1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains routines used for analyzing expressions and 13 ** for generating VDBE code that evaluates expressions in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* Forward declarations */ 18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); 19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); 20 21 /* 22 ** Return the affinity character for a single column of a table. 23 */ 24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ 25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; 26 return pTab->aCol[iCol].affinity; 27 } 28 29 /* 30 ** Return the 'affinity' of the expression pExpr if any. 31 ** 32 ** If pExpr is a column, a reference to a column via an 'AS' alias, 33 ** or a sub-select with a column as the return value, then the 34 ** affinity of that column is returned. Otherwise, 0x00 is returned, 35 ** indicating no affinity for the expression. 36 ** 37 ** i.e. the WHERE clause expressions in the following statements all 38 ** have an affinity: 39 ** 40 ** CREATE TABLE t1(a); 41 ** SELECT * FROM t1 WHERE a; 42 ** SELECT a AS b FROM t1 WHERE b; 43 ** SELECT * FROM t1 WHERE (select a from t1); 44 */ 45 char sqlite3ExprAffinity(const Expr *pExpr){ 46 int op; 47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ 48 assert( pExpr->op==TK_COLLATE 49 || pExpr->op==TK_IF_NULL_ROW 50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); 51 pExpr = pExpr->pLeft; 52 assert( pExpr!=0 ); 53 } 54 op = pExpr->op; 55 if( op==TK_REGISTER ) op = pExpr->op2; 56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ 57 assert( ExprUseYTab(pExpr) ); 58 if( pExpr->y.pTab ){ 59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 60 } 61 } 62 if( op==TK_SELECT ){ 63 assert( ExprUseXSelect(pExpr) ); 64 assert( pExpr->x.pSelect!=0 ); 65 assert( pExpr->x.pSelect->pEList!=0 ); 66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); 67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); 68 } 69 #ifndef SQLITE_OMIT_CAST 70 if( op==TK_CAST ){ 71 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 72 return sqlite3AffinityType(pExpr->u.zToken, 0); 73 } 74 #endif 75 if( op==TK_SELECT_COLUMN ){ 76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); 77 assert( pExpr->iColumn < pExpr->iTable ); 78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); 79 return sqlite3ExprAffinity( 80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr 81 ); 82 } 83 if( op==TK_VECTOR ){ 84 assert( ExprUseXList(pExpr) ); 85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); 86 } 87 return pExpr->affExpr; 88 } 89 90 /* 91 ** Set the collating sequence for expression pExpr to be the collating 92 ** sequence named by pToken. Return a pointer to a new Expr node that 93 ** implements the COLLATE operator. 94 ** 95 ** If a memory allocation error occurs, that fact is recorded in pParse->db 96 ** and the pExpr parameter is returned unchanged. 97 */ 98 Expr *sqlite3ExprAddCollateToken( 99 const Parse *pParse, /* Parsing context */ 100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 101 const Token *pCollName, /* Name of collating sequence */ 102 int dequote /* True to dequote pCollName */ 103 ){ 104 if( pCollName->n>0 ){ 105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); 106 if( pNew ){ 107 pNew->pLeft = pExpr; 108 pNew->flags |= EP_Collate|EP_Skip; 109 pExpr = pNew; 110 } 111 } 112 return pExpr; 113 } 114 Expr *sqlite3ExprAddCollateString( 115 const Parse *pParse, /* Parsing context */ 116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ 117 const char *zC /* The collating sequence name */ 118 ){ 119 Token s; 120 assert( zC!=0 ); 121 sqlite3TokenInit(&s, (char*)zC); 122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); 123 } 124 125 /* 126 ** Skip over any TK_COLLATE operators. 127 */ 128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ 129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ 130 assert( pExpr->op==TK_COLLATE ); 131 pExpr = pExpr->pLeft; 132 } 133 return pExpr; 134 } 135 136 /* 137 ** Skip over any TK_COLLATE operators and/or any unlikely() 138 ** or likelihood() or likely() functions at the root of an 139 ** expression. 140 */ 141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ 142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ 143 if( ExprHasProperty(pExpr, EP_Unlikely) ){ 144 assert( ExprUseXList(pExpr) ); 145 assert( pExpr->x.pList->nExpr>0 ); 146 assert( pExpr->op==TK_FUNCTION ); 147 pExpr = pExpr->x.pList->a[0].pExpr; 148 }else{ 149 assert( pExpr->op==TK_COLLATE ); 150 pExpr = pExpr->pLeft; 151 } 152 } 153 return pExpr; 154 } 155 156 /* 157 ** Return the collation sequence for the expression pExpr. If 158 ** there is no defined collating sequence, return NULL. 159 ** 160 ** See also: sqlite3ExprNNCollSeq() 161 ** 162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the 163 ** default collation if pExpr has no defined collation. 164 ** 165 ** The collating sequence might be determined by a COLLATE operator 166 ** or by the presence of a column with a defined collating sequence. 167 ** COLLATE operators take first precedence. Left operands take 168 ** precedence over right operands. 169 */ 170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ 171 sqlite3 *db = pParse->db; 172 CollSeq *pColl = 0; 173 const Expr *p = pExpr; 174 while( p ){ 175 int op = p->op; 176 if( op==TK_REGISTER ) op = p->op2; 177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ 178 assert( ExprUseYTab(p) ); 179 if( p->y.pTab!=0 ){ 180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally 181 ** a TK_COLUMN but was previously evaluated and cached in a register */ 182 int j = p->iColumn; 183 if( j>=0 ){ 184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); 185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); 186 } 187 break; 188 } 189 } 190 if( op==TK_CAST || op==TK_UPLUS ){ 191 p = p->pLeft; 192 continue; 193 } 194 if( op==TK_VECTOR ){ 195 assert( ExprUseXList(p) ); 196 p = p->x.pList->a[0].pExpr; 197 continue; 198 } 199 if( op==TK_COLLATE ){ 200 assert( !ExprHasProperty(p, EP_IntValue) ); 201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); 202 break; 203 } 204 if( p->flags & EP_Collate ){ 205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ 206 p = p->pLeft; 207 }else{ 208 Expr *pNext = p->pRight; 209 /* The Expr.x union is never used at the same time as Expr.pRight */ 210 assert( ExprUseXList(p) ); 211 assert( p->x.pList==0 || p->pRight==0 ); 212 if( p->x.pList!=0 && !db->mallocFailed ){ 213 int i; 214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ 215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ 216 pNext = p->x.pList->a[i].pExpr; 217 break; 218 } 219 } 220 } 221 p = pNext; 222 } 223 }else{ 224 break; 225 } 226 } 227 if( sqlite3CheckCollSeq(pParse, pColl) ){ 228 pColl = 0; 229 } 230 return pColl; 231 } 232 233 /* 234 ** Return the collation sequence for the expression pExpr. If 235 ** there is no defined collating sequence, return a pointer to the 236 ** defautl collation sequence. 237 ** 238 ** See also: sqlite3ExprCollSeq() 239 ** 240 ** The sqlite3ExprCollSeq() routine works the same except that it 241 ** returns NULL if there is no defined collation. 242 */ 243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ 244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); 245 if( p==0 ) p = pParse->db->pDfltColl; 246 assert( p!=0 ); 247 return p; 248 } 249 250 /* 251 ** Return TRUE if the two expressions have equivalent collating sequences. 252 */ 253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ 254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); 255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); 256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; 257 } 258 259 /* 260 ** pExpr is an operand of a comparison operator. aff2 is the 261 ** type affinity of the other operand. This routine returns the 262 ** type affinity that should be used for the comparison operator. 263 */ 264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ 265 char aff1 = sqlite3ExprAffinity(pExpr); 266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ 267 /* Both sides of the comparison are columns. If one has numeric 268 ** affinity, use that. Otherwise use no affinity. 269 */ 270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ 271 return SQLITE_AFF_NUMERIC; 272 }else{ 273 return SQLITE_AFF_BLOB; 274 } 275 }else{ 276 /* One side is a column, the other is not. Use the columns affinity. */ 277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); 278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; 279 } 280 } 281 282 /* 283 ** pExpr is a comparison operator. Return the type affinity that should 284 ** be applied to both operands prior to doing the comparison. 285 */ 286 static char comparisonAffinity(const Expr *pExpr){ 287 char aff; 288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || 289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || 290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); 291 assert( pExpr->pLeft ); 292 aff = sqlite3ExprAffinity(pExpr->pLeft); 293 if( pExpr->pRight ){ 294 aff = sqlite3CompareAffinity(pExpr->pRight, aff); 295 }else if( ExprUseXSelect(pExpr) ){ 296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); 297 }else if( aff==0 ){ 298 aff = SQLITE_AFF_BLOB; 299 } 300 return aff; 301 } 302 303 /* 304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. 305 ** idx_affinity is the affinity of an indexed column. Return true 306 ** if the index with affinity idx_affinity may be used to implement 307 ** the comparison in pExpr. 308 */ 309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ 310 char aff = comparisonAffinity(pExpr); 311 if( aff<SQLITE_AFF_TEXT ){ 312 return 1; 313 } 314 if( aff==SQLITE_AFF_TEXT ){ 315 return idx_affinity==SQLITE_AFF_TEXT; 316 } 317 return sqlite3IsNumericAffinity(idx_affinity); 318 } 319 320 /* 321 ** Return the P5 value that should be used for a binary comparison 322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. 323 */ 324 static u8 binaryCompareP5( 325 const Expr *pExpr1, /* Left operand */ 326 const Expr *pExpr2, /* Right operand */ 327 int jumpIfNull /* Extra flags added to P5 */ 328 ){ 329 u8 aff = (char)sqlite3ExprAffinity(pExpr2); 330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; 331 return aff; 332 } 333 334 /* 335 ** Return a pointer to the collation sequence that should be used by 336 ** a binary comparison operator comparing pLeft and pRight. 337 ** 338 ** If the left hand expression has a collating sequence type, then it is 339 ** used. Otherwise the collation sequence for the right hand expression 340 ** is used, or the default (BINARY) if neither expression has a collating 341 ** type. 342 ** 343 ** Argument pRight (but not pLeft) may be a null pointer. In this case, 344 ** it is not considered. 345 */ 346 CollSeq *sqlite3BinaryCompareCollSeq( 347 Parse *pParse, 348 const Expr *pLeft, 349 const Expr *pRight 350 ){ 351 CollSeq *pColl; 352 assert( pLeft ); 353 if( pLeft->flags & EP_Collate ){ 354 pColl = sqlite3ExprCollSeq(pParse, pLeft); 355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ 356 pColl = sqlite3ExprCollSeq(pParse, pRight); 357 }else{ 358 pColl = sqlite3ExprCollSeq(pParse, pLeft); 359 if( !pColl ){ 360 pColl = sqlite3ExprCollSeq(pParse, pRight); 361 } 362 } 363 return pColl; 364 } 365 366 /* Expresssion p is a comparison operator. Return a collation sequence 367 ** appropriate for the comparison operator. 368 ** 369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). 370 ** However, if the OP_Commuted flag is set, then the order of the operands 371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the 372 ** correct collating sequence is found. 373 */ 374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ 375 if( ExprHasProperty(p, EP_Commuted) ){ 376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); 377 }else{ 378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); 379 } 380 } 381 382 /* 383 ** Generate code for a comparison operator. 384 */ 385 static int codeCompare( 386 Parse *pParse, /* The parsing (and code generating) context */ 387 Expr *pLeft, /* The left operand */ 388 Expr *pRight, /* The right operand */ 389 int opcode, /* The comparison opcode */ 390 int in1, int in2, /* Register holding operands */ 391 int dest, /* Jump here if true. */ 392 int jumpIfNull, /* If true, jump if either operand is NULL */ 393 int isCommuted /* The comparison has been commuted */ 394 ){ 395 int p5; 396 int addr; 397 CollSeq *p4; 398 399 if( pParse->nErr ) return 0; 400 if( isCommuted ){ 401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); 402 }else{ 403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); 404 } 405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); 406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, 407 (void*)p4, P4_COLLSEQ); 408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); 409 return addr; 410 } 411 412 /* 413 ** Return true if expression pExpr is a vector, or false otherwise. 414 ** 415 ** A vector is defined as any expression that results in two or more 416 ** columns of result. Every TK_VECTOR node is an vector because the 417 ** parser will not generate a TK_VECTOR with fewer than two entries. 418 ** But a TK_SELECT might be either a vector or a scalar. It is only 419 ** considered a vector if it has two or more result columns. 420 */ 421 int sqlite3ExprIsVector(const Expr *pExpr){ 422 return sqlite3ExprVectorSize(pExpr)>1; 423 } 424 425 /* 426 ** If the expression passed as the only argument is of type TK_VECTOR 427 ** return the number of expressions in the vector. Or, if the expression 428 ** is a sub-select, return the number of columns in the sub-select. For 429 ** any other type of expression, return 1. 430 */ 431 int sqlite3ExprVectorSize(const Expr *pExpr){ 432 u8 op = pExpr->op; 433 if( op==TK_REGISTER ) op = pExpr->op2; 434 if( op==TK_VECTOR ){ 435 assert( ExprUseXList(pExpr) ); 436 return pExpr->x.pList->nExpr; 437 }else if( op==TK_SELECT ){ 438 assert( ExprUseXSelect(pExpr) ); 439 return pExpr->x.pSelect->pEList->nExpr; 440 }else{ 441 return 1; 442 } 443 } 444 445 /* 446 ** Return a pointer to a subexpression of pVector that is the i-th 447 ** column of the vector (numbered starting with 0). The caller must 448 ** ensure that i is within range. 449 ** 450 ** If pVector is really a scalar (and "scalar" here includes subqueries 451 ** that return a single column!) then return pVector unmodified. 452 ** 453 ** pVector retains ownership of the returned subexpression. 454 ** 455 ** If the vector is a (SELECT ...) then the expression returned is 456 ** just the expression for the i-th term of the result set, and may 457 ** not be ready for evaluation because the table cursor has not yet 458 ** been positioned. 459 */ 460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ 461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); 462 if( sqlite3ExprIsVector(pVector) ){ 463 assert( pVector->op2==0 || pVector->op==TK_REGISTER ); 464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ 465 assert( ExprUseXSelect(pVector) ); 466 return pVector->x.pSelect->pEList->a[i].pExpr; 467 }else{ 468 assert( ExprUseXList(pVector) ); 469 return pVector->x.pList->a[i].pExpr; 470 } 471 } 472 return pVector; 473 } 474 475 /* 476 ** Compute and return a new Expr object which when passed to 477 ** sqlite3ExprCode() will generate all necessary code to compute 478 ** the iField-th column of the vector expression pVector. 479 ** 480 ** It is ok for pVector to be a scalar (as long as iField==0). 481 ** In that case, this routine works like sqlite3ExprDup(). 482 ** 483 ** The caller owns the returned Expr object and is responsible for 484 ** ensuring that the returned value eventually gets freed. 485 ** 486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT, 487 ** then the returned object will reference pVector and so pVector must remain 488 ** valid for the life of the returned object. If pVector is a TK_VECTOR 489 ** or a scalar expression, then it can be deleted as soon as this routine 490 ** returns. 491 ** 492 ** A trick to cause a TK_SELECT pVector to be deleted together with 493 ** the returned Expr object is to attach the pVector to the pRight field 494 ** of the returned TK_SELECT_COLUMN Expr object. 495 */ 496 Expr *sqlite3ExprForVectorField( 497 Parse *pParse, /* Parsing context */ 498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ 499 int iField, /* Which column of the vector to return */ 500 int nField /* Total number of columns in the vector */ 501 ){ 502 Expr *pRet; 503 if( pVector->op==TK_SELECT ){ 504 assert( ExprUseXSelect(pVector) ); 505 /* The TK_SELECT_COLUMN Expr node: 506 ** 507 ** pLeft: pVector containing TK_SELECT. Not deleted. 508 ** pRight: not used. But recursively deleted. 509 ** iColumn: Index of a column in pVector 510 ** iTable: 0 or the number of columns on the LHS of an assignment 511 ** pLeft->iTable: First in an array of register holding result, or 0 512 ** if the result is not yet computed. 513 ** 514 ** sqlite3ExprDelete() specifically skips the recursive delete of 515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector 516 ** can be attached to pRight to cause this node to take ownership of 517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes 518 ** with the same pLeft pointer to the pVector, but only one of them 519 ** will own the pVector. 520 */ 521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); 522 if( pRet ){ 523 pRet->iTable = nField; 524 pRet->iColumn = iField; 525 pRet->pLeft = pVector; 526 } 527 }else{ 528 if( pVector->op==TK_VECTOR ){ 529 Expr **ppVector; 530 assert( ExprUseXList(pVector) ); 531 ppVector = &pVector->x.pList->a[iField].pExpr; 532 pVector = *ppVector; 533 if( IN_RENAME_OBJECT ){ 534 /* This must be a vector UPDATE inside a trigger */ 535 *ppVector = 0; 536 return pVector; 537 } 538 } 539 pRet = sqlite3ExprDup(pParse->db, pVector, 0); 540 } 541 return pRet; 542 } 543 544 /* 545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate 546 ** it. Return the register in which the result is stored (or, if the 547 ** sub-select returns more than one column, the first in an array 548 ** of registers in which the result is stored). 549 ** 550 ** If pExpr is not a TK_SELECT expression, return 0. 551 */ 552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ 553 int reg = 0; 554 #ifndef SQLITE_OMIT_SUBQUERY 555 if( pExpr->op==TK_SELECT ){ 556 reg = sqlite3CodeSubselect(pParse, pExpr); 557 } 558 #endif 559 return reg; 560 } 561 562 /* 563 ** Argument pVector points to a vector expression - either a TK_VECTOR 564 ** or TK_SELECT that returns more than one column. This function returns 565 ** the register number of a register that contains the value of 566 ** element iField of the vector. 567 ** 568 ** If pVector is a TK_SELECT expression, then code for it must have 569 ** already been generated using the exprCodeSubselect() routine. In this 570 ** case parameter regSelect should be the first in an array of registers 571 ** containing the results of the sub-select. 572 ** 573 ** If pVector is of type TK_VECTOR, then code for the requested field 574 ** is generated. In this case (*pRegFree) may be set to the number of 575 ** a temporary register to be freed by the caller before returning. 576 ** 577 ** Before returning, output parameter (*ppExpr) is set to point to the 578 ** Expr object corresponding to element iElem of the vector. 579 */ 580 static int exprVectorRegister( 581 Parse *pParse, /* Parse context */ 582 Expr *pVector, /* Vector to extract element from */ 583 int iField, /* Field to extract from pVector */ 584 int regSelect, /* First in array of registers */ 585 Expr **ppExpr, /* OUT: Expression element */ 586 int *pRegFree /* OUT: Temp register to free */ 587 ){ 588 u8 op = pVector->op; 589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); 590 if( op==TK_REGISTER ){ 591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); 592 return pVector->iTable+iField; 593 } 594 if( op==TK_SELECT ){ 595 assert( ExprUseXSelect(pVector) ); 596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; 597 return regSelect+iField; 598 } 599 if( op==TK_VECTOR ){ 600 assert( ExprUseXList(pVector) ); 601 *ppExpr = pVector->x.pList->a[iField].pExpr; 602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); 603 } 604 return 0; 605 } 606 607 /* 608 ** Expression pExpr is a comparison between two vector values. Compute 609 ** the result of the comparison (1, 0, or NULL) and write that 610 ** result into register dest. 611 ** 612 ** The caller must satisfy the following preconditions: 613 ** 614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ 615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ 616 ** otherwise: op==pExpr->op and p5==0 617 */ 618 static void codeVectorCompare( 619 Parse *pParse, /* Code generator context */ 620 Expr *pExpr, /* The comparison operation */ 621 int dest, /* Write results into this register */ 622 u8 op, /* Comparison operator */ 623 u8 p5 /* SQLITE_NULLEQ or zero */ 624 ){ 625 Vdbe *v = pParse->pVdbe; 626 Expr *pLeft = pExpr->pLeft; 627 Expr *pRight = pExpr->pRight; 628 int nLeft = sqlite3ExprVectorSize(pLeft); 629 int i; 630 int regLeft = 0; 631 int regRight = 0; 632 u8 opx = op; 633 int addrCmp = 0; 634 int addrDone = sqlite3VdbeMakeLabel(pParse); 635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted); 636 637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 638 if( pParse->nErr ) return; 639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){ 640 sqlite3ErrorMsg(pParse, "row value misused"); 641 return; 642 } 643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE 644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT 645 || pExpr->op==TK_LT || pExpr->op==TK_GT 646 || pExpr->op==TK_LE || pExpr->op==TK_GE 647 ); 648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) 649 || (pExpr->op==TK_ISNOT && op==TK_NE) ); 650 assert( p5==0 || pExpr->op!=op ); 651 assert( p5==SQLITE_NULLEQ || pExpr->op==op ); 652 653 if( op==TK_LE ) opx = TK_LT; 654 if( op==TK_GE ) opx = TK_GT; 655 if( op==TK_NE ) opx = TK_EQ; 656 657 regLeft = exprCodeSubselect(pParse, pLeft); 658 regRight = exprCodeSubselect(pParse, pRight); 659 660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); 661 for(i=0; 1 /*Loop exits by "break"*/; i++){ 662 int regFree1 = 0, regFree2 = 0; 663 Expr *pL = 0, *pR = 0; 664 int r1, r2; 665 assert( i>=0 && i<nLeft ); 666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); 667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); 668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); 669 addrCmp = sqlite3VdbeCurrentAddr(v); 670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); 671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 677 sqlite3ReleaseTempReg(pParse, regFree1); 678 sqlite3ReleaseTempReg(pParse, regFree2); 679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ 680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); 681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); 682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); 683 } 684 if( p5==SQLITE_NULLEQ ){ 685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); 686 }else{ 687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); 688 } 689 if( i==nLeft-1 ){ 690 break; 691 } 692 if( opx==TK_EQ ){ 693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); 694 }else{ 695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); 696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); 697 if( i==nLeft-2 ) opx = op; 698 } 699 } 700 sqlite3VdbeJumpHere(v, addrCmp); 701 sqlite3VdbeResolveLabel(v, addrDone); 702 if( op==TK_NE ){ 703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest); 704 } 705 } 706 707 #if SQLITE_MAX_EXPR_DEPTH>0 708 /* 709 ** Check that argument nHeight is less than or equal to the maximum 710 ** expression depth allowed. If it is not, leave an error message in 711 ** pParse. 712 */ 713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ 714 int rc = SQLITE_OK; 715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; 716 if( nHeight>mxHeight ){ 717 sqlite3ErrorMsg(pParse, 718 "Expression tree is too large (maximum depth %d)", mxHeight 719 ); 720 rc = SQLITE_ERROR; 721 } 722 return rc; 723 } 724 725 /* The following three functions, heightOfExpr(), heightOfExprList() 726 ** and heightOfSelect(), are used to determine the maximum height 727 ** of any expression tree referenced by the structure passed as the 728 ** first argument. 729 ** 730 ** If this maximum height is greater than the current value pointed 731 ** to by pnHeight, the second parameter, then set *pnHeight to that 732 ** value. 733 */ 734 static void heightOfExpr(const Expr *p, int *pnHeight){ 735 if( p ){ 736 if( p->nHeight>*pnHeight ){ 737 *pnHeight = p->nHeight; 738 } 739 } 740 } 741 static void heightOfExprList(const ExprList *p, int *pnHeight){ 742 if( p ){ 743 int i; 744 for(i=0; i<p->nExpr; i++){ 745 heightOfExpr(p->a[i].pExpr, pnHeight); 746 } 747 } 748 } 749 static void heightOfSelect(const Select *pSelect, int *pnHeight){ 750 const Select *p; 751 for(p=pSelect; p; p=p->pPrior){ 752 heightOfExpr(p->pWhere, pnHeight); 753 heightOfExpr(p->pHaving, pnHeight); 754 heightOfExpr(p->pLimit, pnHeight); 755 heightOfExprList(p->pEList, pnHeight); 756 heightOfExprList(p->pGroupBy, pnHeight); 757 heightOfExprList(p->pOrderBy, pnHeight); 758 } 759 } 760 761 /* 762 ** Set the Expr.nHeight variable in the structure passed as an 763 ** argument. An expression with no children, Expr.pList or 764 ** Expr.pSelect member has a height of 1. Any other expression 765 ** has a height equal to the maximum height of any other 766 ** referenced Expr plus one. 767 ** 768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, 769 ** if appropriate. 770 */ 771 static void exprSetHeight(Expr *p){ 772 int nHeight = p->pLeft ? p->pLeft->nHeight : 0; 773 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){ 774 nHeight = p->pRight->nHeight; 775 } 776 if( ExprUseXSelect(p) ){ 777 heightOfSelect(p->x.pSelect, &nHeight); 778 }else if( p->x.pList ){ 779 heightOfExprList(p->x.pList, &nHeight); 780 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 781 } 782 p->nHeight = nHeight + 1; 783 } 784 785 /* 786 ** Set the Expr.nHeight variable using the exprSetHeight() function. If 787 ** the height is greater than the maximum allowed expression depth, 788 ** leave an error in pParse. 789 ** 790 ** Also propagate all EP_Propagate flags from the Expr.x.pList into 791 ** Expr.flags. 792 */ 793 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 794 if( pParse->nErr ) return; 795 exprSetHeight(p); 796 sqlite3ExprCheckHeight(pParse, p->nHeight); 797 } 798 799 /* 800 ** Return the maximum height of any expression tree referenced 801 ** by the select statement passed as an argument. 802 */ 803 int sqlite3SelectExprHeight(const Select *p){ 804 int nHeight = 0; 805 heightOfSelect(p, &nHeight); 806 return nHeight; 807 } 808 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ 809 /* 810 ** Propagate all EP_Propagate flags from the Expr.x.pList into 811 ** Expr.flags. 812 */ 813 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ 814 if( pParse->nErr ) return; 815 if( p && ExprUseXList(p) && p->x.pList ){ 816 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); 817 } 818 } 819 #define exprSetHeight(y) 820 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ 821 822 /* 823 ** This routine is the core allocator for Expr nodes. 824 ** 825 ** Construct a new expression node and return a pointer to it. Memory 826 ** for this node and for the pToken argument is a single allocation 827 ** obtained from sqlite3DbMalloc(). The calling function 828 ** is responsible for making sure the node eventually gets freed. 829 ** 830 ** If dequote is true, then the token (if it exists) is dequoted. 831 ** If dequote is false, no dequoting is performed. The deQuote 832 ** parameter is ignored if pToken is NULL or if the token does not 833 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) 834 ** then the EP_DblQuoted flag is set on the expression node. 835 ** 836 ** Special case: If op==TK_INTEGER and pToken points to a string that 837 ** can be translated into a 32-bit integer, then the token is not 838 ** stored in u.zToken. Instead, the integer values is written 839 ** into u.iValue and the EP_IntValue flag is set. No extra storage 840 ** is allocated to hold the integer text and the dequote flag is ignored. 841 */ 842 Expr *sqlite3ExprAlloc( 843 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ 844 int op, /* Expression opcode */ 845 const Token *pToken, /* Token argument. Might be NULL */ 846 int dequote /* True to dequote */ 847 ){ 848 Expr *pNew; 849 int nExtra = 0; 850 int iValue = 0; 851 852 assert( db!=0 ); 853 if( pToken ){ 854 if( op!=TK_INTEGER || pToken->z==0 855 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ 856 nExtra = pToken->n+1; 857 assert( iValue>=0 ); 858 } 859 } 860 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); 861 if( pNew ){ 862 memset(pNew, 0, sizeof(Expr)); 863 pNew->op = (u8)op; 864 pNew->iAgg = -1; 865 if( pToken ){ 866 if( nExtra==0 ){ 867 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); 868 pNew->u.iValue = iValue; 869 }else{ 870 pNew->u.zToken = (char*)&pNew[1]; 871 assert( pToken->z!=0 || pToken->n==0 ); 872 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); 873 pNew->u.zToken[pToken->n] = 0; 874 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ 875 sqlite3DequoteExpr(pNew); 876 } 877 } 878 } 879 #if SQLITE_MAX_EXPR_DEPTH>0 880 pNew->nHeight = 1; 881 #endif 882 } 883 return pNew; 884 } 885 886 /* 887 ** Allocate a new expression node from a zero-terminated token that has 888 ** already been dequoted. 889 */ 890 Expr *sqlite3Expr( 891 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ 892 int op, /* Expression opcode */ 893 const char *zToken /* Token argument. Might be NULL */ 894 ){ 895 Token x; 896 x.z = zToken; 897 x.n = sqlite3Strlen30(zToken); 898 return sqlite3ExprAlloc(db, op, &x, 0); 899 } 900 901 /* 902 ** Attach subtrees pLeft and pRight to the Expr node pRoot. 903 ** 904 ** If pRoot==NULL that means that a memory allocation error has occurred. 905 ** In that case, delete the subtrees pLeft and pRight. 906 */ 907 void sqlite3ExprAttachSubtrees( 908 sqlite3 *db, 909 Expr *pRoot, 910 Expr *pLeft, 911 Expr *pRight 912 ){ 913 if( pRoot==0 ){ 914 assert( db->mallocFailed ); 915 sqlite3ExprDelete(db, pLeft); 916 sqlite3ExprDelete(db, pRight); 917 }else{ 918 assert( ExprUseXList(pRoot) ); 919 assert( pRoot->x.pSelect==0 ); 920 if( pRight ){ 921 pRoot->pRight = pRight; 922 pRoot->flags |= EP_Propagate & pRight->flags; 923 #if SQLITE_MAX_EXPR_DEPTH>0 924 pRoot->nHeight = pRight->nHeight+1; 925 }else{ 926 pRoot->nHeight = 1; 927 #endif 928 } 929 if( pLeft ){ 930 pRoot->pLeft = pLeft; 931 pRoot->flags |= EP_Propagate & pLeft->flags; 932 #if SQLITE_MAX_EXPR_DEPTH>0 933 if( pLeft->nHeight>=pRoot->nHeight ){ 934 pRoot->nHeight = pLeft->nHeight+1; 935 } 936 #endif 937 } 938 } 939 } 940 941 /* 942 ** Allocate an Expr node which joins as many as two subtrees. 943 ** 944 ** One or both of the subtrees can be NULL. Return a pointer to the new 945 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, 946 ** free the subtrees and return NULL. 947 */ 948 Expr *sqlite3PExpr( 949 Parse *pParse, /* Parsing context */ 950 int op, /* Expression opcode */ 951 Expr *pLeft, /* Left operand */ 952 Expr *pRight /* Right operand */ 953 ){ 954 Expr *p; 955 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); 956 if( p ){ 957 memset(p, 0, sizeof(Expr)); 958 p->op = op & 0xff; 959 p->iAgg = -1; 960 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); 961 sqlite3ExprCheckHeight(pParse, p->nHeight); 962 }else{ 963 sqlite3ExprDelete(pParse->db, pLeft); 964 sqlite3ExprDelete(pParse->db, pRight); 965 } 966 return p; 967 } 968 969 /* 970 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due 971 ** do a memory allocation failure) then delete the pSelect object. 972 */ 973 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ 974 if( pExpr ){ 975 pExpr->x.pSelect = pSelect; 976 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); 977 sqlite3ExprSetHeightAndFlags(pParse, pExpr); 978 }else{ 979 assert( pParse->db->mallocFailed ); 980 sqlite3SelectDelete(pParse->db, pSelect); 981 } 982 } 983 984 /* 985 ** Expression list pEList is a list of vector values. This function 986 ** converts the contents of pEList to a VALUES(...) Select statement 987 ** returning 1 row for each element of the list. For example, the 988 ** expression list: 989 ** 990 ** ( (1,2), (3,4) (5,6) ) 991 ** 992 ** is translated to the equivalent of: 993 ** 994 ** VALUES(1,2), (3,4), (5,6) 995 ** 996 ** Each of the vector values in pEList must contain exactly nElem terms. 997 ** If a list element that is not a vector or does not contain nElem terms, 998 ** an error message is left in pParse. 999 ** 1000 ** This is used as part of processing IN(...) expressions with a list 1001 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". 1002 */ 1003 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ 1004 int ii; 1005 Select *pRet = 0; 1006 assert( nElem>1 ); 1007 for(ii=0; ii<pEList->nExpr; ii++){ 1008 Select *pSel; 1009 Expr *pExpr = pEList->a[ii].pExpr; 1010 int nExprElem; 1011 if( pExpr->op==TK_VECTOR ){ 1012 assert( ExprUseXList(pExpr) ); 1013 nExprElem = pExpr->x.pList->nExpr; 1014 }else{ 1015 nExprElem = 1; 1016 } 1017 if( nExprElem!=nElem ){ 1018 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", 1019 nExprElem, nExprElem>1?"s":"", nElem 1020 ); 1021 break; 1022 } 1023 assert( ExprUseXList(pExpr) ); 1024 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); 1025 pExpr->x.pList = 0; 1026 if( pSel ){ 1027 if( pRet ){ 1028 pSel->op = TK_ALL; 1029 pSel->pPrior = pRet; 1030 } 1031 pRet = pSel; 1032 } 1033 } 1034 1035 if( pRet && pRet->pPrior ){ 1036 pRet->selFlags |= SF_MultiValue; 1037 } 1038 sqlite3ExprListDelete(pParse->db, pEList); 1039 return pRet; 1040 } 1041 1042 /* 1043 ** Join two expressions using an AND operator. If either expression is 1044 ** NULL, then just return the other expression. 1045 ** 1046 ** If one side or the other of the AND is known to be false, then instead 1047 ** of returning an AND expression, just return a constant expression with 1048 ** a value of false. 1049 */ 1050 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ 1051 sqlite3 *db = pParse->db; 1052 if( pLeft==0 ){ 1053 return pRight; 1054 }else if( pRight==0 ){ 1055 return pLeft; 1056 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) 1057 && !IN_RENAME_OBJECT 1058 ){ 1059 sqlite3ExprDeferredDelete(pParse, pLeft); 1060 sqlite3ExprDeferredDelete(pParse, pRight); 1061 return sqlite3Expr(db, TK_INTEGER, "0"); 1062 }else{ 1063 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); 1064 } 1065 } 1066 1067 /* 1068 ** Construct a new expression node for a function with multiple 1069 ** arguments. 1070 */ 1071 Expr *sqlite3ExprFunction( 1072 Parse *pParse, /* Parsing context */ 1073 ExprList *pList, /* Argument list */ 1074 const Token *pToken, /* Name of the function */ 1075 int eDistinct /* SF_Distinct or SF_ALL or 0 */ 1076 ){ 1077 Expr *pNew; 1078 sqlite3 *db = pParse->db; 1079 assert( pToken ); 1080 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); 1081 if( pNew==0 ){ 1082 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ 1083 return 0; 1084 } 1085 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); 1086 pNew->w.iOfst = (int)(pToken->z - pParse->zTail); 1087 if( pList 1088 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] 1089 && !pParse->nested 1090 ){ 1091 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); 1092 } 1093 pNew->x.pList = pList; 1094 ExprSetProperty(pNew, EP_HasFunc); 1095 assert( ExprUseXList(pNew) ); 1096 sqlite3ExprSetHeightAndFlags(pParse, pNew); 1097 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); 1098 return pNew; 1099 } 1100 1101 /* 1102 ** Check to see if a function is usable according to current access 1103 ** rules: 1104 ** 1105 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL 1106 ** 1107 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from 1108 ** top-level SQL 1109 ** 1110 ** If the function is not usable, create an error. 1111 */ 1112 void sqlite3ExprFunctionUsable( 1113 Parse *pParse, /* Parsing and code generating context */ 1114 const Expr *pExpr, /* The function invocation */ 1115 const FuncDef *pDef /* The function being invoked */ 1116 ){ 1117 assert( !IN_RENAME_OBJECT ); 1118 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); 1119 if( ExprHasProperty(pExpr, EP_FromDDL) ){ 1120 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 1121 || (pParse->db->flags & SQLITE_TrustedSchema)==0 1122 ){ 1123 /* Functions prohibited in triggers and views if: 1124 ** (1) tagged with SQLITE_DIRECTONLY 1125 ** (2) not tagged with SQLITE_INNOCUOUS (which means it 1126 ** is tagged with SQLITE_FUNC_UNSAFE) and 1127 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning 1128 ** that the schema is possibly tainted). 1129 */ 1130 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); 1131 } 1132 } 1133 } 1134 1135 /* 1136 ** Assign a variable number to an expression that encodes a wildcard 1137 ** in the original SQL statement. 1138 ** 1139 ** Wildcards consisting of a single "?" are assigned the next sequential 1140 ** variable number. 1141 ** 1142 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make 1143 ** sure "nnn" is not too big to avoid a denial of service attack when 1144 ** the SQL statement comes from an external source. 1145 ** 1146 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number 1147 ** as the previous instance of the same wildcard. Or if this is the first 1148 ** instance of the wildcard, the next sequential variable number is 1149 ** assigned. 1150 */ 1151 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ 1152 sqlite3 *db = pParse->db; 1153 const char *z; 1154 ynVar x; 1155 1156 if( pExpr==0 ) return; 1157 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); 1158 z = pExpr->u.zToken; 1159 assert( z!=0 ); 1160 assert( z[0]!=0 ); 1161 assert( n==(u32)sqlite3Strlen30(z) ); 1162 if( z[1]==0 ){ 1163 /* Wildcard of the form "?". Assign the next variable number */ 1164 assert( z[0]=='?' ); 1165 x = (ynVar)(++pParse->nVar); 1166 }else{ 1167 int doAdd = 0; 1168 if( z[0]=='?' ){ 1169 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and 1170 ** use it as the variable number */ 1171 i64 i; 1172 int bOk; 1173 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ 1174 i = z[1]-'0'; /* The common case of ?N for a single digit N */ 1175 bOk = 1; 1176 }else{ 1177 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); 1178 } 1179 testcase( i==0 ); 1180 testcase( i==1 ); 1181 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); 1182 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); 1183 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1184 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", 1185 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); 1186 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1187 return; 1188 } 1189 x = (ynVar)i; 1190 if( x>pParse->nVar ){ 1191 pParse->nVar = (int)x; 1192 doAdd = 1; 1193 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ 1194 doAdd = 1; 1195 } 1196 }else{ 1197 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable 1198 ** number as the prior appearance of the same name, or if the name 1199 ** has never appeared before, reuse the same variable number 1200 */ 1201 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); 1202 if( x==0 ){ 1203 x = (ynVar)(++pParse->nVar); 1204 doAdd = 1; 1205 } 1206 } 1207 if( doAdd ){ 1208 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); 1209 } 1210 } 1211 pExpr->iColumn = x; 1212 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ 1213 sqlite3ErrorMsg(pParse, "too many SQL variables"); 1214 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); 1215 } 1216 } 1217 1218 /* 1219 ** Recursively delete an expression tree. 1220 */ 1221 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ 1222 assert( p!=0 ); 1223 assert( db!=0 ); 1224 assert( !ExprUseUValue(p) || p->u.iValue>=0 ); 1225 assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); 1226 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); 1227 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); 1228 #ifdef SQLITE_DEBUG 1229 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ 1230 assert( p->pLeft==0 ); 1231 assert( p->pRight==0 ); 1232 assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); 1233 assert( !ExprUseXList(p) || p->x.pList==0 ); 1234 } 1235 #endif 1236 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ 1237 /* The Expr.x union is never used at the same time as Expr.pRight */ 1238 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); 1239 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); 1240 if( p->pRight ){ 1241 assert( !ExprHasProperty(p, EP_WinFunc) ); 1242 sqlite3ExprDeleteNN(db, p->pRight); 1243 }else if( ExprUseXSelect(p) ){ 1244 assert( !ExprHasProperty(p, EP_WinFunc) ); 1245 sqlite3SelectDelete(db, p->x.pSelect); 1246 }else{ 1247 sqlite3ExprListDelete(db, p->x.pList); 1248 #ifndef SQLITE_OMIT_WINDOWFUNC 1249 if( ExprHasProperty(p, EP_WinFunc) ){ 1250 sqlite3WindowDelete(db, p->y.pWin); 1251 } 1252 #endif 1253 } 1254 } 1255 if( !ExprHasProperty(p, EP_Static) ){ 1256 sqlite3DbNNFreeNN(db, p); 1257 } 1258 } 1259 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ 1260 if( p ) sqlite3ExprDeleteNN(db, p); 1261 } 1262 1263 /* 1264 ** Clear both elements of an OnOrUsing object 1265 */ 1266 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ 1267 if( p==0 ){ 1268 /* Nothing to clear */ 1269 }else if( p->pOn ){ 1270 sqlite3ExprDeleteNN(db, p->pOn); 1271 }else if( p->pUsing ){ 1272 sqlite3IdListDelete(db, p->pUsing); 1273 } 1274 } 1275 1276 /* 1277 ** Arrange to cause pExpr to be deleted when the pParse is deleted. 1278 ** This is similar to sqlite3ExprDelete() except that the delete is 1279 ** deferred untilthe pParse is deleted. 1280 ** 1281 ** The pExpr might be deleted immediately on an OOM error. 1282 ** 1283 ** The deferred delete is (currently) implemented by adding the 1284 ** pExpr to the pParse->pConstExpr list with a register number of 0. 1285 */ 1286 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ 1287 sqlite3ParserAddCleanup(pParse, 1288 (void(*)(sqlite3*,void*))sqlite3ExprDelete, 1289 pExpr); 1290 } 1291 1292 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the 1293 ** expression. 1294 */ 1295 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ 1296 if( p ){ 1297 if( IN_RENAME_OBJECT ){ 1298 sqlite3RenameExprUnmap(pParse, p); 1299 } 1300 sqlite3ExprDeleteNN(pParse->db, p); 1301 } 1302 } 1303 1304 /* 1305 ** Return the number of bytes allocated for the expression structure 1306 ** passed as the first argument. This is always one of EXPR_FULLSIZE, 1307 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. 1308 */ 1309 static int exprStructSize(const Expr *p){ 1310 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; 1311 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; 1312 return EXPR_FULLSIZE; 1313 } 1314 1315 /* 1316 ** The dupedExpr*Size() routines each return the number of bytes required 1317 ** to store a copy of an expression or expression tree. They differ in 1318 ** how much of the tree is measured. 1319 ** 1320 ** dupedExprStructSize() Size of only the Expr structure 1321 ** dupedExprNodeSize() Size of Expr + space for token 1322 ** dupedExprSize() Expr + token + subtree components 1323 ** 1324 *************************************************************************** 1325 ** 1326 ** The dupedExprStructSize() function returns two values OR-ed together: 1327 ** (1) the space required for a copy of the Expr structure only and 1328 ** (2) the EP_xxx flags that indicate what the structure size should be. 1329 ** The return values is always one of: 1330 ** 1331 ** EXPR_FULLSIZE 1332 ** EXPR_REDUCEDSIZE | EP_Reduced 1333 ** EXPR_TOKENONLYSIZE | EP_TokenOnly 1334 ** 1335 ** The size of the structure can be found by masking the return value 1336 ** of this routine with 0xfff. The flags can be found by masking the 1337 ** return value with EP_Reduced|EP_TokenOnly. 1338 ** 1339 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size 1340 ** (unreduced) Expr objects as they or originally constructed by the parser. 1341 ** During expression analysis, extra information is computed and moved into 1342 ** later parts of the Expr object and that extra information might get chopped 1343 ** off if the expression is reduced. Note also that it does not work to 1344 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal 1345 ** to reduce a pristine expression tree from the parser. The implementation 1346 ** of dupedExprStructSize() contain multiple assert() statements that attempt 1347 ** to enforce this constraint. 1348 */ 1349 static int dupedExprStructSize(const Expr *p, int flags){ 1350 int nSize; 1351 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ 1352 assert( EXPR_FULLSIZE<=0xfff ); 1353 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); 1354 if( 0==flags || p->op==TK_SELECT_COLUMN 1355 #ifndef SQLITE_OMIT_WINDOWFUNC 1356 || ExprHasProperty(p, EP_WinFunc) 1357 #endif 1358 ){ 1359 nSize = EXPR_FULLSIZE; 1360 }else{ 1361 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 1362 assert( !ExprHasProperty(p, EP_OuterON) ); 1363 assert( !ExprHasVVAProperty(p, EP_NoReduce) ); 1364 if( p->pLeft || p->x.pList ){ 1365 nSize = EXPR_REDUCEDSIZE | EP_Reduced; 1366 }else{ 1367 assert( p->pRight==0 ); 1368 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; 1369 } 1370 } 1371 return nSize; 1372 } 1373 1374 /* 1375 ** This function returns the space in bytes required to store the copy 1376 ** of the Expr structure and a copy of the Expr.u.zToken string (if that 1377 ** string is defined.) 1378 */ 1379 static int dupedExprNodeSize(const Expr *p, int flags){ 1380 int nByte = dupedExprStructSize(p, flags) & 0xfff; 1381 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1382 nByte += sqlite3Strlen30NN(p->u.zToken)+1; 1383 } 1384 return ROUND8(nByte); 1385 } 1386 1387 /* 1388 ** Return the number of bytes required to create a duplicate of the 1389 ** expression passed as the first argument. The second argument is a 1390 ** mask containing EXPRDUP_XXX flags. 1391 ** 1392 ** The value returned includes space to create a copy of the Expr struct 1393 ** itself and the buffer referred to by Expr.u.zToken, if any. 1394 ** 1395 ** If the EXPRDUP_REDUCE flag is set, then the return value includes 1396 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft 1397 ** and Expr.pRight variables (but not for any structures pointed to or 1398 ** descended from the Expr.x.pList or Expr.x.pSelect variables). 1399 */ 1400 static int dupedExprSize(const Expr *p, int flags){ 1401 int nByte = 0; 1402 if( p ){ 1403 nByte = dupedExprNodeSize(p, flags); 1404 if( flags&EXPRDUP_REDUCE ){ 1405 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); 1406 } 1407 } 1408 return nByte; 1409 } 1410 1411 /* 1412 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer 1413 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough 1414 ** to store the copy of expression p, the copies of p->u.zToken 1415 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, 1416 ** if any. Before returning, *pzBuffer is set to the first byte past the 1417 ** portion of the buffer copied into by this function. 1418 */ 1419 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ 1420 Expr *pNew; /* Value to return */ 1421 u8 *zAlloc; /* Memory space from which to build Expr object */ 1422 u32 staticFlag; /* EP_Static if space not obtained from malloc */ 1423 1424 assert( db!=0 ); 1425 assert( p ); 1426 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); 1427 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); 1428 1429 /* Figure out where to write the new Expr structure. */ 1430 if( pzBuffer ){ 1431 zAlloc = *pzBuffer; 1432 staticFlag = EP_Static; 1433 assert( zAlloc!=0 ); 1434 }else{ 1435 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); 1436 staticFlag = 0; 1437 } 1438 pNew = (Expr *)zAlloc; 1439 1440 if( pNew ){ 1441 /* Set nNewSize to the size allocated for the structure pointed to 1442 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or 1443 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed 1444 ** by the copy of the p->u.zToken string (if any). 1445 */ 1446 const unsigned nStructSize = dupedExprStructSize(p, dupFlags); 1447 const int nNewSize = nStructSize & 0xfff; 1448 int nToken; 1449 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 1450 nToken = sqlite3Strlen30(p->u.zToken) + 1; 1451 }else{ 1452 nToken = 0; 1453 } 1454 if( dupFlags ){ 1455 assert( ExprHasProperty(p, EP_Reduced)==0 ); 1456 memcpy(zAlloc, p, nNewSize); 1457 }else{ 1458 u32 nSize = (u32)exprStructSize(p); 1459 memcpy(zAlloc, p, nSize); 1460 if( nSize<EXPR_FULLSIZE ){ 1461 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); 1462 } 1463 } 1464 1465 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ 1466 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static); 1467 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); 1468 pNew->flags |= staticFlag; 1469 ExprClearVVAProperties(pNew); 1470 if( dupFlags ){ 1471 ExprSetVVAProperty(pNew, EP_Immutable); 1472 } 1473 1474 /* Copy the p->u.zToken string, if any. */ 1475 if( nToken ){ 1476 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; 1477 memcpy(zToken, p->u.zToken, nToken); 1478 } 1479 1480 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ 1481 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ 1482 if( ExprUseXSelect(p) ){ 1483 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); 1484 }else{ 1485 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); 1486 } 1487 } 1488 1489 /* Fill in pNew->pLeft and pNew->pRight. */ 1490 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ 1491 zAlloc += dupedExprNodeSize(p, dupFlags); 1492 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ 1493 pNew->pLeft = p->pLeft ? 1494 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; 1495 pNew->pRight = p->pRight ? 1496 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; 1497 } 1498 #ifndef SQLITE_OMIT_WINDOWFUNC 1499 if( ExprHasProperty(p, EP_WinFunc) ){ 1500 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); 1501 assert( ExprHasProperty(pNew, EP_WinFunc) ); 1502 } 1503 #endif /* SQLITE_OMIT_WINDOWFUNC */ 1504 if( pzBuffer ){ 1505 *pzBuffer = zAlloc; 1506 } 1507 }else{ 1508 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ 1509 if( pNew->op==TK_SELECT_COLUMN ){ 1510 pNew->pLeft = p->pLeft; 1511 assert( p->pRight==0 || p->pRight==p->pLeft 1512 || ExprHasProperty(p->pLeft, EP_Subquery) ); 1513 }else{ 1514 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); 1515 } 1516 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); 1517 } 1518 } 1519 } 1520 return pNew; 1521 } 1522 1523 /* 1524 ** Create and return a deep copy of the object passed as the second 1525 ** argument. If an OOM condition is encountered, NULL is returned 1526 ** and the db->mallocFailed flag set. 1527 */ 1528 #ifndef SQLITE_OMIT_CTE 1529 With *sqlite3WithDup(sqlite3 *db, With *p){ 1530 With *pRet = 0; 1531 if( p ){ 1532 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); 1533 pRet = sqlite3DbMallocZero(db, nByte); 1534 if( pRet ){ 1535 int i; 1536 pRet->nCte = p->nCte; 1537 for(i=0; i<p->nCte; i++){ 1538 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); 1539 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); 1540 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); 1541 pRet->a[i].eM10d = p->a[i].eM10d; 1542 } 1543 } 1544 } 1545 return pRet; 1546 } 1547 #else 1548 # define sqlite3WithDup(x,y) 0 1549 #endif 1550 1551 #ifndef SQLITE_OMIT_WINDOWFUNC 1552 /* 1553 ** The gatherSelectWindows() procedure and its helper routine 1554 ** gatherSelectWindowsCallback() are used to scan all the expressions 1555 ** an a newly duplicated SELECT statement and gather all of the Window 1556 ** objects found there, assembling them onto the linked list at Select->pWin. 1557 */ 1558 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ 1559 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ 1560 Select *pSelect = pWalker->u.pSelect; 1561 Window *pWin = pExpr->y.pWin; 1562 assert( pWin ); 1563 assert( IsWindowFunc(pExpr) ); 1564 assert( pWin->ppThis==0 ); 1565 sqlite3WindowLink(pSelect, pWin); 1566 } 1567 return WRC_Continue; 1568 } 1569 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ 1570 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; 1571 } 1572 static void gatherSelectWindows(Select *p){ 1573 Walker w; 1574 w.xExprCallback = gatherSelectWindowsCallback; 1575 w.xSelectCallback = gatherSelectWindowsSelectCallback; 1576 w.xSelectCallback2 = 0; 1577 w.pParse = 0; 1578 w.u.pSelect = p; 1579 sqlite3WalkSelect(&w, p); 1580 } 1581 #endif 1582 1583 1584 /* 1585 ** The following group of routines make deep copies of expressions, 1586 ** expression lists, ID lists, and select statements. The copies can 1587 ** be deleted (by being passed to their respective ...Delete() routines) 1588 ** without effecting the originals. 1589 ** 1590 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), 1591 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 1592 ** by subsequent calls to sqlite*ListAppend() routines. 1593 ** 1594 ** Any tables that the SrcList might point to are not duplicated. 1595 ** 1596 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. 1597 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a 1598 ** truncated version of the usual Expr structure that will be stored as 1599 ** part of the in-memory representation of the database schema. 1600 */ 1601 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ 1602 assert( flags==0 || flags==EXPRDUP_REDUCE ); 1603 return p ? exprDup(db, p, flags, 0) : 0; 1604 } 1605 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ 1606 ExprList *pNew; 1607 struct ExprList_item *pItem; 1608 const struct ExprList_item *pOldItem; 1609 int i; 1610 Expr *pPriorSelectColOld = 0; 1611 Expr *pPriorSelectColNew = 0; 1612 assert( db!=0 ); 1613 if( p==0 ) return 0; 1614 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); 1615 if( pNew==0 ) return 0; 1616 pNew->nExpr = p->nExpr; 1617 pNew->nAlloc = p->nAlloc; 1618 pItem = pNew->a; 1619 pOldItem = p->a; 1620 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ 1621 Expr *pOldExpr = pOldItem->pExpr; 1622 Expr *pNewExpr; 1623 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); 1624 if( pOldExpr 1625 && pOldExpr->op==TK_SELECT_COLUMN 1626 && (pNewExpr = pItem->pExpr)!=0 1627 ){ 1628 if( pNewExpr->pRight ){ 1629 pPriorSelectColOld = pOldExpr->pRight; 1630 pPriorSelectColNew = pNewExpr->pRight; 1631 pNewExpr->pLeft = pNewExpr->pRight; 1632 }else{ 1633 if( pOldExpr->pLeft!=pPriorSelectColOld ){ 1634 pPriorSelectColOld = pOldExpr->pLeft; 1635 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); 1636 pNewExpr->pRight = pPriorSelectColNew; 1637 } 1638 pNewExpr->pLeft = pPriorSelectColNew; 1639 } 1640 } 1641 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); 1642 pItem->fg = pOldItem->fg; 1643 pItem->fg.done = 0; 1644 pItem->u = pOldItem->u; 1645 } 1646 return pNew; 1647 } 1648 1649 /* 1650 ** If cursors, triggers, views and subqueries are all omitted from 1651 ** the build, then none of the following routines, except for 1652 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes 1653 ** called with a NULL argument. 1654 */ 1655 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ 1656 || !defined(SQLITE_OMIT_SUBQUERY) 1657 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ 1658 SrcList *pNew; 1659 int i; 1660 int nByte; 1661 assert( db!=0 ); 1662 if( p==0 ) return 0; 1663 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); 1664 pNew = sqlite3DbMallocRawNN(db, nByte ); 1665 if( pNew==0 ) return 0; 1666 pNew->nSrc = pNew->nAlloc = p->nSrc; 1667 for(i=0; i<p->nSrc; i++){ 1668 SrcItem *pNewItem = &pNew->a[i]; 1669 const SrcItem *pOldItem = &p->a[i]; 1670 Table *pTab; 1671 pNewItem->pSchema = pOldItem->pSchema; 1672 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); 1673 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1674 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); 1675 pNewItem->fg = pOldItem->fg; 1676 pNewItem->iCursor = pOldItem->iCursor; 1677 pNewItem->addrFillSub = pOldItem->addrFillSub; 1678 pNewItem->regReturn = pOldItem->regReturn; 1679 if( pNewItem->fg.isIndexedBy ){ 1680 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); 1681 } 1682 pNewItem->u2 = pOldItem->u2; 1683 if( pNewItem->fg.isCte ){ 1684 pNewItem->u2.pCteUse->nUse++; 1685 } 1686 if( pNewItem->fg.isTabFunc ){ 1687 pNewItem->u1.pFuncArg = 1688 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); 1689 } 1690 pTab = pNewItem->pTab = pOldItem->pTab; 1691 if( pTab ){ 1692 pTab->nTabRef++; 1693 } 1694 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); 1695 if( pOldItem->fg.isUsing ){ 1696 assert( pNewItem->fg.isUsing ); 1697 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); 1698 }else{ 1699 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); 1700 } 1701 pNewItem->colUsed = pOldItem->colUsed; 1702 } 1703 return pNew; 1704 } 1705 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ 1706 IdList *pNew; 1707 int i; 1708 assert( db!=0 ); 1709 if( p==0 ) return 0; 1710 assert( p->eU4!=EU4_EXPR ); 1711 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); 1712 if( pNew==0 ) return 0; 1713 pNew->nId = p->nId; 1714 pNew->eU4 = p->eU4; 1715 for(i=0; i<p->nId; i++){ 1716 struct IdList_item *pNewItem = &pNew->a[i]; 1717 const struct IdList_item *pOldItem = &p->a[i]; 1718 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); 1719 pNewItem->u4 = pOldItem->u4; 1720 } 1721 return pNew; 1722 } 1723 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ 1724 Select *pRet = 0; 1725 Select *pNext = 0; 1726 Select **pp = &pRet; 1727 const Select *p; 1728 1729 assert( db!=0 ); 1730 for(p=pDup; p; p=p->pPrior){ 1731 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); 1732 if( pNew==0 ) break; 1733 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); 1734 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); 1735 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); 1736 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); 1737 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); 1738 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); 1739 pNew->op = p->op; 1740 pNew->pNext = pNext; 1741 pNew->pPrior = 0; 1742 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); 1743 pNew->iLimit = 0; 1744 pNew->iOffset = 0; 1745 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; 1746 pNew->addrOpenEphm[0] = -1; 1747 pNew->addrOpenEphm[1] = -1; 1748 pNew->nSelectRow = p->nSelectRow; 1749 pNew->pWith = sqlite3WithDup(db, p->pWith); 1750 #ifndef SQLITE_OMIT_WINDOWFUNC 1751 pNew->pWin = 0; 1752 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); 1753 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); 1754 #endif 1755 pNew->selId = p->selId; 1756 if( db->mallocFailed ){ 1757 /* Any prior OOM might have left the Select object incomplete. 1758 ** Delete the whole thing rather than allow an incomplete Select 1759 ** to be used by the code generator. */ 1760 pNew->pNext = 0; 1761 sqlite3SelectDelete(db, pNew); 1762 break; 1763 } 1764 *pp = pNew; 1765 pp = &pNew->pPrior; 1766 pNext = pNew; 1767 } 1768 1769 return pRet; 1770 } 1771 #else 1772 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ 1773 assert( p==0 ); 1774 return 0; 1775 } 1776 #endif 1777 1778 1779 /* 1780 ** Add a new element to the end of an expression list. If pList is 1781 ** initially NULL, then create a new expression list. 1782 ** 1783 ** The pList argument must be either NULL or a pointer to an ExprList 1784 ** obtained from a prior call to sqlite3ExprListAppend(). This routine 1785 ** may not be used with an ExprList obtained from sqlite3ExprListDup(). 1786 ** Reason: This routine assumes that the number of slots in pList->a[] 1787 ** is a power of two. That is true for sqlite3ExprListAppend() returns 1788 ** but is not necessarily true from the return value of sqlite3ExprListDup(). 1789 ** 1790 ** If a memory allocation error occurs, the entire list is freed and 1791 ** NULL is returned. If non-NULL is returned, then it is guaranteed 1792 ** that the new entry was successfully appended. 1793 */ 1794 static const struct ExprList_item zeroItem = {0}; 1795 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( 1796 sqlite3 *db, /* Database handle. Used for memory allocation */ 1797 Expr *pExpr /* Expression to be appended. Might be NULL */ 1798 ){ 1799 struct ExprList_item *pItem; 1800 ExprList *pList; 1801 1802 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); 1803 if( pList==0 ){ 1804 sqlite3ExprDelete(db, pExpr); 1805 return 0; 1806 } 1807 pList->nAlloc = 4; 1808 pList->nExpr = 1; 1809 pItem = &pList->a[0]; 1810 *pItem = zeroItem; 1811 pItem->pExpr = pExpr; 1812 return pList; 1813 } 1814 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( 1815 sqlite3 *db, /* Database handle. Used for memory allocation */ 1816 ExprList *pList, /* List to which to append. Might be NULL */ 1817 Expr *pExpr /* Expression to be appended. Might be NULL */ 1818 ){ 1819 struct ExprList_item *pItem; 1820 ExprList *pNew; 1821 pList->nAlloc *= 2; 1822 pNew = sqlite3DbRealloc(db, pList, 1823 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); 1824 if( pNew==0 ){ 1825 sqlite3ExprListDelete(db, pList); 1826 sqlite3ExprDelete(db, pExpr); 1827 return 0; 1828 }else{ 1829 pList = pNew; 1830 } 1831 pItem = &pList->a[pList->nExpr++]; 1832 *pItem = zeroItem; 1833 pItem->pExpr = pExpr; 1834 return pList; 1835 } 1836 ExprList *sqlite3ExprListAppend( 1837 Parse *pParse, /* Parsing context */ 1838 ExprList *pList, /* List to which to append. Might be NULL */ 1839 Expr *pExpr /* Expression to be appended. Might be NULL */ 1840 ){ 1841 struct ExprList_item *pItem; 1842 if( pList==0 ){ 1843 return sqlite3ExprListAppendNew(pParse->db,pExpr); 1844 } 1845 if( pList->nAlloc<pList->nExpr+1 ){ 1846 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); 1847 } 1848 pItem = &pList->a[pList->nExpr++]; 1849 *pItem = zeroItem; 1850 pItem->pExpr = pExpr; 1851 return pList; 1852 } 1853 1854 /* 1855 ** pColumns and pExpr form a vector assignment which is part of the SET 1856 ** clause of an UPDATE statement. Like this: 1857 ** 1858 ** (a,b,c) = (expr1,expr2,expr3) 1859 ** Or: (a,b,c) = (SELECT x,y,z FROM ....) 1860 ** 1861 ** For each term of the vector assignment, append new entries to the 1862 ** expression list pList. In the case of a subquery on the RHS, append 1863 ** TK_SELECT_COLUMN expressions. 1864 */ 1865 ExprList *sqlite3ExprListAppendVector( 1866 Parse *pParse, /* Parsing context */ 1867 ExprList *pList, /* List to which to append. Might be NULL */ 1868 IdList *pColumns, /* List of names of LHS of the assignment */ 1869 Expr *pExpr /* Vector expression to be appended. Might be NULL */ 1870 ){ 1871 sqlite3 *db = pParse->db; 1872 int n; 1873 int i; 1874 int iFirst = pList ? pList->nExpr : 0; 1875 /* pColumns can only be NULL due to an OOM but an OOM will cause an 1876 ** exit prior to this routine being invoked */ 1877 if( NEVER(pColumns==0) ) goto vector_append_error; 1878 if( pExpr==0 ) goto vector_append_error; 1879 1880 /* If the RHS is a vector, then we can immediately check to see that 1881 ** the size of the RHS and LHS match. But if the RHS is a SELECT, 1882 ** wildcards ("*") in the result set of the SELECT must be expanded before 1883 ** we can do the size check, so defer the size check until code generation. 1884 */ 1885 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ 1886 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 1887 pColumns->nId, n); 1888 goto vector_append_error; 1889 } 1890 1891 for(i=0; i<pColumns->nId; i++){ 1892 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); 1893 assert( pSubExpr!=0 || db->mallocFailed ); 1894 if( pSubExpr==0 ) continue; 1895 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); 1896 if( pList ){ 1897 assert( pList->nExpr==iFirst+i+1 ); 1898 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; 1899 pColumns->a[i].zName = 0; 1900 } 1901 } 1902 1903 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ 1904 Expr *pFirst = pList->a[iFirst].pExpr; 1905 assert( pFirst!=0 ); 1906 assert( pFirst->op==TK_SELECT_COLUMN ); 1907 1908 /* Store the SELECT statement in pRight so it will be deleted when 1909 ** sqlite3ExprListDelete() is called */ 1910 pFirst->pRight = pExpr; 1911 pExpr = 0; 1912 1913 /* Remember the size of the LHS in iTable so that we can check that 1914 ** the RHS and LHS sizes match during code generation. */ 1915 pFirst->iTable = pColumns->nId; 1916 } 1917 1918 vector_append_error: 1919 sqlite3ExprUnmapAndDelete(pParse, pExpr); 1920 sqlite3IdListDelete(db, pColumns); 1921 return pList; 1922 } 1923 1924 /* 1925 ** Set the sort order for the last element on the given ExprList. 1926 */ 1927 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ 1928 struct ExprList_item *pItem; 1929 if( p==0 ) return; 1930 assert( p->nExpr>0 ); 1931 1932 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); 1933 assert( iSortOrder==SQLITE_SO_UNDEFINED 1934 || iSortOrder==SQLITE_SO_ASC 1935 || iSortOrder==SQLITE_SO_DESC 1936 ); 1937 assert( eNulls==SQLITE_SO_UNDEFINED 1938 || eNulls==SQLITE_SO_ASC 1939 || eNulls==SQLITE_SO_DESC 1940 ); 1941 1942 pItem = &p->a[p->nExpr-1]; 1943 assert( pItem->fg.bNulls==0 ); 1944 if( iSortOrder==SQLITE_SO_UNDEFINED ){ 1945 iSortOrder = SQLITE_SO_ASC; 1946 } 1947 pItem->fg.sortFlags = (u8)iSortOrder; 1948 1949 if( eNulls!=SQLITE_SO_UNDEFINED ){ 1950 pItem->fg.bNulls = 1; 1951 if( iSortOrder!=eNulls ){ 1952 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; 1953 } 1954 } 1955 } 1956 1957 /* 1958 ** Set the ExprList.a[].zEName element of the most recently added item 1959 ** on the expression list. 1960 ** 1961 ** pList might be NULL following an OOM error. But pName should never be 1962 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1963 ** is set. 1964 */ 1965 void sqlite3ExprListSetName( 1966 Parse *pParse, /* Parsing context */ 1967 ExprList *pList, /* List to which to add the span. */ 1968 const Token *pName, /* Name to be added */ 1969 int dequote /* True to cause the name to be dequoted */ 1970 ){ 1971 assert( pList!=0 || pParse->db->mallocFailed!=0 ); 1972 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); 1973 if( pList ){ 1974 struct ExprList_item *pItem; 1975 assert( pList->nExpr>0 ); 1976 pItem = &pList->a[pList->nExpr-1]; 1977 assert( pItem->zEName==0 ); 1978 assert( pItem->fg.eEName==ENAME_NAME ); 1979 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); 1980 if( dequote ){ 1981 /* If dequote==0, then pName->z does not point to part of a DDL 1982 ** statement handled by the parser. And so no token need be added 1983 ** to the token-map. */ 1984 sqlite3Dequote(pItem->zEName); 1985 if( IN_RENAME_OBJECT ){ 1986 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); 1987 } 1988 } 1989 } 1990 } 1991 1992 /* 1993 ** Set the ExprList.a[].zSpan element of the most recently added item 1994 ** on the expression list. 1995 ** 1996 ** pList might be NULL following an OOM error. But pSpan should never be 1997 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag 1998 ** is set. 1999 */ 2000 void sqlite3ExprListSetSpan( 2001 Parse *pParse, /* Parsing context */ 2002 ExprList *pList, /* List to which to add the span. */ 2003 const char *zStart, /* Start of the span */ 2004 const char *zEnd /* End of the span */ 2005 ){ 2006 sqlite3 *db = pParse->db; 2007 assert( pList!=0 || db->mallocFailed!=0 ); 2008 if( pList ){ 2009 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; 2010 assert( pList->nExpr>0 ); 2011 if( pItem->zEName==0 ){ 2012 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); 2013 pItem->fg.eEName = ENAME_SPAN; 2014 } 2015 } 2016 } 2017 2018 /* 2019 ** If the expression list pEList contains more than iLimit elements, 2020 ** leave an error message in pParse. 2021 */ 2022 void sqlite3ExprListCheckLength( 2023 Parse *pParse, 2024 ExprList *pEList, 2025 const char *zObject 2026 ){ 2027 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; 2028 testcase( pEList && pEList->nExpr==mx ); 2029 testcase( pEList && pEList->nExpr==mx+1 ); 2030 if( pEList && pEList->nExpr>mx ){ 2031 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); 2032 } 2033 } 2034 2035 /* 2036 ** Delete an entire expression list. 2037 */ 2038 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ 2039 int i = pList->nExpr; 2040 struct ExprList_item *pItem = pList->a; 2041 assert( pList->nExpr>0 ); 2042 assert( db!=0 ); 2043 do{ 2044 sqlite3ExprDelete(db, pItem->pExpr); 2045 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName); 2046 pItem++; 2047 }while( --i>0 ); 2048 sqlite3DbNNFreeNN(db, pList); 2049 } 2050 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ 2051 if( pList ) exprListDeleteNN(db, pList); 2052 } 2053 2054 /* 2055 ** Return the bitwise-OR of all Expr.flags fields in the given 2056 ** ExprList. 2057 */ 2058 u32 sqlite3ExprListFlags(const ExprList *pList){ 2059 int i; 2060 u32 m = 0; 2061 assert( pList!=0 ); 2062 for(i=0; i<pList->nExpr; i++){ 2063 Expr *pExpr = pList->a[i].pExpr; 2064 assert( pExpr!=0 ); 2065 m |= pExpr->flags; 2066 } 2067 return m; 2068 } 2069 2070 /* 2071 ** This is a SELECT-node callback for the expression walker that 2072 ** always "fails". By "fail" in this case, we mean set 2073 ** pWalker->eCode to zero and abort. 2074 ** 2075 ** This callback is used by multiple expression walkers. 2076 */ 2077 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ 2078 UNUSED_PARAMETER(NotUsed); 2079 pWalker->eCode = 0; 2080 return WRC_Abort; 2081 } 2082 2083 /* 2084 ** Check the input string to see if it is "true" or "false" (in any case). 2085 ** 2086 ** If the string is.... Return 2087 ** "true" EP_IsTrue 2088 ** "false" EP_IsFalse 2089 ** anything else 0 2090 */ 2091 u32 sqlite3IsTrueOrFalse(const char *zIn){ 2092 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; 2093 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; 2094 return 0; 2095 } 2096 2097 2098 /* 2099 ** If the input expression is an ID with the name "true" or "false" 2100 ** then convert it into an TK_TRUEFALSE term. Return non-zero if 2101 ** the conversion happened, and zero if the expression is unaltered. 2102 */ 2103 int sqlite3ExprIdToTrueFalse(Expr *pExpr){ 2104 u32 v; 2105 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); 2106 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) 2107 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 2108 ){ 2109 pExpr->op = TK_TRUEFALSE; 2110 ExprSetProperty(pExpr, v); 2111 return 1; 2112 } 2113 return 0; 2114 } 2115 2116 /* 2117 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE 2118 ** and 0 if it is FALSE. 2119 */ 2120 int sqlite3ExprTruthValue(const Expr *pExpr){ 2121 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); 2122 assert( pExpr->op==TK_TRUEFALSE ); 2123 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2124 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 2125 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); 2126 return pExpr->u.zToken[4]==0; 2127 } 2128 2129 /* 2130 ** If pExpr is an AND or OR expression, try to simplify it by eliminating 2131 ** terms that are always true or false. Return the simplified expression. 2132 ** Or return the original expression if no simplification is possible. 2133 ** 2134 ** Examples: 2135 ** 2136 ** (x<10) AND true => (x<10) 2137 ** (x<10) AND false => false 2138 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) 2139 ** (x<10) AND (y=22 OR true) => (x<10) 2140 ** (y=22) OR true => true 2141 */ 2142 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ 2143 assert( pExpr!=0 ); 2144 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ 2145 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); 2146 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); 2147 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ 2148 pExpr = pExpr->op==TK_AND ? pRight : pLeft; 2149 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ 2150 pExpr = pExpr->op==TK_AND ? pLeft : pRight; 2151 } 2152 } 2153 return pExpr; 2154 } 2155 2156 2157 /* 2158 ** These routines are Walker callbacks used to check expressions to 2159 ** see if they are "constant" for some definition of constant. The 2160 ** Walker.eCode value determines the type of "constant" we are looking 2161 ** for. 2162 ** 2163 ** These callback routines are used to implement the following: 2164 ** 2165 ** sqlite3ExprIsConstant() pWalker->eCode==1 2166 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 2167 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 2168 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 2169 ** 2170 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression 2171 ** is found to not be a constant. 2172 ** 2173 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT 2174 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 2175 ** when parsing an existing schema out of the sqlite_schema table and 4 2176 ** when processing a new CREATE TABLE statement. A bound parameter raises 2177 ** an error for new statements, but is silently converted 2178 ** to NULL for existing schemas. This allows sqlite_schema tables that 2179 ** contain a bound parameter because they were generated by older versions 2180 ** of SQLite to be parsed by newer versions of SQLite without raising a 2181 ** malformed schema error. 2182 */ 2183 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ 2184 2185 /* If pWalker->eCode is 2 then any term of the expression that comes from 2186 ** the ON or USING clauses of an outer join disqualifies the expression 2187 ** from being considered constant. */ 2188 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ 2189 pWalker->eCode = 0; 2190 return WRC_Abort; 2191 } 2192 2193 switch( pExpr->op ){ 2194 /* Consider functions to be constant if all their arguments are constant 2195 ** and either pWalker->eCode==4 or 5 or the function has the 2196 ** SQLITE_FUNC_CONST flag. */ 2197 case TK_FUNCTION: 2198 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) 2199 && !ExprHasProperty(pExpr, EP_WinFunc) 2200 ){ 2201 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); 2202 return WRC_Continue; 2203 }else{ 2204 pWalker->eCode = 0; 2205 return WRC_Abort; 2206 } 2207 case TK_ID: 2208 /* Convert "true" or "false" in a DEFAULT clause into the 2209 ** appropriate TK_TRUEFALSE operator */ 2210 if( sqlite3ExprIdToTrueFalse(pExpr) ){ 2211 return WRC_Prune; 2212 } 2213 /* no break */ deliberate_fall_through 2214 case TK_COLUMN: 2215 case TK_AGG_FUNCTION: 2216 case TK_AGG_COLUMN: 2217 testcase( pExpr->op==TK_ID ); 2218 testcase( pExpr->op==TK_COLUMN ); 2219 testcase( pExpr->op==TK_AGG_FUNCTION ); 2220 testcase( pExpr->op==TK_AGG_COLUMN ); 2221 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ 2222 return WRC_Continue; 2223 } 2224 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ 2225 return WRC_Continue; 2226 } 2227 /* no break */ deliberate_fall_through 2228 case TK_IF_NULL_ROW: 2229 case TK_REGISTER: 2230 case TK_DOT: 2231 testcase( pExpr->op==TK_REGISTER ); 2232 testcase( pExpr->op==TK_IF_NULL_ROW ); 2233 testcase( pExpr->op==TK_DOT ); 2234 pWalker->eCode = 0; 2235 return WRC_Abort; 2236 case TK_VARIABLE: 2237 if( pWalker->eCode==5 ){ 2238 /* Silently convert bound parameters that appear inside of CREATE 2239 ** statements into a NULL when parsing the CREATE statement text out 2240 ** of the sqlite_schema table */ 2241 pExpr->op = TK_NULL; 2242 }else if( pWalker->eCode==4 ){ 2243 /* A bound parameter in a CREATE statement that originates from 2244 ** sqlite3_prepare() causes an error */ 2245 pWalker->eCode = 0; 2246 return WRC_Abort; 2247 } 2248 /* no break */ deliberate_fall_through 2249 default: 2250 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ 2251 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ 2252 return WRC_Continue; 2253 } 2254 } 2255 static int exprIsConst(Expr *p, int initFlag, int iCur){ 2256 Walker w; 2257 w.eCode = initFlag; 2258 w.xExprCallback = exprNodeIsConstant; 2259 w.xSelectCallback = sqlite3SelectWalkFail; 2260 #ifdef SQLITE_DEBUG 2261 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2262 #endif 2263 w.u.iCur = iCur; 2264 sqlite3WalkExpr(&w, p); 2265 return w.eCode; 2266 } 2267 2268 /* 2269 ** Walk an expression tree. Return non-zero if the expression is constant 2270 ** and 0 if it involves variables or function calls. 2271 ** 2272 ** For the purposes of this function, a double-quoted string (ex: "abc") 2273 ** is considered a variable but a single-quoted string (ex: 'abc') is 2274 ** a constant. 2275 */ 2276 int sqlite3ExprIsConstant(Expr *p){ 2277 return exprIsConst(p, 1, 0); 2278 } 2279 2280 /* 2281 ** Walk an expression tree. Return non-zero if 2282 ** 2283 ** (1) the expression is constant, and 2284 ** (2) the expression does originate in the ON or USING clause 2285 ** of a LEFT JOIN, and 2286 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN 2287 ** operands created by the constant propagation optimization. 2288 ** 2289 ** When this routine returns true, it indicates that the expression 2290 ** can be added to the pParse->pConstExpr list and evaluated once when 2291 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). 2292 */ 2293 int sqlite3ExprIsConstantNotJoin(Expr *p){ 2294 return exprIsConst(p, 2, 0); 2295 } 2296 2297 /* 2298 ** Walk an expression tree. Return non-zero if the expression is constant 2299 ** for any single row of the table with cursor iCur. In other words, the 2300 ** expression must not refer to any non-deterministic function nor any 2301 ** table other than iCur. 2302 */ 2303 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ 2304 return exprIsConst(p, 3, iCur); 2305 } 2306 2307 /* 2308 ** Check pExpr to see if it is an invariant constraint on data source pSrc. 2309 ** This is an optimization. False negatives will perhaps cause slower 2310 ** queries, but false positives will yield incorrect answers. So when in 2311 ** doubt, return 0. 2312 ** 2313 ** To be an invariant constraint, the following must be true: 2314 ** 2315 ** (1) pExpr cannot refer to any table other than pSrc->iCursor. 2316 ** 2317 ** (2) pExpr cannot use subqueries or non-deterministic functions. 2318 ** 2319 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. 2320 ** (Is there some way to relax this constraint?) 2321 ** 2322 ** (4) If pSrc is the right operand of a LEFT JOIN, then... 2323 ** (4a) pExpr must come from an ON clause.. 2324 (4b) and specifically the ON clause associated with the LEFT JOIN. 2325 ** 2326 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left 2327 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE 2328 ** clause, not an ON clause. 2329 */ 2330 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ 2331 if( pSrc->fg.jointype & JT_LTORJ ){ 2332 return 0; /* rule (3) */ 2333 } 2334 if( pSrc->fg.jointype & JT_LEFT ){ 2335 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ 2336 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ 2337 }else{ 2338 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ 2339 } 2340 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ 2341 } 2342 2343 2344 /* 2345 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). 2346 */ 2347 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ 2348 ExprList *pGroupBy = pWalker->u.pGroupBy; 2349 int i; 2350 2351 /* Check if pExpr is identical to any GROUP BY term. If so, consider 2352 ** it constant. */ 2353 for(i=0; i<pGroupBy->nExpr; i++){ 2354 Expr *p = pGroupBy->a[i].pExpr; 2355 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ 2356 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); 2357 if( sqlite3IsBinary(pColl) ){ 2358 return WRC_Prune; 2359 } 2360 } 2361 } 2362 2363 /* Check if pExpr is a sub-select. If so, consider it variable. */ 2364 if( ExprUseXSelect(pExpr) ){ 2365 pWalker->eCode = 0; 2366 return WRC_Abort; 2367 } 2368 2369 return exprNodeIsConstant(pWalker, pExpr); 2370 } 2371 2372 /* 2373 ** Walk the expression tree passed as the first argument. Return non-zero 2374 ** if the expression consists entirely of constants or copies of terms 2375 ** in pGroupBy that sort with the BINARY collation sequence. 2376 ** 2377 ** This routine is used to determine if a term of the HAVING clause can 2378 ** be promoted into the WHERE clause. In order for such a promotion to work, 2379 ** the value of the HAVING clause term must be the same for all members of 2380 ** a "group". The requirement that the GROUP BY term must be BINARY 2381 ** assumes that no other collating sequence will have a finer-grained 2382 ** grouping than binary. In other words (A=B COLLATE binary) implies 2383 ** A=B in every other collating sequence. The requirement that the 2384 ** GROUP BY be BINARY is stricter than necessary. It would also work 2385 ** to promote HAVING clauses that use the same alternative collating 2386 ** sequence as the GROUP BY term, but that is much harder to check, 2387 ** alternative collating sequences are uncommon, and this is only an 2388 ** optimization, so we take the easy way out and simply require the 2389 ** GROUP BY to use the BINARY collating sequence. 2390 */ 2391 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ 2392 Walker w; 2393 w.eCode = 1; 2394 w.xExprCallback = exprNodeIsConstantOrGroupBy; 2395 w.xSelectCallback = 0; 2396 w.u.pGroupBy = pGroupBy; 2397 w.pParse = pParse; 2398 sqlite3WalkExpr(&w, p); 2399 return w.eCode; 2400 } 2401 2402 /* 2403 ** Walk an expression tree for the DEFAULT field of a column definition 2404 ** in a CREATE TABLE statement. Return non-zero if the expression is 2405 ** acceptable for use as a DEFAULT. That is to say, return non-zero if 2406 ** the expression is constant or a function call with constant arguments. 2407 ** Return and 0 if there are any variables. 2408 ** 2409 ** isInit is true when parsing from sqlite_schema. isInit is false when 2410 ** processing a new CREATE TABLE statement. When isInit is true, parameters 2411 ** (such as ? or $abc) in the expression are converted into NULL. When 2412 ** isInit is false, parameters raise an error. Parameters should not be 2413 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite 2414 ** allowed it, so we need to support it when reading sqlite_schema for 2415 ** backwards compatibility. 2416 ** 2417 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. 2418 ** 2419 ** For the purposes of this function, a double-quoted string (ex: "abc") 2420 ** is considered a variable but a single-quoted string (ex: 'abc') is 2421 ** a constant. 2422 */ 2423 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ 2424 assert( isInit==0 || isInit==1 ); 2425 return exprIsConst(p, 4+isInit, 0); 2426 } 2427 2428 #ifdef SQLITE_ENABLE_CURSOR_HINTS 2429 /* 2430 ** Walk an expression tree. Return 1 if the expression contains a 2431 ** subquery of some kind. Return 0 if there are no subqueries. 2432 */ 2433 int sqlite3ExprContainsSubquery(Expr *p){ 2434 Walker w; 2435 w.eCode = 1; 2436 w.xExprCallback = sqlite3ExprWalkNoop; 2437 w.xSelectCallback = sqlite3SelectWalkFail; 2438 #ifdef SQLITE_DEBUG 2439 w.xSelectCallback2 = sqlite3SelectWalkAssert2; 2440 #endif 2441 sqlite3WalkExpr(&w, p); 2442 return w.eCode==0; 2443 } 2444 #endif 2445 2446 /* 2447 ** If the expression p codes a constant integer that is small enough 2448 ** to fit in a 32-bit integer, return 1 and put the value of the integer 2449 ** in *pValue. If the expression is not an integer or if it is too big 2450 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. 2451 */ 2452 int sqlite3ExprIsInteger(const Expr *p, int *pValue){ 2453 int rc = 0; 2454 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ 2455 2456 /* If an expression is an integer literal that fits in a signed 32-bit 2457 ** integer, then the EP_IntValue flag will have already been set */ 2458 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 2459 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); 2460 2461 if( p->flags & EP_IntValue ){ 2462 *pValue = p->u.iValue; 2463 return 1; 2464 } 2465 switch( p->op ){ 2466 case TK_UPLUS: { 2467 rc = sqlite3ExprIsInteger(p->pLeft, pValue); 2468 break; 2469 } 2470 case TK_UMINUS: { 2471 int v = 0; 2472 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ 2473 assert( ((unsigned int)v)!=0x80000000 ); 2474 *pValue = -v; 2475 rc = 1; 2476 } 2477 break; 2478 } 2479 default: break; 2480 } 2481 return rc; 2482 } 2483 2484 /* 2485 ** Return FALSE if there is no chance that the expression can be NULL. 2486 ** 2487 ** If the expression might be NULL or if the expression is too complex 2488 ** to tell return TRUE. 2489 ** 2490 ** This routine is used as an optimization, to skip OP_IsNull opcodes 2491 ** when we know that a value cannot be NULL. Hence, a false positive 2492 ** (returning TRUE when in fact the expression can never be NULL) might 2493 ** be a small performance hit but is otherwise harmless. On the other 2494 ** hand, a false negative (returning FALSE when the result could be NULL) 2495 ** will likely result in an incorrect answer. So when in doubt, return 2496 ** TRUE. 2497 */ 2498 int sqlite3ExprCanBeNull(const Expr *p){ 2499 u8 op; 2500 assert( p!=0 ); 2501 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2502 p = p->pLeft; 2503 assert( p!=0 ); 2504 } 2505 op = p->op; 2506 if( op==TK_REGISTER ) op = p->op2; 2507 switch( op ){ 2508 case TK_INTEGER: 2509 case TK_STRING: 2510 case TK_FLOAT: 2511 case TK_BLOB: 2512 return 0; 2513 case TK_COLUMN: 2514 assert( ExprUseYTab(p) ); 2515 return ExprHasProperty(p, EP_CanBeNull) || 2516 p->y.pTab==0 || /* Reference to column of index on expression */ 2517 (p->iColumn>=0 2518 && p->y.pTab->aCol!=0 /* Possible due to prior error */ 2519 && p->y.pTab->aCol[p->iColumn].notNull==0); 2520 default: 2521 return 1; 2522 } 2523 } 2524 2525 /* 2526 ** Return TRUE if the given expression is a constant which would be 2527 ** unchanged by OP_Affinity with the affinity given in the second 2528 ** argument. 2529 ** 2530 ** This routine is used to determine if the OP_Affinity operation 2531 ** can be omitted. When in doubt return FALSE. A false negative 2532 ** is harmless. A false positive, however, can result in the wrong 2533 ** answer. 2534 */ 2535 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ 2536 u8 op; 2537 int unaryMinus = 0; 2538 if( aff==SQLITE_AFF_BLOB ) return 1; 2539 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ 2540 if( p->op==TK_UMINUS ) unaryMinus = 1; 2541 p = p->pLeft; 2542 } 2543 op = p->op; 2544 if( op==TK_REGISTER ) op = p->op2; 2545 switch( op ){ 2546 case TK_INTEGER: { 2547 return aff>=SQLITE_AFF_NUMERIC; 2548 } 2549 case TK_FLOAT: { 2550 return aff>=SQLITE_AFF_NUMERIC; 2551 } 2552 case TK_STRING: { 2553 return !unaryMinus && aff==SQLITE_AFF_TEXT; 2554 } 2555 case TK_BLOB: { 2556 return !unaryMinus; 2557 } 2558 case TK_COLUMN: { 2559 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ 2560 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; 2561 } 2562 default: { 2563 return 0; 2564 } 2565 } 2566 } 2567 2568 /* 2569 ** Return TRUE if the given string is a row-id column name. 2570 */ 2571 int sqlite3IsRowid(const char *z){ 2572 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; 2573 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; 2574 if( sqlite3StrICmp(z, "OID")==0 ) return 1; 2575 return 0; 2576 } 2577 2578 /* 2579 ** pX is the RHS of an IN operator. If pX is a SELECT statement 2580 ** that can be simplified to a direct table access, then return 2581 ** a pointer to the SELECT statement. If pX is not a SELECT statement, 2582 ** or if the SELECT statement needs to be manifested into a transient 2583 ** table, then return NULL. 2584 */ 2585 #ifndef SQLITE_OMIT_SUBQUERY 2586 static Select *isCandidateForInOpt(const Expr *pX){ 2587 Select *p; 2588 SrcList *pSrc; 2589 ExprList *pEList; 2590 Table *pTab; 2591 int i; 2592 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ 2593 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ 2594 p = pX->x.pSelect; 2595 if( p->pPrior ) return 0; /* Not a compound SELECT */ 2596 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 2597 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2598 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2599 return 0; /* No DISTINCT keyword and no aggregate functions */ 2600 } 2601 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ 2602 if( p->pLimit ) return 0; /* Has no LIMIT clause */ 2603 if( p->pWhere ) return 0; /* Has no WHERE clause */ 2604 pSrc = p->pSrc; 2605 assert( pSrc!=0 ); 2606 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ 2607 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ 2608 pTab = pSrc->a[0].pTab; 2609 assert( pTab!=0 ); 2610 assert( !IsView(pTab) ); /* FROM clause is not a view */ 2611 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ 2612 pEList = p->pEList; 2613 assert( pEList!=0 ); 2614 /* All SELECT results must be columns. */ 2615 for(i=0; i<pEList->nExpr; i++){ 2616 Expr *pRes = pEList->a[i].pExpr; 2617 if( pRes->op!=TK_COLUMN ) return 0; 2618 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ 2619 } 2620 return p; 2621 } 2622 #endif /* SQLITE_OMIT_SUBQUERY */ 2623 2624 #ifndef SQLITE_OMIT_SUBQUERY 2625 /* 2626 ** Generate code that checks the left-most column of index table iCur to see if 2627 ** it contains any NULL entries. Cause the register at regHasNull to be set 2628 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull 2629 ** to be set to NULL if iCur contains one or more NULL values. 2630 */ 2631 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ 2632 int addr1; 2633 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); 2634 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 2635 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); 2636 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); 2637 VdbeComment((v, "first_entry_in(%d)", iCur)); 2638 sqlite3VdbeJumpHere(v, addr1); 2639 } 2640 #endif 2641 2642 2643 #ifndef SQLITE_OMIT_SUBQUERY 2644 /* 2645 ** The argument is an IN operator with a list (not a subquery) on the 2646 ** right-hand side. Return TRUE if that list is constant. 2647 */ 2648 static int sqlite3InRhsIsConstant(Expr *pIn){ 2649 Expr *pLHS; 2650 int res; 2651 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); 2652 pLHS = pIn->pLeft; 2653 pIn->pLeft = 0; 2654 res = sqlite3ExprIsConstant(pIn); 2655 pIn->pLeft = pLHS; 2656 return res; 2657 } 2658 #endif 2659 2660 /* 2661 ** This function is used by the implementation of the IN (...) operator. 2662 ** The pX parameter is the expression on the RHS of the IN operator, which 2663 ** might be either a list of expressions or a subquery. 2664 ** 2665 ** The job of this routine is to find or create a b-tree object that can 2666 ** be used either to test for membership in the RHS set or to iterate through 2667 ** all members of the RHS set, skipping duplicates. 2668 ** 2669 ** A cursor is opened on the b-tree object that is the RHS of the IN operator 2670 ** and the *piTab parameter is set to the index of that cursor. 2671 ** 2672 ** The returned value of this function indicates the b-tree type, as follows: 2673 ** 2674 ** IN_INDEX_ROWID - The cursor was opened on a database table. 2675 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. 2676 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. 2677 ** IN_INDEX_EPH - The cursor was opened on a specially created and 2678 ** populated epheremal table. 2679 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be 2680 ** implemented as a sequence of comparisons. 2681 ** 2682 ** An existing b-tree might be used if the RHS expression pX is a simple 2683 ** subquery such as: 2684 ** 2685 ** SELECT <column1>, <column2>... FROM <table> 2686 ** 2687 ** If the RHS of the IN operator is a list or a more complex subquery, then 2688 ** an ephemeral table might need to be generated from the RHS and then 2689 ** pX->iTable made to point to the ephemeral table instead of an 2690 ** existing table. In this case, the creation and initialization of the 2691 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag 2692 ** will be set on pX and the pX->y.sub fields will be set to show where 2693 ** the subroutine is coded. 2694 ** 2695 ** The inFlags parameter must contain, at a minimum, one of the bits 2696 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains 2697 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast 2698 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will 2699 ** be used to loop over all values of the RHS of the IN operator. 2700 ** 2701 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate 2702 ** through the set members) then the b-tree must not contain duplicates. 2703 ** An epheremal table will be created unless the selected columns are guaranteed 2704 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to 2705 ** a UNIQUE constraint or index. 2706 ** 2707 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used 2708 ** for fast set membership tests) then an epheremal table must 2709 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an 2710 ** index can be found with the specified <columns> as its left-most. 2711 ** 2712 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and 2713 ** if the RHS of the IN operator is a list (not a subquery) then this 2714 ** routine might decide that creating an ephemeral b-tree for membership 2715 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the 2716 ** calling routine should implement the IN operator using a sequence 2717 ** of Eq or Ne comparison operations. 2718 ** 2719 ** When the b-tree is being used for membership tests, the calling function 2720 ** might need to know whether or not the RHS side of the IN operator 2721 ** contains a NULL. If prRhsHasNull is not a NULL pointer and 2722 ** if there is any chance that the (...) might contain a NULL value at 2723 ** runtime, then a register is allocated and the register number written 2724 ** to *prRhsHasNull. If there is no chance that the (...) contains a 2725 ** NULL value, then *prRhsHasNull is left unchanged. 2726 ** 2727 ** If a register is allocated and its location stored in *prRhsHasNull, then 2728 ** the value in that register will be NULL if the b-tree contains one or more 2729 ** NULL values, and it will be some non-NULL value if the b-tree contains no 2730 ** NULL values. 2731 ** 2732 ** If the aiMap parameter is not NULL, it must point to an array containing 2733 ** one element for each column returned by the SELECT statement on the RHS 2734 ** of the IN(...) operator. The i'th entry of the array is populated with the 2735 ** offset of the index column that matches the i'th column returned by the 2736 ** SELECT. For example, if the expression and selected index are: 2737 ** 2738 ** (?,?,?) IN (SELECT a, b, c FROM t1) 2739 ** CREATE INDEX i1 ON t1(b, c, a); 2740 ** 2741 ** then aiMap[] is populated with {2, 0, 1}. 2742 */ 2743 #ifndef SQLITE_OMIT_SUBQUERY 2744 int sqlite3FindInIndex( 2745 Parse *pParse, /* Parsing context */ 2746 Expr *pX, /* The IN expression */ 2747 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ 2748 int *prRhsHasNull, /* Register holding NULL status. See notes */ 2749 int *aiMap, /* Mapping from Index fields to RHS fields */ 2750 int *piTab /* OUT: index to use */ 2751 ){ 2752 Select *p; /* SELECT to the right of IN operator */ 2753 int eType = 0; /* Type of RHS table. IN_INDEX_* */ 2754 int iTab; /* Cursor of the RHS table */ 2755 int mustBeUnique; /* True if RHS must be unique */ 2756 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ 2757 2758 assert( pX->op==TK_IN ); 2759 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; 2760 iTab = pParse->nTab++; 2761 2762 /* If the RHS of this IN(...) operator is a SELECT, and if it matters 2763 ** whether or not the SELECT result contains NULL values, check whether 2764 ** or not NULL is actually possible (it may not be, for example, due 2765 ** to NOT NULL constraints in the schema). If no NULL values are possible, 2766 ** set prRhsHasNull to 0 before continuing. */ 2767 if( prRhsHasNull && ExprUseXSelect(pX) ){ 2768 int i; 2769 ExprList *pEList = pX->x.pSelect->pEList; 2770 for(i=0; i<pEList->nExpr; i++){ 2771 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; 2772 } 2773 if( i==pEList->nExpr ){ 2774 prRhsHasNull = 0; 2775 } 2776 } 2777 2778 /* Check to see if an existing table or index can be used to 2779 ** satisfy the query. This is preferable to generating a new 2780 ** ephemeral table. */ 2781 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ 2782 sqlite3 *db = pParse->db; /* Database connection */ 2783 Table *pTab; /* Table <table>. */ 2784 int iDb; /* Database idx for pTab */ 2785 ExprList *pEList = p->pEList; 2786 int nExpr = pEList->nExpr; 2787 2788 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ 2789 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ 2790 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ 2791 pTab = p->pSrc->a[0].pTab; 2792 2793 /* Code an OP_Transaction and OP_TableLock for <table>. */ 2794 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2795 assert( iDb>=0 && iDb<SQLITE_MAX_DB ); 2796 sqlite3CodeVerifySchema(pParse, iDb); 2797 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2798 2799 assert(v); /* sqlite3GetVdbe() has always been previously called */ 2800 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ 2801 /* The "x IN (SELECT rowid FROM table)" case */ 2802 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); 2803 VdbeCoverage(v); 2804 2805 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2806 eType = IN_INDEX_ROWID; 2807 ExplainQueryPlan((pParse, 0, 2808 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); 2809 sqlite3VdbeJumpHere(v, iAddr); 2810 }else{ 2811 Index *pIdx; /* Iterator variable */ 2812 int affinity_ok = 1; 2813 int i; 2814 2815 /* Check that the affinity that will be used to perform each 2816 ** comparison is the same as the affinity of each column in table 2817 ** on the RHS of the IN operator. If it not, it is not possible to 2818 ** use any index of the RHS table. */ 2819 for(i=0; i<nExpr && affinity_ok; i++){ 2820 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2821 int iCol = pEList->a[i].pExpr->iColumn; 2822 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ 2823 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); 2824 testcase( cmpaff==SQLITE_AFF_BLOB ); 2825 testcase( cmpaff==SQLITE_AFF_TEXT ); 2826 switch( cmpaff ){ 2827 case SQLITE_AFF_BLOB: 2828 break; 2829 case SQLITE_AFF_TEXT: 2830 /* sqlite3CompareAffinity() only returns TEXT if one side or the 2831 ** other has no affinity and the other side is TEXT. Hence, 2832 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT 2833 ** and for the term on the LHS of the IN to have no affinity. */ 2834 assert( idxaff==SQLITE_AFF_TEXT ); 2835 break; 2836 default: 2837 affinity_ok = sqlite3IsNumericAffinity(idxaff); 2838 } 2839 } 2840 2841 if( affinity_ok ){ 2842 /* Search for an existing index that will work for this IN operator */ 2843 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ 2844 Bitmask colUsed; /* Columns of the index used */ 2845 Bitmask mCol; /* Mask for the current column */ 2846 if( pIdx->nColumn<nExpr ) continue; 2847 if( pIdx->pPartIdxWhere!=0 ) continue; 2848 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute 2849 ** BITMASK(nExpr) without overflowing */ 2850 testcase( pIdx->nColumn==BMS-2 ); 2851 testcase( pIdx->nColumn==BMS-1 ); 2852 if( pIdx->nColumn>=BMS-1 ) continue; 2853 if( mustBeUnique ){ 2854 if( pIdx->nKeyCol>nExpr 2855 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) 2856 ){ 2857 continue; /* This index is not unique over the IN RHS columns */ 2858 } 2859 } 2860 2861 colUsed = 0; /* Columns of index used so far */ 2862 for(i=0; i<nExpr; i++){ 2863 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); 2864 Expr *pRhs = pEList->a[i].pExpr; 2865 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2866 int j; 2867 2868 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); 2869 for(j=0; j<nExpr; j++){ 2870 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; 2871 assert( pIdx->azColl[j] ); 2872 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ 2873 continue; 2874 } 2875 break; 2876 } 2877 if( j==nExpr ) break; 2878 mCol = MASKBIT(j); 2879 if( mCol & colUsed ) break; /* Each column used only once */ 2880 colUsed |= mCol; 2881 if( aiMap ) aiMap[i] = j; 2882 } 2883 2884 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); 2885 if( colUsed==(MASKBIT(nExpr)-1) ){ 2886 /* If we reach this point, that means the index pIdx is usable */ 2887 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 2888 ExplainQueryPlan((pParse, 0, 2889 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); 2890 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); 2891 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 2892 VdbeComment((v, "%s", pIdx->zName)); 2893 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); 2894 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; 2895 2896 if( prRhsHasNull ){ 2897 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 2898 i64 mask = (1<<nExpr)-1; 2899 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, 2900 iTab, 0, 0, (u8*)&mask, P4_INT64); 2901 #endif 2902 *prRhsHasNull = ++pParse->nMem; 2903 if( nExpr==1 ){ 2904 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); 2905 } 2906 } 2907 sqlite3VdbeJumpHere(v, iAddr); 2908 } 2909 } /* End loop over indexes */ 2910 } /* End if( affinity_ok ) */ 2911 } /* End if not an rowid index */ 2912 } /* End attempt to optimize using an index */ 2913 2914 /* If no preexisting index is available for the IN clause 2915 ** and IN_INDEX_NOOP is an allowed reply 2916 ** and the RHS of the IN operator is a list, not a subquery 2917 ** and the RHS is not constant or has two or fewer terms, 2918 ** then it is not worth creating an ephemeral table to evaluate 2919 ** the IN operator so return IN_INDEX_NOOP. 2920 */ 2921 if( eType==0 2922 && (inFlags & IN_INDEX_NOOP_OK) 2923 && ExprUseXList(pX) 2924 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) 2925 ){ 2926 pParse->nTab--; /* Back out the allocation of the unused cursor */ 2927 iTab = -1; /* Cursor is not allocated */ 2928 eType = IN_INDEX_NOOP; 2929 } 2930 2931 if( eType==0 ){ 2932 /* Could not find an existing table or index to use as the RHS b-tree. 2933 ** We will have to generate an ephemeral table to do the job. 2934 */ 2935 u32 savedNQueryLoop = pParse->nQueryLoop; 2936 int rMayHaveNull = 0; 2937 eType = IN_INDEX_EPH; 2938 if( inFlags & IN_INDEX_LOOP ){ 2939 pParse->nQueryLoop = 0; 2940 }else if( prRhsHasNull ){ 2941 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; 2942 } 2943 assert( pX->op==TK_IN ); 2944 sqlite3CodeRhsOfIN(pParse, pX, iTab); 2945 if( rMayHaveNull ){ 2946 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); 2947 } 2948 pParse->nQueryLoop = savedNQueryLoop; 2949 } 2950 2951 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ 2952 int i, n; 2953 n = sqlite3ExprVectorSize(pX->pLeft); 2954 for(i=0; i<n; i++) aiMap[i] = i; 2955 } 2956 *piTab = iTab; 2957 return eType; 2958 } 2959 #endif 2960 2961 #ifndef SQLITE_OMIT_SUBQUERY 2962 /* 2963 ** Argument pExpr is an (?, ?...) IN(...) expression. This 2964 ** function allocates and returns a nul-terminated string containing 2965 ** the affinities to be used for each column of the comparison. 2966 ** 2967 ** It is the responsibility of the caller to ensure that the returned 2968 ** string is eventually freed using sqlite3DbFree(). 2969 */ 2970 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ 2971 Expr *pLeft = pExpr->pLeft; 2972 int nVal = sqlite3ExprVectorSize(pLeft); 2973 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; 2974 char *zRet; 2975 2976 assert( pExpr->op==TK_IN ); 2977 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); 2978 if( zRet ){ 2979 int i; 2980 for(i=0; i<nVal; i++){ 2981 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); 2982 char a = sqlite3ExprAffinity(pA); 2983 if( pSelect ){ 2984 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); 2985 }else{ 2986 zRet[i] = a; 2987 } 2988 } 2989 zRet[nVal] = '\0'; 2990 } 2991 return zRet; 2992 } 2993 #endif 2994 2995 #ifndef SQLITE_OMIT_SUBQUERY 2996 /* 2997 ** Load the Parse object passed as the first argument with an error 2998 ** message of the form: 2999 ** 3000 ** "sub-select returns N columns - expected M" 3001 */ 3002 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ 3003 if( pParse->nErr==0 ){ 3004 const char *zFmt = "sub-select returns %d columns - expected %d"; 3005 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); 3006 } 3007 } 3008 #endif 3009 3010 /* 3011 ** Expression pExpr is a vector that has been used in a context where 3012 ** it is not permitted. If pExpr is a sub-select vector, this routine 3013 ** loads the Parse object with a message of the form: 3014 ** 3015 ** "sub-select returns N columns - expected 1" 3016 ** 3017 ** Or, if it is a regular scalar vector: 3018 ** 3019 ** "row value misused" 3020 */ 3021 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ 3022 #ifndef SQLITE_OMIT_SUBQUERY 3023 if( ExprUseXSelect(pExpr) ){ 3024 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); 3025 }else 3026 #endif 3027 { 3028 sqlite3ErrorMsg(pParse, "row value misused"); 3029 } 3030 } 3031 3032 #ifndef SQLITE_OMIT_SUBQUERY 3033 /* 3034 ** Generate code that will construct an ephemeral table containing all terms 3035 ** in the RHS of an IN operator. The IN operator can be in either of two 3036 ** forms: 3037 ** 3038 ** x IN (4,5,11) -- IN operator with list on right-hand side 3039 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right 3040 ** 3041 ** The pExpr parameter is the IN operator. The cursor number for the 3042 ** constructed ephermeral table is returned. The first time the ephemeral 3043 ** table is computed, the cursor number is also stored in pExpr->iTable, 3044 ** however the cursor number returned might not be the same, as it might 3045 ** have been duplicated using OP_OpenDup. 3046 ** 3047 ** If the LHS expression ("x" in the examples) is a column value, or 3048 ** the SELECT statement returns a column value, then the affinity of that 3049 ** column is used to build the index keys. If both 'x' and the 3050 ** SELECT... statement are columns, then numeric affinity is used 3051 ** if either column has NUMERIC or INTEGER affinity. If neither 3052 ** 'x' nor the SELECT... statement are columns, then numeric affinity 3053 ** is used. 3054 */ 3055 void sqlite3CodeRhsOfIN( 3056 Parse *pParse, /* Parsing context */ 3057 Expr *pExpr, /* The IN operator */ 3058 int iTab /* Use this cursor number */ 3059 ){ 3060 int addrOnce = 0; /* Address of the OP_Once instruction at top */ 3061 int addr; /* Address of OP_OpenEphemeral instruction */ 3062 Expr *pLeft; /* the LHS of the IN operator */ 3063 KeyInfo *pKeyInfo = 0; /* Key information */ 3064 int nVal; /* Size of vector pLeft */ 3065 Vdbe *v; /* The prepared statement under construction */ 3066 3067 v = pParse->pVdbe; 3068 assert( v!=0 ); 3069 3070 /* The evaluation of the IN must be repeated every time it 3071 ** is encountered if any of the following is true: 3072 ** 3073 ** * The right-hand side is a correlated subquery 3074 ** * The right-hand side is an expression list containing variables 3075 ** * We are inside a trigger 3076 ** 3077 ** If all of the above are false, then we can compute the RHS just once 3078 ** and reuse it many names. 3079 */ 3080 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ 3081 /* Reuse of the RHS is allowed */ 3082 /* If this routine has already been coded, but the previous code 3083 ** might not have been invoked yet, so invoke it now as a subroutine. 3084 */ 3085 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3086 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3087 if( ExprUseXSelect(pExpr) ){ 3088 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", 3089 pExpr->x.pSelect->selId)); 3090 } 3091 assert( ExprUseYSub(pExpr) ); 3092 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3093 pExpr->y.sub.iAddr); 3094 assert( iTab!=pExpr->iTable ); 3095 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); 3096 sqlite3VdbeJumpHere(v, addrOnce); 3097 return; 3098 } 3099 3100 /* Begin coding the subroutine */ 3101 assert( !ExprUseYWin(pExpr) ); 3102 ExprSetProperty(pExpr, EP_Subrtn); 3103 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 3104 pExpr->y.sub.regReturn = ++pParse->nMem; 3105 pExpr->y.sub.iAddr = 3106 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3107 3108 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3109 } 3110 3111 /* Check to see if this is a vector IN operator */ 3112 pLeft = pExpr->pLeft; 3113 nVal = sqlite3ExprVectorSize(pLeft); 3114 3115 /* Construct the ephemeral table that will contain the content of 3116 ** RHS of the IN operator. 3117 */ 3118 pExpr->iTable = iTab; 3119 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); 3120 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 3121 if( ExprUseXSelect(pExpr) ){ 3122 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); 3123 }else{ 3124 VdbeComment((v, "RHS of IN operator")); 3125 } 3126 #endif 3127 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); 3128 3129 if( ExprUseXSelect(pExpr) ){ 3130 /* Case 1: expr IN (SELECT ...) 3131 ** 3132 ** Generate code to write the results of the select into the temporary 3133 ** table allocated and opened above. 3134 */ 3135 Select *pSelect = pExpr->x.pSelect; 3136 ExprList *pEList = pSelect->pEList; 3137 3138 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", 3139 addrOnce?"":"CORRELATED ", pSelect->selId 3140 )); 3141 /* If the LHS and RHS of the IN operator do not match, that 3142 ** error will have been caught long before we reach this point. */ 3143 if( ALWAYS(pEList->nExpr==nVal) ){ 3144 Select *pCopy; 3145 SelectDest dest; 3146 int i; 3147 int rc; 3148 sqlite3SelectDestInit(&dest, SRT_Set, iTab); 3149 dest.zAffSdst = exprINAffinity(pParse, pExpr); 3150 pSelect->iLimit = 0; 3151 testcase( pSelect->selFlags & SF_Distinct ); 3152 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ 3153 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); 3154 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); 3155 sqlite3SelectDelete(pParse->db, pCopy); 3156 sqlite3DbFree(pParse->db, dest.zAffSdst); 3157 if( rc ){ 3158 sqlite3KeyInfoUnref(pKeyInfo); 3159 return; 3160 } 3161 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ 3162 assert( pEList!=0 ); 3163 assert( pEList->nExpr>0 ); 3164 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3165 for(i=0; i<nVal; i++){ 3166 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); 3167 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( 3168 pParse, p, pEList->a[i].pExpr 3169 ); 3170 } 3171 } 3172 }else if( ALWAYS(pExpr->x.pList!=0) ){ 3173 /* Case 2: expr IN (exprlist) 3174 ** 3175 ** For each expression, build an index key from the evaluation and 3176 ** store it in the temporary table. If <expr> is a column, then use 3177 ** that columns affinity when building index keys. If <expr> is not 3178 ** a column, use numeric affinity. 3179 */ 3180 char affinity; /* Affinity of the LHS of the IN */ 3181 int i; 3182 ExprList *pList = pExpr->x.pList; 3183 struct ExprList_item *pItem; 3184 int r1, r2; 3185 affinity = sqlite3ExprAffinity(pLeft); 3186 if( affinity<=SQLITE_AFF_NONE ){ 3187 affinity = SQLITE_AFF_BLOB; 3188 }else if( affinity==SQLITE_AFF_REAL ){ 3189 affinity = SQLITE_AFF_NUMERIC; 3190 } 3191 if( pKeyInfo ){ 3192 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); 3193 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3194 } 3195 3196 /* Loop through each expression in <exprlist>. */ 3197 r1 = sqlite3GetTempReg(pParse); 3198 r2 = sqlite3GetTempReg(pParse); 3199 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ 3200 Expr *pE2 = pItem->pExpr; 3201 3202 /* If the expression is not constant then we will need to 3203 ** disable the test that was generated above that makes sure 3204 ** this code only executes once. Because for a non-constant 3205 ** expression we need to rerun this code each time. 3206 */ 3207 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ 3208 sqlite3VdbeChangeToNoop(v, addrOnce-1); 3209 sqlite3VdbeChangeToNoop(v, addrOnce); 3210 ExprClearProperty(pExpr, EP_Subrtn); 3211 addrOnce = 0; 3212 } 3213 3214 /* Evaluate the expression and insert it into the temp table */ 3215 sqlite3ExprCode(pParse, pE2, r1); 3216 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); 3217 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); 3218 } 3219 sqlite3ReleaseTempReg(pParse, r1); 3220 sqlite3ReleaseTempReg(pParse, r2); 3221 } 3222 if( pKeyInfo ){ 3223 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); 3224 } 3225 if( addrOnce ){ 3226 sqlite3VdbeAddOp1(v, OP_NullRow, iTab); 3227 sqlite3VdbeJumpHere(v, addrOnce); 3228 /* Subroutine return */ 3229 assert( ExprUseYSub(pExpr) ); 3230 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3231 || pParse->nErr ); 3232 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3233 pExpr->y.sub.iAddr, 1); 3234 VdbeCoverage(v); 3235 sqlite3ClearTempRegCache(pParse); 3236 } 3237 } 3238 #endif /* SQLITE_OMIT_SUBQUERY */ 3239 3240 /* 3241 ** Generate code for scalar subqueries used as a subquery expression 3242 ** or EXISTS operator: 3243 ** 3244 ** (SELECT a FROM b) -- subquery 3245 ** EXISTS (SELECT a FROM b) -- EXISTS subquery 3246 ** 3247 ** The pExpr parameter is the SELECT or EXISTS operator to be coded. 3248 ** 3249 ** Return the register that holds the result. For a multi-column SELECT, 3250 ** the result is stored in a contiguous array of registers and the 3251 ** return value is the register of the left-most result column. 3252 ** Return 0 if an error occurs. 3253 */ 3254 #ifndef SQLITE_OMIT_SUBQUERY 3255 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ 3256 int addrOnce = 0; /* Address of OP_Once at top of subroutine */ 3257 int rReg = 0; /* Register storing resulting */ 3258 Select *pSel; /* SELECT statement to encode */ 3259 SelectDest dest; /* How to deal with SELECT result */ 3260 int nReg; /* Registers to allocate */ 3261 Expr *pLimit; /* New limit expression */ 3262 3263 Vdbe *v = pParse->pVdbe; 3264 assert( v!=0 ); 3265 if( pParse->nErr ) return 0; 3266 testcase( pExpr->op==TK_EXISTS ); 3267 testcase( pExpr->op==TK_SELECT ); 3268 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); 3269 assert( ExprUseXSelect(pExpr) ); 3270 pSel = pExpr->x.pSelect; 3271 3272 /* If this routine has already been coded, then invoke it as a 3273 ** subroutine. */ 3274 if( ExprHasProperty(pExpr, EP_Subrtn) ){ 3275 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); 3276 assert( ExprUseYSub(pExpr) ); 3277 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, 3278 pExpr->y.sub.iAddr); 3279 return pExpr->iTable; 3280 } 3281 3282 /* Begin coding the subroutine */ 3283 assert( !ExprUseYWin(pExpr) ); 3284 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); 3285 ExprSetProperty(pExpr, EP_Subrtn); 3286 pExpr->y.sub.regReturn = ++pParse->nMem; 3287 pExpr->y.sub.iAddr = 3288 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; 3289 3290 /* The evaluation of the EXISTS/SELECT must be repeated every time it 3291 ** is encountered if any of the following is true: 3292 ** 3293 ** * The right-hand side is a correlated subquery 3294 ** * The right-hand side is an expression list containing variables 3295 ** * We are inside a trigger 3296 ** 3297 ** If all of the above are false, then we can run this code just once 3298 ** save the results, and reuse the same result on subsequent invocations. 3299 */ 3300 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ 3301 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 3302 } 3303 3304 /* For a SELECT, generate code to put the values for all columns of 3305 ** the first row into an array of registers and return the index of 3306 ** the first register. 3307 ** 3308 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) 3309 ** into a register and return that register number. 3310 ** 3311 ** In both cases, the query is augmented with "LIMIT 1". Any 3312 ** preexisting limit is discarded in place of the new LIMIT 1. 3313 */ 3314 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", 3315 addrOnce?"":"CORRELATED ", pSel->selId)); 3316 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; 3317 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); 3318 pParse->nMem += nReg; 3319 if( pExpr->op==TK_SELECT ){ 3320 dest.eDest = SRT_Mem; 3321 dest.iSdst = dest.iSDParm; 3322 dest.nSdst = nReg; 3323 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); 3324 VdbeComment((v, "Init subquery result")); 3325 }else{ 3326 dest.eDest = SRT_Exists; 3327 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); 3328 VdbeComment((v, "Init EXISTS result")); 3329 } 3330 if( pSel->pLimit ){ 3331 /* The subquery already has a limit. If the pre-existing limit is X 3332 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ 3333 sqlite3 *db = pParse->db; 3334 pLimit = sqlite3Expr(db, TK_INTEGER, "0"); 3335 if( pLimit ){ 3336 pLimit->affExpr = SQLITE_AFF_NUMERIC; 3337 pLimit = sqlite3PExpr(pParse, TK_NE, 3338 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); 3339 } 3340 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft); 3341 pSel->pLimit->pLeft = pLimit; 3342 }else{ 3343 /* If there is no pre-existing limit add a limit of 1 */ 3344 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); 3345 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); 3346 } 3347 pSel->iLimit = 0; 3348 if( sqlite3Select(pParse, pSel, &dest) ){ 3349 pExpr->op2 = pExpr->op; 3350 pExpr->op = TK_ERROR; 3351 return 0; 3352 } 3353 pExpr->iTable = rReg = dest.iSDParm; 3354 ExprSetVVAProperty(pExpr, EP_NoReduce); 3355 if( addrOnce ){ 3356 sqlite3VdbeJumpHere(v, addrOnce); 3357 } 3358 3359 /* Subroutine return */ 3360 assert( ExprUseYSub(pExpr) ); 3361 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn 3362 || pParse->nErr ); 3363 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, 3364 pExpr->y.sub.iAddr, 1); 3365 VdbeCoverage(v); 3366 sqlite3ClearTempRegCache(pParse); 3367 return rReg; 3368 } 3369 #endif /* SQLITE_OMIT_SUBQUERY */ 3370 3371 #ifndef SQLITE_OMIT_SUBQUERY 3372 /* 3373 ** Expr pIn is an IN(...) expression. This function checks that the 3374 ** sub-select on the RHS of the IN() operator has the same number of 3375 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not 3376 ** a sub-query, that the LHS is a vector of size 1. 3377 */ 3378 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ 3379 int nVector = sqlite3ExprVectorSize(pIn->pLeft); 3380 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ 3381 if( nVector!=pIn->x.pSelect->pEList->nExpr ){ 3382 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); 3383 return 1; 3384 } 3385 }else if( nVector!=1 ){ 3386 sqlite3VectorErrorMsg(pParse, pIn->pLeft); 3387 return 1; 3388 } 3389 return 0; 3390 } 3391 #endif 3392 3393 #ifndef SQLITE_OMIT_SUBQUERY 3394 /* 3395 ** Generate code for an IN expression. 3396 ** 3397 ** x IN (SELECT ...) 3398 ** x IN (value, value, ...) 3399 ** 3400 ** The left-hand side (LHS) is a scalar or vector expression. The 3401 ** right-hand side (RHS) is an array of zero or more scalar values, or a 3402 ** subquery. If the RHS is a subquery, the number of result columns must 3403 ** match the number of columns in the vector on the LHS. If the RHS is 3404 ** a list of values, the LHS must be a scalar. 3405 ** 3406 ** The IN operator is true if the LHS value is contained within the RHS. 3407 ** The result is false if the LHS is definitely not in the RHS. The 3408 ** result is NULL if the presence of the LHS in the RHS cannot be 3409 ** determined due to NULLs. 3410 ** 3411 ** This routine generates code that jumps to destIfFalse if the LHS is not 3412 ** contained within the RHS. If due to NULLs we cannot determine if the LHS 3413 ** is contained in the RHS then jump to destIfNull. If the LHS is contained 3414 ** within the RHS then fall through. 3415 ** 3416 ** See the separate in-operator.md documentation file in the canonical 3417 ** SQLite source tree for additional information. 3418 */ 3419 static void sqlite3ExprCodeIN( 3420 Parse *pParse, /* Parsing and code generating context */ 3421 Expr *pExpr, /* The IN expression */ 3422 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ 3423 int destIfNull /* Jump here if the results are unknown due to NULLs */ 3424 ){ 3425 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ 3426 int eType; /* Type of the RHS */ 3427 int rLhs; /* Register(s) holding the LHS values */ 3428 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ 3429 Vdbe *v; /* Statement under construction */ 3430 int *aiMap = 0; /* Map from vector field to index column */ 3431 char *zAff = 0; /* Affinity string for comparisons */ 3432 int nVector; /* Size of vectors for this IN operator */ 3433 int iDummy; /* Dummy parameter to exprCodeVector() */ 3434 Expr *pLeft; /* The LHS of the IN operator */ 3435 int i; /* loop counter */ 3436 int destStep2; /* Where to jump when NULLs seen in step 2 */ 3437 int destStep6 = 0; /* Start of code for Step 6 */ 3438 int addrTruthOp; /* Address of opcode that determines the IN is true */ 3439 int destNotNull; /* Jump here if a comparison is not true in step 6 */ 3440 int addrTop; /* Top of the step-6 loop */ 3441 int iTab = 0; /* Index to use */ 3442 u8 okConstFactor = pParse->okConstFactor; 3443 3444 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 3445 pLeft = pExpr->pLeft; 3446 if( sqlite3ExprCheckIN(pParse, pExpr) ) return; 3447 zAff = exprINAffinity(pParse, pExpr); 3448 nVector = sqlite3ExprVectorSize(pExpr->pLeft); 3449 aiMap = (int*)sqlite3DbMallocZero( 3450 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 3451 ); 3452 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; 3453 3454 /* Attempt to compute the RHS. After this step, if anything other than 3455 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab 3456 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, 3457 ** the RHS has not yet been coded. */ 3458 v = pParse->pVdbe; 3459 assert( v!=0 ); /* OOM detected prior to this routine */ 3460 VdbeNoopComment((v, "begin IN expr")); 3461 eType = sqlite3FindInIndex(pParse, pExpr, 3462 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, 3463 destIfFalse==destIfNull ? 0 : &rRhsHasNull, 3464 aiMap, &iTab); 3465 3466 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH 3467 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC 3468 ); 3469 #ifdef SQLITE_DEBUG 3470 /* Confirm that aiMap[] contains nVector integer values between 0 and 3471 ** nVector-1. */ 3472 for(i=0; i<nVector; i++){ 3473 int j, cnt; 3474 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; 3475 assert( cnt==1 ); 3476 } 3477 #endif 3478 3479 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a 3480 ** vector, then it is stored in an array of nVector registers starting 3481 ** at r1. 3482 ** 3483 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector 3484 ** so that the fields are in the same order as an existing index. The 3485 ** aiMap[] array contains a mapping from the original LHS field order to 3486 ** the field order that matches the RHS index. 3487 ** 3488 ** Avoid factoring the LHS of the IN(...) expression out of the loop, 3489 ** even if it is constant, as OP_Affinity may be used on the register 3490 ** by code generated below. */ 3491 assert( pParse->okConstFactor==okConstFactor ); 3492 pParse->okConstFactor = 0; 3493 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); 3494 pParse->okConstFactor = okConstFactor; 3495 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ 3496 if( i==nVector ){ 3497 /* LHS fields are not reordered */ 3498 rLhs = rLhsOrig; 3499 }else{ 3500 /* Need to reorder the LHS fields according to aiMap */ 3501 rLhs = sqlite3GetTempRange(pParse, nVector); 3502 for(i=0; i<nVector; i++){ 3503 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); 3504 } 3505 } 3506 3507 /* If sqlite3FindInIndex() did not find or create an index that is 3508 ** suitable for evaluating the IN operator, then evaluate using a 3509 ** sequence of comparisons. 3510 ** 3511 ** This is step (1) in the in-operator.md optimized algorithm. 3512 */ 3513 if( eType==IN_INDEX_NOOP ){ 3514 ExprList *pList; 3515 CollSeq *pColl; 3516 int labelOk = sqlite3VdbeMakeLabel(pParse); 3517 int r2, regToFree; 3518 int regCkNull = 0; 3519 int ii; 3520 assert( ExprUseXList(pExpr) ); 3521 pList = pExpr->x.pList; 3522 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 3523 if( destIfNull!=destIfFalse ){ 3524 regCkNull = sqlite3GetTempReg(pParse); 3525 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); 3526 } 3527 for(ii=0; ii<pList->nExpr; ii++){ 3528 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); 3529 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ 3530 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); 3531 } 3532 sqlite3ReleaseTempReg(pParse, regToFree); 3533 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ 3534 int op = rLhs!=r2 ? OP_Eq : OP_NotNull; 3535 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, 3536 (void*)pColl, P4_COLLSEQ); 3537 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); 3538 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); 3539 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); 3540 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); 3541 sqlite3VdbeChangeP5(v, zAff[0]); 3542 }else{ 3543 int op = rLhs!=r2 ? OP_Ne : OP_IsNull; 3544 assert( destIfNull==destIfFalse ); 3545 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, 3546 (void*)pColl, P4_COLLSEQ); 3547 VdbeCoverageIf(v, op==OP_Ne); 3548 VdbeCoverageIf(v, op==OP_IsNull); 3549 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); 3550 } 3551 } 3552 if( regCkNull ){ 3553 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); 3554 sqlite3VdbeGoto(v, destIfFalse); 3555 } 3556 sqlite3VdbeResolveLabel(v, labelOk); 3557 sqlite3ReleaseTempReg(pParse, regCkNull); 3558 goto sqlite3ExprCodeIN_finished; 3559 } 3560 3561 /* Step 2: Check to see if the LHS contains any NULL columns. If the 3562 ** LHS does contain NULLs then the result must be either FALSE or NULL. 3563 ** We will then skip the binary search of the RHS. 3564 */ 3565 if( destIfNull==destIfFalse ){ 3566 destStep2 = destIfFalse; 3567 }else{ 3568 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); 3569 } 3570 for(i=0; i<nVector; i++){ 3571 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); 3572 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; 3573 if( sqlite3ExprCanBeNull(p) ){ 3574 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); 3575 VdbeCoverage(v); 3576 } 3577 } 3578 3579 /* Step 3. The LHS is now known to be non-NULL. Do the binary search 3580 ** of the RHS using the LHS as a probe. If found, the result is 3581 ** true. 3582 */ 3583 if( eType==IN_INDEX_ROWID ){ 3584 /* In this case, the RHS is the ROWID of table b-tree and so we also 3585 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 3586 ** into a single opcode. */ 3587 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); 3588 VdbeCoverage(v); 3589 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ 3590 }else{ 3591 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); 3592 if( destIfFalse==destIfNull ){ 3593 /* Combine Step 3 and Step 5 into a single opcode */ 3594 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, 3595 rLhs, nVector); VdbeCoverage(v); 3596 goto sqlite3ExprCodeIN_finished; 3597 } 3598 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ 3599 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, 3600 rLhs, nVector); VdbeCoverage(v); 3601 } 3602 3603 /* Step 4. If the RHS is known to be non-NULL and we did not find 3604 ** an match on the search above, then the result must be FALSE. 3605 */ 3606 if( rRhsHasNull && nVector==1 ){ 3607 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); 3608 VdbeCoverage(v); 3609 } 3610 3611 /* Step 5. If we do not care about the difference between NULL and 3612 ** FALSE, then just return false. 3613 */ 3614 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); 3615 3616 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. 3617 ** If any comparison is NULL, then the result is NULL. If all 3618 ** comparisons are FALSE then the final result is FALSE. 3619 ** 3620 ** For a scalar LHS, it is sufficient to check just the first row 3621 ** of the RHS. 3622 */ 3623 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); 3624 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); 3625 VdbeCoverage(v); 3626 if( nVector>1 ){ 3627 destNotNull = sqlite3VdbeMakeLabel(pParse); 3628 }else{ 3629 /* For nVector==1, combine steps 6 and 7 by immediately returning 3630 ** FALSE if the first comparison is not NULL */ 3631 destNotNull = destIfFalse; 3632 } 3633 for(i=0; i<nVector; i++){ 3634 Expr *p; 3635 CollSeq *pColl; 3636 int r3 = sqlite3GetTempReg(pParse); 3637 p = sqlite3VectorFieldSubexpr(pLeft, i); 3638 pColl = sqlite3ExprCollSeq(pParse, p); 3639 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); 3640 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, 3641 (void*)pColl, P4_COLLSEQ); 3642 VdbeCoverage(v); 3643 sqlite3ReleaseTempReg(pParse, r3); 3644 } 3645 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); 3646 if( nVector>1 ){ 3647 sqlite3VdbeResolveLabel(v, destNotNull); 3648 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); 3649 VdbeCoverage(v); 3650 3651 /* Step 7: If we reach this point, we know that the result must 3652 ** be false. */ 3653 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); 3654 } 3655 3656 /* Jumps here in order to return true. */ 3657 sqlite3VdbeJumpHere(v, addrTruthOp); 3658 3659 sqlite3ExprCodeIN_finished: 3660 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); 3661 VdbeComment((v, "end IN expr")); 3662 sqlite3ExprCodeIN_oom_error: 3663 sqlite3DbFree(pParse->db, aiMap); 3664 sqlite3DbFree(pParse->db, zAff); 3665 } 3666 #endif /* SQLITE_OMIT_SUBQUERY */ 3667 3668 #ifndef SQLITE_OMIT_FLOATING_POINT 3669 /* 3670 ** Generate an instruction that will put the floating point 3671 ** value described by z[0..n-1] into register iMem. 3672 ** 3673 ** The z[] string will probably not be zero-terminated. But the 3674 ** z[n] character is guaranteed to be something that does not look 3675 ** like the continuation of the number. 3676 */ 3677 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ 3678 if( ALWAYS(z!=0) ){ 3679 double value; 3680 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); 3681 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ 3682 if( negateFlag ) value = -value; 3683 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); 3684 } 3685 } 3686 #endif 3687 3688 3689 /* 3690 ** Generate an instruction that will put the integer describe by 3691 ** text z[0..n-1] into register iMem. 3692 ** 3693 ** Expr.u.zToken is always UTF8 and zero-terminated. 3694 */ 3695 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ 3696 Vdbe *v = pParse->pVdbe; 3697 if( pExpr->flags & EP_IntValue ){ 3698 int i = pExpr->u.iValue; 3699 assert( i>=0 ); 3700 if( negFlag ) i = -i; 3701 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); 3702 }else{ 3703 int c; 3704 i64 value; 3705 const char *z = pExpr->u.zToken; 3706 assert( z!=0 ); 3707 c = sqlite3DecOrHexToI64(z, &value); 3708 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ 3709 #ifdef SQLITE_OMIT_FLOATING_POINT 3710 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); 3711 #else 3712 #ifndef SQLITE_OMIT_HEX_INTEGER 3713 if( sqlite3_strnicmp(z,"0x",2)==0 ){ 3714 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", 3715 negFlag?"-":"",pExpr); 3716 }else 3717 #endif 3718 { 3719 codeReal(v, z, negFlag, iMem); 3720 } 3721 #endif 3722 }else{ 3723 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } 3724 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); 3725 } 3726 } 3727 } 3728 3729 3730 /* Generate code that will load into register regOut a value that is 3731 ** appropriate for the iIdxCol-th column of index pIdx. 3732 */ 3733 void sqlite3ExprCodeLoadIndexColumn( 3734 Parse *pParse, /* The parsing context */ 3735 Index *pIdx, /* The index whose column is to be loaded */ 3736 int iTabCur, /* Cursor pointing to a table row */ 3737 int iIdxCol, /* The column of the index to be loaded */ 3738 int regOut /* Store the index column value in this register */ 3739 ){ 3740 i16 iTabCol = pIdx->aiColumn[iIdxCol]; 3741 if( iTabCol==XN_EXPR ){ 3742 assert( pIdx->aColExpr ); 3743 assert( pIdx->aColExpr->nExpr>iIdxCol ); 3744 pParse->iSelfTab = iTabCur + 1; 3745 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); 3746 pParse->iSelfTab = 0; 3747 }else{ 3748 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, 3749 iTabCol, regOut); 3750 } 3751 } 3752 3753 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3754 /* 3755 ** Generate code that will compute the value of generated column pCol 3756 ** and store the result in register regOut 3757 */ 3758 void sqlite3ExprCodeGeneratedColumn( 3759 Parse *pParse, /* Parsing context */ 3760 Table *pTab, /* Table containing the generated column */ 3761 Column *pCol, /* The generated column */ 3762 int regOut /* Put the result in this register */ 3763 ){ 3764 int iAddr; 3765 Vdbe *v = pParse->pVdbe; 3766 assert( v!=0 ); 3767 assert( pParse->iSelfTab!=0 ); 3768 if( pParse->iSelfTab>0 ){ 3769 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); 3770 }else{ 3771 iAddr = 0; 3772 } 3773 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); 3774 if( pCol->affinity>=SQLITE_AFF_TEXT ){ 3775 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); 3776 } 3777 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); 3778 } 3779 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 3780 3781 /* 3782 ** Generate code to extract the value of the iCol-th column of a table. 3783 */ 3784 void sqlite3ExprCodeGetColumnOfTable( 3785 Vdbe *v, /* Parsing context */ 3786 Table *pTab, /* The table containing the value */ 3787 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ 3788 int iCol, /* Index of the column to extract */ 3789 int regOut /* Extract the value into this register */ 3790 ){ 3791 Column *pCol; 3792 assert( v!=0 ); 3793 if( pTab==0 ){ 3794 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); 3795 return; 3796 } 3797 if( iCol<0 || iCol==pTab->iPKey ){ 3798 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); 3799 VdbeComment((v, "%s.rowid", pTab->zName)); 3800 }else{ 3801 int op; 3802 int x; 3803 if( IsVirtual(pTab) ){ 3804 op = OP_VColumn; 3805 x = iCol; 3806 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 3807 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ 3808 Parse *pParse = sqlite3VdbeParser(v); 3809 if( pCol->colFlags & COLFLAG_BUSY ){ 3810 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 3811 pCol->zCnName); 3812 }else{ 3813 int savedSelfTab = pParse->iSelfTab; 3814 pCol->colFlags |= COLFLAG_BUSY; 3815 pParse->iSelfTab = iTabCur+1; 3816 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); 3817 pParse->iSelfTab = savedSelfTab; 3818 pCol->colFlags &= ~COLFLAG_BUSY; 3819 } 3820 return; 3821 #endif 3822 }else if( !HasRowid(pTab) ){ 3823 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); 3824 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); 3825 op = OP_Column; 3826 }else{ 3827 x = sqlite3TableColumnToStorage(pTab,iCol); 3828 testcase( x!=iCol ); 3829 op = OP_Column; 3830 } 3831 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); 3832 sqlite3ColumnDefault(v, pTab, iCol, regOut); 3833 } 3834 } 3835 3836 /* 3837 ** Generate code that will extract the iColumn-th column from 3838 ** table pTab and store the column value in register iReg. 3839 ** 3840 ** There must be an open cursor to pTab in iTable when this routine 3841 ** is called. If iColumn<0 then code is generated that extracts the rowid. 3842 */ 3843 int sqlite3ExprCodeGetColumn( 3844 Parse *pParse, /* Parsing and code generating context */ 3845 Table *pTab, /* Description of the table we are reading from */ 3846 int iColumn, /* Index of the table column */ 3847 int iTable, /* The cursor pointing to the table */ 3848 int iReg, /* Store results here */ 3849 u8 p5 /* P5 value for OP_Column + FLAGS */ 3850 ){ 3851 assert( pParse->pVdbe!=0 ); 3852 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); 3853 if( p5 ){ 3854 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 3855 if( pOp->opcode==OP_Column ) pOp->p5 = p5; 3856 } 3857 return iReg; 3858 } 3859 3860 /* 3861 ** Generate code to move content from registers iFrom...iFrom+nReg-1 3862 ** over to iTo..iTo+nReg-1. 3863 */ 3864 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ 3865 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); 3866 } 3867 3868 /* 3869 ** Convert a scalar expression node to a TK_REGISTER referencing 3870 ** register iReg. The caller must ensure that iReg already contains 3871 ** the correct value for the expression. 3872 */ 3873 static void exprToRegister(Expr *pExpr, int iReg){ 3874 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); 3875 if( NEVER(p==0) ) return; 3876 p->op2 = p->op; 3877 p->op = TK_REGISTER; 3878 p->iTable = iReg; 3879 ExprClearProperty(p, EP_Skip); 3880 } 3881 3882 /* 3883 ** Evaluate an expression (either a vector or a scalar expression) and store 3884 ** the result in continguous temporary registers. Return the index of 3885 ** the first register used to store the result. 3886 ** 3887 ** If the returned result register is a temporary scalar, then also write 3888 ** that register number into *piFreeable. If the returned result register 3889 ** is not a temporary or if the expression is a vector set *piFreeable 3890 ** to 0. 3891 */ 3892 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ 3893 int iResult; 3894 int nResult = sqlite3ExprVectorSize(p); 3895 if( nResult==1 ){ 3896 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); 3897 }else{ 3898 *piFreeable = 0; 3899 if( p->op==TK_SELECT ){ 3900 #if SQLITE_OMIT_SUBQUERY 3901 iResult = 0; 3902 #else 3903 iResult = sqlite3CodeSubselect(pParse, p); 3904 #endif 3905 }else{ 3906 int i; 3907 iResult = pParse->nMem+1; 3908 pParse->nMem += nResult; 3909 assert( ExprUseXList(p) ); 3910 for(i=0; i<nResult; i++){ 3911 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); 3912 } 3913 } 3914 } 3915 return iResult; 3916 } 3917 3918 /* 3919 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) 3920 ** so that a subsequent copy will not be merged into this one. 3921 */ 3922 static void setDoNotMergeFlagOnCopy(Vdbe *v){ 3923 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){ 3924 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ 3925 } 3926 } 3927 3928 /* 3929 ** Generate code to implement special SQL functions that are implemented 3930 ** in-line rather than by using the usual callbacks. 3931 */ 3932 static int exprCodeInlineFunction( 3933 Parse *pParse, /* Parsing context */ 3934 ExprList *pFarg, /* List of function arguments */ 3935 int iFuncId, /* Function ID. One of the INTFUNC_... values */ 3936 int target /* Store function result in this register */ 3937 ){ 3938 int nFarg; 3939 Vdbe *v = pParse->pVdbe; 3940 assert( v!=0 ); 3941 assert( pFarg!=0 ); 3942 nFarg = pFarg->nExpr; 3943 assert( nFarg>0 ); /* All in-line functions have at least one argument */ 3944 switch( iFuncId ){ 3945 case INLINEFUNC_coalesce: { 3946 /* Attempt a direct implementation of the built-in COALESCE() and 3947 ** IFNULL() functions. This avoids unnecessary evaluation of 3948 ** arguments past the first non-NULL argument. 3949 */ 3950 int endCoalesce = sqlite3VdbeMakeLabel(pParse); 3951 int i; 3952 assert( nFarg>=2 ); 3953 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); 3954 for(i=1; i<nFarg; i++){ 3955 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); 3956 VdbeCoverage(v); 3957 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); 3958 } 3959 setDoNotMergeFlagOnCopy(v); 3960 sqlite3VdbeResolveLabel(v, endCoalesce); 3961 break; 3962 } 3963 case INLINEFUNC_iif: { 3964 Expr caseExpr; 3965 memset(&caseExpr, 0, sizeof(caseExpr)); 3966 caseExpr.op = TK_CASE; 3967 caseExpr.x.pList = pFarg; 3968 return sqlite3ExprCodeTarget(pParse, &caseExpr, target); 3969 } 3970 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 3971 case INLINEFUNC_sqlite_offset: { 3972 Expr *pArg = pFarg->a[0].pExpr; 3973 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ 3974 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); 3975 }else{ 3976 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 3977 } 3978 break; 3979 } 3980 #endif 3981 default: { 3982 /* The UNLIKELY() function is a no-op. The result is the value 3983 ** of the first argument. 3984 */ 3985 assert( nFarg==1 || nFarg==2 ); 3986 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); 3987 break; 3988 } 3989 3990 /*********************************************************************** 3991 ** Test-only SQL functions that are only usable if enabled 3992 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 3993 */ 3994 #if !defined(SQLITE_UNTESTABLE) 3995 case INLINEFUNC_expr_compare: { 3996 /* Compare two expressions using sqlite3ExprCompare() */ 3997 assert( nFarg==2 ); 3998 sqlite3VdbeAddOp2(v, OP_Integer, 3999 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 4000 target); 4001 break; 4002 } 4003 4004 case INLINEFUNC_expr_implies_expr: { 4005 /* Compare two expressions using sqlite3ExprImpliesExpr() */ 4006 assert( nFarg==2 ); 4007 sqlite3VdbeAddOp2(v, OP_Integer, 4008 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), 4009 target); 4010 break; 4011 } 4012 4013 case INLINEFUNC_implies_nonnull_row: { 4014 /* REsult of sqlite3ExprImpliesNonNullRow() */ 4015 Expr *pA1; 4016 assert( nFarg==2 ); 4017 pA1 = pFarg->a[1].pExpr; 4018 if( pA1->op==TK_COLUMN ){ 4019 sqlite3VdbeAddOp2(v, OP_Integer, 4020 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), 4021 target); 4022 }else{ 4023 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4024 } 4025 break; 4026 } 4027 4028 case INLINEFUNC_affinity: { 4029 /* The AFFINITY() function evaluates to a string that describes 4030 ** the type affinity of the argument. This is used for testing of 4031 ** the SQLite type logic. 4032 */ 4033 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; 4034 char aff; 4035 assert( nFarg==1 ); 4036 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); 4037 sqlite3VdbeLoadString(v, target, 4038 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); 4039 break; 4040 } 4041 #endif /* !defined(SQLITE_UNTESTABLE) */ 4042 } 4043 return target; 4044 } 4045 4046 /* 4047 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxExpr. 4048 ** If it is, then resolve the expression by reading from the index and 4049 ** return the register into which the value has been read. If pExpr is 4050 ** not an indexed expression, then return negative. 4051 */ 4052 static SQLITE_NOINLINE int sqlite3IndexedExprLookup( 4053 Parse *pParse, /* The parsing context */ 4054 Expr *pExpr, /* The expression to potentially bypass */ 4055 int target /* Where to store the result of the expression */ 4056 ){ 4057 IndexedExpr *p; 4058 Vdbe *v; 4059 for(p=pParse->pIdxExpr; p; p=p->pIENext){ 4060 int iDataCur = p->iDataCur; 4061 if( iDataCur<0 ) continue; 4062 if( pParse->iSelfTab ){ 4063 if( p->iDataCur!=pParse->iSelfTab-1 ) continue; 4064 iDataCur = -1; 4065 } 4066 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue; 4067 v = pParse->pVdbe; 4068 assert( v!=0 ); 4069 if( p->bMaybeNullRow ){ 4070 /* If the index is on a NULL row due to an outer join, then we 4071 ** cannot extract the value from the index. The value must be 4072 ** computed using the original expression. */ 4073 int addr = sqlite3VdbeCurrentAddr(v); 4074 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target); 4075 VdbeCoverage(v); 4076 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 4077 sqlite3VdbeGoto(v, 0); 4078 p = pParse->pIdxExpr; 4079 pParse->pIdxExpr = 0; 4080 sqlite3ExprCode(pParse, pExpr, target); 4081 pParse->pIdxExpr = p; 4082 sqlite3VdbeJumpHere(v, addr+2); 4083 }else{ 4084 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target); 4085 } 4086 return target; 4087 } 4088 return -1; /* Not found */ 4089 } 4090 4091 4092 /* 4093 ** Generate code into the current Vdbe to evaluate the given 4094 ** expression. Attempt to store the results in register "target". 4095 ** Return the register where results are stored. 4096 ** 4097 ** With this routine, there is no guarantee that results will 4098 ** be stored in target. The result might be stored in some other 4099 ** register if it is convenient to do so. The calling function 4100 ** must check the return code and move the results to the desired 4101 ** register. 4102 */ 4103 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ 4104 Vdbe *v = pParse->pVdbe; /* The VM under construction */ 4105 int op; /* The opcode being coded */ 4106 int inReg = target; /* Results stored in register inReg */ 4107 int regFree1 = 0; /* If non-zero free this temporary register */ 4108 int regFree2 = 0; /* If non-zero free this temporary register */ 4109 int r1, r2; /* Various register numbers */ 4110 Expr tempX; /* Temporary expression node */ 4111 int p5 = 0; 4112 4113 assert( target>0 && target<=pParse->nMem ); 4114 assert( v!=0 ); 4115 4116 expr_code_doover: 4117 if( pExpr==0 ){ 4118 op = TK_NULL; 4119 }else if( pParse->pIdxExpr!=0 4120 && !ExprHasProperty(pExpr, EP_Leaf) 4121 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0 4122 ){ 4123 return r1; 4124 }else{ 4125 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4126 op = pExpr->op; 4127 } 4128 switch( op ){ 4129 case TK_AGG_COLUMN: { 4130 AggInfo *pAggInfo = pExpr->pAggInfo; 4131 struct AggInfo_col *pCol; 4132 assert( pAggInfo!=0 ); 4133 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4134 pCol = &pAggInfo->aCol[pExpr->iAgg]; 4135 if( !pAggInfo->directMode ){ 4136 assert( pCol->iMem>0 ); 4137 return pCol->iMem; 4138 }else if( pAggInfo->useSortingIdx ){ 4139 Table *pTab = pCol->pTab; 4140 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4141 pCol->iSorterColumn, target); 4142 if( pCol->iColumn<0 ){ 4143 VdbeComment((v,"%s.rowid",pTab->zName)); 4144 }else if( ALWAYS(pTab!=0) ){ 4145 VdbeComment((v,"%s.%s", 4146 pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); 4147 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ 4148 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4149 } 4150 } 4151 return target; 4152 } 4153 /* Otherwise, fall thru into the TK_COLUMN case */ 4154 /* no break */ deliberate_fall_through 4155 } 4156 case TK_COLUMN: { 4157 int iTab = pExpr->iTable; 4158 int iReg; 4159 if( ExprHasProperty(pExpr, EP_FixedCol) ){ 4160 /* This COLUMN expression is really a constant due to WHERE clause 4161 ** constraints, and that constant is coded by the pExpr->pLeft 4162 ** expresssion. However, make sure the constant has the correct 4163 ** datatype by applying the Affinity of the table column to the 4164 ** constant. 4165 */ 4166 int aff; 4167 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); 4168 assert( ExprUseYTab(pExpr) ); 4169 if( pExpr->y.pTab ){ 4170 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); 4171 }else{ 4172 aff = pExpr->affExpr; 4173 } 4174 if( aff>SQLITE_AFF_BLOB ){ 4175 static const char zAff[] = "B\000C\000D\000E"; 4176 assert( SQLITE_AFF_BLOB=='A' ); 4177 assert( SQLITE_AFF_TEXT=='B' ); 4178 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, 4179 &zAff[(aff-'B')*2], P4_STATIC); 4180 } 4181 return iReg; 4182 } 4183 if( iTab<0 ){ 4184 if( pParse->iSelfTab<0 ){ 4185 /* Other columns in the same row for CHECK constraints or 4186 ** generated columns or for inserting into partial index. 4187 ** The row is unpacked into registers beginning at 4188 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register 4189 ** immediately prior to the first column. 4190 */ 4191 Column *pCol; 4192 Table *pTab; 4193 int iSrc; 4194 int iCol = pExpr->iColumn; 4195 assert( ExprUseYTab(pExpr) ); 4196 pTab = pExpr->y.pTab; 4197 assert( pTab!=0 ); 4198 assert( iCol>=XN_ROWID ); 4199 assert( iCol<pTab->nCol ); 4200 if( iCol<0 ){ 4201 return -1-pParse->iSelfTab; 4202 } 4203 pCol = pTab->aCol + iCol; 4204 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); 4205 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; 4206 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 4207 if( pCol->colFlags & COLFLAG_GENERATED ){ 4208 if( pCol->colFlags & COLFLAG_BUSY ){ 4209 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", 4210 pCol->zCnName); 4211 return 0; 4212 } 4213 pCol->colFlags |= COLFLAG_BUSY; 4214 if( pCol->colFlags & COLFLAG_NOTAVAIL ){ 4215 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); 4216 } 4217 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); 4218 return iSrc; 4219 }else 4220 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 4221 if( pCol->affinity==SQLITE_AFF_REAL ){ 4222 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); 4223 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4224 return target; 4225 }else{ 4226 return iSrc; 4227 } 4228 }else{ 4229 /* Coding an expression that is part of an index where column names 4230 ** in the index refer to the table to which the index belongs */ 4231 iTab = pParse->iSelfTab - 1; 4232 } 4233 } 4234 assert( ExprUseYTab(pExpr) ); 4235 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, 4236 pExpr->iColumn, iTab, target, 4237 pExpr->op2); 4238 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ 4239 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); 4240 } 4241 return iReg; 4242 } 4243 case TK_INTEGER: { 4244 codeInteger(pParse, pExpr, 0, target); 4245 return target; 4246 } 4247 case TK_TRUEFALSE: { 4248 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); 4249 return target; 4250 } 4251 #ifndef SQLITE_OMIT_FLOATING_POINT 4252 case TK_FLOAT: { 4253 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4254 codeReal(v, pExpr->u.zToken, 0, target); 4255 return target; 4256 } 4257 #endif 4258 case TK_STRING: { 4259 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4260 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); 4261 return target; 4262 } 4263 default: { 4264 /* Make NULL the default case so that if a bug causes an illegal 4265 ** Expr node to be passed into this function, it will be handled 4266 ** sanely and not crash. But keep the assert() to bring the problem 4267 ** to the attention of the developers. */ 4268 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); 4269 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4270 return target; 4271 } 4272 #ifndef SQLITE_OMIT_BLOB_LITERAL 4273 case TK_BLOB: { 4274 int n; 4275 const char *z; 4276 char *zBlob; 4277 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4278 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); 4279 assert( pExpr->u.zToken[1]=='\'' ); 4280 z = &pExpr->u.zToken[2]; 4281 n = sqlite3Strlen30(z) - 1; 4282 assert( z[n]=='\'' ); 4283 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); 4284 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); 4285 return target; 4286 } 4287 #endif 4288 case TK_VARIABLE: { 4289 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4290 assert( pExpr->u.zToken!=0 ); 4291 assert( pExpr->u.zToken[0]!=0 ); 4292 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); 4293 if( pExpr->u.zToken[1]!=0 ){ 4294 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); 4295 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); 4296 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ 4297 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); 4298 } 4299 return target; 4300 } 4301 case TK_REGISTER: { 4302 return pExpr->iTable; 4303 } 4304 #ifndef SQLITE_OMIT_CAST 4305 case TK_CAST: { 4306 /* Expressions of the form: CAST(pLeft AS token) */ 4307 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4308 if( inReg!=target ){ 4309 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4310 inReg = target; 4311 } 4312 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4313 sqlite3VdbeAddOp2(v, OP_Cast, target, 4314 sqlite3AffinityType(pExpr->u.zToken, 0)); 4315 return inReg; 4316 } 4317 #endif /* SQLITE_OMIT_CAST */ 4318 case TK_IS: 4319 case TK_ISNOT: 4320 op = (op==TK_IS) ? TK_EQ : TK_NE; 4321 p5 = SQLITE_NULLEQ; 4322 /* fall-through */ 4323 case TK_LT: 4324 case TK_LE: 4325 case TK_GT: 4326 case TK_GE: 4327 case TK_NE: 4328 case TK_EQ: { 4329 Expr *pLeft = pExpr->pLeft; 4330 if( sqlite3ExprIsVector(pLeft) ){ 4331 codeVectorCompare(pParse, pExpr, target, op, p5); 4332 }else{ 4333 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); 4334 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4335 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); 4336 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, 4337 sqlite3VdbeCurrentAddr(v)+2, p5, 4338 ExprHasProperty(pExpr,EP_Commuted)); 4339 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 4340 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 4341 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 4342 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 4343 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); 4344 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); 4345 if( p5==SQLITE_NULLEQ ){ 4346 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); 4347 }else{ 4348 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); 4349 } 4350 testcase( regFree1==0 ); 4351 testcase( regFree2==0 ); 4352 } 4353 break; 4354 } 4355 case TK_AND: 4356 case TK_OR: 4357 case TK_PLUS: 4358 case TK_STAR: 4359 case TK_MINUS: 4360 case TK_REM: 4361 case TK_BITAND: 4362 case TK_BITOR: 4363 case TK_SLASH: 4364 case TK_LSHIFT: 4365 case TK_RSHIFT: 4366 case TK_CONCAT: { 4367 assert( TK_AND==OP_And ); testcase( op==TK_AND ); 4368 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); 4369 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); 4370 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); 4371 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); 4372 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); 4373 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); 4374 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); 4375 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); 4376 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); 4377 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); 4378 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4379 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 4380 sqlite3VdbeAddOp3(v, op, r2, r1, target); 4381 testcase( regFree1==0 ); 4382 testcase( regFree2==0 ); 4383 break; 4384 } 4385 case TK_UMINUS: { 4386 Expr *pLeft = pExpr->pLeft; 4387 assert( pLeft ); 4388 if( pLeft->op==TK_INTEGER ){ 4389 codeInteger(pParse, pLeft, 1, target); 4390 return target; 4391 #ifndef SQLITE_OMIT_FLOATING_POINT 4392 }else if( pLeft->op==TK_FLOAT ){ 4393 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4394 codeReal(v, pLeft->u.zToken, 1, target); 4395 return target; 4396 #endif 4397 }else{ 4398 tempX.op = TK_INTEGER; 4399 tempX.flags = EP_IntValue|EP_TokenOnly; 4400 tempX.u.iValue = 0; 4401 ExprClearVVAProperties(&tempX); 4402 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); 4403 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); 4404 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); 4405 testcase( regFree2==0 ); 4406 } 4407 break; 4408 } 4409 case TK_BITNOT: 4410 case TK_NOT: { 4411 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); 4412 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); 4413 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4414 testcase( regFree1==0 ); 4415 sqlite3VdbeAddOp2(v, op, r1, inReg); 4416 break; 4417 } 4418 case TK_TRUTH: { 4419 int isTrue; /* IS TRUE or IS NOT TRUE */ 4420 int bNormal; /* IS TRUE or IS FALSE */ 4421 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4422 testcase( regFree1==0 ); 4423 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 4424 bNormal = pExpr->op2==TK_IS; 4425 testcase( isTrue && bNormal); 4426 testcase( !isTrue && bNormal); 4427 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); 4428 break; 4429 } 4430 case TK_ISNULL: 4431 case TK_NOTNULL: { 4432 int addr; 4433 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 4434 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 4435 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4436 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 4437 testcase( regFree1==0 ); 4438 addr = sqlite3VdbeAddOp1(v, op, r1); 4439 VdbeCoverageIf(v, op==TK_ISNULL); 4440 VdbeCoverageIf(v, op==TK_NOTNULL); 4441 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); 4442 sqlite3VdbeJumpHere(v, addr); 4443 break; 4444 } 4445 case TK_AGG_FUNCTION: { 4446 AggInfo *pInfo = pExpr->pAggInfo; 4447 if( pInfo==0 4448 || NEVER(pExpr->iAgg<0) 4449 || NEVER(pExpr->iAgg>=pInfo->nFunc) 4450 ){ 4451 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4452 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); 4453 }else{ 4454 return pInfo->aFunc[pExpr->iAgg].iMem; 4455 } 4456 break; 4457 } 4458 case TK_FUNCTION: { 4459 ExprList *pFarg; /* List of function arguments */ 4460 int nFarg; /* Number of function arguments */ 4461 FuncDef *pDef; /* The function definition object */ 4462 const char *zId; /* The function name */ 4463 u32 constMask = 0; /* Mask of function arguments that are constant */ 4464 int i; /* Loop counter */ 4465 sqlite3 *db = pParse->db; /* The database connection */ 4466 u8 enc = ENC(db); /* The text encoding used by this database */ 4467 CollSeq *pColl = 0; /* A collating sequence */ 4468 4469 #ifndef SQLITE_OMIT_WINDOWFUNC 4470 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 4471 return pExpr->y.pWin->regResult; 4472 } 4473 #endif 4474 4475 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ 4476 /* SQL functions can be expensive. So try to avoid running them 4477 ** multiple times if we know they always give the same result */ 4478 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4479 } 4480 assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); 4481 assert( ExprUseXList(pExpr) ); 4482 pFarg = pExpr->x.pList; 4483 nFarg = pFarg ? pFarg->nExpr : 0; 4484 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4485 zId = pExpr->u.zToken; 4486 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); 4487 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION 4488 if( pDef==0 && pParse->explain ){ 4489 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); 4490 } 4491 #endif 4492 if( pDef==0 || pDef->xFinalize!=0 ){ 4493 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); 4494 break; 4495 } 4496 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ 4497 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); 4498 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); 4499 return exprCodeInlineFunction(pParse, pFarg, 4500 SQLITE_PTR_TO_INT(pDef->pUserData), target); 4501 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ 4502 sqlite3ExprFunctionUsable(pParse, pExpr, pDef); 4503 } 4504 4505 for(i=0; i<nFarg; i++){ 4506 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ 4507 testcase( i==31 ); 4508 constMask |= MASKBIT32(i); 4509 } 4510 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ 4511 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); 4512 } 4513 } 4514 if( pFarg ){ 4515 if( constMask ){ 4516 r1 = pParse->nMem+1; 4517 pParse->nMem += nFarg; 4518 }else{ 4519 r1 = sqlite3GetTempRange(pParse, nFarg); 4520 } 4521 4522 /* For length() and typeof() functions with a column argument, 4523 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG 4524 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data 4525 ** loading. 4526 */ 4527 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ 4528 u8 exprOp; 4529 assert( nFarg==1 ); 4530 assert( pFarg->a[0].pExpr!=0 ); 4531 exprOp = pFarg->a[0].pExpr->op; 4532 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ 4533 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); 4534 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); 4535 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); 4536 pFarg->a[0].pExpr->op2 = 4537 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); 4538 } 4539 } 4540 4541 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, 4542 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); 4543 }else{ 4544 r1 = 0; 4545 } 4546 #ifndef SQLITE_OMIT_VIRTUALTABLE 4547 /* Possibly overload the function if the first argument is 4548 ** a virtual table column. 4549 ** 4550 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the 4551 ** second argument, not the first, as the argument to test to 4552 ** see if it is a column in a virtual table. This is done because 4553 ** the left operand of infix functions (the operand we want to 4554 ** control overloading) ends up as the second argument to the 4555 ** function. The expression "A glob B" is equivalent to 4556 ** "glob(B,A). We want to use the A in "A glob B" to test 4557 ** for function overloading. But we use the B term in "glob(B,A)". 4558 */ 4559 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ 4560 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); 4561 }else if( nFarg>0 ){ 4562 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); 4563 } 4564 #endif 4565 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4566 if( !pColl ) pColl = db->pDfltColl; 4567 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 4568 } 4569 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, 4570 pDef, pExpr->op2); 4571 if( nFarg ){ 4572 if( constMask==0 ){ 4573 sqlite3ReleaseTempRange(pParse, r1, nFarg); 4574 }else{ 4575 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); 4576 } 4577 } 4578 return target; 4579 } 4580 #ifndef SQLITE_OMIT_SUBQUERY 4581 case TK_EXISTS: 4582 case TK_SELECT: { 4583 int nCol; 4584 testcase( op==TK_EXISTS ); 4585 testcase( op==TK_SELECT ); 4586 if( pParse->db->mallocFailed ){ 4587 return 0; 4588 }else if( op==TK_SELECT 4589 && ALWAYS( ExprUseXSelect(pExpr) ) 4590 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 4591 ){ 4592 sqlite3SubselectError(pParse, nCol, 1); 4593 }else{ 4594 return sqlite3CodeSubselect(pParse, pExpr); 4595 } 4596 break; 4597 } 4598 case TK_SELECT_COLUMN: { 4599 int n; 4600 Expr *pLeft = pExpr->pLeft; 4601 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ 4602 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); 4603 pLeft->op2 = pParse->withinRJSubrtn; 4604 } 4605 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); 4606 n = sqlite3ExprVectorSize(pLeft); 4607 if( pExpr->iTable!=n ){ 4608 sqlite3ErrorMsg(pParse, "%d columns assigned %d values", 4609 pExpr->iTable, n); 4610 } 4611 return pLeft->iTable + pExpr->iColumn; 4612 } 4613 case TK_IN: { 4614 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 4615 int destIfNull = sqlite3VdbeMakeLabel(pParse); 4616 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4617 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 4618 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); 4619 sqlite3VdbeResolveLabel(v, destIfFalse); 4620 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); 4621 sqlite3VdbeResolveLabel(v, destIfNull); 4622 return target; 4623 } 4624 #endif /* SQLITE_OMIT_SUBQUERY */ 4625 4626 4627 /* 4628 ** x BETWEEN y AND z 4629 ** 4630 ** This is equivalent to 4631 ** 4632 ** x>=y AND x<=z 4633 ** 4634 ** X is stored in pExpr->pLeft. 4635 ** Y is stored in pExpr->pList->a[0].pExpr. 4636 ** Z is stored in pExpr->pList->a[1].pExpr. 4637 */ 4638 case TK_BETWEEN: { 4639 exprCodeBetween(pParse, pExpr, target, 0, 0); 4640 return target; 4641 } 4642 case TK_COLLATE: { 4643 if( !ExprHasProperty(pExpr, EP_Collate) 4644 && ALWAYS(pExpr->pLeft) 4645 && pExpr->pLeft->op==TK_FUNCTION 4646 ){ 4647 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4648 if( inReg!=target ){ 4649 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); 4650 inReg = target; 4651 } 4652 sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); 4653 return inReg; 4654 }else{ 4655 pExpr = pExpr->pLeft; 4656 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ 4657 } 4658 } 4659 case TK_SPAN: 4660 case TK_UPLUS: { 4661 pExpr = pExpr->pLeft; 4662 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ 4663 } 4664 4665 case TK_TRIGGER: { 4666 /* If the opcode is TK_TRIGGER, then the expression is a reference 4667 ** to a column in the new.* or old.* pseudo-tables available to 4668 ** trigger programs. In this case Expr.iTable is set to 1 for the 4669 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn 4670 ** is set to the column of the pseudo-table to read, or to -1 to 4671 ** read the rowid field. 4672 ** 4673 ** The expression is implemented using an OP_Param opcode. The p1 4674 ** parameter is set to 0 for an old.rowid reference, or to (i+1) 4675 ** to reference another column of the old.* pseudo-table, where 4676 ** i is the index of the column. For a new.rowid reference, p1 is 4677 ** set to (n+1), where n is the number of columns in each pseudo-table. 4678 ** For a reference to any other column in the new.* pseudo-table, p1 4679 ** is set to (n+2+i), where n and i are as defined previously. For 4680 ** example, if the table on which triggers are being fired is 4681 ** declared as: 4682 ** 4683 ** CREATE TABLE t1(a, b); 4684 ** 4685 ** Then p1 is interpreted as follows: 4686 ** 4687 ** p1==0 -> old.rowid p1==3 -> new.rowid 4688 ** p1==1 -> old.a p1==4 -> new.a 4689 ** p1==2 -> old.b p1==5 -> new.b 4690 */ 4691 Table *pTab; 4692 int iCol; 4693 int p1; 4694 4695 assert( ExprUseYTab(pExpr) ); 4696 pTab = pExpr->y.pTab; 4697 iCol = pExpr->iColumn; 4698 p1 = pExpr->iTable * (pTab->nCol+1) + 1 4699 + sqlite3TableColumnToStorage(pTab, iCol); 4700 4701 assert( pExpr->iTable==0 || pExpr->iTable==1 ); 4702 assert( iCol>=-1 && iCol<pTab->nCol ); 4703 assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); 4704 assert( p1>=0 && p1<(pTab->nCol*2+2) ); 4705 4706 sqlite3VdbeAddOp2(v, OP_Param, p1, target); 4707 VdbeComment((v, "r[%d]=%s.%s", target, 4708 (pExpr->iTable ? "new" : "old"), 4709 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) 4710 )); 4711 4712 #ifndef SQLITE_OMIT_FLOATING_POINT 4713 /* If the column has REAL affinity, it may currently be stored as an 4714 ** integer. Use OP_RealAffinity to make sure it is really real. 4715 ** 4716 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to 4717 ** floating point when extracting it from the record. */ 4718 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ 4719 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); 4720 } 4721 #endif 4722 break; 4723 } 4724 4725 case TK_VECTOR: { 4726 sqlite3ErrorMsg(pParse, "row value misused"); 4727 break; 4728 } 4729 4730 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions 4731 ** that derive from the right-hand table of a LEFT JOIN. The 4732 ** Expr.iTable value is the table number for the right-hand table. 4733 ** The expression is only evaluated if that table is not currently 4734 ** on a LEFT JOIN NULL row. 4735 */ 4736 case TK_IF_NULL_ROW: { 4737 int addrINR; 4738 u8 okConstFactor = pParse->okConstFactor; 4739 AggInfo *pAggInfo = pExpr->pAggInfo; 4740 if( pAggInfo ){ 4741 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); 4742 if( !pAggInfo->directMode ){ 4743 inReg = pAggInfo->aCol[pExpr->iAgg].iMem; 4744 break; 4745 } 4746 if( pExpr->pAggInfo->useSortingIdx ){ 4747 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, 4748 pAggInfo->aCol[pExpr->iAgg].iSorterColumn, 4749 target); 4750 inReg = target; 4751 break; 4752 } 4753 } 4754 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); 4755 /* Temporarily disable factoring of constant expressions, since 4756 ** even though expressions may appear to be constant, they are not 4757 ** really constant because they originate from the right-hand side 4758 ** of a LEFT JOIN. */ 4759 pParse->okConstFactor = 0; 4760 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); 4761 pParse->okConstFactor = okConstFactor; 4762 sqlite3VdbeJumpHere(v, addrINR); 4763 sqlite3VdbeChangeP3(v, addrINR, inReg); 4764 break; 4765 } 4766 4767 /* 4768 ** Form A: 4769 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4770 ** 4771 ** Form B: 4772 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END 4773 ** 4774 ** Form A is can be transformed into the equivalent form B as follows: 4775 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... 4776 ** WHEN x=eN THEN rN ELSE y END 4777 ** 4778 ** X (if it exists) is in pExpr->pLeft. 4779 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is 4780 ** odd. The Y is also optional. If the number of elements in x.pList 4781 ** is even, then Y is omitted and the "otherwise" result is NULL. 4782 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. 4783 ** 4784 ** The result of the expression is the Ri for the first matching Ei, 4785 ** or if there is no matching Ei, the ELSE term Y, or if there is 4786 ** no ELSE term, NULL. 4787 */ 4788 case TK_CASE: { 4789 int endLabel; /* GOTO label for end of CASE stmt */ 4790 int nextCase; /* GOTO label for next WHEN clause */ 4791 int nExpr; /* 2x number of WHEN terms */ 4792 int i; /* Loop counter */ 4793 ExprList *pEList; /* List of WHEN terms */ 4794 struct ExprList_item *aListelem; /* Array of WHEN terms */ 4795 Expr opCompare; /* The X==Ei expression */ 4796 Expr *pX; /* The X expression */ 4797 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ 4798 Expr *pDel = 0; 4799 sqlite3 *db = pParse->db; 4800 4801 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); 4802 assert(pExpr->x.pList->nExpr > 0); 4803 pEList = pExpr->x.pList; 4804 aListelem = pEList->a; 4805 nExpr = pEList->nExpr; 4806 endLabel = sqlite3VdbeMakeLabel(pParse); 4807 if( (pX = pExpr->pLeft)!=0 ){ 4808 pDel = sqlite3ExprDup(db, pX, 0); 4809 if( db->mallocFailed ){ 4810 sqlite3ExprDelete(db, pDel); 4811 break; 4812 } 4813 testcase( pX->op==TK_COLUMN ); 4814 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 4815 testcase( regFree1==0 ); 4816 memset(&opCompare, 0, sizeof(opCompare)); 4817 opCompare.op = TK_EQ; 4818 opCompare.pLeft = pDel; 4819 pTest = &opCompare; 4820 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: 4821 ** The value in regFree1 might get SCopy-ed into the file result. 4822 ** So make sure that the regFree1 register is not reused for other 4823 ** purposes and possibly overwritten. */ 4824 regFree1 = 0; 4825 } 4826 for(i=0; i<nExpr-1; i=i+2){ 4827 if( pX ){ 4828 assert( pTest!=0 ); 4829 opCompare.pRight = aListelem[i].pExpr; 4830 }else{ 4831 pTest = aListelem[i].pExpr; 4832 } 4833 nextCase = sqlite3VdbeMakeLabel(pParse); 4834 testcase( pTest->op==TK_COLUMN ); 4835 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); 4836 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); 4837 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); 4838 sqlite3VdbeGoto(v, endLabel); 4839 sqlite3VdbeResolveLabel(v, nextCase); 4840 } 4841 if( (nExpr&1)!=0 ){ 4842 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); 4843 }else{ 4844 sqlite3VdbeAddOp2(v, OP_Null, 0, target); 4845 } 4846 sqlite3ExprDelete(db, pDel); 4847 setDoNotMergeFlagOnCopy(v); 4848 sqlite3VdbeResolveLabel(v, endLabel); 4849 break; 4850 } 4851 #ifndef SQLITE_OMIT_TRIGGER 4852 case TK_RAISE: { 4853 assert( pExpr->affExpr==OE_Rollback 4854 || pExpr->affExpr==OE_Abort 4855 || pExpr->affExpr==OE_Fail 4856 || pExpr->affExpr==OE_Ignore 4857 ); 4858 if( !pParse->pTriggerTab && !pParse->nested ){ 4859 sqlite3ErrorMsg(pParse, 4860 "RAISE() may only be used within a trigger-program"); 4861 return 0; 4862 } 4863 if( pExpr->affExpr==OE_Abort ){ 4864 sqlite3MayAbort(pParse); 4865 } 4866 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 4867 if( pExpr->affExpr==OE_Ignore ){ 4868 sqlite3VdbeAddOp4( 4869 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); 4870 VdbeCoverage(v); 4871 }else{ 4872 sqlite3HaltConstraint(pParse, 4873 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, 4874 pExpr->affExpr, pExpr->u.zToken, 0, 0); 4875 } 4876 4877 break; 4878 } 4879 #endif 4880 } 4881 sqlite3ReleaseTempReg(pParse, regFree1); 4882 sqlite3ReleaseTempReg(pParse, regFree2); 4883 return inReg; 4884 } 4885 4886 /* 4887 ** Generate code that will evaluate expression pExpr just one time 4888 ** per prepared statement execution. 4889 ** 4890 ** If the expression uses functions (that might throw an exception) then 4891 ** guard them with an OP_Once opcode to ensure that the code is only executed 4892 ** once. If no functions are involved, then factor the code out and put it at 4893 ** the end of the prepared statement in the initialization section. 4894 ** 4895 ** If regDest>=0 then the result is always stored in that register and the 4896 ** result is not reusable. If regDest<0 then this routine is free to 4897 ** store the value whereever it wants. The register where the expression 4898 ** is stored is returned. When regDest<0, two identical expressions might 4899 ** code to the same register, if they do not contain function calls and hence 4900 ** are factored out into the initialization section at the end of the 4901 ** prepared statement. 4902 */ 4903 int sqlite3ExprCodeRunJustOnce( 4904 Parse *pParse, /* Parsing context */ 4905 Expr *pExpr, /* The expression to code when the VDBE initializes */ 4906 int regDest /* Store the value in this register */ 4907 ){ 4908 ExprList *p; 4909 assert( ConstFactorOk(pParse) ); 4910 p = pParse->pConstExpr; 4911 if( regDest<0 && p ){ 4912 struct ExprList_item *pItem; 4913 int i; 4914 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ 4915 if( pItem->fg.reusable 4916 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 4917 ){ 4918 return pItem->u.iConstExprReg; 4919 } 4920 } 4921 } 4922 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 4923 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ 4924 Vdbe *v = pParse->pVdbe; 4925 int addr; 4926 assert( v ); 4927 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 4928 pParse->okConstFactor = 0; 4929 if( !pParse->db->mallocFailed ){ 4930 if( regDest<0 ) regDest = ++pParse->nMem; 4931 sqlite3ExprCode(pParse, pExpr, regDest); 4932 } 4933 pParse->okConstFactor = 1; 4934 sqlite3ExprDelete(pParse->db, pExpr); 4935 sqlite3VdbeJumpHere(v, addr); 4936 }else{ 4937 p = sqlite3ExprListAppend(pParse, p, pExpr); 4938 if( p ){ 4939 struct ExprList_item *pItem = &p->a[p->nExpr-1]; 4940 pItem->fg.reusable = regDest<0; 4941 if( regDest<0 ) regDest = ++pParse->nMem; 4942 pItem->u.iConstExprReg = regDest; 4943 } 4944 pParse->pConstExpr = p; 4945 } 4946 return regDest; 4947 } 4948 4949 /* 4950 ** Generate code to evaluate an expression and store the results 4951 ** into a register. Return the register number where the results 4952 ** are stored. 4953 ** 4954 ** If the register is a temporary register that can be deallocated, 4955 ** then write its number into *pReg. If the result register is not 4956 ** a temporary, then set *pReg to zero. 4957 ** 4958 ** If pExpr is a constant, then this routine might generate this 4959 ** code to fill the register in the initialization section of the 4960 ** VDBE program, in order to factor it out of the evaluation loop. 4961 */ 4962 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ 4963 int r2; 4964 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); 4965 if( ConstFactorOk(pParse) 4966 && ALWAYS(pExpr!=0) 4967 && pExpr->op!=TK_REGISTER 4968 && sqlite3ExprIsConstantNotJoin(pExpr) 4969 ){ 4970 *pReg = 0; 4971 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); 4972 }else{ 4973 int r1 = sqlite3GetTempReg(pParse); 4974 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); 4975 if( r2==r1 ){ 4976 *pReg = r1; 4977 }else{ 4978 sqlite3ReleaseTempReg(pParse, r1); 4979 *pReg = 0; 4980 } 4981 } 4982 return r2; 4983 } 4984 4985 /* 4986 ** Generate code that will evaluate expression pExpr and store the 4987 ** results in register target. The results are guaranteed to appear 4988 ** in register target. 4989 */ 4990 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ 4991 int inReg; 4992 4993 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); 4994 assert( target>0 && target<=pParse->nMem ); 4995 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); 4996 if( pParse->pVdbe==0 ) return; 4997 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); 4998 if( inReg!=target ){ 4999 u8 op; 5000 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ 5001 op = OP_Copy; 5002 }else{ 5003 op = OP_SCopy; 5004 } 5005 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); 5006 } 5007 } 5008 5009 /* 5010 ** Make a transient copy of expression pExpr and then code it using 5011 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() 5012 ** except that the input expression is guaranteed to be unchanged. 5013 */ 5014 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ 5015 sqlite3 *db = pParse->db; 5016 pExpr = sqlite3ExprDup(db, pExpr, 0); 5017 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); 5018 sqlite3ExprDelete(db, pExpr); 5019 } 5020 5021 /* 5022 ** Generate code that will evaluate expression pExpr and store the 5023 ** results in register target. The results are guaranteed to appear 5024 ** in register target. If the expression is constant, then this routine 5025 ** might choose to code the expression at initialization time. 5026 */ 5027 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ 5028 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ 5029 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); 5030 }else{ 5031 sqlite3ExprCodeCopy(pParse, pExpr, target); 5032 } 5033 } 5034 5035 /* 5036 ** Generate code that pushes the value of every element of the given 5037 ** expression list into a sequence of registers beginning at target. 5038 ** 5039 ** Return the number of elements evaluated. The number returned will 5040 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF 5041 ** is defined. 5042 ** 5043 ** The SQLITE_ECEL_DUP flag prevents the arguments from being 5044 ** filled using OP_SCopy. OP_Copy must be used instead. 5045 ** 5046 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be 5047 ** factored out into initialization code. 5048 ** 5049 ** The SQLITE_ECEL_REF flag means that expressions in the list with 5050 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored 5051 ** in registers at srcReg, and so the value can be copied from there. 5052 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 5053 ** are simply omitted rather than being copied from srcReg. 5054 */ 5055 int sqlite3ExprCodeExprList( 5056 Parse *pParse, /* Parsing context */ 5057 ExprList *pList, /* The expression list to be coded */ 5058 int target, /* Where to write results */ 5059 int srcReg, /* Source registers if SQLITE_ECEL_REF */ 5060 u8 flags /* SQLITE_ECEL_* flags */ 5061 ){ 5062 struct ExprList_item *pItem; 5063 int i, j, n; 5064 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; 5065 Vdbe *v = pParse->pVdbe; 5066 assert( pList!=0 ); 5067 assert( target>0 ); 5068 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ 5069 n = pList->nExpr; 5070 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; 5071 for(pItem=pList->a, i=0; i<n; i++, pItem++){ 5072 Expr *pExpr = pItem->pExpr; 5073 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 5074 if( pItem->fg.bSorterRef ){ 5075 i--; 5076 n--; 5077 }else 5078 #endif 5079 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ 5080 if( flags & SQLITE_ECEL_OMITREF ){ 5081 i--; 5082 n--; 5083 }else{ 5084 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); 5085 } 5086 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 5087 && sqlite3ExprIsConstantNotJoin(pExpr) 5088 ){ 5089 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); 5090 }else{ 5091 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); 5092 if( inReg!=target+i ){ 5093 VdbeOp *pOp; 5094 if( copyOp==OP_Copy 5095 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy 5096 && pOp->p1+pOp->p3+1==inReg 5097 && pOp->p2+pOp->p3+1==target+i 5098 && pOp->p5==0 /* The do-not-merge flag must be clear */ 5099 ){ 5100 pOp->p3++; 5101 }else{ 5102 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); 5103 } 5104 } 5105 } 5106 } 5107 return n; 5108 } 5109 5110 /* 5111 ** Generate code for a BETWEEN operator. 5112 ** 5113 ** x BETWEEN y AND z 5114 ** 5115 ** The above is equivalent to 5116 ** 5117 ** x>=y AND x<=z 5118 ** 5119 ** Code it as such, taking care to do the common subexpression 5120 ** elimination of x. 5121 ** 5122 ** The xJumpIf parameter determines details: 5123 ** 5124 ** NULL: Store the boolean result in reg[dest] 5125 ** sqlite3ExprIfTrue: Jump to dest if true 5126 ** sqlite3ExprIfFalse: Jump to dest if false 5127 ** 5128 ** The jumpIfNull parameter is ignored if xJumpIf is NULL. 5129 */ 5130 static void exprCodeBetween( 5131 Parse *pParse, /* Parsing and code generating context */ 5132 Expr *pExpr, /* The BETWEEN expression */ 5133 int dest, /* Jump destination or storage location */ 5134 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ 5135 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ 5136 ){ 5137 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ 5138 Expr compLeft; /* The x>=y term */ 5139 Expr compRight; /* The x<=z term */ 5140 int regFree1 = 0; /* Temporary use register */ 5141 Expr *pDel = 0; 5142 sqlite3 *db = pParse->db; 5143 5144 memset(&compLeft, 0, sizeof(Expr)); 5145 memset(&compRight, 0, sizeof(Expr)); 5146 memset(&exprAnd, 0, sizeof(Expr)); 5147 5148 assert( ExprUseXList(pExpr) ); 5149 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); 5150 if( db->mallocFailed==0 ){ 5151 exprAnd.op = TK_AND; 5152 exprAnd.pLeft = &compLeft; 5153 exprAnd.pRight = &compRight; 5154 compLeft.op = TK_GE; 5155 compLeft.pLeft = pDel; 5156 compLeft.pRight = pExpr->x.pList->a[0].pExpr; 5157 compRight.op = TK_LE; 5158 compRight.pLeft = pDel; 5159 compRight.pRight = pExpr->x.pList->a[1].pExpr; 5160 exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); 5161 if( xJump ){ 5162 xJump(pParse, &exprAnd, dest, jumpIfNull); 5163 }else{ 5164 /* Mark the expression is being from the ON or USING clause of a join 5165 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move 5166 ** it into the Parse.pConstExpr list. We should use a new bit for this, 5167 ** for clarity, but we are out of bits in the Expr.flags field so we 5168 ** have to reuse the EP_OuterON bit. Bummer. */ 5169 pDel->flags |= EP_OuterON; 5170 sqlite3ExprCodeTarget(pParse, &exprAnd, dest); 5171 } 5172 sqlite3ReleaseTempReg(pParse, regFree1); 5173 } 5174 sqlite3ExprDelete(db, pDel); 5175 5176 /* Ensure adequate test coverage */ 5177 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); 5178 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); 5179 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); 5180 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); 5181 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); 5182 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); 5183 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); 5184 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); 5185 testcase( xJump==0 ); 5186 } 5187 5188 /* 5189 ** Generate code for a boolean expression such that a jump is made 5190 ** to the label "dest" if the expression is true but execution 5191 ** continues straight thru if the expression is false. 5192 ** 5193 ** If the expression evaluates to NULL (neither true nor false), then 5194 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. 5195 ** 5196 ** This code depends on the fact that certain token values (ex: TK_EQ) 5197 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding 5198 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in 5199 ** the make process cause these values to align. Assert()s in the code 5200 ** below verify that the numbers are aligned correctly. 5201 */ 5202 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5203 Vdbe *v = pParse->pVdbe; 5204 int op = 0; 5205 int regFree1 = 0; 5206 int regFree2 = 0; 5207 int r1, r2; 5208 5209 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5210 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5211 if( NEVER(pExpr==0) ) return; /* No way this can happen */ 5212 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); 5213 op = pExpr->op; 5214 switch( op ){ 5215 case TK_AND: 5216 case TK_OR: { 5217 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5218 if( pAlt!=pExpr ){ 5219 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); 5220 }else if( op==TK_AND ){ 5221 int d2 = sqlite3VdbeMakeLabel(pParse); 5222 testcase( jumpIfNull==0 ); 5223 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, 5224 jumpIfNull^SQLITE_JUMPIFNULL); 5225 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5226 sqlite3VdbeResolveLabel(v, d2); 5227 }else{ 5228 testcase( jumpIfNull==0 ); 5229 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5230 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); 5231 } 5232 break; 5233 } 5234 case TK_NOT: { 5235 testcase( jumpIfNull==0 ); 5236 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5237 break; 5238 } 5239 case TK_TRUTH: { 5240 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5241 int isTrue; /* IS TRUE or IS NOT TRUE */ 5242 testcase( jumpIfNull==0 ); 5243 isNot = pExpr->op2==TK_ISNOT; 5244 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5245 testcase( isTrue && isNot ); 5246 testcase( !isTrue && isNot ); 5247 if( isTrue ^ isNot ){ 5248 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5249 isNot ? SQLITE_JUMPIFNULL : 0); 5250 }else{ 5251 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5252 isNot ? SQLITE_JUMPIFNULL : 0); 5253 } 5254 break; 5255 } 5256 case TK_IS: 5257 case TK_ISNOT: 5258 testcase( op==TK_IS ); 5259 testcase( op==TK_ISNOT ); 5260 op = (op==TK_IS) ? TK_EQ : TK_NE; 5261 jumpIfNull = SQLITE_NULLEQ; 5262 /* no break */ deliberate_fall_through 5263 case TK_LT: 5264 case TK_LE: 5265 case TK_GT: 5266 case TK_GE: 5267 case TK_NE: 5268 case TK_EQ: { 5269 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5270 testcase( jumpIfNull==0 ); 5271 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5272 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5273 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5274 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); 5275 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5276 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5277 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5278 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5279 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5280 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5281 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5282 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5283 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5284 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5285 testcase( regFree1==0 ); 5286 testcase( regFree2==0 ); 5287 break; 5288 } 5289 case TK_ISNULL: 5290 case TK_NOTNULL: { 5291 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); 5292 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); 5293 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5294 sqlite3VdbeTypeofColumn(v, r1); 5295 sqlite3VdbeAddOp2(v, op, r1, dest); 5296 VdbeCoverageIf(v, op==TK_ISNULL); 5297 VdbeCoverageIf(v, op==TK_NOTNULL); 5298 testcase( regFree1==0 ); 5299 break; 5300 } 5301 case TK_BETWEEN: { 5302 testcase( jumpIfNull==0 ); 5303 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); 5304 break; 5305 } 5306 #ifndef SQLITE_OMIT_SUBQUERY 5307 case TK_IN: { 5308 int destIfFalse = sqlite3VdbeMakeLabel(pParse); 5309 int destIfNull = jumpIfNull ? dest : destIfFalse; 5310 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); 5311 sqlite3VdbeGoto(v, dest); 5312 sqlite3VdbeResolveLabel(v, destIfFalse); 5313 break; 5314 } 5315 #endif 5316 default: { 5317 default_expr: 5318 if( ExprAlwaysTrue(pExpr) ){ 5319 sqlite3VdbeGoto(v, dest); 5320 }else if( ExprAlwaysFalse(pExpr) ){ 5321 /* No-op */ 5322 }else{ 5323 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5324 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); 5325 VdbeCoverage(v); 5326 testcase( regFree1==0 ); 5327 testcase( jumpIfNull==0 ); 5328 } 5329 break; 5330 } 5331 } 5332 sqlite3ReleaseTempReg(pParse, regFree1); 5333 sqlite3ReleaseTempReg(pParse, regFree2); 5334 } 5335 5336 /* 5337 ** Generate code for a boolean expression such that a jump is made 5338 ** to the label "dest" if the expression is false but execution 5339 ** continues straight thru if the expression is true. 5340 ** 5341 ** If the expression evaluates to NULL (neither true nor false) then 5342 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull 5343 ** is 0. 5344 */ 5345 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ 5346 Vdbe *v = pParse->pVdbe; 5347 int op = 0; 5348 int regFree1 = 0; 5349 int regFree2 = 0; 5350 int r1, r2; 5351 5352 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); 5353 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ 5354 if( pExpr==0 ) return; 5355 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); 5356 5357 /* The value of pExpr->op and op are related as follows: 5358 ** 5359 ** pExpr->op op 5360 ** --------- ---------- 5361 ** TK_ISNULL OP_NotNull 5362 ** TK_NOTNULL OP_IsNull 5363 ** TK_NE OP_Eq 5364 ** TK_EQ OP_Ne 5365 ** TK_GT OP_Le 5366 ** TK_LE OP_Gt 5367 ** TK_GE OP_Lt 5368 ** TK_LT OP_Ge 5369 ** 5370 ** For other values of pExpr->op, op is undefined and unused. 5371 ** The value of TK_ and OP_ constants are arranged such that we 5372 ** can compute the mapping above using the following expression. 5373 ** Assert()s verify that the computation is correct. 5374 */ 5375 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); 5376 5377 /* Verify correct alignment of TK_ and OP_ constants 5378 */ 5379 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); 5380 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); 5381 assert( pExpr->op!=TK_NE || op==OP_Eq ); 5382 assert( pExpr->op!=TK_EQ || op==OP_Ne ); 5383 assert( pExpr->op!=TK_LT || op==OP_Ge ); 5384 assert( pExpr->op!=TK_LE || op==OP_Gt ); 5385 assert( pExpr->op!=TK_GT || op==OP_Le ); 5386 assert( pExpr->op!=TK_GE || op==OP_Lt ); 5387 5388 switch( pExpr->op ){ 5389 case TK_AND: 5390 case TK_OR: { 5391 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); 5392 if( pAlt!=pExpr ){ 5393 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); 5394 }else if( pExpr->op==TK_AND ){ 5395 testcase( jumpIfNull==0 ); 5396 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); 5397 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5398 }else{ 5399 int d2 = sqlite3VdbeMakeLabel(pParse); 5400 testcase( jumpIfNull==0 ); 5401 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, 5402 jumpIfNull^SQLITE_JUMPIFNULL); 5403 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); 5404 sqlite3VdbeResolveLabel(v, d2); 5405 } 5406 break; 5407 } 5408 case TK_NOT: { 5409 testcase( jumpIfNull==0 ); 5410 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); 5411 break; 5412 } 5413 case TK_TRUTH: { 5414 int isNot; /* IS NOT TRUE or IS NOT FALSE */ 5415 int isTrue; /* IS TRUE or IS NOT TRUE */ 5416 testcase( jumpIfNull==0 ); 5417 isNot = pExpr->op2==TK_ISNOT; 5418 isTrue = sqlite3ExprTruthValue(pExpr->pRight); 5419 testcase( isTrue && isNot ); 5420 testcase( !isTrue && isNot ); 5421 if( isTrue ^ isNot ){ 5422 /* IS TRUE and IS NOT FALSE */ 5423 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, 5424 isNot ? 0 : SQLITE_JUMPIFNULL); 5425 5426 }else{ 5427 /* IS FALSE and IS NOT TRUE */ 5428 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, 5429 isNot ? 0 : SQLITE_JUMPIFNULL); 5430 } 5431 break; 5432 } 5433 case TK_IS: 5434 case TK_ISNOT: 5435 testcase( pExpr->op==TK_IS ); 5436 testcase( pExpr->op==TK_ISNOT ); 5437 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; 5438 jumpIfNull = SQLITE_NULLEQ; 5439 /* no break */ deliberate_fall_through 5440 case TK_LT: 5441 case TK_LE: 5442 case TK_GT: 5443 case TK_GE: 5444 case TK_NE: 5445 case TK_EQ: { 5446 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; 5447 testcase( jumpIfNull==0 ); 5448 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5449 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); 5450 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, 5451 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); 5452 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); 5453 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); 5454 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); 5455 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); 5456 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); 5457 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); 5458 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); 5459 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); 5460 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); 5461 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); 5462 testcase( regFree1==0 ); 5463 testcase( regFree2==0 ); 5464 break; 5465 } 5466 case TK_ISNULL: 5467 case TK_NOTNULL: { 5468 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); 5469 sqlite3VdbeTypeofColumn(v, r1); 5470 sqlite3VdbeAddOp2(v, op, r1, dest); 5471 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); 5472 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); 5473 testcase( regFree1==0 ); 5474 break; 5475 } 5476 case TK_BETWEEN: { 5477 testcase( jumpIfNull==0 ); 5478 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); 5479 break; 5480 } 5481 #ifndef SQLITE_OMIT_SUBQUERY 5482 case TK_IN: { 5483 if( jumpIfNull ){ 5484 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); 5485 }else{ 5486 int destIfNull = sqlite3VdbeMakeLabel(pParse); 5487 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); 5488 sqlite3VdbeResolveLabel(v, destIfNull); 5489 } 5490 break; 5491 } 5492 #endif 5493 default: { 5494 default_expr: 5495 if( ExprAlwaysFalse(pExpr) ){ 5496 sqlite3VdbeGoto(v, dest); 5497 }else if( ExprAlwaysTrue(pExpr) ){ 5498 /* no-op */ 5499 }else{ 5500 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); 5501 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); 5502 VdbeCoverage(v); 5503 testcase( regFree1==0 ); 5504 testcase( jumpIfNull==0 ); 5505 } 5506 break; 5507 } 5508 } 5509 sqlite3ReleaseTempReg(pParse, regFree1); 5510 sqlite3ReleaseTempReg(pParse, regFree2); 5511 } 5512 5513 /* 5514 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before 5515 ** code generation, and that copy is deleted after code generation. This 5516 ** ensures that the original pExpr is unchanged. 5517 */ 5518 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ 5519 sqlite3 *db = pParse->db; 5520 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); 5521 if( db->mallocFailed==0 ){ 5522 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); 5523 } 5524 sqlite3ExprDelete(db, pCopy); 5525 } 5526 5527 /* 5528 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any 5529 ** type of expression. 5530 ** 5531 ** If pExpr is a simple SQL value - an integer, real, string, blob 5532 ** or NULL value - then the VDBE currently being prepared is configured 5533 ** to re-prepare each time a new value is bound to variable pVar. 5534 ** 5535 ** Additionally, if pExpr is a simple SQL value and the value is the 5536 ** same as that currently bound to variable pVar, non-zero is returned. 5537 ** Otherwise, if the values are not the same or if pExpr is not a simple 5538 ** SQL value, zero is returned. 5539 */ 5540 static int exprCompareVariable( 5541 const Parse *pParse, 5542 const Expr *pVar, 5543 const Expr *pExpr 5544 ){ 5545 int res = 0; 5546 int iVar; 5547 sqlite3_value *pL, *pR = 0; 5548 5549 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); 5550 if( pR ){ 5551 iVar = pVar->iColumn; 5552 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 5553 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); 5554 if( pL ){ 5555 if( sqlite3_value_type(pL)==SQLITE_TEXT ){ 5556 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ 5557 } 5558 res = 0==sqlite3MemCompare(pL, pR, 0); 5559 } 5560 sqlite3ValueFree(pR); 5561 sqlite3ValueFree(pL); 5562 } 5563 5564 return res; 5565 } 5566 5567 /* 5568 ** Do a deep comparison of two expression trees. Return 0 if the two 5569 ** expressions are completely identical. Return 1 if they differ only 5570 ** by a COLLATE operator at the top level. Return 2 if there are differences 5571 ** other than the top-level COLLATE operator. 5572 ** 5573 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5574 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5575 ** 5576 ** The pA side might be using TK_REGISTER. If that is the case and pB is 5577 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. 5578 ** 5579 ** Sometimes this routine will return 2 even if the two expressions 5580 ** really are equivalent. If we cannot prove that the expressions are 5581 ** identical, we return 2 just to be safe. So if this routine 5582 ** returns 2, then you do not really know for certain if the two 5583 ** expressions are the same. But if you get a 0 or 1 return, then you 5584 ** can be sure the expressions are the same. In the places where 5585 ** this routine is used, it does not hurt to get an extra 2 - that 5586 ** just might result in some slightly slower code. But returning 5587 ** an incorrect 0 or 1 could lead to a malfunction. 5588 ** 5589 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in 5590 ** pParse->pReprepare can be matched against literals in pB. The 5591 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. 5592 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in 5593 ** Argument pParse should normally be NULL. If it is not NULL and pA or 5594 ** pB causes a return value of 2. 5595 */ 5596 int sqlite3ExprCompare( 5597 const Parse *pParse, 5598 const Expr *pA, 5599 const Expr *pB, 5600 int iTab 5601 ){ 5602 u32 combinedFlags; 5603 if( pA==0 || pB==0 ){ 5604 return pB==pA ? 0 : 2; 5605 } 5606 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ 5607 return 0; 5608 } 5609 combinedFlags = pA->flags | pB->flags; 5610 if( combinedFlags & EP_IntValue ){ 5611 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ 5612 return 0; 5613 } 5614 return 2; 5615 } 5616 if( pA->op!=pB->op || pA->op==TK_RAISE ){ 5617 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ 5618 return 1; 5619 } 5620 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ 5621 return 1; 5622 } 5623 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN 5624 && pB->iTable<0 && pA->iTable==iTab 5625 ){ 5626 /* fall through */ 5627 }else{ 5628 return 2; 5629 } 5630 } 5631 assert( !ExprHasProperty(pA, EP_IntValue) ); 5632 assert( !ExprHasProperty(pB, EP_IntValue) ); 5633 if( pA->u.zToken ){ 5634 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ 5635 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5636 #ifndef SQLITE_OMIT_WINDOWFUNC 5637 assert( pA->op==pB->op ); 5638 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ 5639 return 2; 5640 } 5641 if( ExprHasProperty(pA,EP_WinFunc) ){ 5642 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ 5643 return 2; 5644 } 5645 } 5646 #endif 5647 }else if( pA->op==TK_NULL ){ 5648 return 0; 5649 }else if( pA->op==TK_COLLATE ){ 5650 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; 5651 }else 5652 if( pB->u.zToken!=0 5653 && pA->op!=TK_COLUMN 5654 && pA->op!=TK_AGG_COLUMN 5655 && strcmp(pA->u.zToken,pB->u.zToken)!=0 5656 ){ 5657 return 2; 5658 } 5659 } 5660 if( (pA->flags & (EP_Distinct|EP_Commuted)) 5661 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; 5662 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ 5663 if( combinedFlags & EP_xIsSelect ) return 2; 5664 if( (combinedFlags & EP_FixedCol)==0 5665 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; 5666 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; 5667 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; 5668 if( pA->op!=TK_STRING 5669 && pA->op!=TK_TRUEFALSE 5670 && ALWAYS((combinedFlags & EP_Reduced)==0) 5671 ){ 5672 if( pA->iColumn!=pB->iColumn ) return 2; 5673 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; 5674 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ 5675 return 2; 5676 } 5677 } 5678 } 5679 return 0; 5680 } 5681 5682 /* 5683 ** Compare two ExprList objects. Return 0 if they are identical, 1 5684 ** if they are certainly different, or 2 if it is not possible to 5685 ** determine if they are identical or not. 5686 ** 5687 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed 5688 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. 5689 ** 5690 ** This routine might return non-zero for equivalent ExprLists. The 5691 ** only consequence will be disabled optimizations. But this routine 5692 ** must never return 0 if the two ExprList objects are different, or 5693 ** a malfunction will result. 5694 ** 5695 ** Two NULL pointers are considered to be the same. But a NULL pointer 5696 ** always differs from a non-NULL pointer. 5697 */ 5698 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ 5699 int i; 5700 if( pA==0 && pB==0 ) return 0; 5701 if( pA==0 || pB==0 ) return 1; 5702 if( pA->nExpr!=pB->nExpr ) return 1; 5703 for(i=0; i<pA->nExpr; i++){ 5704 int res; 5705 Expr *pExprA = pA->a[i].pExpr; 5706 Expr *pExprB = pB->a[i].pExpr; 5707 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; 5708 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; 5709 } 5710 return 0; 5711 } 5712 5713 /* 5714 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level 5715 ** are ignored. 5716 */ 5717 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ 5718 return sqlite3ExprCompare(0, 5719 sqlite3ExprSkipCollateAndLikely(pA), 5720 sqlite3ExprSkipCollateAndLikely(pB), 5721 iTab); 5722 } 5723 5724 /* 5725 ** Return non-zero if Expr p can only be true if pNN is not NULL. 5726 ** 5727 ** Or if seenNot is true, return non-zero if Expr p can only be 5728 ** non-NULL if pNN is not NULL 5729 */ 5730 static int exprImpliesNotNull( 5731 const Parse *pParse,/* Parsing context */ 5732 const Expr *p, /* The expression to be checked */ 5733 const Expr *pNN, /* The expression that is NOT NULL */ 5734 int iTab, /* Table being evaluated */ 5735 int seenNot /* Return true only if p can be any non-NULL value */ 5736 ){ 5737 assert( p ); 5738 assert( pNN ); 5739 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ 5740 return pNN->op!=TK_NULL; 5741 } 5742 switch( p->op ){ 5743 case TK_IN: { 5744 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; 5745 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); 5746 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5747 } 5748 case TK_BETWEEN: { 5749 ExprList *pList; 5750 assert( ExprUseXList(p) ); 5751 pList = p->x.pList; 5752 assert( pList!=0 ); 5753 assert( pList->nExpr==2 ); 5754 if( seenNot ) return 0; 5755 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) 5756 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) 5757 ){ 5758 return 1; 5759 } 5760 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5761 } 5762 case TK_EQ: 5763 case TK_NE: 5764 case TK_LT: 5765 case TK_LE: 5766 case TK_GT: 5767 case TK_GE: 5768 case TK_PLUS: 5769 case TK_MINUS: 5770 case TK_BITOR: 5771 case TK_LSHIFT: 5772 case TK_RSHIFT: 5773 case TK_CONCAT: 5774 seenNot = 1; 5775 /* no break */ deliberate_fall_through 5776 case TK_STAR: 5777 case TK_REM: 5778 case TK_BITAND: 5779 case TK_SLASH: { 5780 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; 5781 /* no break */ deliberate_fall_through 5782 } 5783 case TK_SPAN: 5784 case TK_COLLATE: 5785 case TK_UPLUS: 5786 case TK_UMINUS: { 5787 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); 5788 } 5789 case TK_TRUTH: { 5790 if( seenNot ) return 0; 5791 if( p->op2!=TK_IS ) return 0; 5792 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5793 } 5794 case TK_BITNOT: 5795 case TK_NOT: { 5796 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); 5797 } 5798 } 5799 return 0; 5800 } 5801 5802 /* 5803 ** Return true if we can prove the pE2 will always be true if pE1 is 5804 ** true. Return false if we cannot complete the proof or if pE2 might 5805 ** be false. Examples: 5806 ** 5807 ** pE1: x==5 pE2: x==5 Result: true 5808 ** pE1: x>0 pE2: x==5 Result: false 5809 ** pE1: x=21 pE2: x=21 OR y=43 Result: true 5810 ** pE1: x!=123 pE2: x IS NOT NULL Result: true 5811 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true 5812 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false 5813 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false 5814 ** 5815 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has 5816 ** Expr.iTable<0 then assume a table number given by iTab. 5817 ** 5818 ** If pParse is not NULL, then the values of bound variables in pE1 are 5819 ** compared against literal values in pE2 and pParse->pVdbe->expmask is 5820 ** modified to record which bound variables are referenced. If pParse 5821 ** is NULL, then false will be returned if pE1 contains any bound variables. 5822 ** 5823 ** When in doubt, return false. Returning true might give a performance 5824 ** improvement. Returning false might cause a performance reduction, but 5825 ** it will always give the correct answer and is hence always safe. 5826 */ 5827 int sqlite3ExprImpliesExpr( 5828 const Parse *pParse, 5829 const Expr *pE1, 5830 const Expr *pE2, 5831 int iTab 5832 ){ 5833 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ 5834 return 1; 5835 } 5836 if( pE2->op==TK_OR 5837 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) 5838 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) 5839 ){ 5840 return 1; 5841 } 5842 if( pE2->op==TK_NOTNULL 5843 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) 5844 ){ 5845 return 1; 5846 } 5847 return 0; 5848 } 5849 5850 /* 5851 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). 5852 ** If the expression node requires that the table at pWalker->iCur 5853 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. 5854 ** 5855 ** This routine controls an optimization. False positives (setting 5856 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives 5857 ** (never setting pWalker->eCode) is a harmless missed optimization. 5858 */ 5859 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ 5860 testcase( pExpr->op==TK_AGG_COLUMN ); 5861 testcase( pExpr->op==TK_AGG_FUNCTION ); 5862 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; 5863 switch( pExpr->op ){ 5864 case TK_ISNOT: 5865 case TK_ISNULL: 5866 case TK_NOTNULL: 5867 case TK_IS: 5868 case TK_OR: 5869 case TK_VECTOR: 5870 case TK_CASE: 5871 case TK_IN: 5872 case TK_FUNCTION: 5873 case TK_TRUTH: 5874 testcase( pExpr->op==TK_ISNOT ); 5875 testcase( pExpr->op==TK_ISNULL ); 5876 testcase( pExpr->op==TK_NOTNULL ); 5877 testcase( pExpr->op==TK_IS ); 5878 testcase( pExpr->op==TK_OR ); 5879 testcase( pExpr->op==TK_VECTOR ); 5880 testcase( pExpr->op==TK_CASE ); 5881 testcase( pExpr->op==TK_IN ); 5882 testcase( pExpr->op==TK_FUNCTION ); 5883 testcase( pExpr->op==TK_TRUTH ); 5884 return WRC_Prune; 5885 case TK_COLUMN: 5886 if( pWalker->u.iCur==pExpr->iTable ){ 5887 pWalker->eCode = 1; 5888 return WRC_Abort; 5889 } 5890 return WRC_Prune; 5891 5892 case TK_AND: 5893 if( pWalker->eCode==0 ){ 5894 sqlite3WalkExpr(pWalker, pExpr->pLeft); 5895 if( pWalker->eCode ){ 5896 pWalker->eCode = 0; 5897 sqlite3WalkExpr(pWalker, pExpr->pRight); 5898 } 5899 } 5900 return WRC_Prune; 5901 5902 case TK_BETWEEN: 5903 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ 5904 assert( pWalker->eCode ); 5905 return WRC_Abort; 5906 } 5907 return WRC_Prune; 5908 5909 /* Virtual tables are allowed to use constraints like x=NULL. So 5910 ** a term of the form x=y does not prove that y is not null if x 5911 ** is the column of a virtual table */ 5912 case TK_EQ: 5913 case TK_NE: 5914 case TK_LT: 5915 case TK_LE: 5916 case TK_GT: 5917 case TK_GE: { 5918 Expr *pLeft = pExpr->pLeft; 5919 Expr *pRight = pExpr->pRight; 5920 testcase( pExpr->op==TK_EQ ); 5921 testcase( pExpr->op==TK_NE ); 5922 testcase( pExpr->op==TK_LT ); 5923 testcase( pExpr->op==TK_LE ); 5924 testcase( pExpr->op==TK_GT ); 5925 testcase( pExpr->op==TK_GE ); 5926 /* The y.pTab=0 assignment in wherecode.c always happens after the 5927 ** impliesNotNullRow() test */ 5928 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); 5929 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); 5930 if( (pLeft->op==TK_COLUMN 5931 && pLeft->y.pTab!=0 5932 && IsVirtual(pLeft->y.pTab)) 5933 || (pRight->op==TK_COLUMN 5934 && pRight->y.pTab!=0 5935 && IsVirtual(pRight->y.pTab)) 5936 ){ 5937 return WRC_Prune; 5938 } 5939 /* no break */ deliberate_fall_through 5940 } 5941 default: 5942 return WRC_Continue; 5943 } 5944 } 5945 5946 /* 5947 ** Return true (non-zero) if expression p can only be true if at least 5948 ** one column of table iTab is non-null. In other words, return true 5949 ** if expression p will always be NULL or false if every column of iTab 5950 ** is NULL. 5951 ** 5952 ** False negatives are acceptable. In other words, it is ok to return 5953 ** zero even if expression p will never be true of every column of iTab 5954 ** is NULL. A false negative is merely a missed optimization opportunity. 5955 ** 5956 ** False positives are not allowed, however. A false positive may result 5957 ** in an incorrect answer. 5958 ** 5959 ** Terms of p that are marked with EP_OuterON (and hence that come from 5960 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. 5961 ** 5962 ** This routine is used to check if a LEFT JOIN can be converted into 5963 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE 5964 ** clause requires that some column of the right table of the LEFT JOIN 5965 ** be non-NULL, then the LEFT JOIN can be safely converted into an 5966 ** ordinary join. 5967 */ 5968 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ 5969 Walker w; 5970 p = sqlite3ExprSkipCollateAndLikely(p); 5971 if( p==0 ) return 0; 5972 if( p->op==TK_NOTNULL ){ 5973 p = p->pLeft; 5974 }else{ 5975 while( p->op==TK_AND ){ 5976 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; 5977 p = p->pRight; 5978 } 5979 } 5980 w.xExprCallback = impliesNotNullRow; 5981 w.xSelectCallback = 0; 5982 w.xSelectCallback2 = 0; 5983 w.eCode = 0; 5984 w.u.iCur = iTab; 5985 sqlite3WalkExpr(&w, p); 5986 return w.eCode; 5987 } 5988 5989 /* 5990 ** An instance of the following structure is used by the tree walker 5991 ** to determine if an expression can be evaluated by reference to the 5992 ** index only, without having to do a search for the corresponding 5993 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur 5994 ** is the cursor for the table. 5995 */ 5996 struct IdxCover { 5997 Index *pIdx; /* The index to be tested for coverage */ 5998 int iCur; /* Cursor number for the table corresponding to the index */ 5999 }; 6000 6001 /* 6002 ** Check to see if there are references to columns in table 6003 ** pWalker->u.pIdxCover->iCur can be satisfied using the index 6004 ** pWalker->u.pIdxCover->pIdx. 6005 */ 6006 static int exprIdxCover(Walker *pWalker, Expr *pExpr){ 6007 if( pExpr->op==TK_COLUMN 6008 && pExpr->iTable==pWalker->u.pIdxCover->iCur 6009 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 6010 ){ 6011 pWalker->eCode = 1; 6012 return WRC_Abort; 6013 } 6014 return WRC_Continue; 6015 } 6016 6017 /* 6018 ** Determine if an index pIdx on table with cursor iCur contains will 6019 ** the expression pExpr. Return true if the index does cover the 6020 ** expression and false if the pExpr expression references table columns 6021 ** that are not found in the index pIdx. 6022 ** 6023 ** An index covering an expression means that the expression can be 6024 ** evaluated using only the index and without having to lookup the 6025 ** corresponding table entry. 6026 */ 6027 int sqlite3ExprCoveredByIndex( 6028 Expr *pExpr, /* The index to be tested */ 6029 int iCur, /* The cursor number for the corresponding table */ 6030 Index *pIdx /* The index that might be used for coverage */ 6031 ){ 6032 Walker w; 6033 struct IdxCover xcov; 6034 memset(&w, 0, sizeof(w)); 6035 xcov.iCur = iCur; 6036 xcov.pIdx = pIdx; 6037 w.xExprCallback = exprIdxCover; 6038 w.u.pIdxCover = &xcov; 6039 sqlite3WalkExpr(&w, pExpr); 6040 return !w.eCode; 6041 } 6042 6043 6044 /* Structure used to pass information throught the Walker in order to 6045 ** implement sqlite3ReferencesSrcList(). 6046 */ 6047 struct RefSrcList { 6048 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ 6049 SrcList *pRef; /* Looking for references to these tables */ 6050 i64 nExclude; /* Number of tables to exclude from the search */ 6051 int *aiExclude; /* Cursor IDs for tables to exclude from the search */ 6052 }; 6053 6054 /* 6055 ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). 6056 ** 6057 ** When entering a new subquery on the pExpr argument, add all FROM clause 6058 ** entries for that subquery to the exclude list. 6059 ** 6060 ** When leaving the subquery, remove those entries from the exclude list. 6061 */ 6062 static int selectRefEnter(Walker *pWalker, Select *pSelect){ 6063 struct RefSrcList *p = pWalker->u.pRefSrcList; 6064 SrcList *pSrc = pSelect->pSrc; 6065 i64 i, j; 6066 int *piNew; 6067 if( pSrc->nSrc==0 ) return WRC_Continue; 6068 j = p->nExclude; 6069 p->nExclude += pSrc->nSrc; 6070 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); 6071 if( piNew==0 ){ 6072 p->nExclude = 0; 6073 return WRC_Abort; 6074 }else{ 6075 p->aiExclude = piNew; 6076 } 6077 for(i=0; i<pSrc->nSrc; i++, j++){ 6078 p->aiExclude[j] = pSrc->a[i].iCursor; 6079 } 6080 return WRC_Continue; 6081 } 6082 static void selectRefLeave(Walker *pWalker, Select *pSelect){ 6083 struct RefSrcList *p = pWalker->u.pRefSrcList; 6084 SrcList *pSrc = pSelect->pSrc; 6085 if( p->nExclude ){ 6086 assert( p->nExclude>=pSrc->nSrc ); 6087 p->nExclude -= pSrc->nSrc; 6088 } 6089 } 6090 6091 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). 6092 ** 6093 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any 6094 ** of the tables shown in RefSrcList.pRef. 6095 ** 6096 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a 6097 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. 6098 */ 6099 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ 6100 if( pExpr->op==TK_COLUMN 6101 || pExpr->op==TK_AGG_COLUMN 6102 ){ 6103 int i; 6104 struct RefSrcList *p = pWalker->u.pRefSrcList; 6105 SrcList *pSrc = p->pRef; 6106 int nSrc = pSrc ? pSrc->nSrc : 0; 6107 for(i=0; i<nSrc; i++){ 6108 if( pExpr->iTable==pSrc->a[i].iCursor ){ 6109 pWalker->eCode |= 1; 6110 return WRC_Continue; 6111 } 6112 } 6113 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} 6114 if( i>=p->nExclude ){ 6115 pWalker->eCode |= 2; 6116 } 6117 } 6118 return WRC_Continue; 6119 } 6120 6121 /* 6122 ** Check to see if pExpr references any tables in pSrcList. 6123 ** Possible return values: 6124 ** 6125 ** 1 pExpr does references a table in pSrcList. 6126 ** 6127 ** 0 pExpr references some table that is not defined in either 6128 ** pSrcList or in subqueries of pExpr itself. 6129 ** 6130 ** -1 pExpr only references no tables at all, or it only 6131 ** references tables defined in subqueries of pExpr itself. 6132 ** 6133 ** As currently used, pExpr is always an aggregate function call. That 6134 ** fact is exploited for efficiency. 6135 */ 6136 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ 6137 Walker w; 6138 struct RefSrcList x; 6139 assert( pParse->db!=0 ); 6140 memset(&w, 0, sizeof(w)); 6141 memset(&x, 0, sizeof(x)); 6142 w.xExprCallback = exprRefToSrcList; 6143 w.xSelectCallback = selectRefEnter; 6144 w.xSelectCallback2 = selectRefLeave; 6145 w.u.pRefSrcList = &x; 6146 x.db = pParse->db; 6147 x.pRef = pSrcList; 6148 assert( pExpr->op==TK_AGG_FUNCTION ); 6149 assert( ExprUseXList(pExpr) ); 6150 sqlite3WalkExprList(&w, pExpr->x.pList); 6151 #ifndef SQLITE_OMIT_WINDOWFUNC 6152 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6153 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); 6154 } 6155 #endif 6156 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude); 6157 if( w.eCode & 0x01 ){ 6158 return 1; 6159 }else if( w.eCode ){ 6160 return 0; 6161 }else{ 6162 return -1; 6163 } 6164 } 6165 6166 /* 6167 ** This is a Walker expression node callback. 6168 ** 6169 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo 6170 ** object that is referenced does not refer directly to the Expr. If 6171 ** it does, make a copy. This is done because the pExpr argument is 6172 ** subject to change. 6173 ** 6174 ** The copy is stored on pParse->pConstExpr with a register number of 0. 6175 ** This will cause the expression to be deleted automatically when the 6176 ** Parse object is destroyed, but the zero register number means that it 6177 ** will not generate any code in the preamble. 6178 */ 6179 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ 6180 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) 6181 && pExpr->pAggInfo!=0 6182 ){ 6183 AggInfo *pAggInfo = pExpr->pAggInfo; 6184 int iAgg = pExpr->iAgg; 6185 Parse *pParse = pWalker->pParse; 6186 sqlite3 *db = pParse->db; 6187 if( pExpr->op!=TK_AGG_FUNCTION ){ 6188 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_IF_NULL_ROW ); 6189 assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); 6190 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ 6191 pExpr = sqlite3ExprDup(db, pExpr, 0); 6192 if( pExpr ){ 6193 pAggInfo->aCol[iAgg].pCExpr = pExpr; 6194 sqlite3ExprDeferredDelete(pParse, pExpr); 6195 } 6196 } 6197 }else{ 6198 assert( pExpr->op==TK_AGG_FUNCTION ); 6199 assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); 6200 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ 6201 pExpr = sqlite3ExprDup(db, pExpr, 0); 6202 if( pExpr ){ 6203 pAggInfo->aFunc[iAgg].pFExpr = pExpr; 6204 sqlite3ExprDeferredDelete(pParse, pExpr); 6205 } 6206 } 6207 } 6208 } 6209 return WRC_Continue; 6210 } 6211 6212 /* 6213 ** Initialize a Walker object so that will persist AggInfo entries referenced 6214 ** by the tree that is walked. 6215 */ 6216 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ 6217 memset(pWalker, 0, sizeof(*pWalker)); 6218 pWalker->pParse = pParse; 6219 pWalker->xExprCallback = agginfoPersistExprCb; 6220 pWalker->xSelectCallback = sqlite3SelectWalkNoop; 6221 } 6222 6223 /* 6224 ** Add a new element to the pAggInfo->aCol[] array. Return the index of 6225 ** the new element. Return a negative number if malloc fails. 6226 */ 6227 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ 6228 int i; 6229 pInfo->aCol = sqlite3ArrayAllocate( 6230 db, 6231 pInfo->aCol, 6232 sizeof(pInfo->aCol[0]), 6233 &pInfo->nColumn, 6234 &i 6235 ); 6236 return i; 6237 } 6238 6239 /* 6240 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of 6241 ** the new element. Return a negative number if malloc fails. 6242 */ 6243 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ 6244 int i; 6245 pInfo->aFunc = sqlite3ArrayAllocate( 6246 db, 6247 pInfo->aFunc, 6248 sizeof(pInfo->aFunc[0]), 6249 &pInfo->nFunc, 6250 &i 6251 ); 6252 return i; 6253 } 6254 6255 /* 6256 ** This is the xExprCallback for a tree walker. It is used to 6257 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates 6258 ** for additional information. 6259 */ 6260 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ 6261 int i; 6262 NameContext *pNC = pWalker->u.pNC; 6263 Parse *pParse = pNC->pParse; 6264 SrcList *pSrcList = pNC->pSrcList; 6265 AggInfo *pAggInfo = pNC->uNC.pAggInfo; 6266 6267 assert( pNC->ncFlags & NC_UAggInfo ); 6268 switch( pExpr->op ){ 6269 case TK_IF_NULL_ROW: 6270 case TK_AGG_COLUMN: 6271 case TK_COLUMN: { 6272 testcase( pExpr->op==TK_AGG_COLUMN ); 6273 testcase( pExpr->op==TK_COLUMN ); 6274 testcase( pExpr->op==TK_IF_NULL_ROW ); 6275 /* Check to see if the column is in one of the tables in the FROM 6276 ** clause of the aggregate query */ 6277 if( ALWAYS(pSrcList!=0) ){ 6278 SrcItem *pItem = pSrcList->a; 6279 for(i=0; i<pSrcList->nSrc; i++, pItem++){ 6280 struct AggInfo_col *pCol; 6281 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6282 if( pExpr->iTable==pItem->iCursor ){ 6283 /* If we reach this point, it means that pExpr refers to a table 6284 ** that is in the FROM clause of the aggregate query. 6285 ** 6286 ** Make an entry for the column in pAggInfo->aCol[] if there 6287 ** is not an entry there already. 6288 */ 6289 int k; 6290 pCol = pAggInfo->aCol; 6291 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ 6292 if( pCol->iTable==pExpr->iTable 6293 && pCol->iColumn==pExpr->iColumn 6294 && pExpr->op!=TK_IF_NULL_ROW 6295 ){ 6296 break; 6297 } 6298 } 6299 if( (k>=pAggInfo->nColumn) 6300 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 6301 ){ 6302 pCol = &pAggInfo->aCol[k]; 6303 assert( ExprUseYTab(pExpr) ); 6304 pCol->pTab = pExpr->y.pTab; 6305 pCol->iTable = pExpr->iTable; 6306 pCol->iColumn = pExpr->iColumn; 6307 pCol->iMem = ++pParse->nMem; 6308 pCol->iSorterColumn = -1; 6309 pCol->pCExpr = pExpr; 6310 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){ 6311 int j, n; 6312 ExprList *pGB = pAggInfo->pGroupBy; 6313 struct ExprList_item *pTerm = pGB->a; 6314 n = pGB->nExpr; 6315 for(j=0; j<n; j++, pTerm++){ 6316 Expr *pE = pTerm->pExpr; 6317 if( pE->op==TK_COLUMN 6318 && pE->iTable==pExpr->iTable 6319 && pE->iColumn==pExpr->iColumn 6320 ){ 6321 pCol->iSorterColumn = j; 6322 break; 6323 } 6324 } 6325 } 6326 if( pCol->iSorterColumn<0 ){ 6327 pCol->iSorterColumn = pAggInfo->nSortingColumn++; 6328 } 6329 } 6330 /* There is now an entry for pExpr in pAggInfo->aCol[] (either 6331 ** because it was there before or because we just created it). 6332 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that 6333 ** pAggInfo->aCol[] entry. 6334 */ 6335 ExprSetVVAProperty(pExpr, EP_NoReduce); 6336 pExpr->pAggInfo = pAggInfo; 6337 if( pExpr->op==TK_COLUMN ){ 6338 pExpr->op = TK_AGG_COLUMN; 6339 } 6340 pExpr->iAgg = (i16)k; 6341 break; 6342 } /* endif pExpr->iTable==pItem->iCursor */ 6343 } /* end loop over pSrcList */ 6344 } 6345 return WRC_Prune; 6346 } 6347 case TK_AGG_FUNCTION: { 6348 if( (pNC->ncFlags & NC_InAggFunc)==0 6349 && pWalker->walkerDepth==pExpr->op2 6350 ){ 6351 /* Check to see if pExpr is a duplicate of another aggregate 6352 ** function that is already in the pAggInfo structure 6353 */ 6354 struct AggInfo_func *pItem = pAggInfo->aFunc; 6355 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ 6356 if( pItem->pFExpr==pExpr ) break; 6357 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ 6358 break; 6359 } 6360 } 6361 if( i>=pAggInfo->nFunc ){ 6362 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] 6363 */ 6364 u8 enc = ENC(pParse->db); 6365 i = addAggInfoFunc(pParse->db, pAggInfo); 6366 if( i>=0 ){ 6367 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6368 pItem = &pAggInfo->aFunc[i]; 6369 pItem->pFExpr = pExpr; 6370 pItem->iMem = ++pParse->nMem; 6371 assert( ExprUseUToken(pExpr) ); 6372 pItem->pFunc = sqlite3FindFunction(pParse->db, 6373 pExpr->u.zToken, 6374 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); 6375 if( pExpr->flags & EP_Distinct ){ 6376 pItem->iDistinct = pParse->nTab++; 6377 }else{ 6378 pItem->iDistinct = -1; 6379 } 6380 } 6381 } 6382 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry 6383 */ 6384 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); 6385 ExprSetVVAProperty(pExpr, EP_NoReduce); 6386 pExpr->iAgg = (i16)i; 6387 pExpr->pAggInfo = pAggInfo; 6388 return WRC_Prune; 6389 }else{ 6390 return WRC_Continue; 6391 } 6392 } 6393 } 6394 return WRC_Continue; 6395 } 6396 6397 /* 6398 ** Analyze the pExpr expression looking for aggregate functions and 6399 ** for variables that need to be added to AggInfo object that pNC->pAggInfo 6400 ** points to. Additional entries are made on the AggInfo object as 6401 ** necessary. 6402 ** 6403 ** This routine should only be called after the expression has been 6404 ** analyzed by sqlite3ResolveExprNames(). 6405 */ 6406 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ 6407 Walker w; 6408 w.xExprCallback = analyzeAggregate; 6409 w.xSelectCallback = sqlite3WalkerDepthIncrease; 6410 w.xSelectCallback2 = sqlite3WalkerDepthDecrease; 6411 w.walkerDepth = 0; 6412 w.u.pNC = pNC; 6413 w.pParse = 0; 6414 assert( pNC->pSrcList!=0 ); 6415 sqlite3WalkExpr(&w, pExpr); 6416 } 6417 6418 /* 6419 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an 6420 ** expression list. Return the number of errors. 6421 ** 6422 ** If an error is found, the analysis is cut short. 6423 */ 6424 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ 6425 struct ExprList_item *pItem; 6426 int i; 6427 if( pList ){ 6428 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ 6429 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); 6430 } 6431 } 6432 } 6433 6434 /* 6435 ** Allocate a single new register for use to hold some intermediate result. 6436 */ 6437 int sqlite3GetTempReg(Parse *pParse){ 6438 if( pParse->nTempReg==0 ){ 6439 return ++pParse->nMem; 6440 } 6441 return pParse->aTempReg[--pParse->nTempReg]; 6442 } 6443 6444 /* 6445 ** Deallocate a register, making available for reuse for some other 6446 ** purpose. 6447 */ 6448 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ 6449 if( iReg ){ 6450 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); 6451 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ 6452 pParse->aTempReg[pParse->nTempReg++] = iReg; 6453 } 6454 } 6455 } 6456 6457 /* 6458 ** Allocate or deallocate a block of nReg consecutive registers. 6459 */ 6460 int sqlite3GetTempRange(Parse *pParse, int nReg){ 6461 int i, n; 6462 if( nReg==1 ) return sqlite3GetTempReg(pParse); 6463 i = pParse->iRangeReg; 6464 n = pParse->nRangeReg; 6465 if( nReg<=n ){ 6466 pParse->iRangeReg += nReg; 6467 pParse->nRangeReg -= nReg; 6468 }else{ 6469 i = pParse->nMem+1; 6470 pParse->nMem += nReg; 6471 } 6472 return i; 6473 } 6474 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ 6475 if( nReg==1 ){ 6476 sqlite3ReleaseTempReg(pParse, iReg); 6477 return; 6478 } 6479 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); 6480 if( nReg>pParse->nRangeReg ){ 6481 pParse->nRangeReg = nReg; 6482 pParse->iRangeReg = iReg; 6483 } 6484 } 6485 6486 /* 6487 ** Mark all temporary registers as being unavailable for reuse. 6488 ** 6489 ** Always invoke this procedure after coding a subroutine or co-routine 6490 ** that might be invoked from other parts of the code, to ensure that 6491 ** the sub/co-routine does not use registers in common with the code that 6492 ** invokes the sub/co-routine. 6493 */ 6494 void sqlite3ClearTempRegCache(Parse *pParse){ 6495 pParse->nTempReg = 0; 6496 pParse->nRangeReg = 0; 6497 } 6498 6499 /* 6500 ** Validate that no temporary register falls within the range of 6501 ** iFirst..iLast, inclusive. This routine is only call from within assert() 6502 ** statements. 6503 */ 6504 #ifdef SQLITE_DEBUG 6505 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ 6506 int i; 6507 if( pParse->nRangeReg>0 6508 && pParse->iRangeReg+pParse->nRangeReg > iFirst 6509 && pParse->iRangeReg <= iLast 6510 ){ 6511 return 0; 6512 } 6513 for(i=0; i<pParse->nTempReg; i++){ 6514 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ 6515 return 0; 6516 } 6517 } 6518 return 1; 6519 } 6520 #endif /* SQLITE_DEBUG */ 6521