Expr *pRight,     /* The right operand */
389   int opcode,       /* The comparison opcode */
390   int in1, int in2, /* Register holding operands */
391   int dest,         /* Jump here if true.  */
392   int jumpIfNull,   /* If true, jump if either operand is NULL */
393   int isCommuted    /* The comparison has been commuted */
394 ){
395   int p5;
396   int addr;
397   CollSeq *p4;
398 
399   if( pParse->nErr ) return 0;
400   if( isCommuted ){
401     p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402   }else{
403     p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
404   }
405   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407                            (void*)p4, P4_COLLSEQ);
408   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409   return addr;
410 }
411 
412 /*
413 ** Return true if expression pExpr is a vector, or false otherwise.
414 **
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result.  Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
420 */
421 int sqlite3ExprIsVector(const Expr *pExpr){
422   return sqlite3ExprVectorSize(pExpr)>1;
423 }
424 
425 /*
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
430 */
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432   u8 op = pExpr->op;
433   if( op==TK_REGISTER ) op = pExpr->op2;
434   if( op==TK_VECTOR ){
435     assert( ExprUseXList(pExpr) );
436     return pExpr->x.pList->nExpr;
437   }else if( op==TK_SELECT ){
438     assert( ExprUseXSelect(pExpr) );
439     return pExpr->x.pSelect->pEList->nExpr;
440   }else{
441     return 1;
442   }
443 }
444 
445 /*
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0).  The caller must
448 ** ensure that i is within range.
449 **
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
452 **
453 ** pVector retains ownership of the returned subexpression.
454 **
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
459 */
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461   assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462   if( sqlite3ExprIsVector(pVector) ){
463     assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464     if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465       assert( ExprUseXSelect(pVector) );
466       return pVector->x.pSelect->pEList->a[i].pExpr;
467     }else{
468       assert( ExprUseXList(pVector) );
469       return pVector->x.pList->a[i].pExpr;
470     }
471   }
472   return pVector;
473 }
474 
475 /*
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
479 **
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
482 **
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
485 **
486 ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object.  If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
491 **
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
495 */
496 Expr *sqlite3ExprForVectorField(
497   Parse *pParse,       /* Parsing context */
498   Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
499   int iField,          /* Which column of the vector to return */
500   int nField           /* Total number of columns in the vector */
501 ){
502   Expr *pRet;
503   if( pVector->op==TK_SELECT ){
504     assert( ExprUseXSelect(pVector) );
505     /* The TK_SELECT_COLUMN Expr node:
506     **
507     ** pLeft:           pVector containing TK_SELECT.  Not deleted.
508     ** pRight:          not used.  But recursively deleted.
509     ** iColumn:         Index of a column in pVector
510     ** iTable:          0 or the number of columns on the LHS of an assignment
511     ** pLeft->iTable:   First in an array of register holding result, or 0
512     **                  if the result is not yet computed.
513     **
514     ** sqlite3ExprDelete() specifically skips the recursive delete of
515     ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
516     ** can be attached to pRight to cause this node to take ownership of
517     ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
518     ** with the same pLeft pointer to the pVector, but only one of them
519     ** will own the pVector.
520     */
521     pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522     if( pRet ){
523       pRet->iTable = nField;
524       pRet->iColumn = iField;
525       pRet->pLeft = pVector;
526     }
527   }else{
528     if( pVector->op==TK_VECTOR ){
529       Expr **ppVector;
530       assert( ExprUseXList(pVector) );
531       ppVector = &pVector->x.pList->a[iField].pExpr;
532       pVector = *ppVector;
533       if( IN_RENAME_OBJECT ){
534         /* This must be a vector UPDATE inside a trigger */
535         *ppVector = 0;
536         return pVector;
537       }
538     }
539     pRet = sqlite3ExprDup(pParse->db, pVector, 0);
540   }
541   return pRet;
542 }
543 
544 /*
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
549 **
550 ** If pExpr is not a TK_SELECT expression, return 0.
551 */
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553   int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555   if( pExpr->op==TK_SELECT ){
556     reg = sqlite3CodeSubselect(pParse, pExpr);
557   }
558 #endif
559   return reg;
560 }
561 
562 /*
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
567 **
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
572 **
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
576 **
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
579 */
580 static int exprVectorRegister(
581   Parse *pParse,                  /* Parse context */
582   Expr *pVector,                  /* Vector to extract element from */
583   int iField,                     /* Field to extract from pVector */
584   int regSelect,                  /* First in array of registers */
585   Expr **ppExpr,                  /* OUT: Expression element */
586   int *pRegFree                   /* OUT: Temp register to free */
587 ){
588   u8 op = pVector->op;
589   assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590   if( op==TK_REGISTER ){
591     *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592     return pVector->iTable+iField;
593   }
594   if( op==TK_SELECT ){
595     assert( ExprUseXSelect(pVector) );
596     *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597      return regSelect+iField;
598   }
599   if( op==TK_VECTOR ){
600     assert( ExprUseXList(pVector) );
601     *ppExpr = pVector->x.pList->a[iField].pExpr;
602     return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
603   }
604   return 0;
605 }
606 
607 /*
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
611 **
612 ** The caller must satisfy the following preconditions:
613 **
614 **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
615 **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
616 **    otherwise:                op==pExpr->op and p5==0
617 */
618 static void codeVectorCompare(
619   Parse *pParse,        /* Code generator context */
620   Expr *pExpr,          /* The comparison operation */
621   int dest,             /* Write results into this register */
622   u8 op,                /* Comparison operator */
623   u8 p5                 /* SQLITE_NULLEQ or zero */
624 ){
625   Vdbe *v = pParse->pVdbe;
626   Expr *pLeft = pExpr->pLeft;
627   Expr *pRight = pExpr->pRight;
628   int nLeft = sqlite3ExprVectorSize(pLeft);
629   int i;
630   int regLeft = 0;
631   int regRight = 0;
632   u8 opx = op;
633   int addrCmp = 0;
634   int addrDone = sqlite3VdbeMakeLabel(pParse);
635   int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
636 
637   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638   if( pParse->nErr ) return;
639   if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640     sqlite3ErrorMsg(pParse, "row value misused");
641     return;
642   }
643   assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644        || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645        || pExpr->op==TK_LT || pExpr->op==TK_GT
646        || pExpr->op==TK_LE || pExpr->op==TK_GE
647   );
648   assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649             || (pExpr->op==TK_ISNOT && op==TK_NE) );
650   assert( p5==0 || pExpr->op!=op );
651   assert( p5==SQLITE_NULLEQ || pExpr->op==op );
652 
653   if( op==TK_LE ) opx = TK_LT;
654   if( op==TK_GE ) opx = TK_GT;
655   if( op==TK_NE ) opx = TK_EQ;
656 
657   regLeft = exprCodeSubselect(pParse, pLeft);
658   regRight = exprCodeSubselect(pParse, pRight);
659 
660   sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661   for(i=0; 1 /*Loop exits by "break"*/; i++){
662     int regFree1 = 0, regFree2 = 0;
663     Expr *pL = 0, *pR = 0;
664     int r1, r2;
665     assert( i>=0 && i<nLeft );
666     if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667     r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668     r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669     addrCmp = sqlite3VdbeCurrentAddr(v);
670     codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671     testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672     testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673     testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674     testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675     testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676     testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677     sqlite3ReleaseTempReg(pParse, regFree1);
678     sqlite3ReleaseTempReg(pParse, regFree2);
679     if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680       addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681       testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682       testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
683     }
684     if( p5==SQLITE_NULLEQ ){
685       sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686     }else{
687       sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
688     }
689     if( i==nLeft-1 ){
690       break;
691     }
692     if( opx==TK_EQ ){
693       sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694     }else{
695       assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697       if( i==nLeft-2 ) opx = op;
698     }
699   }
700   sqlite3VdbeJumpHere(v, addrCmp);
701   sqlite3VdbeResolveLabel(v, addrDone);
702   if( op==TK_NE ){
703     sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
704   }
705 }
706 
707 #if SQLITE_MAX_EXPR_DEPTH>0
708 /*
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
712 */
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714   int rc = SQLITE_OK;
715   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716   if( nHeight>mxHeight ){
717     sqlite3ErrorMsg(pParse,
718        "Expression tree is too large (maximum depth %d)", mxHeight
719     );
720     rc = SQLITE_ERROR;
721   }
722   return rc;
723 }
724 
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
729 **
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
733 */
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735   if( p ){
736     if( p->nHeight>*pnHeight ){
737       *pnHeight = p->nHeight;
738     }
739   }
740 }
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742   if( p ){
743     int i;
744     for(i=0; i<p->nExpr; i++){
745       heightOfExpr(p->a[i].pExpr, pnHeight);
746     }
747   }
748 }
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750   const Select *p;
751   for(p=pSelect; p; p=p->pPrior){
752     heightOfExpr(p->pWhere, pnHeight);
753     heightOfExpr(p->pHaving, pnHeight);
754     heightOfExpr(p->pLimit, pnHeight);
755     heightOfExprList(p->pEList, pnHeight);
756     heightOfExprList(p->pGroupBy, pnHeight);
757     heightOfExprList(p->pOrderBy, pnHeight);
758   }
759 }
760 
761 /*
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
767 **
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
770 */
771 static void exprSetHeight(Expr *p){
772   int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
773   if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
774     nHeight = p->pRight->nHeight;
775   }
776   if( ExprUseXSelect(p) ){
777     heightOfSelect(p->x.pSelect, &nHeight);
778   }else if( p->x.pList ){
779     heightOfExprList(p->x.pList, &nHeight);
780     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
781   }
782   p->nHeight = nHeight + 1;
783 }
784 
785 /*
786 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
787 ** the height is greater than the maximum allowed expression depth,
788 ** leave an error in pParse.
789 **
790 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
791 ** Expr.flags.
792 */
793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
794   if( pParse->nErr ) return;
795   exprSetHeight(p);
796   sqlite3ExprCheckHeight(pParse, p->nHeight);
797 }
798 
799 /*
800 ** Return the maximum height of any expression tree referenced
801 ** by the select statement passed as an argument.
802 */
803 int sqlite3SelectExprHeight(const Select *p){
804   int nHeight = 0;
805   heightOfSelect(p, &nHeight);
806   return nHeight;
807 }
808 #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
809 /*
810 ** Propagate all EP_Propagate flags from the Expr.x.pList into
811 ** Expr.flags.
812 */
813 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
814   if( pParse->nErr ) return;
815   if( p && ExprUseXList(p) && p->x.pList ){
816     p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
817   }
818 }
819 #define exprSetHeight(y)
820 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
821 
822 /*
823 ** This routine is the core allocator for Expr nodes.
824 **
825 ** Construct a new expression node and return a pointer to it.  Memory
826 ** for this node and for the pToken argument is a single allocation
827 ** obtained from sqlite3DbMalloc().  The calling function
828 ** is responsible for making sure the node eventually gets freed.
829 **
830 ** If dequote is true, then the token (if it exists) is dequoted.
831 ** If dequote is false, no dequoting is performed.  The deQuote
832 ** parameter is ignored if pToken is NULL or if the token does not
833 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
834 ** then the EP_DblQuoted flag is set on the expression node.
835 **
836 ** Special case:  If op==TK_INTEGER and pToken points to a string that
837 ** can be translated into a 32-bit integer, then the token is not
838 ** stored in u.zToken.  Instead, the integer values is written
839 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
840 ** is allocated to hold the integer text and the dequote flag is ignored.
841 */
842 Expr *sqlite3ExprAlloc(
843   sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
844   int op,                 /* Expression opcode */
845   const Token *pToken,    /* Token argument.  Might be NULL */
846   int dequote             /* True to dequote */
847 ){
848   Expr *pNew;
849   int nExtra = 0;
850   int iValue = 0;
851 
852   assert( db!=0 );
853   if( pToken ){
854     if( op!=TK_INTEGER || pToken->z==0
855           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
856       nExtra = pToken->n+1;
857       assert( iValue>=0 );
858     }
859   }
860   pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
861   if( pNew ){
862     memset(pNew, 0, sizeof(Expr));
863     pNew->op = (u8)op;
864     pNew->iAgg = -1;
865     if( pToken ){
866       if( nExtra==0 ){
867         pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
868         pNew->u.iValue = iValue;
869       }else{
870         pNew->u.zToken = (char*)&pNew[1];
871         assert( pToken->z!=0 || pToken->n==0 );
872         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
873         pNew->u.zToken[pToken->n] = 0;
874         if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
875           sqlite3DequoteExpr(pNew);
876         }
877       }
878     }
879 #if SQLITE_MAX_EXPR_DEPTH>0
880     pNew->nHeight = 1;
881 #endif
882   }
883   return pNew;
884 }
885 
886 /*
887 ** Allocate a new expression node from a zero-terminated token that has
888 ** already been dequoted.
889 */
890 Expr *sqlite3Expr(
891   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
892   int op,                 /* Expression opcode */
893   const char *zToken      /* Token argument.  Might be NULL */
894 ){
895   Token x;
896   x.z = zToken;
897   x.n = sqlite3Strlen30(zToken);
898   return sqlite3ExprAlloc(db, op, &x, 0);
899 }
900 
901 /*
902 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
903 **
904 ** If pRoot==NULL that means that a memory allocation error has occurred.
905 ** In that case, delete the subtrees pLeft and pRight.
906 */
907 void sqlite3ExprAttachSubtrees(
908   sqlite3 *db,
909   Expr *pRoot,
910   Expr *pLeft,
911   Expr *pRight
912 ){
913   if( pRoot==0 ){
914     assert( db->mallocFailed );
915     sqlite3ExprDelete(db, pLeft);
916     sqlite3ExprDelete(db, pRight);
917   }else{
918     assert( ExprUseXList(pRoot) );
919     assert( pRoot->x.pSelect==0 );
920     if( pRight ){
921       pRoot->pRight = pRight;
922       pRoot->flags |= EP_Propagate & pRight->flags;
923 #if SQLITE_MAX_EXPR_DEPTH>0
924       pRoot->nHeight = pRight->nHeight+1;
925     }else{
926       pRoot->nHeight = 1;
927 #endif
928     }
929     if( pLeft ){
930       pRoot->pLeft = pLeft;
931       pRoot->flags |= EP_Propagate & pLeft->flags;
932 #if SQLITE_MAX_EXPR_DEPTH>0
933       if( pLeft->nHeight>=pRoot->nHeight ){
934         pRoot->nHeight = pLeft->nHeight+1;
935       }
936 #endif
937     }
938   }
939 }
940 
941 /*
942 ** Allocate an Expr node which joins as many as two subtrees.
943 **
944 ** One or both of the subtrees can be NULL.  Return a pointer to the new
945 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
946 ** free the subtrees and return NULL.
947 */
948 Expr *sqlite3PExpr(
949   Parse *pParse,          /* Parsing context */
950   int op,                 /* Expression opcode */
951   Expr *pLeft,            /* Left operand */
952   Expr *pRight            /* Right operand */
953 ){
954   Expr *p;
955   p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
956   if( p ){
957     memset(p, 0, sizeof(Expr));
958     p->op = op & 0xff;
959     p->iAgg = -1;
960     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
961     sqlite3ExprCheckHeight(pParse, p->nHeight);
962   }else{
963     sqlite3ExprDelete(pParse->db, pLeft);
964     sqlite3ExprDelete(pParse->db, pRight);
965   }
966   return p;
967 }
968 
969 /*
970 ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
971 ** do a memory allocation failure) then delete the pSelect object.
972 */
973 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
974   if( pExpr ){
975     pExpr->x.pSelect = pSelect;
976     ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
977     sqlite3ExprSetHeightAndFlags(pParse, pExpr);
978   }else{
979     assert( pParse->db->mallocFailed );
980     sqlite3SelectDelete(pParse->db, pSelect);
981   }
982 }
983 
984 /*
985 ** Expression list pEList is a list of vector values. This function
986 ** converts the contents of pEList to a VALUES(...) Select statement
987 ** returning 1 row for each element of the list. For example, the
988 ** expression list:
989 **
990 **   ( (1,2), (3,4) (5,6) )
991 **
992 ** is translated to the equivalent of:
993 **
994 **   VALUES(1,2), (3,4), (5,6)
995 **
996 ** Each of the vector values in pEList must contain exactly nElem terms.
997 ** If a list element that is not a vector or does not contain nElem terms,
998 ** an error message is left in pParse.
999 **
1000 ** This is used as part of processing IN(...) expressions with a list
1001 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1002 */
1003 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
1004   int ii;
1005   Select *pRet = 0;
1006   assert( nElem>1 );
1007   for(ii=0; ii<pEList->nExpr; ii++){
1008     Select *pSel;
1009     Expr *pExpr = pEList->a[ii].pExpr;
1010     int nExprElem;
1011     if( pExpr->op==TK_VECTOR ){
1012       assert( ExprUseXList(pExpr) );
1013       nExprElem = pExpr->x.pList->nExpr;
1014     }else{
1015       nExprElem = 1;
1016     }
1017     if( nExprElem!=nElem ){
1018       sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1019           nExprElem, nExprElem>1?"s":"", nElem
1020       );
1021       break;
1022     }
1023     assert( ExprUseXList(pExpr) );
1024     pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1025     pExpr->x.pList = 0;
1026     if( pSel ){
1027       if( pRet ){
1028         pSel->op = TK_ALL;
1029         pSel->pPrior = pRet;
1030       }
1031       pRet = pSel;
1032     }
1033   }
1034 
1035   if( pRet && pRet->pPrior ){
1036     pRet->selFlags |= SF_MultiValue;
1037   }
1038   sqlite3ExprListDelete(pParse->db, pEList);
1039   return pRet;
1040 }
1041 
1042 /*
1043 ** Join two expressions using an AND operator.  If either expression is
1044 ** NULL, then just return the other expression.
1045 **
1046 ** If one side or the other of the AND is known to be false, then instead
1047 ** of returning an AND expression, just return a constant expression with
1048 ** a value of false.
1049 */
1050 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1051   sqlite3 *db = pParse->db;
1052   if( pLeft==0  ){
1053     return pRight;
1054   }else if( pRight==0 ){
1055     return pLeft;
1056   }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1057          && !IN_RENAME_OBJECT
1058   ){
1059     sqlite3ExprDeferredDelete(pParse, pLeft);
1060     sqlite3ExprDeferredDelete(pParse, pRight);
1061     return sqlite3Expr(db, TK_INTEGER, "0");
1062   }else{
1063     return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1064   }
1065 }
1066 
1067 /*
1068 ** Construct a new expression node for a function with multiple
1069 ** arguments.
1070 */
1071 Expr *sqlite3ExprFunction(
1072   Parse *pParse,        /* Parsing context */
1073   ExprList *pList,      /* Argument list */
1074   const Token *pToken,  /* Name of the function */
1075   int eDistinct         /* SF_Distinct or SF_ALL or 0 */
1076 ){
1077   Expr *pNew;
1078   sqlite3 *db = pParse->db;
1079   assert( pToken );
1080   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1081   if( pNew==0 ){
1082     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1083     return 0;
1084   }
1085   assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1086   pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1087   if( pList
1088    && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1089    && !pParse->nested
1090   ){
1091     sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1092   }
1093   pNew->x.pList = pList;
1094   ExprSetProperty(pNew, EP_HasFunc);
1095   assert( ExprUseXList(pNew) );
1096   sqlite3ExprSetHeightAndFlags(pParse, pNew);
1097   if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1098   return pNew;
1099 }
1100 
1101 /*
1102 ** Check to see if a function is usable according to current access
1103 ** rules:
1104 **
1105 **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
1106 **
1107 **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
1108 **                                top-level SQL
1109 **
1110 ** If the function is not usable, create an error.
1111 */
1112 void sqlite3ExprFunctionUsable(
1113   Parse *pParse,         /* Parsing and code generating context */
1114   const Expr *pExpr,     /* The function invocation */
1115   const FuncDef *pDef    /* The function being invoked */
1116 ){
1117   assert( !IN_RENAME_OBJECT );
1118   assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1119   if( ExprHasProperty(pExpr, EP_FromDDL) ){
1120     if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1121      || (pParse->db->flags & SQLITE_TrustedSchema)==0
1122     ){
1123       /* Functions prohibited in triggers and views if:
1124       **     (1) tagged with SQLITE_DIRECTONLY
1125       **     (2) not tagged with SQLITE_INNOCUOUS (which means it
1126       **         is tagged with SQLITE_FUNC_UNSAFE) and
1127       **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1128       **         that the schema is possibly tainted).
1129       */
1130       sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1131     }
1132   }
1133 }
1134 
1135 /*
1136 ** Assign a variable number to an expression that encodes a wildcard
1137 ** in the original SQL statement.
1138 **
1139 ** Wildcards consisting of a single "?" are assigned the next sequential
1140 ** variable number.
1141 **
1142 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
1143 ** sure "nnn" is not too big to avoid a denial of service attack when
1144 ** the SQL statement comes from an external source.
1145 **
1146 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1147 ** as the previous instance of the same wildcard.  Or if this is the first
1148 ** instance of the wildcard, the next sequential variable number is
1149 ** assigned.
1150 */
1151 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1152   sqlite3 *db = pParse->db;
1153   const char *z;
1154   ynVar x;
1155 
1156   if( pExpr==0 ) return;
1157   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1158   z = pExpr->u.zToken;
1159   assert( z!=0 );
1160   assert( z[0]!=0 );
1161   assert( n==(u32)sqlite3Strlen30(z) );
1162   if( z[1]==0 ){
1163     /* Wildcard of the form "?".  Assign the next variable number */
1164     assert( z[0]=='?' );
1165     x = (ynVar)(++pParse->nVar);
1166   }else{
1167     int doAdd = 0;
1168     if( z[0]=='?' ){
1169       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
1170       ** use it as the variable number */
1171       i64 i;
1172       int bOk;
1173       if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1174         i = z[1]-'0';  /* The common case of ?N for a single digit N */
1175         bOk = 1;
1176       }else{
1177         bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1178       }
1179       testcase( i==0 );
1180       testcase( i==1 );
1181       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1182       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1183       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1184         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1185             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1186         sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1187         return;
1188       }
1189       x = (ynVar)i;
1190       if( x>pParse->nVar ){
1191         pParse->nVar = (int)x;
1192         doAdd = 1;
1193       }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1194         doAdd = 1;
1195       }
1196     }else{
1197       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
1198       ** number as the prior appearance of the same name, or if the name
1199       ** has never appeared before, reuse the same variable number
1200       */
1201       x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1202       if( x==0 ){
1203         x = (ynVar)(++pParse->nVar);
1204         doAdd = 1;
1205       }
1206     }
1207     if( doAdd ){
1208       pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1209     }
1210   }
1211   pExpr->iColumn = x;
1212   if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1213     sqlite3ErrorMsg(pParse, "too many SQL variables");
1214     sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1215   }
1216 }
1217 
1218 /*
1219 ** Recursively delete an expression tree.
1220 */
1221 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1222   assert( p!=0 );
1223   assert( db!=0 );
1224   assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1225   assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1226   assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1227   assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1228 #ifdef SQLITE_DEBUG
1229   if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1230     assert( p->pLeft==0 );
1231     assert( p->pRight==0 );
1232     assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1233     assert( !ExprUseXList(p) || p->x.pList==0 );
1234   }
1235 #endif
1236   if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1237     /* The Expr.x union is never used at the same time as Expr.pRight */
1238     assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1239     if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1240     if( p->pRight ){
1241       assert( !ExprHasProperty(p, EP_WinFunc) );
1242       sqlite3ExprDeleteNN(db, p->pRight);
1243     }else if( ExprUseXSelect(p) ){
1244       assert( !ExprHasProperty(p, EP_WinFunc) );
1245       sqlite3SelectDelete(db, p->x.pSelect);
1246     }else{
1247       sqlite3ExprListDelete(db, p->x.pList);
1248 #ifndef SQLITE_OMIT_WINDOWFUNC
1249       if( ExprHasProperty(p, EP_WinFunc) ){
1250         sqlite3WindowDelete(db, p->y.pWin);
1251       }
1252 #endif
1253     }
1254   }
1255   if( !ExprHasProperty(p, EP_Static) ){
1256     sqlite3DbNNFreeNN(db, p);
1257   }
1258 }
1259 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1260   if( p ) sqlite3ExprDeleteNN(db, p);
1261 }
1262 
1263 /*
1264 ** Clear both elements of an OnOrUsing object
1265 */
1266 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1267   if( p==0 ){
1268     /* Nothing to clear */
1269   }else if( p->pOn ){
1270     sqlite3ExprDeleteNN(db, p->pOn);
1271   }else if( p->pUsing ){
1272     sqlite3IdListDelete(db, p->pUsing);
1273   }
1274 }
1275 
1276 /*
1277 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1278 ** This is similar to sqlite3ExprDelete() except that the delete is
1279 ** deferred untilthe pParse is deleted.
1280 **
1281 ** The pExpr might be deleted immediately on an OOM error.
1282 **
1283 ** The deferred delete is (currently) implemented by adding the
1284 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1285 */
1286 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1287   sqlite3ParserAddCleanup(pParse,
1288     (void(*)(sqlite3*,void*))sqlite3ExprDelete,
1289     pExpr);
1290 }
1291 
1292 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1293 ** expression.
1294 */
1295 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1296   if( p ){
1297     if( IN_RENAME_OBJECT ){
1298       sqlite3RenameExprUnmap(pParse, p);
1299     }
1300     sqlite3ExprDeleteNN(pParse->db, p);
1301   }
1302 }
1303 
1304 /*
1305 ** Return the number of bytes allocated for the expression structure
1306 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1307 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1308 */
1309 static int exprStructSize(const Expr *p){
1310   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1311   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1312   return EXPR_FULLSIZE;
1313 }
1314 
1315 /*
1316 ** The dupedExpr*Size() routines each return the number of bytes required
1317 ** to store a copy of an expression or expression tree.  They differ in
1318 ** how much of the tree is measured.
1319 **
1320 **     dupedExprStructSize()     Size of only the Expr structure
1321 **     dupedExprNodeSize()       Size of Expr + space for token
1322 **     dupedExprSize()           Expr + token + subtree components
1323 **
1324 ***************************************************************************
1325 **
1326 ** The dupedExprStructSize() function returns two values OR-ed together:
1327 ** (1) the space required for a copy of the Expr structure only and
1328 ** (2) the EP_xxx flags that indicate what the structure size should be.
1329 ** The return values is always one of:
1330 **
1331 **      EXPR_FULLSIZE
1332 **      EXPR_REDUCEDSIZE   | EP_Reduced
1333 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
1334 **
1335 ** The size of the structure can be found by masking the return value
1336 ** of this routine with 0xfff.  The flags can be found by masking the
1337 ** return value with EP_Reduced|EP_TokenOnly.
1338 **
1339 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1340 ** (unreduced) Expr objects as they or originally constructed by the parser.
1341 ** During expression analysis, extra information is computed and moved into
1342 ** later parts of the Expr object and that extra information might get chopped
1343 ** off if the expression is reduced.  Note also that it does not work to
1344 ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
1345 ** to reduce a pristine expression tree from the parser.  The implementation
1346 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1347 ** to enforce this constraint.
1348 */
1349 static int dupedExprStructSize(const Expr *p, int flags){
1350   int nSize;
1351   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1352   assert( EXPR_FULLSIZE<=0xfff );
1353   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1354   if( 0==flags || p->op==TK_SELECT_COLUMN
1355 #ifndef SQLITE_OMIT_WINDOWFUNC
1356    || ExprHasProperty(p, EP_WinFunc)
1357 #endif
1358   ){
1359     nSize = EXPR_FULLSIZE;
1360   }else{
1361     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1362     assert( !ExprHasProperty(p, EP_OuterON) );
1363     assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1364     if( p->pLeft || p->x.pList ){
1365       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1366     }else{
1367       assert( p->pRight==0 );
1368       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1369     }
1370   }
1371   return nSize;
1372 }
1373 
1374 /*
1375 ** This function returns the space in bytes required to store the copy
1376 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1377 ** string is defined.)
1378 */
1379 static int dupedExprNodeSize(const Expr *p, int flags){
1380   int nByte = dupedExprStructSize(p, flags) & 0xfff;
1381   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1382     nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1383   }
1384   return ROUND8(nByte);
1385 }
1386 
1387 /*
1388 ** Return the number of bytes required to create a duplicate of the
1389 ** expression passed as the first argument. The second argument is a
1390 ** mask containing EXPRDUP_XXX flags.
1391 **
1392 ** The value returned includes space to create a copy of the Expr struct
1393 ** itself and the buffer referred to by Expr.u.zToken, if any.
1394 **
1395 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1396 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1397 ** and Expr.pRight variables (but not for any structures pointed to or
1398 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1399 */
1400 static int dupedExprSize(const Expr *p, int flags){
1401   int nByte = 0;
1402   if( p ){
1403     nByte = dupedExprNodeSize(p, flags);
1404     if( flags&EXPRDUP_REDUCE ){
1405       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1406     }
1407   }
1408   return nByte;
1409 }
1410 
1411 /*
1412 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1413 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1414 ** to store the copy of expression p, the copies of p->u.zToken
1415 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1416 ** if any. Before returning, *pzBuffer is set to the first byte past the
1417 ** portion of the buffer copied into by this function.
1418 */
1419 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1420   Expr *pNew;           /* Value to return */
1421   u8 *zAlloc;           /* Memory space from which to build Expr object */
1422   u32 staticFlag;       /* EP_Static if space not obtained from malloc */
1423 
1424   assert( db!=0 );
1425   assert( p );
1426   assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1427   assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1428 
1429   /* Figure out where to write the new Expr structure. */
1430   if( pzBuffer ){
1431     zAlloc = *pzBuffer;
1432     staticFlag = EP_Static;
1433     assert( zAlloc!=0 );
1434   }else{
1435     zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1436     staticFlag = 0;
1437   }
1438   pNew = (Expr *)zAlloc;
1439 
1440   if( pNew ){
1441     /* Set nNewSize to the size allocated for the structure pointed to
1442     ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1443     ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1444     ** by the copy of the p->u.zToken string (if any).
1445     */
1446     const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1447     const int nNewSize = nStructSize & 0xfff;
1448     int nToken;
1449     if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1450       nToken = sqlite3Strlen30(p->u.zToken) + 1;
1451     }else{
1452       nToken = 0;
1453     }
1454     if( dupFlags ){
1455       assert( ExprHasProperty(p, EP_Reduced)==0 );
1456       memcpy(zAlloc, p, nNewSize);
1457     }else{
1458       u32 nSize = (u32)exprStructSize(p);
1459       memcpy(zAlloc, p, nSize);
1460       if( nSize<EXPR_FULLSIZE ){
1461         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1462       }
1463     }
1464 
1465     /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1466     pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1467     pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1468     pNew->flags |= staticFlag;
1469     ExprClearVVAProperties(pNew);
1470     if( dupFlags ){
1471       ExprSetVVAProperty(pNew, EP_Immutable);
1472     }
1473 
1474     /* Copy the p->u.zToken string, if any. */
1475     if( nToken ){
1476       char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1477       memcpy(zToken, p->u.zToken, nToken);
1478     }
1479 
1480     if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1481       /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1482       if( ExprUseXSelect(p) ){
1483         pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1484       }else{
1485         pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1486       }
1487     }
1488 
1489     /* Fill in pNew->pLeft and pNew->pRight. */
1490     if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1491       zAlloc += dupedExprNodeSize(p, dupFlags);
1492       if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1493         pNew->pLeft = p->pLeft ?
1494                       exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1495         pNew->pRight = p->pRight ?
1496                        exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1497       }
1498 #ifndef SQLITE_OMIT_WINDOWFUNC
1499       if( ExprHasProperty(p, EP_WinFunc) ){
1500         pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1501         assert( ExprHasProperty(pNew, EP_WinFunc) );
1502       }
1503 #endif /* SQLITE_OMIT_WINDOWFUNC */
1504       if( pzBuffer ){
1505         *pzBuffer = zAlloc;
1506       }
1507     }else{
1508       if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1509         if( pNew->op==TK_SELECT_COLUMN ){
1510           pNew->pLeft = p->pLeft;
1511           assert( p->pRight==0  || p->pRight==p->pLeft
1512                                 || ExprHasProperty(p->pLeft, EP_Subquery) );
1513         }else{
1514           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1515         }
1516         pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1517       }
1518     }
1519   }
1520   return pNew;
1521 }
1522 
1523 /*
1524 ** Create and return a deep copy of the object passed as the second
1525 ** argument. If an OOM condition is encountered, NULL is returned
1526 ** and the db->mallocFailed flag set.
1527 */
1528 #ifndef SQLITE_OMIT_CTE
1529 With *sqlite3WithDup(sqlite3 *db, With *p){
1530   With *pRet = 0;
1531   if( p ){
1532     sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1533     pRet = sqlite3DbMallocZero(db, nByte);
1534     if( pRet ){
1535       int i;
1536       pRet->nCte = p->nCte;
1537       for(i=0; i<p->nCte; i++){
1538         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1539         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1540         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1541         pRet->a[i].eM10d = p->a[i].eM10d;
1542       }
1543     }
1544   }
1545   return pRet;
1546 }
1547 #else
1548 # define sqlite3WithDup(x,y) 0
1549 #endif
1550 
1551 #ifndef SQLITE_OMIT_WINDOWFUNC
1552 /*
1553 ** The gatherSelectWindows() procedure and its helper routine
1554 ** gatherSelectWindowsCallback() are used to scan all the expressions
1555 ** an a newly duplicated SELECT statement and gather all of the Window
1556 ** objects found there, assembling them onto the linked list at Select->pWin.
1557 */
1558 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1559   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1560     Select *pSelect = pWalker->u.pSelect;
1561     Window *pWin = pExpr->y.pWin;
1562     assert( pWin );
1563     assert( IsWindowFunc(pExpr) );
1564     assert( pWin->ppThis==0 );
1565     sqlite3WindowLink(pSelect, pWin);
1566   }
1567   return WRC_Continue;
1568 }
1569 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1570   return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1571 }
1572 static void gatherSelectWindows(Select *p){
1573   Walker w;
1574   w.xExprCallback = gatherSelectWindowsCallback;
1575   w.xSelectCallback = gatherSelectWindowsSelectCallback;
1576   w.xSelectCallback2 = 0;
1577   w.pParse = 0;
1578   w.u.pSelect = p;
1579   sqlite3WalkSelect(&w, p);
1580 }
1581 #endif
1582 
1583 
1584 /*
1585 ** The following group of routines make deep copies of expressions,
1586 ** expression lists, ID lists, and select statements.  The copies can
1587 ** be deleted (by being passed to their respective ...Delete() routines)
1588 ** without effecting the originals.
1589 **
1590 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1591 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1592 ** by subsequent calls to sqlite*ListAppend() routines.
1593 **
1594 ** Any tables that the SrcList might point to are not duplicated.
1595 **
1596 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1597 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1598 ** truncated version of the usual Expr structure that will be stored as
1599 ** part of the in-memory representation of the database schema.
1600 */
1601 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1602   assert( flags==0 || flags==EXPRDUP_REDUCE );
1603   return p ? exprDup(db, p, flags, 0) : 0;
1604 }
1605 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1606   ExprList *pNew;
1607   struct ExprList_item *pItem;
1608   const struct ExprList_item *pOldItem;
1609   int i;
1610   Expr *pPriorSelectColOld = 0;
1611   Expr *pPriorSelectColNew = 0;
1612   assert( db!=0 );
1613   if( p==0 ) return 0;
1614   pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1615   if( pNew==0 ) return 0;
1616   pNew->nExpr = p->nExpr;
1617   pNew->nAlloc = p->nAlloc;
1618   pItem = pNew->a;
1619   pOldItem = p->a;
1620   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1621     Expr *pOldExpr = pOldItem->pExpr;
1622     Expr *pNewExpr;
1623     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1624     if( pOldExpr
1625      && pOldExpr->op==TK_SELECT_COLUMN
1626      && (pNewExpr = pItem->pExpr)!=0
1627     ){
1628       if( pNewExpr->pRight ){
1629         pPriorSelectColOld = pOldExpr->pRight;
1630         pPriorSelectColNew = pNewExpr->pRight;
1631         pNewExpr->pLeft = pNewExpr->pRight;
1632       }else{
1633         if( pOldExpr->pLeft!=pPriorSelectColOld ){
1634           pPriorSelectColOld = pOldExpr->pLeft;
1635           pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1636           pNewExpr->pRight = pPriorSelectColNew;
1637         }
1638         pNewExpr->pLeft = pPriorSelectColNew;
1639       }
1640     }
1641     pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1642     pItem->fg = pOldItem->fg;
1643     pItem->fg.done = 0;
1644     pItem->u = pOldItem->u;
1645   }
1646   return pNew;
1647 }
1648 
1649 /*
1650 ** If cursors, triggers, views and subqueries are all omitted from
1651 ** the build, then none of the following routines, except for
1652 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1653 ** called with a NULL argument.
1654 */
1655 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1656  || !defined(SQLITE_OMIT_SUBQUERY)
1657 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1658   SrcList *pNew;
1659   int i;
1660   int nByte;
1661   assert( db!=0 );
1662   if( p==0 ) return 0;
1663   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1664   pNew = sqlite3DbMallocRawNN(db, nByte );
1665   if( pNew==0 ) return 0;
1666   pNew->nSrc = pNew->nAlloc = p->nSrc;
1667   for(i=0; i<p->nSrc; i++){
1668     SrcItem *pNewItem = &pNew->a[i];
1669     const SrcItem *pOldItem = &p->a[i];
1670     Table *pTab;
1671     pNewItem->pSchema = pOldItem->pSchema;
1672     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1673     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1674     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1675     pNewItem->fg = pOldItem->fg;
1676     pNewItem->iCursor = pOldItem->iCursor;
1677     pNewItem->addrFillSub = pOldItem->addrFillSub;
1678     pNewItem->regReturn = pOldItem->regReturn;
1679     if( pNewItem->fg.isIndexedBy ){
1680       pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1681     }
1682     pNewItem->u2 = pOldItem->u2;
1683     if( pNewItem->fg.isCte ){
1684       pNewItem->u2.pCteUse->nUse++;
1685     }
1686     if( pNewItem->fg.isTabFunc ){
1687       pNewItem->u1.pFuncArg =
1688           sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1689     }
1690     pTab = pNewItem->pTab = pOldItem->pTab;
1691     if( pTab ){
1692       pTab->nTabRef++;
1693     }
1694     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1695     if( pOldItem->fg.isUsing ){
1696       assert( pNewItem->fg.isUsing );
1697       pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1698     }else{
1699       pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1700     }
1701     pNewItem->colUsed = pOldItem->colUsed;
1702   }
1703   return pNew;
1704 }
1705 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1706   IdList *pNew;
1707   int i;
1708   assert( db!=0 );
1709   if( p==0 ) return 0;
1710   assert( p->eU4!=EU4_EXPR );
1711   pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1712   if( pNew==0 ) return 0;
1713   pNew->nId = p->nId;
1714   pNew->eU4 = p->eU4;
1715   for(i=0; i<p->nId; i++){
1716     struct IdList_item *pNewItem = &pNew->a[i];
1717     const struct IdList_item *pOldItem = &p->a[i];
1718     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1719     pNewItem->u4 = pOldItem->u4;
1720   }
1721   return pNew;
1722 }
1723 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1724   Select *pRet = 0;
1725   Select *pNext = 0;
1726   Select **pp = &pRet;
1727   const Select *p;
1728 
1729   assert( db!=0 );
1730   for(p=pDup; p; p=p->pPrior){
1731     Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1732     if( pNew==0 ) break;
1733     pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1734     pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1735     pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1736     pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1737     pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1738     pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1739     pNew->op = p->op;
1740     pNew->pNext = pNext;
1741     pNew->pPrior = 0;
1742     pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1743     pNew->iLimit = 0;
1744     pNew->iOffset = 0;
1745     pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1746     pNew->addrOpenEphm[0] = -1;
1747     pNew->addrOpenEphm[1] = -1;
1748     pNew->nSelectRow = p->nSelectRow;
1749     pNew->pWith = sqlite3WithDup(db, p->pWith);
1750 #ifndef SQLITE_OMIT_WINDOWFUNC
1751     pNew->pWin = 0;
1752     pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1753     if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1754 #endif
1755     pNew->selId = p->selId;
1756     if( db->mallocFailed ){
1757       /* Any prior OOM might have left the Select object incomplete.
1758       ** Delete the whole thing rather than allow an incomplete Select
1759       ** to be used by the code generator. */
1760       pNew->pNext = 0;
1761       sqlite3SelectDelete(db, pNew);
1762       break;
1763     }
1764     *pp = pNew;
1765     pp = &pNew->pPrior;
1766     pNext = pNew;
1767   }
1768 
1769   return pRet;
1770 }
1771 #else
1772 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1773   assert( p==0 );
1774   return 0;
1775 }
1776 #endif
1777 
1778 
1779 /*
1780 ** Add a new element to the end of an expression list.  If pList is
1781 ** initially NULL, then create a new expression list.
1782 **
1783 ** The pList argument must be either NULL or a pointer to an ExprList
1784 ** obtained from a prior call to sqlite3ExprListAppend().  This routine
1785 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1786 ** Reason:  This routine assumes that the number of slots in pList->a[]
1787 ** is a power of two.  That is true for sqlite3ExprListAppend() returns
1788 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1789 **
1790 ** If a memory allocation error occurs, the entire list is freed and
1791 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1792 ** that the new entry was successfully appended.
1793 */
1794 static const struct ExprList_item zeroItem = {0};
1795 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1796   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1797   Expr *pExpr             /* Expression to be appended. Might be NULL */
1798 ){
1799   struct ExprList_item *pItem;
1800   ExprList *pList;
1801 
1802   pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1803   if( pList==0 ){
1804     sqlite3ExprDelete(db, pExpr);
1805     return 0;
1806   }
1807   pList->nAlloc = 4;
1808   pList->nExpr = 1;
1809   pItem = &pList->a[0];
1810   *pItem = zeroItem;
1811   pItem->pExpr = pExpr;
1812   return pList;
1813 }
1814 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1815   sqlite3 *db,            /* Database handle.  Used for memory allocation */
1816   ExprList *pList,        /* List to which to append. Might be NULL */
1817   Expr *pExpr             /* Expression to be appended. Might be NULL */
1818 ){
1819   struct ExprList_item *pItem;
1820   ExprList *pNew;
1821   pList->nAlloc *= 2;
1822   pNew = sqlite3DbRealloc(db, pList,
1823        sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1824   if( pNew==0 ){
1825     sqlite3ExprListDelete(db, pList);
1826     sqlite3ExprDelete(db, pExpr);
1827     return 0;
1828   }else{
1829     pList = pNew;
1830   }
1831   pItem = &pList->a[pList->nExpr++];
1832   *pItem = zeroItem;
1833   pItem->pExpr = pExpr;
1834   return pList;
1835 }
1836 ExprList *sqlite3ExprListAppend(
1837   Parse *pParse,          /* Parsing context */
1838   ExprList *pList,        /* List to which to append. Might be NULL */
1839   Expr *pExpr             /* Expression to be appended. Might be NULL */
1840 ){
1841   struct ExprList_item *pItem;
1842   if( pList==0 ){
1843     return sqlite3ExprListAppendNew(pParse->db,pExpr);
1844   }
1845   if( pList->nAlloc<pList->nExpr+1 ){
1846     return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1847   }
1848   pItem = &pList->a[pList->nExpr++];
1849   *pItem = zeroItem;
1850   pItem->pExpr = pExpr;
1851   return pList;
1852 }
1853 
1854 /*
1855 ** pColumns and pExpr form a vector assignment which is part of the SET
1856 ** clause of an UPDATE statement.  Like this:
1857 **
1858 **        (a,b,c) = (expr1,expr2,expr3)
1859 ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
1860 **
1861 ** For each term of the vector assignment, append new entries to the
1862 ** expression list pList.  In the case of a subquery on the RHS, append
1863 ** TK_SELECT_COLUMN expressions.
1864 */
1865 ExprList *sqlite3ExprListAppendVector(
1866   Parse *pParse,         /* Parsing context */
1867   ExprList *pList,       /* List to which to append. Might be NULL */
1868   IdList *pColumns,      /* List of names of LHS of the assignment */
1869   Expr *pExpr            /* Vector expression to be appended. Might be NULL */
1870 ){
1871   sqlite3 *db = pParse->db;
1872   int n;
1873   int i;
1874   int iFirst = pList ? pList->nExpr : 0;
1875   /* pColumns can only be NULL due to an OOM but an OOM will cause an
1876   ** exit prior to this routine being invoked */
1877   if( NEVER(pColumns==0) ) goto vector_append_error;
1878   if( pExpr==0 ) goto vector_append_error;
1879 
1880   /* If the RHS is a vector, then we can immediately check to see that
1881   ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
1882   ** wildcards ("*") in the result set of the SELECT must be expanded before
1883   ** we can do the size check, so defer the size check until code generation.
1884   */
1885   if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1886     sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1887                     pColumns->nId, n);
1888     goto vector_append_error;
1889   }
1890 
1891   for(i=0; i<pColumns->nId; i++){
1892     Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1893     assert( pSubExpr!=0 || db->mallocFailed );
1894     if( pSubExpr==0 ) continue;
1895     pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1896     if( pList ){
1897       assert( pList->nExpr==iFirst+i+1 );
1898       pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1899       pColumns->a[i].zName = 0;
1900     }
1901   }
1902 
1903   if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1904     Expr *pFirst = pList->a[iFirst].pExpr;
1905     assert( pFirst!=0 );
1906     assert( pFirst->op==TK_SELECT_COLUMN );
1907 
1908     /* Store the SELECT statement in pRight so it will be deleted when
1909     ** sqlite3ExprListDelete() is called */
1910     pFirst->pRight = pExpr;
1911     pExpr = 0;
1912 
1913     /* Remember the size of the LHS in iTable so that we can check that
1914     ** the RHS and LHS sizes match during code generation. */
1915     pFirst->iTable = pColumns->nId;
1916   }
1917 
1918 vector_append_error:
1919   sqlite3ExprUnmapAndDelete(pParse, pExpr);
1920   sqlite3IdListDelete(db, pColumns);
1921   return pList;
1922 }
1923 
1924 /*
1925 ** Set the sort order for the last element on the given ExprList.
1926 */
1927 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1928   struct ExprList_item *pItem;
1929   if( p==0 ) return;
1930   assert( p->nExpr>0 );
1931 
1932   assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1933   assert( iSortOrder==SQLITE_SO_UNDEFINED
1934        || iSortOrder==SQLITE_SO_ASC
1935        || iSortOrder==SQLITE_SO_DESC
1936   );
1937   assert( eNulls==SQLITE_SO_UNDEFINED
1938        || eNulls==SQLITE_SO_ASC
1939        || eNulls==SQLITE_SO_DESC
1940   );
1941 
1942   pItem = &p->a[p->nExpr-1];
1943   assert( pItem->fg.bNulls==0 );
1944   if( iSortOrder==SQLITE_SO_UNDEFINED ){
1945     iSortOrder = SQLITE_SO_ASC;
1946   }
1947   pItem->fg.sortFlags = (u8)iSortOrder;
1948 
1949   if( eNulls!=SQLITE_SO_UNDEFINED ){
1950     pItem->fg.bNulls = 1;
1951     if( iSortOrder!=eNulls ){
1952       pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
1953     }
1954   }
1955 }
1956 
1957 /*
1958 ** Set the ExprList.a[].zEName element of the most recently added item
1959 ** on the expression list.
1960 **
1961 ** pList might be NULL following an OOM error.  But pName should never be
1962 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1963 ** is set.
1964 */
1965 void sqlite3ExprListSetName(
1966   Parse *pParse,          /* Parsing context */
1967   ExprList *pList,        /* List to which to add the span. */
1968   const Token *pName,     /* Name to be added */
1969   int dequote             /* True to cause the name to be dequoted */
1970 ){
1971   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1972   assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1973   if( pList ){
1974     struct ExprList_item *pItem;
1975     assert( pList->nExpr>0 );
1976     pItem = &pList->a[pList->nExpr-1];
1977     assert( pItem->zEName==0 );
1978     assert( pItem->fg.eEName==ENAME_NAME );
1979     pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1980     if( dequote ){
1981       /* If dequote==0, then pName->z does not point to part of a DDL
1982       ** statement handled by the parser. And so no token need be added
1983       ** to the token-map.  */
1984       sqlite3Dequote(pItem->zEName);
1985       if( IN_RENAME_OBJECT ){
1986         sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1987       }
1988     }
1989   }
1990 }
1991 
1992 /*
1993 ** Set the ExprList.a[].zSpan element of the most recently added item
1994 ** on the expression list.
1995 **
1996 ** pList might be NULL following an OOM error.  But pSpan should never be
1997 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1998 ** is set.
1999 */
2000 void sqlite3ExprListSetSpan(
2001   Parse *pParse,          /* Parsing context */
2002   ExprList *pList,        /* List to which to add the span. */
2003   const char *zStart,     /* Start of the span */
2004   const char *zEnd        /* End of the span */
2005 ){
2006   sqlite3 *db = pParse->db;
2007   assert( pList!=0 || db->mallocFailed!=0 );
2008   if( pList ){
2009     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2010     assert( pList->nExpr>0 );
2011     if( pItem->zEName==0 ){
2012       pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2013       pItem->fg.eEName = ENAME_SPAN;
2014     }
2015   }
2016 }
2017 
2018 /*
2019 ** If the expression list pEList contains more than iLimit elements,
2020 ** leave an error message in pParse.
2021 */
2022 void sqlite3ExprListCheckLength(
2023   Parse *pParse,
2024   ExprList *pEList,
2025   const char *zObject
2026 ){
2027   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2028   testcase( pEList && pEList->nExpr==mx );
2029   testcase( pEList && pEList->nExpr==mx+1 );
2030   if( pEList && pEList->nExpr>mx ){
2031     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2032   }
2033 }
2034 
2035 /*
2036 ** Delete an entire expression list.
2037 */
2038 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2039   int i = pList->nExpr;
2040   struct ExprList_item *pItem =  pList->a;
2041   assert( pList->nExpr>0 );
2042   assert( db!=0 );
2043   do{
2044     sqlite3ExprDelete(db, pItem->pExpr);
2045     if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
2046     pItem++;
2047   }while( --i>0 );
2048   sqlite3DbNNFreeNN(db, pList);
2049 }
2050 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2051   if( pList ) exprListDeleteNN(db, pList);
2052 }
2053 
2054 /*
2055 ** Return the bitwise-OR of all Expr.flags fields in the given
2056 ** ExprList.
2057 */
2058 u32 sqlite3ExprListFlags(const ExprList *pList){
2059   int i;
2060   u32 m = 0;
2061   assert( pList!=0 );
2062   for(i=0; i<pList->nExpr; i++){
2063      Expr *pExpr = pList->a[i].pExpr;
2064      assert( pExpr!=0 );
2065      m |= pExpr->flags;
2066   }
2067   return m;
2068 }
2069 
2070 /*
2071 ** This is a SELECT-node callback for the expression walker that
2072 ** always "fails".  By "fail" in this case, we mean set
2073 ** pWalker->eCode to zero and abort.
2074 **
2075 ** This callback is used by multiple expression walkers.
2076 */
2077 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2078   UNUSED_PARAMETER(NotUsed);
2079   pWalker->eCode = 0;
2080   return WRC_Abort;
2081 }
2082 
2083 /*
2084 ** Check the input string to see if it is "true" or "false" (in any case).
2085 **
2086 **       If the string is....           Return
2087 **         "true"                         EP_IsTrue
2088 **         "false"                        EP_IsFalse
2089 **         anything else                  0
2090 */
2091 u32 sqlite3IsTrueOrFalse(const char *zIn){
2092   if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
2093   if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2094   return 0;
2095 }
2096 
2097 
2098 /*
2099 ** If the input expression is an ID with the name "true" or "false"
2100 ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
2101 ** the conversion happened, and zero if the expression is unaltered.
2102 */
2103 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2104   u32 v;
2105   assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2106   if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2107    && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2108   ){
2109     pExpr->op = TK_TRUEFALSE;
2110     ExprSetProperty(pExpr, v);
2111     return 1;
2112   }
2113   return 0;
2114 }
2115 
2116 /*
2117 ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
2118 ** and 0 if it is FALSE.
2119 */
2120 int sqlite3ExprTruthValue(const Expr *pExpr){
2121   pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2122   assert( pExpr->op==TK_TRUEFALSE );
2123   assert( !ExprHasProperty(pExpr, EP_IntValue) );
2124   assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2125        || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2126   return pExpr->u.zToken[4]==0;
2127 }
2128 
2129 /*
2130 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2131 ** terms that are always true or false.  Return the simplified expression.
2132 ** Or return the original expression if no simplification is possible.
2133 **
2134 ** Examples:
2135 **
2136 **     (x<10) AND true                =>   (x<10)
2137 **     (x<10) AND false               =>   false
2138 **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
2139 **     (x<10) AND (y=22 OR true)      =>   (x<10)
2140 **     (y=22) OR true                 =>   true
2141 */
2142 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2143   assert( pExpr!=0 );
2144   if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2145     Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2146     Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2147     if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2148       pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2149     }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2150       pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2151     }
2152   }
2153   return pExpr;
2154 }
2155 
2156 
2157 /*
2158 ** These routines are Walker callbacks used to check expressions to
2159 ** see if they are "constant" for some definition of constant.  The
2160 ** Walker.eCode value determines the type of "constant" we are looking
2161 ** for.
2162 **
2163 ** These callback routines are used to implement the following:
2164 **
2165 **     sqlite3ExprIsConstant()                  pWalker->eCode==1
2166 **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
2167 **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
2168 **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
2169 **
2170 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2171 ** is found to not be a constant.
2172 **
2173 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2174 ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
2175 ** when parsing an existing schema out of the sqlite_schema table and 4
2176 ** when processing a new CREATE TABLE statement.  A bound parameter raises
2177 ** an error for new statements, but is silently converted
2178 ** to NULL for existing schemas.  This allows sqlite_schema tables that
2179 ** contain a bound parameter because they were generated by older versions
2180 ** of SQLite to be parsed by newer versions of SQLite without raising a
2181 ** malformed schema error.
2182 */
2183 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2184 
2185   /* If pWalker->eCode is 2 then any term of the expression that comes from
2186   ** the ON or USING clauses of an outer join disqualifies the expression
2187   ** from being considered constant. */
2188   if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2189     pWalker->eCode = 0;
2190     return WRC_Abort;
2191   }
2192 
2193   switch( pExpr->op ){
2194     /* Consider functions to be constant if all their arguments are constant
2195     ** and either pWalker->eCode==4 or 5 or the function has the
2196     ** SQLITE_FUNC_CONST flag. */
2197     case TK_FUNCTION:
2198       if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2199        && !ExprHasProperty(pExpr, EP_WinFunc)
2200       ){
2201         if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2202         return WRC_Continue;
2203       }else{
2204         pWalker->eCode = 0;
2205         return WRC_Abort;
2206       }
2207     case TK_ID:
2208       /* Convert "true" or "false" in a DEFAULT clause into the
2209       ** appropriate TK_TRUEFALSE operator */
2210       if( sqlite3ExprIdToTrueFalse(pExpr) ){
2211         return WRC_Prune;
2212       }
2213       /* no break */ deliberate_fall_through
2214     case TK_COLUMN:
2215     case TK_AGG_FUNCTION:
2216     case TK_AGG_COLUMN:
2217       testcase( pExpr->op==TK_ID );
2218       testcase( pExpr->op==TK_COLUMN );
2219       testcase( pExpr->op==TK_AGG_FUNCTION );
2220       testcase( pExpr->op==TK_AGG_COLUMN );
2221       if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2222         return WRC_Continue;
2223       }
2224       if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2225         return WRC_Continue;
2226       }
2227       /* no break */ deliberate_fall_through
2228     case TK_IF_NULL_ROW:
2229     case TK_REGISTER:
2230     case TK_DOT:
2231       testcase( pExpr->op==TK_REGISTER );
2232       testcase( pExpr->op==TK_IF_NULL_ROW );
2233       testcase( pExpr->op==TK_DOT );
2234       pWalker->eCode = 0;
2235       return WRC_Abort;
2236     case TK_VARIABLE:
2237       if( pWalker->eCode==5 ){
2238         /* Silently convert bound parameters that appear inside of CREATE
2239         ** statements into a NULL when parsing the CREATE statement text out
2240         ** of the sqlite_schema table */
2241         pExpr->op = TK_NULL;
2242       }else if( pWalker->eCode==4 ){
2243         /* A bound parameter in a CREATE statement that originates from
2244         ** sqlite3_prepare() causes an error */
2245         pWalker->eCode = 0;
2246         return WRC_Abort;
2247       }
2248       /* no break */ deliberate_fall_through
2249     default:
2250       testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2251       testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2252       return WRC_Continue;
2253   }
2254 }
2255 static int exprIsConst(Expr *p, int initFlag, int iCur){
2256   Walker w;
2257   w.eCode = initFlag;
2258   w.xExprCallback = exprNodeIsConstant;
2259   w.xSelectCallback = sqlite3SelectWalkFail;
2260 #ifdef SQLITE_DEBUG
2261   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2262 #endif
2263   w.u.iCur = iCur;
2264   sqlite3WalkExpr(&w, p);
2265   return w.eCode;
2266 }
2267 
2268 /*
2269 ** Walk an expression tree.  Return non-zero if the expression is constant
2270 ** and 0 if it involves variables or function calls.
2271 **
2272 ** For the purposes of this function, a double-quoted string (ex: "abc")
2273 ** is considered a variable but a single-quoted string (ex: 'abc') is
2274 ** a constant.
2275 */
2276 int sqlite3ExprIsConstant(Expr *p){
2277   return exprIsConst(p, 1, 0);
2278 }
2279 
2280 /*
2281 ** Walk an expression tree.  Return non-zero if
2282 **
2283 **   (1) the expression is constant, and
2284 **   (2) the expression does originate in the ON or USING clause
2285 **       of a LEFT JOIN, and
2286 **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
2287 **       operands created by the constant propagation optimization.
2288 **
2289 ** When this routine returns true, it indicates that the expression
2290 ** can be added to the pParse->pConstExpr list and evaluated once when
2291 ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
2292 */
2293 int sqlite3ExprIsConstantNotJoin(Expr *p){
2294   return exprIsConst(p, 2, 0);
2295 }
2296 
2297 /*
2298 ** Walk an expression tree.  Return non-zero if the expression is constant
2299 ** for any single row of the table with cursor iCur.  In other words, the
2300 ** expression must not refer to any non-deterministic function nor any
2301 ** table other than iCur.
2302 */
2303 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2304   return exprIsConst(p, 3, iCur);
2305 }
2306 
2307 /*
2308 ** Check pExpr to see if it is an invariant constraint on data source pSrc.
2309 ** This is an optimization.  False negatives will perhaps cause slower
2310 ** queries, but false positives will yield incorrect answers.  So when in
2311 ** doubt, return 0.
2312 **
2313 ** To be an invariant constraint, the following must be true:
2314 **
2315 **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
2316 **
2317 **   (2)  pExpr cannot use subqueries or non-deterministic functions.
2318 **
2319 **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
2320 **        (Is there some way to relax this constraint?)
2321 **
2322 **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
2323 **         (4a)  pExpr must come from an ON clause..
2324            (4b)  and specifically the ON clause associated with the LEFT JOIN.
2325 **
2326 **   (5)  If pSrc is not the right operand of a LEFT JOIN or the left
2327 **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
2328 **        clause, not an ON clause.
2329 */
2330 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
2331   if( pSrc->fg.jointype & JT_LTORJ ){
2332     return 0;  /* rule (3) */
2333   }
2334   if( pSrc->fg.jointype & JT_LEFT ){
2335     if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
2336     if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
2337   }else{
2338     if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
2339   }
2340   return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2341 }
2342 
2343 
2344 /*
2345 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2346 */
2347 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2348   ExprList *pGroupBy = pWalker->u.pGroupBy;
2349   int i;
2350 
2351   /* Check if pExpr is identical to any GROUP BY term. If so, consider
2352   ** it constant.  */
2353   for(i=0; i<pGroupBy->nExpr; i++){
2354     Expr *p = pGroupBy->a[i].pExpr;
2355     if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2356       CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2357       if( sqlite3IsBinary(pColl) ){
2358         return WRC_Prune;
2359       }
2360     }
2361   }
2362 
2363   /* Check if pExpr is a sub-select. If so, consider it variable. */
2364   if( ExprUseXSelect(pExpr) ){
2365     pWalker->eCode = 0;
2366     return WRC_Abort;
2367   }
2368 
2369   return exprNodeIsConstant(pWalker, pExpr);
2370 }
2371 
2372 /*
2373 ** Walk the expression tree passed as the first argument. Return non-zero
2374 ** if the expression consists entirely of constants or copies of terms
2375 ** in pGroupBy that sort with the BINARY collation sequence.
2376 **
2377 ** This routine is used to determine if a term of the HAVING clause can
2378 ** be promoted into the WHERE clause.  In order for such a promotion to work,
2379 ** the value of the HAVING clause term must be the same for all members of
2380 ** a "group".  The requirement that the GROUP BY term must be BINARY
2381 ** assumes that no other collating sequence will have a finer-grained
2382 ** grouping than binary.  In other words (A=B COLLATE binary) implies
2383 ** A=B in every other collating sequence.  The requirement that the
2384 ** GROUP BY be BINARY is stricter than necessary.  It would also work
2385 ** to promote HAVING clauses that use the same alternative collating
2386 ** sequence as the GROUP BY term, but that is much harder to check,
2387 ** alternative collating sequences are uncommon, and this is only an
2388 ** optimization, so we take the easy way out and simply require the
2389 ** GROUP BY to use the BINARY collating sequence.
2390 */
2391 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2392   Walker w;
2393   w.eCode = 1;
2394   w.xExprCallback = exprNodeIsConstantOrGroupBy;
2395   w.xSelectCallback = 0;
2396   w.u.pGroupBy = pGroupBy;
2397   w.pParse = pParse;
2398   sqlite3WalkExpr(&w, p);
2399   return w.eCode;
2400 }
2401 
2402 /*
2403 ** Walk an expression tree for the DEFAULT field of a column definition
2404 ** in a CREATE TABLE statement.  Return non-zero if the expression is
2405 ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
2406 ** the expression is constant or a function call with constant arguments.
2407 ** Return and 0 if there are any variables.
2408 **
2409 ** isInit is true when parsing from sqlite_schema.  isInit is false when
2410 ** processing a new CREATE TABLE statement.  When isInit is true, parameters
2411 ** (such as ? or $abc) in the expression are converted into NULL.  When
2412 ** isInit is false, parameters raise an error.  Parameters should not be
2413 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2414 ** allowed it, so we need to support it when reading sqlite_schema for
2415 ** backwards compatibility.
2416 **
2417 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2418 **
2419 ** For the purposes of this function, a double-quoted string (ex: "abc")
2420 ** is considered a variable but a single-quoted string (ex: 'abc') is
2421 ** a constant.
2422 */
2423 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2424   assert( isInit==0 || isInit==1 );
2425   return exprIsConst(p, 4+isInit, 0);
2426 }
2427 
2428 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2429 /*
2430 ** Walk an expression tree.  Return 1 if the expression contains a
2431 ** subquery of some kind.  Return 0 if there are no subqueries.
2432 */
2433 int sqlite3ExprContainsSubquery(Expr *p){
2434   Walker w;
2435   w.eCode = 1;
2436   w.xExprCallback = sqlite3ExprWalkNoop;
2437   w.xSelectCallback = sqlite3SelectWalkFail;
2438 #ifdef SQLITE_DEBUG
2439   w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2440 #endif
2441   sqlite3WalkExpr(&w, p);
2442   return w.eCode==0;
2443 }
2444 #endif
2445 
2446 /*
2447 ** If the expression p codes a constant integer that is small enough
2448 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2449 ** in *pValue.  If the expression is not an integer or if it is too big
2450 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2451 */
2452 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2453   int rc = 0;
2454   if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
2455 
2456   /* If an expression is an integer literal that fits in a signed 32-bit
2457   ** integer, then the EP_IntValue flag will have already been set */
2458   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2459            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2460 
2461   if( p->flags & EP_IntValue ){
2462     *pValue = p->u.iValue;
2463     return 1;
2464   }
2465   switch( p->op ){
2466     case TK_UPLUS: {
2467       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2468       break;
2469     }
2470     case TK_UMINUS: {
2471       int v = 0;
2472       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2473         assert( ((unsigned int)v)!=0x80000000 );
2474         *pValue = -v;
2475         rc = 1;
2476       }
2477       break;
2478     }
2479     default: break;
2480   }
2481   return rc;
2482 }
2483 
2484 /*
2485 ** Return FALSE if there is no chance that the expression can be NULL.
2486 **
2487 ** If the expression might be NULL or if the expression is too complex
2488 ** to tell return TRUE.
2489 **
2490 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2491 ** when we know that a value cannot be NULL.  Hence, a false positive
2492 ** (returning TRUE when in fact the expression can never be NULL) might
2493 ** be a small performance hit but is otherwise harmless.  On the other
2494 ** hand, a false negative (returning FALSE when the result could be NULL)
2495 ** will likely result in an incorrect answer.  So when in doubt, return
2496 ** TRUE.
2497 */
2498 int sqlite3ExprCanBeNull(const Expr *p){
2499   u8 op;
2500   assert( p!=0 );
2501   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2502     p = p->pLeft;
2503     assert( p!=0 );
2504   }
2505   op = p->op;
2506   if( op==TK_REGISTER ) op = p->op2;
2507   switch( op ){
2508     case TK_INTEGER:
2509     case TK_STRING:
2510     case TK_FLOAT:
2511     case TK_BLOB:
2512       return 0;
2513     case TK_COLUMN:
2514       assert( ExprUseYTab(p) );
2515       return ExprHasProperty(p, EP_CanBeNull) ||
2516              p->y.pTab==0 ||  /* Reference to column of index on expression */
2517              (p->iColumn>=0
2518               && p->y.pTab->aCol!=0 /* Possible due to prior error */
2519               && p->y.pTab->aCol[p->iColumn].notNull==0);
2520     default:
2521       return 1;
2522   }
2523 }
2524 
2525 /*
2526 ** Return TRUE if the given expression is a constant which would be
2527 ** unchanged by OP_Affinity with the affinity given in the second
2528 ** argument.
2529 **
2530 ** This routine is used to determine if the OP_Affinity operation
2531 ** can be omitted.  When in doubt return FALSE.  A false negative
2532 ** is harmless.  A false positive, however, can result in the wrong
2533 ** answer.
2534 */
2535 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2536   u8 op;
2537   int unaryMinus = 0;
2538   if( aff==SQLITE_AFF_BLOB ) return 1;
2539   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2540     if( p->op==TK_UMINUS ) unaryMinus = 1;
2541     p = p->pLeft;
2542   }
2543   op = p->op;
2544   if( op==TK_REGISTER ) op = p->op2;
2545   switch( op ){
2546     case TK_INTEGER: {
2547       return aff>=SQLITE_AFF_NUMERIC;
2548     }
2549     case TK_FLOAT: {
2550       return aff>=SQLITE_AFF_NUMERIC;
2551     }
2552     case TK_STRING: {
2553       return !unaryMinus && aff==SQLITE_AFF_TEXT;
2554     }
2555     case TK_BLOB: {
2556       return !unaryMinus;
2557     }
2558     case TK_COLUMN: {
2559       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
2560       return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2561     }
2562     default: {
2563       return 0;
2564     }
2565   }
2566 }
2567 
2568 /*
2569 ** Return TRUE if the given string is a row-id column name.
2570 */
2571 int sqlite3IsRowid(const char *z){
2572   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2573   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2574   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2575   return 0;
2576 }
2577 
2578 /*
2579 ** pX is the RHS of an IN operator.  If pX is a SELECT statement
2580 ** that can be simplified to a direct table access, then return
2581 ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
2582 ** or if the SELECT statement needs to be manifested into a transient
2583 ** table, then return NULL.
2584 */
2585 #ifndef SQLITE_OMIT_SUBQUERY
2586 static Select *isCandidateForInOpt(const Expr *pX){
2587   Select *p;
2588   SrcList *pSrc;
2589   ExprList *pEList;
2590   Table *pTab;
2591   int i;
2592   if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
2593   if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
2594   p = pX->x.pSelect;
2595   if( p->pPrior ) return 0;              /* Not a compound SELECT */
2596   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2597     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2598     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2599     return 0; /* No DISTINCT keyword and no aggregate functions */
2600   }
2601   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
2602   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
2603   if( p->pWhere ) return 0;              /* Has no WHERE clause */
2604   pSrc = p->pSrc;
2605   assert( pSrc!=0 );
2606   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
2607   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
2608   pTab = pSrc->a[0].pTab;
2609   assert( pTab!=0 );
2610   assert( !IsView(pTab)  );              /* FROM clause is not a view */
2611   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
2612   pEList = p->pEList;
2613   assert( pEList!=0 );
2614   /* All SELECT results must be columns. */
2615   for(i=0; i<pEList->nExpr; i++){
2616     Expr *pRes = pEList->a[i].pExpr;
2617     if( pRes->op!=TK_COLUMN ) return 0;
2618     assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
2619   }
2620   return p;
2621 }
2622 #endif /* SQLITE_OMIT_SUBQUERY */
2623 
2624 #ifndef SQLITE_OMIT_SUBQUERY
2625 /*
2626 ** Generate code that checks the left-most column of index table iCur to see if
2627 ** it contains any NULL entries.  Cause the register at regHasNull to be set
2628 ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
2629 ** to be set to NULL if iCur contains one or more NULL values.
2630 */
2631 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2632   int addr1;
2633   sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2634   addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2635   sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2636   sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2637   VdbeComment((v, "first_entry_in(%d)", iCur));
2638   sqlite3VdbeJumpHere(v, addr1);
2639 }
2640 #endif
2641 
2642 
2643 #ifndef SQLITE_OMIT_SUBQUERY
2644 /*
2645 ** The argument is an IN operator with a list (not a subquery) on the
2646 ** right-hand side.  Return TRUE if that list is constant.
2647 */
2648 static int sqlite3InRhsIsConstant(Expr *pIn){
2649   Expr *pLHS;
2650   int res;
2651   assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2652   pLHS = pIn->pLeft;
2653   pIn->pLeft = 0;
2654   res = sqlite3ExprIsConstant(pIn);
2655   pIn->pLeft = pLHS;
2656   return res;
2657 }
2658 #endif
2659 
2660 /*
2661 ** This function is used by the implementation of the IN (...) operator.
2662 ** The pX parameter is the expression on the RHS of the IN operator, which
2663 ** might be either a list of expressions or a subquery.
2664 **
2665 ** The job of this routine is to find or create a b-tree object that can
2666 ** be used either to test for membership in the RHS set or to iterate through
2667 ** all members of the RHS set, skipping duplicates.
2668 **
2669 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2670 ** and the *piTab parameter is set to the index of that cursor.
2671 **
2672 ** The returned value of this function indicates the b-tree type, as follows:
2673 **
2674 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
2675 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
2676 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2677 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
2678 **                         populated epheremal table.
2679 **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
2680 **                         implemented as a sequence of comparisons.
2681 **
2682 ** An existing b-tree might be used if the RHS expression pX is a simple
2683 ** subquery such as:
2684 **
2685 **     SELECT <column1>, <column2>... FROM <table>
2686 **
2687 ** If the RHS of the IN operator is a list or a more complex subquery, then
2688 ** an ephemeral table might need to be generated from the RHS and then
2689 ** pX->iTable made to point to the ephemeral table instead of an
2690 ** existing table.  In this case, the creation and initialization of the
2691 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2692 ** will be set on pX and the pX->y.sub fields will be set to show where
2693 ** the subroutine is coded.
2694 **
2695 ** The inFlags parameter must contain, at a minimum, one of the bits
2696 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
2697 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2698 ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
2699 ** be used to loop over all values of the RHS of the IN operator.
2700 **
2701 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2702 ** through the set members) then the b-tree must not contain duplicates.
2703 ** An epheremal table will be created unless the selected columns are guaranteed
2704 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2705 ** a UNIQUE constraint or index.
2706 **
2707 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2708 ** for fast set membership tests) then an epheremal table must
2709 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2710 ** index can be found with the specified <columns> as its left-most.
2711 **
2712 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2713 ** if the RHS of the IN operator is a list (not a subquery) then this
2714 ** routine might decide that creating an ephemeral b-tree for membership
2715 ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
2716 ** calling routine should implement the IN operator using a sequence
2717 ** of Eq or Ne comparison operations.
2718 **
2719 ** When the b-tree is being used for membership tests, the calling function
2720 ** might need to know whether or not the RHS side of the IN operator
2721 ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
2722 ** if there is any chance that the (...) might contain a NULL value at
2723 ** runtime, then a register is allocated and the register number written
2724 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2725 ** NULL value, then *prRhsHasNull is left unchanged.
2726 **
2727 ** If a register is allocated and its location stored in *prRhsHasNull, then
2728 ** the value in that register will be NULL if the b-tree contains one or more
2729 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2730 ** NULL values.
2731 **
2732 ** If the aiMap parameter is not NULL, it must point to an array containing
2733 ** one element for each column returned by the SELECT statement on the RHS
2734 ** of the IN(...) operator. The i'th entry of the array is populated with the
2735 ** offset of the index column that matches the i'th column returned by the
2736 ** SELECT. For example, if the expression and selected index are:
2737 **
2738 **   (?,?,?) IN (SELECT a, b, c FROM t1)
2739 **   CREATE INDEX i1 ON t1(b, c, a);
2740 **
2741 ** then aiMap[] is populated with {2, 0, 1}.
2742 */
2743 #ifndef SQLITE_OMIT_SUBQUERY
2744 int sqlite3FindInIndex(
2745   Parse *pParse,             /* Parsing context */
2746   Expr *pX,                  /* The IN expression */
2747   u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2748   int *prRhsHasNull,         /* Register holding NULL status.  See notes */
2749   int *aiMap,                /* Mapping from Index fields to RHS fields */
2750   int *piTab                 /* OUT: index to use */
2751 ){
2752   Select *p;                            /* SELECT to the right of IN operator */
2753   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
2754   int iTab;                             /* Cursor of the RHS table */
2755   int mustBeUnique;                     /* True if RHS must be unique */
2756   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
2757 
2758   assert( pX->op==TK_IN );
2759   mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2760   iTab = pParse->nTab++;
2761 
2762   /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2763   ** whether or not the SELECT result contains NULL values, check whether
2764   ** or not NULL is actually possible (it may not be, for example, due
2765   ** to NOT NULL constraints in the schema). If no NULL values are possible,
2766   ** set prRhsHasNull to 0 before continuing.  */
2767   if( prRhsHasNull && ExprUseXSelect(pX) ){
2768     int i;
2769     ExprList *pEList = pX->x.pSelect->pEList;
2770     for(i=0; i<pEList->nExpr; i++){
2771       if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2772     }
2773     if( i==pEList->nExpr ){
2774       prRhsHasNull = 0;
2775     }
2776   }
2777 
2778   /* Check to see if an existing table or index can be used to
2779   ** satisfy the query.  This is preferable to generating a new
2780   ** ephemeral table.  */
2781   if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2782     sqlite3 *db = pParse->db;              /* Database connection */
2783     Table *pTab;                           /* Table <table>. */
2784     int iDb;                               /* Database idx for pTab */
2785     ExprList *pEList = p->pEList;
2786     int nExpr = pEList->nExpr;
2787 
2788     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
2789     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2790     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
2791     pTab = p->pSrc->a[0].pTab;
2792 
2793     /* Code an OP_Transaction and OP_TableLock for <table>. */
2794     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2795     assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2796     sqlite3CodeVerifySchema(pParse, iDb);
2797     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2798 
2799     assert(v);  /* sqlite3GetVdbe() has always been previously called */
2800     if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2801       /* The "x IN (SELECT rowid FROM table)" case */
2802       int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2803       VdbeCoverage(v);
2804 
2805       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2806       eType = IN_INDEX_ROWID;
2807       ExplainQueryPlan((pParse, 0,
2808             "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2809       sqlite3VdbeJumpHere(v, iAddr);
2810     }else{
2811       Index *pIdx;                         /* Iterator variable */
2812       int affinity_ok = 1;
2813       int i;
2814 
2815       /* Check that the affinity that will be used to perform each
2816       ** comparison is the same as the affinity of each column in table
2817       ** on the RHS of the IN operator.  If it not, it is not possible to
2818       ** use any index of the RHS table.  */
2819       for(i=0; i<nExpr && affinity_ok; i++){
2820         Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2821         int iCol = pEList->a[i].pExpr->iColumn;
2822         char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2823         char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2824         testcase( cmpaff==SQLITE_AFF_BLOB );
2825         testcase( cmpaff==SQLITE_AFF_TEXT );
2826         switch( cmpaff ){
2827           case SQLITE_AFF_BLOB:
2828             break;
2829           case SQLITE_AFF_TEXT:
2830             /* sqlite3CompareAffinity() only returns TEXT if one side or the
2831             ** other has no affinity and the other side is TEXT.  Hence,
2832             ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2833             ** and for the term on the LHS of the IN to have no affinity. */
2834             assert( idxaff==SQLITE_AFF_TEXT );
2835             break;
2836           default:
2837             affinity_ok = sqlite3IsNumericAffinity(idxaff);
2838         }
2839       }
2840 
2841       if( affinity_ok ){
2842         /* Search for an existing index that will work for this IN operator */
2843         for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2844           Bitmask colUsed;      /* Columns of the index used */
2845           Bitmask mCol;         /* Mask for the current column */
2846           if( pIdx->nColumn<nExpr ) continue;
2847           if( pIdx->pPartIdxWhere!=0 ) continue;
2848           /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2849           ** BITMASK(nExpr) without overflowing */
2850           testcase( pIdx->nColumn==BMS-2 );
2851           testcase( pIdx->nColumn==BMS-1 );
2852           if( pIdx->nColumn>=BMS-1 ) continue;
2853           if( mustBeUnique ){
2854             if( pIdx->nKeyCol>nExpr
2855              ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2856             ){
2857               continue;  /* This index is not unique over the IN RHS columns */
2858             }
2859           }
2860 
2861           colUsed = 0;   /* Columns of index used so far */
2862           for(i=0; i<nExpr; i++){
2863             Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2864             Expr *pRhs = pEList->a[i].pExpr;
2865             CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2866             int j;
2867 
2868             assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2869             for(j=0; j<nExpr; j++){
2870               if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2871               assert( pIdx->azColl[j] );
2872               if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2873                 continue;
2874               }
2875               break;
2876             }
2877             if( j==nExpr ) break;
2878             mCol = MASKBIT(j);
2879             if( mCol & colUsed ) break; /* Each column used only once */
2880             colUsed |= mCol;
2881             if( aiMap ) aiMap[i] = j;
2882           }
2883 
2884           assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2885           if( colUsed==(MASKBIT(nExpr)-1) ){
2886             /* If we reach this point, that means the index pIdx is usable */
2887             int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2888             ExplainQueryPlan((pParse, 0,
2889                               "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2890             sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2891             sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2892             VdbeComment((v, "%s", pIdx->zName));
2893             assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2894             eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2895 
2896             if( prRhsHasNull ){
2897 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2898               i64 mask = (1<<nExpr)-1;
2899               sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2900                   iTab, 0, 0, (u8*)&mask, P4_INT64);
2901 #endif
2902               *prRhsHasNull = ++pParse->nMem;
2903               if( nExpr==1 ){
2904                 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2905               }
2906             }
2907             sqlite3VdbeJumpHere(v, iAddr);
2908           }
2909         } /* End loop over indexes */
2910       } /* End if( affinity_ok ) */
2911     } /* End if not an rowid index */
2912   } /* End attempt to optimize using an index */
2913 
2914   /* If no preexisting index is available for the IN clause
2915   ** and IN_INDEX_NOOP is an allowed reply
2916   ** and the RHS of the IN operator is a list, not a subquery
2917   ** and the RHS is not constant or has two or fewer terms,
2918   ** then it is not worth creating an ephemeral table to evaluate
2919   ** the IN operator so return IN_INDEX_NOOP.
2920   */
2921   if( eType==0
2922    && (inFlags & IN_INDEX_NOOP_OK)
2923    && ExprUseXList(pX)
2924    && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2925   ){
2926     pParse->nTab--;  /* Back out the allocation of the unused cursor */
2927     iTab = -1;       /* Cursor is not allocated */
2928     eType = IN_INDEX_NOOP;
2929   }
2930 
2931   if( eType==0 ){
2932     /* Could not find an existing table or index to use as the RHS b-tree.
2933     ** We will have to generate an ephemeral table to do the job.
2934     */
2935     u32 savedNQueryLoop = pParse->nQueryLoop;
2936     int rMayHaveNull = 0;
2937     eType = IN_INDEX_EPH;
2938     if( inFlags & IN_INDEX_LOOP ){
2939       pParse->nQueryLoop = 0;
2940     }else if( prRhsHasNull ){
2941       *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2942     }
2943     assert( pX->op==TK_IN );
2944     sqlite3CodeRhsOfIN(pParse, pX, iTab);
2945     if( rMayHaveNull ){
2946       sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2947     }
2948     pParse->nQueryLoop = savedNQueryLoop;
2949   }
2950 
2951   if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2952     int i, n;
2953     n = sqlite3ExprVectorSize(pX->pLeft);
2954     for(i=0; i<n; i++) aiMap[i] = i;
2955   }
2956   *piTab = iTab;
2957   return eType;
2958 }
2959 #endif
2960 
2961 #ifndef SQLITE_OMIT_SUBQUERY
2962 /*
2963 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2964 ** function allocates and returns a nul-terminated string containing
2965 ** the affinities to be used for each column of the comparison.
2966 **
2967 ** It is the responsibility of the caller to ensure that the returned
2968 ** string is eventually freed using sqlite3DbFree().
2969 */
2970 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2971   Expr *pLeft = pExpr->pLeft;
2972   int nVal = sqlite3ExprVectorSize(pLeft);
2973   Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2974   char *zRet;
2975 
2976   assert( pExpr->op==TK_IN );
2977   zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2978   if( zRet ){
2979     int i;
2980     for(i=0; i<nVal; i++){
2981       Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2982       char a = sqlite3ExprAffinity(pA);
2983       if( pSelect ){
2984         zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2985       }else{
2986         zRet[i] = a;
2987       }
2988     }
2989     zRet[nVal] = '\0';
2990   }
2991   return zRet;
2992 }
2993 #endif
2994 
2995 #ifndef SQLITE_OMIT_SUBQUERY
2996 /*
2997 ** Load the Parse object passed as the first argument with an error
2998 ** message of the form:
2999 **
3000 **   "sub-select returns N columns - expected M"
3001 */
3002 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
3003   if( pParse->nErr==0 ){
3004     const char *zFmt = "sub-select returns %d columns - expected %d";
3005     sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
3006   }
3007 }
3008 #endif
3009 
3010 /*
3011 ** Expression pExpr is a vector that has been used in a context where
3012 ** it is not permitted. If pExpr is a sub-select vector, this routine
3013 ** loads the Parse object with a message of the form:
3014 **
3015 **   "sub-select returns N columns - expected 1"
3016 **
3017 ** Or, if it is a regular scalar vector:
3018 **
3019 **   "row value misused"
3020 */
3021 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3022 #ifndef SQLITE_OMIT_SUBQUERY
3023   if( ExprUseXSelect(pExpr) ){
3024     sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3025   }else
3026 #endif
3027   {
3028     sqlite3ErrorMsg(pParse, "row value misused");
3029   }
3030 }
3031 
3032 #ifndef SQLITE_OMIT_SUBQUERY
3033 /*
3034 ** Generate code that will construct an ephemeral table containing all terms
3035 ** in the RHS of an IN operator.  The IN operator can be in either of two
3036 ** forms:
3037 **
3038 **     x IN (4,5,11)              -- IN operator with list on right-hand side
3039 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
3040 **
3041 ** The pExpr parameter is the IN operator.  The cursor number for the
3042 ** constructed ephermeral table is returned.  The first time the ephemeral
3043 ** table is computed, the cursor number is also stored in pExpr->iTable,
3044 ** however the cursor number returned might not be the same, as it might
3045 ** have been duplicated using OP_OpenDup.
3046 **
3047 ** If the LHS expression ("x" in the examples) is a column value, or
3048 ** the SELECT statement returns a column value, then the affinity of that
3049 ** column is used to build the index keys. If both 'x' and the
3050 ** SELECT... statement are columns, then numeric affinity is used
3051 ** if either column has NUMERIC or INTEGER affinity. If neither
3052 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3053 ** is used.
3054 */
3055 void sqlite3CodeRhsOfIN(
3056   Parse *pParse,          /* Parsing context */
3057   Expr *pExpr,            /* The IN operator */
3058   int iTab                /* Use this cursor number */
3059 ){
3060   int addrOnce = 0;           /* Address of the OP_Once instruction at top */
3061   int addr;                   /* Address of OP_OpenEphemeral instruction */
3062   Expr *pLeft;                /* the LHS of the IN operator */
3063   KeyInfo *pKeyInfo = 0;      /* Key information */
3064   int nVal;                   /* Size of vector pLeft */
3065   Vdbe *v;                    /* The prepared statement under construction */
3066 
3067   v = pParse->pVdbe;
3068   assert( v!=0 );
3069 
3070   /* The evaluation of the IN must be repeated every time it
3071   ** is encountered if any of the following is true:
3072   **
3073   **    *  The right-hand side is a correlated subquery
3074   **    *  The right-hand side is an expression list containing variables
3075   **    *  We are inside a trigger
3076   **
3077   ** If all of the above are false, then we can compute the RHS just once
3078   ** and reuse it many names.
3079   */
3080   if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3081     /* Reuse of the RHS is allowed */
3082     /* If this routine has already been coded, but the previous code
3083     ** might not have been invoked yet, so invoke it now as a subroutine.
3084     */
3085     if( ExprHasProperty(pExpr, EP_Subrtn) ){
3086       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3087       if( ExprUseXSelect(pExpr) ){
3088         ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3089               pExpr->x.pSelect->selId));
3090       }
3091       assert( ExprUseYSub(pExpr) );
3092       sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3093                         pExpr->y.sub.iAddr);
3094       assert( iTab!=pExpr->iTable );
3095       sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3096       sqlite3VdbeJumpHere(v, addrOnce);
3097       return;
3098     }
3099 
3100     /* Begin coding the subroutine */
3101     assert( !ExprUseYWin(pExpr) );
3102     ExprSetProperty(pExpr, EP_Subrtn);
3103     assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3104     pExpr->y.sub.regReturn = ++pParse->nMem;
3105     pExpr->y.sub.iAddr =
3106       sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3107 
3108     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3109   }
3110 
3111   /* Check to see if this is a vector IN operator */
3112   pLeft = pExpr->pLeft;
3113   nVal = sqlite3ExprVectorSize(pLeft);
3114 
3115   /* Construct the ephemeral table that will contain the content of
3116   ** RHS of the IN operator.
3117   */
3118   pExpr->iTable = iTab;
3119   addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3120 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3121   if( ExprUseXSelect(pExpr) ){
3122     VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3123   }else{
3124     VdbeComment((v, "RHS of IN operator"));
3125   }
3126 #endif
3127   pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3128 
3129   if( ExprUseXSelect(pExpr) ){
3130     /* Case 1:     expr IN (SELECT ...)
3131     **
3132     ** Generate code to write the results of the select into the temporary
3133     ** table allocated and opened above.
3134     */
3135     Select *pSelect = pExpr->x.pSelect;
3136     ExprList *pEList = pSelect->pEList;
3137 
3138     ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3139         addrOnce?"":"CORRELATED ", pSelect->selId
3140     ));
3141     /* If the LHS and RHS of the IN operator do not match, that
3142     ** error will have been caught long before we reach this point. */
3143     if( ALWAYS(pEList->nExpr==nVal) ){
3144       Select *pCopy;
3145       SelectDest dest;
3146       int i;
3147       int rc;
3148       sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3149       dest.zAffSdst = exprINAffinity(pParse, pExpr);
3150       pSelect->iLimit = 0;
3151       testcase( pSelect->selFlags & SF_Distinct );
3152       testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3153       pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3154       rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3155       sqlite3SelectDelete(pParse->db, pCopy);
3156       sqlite3DbFree(pParse->db, dest.zAffSdst);
3157       if( rc ){
3158         sqlite3KeyInfoUnref(pKeyInfo);
3159         return;
3160       }
3161       assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3162       assert( pEList!=0 );
3163       assert( pEList->nExpr>0 );
3164       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3165       for(i=0; i<nVal; i++){
3166         Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3167         pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3168             pParse, p, pEList->a[i].pExpr
3169         );
3170       }
3171     }
3172   }else if( ALWAYS(pExpr->x.pList!=0) ){
3173     /* Case 2:     expr IN (exprlist)
3174     **
3175     ** For each expression, build an index key from the evaluation and
3176     ** store it in the temporary table. If <expr> is a column, then use
3177     ** that columns affinity when building index keys. If <expr> is not
3178     ** a column, use numeric affinity.
3179     */
3180     char affinity;            /* Affinity of the LHS of the IN */
3181     int i;
3182     ExprList *pList = pExpr->x.pList;
3183     struct ExprList_item *pItem;
3184     int r1, r2;
3185     affinity = sqlite3ExprAffinity(pLeft);
3186     if( affinity<=SQLITE_AFF_NONE ){
3187       affinity = SQLITE_AFF_BLOB;
3188     }else if( affinity==SQLITE_AFF_REAL ){
3189       affinity = SQLITE_AFF_NUMERIC;
3190     }
3191     if( pKeyInfo ){
3192       assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3193       pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3194     }
3195 
3196     /* Loop through each expression in <exprlist>. */
3197     r1 = sqlite3GetTempReg(pParse);
3198     r2 = sqlite3GetTempReg(pParse);
3199     for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3200       Expr *pE2 = pItem->pExpr;
3201 
3202       /* If the expression is not constant then we will need to
3203       ** disable the test that was generated above that makes sure
3204       ** this code only executes once.  Because for a non-constant
3205       ** expression we need to rerun this code each time.
3206       */
3207       if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3208         sqlite3VdbeChangeToNoop(v, addrOnce-1);
3209         sqlite3VdbeChangeToNoop(v, addrOnce);
3210         ExprClearProperty(pExpr, EP_Subrtn);
3211         addrOnce = 0;
3212       }
3213 
3214       /* Evaluate the expression and insert it into the temp table */
3215       sqlite3ExprCode(pParse, pE2, r1);
3216       sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3217       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3218     }
3219     sqlite3ReleaseTempReg(pParse, r1);
3220     sqlite3ReleaseTempReg(pParse, r2);
3221   }
3222   if( pKeyInfo ){
3223     sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3224   }
3225   if( addrOnce ){
3226     sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
3227     sqlite3VdbeJumpHere(v, addrOnce);
3228     /* Subroutine return */
3229     assert( ExprUseYSub(pExpr) );
3230     assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3231             || pParse->nErr );
3232     sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3233                       pExpr->y.sub.iAddr, 1);
3234     VdbeCoverage(v);
3235     sqlite3ClearTempRegCache(pParse);
3236   }
3237 }
3238 #endif /* SQLITE_OMIT_SUBQUERY */
3239 
3240 /*
3241 ** Generate code for scalar subqueries used as a subquery expression
3242 ** or EXISTS operator:
3243 **
3244 **     (SELECT a FROM b)          -- subquery
3245 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
3246 **
3247 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3248 **
3249 ** Return the register that holds the result.  For a multi-column SELECT,
3250 ** the result is stored in a contiguous array of registers and the
3251 ** return value is the register of the left-most result column.
3252 ** Return 0 if an error occurs.
3253 */
3254 #ifndef SQLITE_OMIT_SUBQUERY
3255 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3256   int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
3257   int rReg = 0;               /* Register storing resulting */
3258   Select *pSel;               /* SELECT statement to encode */
3259   SelectDest dest;            /* How to deal with SELECT result */
3260   int nReg;                   /* Registers to allocate */
3261   Expr *pLimit;               /* New limit expression */
3262 
3263   Vdbe *v = pParse->pVdbe;
3264   assert( v!=0 );
3265   if( pParse->nErr ) return 0;
3266   testcase( pExpr->op==TK_EXISTS );
3267   testcase( pExpr->op==TK_SELECT );
3268   assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3269   assert( ExprUseXSelect(pExpr) );
3270   pSel = pExpr->x.pSelect;
3271 
3272   /* If this routine has already been coded, then invoke it as a
3273   ** subroutine. */
3274   if( ExprHasProperty(pExpr, EP_Subrtn) ){
3275     ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3276     assert( ExprUseYSub(pExpr) );
3277     sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3278                       pExpr->y.sub.iAddr);
3279     return pExpr->iTable;
3280   }
3281 
3282   /* Begin coding the subroutine */
3283   assert( !ExprUseYWin(pExpr) );
3284   assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3285   ExprSetProperty(pExpr, EP_Subrtn);
3286   pExpr->y.sub.regReturn = ++pParse->nMem;
3287   pExpr->y.sub.iAddr =
3288     sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3289 
3290   /* The evaluation of the EXISTS/SELECT must be repeated every time it
3291   ** is encountered if any of the following is true:
3292   **
3293   **    *  The right-hand side is a correlated subquery
3294   **    *  The right-hand side is an expression list containing variables
3295   **    *  We are inside a trigger
3296   **
3297   ** If all of the above are false, then we can run this code just once
3298   ** save the results, and reuse the same result on subsequent invocations.
3299   */
3300   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3301     addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3302   }
3303 
3304   /* For a SELECT, generate code to put the values for all columns of
3305   ** the first row into an array of registers and return the index of
3306   ** the first register.
3307   **
3308   ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3309   ** into a register and return that register number.
3310   **
3311   ** In both cases, the query is augmented with "LIMIT 1".  Any
3312   ** preexisting limit is discarded in place of the new LIMIT 1.
3313   */
3314   ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3315         addrOnce?"":"CORRELATED ", pSel->selId));
3316   nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3317   sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3318   pParse->nMem += nReg;
3319   if( pExpr->op==TK_SELECT ){
3320     dest.eDest = SRT_Mem;
3321     dest.iSdst = dest.iSDParm;
3322     dest.nSdst = nReg;
3323     sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3324     VdbeComment((v, "Init subquery result"));
3325   }else{
3326     dest.eDest = SRT_Exists;
3327     sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3328     VdbeComment((v, "Init EXISTS result"));
3329   }
3330   if( pSel->pLimit ){
3331     /* The subquery already has a limit.  If the pre-existing limit is X
3332     ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3333     sqlite3 *db = pParse->db;
3334     pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3335     if( pLimit ){
3336       pLimit->affExpr = SQLITE_AFF_NUMERIC;
3337       pLimit = sqlite3PExpr(pParse, TK_NE,
3338                             sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3339     }
3340     sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3341     pSel->pLimit->pLeft = pLimit;
3342   }else{
3343     /* If there is no pre-existing limit add a limit of 1 */
3344     pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3345     pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3346   }
3347   pSel->iLimit = 0;
3348   if( sqlite3Select(pParse, pSel, &dest) ){
3349     pExpr->op2 = pExpr->op;
3350     pExpr->op = TK_ERROR;
3351     return 0;
3352   }
3353   pExpr->iTable = rReg = dest.iSDParm;
3354   ExprSetVVAProperty(pExpr, EP_NoReduce);
3355   if( addrOnce ){
3356     sqlite3VdbeJumpHere(v, addrOnce);
3357   }
3358 
3359   /* Subroutine return */
3360   assert( ExprUseYSub(pExpr) );
3361   assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3362           || pParse->nErr );
3363   sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3364                     pExpr->y.sub.iAddr, 1);
3365   VdbeCoverage(v);
3366   sqlite3ClearTempRegCache(pParse);
3367   return rReg;
3368 }
3369 #endif /* SQLITE_OMIT_SUBQUERY */
3370 
3371 #ifndef SQLITE_OMIT_SUBQUERY
3372 /*
3373 ** Expr pIn is an IN(...) expression. This function checks that the
3374 ** sub-select on the RHS of the IN() operator has the same number of
3375 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3376 ** a sub-query, that the LHS is a vector of size 1.
3377 */
3378 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3379   int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3380   if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3381     if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3382       sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3383       return 1;
3384     }
3385   }else if( nVector!=1 ){
3386     sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3387     return 1;
3388   }
3389   return 0;
3390 }
3391 #endif
3392 
3393 #ifndef SQLITE_OMIT_SUBQUERY
3394 /*
3395 ** Generate code for an IN expression.
3396 **
3397 **      x IN (SELECT ...)
3398 **      x IN (value, value, ...)
3399 **
3400 ** The left-hand side (LHS) is a scalar or vector expression.  The
3401 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3402 ** subquery.  If the RHS is a subquery, the number of result columns must
3403 ** match the number of columns in the vector on the LHS.  If the RHS is
3404 ** a list of values, the LHS must be a scalar.
3405 **
3406 ** The IN operator is true if the LHS value is contained within the RHS.
3407 ** The result is false if the LHS is definitely not in the RHS.  The
3408 ** result is NULL if the presence of the LHS in the RHS cannot be
3409 ** determined due to NULLs.
3410 **
3411 ** This routine generates code that jumps to destIfFalse if the LHS is not
3412 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
3413 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
3414 ** within the RHS then fall through.
3415 **
3416 ** See the separate in-operator.md documentation file in the canonical
3417 ** SQLite source tree for additional information.
3418 */
3419 static void sqlite3ExprCodeIN(
3420   Parse *pParse,        /* Parsing and code generating context */
3421   Expr *pExpr,          /* The IN expression */
3422   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
3423   int destIfNull        /* Jump here if the results are unknown due to NULLs */
3424 ){
3425   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
3426   int eType;            /* Type of the RHS */
3427   int rLhs;             /* Register(s) holding the LHS values */
3428   int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
3429   Vdbe *v;              /* Statement under construction */
3430   int *aiMap = 0;       /* Map from vector field to index column */
3431   char *zAff = 0;       /* Affinity string for comparisons */
3432   int nVector;          /* Size of vectors for this IN operator */
3433   int iDummy;           /* Dummy parameter to exprCodeVector() */
3434   Expr *pLeft;          /* The LHS of the IN operator */
3435   int i;                /* loop counter */
3436   int destStep2;        /* Where to jump when NULLs seen in step 2 */
3437   int destStep6 = 0;    /* Start of code for Step 6 */
3438   int addrTruthOp;      /* Address of opcode that determines the IN is true */
3439   int destNotNull;      /* Jump here if a comparison is not true in step 6 */
3440   int addrTop;          /* Top of the step-6 loop */
3441   int iTab = 0;         /* Index to use */
3442   u8 okConstFactor = pParse->okConstFactor;
3443 
3444   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3445   pLeft = pExpr->pLeft;
3446   if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3447   zAff = exprINAffinity(pParse, pExpr);
3448   nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3449   aiMap = (int*)sqlite3DbMallocZero(
3450       pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3451   );
3452   if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3453 
3454   /* Attempt to compute the RHS. After this step, if anything other than
3455   ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3456   ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3457   ** the RHS has not yet been coded.  */
3458   v = pParse->pVdbe;
3459   assert( v!=0 );       /* OOM detected prior to this routine */
3460   VdbeNoopComment((v, "begin IN expr"));
3461   eType = sqlite3FindInIndex(pParse, pExpr,
3462                              IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3463                              destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3464                              aiMap, &iTab);
3465 
3466   assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3467        || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3468   );
3469 #ifdef SQLITE_DEBUG
3470   /* Confirm that aiMap[] contains nVector integer values between 0 and
3471   ** nVector-1. */
3472   for(i=0; i<nVector; i++){
3473     int j, cnt;
3474     for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3475     assert( cnt==1 );
3476   }
3477 #endif
3478 
3479   /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3480   ** vector, then it is stored in an array of nVector registers starting
3481   ** at r1.
3482   **
3483   ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3484   ** so that the fields are in the same order as an existing index.   The
3485   ** aiMap[] array contains a mapping from the original LHS field order to
3486   ** the field order that matches the RHS index.
3487   **
3488   ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3489   ** even if it is constant, as OP_Affinity may be used on the register
3490   ** by code generated below.  */
3491   assert( pParse->okConstFactor==okConstFactor );
3492   pParse->okConstFactor = 0;
3493   rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3494   pParse->okConstFactor = okConstFactor;
3495   for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3496   if( i==nVector ){
3497     /* LHS fields are not reordered */
3498     rLhs = rLhsOrig;
3499   }else{
3500     /* Need to reorder the LHS fields according to aiMap */
3501     rLhs = sqlite3GetTempRange(pParse, nVector);
3502     for(i=0; i<nVector; i++){
3503       sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3504     }
3505   }
3506 
3507   /* If sqlite3FindInIndex() did not find or create an index that is
3508   ** suitable for evaluating the IN operator, then evaluate using a
3509   ** sequence of comparisons.
3510   **
3511   ** This is step (1) in the in-operator.md optimized algorithm.
3512   */
3513   if( eType==IN_INDEX_NOOP ){
3514     ExprList *pList;
3515     CollSeq *pColl;
3516     int labelOk = sqlite3VdbeMakeLabel(pParse);
3517     int r2, regToFree;
3518     int regCkNull = 0;
3519     int ii;
3520     assert( ExprUseXList(pExpr) );
3521     pList = pExpr->x.pList;
3522     pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3523     if( destIfNull!=destIfFalse ){
3524       regCkNull = sqlite3GetTempReg(pParse);
3525       sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3526     }
3527     for(ii=0; ii<pList->nExpr; ii++){
3528       r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3529       if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3530         sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3531       }
3532       sqlite3ReleaseTempReg(pParse, regToFree);
3533       if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3534         int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3535         sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3536                           (void*)pColl, P4_COLLSEQ);
3537         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3538         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3539         VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3540         VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3541         sqlite3VdbeChangeP5(v, zAff[0]);
3542       }else{
3543         int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3544         assert( destIfNull==destIfFalse );
3545         sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3546                           (void*)pColl, P4_COLLSEQ);
3547         VdbeCoverageIf(v, op==OP_Ne);
3548         VdbeCoverageIf(v, op==OP_IsNull);
3549         sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3550       }
3551     }
3552     if( regCkNull ){
3553       sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3554       sqlite3VdbeGoto(v, destIfFalse);
3555     }
3556     sqlite3VdbeResolveLabel(v, labelOk);
3557     sqlite3ReleaseTempReg(pParse, regCkNull);
3558     goto sqlite3ExprCodeIN_finished;
3559   }
3560 
3561   /* Step 2: Check to see if the LHS contains any NULL columns.  If the
3562   ** LHS does contain NULLs then the result must be either FALSE or NULL.
3563   ** We will then skip the binary search of the RHS.
3564   */
3565   if( destIfNull==destIfFalse ){
3566     destStep2 = destIfFalse;
3567   }else{
3568     destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3569   }
3570   for(i=0; i<nVector; i++){
3571     Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3572     if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3573     if( sqlite3ExprCanBeNull(p) ){
3574       sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3575       VdbeCoverage(v);
3576     }
3577   }
3578 
3579   /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
3580   ** of the RHS using the LHS as a probe.  If found, the result is
3581   ** true.
3582   */
3583   if( eType==IN_INDEX_ROWID ){
3584     /* In this case, the RHS is the ROWID of table b-tree and so we also
3585     ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
3586     ** into a single opcode. */
3587     sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3588     VdbeCoverage(v);
3589     addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
3590   }else{
3591     sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3592     if( destIfFalse==destIfNull ){
3593       /* Combine Step 3 and Step 5 into a single opcode */
3594       sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3595                            rLhs, nVector); VdbeCoverage(v);
3596       goto sqlite3ExprCodeIN_finished;
3597     }
3598     /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3599     addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3600                                       rLhs, nVector); VdbeCoverage(v);
3601   }
3602 
3603   /* Step 4.  If the RHS is known to be non-NULL and we did not find
3604   ** an match on the search above, then the result must be FALSE.
3605   */
3606   if( rRhsHasNull && nVector==1 ){
3607     sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3608     VdbeCoverage(v);
3609   }
3610 
3611   /* Step 5.  If we do not care about the difference between NULL and
3612   ** FALSE, then just return false.
3613   */
3614   if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3615 
3616   /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
3617   ** If any comparison is NULL, then the result is NULL.  If all
3618   ** comparisons are FALSE then the final result is FALSE.
3619   **
3620   ** For a scalar LHS, it is sufficient to check just the first row
3621   ** of the RHS.
3622   */
3623   if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3624   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3625   VdbeCoverage(v);
3626   if( nVector>1 ){
3627     destNotNull = sqlite3VdbeMakeLabel(pParse);
3628   }else{
3629     /* For nVector==1, combine steps 6 and 7 by immediately returning
3630     ** FALSE if the first comparison is not NULL */
3631     destNotNull = destIfFalse;
3632   }
3633   for(i=0; i<nVector; i++){
3634     Expr *p;
3635     CollSeq *pColl;
3636     int r3 = sqlite3GetTempReg(pParse);
3637     p = sqlite3VectorFieldSubexpr(pLeft, i);
3638     pColl = sqlite3ExprCollSeq(pParse, p);
3639     sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3640     sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3641                       (void*)pColl, P4_COLLSEQ);
3642     VdbeCoverage(v);
3643     sqlite3ReleaseTempReg(pParse, r3);
3644   }
3645   sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3646   if( nVector>1 ){
3647     sqlite3VdbeResolveLabel(v, destNotNull);
3648     sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3649     VdbeCoverage(v);
3650 
3651     /* Step 7:  If we reach this point, we know that the result must
3652     ** be false. */
3653     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3654   }
3655 
3656   /* Jumps here in order to return true. */
3657   sqlite3VdbeJumpHere(v, addrTruthOp);
3658 
3659 sqlite3ExprCodeIN_finished:
3660   if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3661   VdbeComment((v, "end IN expr"));
3662 sqlite3ExprCodeIN_oom_error:
3663   sqlite3DbFree(pParse->db, aiMap);
3664   sqlite3DbFree(pParse->db, zAff);
3665 }
3666 #endif /* SQLITE_OMIT_SUBQUERY */
3667 
3668 #ifndef SQLITE_OMIT_FLOATING_POINT
3669 /*
3670 ** Generate an instruction that will put the floating point
3671 ** value described by z[0..n-1] into register iMem.
3672 **
3673 ** The z[] string will probably not be zero-terminated.  But the
3674 ** z[n] character is guaranteed to be something that does not look
3675 ** like the continuation of the number.
3676 */
3677 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3678   if( ALWAYS(z!=0) ){
3679     double value;
3680     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3681     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3682     if( negateFlag ) value = -value;
3683     sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3684   }
3685 }
3686 #endif
3687 
3688 
3689 /*
3690 ** Generate an instruction that will put the integer describe by
3691 ** text z[0..n-1] into register iMem.
3692 **
3693 ** Expr.u.zToken is always UTF8 and zero-terminated.
3694 */
3695 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3696   Vdbe *v = pParse->pVdbe;
3697   if( pExpr->flags & EP_IntValue ){
3698     int i = pExpr->u.iValue;
3699     assert( i>=0 );
3700     if( negFlag ) i = -i;
3701     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3702   }else{
3703     int c;
3704     i64 value;
3705     const char *z = pExpr->u.zToken;
3706     assert( z!=0 );
3707     c = sqlite3DecOrHexToI64(z, &value);
3708     if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3709 #ifdef SQLITE_OMIT_FLOATING_POINT
3710       sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3711 #else
3712 #ifndef SQLITE_OMIT_HEX_INTEGER
3713       if( sqlite3_strnicmp(z,"0x",2)==0 ){
3714         sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3715                         negFlag?"-":"",pExpr);
3716       }else
3717 #endif
3718       {
3719         codeReal(v, z, negFlag, iMem);
3720       }
3721 #endif
3722     }else{
3723       if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3724       sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3725     }
3726   }
3727 }
3728 
3729 
3730 /* Generate code that will load into register regOut a value that is
3731 ** appropriate for the iIdxCol-th column of index pIdx.
3732 */
3733 void sqlite3ExprCodeLoadIndexColumn(
3734   Parse *pParse,  /* The parsing context */
3735   Index *pIdx,    /* The index whose column is to be loaded */
3736   int iTabCur,    /* Cursor pointing to a table row */
3737   int iIdxCol,    /* The column of the index to be loaded */
3738   int regOut      /* Store the index column value in this register */
3739 ){
3740   i16 iTabCol = pIdx->aiColumn[iIdxCol];
3741   if( iTabCol==XN_EXPR ){
3742     assert( pIdx->aColExpr );
3743     assert( pIdx->aColExpr->nExpr>iIdxCol );
3744     pParse->iSelfTab = iTabCur + 1;
3745     sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3746     pParse->iSelfTab = 0;
3747   }else{
3748     sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3749                                     iTabCol, regOut);
3750   }
3751 }
3752 
3753 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3754 /*
3755 ** Generate code that will compute the value of generated column pCol
3756 ** and store the result in register regOut
3757 */
3758 void sqlite3ExprCodeGeneratedColumn(
3759   Parse *pParse,     /* Parsing context */
3760   Table *pTab,       /* Table containing the generated column */
3761   Column *pCol,      /* The generated column */
3762   int regOut         /* Put the result in this register */
3763 ){
3764   int iAddr;
3765   Vdbe *v = pParse->pVdbe;
3766   assert( v!=0 );
3767   assert( pParse->iSelfTab!=0 );
3768   if( pParse->iSelfTab>0 ){
3769     iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3770   }else{
3771     iAddr = 0;
3772   }
3773   sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3774   if( pCol->affinity>=SQLITE_AFF_TEXT ){
3775     sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3776   }
3777   if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3778 }
3779 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3780 
3781 /*
3782 ** Generate code to extract the value of the iCol-th column of a table.
3783 */
3784 void sqlite3ExprCodeGetColumnOfTable(
3785   Vdbe *v,        /* Parsing context */
3786   Table *pTab,    /* The table containing the value */
3787   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
3788   int iCol,       /* Index of the column to extract */
3789   int regOut      /* Extract the value into this register */
3790 ){
3791   Column *pCol;
3792   assert( v!=0 );
3793   if( pTab==0 ){
3794     sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3795     return;
3796   }
3797   if( iCol<0 || iCol==pTab->iPKey ){
3798     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3799     VdbeComment((v, "%s.rowid", pTab->zName));
3800   }else{
3801     int op;
3802     int x;
3803     if( IsVirtual(pTab) ){
3804       op = OP_VColumn;
3805       x = iCol;
3806 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3807     }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3808       Parse *pParse = sqlite3VdbeParser(v);
3809       if( pCol->colFlags & COLFLAG_BUSY ){
3810         sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3811                         pCol->zCnName);
3812       }else{
3813         int savedSelfTab = pParse->iSelfTab;
3814         pCol->colFlags |= COLFLAG_BUSY;
3815         pParse->iSelfTab = iTabCur+1;
3816         sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3817         pParse->iSelfTab = savedSelfTab;
3818         pCol->colFlags &= ~COLFLAG_BUSY;
3819       }
3820       return;
3821 #endif
3822     }else if( !HasRowid(pTab) ){
3823       testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3824       x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3825       op = OP_Column;
3826     }else{
3827       x = sqlite3TableColumnToStorage(pTab,iCol);
3828       testcase( x!=iCol );
3829       op = OP_Column;
3830     }
3831     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3832     sqlite3ColumnDefault(v, pTab, iCol, regOut);
3833   }
3834 }
3835 
3836 /*
3837 ** Generate code that will extract the iColumn-th column from
3838 ** table pTab and store the column value in register iReg.
3839 **
3840 ** There must be an open cursor to pTab in iTable when this routine
3841 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
3842 */
3843 int sqlite3ExprCodeGetColumn(
3844   Parse *pParse,   /* Parsing and code generating context */
3845   Table *pTab,     /* Description of the table we are reading from */
3846   int iColumn,     /* Index of the table column */
3847   int iTable,      /* The cursor pointing to the table */
3848   int iReg,        /* Store results here */
3849   u8 p5            /* P5 value for OP_Column + FLAGS */
3850 ){
3851   assert( pParse->pVdbe!=0 );
3852   sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3853   if( p5 ){
3854     VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
3855     if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3856   }
3857   return iReg;
3858 }
3859 
3860 /*
3861 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3862 ** over to iTo..iTo+nReg-1.
3863 */
3864 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3865   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3866 }
3867 
3868 /*
3869 ** Convert a scalar expression node to a TK_REGISTER referencing
3870 ** register iReg.  The caller must ensure that iReg already contains
3871 ** the correct value for the expression.
3872 */
3873 static void exprToRegister(Expr *pExpr, int iReg){
3874   Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3875   if( NEVER(p==0) ) return;
3876   p->op2 = p->op;
3877   p->op = TK_REGISTER;
3878   p->iTable = iReg;
3879   ExprClearProperty(p, EP_Skip);
3880 }
3881 
3882 /*
3883 ** Evaluate an expression (either a vector or a scalar expression) and store
3884 ** the result in continguous temporary registers.  Return the index of
3885 ** the first register used to store the result.
3886 **
3887 ** If the returned result register is a temporary scalar, then also write
3888 ** that register number into *piFreeable.  If the returned result register
3889 ** is not a temporary or if the expression is a vector set *piFreeable
3890 ** to 0.
3891 */
3892 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3893   int iResult;
3894   int nResult = sqlite3ExprVectorSize(p);
3895   if( nResult==1 ){
3896     iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3897   }else{
3898     *piFreeable = 0;
3899     if( p->op==TK_SELECT ){
3900 #if SQLITE_OMIT_SUBQUERY
3901       iResult = 0;
3902 #else
3903       iResult = sqlite3CodeSubselect(pParse, p);
3904 #endif
3905     }else{
3906       int i;
3907       iResult = pParse->nMem+1;
3908       pParse->nMem += nResult;
3909       assert( ExprUseXList(p) );
3910       for(i=0; i<nResult; i++){
3911         sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3912       }
3913     }
3914   }
3915   return iResult;
3916 }
3917 
3918 /*
3919 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3920 ** so that a subsequent copy will not be merged into this one.
3921 */
3922 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3923   if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
3924     sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergable */
3925   }
3926 }
3927 
3928 /*
3929 ** Generate code to implement special SQL functions that are implemented
3930 ** in-line rather than by using the usual callbacks.
3931 */
3932 static int exprCodeInlineFunction(
3933   Parse *pParse,        /* Parsing context */
3934   ExprList *pFarg,      /* List of function arguments */
3935   int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
3936   int target            /* Store function result in this register */
3937 ){
3938   int nFarg;
3939   Vdbe *v = pParse->pVdbe;
3940   assert( v!=0 );
3941   assert( pFarg!=0 );
3942   nFarg = pFarg->nExpr;
3943   assert( nFarg>0 );  /* All in-line functions have at least one argument */
3944   switch( iFuncId ){
3945     case INLINEFUNC_coalesce: {
3946       /* Attempt a direct implementation of the built-in COALESCE() and
3947       ** IFNULL() functions.  This avoids unnecessary evaluation of
3948       ** arguments past the first non-NULL argument.
3949       */
3950       int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3951       int i;
3952       assert( nFarg>=2 );
3953       sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3954       for(i=1; i<nFarg; i++){
3955         sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3956         VdbeCoverage(v);
3957         sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3958       }
3959       setDoNotMergeFlagOnCopy(v);
3960       sqlite3VdbeResolveLabel(v, endCoalesce);
3961       break;
3962     }
3963     case INLINEFUNC_iif: {
3964       Expr caseExpr;
3965       memset(&caseExpr, 0, sizeof(caseExpr));
3966       caseExpr.op = TK_CASE;
3967       caseExpr.x.pList = pFarg;
3968       return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3969     }
3970 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3971     case INLINEFUNC_sqlite_offset: {
3972       Expr *pArg = pFarg->a[0].pExpr;
3973       if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
3974         sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3975       }else{
3976         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3977       }
3978       break;
3979     }
3980 #endif
3981     default: {
3982       /* The UNLIKELY() function is a no-op.  The result is the value
3983       ** of the first argument.
3984       */
3985       assert( nFarg==1 || nFarg==2 );
3986       target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3987       break;
3988     }
3989 
3990   /***********************************************************************
3991   ** Test-only SQL functions that are only usable if enabled
3992   ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3993   */
3994 #if !defined(SQLITE_UNTESTABLE)
3995     case INLINEFUNC_expr_compare: {
3996       /* Compare two expressions using sqlite3ExprCompare() */
3997       assert( nFarg==2 );
3998       sqlite3VdbeAddOp2(v, OP_Integer,
3999          sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4000          target);
4001       break;
4002     }
4003 
4004     case INLINEFUNC_expr_implies_expr: {
4005       /* Compare two expressions using sqlite3ExprImpliesExpr() */
4006       assert( nFarg==2 );
4007       sqlite3VdbeAddOp2(v, OP_Integer,
4008          sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4009          target);
4010       break;
4011     }
4012 
4013     case INLINEFUNC_implies_nonnull_row: {
4014       /* REsult of sqlite3ExprImpliesNonNullRow() */
4015       Expr *pA1;
4016       assert( nFarg==2 );
4017       pA1 = pFarg->a[1].pExpr;
4018       if( pA1->op==TK_COLUMN ){
4019         sqlite3VdbeAddOp2(v, OP_Integer,
4020            sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
4021            target);
4022       }else{
4023         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4024       }
4025       break;
4026     }
4027 
4028     case INLINEFUNC_affinity: {
4029       /* The AFFINITY() function evaluates to a string that describes
4030       ** the type affinity of the argument.  This is used for testing of
4031       ** the SQLite type logic.
4032       */
4033       const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
4034       char aff;
4035       assert( nFarg==1 );
4036       aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4037       sqlite3VdbeLoadString(v, target,
4038               (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4039       break;
4040     }
4041 #endif /* !defined(SQLITE_UNTESTABLE) */
4042   }
4043   return target;
4044 }
4045 
4046 
4047 /*
4048 ** Generate code into the current Vdbe to evaluate the given
4049 ** expression.  Attempt to store the results in register "target".
4050 ** Return the register where results are stored.
4051 **
4052 ** With this routine, there is no guarantee that results will
4053 ** be stored in target.  The result might be stored in some other
4054 ** register if it is convenient to do so.  The calling function
4055 ** must check the return code and move the results to the desired
4056 ** register.
4057 */
4058 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4059   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
4060   int op;                   /* The opcode being coded */
4061   int inReg = target;       /* Results stored in register inReg */
4062   int regFree1 = 0;         /* If non-zero free this temporary register */
4063   int regFree2 = 0;         /* If non-zero free this temporary register */
4064   int r1, r2;               /* Various register numbers */
4065   Expr tempX;               /* Temporary expression node */
4066   int p5 = 0;
4067 
4068   assert( target>0 && target<=pParse->nMem );
4069   assert( v!=0 );
4070 
4071 expr_code_doover:
4072   if( pExpr==0 ){
4073     op = TK_NULL;
4074   }else{
4075     assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4076     op = pExpr->op;
4077   }
4078   switch( op ){
4079     case TK_AGG_COLUMN: {
4080       AggInfo *pAggInfo = pExpr->pAggInfo;
4081       struct AggInfo_col *pCol;
4082       assert( pAggInfo!=0 );
4083       assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4084       pCol = &pAggInfo->aCol[pExpr->iAgg];
4085       if( !pAggInfo->directMode ){
4086         assert( pCol->iMem>0 );
4087         return pCol->iMem;
4088       }else if( pAggInfo->useSortingIdx ){
4089         Table *pTab = pCol->pTab;
4090         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4091                               pCol->iSorterColumn, target);
4092         if( pCol->iColumn<0 ){
4093           VdbeComment((v,"%s.rowid",pTab->zName));
4094         }else if( ALWAYS(pTab!=0) ){
4095           VdbeComment((v,"%s.%s",
4096               pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4097           if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4098             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4099           }
4100         }
4101         return target;
4102       }
4103       /* Otherwise, fall thru into the TK_COLUMN case */
4104       /* no break */ deliberate_fall_through
4105     }
4106     case TK_COLUMN: {
4107       int iTab = pExpr->iTable;
4108       int iReg;
4109       if( ExprHasProperty(pExpr, EP_FixedCol) ){
4110         /* This COLUMN expression is really a constant due to WHERE clause
4111         ** constraints, and that constant is coded by the pExpr->pLeft
4112         ** expresssion.  However, make sure the constant has the correct
4113         ** datatype by applying the Affinity of the table column to the
4114         ** constant.
4115         */
4116         int aff;
4117         iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4118         assert( ExprUseYTab(pExpr) );
4119         if( pExpr->y.pTab ){
4120           aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4121         }else{
4122           aff = pExpr->affExpr;
4123         }
4124         if( aff>SQLITE_AFF_BLOB ){
4125           static const char zAff[] = "B\000C\000D\000E";
4126           assert( SQLITE_AFF_BLOB=='A' );
4127           assert( SQLITE_AFF_TEXT=='B' );
4128           sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4129                             &zAff[(aff-'B')*2], P4_STATIC);
4130         }
4131         return iReg;
4132       }
4133       if( iTab<0 ){
4134         if( pParse->iSelfTab<0 ){
4135           /* Other columns in the same row for CHECK constraints or
4136           ** generated columns or for inserting into partial index.
4137           ** The row is unpacked into registers beginning at
4138           ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
4139           ** immediately prior to the first column.
4140           */
4141           Column *pCol;
4142           Table *pTab;
4143           int iSrc;
4144           int iCol = pExpr->iColumn;
4145           assert( ExprUseYTab(pExpr) );
4146           pTab = pExpr->y.pTab;
4147           assert( pTab!=0 );
4148           assert( iCol>=XN_ROWID );
4149           assert( iCol<pTab->nCol );
4150           if( iCol<0 ){
4151             return -1-pParse->iSelfTab;
4152           }
4153           pCol = pTab->aCol + iCol;
4154           testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4155           iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4156 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4157           if( pCol->colFlags & COLFLAG_GENERATED ){
4158             if( pCol->colFlags & COLFLAG_BUSY ){
4159               sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4160                               pCol->zCnName);
4161               return 0;
4162             }
4163             pCol->colFlags |= COLFLAG_BUSY;
4164             if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4165               sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4166             }
4167             pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4168             return iSrc;
4169           }else
4170 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4171           if( pCol->affinity==SQLITE_AFF_REAL ){
4172             sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4173             sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4174             return target;
4175           }else{
4176             return iSrc;
4177           }
4178         }else{
4179           /* Coding an expression that is part of an index where column names
4180           ** in the index refer to the table to which the index belongs */
4181           iTab = pParse->iSelfTab - 1;
4182         }
4183       }
4184       assert( ExprUseYTab(pExpr) );
4185       iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4186                                pExpr->iColumn, iTab, target,
4187                                pExpr->op2);
4188       if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4189         sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4190       }
4191       return iReg;
4192     }
4193     case TK_INTEGER: {
4194       codeInteger(pParse, pExpr, 0, target);
4195       return target;
4196     }
4197     case TK_TRUEFALSE: {
4198       sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4199       return target;
4200     }
4201 #ifndef SQLITE_OMIT_FLOATING_POINT
4202     case TK_FLOAT: {
4203       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4204       codeReal(v, pExpr->u.zToken, 0, target);
4205       return target;
4206     }
4207 #endif
4208     case TK_STRING: {
4209       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4210       sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4211       return target;
4212     }
4213     default: {
4214       /* Make NULL the default case so that if a bug causes an illegal
4215       ** Expr node to be passed into this function, it will be handled
4216       ** sanely and not crash.  But keep the assert() to bring the problem
4217       ** to the attention of the developers. */
4218       assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4219       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4220       return target;
4221     }
4222 #ifndef SQLITE_OMIT_BLOB_LITERAL
4223     case TK_BLOB: {
4224       int n;
4225       const char *z;
4226       char *zBlob;
4227       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4228       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4229       assert( pExpr->u.zToken[1]=='\'' );
4230       z = &pExpr->u.zToken[2];
4231       n = sqlite3Strlen30(z) - 1;
4232       assert( z[n]=='\'' );
4233       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4234       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4235       return target;
4236     }
4237 #endif
4238     case TK_VARIABLE: {
4239       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4240       assert( pExpr->u.zToken!=0 );
4241       assert( pExpr->u.zToken[0]!=0 );
4242       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4243       if( pExpr->u.zToken[1]!=0 ){
4244         const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4245         assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4246         pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4247         sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4248       }
4249       return target;
4250     }
4251     case TK_REGISTER: {
4252       return pExpr->iTable;
4253     }
4254 #ifndef SQLITE_OMIT_CAST
4255     case TK_CAST: {
4256       /* Expressions of the form:   CAST(pLeft AS token) */
4257       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4258       if( inReg!=target ){
4259         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4260         inReg = target;
4261       }
4262       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4263       sqlite3VdbeAddOp2(v, OP_Cast, target,
4264                         sqlite3AffinityType(pExpr->u.zToken, 0));
4265       return inReg;
4266     }
4267 #endif /* SQLITE_OMIT_CAST */
4268     case TK_IS:
4269     case TK_ISNOT:
4270       op = (op==TK_IS) ? TK_EQ : TK_NE;
4271       p5 = SQLITE_NULLEQ;
4272       /* fall-through */
4273     case TK_LT:
4274     case TK_LE:
4275     case TK_GT:
4276     case TK_GE:
4277     case TK_NE:
4278     case TK_EQ: {
4279       Expr *pLeft = pExpr->pLeft;
4280       if( sqlite3ExprIsVector(pLeft) ){
4281         codeVectorCompare(pParse, pExpr, target, op, p5);
4282       }else{
4283         r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4284         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4285         sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4286         codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4287             sqlite3VdbeCurrentAddr(v)+2, p5,
4288             ExprHasProperty(pExpr,EP_Commuted));
4289         assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4290         assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4291         assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4292         assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4293         assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4294         assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4295         if( p5==SQLITE_NULLEQ ){
4296           sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4297         }else{
4298           sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4299         }
4300         testcase( regFree1==0 );
4301         testcase( regFree2==0 );
4302       }
4303       break;
4304     }
4305     case TK_AND:
4306     case TK_OR:
4307     case TK_PLUS:
4308     case TK_STAR:
4309     case TK_MINUS:
4310     case TK_REM:
4311     case TK_BITAND:
4312     case TK_BITOR:
4313     case TK_SLASH:
4314     case TK_LSHIFT:
4315     case TK_RSHIFT:
4316     case TK_CONCAT: {
4317       assert( TK_AND==OP_And );            testcase( op==TK_AND );
4318       assert( TK_OR==OP_Or );              testcase( op==TK_OR );
4319       assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
4320       assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
4321       assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
4322       assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
4323       assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
4324       assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
4325       assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
4326       assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
4327       assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
4328       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4329       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4330       sqlite3VdbeAddOp3(v, op, r2, r1, target);
4331       testcase( regFree1==0 );
4332       testcase( regFree2==0 );
4333       break;
4334     }
4335     case TK_UMINUS: {
4336       Expr *pLeft = pExpr->pLeft;
4337       assert( pLeft );
4338       if( pLeft->op==TK_INTEGER ){
4339         codeInteger(pParse, pLeft, 1, target);
4340         return target;
4341 #ifndef SQLITE_OMIT_FLOATING_POINT
4342       }else if( pLeft->op==TK_FLOAT ){
4343         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4344         codeReal(v, pLeft->u.zToken, 1, target);
4345         return target;
4346 #endif
4347       }else{
4348         tempX.op = TK_INTEGER;
4349         tempX.flags = EP_IntValue|EP_TokenOnly;
4350         tempX.u.iValue = 0;
4351         ExprClearVVAProperties(&tempX);
4352         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4353         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4354         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4355         testcase( regFree2==0 );
4356       }
4357       break;
4358     }
4359     case TK_BITNOT:
4360     case TK_NOT: {
4361       assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
4362       assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
4363       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4364       testcase( regFree1==0 );
4365       sqlite3VdbeAddOp2(v, op, r1, inReg);
4366       break;
4367     }
4368     case TK_TRUTH: {
4369       int isTrue;    /* IS TRUE or IS NOT TRUE */
4370       int bNormal;   /* IS TRUE or IS FALSE */
4371       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4372       testcase( regFree1==0 );
4373       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4374       bNormal = pExpr->op2==TK_IS;
4375       testcase( isTrue && bNormal);
4376       testcase( !isTrue && bNormal);
4377       sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4378       break;
4379     }
4380     case TK_ISNULL:
4381     case TK_NOTNULL: {
4382       int addr;
4383       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
4384       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4385       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4386       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4387       testcase( regFree1==0 );
4388       addr = sqlite3VdbeAddOp1(v, op, r1);
4389       VdbeCoverageIf(v, op==TK_ISNULL);
4390       VdbeCoverageIf(v, op==TK_NOTNULL);
4391       sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4392       sqlite3VdbeJumpHere(v, addr);
4393       break;
4394     }
4395     case TK_AGG_FUNCTION: {
4396       AggInfo *pInfo = pExpr->pAggInfo;
4397       if( pInfo==0
4398        || NEVER(pExpr->iAgg<0)
4399        || NEVER(pExpr->iAgg>=pInfo->nFunc)
4400       ){
4401         assert( !ExprHasProperty(pExpr, EP_IntValue) );
4402         sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4403       }else{
4404         return pInfo->aFunc[pExpr->iAgg].iMem;
4405       }
4406       break;
4407     }
4408     case TK_FUNCTION: {
4409       ExprList *pFarg;       /* List of function arguments */
4410       int nFarg;             /* Number of function arguments */
4411       FuncDef *pDef;         /* The function definition object */
4412       const char *zId;       /* The function name */
4413       u32 constMask = 0;     /* Mask of function arguments that are constant */
4414       int i;                 /* Loop counter */
4415       sqlite3 *db = pParse->db;  /* The database connection */
4416       u8 enc = ENC(db);      /* The text encoding used by this database */
4417       CollSeq *pColl = 0;    /* A collating sequence */
4418 
4419 #ifndef SQLITE_OMIT_WINDOWFUNC
4420       if( ExprHasProperty(pExpr, EP_WinFunc) ){
4421         return pExpr->y.pWin->regResult;
4422       }
4423 #endif
4424 
4425       if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4426         /* SQL functions can be expensive. So try to avoid running them
4427         ** multiple times if we know they always give the same result */
4428         return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4429       }
4430       assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4431       assert( ExprUseXList(pExpr) );
4432       pFarg = pExpr->x.pList;
4433       nFarg = pFarg ? pFarg->nExpr : 0;
4434       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4435       zId = pExpr->u.zToken;
4436       pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4437 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4438       if( pDef==0 && pParse->explain ){
4439         pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4440       }
4441 #endif
4442       if( pDef==0 || pDef->xFinalize!=0 ){
4443         sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4444         break;
4445       }
4446       if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4447         assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4448         assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4449         return exprCodeInlineFunction(pParse, pFarg,
4450              SQLITE_PTR_TO_INT(pDef->pUserData), target);
4451       }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4452         sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4453       }
4454 
4455       for(i=0; i<nFarg; i++){
4456         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4457           testcase( i==31 );
4458           constMask |= MASKBIT32(i);
4459         }
4460         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4461           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4462         }
4463       }
4464       if( pFarg ){
4465         if( constMask ){
4466           r1 = pParse->nMem+1;
4467           pParse->nMem += nFarg;
4468         }else{
4469           r1 = sqlite3GetTempRange(pParse, nFarg);
4470         }
4471 
4472         /* For length() and typeof() functions with a column argument,
4473         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4474         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4475         ** loading.
4476         */
4477         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4478           u8 exprOp;
4479           assert( nFarg==1 );
4480           assert( pFarg->a[0].pExpr!=0 );
4481           exprOp = pFarg->a[0].pExpr->op;
4482           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4483             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4484             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4485             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4486             pFarg->a[0].pExpr->op2 =
4487                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4488           }
4489         }
4490 
4491         sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4492                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4493       }else{
4494         r1 = 0;
4495       }
4496 #ifndef SQLITE_OMIT_VIRTUALTABLE
4497       /* Possibly overload the function if the first argument is
4498       ** a virtual table column.
4499       **
4500       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4501       ** second argument, not the first, as the argument to test to
4502       ** see if it is a column in a virtual table.  This is done because
4503       ** the left operand of infix functions (the operand we want to
4504       ** control overloading) ends up as the second argument to the
4505       ** function.  The expression "A glob B" is equivalent to
4506       ** "glob(B,A).  We want to use the A in "A glob B" to test
4507       ** for function overloading.  But we use the B term in "glob(B,A)".
4508       */
4509       if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4510         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4511       }else if( nFarg>0 ){
4512         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4513       }
4514 #endif
4515       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4516         if( !pColl ) pColl = db->pDfltColl;
4517         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4518       }
4519       sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4520                                  pDef, pExpr->op2);
4521       if( nFarg ){
4522         if( constMask==0 ){
4523           sqlite3ReleaseTempRange(pParse, r1, nFarg);
4524         }else{
4525           sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4526         }
4527       }
4528       return target;
4529     }
4530 #ifndef SQLITE_OMIT_SUBQUERY
4531     case TK_EXISTS:
4532     case TK_SELECT: {
4533       int nCol;
4534       testcase( op==TK_EXISTS );
4535       testcase( op==TK_SELECT );
4536       if( pParse->db->mallocFailed ){
4537         return 0;
4538       }else if( op==TK_SELECT
4539              && ALWAYS( ExprUseXSelect(pExpr) )
4540              && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4541       ){
4542         sqlite3SubselectError(pParse, nCol, 1);
4543       }else{
4544         return sqlite3CodeSubselect(pParse, pExpr);
4545       }
4546       break;
4547     }
4548     case TK_SELECT_COLUMN: {
4549       int n;
4550       Expr *pLeft = pExpr->pLeft;
4551       if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4552         pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4553         pLeft->op2 = pParse->withinRJSubrtn;
4554       }
4555       assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4556       n = sqlite3ExprVectorSize(pLeft);
4557       if( pExpr->iTable!=n ){
4558         sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4559                                 pExpr->iTable, n);
4560       }
4561       return pLeft->iTable + pExpr->iColumn;
4562     }
4563     case TK_IN: {
4564       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4565       int destIfNull = sqlite3VdbeMakeLabel(pParse);
4566       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4567       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4568       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4569       sqlite3VdbeResolveLabel(v, destIfFalse);
4570       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4571       sqlite3VdbeResolveLabel(v, destIfNull);
4572       return target;
4573     }
4574 #endif /* SQLITE_OMIT_SUBQUERY */
4575 
4576 
4577     /*
4578     **    x BETWEEN y AND z
4579     **
4580     ** This is equivalent to
4581     **
4582     **    x>=y AND x<=z
4583     **
4584     ** X is stored in pExpr->pLeft.
4585     ** Y is stored in pExpr->pList->a[0].pExpr.
4586     ** Z is stored in pExpr->pList->a[1].pExpr.
4587     */
4588     case TK_BETWEEN: {
4589       exprCodeBetween(pParse, pExpr, target, 0, 0);
4590       return target;
4591     }
4592     case TK_COLLATE: {
4593       if( !ExprHasProperty(pExpr, EP_Collate)
4594        && ALWAYS(pExpr->pLeft)
4595        && pExpr->pLeft->op==TK_FUNCTION
4596       ){
4597         inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4598         if( inReg!=target ){
4599           sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4600           inReg = target;
4601         }
4602         sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
4603         return inReg;
4604       }else{
4605         pExpr = pExpr->pLeft;
4606         goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4607       }
4608     }
4609     case TK_SPAN:
4610     case TK_UPLUS: {
4611       pExpr = pExpr->pLeft;
4612       goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4613     }
4614 
4615     case TK_TRIGGER: {
4616       /* If the opcode is TK_TRIGGER, then the expression is a reference
4617       ** to a column in the new.* or old.* pseudo-tables available to
4618       ** trigger programs. In this case Expr.iTable is set to 1 for the
4619       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4620       ** is set to the column of the pseudo-table to read, or to -1 to
4621       ** read the rowid field.
4622       **
4623       ** The expression is implemented using an OP_Param opcode. The p1
4624       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4625       ** to reference another column of the old.* pseudo-table, where
4626       ** i is the index of the column. For a new.rowid reference, p1 is
4627       ** set to (n+1), where n is the number of columns in each pseudo-table.
4628       ** For a reference to any other column in the new.* pseudo-table, p1
4629       ** is set to (n+2+i), where n and i are as defined previously. For
4630       ** example, if the table on which triggers are being fired is
4631       ** declared as:
4632       **
4633       **   CREATE TABLE t1(a, b);
4634       **
4635       ** Then p1 is interpreted as follows:
4636       **
4637       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
4638       **   p1==1   ->    old.a         p1==4   ->    new.a
4639       **   p1==2   ->    old.b         p1==5   ->    new.b
4640       */
4641       Table *pTab;
4642       int iCol;
4643       int p1;
4644 
4645       assert( ExprUseYTab(pExpr) );
4646       pTab = pExpr->y.pTab;
4647       iCol = pExpr->iColumn;
4648       p1 = pExpr->iTable * (pTab->nCol+1) + 1
4649                      + sqlite3TableColumnToStorage(pTab, iCol);
4650 
4651       assert( pExpr->iTable==0 || pExpr->iTable==1 );
4652       assert( iCol>=-1 && iCol<pTab->nCol );
4653       assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4654       assert( p1>=0 && p1<(pTab->nCol*2+2) );
4655 
4656       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4657       VdbeComment((v, "r[%d]=%s.%s", target,
4658         (pExpr->iTable ? "new" : "old"),
4659         (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4660       ));
4661 
4662 #ifndef SQLITE_OMIT_FLOATING_POINT
4663       /* If the column has REAL affinity, it may currently be stored as an
4664       ** integer. Use OP_RealAffinity to make sure it is really real.
4665       **
4666       ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4667       ** floating point when extracting it from the record.  */
4668       if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4669         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4670       }
4671 #endif
4672       break;
4673     }
4674 
4675     case TK_VECTOR: {
4676       sqlite3ErrorMsg(pParse, "row value misused");
4677       break;
4678     }
4679 
4680     /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4681     ** that derive from the right-hand table of a LEFT JOIN.  The
4682     ** Expr.iTable value is the table number for the right-hand table.
4683     ** The expression is only evaluated if that table is not currently
4684     ** on a LEFT JOIN NULL row.
4685     */
4686     case TK_IF_NULL_ROW: {
4687       int addrINR;
4688       u8 okConstFactor = pParse->okConstFactor;
4689       AggInfo *pAggInfo = pExpr->pAggInfo;
4690       if( pAggInfo ){
4691         assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4692         if( !pAggInfo->directMode ){
4693           inReg = pAggInfo->aCol[pExpr->iAgg].iMem;
4694           break;
4695         }
4696         if( pExpr->pAggInfo->useSortingIdx ){
4697           sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4698                             pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
4699                             target);
4700           inReg = target;
4701           break;
4702         }
4703       }
4704       addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4705       /* Temporarily disable factoring of constant expressions, since
4706       ** even though expressions may appear to be constant, they are not
4707       ** really constant because they originate from the right-hand side
4708       ** of a LEFT JOIN. */
4709       pParse->okConstFactor = 0;
4710       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4711       pParse->okConstFactor = okConstFactor;
4712       sqlite3VdbeJumpHere(v, addrINR);
4713       sqlite3VdbeChangeP3(v, addrINR, inReg);
4714       break;
4715     }
4716 
4717     /*
4718     ** Form A:
4719     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4720     **
4721     ** Form B:
4722     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4723     **
4724     ** Form A is can be transformed into the equivalent form B as follows:
4725     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4726     **        WHEN x=eN THEN rN ELSE y END
4727     **
4728     ** X (if it exists) is in pExpr->pLeft.
4729     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4730     ** odd.  The Y is also optional.  If the number of elements in x.pList
4731     ** is even, then Y is omitted and the "otherwise" result is NULL.
4732     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4733     **
4734     ** The result of the expression is the Ri for the first matching Ei,
4735     ** or if there is no matching Ei, the ELSE term Y, or if there is
4736     ** no ELSE term, NULL.
4737     */
4738     case TK_CASE: {
4739       int endLabel;                     /* GOTO label for end of CASE stmt */
4740       int nextCase;                     /* GOTO label for next WHEN clause */
4741       int nExpr;                        /* 2x number of WHEN terms */
4742       int i;                            /* Loop counter */
4743       ExprList *pEList;                 /* List of WHEN terms */
4744       struct ExprList_item *aListelem;  /* Array of WHEN terms */
4745       Expr opCompare;                   /* The X==Ei expression */
4746       Expr *pX;                         /* The X expression */
4747       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
4748       Expr *pDel = 0;
4749       sqlite3 *db = pParse->db;
4750 
4751       assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4752       assert(pExpr->x.pList->nExpr > 0);
4753       pEList = pExpr->x.pList;
4754       aListelem = pEList->a;
4755       nExpr = pEList->nExpr;
4756       endLabel = sqlite3VdbeMakeLabel(pParse);
4757       if( (pX = pExpr->pLeft)!=0 ){
4758         pDel = sqlite3ExprDup(db, pX, 0);
4759         if( db->mallocFailed ){
4760           sqlite3ExprDelete(db, pDel);
4761           break;
4762         }
4763         testcase( pX->op==TK_COLUMN );
4764         exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4765         testcase( regFree1==0 );
4766         memset(&opCompare, 0, sizeof(opCompare));
4767         opCompare.op = TK_EQ;
4768         opCompare.pLeft = pDel;
4769         pTest = &opCompare;
4770         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4771         ** The value in regFree1 might get SCopy-ed into the file result.
4772         ** So make sure that the regFree1 register is not reused for other
4773         ** purposes and possibly overwritten.  */
4774         regFree1 = 0;
4775       }
4776       for(i=0; i<nExpr-1; i=i+2){
4777         if( pX ){
4778           assert( pTest!=0 );
4779           opCompare.pRight = aListelem[i].pExpr;
4780         }else{
4781           pTest = aListelem[i].pExpr;
4782         }
4783         nextCase = sqlite3VdbeMakeLabel(pParse);
4784         testcase( pTest->op==TK_COLUMN );
4785         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4786         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4787         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4788         sqlite3VdbeGoto(v, endLabel);
4789         sqlite3VdbeResolveLabel(v, nextCase);
4790       }
4791       if( (nExpr&1)!=0 ){
4792         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4793       }else{
4794         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4795       }
4796       sqlite3ExprDelete(db, pDel);
4797       setDoNotMergeFlagOnCopy(v);
4798       sqlite3VdbeResolveLabel(v, endLabel);
4799       break;
4800     }
4801 #ifndef SQLITE_OMIT_TRIGGER
4802     case TK_RAISE: {
4803       assert( pExpr->affExpr==OE_Rollback
4804            || pExpr->affExpr==OE_Abort
4805            || pExpr->affExpr==OE_Fail
4806            || pExpr->affExpr==OE_Ignore
4807       );
4808       if( !pParse->pTriggerTab && !pParse->nested ){
4809         sqlite3ErrorMsg(pParse,
4810                        "RAISE() may only be used within a trigger-program");
4811         return 0;
4812       }
4813       if( pExpr->affExpr==OE_Abort ){
4814         sqlite3MayAbort(pParse);
4815       }
4816       assert( !ExprHasProperty(pExpr, EP_IntValue) );
4817       if( pExpr->affExpr==OE_Ignore ){
4818         sqlite3VdbeAddOp4(
4819             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4820         VdbeCoverage(v);
4821       }else{
4822         sqlite3HaltConstraint(pParse,
4823              pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4824              pExpr->affExpr, pExpr->u.zToken, 0, 0);
4825       }
4826 
4827       break;
4828     }
4829 #endif
4830   }
4831   sqlite3ReleaseTempReg(pParse, regFree1);
4832   sqlite3ReleaseTempReg(pParse, regFree2);
4833   return inReg;
4834 }
4835 
4836 /*
4837 ** Generate code that will evaluate expression pExpr just one time
4838 ** per prepared statement execution.
4839 **
4840 ** If the expression uses functions (that might throw an exception) then
4841 ** guard them with an OP_Once opcode to ensure that the code is only executed
4842 ** once. If no functions are involved, then factor the code out and put it at
4843 ** the end of the prepared statement in the initialization section.
4844 **
4845 ** If regDest>=0 then the result is always stored in that register and the
4846 ** result is not reusable.  If regDest<0 then this routine is free to
4847 ** store the value whereever it wants.  The register where the expression
4848 ** is stored is returned.  When regDest<0, two identical expressions might
4849 ** code to the same register, if they do not contain function calls and hence
4850 ** are factored out into the initialization section at the end of the
4851 ** prepared statement.
4852 */
4853 int sqlite3ExprCodeRunJustOnce(
4854   Parse *pParse,    /* Parsing context */
4855   Expr *pExpr,      /* The expression to code when the VDBE initializes */
4856   int regDest       /* Store the value in this register */
4857 ){
4858   ExprList *p;
4859   assert( ConstFactorOk(pParse) );
4860   p = pParse->pConstExpr;
4861   if( regDest<0 && p ){
4862     struct ExprList_item *pItem;
4863     int i;
4864     for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4865       if( pItem->fg.reusable
4866        && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
4867       ){
4868         return pItem->u.iConstExprReg;
4869       }
4870     }
4871   }
4872   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4873   if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4874     Vdbe *v = pParse->pVdbe;
4875     int addr;
4876     assert( v );
4877     addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4878     pParse->okConstFactor = 0;
4879     if( !pParse->db->mallocFailed ){
4880       if( regDest<0 ) regDest = ++pParse->nMem;
4881       sqlite3ExprCode(pParse, pExpr, regDest);
4882     }
4883     pParse->okConstFactor = 1;
4884     sqlite3ExprDelete(pParse->db, pExpr);
4885     sqlite3VdbeJumpHere(v, addr);
4886   }else{
4887     p = sqlite3ExprListAppend(pParse, p, pExpr);
4888     if( p ){
4889        struct ExprList_item *pItem = &p->a[p->nExpr-1];
4890        pItem->fg.reusable = regDest<0;
4891        if( regDest<0 ) regDest = ++pParse->nMem;
4892        pItem->u.iConstExprReg = regDest;
4893     }
4894     pParse->pConstExpr = p;
4895   }
4896   return regDest;
4897 }
4898 
4899 /*
4900 ** Generate code to evaluate an expression and store the results
4901 ** into a register.  Return the register number where the results
4902 ** are stored.
4903 **
4904 ** If the register is a temporary register that can be deallocated,
4905 ** then write its number into *pReg.  If the result register is not
4906 ** a temporary, then set *pReg to zero.
4907 **
4908 ** If pExpr is a constant, then this routine might generate this
4909 ** code to fill the register in the initialization section of the
4910 ** VDBE program, in order to factor it out of the evaluation loop.
4911 */
4912 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4913   int r2;
4914   pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4915   if( ConstFactorOk(pParse)
4916    && ALWAYS(pExpr!=0)
4917    && pExpr->op!=TK_REGISTER
4918    && sqlite3ExprIsConstantNotJoin(pExpr)
4919   ){
4920     *pReg  = 0;
4921     r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4922   }else{
4923     int r1 = sqlite3GetTempReg(pParse);
4924     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4925     if( r2==r1 ){
4926       *pReg = r1;
4927     }else{
4928       sqlite3ReleaseTempReg(pParse, r1);
4929       *pReg = 0;
4930     }
4931   }
4932   return r2;
4933 }
4934 
4935 /*
4936 ** Generate code that will evaluate expression pExpr and store the
4937 ** results in register target.  The results are guaranteed to appear
4938 ** in register target.
4939 */
4940 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4941   int inReg;
4942 
4943   assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4944   assert( target>0 && target<=pParse->nMem );
4945   assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4946   if( pParse->pVdbe==0 ) return;
4947   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4948   if( inReg!=target ){
4949     u8 op;
4950     if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4951       op = OP_Copy;
4952     }else{
4953       op = OP_SCopy;
4954     }
4955     sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4956   }
4957 }
4958 
4959 /*
4960 ** Make a transient copy of expression pExpr and then code it using
4961 ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
4962 ** except that the input expression is guaranteed to be unchanged.
4963 */
4964 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4965   sqlite3 *db = pParse->db;
4966   pExpr = sqlite3ExprDup(db, pExpr, 0);
4967   if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4968   sqlite3ExprDelete(db, pExpr);
4969 }
4970 
4971 /*
4972 ** Generate code that will evaluate expression pExpr and store the
4973 ** results in register target.  The results are guaranteed to appear
4974 ** in register target.  If the expression is constant, then this routine
4975 ** might choose to code the expression at initialization time.
4976 */
4977 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4978   if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4979     sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4980   }else{
4981     sqlite3ExprCodeCopy(pParse, pExpr, target);
4982   }
4983 }
4984 
4985 /*
4986 ** Generate code that pushes the value of every element of the given
4987 ** expression list into a sequence of registers beginning at target.
4988 **
4989 ** Return the number of elements evaluated.  The number returned will
4990 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4991 ** is defined.
4992 **
4993 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4994 ** filled using OP_SCopy.  OP_Copy must be used instead.
4995 **
4996 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4997 ** factored out into initialization code.
4998 **
4999 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5000 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5001 ** in registers at srcReg, and so the value can be copied from there.
5002 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5003 ** are simply omitted rather than being copied from srcReg.
5004 */
5005 int sqlite3ExprCodeExprList(
5006   Parse *pParse,     /* Parsing context */
5007   ExprList *pList,   /* The expression list to be coded */
5008   int target,        /* Where to write results */
5009   int srcReg,        /* Source registers if SQLITE_ECEL_REF */
5010   u8 flags           /* SQLITE_ECEL_* flags */
5011 ){
5012   struct ExprList_item *pItem;
5013   int i, j, n;
5014   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
5015   Vdbe *v = pParse->pVdbe;
5016   assert( pList!=0 );
5017   assert( target>0 );
5018   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
5019   n = pList->nExpr;
5020   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
5021   for(pItem=pList->a, i=0; i<n; i++, pItem++){
5022     Expr *pExpr = pItem->pExpr;
5023 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5024     if( pItem->fg.bSorterRef ){
5025       i--;
5026       n--;
5027     }else
5028 #endif
5029     if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5030       if( flags & SQLITE_ECEL_OMITREF ){
5031         i--;
5032         n--;
5033       }else{
5034         sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5035       }
5036     }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5037            && sqlite3ExprIsConstantNotJoin(pExpr)
5038     ){
5039       sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5040     }else{
5041       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5042       if( inReg!=target+i ){
5043         VdbeOp *pOp;
5044         if( copyOp==OP_Copy
5045          && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
5046          && pOp->p1+pOp->p3+1==inReg
5047          && pOp->p2+pOp->p3+1==target+i
5048          && pOp->p5==0  /* The do-not-merge flag must be clear */
5049         ){
5050           pOp->p3++;
5051         }else{
5052           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5053         }
5054       }
5055     }
5056   }
5057   return n;
5058 }
5059 
5060 /*
5061 ** Generate code for a BETWEEN operator.
5062 **
5063 **    x BETWEEN y AND z
5064 **
5065 ** The above is equivalent to
5066 **
5067 **    x>=y AND x<=z
5068 **
5069 ** Code it as such, taking care to do the common subexpression
5070 ** elimination of x.
5071 **
5072 ** The xJumpIf parameter determines details:
5073 **
5074 **    NULL:                   Store the boolean result in reg[dest]
5075 **    sqlite3ExprIfTrue:      Jump to dest if true
5076 **    sqlite3ExprIfFalse:     Jump to dest if false
5077 **
5078 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5079 */
5080 static void exprCodeBetween(
5081   Parse *pParse,    /* Parsing and code generating context */
5082   Expr *pExpr,      /* The BETWEEN expression */
5083   int dest,         /* Jump destination or storage location */
5084   void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5085   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
5086 ){
5087   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
5088   Expr compLeft;    /* The  x>=y  term */
5089   Expr compRight;   /* The  x<=z  term */
5090   int regFree1 = 0; /* Temporary use register */
5091   Expr *pDel = 0;
5092   sqlite3 *db = pParse->db;
5093 
5094   memset(&compLeft, 0, sizeof(Expr));
5095   memset(&compRight, 0, sizeof(Expr));
5096   memset(&exprAnd, 0, sizeof(Expr));
5097 
5098   assert( ExprUseXList(pExpr) );
5099   pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5100   if( db->mallocFailed==0 ){
5101     exprAnd.op = TK_AND;
5102     exprAnd.pLeft = &compLeft;
5103     exprAnd.pRight = &compRight;
5104     compLeft.op = TK_GE;
5105     compLeft.pLeft = pDel;
5106     compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5107     compRight.op = TK_LE;
5108     compRight.pLeft = pDel;
5109     compRight.pRight = pExpr->x.pList->a[1].pExpr;
5110     exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5111     if( xJump ){
5112       xJump(pParse, &exprAnd, dest, jumpIfNull);
5113     }else{
5114       /* Mark the expression is being from the ON or USING clause of a join
5115       ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5116       ** it into the Parse.pConstExpr list.  We should use a new bit for this,
5117       ** for clarity, but we are out of bits in the Expr.flags field so we
5118       ** have to reuse the EP_OuterON bit.  Bummer. */
5119       pDel->flags |= EP_OuterON;
5120       sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5121     }
5122     sqlite3ReleaseTempReg(pParse, regFree1);
5123   }
5124   sqlite3ExprDelete(db, pDel);
5125 
5126   /* Ensure adequate test coverage */
5127   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
5128   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
5129   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
5130   testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
5131   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5132   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5133   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5134   testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5135   testcase( xJump==0 );
5136 }
5137 
5138 /*
5139 ** Generate code for a boolean expression such that a jump is made
5140 ** to the label "dest" if the expression is true but execution
5141 ** continues straight thru if the expression is false.
5142 **
5143 ** If the expression evaluates to NULL (neither true nor false), then
5144 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5145 **
5146 ** This code depends on the fact that certain token values (ex: TK_EQ)
5147 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5148 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
5149 ** the make process cause these values to align.  Assert()s in the code
5150 ** below verify that the numbers are aligned correctly.
5151 */
5152 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5153   Vdbe *v = pParse->pVdbe;
5154   int op = 0;
5155   int regFree1 = 0;
5156   int regFree2 = 0;
5157   int r1, r2;
5158 
5159   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5160   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
5161   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
5162   assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5163   op = pExpr->op;
5164   switch( op ){
5165     case TK_AND:
5166     case TK_OR: {
5167       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5168       if( pAlt!=pExpr ){
5169         sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5170       }else if( op==TK_AND ){
5171         int d2 = sqlite3VdbeMakeLabel(pParse);
5172         testcase( jumpIfNull==0 );
5173         sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5174                            jumpIfNull^SQLITE_JUMPIFNULL);
5175         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5176         sqlite3VdbeResolveLabel(v, d2);
5177       }else{
5178         testcase( jumpIfNull==0 );
5179         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5180         sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5181       }
5182       break;
5183     }
5184     case TK_NOT: {
5185       testcase( jumpIfNull==0 );
5186       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5187       break;
5188     }
5189     case TK_TRUTH: {
5190       int isNot;      /* IS NOT TRUE or IS NOT FALSE */
5191       int isTrue;     /* IS TRUE or IS NOT TRUE */
5192       testcase( jumpIfNull==0 );
5193       isNot = pExpr->op2==TK_ISNOT;
5194       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5195       testcase( isTrue && isNot );
5196       testcase( !isTrue && isNot );
5197       if( isTrue ^ isNot ){
5198         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5199                           isNot ? SQLITE_JUMPIFNULL : 0);
5200       }else{
5201         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5202                            isNot ? SQLITE_JUMPIFNULL : 0);
5203       }
5204       break;
5205     }
5206     case TK_IS:
5207     case TK_ISNOT:
5208       testcase( op==TK_IS );
5209       testcase( op==TK_ISNOT );
5210       op = (op==TK_IS) ? TK_EQ : TK_NE;
5211       jumpIfNull = SQLITE_NULLEQ;
5212       /* no break */ deliberate_fall_through
5213     case TK_LT:
5214     case TK_LE:
5215     case TK_GT:
5216     case TK_GE:
5217     case TK_NE:
5218     case TK_EQ: {
5219       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5220       testcase( jumpIfNull==0 );
5221       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5222       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5223       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5224                   r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5225       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5226       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5227       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5228       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5229       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5230       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5231       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5232       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5233       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5234       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5235       testcase( regFree1==0 );
5236       testcase( regFree2==0 );
5237       break;
5238     }
5239     case TK_ISNULL:
5240     case TK_NOTNULL: {
5241       assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
5242       assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5243       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5244       sqlite3VdbeAddOp2(v, op, r1, dest);
5245       VdbeCoverageIf(v, op==TK_ISNULL);
5246       VdbeCoverageIf(v, op==TK_NOTNULL);
5247       testcase( regFree1==0 );
5248       break;
5249     }
5250     case TK_BETWEEN: {
5251       testcase( jumpIfNull==0 );
5252       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5253       break;
5254     }
5255 #ifndef SQLITE_OMIT_SUBQUERY
5256     case TK_IN: {
5257       int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5258       int destIfNull = jumpIfNull ? dest : destIfFalse;
5259       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5260       sqlite3VdbeGoto(v, dest);
5261       sqlite3VdbeResolveLabel(v, destIfFalse);
5262       break;
5263     }
5264 #endif
5265     default: {
5266     default_expr:
5267       if( ExprAlwaysTrue(pExpr) ){
5268         sqlite3VdbeGoto(v, dest);
5269       }else if( ExprAlwaysFalse(pExpr) ){
5270         /* No-op */
5271       }else{
5272         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5273         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5274         VdbeCoverage(v);
5275         testcase( regFree1==0 );
5276         testcase( jumpIfNull==0 );
5277       }
5278       break;
5279     }
5280   }
5281   sqlite3ReleaseTempReg(pParse, regFree1);
5282   sqlite3ReleaseTempReg(pParse, regFree2);
5283 }
5284 
5285 /*
5286 ** Generate code for a boolean expression such that a jump is made
5287 ** to the label "dest" if the expression is false but execution
5288 ** continues straight thru if the expression is true.
5289 **
5290 ** If the expression evaluates to NULL (neither true nor false) then
5291 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5292 ** is 0.
5293 */
5294 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5295   Vdbe *v = pParse->pVdbe;
5296   int op = 0;
5297   int regFree1 = 0;
5298   int regFree2 = 0;
5299   int r1, r2;
5300 
5301   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5302   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5303   if( pExpr==0 )    return;
5304   assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5305 
5306   /* The value of pExpr->op and op are related as follows:
5307   **
5308   **       pExpr->op            op
5309   **       ---------          ----------
5310   **       TK_ISNULL          OP_NotNull
5311   **       TK_NOTNULL         OP_IsNull
5312   **       TK_NE              OP_Eq
5313   **       TK_EQ              OP_Ne
5314   **       TK_GT              OP_Le
5315   **       TK_LE              OP_Gt
5316   **       TK_GE              OP_Lt
5317   **       TK_LT              OP_Ge
5318   **
5319   ** For other values of pExpr->op, op is undefined and unused.
5320   ** The value of TK_ and OP_ constants are arranged such that we
5321   ** can compute the mapping above using the following expression.
5322   ** Assert()s verify that the computation is correct.
5323   */
5324   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5325 
5326   /* Verify correct alignment of TK_ and OP_ constants
5327   */
5328   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5329   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5330   assert( pExpr->op!=TK_NE || op==OP_Eq );
5331   assert( pExpr->op!=TK_EQ || op==OP_Ne );
5332   assert( pExpr->op!=TK_LT || op==OP_Ge );
5333   assert( pExpr->op!=TK_LE || op==OP_Gt );
5334   assert( pExpr->op!=TK_GT || op==OP_Le );
5335   assert( pExpr->op!=TK_GE || op==OP_Lt );
5336 
5337   switch( pExpr->op ){
5338     case TK_AND:
5339     case TK_OR: {
5340       Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5341       if( pAlt!=pExpr ){
5342         sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5343       }else if( pExpr->op==TK_AND ){
5344         testcase( jumpIfNull==0 );
5345         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5346         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5347       }else{
5348         int d2 = sqlite3VdbeMakeLabel(pParse);
5349         testcase( jumpIfNull==0 );
5350         sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5351                           jumpIfNull^SQLITE_JUMPIFNULL);
5352         sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5353         sqlite3VdbeResolveLabel(v, d2);
5354       }
5355       break;
5356     }
5357     case TK_NOT: {
5358       testcase( jumpIfNull==0 );
5359       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5360       break;
5361     }
5362     case TK_TRUTH: {
5363       int isNot;   /* IS NOT TRUE or IS NOT FALSE */
5364       int isTrue;  /* IS TRUE or IS NOT TRUE */
5365       testcase( jumpIfNull==0 );
5366       isNot = pExpr->op2==TK_ISNOT;
5367       isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5368       testcase( isTrue && isNot );
5369       testcase( !isTrue && isNot );
5370       if( isTrue ^ isNot ){
5371         /* IS TRUE and IS NOT FALSE */
5372         sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5373                            isNot ? 0 : SQLITE_JUMPIFNULL);
5374 
5375       }else{
5376         /* IS FALSE and IS NOT TRUE */
5377         sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5378                           isNot ? 0 : SQLITE_JUMPIFNULL);
5379       }
5380       break;
5381     }
5382     case TK_IS:
5383     case TK_ISNOT:
5384       testcase( pExpr->op==TK_IS );
5385       testcase( pExpr->op==TK_ISNOT );
5386       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5387       jumpIfNull = SQLITE_NULLEQ;
5388       /* no break */ deliberate_fall_through
5389     case TK_LT:
5390     case TK_LE:
5391     case TK_GT:
5392     case TK_GE:
5393     case TK_NE:
5394     case TK_EQ: {
5395       if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5396       testcase( jumpIfNull==0 );
5397       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5398       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5399       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5400                   r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5401       assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5402       assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5403       assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5404       assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5405       assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5406       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5407       VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5408       assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5409       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5410       VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5411       testcase( regFree1==0 );
5412       testcase( regFree2==0 );
5413       break;
5414     }
5415     case TK_ISNULL:
5416     case TK_NOTNULL: {
5417       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5418       sqlite3VdbeAddOp2(v, op, r1, dest);
5419       testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
5420       testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
5421       testcase( regFree1==0 );
5422       break;
5423     }
5424     case TK_BETWEEN: {
5425       testcase( jumpIfNull==0 );
5426       exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5427       break;
5428     }
5429 #ifndef SQLITE_OMIT_SUBQUERY
5430     case TK_IN: {
5431       if( jumpIfNull ){
5432         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5433       }else{
5434         int destIfNull = sqlite3VdbeMakeLabel(pParse);
5435         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5436         sqlite3VdbeResolveLabel(v, destIfNull);
5437       }
5438       break;
5439     }
5440 #endif
5441     default: {
5442     default_expr:
5443       if( ExprAlwaysFalse(pExpr) ){
5444         sqlite3VdbeGoto(v, dest);
5445       }else if( ExprAlwaysTrue(pExpr) ){
5446         /* no-op */
5447       }else{
5448         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5449         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5450         VdbeCoverage(v);
5451         testcase( regFree1==0 );
5452         testcase( jumpIfNull==0 );
5453       }
5454       break;
5455     }
5456   }
5457   sqlite3ReleaseTempReg(pParse, regFree1);
5458   sqlite3ReleaseTempReg(pParse, regFree2);
5459 }
5460 
5461 /*
5462 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5463 ** code generation, and that copy is deleted after code generation. This
5464 ** ensures that the original pExpr is unchanged.
5465 */
5466 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5467   sqlite3 *db = pParse->db;
5468   Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5469   if( db->mallocFailed==0 ){
5470     sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5471   }
5472   sqlite3ExprDelete(db, pCopy);
5473 }
5474 
5475 /*
5476 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5477 ** type of expression.
5478 **
5479 ** If pExpr is a simple SQL value - an integer, real, string, blob
5480 ** or NULL value - then the VDBE currently being prepared is configured
5481 ** to re-prepare each time a new value is bound to variable pVar.
5482 **
5483 ** Additionally, if pExpr is a simple SQL value and the value is the
5484 ** same as that currently bound to variable pVar, non-zero is returned.
5485 ** Otherwise, if the values are not the same or if pExpr is not a simple
5486 ** SQL value, zero is returned.
5487 */
5488 static int exprCompareVariable(
5489   const Parse *pParse,
5490   const Expr *pVar,
5491   const Expr *pExpr
5492 ){
5493   int res = 0;
5494   int iVar;
5495   sqlite3_value *pL, *pR = 0;
5496 
5497   sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5498   if( pR ){
5499     iVar = pVar->iColumn;
5500     sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5501     pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5502     if( pL ){
5503       if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5504         sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5505       }
5506       res =  0==sqlite3MemCompare(pL, pR, 0);
5507     }
5508     sqlite3ValueFree(pR);
5509     sqlite3ValueFree(pL);
5510   }
5511 
5512   return res;
5513 }
5514 
5515 /*
5516 ** Do a deep comparison of two expression trees.  Return 0 if the two
5517 ** expressions are completely identical.  Return 1 if they differ only
5518 ** by a COLLATE operator at the top level.  Return 2 if there are differences
5519 ** other than the top-level COLLATE operator.
5520 **
5521 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5522 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5523 **
5524 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
5525 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5526 **
5527 ** Sometimes this routine will return 2 even if the two expressions
5528 ** really are equivalent.  If we cannot prove that the expressions are
5529 ** identical, we return 2 just to be safe.  So if this routine
5530 ** returns 2, then you do not really know for certain if the two
5531 ** expressions are the same.  But if you get a 0 or 1 return, then you
5532 ** can be sure the expressions are the same.  In the places where
5533 ** this routine is used, it does not hurt to get an extra 2 - that
5534 ** just might result in some slightly slower code.  But returning
5535 ** an incorrect 0 or 1 could lead to a malfunction.
5536 **
5537 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5538 ** pParse->pReprepare can be matched against literals in pB.  The
5539 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5540 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5541 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5542 ** pB causes a return value of 2.
5543 */
5544 int sqlite3ExprCompare(
5545   const Parse *pParse,
5546   const Expr *pA,
5547   const Expr *pB,
5548   int iTab
5549 ){
5550   u32 combinedFlags;
5551   if( pA==0 || pB==0 ){
5552     return pB==pA ? 0 : 2;
5553   }
5554   if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5555     return 0;
5556   }
5557   combinedFlags = pA->flags | pB->flags;
5558   if( combinedFlags & EP_IntValue ){
5559     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5560       return 0;
5561     }
5562     return 2;
5563   }
5564   if( pA->op!=pB->op || pA->op==TK_RAISE ){
5565     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5566       return 1;
5567     }
5568     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5569       return 1;
5570     }
5571     return 2;
5572   }
5573   assert( !ExprHasProperty(pA, EP_IntValue) );
5574   assert( !ExprHasProperty(pB, EP_IntValue) );
5575   if( pA->u.zToken ){
5576     if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5577       if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5578 #ifndef SQLITE_OMIT_WINDOWFUNC
5579       assert( pA->op==pB->op );
5580       if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5581         return 2;
5582       }
5583       if( ExprHasProperty(pA,EP_WinFunc) ){
5584         if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5585           return 2;
5586         }
5587       }
5588 #endif
5589     }else if( pA->op==TK_NULL ){
5590       return 0;
5591     }else if( pA->op==TK_COLLATE ){
5592       if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5593     }else
5594     if( pB->u.zToken!=0
5595      && pA->op!=TK_COLUMN
5596      && pA->op!=TK_AGG_COLUMN
5597      && strcmp(pA->u.zToken,pB->u.zToken)!=0
5598     ){
5599       return 2;
5600     }
5601   }
5602   if( (pA->flags & (EP_Distinct|EP_Commuted))
5603      != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5604   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5605     if( combinedFlags & EP_xIsSelect ) return 2;
5606     if( (combinedFlags & EP_FixedCol)==0
5607      && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5608     if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5609     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5610     if( pA->op!=TK_STRING
5611      && pA->op!=TK_TRUEFALSE
5612      && ALWAYS((combinedFlags & EP_Reduced)==0)
5613     ){
5614       if( pA->iColumn!=pB->iColumn ) return 2;
5615       if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5616       if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5617         return 2;
5618       }
5619     }
5620   }
5621   return 0;
5622 }
5623 
5624 /*
5625 ** Compare two ExprList objects.  Return 0 if they are identical, 1
5626 ** if they are certainly different, or 2 if it is not possible to
5627 ** determine if they are identical or not.
5628 **
5629 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5630 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5631 **
5632 ** This routine might return non-zero for equivalent ExprLists.  The
5633 ** only consequence will be disabled optimizations.  But this routine
5634 ** must never return 0 if the two ExprList objects are different, or
5635 ** a malfunction will result.
5636 **
5637 ** Two NULL pointers are considered to be the same.  But a NULL pointer
5638 ** always differs from a non-NULL pointer.
5639 */
5640 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5641   int i;
5642   if( pA==0 && pB==0 ) return 0;
5643   if( pA==0 || pB==0 ) return 1;
5644   if( pA->nExpr!=pB->nExpr ) return 1;
5645   for(i=0; i<pA->nExpr; i++){
5646     int res;
5647     Expr *pExprA = pA->a[i].pExpr;
5648     Expr *pExprB = pB->a[i].pExpr;
5649     if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
5650     if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5651   }
5652   return 0;
5653 }
5654 
5655 /*
5656 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5657 ** are ignored.
5658 */
5659 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5660   return sqlite3ExprCompare(0,
5661              sqlite3ExprSkipCollateAndLikely(pA),
5662              sqlite3ExprSkipCollateAndLikely(pB),
5663              iTab);
5664 }
5665 
5666 /*
5667 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5668 **
5669 ** Or if seenNot is true, return non-zero if Expr p can only be
5670 ** non-NULL if pNN is not NULL
5671 */
5672 static int exprImpliesNotNull(
5673   const Parse *pParse,/* Parsing context */
5674   const Expr *p,      /* The expression to be checked */
5675   const Expr *pNN,    /* The expression that is NOT NULL */
5676   int iTab,           /* Table being evaluated */
5677   int seenNot         /* Return true only if p can be any non-NULL value */
5678 ){
5679   assert( p );
5680   assert( pNN );
5681   if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5682     return pNN->op!=TK_NULL;
5683   }
5684   switch( p->op ){
5685     case TK_IN: {
5686       if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5687       assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5688       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5689     }
5690     case TK_BETWEEN: {
5691       ExprList *pList;
5692       assert( ExprUseXList(p) );
5693       pList = p->x.pList;
5694       assert( pList!=0 );
5695       assert( pList->nExpr==2 );
5696       if( seenNot ) return 0;
5697       if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5698        || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5699       ){
5700         return 1;
5701       }
5702       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5703     }
5704     case TK_EQ:
5705     case TK_NE:
5706     case TK_LT:
5707     case TK_LE:
5708     case TK_GT:
5709     case TK_GE:
5710     case TK_PLUS:
5711     case TK_MINUS:
5712     case TK_BITOR:
5713     case TK_LSHIFT:
5714     case TK_RSHIFT:
5715     case TK_CONCAT:
5716       seenNot = 1;
5717       /* no break */ deliberate_fall_through
5718     case TK_STAR:
5719     case TK_REM:
5720     case TK_BITAND:
5721     case TK_SLASH: {
5722       if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5723       /* no break */ deliberate_fall_through
5724     }
5725     case TK_SPAN:
5726     case TK_COLLATE:
5727     case TK_UPLUS:
5728     case TK_UMINUS: {
5729       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5730     }
5731     case TK_TRUTH: {
5732       if( seenNot ) return 0;
5733       if( p->op2!=TK_IS ) return 0;
5734       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5735     }
5736     case TK_BITNOT:
5737     case TK_NOT: {
5738       return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5739     }
5740   }
5741   return 0;
5742 }
5743 
5744 /*
5745 ** Return true if we can prove the pE2 will always be true if pE1 is
5746 ** true.  Return false if we cannot complete the proof or if pE2 might
5747 ** be false.  Examples:
5748 **
5749 **     pE1: x==5       pE2: x==5             Result: true
5750 **     pE1: x>0        pE2: x==5             Result: false
5751 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
5752 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
5753 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
5754 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
5755 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
5756 **
5757 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5758 ** Expr.iTable<0 then assume a table number given by iTab.
5759 **
5760 ** If pParse is not NULL, then the values of bound variables in pE1 are
5761 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5762 ** modified to record which bound variables are referenced.  If pParse
5763 ** is NULL, then false will be returned if pE1 contains any bound variables.
5764 **
5765 ** When in doubt, return false.  Returning true might give a performance
5766 ** improvement.  Returning false might cause a performance reduction, but
5767 ** it will always give the correct answer and is hence always safe.
5768 */
5769 int sqlite3ExprImpliesExpr(
5770   const Parse *pParse,
5771   const Expr *pE1,
5772   const Expr *pE2,
5773   int iTab
5774 ){
5775   if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5776     return 1;
5777   }
5778   if( pE2->op==TK_OR
5779    && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5780              || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5781   ){
5782     return 1;
5783   }
5784   if( pE2->op==TK_NOTNULL
5785    && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5786   ){
5787     return 1;
5788   }
5789   return 0;
5790 }
5791 
5792 /*
5793 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5794 ** If the expression node requires that the table at pWalker->iCur
5795 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5796 **
5797 ** This routine controls an optimization.  False positives (setting
5798 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5799 ** (never setting pWalker->eCode) is a harmless missed optimization.
5800 */
5801 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5802   testcase( pExpr->op==TK_AGG_COLUMN );
5803   testcase( pExpr->op==TK_AGG_FUNCTION );
5804   if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
5805   switch( pExpr->op ){
5806     case TK_ISNOT:
5807     case TK_ISNULL:
5808     case TK_NOTNULL:
5809     case TK_IS:
5810     case TK_OR:
5811     case TK_VECTOR:
5812     case TK_CASE:
5813     case TK_IN:
5814     case TK_FUNCTION:
5815     case TK_TRUTH:
5816       testcase( pExpr->op==TK_ISNOT );
5817       testcase( pExpr->op==TK_ISNULL );
5818       testcase( pExpr->op==TK_NOTNULL );
5819       testcase( pExpr->op==TK_IS );
5820       testcase( pExpr->op==TK_OR );
5821       testcase( pExpr->op==TK_VECTOR );
5822       testcase( pExpr->op==TK_CASE );
5823       testcase( pExpr->op==TK_IN );
5824       testcase( pExpr->op==TK_FUNCTION );
5825       testcase( pExpr->op==TK_TRUTH );
5826       return WRC_Prune;
5827     case TK_COLUMN:
5828       if( pWalker->u.iCur==pExpr->iTable ){
5829         pWalker->eCode = 1;
5830         return WRC_Abort;
5831       }
5832       return WRC_Prune;
5833 
5834     case TK_AND:
5835       if( pWalker->eCode==0 ){
5836         sqlite3WalkExpr(pWalker, pExpr->pLeft);
5837         if( pWalker->eCode ){
5838           pWalker->eCode = 0;
5839           sqlite3WalkExpr(pWalker, pExpr->pRight);
5840         }
5841       }
5842       return WRC_Prune;
5843 
5844     case TK_BETWEEN:
5845       if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5846         assert( pWalker->eCode );
5847         return WRC_Abort;
5848       }
5849       return WRC_Prune;
5850 
5851     /* Virtual tables are allowed to use constraints like x=NULL.  So
5852     ** a term of the form x=y does not prove that y is not null if x
5853     ** is the column of a virtual table */
5854     case TK_EQ:
5855     case TK_NE:
5856     case TK_LT:
5857     case TK_LE:
5858     case TK_GT:
5859     case TK_GE: {
5860       Expr *pLeft = pExpr->pLeft;
5861       Expr *pRight = pExpr->pRight;
5862       testcase( pExpr->op==TK_EQ );
5863       testcase( pExpr->op==TK_NE );
5864       testcase( pExpr->op==TK_LT );
5865       testcase( pExpr->op==TK_LE );
5866       testcase( pExpr->op==TK_GT );
5867       testcase( pExpr->op==TK_GE );
5868       /* The y.pTab=0 assignment in wherecode.c always happens after the
5869       ** impliesNotNullRow() test */
5870       assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5871       assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5872       if( (pLeft->op==TK_COLUMN
5873            && pLeft->y.pTab!=0
5874            && IsVirtual(pLeft->y.pTab))
5875        || (pRight->op==TK_COLUMN
5876            && pRight->y.pTab!=0
5877            && IsVirtual(pRight->y.pTab))
5878       ){
5879         return WRC_Prune;
5880       }
5881       /* no break */ deliberate_fall_through
5882     }
5883     default:
5884       return WRC_Continue;
5885   }
5886 }
5887 
5888 /*
5889 ** Return true (non-zero) if expression p can only be true if at least
5890 ** one column of table iTab is non-null.  In other words, return true
5891 ** if expression p will always be NULL or false if every column of iTab
5892 ** is NULL.
5893 **
5894 ** False negatives are acceptable.  In other words, it is ok to return
5895 ** zero even if expression p will never be true of every column of iTab
5896 ** is NULL.  A false negative is merely a missed optimization opportunity.
5897 **
5898 ** False positives are not allowed, however.  A false positive may result
5899 ** in an incorrect answer.
5900 **
5901 ** Terms of p that are marked with EP_OuterON (and hence that come from
5902 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
5903 **
5904 ** This routine is used to check if a LEFT JOIN can be converted into
5905 ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
5906 ** clause requires that some column of the right table of the LEFT JOIN
5907 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5908 ** ordinary join.
5909 */
5910 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5911   Walker w;
5912   p = sqlite3ExprSkipCollateAndLikely(p);
5913   if( p==0 ) return 0;
5914   if( p->op==TK_NOTNULL ){
5915     p = p->pLeft;
5916   }else{
5917     while( p->op==TK_AND ){
5918       if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5919       p = p->pRight;
5920     }
5921   }
5922   w.xExprCallback = impliesNotNullRow;
5923   w.xSelectCallback = 0;
5924   w.xSelectCallback2 = 0;
5925   w.eCode = 0;
5926   w.u.iCur = iTab;
5927   sqlite3WalkExpr(&w, p);
5928   return w.eCode;
5929 }
5930 
5931 /*
5932 ** An instance of the following structure is used by the tree walker
5933 ** to determine if an expression can be evaluated by reference to the
5934 ** index only, without having to do a search for the corresponding
5935 ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
5936 ** is the cursor for the table.
5937 */
5938 struct IdxCover {
5939   Index *pIdx;     /* The index to be tested for coverage */
5940   int iCur;        /* Cursor number for the table corresponding to the index */
5941 };
5942 
5943 /*
5944 ** Check to see if there are references to columns in table
5945 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5946 ** pWalker->u.pIdxCover->pIdx.
5947 */
5948 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5949   if( pExpr->op==TK_COLUMN
5950    && pExpr->iTable==pWalker->u.pIdxCover->iCur
5951    && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5952   ){
5953     pWalker->eCode = 1;
5954     return WRC_Abort;
5955   }
5956   return WRC_Continue;
5957 }
5958 
5959 /*
5960 ** Determine if an index pIdx on table with cursor iCur contains will
5961 ** the expression pExpr.  Return true if the index does cover the
5962 ** expression and false if the pExpr expression references table columns
5963 ** that are not found in the index pIdx.
5964 **
5965 ** An index covering an expression means that the expression can be
5966 ** evaluated using only the index and without having to lookup the
5967 ** corresponding table entry.
5968 */
5969 int sqlite3ExprCoveredByIndex(
5970   Expr *pExpr,        /* The index to be tested */
5971   int iCur,           /* The cursor number for the corresponding table */
5972   Index *pIdx         /* The index that might be used for coverage */
5973 ){
5974   Walker w;
5975   struct IdxCover xcov;
5976   memset(&w, 0, sizeof(w));
5977   xcov.iCur = iCur;
5978   xcov.pIdx = pIdx;
5979   w.xExprCallback = exprIdxCover;
5980   w.u.pIdxCover = &xcov;
5981   sqlite3WalkExpr(&w, pExpr);
5982   return !w.eCode;
5983 }
5984 
5985 
5986 /* Structure used to pass information throught the Walker in order to
5987 ** implement sqlite3ReferencesSrcList().
5988 */
5989 struct RefSrcList {
5990   sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
5991   SrcList *pRef;       /* Looking for references to these tables */
5992   i64 nExclude;        /* Number of tables to exclude from the search */
5993   int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
5994 };
5995 
5996 /*
5997 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5998 **
5999 ** When entering a new subquery on the pExpr argument, add all FROM clause
6000 ** entries for that subquery to the exclude list.
6001 **
6002 ** When leaving the subquery, remove those entries from the exclude list.
6003 */
6004 static int selectRefEnter(Walker *pWalker, Select *pSelect){
6005   struct RefSrcList *p = pWalker->u.pRefSrcList;
6006   SrcList *pSrc = pSelect->pSrc;
6007   i64 i, j;
6008   int *piNew;
6009   if( pSrc->nSrc==0 ) return WRC_Continue;
6010   j = p->nExclude;
6011   p->nExclude += pSrc->nSrc;
6012   piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
6013   if( piNew==0 ){
6014     p->nExclude = 0;
6015     return WRC_Abort;
6016   }else{
6017     p->aiExclude = piNew;
6018   }
6019   for(i=0; i<pSrc->nSrc; i++, j++){
6020      p->aiExclude[j] = pSrc->a[i].iCursor;
6021   }
6022   return WRC_Continue;
6023 }
6024 static void selectRefLeave(Walker *pWalker, Select *pSelect){
6025   struct RefSrcList *p = pWalker->u.pRefSrcList;
6026   SrcList *pSrc = pSelect->pSrc;
6027   if( p->nExclude ){
6028     assert( p->nExclude>=pSrc->nSrc );
6029     p->nExclude -= pSrc->nSrc;
6030   }
6031 }
6032 
6033 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6034 **
6035 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6036 ** of the tables shown in RefSrcList.pRef.
6037 **
6038 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6039 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6040 */
6041 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6042   if( pExpr->op==TK_COLUMN
6043    || pExpr->op==TK_AGG_COLUMN
6044   ){
6045     int i;
6046     struct RefSrcList *p = pWalker->u.pRefSrcList;
6047     SrcList *pSrc = p->pRef;
6048     int nSrc = pSrc ? pSrc->nSrc : 0;
6049     for(i=0; i<nSrc; i++){
6050       if( pExpr->iTable==pSrc->a[i].iCursor ){
6051         pWalker->eCode |= 1;
6052         return WRC_Continue;
6053       }
6054     }
6055     for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6056     if( i>=p->nExclude ){
6057       pWalker->eCode |= 2;
6058     }
6059   }
6060   return WRC_Continue;
6061 }
6062 
6063 /*
6064 ** Check to see if pExpr references any tables in pSrcList.
6065 ** Possible return values:
6066 **
6067 **    1         pExpr does references a table in pSrcList.
6068 **
6069 **    0         pExpr references some table that is not defined in either
6070 **              pSrcList or in subqueries of pExpr itself.
6071 **
6072 **   -1         pExpr only references no tables at all, or it only
6073 **              references tables defined in subqueries of pExpr itself.
6074 **
6075 ** As currently used, pExpr is always an aggregate function call.  That
6076 ** fact is exploited for efficiency.
6077 */
6078 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6079   Walker w;
6080   struct RefSrcList x;
6081   assert( pParse->db!=0 );
6082   memset(&w, 0, sizeof(w));
6083   memset(&x, 0, sizeof(x));
6084   w.xExprCallback = exprRefToSrcList;
6085   w.xSelectCallback = selectRefEnter;
6086   w.xSelectCallback2 = selectRefLeave;
6087   w.u.pRefSrcList = &x;
6088   x.db = pParse->db;
6089   x.pRef = pSrcList;
6090   assert( pExpr->op==TK_AGG_FUNCTION );
6091   assert( ExprUseXList(pExpr) );
6092   sqlite3WalkExprList(&w, pExpr->x.pList);
6093 #ifndef SQLITE_OMIT_WINDOWFUNC
6094   if( ExprHasProperty(pExpr, EP_WinFunc) ){
6095     sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6096   }
6097 #endif
6098   if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
6099   if( w.eCode & 0x01 ){
6100     return 1;
6101   }else if( w.eCode ){
6102     return 0;
6103   }else{
6104     return -1;
6105   }
6106 }
6107 
6108 /*
6109 ** This is a Walker expression node callback.
6110 **
6111 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6112 ** object that is referenced does not refer directly to the Expr.  If
6113 ** it does, make a copy.  This is done because the pExpr argument is
6114 ** subject to change.
6115 **
6116 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6117 ** This will cause the expression to be deleted automatically when the
6118 ** Parse object is destroyed, but the zero register number means that it
6119 ** will not generate any code in the preamble.
6120 */
6121 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6122   if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6123    && pExpr->pAggInfo!=0
6124   ){
6125     AggInfo *pAggInfo = pExpr->pAggInfo;
6126     int iAgg = pExpr->iAgg;
6127     Parse *pParse = pWalker->pParse;
6128     sqlite3 *db = pParse->db;
6129     if( pExpr->op!=TK_AGG_FUNCTION ){
6130       assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW );
6131       assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6132       if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6133         pExpr = sqlite3ExprDup(db, pExpr, 0);
6134         if( pExpr ){
6135           pAggInfo->aCol[iAgg].pCExpr = pExpr;
6136           sqlite3ExprDeferredDelete(pParse, pExpr);
6137         }
6138       }
6139     }else{
6140       assert( pExpr->op==TK_AGG_FUNCTION );
6141       assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6142       if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6143         pExpr = sqlite3ExprDup(db, pExpr, 0);
6144         if( pExpr ){
6145           pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6146           sqlite3ExprDeferredDelete(pParse, pExpr);
6147         }
6148       }
6149     }
6150   }
6151   return WRC_Continue;
6152 }
6153 
6154 /*
6155 ** Initialize a Walker object so that will persist AggInfo entries referenced
6156 ** by the tree that is walked.
6157 */
6158 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6159   memset(pWalker, 0, sizeof(*pWalker));
6160   pWalker->pParse = pParse;
6161   pWalker->xExprCallback = agginfoPersistExprCb;
6162   pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6163 }
6164 
6165 /*
6166 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
6167 ** the new element.  Return a negative number if malloc fails.
6168 */
6169 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6170   int i;
6171   pInfo->aCol = sqlite3ArrayAllocate(
6172        db,
6173        pInfo->aCol,
6174        sizeof(pInfo->aCol[0]),
6175        &pInfo->nColumn,
6176        &i
6177   );
6178   return i;
6179 }
6180 
6181 /*
6182 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
6183 ** the new element.  Return a negative number if malloc fails.
6184 */
6185 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6186   int i;
6187   pInfo->aFunc = sqlite3ArrayAllocate(
6188        db,
6189        pInfo->aFunc,
6190        sizeof(pInfo->aFunc[0]),
6191        &pInfo->nFunc,
6192        &i
6193   );
6194   return i;
6195 }
6196 
6197 /*
6198 ** This is the xExprCallback for a tree walker.  It is used to
6199 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
6200 ** for additional information.
6201 */
6202 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6203   int i;
6204   NameContext *pNC = pWalker->u.pNC;
6205   Parse *pParse = pNC->pParse;
6206   SrcList *pSrcList = pNC->pSrcList;
6207   AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6208 
6209   assert( pNC->ncFlags & NC_UAggInfo );
6210   switch( pExpr->op ){
6211     case TK_IF_NULL_ROW:
6212     case TK_AGG_COLUMN:
6213     case TK_COLUMN: {
6214       testcase( pExpr->op==TK_AGG_COLUMN );
6215       testcase( pExpr->op==TK_COLUMN );
6216       testcase( pExpr->op==TK_IF_NULL_ROW );
6217       /* Check to see if the column is in one of the tables in the FROM
6218       ** clause of the aggregate query */
6219       if( ALWAYS(pSrcList!=0) ){
6220         SrcItem *pItem = pSrcList->a;
6221         for(i=0; i<pSrcList->nSrc; i++, pItem++){
6222           struct AggInfo_col *pCol;
6223           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6224           if( pExpr->iTable==pItem->iCursor ){
6225             /* If we reach this point, it means that pExpr refers to a table
6226             ** that is in the FROM clause of the aggregate query.
6227             **
6228             ** Make an entry for the column in pAggInfo->aCol[] if there
6229             ** is not an entry there already.
6230             */
6231             int k;
6232             pCol = pAggInfo->aCol;
6233             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6234               if( pCol->iTable==pExpr->iTable
6235                && pCol->iColumn==pExpr->iColumn
6236                && pExpr->op!=TK_IF_NULL_ROW
6237               ){
6238                 break;
6239               }
6240             }
6241             if( (k>=pAggInfo->nColumn)
6242              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6243             ){
6244               pCol = &pAggInfo->aCol[k];
6245               assert( ExprUseYTab(pExpr) );
6246               pCol->pTab = pExpr->y.pTab;
6247               pCol->iTable = pExpr->iTable;
6248               pCol->iColumn = pExpr->iColumn;
6249               pCol->iMem = ++pParse->nMem;
6250               pCol->iSorterColumn = -1;
6251               pCol->pCExpr = pExpr;
6252               if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
6253                 int j, n;
6254                 ExprList *pGB = pAggInfo->pGroupBy;
6255                 struct ExprList_item *pTerm = pGB->a;
6256                 n = pGB->nExpr;
6257                 for(j=0; j<n; j++, pTerm++){
6258                   Expr *pE = pTerm->pExpr;
6259                   if( pE->op==TK_COLUMN
6260                    && pE->iTable==pExpr->iTable
6261                    && pE->iColumn==pExpr->iColumn
6262                   ){
6263                     pCol->iSorterColumn = j;
6264                     break;
6265                   }
6266                 }
6267               }
6268               if( pCol->iSorterColumn<0 ){
6269                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6270               }
6271             }
6272             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6273             ** because it was there before or because we just created it).
6274             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6275             ** pAggInfo->aCol[] entry.
6276             */
6277             ExprSetVVAProperty(pExpr, EP_NoReduce);
6278             pExpr->pAggInfo = pAggInfo;
6279             if( pExpr->op==TK_COLUMN ){
6280               pExpr->op = TK_AGG_COLUMN;
6281             }
6282             pExpr->iAgg = (i16)k;
6283             break;
6284           } /* endif pExpr->iTable==pItem->iCursor */
6285         } /* end loop over pSrcList */
6286       }
6287       return WRC_Prune;
6288     }
6289     case TK_AGG_FUNCTION: {
6290       if( (pNC->ncFlags & NC_InAggFunc)==0
6291        && pWalker->walkerDepth==pExpr->op2
6292       ){
6293         /* Check to see if pExpr is a duplicate of another aggregate
6294         ** function that is already in the pAggInfo structure
6295         */
6296         struct AggInfo_func *pItem = pAggInfo->aFunc;
6297         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6298           if( pItem->pFExpr==pExpr ) break;
6299           if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6300             break;
6301           }
6302         }
6303         if( i>=pAggInfo->nFunc ){
6304           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
6305           */
6306           u8 enc = ENC(pParse->db);
6307           i = addAggInfoFunc(pParse->db, pAggInfo);
6308           if( i>=0 ){
6309             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6310             pItem = &pAggInfo->aFunc[i];
6311             pItem->pFExpr = pExpr;
6312             pItem->iMem = ++pParse->nMem;
6313             assert( ExprUseUToken(pExpr) );
6314             pItem->pFunc = sqlite3FindFunction(pParse->db,
6315                    pExpr->u.zToken,
6316                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6317             if( pExpr->flags & EP_Distinct ){
6318               pItem->iDistinct = pParse->nTab++;
6319             }else{
6320               pItem->iDistinct = -1;
6321             }
6322           }
6323         }
6324         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6325         */
6326         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6327         ExprSetVVAProperty(pExpr, EP_NoReduce);
6328         pExpr->iAgg = (i16)i;
6329         pExpr->pAggInfo = pAggInfo;
6330         return WRC_Prune;
6331       }else{
6332         return WRC_Continue;
6333       }
6334     }
6335   }
6336   return WRC_Continue;
6337 }
6338 
6339 /*
6340 ** Analyze the pExpr expression looking for aggregate functions and
6341 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6342 ** points to.  Additional entries are made on the AggInfo object as
6343 ** necessary.
6344 **
6345 ** This routine should only be called after the expression has been
6346 ** analyzed by sqlite3ResolveExprNames().
6347 */
6348 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6349   Walker w;
6350   w.xExprCallback = analyzeAggregate;
6351   w.xSelectCallback = sqlite3WalkerDepthIncrease;
6352   w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6353   w.walkerDepth = 0;
6354   w.u.pNC = pNC;
6355   w.pParse = 0;
6356   assert( pNC->pSrcList!=0 );
6357   sqlite3WalkExpr(&w, pExpr);
6358 }
6359 
6360 /*
6361 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6362 ** expression list.  Return the number of errors.
6363 **
6364 ** If an error is found, the analysis is cut short.
6365 */
6366 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6367   struct ExprList_item *pItem;
6368   int i;
6369   if( pList ){
6370     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6371       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6372     }
6373   }
6374 }
6375 
6376 /*
6377 ** Allocate a single new register for use to hold some intermediate result.
6378 */
6379 int sqlite3GetTempReg(Parse *pParse){
6380   if( pParse->nTempReg==0 ){
6381     return ++pParse->nMem;
6382   }
6383   return pParse->aTempReg[--pParse->nTempReg];
6384 }
6385 
6386 /*
6387 ** Deallocate a register, making available for reuse for some other
6388 ** purpose.
6389 */
6390 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6391   if( iReg ){
6392     sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6393     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6394       pParse->aTempReg[pParse->nTempReg++] = iReg;
6395     }
6396   }
6397 }
6398 
6399 /*
6400 ** Allocate or deallocate a block of nReg consecutive registers.
6401 */
6402 int sqlite3GetTempRange(Parse *pParse, int nReg){
6403   int i, n;
6404   if( nReg==1 ) return sqlite3GetTempReg(pParse);
6405   i = pParse->iRangeReg;
6406   n = pParse->nRangeReg;
6407   if( nReg<=n ){
6408     pParse->iRangeReg += nReg;
6409     pParse->nRangeReg -= nReg;
6410   }else{
6411     i = pParse->nMem+1;
6412     pParse->nMem += nReg;
6413   }
6414   return i;
6415 }
6416 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6417   if( nReg==1 ){
6418     sqlite3ReleaseTempReg(pParse, iReg);
6419     return;
6420   }
6421   sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6422   if( nReg>pParse->nRangeReg ){
6423     pParse->nRangeReg = nReg;
6424     pParse->iRangeReg = iReg;
6425   }
6426 }
6427 
6428 /*
6429 ** Mark all temporary registers as being unavailable for reuse.
6430 **
6431 ** Always invoke this procedure after coding a subroutine or co-routine
6432 ** that might be invoked from other parts of the code, to ensure that
6433 ** the sub/co-routine does not use registers in common with the code that
6434 ** invokes the sub/co-routine.
6435 */
6436 void sqlite3ClearTempRegCache(Parse *pParse){
6437   pParse->nTempReg = 0;
6438   pParse->nRangeReg = 0;
6439 }
6440 
6441 /*
6442 ** Validate that no temporary register falls within the range of
6443 ** iFirst..iLast, inclusive.  This routine is only call from within assert()
6444 ** statements.
6445 */
6446 #ifdef SQLITE_DEBUG
6447 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6448   int i;
6449   if( pParse->nRangeReg>0
6450    && pParse->iRangeReg+pParse->nRangeReg > iFirst
6451    && pParse->iRangeReg <= iLast
6452   ){
6453      return 0;
6454   }
6455   for(i=0; i<pParse->nTempReg; i++){
6456     if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6457       return 0;
6458     }
6459   }
6460   return 1;
6461 }
6462 #endif /* SQLITE_DEBUG */
6463