xref: /sqlite-3.40.0/src/expr.c (revision a3fdec71)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34   int op;
35   pExpr = sqlite3ExprSkipCollate(pExpr);
36   op = pExpr->op;
37   if( op==TK_SELECT ){
38     assert( pExpr->flags&EP_xIsSelect );
39     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
40   }
41 #ifndef SQLITE_OMIT_CAST
42   if( op==TK_CAST ){
43     assert( !ExprHasProperty(pExpr, EP_IntValue) );
44     return sqlite3AffinityType(pExpr->u.zToken, 0);
45   }
46 #endif
47   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
48    && pExpr->pTab!=0
49   ){
50     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51     ** a TK_COLUMN but was previously evaluated and cached in a register */
52     int j = pExpr->iColumn;
53     if( j<0 ) return SQLITE_AFF_INTEGER;
54     assert( pExpr->pTab && j<pExpr->pTab->nCol );
55     return pExpr->pTab->aCol[j].affinity;
56   }
57   return pExpr->affinity;
58 }
59 
60 /*
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken.   Return a pointer to a new Expr node that
63 ** implements the COLLATE operator.
64 **
65 ** If a memory allocation error occurs, that fact is recorded in pParse->db
66 ** and the pExpr parameter is returned unchanged.
67 */
68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){
69   if( pCollName->n>0 ){
70     Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
71     if( pNew ){
72       pNew->pLeft = pExpr;
73       pNew->flags |= EP_Collate|EP_Skip;
74       pExpr = pNew;
75     }
76   }
77   return pExpr;
78 }
79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
80   Token s;
81   assert( zC!=0 );
82   s.z = zC;
83   s.n = sqlite3Strlen30(s.z);
84   return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
85 }
86 
87 /*
88 ** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
89 ** or likelihood() function at the root of an expression.
90 */
91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
92   while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
93     if( ExprHasProperty(pExpr, EP_Unlikely) ){
94       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
95       assert( pExpr->x.pList->nExpr>0 );
96       assert( pExpr->op==TK_FUNCTION );
97       pExpr = pExpr->x.pList->a[0].pExpr;
98     }else{
99       assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS );
100       pExpr = pExpr->pLeft;
101     }
102   }
103   return pExpr;
104 }
105 
106 /*
107 ** Return the collation sequence for the expression pExpr. If
108 ** there is no defined collating sequence, return NULL.
109 **
110 ** The collating sequence might be determined by a COLLATE operator
111 ** or by the presence of a column with a defined collating sequence.
112 ** COLLATE operators take first precedence.  Left operands take
113 ** precedence over right operands.
114 */
115 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
116   sqlite3 *db = pParse->db;
117   CollSeq *pColl = 0;
118   Expr *p = pExpr;
119   while( p ){
120     int op = p->op;
121     if( op==TK_CAST || op==TK_UPLUS ){
122       p = p->pLeft;
123       continue;
124     }
125     if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
126       pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
127       break;
128     }
129     if( p->pTab!=0
130      && (op==TK_AGG_COLUMN || op==TK_COLUMN
131           || op==TK_REGISTER || op==TK_TRIGGER)
132     ){
133       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
134       ** a TK_COLUMN but was previously evaluated and cached in a register */
135       int j = p->iColumn;
136       if( j>=0 ){
137         const char *zColl = p->pTab->aCol[j].zColl;
138         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
139       }
140       break;
141     }
142     if( p->flags & EP_Collate ){
143       if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
144         p = p->pLeft;
145       }else{
146         p = p->pRight;
147       }
148     }else{
149       break;
150     }
151   }
152   if( sqlite3CheckCollSeq(pParse, pColl) ){
153     pColl = 0;
154   }
155   return pColl;
156 }
157 
158 /*
159 ** pExpr is an operand of a comparison operator.  aff2 is the
160 ** type affinity of the other operand.  This routine returns the
161 ** type affinity that should be used for the comparison operator.
162 */
163 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
164   char aff1 = sqlite3ExprAffinity(pExpr);
165   if( aff1 && aff2 ){
166     /* Both sides of the comparison are columns. If one has numeric
167     ** affinity, use that. Otherwise use no affinity.
168     */
169     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
170       return SQLITE_AFF_NUMERIC;
171     }else{
172       return SQLITE_AFF_NONE;
173     }
174   }else if( !aff1 && !aff2 ){
175     /* Neither side of the comparison is a column.  Compare the
176     ** results directly.
177     */
178     return SQLITE_AFF_NONE;
179   }else{
180     /* One side is a column, the other is not. Use the columns affinity. */
181     assert( aff1==0 || aff2==0 );
182     return (aff1 + aff2);
183   }
184 }
185 
186 /*
187 ** pExpr is a comparison operator.  Return the type affinity that should
188 ** be applied to both operands prior to doing the comparison.
189 */
190 static char comparisonAffinity(Expr *pExpr){
191   char aff;
192   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
193           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
194           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
195   assert( pExpr->pLeft );
196   aff = sqlite3ExprAffinity(pExpr->pLeft);
197   if( pExpr->pRight ){
198     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
199   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
200     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
201   }else if( !aff ){
202     aff = SQLITE_AFF_NONE;
203   }
204   return aff;
205 }
206 
207 /*
208 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
209 ** idx_affinity is the affinity of an indexed column. Return true
210 ** if the index with affinity idx_affinity may be used to implement
211 ** the comparison in pExpr.
212 */
213 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
214   char aff = comparisonAffinity(pExpr);
215   switch( aff ){
216     case SQLITE_AFF_NONE:
217       return 1;
218     case SQLITE_AFF_TEXT:
219       return idx_affinity==SQLITE_AFF_TEXT;
220     default:
221       return sqlite3IsNumericAffinity(idx_affinity);
222   }
223 }
224 
225 /*
226 ** Return the P5 value that should be used for a binary comparison
227 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
228 */
229 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
230   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
231   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
232   return aff;
233 }
234 
235 /*
236 ** Return a pointer to the collation sequence that should be used by
237 ** a binary comparison operator comparing pLeft and pRight.
238 **
239 ** If the left hand expression has a collating sequence type, then it is
240 ** used. Otherwise the collation sequence for the right hand expression
241 ** is used, or the default (BINARY) if neither expression has a collating
242 ** type.
243 **
244 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
245 ** it is not considered.
246 */
247 CollSeq *sqlite3BinaryCompareCollSeq(
248   Parse *pParse,
249   Expr *pLeft,
250   Expr *pRight
251 ){
252   CollSeq *pColl;
253   assert( pLeft );
254   if( pLeft->flags & EP_Collate ){
255     pColl = sqlite3ExprCollSeq(pParse, pLeft);
256   }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
257     pColl = sqlite3ExprCollSeq(pParse, pRight);
258   }else{
259     pColl = sqlite3ExprCollSeq(pParse, pLeft);
260     if( !pColl ){
261       pColl = sqlite3ExprCollSeq(pParse, pRight);
262     }
263   }
264   return pColl;
265 }
266 
267 /*
268 ** Generate code for a comparison operator.
269 */
270 static int codeCompare(
271   Parse *pParse,    /* The parsing (and code generating) context */
272   Expr *pLeft,      /* The left operand */
273   Expr *pRight,     /* The right operand */
274   int opcode,       /* The comparison opcode */
275   int in1, int in2, /* Register holding operands */
276   int dest,         /* Jump here if true.  */
277   int jumpIfNull    /* If true, jump if either operand is NULL */
278 ){
279   int p5;
280   int addr;
281   CollSeq *p4;
282 
283   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
284   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
285   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
286                            (void*)p4, P4_COLLSEQ);
287   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
288   return addr;
289 }
290 
291 #if SQLITE_MAX_EXPR_DEPTH>0
292 /*
293 ** Check that argument nHeight is less than or equal to the maximum
294 ** expression depth allowed. If it is not, leave an error message in
295 ** pParse.
296 */
297 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
298   int rc = SQLITE_OK;
299   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
300   if( nHeight>mxHeight ){
301     sqlite3ErrorMsg(pParse,
302        "Expression tree is too large (maximum depth %d)", mxHeight
303     );
304     rc = SQLITE_ERROR;
305   }
306   return rc;
307 }
308 
309 /* The following three functions, heightOfExpr(), heightOfExprList()
310 ** and heightOfSelect(), are used to determine the maximum height
311 ** of any expression tree referenced by the structure passed as the
312 ** first argument.
313 **
314 ** If this maximum height is greater than the current value pointed
315 ** to by pnHeight, the second parameter, then set *pnHeight to that
316 ** value.
317 */
318 static void heightOfExpr(Expr *p, int *pnHeight){
319   if( p ){
320     if( p->nHeight>*pnHeight ){
321       *pnHeight = p->nHeight;
322     }
323   }
324 }
325 static void heightOfExprList(ExprList *p, int *pnHeight){
326   if( p ){
327     int i;
328     for(i=0; i<p->nExpr; i++){
329       heightOfExpr(p->a[i].pExpr, pnHeight);
330     }
331   }
332 }
333 static void heightOfSelect(Select *p, int *pnHeight){
334   if( p ){
335     heightOfExpr(p->pWhere, pnHeight);
336     heightOfExpr(p->pHaving, pnHeight);
337     heightOfExpr(p->pLimit, pnHeight);
338     heightOfExpr(p->pOffset, pnHeight);
339     heightOfExprList(p->pEList, pnHeight);
340     heightOfExprList(p->pGroupBy, pnHeight);
341     heightOfExprList(p->pOrderBy, pnHeight);
342     heightOfSelect(p->pPrior, pnHeight);
343   }
344 }
345 
346 /*
347 ** Set the Expr.nHeight variable in the structure passed as an
348 ** argument. An expression with no children, Expr.pList or
349 ** Expr.pSelect member has a height of 1. Any other expression
350 ** has a height equal to the maximum height of any other
351 ** referenced Expr plus one.
352 */
353 static void exprSetHeight(Expr *p){
354   int nHeight = 0;
355   heightOfExpr(p->pLeft, &nHeight);
356   heightOfExpr(p->pRight, &nHeight);
357   if( ExprHasProperty(p, EP_xIsSelect) ){
358     heightOfSelect(p->x.pSelect, &nHeight);
359   }else{
360     heightOfExprList(p->x.pList, &nHeight);
361   }
362   p->nHeight = nHeight + 1;
363 }
364 
365 /*
366 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
367 ** the height is greater than the maximum allowed expression depth,
368 ** leave an error in pParse.
369 */
370 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
371   exprSetHeight(p);
372   sqlite3ExprCheckHeight(pParse, p->nHeight);
373 }
374 
375 /*
376 ** Return the maximum height of any expression tree referenced
377 ** by the select statement passed as an argument.
378 */
379 int sqlite3SelectExprHeight(Select *p){
380   int nHeight = 0;
381   heightOfSelect(p, &nHeight);
382   return nHeight;
383 }
384 #else
385   #define exprSetHeight(y)
386 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
387 
388 /*
389 ** This routine is the core allocator for Expr nodes.
390 **
391 ** Construct a new expression node and return a pointer to it.  Memory
392 ** for this node and for the pToken argument is a single allocation
393 ** obtained from sqlite3DbMalloc().  The calling function
394 ** is responsible for making sure the node eventually gets freed.
395 **
396 ** If dequote is true, then the token (if it exists) is dequoted.
397 ** If dequote is false, no dequoting is performance.  The deQuote
398 ** parameter is ignored if pToken is NULL or if the token does not
399 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
400 ** then the EP_DblQuoted flag is set on the expression node.
401 **
402 ** Special case:  If op==TK_INTEGER and pToken points to a string that
403 ** can be translated into a 32-bit integer, then the token is not
404 ** stored in u.zToken.  Instead, the integer values is written
405 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
406 ** is allocated to hold the integer text and the dequote flag is ignored.
407 */
408 Expr *sqlite3ExprAlloc(
409   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
410   int op,                 /* Expression opcode */
411   const Token *pToken,    /* Token argument.  Might be NULL */
412   int dequote             /* True to dequote */
413 ){
414   Expr *pNew;
415   int nExtra = 0;
416   int iValue = 0;
417 
418   if( pToken ){
419     if( op!=TK_INTEGER || pToken->z==0
420           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
421       nExtra = pToken->n+1;
422       assert( iValue>=0 );
423     }
424   }
425   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
426   if( pNew ){
427     pNew->op = (u8)op;
428     pNew->iAgg = -1;
429     if( pToken ){
430       if( nExtra==0 ){
431         pNew->flags |= EP_IntValue;
432         pNew->u.iValue = iValue;
433       }else{
434         int c;
435         pNew->u.zToken = (char*)&pNew[1];
436         assert( pToken->z!=0 || pToken->n==0 );
437         if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
438         pNew->u.zToken[pToken->n] = 0;
439         if( dequote && nExtra>=3
440              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
441           sqlite3Dequote(pNew->u.zToken);
442           if( c=='"' ) pNew->flags |= EP_DblQuoted;
443         }
444       }
445     }
446 #if SQLITE_MAX_EXPR_DEPTH>0
447     pNew->nHeight = 1;
448 #endif
449   }
450   return pNew;
451 }
452 
453 /*
454 ** Allocate a new expression node from a zero-terminated token that has
455 ** already been dequoted.
456 */
457 Expr *sqlite3Expr(
458   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
459   int op,                 /* Expression opcode */
460   const char *zToken      /* Token argument.  Might be NULL */
461 ){
462   Token x;
463   x.z = zToken;
464   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
465   return sqlite3ExprAlloc(db, op, &x, 0);
466 }
467 
468 /*
469 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
470 **
471 ** If pRoot==NULL that means that a memory allocation error has occurred.
472 ** In that case, delete the subtrees pLeft and pRight.
473 */
474 void sqlite3ExprAttachSubtrees(
475   sqlite3 *db,
476   Expr *pRoot,
477   Expr *pLeft,
478   Expr *pRight
479 ){
480   if( pRoot==0 ){
481     assert( db->mallocFailed );
482     sqlite3ExprDelete(db, pLeft);
483     sqlite3ExprDelete(db, pRight);
484   }else{
485     if( pRight ){
486       pRoot->pRight = pRight;
487       pRoot->flags |= EP_Collate & pRight->flags;
488     }
489     if( pLeft ){
490       pRoot->pLeft = pLeft;
491       pRoot->flags |= EP_Collate & pLeft->flags;
492     }
493     exprSetHeight(pRoot);
494   }
495 }
496 
497 /*
498 ** Allocate a Expr node which joins as many as two subtrees.
499 **
500 ** One or both of the subtrees can be NULL.  Return a pointer to the new
501 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
502 ** free the subtrees and return NULL.
503 */
504 Expr *sqlite3PExpr(
505   Parse *pParse,          /* Parsing context */
506   int op,                 /* Expression opcode */
507   Expr *pLeft,            /* Left operand */
508   Expr *pRight,           /* Right operand */
509   const Token *pToken     /* Argument token */
510 ){
511   Expr *p;
512   if( op==TK_AND && pLeft && pRight ){
513     /* Take advantage of short-circuit false optimization for AND */
514     p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
515   }else{
516     p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
517     sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
518   }
519   if( p ) {
520     sqlite3ExprCheckHeight(pParse, p->nHeight);
521   }
522   return p;
523 }
524 
525 /*
526 ** If the expression is always either TRUE or FALSE (respectively),
527 ** then return 1.  If one cannot determine the truth value of the
528 ** expression at compile-time return 0.
529 **
530 ** This is an optimization.  If is OK to return 0 here even if
531 ** the expression really is always false or false (a false negative).
532 ** But it is a bug to return 1 if the expression might have different
533 ** boolean values in different circumstances (a false positive.)
534 **
535 ** Note that if the expression is part of conditional for a
536 ** LEFT JOIN, then we cannot determine at compile-time whether or not
537 ** is it true or false, so always return 0.
538 */
539 static int exprAlwaysTrue(Expr *p){
540   int v = 0;
541   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
542   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
543   return v!=0;
544 }
545 static int exprAlwaysFalse(Expr *p){
546   int v = 0;
547   if( ExprHasProperty(p, EP_FromJoin) ) return 0;
548   if( !sqlite3ExprIsInteger(p, &v) ) return 0;
549   return v==0;
550 }
551 
552 /*
553 ** Join two expressions using an AND operator.  If either expression is
554 ** NULL, then just return the other expression.
555 **
556 ** If one side or the other of the AND is known to be false, then instead
557 ** of returning an AND expression, just return a constant expression with
558 ** a value of false.
559 */
560 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
561   if( pLeft==0 ){
562     return pRight;
563   }else if( pRight==0 ){
564     return pLeft;
565   }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
566     sqlite3ExprDelete(db, pLeft);
567     sqlite3ExprDelete(db, pRight);
568     return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
569   }else{
570     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
571     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
572     return pNew;
573   }
574 }
575 
576 /*
577 ** Construct a new expression node for a function with multiple
578 ** arguments.
579 */
580 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
581   Expr *pNew;
582   sqlite3 *db = pParse->db;
583   assert( pToken );
584   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
585   if( pNew==0 ){
586     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
587     return 0;
588   }
589   pNew->x.pList = pList;
590   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
591   sqlite3ExprSetHeight(pParse, pNew);
592   return pNew;
593 }
594 
595 /*
596 ** Assign a variable number to an expression that encodes a wildcard
597 ** in the original SQL statement.
598 **
599 ** Wildcards consisting of a single "?" are assigned the next sequential
600 ** variable number.
601 **
602 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
603 ** sure "nnn" is not too be to avoid a denial of service attack when
604 ** the SQL statement comes from an external source.
605 **
606 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
607 ** as the previous instance of the same wildcard.  Or if this is the first
608 ** instance of the wildcard, the next sequenial variable number is
609 ** assigned.
610 */
611 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
612   sqlite3 *db = pParse->db;
613   const char *z;
614 
615   if( pExpr==0 ) return;
616   assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
617   z = pExpr->u.zToken;
618   assert( z!=0 );
619   assert( z[0]!=0 );
620   if( z[1]==0 ){
621     /* Wildcard of the form "?".  Assign the next variable number */
622     assert( z[0]=='?' );
623     pExpr->iColumn = (ynVar)(++pParse->nVar);
624   }else{
625     ynVar x = 0;
626     u32 n = sqlite3Strlen30(z);
627     if( z[0]=='?' ){
628       /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
629       ** use it as the variable number */
630       i64 i;
631       int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
632       pExpr->iColumn = x = (ynVar)i;
633       testcase( i==0 );
634       testcase( i==1 );
635       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
636       testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
637       if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
638         sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
639             db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
640         x = 0;
641       }
642       if( i>pParse->nVar ){
643         pParse->nVar = (int)i;
644       }
645     }else{
646       /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
647       ** number as the prior appearance of the same name, or if the name
648       ** has never appeared before, reuse the same variable number
649       */
650       ynVar i;
651       for(i=0; i<pParse->nzVar; i++){
652         if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
653           pExpr->iColumn = x = (ynVar)i+1;
654           break;
655         }
656       }
657       if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
658     }
659     if( x>0 ){
660       if( x>pParse->nzVar ){
661         char **a;
662         a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
663         if( a==0 ) return;  /* Error reported through db->mallocFailed */
664         pParse->azVar = a;
665         memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
666         pParse->nzVar = x;
667       }
668       if( z[0]!='?' || pParse->azVar[x-1]==0 ){
669         sqlite3DbFree(db, pParse->azVar[x-1]);
670         pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
671       }
672     }
673   }
674   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
675     sqlite3ErrorMsg(pParse, "too many SQL variables");
676   }
677 }
678 
679 /*
680 ** Recursively delete an expression tree.
681 */
682 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
683   if( p==0 ) return;
684   /* Sanity check: Assert that the IntValue is non-negative if it exists */
685   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
686   if( !ExprHasProperty(p, EP_TokenOnly) ){
687     /* The Expr.x union is never used at the same time as Expr.pRight */
688     assert( p->x.pList==0 || p->pRight==0 );
689     sqlite3ExprDelete(db, p->pLeft);
690     sqlite3ExprDelete(db, p->pRight);
691     if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
692     if( ExprHasProperty(p, EP_xIsSelect) ){
693       sqlite3SelectDelete(db, p->x.pSelect);
694     }else{
695       sqlite3ExprListDelete(db, p->x.pList);
696     }
697   }
698   if( !ExprHasProperty(p, EP_Static) ){
699     sqlite3DbFree(db, p);
700   }
701 }
702 
703 /*
704 ** Return the number of bytes allocated for the expression structure
705 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
706 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
707 */
708 static int exprStructSize(Expr *p){
709   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
710   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
711   return EXPR_FULLSIZE;
712 }
713 
714 /*
715 ** The dupedExpr*Size() routines each return the number of bytes required
716 ** to store a copy of an expression or expression tree.  They differ in
717 ** how much of the tree is measured.
718 **
719 **     dupedExprStructSize()     Size of only the Expr structure
720 **     dupedExprNodeSize()       Size of Expr + space for token
721 **     dupedExprSize()           Expr + token + subtree components
722 **
723 ***************************************************************************
724 **
725 ** The dupedExprStructSize() function returns two values OR-ed together:
726 ** (1) the space required for a copy of the Expr structure only and
727 ** (2) the EP_xxx flags that indicate what the structure size should be.
728 ** The return values is always one of:
729 **
730 **      EXPR_FULLSIZE
731 **      EXPR_REDUCEDSIZE   | EP_Reduced
732 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
733 **
734 ** The size of the structure can be found by masking the return value
735 ** of this routine with 0xfff.  The flags can be found by masking the
736 ** return value with EP_Reduced|EP_TokenOnly.
737 **
738 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
739 ** (unreduced) Expr objects as they or originally constructed by the parser.
740 ** During expression analysis, extra information is computed and moved into
741 ** later parts of teh Expr object and that extra information might get chopped
742 ** off if the expression is reduced.  Note also that it does not work to
743 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
744 ** to reduce a pristine expression tree from the parser.  The implementation
745 ** of dupedExprStructSize() contain multiple assert() statements that attempt
746 ** to enforce this constraint.
747 */
748 static int dupedExprStructSize(Expr *p, int flags){
749   int nSize;
750   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
751   assert( EXPR_FULLSIZE<=0xfff );
752   assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
753   if( 0==(flags&EXPRDUP_REDUCE) ){
754     nSize = EXPR_FULLSIZE;
755   }else{
756     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
757     assert( !ExprHasProperty(p, EP_FromJoin) );
758     assert( !ExprHasProperty(p, EP_MemToken) );
759     assert( !ExprHasProperty(p, EP_NoReduce) );
760     if( p->pLeft || p->x.pList ){
761       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
762     }else{
763       assert( p->pRight==0 );
764       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
765     }
766   }
767   return nSize;
768 }
769 
770 /*
771 ** This function returns the space in bytes required to store the copy
772 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
773 ** string is defined.)
774 */
775 static int dupedExprNodeSize(Expr *p, int flags){
776   int nByte = dupedExprStructSize(p, flags) & 0xfff;
777   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
778     nByte += sqlite3Strlen30(p->u.zToken)+1;
779   }
780   return ROUND8(nByte);
781 }
782 
783 /*
784 ** Return the number of bytes required to create a duplicate of the
785 ** expression passed as the first argument. The second argument is a
786 ** mask containing EXPRDUP_XXX flags.
787 **
788 ** The value returned includes space to create a copy of the Expr struct
789 ** itself and the buffer referred to by Expr.u.zToken, if any.
790 **
791 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
792 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
793 ** and Expr.pRight variables (but not for any structures pointed to or
794 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
795 */
796 static int dupedExprSize(Expr *p, int flags){
797   int nByte = 0;
798   if( p ){
799     nByte = dupedExprNodeSize(p, flags);
800     if( flags&EXPRDUP_REDUCE ){
801       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
802     }
803   }
804   return nByte;
805 }
806 
807 /*
808 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
809 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
810 ** to store the copy of expression p, the copies of p->u.zToken
811 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
812 ** if any. Before returning, *pzBuffer is set to the first byte passed the
813 ** portion of the buffer copied into by this function.
814 */
815 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
816   Expr *pNew = 0;                      /* Value to return */
817   if( p ){
818     const int isReduced = (flags&EXPRDUP_REDUCE);
819     u8 *zAlloc;
820     u32 staticFlag = 0;
821 
822     assert( pzBuffer==0 || isReduced );
823 
824     /* Figure out where to write the new Expr structure. */
825     if( pzBuffer ){
826       zAlloc = *pzBuffer;
827       staticFlag = EP_Static;
828     }else{
829       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
830     }
831     pNew = (Expr *)zAlloc;
832 
833     if( pNew ){
834       /* Set nNewSize to the size allocated for the structure pointed to
835       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
836       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
837       ** by the copy of the p->u.zToken string (if any).
838       */
839       const unsigned nStructSize = dupedExprStructSize(p, flags);
840       const int nNewSize = nStructSize & 0xfff;
841       int nToken;
842       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
843         nToken = sqlite3Strlen30(p->u.zToken) + 1;
844       }else{
845         nToken = 0;
846       }
847       if( isReduced ){
848         assert( ExprHasProperty(p, EP_Reduced)==0 );
849         memcpy(zAlloc, p, nNewSize);
850       }else{
851         int nSize = exprStructSize(p);
852         memcpy(zAlloc, p, nSize);
853         memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
854       }
855 
856       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
857       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
858       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
859       pNew->flags |= staticFlag;
860 
861       /* Copy the p->u.zToken string, if any. */
862       if( nToken ){
863         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
864         memcpy(zToken, p->u.zToken, nToken);
865       }
866 
867       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
868         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
869         if( ExprHasProperty(p, EP_xIsSelect) ){
870           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
871         }else{
872           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
873         }
874       }
875 
876       /* Fill in pNew->pLeft and pNew->pRight. */
877       if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
878         zAlloc += dupedExprNodeSize(p, flags);
879         if( ExprHasProperty(pNew, EP_Reduced) ){
880           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
881           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
882         }
883         if( pzBuffer ){
884           *pzBuffer = zAlloc;
885         }
886       }else{
887         if( !ExprHasProperty(p, EP_TokenOnly) ){
888           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
889           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
890         }
891       }
892 
893     }
894   }
895   return pNew;
896 }
897 
898 /*
899 ** Create and return a deep copy of the object passed as the second
900 ** argument. If an OOM condition is encountered, NULL is returned
901 ** and the db->mallocFailed flag set.
902 */
903 #ifndef SQLITE_OMIT_CTE
904 static With *withDup(sqlite3 *db, With *p){
905   With *pRet = 0;
906   if( p ){
907     int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
908     pRet = sqlite3DbMallocZero(db, nByte);
909     if( pRet ){
910       int i;
911       pRet->nCte = p->nCte;
912       for(i=0; i<p->nCte; i++){
913         pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
914         pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
915         pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
916       }
917     }
918   }
919   return pRet;
920 }
921 #else
922 # define withDup(x,y) 0
923 #endif
924 
925 /*
926 ** The following group of routines make deep copies of expressions,
927 ** expression lists, ID lists, and select statements.  The copies can
928 ** be deleted (by being passed to their respective ...Delete() routines)
929 ** without effecting the originals.
930 **
931 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
932 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
933 ** by subsequent calls to sqlite*ListAppend() routines.
934 **
935 ** Any tables that the SrcList might point to are not duplicated.
936 **
937 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
938 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
939 ** truncated version of the usual Expr structure that will be stored as
940 ** part of the in-memory representation of the database schema.
941 */
942 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
943   return exprDup(db, p, flags, 0);
944 }
945 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
946   ExprList *pNew;
947   struct ExprList_item *pItem, *pOldItem;
948   int i;
949   if( p==0 ) return 0;
950   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
951   if( pNew==0 ) return 0;
952   pNew->iECursor = 0;
953   pNew->nExpr = i = p->nExpr;
954   if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
955   pNew->a = pItem = sqlite3DbMallocRaw(db,  i*sizeof(p->a[0]) );
956   if( pItem==0 ){
957     sqlite3DbFree(db, pNew);
958     return 0;
959   }
960   pOldItem = p->a;
961   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
962     Expr *pOldExpr = pOldItem->pExpr;
963     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
964     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
965     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
966     pItem->sortOrder = pOldItem->sortOrder;
967     pItem->done = 0;
968     pItem->bSpanIsTab = pOldItem->bSpanIsTab;
969     pItem->u = pOldItem->u;
970   }
971   return pNew;
972 }
973 
974 /*
975 ** If cursors, triggers, views and subqueries are all omitted from
976 ** the build, then none of the following routines, except for
977 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
978 ** called with a NULL argument.
979 */
980 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
981  || !defined(SQLITE_OMIT_SUBQUERY)
982 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
983   SrcList *pNew;
984   int i;
985   int nByte;
986   if( p==0 ) return 0;
987   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
988   pNew = sqlite3DbMallocRaw(db, nByte );
989   if( pNew==0 ) return 0;
990   pNew->nSrc = pNew->nAlloc = p->nSrc;
991   for(i=0; i<p->nSrc; i++){
992     struct SrcList_item *pNewItem = &pNew->a[i];
993     struct SrcList_item *pOldItem = &p->a[i];
994     Table *pTab;
995     pNewItem->pSchema = pOldItem->pSchema;
996     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
997     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
998     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
999     pNewItem->jointype = pOldItem->jointype;
1000     pNewItem->iCursor = pOldItem->iCursor;
1001     pNewItem->addrFillSub = pOldItem->addrFillSub;
1002     pNewItem->regReturn = pOldItem->regReturn;
1003     pNewItem->isCorrelated = pOldItem->isCorrelated;
1004     pNewItem->viaCoroutine = pOldItem->viaCoroutine;
1005     pNewItem->isRecursive = pOldItem->isRecursive;
1006     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
1007     pNewItem->notIndexed = pOldItem->notIndexed;
1008     pNewItem->pIndex = pOldItem->pIndex;
1009     pTab = pNewItem->pTab = pOldItem->pTab;
1010     if( pTab ){
1011       pTab->nRef++;
1012     }
1013     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1014     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1015     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1016     pNewItem->colUsed = pOldItem->colUsed;
1017   }
1018   return pNew;
1019 }
1020 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1021   IdList *pNew;
1022   int i;
1023   if( p==0 ) return 0;
1024   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1025   if( pNew==0 ) return 0;
1026   pNew->nId = p->nId;
1027   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1028   if( pNew->a==0 ){
1029     sqlite3DbFree(db, pNew);
1030     return 0;
1031   }
1032   /* Note that because the size of the allocation for p->a[] is not
1033   ** necessarily a power of two, sqlite3IdListAppend() may not be called
1034   ** on the duplicate created by this function. */
1035   for(i=0; i<p->nId; i++){
1036     struct IdList_item *pNewItem = &pNew->a[i];
1037     struct IdList_item *pOldItem = &p->a[i];
1038     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1039     pNewItem->idx = pOldItem->idx;
1040   }
1041   return pNew;
1042 }
1043 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1044   Select *pNew, *pPrior;
1045   if( p==0 ) return 0;
1046   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1047   if( pNew==0 ) return 0;
1048   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1049   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1050   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1051   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1052   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1053   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1054   pNew->op = p->op;
1055   pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1056   if( pPrior ) pPrior->pNext = pNew;
1057   pNew->pNext = 0;
1058   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1059   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1060   pNew->iLimit = 0;
1061   pNew->iOffset = 0;
1062   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1063   pNew->pRightmost = 0;
1064   pNew->addrOpenEphm[0] = -1;
1065   pNew->addrOpenEphm[1] = -1;
1066   pNew->addrOpenEphm[2] = -1;
1067   pNew->nSelectRow = p->nSelectRow;
1068   pNew->pWith = withDup(db, p->pWith);
1069   return pNew;
1070 }
1071 #else
1072 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1073   assert( p==0 );
1074   return 0;
1075 }
1076 #endif
1077 
1078 
1079 /*
1080 ** Add a new element to the end of an expression list.  If pList is
1081 ** initially NULL, then create a new expression list.
1082 **
1083 ** If a memory allocation error occurs, the entire list is freed and
1084 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
1085 ** that the new entry was successfully appended.
1086 */
1087 ExprList *sqlite3ExprListAppend(
1088   Parse *pParse,          /* Parsing context */
1089   ExprList *pList,        /* List to which to append. Might be NULL */
1090   Expr *pExpr             /* Expression to be appended. Might be NULL */
1091 ){
1092   sqlite3 *db = pParse->db;
1093   if( pList==0 ){
1094     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1095     if( pList==0 ){
1096       goto no_mem;
1097     }
1098     pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1099     if( pList->a==0 ) goto no_mem;
1100   }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1101     struct ExprList_item *a;
1102     assert( pList->nExpr>0 );
1103     a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1104     if( a==0 ){
1105       goto no_mem;
1106     }
1107     pList->a = a;
1108   }
1109   assert( pList->a!=0 );
1110   if( 1 ){
1111     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1112     memset(pItem, 0, sizeof(*pItem));
1113     pItem->pExpr = pExpr;
1114   }
1115   return pList;
1116 
1117 no_mem:
1118   /* Avoid leaking memory if malloc has failed. */
1119   sqlite3ExprDelete(db, pExpr);
1120   sqlite3ExprListDelete(db, pList);
1121   return 0;
1122 }
1123 
1124 /*
1125 ** Set the ExprList.a[].zName element of the most recently added item
1126 ** on the expression list.
1127 **
1128 ** pList might be NULL following an OOM error.  But pName should never be
1129 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1130 ** is set.
1131 */
1132 void sqlite3ExprListSetName(
1133   Parse *pParse,          /* Parsing context */
1134   ExprList *pList,        /* List to which to add the span. */
1135   Token *pName,           /* Name to be added */
1136   int dequote             /* True to cause the name to be dequoted */
1137 ){
1138   assert( pList!=0 || pParse->db->mallocFailed!=0 );
1139   if( pList ){
1140     struct ExprList_item *pItem;
1141     assert( pList->nExpr>0 );
1142     pItem = &pList->a[pList->nExpr-1];
1143     assert( pItem->zName==0 );
1144     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1145     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1146   }
1147 }
1148 
1149 /*
1150 ** Set the ExprList.a[].zSpan element of the most recently added item
1151 ** on the expression list.
1152 **
1153 ** pList might be NULL following an OOM error.  But pSpan should never be
1154 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
1155 ** is set.
1156 */
1157 void sqlite3ExprListSetSpan(
1158   Parse *pParse,          /* Parsing context */
1159   ExprList *pList,        /* List to which to add the span. */
1160   ExprSpan *pSpan         /* The span to be added */
1161 ){
1162   sqlite3 *db = pParse->db;
1163   assert( pList!=0 || db->mallocFailed!=0 );
1164   if( pList ){
1165     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1166     assert( pList->nExpr>0 );
1167     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1168     sqlite3DbFree(db, pItem->zSpan);
1169     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1170                                     (int)(pSpan->zEnd - pSpan->zStart));
1171   }
1172 }
1173 
1174 /*
1175 ** If the expression list pEList contains more than iLimit elements,
1176 ** leave an error message in pParse.
1177 */
1178 void sqlite3ExprListCheckLength(
1179   Parse *pParse,
1180   ExprList *pEList,
1181   const char *zObject
1182 ){
1183   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1184   testcase( pEList && pEList->nExpr==mx );
1185   testcase( pEList && pEList->nExpr==mx+1 );
1186   if( pEList && pEList->nExpr>mx ){
1187     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1188   }
1189 }
1190 
1191 /*
1192 ** Delete an entire expression list.
1193 */
1194 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1195   int i;
1196   struct ExprList_item *pItem;
1197   if( pList==0 ) return;
1198   assert( pList->a!=0 || pList->nExpr==0 );
1199   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1200     sqlite3ExprDelete(db, pItem->pExpr);
1201     sqlite3DbFree(db, pItem->zName);
1202     sqlite3DbFree(db, pItem->zSpan);
1203   }
1204   sqlite3DbFree(db, pList->a);
1205   sqlite3DbFree(db, pList);
1206 }
1207 
1208 /*
1209 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
1210 ** to an integer.  These routines are checking an expression to see
1211 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
1212 ** not constant.
1213 **
1214 ** These callback routines are used to implement the following:
1215 **
1216 **     sqlite3ExprIsConstant()
1217 **     sqlite3ExprIsConstantNotJoin()
1218 **     sqlite3ExprIsConstantOrFunction()
1219 **
1220 */
1221 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1222 
1223   /* If pWalker->u.i is 3 then any term of the expression that comes from
1224   ** the ON or USING clauses of a join disqualifies the expression
1225   ** from being considered constant. */
1226   if( pWalker->u.i==3 && ExprHasProperty(pExpr, EP_FromJoin) ){
1227     pWalker->u.i = 0;
1228     return WRC_Abort;
1229   }
1230 
1231   switch( pExpr->op ){
1232     /* Consider functions to be constant if all their arguments are constant
1233     ** and either pWalker->u.i==2 or the function as the SQLITE_FUNC_CONST
1234     ** flag. */
1235     case TK_FUNCTION:
1236       if( pWalker->u.i==2 || ExprHasProperty(pExpr,EP_Constant) ){
1237         return WRC_Continue;
1238       }
1239       /* Fall through */
1240     case TK_ID:
1241     case TK_COLUMN:
1242     case TK_AGG_FUNCTION:
1243     case TK_AGG_COLUMN:
1244       testcase( pExpr->op==TK_ID );
1245       testcase( pExpr->op==TK_COLUMN );
1246       testcase( pExpr->op==TK_AGG_FUNCTION );
1247       testcase( pExpr->op==TK_AGG_COLUMN );
1248       pWalker->u.i = 0;
1249       return WRC_Abort;
1250     default:
1251       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1252       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1253       return WRC_Continue;
1254   }
1255 }
1256 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1257   UNUSED_PARAMETER(NotUsed);
1258   pWalker->u.i = 0;
1259   return WRC_Abort;
1260 }
1261 static int exprIsConst(Expr *p, int initFlag){
1262   Walker w;
1263   memset(&w, 0, sizeof(w));
1264   w.u.i = initFlag;
1265   w.xExprCallback = exprNodeIsConstant;
1266   w.xSelectCallback = selectNodeIsConstant;
1267   sqlite3WalkExpr(&w, p);
1268   return w.u.i;
1269 }
1270 
1271 /*
1272 ** Walk an expression tree.  Return 1 if the expression is constant
1273 ** and 0 if it involves variables or function calls.
1274 **
1275 ** For the purposes of this function, a double-quoted string (ex: "abc")
1276 ** is considered a variable but a single-quoted string (ex: 'abc') is
1277 ** a constant.
1278 */
1279 int sqlite3ExprIsConstant(Expr *p){
1280   return exprIsConst(p, 1);
1281 }
1282 
1283 /*
1284 ** Walk an expression tree.  Return 1 if the expression is constant
1285 ** that does no originate from the ON or USING clauses of a join.
1286 ** Return 0 if it involves variables or function calls or terms from
1287 ** an ON or USING clause.
1288 */
1289 int sqlite3ExprIsConstantNotJoin(Expr *p){
1290   return exprIsConst(p, 3);
1291 }
1292 
1293 /*
1294 ** Walk an expression tree.  Return 1 if the expression is constant
1295 ** or a function call with constant arguments.  Return and 0 if there
1296 ** are any variables.
1297 **
1298 ** For the purposes of this function, a double-quoted string (ex: "abc")
1299 ** is considered a variable but a single-quoted string (ex: 'abc') is
1300 ** a constant.
1301 */
1302 int sqlite3ExprIsConstantOrFunction(Expr *p){
1303   return exprIsConst(p, 2);
1304 }
1305 
1306 /*
1307 ** If the expression p codes a constant integer that is small enough
1308 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1309 ** in *pValue.  If the expression is not an integer or if it is too big
1310 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1311 */
1312 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1313   int rc = 0;
1314 
1315   /* If an expression is an integer literal that fits in a signed 32-bit
1316   ** integer, then the EP_IntValue flag will have already been set */
1317   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1318            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1319 
1320   if( p->flags & EP_IntValue ){
1321     *pValue = p->u.iValue;
1322     return 1;
1323   }
1324   switch( p->op ){
1325     case TK_UPLUS: {
1326       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1327       break;
1328     }
1329     case TK_UMINUS: {
1330       int v;
1331       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1332         assert( v!=(-2147483647-1) );
1333         *pValue = -v;
1334         rc = 1;
1335       }
1336       break;
1337     }
1338     default: break;
1339   }
1340   return rc;
1341 }
1342 
1343 /*
1344 ** Return FALSE if there is no chance that the expression can be NULL.
1345 **
1346 ** If the expression might be NULL or if the expression is too complex
1347 ** to tell return TRUE.
1348 **
1349 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1350 ** when we know that a value cannot be NULL.  Hence, a false positive
1351 ** (returning TRUE when in fact the expression can never be NULL) might
1352 ** be a small performance hit but is otherwise harmless.  On the other
1353 ** hand, a false negative (returning FALSE when the result could be NULL)
1354 ** will likely result in an incorrect answer.  So when in doubt, return
1355 ** TRUE.
1356 */
1357 int sqlite3ExprCanBeNull(const Expr *p){
1358   u8 op;
1359   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1360   op = p->op;
1361   if( op==TK_REGISTER ) op = p->op2;
1362   switch( op ){
1363     case TK_INTEGER:
1364     case TK_STRING:
1365     case TK_FLOAT:
1366     case TK_BLOB:
1367       return 0;
1368     default:
1369       return 1;
1370   }
1371 }
1372 
1373 /*
1374 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1375 ** to location iDest if the value in iReg is NULL.  The value in iReg
1376 ** was computed by pExpr.  If we can look at pExpr at compile-time and
1377 ** determine that it can never generate a NULL, then the OP_IsNull operation
1378 ** can be omitted.
1379 */
1380 void sqlite3ExprCodeIsNullJump(
1381   Vdbe *v,            /* The VDBE under construction */
1382   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
1383   int iReg,           /* Test the value in this register for NULL */
1384   int iDest           /* Jump here if the value is null */
1385 ){
1386   if( sqlite3ExprCanBeNull(pExpr) ){
1387     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1388   }
1389 }
1390 
1391 /*
1392 ** Return TRUE if the given expression is a constant which would be
1393 ** unchanged by OP_Affinity with the affinity given in the second
1394 ** argument.
1395 **
1396 ** This routine is used to determine if the OP_Affinity operation
1397 ** can be omitted.  When in doubt return FALSE.  A false negative
1398 ** is harmless.  A false positive, however, can result in the wrong
1399 ** answer.
1400 */
1401 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1402   u8 op;
1403   if( aff==SQLITE_AFF_NONE ) return 1;
1404   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1405   op = p->op;
1406   if( op==TK_REGISTER ) op = p->op2;
1407   switch( op ){
1408     case TK_INTEGER: {
1409       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1410     }
1411     case TK_FLOAT: {
1412       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1413     }
1414     case TK_STRING: {
1415       return aff==SQLITE_AFF_TEXT;
1416     }
1417     case TK_BLOB: {
1418       return 1;
1419     }
1420     case TK_COLUMN: {
1421       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
1422       return p->iColumn<0
1423           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1424     }
1425     default: {
1426       return 0;
1427     }
1428   }
1429 }
1430 
1431 /*
1432 ** Return TRUE if the given string is a row-id column name.
1433 */
1434 int sqlite3IsRowid(const char *z){
1435   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1436   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1437   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1438   return 0;
1439 }
1440 
1441 /*
1442 ** Return true if we are able to the IN operator optimization on a
1443 ** query of the form
1444 **
1445 **       x IN (SELECT ...)
1446 **
1447 ** Where the SELECT... clause is as specified by the parameter to this
1448 ** routine.
1449 **
1450 ** The Select object passed in has already been preprocessed and no
1451 ** errors have been found.
1452 */
1453 #ifndef SQLITE_OMIT_SUBQUERY
1454 static int isCandidateForInOpt(Select *p){
1455   SrcList *pSrc;
1456   ExprList *pEList;
1457   Table *pTab;
1458   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
1459   if( p->pPrior ) return 0;              /* Not a compound SELECT */
1460   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1461     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1462     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1463     return 0; /* No DISTINCT keyword and no aggregate functions */
1464   }
1465   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
1466   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
1467   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
1468   if( p->pWhere ) return 0;              /* Has no WHERE clause */
1469   pSrc = p->pSrc;
1470   assert( pSrc!=0 );
1471   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
1472   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
1473   pTab = pSrc->a[0].pTab;
1474   if( NEVER(pTab==0) ) return 0;
1475   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
1476   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
1477   pEList = p->pEList;
1478   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
1479   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1480   return 1;
1481 }
1482 #endif /* SQLITE_OMIT_SUBQUERY */
1483 
1484 /*
1485 ** Code an OP_Once instruction and allocate space for its flag. Return the
1486 ** address of the new instruction.
1487 */
1488 int sqlite3CodeOnce(Parse *pParse){
1489   Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
1490   return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1491 }
1492 
1493 /*
1494 ** This function is used by the implementation of the IN (...) operator.
1495 ** The pX parameter is the expression on the RHS of the IN operator, which
1496 ** might be either a list of expressions or a subquery.
1497 **
1498 ** The job of this routine is to find or create a b-tree object that can
1499 ** be used either to test for membership in the RHS set or to iterate through
1500 ** all members of the RHS set, skipping duplicates.
1501 **
1502 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1503 ** and pX->iTable is set to the index of that cursor.
1504 **
1505 ** The returned value of this function indicates the b-tree type, as follows:
1506 **
1507 **   IN_INDEX_ROWID      - The cursor was opened on a database table.
1508 **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
1509 **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1510 **   IN_INDEX_EPH        - The cursor was opened on a specially created and
1511 **                         populated epheremal table.
1512 **
1513 ** An existing b-tree might be used if the RHS expression pX is a simple
1514 ** subquery such as:
1515 **
1516 **     SELECT <column> FROM <table>
1517 **
1518 ** If the RHS of the IN operator is a list or a more complex subquery, then
1519 ** an ephemeral table might need to be generated from the RHS and then
1520 ** pX->iTable made to point to the ephermeral table instead of an
1521 ** existing table.
1522 **
1523 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1524 ** through the set members, skipping any duplicates. In this case an
1525 ** epheremal table must be used unless the selected <column> is guaranteed
1526 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1527 ** has a UNIQUE constraint or UNIQUE index.
1528 **
1529 ** If the prNotFound parameter is not 0, then the b-tree will be used
1530 ** for fast set membership tests. In this case an epheremal table must
1531 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1532 ** be found with <column> as its left-most column.
1533 **
1534 ** When the b-tree is being used for membership tests, the calling function
1535 ** needs to know whether or not the structure contains an SQL NULL
1536 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1537 ** If there is any chance that the (...) might contain a NULL value at
1538 ** runtime, then a register is allocated and the register number written
1539 ** to *prNotFound. If there is no chance that the (...) contains a
1540 ** NULL value, then *prNotFound is left unchanged.
1541 **
1542 ** If a register is allocated and its location stored in *prNotFound, then
1543 ** its initial value is NULL.  If the (...) does not remain constant
1544 ** for the duration of the query (i.e. the SELECT within the (...)
1545 ** is a correlated subquery) then the value of the allocated register is
1546 ** reset to NULL each time the subquery is rerun. This allows the
1547 ** caller to use vdbe code equivalent to the following:
1548 **
1549 **   if( register==NULL ){
1550 **     has_null = <test if data structure contains null>
1551 **     register = 1
1552 **   }
1553 **
1554 ** in order to avoid running the <test if data structure contains null>
1555 ** test more often than is necessary.
1556 */
1557 #ifndef SQLITE_OMIT_SUBQUERY
1558 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1559   Select *p;                            /* SELECT to the right of IN operator */
1560   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
1561   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
1562   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
1563   Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
1564 
1565   assert( pX->op==TK_IN );
1566 
1567   /* Check to see if an existing table or index can be used to
1568   ** satisfy the query.  This is preferable to generating a new
1569   ** ephemeral table.
1570   */
1571   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1572   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1573     sqlite3 *db = pParse->db;              /* Database connection */
1574     Table *pTab;                           /* Table <table>. */
1575     Expr *pExpr;                           /* Expression <column> */
1576     i16 iCol;                              /* Index of column <column> */
1577     i16 iDb;                               /* Database idx for pTab */
1578 
1579     assert( p );                        /* Because of isCandidateForInOpt(p) */
1580     assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
1581     assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1582     assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
1583     pTab = p->pSrc->a[0].pTab;
1584     pExpr = p->pEList->a[0].pExpr;
1585     iCol = (i16)pExpr->iColumn;
1586 
1587     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1588     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1589     sqlite3CodeVerifySchema(pParse, iDb);
1590     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1591 
1592     /* This function is only called from two places. In both cases the vdbe
1593     ** has already been allocated. So assume sqlite3GetVdbe() is always
1594     ** successful here.
1595     */
1596     assert(v);
1597     if( iCol<0 ){
1598       int iAddr;
1599 
1600       iAddr = sqlite3CodeOnce(pParse);
1601 
1602       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1603       eType = IN_INDEX_ROWID;
1604 
1605       sqlite3VdbeJumpHere(v, iAddr);
1606     }else{
1607       Index *pIdx;                         /* Iterator variable */
1608 
1609       /* The collation sequence used by the comparison. If an index is to
1610       ** be used in place of a temp-table, it must be ordered according
1611       ** to this collation sequence.  */
1612       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1613 
1614       /* Check that the affinity that will be used to perform the
1615       ** comparison is the same as the affinity of the column. If
1616       ** it is not, it is not possible to use any index.
1617       */
1618       int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1619 
1620       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1621         if( (pIdx->aiColumn[0]==iCol)
1622          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1623          && (!mustBeUnique || (pIdx->nKeyCol==1 && pIdx->onError!=OE_None))
1624         ){
1625           int iAddr = sqlite3CodeOnce(pParse);
1626           sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1627           sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1628           VdbeComment((v, "%s", pIdx->zName));
1629           assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1630           eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1631 
1632           sqlite3VdbeJumpHere(v, iAddr);
1633           if( prNotFound && !pTab->aCol[iCol].notNull ){
1634             *prNotFound = ++pParse->nMem;
1635             sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1636           }
1637         }
1638       }
1639     }
1640   }
1641 
1642   if( eType==0 ){
1643     /* Could not found an existing table or index to use as the RHS b-tree.
1644     ** We will have to generate an ephemeral table to do the job.
1645     */
1646     u32 savedNQueryLoop = pParse->nQueryLoop;
1647     int rMayHaveNull = 0;
1648     eType = IN_INDEX_EPH;
1649     if( prNotFound ){
1650       *prNotFound = rMayHaveNull = ++pParse->nMem;
1651       sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1652     }else{
1653       testcase( pParse->nQueryLoop>0 );
1654       pParse->nQueryLoop = 0;
1655       if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1656         eType = IN_INDEX_ROWID;
1657       }
1658     }
1659     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1660     pParse->nQueryLoop = savedNQueryLoop;
1661   }else{
1662     pX->iTable = iTab;
1663   }
1664   return eType;
1665 }
1666 #endif
1667 
1668 /*
1669 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1670 ** or IN operators.  Examples:
1671 **
1672 **     (SELECT a FROM b)          -- subquery
1673 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
1674 **     x IN (4,5,11)              -- IN operator with list on right-hand side
1675 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
1676 **
1677 ** The pExpr parameter describes the expression that contains the IN
1678 ** operator or subquery.
1679 **
1680 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1681 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1682 ** to some integer key column of a table B-Tree. In this case, use an
1683 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1684 ** (slower) variable length keys B-Tree.
1685 **
1686 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1687 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1688 ** Furthermore, the IN is in a WHERE clause and that we really want
1689 ** to iterate over the RHS of the IN operator in order to quickly locate
1690 ** all corresponding LHS elements.  All this routine does is initialize
1691 ** the register given by rMayHaveNull to NULL.  Calling routines will take
1692 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1693 **
1694 ** If rMayHaveNull is zero, that means that the subquery is being used
1695 ** for membership testing only.  There is no need to initialize any
1696 ** registers to indicate the presence or absence of NULLs on the RHS.
1697 **
1698 ** For a SELECT or EXISTS operator, return the register that holds the
1699 ** result.  For IN operators or if an error occurs, the return value is 0.
1700 */
1701 #ifndef SQLITE_OMIT_SUBQUERY
1702 int sqlite3CodeSubselect(
1703   Parse *pParse,          /* Parsing context */
1704   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
1705   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
1706   int isRowid             /* If true, LHS of IN operator is a rowid */
1707 ){
1708   int testAddr = -1;                      /* One-time test address */
1709   int rReg = 0;                           /* Register storing resulting */
1710   Vdbe *v = sqlite3GetVdbe(pParse);
1711   if( NEVER(v==0) ) return 0;
1712   sqlite3ExprCachePush(pParse);
1713 
1714   /* This code must be run in its entirety every time it is encountered
1715   ** if any of the following is true:
1716   **
1717   **    *  The right-hand side is a correlated subquery
1718   **    *  The right-hand side is an expression list containing variables
1719   **    *  We are inside a trigger
1720   **
1721   ** If all of the above are false, then we can run this code just once
1722   ** save the results, and reuse the same result on subsequent invocations.
1723   */
1724   if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1725     testAddr = sqlite3CodeOnce(pParse);
1726   }
1727 
1728 #ifndef SQLITE_OMIT_EXPLAIN
1729   if( pParse->explain==2 ){
1730     char *zMsg = sqlite3MPrintf(
1731         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1732         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1733     );
1734     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1735   }
1736 #endif
1737 
1738   switch( pExpr->op ){
1739     case TK_IN: {
1740       char affinity;              /* Affinity of the LHS of the IN */
1741       int addr;                   /* Address of OP_OpenEphemeral instruction */
1742       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1743       KeyInfo *pKeyInfo = 0;      /* Key information */
1744 
1745       if( rMayHaveNull ){
1746         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1747       }
1748 
1749       affinity = sqlite3ExprAffinity(pLeft);
1750 
1751       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1752       ** expression it is handled the same way.  An ephemeral table is
1753       ** filled with single-field index keys representing the results
1754       ** from the SELECT or the <exprlist>.
1755       **
1756       ** If the 'x' expression is a column value, or the SELECT...
1757       ** statement returns a column value, then the affinity of that
1758       ** column is used to build the index keys. If both 'x' and the
1759       ** SELECT... statement are columns, then numeric affinity is used
1760       ** if either column has NUMERIC or INTEGER affinity. If neither
1761       ** 'x' nor the SELECT... statement are columns, then numeric affinity
1762       ** is used.
1763       */
1764       pExpr->iTable = pParse->nTab++;
1765       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1766       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1767       pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1768 
1769       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1770         /* Case 1:     expr IN (SELECT ...)
1771         **
1772         ** Generate code to write the results of the select into the temporary
1773         ** table allocated and opened above.
1774         */
1775         SelectDest dest;
1776         ExprList *pEList;
1777 
1778         assert( !isRowid );
1779         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1780         dest.affSdst = (u8)affinity;
1781         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1782         pExpr->x.pSelect->iLimit = 0;
1783         testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1784         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1785           sqlite3KeyInfoUnref(pKeyInfo);
1786           return 0;
1787         }
1788         pEList = pExpr->x.pSelect->pEList;
1789         assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1790         assert( pEList!=0 );
1791         assert( pEList->nExpr>0 );
1792         assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1793         pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1794                                                          pEList->a[0].pExpr);
1795       }else if( ALWAYS(pExpr->x.pList!=0) ){
1796         /* Case 2:     expr IN (exprlist)
1797         **
1798         ** For each expression, build an index key from the evaluation and
1799         ** store it in the temporary table. If <expr> is a column, then use
1800         ** that columns affinity when building index keys. If <expr> is not
1801         ** a column, use numeric affinity.
1802         */
1803         int i;
1804         ExprList *pList = pExpr->x.pList;
1805         struct ExprList_item *pItem;
1806         int r1, r2, r3;
1807 
1808         if( !affinity ){
1809           affinity = SQLITE_AFF_NONE;
1810         }
1811         if( pKeyInfo ){
1812           assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1813           pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1814         }
1815 
1816         /* Loop through each expression in <exprlist>. */
1817         r1 = sqlite3GetTempReg(pParse);
1818         r2 = sqlite3GetTempReg(pParse);
1819         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1820         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1821           Expr *pE2 = pItem->pExpr;
1822           int iValToIns;
1823 
1824           /* If the expression is not constant then we will need to
1825           ** disable the test that was generated above that makes sure
1826           ** this code only executes once.  Because for a non-constant
1827           ** expression we need to rerun this code each time.
1828           */
1829           if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1830             sqlite3VdbeChangeToNoop(v, testAddr);
1831             testAddr = -1;
1832           }
1833 
1834           /* Evaluate the expression and insert it into the temp table */
1835           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1836             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1837           }else{
1838             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1839             if( isRowid ){
1840               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1841                                 sqlite3VdbeCurrentAddr(v)+2);
1842               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1843             }else{
1844               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1845               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1846               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1847             }
1848           }
1849         }
1850         sqlite3ReleaseTempReg(pParse, r1);
1851         sqlite3ReleaseTempReg(pParse, r2);
1852       }
1853       if( pKeyInfo ){
1854         sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
1855       }
1856       break;
1857     }
1858 
1859     case TK_EXISTS:
1860     case TK_SELECT:
1861     default: {
1862       /* If this has to be a scalar SELECT.  Generate code to put the
1863       ** value of this select in a memory cell and record the number
1864       ** of the memory cell in iColumn.  If this is an EXISTS, write
1865       ** an integer 0 (not exists) or 1 (exists) into a memory cell
1866       ** and record that memory cell in iColumn.
1867       */
1868       Select *pSel;                         /* SELECT statement to encode */
1869       SelectDest dest;                      /* How to deal with SELECt result */
1870 
1871       testcase( pExpr->op==TK_EXISTS );
1872       testcase( pExpr->op==TK_SELECT );
1873       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1874 
1875       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1876       pSel = pExpr->x.pSelect;
1877       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1878       if( pExpr->op==TK_SELECT ){
1879         dest.eDest = SRT_Mem;
1880         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1881         VdbeComment((v, "Init subquery result"));
1882       }else{
1883         dest.eDest = SRT_Exists;
1884         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1885         VdbeComment((v, "Init EXISTS result"));
1886       }
1887       sqlite3ExprDelete(pParse->db, pSel->pLimit);
1888       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1889                                   &sqlite3IntTokens[1]);
1890       pSel->iLimit = 0;
1891       if( sqlite3Select(pParse, pSel, &dest) ){
1892         return 0;
1893       }
1894       rReg = dest.iSDParm;
1895       ExprSetVVAProperty(pExpr, EP_NoReduce);
1896       break;
1897     }
1898   }
1899 
1900   if( testAddr>=0 ){
1901     sqlite3VdbeJumpHere(v, testAddr);
1902   }
1903   sqlite3ExprCachePop(pParse, 1);
1904 
1905   return rReg;
1906 }
1907 #endif /* SQLITE_OMIT_SUBQUERY */
1908 
1909 #ifndef SQLITE_OMIT_SUBQUERY
1910 /*
1911 ** Generate code for an IN expression.
1912 **
1913 **      x IN (SELECT ...)
1914 **      x IN (value, value, ...)
1915 **
1916 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
1917 ** is an array of zero or more values.  The expression is true if the LHS is
1918 ** contained within the RHS.  The value of the expression is unknown (NULL)
1919 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1920 ** RHS contains one or more NULL values.
1921 **
1922 ** This routine generates code will jump to destIfFalse if the LHS is not
1923 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
1924 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
1925 ** within the RHS then fall through.
1926 */
1927 static void sqlite3ExprCodeIN(
1928   Parse *pParse,        /* Parsing and code generating context */
1929   Expr *pExpr,          /* The IN expression */
1930   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
1931   int destIfNull        /* Jump here if the results are unknown due to NULLs */
1932 ){
1933   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
1934   char affinity;        /* Comparison affinity to use */
1935   int eType;            /* Type of the RHS */
1936   int r1;               /* Temporary use register */
1937   Vdbe *v;              /* Statement under construction */
1938 
1939   /* Compute the RHS.   After this step, the table with cursor
1940   ** pExpr->iTable will contains the values that make up the RHS.
1941   */
1942   v = pParse->pVdbe;
1943   assert( v!=0 );       /* OOM detected prior to this routine */
1944   VdbeNoopComment((v, "begin IN expr"));
1945   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1946 
1947   /* Figure out the affinity to use to create a key from the results
1948   ** of the expression. affinityStr stores a static string suitable for
1949   ** P4 of OP_MakeRecord.
1950   */
1951   affinity = comparisonAffinity(pExpr);
1952 
1953   /* Code the LHS, the <expr> from "<expr> IN (...)".
1954   */
1955   sqlite3ExprCachePush(pParse);
1956   r1 = sqlite3GetTempReg(pParse);
1957   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1958 
1959   /* If the LHS is NULL, then the result is either false or NULL depending
1960   ** on whether the RHS is empty or not, respectively.
1961   */
1962   if( destIfNull==destIfFalse ){
1963     /* Shortcut for the common case where the false and NULL outcomes are
1964     ** the same. */
1965     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1966   }else{
1967     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1968     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1969     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1970     sqlite3VdbeJumpHere(v, addr1);
1971   }
1972 
1973   if( eType==IN_INDEX_ROWID ){
1974     /* In this case, the RHS is the ROWID of table b-tree
1975     */
1976     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1977     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1978   }else{
1979     /* In this case, the RHS is an index b-tree.
1980     */
1981     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1982 
1983     /* If the set membership test fails, then the result of the
1984     ** "x IN (...)" expression must be either 0 or NULL. If the set
1985     ** contains no NULL values, then the result is 0. If the set
1986     ** contains one or more NULL values, then the result of the
1987     ** expression is also NULL.
1988     */
1989     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1990       /* This branch runs if it is known at compile time that the RHS
1991       ** cannot contain NULL values. This happens as the result
1992       ** of a "NOT NULL" constraint in the database schema.
1993       **
1994       ** Also run this branch if NULL is equivalent to FALSE
1995       ** for this particular IN operator.
1996       */
1997       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1998 
1999     }else{
2000       /* In this branch, the RHS of the IN might contain a NULL and
2001       ** the presence of a NULL on the RHS makes a difference in the
2002       ** outcome.
2003       */
2004       int j1, j2, j3;
2005 
2006       /* First check to see if the LHS is contained in the RHS.  If so,
2007       ** then the presence of NULLs in the RHS does not matter, so jump
2008       ** over all of the code that follows.
2009       */
2010       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2011 
2012       /* Here we begin generating code that runs if the LHS is not
2013       ** contained within the RHS.  Generate additional code that
2014       ** tests the RHS for NULLs.  If the RHS contains a NULL then
2015       ** jump to destIfNull.  If there are no NULLs in the RHS then
2016       ** jump to destIfFalse.
2017       */
2018       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
2019       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
2020       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
2021       sqlite3VdbeJumpHere(v, j3);
2022       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
2023       sqlite3VdbeJumpHere(v, j2);
2024 
2025       /* Jump to the appropriate target depending on whether or not
2026       ** the RHS contains a NULL
2027       */
2028       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
2029       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
2030 
2031       /* The OP_Found at the top of this branch jumps here when true,
2032       ** causing the overall IN expression evaluation to fall through.
2033       */
2034       sqlite3VdbeJumpHere(v, j1);
2035     }
2036   }
2037   sqlite3ReleaseTempReg(pParse, r1);
2038   sqlite3ExprCachePop(pParse, 1);
2039   VdbeComment((v, "end IN expr"));
2040 }
2041 #endif /* SQLITE_OMIT_SUBQUERY */
2042 
2043 /*
2044 ** Duplicate an 8-byte value
2045 */
2046 static char *dup8bytes(Vdbe *v, const char *in){
2047   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2048   if( out ){
2049     memcpy(out, in, 8);
2050   }
2051   return out;
2052 }
2053 
2054 #ifndef SQLITE_OMIT_FLOATING_POINT
2055 /*
2056 ** Generate an instruction that will put the floating point
2057 ** value described by z[0..n-1] into register iMem.
2058 **
2059 ** The z[] string will probably not be zero-terminated.  But the
2060 ** z[n] character is guaranteed to be something that does not look
2061 ** like the continuation of the number.
2062 */
2063 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2064   if( ALWAYS(z!=0) ){
2065     double value;
2066     char *zV;
2067     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2068     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2069     if( negateFlag ) value = -value;
2070     zV = dup8bytes(v, (char*)&value);
2071     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2072   }
2073 }
2074 #endif
2075 
2076 
2077 /*
2078 ** Generate an instruction that will put the integer describe by
2079 ** text z[0..n-1] into register iMem.
2080 **
2081 ** Expr.u.zToken is always UTF8 and zero-terminated.
2082 */
2083 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2084   Vdbe *v = pParse->pVdbe;
2085   if( pExpr->flags & EP_IntValue ){
2086     int i = pExpr->u.iValue;
2087     assert( i>=0 );
2088     if( negFlag ) i = -i;
2089     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2090   }else{
2091     int c;
2092     i64 value;
2093     const char *z = pExpr->u.zToken;
2094     assert( z!=0 );
2095     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2096     if( c==0 || (c==2 && negFlag) ){
2097       char *zV;
2098       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2099       zV = dup8bytes(v, (char*)&value);
2100       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2101     }else{
2102 #ifdef SQLITE_OMIT_FLOATING_POINT
2103       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2104 #else
2105       codeReal(v, z, negFlag, iMem);
2106 #endif
2107     }
2108   }
2109 }
2110 
2111 /*
2112 ** Clear a cache entry.
2113 */
2114 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2115   if( p->tempReg ){
2116     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2117       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2118     }
2119     p->tempReg = 0;
2120   }
2121 }
2122 
2123 
2124 /*
2125 ** Record in the column cache that a particular column from a
2126 ** particular table is stored in a particular register.
2127 */
2128 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2129   int i;
2130   int minLru;
2131   int idxLru;
2132   struct yColCache *p;
2133 
2134   assert( iReg>0 );  /* Register numbers are always positive */
2135   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
2136 
2137   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
2138   ** for testing only - to verify that SQLite always gets the same answer
2139   ** with and without the column cache.
2140   */
2141   if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2142 
2143   /* First replace any existing entry.
2144   **
2145   ** Actually, the way the column cache is currently used, we are guaranteed
2146   ** that the object will never already be in cache.  Verify this guarantee.
2147   */
2148 #ifndef NDEBUG
2149   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2150     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2151   }
2152 #endif
2153 
2154   /* Find an empty slot and replace it */
2155   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2156     if( p->iReg==0 ){
2157       p->iLevel = pParse->iCacheLevel;
2158       p->iTable = iTab;
2159       p->iColumn = iCol;
2160       p->iReg = iReg;
2161       p->tempReg = 0;
2162       p->lru = pParse->iCacheCnt++;
2163       return;
2164     }
2165   }
2166 
2167   /* Replace the last recently used */
2168   minLru = 0x7fffffff;
2169   idxLru = -1;
2170   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2171     if( p->lru<minLru ){
2172       idxLru = i;
2173       minLru = p->lru;
2174     }
2175   }
2176   if( ALWAYS(idxLru>=0) ){
2177     p = &pParse->aColCache[idxLru];
2178     p->iLevel = pParse->iCacheLevel;
2179     p->iTable = iTab;
2180     p->iColumn = iCol;
2181     p->iReg = iReg;
2182     p->tempReg = 0;
2183     p->lru = pParse->iCacheCnt++;
2184     return;
2185   }
2186 }
2187 
2188 /*
2189 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2190 ** Purge the range of registers from the column cache.
2191 */
2192 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2193   int i;
2194   int iLast = iReg + nReg - 1;
2195   struct yColCache *p;
2196   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2197     int r = p->iReg;
2198     if( r>=iReg && r<=iLast ){
2199       cacheEntryClear(pParse, p);
2200       p->iReg = 0;
2201     }
2202   }
2203 }
2204 
2205 /*
2206 ** Remember the current column cache context.  Any new entries added
2207 ** added to the column cache after this call are removed when the
2208 ** corresponding pop occurs.
2209 */
2210 void sqlite3ExprCachePush(Parse *pParse){
2211   pParse->iCacheLevel++;
2212 #ifdef SQLITE_DEBUG
2213   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2214     printf("PUSH to %d\n", pParse->iCacheLevel);
2215   }
2216 #endif
2217 }
2218 
2219 /*
2220 ** Remove from the column cache any entries that were added since the
2221 ** the previous N Push operations.  In other words, restore the cache
2222 ** to the state it was in N Pushes ago.
2223 */
2224 void sqlite3ExprCachePop(Parse *pParse, int N){
2225   int i;
2226   struct yColCache *p;
2227   assert( N>0 );
2228   assert( pParse->iCacheLevel>=N );
2229   pParse->iCacheLevel -= N;
2230 #ifdef SQLITE_DEBUG
2231   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2232     printf("POP  to %d\n", pParse->iCacheLevel);
2233   }
2234 #endif
2235   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2236     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2237       cacheEntryClear(pParse, p);
2238       p->iReg = 0;
2239     }
2240   }
2241 }
2242 
2243 /*
2244 ** When a cached column is reused, make sure that its register is
2245 ** no longer available as a temp register.  ticket #3879:  that same
2246 ** register might be in the cache in multiple places, so be sure to
2247 ** get them all.
2248 */
2249 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2250   int i;
2251   struct yColCache *p;
2252   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2253     if( p->iReg==iReg ){
2254       p->tempReg = 0;
2255     }
2256   }
2257 }
2258 
2259 /*
2260 ** Generate code to extract the value of the iCol-th column of a table.
2261 */
2262 void sqlite3ExprCodeGetColumnOfTable(
2263   Vdbe *v,        /* The VDBE under construction */
2264   Table *pTab,    /* The table containing the value */
2265   int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
2266   int iCol,       /* Index of the column to extract */
2267   int regOut      /* Extract the value into this register */
2268 ){
2269   if( iCol<0 || iCol==pTab->iPKey ){
2270     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2271   }else{
2272     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2273     int x = iCol;
2274     if( !HasRowid(pTab) ){
2275       x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2276     }
2277     sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2278   }
2279   if( iCol>=0 ){
2280     sqlite3ColumnDefault(v, pTab, iCol, regOut);
2281   }
2282 }
2283 
2284 /*
2285 ** Generate code that will extract the iColumn-th column from
2286 ** table pTab and store the column value in a register.  An effort
2287 ** is made to store the column value in register iReg, but this is
2288 ** not guaranteed.  The location of the column value is returned.
2289 **
2290 ** There must be an open cursor to pTab in iTable when this routine
2291 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
2292 */
2293 int sqlite3ExprCodeGetColumn(
2294   Parse *pParse,   /* Parsing and code generating context */
2295   Table *pTab,     /* Description of the table we are reading from */
2296   int iColumn,     /* Index of the table column */
2297   int iTable,      /* The cursor pointing to the table */
2298   int iReg,        /* Store results here */
2299   u8 p5            /* P5 value for OP_Column */
2300 ){
2301   Vdbe *v = pParse->pVdbe;
2302   int i;
2303   struct yColCache *p;
2304 
2305   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2306     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2307       p->lru = pParse->iCacheCnt++;
2308       sqlite3ExprCachePinRegister(pParse, p->iReg);
2309       return p->iReg;
2310     }
2311   }
2312   assert( v!=0 );
2313   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2314   if( p5 ){
2315     sqlite3VdbeChangeP5(v, p5);
2316   }else{
2317     sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2318   }
2319   return iReg;
2320 }
2321 
2322 /*
2323 ** Clear all column cache entries.
2324 */
2325 void sqlite3ExprCacheClear(Parse *pParse){
2326   int i;
2327   struct yColCache *p;
2328 
2329 #if SQLITE_DEBUG
2330   if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2331     printf("CLEAR\n");
2332   }
2333 #endif
2334   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2335     if( p->iReg ){
2336       cacheEntryClear(pParse, p);
2337       p->iReg = 0;
2338     }
2339   }
2340 }
2341 
2342 /*
2343 ** Record the fact that an affinity change has occurred on iCount
2344 ** registers starting with iStart.
2345 */
2346 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2347   sqlite3ExprCacheRemove(pParse, iStart, iCount);
2348 }
2349 
2350 /*
2351 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2352 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2353 */
2354 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2355   int i;
2356   struct yColCache *p;
2357   assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2358   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
2359   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2360     int x = p->iReg;
2361     if( x>=iFrom && x<iFrom+nReg ){
2362       p->iReg += iTo-iFrom;
2363     }
2364   }
2365 }
2366 
2367 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2368 /*
2369 ** Return true if any register in the range iFrom..iTo (inclusive)
2370 ** is used as part of the column cache.
2371 **
2372 ** This routine is used within assert() and testcase() macros only
2373 ** and does not appear in a normal build.
2374 */
2375 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2376   int i;
2377   struct yColCache *p;
2378   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2379     int r = p->iReg;
2380     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
2381   }
2382   return 0;
2383 }
2384 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2385 
2386 /*
2387 ** Convert an expression node to a TK_REGISTER
2388 */
2389 static void exprToRegister(Expr *p, int iReg){
2390   p->op2 = p->op;
2391   p->op = TK_REGISTER;
2392   p->iTable = iReg;
2393   ExprClearProperty(p, EP_Skip);
2394 }
2395 
2396 /*
2397 ** Generate code into the current Vdbe to evaluate the given
2398 ** expression.  Attempt to store the results in register "target".
2399 ** Return the register where results are stored.
2400 **
2401 ** With this routine, there is no guarantee that results will
2402 ** be stored in target.  The result might be stored in some other
2403 ** register if it is convenient to do so.  The calling function
2404 ** must check the return code and move the results to the desired
2405 ** register.
2406 */
2407 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2408   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
2409   int op;                   /* The opcode being coded */
2410   int inReg = target;       /* Results stored in register inReg */
2411   int regFree1 = 0;         /* If non-zero free this temporary register */
2412   int regFree2 = 0;         /* If non-zero free this temporary register */
2413   int r1, r2, r3, r4;       /* Various register numbers */
2414   sqlite3 *db = pParse->db; /* The database connection */
2415   Expr tempX;               /* Temporary expression node */
2416 
2417   assert( target>0 && target<=pParse->nMem );
2418   if( v==0 ){
2419     assert( pParse->db->mallocFailed );
2420     return 0;
2421   }
2422 
2423   if( pExpr==0 ){
2424     op = TK_NULL;
2425   }else{
2426     op = pExpr->op;
2427   }
2428   switch( op ){
2429     case TK_AGG_COLUMN: {
2430       AggInfo *pAggInfo = pExpr->pAggInfo;
2431       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2432       if( !pAggInfo->directMode ){
2433         assert( pCol->iMem>0 );
2434         inReg = pCol->iMem;
2435         break;
2436       }else if( pAggInfo->useSortingIdx ){
2437         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2438                               pCol->iSorterColumn, target);
2439         break;
2440       }
2441       /* Otherwise, fall thru into the TK_COLUMN case */
2442     }
2443     case TK_COLUMN: {
2444       int iTab = pExpr->iTable;
2445       if( iTab<0 ){
2446         if( pParse->ckBase>0 ){
2447           /* Generating CHECK constraints or inserting into partial index */
2448           inReg = pExpr->iColumn + pParse->ckBase;
2449           break;
2450         }else{
2451           /* Deleting from a partial index */
2452           iTab = pParse->iPartIdxTab;
2453         }
2454       }
2455       inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2456                                pExpr->iColumn, iTab, target,
2457                                pExpr->op2);
2458       break;
2459     }
2460     case TK_INTEGER: {
2461       codeInteger(pParse, pExpr, 0, target);
2462       break;
2463     }
2464 #ifndef SQLITE_OMIT_FLOATING_POINT
2465     case TK_FLOAT: {
2466       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2467       codeReal(v, pExpr->u.zToken, 0, target);
2468       break;
2469     }
2470 #endif
2471     case TK_STRING: {
2472       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2473       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2474       break;
2475     }
2476     case TK_NULL: {
2477       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2478       break;
2479     }
2480 #ifndef SQLITE_OMIT_BLOB_LITERAL
2481     case TK_BLOB: {
2482       int n;
2483       const char *z;
2484       char *zBlob;
2485       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2486       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2487       assert( pExpr->u.zToken[1]=='\'' );
2488       z = &pExpr->u.zToken[2];
2489       n = sqlite3Strlen30(z) - 1;
2490       assert( z[n]=='\'' );
2491       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2492       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2493       break;
2494     }
2495 #endif
2496     case TK_VARIABLE: {
2497       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2498       assert( pExpr->u.zToken!=0 );
2499       assert( pExpr->u.zToken[0]!=0 );
2500       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2501       if( pExpr->u.zToken[1]!=0 ){
2502         assert( pExpr->u.zToken[0]=='?'
2503              || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2504         sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2505       }
2506       break;
2507     }
2508     case TK_REGISTER: {
2509       inReg = pExpr->iTable;
2510       break;
2511     }
2512     case TK_AS: {
2513       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2514       break;
2515     }
2516 #ifndef SQLITE_OMIT_CAST
2517     case TK_CAST: {
2518       /* Expressions of the form:   CAST(pLeft AS token) */
2519       int aff, to_op;
2520       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2521       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2522       aff = sqlite3AffinityType(pExpr->u.zToken, 0);
2523       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2524       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
2525       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
2526       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2527       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
2528       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
2529       testcase( to_op==OP_ToText );
2530       testcase( to_op==OP_ToBlob );
2531       testcase( to_op==OP_ToNumeric );
2532       testcase( to_op==OP_ToInt );
2533       testcase( to_op==OP_ToReal );
2534       if( inReg!=target ){
2535         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2536         inReg = target;
2537       }
2538       sqlite3VdbeAddOp1(v, to_op, inReg);
2539       testcase( usedAsColumnCache(pParse, inReg, inReg) );
2540       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2541       break;
2542     }
2543 #endif /* SQLITE_OMIT_CAST */
2544     case TK_LT:
2545     case TK_LE:
2546     case TK_GT:
2547     case TK_GE:
2548     case TK_NE:
2549     case TK_EQ: {
2550       assert( TK_LT==OP_Lt );
2551       assert( TK_LE==OP_Le );
2552       assert( TK_GT==OP_Gt );
2553       assert( TK_GE==OP_Ge );
2554       assert( TK_EQ==OP_Eq );
2555       assert( TK_NE==OP_Ne );
2556       testcase( op==TK_LT );
2557       testcase( op==TK_LE );
2558       testcase( op==TK_GT );
2559       testcase( op==TK_GE );
2560       testcase( op==TK_EQ );
2561       testcase( op==TK_NE );
2562       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2563       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2564       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2565                   r1, r2, inReg, SQLITE_STOREP2);
2566       testcase( regFree1==0 );
2567       testcase( regFree2==0 );
2568       break;
2569     }
2570     case TK_IS:
2571     case TK_ISNOT: {
2572       testcase( op==TK_IS );
2573       testcase( op==TK_ISNOT );
2574       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2575       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2576       op = (op==TK_IS) ? TK_EQ : TK_NE;
2577       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2578                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2579       testcase( regFree1==0 );
2580       testcase( regFree2==0 );
2581       break;
2582     }
2583     case TK_AND:
2584     case TK_OR:
2585     case TK_PLUS:
2586     case TK_STAR:
2587     case TK_MINUS:
2588     case TK_REM:
2589     case TK_BITAND:
2590     case TK_BITOR:
2591     case TK_SLASH:
2592     case TK_LSHIFT:
2593     case TK_RSHIFT:
2594     case TK_CONCAT: {
2595       assert( TK_AND==OP_And );
2596       assert( TK_OR==OP_Or );
2597       assert( TK_PLUS==OP_Add );
2598       assert( TK_MINUS==OP_Subtract );
2599       assert( TK_REM==OP_Remainder );
2600       assert( TK_BITAND==OP_BitAnd );
2601       assert( TK_BITOR==OP_BitOr );
2602       assert( TK_SLASH==OP_Divide );
2603       assert( TK_LSHIFT==OP_ShiftLeft );
2604       assert( TK_RSHIFT==OP_ShiftRight );
2605       assert( TK_CONCAT==OP_Concat );
2606       testcase( op==TK_AND );
2607       testcase( op==TK_OR );
2608       testcase( op==TK_PLUS );
2609       testcase( op==TK_MINUS );
2610       testcase( op==TK_REM );
2611       testcase( op==TK_BITAND );
2612       testcase( op==TK_BITOR );
2613       testcase( op==TK_SLASH );
2614       testcase( op==TK_LSHIFT );
2615       testcase( op==TK_RSHIFT );
2616       testcase( op==TK_CONCAT );
2617       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2618       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2619       sqlite3VdbeAddOp3(v, op, r2, r1, target);
2620       testcase( regFree1==0 );
2621       testcase( regFree2==0 );
2622       break;
2623     }
2624     case TK_UMINUS: {
2625       Expr *pLeft = pExpr->pLeft;
2626       assert( pLeft );
2627       if( pLeft->op==TK_INTEGER ){
2628         codeInteger(pParse, pLeft, 1, target);
2629 #ifndef SQLITE_OMIT_FLOATING_POINT
2630       }else if( pLeft->op==TK_FLOAT ){
2631         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2632         codeReal(v, pLeft->u.zToken, 1, target);
2633 #endif
2634       }else{
2635         tempX.op = TK_INTEGER;
2636         tempX.flags = EP_IntValue|EP_TokenOnly;
2637         tempX.u.iValue = 0;
2638         r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2639         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2640         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2641         testcase( regFree2==0 );
2642       }
2643       inReg = target;
2644       break;
2645     }
2646     case TK_BITNOT:
2647     case TK_NOT: {
2648       assert( TK_BITNOT==OP_BitNot );
2649       assert( TK_NOT==OP_Not );
2650       testcase( op==TK_BITNOT );
2651       testcase( op==TK_NOT );
2652       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2653       testcase( regFree1==0 );
2654       inReg = target;
2655       sqlite3VdbeAddOp2(v, op, r1, inReg);
2656       break;
2657     }
2658     case TK_ISNULL:
2659     case TK_NOTNULL: {
2660       int addr;
2661       assert( TK_ISNULL==OP_IsNull );
2662       assert( TK_NOTNULL==OP_NotNull );
2663       testcase( op==TK_ISNULL );
2664       testcase( op==TK_NOTNULL );
2665       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2666       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2667       testcase( regFree1==0 );
2668       addr = sqlite3VdbeAddOp1(v, op, r1);
2669       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2670       sqlite3VdbeJumpHere(v, addr);
2671       break;
2672     }
2673     case TK_AGG_FUNCTION: {
2674       AggInfo *pInfo = pExpr->pAggInfo;
2675       if( pInfo==0 ){
2676         assert( !ExprHasProperty(pExpr, EP_IntValue) );
2677         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2678       }else{
2679         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2680       }
2681       break;
2682     }
2683     case TK_FUNCTION: {
2684       ExprList *pFarg;       /* List of function arguments */
2685       int nFarg;             /* Number of function arguments */
2686       FuncDef *pDef;         /* The function definition object */
2687       int nId;               /* Length of the function name in bytes */
2688       const char *zId;       /* The function name */
2689       u32 constMask = 0;     /* Mask of function arguments that are constant */
2690       int i;                 /* Loop counter */
2691       u8 enc = ENC(db);      /* The text encoding used by this database */
2692       CollSeq *pColl = 0;    /* A collating sequence */
2693 
2694       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2695       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2696         pFarg = 0;
2697       }else{
2698         pFarg = pExpr->x.pList;
2699       }
2700       nFarg = pFarg ? pFarg->nExpr : 0;
2701       assert( !ExprHasProperty(pExpr, EP_IntValue) );
2702       zId = pExpr->u.zToken;
2703       nId = sqlite3Strlen30(zId);
2704       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2705       if( pDef==0 ){
2706         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2707         break;
2708       }
2709 
2710       /* Attempt a direct implementation of the built-in COALESCE() and
2711       ** IFNULL() functions.  This avoids unnecessary evalation of
2712       ** arguments past the first non-NULL argument.
2713       */
2714       if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2715         int endCoalesce = sqlite3VdbeMakeLabel(v);
2716         assert( nFarg>=2 );
2717         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2718         for(i=1; i<nFarg; i++){
2719           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2720           sqlite3ExprCacheRemove(pParse, target, 1);
2721           sqlite3ExprCachePush(pParse);
2722           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2723           sqlite3ExprCachePop(pParse, 1);
2724         }
2725         sqlite3VdbeResolveLabel(v, endCoalesce);
2726         break;
2727       }
2728 
2729       /* The UNLIKELY() function is a no-op.  The result is the value
2730       ** of the first argument.
2731       */
2732       if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2733         assert( nFarg>=1 );
2734         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2735         break;
2736       }
2737 
2738       for(i=0; i<nFarg; i++){
2739         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2740           testcase( i==31 );
2741           constMask |= MASKBIT32(i);
2742         }
2743         if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2744           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2745         }
2746       }
2747       if( pFarg ){
2748         if( constMask ){
2749           r1 = pParse->nMem+1;
2750           pParse->nMem += nFarg;
2751         }else{
2752           r1 = sqlite3GetTempRange(pParse, nFarg);
2753         }
2754 
2755         /* For length() and typeof() functions with a column argument,
2756         ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2757         ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2758         ** loading.
2759         */
2760         if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2761           u8 exprOp;
2762           assert( nFarg==1 );
2763           assert( pFarg->a[0].pExpr!=0 );
2764           exprOp = pFarg->a[0].pExpr->op;
2765           if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2766             assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2767             assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2768             testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2769             pFarg->a[0].pExpr->op2 =
2770                   pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2771           }
2772         }
2773 
2774         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
2775         sqlite3ExprCodeExprList(pParse, pFarg, r1,
2776                                 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2777         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
2778       }else{
2779         r1 = 0;
2780       }
2781 #ifndef SQLITE_OMIT_VIRTUALTABLE
2782       /* Possibly overload the function if the first argument is
2783       ** a virtual table column.
2784       **
2785       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2786       ** second argument, not the first, as the argument to test to
2787       ** see if it is a column in a virtual table.  This is done because
2788       ** the left operand of infix functions (the operand we want to
2789       ** control overloading) ends up as the second argument to the
2790       ** function.  The expression "A glob B" is equivalent to
2791       ** "glob(B,A).  We want to use the A in "A glob B" to test
2792       ** for function overloading.  But we use the B term in "glob(B,A)".
2793       */
2794       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2795         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2796       }else if( nFarg>0 ){
2797         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2798       }
2799 #endif
2800       if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2801         if( !pColl ) pColl = db->pDfltColl;
2802         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2803       }
2804       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2805                         (char*)pDef, P4_FUNCDEF);
2806       sqlite3VdbeChangeP5(v, (u8)nFarg);
2807       if( nFarg && constMask==0 ){
2808         sqlite3ReleaseTempRange(pParse, r1, nFarg);
2809       }
2810       break;
2811     }
2812 #ifndef SQLITE_OMIT_SUBQUERY
2813     case TK_EXISTS:
2814     case TK_SELECT: {
2815       testcase( op==TK_EXISTS );
2816       testcase( op==TK_SELECT );
2817       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2818       break;
2819     }
2820     case TK_IN: {
2821       int destIfFalse = sqlite3VdbeMakeLabel(v);
2822       int destIfNull = sqlite3VdbeMakeLabel(v);
2823       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2824       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2825       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2826       sqlite3VdbeResolveLabel(v, destIfFalse);
2827       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2828       sqlite3VdbeResolveLabel(v, destIfNull);
2829       break;
2830     }
2831 #endif /* SQLITE_OMIT_SUBQUERY */
2832 
2833 
2834     /*
2835     **    x BETWEEN y AND z
2836     **
2837     ** This is equivalent to
2838     **
2839     **    x>=y AND x<=z
2840     **
2841     ** X is stored in pExpr->pLeft.
2842     ** Y is stored in pExpr->pList->a[0].pExpr.
2843     ** Z is stored in pExpr->pList->a[1].pExpr.
2844     */
2845     case TK_BETWEEN: {
2846       Expr *pLeft = pExpr->pLeft;
2847       struct ExprList_item *pLItem = pExpr->x.pList->a;
2848       Expr *pRight = pLItem->pExpr;
2849 
2850       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2851       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2852       testcase( regFree1==0 );
2853       testcase( regFree2==0 );
2854       r3 = sqlite3GetTempReg(pParse);
2855       r4 = sqlite3GetTempReg(pParse);
2856       codeCompare(pParse, pLeft, pRight, OP_Ge,
2857                   r1, r2, r3, SQLITE_STOREP2);
2858       pLItem++;
2859       pRight = pLItem->pExpr;
2860       sqlite3ReleaseTempReg(pParse, regFree2);
2861       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2862       testcase( regFree2==0 );
2863       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2864       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2865       sqlite3ReleaseTempReg(pParse, r3);
2866       sqlite3ReleaseTempReg(pParse, r4);
2867       break;
2868     }
2869     case TK_COLLATE:
2870     case TK_UPLUS: {
2871       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2872       break;
2873     }
2874 
2875     case TK_TRIGGER: {
2876       /* If the opcode is TK_TRIGGER, then the expression is a reference
2877       ** to a column in the new.* or old.* pseudo-tables available to
2878       ** trigger programs. In this case Expr.iTable is set to 1 for the
2879       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2880       ** is set to the column of the pseudo-table to read, or to -1 to
2881       ** read the rowid field.
2882       **
2883       ** The expression is implemented using an OP_Param opcode. The p1
2884       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2885       ** to reference another column of the old.* pseudo-table, where
2886       ** i is the index of the column. For a new.rowid reference, p1 is
2887       ** set to (n+1), where n is the number of columns in each pseudo-table.
2888       ** For a reference to any other column in the new.* pseudo-table, p1
2889       ** is set to (n+2+i), where n and i are as defined previously. For
2890       ** example, if the table on which triggers are being fired is
2891       ** declared as:
2892       **
2893       **   CREATE TABLE t1(a, b);
2894       **
2895       ** Then p1 is interpreted as follows:
2896       **
2897       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
2898       **   p1==1   ->    old.a         p1==4   ->    new.a
2899       **   p1==2   ->    old.b         p1==5   ->    new.b
2900       */
2901       Table *pTab = pExpr->pTab;
2902       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2903 
2904       assert( pExpr->iTable==0 || pExpr->iTable==1 );
2905       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2906       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2907       assert( p1>=0 && p1<(pTab->nCol*2+2) );
2908 
2909       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2910       VdbeComment((v, "%s.%s -> $%d",
2911         (pExpr->iTable ? "new" : "old"),
2912         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2913         target
2914       ));
2915 
2916 #ifndef SQLITE_OMIT_FLOATING_POINT
2917       /* If the column has REAL affinity, it may currently be stored as an
2918       ** integer. Use OP_RealAffinity to make sure it is really real.  */
2919       if( pExpr->iColumn>=0
2920        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2921       ){
2922         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2923       }
2924 #endif
2925       break;
2926     }
2927 
2928 
2929     /*
2930     ** Form A:
2931     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2932     **
2933     ** Form B:
2934     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2935     **
2936     ** Form A is can be transformed into the equivalent form B as follows:
2937     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2938     **        WHEN x=eN THEN rN ELSE y END
2939     **
2940     ** X (if it exists) is in pExpr->pLeft.
2941     ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
2942     ** odd.  The Y is also optional.  If the number of elements in x.pList
2943     ** is even, then Y is omitted and the "otherwise" result is NULL.
2944     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2945     **
2946     ** The result of the expression is the Ri for the first matching Ei,
2947     ** or if there is no matching Ei, the ELSE term Y, or if there is
2948     ** no ELSE term, NULL.
2949     */
2950     default: assert( op==TK_CASE ); {
2951       int endLabel;                     /* GOTO label for end of CASE stmt */
2952       int nextCase;                     /* GOTO label for next WHEN clause */
2953       int nExpr;                        /* 2x number of WHEN terms */
2954       int i;                            /* Loop counter */
2955       ExprList *pEList;                 /* List of WHEN terms */
2956       struct ExprList_item *aListelem;  /* Array of WHEN terms */
2957       Expr opCompare;                   /* The X==Ei expression */
2958       Expr *pX;                         /* The X expression */
2959       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
2960       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2961 
2962       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2963       assert(pExpr->x.pList->nExpr > 0);
2964       pEList = pExpr->x.pList;
2965       aListelem = pEList->a;
2966       nExpr = pEList->nExpr;
2967       endLabel = sqlite3VdbeMakeLabel(v);
2968       if( (pX = pExpr->pLeft)!=0 ){
2969         tempX = *pX;
2970         testcase( pX->op==TK_COLUMN );
2971         exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
2972         testcase( regFree1==0 );
2973         opCompare.op = TK_EQ;
2974         opCompare.pLeft = &tempX;
2975         pTest = &opCompare;
2976         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2977         ** The value in regFree1 might get SCopy-ed into the file result.
2978         ** So make sure that the regFree1 register is not reused for other
2979         ** purposes and possibly overwritten.  */
2980         regFree1 = 0;
2981       }
2982       for(i=0; i<nExpr-1; i=i+2){
2983         sqlite3ExprCachePush(pParse);
2984         if( pX ){
2985           assert( pTest!=0 );
2986           opCompare.pRight = aListelem[i].pExpr;
2987         }else{
2988           pTest = aListelem[i].pExpr;
2989         }
2990         nextCase = sqlite3VdbeMakeLabel(v);
2991         testcase( pTest->op==TK_COLUMN );
2992         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2993         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2994         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2995         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2996         sqlite3ExprCachePop(pParse, 1);
2997         sqlite3VdbeResolveLabel(v, nextCase);
2998       }
2999       if( (nExpr&1)!=0 ){
3000         sqlite3ExprCachePush(pParse);
3001         sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3002         sqlite3ExprCachePop(pParse, 1);
3003       }else{
3004         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3005       }
3006       assert( db->mallocFailed || pParse->nErr>0
3007            || pParse->iCacheLevel==iCacheLevel );
3008       sqlite3VdbeResolveLabel(v, endLabel);
3009       break;
3010     }
3011 #ifndef SQLITE_OMIT_TRIGGER
3012     case TK_RAISE: {
3013       assert( pExpr->affinity==OE_Rollback
3014            || pExpr->affinity==OE_Abort
3015            || pExpr->affinity==OE_Fail
3016            || pExpr->affinity==OE_Ignore
3017       );
3018       if( !pParse->pTriggerTab ){
3019         sqlite3ErrorMsg(pParse,
3020                        "RAISE() may only be used within a trigger-program");
3021         return 0;
3022       }
3023       if( pExpr->affinity==OE_Abort ){
3024         sqlite3MayAbort(pParse);
3025       }
3026       assert( !ExprHasProperty(pExpr, EP_IntValue) );
3027       if( pExpr->affinity==OE_Ignore ){
3028         sqlite3VdbeAddOp4(
3029             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3030       }else{
3031         sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3032                               pExpr->affinity, pExpr->u.zToken, 0, 0);
3033       }
3034 
3035       break;
3036     }
3037 #endif
3038   }
3039   sqlite3ReleaseTempReg(pParse, regFree1);
3040   sqlite3ReleaseTempReg(pParse, regFree2);
3041   return inReg;
3042 }
3043 
3044 /*
3045 ** Factor out the code of the given expression to initialization time.
3046 */
3047 void sqlite3ExprCodeAtInit(
3048   Parse *pParse,    /* Parsing context */
3049   Expr *pExpr,      /* The expression to code when the VDBE initializes */
3050   int regDest,      /* Store the value in this register */
3051   u8 reusable       /* True if this expression is reusable */
3052 ){
3053   ExprList *p;
3054   assert( ConstFactorOk(pParse) );
3055   p = pParse->pConstExpr;
3056   pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3057   p = sqlite3ExprListAppend(pParse, p, pExpr);
3058   if( p ){
3059      struct ExprList_item *pItem = &p->a[p->nExpr-1];
3060      pItem->u.iConstExprReg = regDest;
3061      pItem->reusable = reusable;
3062   }
3063   pParse->pConstExpr = p;
3064 }
3065 
3066 /*
3067 ** Generate code to evaluate an expression and store the results
3068 ** into a register.  Return the register number where the results
3069 ** are stored.
3070 **
3071 ** If the register is a temporary register that can be deallocated,
3072 ** then write its number into *pReg.  If the result register is not
3073 ** a temporary, then set *pReg to zero.
3074 **
3075 ** If pExpr is a constant, then this routine might generate this
3076 ** code to fill the register in the initialization section of the
3077 ** VDBE program, in order to factor it out of the evaluation loop.
3078 */
3079 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3080   int r2;
3081   pExpr = sqlite3ExprSkipCollate(pExpr);
3082   if( ConstFactorOk(pParse)
3083    && pExpr->op!=TK_REGISTER
3084    && sqlite3ExprIsConstantNotJoin(pExpr)
3085   ){
3086     ExprList *p = pParse->pConstExpr;
3087     int i;
3088     *pReg  = 0;
3089     if( p ){
3090       struct ExprList_item *pItem;
3091       for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3092         if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3093           return pItem->u.iConstExprReg;
3094         }
3095       }
3096     }
3097     r2 = ++pParse->nMem;
3098     sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3099   }else{
3100     int r1 = sqlite3GetTempReg(pParse);
3101     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3102     if( r2==r1 ){
3103       *pReg = r1;
3104     }else{
3105       sqlite3ReleaseTempReg(pParse, r1);
3106       *pReg = 0;
3107     }
3108   }
3109   return r2;
3110 }
3111 
3112 /*
3113 ** Generate code that will evaluate expression pExpr and store the
3114 ** results in register target.  The results are guaranteed to appear
3115 ** in register target.
3116 */
3117 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3118   int inReg;
3119 
3120   assert( target>0 && target<=pParse->nMem );
3121   if( pExpr && pExpr->op==TK_REGISTER ){
3122     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3123   }else{
3124     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3125     assert( pParse->pVdbe || pParse->db->mallocFailed );
3126     if( inReg!=target && pParse->pVdbe ){
3127       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3128     }
3129   }
3130   return target;
3131 }
3132 
3133 /*
3134 ** Generate code that evalutes the given expression and puts the result
3135 ** in register target.
3136 **
3137 ** Also make a copy of the expression results into another "cache" register
3138 ** and modify the expression so that the next time it is evaluated,
3139 ** the result is a copy of the cache register.
3140 **
3141 ** This routine is used for expressions that are used multiple
3142 ** times.  They are evaluated once and the results of the expression
3143 ** are reused.
3144 */
3145 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3146   Vdbe *v = pParse->pVdbe;
3147   int inReg;
3148   inReg = sqlite3ExprCode(pParse, pExpr, target);
3149   assert( target>0 );
3150   /* The only place, other than this routine, where expressions can be
3151   ** converted to TK_REGISTER is internal subexpressions in BETWEEN and
3152   ** CASE operators.  Neither ever calls this routine.  And this routine
3153   ** is never called twice on the same expression.  Hence it is impossible
3154   ** for the input to this routine to already be a register.  Nevertheless,
3155   ** it seems prudent to keep the ALWAYS() in case the conditions above
3156   ** change with future modifications or enhancements. */
3157   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
3158     int iMem;
3159     iMem = ++pParse->nMem;
3160     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
3161     exprToRegister(pExpr, iMem);
3162   }
3163   return inReg;
3164 }
3165 
3166 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3167 /*
3168 ** Generate a human-readable explanation of an expression tree.
3169 */
3170 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3171   int op;                   /* The opcode being coded */
3172   const char *zBinOp = 0;   /* Binary operator */
3173   const char *zUniOp = 0;   /* Unary operator */
3174   if( pExpr==0 ){
3175     op = TK_NULL;
3176   }else{
3177     op = pExpr->op;
3178   }
3179   switch( op ){
3180     case TK_AGG_COLUMN: {
3181       sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3182             pExpr->iTable, pExpr->iColumn);
3183       break;
3184     }
3185     case TK_COLUMN: {
3186       if( pExpr->iTable<0 ){
3187         /* This only happens when coding check constraints */
3188         sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3189       }else{
3190         sqlite3ExplainPrintf(pOut, "{%d:%d}",
3191                              pExpr->iTable, pExpr->iColumn);
3192       }
3193       break;
3194     }
3195     case TK_INTEGER: {
3196       if( pExpr->flags & EP_IntValue ){
3197         sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3198       }else{
3199         sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3200       }
3201       break;
3202     }
3203 #ifndef SQLITE_OMIT_FLOATING_POINT
3204     case TK_FLOAT: {
3205       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3206       break;
3207     }
3208 #endif
3209     case TK_STRING: {
3210       sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3211       break;
3212     }
3213     case TK_NULL: {
3214       sqlite3ExplainPrintf(pOut,"NULL");
3215       break;
3216     }
3217 #ifndef SQLITE_OMIT_BLOB_LITERAL
3218     case TK_BLOB: {
3219       sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3220       break;
3221     }
3222 #endif
3223     case TK_VARIABLE: {
3224       sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3225                            pExpr->u.zToken, pExpr->iColumn);
3226       break;
3227     }
3228     case TK_REGISTER: {
3229       sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3230       break;
3231     }
3232     case TK_AS: {
3233       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3234       break;
3235     }
3236 #ifndef SQLITE_OMIT_CAST
3237     case TK_CAST: {
3238       /* Expressions of the form:   CAST(pLeft AS token) */
3239       const char *zAff = "unk";
3240       switch( sqlite3AffinityType(pExpr->u.zToken, 0) ){
3241         case SQLITE_AFF_TEXT:    zAff = "TEXT";     break;
3242         case SQLITE_AFF_NONE:    zAff = "NONE";     break;
3243         case SQLITE_AFF_NUMERIC: zAff = "NUMERIC";  break;
3244         case SQLITE_AFF_INTEGER: zAff = "INTEGER";  break;
3245         case SQLITE_AFF_REAL:    zAff = "REAL";     break;
3246       }
3247       sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3248       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3249       sqlite3ExplainPrintf(pOut, ")");
3250       break;
3251     }
3252 #endif /* SQLITE_OMIT_CAST */
3253     case TK_LT:      zBinOp = "LT";     break;
3254     case TK_LE:      zBinOp = "LE";     break;
3255     case TK_GT:      zBinOp = "GT";     break;
3256     case TK_GE:      zBinOp = "GE";     break;
3257     case TK_NE:      zBinOp = "NE";     break;
3258     case TK_EQ:      zBinOp = "EQ";     break;
3259     case TK_IS:      zBinOp = "IS";     break;
3260     case TK_ISNOT:   zBinOp = "ISNOT";  break;
3261     case TK_AND:     zBinOp = "AND";    break;
3262     case TK_OR:      zBinOp = "OR";     break;
3263     case TK_PLUS:    zBinOp = "ADD";    break;
3264     case TK_STAR:    zBinOp = "MUL";    break;
3265     case TK_MINUS:   zBinOp = "SUB";    break;
3266     case TK_REM:     zBinOp = "REM";    break;
3267     case TK_BITAND:  zBinOp = "BITAND"; break;
3268     case TK_BITOR:   zBinOp = "BITOR";  break;
3269     case TK_SLASH:   zBinOp = "DIV";    break;
3270     case TK_LSHIFT:  zBinOp = "LSHIFT"; break;
3271     case TK_RSHIFT:  zBinOp = "RSHIFT"; break;
3272     case TK_CONCAT:  zBinOp = "CONCAT"; break;
3273 
3274     case TK_UMINUS:  zUniOp = "UMINUS"; break;
3275     case TK_UPLUS:   zUniOp = "UPLUS";  break;
3276     case TK_BITNOT:  zUniOp = "BITNOT"; break;
3277     case TK_NOT:     zUniOp = "NOT";    break;
3278     case TK_ISNULL:  zUniOp = "ISNULL"; break;
3279     case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3280 
3281     case TK_COLLATE: {
3282       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3283       sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3284       break;
3285     }
3286 
3287     case TK_AGG_FUNCTION:
3288     case TK_FUNCTION: {
3289       ExprList *pFarg;       /* List of function arguments */
3290       if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3291         pFarg = 0;
3292       }else{
3293         pFarg = pExpr->x.pList;
3294       }
3295       if( op==TK_AGG_FUNCTION ){
3296         sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3297                              pExpr->op2, pExpr->u.zToken);
3298       }else{
3299         sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3300       }
3301       if( pFarg ){
3302         sqlite3ExplainExprList(pOut, pFarg);
3303       }
3304       sqlite3ExplainPrintf(pOut, ")");
3305       break;
3306     }
3307 #ifndef SQLITE_OMIT_SUBQUERY
3308     case TK_EXISTS: {
3309       sqlite3ExplainPrintf(pOut, "EXISTS(");
3310       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3311       sqlite3ExplainPrintf(pOut,")");
3312       break;
3313     }
3314     case TK_SELECT: {
3315       sqlite3ExplainPrintf(pOut, "(");
3316       sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3317       sqlite3ExplainPrintf(pOut, ")");
3318       break;
3319     }
3320     case TK_IN: {
3321       sqlite3ExplainPrintf(pOut, "IN(");
3322       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3323       sqlite3ExplainPrintf(pOut, ",");
3324       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3325         sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3326       }else{
3327         sqlite3ExplainExprList(pOut, pExpr->x.pList);
3328       }
3329       sqlite3ExplainPrintf(pOut, ")");
3330       break;
3331     }
3332 #endif /* SQLITE_OMIT_SUBQUERY */
3333 
3334     /*
3335     **    x BETWEEN y AND z
3336     **
3337     ** This is equivalent to
3338     **
3339     **    x>=y AND x<=z
3340     **
3341     ** X is stored in pExpr->pLeft.
3342     ** Y is stored in pExpr->pList->a[0].pExpr.
3343     ** Z is stored in pExpr->pList->a[1].pExpr.
3344     */
3345     case TK_BETWEEN: {
3346       Expr *pX = pExpr->pLeft;
3347       Expr *pY = pExpr->x.pList->a[0].pExpr;
3348       Expr *pZ = pExpr->x.pList->a[1].pExpr;
3349       sqlite3ExplainPrintf(pOut, "BETWEEN(");
3350       sqlite3ExplainExpr(pOut, pX);
3351       sqlite3ExplainPrintf(pOut, ",");
3352       sqlite3ExplainExpr(pOut, pY);
3353       sqlite3ExplainPrintf(pOut, ",");
3354       sqlite3ExplainExpr(pOut, pZ);
3355       sqlite3ExplainPrintf(pOut, ")");
3356       break;
3357     }
3358     case TK_TRIGGER: {
3359       /* If the opcode is TK_TRIGGER, then the expression is a reference
3360       ** to a column in the new.* or old.* pseudo-tables available to
3361       ** trigger programs. In this case Expr.iTable is set to 1 for the
3362       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3363       ** is set to the column of the pseudo-table to read, or to -1 to
3364       ** read the rowid field.
3365       */
3366       sqlite3ExplainPrintf(pOut, "%s(%d)",
3367           pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3368       break;
3369     }
3370     case TK_CASE: {
3371       sqlite3ExplainPrintf(pOut, "CASE(");
3372       sqlite3ExplainExpr(pOut, pExpr->pLeft);
3373       sqlite3ExplainPrintf(pOut, ",");
3374       sqlite3ExplainExprList(pOut, pExpr->x.pList);
3375       break;
3376     }
3377 #ifndef SQLITE_OMIT_TRIGGER
3378     case TK_RAISE: {
3379       const char *zType = "unk";
3380       switch( pExpr->affinity ){
3381         case OE_Rollback:   zType = "rollback";  break;
3382         case OE_Abort:      zType = "abort";     break;
3383         case OE_Fail:       zType = "fail";      break;
3384         case OE_Ignore:     zType = "ignore";    break;
3385       }
3386       sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3387       break;
3388     }
3389 #endif
3390   }
3391   if( zBinOp ){
3392     sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3393     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3394     sqlite3ExplainPrintf(pOut,",");
3395     sqlite3ExplainExpr(pOut, pExpr->pRight);
3396     sqlite3ExplainPrintf(pOut,")");
3397   }else if( zUniOp ){
3398     sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3399     sqlite3ExplainExpr(pOut, pExpr->pLeft);
3400     sqlite3ExplainPrintf(pOut,")");
3401   }
3402 }
3403 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3404 
3405 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3406 /*
3407 ** Generate a human-readable explanation of an expression list.
3408 */
3409 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3410   int i;
3411   if( pList==0 || pList->nExpr==0 ){
3412     sqlite3ExplainPrintf(pOut, "(empty-list)");
3413     return;
3414   }else if( pList->nExpr==1 ){
3415     sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3416   }else{
3417     sqlite3ExplainPush(pOut);
3418     for(i=0; i<pList->nExpr; i++){
3419       sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3420       sqlite3ExplainPush(pOut);
3421       sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3422       sqlite3ExplainPop(pOut);
3423       if( pList->a[i].zName ){
3424         sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3425       }
3426       if( pList->a[i].bSpanIsTab ){
3427         sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3428       }
3429       if( i<pList->nExpr-1 ){
3430         sqlite3ExplainNL(pOut);
3431       }
3432     }
3433     sqlite3ExplainPop(pOut);
3434   }
3435 }
3436 #endif /* SQLITE_DEBUG */
3437 
3438 /*
3439 ** Generate code that pushes the value of every element of the given
3440 ** expression list into a sequence of registers beginning at target.
3441 **
3442 ** Return the number of elements evaluated.
3443 **
3444 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3445 ** filled using OP_SCopy.  OP_Copy must be used instead.
3446 **
3447 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3448 ** factored out into initialization code.
3449 */
3450 int sqlite3ExprCodeExprList(
3451   Parse *pParse,     /* Parsing context */
3452   ExprList *pList,   /* The expression list to be coded */
3453   int target,        /* Where to write results */
3454   u8 flags           /* SQLITE_ECEL_* flags */
3455 ){
3456   struct ExprList_item *pItem;
3457   int i, n;
3458   u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3459   assert( pList!=0 );
3460   assert( target>0 );
3461   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
3462   n = pList->nExpr;
3463   if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3464   for(pItem=pList->a, i=0; i<n; i++, pItem++){
3465     Expr *pExpr = pItem->pExpr;
3466     if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3467       sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3468     }else{
3469       int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3470       if( inReg!=target+i ){
3471         VdbeOp *pOp;
3472         Vdbe *v = pParse->pVdbe;
3473         if( copyOp==OP_Copy
3474          && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3475          && pOp->p1+pOp->p3+1==inReg
3476          && pOp->p2+pOp->p3+1==target+i
3477         ){
3478           pOp->p3++;
3479         }else{
3480           sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3481         }
3482       }
3483     }
3484   }
3485   return n;
3486 }
3487 
3488 /*
3489 ** Generate code for a BETWEEN operator.
3490 **
3491 **    x BETWEEN y AND z
3492 **
3493 ** The above is equivalent to
3494 **
3495 **    x>=y AND x<=z
3496 **
3497 ** Code it as such, taking care to do the common subexpression
3498 ** elementation of x.
3499 */
3500 static void exprCodeBetween(
3501   Parse *pParse,    /* Parsing and code generating context */
3502   Expr *pExpr,      /* The BETWEEN expression */
3503   int dest,         /* Jump here if the jump is taken */
3504   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
3505   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
3506 ){
3507   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
3508   Expr compLeft;    /* The  x>=y  term */
3509   Expr compRight;   /* The  x<=z  term */
3510   Expr exprX;       /* The  x  subexpression */
3511   int regFree1 = 0; /* Temporary use register */
3512 
3513   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3514   exprX = *pExpr->pLeft;
3515   exprAnd.op = TK_AND;
3516   exprAnd.pLeft = &compLeft;
3517   exprAnd.pRight = &compRight;
3518   compLeft.op = TK_GE;
3519   compLeft.pLeft = &exprX;
3520   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3521   compRight.op = TK_LE;
3522   compRight.pLeft = &exprX;
3523   compRight.pRight = pExpr->x.pList->a[1].pExpr;
3524   exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3525   if( jumpIfTrue ){
3526     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3527   }else{
3528     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3529   }
3530   sqlite3ReleaseTempReg(pParse, regFree1);
3531 
3532   /* Ensure adequate test coverage */
3533   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3534   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3535   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3536   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3537   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3538   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3539   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3540   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3541 }
3542 
3543 /*
3544 ** Generate code for a boolean expression such that a jump is made
3545 ** to the label "dest" if the expression is true but execution
3546 ** continues straight thru if the expression is false.
3547 **
3548 ** If the expression evaluates to NULL (neither true nor false), then
3549 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3550 **
3551 ** This code depends on the fact that certain token values (ex: TK_EQ)
3552 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3553 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
3554 ** the make process cause these values to align.  Assert()s in the code
3555 ** below verify that the numbers are aligned correctly.
3556 */
3557 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3558   Vdbe *v = pParse->pVdbe;
3559   int op = 0;
3560   int regFree1 = 0;
3561   int regFree2 = 0;
3562   int r1, r2;
3563 
3564   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3565   if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
3566   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
3567   op = pExpr->op;
3568   switch( op ){
3569     case TK_AND: {
3570       int d2 = sqlite3VdbeMakeLabel(v);
3571       testcase( jumpIfNull==0 );
3572       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3573       sqlite3ExprCachePush(pParse);
3574       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3575       sqlite3VdbeResolveLabel(v, d2);
3576       sqlite3ExprCachePop(pParse, 1);
3577       break;
3578     }
3579     case TK_OR: {
3580       testcase( jumpIfNull==0 );
3581       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3582       sqlite3ExprCachePush(pParse);
3583       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3584       sqlite3ExprCachePop(pParse, 1);
3585       break;
3586     }
3587     case TK_NOT: {
3588       testcase( jumpIfNull==0 );
3589       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3590       break;
3591     }
3592     case TK_LT:
3593     case TK_LE:
3594     case TK_GT:
3595     case TK_GE:
3596     case TK_NE:
3597     case TK_EQ: {
3598       assert( TK_LT==OP_Lt );
3599       assert( TK_LE==OP_Le );
3600       assert( TK_GT==OP_Gt );
3601       assert( TK_GE==OP_Ge );
3602       assert( TK_EQ==OP_Eq );
3603       assert( TK_NE==OP_Ne );
3604       testcase( op==TK_LT );
3605       testcase( op==TK_LE );
3606       testcase( op==TK_GT );
3607       testcase( op==TK_GE );
3608       testcase( op==TK_EQ );
3609       testcase( op==TK_NE );
3610       testcase( jumpIfNull==0 );
3611       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3612       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3613       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3614                   r1, r2, dest, jumpIfNull);
3615       testcase( regFree1==0 );
3616       testcase( regFree2==0 );
3617       break;
3618     }
3619     case TK_IS:
3620     case TK_ISNOT: {
3621       testcase( op==TK_IS );
3622       testcase( op==TK_ISNOT );
3623       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3624       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3625       op = (op==TK_IS) ? TK_EQ : TK_NE;
3626       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3627                   r1, r2, dest, SQLITE_NULLEQ);
3628       testcase( regFree1==0 );
3629       testcase( regFree2==0 );
3630       break;
3631     }
3632     case TK_ISNULL:
3633     case TK_NOTNULL: {
3634       assert( TK_ISNULL==OP_IsNull );
3635       assert( TK_NOTNULL==OP_NotNull );
3636       testcase( op==TK_ISNULL );
3637       testcase( op==TK_NOTNULL );
3638       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3639       sqlite3VdbeAddOp2(v, op, r1, dest);
3640       testcase( regFree1==0 );
3641       break;
3642     }
3643     case TK_BETWEEN: {
3644       testcase( jumpIfNull==0 );
3645       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3646       break;
3647     }
3648 #ifndef SQLITE_OMIT_SUBQUERY
3649     case TK_IN: {
3650       int destIfFalse = sqlite3VdbeMakeLabel(v);
3651       int destIfNull = jumpIfNull ? dest : destIfFalse;
3652       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3653       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3654       sqlite3VdbeResolveLabel(v, destIfFalse);
3655       break;
3656     }
3657 #endif
3658     default: {
3659       if( exprAlwaysTrue(pExpr) ){
3660         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3661       }else if( exprAlwaysFalse(pExpr) ){
3662         /* No-op */
3663       }else{
3664         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3665         sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3666         testcase( regFree1==0 );
3667         testcase( jumpIfNull==0 );
3668       }
3669       break;
3670     }
3671   }
3672   sqlite3ReleaseTempReg(pParse, regFree1);
3673   sqlite3ReleaseTempReg(pParse, regFree2);
3674 }
3675 
3676 /*
3677 ** Generate code for a boolean expression such that a jump is made
3678 ** to the label "dest" if the expression is false but execution
3679 ** continues straight thru if the expression is true.
3680 **
3681 ** If the expression evaluates to NULL (neither true nor false) then
3682 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3683 ** is 0.
3684 */
3685 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3686   Vdbe *v = pParse->pVdbe;
3687   int op = 0;
3688   int regFree1 = 0;
3689   int regFree2 = 0;
3690   int r1, r2;
3691 
3692   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3693   if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3694   if( pExpr==0 )    return;
3695 
3696   /* The value of pExpr->op and op are related as follows:
3697   **
3698   **       pExpr->op            op
3699   **       ---------          ----------
3700   **       TK_ISNULL          OP_NotNull
3701   **       TK_NOTNULL         OP_IsNull
3702   **       TK_NE              OP_Eq
3703   **       TK_EQ              OP_Ne
3704   **       TK_GT              OP_Le
3705   **       TK_LE              OP_Gt
3706   **       TK_GE              OP_Lt
3707   **       TK_LT              OP_Ge
3708   **
3709   ** For other values of pExpr->op, op is undefined and unused.
3710   ** The value of TK_ and OP_ constants are arranged such that we
3711   ** can compute the mapping above using the following expression.
3712   ** Assert()s verify that the computation is correct.
3713   */
3714   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3715 
3716   /* Verify correct alignment of TK_ and OP_ constants
3717   */
3718   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3719   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3720   assert( pExpr->op!=TK_NE || op==OP_Eq );
3721   assert( pExpr->op!=TK_EQ || op==OP_Ne );
3722   assert( pExpr->op!=TK_LT || op==OP_Ge );
3723   assert( pExpr->op!=TK_LE || op==OP_Gt );
3724   assert( pExpr->op!=TK_GT || op==OP_Le );
3725   assert( pExpr->op!=TK_GE || op==OP_Lt );
3726 
3727   switch( pExpr->op ){
3728     case TK_AND: {
3729       testcase( jumpIfNull==0 );
3730       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3731       sqlite3ExprCachePush(pParse);
3732       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3733       sqlite3ExprCachePop(pParse, 1);
3734       break;
3735     }
3736     case TK_OR: {
3737       int d2 = sqlite3VdbeMakeLabel(v);
3738       testcase( jumpIfNull==0 );
3739       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3740       sqlite3ExprCachePush(pParse);
3741       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3742       sqlite3VdbeResolveLabel(v, d2);
3743       sqlite3ExprCachePop(pParse, 1);
3744       break;
3745     }
3746     case TK_NOT: {
3747       testcase( jumpIfNull==0 );
3748       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3749       break;
3750     }
3751     case TK_LT:
3752     case TK_LE:
3753     case TK_GT:
3754     case TK_GE:
3755     case TK_NE:
3756     case TK_EQ: {
3757       testcase( op==TK_LT );
3758       testcase( op==TK_LE );
3759       testcase( op==TK_GT );
3760       testcase( op==TK_GE );
3761       testcase( op==TK_EQ );
3762       testcase( op==TK_NE );
3763       testcase( jumpIfNull==0 );
3764       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3765       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3766       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3767                   r1, r2, dest, jumpIfNull);
3768       testcase( regFree1==0 );
3769       testcase( regFree2==0 );
3770       break;
3771     }
3772     case TK_IS:
3773     case TK_ISNOT: {
3774       testcase( pExpr->op==TK_IS );
3775       testcase( pExpr->op==TK_ISNOT );
3776       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3777       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3778       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3779       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3780                   r1, r2, dest, SQLITE_NULLEQ);
3781       testcase( regFree1==0 );
3782       testcase( regFree2==0 );
3783       break;
3784     }
3785     case TK_ISNULL:
3786     case TK_NOTNULL: {
3787       testcase( op==TK_ISNULL );
3788       testcase( op==TK_NOTNULL );
3789       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3790       sqlite3VdbeAddOp2(v, op, r1, dest);
3791       testcase( regFree1==0 );
3792       break;
3793     }
3794     case TK_BETWEEN: {
3795       testcase( jumpIfNull==0 );
3796       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3797       break;
3798     }
3799 #ifndef SQLITE_OMIT_SUBQUERY
3800     case TK_IN: {
3801       if( jumpIfNull ){
3802         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3803       }else{
3804         int destIfNull = sqlite3VdbeMakeLabel(v);
3805         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3806         sqlite3VdbeResolveLabel(v, destIfNull);
3807       }
3808       break;
3809     }
3810 #endif
3811     default: {
3812       if( exprAlwaysFalse(pExpr) ){
3813         sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3814       }else if( exprAlwaysTrue(pExpr) ){
3815         /* no-op */
3816       }else{
3817         r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3818         sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3819         testcase( regFree1==0 );
3820         testcase( jumpIfNull==0 );
3821       }
3822       break;
3823     }
3824   }
3825   sqlite3ReleaseTempReg(pParse, regFree1);
3826   sqlite3ReleaseTempReg(pParse, regFree2);
3827 }
3828 
3829 /*
3830 ** Do a deep comparison of two expression trees.  Return 0 if the two
3831 ** expressions are completely identical.  Return 1 if they differ only
3832 ** by a COLLATE operator at the top level.  Return 2 if there are differences
3833 ** other than the top-level COLLATE operator.
3834 **
3835 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3836 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3837 **
3838 ** The pA side might be using TK_REGISTER.  If that is the case and pB is
3839 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3840 **
3841 ** Sometimes this routine will return 2 even if the two expressions
3842 ** really are equivalent.  If we cannot prove that the expressions are
3843 ** identical, we return 2 just to be safe.  So if this routine
3844 ** returns 2, then you do not really know for certain if the two
3845 ** expressions are the same.  But if you get a 0 or 1 return, then you
3846 ** can be sure the expressions are the same.  In the places where
3847 ** this routine is used, it does not hurt to get an extra 2 - that
3848 ** just might result in some slightly slower code.  But returning
3849 ** an incorrect 0 or 1 could lead to a malfunction.
3850 */
3851 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3852   u32 combinedFlags;
3853   if( pA==0 || pB==0 ){
3854     return pB==pA ? 0 : 2;
3855   }
3856   combinedFlags = pA->flags | pB->flags;
3857   if( combinedFlags & EP_IntValue ){
3858     if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3859       return 0;
3860     }
3861     return 2;
3862   }
3863   if( pA->op!=pB->op ){
3864     if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3865       return 1;
3866     }
3867     if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3868       return 1;
3869     }
3870     return 2;
3871   }
3872   if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
3873     if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3874       return pA->op==TK_COLLATE ? 1 : 2;
3875     }
3876   }
3877   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3878   if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3879     if( combinedFlags & EP_xIsSelect ) return 2;
3880     if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3881     if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3882     if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3883     if( ALWAYS((combinedFlags & EP_Reduced)==0) ){
3884       if( pA->iColumn!=pB->iColumn ) return 2;
3885       if( pA->iTable!=pB->iTable
3886        && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3887     }
3888   }
3889   return 0;
3890 }
3891 
3892 /*
3893 ** Compare two ExprList objects.  Return 0 if they are identical and
3894 ** non-zero if they differ in any way.
3895 **
3896 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3897 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3898 **
3899 ** This routine might return non-zero for equivalent ExprLists.  The
3900 ** only consequence will be disabled optimizations.  But this routine
3901 ** must never return 0 if the two ExprList objects are different, or
3902 ** a malfunction will result.
3903 **
3904 ** Two NULL pointers are considered to be the same.  But a NULL pointer
3905 ** always differs from a non-NULL pointer.
3906 */
3907 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3908   int i;
3909   if( pA==0 && pB==0 ) return 0;
3910   if( pA==0 || pB==0 ) return 1;
3911   if( pA->nExpr!=pB->nExpr ) return 1;
3912   for(i=0; i<pA->nExpr; i++){
3913     Expr *pExprA = pA->a[i].pExpr;
3914     Expr *pExprB = pB->a[i].pExpr;
3915     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3916     if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3917   }
3918   return 0;
3919 }
3920 
3921 /*
3922 ** Return true if we can prove the pE2 will always be true if pE1 is
3923 ** true.  Return false if we cannot complete the proof or if pE2 might
3924 ** be false.  Examples:
3925 **
3926 **     pE1: x==5       pE2: x==5             Result: true
3927 **     pE1: x>0        pE2: x==5             Result: false
3928 **     pE1: x=21       pE2: x=21 OR y=43     Result: true
3929 **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
3930 **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
3931 **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
3932 **     pE1: x IS ?2    pE2: x IS NOT NULL    Reuslt: false
3933 **
3934 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3935 ** Expr.iTable<0 then assume a table number given by iTab.
3936 **
3937 ** When in doubt, return false.  Returning true might give a performance
3938 ** improvement.  Returning false might cause a performance reduction, but
3939 ** it will always give the correct answer and is hence always safe.
3940 */
3941 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3942   if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3943     return 1;
3944   }
3945   if( pE2->op==TK_OR
3946    && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3947              || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3948   ){
3949     return 1;
3950   }
3951   if( pE2->op==TK_NOTNULL
3952    && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3953    && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3954   ){
3955     return 1;
3956   }
3957   return 0;
3958 }
3959 
3960 /*
3961 ** An instance of the following structure is used by the tree walker
3962 ** to count references to table columns in the arguments of an
3963 ** aggregate function, in order to implement the
3964 ** sqlite3FunctionThisSrc() routine.
3965 */
3966 struct SrcCount {
3967   SrcList *pSrc;   /* One particular FROM clause in a nested query */
3968   int nThis;       /* Number of references to columns in pSrcList */
3969   int nOther;      /* Number of references to columns in other FROM clauses */
3970 };
3971 
3972 /*
3973 ** Count the number of references to columns.
3974 */
3975 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3976   /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3977   ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3978   ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
3979   ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3980   ** NEVER() will need to be removed. */
3981   if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3982     int i;
3983     struct SrcCount *p = pWalker->u.pSrcCount;
3984     SrcList *pSrc = p->pSrc;
3985     for(i=0; i<pSrc->nSrc; i++){
3986       if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3987     }
3988     if( i<pSrc->nSrc ){
3989       p->nThis++;
3990     }else{
3991       p->nOther++;
3992     }
3993   }
3994   return WRC_Continue;
3995 }
3996 
3997 /*
3998 ** Determine if any of the arguments to the pExpr Function reference
3999 ** pSrcList.  Return true if they do.  Also return true if the function
4000 ** has no arguments or has only constant arguments.  Return false if pExpr
4001 ** references columns but not columns of tables found in pSrcList.
4002 */
4003 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
4004   Walker w;
4005   struct SrcCount cnt;
4006   assert( pExpr->op==TK_AGG_FUNCTION );
4007   memset(&w, 0, sizeof(w));
4008   w.xExprCallback = exprSrcCount;
4009   w.u.pSrcCount = &cnt;
4010   cnt.pSrc = pSrcList;
4011   cnt.nThis = 0;
4012   cnt.nOther = 0;
4013   sqlite3WalkExprList(&w, pExpr->x.pList);
4014   return cnt.nThis>0 || cnt.nOther==0;
4015 }
4016 
4017 /*
4018 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
4019 ** the new element.  Return a negative number if malloc fails.
4020 */
4021 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
4022   int i;
4023   pInfo->aCol = sqlite3ArrayAllocate(
4024        db,
4025        pInfo->aCol,
4026        sizeof(pInfo->aCol[0]),
4027        &pInfo->nColumn,
4028        &i
4029   );
4030   return i;
4031 }
4032 
4033 /*
4034 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
4035 ** the new element.  Return a negative number if malloc fails.
4036 */
4037 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4038   int i;
4039   pInfo->aFunc = sqlite3ArrayAllocate(
4040        db,
4041        pInfo->aFunc,
4042        sizeof(pInfo->aFunc[0]),
4043        &pInfo->nFunc,
4044        &i
4045   );
4046   return i;
4047 }
4048 
4049 /*
4050 ** This is the xExprCallback for a tree walker.  It is used to
4051 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
4052 ** for additional information.
4053 */
4054 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4055   int i;
4056   NameContext *pNC = pWalker->u.pNC;
4057   Parse *pParse = pNC->pParse;
4058   SrcList *pSrcList = pNC->pSrcList;
4059   AggInfo *pAggInfo = pNC->pAggInfo;
4060 
4061   switch( pExpr->op ){
4062     case TK_AGG_COLUMN:
4063     case TK_COLUMN: {
4064       testcase( pExpr->op==TK_AGG_COLUMN );
4065       testcase( pExpr->op==TK_COLUMN );
4066       /* Check to see if the column is in one of the tables in the FROM
4067       ** clause of the aggregate query */
4068       if( ALWAYS(pSrcList!=0) ){
4069         struct SrcList_item *pItem = pSrcList->a;
4070         for(i=0; i<pSrcList->nSrc; i++, pItem++){
4071           struct AggInfo_col *pCol;
4072           assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4073           if( pExpr->iTable==pItem->iCursor ){
4074             /* If we reach this point, it means that pExpr refers to a table
4075             ** that is in the FROM clause of the aggregate query.
4076             **
4077             ** Make an entry for the column in pAggInfo->aCol[] if there
4078             ** is not an entry there already.
4079             */
4080             int k;
4081             pCol = pAggInfo->aCol;
4082             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4083               if( pCol->iTable==pExpr->iTable &&
4084                   pCol->iColumn==pExpr->iColumn ){
4085                 break;
4086               }
4087             }
4088             if( (k>=pAggInfo->nColumn)
4089              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4090             ){
4091               pCol = &pAggInfo->aCol[k];
4092               pCol->pTab = pExpr->pTab;
4093               pCol->iTable = pExpr->iTable;
4094               pCol->iColumn = pExpr->iColumn;
4095               pCol->iMem = ++pParse->nMem;
4096               pCol->iSorterColumn = -1;
4097               pCol->pExpr = pExpr;
4098               if( pAggInfo->pGroupBy ){
4099                 int j, n;
4100                 ExprList *pGB = pAggInfo->pGroupBy;
4101                 struct ExprList_item *pTerm = pGB->a;
4102                 n = pGB->nExpr;
4103                 for(j=0; j<n; j++, pTerm++){
4104                   Expr *pE = pTerm->pExpr;
4105                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4106                       pE->iColumn==pExpr->iColumn ){
4107                     pCol->iSorterColumn = j;
4108                     break;
4109                   }
4110                 }
4111               }
4112               if( pCol->iSorterColumn<0 ){
4113                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4114               }
4115             }
4116             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4117             ** because it was there before or because we just created it).
4118             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4119             ** pAggInfo->aCol[] entry.
4120             */
4121             ExprSetVVAProperty(pExpr, EP_NoReduce);
4122             pExpr->pAggInfo = pAggInfo;
4123             pExpr->op = TK_AGG_COLUMN;
4124             pExpr->iAgg = (i16)k;
4125             break;
4126           } /* endif pExpr->iTable==pItem->iCursor */
4127         } /* end loop over pSrcList */
4128       }
4129       return WRC_Prune;
4130     }
4131     case TK_AGG_FUNCTION: {
4132       if( (pNC->ncFlags & NC_InAggFunc)==0
4133        && pWalker->walkerDepth==pExpr->op2
4134       ){
4135         /* Check to see if pExpr is a duplicate of another aggregate
4136         ** function that is already in the pAggInfo structure
4137         */
4138         struct AggInfo_func *pItem = pAggInfo->aFunc;
4139         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4140           if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4141             break;
4142           }
4143         }
4144         if( i>=pAggInfo->nFunc ){
4145           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
4146           */
4147           u8 enc = ENC(pParse->db);
4148           i = addAggInfoFunc(pParse->db, pAggInfo);
4149           if( i>=0 ){
4150             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4151             pItem = &pAggInfo->aFunc[i];
4152             pItem->pExpr = pExpr;
4153             pItem->iMem = ++pParse->nMem;
4154             assert( !ExprHasProperty(pExpr, EP_IntValue) );
4155             pItem->pFunc = sqlite3FindFunction(pParse->db,
4156                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4157                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4158             if( pExpr->flags & EP_Distinct ){
4159               pItem->iDistinct = pParse->nTab++;
4160             }else{
4161               pItem->iDistinct = -1;
4162             }
4163           }
4164         }
4165         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4166         */
4167         assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4168         ExprSetVVAProperty(pExpr, EP_NoReduce);
4169         pExpr->iAgg = (i16)i;
4170         pExpr->pAggInfo = pAggInfo;
4171         return WRC_Prune;
4172       }else{
4173         return WRC_Continue;
4174       }
4175     }
4176   }
4177   return WRC_Continue;
4178 }
4179 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4180   UNUSED_PARAMETER(pWalker);
4181   UNUSED_PARAMETER(pSelect);
4182   return WRC_Continue;
4183 }
4184 
4185 /*
4186 ** Analyze the pExpr expression looking for aggregate functions and
4187 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4188 ** points to.  Additional entries are made on the AggInfo object as
4189 ** necessary.
4190 **
4191 ** This routine should only be called after the expression has been
4192 ** analyzed by sqlite3ResolveExprNames().
4193 */
4194 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4195   Walker w;
4196   memset(&w, 0, sizeof(w));
4197   w.xExprCallback = analyzeAggregate;
4198   w.xSelectCallback = analyzeAggregatesInSelect;
4199   w.u.pNC = pNC;
4200   assert( pNC->pSrcList!=0 );
4201   sqlite3WalkExpr(&w, pExpr);
4202 }
4203 
4204 /*
4205 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4206 ** expression list.  Return the number of errors.
4207 **
4208 ** If an error is found, the analysis is cut short.
4209 */
4210 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4211   struct ExprList_item *pItem;
4212   int i;
4213   if( pList ){
4214     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4215       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4216     }
4217   }
4218 }
4219 
4220 /*
4221 ** Allocate a single new register for use to hold some intermediate result.
4222 */
4223 int sqlite3GetTempReg(Parse *pParse){
4224   if( pParse->nTempReg==0 ){
4225     return ++pParse->nMem;
4226   }
4227   return pParse->aTempReg[--pParse->nTempReg];
4228 }
4229 
4230 /*
4231 ** Deallocate a register, making available for reuse for some other
4232 ** purpose.
4233 **
4234 ** If a register is currently being used by the column cache, then
4235 ** the dallocation is deferred until the column cache line that uses
4236 ** the register becomes stale.
4237 */
4238 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4239   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4240     int i;
4241     struct yColCache *p;
4242     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4243       if( p->iReg==iReg ){
4244         p->tempReg = 1;
4245         return;
4246       }
4247     }
4248     pParse->aTempReg[pParse->nTempReg++] = iReg;
4249   }
4250 }
4251 
4252 /*
4253 ** Allocate or deallocate a block of nReg consecutive registers
4254 */
4255 int sqlite3GetTempRange(Parse *pParse, int nReg){
4256   int i, n;
4257   i = pParse->iRangeReg;
4258   n = pParse->nRangeReg;
4259   if( nReg<=n ){
4260     assert( !usedAsColumnCache(pParse, i, i+n-1) );
4261     pParse->iRangeReg += nReg;
4262     pParse->nRangeReg -= nReg;
4263   }else{
4264     i = pParse->nMem+1;
4265     pParse->nMem += nReg;
4266   }
4267   return i;
4268 }
4269 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4270   sqlite3ExprCacheRemove(pParse, iReg, nReg);
4271   if( nReg>pParse->nRangeReg ){
4272     pParse->nRangeReg = nReg;
4273     pParse->iRangeReg = iReg;
4274   }
4275 }
4276 
4277 /*
4278 ** Mark all temporary registers as being unavailable for reuse.
4279 */
4280 void sqlite3ClearTempRegCache(Parse *pParse){
4281   pParse->nTempReg = 0;
4282   pParse->nRangeReg = 0;
4283 }
4284