1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Return the 'affinity' of the expression pExpr if any. 19 ** 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, 21 ** or a sub-select with a column as the return value, then the 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, 23 ** indicating no affinity for the expression. 24 ** 25 ** i.e. the WHERE clause expresssions in the following statements all 26 ** have an affinity: 27 ** 28 ** CREATE TABLE t1(a); 29 ** SELECT * FROM t1 WHERE a; 30 ** SELECT a AS b FROM t1 WHERE b; 31 ** SELECT * FROM t1 WHERE (select a from t1); 32 */ 33 char sqlite3ExprAffinity(Expr *pExpr){ 34 int op; 35 pExpr = sqlite3ExprSkipCollate(pExpr); 36 op = pExpr->op; 37 if( op==TK_SELECT ){ 38 assert( pExpr->flags&EP_xIsSelect ); 39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 40 } 41 #ifndef SQLITE_OMIT_CAST 42 if( op==TK_CAST ){ 43 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 44 return sqlite3AffinityType(pExpr->u.zToken, 0); 45 } 46 #endif 47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) 48 && pExpr->pTab!=0 49 ){ 50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally 51 ** a TK_COLUMN but was previously evaluated and cached in a register */ 52 int j = pExpr->iColumn; 53 if( j<0 ) return SQLITE_AFF_INTEGER; 54 assert( pExpr->pTab && j<pExpr->pTab->nCol ); 55 return pExpr->pTab->aCol[j].affinity; 56 } 57 return pExpr->affinity; 58 } 59 60 /* 61 ** Set the collating sequence for expression pExpr to be the collating 62 ** sequence named by pToken. Return a pointer to a new Expr node that 63 ** implements the COLLATE operator. 64 ** 65 ** If a memory allocation error occurs, that fact is recorded in pParse->db 66 ** and the pExpr parameter is returned unchanged. 67 */ 68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){ 69 if( pCollName->n>0 ){ 70 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); 71 if( pNew ){ 72 pNew->pLeft = pExpr; 73 pNew->flags |= EP_Collate|EP_Skip; 74 pExpr = pNew; 75 } 76 } 77 return pExpr; 78 } 79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ 80 Token s; 81 assert( zC!=0 ); 82 s.z = zC; 83 s.n = sqlite3Strlen30(s.z); 84 return sqlite3ExprAddCollateToken(pParse, pExpr, &s); 85 } 86 87 /* 88 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely() 89 ** or likelihood() function at the root of an expression. 90 */ 91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 92 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 93 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 94 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 95 assert( pExpr->x.pList->nExpr>0 ); 96 assert( pExpr->op==TK_FUNCTION ); 97 pExpr = pExpr->x.pList->a[0].pExpr; 98 }else{ 99 assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); 100 pExpr = pExpr->pLeft; 101 } 102 } 103 return pExpr; 104 } 105 106 /* 107 ** Return the collation sequence for the expression pExpr. If 108 ** there is no defined collating sequence, return NULL. 109 ** 110 ** The collating sequence might be determined by a COLLATE operator 111 ** or by the presence of a column with a defined collating sequence. 112 ** COLLATE operators take first precedence. Left operands take 113 ** precedence over right operands. 114 */ 115 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ 116 sqlite3 *db = pParse->db; 117 CollSeq *pColl = 0; 118 Expr *p = pExpr; 119 while( p ){ 120 int op = p->op; 121 if( op==TK_CAST || op==TK_UPLUS ){ 122 p = p->pLeft; 123 continue; 124 } 125 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ 126 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 127 break; 128 } 129 if( p->pTab!=0 130 && (op==TK_AGG_COLUMN || op==TK_COLUMN 131 || op==TK_REGISTER || op==TK_TRIGGER) 132 ){ 133 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally 134 ** a TK_COLUMN but was previously evaluated and cached in a register */ 135 int j = p->iColumn; 136 if( j>=0 ){ 137 const char *zColl = p->pTab->aCol[j].zColl; 138 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 139 } 140 break; 141 } 142 if( p->flags & EP_Collate ){ 143 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ 144 p = p->pLeft; 145 }else{ 146 p = p->pRight; 147 } 148 }else{ 149 break; 150 } 151 } 152 if( sqlite3CheckCollSeq(pParse, pColl) ){ 153 pColl = 0; 154 } 155 return pColl; 156 } 157 158 /* 159 ** pExpr is an operand of a comparison operator. aff2 is the 160 ** type affinity of the other operand. This routine returns the 161 ** type affinity that should be used for the comparison operator. 162 */ 163 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ 164 char aff1 = sqlite3ExprAffinity(pExpr); 165 if( aff1 && aff2 ){ 166 /* Both sides of the comparison are columns. If one has numeric 167 ** affinity, use that. Otherwise use no affinity. 168 */ 169 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 170 return SQLITE_AFF_NUMERIC; 171 }else{ 172 return SQLITE_AFF_NONE; 173 } 174 }else if( !aff1 && !aff2 ){ 175 /* Neither side of the comparison is a column. Compare the 176 ** results directly. 177 */ 178 return SQLITE_AFF_NONE; 179 }else{ 180 /* One side is a column, the other is not. Use the columns affinity. */ 181 assert( aff1==0 || aff2==0 ); 182 return (aff1 + aff2); 183 } 184 } 185 186 /* 187 ** pExpr is a comparison operator. Return the type affinity that should 188 ** be applied to both operands prior to doing the comparison. 189 */ 190 static char comparisonAffinity(Expr *pExpr){ 191 char aff; 192 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 193 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 194 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 195 assert( pExpr->pLeft ); 196 aff = sqlite3ExprAffinity(pExpr->pLeft); 197 if( pExpr->pRight ){ 198 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 199 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 200 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 201 }else if( !aff ){ 202 aff = SQLITE_AFF_NONE; 203 } 204 return aff; 205 } 206 207 /* 208 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 209 ** idx_affinity is the affinity of an indexed column. Return true 210 ** if the index with affinity idx_affinity may be used to implement 211 ** the comparison in pExpr. 212 */ 213 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ 214 char aff = comparisonAffinity(pExpr); 215 switch( aff ){ 216 case SQLITE_AFF_NONE: 217 return 1; 218 case SQLITE_AFF_TEXT: 219 return idx_affinity==SQLITE_AFF_TEXT; 220 default: 221 return sqlite3IsNumericAffinity(idx_affinity); 222 } 223 } 224 225 /* 226 ** Return the P5 value that should be used for a binary comparison 227 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 228 */ 229 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ 230 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 231 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 232 return aff; 233 } 234 235 /* 236 ** Return a pointer to the collation sequence that should be used by 237 ** a binary comparison operator comparing pLeft and pRight. 238 ** 239 ** If the left hand expression has a collating sequence type, then it is 240 ** used. Otherwise the collation sequence for the right hand expression 241 ** is used, or the default (BINARY) if neither expression has a collating 242 ** type. 243 ** 244 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 245 ** it is not considered. 246 */ 247 CollSeq *sqlite3BinaryCompareCollSeq( 248 Parse *pParse, 249 Expr *pLeft, 250 Expr *pRight 251 ){ 252 CollSeq *pColl; 253 assert( pLeft ); 254 if( pLeft->flags & EP_Collate ){ 255 pColl = sqlite3ExprCollSeq(pParse, pLeft); 256 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 257 pColl = sqlite3ExprCollSeq(pParse, pRight); 258 }else{ 259 pColl = sqlite3ExprCollSeq(pParse, pLeft); 260 if( !pColl ){ 261 pColl = sqlite3ExprCollSeq(pParse, pRight); 262 } 263 } 264 return pColl; 265 } 266 267 /* 268 ** Generate code for a comparison operator. 269 */ 270 static int codeCompare( 271 Parse *pParse, /* The parsing (and code generating) context */ 272 Expr *pLeft, /* The left operand */ 273 Expr *pRight, /* The right operand */ 274 int opcode, /* The comparison opcode */ 275 int in1, int in2, /* Register holding operands */ 276 int dest, /* Jump here if true. */ 277 int jumpIfNull /* If true, jump if either operand is NULL */ 278 ){ 279 int p5; 280 int addr; 281 CollSeq *p4; 282 283 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 284 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 285 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 286 (void*)p4, P4_COLLSEQ); 287 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 288 return addr; 289 } 290 291 #if SQLITE_MAX_EXPR_DEPTH>0 292 /* 293 ** Check that argument nHeight is less than or equal to the maximum 294 ** expression depth allowed. If it is not, leave an error message in 295 ** pParse. 296 */ 297 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 298 int rc = SQLITE_OK; 299 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 300 if( nHeight>mxHeight ){ 301 sqlite3ErrorMsg(pParse, 302 "Expression tree is too large (maximum depth %d)", mxHeight 303 ); 304 rc = SQLITE_ERROR; 305 } 306 return rc; 307 } 308 309 /* The following three functions, heightOfExpr(), heightOfExprList() 310 ** and heightOfSelect(), are used to determine the maximum height 311 ** of any expression tree referenced by the structure passed as the 312 ** first argument. 313 ** 314 ** If this maximum height is greater than the current value pointed 315 ** to by pnHeight, the second parameter, then set *pnHeight to that 316 ** value. 317 */ 318 static void heightOfExpr(Expr *p, int *pnHeight){ 319 if( p ){ 320 if( p->nHeight>*pnHeight ){ 321 *pnHeight = p->nHeight; 322 } 323 } 324 } 325 static void heightOfExprList(ExprList *p, int *pnHeight){ 326 if( p ){ 327 int i; 328 for(i=0; i<p->nExpr; i++){ 329 heightOfExpr(p->a[i].pExpr, pnHeight); 330 } 331 } 332 } 333 static void heightOfSelect(Select *p, int *pnHeight){ 334 if( p ){ 335 heightOfExpr(p->pWhere, pnHeight); 336 heightOfExpr(p->pHaving, pnHeight); 337 heightOfExpr(p->pLimit, pnHeight); 338 heightOfExpr(p->pOffset, pnHeight); 339 heightOfExprList(p->pEList, pnHeight); 340 heightOfExprList(p->pGroupBy, pnHeight); 341 heightOfExprList(p->pOrderBy, pnHeight); 342 heightOfSelect(p->pPrior, pnHeight); 343 } 344 } 345 346 /* 347 ** Set the Expr.nHeight variable in the structure passed as an 348 ** argument. An expression with no children, Expr.pList or 349 ** Expr.pSelect member has a height of 1. Any other expression 350 ** has a height equal to the maximum height of any other 351 ** referenced Expr plus one. 352 */ 353 static void exprSetHeight(Expr *p){ 354 int nHeight = 0; 355 heightOfExpr(p->pLeft, &nHeight); 356 heightOfExpr(p->pRight, &nHeight); 357 if( ExprHasProperty(p, EP_xIsSelect) ){ 358 heightOfSelect(p->x.pSelect, &nHeight); 359 }else{ 360 heightOfExprList(p->x.pList, &nHeight); 361 } 362 p->nHeight = nHeight + 1; 363 } 364 365 /* 366 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 367 ** the height is greater than the maximum allowed expression depth, 368 ** leave an error in pParse. 369 */ 370 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ 371 exprSetHeight(p); 372 sqlite3ExprCheckHeight(pParse, p->nHeight); 373 } 374 375 /* 376 ** Return the maximum height of any expression tree referenced 377 ** by the select statement passed as an argument. 378 */ 379 int sqlite3SelectExprHeight(Select *p){ 380 int nHeight = 0; 381 heightOfSelect(p, &nHeight); 382 return nHeight; 383 } 384 #else 385 #define exprSetHeight(y) 386 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 387 388 /* 389 ** This routine is the core allocator for Expr nodes. 390 ** 391 ** Construct a new expression node and return a pointer to it. Memory 392 ** for this node and for the pToken argument is a single allocation 393 ** obtained from sqlite3DbMalloc(). The calling function 394 ** is responsible for making sure the node eventually gets freed. 395 ** 396 ** If dequote is true, then the token (if it exists) is dequoted. 397 ** If dequote is false, no dequoting is performance. The deQuote 398 ** parameter is ignored if pToken is NULL or if the token does not 399 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 400 ** then the EP_DblQuoted flag is set on the expression node. 401 ** 402 ** Special case: If op==TK_INTEGER and pToken points to a string that 403 ** can be translated into a 32-bit integer, then the token is not 404 ** stored in u.zToken. Instead, the integer values is written 405 ** into u.iValue and the EP_IntValue flag is set. No extra storage 406 ** is allocated to hold the integer text and the dequote flag is ignored. 407 */ 408 Expr *sqlite3ExprAlloc( 409 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 410 int op, /* Expression opcode */ 411 const Token *pToken, /* Token argument. Might be NULL */ 412 int dequote /* True to dequote */ 413 ){ 414 Expr *pNew; 415 int nExtra = 0; 416 int iValue = 0; 417 418 if( pToken ){ 419 if( op!=TK_INTEGER || pToken->z==0 420 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 421 nExtra = pToken->n+1; 422 assert( iValue>=0 ); 423 } 424 } 425 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); 426 if( pNew ){ 427 pNew->op = (u8)op; 428 pNew->iAgg = -1; 429 if( pToken ){ 430 if( nExtra==0 ){ 431 pNew->flags |= EP_IntValue; 432 pNew->u.iValue = iValue; 433 }else{ 434 int c; 435 pNew->u.zToken = (char*)&pNew[1]; 436 assert( pToken->z!=0 || pToken->n==0 ); 437 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 438 pNew->u.zToken[pToken->n] = 0; 439 if( dequote && nExtra>=3 440 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ 441 sqlite3Dequote(pNew->u.zToken); 442 if( c=='"' ) pNew->flags |= EP_DblQuoted; 443 } 444 } 445 } 446 #if SQLITE_MAX_EXPR_DEPTH>0 447 pNew->nHeight = 1; 448 #endif 449 } 450 return pNew; 451 } 452 453 /* 454 ** Allocate a new expression node from a zero-terminated token that has 455 ** already been dequoted. 456 */ 457 Expr *sqlite3Expr( 458 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 459 int op, /* Expression opcode */ 460 const char *zToken /* Token argument. Might be NULL */ 461 ){ 462 Token x; 463 x.z = zToken; 464 x.n = zToken ? sqlite3Strlen30(zToken) : 0; 465 return sqlite3ExprAlloc(db, op, &x, 0); 466 } 467 468 /* 469 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 470 ** 471 ** If pRoot==NULL that means that a memory allocation error has occurred. 472 ** In that case, delete the subtrees pLeft and pRight. 473 */ 474 void sqlite3ExprAttachSubtrees( 475 sqlite3 *db, 476 Expr *pRoot, 477 Expr *pLeft, 478 Expr *pRight 479 ){ 480 if( pRoot==0 ){ 481 assert( db->mallocFailed ); 482 sqlite3ExprDelete(db, pLeft); 483 sqlite3ExprDelete(db, pRight); 484 }else{ 485 if( pRight ){ 486 pRoot->pRight = pRight; 487 pRoot->flags |= EP_Collate & pRight->flags; 488 } 489 if( pLeft ){ 490 pRoot->pLeft = pLeft; 491 pRoot->flags |= EP_Collate & pLeft->flags; 492 } 493 exprSetHeight(pRoot); 494 } 495 } 496 497 /* 498 ** Allocate a Expr node which joins as many as two subtrees. 499 ** 500 ** One or both of the subtrees can be NULL. Return a pointer to the new 501 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 502 ** free the subtrees and return NULL. 503 */ 504 Expr *sqlite3PExpr( 505 Parse *pParse, /* Parsing context */ 506 int op, /* Expression opcode */ 507 Expr *pLeft, /* Left operand */ 508 Expr *pRight, /* Right operand */ 509 const Token *pToken /* Argument token */ 510 ){ 511 Expr *p; 512 if( op==TK_AND && pLeft && pRight ){ 513 /* Take advantage of short-circuit false optimization for AND */ 514 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); 515 }else{ 516 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); 517 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 518 } 519 if( p ) { 520 sqlite3ExprCheckHeight(pParse, p->nHeight); 521 } 522 return p; 523 } 524 525 /* 526 ** If the expression is always either TRUE or FALSE (respectively), 527 ** then return 1. If one cannot determine the truth value of the 528 ** expression at compile-time return 0. 529 ** 530 ** This is an optimization. If is OK to return 0 here even if 531 ** the expression really is always false or false (a false negative). 532 ** But it is a bug to return 1 if the expression might have different 533 ** boolean values in different circumstances (a false positive.) 534 ** 535 ** Note that if the expression is part of conditional for a 536 ** LEFT JOIN, then we cannot determine at compile-time whether or not 537 ** is it true or false, so always return 0. 538 */ 539 static int exprAlwaysTrue(Expr *p){ 540 int v = 0; 541 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 542 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 543 return v!=0; 544 } 545 static int exprAlwaysFalse(Expr *p){ 546 int v = 0; 547 if( ExprHasProperty(p, EP_FromJoin) ) return 0; 548 if( !sqlite3ExprIsInteger(p, &v) ) return 0; 549 return v==0; 550 } 551 552 /* 553 ** Join two expressions using an AND operator. If either expression is 554 ** NULL, then just return the other expression. 555 ** 556 ** If one side or the other of the AND is known to be false, then instead 557 ** of returning an AND expression, just return a constant expression with 558 ** a value of false. 559 */ 560 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ 561 if( pLeft==0 ){ 562 return pRight; 563 }else if( pRight==0 ){ 564 return pLeft; 565 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ 566 sqlite3ExprDelete(db, pLeft); 567 sqlite3ExprDelete(db, pRight); 568 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); 569 }else{ 570 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); 571 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); 572 return pNew; 573 } 574 } 575 576 /* 577 ** Construct a new expression node for a function with multiple 578 ** arguments. 579 */ 580 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ 581 Expr *pNew; 582 sqlite3 *db = pParse->db; 583 assert( pToken ); 584 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 585 if( pNew==0 ){ 586 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 587 return 0; 588 } 589 pNew->x.pList = pList; 590 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 591 sqlite3ExprSetHeight(pParse, pNew); 592 return pNew; 593 } 594 595 /* 596 ** Assign a variable number to an expression that encodes a wildcard 597 ** in the original SQL statement. 598 ** 599 ** Wildcards consisting of a single "?" are assigned the next sequential 600 ** variable number. 601 ** 602 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 603 ** sure "nnn" is not too be to avoid a denial of service attack when 604 ** the SQL statement comes from an external source. 605 ** 606 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 607 ** as the previous instance of the same wildcard. Or if this is the first 608 ** instance of the wildcard, the next sequenial variable number is 609 ** assigned. 610 */ 611 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ 612 sqlite3 *db = pParse->db; 613 const char *z; 614 615 if( pExpr==0 ) return; 616 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 617 z = pExpr->u.zToken; 618 assert( z!=0 ); 619 assert( z[0]!=0 ); 620 if( z[1]==0 ){ 621 /* Wildcard of the form "?". Assign the next variable number */ 622 assert( z[0]=='?' ); 623 pExpr->iColumn = (ynVar)(++pParse->nVar); 624 }else{ 625 ynVar x = 0; 626 u32 n = sqlite3Strlen30(z); 627 if( z[0]=='?' ){ 628 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 629 ** use it as the variable number */ 630 i64 i; 631 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 632 pExpr->iColumn = x = (ynVar)i; 633 testcase( i==0 ); 634 testcase( i==1 ); 635 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 636 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 637 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 638 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 639 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 640 x = 0; 641 } 642 if( i>pParse->nVar ){ 643 pParse->nVar = (int)i; 644 } 645 }else{ 646 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 647 ** number as the prior appearance of the same name, or if the name 648 ** has never appeared before, reuse the same variable number 649 */ 650 ynVar i; 651 for(i=0; i<pParse->nzVar; i++){ 652 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ 653 pExpr->iColumn = x = (ynVar)i+1; 654 break; 655 } 656 } 657 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); 658 } 659 if( x>0 ){ 660 if( x>pParse->nzVar ){ 661 char **a; 662 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); 663 if( a==0 ) return; /* Error reported through db->mallocFailed */ 664 pParse->azVar = a; 665 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); 666 pParse->nzVar = x; 667 } 668 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ 669 sqlite3DbFree(db, pParse->azVar[x-1]); 670 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); 671 } 672 } 673 } 674 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 675 sqlite3ErrorMsg(pParse, "too many SQL variables"); 676 } 677 } 678 679 /* 680 ** Recursively delete an expression tree. 681 */ 682 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 683 if( p==0 ) return; 684 /* Sanity check: Assert that the IntValue is non-negative if it exists */ 685 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); 686 if( !ExprHasProperty(p, EP_TokenOnly) ){ 687 /* The Expr.x union is never used at the same time as Expr.pRight */ 688 assert( p->x.pList==0 || p->pRight==0 ); 689 sqlite3ExprDelete(db, p->pLeft); 690 sqlite3ExprDelete(db, p->pRight); 691 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); 692 if( ExprHasProperty(p, EP_xIsSelect) ){ 693 sqlite3SelectDelete(db, p->x.pSelect); 694 }else{ 695 sqlite3ExprListDelete(db, p->x.pList); 696 } 697 } 698 if( !ExprHasProperty(p, EP_Static) ){ 699 sqlite3DbFree(db, p); 700 } 701 } 702 703 /* 704 ** Return the number of bytes allocated for the expression structure 705 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 706 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 707 */ 708 static int exprStructSize(Expr *p){ 709 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 710 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 711 return EXPR_FULLSIZE; 712 } 713 714 /* 715 ** The dupedExpr*Size() routines each return the number of bytes required 716 ** to store a copy of an expression or expression tree. They differ in 717 ** how much of the tree is measured. 718 ** 719 ** dupedExprStructSize() Size of only the Expr structure 720 ** dupedExprNodeSize() Size of Expr + space for token 721 ** dupedExprSize() Expr + token + subtree components 722 ** 723 *************************************************************************** 724 ** 725 ** The dupedExprStructSize() function returns two values OR-ed together: 726 ** (1) the space required for a copy of the Expr structure only and 727 ** (2) the EP_xxx flags that indicate what the structure size should be. 728 ** The return values is always one of: 729 ** 730 ** EXPR_FULLSIZE 731 ** EXPR_REDUCEDSIZE | EP_Reduced 732 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 733 ** 734 ** The size of the structure can be found by masking the return value 735 ** of this routine with 0xfff. The flags can be found by masking the 736 ** return value with EP_Reduced|EP_TokenOnly. 737 ** 738 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 739 ** (unreduced) Expr objects as they or originally constructed by the parser. 740 ** During expression analysis, extra information is computed and moved into 741 ** later parts of teh Expr object and that extra information might get chopped 742 ** off if the expression is reduced. Note also that it does not work to 743 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal 744 ** to reduce a pristine expression tree from the parser. The implementation 745 ** of dupedExprStructSize() contain multiple assert() statements that attempt 746 ** to enforce this constraint. 747 */ 748 static int dupedExprStructSize(Expr *p, int flags){ 749 int nSize; 750 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 751 assert( EXPR_FULLSIZE<=0xfff ); 752 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 753 if( 0==(flags&EXPRDUP_REDUCE) ){ 754 nSize = EXPR_FULLSIZE; 755 }else{ 756 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 757 assert( !ExprHasProperty(p, EP_FromJoin) ); 758 assert( !ExprHasProperty(p, EP_MemToken) ); 759 assert( !ExprHasProperty(p, EP_NoReduce) ); 760 if( p->pLeft || p->x.pList ){ 761 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 762 }else{ 763 assert( p->pRight==0 ); 764 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 765 } 766 } 767 return nSize; 768 } 769 770 /* 771 ** This function returns the space in bytes required to store the copy 772 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 773 ** string is defined.) 774 */ 775 static int dupedExprNodeSize(Expr *p, int flags){ 776 int nByte = dupedExprStructSize(p, flags) & 0xfff; 777 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 778 nByte += sqlite3Strlen30(p->u.zToken)+1; 779 } 780 return ROUND8(nByte); 781 } 782 783 /* 784 ** Return the number of bytes required to create a duplicate of the 785 ** expression passed as the first argument. The second argument is a 786 ** mask containing EXPRDUP_XXX flags. 787 ** 788 ** The value returned includes space to create a copy of the Expr struct 789 ** itself and the buffer referred to by Expr.u.zToken, if any. 790 ** 791 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 792 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 793 ** and Expr.pRight variables (but not for any structures pointed to or 794 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 795 */ 796 static int dupedExprSize(Expr *p, int flags){ 797 int nByte = 0; 798 if( p ){ 799 nByte = dupedExprNodeSize(p, flags); 800 if( flags&EXPRDUP_REDUCE ){ 801 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 802 } 803 } 804 return nByte; 805 } 806 807 /* 808 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 809 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 810 ** to store the copy of expression p, the copies of p->u.zToken 811 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 812 ** if any. Before returning, *pzBuffer is set to the first byte passed the 813 ** portion of the buffer copied into by this function. 814 */ 815 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ 816 Expr *pNew = 0; /* Value to return */ 817 if( p ){ 818 const int isReduced = (flags&EXPRDUP_REDUCE); 819 u8 *zAlloc; 820 u32 staticFlag = 0; 821 822 assert( pzBuffer==0 || isReduced ); 823 824 /* Figure out where to write the new Expr structure. */ 825 if( pzBuffer ){ 826 zAlloc = *pzBuffer; 827 staticFlag = EP_Static; 828 }else{ 829 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); 830 } 831 pNew = (Expr *)zAlloc; 832 833 if( pNew ){ 834 /* Set nNewSize to the size allocated for the structure pointed to 835 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 836 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 837 ** by the copy of the p->u.zToken string (if any). 838 */ 839 const unsigned nStructSize = dupedExprStructSize(p, flags); 840 const int nNewSize = nStructSize & 0xfff; 841 int nToken; 842 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 843 nToken = sqlite3Strlen30(p->u.zToken) + 1; 844 }else{ 845 nToken = 0; 846 } 847 if( isReduced ){ 848 assert( ExprHasProperty(p, EP_Reduced)==0 ); 849 memcpy(zAlloc, p, nNewSize); 850 }else{ 851 int nSize = exprStructSize(p); 852 memcpy(zAlloc, p, nSize); 853 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 854 } 855 856 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 857 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); 858 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 859 pNew->flags |= staticFlag; 860 861 /* Copy the p->u.zToken string, if any. */ 862 if( nToken ){ 863 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 864 memcpy(zToken, p->u.zToken, nToken); 865 } 866 867 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ 868 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 869 if( ExprHasProperty(p, EP_xIsSelect) ){ 870 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); 871 }else{ 872 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); 873 } 874 } 875 876 /* Fill in pNew->pLeft and pNew->pRight. */ 877 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ 878 zAlloc += dupedExprNodeSize(p, flags); 879 if( ExprHasProperty(pNew, EP_Reduced) ){ 880 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); 881 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); 882 } 883 if( pzBuffer ){ 884 *pzBuffer = zAlloc; 885 } 886 }else{ 887 if( !ExprHasProperty(p, EP_TokenOnly) ){ 888 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 889 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 890 } 891 } 892 893 } 894 } 895 return pNew; 896 } 897 898 /* 899 ** Create and return a deep copy of the object passed as the second 900 ** argument. If an OOM condition is encountered, NULL is returned 901 ** and the db->mallocFailed flag set. 902 */ 903 #ifndef SQLITE_OMIT_CTE 904 static With *withDup(sqlite3 *db, With *p){ 905 With *pRet = 0; 906 if( p ){ 907 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 908 pRet = sqlite3DbMallocZero(db, nByte); 909 if( pRet ){ 910 int i; 911 pRet->nCte = p->nCte; 912 for(i=0; i<p->nCte; i++){ 913 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 914 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 915 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 916 } 917 } 918 } 919 return pRet; 920 } 921 #else 922 # define withDup(x,y) 0 923 #endif 924 925 /* 926 ** The following group of routines make deep copies of expressions, 927 ** expression lists, ID lists, and select statements. The copies can 928 ** be deleted (by being passed to their respective ...Delete() routines) 929 ** without effecting the originals. 930 ** 931 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 932 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 933 ** by subsequent calls to sqlite*ListAppend() routines. 934 ** 935 ** Any tables that the SrcList might point to are not duplicated. 936 ** 937 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 938 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 939 ** truncated version of the usual Expr structure that will be stored as 940 ** part of the in-memory representation of the database schema. 941 */ 942 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ 943 return exprDup(db, p, flags, 0); 944 } 945 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ 946 ExprList *pNew; 947 struct ExprList_item *pItem, *pOldItem; 948 int i; 949 if( p==0 ) return 0; 950 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 951 if( pNew==0 ) return 0; 952 pNew->iECursor = 0; 953 pNew->nExpr = i = p->nExpr; 954 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} 955 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); 956 if( pItem==0 ){ 957 sqlite3DbFree(db, pNew); 958 return 0; 959 } 960 pOldItem = p->a; 961 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 962 Expr *pOldExpr = pOldItem->pExpr; 963 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 964 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 965 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); 966 pItem->sortOrder = pOldItem->sortOrder; 967 pItem->done = 0; 968 pItem->bSpanIsTab = pOldItem->bSpanIsTab; 969 pItem->u = pOldItem->u; 970 } 971 return pNew; 972 } 973 974 /* 975 ** If cursors, triggers, views and subqueries are all omitted from 976 ** the build, then none of the following routines, except for 977 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 978 ** called with a NULL argument. 979 */ 980 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 981 || !defined(SQLITE_OMIT_SUBQUERY) 982 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ 983 SrcList *pNew; 984 int i; 985 int nByte; 986 if( p==0 ) return 0; 987 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 988 pNew = sqlite3DbMallocRaw(db, nByte ); 989 if( pNew==0 ) return 0; 990 pNew->nSrc = pNew->nAlloc = p->nSrc; 991 for(i=0; i<p->nSrc; i++){ 992 struct SrcList_item *pNewItem = &pNew->a[i]; 993 struct SrcList_item *pOldItem = &p->a[i]; 994 Table *pTab; 995 pNewItem->pSchema = pOldItem->pSchema; 996 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 997 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 998 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 999 pNewItem->jointype = pOldItem->jointype; 1000 pNewItem->iCursor = pOldItem->iCursor; 1001 pNewItem->addrFillSub = pOldItem->addrFillSub; 1002 pNewItem->regReturn = pOldItem->regReturn; 1003 pNewItem->isCorrelated = pOldItem->isCorrelated; 1004 pNewItem->viaCoroutine = pOldItem->viaCoroutine; 1005 pNewItem->isRecursive = pOldItem->isRecursive; 1006 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); 1007 pNewItem->notIndexed = pOldItem->notIndexed; 1008 pNewItem->pIndex = pOldItem->pIndex; 1009 pTab = pNewItem->pTab = pOldItem->pTab; 1010 if( pTab ){ 1011 pTab->nRef++; 1012 } 1013 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1014 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); 1015 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); 1016 pNewItem->colUsed = pOldItem->colUsed; 1017 } 1018 return pNew; 1019 } 1020 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ 1021 IdList *pNew; 1022 int i; 1023 if( p==0 ) return 0; 1024 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); 1025 if( pNew==0 ) return 0; 1026 pNew->nId = p->nId; 1027 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); 1028 if( pNew->a==0 ){ 1029 sqlite3DbFree(db, pNew); 1030 return 0; 1031 } 1032 /* Note that because the size of the allocation for p->a[] is not 1033 ** necessarily a power of two, sqlite3IdListAppend() may not be called 1034 ** on the duplicate created by this function. */ 1035 for(i=0; i<p->nId; i++){ 1036 struct IdList_item *pNewItem = &pNew->a[i]; 1037 struct IdList_item *pOldItem = &p->a[i]; 1038 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1039 pNewItem->idx = pOldItem->idx; 1040 } 1041 return pNew; 1042 } 1043 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1044 Select *pNew, *pPrior; 1045 if( p==0 ) return 0; 1046 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); 1047 if( pNew==0 ) return 0; 1048 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1049 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1050 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1051 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1052 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1053 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1054 pNew->op = p->op; 1055 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); 1056 if( pPrior ) pPrior->pNext = pNew; 1057 pNew->pNext = 0; 1058 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1059 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); 1060 pNew->iLimit = 0; 1061 pNew->iOffset = 0; 1062 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1063 pNew->pRightmost = 0; 1064 pNew->addrOpenEphm[0] = -1; 1065 pNew->addrOpenEphm[1] = -1; 1066 pNew->addrOpenEphm[2] = -1; 1067 pNew->nSelectRow = p->nSelectRow; 1068 pNew->pWith = withDup(db, p->pWith); 1069 return pNew; 1070 } 1071 #else 1072 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ 1073 assert( p==0 ); 1074 return 0; 1075 } 1076 #endif 1077 1078 1079 /* 1080 ** Add a new element to the end of an expression list. If pList is 1081 ** initially NULL, then create a new expression list. 1082 ** 1083 ** If a memory allocation error occurs, the entire list is freed and 1084 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1085 ** that the new entry was successfully appended. 1086 */ 1087 ExprList *sqlite3ExprListAppend( 1088 Parse *pParse, /* Parsing context */ 1089 ExprList *pList, /* List to which to append. Might be NULL */ 1090 Expr *pExpr /* Expression to be appended. Might be NULL */ 1091 ){ 1092 sqlite3 *db = pParse->db; 1093 if( pList==0 ){ 1094 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); 1095 if( pList==0 ){ 1096 goto no_mem; 1097 } 1098 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); 1099 if( pList->a==0 ) goto no_mem; 1100 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ 1101 struct ExprList_item *a; 1102 assert( pList->nExpr>0 ); 1103 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); 1104 if( a==0 ){ 1105 goto no_mem; 1106 } 1107 pList->a = a; 1108 } 1109 assert( pList->a!=0 ); 1110 if( 1 ){ 1111 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; 1112 memset(pItem, 0, sizeof(*pItem)); 1113 pItem->pExpr = pExpr; 1114 } 1115 return pList; 1116 1117 no_mem: 1118 /* Avoid leaking memory if malloc has failed. */ 1119 sqlite3ExprDelete(db, pExpr); 1120 sqlite3ExprListDelete(db, pList); 1121 return 0; 1122 } 1123 1124 /* 1125 ** Set the ExprList.a[].zName element of the most recently added item 1126 ** on the expression list. 1127 ** 1128 ** pList might be NULL following an OOM error. But pName should never be 1129 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1130 ** is set. 1131 */ 1132 void sqlite3ExprListSetName( 1133 Parse *pParse, /* Parsing context */ 1134 ExprList *pList, /* List to which to add the span. */ 1135 Token *pName, /* Name to be added */ 1136 int dequote /* True to cause the name to be dequoted */ 1137 ){ 1138 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1139 if( pList ){ 1140 struct ExprList_item *pItem; 1141 assert( pList->nExpr>0 ); 1142 pItem = &pList->a[pList->nExpr-1]; 1143 assert( pItem->zName==0 ); 1144 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1145 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); 1146 } 1147 } 1148 1149 /* 1150 ** Set the ExprList.a[].zSpan element of the most recently added item 1151 ** on the expression list. 1152 ** 1153 ** pList might be NULL following an OOM error. But pSpan should never be 1154 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1155 ** is set. 1156 */ 1157 void sqlite3ExprListSetSpan( 1158 Parse *pParse, /* Parsing context */ 1159 ExprList *pList, /* List to which to add the span. */ 1160 ExprSpan *pSpan /* The span to be added */ 1161 ){ 1162 sqlite3 *db = pParse->db; 1163 assert( pList!=0 || db->mallocFailed!=0 ); 1164 if( pList ){ 1165 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 1166 assert( pList->nExpr>0 ); 1167 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); 1168 sqlite3DbFree(db, pItem->zSpan); 1169 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1170 (int)(pSpan->zEnd - pSpan->zStart)); 1171 } 1172 } 1173 1174 /* 1175 ** If the expression list pEList contains more than iLimit elements, 1176 ** leave an error message in pParse. 1177 */ 1178 void sqlite3ExprListCheckLength( 1179 Parse *pParse, 1180 ExprList *pEList, 1181 const char *zObject 1182 ){ 1183 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 1184 testcase( pEList && pEList->nExpr==mx ); 1185 testcase( pEList && pEList->nExpr==mx+1 ); 1186 if( pEList && pEList->nExpr>mx ){ 1187 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 1188 } 1189 } 1190 1191 /* 1192 ** Delete an entire expression list. 1193 */ 1194 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 1195 int i; 1196 struct ExprList_item *pItem; 1197 if( pList==0 ) return; 1198 assert( pList->a!=0 || pList->nExpr==0 ); 1199 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 1200 sqlite3ExprDelete(db, pItem->pExpr); 1201 sqlite3DbFree(db, pItem->zName); 1202 sqlite3DbFree(db, pItem->zSpan); 1203 } 1204 sqlite3DbFree(db, pList->a); 1205 sqlite3DbFree(db, pList); 1206 } 1207 1208 /* 1209 ** These routines are Walker callbacks. Walker.u.pi is a pointer 1210 ** to an integer. These routines are checking an expression to see 1211 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is 1212 ** not constant. 1213 ** 1214 ** These callback routines are used to implement the following: 1215 ** 1216 ** sqlite3ExprIsConstant() 1217 ** sqlite3ExprIsConstantNotJoin() 1218 ** sqlite3ExprIsConstantOrFunction() 1219 ** 1220 */ 1221 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 1222 1223 /* If pWalker->u.i is 3 then any term of the expression that comes from 1224 ** the ON or USING clauses of a join disqualifies the expression 1225 ** from being considered constant. */ 1226 if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){ 1227 pWalker->u.i = 0; 1228 return WRC_Abort; 1229 } 1230 1231 switch( pExpr->op ){ 1232 /* Consider functions to be constant if all their arguments are constant 1233 ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST 1234 ** flag. */ 1235 case TK_FUNCTION: 1236 if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){ 1237 return WRC_Continue; 1238 } 1239 /* Fall through */ 1240 case TK_ID: 1241 case TK_COLUMN: 1242 case TK_AGG_FUNCTION: 1243 case TK_AGG_COLUMN: 1244 testcase( pExpr->op==TK_ID ); 1245 testcase( pExpr->op==TK_COLUMN ); 1246 testcase( pExpr->op==TK_AGG_FUNCTION ); 1247 testcase( pExpr->op==TK_AGG_COLUMN ); 1248 pWalker->u.i = 0; 1249 return WRC_Abort; 1250 default: 1251 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ 1252 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ 1253 return WRC_Continue; 1254 } 1255 } 1256 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ 1257 UNUSED_PARAMETER(NotUsed); 1258 pWalker->u.i = 0; 1259 return WRC_Abort; 1260 } 1261 static int exprIsConst(Expr *p, int initFlag){ 1262 Walker w; 1263 memset(&w, 0, sizeof(w)); 1264 w.u.i = initFlag; 1265 w.xExprCallback = exprNodeIsConstant; 1266 w.xSelectCallback = selectNodeIsConstant; 1267 sqlite3WalkExpr(&w, p); 1268 return w.u.i; 1269 } 1270 1271 /* 1272 ** Walk an expression tree. Return 1 if the expression is constant 1273 ** and 0 if it involves variables or function calls. 1274 ** 1275 ** For the purposes of this function, a double-quoted string (ex: "abc") 1276 ** is considered a variable but a single-quoted string (ex: 'abc') is 1277 ** a constant. 1278 */ 1279 int sqlite3ExprIsConstant(Expr *p){ 1280 return exprIsConst(p, 1); 1281 } 1282 1283 /* 1284 ** Walk an expression tree. Return 1 if the expression is constant 1285 ** that does no originate from the ON or USING clauses of a join. 1286 ** Return 0 if it involves variables or function calls or terms from 1287 ** an ON or USING clause. 1288 */ 1289 int sqlite3ExprIsConstantNotJoin(Expr *p){ 1290 return exprIsConst(p, 3); 1291 } 1292 1293 /* 1294 ** Walk an expression tree. Return 1 if the expression is constant 1295 ** or a function call with constant arguments. Return and 0 if there 1296 ** are any variables. 1297 ** 1298 ** For the purposes of this function, a double-quoted string (ex: "abc") 1299 ** is considered a variable but a single-quoted string (ex: 'abc') is 1300 ** a constant. 1301 */ 1302 int sqlite3ExprIsConstantOrFunction(Expr *p){ 1303 return exprIsConst(p, 2); 1304 } 1305 1306 /* 1307 ** If the expression p codes a constant integer that is small enough 1308 ** to fit in a 32-bit integer, return 1 and put the value of the integer 1309 ** in *pValue. If the expression is not an integer or if it is too big 1310 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 1311 */ 1312 int sqlite3ExprIsInteger(Expr *p, int *pValue){ 1313 int rc = 0; 1314 1315 /* If an expression is an integer literal that fits in a signed 32-bit 1316 ** integer, then the EP_IntValue flag will have already been set */ 1317 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 1318 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 1319 1320 if( p->flags & EP_IntValue ){ 1321 *pValue = p->u.iValue; 1322 return 1; 1323 } 1324 switch( p->op ){ 1325 case TK_UPLUS: { 1326 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 1327 break; 1328 } 1329 case TK_UMINUS: { 1330 int v; 1331 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 1332 assert( v!=(-2147483647-1) ); 1333 *pValue = -v; 1334 rc = 1; 1335 } 1336 break; 1337 } 1338 default: break; 1339 } 1340 return rc; 1341 } 1342 1343 /* 1344 ** Return FALSE if there is no chance that the expression can be NULL. 1345 ** 1346 ** If the expression might be NULL or if the expression is too complex 1347 ** to tell return TRUE. 1348 ** 1349 ** This routine is used as an optimization, to skip OP_IsNull opcodes 1350 ** when we know that a value cannot be NULL. Hence, a false positive 1351 ** (returning TRUE when in fact the expression can never be NULL) might 1352 ** be a small performance hit but is otherwise harmless. On the other 1353 ** hand, a false negative (returning FALSE when the result could be NULL) 1354 ** will likely result in an incorrect answer. So when in doubt, return 1355 ** TRUE. 1356 */ 1357 int sqlite3ExprCanBeNull(const Expr *p){ 1358 u8 op; 1359 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1360 op = p->op; 1361 if( op==TK_REGISTER ) op = p->op2; 1362 switch( op ){ 1363 case TK_INTEGER: 1364 case TK_STRING: 1365 case TK_FLOAT: 1366 case TK_BLOB: 1367 return 0; 1368 default: 1369 return 1; 1370 } 1371 } 1372 1373 /* 1374 ** Generate an OP_IsNull instruction that tests register iReg and jumps 1375 ** to location iDest if the value in iReg is NULL. The value in iReg 1376 ** was computed by pExpr. If we can look at pExpr at compile-time and 1377 ** determine that it can never generate a NULL, then the OP_IsNull operation 1378 ** can be omitted. 1379 */ 1380 void sqlite3ExprCodeIsNullJump( 1381 Vdbe *v, /* The VDBE under construction */ 1382 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */ 1383 int iReg, /* Test the value in this register for NULL */ 1384 int iDest /* Jump here if the value is null */ 1385 ){ 1386 if( sqlite3ExprCanBeNull(pExpr) ){ 1387 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest); 1388 } 1389 } 1390 1391 /* 1392 ** Return TRUE if the given expression is a constant which would be 1393 ** unchanged by OP_Affinity with the affinity given in the second 1394 ** argument. 1395 ** 1396 ** This routine is used to determine if the OP_Affinity operation 1397 ** can be omitted. When in doubt return FALSE. A false negative 1398 ** is harmless. A false positive, however, can result in the wrong 1399 ** answer. 1400 */ 1401 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 1402 u8 op; 1403 if( aff==SQLITE_AFF_NONE ) return 1; 1404 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } 1405 op = p->op; 1406 if( op==TK_REGISTER ) op = p->op2; 1407 switch( op ){ 1408 case TK_INTEGER: { 1409 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; 1410 } 1411 case TK_FLOAT: { 1412 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; 1413 } 1414 case TK_STRING: { 1415 return aff==SQLITE_AFF_TEXT; 1416 } 1417 case TK_BLOB: { 1418 return 1; 1419 } 1420 case TK_COLUMN: { 1421 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 1422 return p->iColumn<0 1423 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); 1424 } 1425 default: { 1426 return 0; 1427 } 1428 } 1429 } 1430 1431 /* 1432 ** Return TRUE if the given string is a row-id column name. 1433 */ 1434 int sqlite3IsRowid(const char *z){ 1435 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 1436 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 1437 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 1438 return 0; 1439 } 1440 1441 /* 1442 ** Return true if we are able to the IN operator optimization on a 1443 ** query of the form 1444 ** 1445 ** x IN (SELECT ...) 1446 ** 1447 ** Where the SELECT... clause is as specified by the parameter to this 1448 ** routine. 1449 ** 1450 ** The Select object passed in has already been preprocessed and no 1451 ** errors have been found. 1452 */ 1453 #ifndef SQLITE_OMIT_SUBQUERY 1454 static int isCandidateForInOpt(Select *p){ 1455 SrcList *pSrc; 1456 ExprList *pEList; 1457 Table *pTab; 1458 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ 1459 if( p->pPrior ) return 0; /* Not a compound SELECT */ 1460 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 1461 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 1462 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 1463 return 0; /* No DISTINCT keyword and no aggregate functions */ 1464 } 1465 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 1466 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 1467 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ 1468 if( p->pWhere ) return 0; /* Has no WHERE clause */ 1469 pSrc = p->pSrc; 1470 assert( pSrc!=0 ); 1471 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 1472 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 1473 pTab = pSrc->a[0].pTab; 1474 if( NEVER(pTab==0) ) return 0; 1475 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ 1476 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 1477 pEList = p->pEList; 1478 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ 1479 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ 1480 return 1; 1481 } 1482 #endif /* SQLITE_OMIT_SUBQUERY */ 1483 1484 /* 1485 ** Code an OP_Once instruction and allocate space for its flag. Return the 1486 ** address of the new instruction. 1487 */ 1488 int sqlite3CodeOnce(Parse *pParse){ 1489 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1490 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); 1491 } 1492 1493 /* 1494 ** This function is used by the implementation of the IN (...) operator. 1495 ** The pX parameter is the expression on the RHS of the IN operator, which 1496 ** might be either a list of expressions or a subquery. 1497 ** 1498 ** The job of this routine is to find or create a b-tree object that can 1499 ** be used either to test for membership in the RHS set or to iterate through 1500 ** all members of the RHS set, skipping duplicates. 1501 ** 1502 ** A cursor is opened on the b-tree object that the RHS of the IN operator 1503 ** and pX->iTable is set to the index of that cursor. 1504 ** 1505 ** The returned value of this function indicates the b-tree type, as follows: 1506 ** 1507 ** IN_INDEX_ROWID - The cursor was opened on a database table. 1508 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 1509 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 1510 ** IN_INDEX_EPH - The cursor was opened on a specially created and 1511 ** populated epheremal table. 1512 ** 1513 ** An existing b-tree might be used if the RHS expression pX is a simple 1514 ** subquery such as: 1515 ** 1516 ** SELECT <column> FROM <table> 1517 ** 1518 ** If the RHS of the IN operator is a list or a more complex subquery, then 1519 ** an ephemeral table might need to be generated from the RHS and then 1520 ** pX->iTable made to point to the ephermeral table instead of an 1521 ** existing table. 1522 ** 1523 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate 1524 ** through the set members, skipping any duplicates. In this case an 1525 ** epheremal table must be used unless the selected <column> is guaranteed 1526 ** to be unique - either because it is an INTEGER PRIMARY KEY or it 1527 ** has a UNIQUE constraint or UNIQUE index. 1528 ** 1529 ** If the prNotFound parameter is not 0, then the b-tree will be used 1530 ** for fast set membership tests. In this case an epheremal table must 1531 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 1532 ** be found with <column> as its left-most column. 1533 ** 1534 ** When the b-tree is being used for membership tests, the calling function 1535 ** needs to know whether or not the structure contains an SQL NULL 1536 ** value in order to correctly evaluate expressions like "X IN (Y, Z)". 1537 ** If there is any chance that the (...) might contain a NULL value at 1538 ** runtime, then a register is allocated and the register number written 1539 ** to *prNotFound. If there is no chance that the (...) contains a 1540 ** NULL value, then *prNotFound is left unchanged. 1541 ** 1542 ** If a register is allocated and its location stored in *prNotFound, then 1543 ** its initial value is NULL. If the (...) does not remain constant 1544 ** for the duration of the query (i.e. the SELECT within the (...) 1545 ** is a correlated subquery) then the value of the allocated register is 1546 ** reset to NULL each time the subquery is rerun. This allows the 1547 ** caller to use vdbe code equivalent to the following: 1548 ** 1549 ** if( register==NULL ){ 1550 ** has_null = <test if data structure contains null> 1551 ** register = 1 1552 ** } 1553 ** 1554 ** in order to avoid running the <test if data structure contains null> 1555 ** test more often than is necessary. 1556 */ 1557 #ifndef SQLITE_OMIT_SUBQUERY 1558 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){ 1559 Select *p; /* SELECT to the right of IN operator */ 1560 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 1561 int iTab = pParse->nTab++; /* Cursor of the RHS table */ 1562 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */ 1563 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 1564 1565 assert( pX->op==TK_IN ); 1566 1567 /* Check to see if an existing table or index can be used to 1568 ** satisfy the query. This is preferable to generating a new 1569 ** ephemeral table. 1570 */ 1571 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); 1572 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ 1573 sqlite3 *db = pParse->db; /* Database connection */ 1574 Table *pTab; /* Table <table>. */ 1575 Expr *pExpr; /* Expression <column> */ 1576 i16 iCol; /* Index of column <column> */ 1577 i16 iDb; /* Database idx for pTab */ 1578 1579 assert( p ); /* Because of isCandidateForInOpt(p) */ 1580 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 1581 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 1582 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 1583 pTab = p->pSrc->a[0].pTab; 1584 pExpr = p->pEList->a[0].pExpr; 1585 iCol = (i16)pExpr->iColumn; 1586 1587 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */ 1588 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1589 sqlite3CodeVerifySchema(pParse, iDb); 1590 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1591 1592 /* This function is only called from two places. In both cases the vdbe 1593 ** has already been allocated. So assume sqlite3GetVdbe() is always 1594 ** successful here. 1595 */ 1596 assert(v); 1597 if( iCol<0 ){ 1598 int iAddr; 1599 1600 iAddr = sqlite3CodeOnce(pParse); 1601 1602 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 1603 eType = IN_INDEX_ROWID; 1604 1605 sqlite3VdbeJumpHere(v, iAddr); 1606 }else{ 1607 Index *pIdx; /* Iterator variable */ 1608 1609 /* The collation sequence used by the comparison. If an index is to 1610 ** be used in place of a temp-table, it must be ordered according 1611 ** to this collation sequence. */ 1612 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); 1613 1614 /* Check that the affinity that will be used to perform the 1615 ** comparison is the same as the affinity of the column. If 1616 ** it is not, it is not possible to use any index. 1617 */ 1618 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); 1619 1620 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ 1621 if( (pIdx->aiColumn[0]==iCol) 1622 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq 1623 && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None)) 1624 ){ 1625 int iAddr = sqlite3CodeOnce(pParse); 1626 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 1627 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1628 VdbeComment((v, "%s", pIdx->zName)); 1629 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 1630 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 1631 1632 sqlite3VdbeJumpHere(v, iAddr); 1633 if( prNotFound && !pTab->aCol[iCol].notNull ){ 1634 *prNotFound = ++pParse->nMem; 1635 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1636 } 1637 } 1638 } 1639 } 1640 } 1641 1642 if( eType==0 ){ 1643 /* Could not found an existing table or index to use as the RHS b-tree. 1644 ** We will have to generate an ephemeral table to do the job. 1645 */ 1646 u32 savedNQueryLoop = pParse->nQueryLoop; 1647 int rMayHaveNull = 0; 1648 eType = IN_INDEX_EPH; 1649 if( prNotFound ){ 1650 *prNotFound = rMayHaveNull = ++pParse->nMem; 1651 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); 1652 }else{ 1653 testcase( pParse->nQueryLoop>0 ); 1654 pParse->nQueryLoop = 0; 1655 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ 1656 eType = IN_INDEX_ROWID; 1657 } 1658 } 1659 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); 1660 pParse->nQueryLoop = savedNQueryLoop; 1661 }else{ 1662 pX->iTable = iTab; 1663 } 1664 return eType; 1665 } 1666 #endif 1667 1668 /* 1669 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, 1670 ** or IN operators. Examples: 1671 ** 1672 ** (SELECT a FROM b) -- subquery 1673 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 1674 ** x IN (4,5,11) -- IN operator with list on right-hand side 1675 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 1676 ** 1677 ** The pExpr parameter describes the expression that contains the IN 1678 ** operator or subquery. 1679 ** 1680 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed 1681 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference 1682 ** to some integer key column of a table B-Tree. In this case, use an 1683 ** intkey B-Tree to store the set of IN(...) values instead of the usual 1684 ** (slower) variable length keys B-Tree. 1685 ** 1686 ** If rMayHaveNull is non-zero, that means that the operation is an IN 1687 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. 1688 ** Furthermore, the IN is in a WHERE clause and that we really want 1689 ** to iterate over the RHS of the IN operator in order to quickly locate 1690 ** all corresponding LHS elements. All this routine does is initialize 1691 ** the register given by rMayHaveNull to NULL. Calling routines will take 1692 ** care of changing this register value to non-NULL if the RHS is NULL-free. 1693 ** 1694 ** If rMayHaveNull is zero, that means that the subquery is being used 1695 ** for membership testing only. There is no need to initialize any 1696 ** registers to indicate the presence or absence of NULLs on the RHS. 1697 ** 1698 ** For a SELECT or EXISTS operator, return the register that holds the 1699 ** result. For IN operators or if an error occurs, the return value is 0. 1700 */ 1701 #ifndef SQLITE_OMIT_SUBQUERY 1702 int sqlite3CodeSubselect( 1703 Parse *pParse, /* Parsing context */ 1704 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ 1705 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */ 1706 int isRowid /* If true, LHS of IN operator is a rowid */ 1707 ){ 1708 int testAddr = -1; /* One-time test address */ 1709 int rReg = 0; /* Register storing resulting */ 1710 Vdbe *v = sqlite3GetVdbe(pParse); 1711 if( NEVER(v==0) ) return 0; 1712 sqlite3ExprCachePush(pParse); 1713 1714 /* This code must be run in its entirety every time it is encountered 1715 ** if any of the following is true: 1716 ** 1717 ** * The right-hand side is a correlated subquery 1718 ** * The right-hand side is an expression list containing variables 1719 ** * We are inside a trigger 1720 ** 1721 ** If all of the above are false, then we can run this code just once 1722 ** save the results, and reuse the same result on subsequent invocations. 1723 */ 1724 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 1725 testAddr = sqlite3CodeOnce(pParse); 1726 } 1727 1728 #ifndef SQLITE_OMIT_EXPLAIN 1729 if( pParse->explain==2 ){ 1730 char *zMsg = sqlite3MPrintf( 1731 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ", 1732 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId 1733 ); 1734 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1735 } 1736 #endif 1737 1738 switch( pExpr->op ){ 1739 case TK_IN: { 1740 char affinity; /* Affinity of the LHS of the IN */ 1741 int addr; /* Address of OP_OpenEphemeral instruction */ 1742 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ 1743 KeyInfo *pKeyInfo = 0; /* Key information */ 1744 1745 if( rMayHaveNull ){ 1746 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); 1747 } 1748 1749 affinity = sqlite3ExprAffinity(pLeft); 1750 1751 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' 1752 ** expression it is handled the same way. An ephemeral table is 1753 ** filled with single-field index keys representing the results 1754 ** from the SELECT or the <exprlist>. 1755 ** 1756 ** If the 'x' expression is a column value, or the SELECT... 1757 ** statement returns a column value, then the affinity of that 1758 ** column is used to build the index keys. If both 'x' and the 1759 ** SELECT... statement are columns, then numeric affinity is used 1760 ** if either column has NUMERIC or INTEGER affinity. If neither 1761 ** 'x' nor the SELECT... statement are columns, then numeric affinity 1762 ** is used. 1763 */ 1764 pExpr->iTable = pParse->nTab++; 1765 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); 1766 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1767 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); 1768 1769 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1770 /* Case 1: expr IN (SELECT ...) 1771 ** 1772 ** Generate code to write the results of the select into the temporary 1773 ** table allocated and opened above. 1774 */ 1775 SelectDest dest; 1776 ExprList *pEList; 1777 1778 assert( !isRowid ); 1779 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); 1780 dest.affSdst = (u8)affinity; 1781 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); 1782 pExpr->x.pSelect->iLimit = 0; 1783 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 1784 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ 1785 sqlite3KeyInfoUnref(pKeyInfo); 1786 return 0; 1787 } 1788 pEList = pExpr->x.pSelect->pEList; 1789 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 1790 assert( pEList!=0 ); 1791 assert( pEList->nExpr>0 ); 1792 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1793 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, 1794 pEList->a[0].pExpr); 1795 }else if( ALWAYS(pExpr->x.pList!=0) ){ 1796 /* Case 2: expr IN (exprlist) 1797 ** 1798 ** For each expression, build an index key from the evaluation and 1799 ** store it in the temporary table. If <expr> is a column, then use 1800 ** that columns affinity when building index keys. If <expr> is not 1801 ** a column, use numeric affinity. 1802 */ 1803 int i; 1804 ExprList *pList = pExpr->x.pList; 1805 struct ExprList_item *pItem; 1806 int r1, r2, r3; 1807 1808 if( !affinity ){ 1809 affinity = SQLITE_AFF_NONE; 1810 } 1811 if( pKeyInfo ){ 1812 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 1813 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 1814 } 1815 1816 /* Loop through each expression in <exprlist>. */ 1817 r1 = sqlite3GetTempReg(pParse); 1818 r2 = sqlite3GetTempReg(pParse); 1819 sqlite3VdbeAddOp2(v, OP_Null, 0, r2); 1820 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 1821 Expr *pE2 = pItem->pExpr; 1822 int iValToIns; 1823 1824 /* If the expression is not constant then we will need to 1825 ** disable the test that was generated above that makes sure 1826 ** this code only executes once. Because for a non-constant 1827 ** expression we need to rerun this code each time. 1828 */ 1829 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){ 1830 sqlite3VdbeChangeToNoop(v, testAddr); 1831 testAddr = -1; 1832 } 1833 1834 /* Evaluate the expression and insert it into the temp table */ 1835 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ 1836 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); 1837 }else{ 1838 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); 1839 if( isRowid ){ 1840 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, 1841 sqlite3VdbeCurrentAddr(v)+2); 1842 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); 1843 }else{ 1844 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); 1845 sqlite3ExprCacheAffinityChange(pParse, r3, 1); 1846 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); 1847 } 1848 } 1849 } 1850 sqlite3ReleaseTempReg(pParse, r1); 1851 sqlite3ReleaseTempReg(pParse, r2); 1852 } 1853 if( pKeyInfo ){ 1854 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 1855 } 1856 break; 1857 } 1858 1859 case TK_EXISTS: 1860 case TK_SELECT: 1861 default: { 1862 /* If this has to be a scalar SELECT. Generate code to put the 1863 ** value of this select in a memory cell and record the number 1864 ** of the memory cell in iColumn. If this is an EXISTS, write 1865 ** an integer 0 (not exists) or 1 (exists) into a memory cell 1866 ** and record that memory cell in iColumn. 1867 */ 1868 Select *pSel; /* SELECT statement to encode */ 1869 SelectDest dest; /* How to deal with SELECt result */ 1870 1871 testcase( pExpr->op==TK_EXISTS ); 1872 testcase( pExpr->op==TK_SELECT ); 1873 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 1874 1875 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1876 pSel = pExpr->x.pSelect; 1877 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); 1878 if( pExpr->op==TK_SELECT ){ 1879 dest.eDest = SRT_Mem; 1880 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); 1881 VdbeComment((v, "Init subquery result")); 1882 }else{ 1883 dest.eDest = SRT_Exists; 1884 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 1885 VdbeComment((v, "Init EXISTS result")); 1886 } 1887 sqlite3ExprDelete(pParse->db, pSel->pLimit); 1888 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 1889 &sqlite3IntTokens[1]); 1890 pSel->iLimit = 0; 1891 if( sqlite3Select(pParse, pSel, &dest) ){ 1892 return 0; 1893 } 1894 rReg = dest.iSDParm; 1895 ExprSetVVAProperty(pExpr, EP_NoReduce); 1896 break; 1897 } 1898 } 1899 1900 if( testAddr>=0 ){ 1901 sqlite3VdbeJumpHere(v, testAddr); 1902 } 1903 sqlite3ExprCachePop(pParse, 1); 1904 1905 return rReg; 1906 } 1907 #endif /* SQLITE_OMIT_SUBQUERY */ 1908 1909 #ifndef SQLITE_OMIT_SUBQUERY 1910 /* 1911 ** Generate code for an IN expression. 1912 ** 1913 ** x IN (SELECT ...) 1914 ** x IN (value, value, ...) 1915 ** 1916 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) 1917 ** is an array of zero or more values. The expression is true if the LHS is 1918 ** contained within the RHS. The value of the expression is unknown (NULL) 1919 ** if the LHS is NULL or if the LHS is not contained within the RHS and the 1920 ** RHS contains one or more NULL values. 1921 ** 1922 ** This routine generates code will jump to destIfFalse if the LHS is not 1923 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 1924 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 1925 ** within the RHS then fall through. 1926 */ 1927 static void sqlite3ExprCodeIN( 1928 Parse *pParse, /* Parsing and code generating context */ 1929 Expr *pExpr, /* The IN expression */ 1930 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 1931 int destIfNull /* Jump here if the results are unknown due to NULLs */ 1932 ){ 1933 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 1934 char affinity; /* Comparison affinity to use */ 1935 int eType; /* Type of the RHS */ 1936 int r1; /* Temporary use register */ 1937 Vdbe *v; /* Statement under construction */ 1938 1939 /* Compute the RHS. After this step, the table with cursor 1940 ** pExpr->iTable will contains the values that make up the RHS. 1941 */ 1942 v = pParse->pVdbe; 1943 assert( v!=0 ); /* OOM detected prior to this routine */ 1944 VdbeNoopComment((v, "begin IN expr")); 1945 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull); 1946 1947 /* Figure out the affinity to use to create a key from the results 1948 ** of the expression. affinityStr stores a static string suitable for 1949 ** P4 of OP_MakeRecord. 1950 */ 1951 affinity = comparisonAffinity(pExpr); 1952 1953 /* Code the LHS, the <expr> from "<expr> IN (...)". 1954 */ 1955 sqlite3ExprCachePush(pParse); 1956 r1 = sqlite3GetTempReg(pParse); 1957 sqlite3ExprCode(pParse, pExpr->pLeft, r1); 1958 1959 /* If the LHS is NULL, then the result is either false or NULL depending 1960 ** on whether the RHS is empty or not, respectively. 1961 */ 1962 if( destIfNull==destIfFalse ){ 1963 /* Shortcut for the common case where the false and NULL outcomes are 1964 ** the same. */ 1965 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); 1966 }else{ 1967 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); 1968 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); 1969 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 1970 sqlite3VdbeJumpHere(v, addr1); 1971 } 1972 1973 if( eType==IN_INDEX_ROWID ){ 1974 /* In this case, the RHS is the ROWID of table b-tree 1975 */ 1976 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); 1977 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); 1978 }else{ 1979 /* In this case, the RHS is an index b-tree. 1980 */ 1981 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); 1982 1983 /* If the set membership test fails, then the result of the 1984 ** "x IN (...)" expression must be either 0 or NULL. If the set 1985 ** contains no NULL values, then the result is 0. If the set 1986 ** contains one or more NULL values, then the result of the 1987 ** expression is also NULL. 1988 */ 1989 if( rRhsHasNull==0 || destIfFalse==destIfNull ){ 1990 /* This branch runs if it is known at compile time that the RHS 1991 ** cannot contain NULL values. This happens as the result 1992 ** of a "NOT NULL" constraint in the database schema. 1993 ** 1994 ** Also run this branch if NULL is equivalent to FALSE 1995 ** for this particular IN operator. 1996 */ 1997 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); 1998 1999 }else{ 2000 /* In this branch, the RHS of the IN might contain a NULL and 2001 ** the presence of a NULL on the RHS makes a difference in the 2002 ** outcome. 2003 */ 2004 int j1, j2, j3; 2005 2006 /* First check to see if the LHS is contained in the RHS. If so, 2007 ** then the presence of NULLs in the RHS does not matter, so jump 2008 ** over all of the code that follows. 2009 */ 2010 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); 2011 2012 /* Here we begin generating code that runs if the LHS is not 2013 ** contained within the RHS. Generate additional code that 2014 ** tests the RHS for NULLs. If the RHS contains a NULL then 2015 ** jump to destIfNull. If there are no NULLs in the RHS then 2016 ** jump to destIfFalse. 2017 */ 2018 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull); 2019 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1); 2020 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull); 2021 sqlite3VdbeJumpHere(v, j3); 2022 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1); 2023 sqlite3VdbeJumpHere(v, j2); 2024 2025 /* Jump to the appropriate target depending on whether or not 2026 ** the RHS contains a NULL 2027 */ 2028 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull); 2029 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 2030 2031 /* The OP_Found at the top of this branch jumps here when true, 2032 ** causing the overall IN expression evaluation to fall through. 2033 */ 2034 sqlite3VdbeJumpHere(v, j1); 2035 } 2036 } 2037 sqlite3ReleaseTempReg(pParse, r1); 2038 sqlite3ExprCachePop(pParse, 1); 2039 VdbeComment((v, "end IN expr")); 2040 } 2041 #endif /* SQLITE_OMIT_SUBQUERY */ 2042 2043 /* 2044 ** Duplicate an 8-byte value 2045 */ 2046 static char *dup8bytes(Vdbe *v, const char *in){ 2047 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); 2048 if( out ){ 2049 memcpy(out, in, 8); 2050 } 2051 return out; 2052 } 2053 2054 #ifndef SQLITE_OMIT_FLOATING_POINT 2055 /* 2056 ** Generate an instruction that will put the floating point 2057 ** value described by z[0..n-1] into register iMem. 2058 ** 2059 ** The z[] string will probably not be zero-terminated. But the 2060 ** z[n] character is guaranteed to be something that does not look 2061 ** like the continuation of the number. 2062 */ 2063 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 2064 if( ALWAYS(z!=0) ){ 2065 double value; 2066 char *zV; 2067 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2068 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 2069 if( negateFlag ) value = -value; 2070 zV = dup8bytes(v, (char*)&value); 2071 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); 2072 } 2073 } 2074 #endif 2075 2076 2077 /* 2078 ** Generate an instruction that will put the integer describe by 2079 ** text z[0..n-1] into register iMem. 2080 ** 2081 ** Expr.u.zToken is always UTF8 and zero-terminated. 2082 */ 2083 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 2084 Vdbe *v = pParse->pVdbe; 2085 if( pExpr->flags & EP_IntValue ){ 2086 int i = pExpr->u.iValue; 2087 assert( i>=0 ); 2088 if( negFlag ) i = -i; 2089 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 2090 }else{ 2091 int c; 2092 i64 value; 2093 const char *z = pExpr->u.zToken; 2094 assert( z!=0 ); 2095 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 2096 if( c==0 || (c==2 && negFlag) ){ 2097 char *zV; 2098 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } 2099 zV = dup8bytes(v, (char*)&value); 2100 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); 2101 }else{ 2102 #ifdef SQLITE_OMIT_FLOATING_POINT 2103 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); 2104 #else 2105 codeReal(v, z, negFlag, iMem); 2106 #endif 2107 } 2108 } 2109 } 2110 2111 /* 2112 ** Clear a cache entry. 2113 */ 2114 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ 2115 if( p->tempReg ){ 2116 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 2117 pParse->aTempReg[pParse->nTempReg++] = p->iReg; 2118 } 2119 p->tempReg = 0; 2120 } 2121 } 2122 2123 2124 /* 2125 ** Record in the column cache that a particular column from a 2126 ** particular table is stored in a particular register. 2127 */ 2128 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ 2129 int i; 2130 int minLru; 2131 int idxLru; 2132 struct yColCache *p; 2133 2134 assert( iReg>0 ); /* Register numbers are always positive */ 2135 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ 2136 2137 /* The SQLITE_ColumnCache flag disables the column cache. This is used 2138 ** for testing only - to verify that SQLite always gets the same answer 2139 ** with and without the column cache. 2140 */ 2141 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; 2142 2143 /* First replace any existing entry. 2144 ** 2145 ** Actually, the way the column cache is currently used, we are guaranteed 2146 ** that the object will never already be in cache. Verify this guarantee. 2147 */ 2148 #ifndef NDEBUG 2149 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2150 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); 2151 } 2152 #endif 2153 2154 /* Find an empty slot and replace it */ 2155 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2156 if( p->iReg==0 ){ 2157 p->iLevel = pParse->iCacheLevel; 2158 p->iTable = iTab; 2159 p->iColumn = iCol; 2160 p->iReg = iReg; 2161 p->tempReg = 0; 2162 p->lru = pParse->iCacheCnt++; 2163 return; 2164 } 2165 } 2166 2167 /* Replace the last recently used */ 2168 minLru = 0x7fffffff; 2169 idxLru = -1; 2170 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2171 if( p->lru<minLru ){ 2172 idxLru = i; 2173 minLru = p->lru; 2174 } 2175 } 2176 if( ALWAYS(idxLru>=0) ){ 2177 p = &pParse->aColCache[idxLru]; 2178 p->iLevel = pParse->iCacheLevel; 2179 p->iTable = iTab; 2180 p->iColumn = iCol; 2181 p->iReg = iReg; 2182 p->tempReg = 0; 2183 p->lru = pParse->iCacheCnt++; 2184 return; 2185 } 2186 } 2187 2188 /* 2189 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. 2190 ** Purge the range of registers from the column cache. 2191 */ 2192 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ 2193 int i; 2194 int iLast = iReg + nReg - 1; 2195 struct yColCache *p; 2196 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2197 int r = p->iReg; 2198 if( r>=iReg && r<=iLast ){ 2199 cacheEntryClear(pParse, p); 2200 p->iReg = 0; 2201 } 2202 } 2203 } 2204 2205 /* 2206 ** Remember the current column cache context. Any new entries added 2207 ** added to the column cache after this call are removed when the 2208 ** corresponding pop occurs. 2209 */ 2210 void sqlite3ExprCachePush(Parse *pParse){ 2211 pParse->iCacheLevel++; 2212 #ifdef SQLITE_DEBUG 2213 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2214 printf("PUSH to %d\n", pParse->iCacheLevel); 2215 } 2216 #endif 2217 } 2218 2219 /* 2220 ** Remove from the column cache any entries that were added since the 2221 ** the previous N Push operations. In other words, restore the cache 2222 ** to the state it was in N Pushes ago. 2223 */ 2224 void sqlite3ExprCachePop(Parse *pParse, int N){ 2225 int i; 2226 struct yColCache *p; 2227 assert( N>0 ); 2228 assert( pParse->iCacheLevel>=N ); 2229 pParse->iCacheLevel -= N; 2230 #ifdef SQLITE_DEBUG 2231 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2232 printf("POP to %d\n", pParse->iCacheLevel); 2233 } 2234 #endif 2235 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2236 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ 2237 cacheEntryClear(pParse, p); 2238 p->iReg = 0; 2239 } 2240 } 2241 } 2242 2243 /* 2244 ** When a cached column is reused, make sure that its register is 2245 ** no longer available as a temp register. ticket #3879: that same 2246 ** register might be in the cache in multiple places, so be sure to 2247 ** get them all. 2248 */ 2249 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ 2250 int i; 2251 struct yColCache *p; 2252 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2253 if( p->iReg==iReg ){ 2254 p->tempReg = 0; 2255 } 2256 } 2257 } 2258 2259 /* 2260 ** Generate code to extract the value of the iCol-th column of a table. 2261 */ 2262 void sqlite3ExprCodeGetColumnOfTable( 2263 Vdbe *v, /* The VDBE under construction */ 2264 Table *pTab, /* The table containing the value */ 2265 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 2266 int iCol, /* Index of the column to extract */ 2267 int regOut /* Extract the value into this register */ 2268 ){ 2269 if( iCol<0 || iCol==pTab->iPKey ){ 2270 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 2271 }else{ 2272 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; 2273 int x = iCol; 2274 if( !HasRowid(pTab) ){ 2275 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 2276 } 2277 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 2278 } 2279 if( iCol>=0 ){ 2280 sqlite3ColumnDefault(v, pTab, iCol, regOut); 2281 } 2282 } 2283 2284 /* 2285 ** Generate code that will extract the iColumn-th column from 2286 ** table pTab and store the column value in a register. An effort 2287 ** is made to store the column value in register iReg, but this is 2288 ** not guaranteed. The location of the column value is returned. 2289 ** 2290 ** There must be an open cursor to pTab in iTable when this routine 2291 ** is called. If iColumn<0 then code is generated that extracts the rowid. 2292 */ 2293 int sqlite3ExprCodeGetColumn( 2294 Parse *pParse, /* Parsing and code generating context */ 2295 Table *pTab, /* Description of the table we are reading from */ 2296 int iColumn, /* Index of the table column */ 2297 int iTable, /* The cursor pointing to the table */ 2298 int iReg, /* Store results here */ 2299 u8 p5 /* P5 value for OP_Column */ 2300 ){ 2301 Vdbe *v = pParse->pVdbe; 2302 int i; 2303 struct yColCache *p; 2304 2305 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2306 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ 2307 p->lru = pParse->iCacheCnt++; 2308 sqlite3ExprCachePinRegister(pParse, p->iReg); 2309 return p->iReg; 2310 } 2311 } 2312 assert( v!=0 ); 2313 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); 2314 if( p5 ){ 2315 sqlite3VdbeChangeP5(v, p5); 2316 }else{ 2317 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); 2318 } 2319 return iReg; 2320 } 2321 2322 /* 2323 ** Clear all column cache entries. 2324 */ 2325 void sqlite3ExprCacheClear(Parse *pParse){ 2326 int i; 2327 struct yColCache *p; 2328 2329 #if SQLITE_DEBUG 2330 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 2331 printf("CLEAR\n"); 2332 } 2333 #endif 2334 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2335 if( p->iReg ){ 2336 cacheEntryClear(pParse, p); 2337 p->iReg = 0; 2338 } 2339 } 2340 } 2341 2342 /* 2343 ** Record the fact that an affinity change has occurred on iCount 2344 ** registers starting with iStart. 2345 */ 2346 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ 2347 sqlite3ExprCacheRemove(pParse, iStart, iCount); 2348 } 2349 2350 /* 2351 ** Generate code to move content from registers iFrom...iFrom+nReg-1 2352 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. 2353 */ 2354 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 2355 int i; 2356 struct yColCache *p; 2357 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); 2358 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1); 2359 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2360 int x = p->iReg; 2361 if( x>=iFrom && x<iFrom+nReg ){ 2362 p->iReg += iTo-iFrom; 2363 } 2364 } 2365 } 2366 2367 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 2368 /* 2369 ** Return true if any register in the range iFrom..iTo (inclusive) 2370 ** is used as part of the column cache. 2371 ** 2372 ** This routine is used within assert() and testcase() macros only 2373 ** and does not appear in a normal build. 2374 */ 2375 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ 2376 int i; 2377 struct yColCache *p; 2378 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 2379 int r = p->iReg; 2380 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ 2381 } 2382 return 0; 2383 } 2384 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ 2385 2386 /* 2387 ** Convert an expression node to a TK_REGISTER 2388 */ 2389 static void exprToRegister(Expr *p, int iReg){ 2390 p->op2 = p->op; 2391 p->op = TK_REGISTER; 2392 p->iTable = iReg; 2393 ExprClearProperty(p, EP_Skip); 2394 } 2395 2396 /* 2397 ** Generate code into the current Vdbe to evaluate the given 2398 ** expression. Attempt to store the results in register "target". 2399 ** Return the register where results are stored. 2400 ** 2401 ** With this routine, there is no guarantee that results will 2402 ** be stored in target. The result might be stored in some other 2403 ** register if it is convenient to do so. The calling function 2404 ** must check the return code and move the results to the desired 2405 ** register. 2406 */ 2407 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 2408 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 2409 int op; /* The opcode being coded */ 2410 int inReg = target; /* Results stored in register inReg */ 2411 int regFree1 = 0; /* If non-zero free this temporary register */ 2412 int regFree2 = 0; /* If non-zero free this temporary register */ 2413 int r1, r2, r3, r4; /* Various register numbers */ 2414 sqlite3 *db = pParse->db; /* The database connection */ 2415 Expr tempX; /* Temporary expression node */ 2416 2417 assert( target>0 && target<=pParse->nMem ); 2418 if( v==0 ){ 2419 assert( pParse->db->mallocFailed ); 2420 return 0; 2421 } 2422 2423 if( pExpr==0 ){ 2424 op = TK_NULL; 2425 }else{ 2426 op = pExpr->op; 2427 } 2428 switch( op ){ 2429 case TK_AGG_COLUMN: { 2430 AggInfo *pAggInfo = pExpr->pAggInfo; 2431 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; 2432 if( !pAggInfo->directMode ){ 2433 assert( pCol->iMem>0 ); 2434 inReg = pCol->iMem; 2435 break; 2436 }else if( pAggInfo->useSortingIdx ){ 2437 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 2438 pCol->iSorterColumn, target); 2439 break; 2440 } 2441 /* Otherwise, fall thru into the TK_COLUMN case */ 2442 } 2443 case TK_COLUMN: { 2444 int iTab = pExpr->iTable; 2445 if( iTab<0 ){ 2446 if( pParse->ckBase>0 ){ 2447 /* Generating CHECK constraints or inserting into partial index */ 2448 inReg = pExpr->iColumn + pParse->ckBase; 2449 break; 2450 }else{ 2451 /* Deleting from a partial index */ 2452 iTab = pParse->iPartIdxTab; 2453 } 2454 } 2455 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, 2456 pExpr->iColumn, iTab, target, 2457 pExpr->op2); 2458 break; 2459 } 2460 case TK_INTEGER: { 2461 codeInteger(pParse, pExpr, 0, target); 2462 break; 2463 } 2464 #ifndef SQLITE_OMIT_FLOATING_POINT 2465 case TK_FLOAT: { 2466 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2467 codeReal(v, pExpr->u.zToken, 0, target); 2468 break; 2469 } 2470 #endif 2471 case TK_STRING: { 2472 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2473 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); 2474 break; 2475 } 2476 case TK_NULL: { 2477 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2478 break; 2479 } 2480 #ifndef SQLITE_OMIT_BLOB_LITERAL 2481 case TK_BLOB: { 2482 int n; 2483 const char *z; 2484 char *zBlob; 2485 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2486 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 2487 assert( pExpr->u.zToken[1]=='\'' ); 2488 z = &pExpr->u.zToken[2]; 2489 n = sqlite3Strlen30(z) - 1; 2490 assert( z[n]=='\'' ); 2491 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 2492 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 2493 break; 2494 } 2495 #endif 2496 case TK_VARIABLE: { 2497 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2498 assert( pExpr->u.zToken!=0 ); 2499 assert( pExpr->u.zToken[0]!=0 ); 2500 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 2501 if( pExpr->u.zToken[1]!=0 ){ 2502 assert( pExpr->u.zToken[0]=='?' 2503 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); 2504 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); 2505 } 2506 break; 2507 } 2508 case TK_REGISTER: { 2509 inReg = pExpr->iTable; 2510 break; 2511 } 2512 case TK_AS: { 2513 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2514 break; 2515 } 2516 #ifndef SQLITE_OMIT_CAST 2517 case TK_CAST: { 2518 /* Expressions of the form: CAST(pLeft AS token) */ 2519 int aff, to_op; 2520 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2521 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2522 aff = sqlite3AffinityType(pExpr->u.zToken, 0); 2523 to_op = aff - SQLITE_AFF_TEXT + OP_ToText; 2524 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); 2525 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); 2526 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); 2527 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); 2528 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); 2529 testcase( to_op==OP_ToText ); 2530 testcase( to_op==OP_ToBlob ); 2531 testcase( to_op==OP_ToNumeric ); 2532 testcase( to_op==OP_ToInt ); 2533 testcase( to_op==OP_ToReal ); 2534 if( inReg!=target ){ 2535 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 2536 inReg = target; 2537 } 2538 sqlite3VdbeAddOp1(v, to_op, inReg); 2539 testcase( usedAsColumnCache(pParse, inReg, inReg) ); 2540 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); 2541 break; 2542 } 2543 #endif /* SQLITE_OMIT_CAST */ 2544 case TK_LT: 2545 case TK_LE: 2546 case TK_GT: 2547 case TK_GE: 2548 case TK_NE: 2549 case TK_EQ: { 2550 assert( TK_LT==OP_Lt ); 2551 assert( TK_LE==OP_Le ); 2552 assert( TK_GT==OP_Gt ); 2553 assert( TK_GE==OP_Ge ); 2554 assert( TK_EQ==OP_Eq ); 2555 assert( TK_NE==OP_Ne ); 2556 testcase( op==TK_LT ); 2557 testcase( op==TK_LE ); 2558 testcase( op==TK_GT ); 2559 testcase( op==TK_GE ); 2560 testcase( op==TK_EQ ); 2561 testcase( op==TK_NE ); 2562 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2563 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2564 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2565 r1, r2, inReg, SQLITE_STOREP2); 2566 testcase( regFree1==0 ); 2567 testcase( regFree2==0 ); 2568 break; 2569 } 2570 case TK_IS: 2571 case TK_ISNOT: { 2572 testcase( op==TK_IS ); 2573 testcase( op==TK_ISNOT ); 2574 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2575 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2576 op = (op==TK_IS) ? TK_EQ : TK_NE; 2577 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 2578 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); 2579 testcase( regFree1==0 ); 2580 testcase( regFree2==0 ); 2581 break; 2582 } 2583 case TK_AND: 2584 case TK_OR: 2585 case TK_PLUS: 2586 case TK_STAR: 2587 case TK_MINUS: 2588 case TK_REM: 2589 case TK_BITAND: 2590 case TK_BITOR: 2591 case TK_SLASH: 2592 case TK_LSHIFT: 2593 case TK_RSHIFT: 2594 case TK_CONCAT: { 2595 assert( TK_AND==OP_And ); 2596 assert( TK_OR==OP_Or ); 2597 assert( TK_PLUS==OP_Add ); 2598 assert( TK_MINUS==OP_Subtract ); 2599 assert( TK_REM==OP_Remainder ); 2600 assert( TK_BITAND==OP_BitAnd ); 2601 assert( TK_BITOR==OP_BitOr ); 2602 assert( TK_SLASH==OP_Divide ); 2603 assert( TK_LSHIFT==OP_ShiftLeft ); 2604 assert( TK_RSHIFT==OP_ShiftRight ); 2605 assert( TK_CONCAT==OP_Concat ); 2606 testcase( op==TK_AND ); 2607 testcase( op==TK_OR ); 2608 testcase( op==TK_PLUS ); 2609 testcase( op==TK_MINUS ); 2610 testcase( op==TK_REM ); 2611 testcase( op==TK_BITAND ); 2612 testcase( op==TK_BITOR ); 2613 testcase( op==TK_SLASH ); 2614 testcase( op==TK_LSHIFT ); 2615 testcase( op==TK_RSHIFT ); 2616 testcase( op==TK_CONCAT ); 2617 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2618 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 2619 sqlite3VdbeAddOp3(v, op, r2, r1, target); 2620 testcase( regFree1==0 ); 2621 testcase( regFree2==0 ); 2622 break; 2623 } 2624 case TK_UMINUS: { 2625 Expr *pLeft = pExpr->pLeft; 2626 assert( pLeft ); 2627 if( pLeft->op==TK_INTEGER ){ 2628 codeInteger(pParse, pLeft, 1, target); 2629 #ifndef SQLITE_OMIT_FLOATING_POINT 2630 }else if( pLeft->op==TK_FLOAT ){ 2631 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2632 codeReal(v, pLeft->u.zToken, 1, target); 2633 #endif 2634 }else{ 2635 tempX.op = TK_INTEGER; 2636 tempX.flags = EP_IntValue|EP_TokenOnly; 2637 tempX.u.iValue = 0; 2638 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 2639 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 2640 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 2641 testcase( regFree2==0 ); 2642 } 2643 inReg = target; 2644 break; 2645 } 2646 case TK_BITNOT: 2647 case TK_NOT: { 2648 assert( TK_BITNOT==OP_BitNot ); 2649 assert( TK_NOT==OP_Not ); 2650 testcase( op==TK_BITNOT ); 2651 testcase( op==TK_NOT ); 2652 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2653 testcase( regFree1==0 ); 2654 inReg = target; 2655 sqlite3VdbeAddOp2(v, op, r1, inReg); 2656 break; 2657 } 2658 case TK_ISNULL: 2659 case TK_NOTNULL: { 2660 int addr; 2661 assert( TK_ISNULL==OP_IsNull ); 2662 assert( TK_NOTNULL==OP_NotNull ); 2663 testcase( op==TK_ISNULL ); 2664 testcase( op==TK_NOTNULL ); 2665 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2666 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 2667 testcase( regFree1==0 ); 2668 addr = sqlite3VdbeAddOp1(v, op, r1); 2669 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); 2670 sqlite3VdbeJumpHere(v, addr); 2671 break; 2672 } 2673 case TK_AGG_FUNCTION: { 2674 AggInfo *pInfo = pExpr->pAggInfo; 2675 if( pInfo==0 ){ 2676 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2677 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); 2678 }else{ 2679 inReg = pInfo->aFunc[pExpr->iAgg].iMem; 2680 } 2681 break; 2682 } 2683 case TK_FUNCTION: { 2684 ExprList *pFarg; /* List of function arguments */ 2685 int nFarg; /* Number of function arguments */ 2686 FuncDef *pDef; /* The function definition object */ 2687 int nId; /* Length of the function name in bytes */ 2688 const char *zId; /* The function name */ 2689 u32 constMask = 0; /* Mask of function arguments that are constant */ 2690 int i; /* Loop counter */ 2691 u8 enc = ENC(db); /* The text encoding used by this database */ 2692 CollSeq *pColl = 0; /* A collating sequence */ 2693 2694 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 2695 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 2696 pFarg = 0; 2697 }else{ 2698 pFarg = pExpr->x.pList; 2699 } 2700 nFarg = pFarg ? pFarg->nExpr : 0; 2701 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2702 zId = pExpr->u.zToken; 2703 nId = sqlite3Strlen30(zId); 2704 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); 2705 if( pDef==0 ){ 2706 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); 2707 break; 2708 } 2709 2710 /* Attempt a direct implementation of the built-in COALESCE() and 2711 ** IFNULL() functions. This avoids unnecessary evalation of 2712 ** arguments past the first non-NULL argument. 2713 */ 2714 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ 2715 int endCoalesce = sqlite3VdbeMakeLabel(v); 2716 assert( nFarg>=2 ); 2717 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2718 for(i=1; i<nFarg; i++){ 2719 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 2720 sqlite3ExprCacheRemove(pParse, target, 1); 2721 sqlite3ExprCachePush(pParse); 2722 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 2723 sqlite3ExprCachePop(pParse, 1); 2724 } 2725 sqlite3VdbeResolveLabel(v, endCoalesce); 2726 break; 2727 } 2728 2729 /* The UNLIKELY() function is a no-op. The result is the value 2730 ** of the first argument. 2731 */ 2732 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ 2733 assert( nFarg>=1 ); 2734 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 2735 break; 2736 } 2737 2738 for(i=0; i<nFarg; i++){ 2739 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 2740 testcase( i==31 ); 2741 constMask |= MASKBIT32(i); 2742 } 2743 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 2744 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 2745 } 2746 } 2747 if( pFarg ){ 2748 if( constMask ){ 2749 r1 = pParse->nMem+1; 2750 pParse->nMem += nFarg; 2751 }else{ 2752 r1 = sqlite3GetTempRange(pParse, nFarg); 2753 } 2754 2755 /* For length() and typeof() functions with a column argument, 2756 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 2757 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 2758 ** loading. 2759 */ 2760 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 2761 u8 exprOp; 2762 assert( nFarg==1 ); 2763 assert( pFarg->a[0].pExpr!=0 ); 2764 exprOp = pFarg->a[0].pExpr->op; 2765 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 2766 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 2767 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 2768 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 2769 pFarg->a[0].pExpr->op2 = 2770 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 2771 } 2772 } 2773 2774 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ 2775 sqlite3ExprCodeExprList(pParse, pFarg, r1, 2776 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 2777 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */ 2778 }else{ 2779 r1 = 0; 2780 } 2781 #ifndef SQLITE_OMIT_VIRTUALTABLE 2782 /* Possibly overload the function if the first argument is 2783 ** a virtual table column. 2784 ** 2785 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 2786 ** second argument, not the first, as the argument to test to 2787 ** see if it is a column in a virtual table. This is done because 2788 ** the left operand of infix functions (the operand we want to 2789 ** control overloading) ends up as the second argument to the 2790 ** function. The expression "A glob B" is equivalent to 2791 ** "glob(B,A). We want to use the A in "A glob B" to test 2792 ** for function overloading. But we use the B term in "glob(B,A)". 2793 */ 2794 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ 2795 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 2796 }else if( nFarg>0 ){ 2797 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 2798 } 2799 #endif 2800 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 2801 if( !pColl ) pColl = db->pDfltColl; 2802 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 2803 } 2804 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, 2805 (char*)pDef, P4_FUNCDEF); 2806 sqlite3VdbeChangeP5(v, (u8)nFarg); 2807 if( nFarg && constMask==0 ){ 2808 sqlite3ReleaseTempRange(pParse, r1, nFarg); 2809 } 2810 break; 2811 } 2812 #ifndef SQLITE_OMIT_SUBQUERY 2813 case TK_EXISTS: 2814 case TK_SELECT: { 2815 testcase( op==TK_EXISTS ); 2816 testcase( op==TK_SELECT ); 2817 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); 2818 break; 2819 } 2820 case TK_IN: { 2821 int destIfFalse = sqlite3VdbeMakeLabel(v); 2822 int destIfNull = sqlite3VdbeMakeLabel(v); 2823 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 2824 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 2825 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 2826 sqlite3VdbeResolveLabel(v, destIfFalse); 2827 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 2828 sqlite3VdbeResolveLabel(v, destIfNull); 2829 break; 2830 } 2831 #endif /* SQLITE_OMIT_SUBQUERY */ 2832 2833 2834 /* 2835 ** x BETWEEN y AND z 2836 ** 2837 ** This is equivalent to 2838 ** 2839 ** x>=y AND x<=z 2840 ** 2841 ** X is stored in pExpr->pLeft. 2842 ** Y is stored in pExpr->pList->a[0].pExpr. 2843 ** Z is stored in pExpr->pList->a[1].pExpr. 2844 */ 2845 case TK_BETWEEN: { 2846 Expr *pLeft = pExpr->pLeft; 2847 struct ExprList_item *pLItem = pExpr->x.pList->a; 2848 Expr *pRight = pLItem->pExpr; 2849 2850 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 2851 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2852 testcase( regFree1==0 ); 2853 testcase( regFree2==0 ); 2854 r3 = sqlite3GetTempReg(pParse); 2855 r4 = sqlite3GetTempReg(pParse); 2856 codeCompare(pParse, pLeft, pRight, OP_Ge, 2857 r1, r2, r3, SQLITE_STOREP2); 2858 pLItem++; 2859 pRight = pLItem->pExpr; 2860 sqlite3ReleaseTempReg(pParse, regFree2); 2861 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); 2862 testcase( regFree2==0 ); 2863 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); 2864 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); 2865 sqlite3ReleaseTempReg(pParse, r3); 2866 sqlite3ReleaseTempReg(pParse, r4); 2867 break; 2868 } 2869 case TK_COLLATE: 2870 case TK_UPLUS: { 2871 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 2872 break; 2873 } 2874 2875 case TK_TRIGGER: { 2876 /* If the opcode is TK_TRIGGER, then the expression is a reference 2877 ** to a column in the new.* or old.* pseudo-tables available to 2878 ** trigger programs. In this case Expr.iTable is set to 1 for the 2879 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 2880 ** is set to the column of the pseudo-table to read, or to -1 to 2881 ** read the rowid field. 2882 ** 2883 ** The expression is implemented using an OP_Param opcode. The p1 2884 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 2885 ** to reference another column of the old.* pseudo-table, where 2886 ** i is the index of the column. For a new.rowid reference, p1 is 2887 ** set to (n+1), where n is the number of columns in each pseudo-table. 2888 ** For a reference to any other column in the new.* pseudo-table, p1 2889 ** is set to (n+2+i), where n and i are as defined previously. For 2890 ** example, if the table on which triggers are being fired is 2891 ** declared as: 2892 ** 2893 ** CREATE TABLE t1(a, b); 2894 ** 2895 ** Then p1 is interpreted as follows: 2896 ** 2897 ** p1==0 -> old.rowid p1==3 -> new.rowid 2898 ** p1==1 -> old.a p1==4 -> new.a 2899 ** p1==2 -> old.b p1==5 -> new.b 2900 */ 2901 Table *pTab = pExpr->pTab; 2902 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; 2903 2904 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 2905 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); 2906 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); 2907 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 2908 2909 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 2910 VdbeComment((v, "%s.%s -> $%d", 2911 (pExpr->iTable ? "new" : "old"), 2912 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), 2913 target 2914 )); 2915 2916 #ifndef SQLITE_OMIT_FLOATING_POINT 2917 /* If the column has REAL affinity, it may currently be stored as an 2918 ** integer. Use OP_RealAffinity to make sure it is really real. */ 2919 if( pExpr->iColumn>=0 2920 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL 2921 ){ 2922 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 2923 } 2924 #endif 2925 break; 2926 } 2927 2928 2929 /* 2930 ** Form A: 2931 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2932 ** 2933 ** Form B: 2934 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 2935 ** 2936 ** Form A is can be transformed into the equivalent form B as follows: 2937 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 2938 ** WHEN x=eN THEN rN ELSE y END 2939 ** 2940 ** X (if it exists) is in pExpr->pLeft. 2941 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 2942 ** odd. The Y is also optional. If the number of elements in x.pList 2943 ** is even, then Y is omitted and the "otherwise" result is NULL. 2944 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 2945 ** 2946 ** The result of the expression is the Ri for the first matching Ei, 2947 ** or if there is no matching Ei, the ELSE term Y, or if there is 2948 ** no ELSE term, NULL. 2949 */ 2950 default: assert( op==TK_CASE ); { 2951 int endLabel; /* GOTO label for end of CASE stmt */ 2952 int nextCase; /* GOTO label for next WHEN clause */ 2953 int nExpr; /* 2x number of WHEN terms */ 2954 int i; /* Loop counter */ 2955 ExprList *pEList; /* List of WHEN terms */ 2956 struct ExprList_item *aListelem; /* Array of WHEN terms */ 2957 Expr opCompare; /* The X==Ei expression */ 2958 Expr *pX; /* The X expression */ 2959 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 2960 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) 2961 2962 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); 2963 assert(pExpr->x.pList->nExpr > 0); 2964 pEList = pExpr->x.pList; 2965 aListelem = pEList->a; 2966 nExpr = pEList->nExpr; 2967 endLabel = sqlite3VdbeMakeLabel(v); 2968 if( (pX = pExpr->pLeft)!=0 ){ 2969 tempX = *pX; 2970 testcase( pX->op==TK_COLUMN ); 2971 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); 2972 testcase( regFree1==0 ); 2973 opCompare.op = TK_EQ; 2974 opCompare.pLeft = &tempX; 2975 pTest = &opCompare; 2976 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 2977 ** The value in regFree1 might get SCopy-ed into the file result. 2978 ** So make sure that the regFree1 register is not reused for other 2979 ** purposes and possibly overwritten. */ 2980 regFree1 = 0; 2981 } 2982 for(i=0; i<nExpr-1; i=i+2){ 2983 sqlite3ExprCachePush(pParse); 2984 if( pX ){ 2985 assert( pTest!=0 ); 2986 opCompare.pRight = aListelem[i].pExpr; 2987 }else{ 2988 pTest = aListelem[i].pExpr; 2989 } 2990 nextCase = sqlite3VdbeMakeLabel(v); 2991 testcase( pTest->op==TK_COLUMN ); 2992 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 2993 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 2994 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 2995 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); 2996 sqlite3ExprCachePop(pParse, 1); 2997 sqlite3VdbeResolveLabel(v, nextCase); 2998 } 2999 if( (nExpr&1)!=0 ){ 3000 sqlite3ExprCachePush(pParse); 3001 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 3002 sqlite3ExprCachePop(pParse, 1); 3003 }else{ 3004 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3005 } 3006 assert( db->mallocFailed || pParse->nErr>0 3007 || pParse->iCacheLevel==iCacheLevel ); 3008 sqlite3VdbeResolveLabel(v, endLabel); 3009 break; 3010 } 3011 #ifndef SQLITE_OMIT_TRIGGER 3012 case TK_RAISE: { 3013 assert( pExpr->affinity==OE_Rollback 3014 || pExpr->affinity==OE_Abort 3015 || pExpr->affinity==OE_Fail 3016 || pExpr->affinity==OE_Ignore 3017 ); 3018 if( !pParse->pTriggerTab ){ 3019 sqlite3ErrorMsg(pParse, 3020 "RAISE() may only be used within a trigger-program"); 3021 return 0; 3022 } 3023 if( pExpr->affinity==OE_Abort ){ 3024 sqlite3MayAbort(pParse); 3025 } 3026 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3027 if( pExpr->affinity==OE_Ignore ){ 3028 sqlite3VdbeAddOp4( 3029 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 3030 }else{ 3031 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, 3032 pExpr->affinity, pExpr->u.zToken, 0, 0); 3033 } 3034 3035 break; 3036 } 3037 #endif 3038 } 3039 sqlite3ReleaseTempReg(pParse, regFree1); 3040 sqlite3ReleaseTempReg(pParse, regFree2); 3041 return inReg; 3042 } 3043 3044 /* 3045 ** Factor out the code of the given expression to initialization time. 3046 */ 3047 void sqlite3ExprCodeAtInit( 3048 Parse *pParse, /* Parsing context */ 3049 Expr *pExpr, /* The expression to code when the VDBE initializes */ 3050 int regDest, /* Store the value in this register */ 3051 u8 reusable /* True if this expression is reusable */ 3052 ){ 3053 ExprList *p; 3054 assert( ConstFactorOk(pParse) ); 3055 p = pParse->pConstExpr; 3056 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 3057 p = sqlite3ExprListAppend(pParse, p, pExpr); 3058 if( p ){ 3059 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 3060 pItem->u.iConstExprReg = regDest; 3061 pItem->reusable = reusable; 3062 } 3063 pParse->pConstExpr = p; 3064 } 3065 3066 /* 3067 ** Generate code to evaluate an expression and store the results 3068 ** into a register. Return the register number where the results 3069 ** are stored. 3070 ** 3071 ** If the register is a temporary register that can be deallocated, 3072 ** then write its number into *pReg. If the result register is not 3073 ** a temporary, then set *pReg to zero. 3074 ** 3075 ** If pExpr is a constant, then this routine might generate this 3076 ** code to fill the register in the initialization section of the 3077 ** VDBE program, in order to factor it out of the evaluation loop. 3078 */ 3079 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 3080 int r2; 3081 pExpr = sqlite3ExprSkipCollate(pExpr); 3082 if( ConstFactorOk(pParse) 3083 && pExpr->op!=TK_REGISTER 3084 && sqlite3ExprIsConstantNotJoin(pExpr) 3085 ){ 3086 ExprList *p = pParse->pConstExpr; 3087 int i; 3088 *pReg = 0; 3089 if( p ){ 3090 struct ExprList_item *pItem; 3091 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 3092 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ 3093 return pItem->u.iConstExprReg; 3094 } 3095 } 3096 } 3097 r2 = ++pParse->nMem; 3098 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); 3099 }else{ 3100 int r1 = sqlite3GetTempReg(pParse); 3101 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 3102 if( r2==r1 ){ 3103 *pReg = r1; 3104 }else{ 3105 sqlite3ReleaseTempReg(pParse, r1); 3106 *pReg = 0; 3107 } 3108 } 3109 return r2; 3110 } 3111 3112 /* 3113 ** Generate code that will evaluate expression pExpr and store the 3114 ** results in register target. The results are guaranteed to appear 3115 ** in register target. 3116 */ 3117 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 3118 int inReg; 3119 3120 assert( target>0 && target<=pParse->nMem ); 3121 if( pExpr && pExpr->op==TK_REGISTER ){ 3122 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); 3123 }else{ 3124 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 3125 assert( pParse->pVdbe || pParse->db->mallocFailed ); 3126 if( inReg!=target && pParse->pVdbe ){ 3127 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); 3128 } 3129 } 3130 return target; 3131 } 3132 3133 /* 3134 ** Generate code that evalutes the given expression and puts the result 3135 ** in register target. 3136 ** 3137 ** Also make a copy of the expression results into another "cache" register 3138 ** and modify the expression so that the next time it is evaluated, 3139 ** the result is a copy of the cache register. 3140 ** 3141 ** This routine is used for expressions that are used multiple 3142 ** times. They are evaluated once and the results of the expression 3143 ** are reused. 3144 */ 3145 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ 3146 Vdbe *v = pParse->pVdbe; 3147 int inReg; 3148 inReg = sqlite3ExprCode(pParse, pExpr, target); 3149 assert( target>0 ); 3150 /* The only place, other than this routine, where expressions can be 3151 ** converted to TK_REGISTER is internal subexpressions in BETWEEN and 3152 ** CASE operators. Neither ever calls this routine. And this routine 3153 ** is never called twice on the same expression. Hence it is impossible 3154 ** for the input to this routine to already be a register. Nevertheless, 3155 ** it seems prudent to keep the ALWAYS() in case the conditions above 3156 ** change with future modifications or enhancements. */ 3157 if( ALWAYS(pExpr->op!=TK_REGISTER) ){ 3158 int iMem; 3159 iMem = ++pParse->nMem; 3160 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); 3161 exprToRegister(pExpr, iMem); 3162 } 3163 return inReg; 3164 } 3165 3166 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3167 /* 3168 ** Generate a human-readable explanation of an expression tree. 3169 */ 3170 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){ 3171 int op; /* The opcode being coded */ 3172 const char *zBinOp = 0; /* Binary operator */ 3173 const char *zUniOp = 0; /* Unary operator */ 3174 if( pExpr==0 ){ 3175 op = TK_NULL; 3176 }else{ 3177 op = pExpr->op; 3178 } 3179 switch( op ){ 3180 case TK_AGG_COLUMN: { 3181 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}", 3182 pExpr->iTable, pExpr->iColumn); 3183 break; 3184 } 3185 case TK_COLUMN: { 3186 if( pExpr->iTable<0 ){ 3187 /* This only happens when coding check constraints */ 3188 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn); 3189 }else{ 3190 sqlite3ExplainPrintf(pOut, "{%d:%d}", 3191 pExpr->iTable, pExpr->iColumn); 3192 } 3193 break; 3194 } 3195 case TK_INTEGER: { 3196 if( pExpr->flags & EP_IntValue ){ 3197 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue); 3198 }else{ 3199 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken); 3200 } 3201 break; 3202 } 3203 #ifndef SQLITE_OMIT_FLOATING_POINT 3204 case TK_FLOAT: { 3205 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3206 break; 3207 } 3208 #endif 3209 case TK_STRING: { 3210 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken); 3211 break; 3212 } 3213 case TK_NULL: { 3214 sqlite3ExplainPrintf(pOut,"NULL"); 3215 break; 3216 } 3217 #ifndef SQLITE_OMIT_BLOB_LITERAL 3218 case TK_BLOB: { 3219 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken); 3220 break; 3221 } 3222 #endif 3223 case TK_VARIABLE: { 3224 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)", 3225 pExpr->u.zToken, pExpr->iColumn); 3226 break; 3227 } 3228 case TK_REGISTER: { 3229 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable); 3230 break; 3231 } 3232 case TK_AS: { 3233 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3234 break; 3235 } 3236 #ifndef SQLITE_OMIT_CAST 3237 case TK_CAST: { 3238 /* Expressions of the form: CAST(pLeft AS token) */ 3239 const char *zAff = "unk"; 3240 switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){ 3241 case SQLITE_AFF_TEXT: zAff = "TEXT"; break; 3242 case SQLITE_AFF_NONE: zAff = "NONE"; break; 3243 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break; 3244 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break; 3245 case SQLITE_AFF_REAL: zAff = "REAL"; break; 3246 } 3247 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff); 3248 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3249 sqlite3ExplainPrintf(pOut, ")"); 3250 break; 3251 } 3252 #endif /* SQLITE_OMIT_CAST */ 3253 case TK_LT: zBinOp = "LT"; break; 3254 case TK_LE: zBinOp = "LE"; break; 3255 case TK_GT: zBinOp = "GT"; break; 3256 case TK_GE: zBinOp = "GE"; break; 3257 case TK_NE: zBinOp = "NE"; break; 3258 case TK_EQ: zBinOp = "EQ"; break; 3259 case TK_IS: zBinOp = "IS"; break; 3260 case TK_ISNOT: zBinOp = "ISNOT"; break; 3261 case TK_AND: zBinOp = "AND"; break; 3262 case TK_OR: zBinOp = "OR"; break; 3263 case TK_PLUS: zBinOp = "ADD"; break; 3264 case TK_STAR: zBinOp = "MUL"; break; 3265 case TK_MINUS: zBinOp = "SUB"; break; 3266 case TK_REM: zBinOp = "REM"; break; 3267 case TK_BITAND: zBinOp = "BITAND"; break; 3268 case TK_BITOR: zBinOp = "BITOR"; break; 3269 case TK_SLASH: zBinOp = "DIV"; break; 3270 case TK_LSHIFT: zBinOp = "LSHIFT"; break; 3271 case TK_RSHIFT: zBinOp = "RSHIFT"; break; 3272 case TK_CONCAT: zBinOp = "CONCAT"; break; 3273 3274 case TK_UMINUS: zUniOp = "UMINUS"; break; 3275 case TK_UPLUS: zUniOp = "UPLUS"; break; 3276 case TK_BITNOT: zUniOp = "BITNOT"; break; 3277 case TK_NOT: zUniOp = "NOT"; break; 3278 case TK_ISNULL: zUniOp = "ISNULL"; break; 3279 case TK_NOTNULL: zUniOp = "NOTNULL"; break; 3280 3281 case TK_COLLATE: { 3282 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3283 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken); 3284 break; 3285 } 3286 3287 case TK_AGG_FUNCTION: 3288 case TK_FUNCTION: { 3289 ExprList *pFarg; /* List of function arguments */ 3290 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ 3291 pFarg = 0; 3292 }else{ 3293 pFarg = pExpr->x.pList; 3294 } 3295 if( op==TK_AGG_FUNCTION ){ 3296 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(", 3297 pExpr->op2, pExpr->u.zToken); 3298 }else{ 3299 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken); 3300 } 3301 if( pFarg ){ 3302 sqlite3ExplainExprList(pOut, pFarg); 3303 } 3304 sqlite3ExplainPrintf(pOut, ")"); 3305 break; 3306 } 3307 #ifndef SQLITE_OMIT_SUBQUERY 3308 case TK_EXISTS: { 3309 sqlite3ExplainPrintf(pOut, "EXISTS("); 3310 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3311 sqlite3ExplainPrintf(pOut,")"); 3312 break; 3313 } 3314 case TK_SELECT: { 3315 sqlite3ExplainPrintf(pOut, "("); 3316 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3317 sqlite3ExplainPrintf(pOut, ")"); 3318 break; 3319 } 3320 case TK_IN: { 3321 sqlite3ExplainPrintf(pOut, "IN("); 3322 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3323 sqlite3ExplainPrintf(pOut, ","); 3324 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3325 sqlite3ExplainSelect(pOut, pExpr->x.pSelect); 3326 }else{ 3327 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3328 } 3329 sqlite3ExplainPrintf(pOut, ")"); 3330 break; 3331 } 3332 #endif /* SQLITE_OMIT_SUBQUERY */ 3333 3334 /* 3335 ** x BETWEEN y AND z 3336 ** 3337 ** This is equivalent to 3338 ** 3339 ** x>=y AND x<=z 3340 ** 3341 ** X is stored in pExpr->pLeft. 3342 ** Y is stored in pExpr->pList->a[0].pExpr. 3343 ** Z is stored in pExpr->pList->a[1].pExpr. 3344 */ 3345 case TK_BETWEEN: { 3346 Expr *pX = pExpr->pLeft; 3347 Expr *pY = pExpr->x.pList->a[0].pExpr; 3348 Expr *pZ = pExpr->x.pList->a[1].pExpr; 3349 sqlite3ExplainPrintf(pOut, "BETWEEN("); 3350 sqlite3ExplainExpr(pOut, pX); 3351 sqlite3ExplainPrintf(pOut, ","); 3352 sqlite3ExplainExpr(pOut, pY); 3353 sqlite3ExplainPrintf(pOut, ","); 3354 sqlite3ExplainExpr(pOut, pZ); 3355 sqlite3ExplainPrintf(pOut, ")"); 3356 break; 3357 } 3358 case TK_TRIGGER: { 3359 /* If the opcode is TK_TRIGGER, then the expression is a reference 3360 ** to a column in the new.* or old.* pseudo-tables available to 3361 ** trigger programs. In this case Expr.iTable is set to 1 for the 3362 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 3363 ** is set to the column of the pseudo-table to read, or to -1 to 3364 ** read the rowid field. 3365 */ 3366 sqlite3ExplainPrintf(pOut, "%s(%d)", 3367 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); 3368 break; 3369 } 3370 case TK_CASE: { 3371 sqlite3ExplainPrintf(pOut, "CASE("); 3372 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3373 sqlite3ExplainPrintf(pOut, ","); 3374 sqlite3ExplainExprList(pOut, pExpr->x.pList); 3375 break; 3376 } 3377 #ifndef SQLITE_OMIT_TRIGGER 3378 case TK_RAISE: { 3379 const char *zType = "unk"; 3380 switch( pExpr->affinity ){ 3381 case OE_Rollback: zType = "rollback"; break; 3382 case OE_Abort: zType = "abort"; break; 3383 case OE_Fail: zType = "fail"; break; 3384 case OE_Ignore: zType = "ignore"; break; 3385 } 3386 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken); 3387 break; 3388 } 3389 #endif 3390 } 3391 if( zBinOp ){ 3392 sqlite3ExplainPrintf(pOut,"%s(", zBinOp); 3393 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3394 sqlite3ExplainPrintf(pOut,","); 3395 sqlite3ExplainExpr(pOut, pExpr->pRight); 3396 sqlite3ExplainPrintf(pOut,")"); 3397 }else if( zUniOp ){ 3398 sqlite3ExplainPrintf(pOut,"%s(", zUniOp); 3399 sqlite3ExplainExpr(pOut, pExpr->pLeft); 3400 sqlite3ExplainPrintf(pOut,")"); 3401 } 3402 } 3403 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 3404 3405 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 3406 /* 3407 ** Generate a human-readable explanation of an expression list. 3408 */ 3409 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){ 3410 int i; 3411 if( pList==0 || pList->nExpr==0 ){ 3412 sqlite3ExplainPrintf(pOut, "(empty-list)"); 3413 return; 3414 }else if( pList->nExpr==1 ){ 3415 sqlite3ExplainExpr(pOut, pList->a[0].pExpr); 3416 }else{ 3417 sqlite3ExplainPush(pOut); 3418 for(i=0; i<pList->nExpr; i++){ 3419 sqlite3ExplainPrintf(pOut, "item[%d] = ", i); 3420 sqlite3ExplainPush(pOut); 3421 sqlite3ExplainExpr(pOut, pList->a[i].pExpr); 3422 sqlite3ExplainPop(pOut); 3423 if( pList->a[i].zName ){ 3424 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); 3425 } 3426 if( pList->a[i].bSpanIsTab ){ 3427 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); 3428 } 3429 if( i<pList->nExpr-1 ){ 3430 sqlite3ExplainNL(pOut); 3431 } 3432 } 3433 sqlite3ExplainPop(pOut); 3434 } 3435 } 3436 #endif /* SQLITE_DEBUG */ 3437 3438 /* 3439 ** Generate code that pushes the value of every element of the given 3440 ** expression list into a sequence of registers beginning at target. 3441 ** 3442 ** Return the number of elements evaluated. 3443 ** 3444 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 3445 ** filled using OP_SCopy. OP_Copy must be used instead. 3446 ** 3447 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 3448 ** factored out into initialization code. 3449 */ 3450 int sqlite3ExprCodeExprList( 3451 Parse *pParse, /* Parsing context */ 3452 ExprList *pList, /* The expression list to be coded */ 3453 int target, /* Where to write results */ 3454 u8 flags /* SQLITE_ECEL_* flags */ 3455 ){ 3456 struct ExprList_item *pItem; 3457 int i, n; 3458 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 3459 assert( pList!=0 ); 3460 assert( target>0 ); 3461 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 3462 n = pList->nExpr; 3463 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 3464 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 3465 Expr *pExpr = pItem->pExpr; 3466 if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ 3467 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); 3468 }else{ 3469 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 3470 if( inReg!=target+i ){ 3471 VdbeOp *pOp; 3472 Vdbe *v = pParse->pVdbe; 3473 if( copyOp==OP_Copy 3474 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy 3475 && pOp->p1+pOp->p3+1==inReg 3476 && pOp->p2+pOp->p3+1==target+i 3477 ){ 3478 pOp->p3++; 3479 }else{ 3480 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 3481 } 3482 } 3483 } 3484 } 3485 return n; 3486 } 3487 3488 /* 3489 ** Generate code for a BETWEEN operator. 3490 ** 3491 ** x BETWEEN y AND z 3492 ** 3493 ** The above is equivalent to 3494 ** 3495 ** x>=y AND x<=z 3496 ** 3497 ** Code it as such, taking care to do the common subexpression 3498 ** elementation of x. 3499 */ 3500 static void exprCodeBetween( 3501 Parse *pParse, /* Parsing and code generating context */ 3502 Expr *pExpr, /* The BETWEEN expression */ 3503 int dest, /* Jump here if the jump is taken */ 3504 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ 3505 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 3506 ){ 3507 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 3508 Expr compLeft; /* The x>=y term */ 3509 Expr compRight; /* The x<=z term */ 3510 Expr exprX; /* The x subexpression */ 3511 int regFree1 = 0; /* Temporary use register */ 3512 3513 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 3514 exprX = *pExpr->pLeft; 3515 exprAnd.op = TK_AND; 3516 exprAnd.pLeft = &compLeft; 3517 exprAnd.pRight = &compRight; 3518 compLeft.op = TK_GE; 3519 compLeft.pLeft = &exprX; 3520 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 3521 compRight.op = TK_LE; 3522 compRight.pLeft = &exprX; 3523 compRight.pRight = pExpr->x.pList->a[1].pExpr; 3524 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); 3525 if( jumpIfTrue ){ 3526 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); 3527 }else{ 3528 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); 3529 } 3530 sqlite3ReleaseTempReg(pParse, regFree1); 3531 3532 /* Ensure adequate test coverage */ 3533 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); 3534 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); 3535 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); 3536 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); 3537 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); 3538 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); 3539 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); 3540 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); 3541 } 3542 3543 /* 3544 ** Generate code for a boolean expression such that a jump is made 3545 ** to the label "dest" if the expression is true but execution 3546 ** continues straight thru if the expression is false. 3547 ** 3548 ** If the expression evaluates to NULL (neither true nor false), then 3549 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 3550 ** 3551 ** This code depends on the fact that certain token values (ex: TK_EQ) 3552 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 3553 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 3554 ** the make process cause these values to align. Assert()s in the code 3555 ** below verify that the numbers are aligned correctly. 3556 */ 3557 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3558 Vdbe *v = pParse->pVdbe; 3559 int op = 0; 3560 int regFree1 = 0; 3561 int regFree2 = 0; 3562 int r1, r2; 3563 3564 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3565 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3566 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 3567 op = pExpr->op; 3568 switch( op ){ 3569 case TK_AND: { 3570 int d2 = sqlite3VdbeMakeLabel(v); 3571 testcase( jumpIfNull==0 ); 3572 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); 3573 sqlite3ExprCachePush(pParse); 3574 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3575 sqlite3VdbeResolveLabel(v, d2); 3576 sqlite3ExprCachePop(pParse, 1); 3577 break; 3578 } 3579 case TK_OR: { 3580 testcase( jumpIfNull==0 ); 3581 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3582 sqlite3ExprCachePush(pParse); 3583 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 3584 sqlite3ExprCachePop(pParse, 1); 3585 break; 3586 } 3587 case TK_NOT: { 3588 testcase( jumpIfNull==0 ); 3589 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3590 break; 3591 } 3592 case TK_LT: 3593 case TK_LE: 3594 case TK_GT: 3595 case TK_GE: 3596 case TK_NE: 3597 case TK_EQ: { 3598 assert( TK_LT==OP_Lt ); 3599 assert( TK_LE==OP_Le ); 3600 assert( TK_GT==OP_Gt ); 3601 assert( TK_GE==OP_Ge ); 3602 assert( TK_EQ==OP_Eq ); 3603 assert( TK_NE==OP_Ne ); 3604 testcase( op==TK_LT ); 3605 testcase( op==TK_LE ); 3606 testcase( op==TK_GT ); 3607 testcase( op==TK_GE ); 3608 testcase( op==TK_EQ ); 3609 testcase( op==TK_NE ); 3610 testcase( jumpIfNull==0 ); 3611 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3612 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3613 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3614 r1, r2, dest, jumpIfNull); 3615 testcase( regFree1==0 ); 3616 testcase( regFree2==0 ); 3617 break; 3618 } 3619 case TK_IS: 3620 case TK_ISNOT: { 3621 testcase( op==TK_IS ); 3622 testcase( op==TK_ISNOT ); 3623 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3624 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3625 op = (op==TK_IS) ? TK_EQ : TK_NE; 3626 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3627 r1, r2, dest, SQLITE_NULLEQ); 3628 testcase( regFree1==0 ); 3629 testcase( regFree2==0 ); 3630 break; 3631 } 3632 case TK_ISNULL: 3633 case TK_NOTNULL: { 3634 assert( TK_ISNULL==OP_IsNull ); 3635 assert( TK_NOTNULL==OP_NotNull ); 3636 testcase( op==TK_ISNULL ); 3637 testcase( op==TK_NOTNULL ); 3638 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3639 sqlite3VdbeAddOp2(v, op, r1, dest); 3640 testcase( regFree1==0 ); 3641 break; 3642 } 3643 case TK_BETWEEN: { 3644 testcase( jumpIfNull==0 ); 3645 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); 3646 break; 3647 } 3648 #ifndef SQLITE_OMIT_SUBQUERY 3649 case TK_IN: { 3650 int destIfFalse = sqlite3VdbeMakeLabel(v); 3651 int destIfNull = jumpIfNull ? dest : destIfFalse; 3652 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 3653 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3654 sqlite3VdbeResolveLabel(v, destIfFalse); 3655 break; 3656 } 3657 #endif 3658 default: { 3659 if( exprAlwaysTrue(pExpr) ){ 3660 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3661 }else if( exprAlwaysFalse(pExpr) ){ 3662 /* No-op */ 3663 }else{ 3664 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3665 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 3666 testcase( regFree1==0 ); 3667 testcase( jumpIfNull==0 ); 3668 } 3669 break; 3670 } 3671 } 3672 sqlite3ReleaseTempReg(pParse, regFree1); 3673 sqlite3ReleaseTempReg(pParse, regFree2); 3674 } 3675 3676 /* 3677 ** Generate code for a boolean expression such that a jump is made 3678 ** to the label "dest" if the expression is false but execution 3679 ** continues straight thru if the expression is true. 3680 ** 3681 ** If the expression evaluates to NULL (neither true nor false) then 3682 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 3683 ** is 0. 3684 */ 3685 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 3686 Vdbe *v = pParse->pVdbe; 3687 int op = 0; 3688 int regFree1 = 0; 3689 int regFree2 = 0; 3690 int r1, r2; 3691 3692 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 3693 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 3694 if( pExpr==0 ) return; 3695 3696 /* The value of pExpr->op and op are related as follows: 3697 ** 3698 ** pExpr->op op 3699 ** --------- ---------- 3700 ** TK_ISNULL OP_NotNull 3701 ** TK_NOTNULL OP_IsNull 3702 ** TK_NE OP_Eq 3703 ** TK_EQ OP_Ne 3704 ** TK_GT OP_Le 3705 ** TK_LE OP_Gt 3706 ** TK_GE OP_Lt 3707 ** TK_LT OP_Ge 3708 ** 3709 ** For other values of pExpr->op, op is undefined and unused. 3710 ** The value of TK_ and OP_ constants are arranged such that we 3711 ** can compute the mapping above using the following expression. 3712 ** Assert()s verify that the computation is correct. 3713 */ 3714 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 3715 3716 /* Verify correct alignment of TK_ and OP_ constants 3717 */ 3718 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 3719 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 3720 assert( pExpr->op!=TK_NE || op==OP_Eq ); 3721 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 3722 assert( pExpr->op!=TK_LT || op==OP_Ge ); 3723 assert( pExpr->op!=TK_LE || op==OP_Gt ); 3724 assert( pExpr->op!=TK_GT || op==OP_Le ); 3725 assert( pExpr->op!=TK_GE || op==OP_Lt ); 3726 3727 switch( pExpr->op ){ 3728 case TK_AND: { 3729 testcase( jumpIfNull==0 ); 3730 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 3731 sqlite3ExprCachePush(pParse); 3732 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3733 sqlite3ExprCachePop(pParse, 1); 3734 break; 3735 } 3736 case TK_OR: { 3737 int d2 = sqlite3VdbeMakeLabel(v); 3738 testcase( jumpIfNull==0 ); 3739 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); 3740 sqlite3ExprCachePush(pParse); 3741 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 3742 sqlite3VdbeResolveLabel(v, d2); 3743 sqlite3ExprCachePop(pParse, 1); 3744 break; 3745 } 3746 case TK_NOT: { 3747 testcase( jumpIfNull==0 ); 3748 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 3749 break; 3750 } 3751 case TK_LT: 3752 case TK_LE: 3753 case TK_GT: 3754 case TK_GE: 3755 case TK_NE: 3756 case TK_EQ: { 3757 testcase( op==TK_LT ); 3758 testcase( op==TK_LE ); 3759 testcase( op==TK_GT ); 3760 testcase( op==TK_GE ); 3761 testcase( op==TK_EQ ); 3762 testcase( op==TK_NE ); 3763 testcase( jumpIfNull==0 ); 3764 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3765 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3766 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3767 r1, r2, dest, jumpIfNull); 3768 testcase( regFree1==0 ); 3769 testcase( regFree2==0 ); 3770 break; 3771 } 3772 case TK_IS: 3773 case TK_ISNOT: { 3774 testcase( pExpr->op==TK_IS ); 3775 testcase( pExpr->op==TK_ISNOT ); 3776 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3777 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 3778 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 3779 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 3780 r1, r2, dest, SQLITE_NULLEQ); 3781 testcase( regFree1==0 ); 3782 testcase( regFree2==0 ); 3783 break; 3784 } 3785 case TK_ISNULL: 3786 case TK_NOTNULL: { 3787 testcase( op==TK_ISNULL ); 3788 testcase( op==TK_NOTNULL ); 3789 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 3790 sqlite3VdbeAddOp2(v, op, r1, dest); 3791 testcase( regFree1==0 ); 3792 break; 3793 } 3794 case TK_BETWEEN: { 3795 testcase( jumpIfNull==0 ); 3796 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); 3797 break; 3798 } 3799 #ifndef SQLITE_OMIT_SUBQUERY 3800 case TK_IN: { 3801 if( jumpIfNull ){ 3802 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 3803 }else{ 3804 int destIfNull = sqlite3VdbeMakeLabel(v); 3805 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 3806 sqlite3VdbeResolveLabel(v, destIfNull); 3807 } 3808 break; 3809 } 3810 #endif 3811 default: { 3812 if( exprAlwaysFalse(pExpr) ){ 3813 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); 3814 }else if( exprAlwaysTrue(pExpr) ){ 3815 /* no-op */ 3816 }else{ 3817 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 3818 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 3819 testcase( regFree1==0 ); 3820 testcase( jumpIfNull==0 ); 3821 } 3822 break; 3823 } 3824 } 3825 sqlite3ReleaseTempReg(pParse, regFree1); 3826 sqlite3ReleaseTempReg(pParse, regFree2); 3827 } 3828 3829 /* 3830 ** Do a deep comparison of two expression trees. Return 0 if the two 3831 ** expressions are completely identical. Return 1 if they differ only 3832 ** by a COLLATE operator at the top level. Return 2 if there are differences 3833 ** other than the top-level COLLATE operator. 3834 ** 3835 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3836 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3837 ** 3838 ** The pA side might be using TK_REGISTER. If that is the case and pB is 3839 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 3840 ** 3841 ** Sometimes this routine will return 2 even if the two expressions 3842 ** really are equivalent. If we cannot prove that the expressions are 3843 ** identical, we return 2 just to be safe. So if this routine 3844 ** returns 2, then you do not really know for certain if the two 3845 ** expressions are the same. But if you get a 0 or 1 return, then you 3846 ** can be sure the expressions are the same. In the places where 3847 ** this routine is used, it does not hurt to get an extra 2 - that 3848 ** just might result in some slightly slower code. But returning 3849 ** an incorrect 0 or 1 could lead to a malfunction. 3850 */ 3851 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ 3852 u32 combinedFlags; 3853 if( pA==0 || pB==0 ){ 3854 return pB==pA ? 0 : 2; 3855 } 3856 combinedFlags = pA->flags | pB->flags; 3857 if( combinedFlags & EP_IntValue ){ 3858 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 3859 return 0; 3860 } 3861 return 2; 3862 } 3863 if( pA->op!=pB->op ){ 3864 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ 3865 return 1; 3866 } 3867 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ 3868 return 1; 3869 } 3870 return 2; 3871 } 3872 if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ 3873 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ 3874 return pA->op==TK_COLLATE ? 1 : 2; 3875 } 3876 } 3877 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; 3878 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 3879 if( combinedFlags & EP_xIsSelect ) return 2; 3880 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; 3881 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; 3882 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 3883 if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ 3884 if( pA->iColumn!=pB->iColumn ) return 2; 3885 if( pA->iTable!=pB->iTable 3886 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; 3887 } 3888 } 3889 return 0; 3890 } 3891 3892 /* 3893 ** Compare two ExprList objects. Return 0 if they are identical and 3894 ** non-zero if they differ in any way. 3895 ** 3896 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 3897 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 3898 ** 3899 ** This routine might return non-zero for equivalent ExprLists. The 3900 ** only consequence will be disabled optimizations. But this routine 3901 ** must never return 0 if the two ExprList objects are different, or 3902 ** a malfunction will result. 3903 ** 3904 ** Two NULL pointers are considered to be the same. But a NULL pointer 3905 ** always differs from a non-NULL pointer. 3906 */ 3907 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ 3908 int i; 3909 if( pA==0 && pB==0 ) return 0; 3910 if( pA==0 || pB==0 ) return 1; 3911 if( pA->nExpr!=pB->nExpr ) return 1; 3912 for(i=0; i<pA->nExpr; i++){ 3913 Expr *pExprA = pA->a[i].pExpr; 3914 Expr *pExprB = pB->a[i].pExpr; 3915 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; 3916 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; 3917 } 3918 return 0; 3919 } 3920 3921 /* 3922 ** Return true if we can prove the pE2 will always be true if pE1 is 3923 ** true. Return false if we cannot complete the proof or if pE2 might 3924 ** be false. Examples: 3925 ** 3926 ** pE1: x==5 pE2: x==5 Result: true 3927 ** pE1: x>0 pE2: x==5 Result: false 3928 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 3929 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 3930 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 3931 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 3932 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 3933 ** 3934 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 3935 ** Expr.iTable<0 then assume a table number given by iTab. 3936 ** 3937 ** When in doubt, return false. Returning true might give a performance 3938 ** improvement. Returning false might cause a performance reduction, but 3939 ** it will always give the correct answer and is hence always safe. 3940 */ 3941 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ 3942 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ 3943 return 1; 3944 } 3945 if( pE2->op==TK_OR 3946 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) 3947 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) 3948 ){ 3949 return 1; 3950 } 3951 if( pE2->op==TK_NOTNULL 3952 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 3953 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) 3954 ){ 3955 return 1; 3956 } 3957 return 0; 3958 } 3959 3960 /* 3961 ** An instance of the following structure is used by the tree walker 3962 ** to count references to table columns in the arguments of an 3963 ** aggregate function, in order to implement the 3964 ** sqlite3FunctionThisSrc() routine. 3965 */ 3966 struct SrcCount { 3967 SrcList *pSrc; /* One particular FROM clause in a nested query */ 3968 int nThis; /* Number of references to columns in pSrcList */ 3969 int nOther; /* Number of references to columns in other FROM clauses */ 3970 }; 3971 3972 /* 3973 ** Count the number of references to columns. 3974 */ 3975 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ 3976 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() 3977 ** is always called before sqlite3ExprAnalyzeAggregates() and so the 3978 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If 3979 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the 3980 ** NEVER() will need to be removed. */ 3981 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ 3982 int i; 3983 struct SrcCount *p = pWalker->u.pSrcCount; 3984 SrcList *pSrc = p->pSrc; 3985 for(i=0; i<pSrc->nSrc; i++){ 3986 if( pExpr->iTable==pSrc->a[i].iCursor ) break; 3987 } 3988 if( i<pSrc->nSrc ){ 3989 p->nThis++; 3990 }else{ 3991 p->nOther++; 3992 } 3993 } 3994 return WRC_Continue; 3995 } 3996 3997 /* 3998 ** Determine if any of the arguments to the pExpr Function reference 3999 ** pSrcList. Return true if they do. Also return true if the function 4000 ** has no arguments or has only constant arguments. Return false if pExpr 4001 ** references columns but not columns of tables found in pSrcList. 4002 */ 4003 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ 4004 Walker w; 4005 struct SrcCount cnt; 4006 assert( pExpr->op==TK_AGG_FUNCTION ); 4007 memset(&w, 0, sizeof(w)); 4008 w.xExprCallback = exprSrcCount; 4009 w.u.pSrcCount = &cnt; 4010 cnt.pSrc = pSrcList; 4011 cnt.nThis = 0; 4012 cnt.nOther = 0; 4013 sqlite3WalkExprList(&w, pExpr->x.pList); 4014 return cnt.nThis>0 || cnt.nOther==0; 4015 } 4016 4017 /* 4018 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 4019 ** the new element. Return a negative number if malloc fails. 4020 */ 4021 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 4022 int i; 4023 pInfo->aCol = sqlite3ArrayAllocate( 4024 db, 4025 pInfo->aCol, 4026 sizeof(pInfo->aCol[0]), 4027 &pInfo->nColumn, 4028 &i 4029 ); 4030 return i; 4031 } 4032 4033 /* 4034 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 4035 ** the new element. Return a negative number if malloc fails. 4036 */ 4037 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 4038 int i; 4039 pInfo->aFunc = sqlite3ArrayAllocate( 4040 db, 4041 pInfo->aFunc, 4042 sizeof(pInfo->aFunc[0]), 4043 &pInfo->nFunc, 4044 &i 4045 ); 4046 return i; 4047 } 4048 4049 /* 4050 ** This is the xExprCallback for a tree walker. It is used to 4051 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 4052 ** for additional information. 4053 */ 4054 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 4055 int i; 4056 NameContext *pNC = pWalker->u.pNC; 4057 Parse *pParse = pNC->pParse; 4058 SrcList *pSrcList = pNC->pSrcList; 4059 AggInfo *pAggInfo = pNC->pAggInfo; 4060 4061 switch( pExpr->op ){ 4062 case TK_AGG_COLUMN: 4063 case TK_COLUMN: { 4064 testcase( pExpr->op==TK_AGG_COLUMN ); 4065 testcase( pExpr->op==TK_COLUMN ); 4066 /* Check to see if the column is in one of the tables in the FROM 4067 ** clause of the aggregate query */ 4068 if( ALWAYS(pSrcList!=0) ){ 4069 struct SrcList_item *pItem = pSrcList->a; 4070 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 4071 struct AggInfo_col *pCol; 4072 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4073 if( pExpr->iTable==pItem->iCursor ){ 4074 /* If we reach this point, it means that pExpr refers to a table 4075 ** that is in the FROM clause of the aggregate query. 4076 ** 4077 ** Make an entry for the column in pAggInfo->aCol[] if there 4078 ** is not an entry there already. 4079 */ 4080 int k; 4081 pCol = pAggInfo->aCol; 4082 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 4083 if( pCol->iTable==pExpr->iTable && 4084 pCol->iColumn==pExpr->iColumn ){ 4085 break; 4086 } 4087 } 4088 if( (k>=pAggInfo->nColumn) 4089 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 4090 ){ 4091 pCol = &pAggInfo->aCol[k]; 4092 pCol->pTab = pExpr->pTab; 4093 pCol->iTable = pExpr->iTable; 4094 pCol->iColumn = pExpr->iColumn; 4095 pCol->iMem = ++pParse->nMem; 4096 pCol->iSorterColumn = -1; 4097 pCol->pExpr = pExpr; 4098 if( pAggInfo->pGroupBy ){ 4099 int j, n; 4100 ExprList *pGB = pAggInfo->pGroupBy; 4101 struct ExprList_item *pTerm = pGB->a; 4102 n = pGB->nExpr; 4103 for(j=0; j<n; j++, pTerm++){ 4104 Expr *pE = pTerm->pExpr; 4105 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && 4106 pE->iColumn==pExpr->iColumn ){ 4107 pCol->iSorterColumn = j; 4108 break; 4109 } 4110 } 4111 } 4112 if( pCol->iSorterColumn<0 ){ 4113 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 4114 } 4115 } 4116 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 4117 ** because it was there before or because we just created it). 4118 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 4119 ** pAggInfo->aCol[] entry. 4120 */ 4121 ExprSetVVAProperty(pExpr, EP_NoReduce); 4122 pExpr->pAggInfo = pAggInfo; 4123 pExpr->op = TK_AGG_COLUMN; 4124 pExpr->iAgg = (i16)k; 4125 break; 4126 } /* endif pExpr->iTable==pItem->iCursor */ 4127 } /* end loop over pSrcList */ 4128 } 4129 return WRC_Prune; 4130 } 4131 case TK_AGG_FUNCTION: { 4132 if( (pNC->ncFlags & NC_InAggFunc)==0 4133 && pWalker->walkerDepth==pExpr->op2 4134 ){ 4135 /* Check to see if pExpr is a duplicate of another aggregate 4136 ** function that is already in the pAggInfo structure 4137 */ 4138 struct AggInfo_func *pItem = pAggInfo->aFunc; 4139 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 4140 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ 4141 break; 4142 } 4143 } 4144 if( i>=pAggInfo->nFunc ){ 4145 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 4146 */ 4147 u8 enc = ENC(pParse->db); 4148 i = addAggInfoFunc(pParse->db, pAggInfo); 4149 if( i>=0 ){ 4150 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 4151 pItem = &pAggInfo->aFunc[i]; 4152 pItem->pExpr = pExpr; 4153 pItem->iMem = ++pParse->nMem; 4154 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4155 pItem->pFunc = sqlite3FindFunction(pParse->db, 4156 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), 4157 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 4158 if( pExpr->flags & EP_Distinct ){ 4159 pItem->iDistinct = pParse->nTab++; 4160 }else{ 4161 pItem->iDistinct = -1; 4162 } 4163 } 4164 } 4165 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 4166 */ 4167 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 4168 ExprSetVVAProperty(pExpr, EP_NoReduce); 4169 pExpr->iAgg = (i16)i; 4170 pExpr->pAggInfo = pAggInfo; 4171 return WRC_Prune; 4172 }else{ 4173 return WRC_Continue; 4174 } 4175 } 4176 } 4177 return WRC_Continue; 4178 } 4179 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ 4180 UNUSED_PARAMETER(pWalker); 4181 UNUSED_PARAMETER(pSelect); 4182 return WRC_Continue; 4183 } 4184 4185 /* 4186 ** Analyze the pExpr expression looking for aggregate functions and 4187 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 4188 ** points to. Additional entries are made on the AggInfo object as 4189 ** necessary. 4190 ** 4191 ** This routine should only be called after the expression has been 4192 ** analyzed by sqlite3ResolveExprNames(). 4193 */ 4194 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 4195 Walker w; 4196 memset(&w, 0, sizeof(w)); 4197 w.xExprCallback = analyzeAggregate; 4198 w.xSelectCallback = analyzeAggregatesInSelect; 4199 w.u.pNC = pNC; 4200 assert( pNC->pSrcList!=0 ); 4201 sqlite3WalkExpr(&w, pExpr); 4202 } 4203 4204 /* 4205 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 4206 ** expression list. Return the number of errors. 4207 ** 4208 ** If an error is found, the analysis is cut short. 4209 */ 4210 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 4211 struct ExprList_item *pItem; 4212 int i; 4213 if( pList ){ 4214 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 4215 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 4216 } 4217 } 4218 } 4219 4220 /* 4221 ** Allocate a single new register for use to hold some intermediate result. 4222 */ 4223 int sqlite3GetTempReg(Parse *pParse){ 4224 if( pParse->nTempReg==0 ){ 4225 return ++pParse->nMem; 4226 } 4227 return pParse->aTempReg[--pParse->nTempReg]; 4228 } 4229 4230 /* 4231 ** Deallocate a register, making available for reuse for some other 4232 ** purpose. 4233 ** 4234 ** If a register is currently being used by the column cache, then 4235 ** the dallocation is deferred until the column cache line that uses 4236 ** the register becomes stale. 4237 */ 4238 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 4239 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 4240 int i; 4241 struct yColCache *p; 4242 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ 4243 if( p->iReg==iReg ){ 4244 p->tempReg = 1; 4245 return; 4246 } 4247 } 4248 pParse->aTempReg[pParse->nTempReg++] = iReg; 4249 } 4250 } 4251 4252 /* 4253 ** Allocate or deallocate a block of nReg consecutive registers 4254 */ 4255 int sqlite3GetTempRange(Parse *pParse, int nReg){ 4256 int i, n; 4257 i = pParse->iRangeReg; 4258 n = pParse->nRangeReg; 4259 if( nReg<=n ){ 4260 assert( !usedAsColumnCache(pParse, i, i+n-1) ); 4261 pParse->iRangeReg += nReg; 4262 pParse->nRangeReg -= nReg; 4263 }else{ 4264 i = pParse->nMem+1; 4265 pParse->nMem += nReg; 4266 } 4267 return i; 4268 } 4269 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 4270 sqlite3ExprCacheRemove(pParse, iReg, nReg); 4271 if( nReg>pParse->nRangeReg ){ 4272 pParse->nRangeReg = nReg; 4273 pParse->iRangeReg = iReg; 4274 } 4275 } 4276 4277 /* 4278 ** Mark all temporary registers as being unavailable for reuse. 4279 */ 4280 void sqlite3ClearTempRegCache(Parse *pParse){ 4281 pParse->nTempReg = 0; 4282 pParse->nRangeReg = 0; 4283 } 4284