xref: /sqlite-3.40.0/src/expr.c (revision a408adc5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 **
15 ** $Id: expr.c,v 1.294 2007/05/15 07:00:34 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 #include <ctype.h>
19 
20 /*
21 ** Return the 'affinity' of the expression pExpr if any.
22 **
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
27 **
28 ** i.e. the WHERE clause expresssions in the following statements all
29 ** have an affinity:
30 **
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
35 */
36 char sqlite3ExprAffinity(Expr *pExpr){
37   int op = pExpr->op;
38   if( op==TK_SELECT ){
39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     return sqlite3AffinityType(&pExpr->token);
44   }
45 #endif
46   return pExpr->affinity;
47 }
48 
49 /*
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken.   Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag.  An explicit collating sequence will override implicit
54 ** collating sequences.
55 */
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57   CollSeq *pColl;
58   if( pExpr==0 ) return 0;
59   pColl = sqlite3LocateCollSeq(pParse, (char*)pName->z, pName->n);
60   if( pColl ){
61     pExpr->pColl = pColl;
62     pExpr->flags |= EP_ExpCollate;
63   }
64   return pExpr;
65 }
66 
67 /*
68 ** Return the default collation sequence for the expression pExpr. If
69 ** there is no default collation type, return 0.
70 */
71 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
72   CollSeq *pColl = 0;
73   if( pExpr ){
74     pColl = pExpr->pColl;
75     if( pExpr->op==TK_CAST && !pColl ){
76       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
77     }
78   }
79   if( sqlite3CheckCollSeq(pParse, pColl) ){
80     pColl = 0;
81   }
82   return pColl;
83 }
84 
85 /*
86 ** pExpr is an operand of a comparison operator.  aff2 is the
87 ** type affinity of the other operand.  This routine returns the
88 ** type affinity that should be used for the comparison operator.
89 */
90 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
91   char aff1 = sqlite3ExprAffinity(pExpr);
92   if( aff1 && aff2 ){
93     /* Both sides of the comparison are columns. If one has numeric
94     ** affinity, use that. Otherwise use no affinity.
95     */
96     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
97       return SQLITE_AFF_NUMERIC;
98     }else{
99       return SQLITE_AFF_NONE;
100     }
101   }else if( !aff1 && !aff2 ){
102     /* Neither side of the comparison is a column.  Compare the
103     ** results directly.
104     */
105     return SQLITE_AFF_NONE;
106   }else{
107     /* One side is a column, the other is not. Use the columns affinity. */
108     assert( aff1==0 || aff2==0 );
109     return (aff1 + aff2);
110   }
111 }
112 
113 /*
114 ** pExpr is a comparison operator.  Return the type affinity that should
115 ** be applied to both operands prior to doing the comparison.
116 */
117 static char comparisonAffinity(Expr *pExpr){
118   char aff;
119   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
120           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
121           pExpr->op==TK_NE );
122   assert( pExpr->pLeft );
123   aff = sqlite3ExprAffinity(pExpr->pLeft);
124   if( pExpr->pRight ){
125     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
126   }
127   else if( pExpr->pSelect ){
128     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
129   }
130   else if( !aff ){
131     aff = SQLITE_AFF_NONE;
132   }
133   return aff;
134 }
135 
136 /*
137 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
138 ** idx_affinity is the affinity of an indexed column. Return true
139 ** if the index with affinity idx_affinity may be used to implement
140 ** the comparison in pExpr.
141 */
142 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
143   char aff = comparisonAffinity(pExpr);
144   switch( aff ){
145     case SQLITE_AFF_NONE:
146       return 1;
147     case SQLITE_AFF_TEXT:
148       return idx_affinity==SQLITE_AFF_TEXT;
149     default:
150       return sqlite3IsNumericAffinity(idx_affinity);
151   }
152 }
153 
154 /*
155 ** Return the P1 value that should be used for a binary comparison
156 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
157 ** If jumpIfNull is true, then set the low byte of the returned
158 ** P1 value to tell the opcode to jump if either expression
159 ** evaluates to NULL.
160 */
161 static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
162   char aff = sqlite3ExprAffinity(pExpr2);
163   return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
164 }
165 
166 /*
167 ** Return a pointer to the collation sequence that should be used by
168 ** a binary comparison operator comparing pLeft and pRight.
169 **
170 ** If the left hand expression has a collating sequence type, then it is
171 ** used. Otherwise the collation sequence for the right hand expression
172 ** is used, or the default (BINARY) if neither expression has a collating
173 ** type.
174 */
175 static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){
176   CollSeq *pColl;
177   assert( pLeft );
178   assert( pRight );
179   if( pLeft->flags & EP_ExpCollate ){
180     assert( pLeft->pColl );
181     pColl = pLeft->pColl;
182   }else if( pRight->flags & EP_ExpCollate ){
183     assert( pRight->pColl );
184     pColl = pRight->pColl;
185   }else{
186     pColl = sqlite3ExprCollSeq(pParse, pLeft);
187     if( !pColl ){
188       pColl = sqlite3ExprCollSeq(pParse, pRight);
189     }
190   }
191   return pColl;
192 }
193 
194 /*
195 ** Generate code for a comparison operator.
196 */
197 static int codeCompare(
198   Parse *pParse,    /* The parsing (and code generating) context */
199   Expr *pLeft,      /* The left operand */
200   Expr *pRight,     /* The right operand */
201   int opcode,       /* The comparison opcode */
202   int dest,         /* Jump here if true.  */
203   int jumpIfNull    /* If true, jump if either operand is NULL */
204 ){
205   int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
206   CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight);
207   return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
208 }
209 
210 /*
211 ** Construct a new expression node and return a pointer to it.  Memory
212 ** for this node is obtained from sqliteMalloc().  The calling function
213 ** is responsible for making sure the node eventually gets freed.
214 */
215 Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
216   Expr *pNew;
217   pNew = sqliteMalloc( sizeof(Expr) );
218   if( pNew==0 ){
219     /* When malloc fails, delete pLeft and pRight. Expressions passed to
220     ** this function must always be allocated with sqlite3Expr() for this
221     ** reason.
222     */
223     sqlite3ExprDelete(pLeft);
224     sqlite3ExprDelete(pRight);
225     return 0;
226   }
227   pNew->op = op;
228   pNew->pLeft = pLeft;
229   pNew->pRight = pRight;
230   pNew->iAgg = -1;
231   if( pToken ){
232     assert( pToken->dyn==0 );
233     pNew->span = pNew->token = *pToken;
234   }else if( pLeft ){
235     if( pRight ){
236       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
237       if( pRight->flags & EP_ExpCollate ){
238         pNew->flags |= EP_ExpCollate;
239         pNew->pColl = pRight->pColl;
240       }
241     }
242     if( pLeft->flags & EP_ExpCollate ){
243       pNew->flags |= EP_ExpCollate;
244       pNew->pColl = pLeft->pColl;
245     }
246   }
247 
248   sqlite3ExprSetHeight(pNew);
249   return pNew;
250 }
251 
252 /*
253 ** Works like sqlite3Expr() but frees its pLeft and pRight arguments
254 ** if it fails due to a malloc problem.
255 */
256 Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
257   Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
258   if( pNew==0 ){
259     sqlite3ExprDelete(pLeft);
260     sqlite3ExprDelete(pRight);
261   }
262   return pNew;
263 }
264 
265 /*
266 ** When doing a nested parse, you can include terms in an expression
267 ** that look like this:   #0 #1 #2 ...  These terms refer to elements
268 ** on the stack.  "#0" means the top of the stack.
269 ** "#1" means the next down on the stack.  And so forth.
270 **
271 ** This routine is called by the parser to deal with on of those terms.
272 ** It immediately generates code to store the value in a memory location.
273 ** The returns an expression that will code to extract the value from
274 ** that memory location as needed.
275 */
276 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
277   Vdbe *v = pParse->pVdbe;
278   Expr *p;
279   int depth;
280   if( pParse->nested==0 ){
281     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
282     return sqlite3Expr(TK_NULL, 0, 0, 0);
283   }
284   if( v==0 ) return 0;
285   p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
286   if( p==0 ){
287     return 0;  /* Malloc failed */
288   }
289   depth = atoi((char*)&pToken->z[1]);
290   p->iTable = pParse->nMem++;
291   sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
292   sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
293   return p;
294 }
295 
296 /*
297 ** Join two expressions using an AND operator.  If either expression is
298 ** NULL, then just return the other expression.
299 */
300 Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
301   if( pLeft==0 ){
302     return pRight;
303   }else if( pRight==0 ){
304     return pLeft;
305   }else{
306     return sqlite3Expr(TK_AND, pLeft, pRight, 0);
307   }
308 }
309 
310 /*
311 ** Set the Expr.span field of the given expression to span all
312 ** text between the two given tokens.
313 */
314 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
315   assert( pRight!=0 );
316   assert( pLeft!=0 );
317   if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
318     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
319     if( pLeft->dyn==0 && pRight->dyn==0 ){
320       pExpr->span.z = pLeft->z;
321       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
322     }else{
323       pExpr->span.z = 0;
324     }
325   }
326 }
327 
328 /*
329 ** Construct a new expression node for a function with multiple
330 ** arguments.
331 */
332 Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
333   Expr *pNew;
334   assert( pToken );
335   pNew = sqliteMalloc( sizeof(Expr) );
336   if( pNew==0 ){
337     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
338     return 0;
339   }
340   pNew->op = TK_FUNCTION;
341   pNew->pList = pList;
342   assert( pToken->dyn==0 );
343   pNew->token = *pToken;
344   pNew->span = pNew->token;
345 
346   sqlite3ExprSetHeight(pNew);
347   return pNew;
348 }
349 
350 /*
351 ** Assign a variable number to an expression that encodes a wildcard
352 ** in the original SQL statement.
353 **
354 ** Wildcards consisting of a single "?" are assigned the next sequential
355 ** variable number.
356 **
357 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
358 ** sure "nnn" is not too be to avoid a denial of service attack when
359 ** the SQL statement comes from an external source.
360 **
361 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
362 ** as the previous instance of the same wildcard.  Or if this is the first
363 ** instance of the wildcard, the next sequenial variable number is
364 ** assigned.
365 */
366 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
367   Token *pToken;
368   if( pExpr==0 ) return;
369   pToken = &pExpr->token;
370   assert( pToken->n>=1 );
371   assert( pToken->z!=0 );
372   assert( pToken->z[0]!=0 );
373   if( pToken->n==1 ){
374     /* Wildcard of the form "?".  Assign the next variable number */
375     pExpr->iTable = ++pParse->nVar;
376   }else if( pToken->z[0]=='?' ){
377     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
378     ** use it as the variable number */
379     int i;
380     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
381     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
382       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
383           SQLITE_MAX_VARIABLE_NUMBER);
384     }
385     if( i>pParse->nVar ){
386       pParse->nVar = i;
387     }
388   }else{
389     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
390     ** number as the prior appearance of the same name, or if the name
391     ** has never appeared before, reuse the same variable number
392     */
393     int i, n;
394     n = pToken->n;
395     for(i=0; i<pParse->nVarExpr; i++){
396       Expr *pE;
397       if( (pE = pParse->apVarExpr[i])!=0
398           && pE->token.n==n
399           && memcmp(pE->token.z, pToken->z, n)==0 ){
400         pExpr->iTable = pE->iTable;
401         break;
402       }
403     }
404     if( i>=pParse->nVarExpr ){
405       pExpr->iTable = ++pParse->nVar;
406       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
407         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
408         pParse->apVarExpr = sqliteReallocOrFree(pParse->apVarExpr,
409                        pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
410       }
411       if( !sqlite3MallocFailed() ){
412         assert( pParse->apVarExpr!=0 );
413         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
414       }
415     }
416   }
417   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
418     sqlite3ErrorMsg(pParse, "too many SQL variables");
419   }
420 }
421 
422 /*
423 ** Recursively delete an expression tree.
424 */
425 void sqlite3ExprDelete(Expr *p){
426   if( p==0 ) return;
427   if( p->span.dyn ) sqliteFree((char*)p->span.z);
428   if( p->token.dyn ) sqliteFree((char*)p->token.z);
429   sqlite3ExprDelete(p->pLeft);
430   sqlite3ExprDelete(p->pRight);
431   sqlite3ExprListDelete(p->pList);
432   sqlite3SelectDelete(p->pSelect);
433   sqliteFree(p);
434 }
435 
436 /*
437 ** The Expr.token field might be a string literal that is quoted.
438 ** If so, remove the quotation marks.
439 */
440 void sqlite3DequoteExpr(Expr *p){
441   if( ExprHasAnyProperty(p, EP_Dequoted) ){
442     return;
443   }
444   ExprSetProperty(p, EP_Dequoted);
445   if( p->token.dyn==0 ){
446     sqlite3TokenCopy(&p->token, &p->token);
447   }
448   sqlite3Dequote((char*)p->token.z);
449 }
450 
451 
452 /*
453 ** The following group of routines make deep copies of expressions,
454 ** expression lists, ID lists, and select statements.  The copies can
455 ** be deleted (by being passed to their respective ...Delete() routines)
456 ** without effecting the originals.
457 **
458 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
459 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
460 ** by subsequent calls to sqlite*ListAppend() routines.
461 **
462 ** Any tables that the SrcList might point to are not duplicated.
463 */
464 Expr *sqlite3ExprDup(Expr *p){
465   Expr *pNew;
466   if( p==0 ) return 0;
467   pNew = sqliteMallocRaw( sizeof(*p) );
468   if( pNew==0 ) return 0;
469   memcpy(pNew, p, sizeof(*pNew));
470   if( p->token.z!=0 ){
471     pNew->token.z = (u8*)sqliteStrNDup((char*)p->token.z, p->token.n);
472     pNew->token.dyn = 1;
473   }else{
474     assert( pNew->token.z==0 );
475   }
476   pNew->span.z = 0;
477   pNew->pLeft = sqlite3ExprDup(p->pLeft);
478   pNew->pRight = sqlite3ExprDup(p->pRight);
479   pNew->pList = sqlite3ExprListDup(p->pList);
480   pNew->pSelect = sqlite3SelectDup(p->pSelect);
481   return pNew;
482 }
483 void sqlite3TokenCopy(Token *pTo, Token *pFrom){
484   if( pTo->dyn ) sqliteFree((char*)pTo->z);
485   if( pFrom->z ){
486     pTo->n = pFrom->n;
487     pTo->z = (u8*)sqliteStrNDup((char*)pFrom->z, pFrom->n);
488     pTo->dyn = 1;
489   }else{
490     pTo->z = 0;
491   }
492 }
493 ExprList *sqlite3ExprListDup(ExprList *p){
494   ExprList *pNew;
495   struct ExprList_item *pItem, *pOldItem;
496   int i;
497   if( p==0 ) return 0;
498   pNew = sqliteMalloc( sizeof(*pNew) );
499   if( pNew==0 ) return 0;
500   pNew->nExpr = pNew->nAlloc = p->nExpr;
501   pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
502   if( pItem==0 ){
503     sqliteFree(pNew);
504     return 0;
505   }
506   pOldItem = p->a;
507   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
508     Expr *pNewExpr, *pOldExpr;
509     pItem->pExpr = pNewExpr = sqlite3ExprDup(pOldExpr = pOldItem->pExpr);
510     if( pOldExpr->span.z!=0 && pNewExpr ){
511       /* Always make a copy of the span for top-level expressions in the
512       ** expression list.  The logic in SELECT processing that determines
513       ** the names of columns in the result set needs this information */
514       sqlite3TokenCopy(&pNewExpr->span, &pOldExpr->span);
515     }
516     assert( pNewExpr==0 || pNewExpr->span.z!=0
517             || pOldExpr->span.z==0
518             || sqlite3MallocFailed() );
519     pItem->zName = sqliteStrDup(pOldItem->zName);
520     pItem->sortOrder = pOldItem->sortOrder;
521     pItem->isAgg = pOldItem->isAgg;
522     pItem->done = 0;
523   }
524   return pNew;
525 }
526 
527 /*
528 ** If cursors, triggers, views and subqueries are all omitted from
529 ** the build, then none of the following routines, except for
530 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
531 ** called with a NULL argument.
532 */
533 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
534  || !defined(SQLITE_OMIT_SUBQUERY)
535 SrcList *sqlite3SrcListDup(SrcList *p){
536   SrcList *pNew;
537   int i;
538   int nByte;
539   if( p==0 ) return 0;
540   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
541   pNew = sqliteMallocRaw( nByte );
542   if( pNew==0 ) return 0;
543   pNew->nSrc = pNew->nAlloc = p->nSrc;
544   for(i=0; i<p->nSrc; i++){
545     struct SrcList_item *pNewItem = &pNew->a[i];
546     struct SrcList_item *pOldItem = &p->a[i];
547     Table *pTab;
548     pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
549     pNewItem->zName = sqliteStrDup(pOldItem->zName);
550     pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
551     pNewItem->jointype = pOldItem->jointype;
552     pNewItem->iCursor = pOldItem->iCursor;
553     pNewItem->isPopulated = pOldItem->isPopulated;
554     pTab = pNewItem->pTab = pOldItem->pTab;
555     if( pTab ){
556       pTab->nRef++;
557     }
558     pNewItem->pSelect = sqlite3SelectDup(pOldItem->pSelect);
559     pNewItem->pOn = sqlite3ExprDup(pOldItem->pOn);
560     pNewItem->pUsing = sqlite3IdListDup(pOldItem->pUsing);
561     pNewItem->colUsed = pOldItem->colUsed;
562   }
563   return pNew;
564 }
565 IdList *sqlite3IdListDup(IdList *p){
566   IdList *pNew;
567   int i;
568   if( p==0 ) return 0;
569   pNew = sqliteMallocRaw( sizeof(*pNew) );
570   if( pNew==0 ) return 0;
571   pNew->nId = pNew->nAlloc = p->nId;
572   pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
573   if( pNew->a==0 ){
574     sqliteFree(pNew);
575     return 0;
576   }
577   for(i=0; i<p->nId; i++){
578     struct IdList_item *pNewItem = &pNew->a[i];
579     struct IdList_item *pOldItem = &p->a[i];
580     pNewItem->zName = sqliteStrDup(pOldItem->zName);
581     pNewItem->idx = pOldItem->idx;
582   }
583   return pNew;
584 }
585 Select *sqlite3SelectDup(Select *p){
586   Select *pNew;
587   if( p==0 ) return 0;
588   pNew = sqliteMallocRaw( sizeof(*p) );
589   if( pNew==0 ) return 0;
590   pNew->isDistinct = p->isDistinct;
591   pNew->pEList = sqlite3ExprListDup(p->pEList);
592   pNew->pSrc = sqlite3SrcListDup(p->pSrc);
593   pNew->pWhere = sqlite3ExprDup(p->pWhere);
594   pNew->pGroupBy = sqlite3ExprListDup(p->pGroupBy);
595   pNew->pHaving = sqlite3ExprDup(p->pHaving);
596   pNew->pOrderBy = sqlite3ExprListDup(p->pOrderBy);
597   pNew->op = p->op;
598   pNew->pPrior = sqlite3SelectDup(p->pPrior);
599   pNew->pLimit = sqlite3ExprDup(p->pLimit);
600   pNew->pOffset = sqlite3ExprDup(p->pOffset);
601   pNew->iLimit = -1;
602   pNew->iOffset = -1;
603   pNew->isResolved = p->isResolved;
604   pNew->isAgg = p->isAgg;
605   pNew->usesEphm = 0;
606   pNew->disallowOrderBy = 0;
607   pNew->pRightmost = 0;
608   pNew->addrOpenEphm[0] = -1;
609   pNew->addrOpenEphm[1] = -1;
610   pNew->addrOpenEphm[2] = -1;
611   return pNew;
612 }
613 #else
614 Select *sqlite3SelectDup(Select *p){
615   assert( p==0 );
616   return 0;
617 }
618 #endif
619 
620 
621 /*
622 ** Add a new element to the end of an expression list.  If pList is
623 ** initially NULL, then create a new expression list.
624 */
625 ExprList *sqlite3ExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
626   if( pList==0 ){
627     pList = sqliteMalloc( sizeof(ExprList) );
628     if( pList==0 ){
629       goto no_mem;
630     }
631     assert( pList->nAlloc==0 );
632   }
633   if( pList->nAlloc<=pList->nExpr ){
634     struct ExprList_item *a;
635     int n = pList->nAlloc*2 + 4;
636     a = sqliteRealloc(pList->a, n*sizeof(pList->a[0]));
637     if( a==0 ){
638       goto no_mem;
639     }
640     pList->a = a;
641     pList->nAlloc = n;
642   }
643   assert( pList->a!=0 );
644   if( pExpr || pName ){
645     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
646     memset(pItem, 0, sizeof(*pItem));
647     pItem->zName = sqlite3NameFromToken(pName);
648     pItem->pExpr = pExpr;
649   }
650   return pList;
651 
652 no_mem:
653   /* Avoid leaking memory if malloc has failed. */
654   sqlite3ExprDelete(pExpr);
655   sqlite3ExprListDelete(pList);
656   return 0;
657 }
658 
659 /*
660 ** If the expression list pEList contains more than iLimit elements,
661 ** leave an error message in pParse.
662 */
663 void sqlite3ExprListCheckLength(
664   Parse *pParse,
665   ExprList *pEList,
666   int iLimit,
667   const char *zObject
668 ){
669   if( pEList && pEList->nExpr>iLimit ){
670     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
671   }
672 }
673 
674 
675 #if SQLITE_MAX_EXPR_DEPTH>0
676 /* The following three functions, heightOfExpr(), heightOfExprList()
677 ** and heightOfSelect(), are used to determine the maximum height
678 ** of any expression tree referenced by the structure passed as the
679 ** first argument.
680 **
681 ** If this maximum height is greater than the current value pointed
682 ** to by pnHeight, the second parameter, then set *pnHeight to that
683 ** value.
684 */
685 static void heightOfExpr(Expr *p, int *pnHeight){
686   if( p ){
687     if( p->nHeight>*pnHeight ){
688       *pnHeight = p->nHeight;
689     }
690   }
691 }
692 static void heightOfExprList(ExprList *p, int *pnHeight){
693   if( p ){
694     int i;
695     for(i=0; i<p->nExpr; i++){
696       heightOfExpr(p->a[i].pExpr, pnHeight);
697     }
698   }
699 }
700 static void heightOfSelect(Select *p, int *pnHeight){
701   if( p ){
702     heightOfExpr(p->pWhere, pnHeight);
703     heightOfExpr(p->pHaving, pnHeight);
704     heightOfExpr(p->pLimit, pnHeight);
705     heightOfExpr(p->pOffset, pnHeight);
706     heightOfExprList(p->pEList, pnHeight);
707     heightOfExprList(p->pGroupBy, pnHeight);
708     heightOfExprList(p->pOrderBy, pnHeight);
709     heightOfSelect(p->pPrior, pnHeight);
710   }
711 }
712 
713 /*
714 ** Set the Expr.nHeight variable in the structure passed as an
715 ** argument. An expression with no children, Expr.pList or
716 ** Expr.pSelect member has a height of 1. Any other expression
717 ** has a height equal to the maximum height of any other
718 ** referenced Expr plus one.
719 */
720 void sqlite3ExprSetHeight(Expr *p){
721   int nHeight = 0;
722   heightOfExpr(p->pLeft, &nHeight);
723   heightOfExpr(p->pRight, &nHeight);
724   heightOfExprList(p->pList, &nHeight);
725   heightOfSelect(p->pSelect, &nHeight);
726   p->nHeight = nHeight + 1;
727 }
728 
729 /*
730 ** Return the maximum height of any expression tree referenced
731 ** by the select statement passed as an argument.
732 */
733 int sqlite3SelectExprHeight(Select *p){
734   int nHeight = 0;
735   heightOfSelect(p, &nHeight);
736   return nHeight;
737 }
738 #endif
739 
740 /*
741 ** Delete an entire expression list.
742 */
743 void sqlite3ExprListDelete(ExprList *pList){
744   int i;
745   struct ExprList_item *pItem;
746   if( pList==0 ) return;
747   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
748   assert( pList->nExpr<=pList->nAlloc );
749   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
750     sqlite3ExprDelete(pItem->pExpr);
751     sqliteFree(pItem->zName);
752   }
753   sqliteFree(pList->a);
754   sqliteFree(pList);
755 }
756 
757 /*
758 ** Walk an expression tree.  Call xFunc for each node visited.
759 **
760 ** The return value from xFunc determines whether the tree walk continues.
761 ** 0 means continue walking the tree.  1 means do not walk children
762 ** of the current node but continue with siblings.  2 means abandon
763 ** the tree walk completely.
764 **
765 ** The return value from this routine is 1 to abandon the tree walk
766 ** and 0 to continue.
767 **
768 ** NOTICE:  This routine does *not* descend into subqueries.
769 */
770 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
771 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
772   int rc;
773   if( pExpr==0 ) return 0;
774   rc = (*xFunc)(pArg, pExpr);
775   if( rc==0 ){
776     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
777     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
778     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
779   }
780   return rc>1;
781 }
782 
783 /*
784 ** Call walkExprTree() for every expression in list p.
785 */
786 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
787   int i;
788   struct ExprList_item *pItem;
789   if( !p ) return 0;
790   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
791     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
792   }
793   return 0;
794 }
795 
796 /*
797 ** Call walkExprTree() for every expression in Select p, not including
798 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
799 ** or OFFSET expressions..
800 */
801 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
802   walkExprList(p->pEList, xFunc, pArg);
803   walkExprTree(p->pWhere, xFunc, pArg);
804   walkExprList(p->pGroupBy, xFunc, pArg);
805   walkExprTree(p->pHaving, xFunc, pArg);
806   walkExprList(p->pOrderBy, xFunc, pArg);
807   if( p->pPrior ){
808     walkSelectExpr(p->pPrior, xFunc, pArg);
809   }
810   return 0;
811 }
812 
813 
814 /*
815 ** This routine is designed as an xFunc for walkExprTree().
816 **
817 ** pArg is really a pointer to an integer.  If we can tell by looking
818 ** at pExpr that the expression that contains pExpr is not a constant
819 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
820 ** If pExpr does does not disqualify the expression from being a constant
821 ** then do nothing.
822 **
823 ** After walking the whole tree, if no nodes are found that disqualify
824 ** the expression as constant, then we assume the whole expression
825 ** is constant.  See sqlite3ExprIsConstant() for additional information.
826 */
827 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
828   switch( pExpr->op ){
829     /* Consider functions to be constant if all their arguments are constant
830     ** and *pArg==2 */
831     case TK_FUNCTION:
832       if( *((int*)pArg)==2 ) return 0;
833       /* Fall through */
834     case TK_ID:
835     case TK_COLUMN:
836     case TK_DOT:
837     case TK_AGG_FUNCTION:
838     case TK_AGG_COLUMN:
839 #ifndef SQLITE_OMIT_SUBQUERY
840     case TK_SELECT:
841     case TK_EXISTS:
842 #endif
843       *((int*)pArg) = 0;
844       return 2;
845     case TK_IN:
846       if( pExpr->pSelect ){
847         *((int*)pArg) = 0;
848         return 2;
849       }
850     default:
851       return 0;
852   }
853 }
854 
855 /*
856 ** Walk an expression tree.  Return 1 if the expression is constant
857 ** and 0 if it involves variables or function calls.
858 **
859 ** For the purposes of this function, a double-quoted string (ex: "abc")
860 ** is considered a variable but a single-quoted string (ex: 'abc') is
861 ** a constant.
862 */
863 int sqlite3ExprIsConstant(Expr *p){
864   int isConst = 1;
865   walkExprTree(p, exprNodeIsConstant, &isConst);
866   return isConst;
867 }
868 
869 /*
870 ** Walk an expression tree.  Return 1 if the expression is constant
871 ** or a function call with constant arguments.  Return and 0 if there
872 ** are any variables.
873 **
874 ** For the purposes of this function, a double-quoted string (ex: "abc")
875 ** is considered a variable but a single-quoted string (ex: 'abc') is
876 ** a constant.
877 */
878 int sqlite3ExprIsConstantOrFunction(Expr *p){
879   int isConst = 2;
880   walkExprTree(p, exprNodeIsConstant, &isConst);
881   return isConst!=0;
882 }
883 
884 /*
885 ** If the expression p codes a constant integer that is small enough
886 ** to fit in a 32-bit integer, return 1 and put the value of the integer
887 ** in *pValue.  If the expression is not an integer or if it is too big
888 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
889 */
890 int sqlite3ExprIsInteger(Expr *p, int *pValue){
891   switch( p->op ){
892     case TK_INTEGER: {
893       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
894         return 1;
895       }
896       break;
897     }
898     case TK_UPLUS: {
899       return sqlite3ExprIsInteger(p->pLeft, pValue);
900     }
901     case TK_UMINUS: {
902       int v;
903       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
904         *pValue = -v;
905         return 1;
906       }
907       break;
908     }
909     default: break;
910   }
911   return 0;
912 }
913 
914 /*
915 ** Return TRUE if the given string is a row-id column name.
916 */
917 int sqlite3IsRowid(const char *z){
918   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
919   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
920   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
921   return 0;
922 }
923 
924 /*
925 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
926 ** that name in the set of source tables in pSrcList and make the pExpr
927 ** expression node refer back to that source column.  The following changes
928 ** are made to pExpr:
929 **
930 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
931 **                         the table.
932 **    pExpr->iTable        Set to the cursor number for the table obtained
933 **                         from pSrcList.
934 **    pExpr->iColumn       Set to the column number within the table.
935 **    pExpr->op            Set to TK_COLUMN.
936 **    pExpr->pLeft         Any expression this points to is deleted
937 **    pExpr->pRight        Any expression this points to is deleted.
938 **
939 ** The pDbToken is the name of the database (the "X").  This value may be
940 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
941 ** can be used.  The pTableToken is the name of the table (the "Y").  This
942 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
943 ** means that the form of the name is Z and that columns from any table
944 ** can be used.
945 **
946 ** If the name cannot be resolved unambiguously, leave an error message
947 ** in pParse and return non-zero.  Return zero on success.
948 */
949 static int lookupName(
950   Parse *pParse,       /* The parsing context */
951   Token *pDbToken,     /* Name of the database containing table, or NULL */
952   Token *pTableToken,  /* Name of table containing column, or NULL */
953   Token *pColumnToken, /* Name of the column. */
954   NameContext *pNC,    /* The name context used to resolve the name */
955   Expr *pExpr          /* Make this EXPR node point to the selected column */
956 ){
957   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
958   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
959   char *zCol = 0;      /* Name of the column.  The "Z" */
960   int i, j;            /* Loop counters */
961   int cnt = 0;         /* Number of matching column names */
962   int cntTab = 0;      /* Number of matching table names */
963   sqlite3 *db = pParse->db;  /* The database */
964   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
965   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
966   NameContext *pTopNC = pNC;        /* First namecontext in the list */
967 
968   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
969   zDb = sqlite3NameFromToken(pDbToken);
970   zTab = sqlite3NameFromToken(pTableToken);
971   zCol = sqlite3NameFromToken(pColumnToken);
972   if( sqlite3MallocFailed() ){
973     goto lookupname_end;
974   }
975 
976   pExpr->iTable = -1;
977   while( pNC && cnt==0 ){
978     ExprList *pEList;
979     SrcList *pSrcList = pNC->pSrcList;
980 
981     if( pSrcList ){
982       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
983         Table *pTab;
984         int iDb;
985         Column *pCol;
986 
987         pTab = pItem->pTab;
988         assert( pTab!=0 );
989         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
990         assert( pTab->nCol>0 );
991         if( zTab ){
992           if( pItem->zAlias ){
993             char *zTabName = pItem->zAlias;
994             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
995           }else{
996             char *zTabName = pTab->zName;
997             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
998             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
999               continue;
1000             }
1001           }
1002         }
1003         if( 0==(cntTab++) ){
1004           pExpr->iTable = pItem->iCursor;
1005           pExpr->pSchema = pTab->pSchema;
1006           pMatch = pItem;
1007         }
1008         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1009           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1010             const char *zColl = pTab->aCol[j].zColl;
1011             IdList *pUsing;
1012             cnt++;
1013             pExpr->iTable = pItem->iCursor;
1014             pMatch = pItem;
1015             pExpr->pSchema = pTab->pSchema;
1016             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1017             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1018             pExpr->affinity = pTab->aCol[j].affinity;
1019             if( (pExpr->flags & EP_ExpCollate)==0 ){
1020               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1021             }
1022             if( i<pSrcList->nSrc-1 ){
1023               if( pItem[1].jointype & JT_NATURAL ){
1024                 /* If this match occurred in the left table of a natural join,
1025                 ** then skip the right table to avoid a duplicate match */
1026                 pItem++;
1027                 i++;
1028               }else if( (pUsing = pItem[1].pUsing)!=0 ){
1029                 /* If this match occurs on a column that is in the USING clause
1030                 ** of a join, skip the search of the right table of the join
1031                 ** to avoid a duplicate match there. */
1032                 int k;
1033                 for(k=0; k<pUsing->nId; k++){
1034                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1035                     pItem++;
1036                     i++;
1037                     break;
1038                   }
1039                 }
1040               }
1041             }
1042             break;
1043           }
1044         }
1045       }
1046     }
1047 
1048 #ifndef SQLITE_OMIT_TRIGGER
1049     /* If we have not already resolved the name, then maybe
1050     ** it is a new.* or old.* trigger argument reference
1051     */
1052     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1053       TriggerStack *pTriggerStack = pParse->trigStack;
1054       Table *pTab = 0;
1055       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1056         pExpr->iTable = pTriggerStack->newIdx;
1057         assert( pTriggerStack->pTab );
1058         pTab = pTriggerStack->pTab;
1059       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1060         pExpr->iTable = pTriggerStack->oldIdx;
1061         assert( pTriggerStack->pTab );
1062         pTab = pTriggerStack->pTab;
1063       }
1064 
1065       if( pTab ){
1066         int iCol;
1067         Column *pCol = pTab->aCol;
1068 
1069         pExpr->pSchema = pTab->pSchema;
1070         cntTab++;
1071         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1072           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1073             const char *zColl = pTab->aCol[iCol].zColl;
1074             cnt++;
1075             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1076             pExpr->affinity = pTab->aCol[iCol].affinity;
1077             if( (pExpr->flags & EP_ExpCollate)==0 ){
1078               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1079             }
1080             pExpr->pTab = pTab;
1081             break;
1082           }
1083         }
1084       }
1085     }
1086 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1087 
1088     /*
1089     ** Perhaps the name is a reference to the ROWID
1090     */
1091     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1092       cnt = 1;
1093       pExpr->iColumn = -1;
1094       pExpr->affinity = SQLITE_AFF_INTEGER;
1095     }
1096 
1097     /*
1098     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1099     ** might refer to an result-set alias.  This happens, for example, when
1100     ** we are resolving names in the WHERE clause of the following command:
1101     **
1102     **     SELECT a+b AS x FROM table WHERE x<10;
1103     **
1104     ** In cases like this, replace pExpr with a copy of the expression that
1105     ** forms the result set entry ("a+b" in the example) and return immediately.
1106     ** Note that the expression in the result set should have already been
1107     ** resolved by the time the WHERE clause is resolved.
1108     */
1109     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1110       for(j=0; j<pEList->nExpr; j++){
1111         char *zAs = pEList->a[j].zName;
1112         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1113           Expr *pDup;
1114           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1115           assert( pExpr->pList==0 );
1116           assert( pExpr->pSelect==0 );
1117           pDup = sqlite3ExprDup(pEList->a[j].pExpr);
1118           if( pExpr->flags & EP_ExpCollate ){
1119             pDup->pColl = pExpr->pColl;
1120             pDup->flags |= EP_ExpCollate;
1121           }
1122           memcpy(pExpr, pDup, sizeof(*pExpr));
1123           sqliteFree(pDup);
1124           cnt = 1;
1125           assert( zTab==0 && zDb==0 );
1126           goto lookupname_end_2;
1127         }
1128       }
1129     }
1130 
1131     /* Advance to the next name context.  The loop will exit when either
1132     ** we have a match (cnt>0) or when we run out of name contexts.
1133     */
1134     if( cnt==0 ){
1135       pNC = pNC->pNext;
1136     }
1137   }
1138 
1139   /*
1140   ** If X and Y are NULL (in other words if only the column name Z is
1141   ** supplied) and the value of Z is enclosed in double-quotes, then
1142   ** Z is a string literal if it doesn't match any column names.  In that
1143   ** case, we need to return right away and not make any changes to
1144   ** pExpr.
1145   **
1146   ** Because no reference was made to outer contexts, the pNC->nRef
1147   ** fields are not changed in any context.
1148   */
1149   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1150     sqliteFree(zCol);
1151     return 0;
1152   }
1153 
1154   /*
1155   ** cnt==0 means there was not match.  cnt>1 means there were two or
1156   ** more matches.  Either way, we have an error.
1157   */
1158   if( cnt!=1 ){
1159     char *z = 0;
1160     char *zErr;
1161     zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
1162     if( zDb ){
1163       sqlite3SetString(&z, zDb, ".", zTab, ".", zCol, (char*)0);
1164     }else if( zTab ){
1165       sqlite3SetString(&z, zTab, ".", zCol, (char*)0);
1166     }else{
1167       z = sqliteStrDup(zCol);
1168     }
1169     sqlite3ErrorMsg(pParse, zErr, z);
1170     sqliteFree(z);
1171     pTopNC->nErr++;
1172   }
1173 
1174   /* If a column from a table in pSrcList is referenced, then record
1175   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
1176   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
1177   ** column number is greater than the number of bits in the bitmask
1178   ** then set the high-order bit of the bitmask.
1179   */
1180   if( pExpr->iColumn>=0 && pMatch!=0 ){
1181     int n = pExpr->iColumn;
1182     if( n>=sizeof(Bitmask)*8 ){
1183       n = sizeof(Bitmask)*8-1;
1184     }
1185     assert( pMatch->iCursor==pExpr->iTable );
1186     pMatch->colUsed |= ((Bitmask)1)<<n;
1187   }
1188 
1189 lookupname_end:
1190   /* Clean up and return
1191   */
1192   sqliteFree(zDb);
1193   sqliteFree(zTab);
1194   sqlite3ExprDelete(pExpr->pLeft);
1195   pExpr->pLeft = 0;
1196   sqlite3ExprDelete(pExpr->pRight);
1197   pExpr->pRight = 0;
1198   pExpr->op = TK_COLUMN;
1199 lookupname_end_2:
1200   sqliteFree(zCol);
1201   if( cnt==1 ){
1202     assert( pNC!=0 );
1203     sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
1204     if( pMatch && !pMatch->pSelect ){
1205       pExpr->pTab = pMatch->pTab;
1206     }
1207     /* Increment the nRef value on all name contexts from TopNC up to
1208     ** the point where the name matched. */
1209     for(;;){
1210       assert( pTopNC!=0 );
1211       pTopNC->nRef++;
1212       if( pTopNC==pNC ) break;
1213       pTopNC = pTopNC->pNext;
1214     }
1215     return 0;
1216   } else {
1217     return 1;
1218   }
1219 }
1220 
1221 /*
1222 ** This routine is designed as an xFunc for walkExprTree().
1223 **
1224 ** Resolve symbolic names into TK_COLUMN operators for the current
1225 ** node in the expression tree.  Return 0 to continue the search down
1226 ** the tree or 2 to abort the tree walk.
1227 **
1228 ** This routine also does error checking and name resolution for
1229 ** function names.  The operator for aggregate functions is changed
1230 ** to TK_AGG_FUNCTION.
1231 */
1232 static int nameResolverStep(void *pArg, Expr *pExpr){
1233   NameContext *pNC = (NameContext*)pArg;
1234   Parse *pParse;
1235 
1236   if( pExpr==0 ) return 1;
1237   assert( pNC!=0 );
1238   pParse = pNC->pParse;
1239 
1240   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1241   ExprSetProperty(pExpr, EP_Resolved);
1242 #ifndef NDEBUG
1243   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1244     SrcList *pSrcList = pNC->pSrcList;
1245     int i;
1246     for(i=0; i<pNC->pSrcList->nSrc; i++){
1247       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1248     }
1249   }
1250 #endif
1251   switch( pExpr->op ){
1252     /* Double-quoted strings (ex: "abc") are used as identifiers if
1253     ** possible.  Otherwise they remain as strings.  Single-quoted
1254     ** strings (ex: 'abc') are always string literals.
1255     */
1256     case TK_STRING: {
1257       if( pExpr->token.z[0]=='\'' ) break;
1258       /* Fall thru into the TK_ID case if this is a double-quoted string */
1259     }
1260     /* A lone identifier is the name of a column.
1261     */
1262     case TK_ID: {
1263       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1264       return 1;
1265     }
1266 
1267     /* A table name and column name:     ID.ID
1268     ** Or a database, table and column:  ID.ID.ID
1269     */
1270     case TK_DOT: {
1271       Token *pColumn;
1272       Token *pTable;
1273       Token *pDb;
1274       Expr *pRight;
1275 
1276       /* if( pSrcList==0 ) break; */
1277       pRight = pExpr->pRight;
1278       if( pRight->op==TK_ID ){
1279         pDb = 0;
1280         pTable = &pExpr->pLeft->token;
1281         pColumn = &pRight->token;
1282       }else{
1283         assert( pRight->op==TK_DOT );
1284         pDb = &pExpr->pLeft->token;
1285         pTable = &pRight->pLeft->token;
1286         pColumn = &pRight->pRight->token;
1287       }
1288       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1289       return 1;
1290     }
1291 
1292     /* Resolve function names
1293     */
1294     case TK_CONST_FUNC:
1295     case TK_FUNCTION: {
1296       ExprList *pList = pExpr->pList;    /* The argument list */
1297       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
1298       int no_such_func = 0;       /* True if no such function exists */
1299       int wrong_num_args = 0;     /* True if wrong number of arguments */
1300       int is_agg = 0;             /* True if is an aggregate function */
1301       int i;
1302       int auth;                   /* Authorization to use the function */
1303       int nId;                    /* Number of characters in function name */
1304       const char *zId;            /* The function name. */
1305       FuncDef *pDef;              /* Information about the function */
1306       int enc = ENC(pParse->db);  /* The database encoding */
1307 
1308       zId = (char*)pExpr->token.z;
1309       nId = pExpr->token.n;
1310       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1311       if( pDef==0 ){
1312         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1313         if( pDef==0 ){
1314           no_such_func = 1;
1315         }else{
1316           wrong_num_args = 1;
1317         }
1318       }else{
1319         is_agg = pDef->xFunc==0;
1320       }
1321 #ifndef SQLITE_OMIT_AUTHORIZATION
1322       if( pDef ){
1323         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1324         if( auth!=SQLITE_OK ){
1325           if( auth==SQLITE_DENY ){
1326             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1327                                     pDef->zName);
1328             pNC->nErr++;
1329           }
1330           pExpr->op = TK_NULL;
1331           return 1;
1332         }
1333       }
1334 #endif
1335       if( is_agg && !pNC->allowAgg ){
1336         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1337         pNC->nErr++;
1338         is_agg = 0;
1339       }else if( no_such_func ){
1340         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1341         pNC->nErr++;
1342       }else if( wrong_num_args ){
1343         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1344              nId, zId);
1345         pNC->nErr++;
1346       }
1347       if( is_agg ){
1348         pExpr->op = TK_AGG_FUNCTION;
1349         pNC->hasAgg = 1;
1350       }
1351       if( is_agg ) pNC->allowAgg = 0;
1352       for(i=0; pNC->nErr==0 && i<n; i++){
1353         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1354       }
1355       if( is_agg ) pNC->allowAgg = 1;
1356       /* FIX ME:  Compute pExpr->affinity based on the expected return
1357       ** type of the function
1358       */
1359       return is_agg;
1360     }
1361 #ifndef SQLITE_OMIT_SUBQUERY
1362     case TK_SELECT:
1363     case TK_EXISTS:
1364 #endif
1365     case TK_IN: {
1366       if( pExpr->pSelect ){
1367         int nRef = pNC->nRef;
1368 #ifndef SQLITE_OMIT_CHECK
1369         if( pNC->isCheck ){
1370           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1371         }
1372 #endif
1373         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1374         assert( pNC->nRef>=nRef );
1375         if( nRef!=pNC->nRef ){
1376           ExprSetProperty(pExpr, EP_VarSelect);
1377         }
1378       }
1379       break;
1380     }
1381 #ifndef SQLITE_OMIT_CHECK
1382     case TK_VARIABLE: {
1383       if( pNC->isCheck ){
1384         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1385       }
1386       break;
1387     }
1388 #endif
1389   }
1390   return 0;
1391 }
1392 
1393 /*
1394 ** This routine walks an expression tree and resolves references to
1395 ** table columns.  Nodes of the form ID.ID or ID resolve into an
1396 ** index to the table in the table list and a column offset.  The
1397 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
1398 ** value is changed to the index of the referenced table in pTabList
1399 ** plus the "base" value.  The base value will ultimately become the
1400 ** VDBE cursor number for a cursor that is pointing into the referenced
1401 ** table.  The Expr.iColumn value is changed to the index of the column
1402 ** of the referenced table.  The Expr.iColumn value for the special
1403 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
1404 ** alias for ROWID.
1405 **
1406 ** Also resolve function names and check the functions for proper
1407 ** usage.  Make sure all function names are recognized and all functions
1408 ** have the correct number of arguments.  Leave an error message
1409 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
1410 **
1411 ** If the expression contains aggregate functions then set the EP_Agg
1412 ** property on the expression.
1413 */
1414 int sqlite3ExprResolveNames(
1415   NameContext *pNC,       /* Namespace to resolve expressions in. */
1416   Expr *pExpr             /* The expression to be analyzed. */
1417 ){
1418   int savedHasAgg;
1419   if( pExpr==0 ) return 0;
1420 #if SQLITE_MAX_EXPR_DEPTH>0
1421   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
1422     sqlite3ErrorMsg(pNC->pParse,
1423        "Expression tree is too large (maximum depth %d)",
1424        SQLITE_MAX_EXPR_DEPTH
1425     );
1426     return 1;
1427   }
1428   pNC->pParse->nHeight += pExpr->nHeight;
1429 #endif
1430   savedHasAgg = pNC->hasAgg;
1431   pNC->hasAgg = 0;
1432   walkExprTree(pExpr, nameResolverStep, pNC);
1433 #if SQLITE_MAX_EXPR_DEPTH>0
1434   pNC->pParse->nHeight -= pExpr->nHeight;
1435 #endif
1436   if( pNC->nErr>0 ){
1437     ExprSetProperty(pExpr, EP_Error);
1438   }
1439   if( pNC->hasAgg ){
1440     ExprSetProperty(pExpr, EP_Agg);
1441   }else if( savedHasAgg ){
1442     pNC->hasAgg = 1;
1443   }
1444   return ExprHasProperty(pExpr, EP_Error);
1445 }
1446 
1447 /*
1448 ** A pointer instance of this structure is used to pass information
1449 ** through walkExprTree into codeSubqueryStep().
1450 */
1451 typedef struct QueryCoder QueryCoder;
1452 struct QueryCoder {
1453   Parse *pParse;       /* The parsing context */
1454   NameContext *pNC;    /* Namespace of first enclosing query */
1455 };
1456 
1457 
1458 /*
1459 ** Generate code for scalar subqueries used as an expression
1460 ** and IN operators.  Examples:
1461 **
1462 **     (SELECT a FROM b)          -- subquery
1463 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1464 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1465 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1466 **
1467 ** The pExpr parameter describes the expression that contains the IN
1468 ** operator or subquery.
1469 */
1470 #ifndef SQLITE_OMIT_SUBQUERY
1471 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
1472   int testAddr = 0;                       /* One-time test address */
1473   Vdbe *v = sqlite3GetVdbe(pParse);
1474   if( v==0 ) return;
1475 
1476 
1477   /* This code must be run in its entirety every time it is encountered
1478   ** if any of the following is true:
1479   **
1480   **    *  The right-hand side is a correlated subquery
1481   **    *  The right-hand side is an expression list containing variables
1482   **    *  We are inside a trigger
1483   **
1484   ** If all of the above are false, then we can run this code just once
1485   ** save the results, and reuse the same result on subsequent invocations.
1486   */
1487   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1488     int mem = pParse->nMem++;
1489     sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
1490     testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
1491     assert( testAddr>0 || sqlite3MallocFailed() );
1492     sqlite3VdbeAddOp(v, OP_MemInt, 1, mem);
1493   }
1494 
1495   switch( pExpr->op ){
1496     case TK_IN: {
1497       char affinity;
1498       KeyInfo keyInfo;
1499       int addr;        /* Address of OP_OpenEphemeral instruction */
1500 
1501       affinity = sqlite3ExprAffinity(pExpr->pLeft);
1502 
1503       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1504       ** expression it is handled the same way. A virtual table is
1505       ** filled with single-field index keys representing the results
1506       ** from the SELECT or the <exprlist>.
1507       **
1508       ** If the 'x' expression is a column value, or the SELECT...
1509       ** statement returns a column value, then the affinity of that
1510       ** column is used to build the index keys. If both 'x' and the
1511       ** SELECT... statement are columns, then numeric affinity is used
1512       ** if either column has NUMERIC or INTEGER affinity. If neither
1513       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1514       ** is used.
1515       */
1516       pExpr->iTable = pParse->nTab++;
1517       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, pExpr->iTable, 0);
1518       memset(&keyInfo, 0, sizeof(keyInfo));
1519       keyInfo.nField = 1;
1520       sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
1521 
1522       if( pExpr->pSelect ){
1523         /* Case 1:     expr IN (SELECT ...)
1524         **
1525         ** Generate code to write the results of the select into the temporary
1526         ** table allocated and opened above.
1527         */
1528         int iParm = pExpr->iTable +  (((int)affinity)<<16);
1529         ExprList *pEList;
1530         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1531         if( sqlite3Select(pParse, pExpr->pSelect, SRT_Set, iParm, 0, 0, 0, 0) ){
1532           return;
1533         }
1534         pEList = pExpr->pSelect->pEList;
1535         if( pEList && pEList->nExpr>0 ){
1536           keyInfo.aColl[0] = binaryCompareCollSeq(pParse, pExpr->pLeft,
1537               pEList->a[0].pExpr);
1538         }
1539       }else if( pExpr->pList ){
1540         /* Case 2:     expr IN (exprlist)
1541         **
1542 	** For each expression, build an index key from the evaluation and
1543         ** store it in the temporary table. If <expr> is a column, then use
1544         ** that columns affinity when building index keys. If <expr> is not
1545         ** a column, use numeric affinity.
1546         */
1547         int i;
1548         ExprList *pList = pExpr->pList;
1549         struct ExprList_item *pItem;
1550 
1551         if( !affinity ){
1552           affinity = SQLITE_AFF_NONE;
1553         }
1554         keyInfo.aColl[0] = pExpr->pLeft->pColl;
1555 
1556         /* Loop through each expression in <exprlist>. */
1557         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1558           Expr *pE2 = pItem->pExpr;
1559 
1560           /* If the expression is not constant then we will need to
1561           ** disable the test that was generated above that makes sure
1562           ** this code only executes once.  Because for a non-constant
1563           ** expression we need to rerun this code each time.
1564           */
1565           if( testAddr>0 && !sqlite3ExprIsConstant(pE2) ){
1566             sqlite3VdbeChangeToNoop(v, testAddr-1, 3);
1567             testAddr = 0;
1568           }
1569 
1570           /* Evaluate the expression and insert it into the temp table */
1571           sqlite3ExprCode(pParse, pE2);
1572           sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
1573           sqlite3VdbeAddOp(v, OP_IdxInsert, pExpr->iTable, 0);
1574         }
1575       }
1576       sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
1577       break;
1578     }
1579 
1580     case TK_EXISTS:
1581     case TK_SELECT: {
1582       /* This has to be a scalar SELECT.  Generate code to put the
1583       ** value of this select in a memory cell and record the number
1584       ** of the memory cell in iColumn.
1585       */
1586       static const Token one = { (u8*)"1", 0, 1 };
1587       Select *pSel;
1588       int iMem;
1589       int sop;
1590 
1591       pExpr->iColumn = iMem = pParse->nMem++;
1592       pSel = pExpr->pSelect;
1593       if( pExpr->op==TK_SELECT ){
1594         sop = SRT_Mem;
1595         sqlite3VdbeAddOp(v, OP_MemNull, iMem, 0);
1596         VdbeComment((v, "# Init subquery result"));
1597       }else{
1598         sop = SRT_Exists;
1599         sqlite3VdbeAddOp(v, OP_MemInt, 0, iMem);
1600         VdbeComment((v, "# Init EXISTS result"));
1601       }
1602       sqlite3ExprDelete(pSel->pLimit);
1603       pSel->pLimit = sqlite3Expr(TK_INTEGER, 0, 0, &one);
1604       if( sqlite3Select(pParse, pSel, sop, iMem, 0, 0, 0, 0) ){
1605         return;
1606       }
1607       break;
1608     }
1609   }
1610 
1611   if( testAddr ){
1612     sqlite3VdbeJumpHere(v, testAddr);
1613   }
1614 
1615   return;
1616 }
1617 #endif /* SQLITE_OMIT_SUBQUERY */
1618 
1619 /*
1620 ** Generate an instruction that will put the integer describe by
1621 ** text z[0..n-1] on the stack.
1622 */
1623 static void codeInteger(Vdbe *v, const char *z, int n){
1624   int i;
1625   if( sqlite3GetInt32(z, &i) ){
1626     sqlite3VdbeAddOp(v, OP_Integer, i, 0);
1627   }else if( sqlite3FitsIn64Bits(z) ){
1628     sqlite3VdbeOp3(v, OP_Int64, 0, 0, z, n);
1629   }else{
1630     sqlite3VdbeOp3(v, OP_Real, 0, 0, z, n);
1631   }
1632 }
1633 
1634 
1635 /*
1636 ** Generate code that will extract the iColumn-th column from
1637 ** table pTab and push that column value on the stack.  There
1638 ** is an open cursor to pTab in iTable.  If iColumn<0 then
1639 ** code is generated that extracts the rowid.
1640 */
1641 void sqlite3ExprCodeGetColumn(Vdbe *v, Table *pTab, int iColumn, int iTable){
1642   if( iColumn<0 ){
1643     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1644     sqlite3VdbeAddOp(v, op, iTable, 0);
1645   }else if( pTab==0 ){
1646     sqlite3VdbeAddOp(v, OP_Column, iTable, iColumn);
1647   }else{
1648     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1649     sqlite3VdbeAddOp(v, op, iTable, iColumn);
1650     sqlite3ColumnDefault(v, pTab, iColumn);
1651 #ifndef SQLITE_OMIT_FLOATING_POINT
1652     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1653       sqlite3VdbeAddOp(v, OP_RealAffinity, 0, 0);
1654     }
1655 #endif
1656   }
1657 }
1658 
1659 /*
1660 ** Generate code into the current Vdbe to evaluate the given
1661 ** expression and leave the result on the top of stack.
1662 **
1663 ** This code depends on the fact that certain token values (ex: TK_EQ)
1664 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
1665 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
1666 ** the make process cause these values to align.  Assert()s in the code
1667 ** below verify that the numbers are aligned correctly.
1668 */
1669 void sqlite3ExprCode(Parse *pParse, Expr *pExpr){
1670   Vdbe *v = pParse->pVdbe;
1671   int op;
1672   int stackChng = 1;    /* Amount of change to stack depth */
1673 
1674   if( v==0 ) return;
1675   if( pExpr==0 ){
1676     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1677     return;
1678   }
1679   op = pExpr->op;
1680   switch( op ){
1681     case TK_AGG_COLUMN: {
1682       AggInfo *pAggInfo = pExpr->pAggInfo;
1683       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1684       if( !pAggInfo->directMode ){
1685         sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
1686         break;
1687       }else if( pAggInfo->useSortingIdx ){
1688         sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
1689                               pCol->iSorterColumn);
1690         break;
1691       }
1692       /* Otherwise, fall thru into the TK_COLUMN case */
1693     }
1694     case TK_COLUMN: {
1695       if( pExpr->iTable<0 ){
1696         /* This only happens when coding check constraints */
1697         assert( pParse->ckOffset>0 );
1698         sqlite3VdbeAddOp(v, OP_Dup, pParse->ckOffset-pExpr->iColumn-1, 1);
1699       }else{
1700         sqlite3ExprCodeGetColumn(v, pExpr->pTab, pExpr->iColumn, pExpr->iTable);
1701       }
1702       break;
1703     }
1704     case TK_INTEGER: {
1705       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n);
1706       break;
1707     }
1708     case TK_FLOAT:
1709     case TK_STRING: {
1710       assert( TK_FLOAT==OP_Real );
1711       assert( TK_STRING==OP_String8 );
1712       sqlite3DequoteExpr(pExpr);
1713       sqlite3VdbeOp3(v, op, 0, 0, (char*)pExpr->token.z, pExpr->token.n);
1714       break;
1715     }
1716     case TK_NULL: {
1717       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1718       break;
1719     }
1720 #ifndef SQLITE_OMIT_BLOB_LITERAL
1721     case TK_BLOB: {
1722       int n;
1723       const char *z;
1724       assert( TK_BLOB==OP_HexBlob );
1725       n = pExpr->token.n - 3;
1726       z = (char*)pExpr->token.z + 2;
1727       assert( n>=0 );
1728       if( n==0 ){
1729         z = "";
1730       }
1731       sqlite3VdbeOp3(v, op, 0, 0, z, n);
1732       break;
1733     }
1734 #endif
1735     case TK_VARIABLE: {
1736       sqlite3VdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
1737       if( pExpr->token.n>1 ){
1738         sqlite3VdbeChangeP3(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1739       }
1740       break;
1741     }
1742     case TK_REGISTER: {
1743       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iTable, 0);
1744       break;
1745     }
1746 #ifndef SQLITE_OMIT_CAST
1747     case TK_CAST: {
1748       /* Expressions of the form:   CAST(pLeft AS token) */
1749       int aff, to_op;
1750       sqlite3ExprCode(pParse, pExpr->pLeft);
1751       aff = sqlite3AffinityType(&pExpr->token);
1752       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
1753       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
1754       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
1755       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
1756       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
1757       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
1758       sqlite3VdbeAddOp(v, to_op, 0, 0);
1759       stackChng = 0;
1760       break;
1761     }
1762 #endif /* SQLITE_OMIT_CAST */
1763     case TK_LT:
1764     case TK_LE:
1765     case TK_GT:
1766     case TK_GE:
1767     case TK_NE:
1768     case TK_EQ: {
1769       assert( TK_LT==OP_Lt );
1770       assert( TK_LE==OP_Le );
1771       assert( TK_GT==OP_Gt );
1772       assert( TK_GE==OP_Ge );
1773       assert( TK_EQ==OP_Eq );
1774       assert( TK_NE==OP_Ne );
1775       sqlite3ExprCode(pParse, pExpr->pLeft);
1776       sqlite3ExprCode(pParse, pExpr->pRight);
1777       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 0, 0);
1778       stackChng = -1;
1779       break;
1780     }
1781     case TK_AND:
1782     case TK_OR:
1783     case TK_PLUS:
1784     case TK_STAR:
1785     case TK_MINUS:
1786     case TK_REM:
1787     case TK_BITAND:
1788     case TK_BITOR:
1789     case TK_SLASH:
1790     case TK_LSHIFT:
1791     case TK_RSHIFT:
1792     case TK_CONCAT: {
1793       assert( TK_AND==OP_And );
1794       assert( TK_OR==OP_Or );
1795       assert( TK_PLUS==OP_Add );
1796       assert( TK_MINUS==OP_Subtract );
1797       assert( TK_REM==OP_Remainder );
1798       assert( TK_BITAND==OP_BitAnd );
1799       assert( TK_BITOR==OP_BitOr );
1800       assert( TK_SLASH==OP_Divide );
1801       assert( TK_LSHIFT==OP_ShiftLeft );
1802       assert( TK_RSHIFT==OP_ShiftRight );
1803       assert( TK_CONCAT==OP_Concat );
1804       sqlite3ExprCode(pParse, pExpr->pLeft);
1805       sqlite3ExprCode(pParse, pExpr->pRight);
1806       sqlite3VdbeAddOp(v, op, 0, 0);
1807       stackChng = -1;
1808       break;
1809     }
1810     case TK_UMINUS: {
1811       Expr *pLeft = pExpr->pLeft;
1812       assert( pLeft );
1813       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
1814         Token *p = &pLeft->token;
1815         char *z = sqlite3MPrintf("-%.*s", p->n, p->z);
1816         if( pLeft->op==TK_FLOAT ){
1817           sqlite3VdbeOp3(v, OP_Real, 0, 0, z, p->n+1);
1818         }else{
1819           codeInteger(v, z, p->n+1);
1820         }
1821         sqliteFree(z);
1822         break;
1823       }
1824       /* Fall through into TK_NOT */
1825     }
1826     case TK_BITNOT:
1827     case TK_NOT: {
1828       assert( TK_BITNOT==OP_BitNot );
1829       assert( TK_NOT==OP_Not );
1830       sqlite3ExprCode(pParse, pExpr->pLeft);
1831       sqlite3VdbeAddOp(v, op, 0, 0);
1832       stackChng = 0;
1833       break;
1834     }
1835     case TK_ISNULL:
1836     case TK_NOTNULL: {
1837       int dest;
1838       assert( TK_ISNULL==OP_IsNull );
1839       assert( TK_NOTNULL==OP_NotNull );
1840       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1841       sqlite3ExprCode(pParse, pExpr->pLeft);
1842       dest = sqlite3VdbeCurrentAddr(v) + 2;
1843       sqlite3VdbeAddOp(v, op, 1, dest);
1844       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
1845       stackChng = 0;
1846       break;
1847     }
1848     case TK_AGG_FUNCTION: {
1849       AggInfo *pInfo = pExpr->pAggInfo;
1850       if( pInfo==0 ){
1851         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
1852             &pExpr->span);
1853       }else{
1854         sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
1855       }
1856       break;
1857     }
1858     case TK_CONST_FUNC:
1859     case TK_FUNCTION: {
1860       ExprList *pList = pExpr->pList;
1861       int nExpr = pList ? pList->nExpr : 0;
1862       FuncDef *pDef;
1863       int nId;
1864       const char *zId;
1865       int constMask = 0;
1866       int i;
1867       u8 enc = ENC(pParse->db);
1868       CollSeq *pColl = 0;
1869       zId = (char*)pExpr->token.z;
1870       nId = pExpr->token.n;
1871       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
1872       assert( pDef!=0 );
1873       nExpr = sqlite3ExprCodeExprList(pParse, pList);
1874 #ifndef SQLITE_OMIT_VIRTUALTABLE
1875       /* Possibly overload the function if the first argument is
1876       ** a virtual table column.
1877       **
1878       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
1879       ** second argument, not the first, as the argument to test to
1880       ** see if it is a column in a virtual table.  This is done because
1881       ** the left operand of infix functions (the operand we want to
1882       ** control overloading) ends up as the second argument to the
1883       ** function.  The expression "A glob B" is equivalent to
1884       ** "glob(B,A).  We want to use the A in "A glob B" to test
1885       ** for function overloading.  But we use the B term in "glob(B,A)".
1886       */
1887       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
1888         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[1].pExpr);
1889       }else if( nExpr>0 ){
1890         pDef = sqlite3VtabOverloadFunction(pDef, nExpr, pList->a[0].pExpr);
1891       }
1892 #endif
1893       for(i=0; i<nExpr && i<32; i++){
1894         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
1895           constMask |= (1<<i);
1896         }
1897         if( pDef->needCollSeq && !pColl ){
1898           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
1899         }
1900       }
1901       if( pDef->needCollSeq ){
1902         if( !pColl ) pColl = pParse->db->pDfltColl;
1903         sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
1904       }
1905       sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
1906       stackChng = 1-nExpr;
1907       break;
1908     }
1909 #ifndef SQLITE_OMIT_SUBQUERY
1910     case TK_EXISTS:
1911     case TK_SELECT: {
1912       if( pExpr->iColumn==0 ){
1913         sqlite3CodeSubselect(pParse, pExpr);
1914       }
1915       sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
1916       VdbeComment((v, "# load subquery result"));
1917       break;
1918     }
1919     case TK_IN: {
1920       int addr;
1921       char affinity;
1922       int ckOffset = pParse->ckOffset;
1923       sqlite3CodeSubselect(pParse, pExpr);
1924 
1925       /* Figure out the affinity to use to create a key from the results
1926       ** of the expression. affinityStr stores a static string suitable for
1927       ** P3 of OP_MakeRecord.
1928       */
1929       affinity = comparisonAffinity(pExpr);
1930 
1931       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1932       pParse->ckOffset = (ckOffset ? (ckOffset+1) : 0);
1933 
1934       /* Code the <expr> from "<expr> IN (...)". The temporary table
1935       ** pExpr->iTable contains the values that make up the (...) set.
1936       */
1937       sqlite3ExprCode(pParse, pExpr->pLeft);
1938       addr = sqlite3VdbeCurrentAddr(v);
1939       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr+4);            /* addr + 0 */
1940       sqlite3VdbeAddOp(v, OP_Pop, 2, 0);
1941       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1942       sqlite3VdbeAddOp(v, OP_Goto, 0, addr+7);
1943       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);   /* addr + 4 */
1944       sqlite3VdbeAddOp(v, OP_Found, pExpr->iTable, addr+7);
1945       sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);                  /* addr + 6 */
1946 
1947       break;
1948     }
1949 #endif
1950     case TK_BETWEEN: {
1951       Expr *pLeft = pExpr->pLeft;
1952       struct ExprList_item *pLItem = pExpr->pList->a;
1953       Expr *pRight = pLItem->pExpr;
1954       sqlite3ExprCode(pParse, pLeft);
1955       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
1956       sqlite3ExprCode(pParse, pRight);
1957       codeCompare(pParse, pLeft, pRight, OP_Ge, 0, 0);
1958       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
1959       pLItem++;
1960       pRight = pLItem->pExpr;
1961       sqlite3ExprCode(pParse, pRight);
1962       codeCompare(pParse, pLeft, pRight, OP_Le, 0, 0);
1963       sqlite3VdbeAddOp(v, OP_And, 0, 0);
1964       break;
1965     }
1966     case TK_UPLUS: {
1967       sqlite3ExprCode(pParse, pExpr->pLeft);
1968       stackChng = 0;
1969       break;
1970     }
1971     case TK_CASE: {
1972       int expr_end_label;
1973       int jumpInst;
1974       int nExpr;
1975       int i;
1976       ExprList *pEList;
1977       struct ExprList_item *aListelem;
1978 
1979       assert(pExpr->pList);
1980       assert((pExpr->pList->nExpr % 2) == 0);
1981       assert(pExpr->pList->nExpr > 0);
1982       pEList = pExpr->pList;
1983       aListelem = pEList->a;
1984       nExpr = pEList->nExpr;
1985       expr_end_label = sqlite3VdbeMakeLabel(v);
1986       if( pExpr->pLeft ){
1987         sqlite3ExprCode(pParse, pExpr->pLeft);
1988       }
1989       for(i=0; i<nExpr; i=i+2){
1990         sqlite3ExprCode(pParse, aListelem[i].pExpr);
1991         if( pExpr->pLeft ){
1992           sqlite3VdbeAddOp(v, OP_Dup, 1, 1);
1993           jumpInst = codeCompare(pParse, pExpr->pLeft, aListelem[i].pExpr,
1994                                  OP_Ne, 0, 1);
1995           sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1996         }else{
1997           jumpInst = sqlite3VdbeAddOp(v, OP_IfNot, 1, 0);
1998         }
1999         sqlite3ExprCode(pParse, aListelem[i+1].pExpr);
2000         sqlite3VdbeAddOp(v, OP_Goto, 0, expr_end_label);
2001         sqlite3VdbeJumpHere(v, jumpInst);
2002       }
2003       if( pExpr->pLeft ){
2004         sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2005       }
2006       if( pExpr->pRight ){
2007         sqlite3ExprCode(pParse, pExpr->pRight);
2008       }else{
2009         sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2010       }
2011       sqlite3VdbeResolveLabel(v, expr_end_label);
2012       break;
2013     }
2014 #ifndef SQLITE_OMIT_TRIGGER
2015     case TK_RAISE: {
2016       if( !pParse->trigStack ){
2017         sqlite3ErrorMsg(pParse,
2018                        "RAISE() may only be used within a trigger-program");
2019 	return;
2020       }
2021       if( pExpr->iColumn!=OE_Ignore ){
2022          assert( pExpr->iColumn==OE_Rollback ||
2023                  pExpr->iColumn == OE_Abort ||
2024                  pExpr->iColumn == OE_Fail );
2025          sqlite3DequoteExpr(pExpr);
2026          sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
2027                         (char*)pExpr->token.z, pExpr->token.n);
2028       } else {
2029          assert( pExpr->iColumn == OE_Ignore );
2030          sqlite3VdbeAddOp(v, OP_ContextPop, 0, 0);
2031          sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2032          VdbeComment((v, "# raise(IGNORE)"));
2033       }
2034       stackChng = 0;
2035       break;
2036     }
2037 #endif
2038   }
2039 
2040   if( pParse->ckOffset ){
2041     pParse->ckOffset += stackChng;
2042     assert( pParse->ckOffset );
2043   }
2044 }
2045 
2046 #ifndef SQLITE_OMIT_TRIGGER
2047 /*
2048 ** Generate code that evalutes the given expression and leaves the result
2049 ** on the stack.  See also sqlite3ExprCode().
2050 **
2051 ** This routine might also cache the result and modify the pExpr tree
2052 ** so that it will make use of the cached result on subsequent evaluations
2053 ** rather than evaluate the whole expression again.  Trivial expressions are
2054 ** not cached.  If the expression is cached, its result is stored in a
2055 ** memory location.
2056 */
2057 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr){
2058   Vdbe *v = pParse->pVdbe;
2059   int iMem;
2060   int addr1, addr2;
2061   if( v==0 ) return;
2062   addr1 = sqlite3VdbeCurrentAddr(v);
2063   sqlite3ExprCode(pParse, pExpr);
2064   addr2 = sqlite3VdbeCurrentAddr(v);
2065   if( addr2>addr1+1 || sqlite3VdbeGetOp(v, addr1)->opcode==OP_Function ){
2066     iMem = pExpr->iTable = pParse->nMem++;
2067     sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
2068     pExpr->op = TK_REGISTER;
2069   }
2070 }
2071 #endif
2072 
2073 /*
2074 ** Generate code that pushes the value of every element of the given
2075 ** expression list onto the stack.
2076 **
2077 ** Return the number of elements pushed onto the stack.
2078 */
2079 int sqlite3ExprCodeExprList(
2080   Parse *pParse,     /* Parsing context */
2081   ExprList *pList    /* The expression list to be coded */
2082 ){
2083   struct ExprList_item *pItem;
2084   int i, n;
2085   if( pList==0 ) return 0;
2086   n = pList->nExpr;
2087   for(pItem=pList->a, i=n; i>0; i--, pItem++){
2088     sqlite3ExprCode(pParse, pItem->pExpr);
2089   }
2090   return n;
2091 }
2092 
2093 /*
2094 ** Generate code for a boolean expression such that a jump is made
2095 ** to the label "dest" if the expression is true but execution
2096 ** continues straight thru if the expression is false.
2097 **
2098 ** If the expression evaluates to NULL (neither true nor false), then
2099 ** take the jump if the jumpIfNull flag is true.
2100 **
2101 ** This code depends on the fact that certain token values (ex: TK_EQ)
2102 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2103 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
2104 ** the make process cause these values to align.  Assert()s in the code
2105 ** below verify that the numbers are aligned correctly.
2106 */
2107 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2108   Vdbe *v = pParse->pVdbe;
2109   int op = 0;
2110   int ckOffset = pParse->ckOffset;
2111   if( v==0 || pExpr==0 ) return;
2112   op = pExpr->op;
2113   switch( op ){
2114     case TK_AND: {
2115       int d2 = sqlite3VdbeMakeLabel(v);
2116       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
2117       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2118       sqlite3VdbeResolveLabel(v, d2);
2119       break;
2120     }
2121     case TK_OR: {
2122       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2123       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2124       break;
2125     }
2126     case TK_NOT: {
2127       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2128       break;
2129     }
2130     case TK_LT:
2131     case TK_LE:
2132     case TK_GT:
2133     case TK_GE:
2134     case TK_NE:
2135     case TK_EQ: {
2136       assert( TK_LT==OP_Lt );
2137       assert( TK_LE==OP_Le );
2138       assert( TK_GT==OP_Gt );
2139       assert( TK_GE==OP_Ge );
2140       assert( TK_EQ==OP_Eq );
2141       assert( TK_NE==OP_Ne );
2142       sqlite3ExprCode(pParse, pExpr->pLeft);
2143       sqlite3ExprCode(pParse, pExpr->pRight);
2144       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2145       break;
2146     }
2147     case TK_ISNULL:
2148     case TK_NOTNULL: {
2149       assert( TK_ISNULL==OP_IsNull );
2150       assert( TK_NOTNULL==OP_NotNull );
2151       sqlite3ExprCode(pParse, pExpr->pLeft);
2152       sqlite3VdbeAddOp(v, op, 1, dest);
2153       break;
2154     }
2155     case TK_BETWEEN: {
2156       /* The expression "x BETWEEN y AND z" is implemented as:
2157       **
2158       ** 1 IF (x < y) GOTO 3
2159       ** 2 IF (x <= z) GOTO <dest>
2160       ** 3 ...
2161       */
2162       int addr;
2163       Expr *pLeft = pExpr->pLeft;
2164       Expr *pRight = pExpr->pList->a[0].pExpr;
2165       sqlite3ExprCode(pParse, pLeft);
2166       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2167       sqlite3ExprCode(pParse, pRight);
2168       addr = codeCompare(pParse, pLeft, pRight, OP_Lt, 0, !jumpIfNull);
2169 
2170       pRight = pExpr->pList->a[1].pExpr;
2171       sqlite3ExprCode(pParse, pRight);
2172       codeCompare(pParse, pLeft, pRight, OP_Le, dest, jumpIfNull);
2173 
2174       sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
2175       sqlite3VdbeJumpHere(v, addr);
2176       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2177       break;
2178     }
2179     default: {
2180       sqlite3ExprCode(pParse, pExpr);
2181       sqlite3VdbeAddOp(v, OP_If, jumpIfNull, dest);
2182       break;
2183     }
2184   }
2185   pParse->ckOffset = ckOffset;
2186 }
2187 
2188 /*
2189 ** Generate code for a boolean expression such that a jump is made
2190 ** to the label "dest" if the expression is false but execution
2191 ** continues straight thru if the expression is true.
2192 **
2193 ** If the expression evaluates to NULL (neither true nor false) then
2194 ** jump if jumpIfNull is true or fall through if jumpIfNull is false.
2195 */
2196 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2197   Vdbe *v = pParse->pVdbe;
2198   int op = 0;
2199   int ckOffset = pParse->ckOffset;
2200   if( v==0 || pExpr==0 ) return;
2201 
2202   /* The value of pExpr->op and op are related as follows:
2203   **
2204   **       pExpr->op            op
2205   **       ---------          ----------
2206   **       TK_ISNULL          OP_NotNull
2207   **       TK_NOTNULL         OP_IsNull
2208   **       TK_NE              OP_Eq
2209   **       TK_EQ              OP_Ne
2210   **       TK_GT              OP_Le
2211   **       TK_LE              OP_Gt
2212   **       TK_GE              OP_Lt
2213   **       TK_LT              OP_Ge
2214   **
2215   ** For other values of pExpr->op, op is undefined and unused.
2216   ** The value of TK_ and OP_ constants are arranged such that we
2217   ** can compute the mapping above using the following expression.
2218   ** Assert()s verify that the computation is correct.
2219   */
2220   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2221 
2222   /* Verify correct alignment of TK_ and OP_ constants
2223   */
2224   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2225   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2226   assert( pExpr->op!=TK_NE || op==OP_Eq );
2227   assert( pExpr->op!=TK_EQ || op==OP_Ne );
2228   assert( pExpr->op!=TK_LT || op==OP_Ge );
2229   assert( pExpr->op!=TK_LE || op==OP_Gt );
2230   assert( pExpr->op!=TK_GT || op==OP_Le );
2231   assert( pExpr->op!=TK_GE || op==OP_Lt );
2232 
2233   switch( pExpr->op ){
2234     case TK_AND: {
2235       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2236       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2237       break;
2238     }
2239     case TK_OR: {
2240       int d2 = sqlite3VdbeMakeLabel(v);
2241       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
2242       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2243       sqlite3VdbeResolveLabel(v, d2);
2244       break;
2245     }
2246     case TK_NOT: {
2247       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2248       break;
2249     }
2250     case TK_LT:
2251     case TK_LE:
2252     case TK_GT:
2253     case TK_GE:
2254     case TK_NE:
2255     case TK_EQ: {
2256       sqlite3ExprCode(pParse, pExpr->pLeft);
2257       sqlite3ExprCode(pParse, pExpr->pRight);
2258       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, dest, jumpIfNull);
2259       break;
2260     }
2261     case TK_ISNULL:
2262     case TK_NOTNULL: {
2263       sqlite3ExprCode(pParse, pExpr->pLeft);
2264       sqlite3VdbeAddOp(v, op, 1, dest);
2265       break;
2266     }
2267     case TK_BETWEEN: {
2268       /* The expression is "x BETWEEN y AND z". It is implemented as:
2269       **
2270       ** 1 IF (x >= y) GOTO 3
2271       ** 2 GOTO <dest>
2272       ** 3 IF (x > z) GOTO <dest>
2273       */
2274       int addr;
2275       Expr *pLeft = pExpr->pLeft;
2276       Expr *pRight = pExpr->pList->a[0].pExpr;
2277       sqlite3ExprCode(pParse, pLeft);
2278       sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
2279       sqlite3ExprCode(pParse, pRight);
2280       addr = sqlite3VdbeCurrentAddr(v);
2281       codeCompare(pParse, pLeft, pRight, OP_Ge, addr+3, !jumpIfNull);
2282 
2283       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
2284       sqlite3VdbeAddOp(v, OP_Goto, 0, dest);
2285       pRight = pExpr->pList->a[1].pExpr;
2286       sqlite3ExprCode(pParse, pRight);
2287       codeCompare(pParse, pLeft, pRight, OP_Gt, dest, jumpIfNull);
2288       break;
2289     }
2290     default: {
2291       sqlite3ExprCode(pParse, pExpr);
2292       sqlite3VdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
2293       break;
2294     }
2295   }
2296   pParse->ckOffset = ckOffset;
2297 }
2298 
2299 /*
2300 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
2301 ** if they are identical and return FALSE if they differ in any way.
2302 **
2303 ** Sometimes this routine will return FALSE even if the two expressions
2304 ** really are equivalent.  If we cannot prove that the expressions are
2305 ** identical, we return FALSE just to be safe.  So if this routine
2306 ** returns false, then you do not really know for certain if the two
2307 ** expressions are the same.  But if you get a TRUE return, then you
2308 ** can be sure the expressions are the same.  In the places where
2309 ** this routine is used, it does not hurt to get an extra FALSE - that
2310 ** just might result in some slightly slower code.  But returning
2311 ** an incorrect TRUE could lead to a malfunction.
2312 */
2313 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2314   int i;
2315   if( pA==0||pB==0 ){
2316     return pB==pA;
2317   }
2318   if( pA->op!=pB->op ) return 0;
2319   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2320   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2321   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2322   if( pA->pList ){
2323     if( pB->pList==0 ) return 0;
2324     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2325     for(i=0; i<pA->pList->nExpr; i++){
2326       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2327         return 0;
2328       }
2329     }
2330   }else if( pB->pList ){
2331     return 0;
2332   }
2333   if( pA->pSelect || pB->pSelect ) return 0;
2334   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2335   if( pA->op!=TK_COLUMN && pA->token.z ){
2336     if( pB->token.z==0 ) return 0;
2337     if( pB->token.n!=pA->token.n ) return 0;
2338     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2339       return 0;
2340     }
2341   }
2342   return 1;
2343 }
2344 
2345 
2346 /*
2347 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
2348 ** the new element.  Return a negative number if malloc fails.
2349 */
2350 static int addAggInfoColumn(AggInfo *pInfo){
2351   int i;
2352   pInfo->aCol = sqlite3ArrayAllocate(
2353        pInfo->aCol,
2354        sizeof(pInfo->aCol[0]),
2355        3,
2356        &pInfo->nColumn,
2357        &pInfo->nColumnAlloc,
2358        &i
2359   );
2360   return i;
2361 }
2362 
2363 /*
2364 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
2365 ** the new element.  Return a negative number if malloc fails.
2366 */
2367 static int addAggInfoFunc(AggInfo *pInfo){
2368   int i;
2369   pInfo->aFunc = sqlite3ArrayAllocate(
2370        pInfo->aFunc,
2371        sizeof(pInfo->aFunc[0]),
2372        3,
2373        &pInfo->nFunc,
2374        &pInfo->nFuncAlloc,
2375        &i
2376   );
2377   return i;
2378 }
2379 
2380 /*
2381 ** This is an xFunc for walkExprTree() used to implement
2382 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
2383 ** for additional information.
2384 **
2385 ** This routine analyzes the aggregate function at pExpr.
2386 */
2387 static int analyzeAggregate(void *pArg, Expr *pExpr){
2388   int i;
2389   NameContext *pNC = (NameContext *)pArg;
2390   Parse *pParse = pNC->pParse;
2391   SrcList *pSrcList = pNC->pSrcList;
2392   AggInfo *pAggInfo = pNC->pAggInfo;
2393 
2394 
2395   switch( pExpr->op ){
2396     case TK_AGG_COLUMN:
2397     case TK_COLUMN: {
2398       /* Check to see if the column is in one of the tables in the FROM
2399       ** clause of the aggregate query */
2400       if( pSrcList ){
2401         struct SrcList_item *pItem = pSrcList->a;
2402         for(i=0; i<pSrcList->nSrc; i++, pItem++){
2403           struct AggInfo_col *pCol;
2404           if( pExpr->iTable==pItem->iCursor ){
2405             /* If we reach this point, it means that pExpr refers to a table
2406             ** that is in the FROM clause of the aggregate query.
2407             **
2408             ** Make an entry for the column in pAggInfo->aCol[] if there
2409             ** is not an entry there already.
2410             */
2411             int k;
2412             pCol = pAggInfo->aCol;
2413             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
2414               if( pCol->iTable==pExpr->iTable &&
2415                   pCol->iColumn==pExpr->iColumn ){
2416                 break;
2417               }
2418             }
2419             if( k>=pAggInfo->nColumn && (k = addAggInfoColumn(pAggInfo))>=0 ){
2420               pCol = &pAggInfo->aCol[k];
2421               pCol->pTab = pExpr->pTab;
2422               pCol->iTable = pExpr->iTable;
2423               pCol->iColumn = pExpr->iColumn;
2424               pCol->iMem = pParse->nMem++;
2425               pCol->iSorterColumn = -1;
2426               pCol->pExpr = pExpr;
2427               if( pAggInfo->pGroupBy ){
2428                 int j, n;
2429                 ExprList *pGB = pAggInfo->pGroupBy;
2430                 struct ExprList_item *pTerm = pGB->a;
2431                 n = pGB->nExpr;
2432                 for(j=0; j<n; j++, pTerm++){
2433                   Expr *pE = pTerm->pExpr;
2434                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2435                       pE->iColumn==pExpr->iColumn ){
2436                     pCol->iSorterColumn = j;
2437                     break;
2438                   }
2439                 }
2440               }
2441               if( pCol->iSorterColumn<0 ){
2442                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2443               }
2444             }
2445             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2446             ** because it was there before or because we just created it).
2447             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2448             ** pAggInfo->aCol[] entry.
2449             */
2450             pExpr->pAggInfo = pAggInfo;
2451             pExpr->op = TK_AGG_COLUMN;
2452             pExpr->iAgg = k;
2453             break;
2454           } /* endif pExpr->iTable==pItem->iCursor */
2455         } /* end loop over pSrcList */
2456       }
2457       return 1;
2458     }
2459     case TK_AGG_FUNCTION: {
2460       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2461       ** to be ignored */
2462       if( pNC->nDepth==0 ){
2463         /* Check to see if pExpr is a duplicate of another aggregate
2464         ** function that is already in the pAggInfo structure
2465         */
2466         struct AggInfo_func *pItem = pAggInfo->aFunc;
2467         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2468           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2469             break;
2470           }
2471         }
2472         if( i>=pAggInfo->nFunc ){
2473           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
2474           */
2475           u8 enc = ENC(pParse->db);
2476           i = addAggInfoFunc(pAggInfo);
2477           if( i>=0 ){
2478             pItem = &pAggInfo->aFunc[i];
2479             pItem->pExpr = pExpr;
2480             pItem->iMem = pParse->nMem++;
2481             pItem->pFunc = sqlite3FindFunction(pParse->db,
2482                    (char*)pExpr->token.z, pExpr->token.n,
2483                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
2484             if( pExpr->flags & EP_Distinct ){
2485               pItem->iDistinct = pParse->nTab++;
2486             }else{
2487               pItem->iDistinct = -1;
2488             }
2489           }
2490         }
2491         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
2492         */
2493         pExpr->iAgg = i;
2494         pExpr->pAggInfo = pAggInfo;
2495         return 1;
2496       }
2497     }
2498   }
2499 
2500   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
2501   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
2502   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
2503   */
2504   if( pExpr->pSelect ){
2505     pNC->nDepth++;
2506     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
2507     pNC->nDepth--;
2508   }
2509   return 0;
2510 }
2511 
2512 /*
2513 ** Analyze the given expression looking for aggregate functions and
2514 ** for variables that need to be added to the pParse->aAgg[] array.
2515 ** Make additional entries to the pParse->aAgg[] array as necessary.
2516 **
2517 ** This routine should only be called after the expression has been
2518 ** analyzed by sqlite3ExprResolveNames().
2519 **
2520 ** If errors are seen, leave an error message in zErrMsg and return
2521 ** the number of errors.
2522 */
2523 int sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
2524   int nErr = pNC->pParse->nErr;
2525   walkExprTree(pExpr, analyzeAggregate, pNC);
2526   return pNC->pParse->nErr - nErr;
2527 }
2528 
2529 /*
2530 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
2531 ** expression list.  Return the number of errors.
2532 **
2533 ** If an error is found, the analysis is cut short.
2534 */
2535 int sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
2536   struct ExprList_item *pItem;
2537   int i;
2538   int nErr = 0;
2539   if( pList ){
2540     for(pItem=pList->a, i=0; nErr==0 && i<pList->nExpr; i++, pItem++){
2541       nErr += sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
2542     }
2543   }
2544   return nErr;
2545 }
2546